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Abstract
We introduce ω-ned, an edit distance between infinite words, that is a natural extension of ned,
the normalized edit distance between finite words. We show it is a metric on (equivalence classes
of) infinite words. We provide a polynomial time algorithm to compute the distance between two
ultimately periodic words, and a polynomial time algorithm to compute the distance between two
regular ω-languages given by non-deterministic Büchi automata.
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1 Introduction

Quantifying distances between words is a field of research that provides tools for measuring
semantic differences between sequential objects and sets thereof. In this work, we are
interested in quantifying the distances between infinite words and between sets of infinite
words. The main motivation that led us to examine this issue is the use of infinite words
in formal methods for describing behaviors of reactive systems. In particular, in software
verification and other applications, it is common to refer to software systems as state machines
and to use automata whose languages are the sets of runs of the systems. Specifically, it
is customary to specify requirements by automata representing the sets of allowed/desired
runs. We argue that in this context, it is natural to define the distance between two runs
as the average amount of “discrepancies” between the two runs and to study algorithmic
problems related to those distances. Since we deal with infinite words, a description of a
set of words by an automaton usually uses the Büchi acceptance condition, where a word is
accepted by an automaton if and only if there is a trajectory in the automaton that reads
the word and passes through accepting states infinitely many times. Sets of infinite words
that can be described by Büchi automata are called ω-regular languages.

Significance of our contribution. Verification tools, which deal primarily with compliance
and non-compliance with requirements defined using temporal logic, provide a yes/no answer
but do not quantify the degree of deviation of implementations from the requirements nor
the robustness of an implementation. In this work, we present a metric for quantifying
distances between infinite words reflecting deviations between runs of implementation and
runs specified in the requirements. Specifically, we extend a normalized version of the known
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20:2 A Normalized Edit Distance on Infinite Words

edit distance for this purpose and describe algorithms for calculating distances between
ultimately periodic words and between ω-regular languages. The distance between two
languages L1 and L2 is defined as the infimum between any pair of words w1, w2 in L1 and
L2, respectively.

It can be used, for example, to measure the robustness of an implementation [1,2,6,16,17].
Consider a system S implementing a specification φ. The system is considered robust if it
continues to satisfy the specification, even when errors disrupt its normal behavior. That
is, robustness asks what is the minimum number of errors that would render the system to
violate the specification. Thus, robustness is taken to be the infimum between any pair of
words w, w′ in L(S) and L(¬φ), which is exactly the distance between the language of S and
the language of ¬φ.

Relations to other notions of distance between words. Our work is based on the well-
known edit distance (aka Levenshtein distance) [13]. For two finite words u1, u2 ∈ Σ∗, this
distance, denoted ed(u1, u2), is defined as the minimum number of edits we need to apply to
u1 to obtain u2. Here, edit operations are delete a letter, insert a letter, or replace a letter.
For instance, ed(aabcde, abpcg) = 4 since by deleting the first a, inserting p, replacing d by
g and deleting e we get from the first word to the second, and there is no shorter sequence
of edit operations transforming the first word to the latter. In the setting of this paper,
differences between words model violations of specifications. We, therefore, treat all types
of differences equally, i.e., while in some applications, different edit operations may weigh
differently, we consider the case of uniform weights for all edit operations.

Since we are interested in infinite words, we consider normalized versions of ed. To see the
role of normalization, even for finite terms, note that ed(a98b4, a100) is also four, even though
these words are almost identical. Note that the distance remains four even if we replace 100
by 106 and 98 by 106 − 2 in which case the words are even more identical. Intuitively, the
problem is that we need to count error rates, not just numbers, if we want to compare words
of different, even infinite, lengths. To achieve normalization, people have considered dividing
ed by the sum, max, or min of the lengths of the words, but these do not satisfy the triangle
inequality [5, 15]. To bypass this problem, Marzal and Vidal [15] proposed to divide ed by
the length of the sequence of operations transforming the first word to the second, the edit
path, as formally defined in Section 2. Using ned (for normalized edit distance) to refer to
this function, we get that ned(aabcde, abpcg) = 4/7 and ned(a98b4, a100) = 4/102, which
better reflects the “average” number of required edit operations, i.e., this captures a notion
of “error rates” as needed. In their paper, Marzal and Vidal demonstrated that ned is not
necessarily a metric when the weights are not uniform. The question of whether it is a metric
when costs are uniform remained unsettled. This led others to propose alternative notions
such as the generalized normalized edit distance [14] and the contextual edit distance [5]. Still,
because of its simplicity and based on empirical data that showed that it behaves very close
to a metric, it is widely used in applications. In this paper, we rely on a recent work [7] that
established that ned is indeed a metric when the weights are uniform (all edit operations
cost the same). The paper above also lists properties of ned and the other two normalized
edit distances demonstrating that ned is more suitable when considering the edit operations
as errors.

We turn now to discuss possibilities for distances between infinite words. The most
famous distance function on infinite words is the one on which the Cantor topology is defined,
according to which the distance between w1, w2 ∈ Σω decreases exponentially with the length
of the longest common prefix [10]. Formally, using ctd to denote this distance function,
ctd(w1, w2) is zero if w1 = w2 and otherwise it is 2 − min{i | w1[i]̸=w2[i]} where w[i] denotes
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the ith letter of w starting from 0. The intuition behind ctd and the edit distance functions
mentioned above (ed and ned) is very different. We have that ctd(abω, aω) = 1/2 and
ctd(baω, aω) = 1 while more edit operations are needed to get from abω to aω than from
baω (infinitely many operations are required in the former and only one in the latter). Other
commonly used distance functions for infinite words are defined using some weight function
and some summation function defined on that (see, e.g., [3, 4]). This is more similar in spirit
to our motivation. Formally, for w1, w2 ∈ Σω we define their weight difference sequence as
η(w1, w2) = e1, e2, . . . where ei = 0 if w1[i] = w2[i] and ei = W (w1[i], w2[i]) for some weight
function W : Σ2 → R otherwise. In the examples, we assume, for simplicity, that W assigns
the number 1 to all pairs of distinct letters. Given an infinite sequence η = e1, e2, e3, . . . with
ei ∈ R the common summation functions are defined as follows:

Sup(η) = supn∈N en LimSup(η) = lim supn→∞ en = limn→∞ supm≥n em

Inf(η) = infn∈N en LimInf(η) = lim infn→∞ en = limn→∞ infm≥n em

LimSupAvg(η) = lim supn→∞
1
n

∑n

i=1 ei Discλ(η) =
∑∞

n=1 λnen

LimInfAvg(η) = lim infn→∞
1
n

∑n

i=1 ei

For finite words Sum, Min, Max, Avg and Discλ, for λ ∈ (0, 1), are also used see, e.g., [6].
Different summation functions are called for in different situations. For instance, Sup is used
for peak consumption; LimSupAvg, LimInfAvg for average response time or rate of failures;
and Discλ when late failures are less important than early ones.

We next demonstrate why Sup, Inf, LimSup, LimInf, and Discλ do not capture the notion
of distance we seek in this paper. Applying Sup to η(w1, w2) would give 1 if w1 ̸= w2 and 0
otherwise. Applying Inf to η(w1, w2) would give 1 only if w1[i] ̸= w2[i] for every i, i.e., they
completely disagree. These two are too coarse to quantify the closeness of implementations
to specifications. Applying LimSup to η(w1, w2) would give 1 if there are infinitely many
indices i in which w1[i] ̸= w2[i] and 0 otherwise, and LimInf would give 1 if there is i

such that w1[j] ̸= w2[j] for every j > i. These are still too coarse for our purpose. The
summation Discλ disregards what happens ad infinitum, or more precisely, gives later events
an exponentially smaller weight making them negligible. Even for words that agree on the
suffixes, e.g., w1 = aω, w2 = abaω, w3 = aaabaω we get that Disc 1

2
(η(w1, w2)) = 1/4 and

Disc 1
2
(η(w1, w3)) = 1/16 though both w2 and w3 have one discrepancy compared to w1.

The summation functions closest to what we seek are LimSupAvg and LimInfAvg. Indeed,
if we consider the words w1 = aω and w2 = (aaaab)ω, applying the uniform weight function, we
obtain the sequence η = (00001)ω since every fifth letter is different. Thus, LimSupAvg(η) =
1/5, which is consistent with our intuition on the normalized number of edit operations
required to apply to w1 to obtain w2. For the words v1 = c100aω and v2 = d35(aaaab)ω we
also get the desired 1/5 by applying LimSupAvg on η(v1, v2) which is 1100(00001)ω. Indeed,
LimSupAvg (and LimInfAvg) is indifferent to any finite prefix, as we expect the case to be
since a finite prefix is always negligible compared to the infinite suffix. Still, LimSupAvg
and LimInfAvg do not always correspond to our intuition of the normalized number of edits
required to get from one word to the other. Consider x1 = (abc)ω and x2 = (acb)ω. We
have that η(x1, x2) = (011)ω so LimInfAvg is 2/3. But if we consider edit operations, we can
transform abcabc to acbacb using an edit path of length eight with two delete operations and
two insert operations hence ned(x1x1, x2x2)=4/8=1/2 meaning the actual error rate should
be 1/2 rather than 2/3. Another issue arises when considering, for example, y1 = (abcd)ω

and y2 = (bcda)ω. The obtained sequence η(y1, y2) is (1)ω thus LimSupAvg and LimInfAvg
result in 1, meaning the words are farthest apart, while the number of edits required to get
from y1 to y2 is one, since we can simply drop the first letter of y1 to get y2. Since this is
one edit out of infinitely many letters we expect the error rate to be 0 in this case.
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Desired criteria from an edit distance on infinite words. We want it to be normalized
in the sense that the distance between two words is in [0, 1] and that it reflects the number
of edits needed on average to get from one word to the other. In particular, it would be
nice if we can find such a metric in which the distance between (u1)ω and (u2)ω would be
close to ned(u1, u2). We would also like it to return zero for words with a common infinite
suffix. Do we want to require that the distance between two words is zero if and only if they
have a common suffix? While this makes sense when considering ultimately periodic words,
there are more cases where we would like the distance to be zero when we consider arbitrary
words. Consider, e.g., w1 = aω and w2 = ba9ba99ba999b · · · . That is, w2 has a in almost all
positions, but b’s creep in intervals of powers of 10. We expect the distance between w1 and
w2 to be 0 since the normalized number of required edits is negligible because the necessity
for an edit operation diminishes as the word progresses.

Due to space limitations, some proofs are deferred to the full version; they can also be
found in the second author’s master thesis [9].

2 Preliminaries

Sequences, sub-sequences, repetitions, projection. We use [i..j] to denote the set {i, i +
1, . . . , j} for naturals i, j such that i ≤ j. If ρ = (r0, r1, . . .) is a sequence, we use ρ[i..j] for
the subsequence (ri, ri+1, . . . , rj). Similarly, ρ[i] is used to denote ri, and ρ[..i] (resp. ρ[i..])
is used for the prefix (resp. suffix) of ρ ending (resp. starting) at i. If ρ = (r0, r1, . . . rl−1) is
a sequence, we use ρk for the k-times repetition of ρ and ρω for the infinite repetition of ρ.
Then, if l is the length of ρ, we have that ρω[i] = ρ[i mod l] for every i ∈ N. Given a tuple
t = ⟨a1, a2, . . . , an⟩ we use πi(t) for ai, namely the projection of t on the i-th coordinate.
These notions extend to sets and sequences in the usual manner, thus, e.g., given a sequence
ρ=(⟨σ1, σ′

1⟩, ⟨σ2, σ′
2⟩ . . .) we use π1(ρ) for the sequence (σ1, σ2, . . .).

Words, ω-words, ultimately periodic words, rotations. An alphabet Σ is a finite non-empty
set of symbols. A finite sequence over Σ is a word and an infinite sequence over Σ is an
ω-word. We use |w| to denote the length of w. Thus, |w| = l if w = σ0σ1 . . . σl−1 and |w| = ω

if w is an ω-word. An ω-word w is termed ultimately periodic if w = uvω for some u ∈ Σ∗

and v ∈ Σ+. An ultimately periodic word w = u(v)ω can be finitely represented as the
pair (u, v). The set of finite words is denoted Σ∗, the set of infinite words is denoted Σω,
their union is denoted Σ∞. The set of ultimately periodic words over Σ is denoted Σup. Let
w ∈ Σ∗, we use rot(w) for all rotations of w, namely, the set of words uv such that w = vu.

Directions and Paths. We consider a set D = {(0, 1), (1, 0), (1, 1)} of three directions. The
element (0, 1) denotes the south direction, and is abbreviated as ds; the element (1, 0) the
east direction, and is abbreviated as de; and the element (1, 1) the south-east direction, and
is abbreviated as dse. A sequence ρ ∈ D∞ is called a path.

A South-East Graph, Endpoint. A south-east graph is composed of a set V = [0..n1]×[0..n2]
of vertices, for some n1, n2 ∈ N ∪ {ω}, and a set E = (Es ∪ Ee ∪ Ese) ∩ V 2 of edges, where
Es = {(⟨i, j⟩, ⟨i, j + 1⟩)}, Ee = {(⟨i, j⟩, ⟨i + 1, j⟩)}, Ese = {(⟨i, j⟩, ⟨i + 1, j + 1⟩)}. We refer
to such a southeast graph as an (n1 × n2)-south-east graph. The vertices of the graph can
be placed on a [0..n1] × [0..n2] grid. We visualize the top-left position as the ⟨0, 0⟩ point.
Thus, a path ρ = (d0, . . . , dl−1) starting in ⟨0, 0⟩ will end in

∑l−1
i=0 di where summation is

coordinate wise. We use endpoint(ρ) to denote the endpoint of path ρ starting at ⟨0, 0⟩.
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Figure 1 (a) the words graph G = G(ababab, ababba), gray edges are assigned the weight 1, green
edges are assigned the weight 0. (b) an edit path ρ in G (in yellow) where endpoint(ρ) = (6, 6),
wgt(ρ) = 2, len(ρ) = 7, and cost(ρ) = 2/7. (c) an edit path ρ and points s = (2, 1), t = (6, 5) on
G((acba)3, (abac)3) where ρ[s..t] (in yellow) fits a 4-square. (d) the path ρ′ = ρs · ρt obtained by
removing from ρ the sub-path ρ[s..t] (and replacing it by a black dot) as in the proof of Prop. 9. (e)
notations for proof of Theorem 30.

Words Graph. Given two words w1, w2 ∈ Σ∞ their corresponding graph G(w1, w2) is the
weighted graph (G, θ) where G = (V, E) is the (|w1| × |w2|)-south-east graph and

the weight of edges θ : E → {0, 1} is defined as follows

θ(e) =
{

0 if e=(v, v′) for v=⟨i, j⟩, w1[i]=w2[j], v′−v=dse,

1 otherwise

That is, the weight of all east edges and south edges is 1 and the weight of a south-east edge
starting at ⟨i, j⟩ is 0 if the letters w1[i] and w2[j] are the same, and 1 otherwise. The word
graph G(ababab, ababba) is given in Figure 1 (a).

Edit Path. A sequence ρ ∈ D∗ is termed an edit path for (w1, w2) if endpoint(ρ) =
(|w1|, |w2|). The weight of ρ, denoted wgt(ρ), is the sum of weights of the corresponding edges
in G(w1, w2). Formally, if ρ = (d0, d1, . . . , dl−1) then the traversed edges are (e0, e1, . . . , el−1)
where ei = (si−1, si), s−1 = ⟨0, 0⟩ and si = endpoint(ρ[..i]) for 0 ≤ i < l. Hence, we can
define wgt(ρ) =

∑l−1
i=0 θ(ei). We use the notation len(ρ) to denote the length |ρ| of ρ. The

cost of ρ, denoted cost(ρ), is defined to be wgt(ρ)
len(ρ) . See Figure 1 (b). Intuitively, an edit path

for (w1, w2) prescribes how to transform w1 into w2. In particular, a south direction from
⟨i, j⟩ marks that letter w1[i] is deleted, an east direction from ⟨i, j⟩ marks that letter w2[j] is
added, a south-east direction from ⟨i, j⟩ marks substitution of w1[i] by w2[j], thus it costs
nothing if w1[i] = w2[j].

Edit Distance and the Normalized Edit Distance. Using the above notations we provide the
formal definitions of the edit distance and the normalized edit distance. The (not normalized)
edit distance of u1, u2 ∈ Σ∗, denoted ed(u1, u2), is the minimum weight of an edit path for
(u1, u2). That is,

ed(u1, u2) = min{wgt(ρ) | ρ is an edit path for (u1, u2)}.

The normalized edit distance of two finite words u1, u2 ∈ Σ∗, denoted ned(u1, u2), is the
minimum cost of an edit path for (u1, u2). That is,

ned(w1, w2) = min{cost(ρ) | ρ is an edit path for (u1, u2)}.

Since we are interested in the ned metric, we say that an edit path ρ for (u1, u2) is optimal
if ned(u1, u2) = cost(ρ).

CSL 2023
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A Metric Space. A metric space is an ordered pair (M, d) where M is a set and d : M×M → R
is a metric, i.e., it satisfies the following for all m1, m2, m3 ∈ M:

1. d(m1, m2) = 0 iff m1 = m2;
2. d(m1, m2) = d(m2, m1);

3. d(m1, m3) ≤ d(m1, m2) + d(m2, m3).

The first condition is referred to as identity of indiscernibles, the second as symmetry,
and the third as the triangle inequality.

▶ Theorem 1 ([7]). (Σ∗, ned) is a metric space.

3 A Normalized Edit Distance for Infinite Words

Intuitively, it makes sense to define the normalized edit distance for two infinite words as
the limit of ned of their prefixes. Since the limit may not exist, we define two candidate
versions, one using lim inf and one using lim sup as follows.

▶ Definition 2 (ω-ned,ω-ned). Let w1, w2 ∈ Σω be two infinite words. We define two
candidate notions of a normalized edit distance, as follows:

ω-ned(w1, w2) def== lim sup
i→∞

ned(w1[..i], w2[..i])

ω-ned(w1, w2) def== lim inf
i→∞

ned(w1[..i], w2[..i])

Since for every pair of finite words u1, u2, ned(u1, u2) is bounded (between 0 and 1) both
ω-ned(w1, w2) and ω-ned(w1, w2) converge for every pair w1, w2 of infinite words.

▶ Example 3.

a. ω-ned(aω, (aaaab)ω) = 1/5 b. ω-ned(aω, a · b1 · a · b2 · a · b3 · a · b4 · · · ) = 1
ω-ned(aω, (aaaab)ω) = 1/5 ω-ned(aω, a · b1 · a · b2 · a · b3 · a · b4 · · · ) = 1

c. ω-ned(aω, a1 · b1 · a2 · b2 · a4 · b4 · · · ) = 1/2
ω-ned(aω, a1 · b1 · a2 · b2 · a4 · b4 · · · ) = 1/3

Example 3 (c) shows that ω-ned and ω-ned, in general, may converge to different numbers.
Since our motivation is to quantify errors, the worst-case view reflected by ω-ned seems
more appropriate. Moreover, as we show next, ω-ned satisfies the triangle inequality while
ω-ned does not.

▶ Proposition 4. ω-ned satisfies the triangle inequality and ω-ned does not.

Proof. We show that ω-ned satisfies the triangle inequality by proving a more general claim
stating that given a function d : Σ∗ × Σ∗→R+ satisfying the triangle inequality then the
function ω-d : Σω × Σω→R+ where ω-d(w1, w2) is defined by lim supi→∞ d(w1[..i], w2[..i])
satisfies the triangle inequality as well. To see why this holds, let w1, w2, w3 ∈ Σω. We have

ω-d(w1, w3) = lim sup
i→∞

d(w1[..i], w3[..i])

≤ lim sup
i→∞

(d(w1[..i], w2[..i]) + d(w2[..i], w3[..i]))

≤ lim sup
i→∞

d(w1[..i], w2[..i]) + lim sup
i→∞

d(w2[..i], w3[..i])

= ω-d(w1, w2) + ω-d(w2, w3)

where the first inequality holds since d satisfies the triangle inequality and the second
inequality is a property of sum of lim sup of non-negative sequences.
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To see that ω-ned does not satisfy the triangle inequality, take w1 = aω, w3 = bω

and w2 = u1v1u2v2 · · · , where u1 = a, v1 = bb, u2 = aaa and vi+1 = b2|ui| for i ≥ 1
and ui+1 = a2|vi| for i ≥ 2. Thus w2 = ab2a3b6a12b24a48b96.... Note that after reading
ui the number of a’s is twice the number of b’s, and two-thirds of the total number of
letters (and the number of b’s is a third of the total number of letters), and likewise after
reading vi the number of b’s is twice the number of a’s, and two-thirds of the total number
of letters (and the number of a’s is a third of the total number of letters). We get that
ω-ned(w1, w2) = 1/3 = ω-ned(w2, w3), which contradicts the triangle inequality since
ω-ned(w1, w3) = 1 > 1/3 + 1/3 = ω-ned(w1, w2) + ω-ned(w2, w3). ◀

In order for ω-ned to be a metric it also needs to satisfy symmetry (which clearly it does)
and the condition of identity of indiscernibles. The following example shows that ω-ned does
not satisfy identity of indiscernibles: ω-ned((ab)ω, (ba)ω) = 0 though these are non-identical
words. However, as per the discussion in the introduction, we do want to allow zero distance
between such words. Specifically, we want the metric to be defined on equivalence classes
of words so that the distance between two words is zero if and only if they are in the same
equivalence class. To define this equivalence relation, let us revisit the examples where a
distance of zero is expected. The first examples considered words that have a common suffix.
Indeed, in such pairs of words, the number of required operations is finite (can be used to
eliminate both prefixes), and thus negligible compared to the length of infinite words. The
last example was w1 = aω and w2 = ba9ba99ba999b · · · . In this example, we view the number
of edits as negligible since the necessity for edit operations diminishes as the work progresses.
In this example, the number of required edits decreases exponentially. Should this be a
requirement? What if it decreases quadratically or logarithmically? Observe that we can
create words where the number of edits from aω decreases as slowly as desired by considering
w = (ab)n1(aab)n2(aaab)n3 · · · . The larger n1, n2, n3, . . . are, the slower the number of edits
decreases. Still, in all such words, it diminishes over the infinite word and thus we expect
the difference from aω to be zero.

We therefore define two infinite words w1, w2 to be almost equal, denoted w1 ≡w2, if
limi→∞ ned(w1[..i], w2[..i]) = 0. Note that words that have a common suffix are almost
equal according to this definition, as are the other discussed examples. With respect to
the equivalence classes of ≡, identity of indiscernibles holds for ω-ned as formally stated in
Prop. 5.

▶ Proposition 5. ω-ned(w1, w2) = 0 iff w1 ≡w2.

Proof. If w1 ≡w2 then limi→∞ ned(w1[..i], w2[..i]) = 0. Thus lim supi→∞ ned(w1[..i],
w2[..i]) = 0. Therefore, by definition ω-ned(w1, w2) = 0.

If ω-ned(w1, w2) = 0 then lim supi→∞ d(w1[..i], w2[..i]) = 0. Since ned(v1, v2) is bounded
between 0 and 1 for any v1, v2 ∈ Σ∗, it follows that lim infi→∞ d(w1[..i], w2[..i]) = 0. Hence
limi→∞ ned(w1[..i], w2[..i]) = 0 implying w1 ≡w2. ◀

Thus ω-ned satisfies the three conditions of being a metric on the space Σω/ ≡.

▶ Theorem 6. (Σω/≡, ω-ned) is a metric space.

We therefore henceforth focus on ω-ned.

CSL 2023



20:8 A Normalized Edit Distance on Infinite Words

4 The Case of Ultimately Periodic Words

We turn to discuss ultimately periodic words. The interest in ultimately periodic words
stems from the fact that (a) they allow a finite representation of an infinite word, so we can
ask whether we can compute ω-ned for such words; (b) deterministic finite state machines
generate ultimately periodic words and; (c) two regular ω-languages are equivalent iff they
agree on the set of ultimately periodic words.

We next show that ω-ned for ultimately periodic words can be computed using ned on
the best rotations of the periodic parts:

▶ Definition 7 (best rotation). Let u1, u2 ∈ Σ+. Let n be the least common multiple of
|u1| and |u2|. Let u′

1 = uω
1 [..n] and u′

2 = uω
2 [..n]. We say that (v1, v2) is a best rotation for

(u1, u2) if v1 ∈ rot(u′
1), v2 ∈ rot(u′

2) and for every v′
1 ∈ rot(u′

1) and v′
2 ∈ rot(u′

2) it holds that
ned(v1, v2) ≤ ned(v′

1, v′
2). If (v1, v2) is a best rotation for some (u1, u2) we say that (v1, v2)

is a best rotation pair. The size of such a best rotation is defined to be n.

▶ Theorem 8 (ω-ned for ultimately periodic words). Let w1 = z1uω
1 and w2 = z2uω

2 . Let
(v1, v2) be a best rotation for (u1, u2). Then ω-ned(w1, w2) = ned(v1, v2).

To prove Theorem 8, it is tempting to consider using the South-East graph with wrap-
around as a game graph towards a reduction to 1-player MeanPayoff games, but unfortu-
nately, it does not work. The problem is that such a reduction allows finding an optimal
path that does not correspond to prefixes of the same length, while ω-ned is defined
as lim supi→∞(ned(w1[..i], w2[..i]) thus insists on the same length of prefixes. Consider
w1 = (aaab)ω and w2 = (aab)ω. The lcm is 12, and ω-ned(w1, w2) = 4/14 where trans-
formation of (aaab)3 to (aab)4 is via aaabaaabaa_a_b 7→ aa_baa_baabaab. However, the
reduction returns 1/4, via the path deleting every first a in a “block” of w1, essentially
returning lim supi→∞(ned(w1[..3i], w2[..4i]) rather than lim supi→∞(ned(w1[..i], w2[..i]).

We, therefore, continue with a series of propositions that lead to a proof of Theorem 8.
The first proposition concerns the cost of prefixes that are multiples of n (the least common
multiple of the two periods).

▶ Proposition 9 (The cost of prefixes which are multiplications of the best rotation). Let
u1, u2 ∈ Σ+ be a best rotation pair of size n. Let ρ be an optimal edit path for (ui

1, ui
2) for

some i > 0. Let ρ∗ be an optimal edit path for (u1, u2). Then cost(ρ) = cost(ρ∗).

The proof of Prop. 9 builds on the following proposition, claiming that when looking at ρ

on the words graph G(ui
1, ui

2), then some infix of ρ fits an n × n square, as formally stated in
Prop. 10, and illustrated in Figure 1 (c).

▶ Proposition 10 (Fitting an n-square). Let u1, u2 ∈ Σ+ be a best rotation pair of size n. Let
ρ be an optimal edit path for (ui

1, ui
2) for some i > 1. There exists s and t, 0 ≤ s < t < |ρ|,

such that endpoint(ρ[s..t]) = ⟨n, n⟩.

The proof of Prop. 10 uses the intermediate value theorem over how much a k × k square
drifts from the main diagonal. The proof can be found in the full version of the paper.

Now, using Prop. 10, we can show that the cost of an optimal edit path ρ for (ui
1, ui

2) is
the same as the cost of ρ∗, an optimal edit path for (u1, u2).

Proof of Prop. 9. Clearly, since (ρ∗)i is an edit path for (ui
1, ui

2) and ρ is defined to be
optimal for (ui

1, ui
2) it must hold that cost(ρ) ≤ cost((ρ∗)i) = cost(ρ∗).
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The proof that cost(ρ) ≥ cost(ρ∗) is by induction on i. For i = 1, the path ρ clearly
cannot cost less than the path ρ∗ which is optimal for this dimension.

Consider i > 1. By Prop. 10 there exists 0 < s < n − 1 and t > s such that
endpoint(ρ[s..t]) = ⟨n, n⟩. Let ρs = ρ[..s−1], ρt = ρ[t+1..]. Consider the path ρ′ = ρs · ρt

obtained by removing the sub-path of ρ from s to t (as illustrated in Figure 1 (c) and
(d)). It is an edit path for (ui−1

1 , ui−1
2 ). Thus, by the induction hypothesis, we have that

cost(ρ′) ≥ cost(ρ∗). Since endpoint(ρ[s..t]) = ⟨n, n⟩ we also have cost(ρ[s..t]) ≥ cost(ρ∗).
Note that the cost of ρ can be computed using its sub-paths ρ[s..t] and ρ′ which combines ρs

and ρt. Let l′ = len(ρ′) and d′ = wgt(ρ′). Similarly, let lst = len(ρ[s..t]) and dst = wgt(ρ[s..t]).
Last, let l∗ = len(ρ∗) and d∗ = wgt(ρ∗). We get that

cost(ρ) = wgt(ρ[s..t])+wgt(ρ′)
len(ρ[s..t])+len(ρ′) = dst+d′

lst+l′ ≥ min
{

dst

lst
, d′

l′

}
≥ min

{
d∗
l∗

, d∗
l∗

}
= d∗

l∗
= cost(ρ∗)

where the first inequality holds by Fact 11 (proven in the full version). ◀

▶ Fact 11. Let a1, . . . , an > 0, b1, . . . , bn > 0. Then
∑

1≤i≤n
ai∑

1≤i≤n
bi

≥ min
1≤i≤n

{
ai

bi

}
.

Next, we bound from above and below, the cost of prefixes that are not a multiplication of n.

▶ Proposition 12 (cost of prefixes which are not multiplications of n). Let u1, u2 ∈ Σ+ be a
best rotation pair of size n. Let m = i · n + j for some i > 0 and 0 < j < n and let ρ be an
optimal edit path for (uω

1 [..m], uω
2 [..m]). Let ρ∗ be an optimal path for (u1, u2), and assume

d∗ = wgt(ρ∗) and l∗ = len(ρ∗). Then

d∗
l∗

− 2(n−j)
i·n+j ≤ cost(ρ) ≤ d∗+ 2j

i

l∗+ 2j
i

.

Proof. For the left inequality, consider the path ρ′ = ρ · (ds)n−j · (de)n−j . That is, the
path obtained from ρ by extending it with (n − j) south and (n − j) east steps. Note that
endpoint(ρ′) = ⟨(i+1)n, (i+1)n⟩. It follows from Prop. 9 that the cost of ρ′ is at least d∗

l∗
.

Thus we have cost(ρ′) = wgt(ρ)+2(n−j)
len(ρ)+2(n−j) ≥ d∗

l∗
. From here we get:

wgt(ρ)l∗ ≥ d∗ · len(ρ) + d∗ · 2(n − j) − l∗ · 2(n − j) ≥ d∗ · len(ρ) − l∗ · 2(n − j)

dividing both sides by l∗ · len(ρ) gives us wgt(ρ)
len(ρ) ≥ d∗

l∗
− 2(n−j)

len(ρ) ≥ d∗
l∗

− 2(n−j)
i·n+j where the

last inequality follows from the fact that len(ρ) ≥ i · n + j.
For the right inequality, consider the path ρ′ = (ρ∗)i·(ds)j ·(de)j . That is, the path obtained

from ρi
∗ by extending it with j south and j east steps. Note that endpoint(ρ′) = ⟨i·n+j, i·n+j⟩.

Since ρ is optimal we get: cost(ρ) ≤ cost(ρ′) = wgt(ρi
∗)+2j

len(ρi
∗)+2j = i·d∗+2j

i·l∗+2j = d∗+2j/i
l∗+2j/i . ◀

We are now ready to prove Theorem 8.

Proof of Theorem 8. Assume that w1 = z1uω
1 and w2 = z2uω

2 . Let n be the gcd of |u1|
and |u2| and let (v1, v2) be a best rotation of (u1, u2). Since ziu

ω
i , uω

i and vω
i are almost

equal, for i ∈ {1, 2}, by Theorem 6, ω-ned(w1, w2) = ω-ned(vω
1 , vω

2 ). Let ρ∗ be an optimal
path for v1, v2. Let d∗ be its weight and l∗ its length. Consider ned(vω

1 [..i], vω
2 [..i]). If i is a

multiple of n then by Prop. 9 we get that ned(vω
1 [..i], vω

2 [..i]) = d∗/l∗. If i is not a multiple
of n then by Prop. 12 we have that ned(vω

1 [..i], vω
2 [..i]) approaches d∗/l∗ as i grows. Thus,

limi→∞ ned(vω
1 [..i], vω

2 [..i]) = d∗/l∗ = ned(v1, v2). ◀
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5 Computing ω-NED for Languages of Infinite Words

We define the distance between two languages as the infimum of distances between two
words in the respective languages (as is common in metrics when extending the distance
between pair of elements in the space to pair of sets in the space). That is, ned(L1, L2) =
infw1∈L1,w2∈L2 ned(w1, w2) and ω-ned(L1, L2) = infw1∈L1,w2∈L2 ω-ned(w1, w2). In this
section we tackle the problem of computing ω-ned for regular languages of infinite words.
Two questions that should be answered first, are (a) how to compute ω-ned for two ultimately
periodic words (which we discuss in Subsection 5.1), and (b) how to compute ned for languages
of finite words (which we discuss in Subsection 5.2). After discussing these, in Subsection 5.3,
we tackle the problem of computing ω-ned for regular languages of infinite words.

5.1 Computing ω-NED for ultimately periodic words
We summarize first how computation of ned for finite words can be done.

Computing NED for words. Computation of ned for two finite words can be done in Ptime
using a dynamic programming algorithm as follows [15]. Let w1, w2 be words of lengths m

and n, respectively. Any edit path of size k satisfies max{m, n} ≤ k ≤ m + n. Following the
definition,

D(i, j, k) = min
{

wgt(ρ)
∣∣ ρ is an edit path for (w1[..i−1], w2[..j−1]) and len(ρ) = k

}
we obtain ned(w1, w2) = minmax(m,n)≤k≤m+n

1
k D(m, n, k) and it can be computed in O(m ·

n · min{m, n}), since for k there are m + n − max{m, n} entries in D.

Computing ω-NED for ultimately periodic words. Let w1 = z1uω
1 and w2 = z2uω

2 . Let
v1 = uω

1 [..m] and v2 = uω
2 [..m] where m is the least common multiple of |u1| and |u2|. It

follows from Theorem 8 that ω-ned(w1, w2) equals ned of a best rotation (v′
1, v′

2) of (v1, v2).
We note that to look for a best rotations it suffices to check only rotations of either v1 or v2.

▷ Claim 13. Let v1, v2 ∈ Σ∗ such that |v1| = |v2|. There exists a best rotation (v′
1, v′

2) of
(v1, v2) where v′

2 = v2.

Therefore ω-ned(w1, w2)= min
v′

1∈rot(v1)
ned(v′

1, v2); and it can be computed in O(m4).

Hence:

▶ Theorem 14. Let w1, w2 ∈ Σup. Then ω-ned(w1, w2) can be computed in Ptime.

5.2 Computing NED for regular languages
It is known that the infimum of the mean of a weighted graph can be computed in Ptime [6].

▶ Lemma 15 ([6]). Let G = (V, E, θ : E → Q≥0) be a weighted graph, and VI ⊆ V , VF ⊆ F

source and target vertices. The infimum of the mean weights of paths from VI to VF can be
computed in Ptime.

We can use this result to compute ned of regular languages, by building a weighted graph
that corresponds to the product of two NFAs, where instead of allowing only transitions
where both NFAs read the same letter, we also allow transitions where they read different
letters, and transitions where one reads a letter and the other one does not (instead it reads
ε). Transitions where both read a letter correspond to replace, where only the first reads a
letter to delete and where only the second reads a letter to insert.
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▶ Definition 16 (Edit Distance Graph of two NFAs). For i ∈ {1, 2} let Ni = (Σ, Qi, si, δi, Fi)
be an NFA with no ε-moves. The edit-distance graph of N1 and N2 is a labeled weighted
graph, denoted Ged(N1, N2) which is defined as follows Ged(N1, N2) = (V, L, E, θ) where
V = Q1 × Q2 is the set of vertices; the set of labels is Σε × Σε where Σε = Σ ∪ {ε}; the set
of edges E ⊆ V × L × V is given by

E =
{

(⟨q1, q2⟩, ⟨σ1, σ2⟩, ⟨q′
1, q′

2⟩)
∣∣∣∣ either σ1 ̸= ε or σ2 ̸= ε

and if σi ̸= ε then q′
i ∈ δi(qi, σi) otherwise q′

i = qi

}
and the weight function θ associates a weight with edge (u, l, u′) ∈ E solely based on l as follows:
θ(u, l, u′) = θed(l) where if σ1 = σ2 then θed(⟨σ1, σ2⟩) = 0 otherwise θed(⟨σ1, σ2⟩) = 1.

Clearly, any path in Ged(N1, N2) corresponds to an edit path of the respective words and
vice versa.

▷ Claim 17. ρed = ((u0, l1, u1), (u1, l2, u2), . . . , (uk−1, lk, uk)) for li = (σi, σ′
i) is a path in

Ged(N1, N2) if and only if ρ = (d1, d2, . . . , dk) is a path in the words graph G(w1, w2) where
w1 = σ1σ2 · · · σk, w2 = σ′

1σ′
2 · · · σ′

k and di = ds if σi = ε, di = de if σ′
i = ε, and di = dse

otherwise.

Note that in addition, all edges but those corresponding to pairs of identical letters cost
1. Thus, the sum of weights of a path ρed in Ged(N1, N2) corresponds to wgt(ρ) and the
length of ρed to len(ρ). Therefore, the infimum of the mean path in Ged(N1, N2) corresponds
exactly to the desired ned value. Hence, the ned distance between two regular languages
given by NFAs N1 and N2 can be reduced to computing the infimum of the mean cycle
in Ged(N1, N2) from VI = {(s1, s2)} to VF = F1 × F2, and following Lemma 15 it can be
computed in Ptime.

▶ Theorem 18. The ned distance between two regular languages given by NFAs N1 and N2
can be computed in Ptime.

5.3 Computing ω-NED for Regular ω-Languages
The gist of the proof of Lemma 15 is important for the development of the algorithm for
infinite words. The idea is that the infimum of the mean path in a weighted graph is obtained
either on a simple path, or on a path with a simple cycle, by repeating the cycle over and
over. Thus, one can use Karp’s dynamic programming algorithm to compute the minimal
mean value amongst simple paths and cycles, that works in Ptime [12].

We would like to lift these ideas to compute ω-ned between two regular ω-languages,
given by non-deterministic Büchi automata, henceforth NBA.1 To cope with the fact that we
work with Büchi automata, we need to insist that the path has a cycle, and when projected
on either component, visits an accepting state somewhere along the cycle (this will guarantee
that the corresponding runs of both NBAs accept). Unfortunately, this alone does not suffice.

The problem is that if we find such a path with a cycle, which indeed corresponds to
traversing infixes of the corresponding words, it might not correspond to infixes of the same
length, as required by the definition of ω-ned. This is since the edit-distance graph has
edges corresponding to deletes and inserts, and such edges process letters only on one of the
given NBA, not simultaneously on both. We should consider only ultimately periodic paths,

1 For lack of space we do not include the standard definition of Büchi automata and refer the unfamiliar
reader to [8, Chapter 1.3].
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0 1 2 3 4B1 : c a a b

c
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0
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(4, III)
(4, III)

1

(1, I)
(4, III)

1

(2, II)
(4, III)

1

(3, II)
(4, III)

0
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Figure 2 First row: an NBA B1 for L1 = {caab}ω, and an NBA B2 for L2 = {aab, ab}ω. Second
row: a positive cycle P and a negative cycle N in Ged(B1, B2). Recall that edge labels are of the
form σ1, σ2 | bal(σ1, σ2) (the weight of the edge is not indicated; it can be inferred from the σ1, σ2

component of the label). Third row: an optimal cycle C in the balance t-counter graph Gt
ed(B1, B2)

(achieving the cost 3
9 via words (caab)ω ∈ L1 and (aabaabab)ω ∈ L2) whose balance index never

goes above 1 or below 0 (i.e. here t = 1 suffices).

henceforth lasso paths, with the same number of delete and insert operations, as these are
the paths that correspond to prefixes of the same length. To this aim, we add an additional
annotation to edges: the balance.

▶ Definition 19 (Edit Distance Graph of two NBAs). Let Bi = (Σ, Qi, si, δi, Fi) be an NBA
for i ∈ {1, 2}. The edit-distance graph of B1 and B2 is a labeled weighted graph, denoted
Ged(B1, B2) = (V, L′, E, θ). It is defined similarly to the edit-distance graph for NFAs with
one difference: the set of labels L′ carries an additional annotation, the balance. Formally,
L′ = L × B where L = Σε × Σε is defined as for NFAs, B = {−1, 0, 1}, and label l is replaced
by (l, bal(l)) where bal(l) = 1 if l ∈ {ε} × Σ, bal(l) = −1 if l ∈ Σ × {ε}, and otherwise
bal(l) = 0. For a path ρ = v0

l1,b1−−−→ v1
l2,b2−−−→ · · · lt,bt−−−→ vt we use bal(ρ) for

∑t
i=1 bi.

Figure 2, first row shows two NBAs B1, B2. It does not depict the entire graph Ged(B1, B2)
which has 5 × 4 states. Instead, the second row, depicts two cycles of Ged(B1, B2): cycle P

that is positively balanced, and cycle N that is negatively balanced. We will explain the
third row in the sequel.

With this definition, we are looking for the infimum mean lasso path whose balance is
zero and contains a cycle that visits both components F1 and F2 at least once. Note that in
a lasso path, it is the weight of the cycle that matters, since by repeating the cycle as much
as desired, the weight of the path until the cycle begins becomes negligible. Observe that the
infimum mean balanced lasso path need not be simple, i.e., it can involve two or more cycles.
E.g., if we have a cycle with balance −2, another cycle with balance −3 and a cycle with
balance 7 that share a vertex, the non-simple cycle repeating the −2 balanced cycle twice,
and the other two cycles once is balanced. In this example since the cycles have a shared
vertex, there is a cycle corresponding to the concatenation of one cycle twice with the other
two cycles. But, even if they do not share a vertex, that would be fine, because, again, by
repeating the cycles a large number of times the paths that connect them become negligible
(though these parts as well are repeated infinitely often). The next section shows that it
suffices to consider lasso paths containing at most two simple cycles – either one (that is
zero balanced) or two (one that is negatively balanced and one that is positively balanced).
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5.4 Enough to consider two cycles

Consider the graph Ged(B1, B2). Let C = C= ⊎ C+ ⊎ C− where C= = {α | α is a simple cycle
and bal(α) = 0}, C− = {α | α is a simple cycle and bal(α) < 0}, C+ = {α | α is a simple
cycle and bal(α) > 0}. That is, C= represents cycles that are zero balanced, C+ represents
cycles that are positively balanced (have more inserts than deletes), and C− those that are
negatively balanced. We define for a set of cycles α1, . . . , αn, their value as follows.

▶ Definition 20 (Value of a set of cycles). Given a set of cycles {α1, . . . , αn}, we use the
following notations for 1 ≤ i ≤ n: wi = θ(αi), li = |αi|, bi = bal(αi). We define

val(α1, . . . , αn) = min
{ ∑n

i=1 ti · wi∑n

i=1 ti · li

∣∣∣∣ ∑n

i=1 ti · bi = 0, ti ≥ 0 for 1 ≤ i ≤ n, ∃j. tj > 0
}

That is, val(α1, . . . , αn) computes the minimum among the ned value of the (imaginary)
path obtained by concatenating all cycles, where cycle αi is repeated ti times, such that the
balance of the constructed path is zero.

When we have one negatively balanced and one positively balanced cycles, their val can
be easily computed, as follows.

▶ Observation 21. Let α− ∈ C−, α+ ∈ C+. Assume w• = θ(α•), b• = bal(α•), l• = len(α•)
for • ∈ {−, +}. Then val(α+, α−) = b+·w− − b−·w+

b+·l− − b−·l+
.

The following proposition states that from a set involving no zero balanced cycles, it is
possible to choose just one positively balanced cycle and one negatively balanced cycle and
the cost of the resulting path would not be worse than the one touring many cycles.

▶ Proposition 22 (Two cycles suffice). Let α1, . . . , αm ∈ C−, αm+1, . . . , αm+k ∈ C+ for some
m, k ≥ 1. There exists α+ ∈ C+ and α− ∈ C− with val(α1, . . . , αm+k) = val(α+, α−).

The proof makes use of the following fact (proven in the full version of the paper).

▶ Fact 23. Given two sequences of positive numbers a⃗ = (a1, . . . , am) and b⃗ = (b1, . . . , bk)
satisfying

∑m
i=1 ai =

∑k
j=1 bj there exists a matrix P ∈ [0, 1]m×k such that

∑m
i=1 pij = 1

for every 1 ≤ j ≤ k and a⃗ = P · b⃗. In other words, for all 1 ≤ i ≤ m we have ai =
∑k

j=1 pij ·bj .

Proof of Prop. 22. Assume t1 . . . tm+k ∈ N are an optimal solution for val(α1, . . . , αm+k).
Following Def. 20 the tis need to satisfy the following constraint:

0 ̸=
∑m

i=1 ti · (−bi) =
∑m+k

j=m+1 tj · bj (5.1)

By Fact 23 we can write Equation 5.1 as the following m linear combinations, one for each
1 ≤ i ≤ m.

ti · (−bi) =
∑m+k

j=m+1 αji · tj · bj

such that αji ∈ [0, 1] for all i, j; and
∑m

i=1 αji = 1 for every j.
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Following this observation and due to the optimal solution we get that
val(α1, . . . , αm+k) =

=

m+k∑
i=1

ti·wi

m+k∑
i=1

ti·li

=

m+k∑
j=m+1

m∑
i=1

tj ·αji·(wj −
bj

bi
·wi)

m+k∑
j=m+1

m∑
i=1

tj ·αji·(lj −
bj

bi
·li)

≥ min
m+1≤j≤m+k,tj ̸=0


m∑

i=1

tj ·αji·(wj −
bj

bi
·wi)

m∑
i=1

tj ·αji·(lj −
bj

bi
·li)


≥ min

m+1≤j≤m+k,tj ̸=0

{
min

1≤i≤m,αji ̸=0

{
tj ·αji·(wj −

bj

bi
·wi)

tj ·αji·(lj −
bj

bi
·li)

}}

= min
m + 1 ≤ j ≤ m + k

1 ≤ i ≤ m, αji, tj ̸= 0

{
tj ·αji·(wj −

bj

bi
·wi)

tj ·αji·(lj −
bj

bi
·li)

}
= min

m + 1 ≤ j ≤ m + k
1 ≤ i ≤ m, αji, tj ̸= 0

{
bi·wj −bj ·wi

bi·lj −bj ·li

}
◀

Henceforth, we use the following notations

µ= = min
α∈C=

{val(α)} , µ+− = min
α+∈C+,α−∈C−

{val(α+, α−)} ,

µ∗ = min
{α1,...,αn}⊆C

{val(α1, . . . , αk)} .

With these notations, we can conclude from Prop. 22 that µ∗, the best value achieved for
an arbitrary set of cycles, is no better than the best value achieved for one cycle or two.

▶ Corollary 24. µ∗ = min{µ=, µ+−}.

In Subsection 5.5 we show how µ∗ can be computed. Then, in Subsection 5.6 we show
that there exists words w1, w2 achieving µ∗ and that no pair of words can achieve a value
better than µ∗, i.e. that ω-ned(L1, L2) is indeed µ∗.

5.5 Computing µ∗

Let B1 and B2 be complete NBAs for ω-regular languages L1, L2. We want to calculate
ω-ned(L1, L2). We create Ged(B1, B2), the edit distance graph of the NBAs (from Def. 19).
By Claim 17 a path in Ged represents an edit path from a word in L1 to a word in L2. For the
path to be accepted by both NBAs it needs to visit an accepting state of Bi infinitely often
for i ∈ {1, 2}. Thus we are interested in maximal strongly connected components (MSCC)
that have at least one state from F1 and at least one state from F2. We can hence remove all
vertices that do not reach such an MSCC. For simplicity we assume that our graph has one
such MSCC (if this is not the case, we apply our algorithm to each such MSCC separately).

We need the following construction to make sure pairs of cycles are balanced and that we
evaluate all pairs of cycles:

▶ Definition 25 (The balance t-counter graph). Let Ged(B1, B2) = (V, L × B, E, θ) be the edit
distance graph of the NBAs, and let n = |V |. Recall that L = Σε × Σε and B = {−1, 0, 1}.
For threshold t ∈ N we define Gt

ed(B1, B2) as the labeled weighted graph (Vt, Lt, Et, θt) where
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Vt = V × V × [−t, t]; the labeling function Lt omits the balance label from edges, i.e. Lt = L;
the weight function θt associates with edge (v, l, v′) for v, v′ ∈ Vt and l ∈ L the weight θed(l)
(as in Def. 16); and the edges are Et = E′

t ∩ (Vt × Lt × Vt) where

E′
t = { (⟨u, v, i⟩, l, ⟨u′, v, j⟩)

∣∣ (u, ⟨l, b⟩, u′) ∈ E, b = j−i } ∪
{ (⟨u, v, i⟩, l, ⟨u, v′, j⟩)

∣∣ (v, ⟨l, b⟩, v′) ∈ E, b = j−i }

Figure 2, third row shows a balanced cycle C of Gt
ed(B1, B2) for t ≥ 1.

We continue by claiming that µ∗ can be computed on the balanced graph, Gt
ed for some t.

Later, we will bound the size of the required t. Let µt be the minimal simple cycle in Gt
ed.

▶ Lemma 26. There exist t ∈ N such that µt = µ∗.

Proof. Recall that by Cor. 24 µ∗ = min{µ=, µ+−}. For the first direction (≥) let
C = ((u1, v1, b1), (u2, v2, b2), . . . , (ur, vr, br), (u1, v1, b1)) be a simple cycle in Gt such that
θ(C)/|C| = µt. By projecting the path C onto each coordinate we get two closed walks
in Gt

ed: C1 = (u1, . . . , u′
r, u1) and C2 = (v1, . . . , v′′

r , v1). Since we have two closed walks
we can decompose them into simple cycles α1, . . . αm+k+l. We can partition them into
sets according to their balances. Let {α1, . . . , αm} ⊆ C−, {αm+1, . . . , αm+k} ⊆ C+, and
{αm+k+1, . . . , αm+k+l} ⊆ C=, and let t1, . . . , tm+k+l denote their respective number of repe-
titions in the path C. The claim now follows from Cor. 24.

For the second direction (≤), we show that we can find paths corresponding to µ= and
µ+− of Ged in Gt

ed.

Case of µ=. Let c= be a zero balanced simple cycle in Ged achieving µ=. Assume

c= = v1
l1,b1−−−→ v2

l2,b2−−−→ · · · lk−1,bk−1−−−−−−→ vk
lk,bk−−−→ v1

where
∑k

i=1 bi = 0 and θ(c=)
|c=| = µ=. We observe that for big enough t and for every r ∈ [−n, n]

the following cycle cr
t is in Gt

ed and it achieves the same value.

cr
t = (v1, v1, r) l1−→ (v2, v1, r+b1) l2−→ · · · lk−1−−−→ (vk, v1, r+bk) lk−→ (v1, v1, r)

Since c= is reachable from the initial state and the balance of a simple path is never larger
than the length of the path there exists an r ∈ [−n, n] such that (v1, v1, r) is reachable.
Therefore, taking t > n + n suffices.

Case of µ+−. Now, let c− and c+ be a negatively and positively balanced simple cycles,
resp., in Ged achieving µ+−. Assume

c− = u1
l1,b1−−−→ u2

l2,b2−−−→ · · · lm−1,bm−1−−−−−−−→ um
lm,bm−−−−→ u1

and

c+ = v1
l′
1,b′

1−−−→ v2
l′
2,b′

2−−−→ · · ·
l′
k−1,b′

k−1−−−−−−→ vk
l′
k,b′

k−−−→ v1

where b− =
∑m

i=1 bi < 0, b+ =
∑k

j=1 b′
j > 0, θ(c−)

|c−| = µ− and θ(c+)
|c+| = µ+.
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In Gt
ed for big enough t we can find a cycle ct

r corresponding to repeating b+ times the
cycle c−, and then repeating b− times the cycle c+. It will have the following form

(u1, v1, r1,1), (u2, v1, r1,2), . . . , (um, v1, r1,m),
(u1, v1, r2,1), (u2, v1, r2,2), . . . , (um, v1, r2,m),

. . .

(u1, v1, rb+,1), (u2, v1, rb+,2), . . . , (um, v1, rb+,m),

(u1, v1, r′
1,1), (u1, v2, r′

1,2), . . . , (u1, vk, r′
1,k),

(u1, v1, r′
2,1), (u1, v2, r′

2,2), . . . , (u1, vk, r′
2,k),

. . .

(u1, v1, r′
b+,1), (u1, v2, r′

b+,2), . . . , (u1, vk, r′
b−,k),

where if r1,1 = r then ri,j = r + i(b−) +
∑j

k=1 bi and r′
i,j = r + (b+)(b−) + i(b+) +

∑j
k=1 b′

i.
Hence r′

b−,k = r + (b+)(b−) + (b−)(b+) = r and ct
r is a balanced cycle in Gt

ed. Since c− is
reachable from the initial state and the balance of a path is never larger than the length of
the path there exists r ∈ [−n, n] such that (u1, v1, r) is reachable. Since both −b−, b+ < n

we have that t > n + n2 suffices. ◀

The next proposition shows that we can bound t better than n + n2, more precisely, that
taking t = n suffices. The idea of the proof is that in Gt

ed it is possible to traverse part of
the negative cycle, then move to traverse part of the positive cycle and continue traversing
the negative cycle from where we left off. Alternating between portions of the cycle, we can
ensure the balance is never more than n or less than −n.

▶ Proposition 27. µn = µ∗.

Proof. We use the same idea as in the previous proof, except instead of touring the first
cycle and then the second cycle, we alternate between them. Consider the cycles c+ and
c− repeated indefinitely. Then since the accumulated balance is unbounded and discretely-
continuous in the sense that it changes in jumps of {−1, 0, 1}, it follows from the discrete
version of the intermediate value theorem [11] that we will eventually encounter all values.
We can thus choose the indices 0 = i0 < i1 < i2 . . . on the path for which the accumulated
balance reaches exactly ⌈ n

2 ⌉ · j for increasing j’s: bal(cω
+[0..ij ]) = ⌈ n

2 ⌉ · j for all j > 0. This
means that bal(cω

+[ij−1 .. ij − 1]) = ⌈ n
2 ⌉. Similarly there exist indices i′

1, i′
2 . . . such that

bal(cω
−[i′

j−1 .. i′
j − 1]) = −⌈ n

2 ⌉ for all j > 0. We can therefore alternate between the cycles
by progressing in the positive cycle until we reach min{ij , −b−|c+|} then progress on the
negative cycle until we reach min{i′

j , b+|c−|} and so on. We can keep alternating between
them until we reach a balance of 0 (after −b− of the positive cycle and b+ of the negative
cycle). Since both b+ and −b− are at most n we have that at any given point our total
balance will be in the range of [−n, n]. Therefore t = n suffices. ◀

This gives us that computing µ∗ is polynomial in the size of the given automata. Specific-
ally, for t = n, the graph Gt

ed is 2n + 1 times the size of Ged which is polynomial in the size
of the automata. The overall computation of µ∗ is in Ptime since (i) computing minimal
cycles can be done in Ptime (ii) µ∗ = µn and (iii) µn is the minimal mean cycle in Gn

ed.

5.6 Proving ω-NED(L1, L2) = µ∗

Next, we would like to show that ω-ned(L1, L2) = µ∗. Prop. 28 shows that for every
ultimately periodic words w1 ∈ L1 and w2 ∈ L2 we have ω-ned(w1, w2) ≥ µ∗. Theorem 30
shows that this is the case also for arbitrary words w1 ∈ L1 and w2 ∈ L2.
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On the other hand, we show that µ∗ can be achieved by respective words w1 ∈ L1 and
w2 ∈ L2. Prop. 29 shows that we can get arbitrarily close to µ∗ in the sense that for every
ε > 0 we can find ultimately periodic words w1, w2 such that | ω-ned(w1, w2) − µ∗| < ε.

▶ Proposition 28 (Lower-bound). For w1 ∈ L1 ∩ Σup, w2 ∈ L2 ∩ Σup, ω-ned(w1, w2) ≥ µ∗.

Proof. Let (v1, v2) be a best rotation pair for the periods of w1, w2 and let ρ ∈ D∗ be an
optimal edit path for (v1, v2). We show that there exists a cycle c in Gt

ed that is accepting in
both NBAs and satisfies θ(c)/|c| = ned(v1, v2).

For i ∈ {1, 2} let βi · γω
i be an accepting lasso run of Bi on wi where γi reads the

same multiple m of vi. Then ρm is a best edit path for vm
1 and vm

2 . To simplify the
notations, we use vi and ρ instead of vm

i and ρm, i.e., assume w.l.o.g. |γi| = |vi| = k.
Assume β1 = q1q2 . . . qℓ1 , β2 = q′

1q′
2 . . . q′

ℓ2
, γ1 = p1p2 . . . pk, γ2 = p′

1p′
2 . . . p′

k. Consider the
paths β = (q1, q′

1), (q2, q′
1), . . . , (qℓ1 , q′

1), (qℓ1 , q′
2), (qℓ1 , q′

3) . . . (qℓ1 , q′
ℓ2

) and γ = (pi1 , p′
j1

), . . . ,

(pik
, p′

jk
) where i1 = 1, j1 = 1 and

ir =
{

ir−1 if ρ[r] = de or ir = |γ1|
ir−1+1 otherwise

jr =
{

jr−1 if ρ[r] = ds or jr = |γ2|
jr−1+1 otherwise

Since |γ1| = |γ2| we have that |ρ| = |γ| and γ is a reachable cycle with value: θ(γ)/|γ| =
wgt(ρ)/len(ρ) = cost(ρ) ≥ µ∗. ◀

▶ Proposition 29 (Upper-bound). For all ε > 0 there exists w1 ∈ L1 ∩ Σup, w2 ∈ L2 ∩ Σup

such that | ω-ned(w1, w2) − µ∗| < ε.

Proof. We show there are valid edit paths corresponding to both µ= and µ+−. Let ε > 0.
Case of µ=: Let c= be a simple cycle in Ged with val(c=) = µ= and bal(c=) = 0. By our
assumption on the MSCC, there exists a cycle c traversing an accepting state from both F1
and F2. W.l.o.g. it intersects c=. We claim that we can assume bal(c) = 0. Assume w.l.o.g.
bal(c) = b > 0. We can find a negatively balanced cycle c− that starts at the intersection of
c and c= by tracing only edges corresponding to B1 and staying put on a fixed state of B2
(for details see Lemma 36 in the full version). Then c′ = (c)(b−)(c−)(b) is a zero balanced
cycle in Ged visiting both F1 and F2.

Let ρu be a path from the initial state to c=. Let ρv be the cycle ((c=)nε · c). Consider
ρ = ρu · (ρv)ω. Recall that a path in Ged is an element of (V × L′ × V )∞ where V = Q1 × Q2
and L′ = Σε × Σε × {−1, 0, 1}. Given a path ρ in Ged, we use labels(ρ) for π2(ρ) ∈ (L′)∞.
For i ∈ {1, 2}, let ui = πi(labels(ρu)), vi = πi(labels(ρv)) and wi = ui(vi)ω. Then wi ∈ Li

since the corresponding runs of Bi visit an accepting state in Fi infinitely often.
We turn to show that ω-ned(w1, w2) − µ= < ε. Note that since ρv is balanced |v1| = |v2|.

Following Theorem 8, ω-ned(w1, w2) ≤ ned(v1, v2). Thus, for a large enough nε:

ω-ned(w1, w2) − µ= ≤ ned(v1, v2) − µ= = θ(ρv)
|ρv|

− µ= =

nεθ(c=)+θ(c)
nε|c=|+|c|

− θ(c=)
|c=|

≤ θ(c)
nε|c=|

< ε

Case of µ+−: In a similar fashion we have the simple cycles c+, c− Ged with val(c+) = µ+,
val(c−) = µ− and bal(c+) = b+ > 0, bal(c−) = b− < 0. Since c+, c− are in the same SCC,
we have a cycle c = p1p2 where p1 is from the first state of c+ to the first state of c− and
p2 comes back to the first state in c+ while containing accepting states from both F1 and
F2. We can assume that bal(c) = b is 0 since if this is not the case we can extract from c a
positive and a negative cycle (see Lemma 36 in the full version), and achieve a balance of
zero by repeating each number of times that corresponds to the balance of the other.
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Since c+ is reachable from the initial state we have a path ρu from the initial state to
c+. Let ρv be the cycle (c+)−b−·nε · p1 · (c−)b+·nε · p2. For i ∈ {1, 2}, let ui = πi(labels(ρu)),
vi = πi(labels(ρv)) and wi = ui(vi)ω. Then wi ∈ Li since the corresponding runs of Bi visit
an accepting state in Fi infinitely often. Thus, for large enough nε,

ω-ned(w1, w2) − µ+− = ω-ned(vω
1 , vω

2 ) − µ+−

≤ θ(ρv)
|ρv| − µ+−

= nε·(−b−·θ(c+)+b+·θ(c−))+θ(c)
nε·(−b−·|c+|+b+·|c−|)+|c| − −b−·|c+|+b+·|c−|

−b−·|c+|)+b+·|c−|

≤ θ(c)
nε·(−b−·|c+|+b+·|c−|) < ε. ◀

▶ Theorem 30 (Ultimately periodic words suffice). ω-ned(L1, L2) = ω-ned(L1 ∩Σup, L2 ∩Σup)

Proof. Clearly ω-ned(L1, L2) ≤ ω-ned(L1∩Σup, L2∩Σup). For the other direction, it suffices
to show that for all ε > 0 and any w1 ∈ L1, w2 ∈ L2 there exists w′

1 ∈ L1 ∩Σup, w′
2 ∈ L2 ∩Σup

such that |ω-ned(w′
1, w′

2) − d| < ε where d = ω-ned(w1, w2). Let r1, r2 be accepting runs
of w1, w2 in their respective NBAs, B1 and B2. Let q1 and q2 be such that r1[i] = q1 and
r2[i] = q2 for infinitely many is. Such a pair exists by the pigeonhole principle. Let n∗ be
the first index such that r1[n∗] = q1 and r2[n∗] = q2.

Since the number of states in both automata is finite, there is a C ∈ O(|Ged|2) such that
if there is a balanced path between some pair of states in Ged then there is one of length at
most C. Let n0 > max{n∗, 2C/ε} be such that |ned(w1[..n0], w2[..n0]) − d| < ε/2. Let ρ be
the corresponding edit path. Let n∗∗ ≥ n0 be the first index after n0 such that r1[n∗∗] = q1
and r2[n∗∗] = q2 and accepting states of both NBAs have been visited along the way. Let
ui = wi[..n∗], vi = wi[n∗+1..n0]. Let ρz be a path from (r1[n0], r2[n0]) to (r1[n∗∗], r2[n∗∗])
and zi the words obtained by projecting ρz on the NBAs Bi for i ∈ {1, 2}. Note that the
length of ρz is bounded by C and thus also its weight. Let ρv be an optimal edit path for
v1, v2. Let i be the smallest integer such that both coordinates of endpoint(ρ[..i]) are greater
or equal to n∗ (see Figure 1 (e)). Assume w.l.o.g. that endpoint(ρ[..i]) = ⟨n∗, n∗+δ⟩ where
δ ≥ 0. Because ⟨n∗, n∗⟩ is on the diagonal of G(v1z1, v2z2), the number of south edges in ρ is
at least δ, thus wgt(ρ[..i]) ≥ δ. Also wgt(ρv) ≤ δ + wgt(ρ[i+1..n0]) and a similar inequality
holds for the respective lengths. Further n∗ + δ ≥ len(ρ[..i]) ≥ wgt(ρ[i..]). Thus

ω-ned(u1(v1z1)ω, u2(v2z2)ω) − d ≤ ned(v1z1, v2z2) − d

≤ wgt(ρv) + wgt(ρz)
len(ρv) + len(ρz) − d

≤ δ + wgt(ρ[i+1..n0]) + wgt(ρz)
δ + len(ρ[i+1..n0]) + len(ρz) − d

≤ n∗ + δ + wgt(ρ[i+1..n0]) + wgt(ρz)
n∗ + δ + len(ρ[i+1..n0]) + len(ρz) − d

≤ wgt(ρ[..i]) + wgt(ρ[i+1..n0]) + wgt(ρz)
len(ρ[..i]) + len(ρ[i+1..n0]) + len(ρz) − d

≤ wgt(ρ) + wgt(ρz)
len(ρ) + len(ρz) − d

≤ wgt(ρ) + C

len(ρ) − d
wgt(ρ)
len(ρ) − d + C

n0
≤ ε

The first inequality follows from Theorem 8. We use inequality because the concerned
periods may not be the best rotation. The second follows since ρ · ρz is an edit path for
(v1z1, v2z2). For the third inequality, recall that (n∗, n∗) is on the diagonal of G(v1z1, v2z2,)
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and Because the number of south edges in ρ is at least δ, wgt(ρ[..i]) ≥ δ. The third inequality
follows since the optimal path from (n∗, n∗) to (n∗∗, n∗∗) is better than going δ steps to
the south and then following ρ to (n0, n0) and then following ρz. The rest follows by
applying arithmetic on our assumptions and noticing that if ρ̂ is an edit path for w1, w2 then
cost(ρ̂) ≥ cost(ρ) by Fact 11. ◀

▶ Corollary 31. ω-ned(L1, L2) = µ∗

▶ Remark 32 (Distance on Muller and Parity automata). In the full version we show that this
construction can be extended to work with Muller and Parity automata.

6 Conclusion and Future Work

We have shown that a natural extension of the normalized edit distance (ned) from words
to infinite words is a metric and explained its advantages over other measures of distance
for infinite words. We have shown that it can be computed in Ptime, when the words
are ultimately periodic. We have further shown that the distance between two regular
ω-languages given by non-deterministic Büchi automata can be computed in Ptime.

While our choice of ignoring finite prefixes has been justified, in some cases one would
like to distinguish for instance z1 = aω and z2 = bbbaω and z3 = b100aω and require that the
distance between z1 and z2 be smaller than the distance between z1 and z3. In particular, if
the words have a common suffix (as is the case for z1, z2, z3), we would like a measure that
reflects the normalized number of edit operations required on the prefix. This can potentially
be done by relaxing the requirement for a metric, and working with generalized metric spaces.
But it also requires a formal definition of when the prefix ends. Challenges in achieving this
and several suggestions are discussed in the 2nd author’s master thesis [9].
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