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Preface

The papers in this volume were presented at the 14th Innovations in Theoretical Computer
Science (ITCS 2023) conference. The conference was held on January 10–13, 2023, at MIT in
Cambridge, MA. ITCS welcomes both conceptual and technical contributions whose contents
will advance and inspire the greater theory community. ITCS seeks to promote research that
carries a strong conceptual message, for example, introducing a new concept or new model,
opening a new line of inquiry within traditional or interdisciplinary areas, introducing new
mathematical techniques and methodologies, or new applications of known techniques.

We received 238 submissions (and an additional few which the authors retracted during
the reviewing process). Of these, the program committee selected 101 papers. The submission
pool was very strong, which explains the high acceptance rate. The conference format was
single-session with the goal of promoting a sense of community and promoting the exchange
of ideas between different areas of theoretical computer science. Due to the high number of
accepted papers each talk was only 8 minutes long. We thus asked the authors of each paper
to submit a 20-25 minute video, which we posted on the website (on the program page):
http://itcs-conf.org/itcs23/itcs23-program.html.

The program committee (PC) consisted of 39 fantastic members (excluding the chair): Ittai
Abraham (VMware Research), Alexandr Andoni (Columbia University ), Shalev Ben-David
(University of Waterloo), Nir Bitansky (Tel Aviv University), Zvika Brakerski (Weizmann
Institute), Michael Elkin (Ben-Gurion University), Michal Feldman (Tel Aviv University),
Ankit Garg (Microsoft), Ran Gelles (Bar-Ilan University), Seth Gilbert (NUS), Pritish
Kamath (Google), Daniel Kane (UC San Diego), Dakshita Khurana (UIUC), Bobby Klein-
berg (Cornell), Swastik Kopparty (University of Toronto), Pravesh K. Kothari (CMU), Alex
Lombardi (Simons Institute and UC Berkeley), Shachar Lovett (University of California, San
Diego), Brendan Lucier (Microsoft), Fermi Ma (Simons Institute and UC Berkeley), Ankur
Moitra (MIT), Omer Paneth (Tel Aviv University), Aaron Roth (University of Pennsylvania),
Guy Rothblum (Weizmann), Aviad Rubinstein (Stanford), Barna Saha (University of Cali-
fornia, San Diego), Raghuvansh Saxena (Microsoft), Aaron Sidford (Stanford), Mohit Singh
(Georgia Institute of Technology), Adam Smith (Boston University), Nikhil Srivastava (UC
Berkeley), Avishay Tal (UC Berkley), Christos Tzamos (University of Wisconsin-Madison),
Chris Umans (Caltech), Ellen Viterick (UC Berkley), Omri Weinstein (Columbia University),
Mary Wootters (Stanford University), John Wright (Columbia University), Henry Yuen
(Columbia University). I am extremely grateful to each and every member of the PC. The
PC members worked diligently to produce a fantastic program. I am also grateful to my
wonderful assistant chair, Maya Kalai, who helped tremendously throughout the process, in
particular, in managing the website (among other things).

The program was divided into sessions, where each session consisted of roughly 5 papers
that are connected in some way (eg., they all fall into the same sub-area of theory). We
continued with the wonderful ITCS tradition, where the chair of each session ranted about
the papers in the session, emphasizing their contributions and the ways in which they are
innovative, and tying all the papers in the session together. This was a huge success and made
the sessions not only more understandable but very enjoyable. I would like to express my deep
gratitude to all the session chairs who invested in preparing wonderful rants: Mohsen Ghaffari
(MIT), Sam Hopkins (MIT), Adam Kalai (Microsoft), Alex Lombardi (Simons Institute
and UC Berkeley), Brendan Lucier (Microsoft), Ankur Moitra (MIT), Sofya Raskhodnikova
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(Boston University), Raghuvansh Saxena (Mirosoft), Aaron Sidford (Stanford), Adam Smith
(Boston University), Nikhil Srivastava (UC Berkeley), Avishay Tal (UC Berkeley), and John
Wright (Columbia University).

We also continued with the wonderful tradition of graduating bits, where students and
postdocs that are looking for either faculty jobs or postdoc jobs, give a short (few minutes)
presentation. I deeply thank Parikshit Gopalan for masterfully leading the graduating bits
session, with a lot of humor, passion, and encouragement. The session was a huge success!

This ITCS also included an informal poster session, where the authors got an additional
opportunity to present their work (it was not mandatory), and the attendees had the
opportunity to ask questions and have more in-depth discussions. It was very well attended
and was a successful and fun event.

This year we did an experiment regarding anonymization in the review process. This
experiment was done in collaboration with Nihar Shah from CMU. There is widespread
debate on whether to anonymize author identities in peer review. The key argument
for anonymization is to mitigate bias, whereas arguments against anonymization posit
various uses of author identities in the review process. We adopted a middle ground
by initially anonymizing the author identities from reviewers, revealing them after the
reviewer had submitted their initial reviews, and allowing the reviewer to change their
review subsequently. Nihar Shah analyzed the data and you can find the report here:
https://arxiv.org/pdf/2301.00221.pdf. His key findings are: (I) A majority of reviewers
self-report not knowing and being unable to guess the authors’ identities for the papers they
were reviewing. (II) After the initial submission of reviews, only 7% of reviews changed
their overall merit score and 3.8% changed their self-reported reviewer expertise. (III) Even
among reviews that changed, there was little correlation between the change in overall merit
and the rank of the authors’ affiliations. We also conducted an anonymous survey to obtain
opinions from reviewers and authors. The main findings from the 200 survey responses are:
(i) A vast majority of participants favor anonymizing author identities in some form. (ii) The
“middle-ground” initiative of ITCS 2023 was appreciated. (iii) Detecting conflicts of interest
is a challenge that needs to be addressed if author identities are anonymized. Overall, these
findings support anonymization of author identities in some form (e.g., as was done here), as
long as there is a robust and efficient way to check conflicts of interest.

Finally, I would like to thank our sponsors: A huge thanks to Google for their generous
contribution which allowed us to offer minimal registration fee, which in turned allowed
many to participate in the conference. We thank MIT, and specifically CSAIL, for allowing
us to use their space for the conference. MIT turned out to be a fantastic home for the
conference. We thank the Simons institute for helping us handle all the video submissions
from the authors. I would also like to thank the MIT students and postdocs who volunteered
to help with all the arrangements during the conference: Anders Aamand, Amartya Shankha
Biswas, Justin Chen, Lily Chung, Lalita Devadas, Jane Lange, Kuikui Liu, Henry Ma, Ted
Pyne, and Sujit Rao.

Let me end this note with a personal thanks to Ronitt Rubinfeld and her assistant Joanne
Talbot Hanley, for handling all the local organization to perfection. Working with both of
you was a lot of fun, and the conference was a huge success!

Yael Tauman Kalai
ITCS 2023 Program Chair
Microsoft Research and MIT
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Abstract
In recent years, the expander decomposition method was used to develop many graph algorithms,
resulting in major improvements to longstanding complexity barriers. This powerful hammer has
led the community to (1) believe that most problems are as easy on worst-case graphs as they are
on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining
longstanding barriers in fine-grained complexity.

We set out to investigate the extent to which these two things are true (and for which problems).
Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We
design a collection of such reductions for fundamental graph problems, verifying belief (1) for them.
The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum
Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple
gadget reduction, not via expander decompositions, showing that this hammer is effectively useless
against the problem and contradicting (2).
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1 Introduction

One of the most effective techniques in modern graph algorithms has been the expander
decomposition method. To solve a difficult problem on a worst-case instance G on m edges, it
roughly proceeds as follows.
1. Decompose G into the disjoint union of expanders H1, . . . , Hk (also called clusters) plus

o(m) outer edges; such an expander decomposition can be computed in m1+o(1) time
[12,26,36,39,46,47,49,50].

2. Run some computation on each expander Hi, utilizing the special properties of expanders
to gain a speed-up, e.g., because the search space is restricted on expanders or because
some processes can be accelerated.

3. Run some computation on the o(m) outer edges (e.g., recurse), utilizing the fact that
there are not too many such edges.

The last two steps are problem-specific and often involve ingenious techniques. To keep this
work focused, we choose to restrict ourselves to the following definition of expanders (that is
most popular in our context).
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1:2 Worst-Case to Expander-Case Reductions

▶ Definition 1 (Expander). A graph G = (V, E) is called an ϕ-expander if its conductance
is:

ϕ(G) := min
S⊂V

|E(S, V \ S)|
min(vol(S), vol(V \ S)) ≥ ϕ

where vol(S) is the sum of degrees of all nodes in S.1

The expander decomposition method itself is common to several celebrated results breaking
longstanding bounds for classical problems, e.g., [7, 27, 37, 41, 45, 51], leading the community
to believe the intuition that “all graph problems are as easy on worst-case graphs as they
are on expanders (up to sub-polynomial factors)”. In other words, if we can solve the
problem fast on expanders then we can also solve it fast on worst-case graphs. Moreover, the
expander-decomposition method is viewed as the hammer proving this intuition. Of course,
it’s unlikely that this intuition is true for all problems; since there are problems for which
the state of the art on expanders is better than it is on worst-case graphs.2

In this work, we set out to investigate the extent to which this intuition is true. Namely,
we are looking to answer the following motivating question:

▶ Question 1. Which problems are as easy on worst-case graphs as they are on expanders?

To this end, we formalize a new notion of worst-case to expander-case self-reductions. If a
problem admits such a reduction then the answer to this question is positive, meaning that the
worst-case graphs of these problems are expanders. Essentially, the expander decomposition
method can be viewed as a special case of such reductions, assuming that its three steps can
be computed in significantly faster time than the best upper bound for the problem.

Since the question is irrelevant for easy problems that are already known to be solvable
in near-linear time (that is, in Õ(m) time where Õ(·) hides poly-logarithmic factors) in the
worst-case, we are looking for difficult problems, for which the best known algorithms still
run significantly slower than near-linear (say, in Ω(n2) time). To find such problems we look
at the state of the art in fine-grained complexity.

Fine-grained complexity, with its reductions-based approach, has been effective at mapping
out the landscape of fundamental problems that are difficult. In the context of graph problems,
there is a large number of tight conditional lower bounds that are based on the conjectured
hardness of detecting a triangle in a graph (Triangle Detection) and the related Minimum-
Weight Triangle, k-Clique, Shortest Cycle, etc. (see e.g., [1,5,9,11,40,54] and the survey [53]).
It is known that in order to make progress on any of a large number of problems, one must
first come up with a groundbreaking algorithm for Triangle Detection (and its variants).

Notably, most reductions from Triangle Detection to other problems, e.g. Dynamic
Maximum Matching, are expansion preserving in the sense that if the Triangle Detection
instance is an expander, then so is the Dynamic Maximum Matching instance. The reason is
that many of these reductions employ only a small number of local changes to the graph
that do not reduce the expansion by much. Consequently, if the answer to the question
for Triangle Detection is positive, meaning that the hardest instances are expanders, then
it is also positive for many other Triangle-hard problems. Thus, it is most interesting to
investigate Question 1 for Triangle Detection and other problems without conditional lower
bounds.

1 If G is a singleton then ϕ(G) := 1.
2 One interesting example is the problem of computing a Gomory-Hu tree of a graph. In weighted graphs,

the expander case can be solved in m1+o(1) time (follows from Theorem 1.4 in [8]) but the worst-case
bound is Õ(n2) [6].
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But if the prevalent intuition is indeed true (due to expander decompositions), and the
answer is positive for Triangle Detection, then all we have to do in order to refute the
“Triangle conjecture” is to come up with a faster algorithm on expanders. This may appear
much easier. After all, expanders are similar in many ways to random graphs and we can
solve Triangle Detection on random G(n, p) graphs in expected subquadratic time.3

Moreover, three previous results on Triangle Detection exploit its easiness on pseudo-
random graphs: a combinatorial mildly subcubic algorithm using the Szemerédi Regularity
Lemma [19], fine-grained reductions that make the graph random-like by removing dense pieces
to prove hardness for approximate distance oracles [2], and an almost-optimal distributed
algorithm using expander decompositions [23]. Indeed, many researchers have been wondering
whether the “hammer” of expander decompositions is the right tool to refute these conjectures.

▶ Question 2. Are expander decompositions the key towards resolving the open questions of
fine-grained complexity?

Despite the major advancements in fine-grained complexity over the last decade, there
are still many remaining gaps in the complexity of classical problems, for which achieving
tight lower bounds has been notoriously difficult. For example, we have the problems of
Maximum Cardinality Matching, 4-Cycle Detection, and All-Pairs Max-Flow. For the latter
problem, a cubic upper bound by Gomory and Hu from 1961 stood for almost 60 years until
it was broken (for simple graphs) using the expander decomposition method [7]. This makes
us even more motivated to study Question 2.

Finally, we note that both motivating questions are relevant even for NP-hard problems,
where it is desirable to optimize the exact exponential time complexity. So far, the reductions-
based approach of fine-grained complexity has only found limited success in this regime
(see [28] and an interesting recent barrier [38]), leaving a state of the art that is full of gaps
(see [55]). It is natural to wonder if expander decompositions can play a role in this regime
too.

1.1 Our Contribution: Worst-Case to Expander-Case Self-Reductions
A worst-case to expander-case self-reduction (WTER) is a fine-grained self-reduction that
translates some graph problem A to the same problem on ϕ-expanders, for some value ϕ.
Such reductions effectively answer Question 1, and can indeed be achieved for many problems
via the expander decomposition method. However, if we take a step back, forget all the
technology of expander decompositions, and simply ask if a problem admits a WTER: it is
natural to try a more naïve gadget reduction that turns any graph into an expander.

Direct-WTERs

The straightforward approach to design a WTER for some problem A is by showing an
efficient transformation that takes an instance graph G and transforms it into a ϕ-expander
G′, such that the solution A(G) can be efficiently computed from A(G′). We will call such
reductions Direct-WTERs. Direct-WTERs are easy to construct and analyze, they do not

3 Basic probability shows that with high probability, the graph contains at least 0.1n3p3 triangles and that
the maximum degree is bounded from above by 10np log n. Thus, we can sample triplets of vertices and
check if they induce a triangle, while alternately running the ∆2n algorithm for graphs with bounded
degree ∆ (that checks for an edge between every pair of neighbors for every vertex). This algorithm
terminates in expected Õ(min{1/p3, n3p2}) time and it balances to Õ(n9/5) when p = n−3/5.

ITCS 2023
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rely on heavy algorithmic machinery, and they create only one expander instance. Moreover,
if a problem admits a Direct-WTER then we can assume that the worst-case graphs to
this problem are already expanders. It is therefore futile to invest time trying to solve the
problem using the expander decomposition method, since applying expander decompositions
on worst-case graphs (which are expanders), may as well simply return the graph itself.
Effectively, if the problem admits a Direct-WTER then the answer to Question 2 is negative.

In Direct-WTERs, one should try to optimize the following parameters: 1) the conductance
ϕ of the output graph G′, 2) the running time of transformation, and 3) the blowup in the
size of G′, denoted by (N, M) = (|V (G′)|, |E(G′)|). We remark that computing A(G) from
A(G′) will always be trivial in our examples (e.g., when A(G) is a linear function of A(G′)),
so we do not consider it another parameter. The “gold standard” for Direct-WTERs is to
obtain ϕ = Ω(1), near-linear running time and near-linear blowup (meaning that N = Õ(n)
and M = Õ(m)). If a problem admits such gold standard reduction and it can be solved on
Ω(1)-expanders in O(a(n, m)) time, for some polynomially bounded function a(n, m) (but
not linear), then we can also solve on worst-case graphs in Õ(a(n, m)) time.

However, for problems whose best algorithms run in exponential time, we have to be
more stringent in the efficiency requirements: even a blowup of N = 2n weakens the result
significantly because it means that to get any major speed-up over 2αn time on worst-case
graphs (for some α > 0), one needs to gain a major speed-up over 2αn/2 in expanders. Namely,
gold standard reductions do not necessarily answer Question 1 for exponential-time problems.
We can thus speak about a “platinum standard”, where in addition to the requirements of
the gold standard, we also have N = n + o(n). If a problem admits such platinum standard
reduction and it can be solved in time 2α(1−ε)N · NO(1) on Ω(1)-expanders (for any ε > 0),
then we can solve this problem in time 2α(1−ε)(n+o(n)) · (n+o(n))O(1) = 2n(α(1−ε)+o(1)) ·nO(1)

on worst-case graphs.
Notably, all the Direct-WTERs in our results achieve ϕ = Ω(1) and near-linear run-

ning time (but not necessarily near-linear blowup), so we keep the definition clean by not
considering them as parameters:

▶ Definition 2 (Direct-WTER). A Direct-WTER to problem A with blowup (N, M) is a
randomized, near-linear time transformation that takes an input graph G and outputs an
Ω(1)-expander graph G′ w.h.p., such that |V (G′)| = N , |E(G′)| = M , and A(G) can be
computed in constant time from A(G′).

In Section 1.2 we present our results which include very efficient Direct-WTERs for
Triangle Detection, Maximum Cardinality Matching, and Vertex Cover, proving that the
answer for each of them to Question 1 is positive and to Question 2 is (unfortunately)
negative. For other problems, however, such as 4-Cycle, the only Direct-WTERs we could
come up with have a super-linear blowup. In such cases, we ask whether a (not direct)
WTER that does exploit expander decompositions can be obtained.

ED-WTERs

Before continuing with this discussion, we need to state formally what is an expander
decomposition:

▶ Theorem 3 (Theorems 5.1 and 5.3 in [12]). Given a graph G = (V, E) of m edges and a
parameter ϕ, there is a randomized algorithm that with high probability finds a partitioning
of V into V1, V2, . . . , Vk such that for all i ∈ [k], the induced subgraph G[Vi] has conductance
ϕ(G[Vi]) ≥ ϕ, and

∑k
i=1 δ(Vi) = O(ϕm log2 m). The running time of the algorithm is

O(m log7 m + m log4 m
ϕ ).
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Now, the way that an expander decomposition based reduction works can be defined (loosely)
in the following way:

▶ Definition 4 (ED-WTER). Problem A admits an expander decomposition-WTER with
conductance ϕ(n) and running time t(n, m) (abbreviated as ED-WTER), if there exists an
algorithm with oracle access to A(A) that runs in time t(n, m), that:
1. Applies the algorithm from Theorem 3 to decompose the graph into ϕ(n)-expanders

G[V1], . . . , G[Vk].
2. Computes a list of Ω(ϕ(n))-expanders G1, G2, . . . , Gℓ for some ℓ. Typically, ℓ = k and

each Gi is obtained from G[Vi] by a simple procedure (possibly Gi = G[Vi]).
3. Makes oracle calls to A on G1, . . . , Gℓ, and receives the solutions A(G1), . . . , A(Gℓ).
4. Does some computation on the decomposed graph, and together with A(G1), . . . , A(Gℓ), it

computes the solution A(G).
ED-WTERs are not captured by Definition 2 mainly because they do not produce only one
expander instance G′, but many: G1, G2, . . . , Gℓ. In fact, many fine-grained reductions work
like this. In Section 5, we provide a formal definition of fine-grained WTERs that captures
both definitions, but for the sake of clarity we will use only Definitions 2 and 4 throughout
the paper.

There are three disadvantages to ED-WTERs compared to Direct-WTERs. First, they
tend to be more complicated and use heavier machinery. Second, unlike Direct-WTERs, they
do not give a negative answer to Question 2; if someone discovers a breakthrough algorithm on
expanders then (without a Direct-WTER) the way to solve the worst-case problem is to use
expander decompositions. Third, and perhaps most importantly, ED-WTERs cannot produce
true expanders in the sense that ϕ = Ω(1) but are only limited to proving hardness for graphs
with ϕ = (log n)−O(1). This is because of the log factors in the expander decompositions
(that provably cannot be avoided [13,49]) which means that given a graph with expansion
ϕ = 1/ log n we cannot expect a decomposition algorithm to decompose it further into true
expanders with ϕ = Ω(1).

From the viewpoint of Question 1, a WTER that achieves ϕ = (log n)−O(1) (or even
ϕ = Ω(n−ε) for ε → 0, as we do in this work) is partially satisfying. On the one hand, it
does not show that the problem remains hard on true expanders; it is conceivable that a
problem can be solved in O(21/ϕ ·n) time which would be linear when ϕ = Ω(1) but inefficient
on the class of graphs produced by an ED-WTER. On the other hand, worst-case graphs
have ϕ = O(1/n) and graphs with larger ϕ are already expander-like. Indeed, essentially all
breakthroughs using the expander-decompositions method were obtained by exploiting the
structures of “expanders” with ϕ = Ω(n−ε).

Our results are presented in Section 1.2, and they include WTERs of both types. Let us
conclude this section with two remarks.

Our framework is general with respect to the definition of an expander (e.g. vertex vs.
edge expansion, with or without demands, etc.), and it could even be applied more broadly
to any graph with strong structural properties (e.g. a Szemerédi regular graph). The
specific reductions, however, are sensitive to the exact definition and require modifications
to satisfy each definition.
The reductions we design in this work are randomized. This does not affect the message
from our results because the problems we consider appear to be just as hard for randomized
algorithms as well.
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Table 1 In this table we present our results with respect to the current best upper bounds for
the problems. The third column contains the hardness results on ϕ-expander. In particular, any
major improvement to the running times in the third column on ϕ-expanders will result in a major
improvement to the running times of the first column on worst-case graphs. For clarity, we hide any
poly-logarithmic factors.

Problem Best Upper Bound ϕ-Expander Lower Bound ϕ

Triangle Detection (dense graphs) nω nω Ω(1)
Triangle Detection (sparse graphs) m

2ω
ω+1 m

2ω
ω+1 Ω(1)

k-Clique nωk/3 nωk/3 Ω(1)
4-Cycle (m = Θ(n1.5)) n2 n4/3 Ω(1)
4-Cycle (m = Θ(n1.5)) n2 n2 Ω(n−ε)

Subgraph Isomorphism (without pendant vertices) nf(H) nf(H)/2 Ω(1)
Subgraph Isomorphism (without pendant vertices) mg(H) mg(H) Ω(1)

Maximum Cardinality Matching (dense graphs) nω nω Ω(1)
Maximum Cardinality Matching (sparse graphs) m ·

√
n m ·

√
n Ω(1)

Vertex Cover (bounded degree) 1.2125n · nO(1) 1.2125n/nO(1) Ω(1)
Vertex Cover (bounded degree, parameterized) 1.2738k · nO(1) 1.2738k/nO(1) Ω(1)

Minimum Dominating Set 1.4969n · nO(1) 1.4969n/(1+ε) · nO(1) Ω(1)

1.2 Applications
Let us now present the collections of WTERs designed in this paper.

Triangle Detection

The longstanding upper bound for detecting a triangle in an n-node, m-edge graph is
O(min{nω, m

2ω
ω+1 }) [16] where ω < 2.38 is the fast matrix multiplication exponent [14]. Even

if ω = 2, the upper bound would only be m4/3 on sparse graphs. There are different hardness
assumptions of different strengths, stating that Triangle cannot be solved much faster, e.g.
in m1+o(1) or m4/3−ε time (see [9]). The next theorem shows that any polynomial speed-up
in the expander-case will break these assumptions in worst-case graphs.

▶ Theorem 5 (Direct-WTER for Triangle Detection). Triangle Detection admits a Direct-
WTER with blowup (N, M) = (O(n), Õ(m)).

In fact, our result for Triangle Detection is merely a special case of a result for the more
general problem of detecting k-clique in a graph, known simply as the k-Clique problem. The
best known upper bound for k-Clique is O(nωk/3) when k is divisible by 3. Otherwise the
upper-bound is slightly larger. One of the strongest conjectures in fine-grained complexity
(meaning least likely to be true) is that we cannot do better (see [1]). For clarity, let us
assume that k ≥ 3 is constant. Then we can state our result in the following way:

▶ Theorem 6 (Direct-WTER for k-Clique). For all constants k ≥ 3, there is a Direct-WTER
with blowup (N, M) = (O(n), Õ(m)).

For completeness, we remark that if k = ω(1), then the blowup would be (N, M) =
(O(nk), Õ(mk2)) and the conductance ϕ = Ω(1/k2).

Another problem that is closely related to Triangle Detection is 4-Cycle, for which
achieving tight bounds has been notoriously difficult. The longstanding upper bound is
O(min{n2, m4/3}) [16]. Back in 1999, it had been conjectured that a subquadratic algorithm
is not possible [56], but only very recently a super-linear lower bound of Ω(m1.11) (assuming
the hardness of Triangle Detection) was obtained [2]. We remark that the hard cases of
4-Cycle are in the regime of m = O(n1.5), as a simple counting argument shows that any
graph with at least n1.5 edges contains a 4-Cycle.
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For 4-Cycle we design both a Direct-WTER and also an ED-WTER. Nonetheless, both
WTERs are relevant because each has a different drawback.

▶ Theorem 7 (Direct-WTER for 4-Cycle). There is a Direct-WTER to 4-Cycle with blowup
(N, M) = (Õ(m), Õ(m)).

The drawback of the Direct-WTER is a blowup in the number of vertices (Õ(m) instead of
O(n)), significantly weakening the result. In particular, worst-case graphs with m = Θ(n1.5)
edges are transformed to expanders with N = Ω(n1.5) vertices. Therefore, in order to gain a
speed-up of Õ(n2−ε) on worst-case graphs, one needs a major speed-up of Õ(N 4

3 (1−ε/2)) =
Õ(n2−ε) on Ω(1)-expanders. In search of WTERs that avoid this major drawback, we manage
to obtain the next ED-WTER:

▶ Theorem 8 (ED-WTER for 4-Cycle). For any ε > 0, there is a ED-WTER for 4-Cycle that
runs in time Õ(nεm + n2−ε/2), with conductance ϕ = n−ε.

This WTER suffers from the disadvantages of ED-WTERs discussed in Section 1.1. However,
it provides much better hardness results, in the sense that any Õ(N2−δ) speed-up on Ω̃(n−ε)-
expanders will imply a Õ(n2−δ) speed-up on worst-case graphs. An interesting open question
to ask now is whether 4-Cycle does become easy on Ω(1)-expanders while it remains hard on
Ω(n−ε)-expanders.
We now conclude this line of problems with a general result for the Subgraph Isomorphism
problem.

Subgraph Isomorphism

The foregoing problems were special cases of the Subgraph Isomorphism problem that asks
to detect a k-node pattern graph H inside a host graph G (not necessarily as an induced
subgraph). The complexity of solving Subgraph Isomorphism can vary wildly depending
on H. For example, while the best algorithms for k-Clique run in time O(nωk/3), there
are much more efficient algorithms for problems such as k-Cycle and k-Path, that run in
O(nω) [15]. Thus, for every pattern H we define a constant f(H) (respectively, g(H)) that
is the minimum number such that Subgraph Isomorphism (with respect to H) can be solved
in O(nf(H)+o(1)) time (respectively, O(mg(H)+o(1)) time in sparse graphs). We will focus on
a variant of Subgraph Isomorphism in which H does not contain pendant vertices (vertices
whose degree is one). We note that this variant is still general enough to capture the hard
and interesting cases such as k-Clique and k-Cycle. Our result for this problem is stated by
the next theorem:

▶ Theorem 9 (Direct-WTER for Subgraph Isomorphism without pendant vertices). There is a
Direct-WTER for Subgraph Isomorphism for patterns that do not contain pendant vertices.
Assuming that k is constant, the blowup is (N, M) = (Õ(m), Õ(m)).

We should note here that the Direct-WTER for 4-Cycle is, in fact, simply an application
of the Direct-WTER for Subgraph Isomorphism. For completeness, we remark that for
non-constant k the blowup is (N, M) = (Õ(mk), Õ(mk)) and the conductance is Ω(1/k).
As we’ve noted in the case of 4-Cycle, there is a significant drawback that comes from the
blowup to the number of vertices, and that weakens the result significantly.
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Maximum Cardinality Matching

Next, we turn our attention to the fundamental problem that asks to find a set M ⊆ E(G)
of maximum cardinality, such that no two edges in M intersect. In a recent breakthrough,
an almost-linear time algorithm for Max-flow [25] resulted in a Õ(m) time algorithm for
Maximum Matching in bipartite graphs. However, the best-known upper bounds for general
graphs are still far from linear. For sparse graphs, there is a longstanding O(m

√
n) upper

bound by Micali and Vazirani [42]. For dense graphs, we can do slightly better using an
Õ(nω) algorithm by Mucha and Sankowski [44]. The Micali and Vazirani algorithm is part of
a long list of algorithms that work by finding augmenting paths that improve a non-maximum
matching iteratively. A well-known fact says that a matching is non-maximum if and only if
there exists an augmenting path in the graph.

An interesting line of work focused on the case where G is a random graph drawn from
the distribution G(n, p). Motwani [43] showed that if p is at least ln n/(n − 1), then with
high probability, every non-maximum matching admits a short augmenting path of length
O(log n), and therefore the Micali and Vazirani algorithm terminates in Õ(m) time. Using
similar arguments, Bast et al. [20] provided a simpler proof that the above holds for any
p ≥ 33/n. At the heart of their proofs, both papers rely on various properties of random
graphs, most notably on vertex-expansion of sufficiently large sets of vertices.

A question that comes to mind is whether expansion (either vertex-expansion or other
forms of expansion) alone is sufficient to make the problem easy, or if other properties of
random graphs are necessary. If expansion alone is enough, perhaps we can use the expander
decomposition method to improve the state-of-the-art on worst-case graphs. We note that
the distinction between vertex-expansion and conductance (which is the notion used in the
expander decomposition) does not seem to be very important for their analysis, as they rely
on the fact that after expanding two subgraphs of G for O(log n) steps, the two must meet.
This holds even in large-conductance graphs.

Alas, the next Direct-WTER shows that the expander decomposition method is useless
against this problem.

▶ Theorem 10 (Direct-WTER for Maximum Cardinality Matching). There is a Direct-WTER
for Maximum Cardinality Matching with blowup (N, M) = (O(n), Õ(m)). 4

To answer the question about the properties that make random graphs easy for matching
algorithms, we look closely at the analysis of Motwani [43] and of Bast et al. [20]. We find
that they rely on the fact that with high probability, every pair of large, disjoint sets of
vertices are connected by at least one edge.5 In our reduction, we unavoidably introduce
linear-sized sets of vertices that don’t have an edge between them. Indeed, the graphs that
are output by the reduction may not admit short augmenting paths if the original graph did
not admit such. In particular, one cannot use the reduction as a way to speed-up algorithms
on worst-case graphs. It is an interesting open question whether such approach, augmenting
the graph to be random-like and “shortcut” augmenting paths, can be used to improve the
running times on worst-case graphs.

We now move on to NP-hard problems, where we are interested in the exact (fine-grained)
exponential time complexity.

4 To further emphasize that the distinction between vertex-expansion and conductance is not very
important, we note that it is possible to show that the graph output by this WTER is also a vertex-
expander.

5 See [43, Lemma 6.1] and [20, Lemma 3].
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Minimum Vertex Cover

In the Minimum Vertex Cover problem, we wish to find a minimum-sized set of vertices
such that every edge is incident to this set. This NP-Hard problem has received a lot of
attention over the years, resulting in relatively fast algorithms (compared to other NP-hard
problems). After a long line of works (e.g. [21, 31, 48]), the upper bound for Minimum
Vertex Cover stands at 1.2125n · nO(1) [22] and it is unclear if it can be improved further, e.g.
to 1.001n · nO(1). The problem has also received a lot of attention from the parameterized
complexity community, and the current best bound for deciding if there is a vertex cover of
size ≤ k is 1.2738k · nO(1) [24]. In the next theorem we present WTERs that address both
the exact complexity and the parameterized complexity of this problem on expanders.

▶ Theorem 11 (Direct-WTER for Minimum Vertex Cover). There is a Direct-WTER for
Minimum Vertex Cover with blowup (N, M) = (n + O(log n + ∆(G)), Õ(m)), where ∆(G)
is the maximum degree in G. Moreover, the size of minimum vertex cover in the output
G′ is K = k + 5 max{∆(G), C log n} for some fixed constant C, where k is the size of the
minimum vertex cover in G.

At first sight, this WTER may appear unattractive because of the ∆(G) blowup in the number
of vertices, which could be as large as Ω(n). However, by observing that the Vertex Cover
problem becomes easier (in the sense that the 1.2125n bound can be broken) in graphs with
large degrees [22], we conclude that the hard cases have ∆(G) = O(1). Therefore, assuming
that ∆(G) = O(1), the blowup is actually (N, M) = (n + O(log n), Õ(m)) which achieves the
so-called platinum standard. Furthermore, since the size of the minimum vertex cover in G′ is
K = k + 5 max{∆(G), C log n} = k + O(log n), then any speed-up of (1.2738 − ϵ)K · NO(1) on
Ω(1)-expanders will result in a speed-up of (1.2738 − ϵ)k+O(log n) · nO(1) = (1.2738 − ϵ)k · nO(1)

on worst-case graphs. We see this as a proof of concept that our framework can extend even
beyond the traditional notions of complexity and have implications also in parameterized
complexity.

Finally, let us present another fundamental NP-Hard problem.

Minimum Dominating Set

In the Minimum Dominating Set problem, the goal is to find a set of vertices of minimum
size, such that every vertex in the graph is either a neighbor of some vertex in the set or is
in the set itself. The Minimum Dominating Set problem can be solved trivially in 2n · nO(1)

time. In 2004, a first cn · nO(1) algorithm with c < 2 was discovered by Fomin [32], and since
then, the complexity was further improved to 1.4969n · nO(1) [52]. Unlike Minimum Vertex
Cover, the Minimum Dominating Set problem is not fixed-parameter tractable, meaning that
it is unlikely to be solved in f(k) · nO(1) time, and in that sense it is considered harder.

For Minimum Dominating Set we show a Direct-WTER with blowup (N, M) = ((1 +
ε)n, Õ(m)) for any constant ε > 0, and constant conductance that depends on ε. Observe
that for any significant improvement to the exponent in the running time on o(1)-expanders,
we can choose ε to be small enough to get an improvement on worst-case graphs. Interestingly,
this WTER requires a slightly different approach that is a combination of the techniques we
used for k-Clique and Maximum Cardinality Matching, together with a subsampling trick.
We find it interesting and see it as an indicator that our techniques can be applied to more
open questions.

▶ Theorem 12 (Direct-WTER for Minimum Dominating Set). There is a Direct-WTER
for Minimum Dominating Set with blowup (N, M) = (n + εn, Õ(m)) and conductance
ϕ(G′) ≥ Ω(1), for any constant ε > 0.
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Our results only reveal the tip of the iceberg. There is a plethora of problems for which
Questions 1 and 2 may be relevant, from open questions in fine-grained complexity to
NP-hard problems. We are hopeful that our framework will help in understanding the role
that expanders have in algorithms and beyond.

1.3 Related Work
An interesting line of research in fine-grained complexity it to show conditional lower bounds
for “realistic” input classes such as planar graphs, bounded treewidth graphs, and so on.
There has been some progress on designing reductions that apply to such restricted families
as well (see e.g. [3, 4, 10, 30]). Perhaps the next extension to this line of work should
be random-like graphs, e.g. expanders? Indeed, a recent independent paper is concerned
with the complexity of various problems on families of dynamic graphs, that also include
expanders [35]. Our work is not motivated by these kinds of questions, but our techniques
may have implications for that line of work as well.

Another area of research, that somewhat resembles ours, is the research on worst-case
to average-case reductions. These reductions show that a problem is as easy on worst-case
inputs as it is on random instances (e.g., taken from the uniform distribution). In recent
years, much effort has gone into proving worst-case to average-case reductions for problems
in P (see [17,18,29,34]). However, it has only been accomplished for counting or algebraic
problems but not decision problems, while we are interested in graph decision problems on
pseudo-random instances. In fact, trying to show any worst-case to average-case reductions
on these problems might as well fail, since they (e.g., Triangle Detection) typically do become
easier on random graphs.

2 Preliminaries

Let G = (V, E). For every v ∈ V (G) define the neighborhood of v to be N(v) := {u ∈ V |
{u, v} ∈ E(G)}. The degree of a vertex v ∈ V (G) is denoted by degG(v) := |N(v)|, and
for u /∈ V (G) define degG(u) := 0. We denote the maximum degree among the vertices of
G by ∆(G). For every S ⊆ V , denote the volume of S by volG(S) =

∑
v∈S

degG(v). We say

that an edge {u, v} is an internal edge is both u and v are in S. Denote by EG(S, S′) the
set of edges between disjoint sets of vertices S, S′ ⊆ V (G) and by eG(S, S′) := |EG(S, S′)|.
Denote by δG(S) := eG(S, S̄) and note that δ(S) = δ(S̄). The conductance of S is defined
as ϕG(S) := δG(S)

min{volG(S),volG(S̄)} and for S = ∅ we define ϕG(S) := 1. The conductance of
G is defined as ϕ(G) = minS⊆V ϕG(S). The expansion of a cut or a graph is simply its
conductance. We omit the subscripts when they are clear from the context. We denote by
G[S] the induced subgraph of G on set of vertices S. Throughout that paper, we use the
Chernoff bound, stated as:

▶ Fact 13 (Chernoff Bound). Let X be the sum of n independent indicators, each taking the
value 1 with probability 0 < p < 1, and µ be the expectation of X. Then for any 0 ≤ δ ≤ 1,
P[|X − µ| ≥ δµ] ≤ exp(−δ2µ/3).

3 Technical Overview

Recall that our goal when designing a Direct-WTER is to take a worst-case graph G and
turn it into an expander G′ without changing the answer to the problem uncontrollably.
Consider the Triangle Detection problem as an example for now. The goal is to add edges to
a graph in order to make it an expander while not introducing a triangle to the graph if the
original graph was triangle-free.
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Let us start by recalling the intuition that an expander graph should be mixing [33] in the
sense that a short random walk from any vertex is equally likely to reach any other vertex.
Keeping this in mind will help the reader follow the informal arguments in this section, but
it is not necessary for understanding our actual proofs that only work with the definition of
expander in Definition 1.

The first idea that comes to mind is to take an expander graph X on n := |V (G)| nodes
(e.g. a random sparse graph) and add it to G, so that G′ = G ∪ X. There are several issues
with this idea. First, the resulting graph will not be an expander if X is just an arbitrary
expander. For example, if G is dense and X is sparse, then the new edges of X will not have
much effect on random walks in the combined graph G′. This issue can be resolved by using
an expander X in which each vertex v has the same degree that it has in G; a random graph
with specified degrees does the job. The second issue is that the answer to the problem can
change arbitrarily when taking the union with another graph X; e.g. an edge {u, v} ∈ E(G)
may become a triangle because u, v have a common neighbor in the newly introduced X.
For some problems, e.g., the Subgraph Isomorphism problem for pattern H without degree-1
vertices, this issue can be overcome by subdividing the edges of X into paths of length |H| + 1
before adding them to G. This makes the new edges useless for forming any copy of H (or a
triangle in particular) because any subgraph of size |H| (or 3) that uses a new edge must
have a leaf node of degree 1. This does result in a Direct-WTER, but it is not as fine-grained
as we would like: the number of nodes in G′ becomes O(m) where m := |E(G)| because
of the subdivided edges. Our actual reductions use additional ideas and are actually quite
different, but the intuition behind them is similar.

Instead, the basic idea in our reductions is to add a small expansion layer U with O(n)
nodes and connect each node in V (G) with random edges to U . That is, we add a random
bipartite graph whose one side is V (G), and the other side is U . If a node v ∈ V (G) has
degree d in G then we add d random edges to U . Then, a random walk starting at v will go
with probability 1/2 to the expansion layer U , and the next step would send it back to an
essentially random vertex w ∈ V (G); thus simulating a “random edge” from v to w. We prove
that adding such an expansion layer to any graph that has a sufficiently large (logarithmic)
minimum degree makes it an expander. We introduce some gadgets to artificially increase
the degrees in our problems.

The advantage of adding an expansion layer over simply taking the union with a random
graph is that it makes it easier to control the change in the solution of the problem. This is
accomplished with different gadgetry for each problem and with a different argument for why
the gadgets do not harm the conductance of the graph by too much. For example, in the
WTER for maximum matching, we add a unique “twin” vertex to each node in the expansion
layer U and connect them by an edge. The maximum matching is forced to match every
node in U to its twin, thus making the newly added edges between V (G) and U unusable
in a maximum matching. The WTER for Vertex Cover uses a similar idea. A different
idea is used for Triangle (and k-Clique), where we connect the expansion layer U only to a
(sufficiently large) independent set V1 in G. Consequently, the newly added edges cannot
form any triangle. The WTER for Minimum Dominating Set combines ideas from both
WTERs for Triangle Detection and Vertex Cover, together with a sampling trick. Notably,
for the 4-Cycle problem, we could not avoid the subdivision trick so we complement our
result with an ED-WTER that avoids the blowup.

Designing ED-WTERs is fundamentally different. To reduce 4-Cycle into expanders, we
use the expander decomposition to partition G into induced subgraphs with conductance
ϕ = n−ε and a small set of outer edges. Then, assuming that we can check (in subquadratic
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time) whether there is a 4-cycle inside each subgraph, the problem boils down to finding a
4-cycle that uses one of the outer edges. Hence, we provide an algorithm that finds a 4-cycle
that uses one of the outer edges or outputs that there is no such cycle. Using the fact that
the number of outer edges is small (namely, O(n1.5−ε)), this algorithm runs in subquadratic
time.

4 The Reductions

Our main building block is a randomized algorithm that takes as an input an n-vertex
graph G where for every v ∈ V (G), degG(v) ≥ C log n for some large enough constant C,
and outputs a graph G′ such that: (1) |E(G′)| = O(|E(G)|) and |V (G′)| = O(n), and (2)
ϕ(G′) = Ω(1). We note that this algorithm applies even to graphs with self-loops. We later
modify and use this algorithm in different ways to show all the above results.

4.1 The Expansion Layer Construction
Construct an expander graph G′ from G as follows.
1. Add to G an expansion layer U that consists of 5n vertices.
2. For every vertex v ∈ V (G), sample without replacement degG(v) vertices from the

expansion layer U and add all edges between them and v. Thus, the total number of
vertices and edges added in this step is O(n) and O(|E(G)|), respectively.

3. Increase the degrees of the vertices of U deterministically in the following way. Partition
each of V (G) and U into 10n

C log n parts of equal size (i.e, partition V (G) into parts of
size C

10 log n and partition U into parts of size C
2 log n). Then, take an arbitrary perfect

matching between the parts in the partitions of V (G) and U , and add a bi-clique between
every matched pair of parts (i.e. add all possible edges between every matched pair).
Thus, the total number of edges added in this step is O( n

log n · log2 n) = O(n log n). Note
that after this step, the degrees of all vertices in U are at least C

10 log n and the degrees
of all vertices in V (G) are at least 3

2 · C log n (as we assume that degG(v) ≥ C log n and
then add an additional C

2 log n edges).
See Figure 1. Observe that |E(G′)| = O(|E(G)|), |V (G′)| = O(n) and that the reduction is
randomized and runs in linear time.

Figure 1 The basic construction of the algorithm. The blue edges represent the deterministically
added bi-cliques. The black edges represent the edges of G and the new random edges. For each
vertex v we sample degG(v) neighbors in U and add edges between them.

▶ Theorem 14. The conductance of G′ is ϕ(G′) ≥ 0.01 with probability at least 1 − O( 1
n ).

Before proving this result, let us introduce some notation and give an overview. Through-
out the section, we omit the subscripts from degG′(·), volG′(·), EG′(·, ·), eG′(·, ·), δG′(·) and
ϕG′(·). For any cut S ⊆ V (G′), we denote by SV and SU the parts S ∩ V (G) and S ∩ U ,
respectively.
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To prove the theorem, we will focus on the complement probability. That is, we show
that P[ϕ(G′) < 0.01] = O( 1

n ). We will apply the union bound over all possible cuts. More
precisely, we show that for any cut S ⊆ V (G′), the failure probability P[ϕ(S) < 0.01] is
sufficiently small so that by summing the failure probabilities of all possible cuts we still get
a value much smaller than 1.

For any cut (S, S̄), assume w.l.o.g. that S is the part for which the inequality |SU | ≤ |U |/2
holds (as it must hold either for S or S̄). Observe that in order to show that P[ϕ(S) < 0.01]
is small it suffices to show that P[ δ(S)

vol(S) < 0.01] is small, since:

ϕ(S) = δ(S)
min{vol(S), vol(S̄)}

= max
{

δ(S)
vol(S) ,

δ(S)
vol(S̄)

}
and therefore P[ϕ(S) < 0.01] ≤ P[ δ(S)

vol(S) < 0.01].
The main lemma is the following one:

▶ Lemma 15. For any cut S ⊆ V (G′) such that |SU | ≤ |U |/2, we have:

P
[

δ(S)
vol(S) < 0.01

]
≤ n− C

800 ·|S|.

Figure 2 A depiction of a graph G with expansion layer U . The gray area denotes a set S. To
prove Lemma 15, we lower bound the number of pink edges and the number of green edges, and
show that at least one of them is proportional to vol(S).

We prove the lemma in the full version of the paper. See Figure 2 for a short explanation
about the proof.

Proof of Theorem 14. Fix C to be large enough so that the failure probability in Lemma 15
is less than n−2|S|, for any S ⊆ V (G′) with |SU | ≤ |U |/2 (C = 1600 will do). Since the
number of different cuts that consist of k vertices is O(nk), we can apply the union-bound
over all cuts such that |SU | ≤ |U |/2. In more detail, we sum over k = 1, 2, . . . , 3.5n (any
cut larger than that must have |SU | > |U |/2) the number of cuts of size k times the failure
probability of such cuts, and it is easy to see that the sum is bounded by O(1/n). ◀

Let us now explain why we can assume that the degrees in G are at least C log n. If for
some v ∈ V (G) we have degG(v) < C log n, then we can add C log n − degG(v) self-loops
to v in a preprocessing step. After constructing the expander G′ we can remove all those
self-loops from G′. Notice that by removing self-loops from an expander we only increase the
expansion of the graph.

4.2 Direct-WTERs for Maximum Cardinality Matching and Minimum
Vertex Cover

We are now ready to show our first WTERs for the problems of computing the Maximum
Cardinality Matching (abbreviated as MCM) and Minimum Vertex Cover (abbreviated as
MVC) of a graph G. We use MCM(G) and MV C(G) to denote their values, respectively.
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Naiv̈ely, we could try to simply apply Algorithm 4.1 on G, resulting in an expander graph
G′. However, this approach will fail because there is no obvious way to compute MCM(G)
(MV C(G)) from MCM(G′) (MV C(G′)). Therefore, we employ a simple trick that helps
us control the values of the MCM and MVC. The trick is to add twin vertices to a selected
subset of the vertices of the graph. Formally, we define a twin of a vertex u to be a degree-1
vertex u′ that is adjacent to u (that is, u′ is a pendant vertex). By the next fact, we can add
twins to the graph to force a selected subset of edges or vertices to be inside the MCM or
MVC, respectively.

▶ Fact 16. If a graph contains a twin vertex u′ of u, then there exists an MCM that contains
the edge {u, u′}, and there exists an MVC that contains the vertex u.

We note that we need to be careful that by adding twins to an expander graph, we do not
reduce the expansion by much. Formally, we prove this in the next lemma:

▶ Lemma 17. Let H be a connected graph and let A ⊆ V (H) be arbitrary. Let H ′ be a graph
constructed from H by adding a twin vertex u′ ∈ V (H ′) and an edge {u, u′} ∈ E(H ′) for
every u ∈ A. Then, ϕ(H ′) ≥ ϕ(H)/2.

Proof. Let S ⊆ V (H ′). Observe that δH′(S) ≥ δH(S). Additionally, since every vertex
in S has at most one twin then degH′(v) ≤ degH(v) + 1 for every v ∈ S, and therefore
volH′(S) ≤ |S|+volH(S). Since H is connected, then |S| ≤ volH(S) and therefore volH′(S) ≤
|S| + volG(S) ≤ 2volH(S). Thus, since the above holds for S̄ as well, we get:

ϕH′(S) = δH′(S)
min{volH′(S), volH′(S̄)}

≥ δH(S)
2 min{volH(S), volH(S̄)}

= ϕH(S)
2 ,

and therefore ϕ(H ′) ≥ ϕ(H)
2 . ◀

We are now ready to show a Direct-WTER for MCM.

Proof of Theorem 10 (Direct-WTER for MCM). Apply Algorithm 4.1 on G to get an
Ω(1)-expander Ĝ. Then add a twin vertex u′ for every u ∈ U , where U is the expansion
layer in Ĝ. Denote the resulting graph by G′. See Figure 3. Note that the number of twins
added is |U | = 5n and that the number of added edges is O(m + n log n). Hence, the blowup
is (N, M) = (O(n), Õ(m)). Moreover, by Lemma 17 we have ϕ(G′) = Ω(1).

Figure 3 The graph G′ obtained from our construction for MCM and MVC.

Next, we prove that computing MCM(G) from MCM(G′) is trivial.

▷ Claim 18. The size of the maximum cardinality matching in G′ is MCM(G′) = MCM(G)+
5n.
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Proof. Denote by X ⊆ E(G′) the set of all edges incident to twins. By Fact 16, there exists in
G′ a maximum matching M that contains X. Notice that M does not contain any U -to-V (G)
edges and therefore |M | = |M ∩ E(G)| + |X| = |M ∩ E(G)| + 5n. Moreover, M ∩ E(G) must
be a maximum matching of G because if there was a larger matching we could take it with
X to obtain a larger matching for G′. Thus, |M | = |M ∩ E(G)| + 5n = MCM(G) + 5n. ◁

We’ve shown a transformation from G to a Ω(1)-expander G′ with blowup (N, M) =
(O(n), Õ(m)), such that MCM(G) can be computed efficiently from MCM(G′). ◀

Next, we show a Direct-WTER for MVC. Since the best upper bounds for MVC are
exponential then we aim to keep the blowup in the number of vertices small. To this end, we
slightly modify Algorithm 4.1 to avoid adding an expansion layer of size 5n.

Modifications to Algorithm 4.1

Instead of adding an expansion layer of size 5n, we add an expansion layer of size
5 max{∆(G), C log n}. Notice that U is sufficiently large to allow every vertex in V (G)
to sample max{degG(v), C log n} vertices from U without replacement. We claim that
Theorem 14 holds under this modification. To see why, observe that throughout the con-
struction and analysis we only needed U to be large enough so that: (1) every vertex
v ∈ V (G) can sample without replacement max{deg(v), C log n} vertices from U , and (2)
|U | − |SU | − max{deg(v), C log n} ≥ 1.5|U | which indeed holds as long as |SU | ≤ 2.5|U |.

Proof of Theorem 11 (Direct-WTER for MVC). Apply the modified Algorithm 4.1 on G

and add a twin vertex u′ for every u ∈ U . Denote the resulting graph by G′. The
main difference between the previous construction and this one is that we now have
|U | = 5 max{∆(G), C log n} and therefore, the blowup in G′ is (N, M) = (n + O(log n +
∆(G)), Õ(m)). Moreover,

▷ Claim 19. The size of the minimum vertex cover in G′ is:

MV C(G′) = MV C(G) + 5 max{∆(G), C log n}

The proof is similar to the proof for MCM and thus omitted. Hence, we’ve shown a trans-
formation from G to a Ω(1)-expander G′ with blowup (N, M) = (n+O(log n+∆(G)), Õ(m)),
such that MV C(G) can be computed efficiently from MV C(G′). ◀

4.3 Direct-WTER for k-Clique
The construction for k-Clique can be described roughly in the following way. We apply a
simple transformation that makes the graph k-partite, and such that every vertex has the
same number of neighbors in every part (except the one it belongs to). This property is
crucial as it implies that any sparse cut in the graph must contain vertices from all parts.
We apply Algorithm 4.1 to only one of the parts and obtain a graph G′ (we later describe
this step in more detail). Since any sparse cut in the k-partite graph must contain vertices
from the part that has an expansion layer, there are no sparse cuts in G′. Specifically, the
graph G′ has conductance Ω(1/k2) and the number of k-Cliques in G′ is k! times the number
of k-cliques in G.

Proof of Theorem 6 (Direct-WTER for k-Clique). We would like to assume that G is k-
partite with parts V1, V2, . . . , Vk, such for every vertex v ∈ Vi, v has the same number
of neighbors in every part Vj for j ̸= i. We can take k copies V1, . . . , Vk of V (G) such
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that Vi = {vi | v ∈ V (G)}. Now, for every edge {u, v} ∈ E(G) we create
(

k
2
)

copies:
{{ui, vj} | i ≠ j}. Observe that the resulting graph is k-partite, the number of vertices
in this graph is kn, and the number of edges is k · m2. Most importantly, the number of
k-cliques in this graph is k! times the number of k-cliques in the original graph. For clarity,
we henceforth assume that G has this k-partite form from the beginning, but we state our
results as if it had not (e.g., we state that the blowup is (O(nk), Õ(mk2))).

We wish to add an expansion layer to G without introducing any k-clique. Hence, we
cannot naïvely apply Algorithm 4.1 on G because, with some probability, some vertices
from the expansion layer will participate in a k-clique. Instead, we add an expansion layer
that is adjacent only to V1, but with respect to the degrees of the vertices of V1 in G.
That is, we apply Algorithm 4.1 in the following way: for every v ∈ V1, v will sample
max{degG(v), C log n} edges to the expansion layer U . Denote the resulting graph by G′.
See Figure 4.

Figure 4 The construction of k-Clique for k = 3. In this example, we can see that v3 participates
in the triangles u1, w2, v3 and w1, u2, v3.

▶ Lemma 20. With probability 1 − O( 1
n ), the conductance of G′ is ϕ(G′) = Ω(1/k2).

The proof is present in the full version of the paper. ◀

4.4 Direct-WTER for Subgraph Isomorphism
Fix H to be a k-node pattern graph without pendant vertices.

Proof of Theorem 9. Apply Algorithm 4.1 on G and then subdivide every U -to-V (G) edge
k times. Denote by G′ be the resulting graph.

▷ Claim 21. H is a subgraph of G if and only if it is a subgraph of G′.

Proof. Since H does not contain pendant vertices and |V (H)| < k + 1, then any copy of H

in G′ does not use an edge that was added in the subdivision step. Therefore it is also a
copy of H in G. ◁

▷ Claim 22. The expansion of G′ is ϕ(G′) = Ω( 1
k ) = Ω(1).
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Proof. For any cut S ⊆ V (G′) denote by Ŝ the corresponding cut in Ĝ, where Ĝ is the
graph obtained from G before the subdivision. More precisely, Ŝ consists of S ∩ V (G) and
S ∩ U . By Theorem 14, we have ϕĜ(S) = Ω(1). Now, observe that δ(S) ≥ δĜ(Ŝ) and that
vol(S) ≤ 2k · volĜ(S). Therefore:

ϕ(S) ≥
δĜ(Ŝ)

2k · min{volĜ(Ŝ), volĜ(Ŝ)}
= Ω

(
1
k

)
◁

◀

4.5 ED-WTER for 4-Cycle
In this WTER we use the expander decomposition from Theorem 3 to obtain a WTER for
4-Cycle with conductance n−ε, for any constant 0 < ε < 0.5, and running time Õ(n2−0.5ε +
n1.5+ε). Observe that the number of outer edges in such decomposition is Õ(n−εm) =
Õ(n1.5−ε). We will call the vertices that are incident to outer edges portals. We also assume
that we have access to an oracle for 4-Cycle, such that when given any n−ε-expander X it
answers “YES” if and only if X contains a 4-Cycle. Note that if a single call to the oracle
takes O(n2−δ

i ) time for some δ > 0, where ni is the number of nodes in the ith expander and∑
i ni = n, then the total time for all calls will also be

∑
i n2−δ

i = O(n2−δ); therefore, this
WTER proves that any polynomial speedup on expanders implies a polynomial speedup in
worst-case graphs.

Proof of Theorem 8 (ED-WTER for 4-Cycle). Decomopse G into expanders by using the
expander decomposition of Theorem 3 with parameter ϕ = n−ε. Next, query the oracle on
every expander in the decomposition, and if at some point the oracle answers “YES” we are
done. Otherwise, we need to check if there is a 4-Cycle that uses one of the Õ(n1.5−ε) outer
edges.

To this end, we use a “high degree - low degree” trick. First, we check whether there
are 4-cycles that contain any high-degree vertex in the graph (not necessarily a portal). We
define a high-degree vertex to be a vertex of degree at least n0.5(1+ε). Denote by A ⊆ V (G)
the set of all high-degree vertices in the graph. A simple counting argument shows that
|A| = O(n1.5/n0.5(1+ε)) = O(n1−0.5ε). Now, for every v ∈ A we can check in O(n) time
whether v participates in any 4-Cycle in the following way: we mark every neighbor-of-a-
neighbor of v, until we either find a collision between two marked nodes (that is, a 4-Cycle)
or until we marked all neighbors-of-a-neighbor. Note that in any case, we spend at most
O(n) time because after marking n nodes, we must find a collision. Hence, we can check in
O(|A| · n) = O(n2−0.5ε) time whether there is a vertex in A that participates in a 4-Cycle.

Next, we need to check if there is a 4-Cycle that consists only of low-degree vertices and
at least one outer edge. We denote by P the set of all portals whose degree is less than
n0.5(1+ε). For every vertex v ∈ P , we mark the endpoints of every 2-path whose center is v,
and that consists of at least one outer edge. If we denote by b(v) the number of outer edges
incident to v, then the number of such paths (and the time it takes to mark their endpoints)
is at most :∑

v∈B

deg(v) · b(v) ≤ n0.5(1+ε)
∑
v∈B

b(v) = O(n0.5(1+ε) · n1.5−ε) = O(n2−0.5ε).

If we’ve encountered a collision between the two endpoints of different 2-paths, we’ve found
a 4-Cycle, and we are done. Otherwise, we claim the graph is 4-Cycle free. To see why,
observe that any 4-Cycle that contains an outer edge must contain at least two outer edges.
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Therefore, there is a pair of distinct portals u, v that cover those two edges. Any such 4-Cycle
can be broken into two 2-paths that pass through u and v, each consisting of at least one
outer edge. Therefore, this 4-Cycle must be detected by the algorithm.

The running time of this reduction is therefore Õ(n1.5+ε + n2−0.5ε). ◀

4.6 Direct-WTER for Minimum Dominating Set
Our Direct-WTER for Minimum Dominating Set (abbreviated as MDS) uses twins trick.
That is, by adding a unique neighbor u′ to some vertex u, we can more easily control the
size of the dominating set in the graph. Formally, we have:

▶ Fact 23. If u′ is a twin of u, there exists a minimum dominating set that contains u.

However, if we apply the same construction that worked for MCM (and MVC); adding an
expansion layer U and a twin to every u ∈ U , the vertices of U will have to be in a minimum
dominating set and therefore will also dominate V (G). Essentially, the size of the minimum
dominating set in G′ will become MDS(G′) := |U |, losing all information about MDS(G).
To deal with this problem, we add an intermediate layer R that consists of independent
vertices that are “copies” of vertices in G. That is, for each vr ∈ R we have some v ∈ V (G)
and vr is adjacent in G only to the neighborhood of v. Hence, vr doesn’t dominate any
vertices in G that cannot be dominated by v.

The vertices of G that will have copies in R are chosen by a randomized algorithm, such
that every sparse cut in G will have some copies in R, while keeping the size of R less than
εn. Then, we add an expansion layer U to R, and to control the size of the dominating set
we add twins to U . Note that R becomes useless to any minimum dominating set because
we can always replace copies with their originals. Let us now present the construction in full
detail.

Proof of Theorem 12 (Direct-WTER for Minimum Dominating Set). Let 0 < ε be a con-
stant and assume w.l.o.g. that ε is sufficiently small (say, ε ≤ 0.01). We construct the graph
G′ using the following algorithm. The first four steps deal with sampling vertices from G

that hit all sparse cuts, and the last steps take copies of the sampled vertices and make the
graph expander by adding an expansion layer.
1. Let Q = ∅. For every v ∈ V (G), add v to Q with probability 10ε, independently from

other vertices.
2. For every vertex v ∈ V (G) \ Q, we say that v is bad if |N(v) ∩ Q| < ε deg(v). Add to Q

all the bad vertices that have degree at least log(1/ε)/ε.
3. Add vertices to Q according to the next deterministic procedure. Decompose G into

connected, edge-disjoint subgraphs of size (where size is the number of vertices) in range
[1/ε, 3/ε]. From every subgraph in the decomposition pick one arbitrary vertex to Q. See
the full version of the paper for more details about the decomposition.

4. Add to the graph a set of new vertices R = {vr | v ∈ Q}, and for every vr ∈ R add all
edges between NG(v) and vr.

5. Add an expansion layer U adjacent to R, with the following modifications to Algorithm
4.1. Denote by ∆R := max{degG(v) | vr ∈ R}.

Modifications to Algorithm 4.1. The modifications are similar to the ones we did
in the constructions for MVC and k-Clique. For every vr ∈ R, we wish to sample
degG(v) + C log n edges from vr to U . Since we can not afford to add an expansion
layer of size |U | = 5(∆R + C log n) (because ∆R can be as large as n), we add an
expansion layer of size |U | = 5(ε∆R + C log n). Then, every vertex vr ∈ R will sample
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ε degG(v) + C log n neighbors from U (instead of degG(v) + C log n). Notice that we
replaced the degree-increasing step by sampling C log n more neighbors from U . Thus,
by Lemma 15, the induced subgraph on R ∪ U is an Ω(1)-expander with high probability.

6. To control the size of the dominating set, for every u ∈ U add a twin vertex u′.

Figure 5 The proposed WTER for dominating set. The vertices of R are copies of vertices of G,
thus sharing the same neighborhood in G.

Denote the resulting graph by G′. See Figure 5. It is not difficult to see that with
high probability, the blowup in the number of vertices in O(εn) and that MDS(G′) =
MDS(G) + |U |.

To prove that ϕ(G′) = Ω(1), we show that for any cut S ⊆ V (G), if S is not expanding
inside G (that is, δG(S) << volG(S)) then there are many edges between S and R. Since R

is adjacent to U then we obtain expansion between S and R or between R and U . The first
part of this claim is formalized by the next lemma:

▶ Lemma 24. There exists a constant cε such that for every cut S ⊆ V (G), either δG(S) ≥
cεvolG(S) or e(S, R) ≥ cεvolG(S).

The proof of this claim appears in the full version of the paper. Assuming this claim, it is
not hard to see that any cut must have many cross-edges either in the induced subgraph on
V (G) ∪ R, or in the induced subgraph on R ∪ U . In particular, we obtain the next lemma
whose proof also appears in the full version of the paper:

▶ Lemma 25. With high probability, for any cut S ⊆ V (G′) we have ϕ(S) = Ω(1). ◀

5 Definition

Let us conclude by formalizing the notion of a (fine-grained) WTER that captures Definitions 2
and 4.

▶ Definition 26 ((ϕ(n), a(n, m), b(n, m))-WTER). Problem A has a worst-case to expander-
case self-reduction with conductance ϕ(n) and times a(n, m), b(n, m) , if there exists a
randomized algorithm with oracle access to A, that solves A on any n-nodes, m-edges graph
by making at most k = k(n) calls to the oracle on instances G1, . . . , Gk, such that:

each Gi is a ϕ(n)-expander.
for every ε > 0 there is a δ > 0 such that the reduction runs in time O(a(n, m)1−δ) and∑k

i=1 b(ni, mi)1−ε = O(a(n, m))1−δ, where ni, mi are the number of nodes and edges in
Gi, respectively.

We will abbreviate by saying that A admits a (ϕ(n), a(n, m), b(n, m))-WTER. The in-
tuition behind this definition can be described as follows. If a problem admits a
(ϕ(n), a(n, m), b(n, m))-WTER, then any “fast” (i.e. b(n, m)1−ε time) algorithm on ϕ(n)-
expanders can be used to obtain a “faster” (a(n, m)1−δ time) algorithm on worst-case graphs.
For example, if a problem admits a ((log n)−1, n3, n2)-WTER. Then the existence of any
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O(n2(1−ε))-time algorithm that solves the problem on n-vertex (log n)−1-expanders implies
that the problem can be solved on worst-case graphs in time O(n3(1−δ)). In this work we
mainly focused on (Ω(1), a(n, m), a(n, m))-WTERs, where a(n, m) is the best known upper
bound to solve the problem, essentialy showing the problem is as easy on worst-case graphs
as on expanders.

For completeness, we formalize the intutition in the next theorem:

▶ Theorem 27. If problem A has a (ϕ(n), a(n, m), b(n, m))-WTER, then for all ε > 0
there is a δ > 0 such that if there is an algorithm that solves A on ϕ(n)-expanders in time
O(b(n, m)1−ε), then A can be solved on worst-case graphs in time O(a(n, m)1−δ).

Proof. Suppose that problem A has a (ϕ(n), a(n, m), b(n, m))-WTER and that there is an
algorithm that runs in time O(b(n, m)1−ε) that solves the problem on ϕ(n)-expanders. Then
we can simulate the algorithm in the WTER on worst-case graphs by replacing the oracle
with the fast algorithm on expanders. The total running time is O(a(n, m)1−δ), for some
δ > 0. ◀
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Abstract
A matroid M on a set E of elements has the α-partition property, for some α > 0, if it is possible
to (randomly) construct a partition matroid P on (a subset of) elements of M such that every
independent set of P is independent in M and for any weight function w : E → R≥0, the expected
value of the optimum of the matroid secretary problem on P is at least an α-fraction of the optimum
on M. We show that the complete binary matroid, Bd on Fd

2 does not satisfy the α-partition
property for any constant α > 0 (independent of d).

Furthermore, we refute a recent conjecture of [5] by showing the same matroid is 2d/d-colorable
but cannot be reduced to an α2d/d-colorable partition matroid for any α that is sublinear in d.
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1 Introduction

Since its formulation by Babaioff, Immorlica and Kleinberg in 2007 [3, 2], the matroid secretary
conjecture has captured the imagination of many researchers [7, 1, 14, 12, 6, 13, 17, 9, 15, 11].
This beautiful conjecture states the following: Suppose that elements of a known matroid
M = (E, I) with unknown weights w : E → R≥0 arrive one at a time in a uniformly random
order. When an element e arrives we learn its weight we and must make an irrevocable
and immediate decision as to whether to “take it” or not, subject to the requirement that
the set of elements taken must at all times remain an independent set in the matroid. The
matroid secretary conjecture states that for any matroid, there is an (online) algorithm that
guarantees that the expected weight of the set of elements taken is at least a constant fraction
of the weight of the maximum weight base.
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2:2 Matroid Partition Property and the Secretary Problem

More formally, we say the competitive ratio of a matroid secretary algorithm1 A on a
particular matroid M is

inf
w

E [AM(w)]
optM(w)

where AM(w) is the weight of the set of elements selected by the online algorithm A, and
optM(w) = maxI∈I

∑
i∈I wi. We drop the subscript M when the matroid is clear in the

context. The expectation in the numerator is over the uniformly random arrival order of the
elements and any randomization in the algorithm itself. The conjecture states that for any
matroid, there is an algorithm with competitive ratio O(1).

The matroid secretary conjecture is known to be true for a number of classes of matroids,
including partition matroids, uniform matroids, graphic matroids and laminar matroids [3,
2, 7, 1, 14, 12, 13, 17]. In its general form, it remains open. At this time, the best known
general matroid secretary algorithm has competitive ratio O(1/ log log r) where r is the rank
of the matroid [15, 11]. Since our work focuses on binary matroids, it is worth mentioning
that, to the best of our knowledge, there is no algorithm known for the binary matroids that
has a better competitive ratio than O(1/ log log r).

A reasonably natural approach to proving the matroid secretary conjecture is by a
reduction to a partition matroid.

▶ Definition 1. A matroid M′ = (E′, I ′) is a reduction of matroid M = (E, I), if E′ ⊆ E

and I ′ ⊆ I.

A matroid M is a partition matroid if its elements can be partitioned into disjoint sets
P1, . . . , Pd such that S ⊆ E is independent iff |S ∩ Pi| ≤ 1 for all 1 ≤ i ≤ d. Specifically,
consider the following class of algorithms:
1. Wait until some number of elements have been seen without taking anything. We call

this set of elements the sample and use S to denote this set.
2. Based on the elements in S and their weights, (randomly) reduce M to a partition

matroid P = P1 ∪ P2 ∪ . . . Pd on (a subset of) the non-sample S.
3. In each part Pi, run a secretary algorithm which chooses at most one element; e.g. choose

the first element in Pi whose weight is above a threshold τi (which may be based on S).
Some appealing applications of this approach which are constant competitive are for graphic
matroids [14], laminar matroids, and transversal matroids [7, 14, 13]. The latter two
algorithms rely crucially on first observing a random sample of elements and then constructing
the partition matroid.

Consider the complete binary matroid, Bd, which is the linear matroid defined on all
vectors in Fd

2 where a set S ⊆ Fd
2 is independent if the vectors in S are linearly independent

over the field Fd
2. Our main result is that for complete binary matroids, no algorithm of

the above type, that is, based on a reduction to a partition matroid, can yield a constant
competitive ratio for the matroid secretary problem.

▶ Theorem 2 (Informal). Any matroid secretary algorithm for complete binary matroids Bd

that is based on a reduction to a partition matroid has competitive ratio O(d−1/4).

We say a matroid M = (E, I) has the α-partition property if it can be (randomly)
reduced to a partition matroid P such that

E [optP(w)] ≥ 1
α

optM(w).

1 That is, an algorithm which decides as elements arrive whether to take them or not.
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In a survey [8], Dinitz raised as an open problem whether every matroid M satisfies the
α-partition property for some universal constant α > 0. Dinitz observes that it is unlikely
that the α-partition property holds for all matroids, but notes that there is no matroid known
for which it is false. As a consequence of our main theorem, the complete binary matroid
does not satisfy the α-partition property for α ≤ O(d1/4). In fact, our negative result is
stronger, since it allows for the partition matroid P to be constructed after seeing a sample
and the weights of the sample. This shows that although this approach works for laminar
and transversal matroids, it does not generalize to all matroids.

As a byproduct of our technique we also refute a conjecture of Bérczi, Schwarcz, and
Yamaguchi [5]. The covering number of a matroid M = (E, I) is the minimum number of
independent sets from I needed to cover the ground set E. A matroid is k-coverable if its
covering number is at most k.

▶ Conjecture 3 ([5]). Every k-coverable matroid M = (E, I) can be reduced to a 2k-coverable
partition matroid on the same ground set E.

Below we prove that Bd \ {0} refutes the above conjecture for d ≥ 17. Note that we need to
remove 0 from the complete binary matroid, since the covering number is not defined for
matroids that have loops.

▶ Theorem 4. For any d ≥ 17 there exists a matroid M of rank d that is k-coverable for some
k ≥ d, but it cannot be reduced to a 2k-coverable partition matroid with the same number of
elements. In particular, such an M can only be reduced to Ω(kd) coverable partition matroids
with the same number of elements.

Related Work

In recent independent work, Bahrani, Beyhaghi, Singla, and Weinberg [4] also studied barriers
for simple algorithms for the matroid secretary problem. Most related to our result, they
consider a restriction of the above class of algorithms in which a partition must be computed
before seeing any weights. In this model, they show that no partition-based algorithm (which
does not use the sample) can guarantee that each element of OPT is selected with constant
probability. Note this does not imply such algorithms are not constant-competitive for the
matroid secretary problem. In fact, their lower bound is constructed for the graphic matroid,
for which we know a partition-based constant competitive algorithm exists [3, 14]. We refer
the interested reader to [4] for further details of their contributions.

In an independent work, [16] proved that for any constant b, the complete binary matroid
Bd is not (b, o(

√
d))-decomposable. For b = 1, their result implies that, for any positive integer

d, there is a k-coverable matroid of rank d that can only be reduced to Ω(k
√

d)-coverable
partition matroids with the same number of elements, thus refuting Conjecture 3. Subsequent
to our results and the result of [16], [18] proved that for any b, c ≥ 1, prime number q, and
p ∈ (0, 1], there is a sufficiently large d such that a random subset of the complete linear
matroid on Fd

q that contains each element with probability p is not (b, c)-decomposable with
a high probability. For q = 2 and p = 1, this refutes Conjecture 3. To the best of our
knowledge, Theorem 2 does not follow from the results of [16] and [18]. Note that a proof of
this theorem needs to account for the fact that in a reduction of matroid M to a partition
matroid P, the ground set of P can be any subset of the elements of M.
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2:4 Matroid Partition Property and the Secretary Problem

2 Main Technical Theorem

For an integer k ≥ 1, we write [k] := {1, . . . , k}. The following is our main technical theorem:

▶ Theorem 5 (Main Technical). For any reduction of the complete binary matroid Bd = (Fd
2, I)

to a partition matroid P = P1 ∪ · · · ∪ Pd, there is a subset T ⊆ [d] such that |T | ≥ d − 8
√

d

and | ∪i∈T Pi| ≤ 2d

4√
d
.

Note that, throughout the paper, for any partition matroid specified by P1, . . . , Pd, we allow
sets Pi to be empty. Therefore the partition matroid can effectively have less than d parts
and the reduction does not have to be rank-preserving.

As a consequence of the above theorem, there are O(
√

d) parts in [d] \ T that contain the
vast majority of the elements of Bd. For appropriately chosen weight vectors, this is bad,
since only O(

√
d) elements can be taken from ∪i̸∈T Pi.

We use the following simple fact.

▶ Fact 6. Let P be a partition matroid that is reduction of Bd with parts P1, . . . , Pd. Then
if two elements x and y are in different parts (say Pi and Pj), then their sum x + y is in Pi,
Pj or Fd

2 \ ∪iPi.

Proof. Let z = x + y and suppose by way of contradiction that x ∈ Pi, y ∈ Pj , yet z ∈ Pk

for distinct indices i, j, k. Then, {x, y, z} is independent in P . But now by the definition of a
matroid reduction, {x, z, y} must be independent in Bd. However, this set is not independent
since we have the dependence z = x + y. ◀

▶ Lemma 7. Let P be a partition matroid that is reduction of Bd with parts P1, . . . , Pd and
let R := Fd

2 ∖ P. The number of pairs a ∈ Pi, b ∈ Pj for 1 ≤ i < j ≤ d in which a + b ∈ R is
at most max1≤i≤d 2|Pi| · |R|.

Proof. Create a hypergraph H whose vertices are elements in Fd
2. Now, create a hyperedge

{a, b, a + b} for every a ∈ Pi, b ∈ Pj for 1 ≤ i < j ≤ d in which a + b ∈ R.
Fix any q ∈ R. First, note that there are no two distinct hyperedges {a, b, q}, {a, b′, q},

as this would imply a + b = a + b′ and therefore b = b′. Therefore, the sets {a, b} such that
{a, b, q} is a hyperedge form a matching.

Now fix a hyperedge {a, b, q} with a ∈ Pi, b ∈ Pj . If there is some other hyperedge
{c, d, q} such that c, d ̸∈ (Pi ∪ Pj), then a, b, c, d are all in different partitions, which cannot
occur as a + b = c + d, which is a linear dependence in the partition matroid. Therefore,
every edge containing q must contain an element of Pi ∪ Pj . Therefore the matching contains
at most |Pi| + |Pj | ≤ 2 max1≤k≤d |Pk| edges, from which the claim follows. ◀

▶ Lemma 8. Let P be a reduction of Bd to a partition matroid with parts P1, . . . , Pd with
total size

∑d
i=1 |Pi| = n = c · 2d for some 0 < c ≤ 1. Then, there exists an 1 ≤ i ≤ d such

that |Pi| > c
8 n.

Proof. By way of contradiction, suppose max1≤i≤d |Pi| ≤ cn
8 . Now, construct a (directed)

graph whose vertices are the elements in P . First, create an edge (a, b) for all a ∈ Pi, b ∈
Pj , i ̸= j for which a + b ̸∈ R.

For each such edge (a, b), by Fact 6 either a + b ∈ Pi or a + b ∈ Pj . Direct the edge
towards a if the former occurs, otherwise direct it towards b. Note that the in-degree of each
element in a partition Pi is at most |Pi| ≤ cn

8 (since if a + b = a + d = a′ ∈ Pi then b = d).
Therefore, there are at most cn2

8 such edges.
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However, by the previous lemma, there are at least (using that maxi |Pi| ≤ cn
8 ):(

n

2

)
−

d∑
i=1

(
|Pi|
2

)
− 2cn

8 |R| ≥
(

n

2

)
−

d∑
i=1

(
|Pi|
2

)
− n2

4

= n2

2 −
d∑

i=1

|Pi|2

2 − n2

4 >
n2

8

such edges, where in the first inequality we used that |R| ≤ 2d = 1
c n, in the equality we

used
∑d

i=1 |Pi| = n and in the last inequality we used that
∑d

i=1 |Pi|2 is maximized when
|Pi| = cn

8 on 8/c parts, and c ≤ 1, this is a contradiction with the above, which gives the
lemma. ◀

Now, we finish the proof of Theorem 5.

Proof of Theorem 5. We start from T = [d] and inductively repeat the following: if | ∪i∈T

Pi| ≥ 2d

4√
d
, remove j = arg maxi∈T |Pi| from T . Using Lemma 8, if | ∪i∈T Pi| ≥ 2d

4√
d
, the size

of the partition that we remove is at least

max
i∈T

|Pi| ≥ 1
8 4

√
d

· 2d

4
√

d
= 2d

8
√

d
.

Therefore, after at most 8
√

d steps, we get | ∪i∈T Pi| ≤ 2d

4√
d
. This finishes the proof. ◀

3 Main Theorems

3.1 Matroid α-Partition Property (Proof of Theorem 4)
For a matroid M, Edmonds defined:

β(M) := max
∅⊂F ⊆E

|F |
rankM (F ) . (1)

Note that the maximum in the RHS is attained at flats of M, namely sets F that are the
same as their closure.

▶ Theorem 9 (Edmonds [10]). For any matroid M on elements E and with no loops, the
covering number of M, namely the minimum number of independent sets whose union is E

is equal to ⌈β(M)⌉.

Using this, we show that Theorem 4 is a corollary of Lemma 8.

▶ Theorem 4. For any d ≥ 17 there exists a matroid M of rank d that is k-coverable for some
k ≥ d, but it cannot be reduced to a 2k-coverable partition matroid with the same number of
elements. In particular, such an M can only be reduced to Ω(kd) coverable partition matroids
with the same number of elements.

Proof. It follows from Theorem 9 that the binary matroid Bd\{0} on Fd
2 satisfies β(Bd\{0}) =

(2d − 1)/d. This is because the flats of Bd \ {0} correspond to (linear) subspaces. A linear
subspace of dimension k has exactly 2k − 1 many vectors. So, the maximum of (1) is attained
at F = Fd

2 \ {0} which has rank d.
Now, suppose Bd \{0} is reduced to a partition matroid P with parts P1, . . . , Pd such that

∪d
i=1Pi = Fd

2 \ {0}. Observe that β(P) = max1≤i≤d |Pi|. To refute Conjecture 3 and prove
Theorem 4, it is enough to show that max1≤i≤d |Pi| > Ω(2d − 1). However, by Lemma 8
(setting c = 1 − 1/2d to account for deleting the 0 element), this quantity is at least 2d−1

8 ,
which gives the theorem. ◀
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3.2 Matroid Secretary α-Partition Property (Proof of Theorem 2)
▶ Definition 10. Let P(S, w|S) be any function that maps a sample S ⊂ Fd

2 and weights w|S
of elements in the sample to a partition matroid that is a reduction of Bd, where the elements
of P(S, w|S) are a subset of S = Fd

2 \ S. Let P be the collection of all such mappings.

▶ Definition 11 (Randomized Partition Reduction Algorithm). A (randomized) partition
reduction algorithm A for a matroid M with n elements consists of two parts:

A (randomly) chooses a sample size 0 ≤ |S| ≤ n before any elements have been seen; we
denote this choice by sA.
A (randomly) chooses a mapping PA ∈ P and uses it to build P(S, w|S) after seeing the
sample S.

▶ Theorem 12 (Main). For any randomized partition reduction algorithm A for Bd, with
d ≥ 212 there is a weight function w : Fd

2 → R≥0 such that

EsAES:|S|=sAEPA [optPA
(w|S)] ≤ 4d− 1

4 optBd
(w).

For readability in the above, we have suppressed the fact that the partition matroid PA (whose
elements are a subset of S) depends on both S and w|S. Note that S is drawn from the
uniform distribution over subsets of Fd

2 of size sA.

Proof. Suppose that the weights of the elements in Bd are selected by setting

wi = 1i∈X (2)

where X = {x1, x2, . . . , xd} is a uniformly random sample of d elements from Fd
2, selected

with replacement. Then the optimal independent set has expected weight Ew optBd
(w) equal

to

EX(rank(X)) =
d∑

i=1
1xi /∈span{x1,...,xi−1} =

d∑
i=1

2d − 2i−1

2d − (i − 1) ≥
d∑

i=1

2d−1

2d
= d

2 . (3)

Now let A be an arbitrary algorithm that chooses the sample size sA and the mapping
P ∈ P deterministically. We claim that it suffices to show that for the weight vector given in
Equation (2) when X is chosen uniformly at random, and for S a uniformly random sample
of elements of any fixed size:

EwES optP(w|S) ≤ 2d3/4, (4)

where P = P(S, w|S) is any partition matroid on a subset of S constructed after seeing the
elements in S and their weights. (Note that optP is a upper bound on the performance of A.)

To see why, observe that in the randomized case, by taking the expected value over the
randomization in A and then interchanging the order of the expectations, we get

EwEAES optPA
(w|S) = EAEwES optPA

(w|S) ≤ 2d3/4.

Therefore, for w chosen at random according to (2) and using (3),

EwEAES optPA
(w|S)

Ew optBd
(w) ≤ 4d−1/4.

Applying the mediant inequality, we conclude that there is a set B of size d such that
EAES optPA

(B|
S

)
rank(B) is at most 4d−1/4, completing the proof of the theorem.
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It remains to prove (4). Observing that w (resp. w|S , w|S) is fully determined by X

(respectively X ∩ S, X ∩ S) and letting X1 := X ∩ S, X2 := X ∩ S we write

EwES optP(w|S) = ESEX1EX2 optP(X2). (5)

For any choice of S and X1, the partition matroid P = P(S, X1) on a subset of S consists
of parts P1 ∪ · · · ∪ Pd (some of these parts could be empty). By Theorem 5, there exists a
set T ⊆ [d] of size at least d − 8

√
d such that | ∪i∈T Pi| ≤ 2d

4√
d
. Therefore,

optP(X2) ≤ |X2 ∩ ∪i∈T Pi| + 8
√

d.

So, for a fixed S, we have

EX1EX2 optP(X2) ≤ EX1EX2

(
|X2 ∩ ∪i∈T Pi| + 8

√
d
)

= EX1

(
(d − |X1|) | ∪i∈T Pi|

|S|
+ 8

√
d

)
.

≤ EX1

(
(d − |X1|)2d/ 4

√
d

|S|
+ 8

√
d

)
.

= (d − E(|X1|)) 2d

4
√

d|S|
+ 8

√
d,

where in the first equality, we used the fact that for any fixed X1, the set X2 is a uniformly
random subset of size d − |X1| in S, thus in expectation, (d − |X1|) |∪i∈T Pi|

|S|
many elements

in X2 are in ∪i∈T Pi ⊆ S. Finally, we observe that

(d − E(|X1|))
|S|

· 2d

4
√

d
=

d − |S|·d
2d

(1 − |S|
2d )2d

· 2d

d1/4 = d3/4.

Thus, we get

EX1EX2 optP(X2) ≤ d3/4 + 8
√

d ≤ 2d3/4,

where in the last inequality we used our assumption that d ≥ 212. Combining Equation (5)
with this, Equation (4) follows. ◀

4 Conclusion

We note that for our bad example, the trivial algorithm for matroid secretary succeeds: one
simply needs to take every improving element when it arrives.

On the positive side, probably the most interesting open problem is to solve the matroid
secretary problem for the complete binary matroid. On the negative side: can we prove a lower
bound against the following class of partition-based algorithms? After seeing a sample, parti-
tion the elements into sets P1, . . . , Pk with corresponding matroids M(P1, I1), . . . , M(Pk, Ik)
with the property that for any I1 ∈ I1, . . . , Ik ∈ Ik, the set

⋃k
i=1 Ii is independent in the

binary matroid. Then, run a simple greedy procedure on each M(Pi, Ii). In the special case
that each Mi is a rank 1 matroid, our result gives a super-constant lower bound.
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We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof
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1 Introduction

In this paper, we give the first non-trivial characterization of a computational complexity
class in terms of reducibility to the Kolmogorov random strings.

Some readers may be surprised that this is possible. After all, the set of Kolmogorov
random strings is undecidable, and undecidable sets typically do not figure prominently
in complexity-theoretic investigations.1 But what does it mean to be reducible to the
Kolmogorov-random strings? Let us consider the prefix-free Kolmogorov complexity K

(which is one of the most-studied types of Kolmogorov complexity), and recall that different
universal Turing machines U give a slightly different Kolmogorov measure KU . Then if
we say “A is reducible to the K-random strings” we probably mean that A is reducible to
the KU random strings, no matter which universal machine U we are using. But it turns
out that the class of languages that can be solved in polynomial time with an oracle that
returns KU (q) for any query q – regardless of which universal machine U is used – is a

1 We do wish to highlight the recent work of Ilango, Ren, and Santhanam [39], who related the existence
of one-way functions to the average case complexity of computing Kolmogorov complexity.
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complexity class that contains NEXP and lies in EXPSPACE [25, 13, 31].2 There has been
substantial interest in obtaining a precise understanding of which problems can be reduced
in this way to the Kolmogorov complexity function under different notions of reducibility
[2, 3, 9, 7, 8, 12, 13, 14, 22, 25, 32, 31, 34, 35, 48], but until now, no previously studied
complexity class has been characterized in this way, with the exception of P [8, 48]. (The
characterizations of P obtained in this way can be viewed as showing that certain limited
polynomial-time reductions are useless when using the Kolmogorov complexity function as
an oracle.)

Faced with this lack of success, it was proposed in [3, Open Question 4.8] that a more
successful approach might be to consider reductions to approximations to the Kolmogorov
complexity function. Saks and Santhanam [48] took the first significant step in this direction,
by showing the following results:

▶ Theorem 1 (Saks & Santhanam [48]).
1. Although (by the work of Hirahara [32]) every language in EXPNP is reducible in determin-

istic polynomial time to any function that differs from K by at most an additive O(log n)
term, no decidable language outside of P is reducible to all approximations to K that
differ by an error margin e(n) = ω(log n) via an “honest” deterministic polynomial-time
nonadaptive reduction.

2. Although (by the work of Hirahara [31]) every language in NEXP is reducible via random-
ized nonadaptive reductions to any function that differs from K by at most an additive
O(log n) term, no decidable language outside of AM ∩ coAM is reducible to all approxi-
mations to K that differ by an error margin e(n) = ω(log n) via an “honest” probabilistic
polynomial-time nonadaptive reduction.

3. No decidable language outside of SZK is randomly m-reducible to each ω(log n) approxi-
mation to the K-random strings.3

This is not the first time that the complexity class SZK (for Statistical Zero Knowledge
has arisen in the context of investigations relating to Kolmogorov complexity. In particular,
SZK and its “non-interactive” subclass NISZK have been studied in connection with a version
of time-bounded Kolmogorov complexity, which in turn is studied because of its connection
with the Minimum Circuit Size Problem (MCSP) [11, 14]. These problems lie at the heart of
what has come to be called meta-complexity: the study of the computational difficulty of
answering questions about complexity.

Allender [2] proposed an intriguing research program towards the P = BPP conjecture.
The class P can be characterized by the class of languages reducible to the set of Kolmogorov-
random strings under polynomial-time disjunctive truth-table reductions [8]. Similarly, he
conjectured that BPP can also be characterized by polynomial-time truth-table reductions
to the set of Kolmogorov-random strings, and envisioned that such a completely new
characterization of complexity classes would give us new insights into BPP, especially from
the perspective of computability theory. However, his conjecture was refuted by Hirahara [32]
under a plausible complexity-theoretic assumption.

2 More specifically, it is shown in [13] that all decidable sets with this property lie in EXPSPACE, and it
is shown in [25] that there are no undecidable sets with this property. Hirahara shows in [32] that every
set in EXPNP (and hence in NEXP) has this property.

3 Although the statement of this theorem in [48] does not mention “honesty,” the proof requires that the
approximation error be ω(log n), where n is the input size, rather than the query size [49]. The proof
of [48, Theorem 39] shows that, under this assumption, all queries on an input x can be assumed to
have the same length, greater than |x|. (See Lemma 6 for a similar result.) An earlier version of our
paper [17] mistakenly interpreted this as holding when the approximation error is a function of the
query size, and consequently our main theorems were stated without assuming “honesty”.
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In this paper, we show that SZK, NISZK and their logspace variants SZKL and NISZKL
can be characterized by reductions to approximations to the Kolmogorov complexity function.
More specifically, we define a promise problem R̃K whose YES instances are strings of
high Kolmogorov complexity, and whose NO instances are strings with significantly lower
Kolmogorov complexity, and we show the following:
1. A decidable promise problem is randomly reducible to R̃K via an honest polynomial time

reduction if and only it is in NISZK. (Theorem 15)
2. A decidable promise problem is randomly reducible to R̃K via an honest logspace or NC0

reduction if and only it is in NISZKL. (Theorem 32)
3. Analogous characterizations of SZK and SZKL are given in terms of probabilistic honest

nonadaptive reductions. (Theorems 28 and 34)
We envision that our new characterization of these complexity classes would improve our
understanding of zero knowledge interactive proof systems in future. Zero knowledge
interactive proof systems have many applications in cryptographic protocols, and they have
been studied very widely. We refer the reader to the excellent survey by Vadhan for more
background [50]. For our purposes, the complexity classes of interest to us (SZK, NISZK,
SZKL, and NISZKL) can be defined in terms of their complete problems. But first, we need
to define some basic notions and provide some background.

2 Preliminaries

We assume familiarity with basic complexity classes such as P, L, and AC0; we view these
as classes of functions, as well as of languages. We also will refer to the class of functions
computed in NC0, where each output bit depends on at most O(1) input bits. For circuit
complexity classes such as NC0, and AC0, by default we assume that the circuit families are
“First-Order-uniform” as discussed in [5, 20, 40]. This coincides with Dlogtime-uniform AC0,
and what one might call “Dlogtime-uniform AC0-uniform” NC0. (We refer the reader to [52]
for more background on circuit uniformity.) When we need to refer to nonuniform circuit
complexity, we will be explicit.

All of these classes give rise to restrictions of Karp reducibility ≤P
m, such as ≤L

m, ≤AC0

m ,
and ≤NC0

m . We will also discuss projections (≤proj
m ), which are ≤NC0

m reductions in which each
output bit depends on at most one input bit. Thus projections are computed by circuits
consisting of constants, wires, and NOT gates.

For any class of functions C and type of reducibility r (such as m-reducibility, truth-
reducibility, Turing reducibility, or other notions considered in this paper) if there is some
ϵ > 0 such that all queries made by the ≤C

r reduction on inputs of length n have length at
least nϵ, the reduction is said to be “honest”, and we use the notation ≤C

hr to denote this.
A promise problem A is a pair of disjoint sets (YA, NA) of YES instances and NO instances,

respectively. A solution to a promise problem is any set B such that YA ⊆ B and NA ⊆ B.
A don’t-care instance of A is any string that is not in YA ∪ NA. A language can be viewed as
a promise problem that has no don’t-care instances.

We say that a promise problem A = (Y, N) is decidable if Y and N are decidable sets.
Observe that if B = (Y ′, N ′) with Y ′ ⊆ Y and N ′ ⊆ N , then any solution to A is also a
solution to B. Such subproblems of decidable promise problems are intuitively “decidable”,
but are not necessarily decidable according to our definition. Since there are uncountably
many subsets of Y and N for any nontrivial promise problem, clearly not every intuitively
“decidable” promise problem can be decidable.
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When defining reductions between two promise problems A and B, there are two options.
Either

for every solution S to B there is a reduction from A to S, or
there is a reduction that correctly decides A when given any solution S for B.

As it turns out, these two notions are equivalent [30, 45]. Thus we shall always use the
second approach, when defining notions of reducibility between promise problems.

We assume that the reader is familiar with Kolmogorov complexity; more background
on this topic can be found in references such as [43, 27]. Briefly, KU (x|y) = min{|d| :
U(d, y) = x}, and KU (x) = K(x|λ) where λ denotes the empty string.4 Although this
definition depends on the choice of the Turing machine U , we pick some “universal” machine
U ′ and define K(x|y) to be KU ′(x|y); for every machine U , there is a constant c such that
K(x|y) ≤ KU (x|y) + c. One important non-trivial fact regarding Kolmogorov complexity is
known as symmetry of information:

▶ Theorem 2 (Symmetry of Information).

K(x, y) = K(x) + K(y|x) ± O(log(K(x, y))).

Let R̃K be the promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that
K(y) ≥ |y|/2 and the NO instances N

R̃K
consists of those strings y where K(y) ≤ |y|/2−e(|y|)

for some approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1). All of our
theorems hold for any e(n) in this range. We will sometimes assume that e(n) is computable
in AC0, which is true for most approximation terms of interest.

Since the approximation error e(n) is superlogarithmic, it is worth noting that R̃K can be
defined equivalently either in terms of prefix-free or plain Kolmogorov complexity (because
these two measures are within an additive logarithmic term of each other).

Any language that is reducible to R̃K via any of the reducibilities that we consider is
decidable, by a theorem of [25]. However, it is not known whether this carries over in any
meaningful way to promise problems.

The reader may wonder about the justification for the threshold K(y) ≥ |y|/2 in the
definition of R̃K . The following proposition indicates that, for large error bounds e(n), using
a larger threshold reduces to R̃K . Later, we show a related result for smaller thresholds.

▶ Proposition 3. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)} for
some AC0-computable threshold t(n) ≥ n

2 , and where N = {y : K(y) ≤ t(|y|) − |y|ϵ} for some
1 > ϵ > 0. Then A≤proj

m R̃K .

Proof. Let δ = ϵ
2 . Given an instance y of length n (for all large n), in AC0 we can find the

least integer i < n such that 2t(n) − n + 5 log n + (2(2n)δ − nϵ) ≤ i ≤ 2t(n) − n − 3 log n.
Let z = y0i. Then K(z) ≤ K(y) + 2 log i + O(1). Similarly, K(y) ≤ K(z) + 2 log i + O(1),

and hence K(z) ≥ K(y) − 2 log i − O(1).
Thus if y ∈ Y , then K(z) ≥ t(n) − 2 log i − O(1) > (t(n) − n

2 ) + n
2 − 3 log n ≥ n+i

2 = |z|
2 .

And if y ∈ N , then K(z) ≤ t(n) − nϵ + 2 log i + O(1) < (t(n) − n
2 ) + n

2 − nϵ + 2 log i + O(1) ≤
n+i

2 − (n + i)δ = |z|
2 − |z|δ < |z|

2 − e(|z|).
Thus y ∈ Y implies z ∈ Y

R̃K
and y ∈ N implies z ∈ N

R̃K
. ◀

4 This is actually the definition of so-called “plain” Kolmogorov complexity, although the letter K is
traditionally used for the “prefix-free” Kolmogorov complexity. These two measures differ by at most
a logarithmic term, and our theorems hold for either measure. For simplicity, we have presented the
simpler definition.
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Randomized reductions play a central role in the results that we will be presenting. Here
is the basic definition:

▶ Definition 4. A promise problem A = (Y, N) is ≤RP
m -reducible to B = (Y ′, N ′) with

threshold θ if there is a polynomial p and a deterministic Turing machine M running in time
p such that

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] = 1.

If there is some ϵ > 0 such that, for every x and every r of length p(|x|), M(x, r) has length
≥ |x|ϵ, then we say that M computes an “honest” reduction, and we write A≤RP

hmB.

Randomized reductions were introduced by Adleman and Manders, as a probabilistic
generalization of ≤P

m reducibility5 [1]. They used the threshold θ = 1
2 . One of the most

important applications of randomized reductions is the theorem of Valiant and Vazirani
[51], where they showed that SAT reduces to Unique Satisfiability (USAT) via a randomized
reduction, with threshold θ = 1

4n .6 The reader may expect that – as is so often the case with
probabilistic notions in computational complexity theory – the choice of threshold is arbitrary,
and can be changed with no meaningful consequences. However, this does not appear to be
true; we refer the reader to the work of Chang, Kadin, and Rohatgi [26] for a discussion of this
point. As they point out, different thresholds are appropriate in different situations. If A≤RP

m B

with threshold 1
4n (for instance), where the set ORB = {(x1, . . . , xk) : ∃i, xi ∈ B}≤P

mB, then
it is indeed true that A≤RP

m B with threshold 1 − 1
2n [26]. But Chang, Kadin, and Rohatgi

point out that it is far from clear that USAT has this property. We are concerned here with
problems that are ≤RP

hm-reducible to R̃K ; just as in the case with randomized reductions
to USAT, we must be careful about which threshold θ we choose. For the remainder of
this paper, we will use the threshold θ = 1 − 1

nω(1) . (For a discussion of why we select this
threshold, see Remark 17.)

The following proposition is the counterpart to Proposition 3, for thresholds smaller
than n

2 .

▶ Proposition 5. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)}
for some polynomial-time computable threshold t(n) ≤ n

2 , and where N = {y : K(y) ≤
t(|y|) − |y|ϵ} for some 1 > ϵ > 0. Then A≤RP

hmR̃K .

Proof. Given an instance y of length n (for all large n), in polynomial time we can find the
least integer i < n such that 2t(n) − 2nϵ + 2e(3n) + 4 log n ≤ i ≤ 2t(n) − e(n) − 2c log n (for
a constant c that will be picked later).

Pick a random string r of length n. Let z = yr0i. Then K(z) ≤ K(y) + 2 log i + |r|.
Also, by symmetry of information, K(z) ≥ K(yr0i|y0i) + K(y0i) − c′ log n (for some fixed
constant c′, and hence with probability at least 1 − 1

nω(1) , K(z) ≥ (n − e(n)
2 ) + K(y) − c log n

(for some fixed c, which is the constant c that we use above in defining i).
Thus if y ∈ Y , then with high probability K(z) ≥ t(n) + (n − e(n)

2 ) − c log n > n + i
2 = |z|

2 .
And if y ∈ N , then K(z) ≤ (t(n) − nϵ) + 2 log i + |r| ≤ n + i

2 − e(3n) ≤ |z|
2 − e(|z|).

Thus y ∈ Y implies z ∈ Y
R̃K

(with probability ≥ 1 − 1
nω(1) ), and y ∈ N implies

z ∈ N
R̃K

. ◀

5 We assume that the reader is familiar with Karp reducibility ≤P
m.

6 Recently, there have also been several papers showing that certain meta-complexity-theoretic problems
are NP-complete under randomized reductions, including [10, 33, 36, 37, 38, 44, 46].
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We will also need the following lemma, which states that short queries to R̃K can be
replaced by (longer) padded queries. Since R̃K is defined so as to distinguish between strings
of length n having Kolmogorov complexity ≥ n/2 and those with complexity ≤ n/2−ω(log n),
the idea is to pad the (short) query with a string that has complexity around half of its
length – with some room to adjust for the difference needed to preserve the Yes and No
instances.

▶ Lemma 6 (Query padding). Let R̃K(g) denote the parameterized version of R̃K with Yes
instances y satisfying K(y) ≥ |y|/2 and No instances satisfying K(y) ≤ |y|/2 − g(|y|). If
g(n) = ω(log n) and A≤RP

hmR̃K(g), then for some δ > 0, A≤RP
hmR̃K(2g(nδ)/3) via a reduction

in which all queries on input x have the same length.

Proof. We assume that the “gap” function g is nondecreasing and computable in AC0. If
A≤RP

hmR̃K(g) via a reduction computable in time p(n) where each query has length at least
nϵ, consider the reduction that replaces each query q of length k by queries of the form
qy = qr0 m−k

2 −a(n) where m = p(n) and r ∈ {0, 1} m−k
2 +a(n) is sampled uniformly at random.

(Here, a(n) is a function that will be specified below.) Pick δ so that p(n)δ < nϵ. We recall
that by the Symmetry of Information theorem :

K(q) + K(y|q) − s log m ≤ K(qy) ≤ K(q) + K(y|q) + s log m

for some constant s > 0.

Case 1: q ∈ Y
R̃K (g)

Thus K(q) ≥ k
2 , and hence, if we set b(n) = (log(g(nϵ)/ log n)) log n = ω(log n), then with

probability at least 1 − 1
nω(1)

K(qy) ≥ K(q) + K(y|q) − s log m ≥ k

2 + m − k

2 + a(n) − b(n) − s log m

where the second inequality holds with probability 1 − 1
nω(1) since there are at most 1

nω(1)

fraction of y ∈ {0, 1} m−k
2 +a(n) satisfying K(y|q) ≤ (m−k)

2 +a(n)−b(n). Setting a(n) = g(nϵ)/4
gives K(qy) ≥ m

2 with probability at least 1 − 1
nω(1) for all large n.

Case 2: q ∈ N
R̃K (g)

We have K(q) ≤ k
2 − g(k) ≤ k

2 − g(nϵ) and need to show that K(qy) ≤ m
2 − 2g(mδ)/3.

K(qy) ≤ K(q) + K(y|q) + s log m ≤ k

2 − g(nϵ) +
(

m − k

2 + g(nϵ)/4
)

+ O(log m)

<
m

2 − g(nϵ) + g(nϵ)/3 <
m

2 − 2g(mδ)/3. ◀

▶ Corollary 7. For any of the honest probabilistic reductions to R̃K that we consider in this
paper, we may assume without loss of generality that, for each input x, all queries made by
the reduction on input x have the same length.

Proof. If A is reducible to R̃K using some approximation error e(n) with e(n) = ω(log n)
and e(n) = no(1), then, by Lemma 6, it is also reducible to R̃K using approximation error
2e(nδ)

3 , which also is ω(log n) and no(1) via a reduction with the desired characteristics. ◀

We will also need a “two-sided error” version of random reducibility, analogous to the
relationship between RP and BPP.
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▶ Definition 8. A promise problem A = (Y, N) is ≤BPP
m -reducible to B = (Y ′, N ′) with

threshold θ > 1
2 if there is a polynomial p and a deterministic Turing machine M running in

time p such that
x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] ≥ θ.

Similar to the definition of ≤RP
hm, we say that A≤BPP

hm B if M is honest.

The complexity classes SZK (Statistical Zero Knowledge) and NISZK (Non-Interactive
Statistical Zero Knowledge) are defined in terms of interactive proof protocols (with a Prover
interacting with a probabilistic polynomial-time Verifier, together with a Simulator that
can produce a distribution on transcripts that is statistically close to the distribution on
messages that would be exchanged by the prover and the verifier on YES instances. But
for our purposes, it will suffice (and be simpler) to present alternative definitions of these
classes, in terms of their standard complete problems.

▶ Definition 9 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

YEA = {(C, k) | H(X) > k + 1}
NEA = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.

▶ Theorem 10 ([29]). EA is complete for NISZK under honest ≤P
m reductions.

We will actually take this as a definition; we say that (Y, N) is in NISZK if and only if
(Y, N)≤P

mEA.

▶ Definition 11 (Promise-SD). SD (Statistical Difference) is the promise problem

YSD =
{

(C, D)
∣∣∣∣ ∆(C, D) >

2
3

}
,

NSD =
{

(C, D)
∣∣∣∣ ∆(C, D) <

1
3

}
.

where ∆(C, D) denotes the statistical distance between the distributions represented by the
circuits C and D.

▶ Theorem 12 ([47]). SD is complete for SZK under honest ≤P
m reductions.

Thus we will define SZK to be the class of promise problems (Y, N) such that (Y, N)≤P
mSD.

We will also be making use of a restricted version of the NISZK-complete problem EA:

▶ Definition 13 (Promise-EA′). We define Promise-EA′ to be the promise problem

YEA′ = {C | H(X) > n − 2}

NEA′ = {C | |Supp(X)| < 2n−nϵ

}

where C is a circuit C : {0, 1}m → {0, 1}n representing a probability distribution X on {0, 1}n

induced by the uniform distribution on {0, 1}m, and Supp(X) denotes the support of X, and
ϵ is some fixed constant, 0 < ϵ < 1.

▶ Lemma 14. EA′ is complete for NISZK under honest ≤P
m reductions.
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3:8 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

Proof. Lemma 3.2 in [29] shows that the following promise problem A is complete for NISZK:
All instances are of the form (C, 1s), where C is a circuit with m inputs and n outputs,
representing a distribution (also denoted C) on {0, 1}n. (C, 1s) is a YES instance if C has
statistical distance at most 2−s from the uniform distribution on {0, 1}n. (C, 1s) is in the set
of NO instances if the support of C has size at most 2n−s. Furthermore, the reduction g

from EA to A has the property that the parameter s is at least nϵ for some constant ϵ > 0.
Also, it is observed in Lemma 4.1 of [29] that the mapping (C, 1s) 7→ (C, n − 3) (i.e., the
mapping that leaves the circuit C unchanged) is a reduction from A to EA. Combining these
two results from [29] completes the proof of the lemma. ◀

3 A New Characterization of NISZK

We are now ready to present the characterization of NISZK by reductions to the set of
Kolmogorov-random strings.

▶ Theorem 15. The following are equivalent, for any decidable promise problem A:
1. A ∈ NISZK.
2. A≤RP

hmR̃K .
3. A≤BPP

hm R̃K .

Proof. In order to show that A ∈ NISZK implies A≤RP
hmR̃K , it suffices to reduce the NISZK-

complete problem EA′ to R̃K (by Lemma 14).
Corollary 18 of [14] states that every promise problem in NISZK reduces to the problem

of computing the time-bounded Kolmogorov complexity KT via a probabilistic reduction
that makes at most one query along any computation path. Here we observe that the same
approach can be used to obtain a ≤RP

hm reduction to R̃K .
Consider a probabilistic reduction that takes an instance C of EA′ and constructs a string

y that is the concatenation of t random samples from C (i.e., y = C(r1)C(r2) . . . C(rt) for
uniformly chosen random strings r1, . . . , rt, for some polynomially-large t). Lemma 16 of [14]
shows that, with probability exponentially close to 1, if C is a YES instance of EA′, then
the time-bounded Kolmogorov complexity KT(y) is greater than a threshold θ of the form
θ = t(n − 2) − t1−α for some constant α > 0. (Briefly, this is because a good approximation
to the entropy of a sufficiently “flat” distribution can be obtained by computing the KT
complexity of a string composed of many random samples from the distribution [16].)

As in the argument of [14, Theorem 17], we can choose t to be an arbitrarily large
polynomial nk. Choosing k to be large enough (relative to 1/α, and also so that nk is
large relative to |C|), we have θ > nk(n − 3) for all large n, and hence for all large YES
instances we have that, with probability exponentially close to 1, the string y satisfies
KT(y) > nk(n − 3) = ℓ − ℓδ for some δ < 1, where |y| = tn = ℓ. The focus of [14] was on the
measure KT, but (as was previously observed in [4, Theorem 1]) the analysis in [14, Lemma
16] carries over unchanged to the setting of non-resource-bounded Kolmogorov complexity K.
(That is, in obtaining the lower bound on KT(y), the probabilistic argument is just bounding
the number of short descriptions, and not making use of the time required to build y from
a description.) Thus, with high probability, the probabilistic routine, when given a YES
instance of EA′, produces a string y where K(y) ≥ |y| − |y|δ.

On the other hand, if C is a NO instance, then the support of C has size at most
2n−nϵ , and thus any string z in the support of C has K(z|C) ≤ n − nϵ + O(1). Thus
any string y that is produced by M in this case has K(y) ≤ t(n − nϵ) + |C| + O(1) =
nk(n − nϵ) + |C| + O(1). Since t = nk was chosen to be large (with respect to the length
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of the input instance C), we may assume |C| < nk+ϵ − 4nk. Thus if C is any large NO
instance, we have K(y) < nk(n−4) = ℓ−ℓδ′ for some δ′ > δ. To summarize, with probability
1, the probabilistic routine, when given a NO instance of EA′, produces a string y where
K(y) ≤ |y| − |y|δ′ ≤ (|y| − |y|δ) − |y|ρ for some ρ > 0. We can now conclude that EA′≤RP

hmR̃K

by appealing to Proposition 3.
To complete the proof of the theorem, we need to show that if A is any decidable promise

problem that has a randomized poly-time m-reduction (≤BPP
hm ) with error 1/nω(1) to the

promise problem R̃K then A ∈ NISZK. This was essentially shown by Saks and Santhanam
[48, Theorem 39], but we present a complete argument here. Let M be the probabilistic
machine that computes this ≤BPP

hm reduction.
Let y = f(x, r) ∈ {0, 1}m denote the output that M produces, where x is an instance

of A and r denotes the randomness used in the reduction. By Corollary 7, we may assume
that, for each x, all outputs of the form f(x, r) have the same length. Given an x ∈ {0, 1}n,
observe that there is a polynomial-sized circuit Cx such that Cx(r) = f(x, r). According to
the correctness of the reduction, we have

x ∈ YA ⇒ Pr
r

[M(x, r) ∈ Y
R̃K

] ≥ 1 − 1/nω(1) and

x ∈ NA ⇒ Pr
r

[M(x, r) ∈ N
R̃K

] ≥ 1 − 1/nω(1).

In other words, if x is a YES instance, then K(y) ≥ |y|/2 with probability at least
1 − 1/nω(1) and if x is a NO instance, then K(y) ≤ |y|/2 − e(|y|) with probability at least
1 − 1/nω(1). (Recall that e(n) is the error term in the approximation R̃K .) We will now show
that there is an entropy threshold that separates these two distributions, which will provide
an NISZK upper bound on resolving A.

▷ Claim 16. If x is a YES instance, then the entropy of the distribution Cx(r) is at
least m/2 − e(m)/2 + 1 and if x is a NO instance, then the entropy of Cx(r) is at most
m/2 − e(m)/2 − 1.

We first show that if the claim holds, then A ∈ NISZK. Let k = m/2 − e(m)/2. The
reduction given above reduces membership in A to the Entropy Approximation (EA) problem
on the circuit description Cx with threshold k. Given x, we can compute the map x 7→ Cx

in time nO(1). Recall that EA is complete for NISZK. Since NISZK is closed under ≤P
m

reductions, we can conclude that A ∈ NISZK.

Proof of Claim 16. Assume not and let x be the lexicographically first string that violates the
above claim (for some length n). Since the reduction is a computable function, and since A is
a decidable promise problem, K(x) = O(log n). We have the following two cases to consider:

Case 1 – x is a YES instance. From the correctness of the reduction we have that with
probability 1 − 1/nω(1) the output y is a string with Kolmogorov complexity at least |m|/2.
Since x is a violator, we have H(Cx(r)) < k + 1 = m/2 − e(m)/2 + 1.

On one hand, the distribution Cx(r) has large enough probability mass on the high-
complexity strings. On the other hand, we have that since x is a low-complexity string
itself, the elements of Cx(r) with highest mass can be identified by short descriptions. This
leads to a contradiction of simultaneously having large enough mass on the low and the high
K-complexity strings.

Let t be the entropy of the distribution Cx(r). Let Y = {y1 . . . y2t+log m} be the heaviest
elements (in terms of probability mass) of Cx(r) in decreasing order. Conditioned on x, the
K complexity of any of these strings yi is at most t + O(log m). Since K(x) = O(log n) =
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O(log m), we have K(yi) ≤ t + O(log m) < m/2. Next, we will show that there is at least
mass 1

m on these strings within Cx(r). This will contradict the correctness of the reduction
for x ∈ L since it cannot output strings with K complexity at most |m|/2 with probability
1/nΩ(1).

Assume not, i.e., the mass on elements of Y is at most 1
m . Observe that elements of

Supp(Cx(r))−Y have mass no more than 2−(t+log m) each. Then, the contribution to entropy
by these elements is at least (1 − 1/m)(t + log m) > t (which is a contradiction).

Case 2 – x is a NO instance. From the correctness of the reduction we have that with
probability at least 1 − 1/nω(1) the output f(x, r) is a string with K complexity at most
m/2 − e(m). Since x is a violator, we also have H(Cx(r)) > k − 1 = m/2 − e(m)/2 − 1.

We claim that the following holds:

Pr
y∼f(x,r)

[K(y) > m/2 − e(m)] ≥ 1/m.

Assume not. Then, the entropy of f(x, r) is at most (1/m)(m) + (1 − 1/m)(m/2 − e(m)) ≤
m/2 − e(m) + 1 < m/2 − e(m)/2 − 1, which contradicts the lower bound on the entropy of
f(x, r) above.

Since the claim holds, with probability at least 1/m the output of the reduction is not an
element of the set N

R̃K
. Thus, the reduction fails with probability 1/nΩ(1). ◁

This completes the proof of Theorem 15. ◀

▶ Remark 17. The proof of the preceding theorem illustrates why we define the error threshold
in our randomized reductions to be 1

nω(1) . If we assumed that A were ≤BPP
hm -reducible to

R̃K with an inverse polynomial threshold (say q(n)−1), then by Corollary 7 we may assume
that the length of each output produced has length Q(n) = ω(q(n)) (by padding with some
uniformly-random bits). For strings x that are NO instances of A, when the reduction to
R̃K fails with probability 1/q(n), our calculation of the entropy of Cx will involve a term of

1
q(n) Q(n) (because the queries made in this case can have nearly Q(n) bits of entropy). This
is more than the entropy gap between the distributions corresponding to the YES and NO
outputs.
▶ Remark 18. Although our focus in this paper is on R̃K , we note that one can also define
an analogous problem R̃KT in terms of the time-bounded measure KT. The approach used
in Theorem 15 also shows that every problem in NISZK is ≤BPP

hm reducible to R̃KT, although
we do not know how to show hardness under ≤RP

hm reductions. (A random sample from the
low-entropy distribution is guaranteed to always have low K-complexity, but the tools of
[14, 16] only guarantee that the output has low KT-complexity with high probability.)

4 More Powerful Reductions

Just as ≤RP
m and ≤BPP

m reducibilities generalize the familiar ≤P
m (Karp) reducibility to the

setting of probabilistic computation, so also are there probabilistic generalizations of determin-
istic non-adaptive reductions (also known as truth-table reductions). Before presenting these
probabilistic generalizations, let us review the previously-studied deterministic non-adaptive
reducibilities that are relevant for this investigation. Some of them may be unfamiliar to the
reader.

Ladner, Lynch, and Selman [42] considered several possible ways to define polynomial-time
versions of the truth-table reducibility that had been studied in computability theory, before
settling on the definition of ≤P

tt reducibility below. They considered only reductions between
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languages; the corresponding generalization to promise problems is due to [47]. In order to
state this generalization formally, let us define the characteristic function χA of a promise
problem A = (Y, N) to take on the following values in three-valued logic:

If x ∈ Y , then χA(x) = 1.
If x ∈ N , then χA(x) = 0.
If x ̸∈ (Y ∪ N), then χA(x) = ∗.

A Boolean circuit with n variables, when given an assignment in {0, 1, ∗}n, can be evaluated
using the usual rules of three-valued logic. (See, e.g., [47, Definition 4.6].)

▶ Definition 19. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤P
ttB if

there is a function f computable in polynomial time, such that, for all x, f(x) is of the form
(C, z1, z2, . . . , zk) where C is a Boolean circuit with k input variables, and (z1, . . . , zk) is a
list of queries, with the property that

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.
If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.

This definition ensures that the circuit C, viewed as an ordinary circuit in 2-valued logic,
correctly decides membership for all x ∈ (Y ∪ N) when given any solution S for B as an
oracle.

If C is a Boolean formula, instead of a circuit, then one obtains the so-called “Boolean
formula reducibility” (denoted by A≤P

bfB), which was discussed in [42] and studied further
in [41, 24]. (See also [23, 6].)

▶ Theorem 20. SZK = {A : A≤P
bfEA} = {A : A≤P

hbfEA}.

Proof. EA ∈ NISZK ⊆ SZK. Sahai and Vadhan [47, Corollary 4.14] showed that SZK is
closed under NC1-truth-table reductions, but the proof carries over immediately to ≤P

bf
reductions. Thus {A : A≤P

bfEA} ⊆ SZK. The other inclusion was shown in [29, Proposition
5.4] (and the reduction to EA they present is honest). ◀

Notably, it is still an open question if SZK is closed under ≤P
tt reducibility.

Our characterization of SZK in terms of reductions to R̃K relies on the following proba-
bilistic generalization of ≤P

bf :

▶ Definition 21. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
bf B

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial

time, and a polynomial p, such that, for all x, f(x) is a Boolean formula C (with k = |x|O(1)

variables), with the property that
If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,
If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,

where
χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ

χg,B(x, i) = ∗ otherwise.
Intuitively, ≤BPP

bf reductions generalize ≤P
bf reductions, in that the queries are now generated

probabilistically, and the probability that any query returns a definite YES or NO answer is
bounded away from 1

2 . Again, if all queries are of length at least nϵ, then we write A≤BPP
hbf B.

The following proposition is immediate from the definitions.

▶ Proposition 22. If A≤P
hbfB and B≤BPP

hm C with threshold θ, then A≤BPP
hbf C with threshold θ.

▶ Corollary 23. SZK ⊆ {A : A≤BPP
hbf R̃K} with threshold 1 − 1

nω(1) .
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Proof. Immediate from Theorem 20 and Theorem 15. ◀

There are (at least) three other variants of probabilistic nonadaptive reducibility that
we should mention. The first of these is the notion that goes by the name “nonadaptive
BPP reducibility” or “randomized nonadaptive reductions” in work such as [48, 14, 21] and
elsewhere.

▶ Definition 24. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
tt B

if there are a function f computable in polynomial time and a polynomial p such that, for all
x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean
circuit with k input variables, and (z1, . . . , zk) is a list of queries, with the property that

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0 ≥ 2
3 .

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , by the usual method

of taking the majority vote of several independent trials.)

Saks and Santhanam showed that if A≤BPP
htt R̃K , then A ∈ AM ∩ coAM [48]. The most

important ways in which ≤BPP
bf and ≤BPP

tt reducibility differ from each other, are (1) in ≤BPP
bf

reducibility, the query evaluation is performed by a Boolean formula, instead of a circuit,
and (2) in ≤BPP

tt reducibility, the circuit that is chosen to do the evaluation depends on the
choice of random bits, whereas in ≤BPP

bf reducibility, the formula is chosen deterministically.
Making different choices in these two dimensions gives rise to two other notions:

▶ Definition 25. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
rbf B

if there are a function f computable in polynomial time and a polynomial p such that, for all
x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean
formula with k input variables, and (z1, . . . , zk) is a list of queries, with the property that

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0] ≥ 2
3 .

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , simply by incorpo-

rating a Boolean formula that takes the majority vote of several independent trials.).

The notation ≤BPP
rbf is intended to suggest “random Boolean formula”, since the Boolean

formula is chosen randomly.

▶ Definition 26. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
circ B

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial

time, and a polynomial p, such that, for all x, f(x) is a Boolean circuit (with k = |x|O(1)

variables), with the property that
If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,
If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,

where
χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ

χg,B(x, i) = ∗ otherwise.
If the reduction is honest, we write A≤BPP

hcircB.

We show in this paper that SZK is the class of problems ≤BPP
hbf reducible to R̃K . We are

not able to show that the class of problems (honestly) ≤BPP
rbf reducible to R̃K is contained in

SZK, although we do observe that SZK is closed under this type of reducibility.

▶ Theorem 27. SZK = {A : A≤BPP
rbf EA}.
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Proof. The inclusion of SZK in {A : A≤BPP
rbf EA} is immediate from Theorem 20. For the

other direction, let A≤BPP
rbf EA. Thus there are a function f computable in polynomial

time, and a polynomial p such that, for all x and all r of length p(|x|), f(x, r) is of the
form (C, z1, z2, . . . , zk), where evaluating the Boolean formula C(χB(z1), . . . , χB(zk)) gives a
correct answer for all x ∈ Y ∪N with error at most 2−n2 . Here is a zero-knowledge interactive
protocol for A. The verifier sends a random string r to the prover. The prover and the verifier
can each compute f(x, r) = (C, z1, z2, . . . , zk), and then (as in [47, Corollary 4.14], compute an
instance (D, E) of SD such that (D, E) is a YES instance of SD if C(χB(z1), . . . , χB(zk)) = 1,
and (D, E) is a NO instance of SD if C(χB(z1), . . . , χB(zk)) = 0. The prover and the verifier
can then run the SZK protocol for the SD instance (D, E). The verifier clearly accepts each
YES instance with high probability, and cannot be convinced to accept any NO instance
with more than negligible probability. The simulator, given input x, will generate the string
r uniformly at random, and then compute f(x, r) and compute the instance (D, E) as above,
and then produce the transcript that is produced by the SD simulator on input (D, E).
It is straightforward to observe that, if x ∈ Y , then this distribution is very close to the
distribution induced by the honest prover and verifier. ◀

5 A New Characterization of SZK

▶ Theorem 28. The following are equivalent, for any decidable promise problem A:
1. A ∈ SZK.
2. A≤BPP

hbf R̃K with threshold 1 − 1
nω(1) .

Proof. Corollary 23 states that all problems in SZK ≤BPP
hbf -reduce to R̃K . Thus we need

only show the converse containment. Let A≤BPP
hbf R̃K . As in the proof of Theorem 15, we

will build circuits Cx,i(r) that model the computation that produces the ith query that is
asked on input x, when using random bits r. As in the proof of Theorem 15, we claim that
if a 1 − 1

nω(1) fraction of the strings of the form Cx,i(r) are in Y
R̃K

, then Cx,i represents a
distribution with entropy at least m/2 − e(m)/2 + 1, and if a 1 − 1

nω(1) fraction of the strings
of the form Cx,i(r) are in N

R̃K
, then Cx,i represents a distribution with entropy at most

m/2 − e(m)/2 − 1. Indeed, the proof is essentially identical. Assume that there are infinitely
many x that are not don’t care instances, where replacing the R̃K oracle with the EA oracle
does not yield the correct answer. Given n, we can find the lexicographically-least string x

of length n for which the reduction fails. Since the reduction fails, there must be some i such
that the ith query in the formula yields the wrong answer. Thus, given (n, i), we can find x

and build the circuit Cx,i of Kolmogorov complexity O(log n) that yields a correct answer
when given R̃K as an oracle, but fails when queries are made to EA instead. The analysis is
identical to the argument in the proof of Theorem 15. ◀

We have nothing to say, regarding the problems that are reducible to R̃K via ≤BPP
tt or

≤BPP
rbf reductions, other than to refer to the AM ∩ coAM upper bound provided by Saks and

Santhanam [48]. We do have a somewhat better bound to report, regarding ≤BPP
circ reducibility.

▶ Theorem 29. The following are equivalent, for any decidable promise problem A:
1. A≤BPP

hcircR̃K with threshold 1 − 1
nω(1) .

2. A≤P
httEA.

3. A≤P
ttB for some B ∈ SZK.

Proof. Items 2 and 3 are equivalent, by Theorem 20. Similarly, if A≤P
ttB for some B ∈ SZK,

then we know that A≤P
httEA≤BPP

hbf R̃K . The composition of a ≤P
htt reduction with a ≤BPP

hbf
reduction is clearly a ≤BPP

hcirc reduction. Finally, the proof of the remaining implication follows
along the same lines as the proof of Theorem 28. ◀

ITCS 2023
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6 Less Powerful Reductions

The standard complete problems EA and SD remain complete for NISZK and SZK, respectively,
even under more restrictive reductions such as ≤L

m, ≤NC0

m and ≤proj
m . In this section, we show

that it is worthwhile considering probabilistic versions of ≤L
m, ≤AC0

m and ≤NC0

m reducibility
to R̃K .

▶ Definition 30. For a class C, a promise problem A = (Y, N) is ≤RC
m -reducible to B =

(Y ′, N ′) with threshold θ if there are a function f ∈ C and a polynomial p such that
x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] = 1.

A is ≤BPC
m -reducible to B with threshold θ if there are a function f ∈ C and a polynomial p

such that
x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.
x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.

We are particularly interested in the cases C = L, C = AC0, and C = NC0. Note especially
that, in the definitions of ≤RL

m and ≤BPL
m , the logspace computation has full (two-way) access

to the random bits r. This is consistent with the way that probabilistic logspace computation
is used in the context of the “verifier” and “simulator” in the complexity classes SZKL and
NISZKL [28, 14].

SZKL, the “logspace version” of SZK, was introduced in [28], primarily as a tool to
discuss the complexity of problems involving distributions realized by extremely limited
circuits (such as NC0 circuits). It is shown in [28] that SZKL contains many of the problems
of cryptographic significance that lie in SZK. NISZKL was introduced in [14] as the “non-
interactive” counterpart to SZKL, by analogy with NISZK, primarily as a tool to investigate
the complexity of computing time-bounded Kolmogorov complexity. It was subsequently
studied in [15], where it was shown to be robust to several changes to the definition. It
is shown in [28, 14] that complete problems for SZKL and NISZKL arise by considering
restrictions of the standard complete problems for SZK and NISZK where the distributions
under consideration are represented either by branching programs (in EABP), or by NC0

circuits where each output bit depends on at most 4 input bits (in SDNC0 and EANC0).
Following the pattern we established in Section 2, we now define SZKL and NISZKL in

terms of their complete problems, rather than presenting the definitions in terms of interactive
proofs:

▶ Definition 31. SZKL = {A : A≤proj
m SDNC0} = {A : A≤L

mSDBP}
NISZKL = {A : A≤proj

m EANC0} = {A : A≤L
mEABP}.

▶ Theorem 32. The following are equivalent, for any decidable promise problem A:
A ∈ NISZKL
A≤RNC0

hm R̃K

A≤BPNC0

hm R̃K

A≤RAC0

hm R̃K

A≤BPAC0

hm R̃K

A≤RL
hmR̃K

A≤BPL
hm R̃K

Proof. The proof that A ∈ NISZK implies A≤RNC0

hm R̃K proceeds as in the proof of Theorem 15,
except that we appeal to [14, Corollary 43] (presenting a nonuniform ≤proj

m reduction from
EANC0 to R̃K), instead of Corollary 18 in that paper. In more detail: as in the proof of
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Theorem 15, given x, the reduction constructs a sequence of independent copies of EA, but
now each distribution is represented by an NC0 circuit. The proof of Corollary 43 in [14]
shows that these NC0 circuits can be constructed via uniform projections. Let f(x, r) denote
the function that takes input x (an instance of the promise problem A) and random sequence
r as input, and first constructs (via a projection) the sequence C1, C2, ..., C|x|O(1) of NC0

circuits, and then produces as output the result of partitioning the bits of r into inputs ri for
each Ci, computing Ci(ri), and concatenating the results. Thus each output bit of f(x, r)
is computed by a gadget that is connected to O(1) random bits (i.e., the bits that are fed
into the circuit computing the distribution), along with at most one bit from the input x

(determining the circuitry internal to the gadget). The rest of the analysis is similar to that
in the proof of Theorem 15.

If A is decidable and A≤BPL
m R̃K , then, as in the proof of Theorem 15, we build a device

Cx(r) that simulates the computation that produces queries to R̃K on input x. However,
now Cx is a branching program, and thus we replace queries to R̃K by queries to EABP. Since
EABP ∈ NISZKL, this shows that A is also in NISZKL. Again, the analysis is similar to that
in the proof of Theorem 15. ◀

We end this section, with an analogous characterization of SZKL.
▶ Definition 33. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤L

bfB

if there is a function f computable in logspace such that, for all x, f(x) is of the form
(C, z1, z2, . . . , zk) where C is a Boolean formula with k input variables, and (z1, . . . , zk) is a
list of queries, with the property that

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.
If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.

Earlier work that studied ≤L
bf reducibility can be found in [23, 6].

We say A≤BPL
bf B with threshold θ > 1

2 if there are functions f and g computable in
deterministic logspace, and a polynomial p, such that, for all x, f(x) is a Boolean formula
(with k = |x|O(1) variables), with the property that

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,
If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,

where
χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ

χg,B(x, i) = ∗ otherwise.
If the reduction is honest, then we write A≤BPL

hbf B

(Similarly, one can define AC0 versions of ≤L
bf , although, since an AC0 circuit cannot

evaluate a Boolean formula, we do not pursue that direction here.)
▶ Theorem 34. The following are equivalent, for any decidable promise problem A:

A ∈ SZKL.
A≤L

bfEANC0 .
A≤BPL

hbf R̃K with threshold 1 − 1
nω(1) .

Proof. The first two items are equivalent, because (a) SZKL is closed under ≤L
bf reducibil-

ity [15], and (b) the argument in [29], showing that SZK ≤L
bf -reduces to NISZK carries over

directly to SZKL and NISZKL. Furthermore, the reduction to EANC0 is length-increasing, and
hence honest.

Since EANC0 is complete for NISZKL, Theorem 32 implies that every A ∈ NISZKL is
≤BPL

hbf -reducible to R̃K . The argument that every decidable A that ≤BPL
hbf -reduces to R̃K lies

in SZKL is similar to the argument in Theorem 28. ◀
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7 Discussion

There are not many examples of natural computational problems that are known or conjec-
tured to lie outside of P, such that the class of problems reducible to them via ≤P

m and ≤L
m

(or ≤AC0

m ) reductions differ (or are conjectured to differ). Is it the case that the problems
reducible to R̃K via ≤RP

hm and ≤RL
hm (or ≤RAC0

hm ) reductions differ? Or should this be taken as
evidence that NISZK and NISZKL coincide?

Similarly, there are not many examples of natural computational problems such that the
classes of problems reducible to them via ≤P

tt and ≤P
bf reductions differ (or are conjectured to

differ). For example, these reducibilities coincide for SAT [24]. Is it the case that ≤BPP
bf and

≤BPP
circ reducibilities differ for R̃K? Or should this be taken as evidence that SZK is closed

under ≤P
tt reducibility?

Perhaps our new characterizations of statistical zero knowledge classes will be useful in
answering these questions.

It is known that every promise problem in NISZKL reduces to R̃K via nonuniform
projections [14, 4]. The following quote from [4] is worth paraphrasing here:

. . . no complexity class larger than NISZKL is known to be (non-uniformly) ≤AC0

m
reducible to the Kolmogorov-random strings [14]. It seems unlikely that this is optimal.

The discussion in [4] was referring to reductions to an oracle for the exact Kolmogorov-
complexity function. Our results show that, for reductions to an approximation to the
Kolmogorov-complexity function, NISZKL is essentially “optimal”.

8 An Application

Finally, let us observe that our new characterizations of NISZKL may open new avenues
of attack on questions such as whether NP = NL. MKTP, the problem of computing KT
complexity, lies in NP and is hard for co-NISZKL under nonuniform projections [14]. If
MKTP ∈ NISZKL, then there must be a nonuniform projection f that takes strings of
low KT-complexity (and hence low K-complexity) to strings of high K complexity, and
simultaneously maps strings of high KT complexity to strings of low K-complexity. It is
plausible that one could show unconditionally that no such projection can exist. Among
other things, this would show that NP ̸= DET (where DET is the complexity class, containing
NL, of problems that reduce to the determinant) since DET ⊆ NISZKL [14].

Although we do not know how to prove that there is no projection reducing MKTP to
R̃K , we note there there is provably no projection reducing MKTP to a related problem R̃′

K ,
where the “gap” between the YES and NO instances is larger than in R̃K . Define R̃′

K to
have YES instances {x : K(x) ≥ 4|x|

5 } and NO instances {x : K(x) ≤ |x|
5 }.

▶ Theorem 35. There is no projection reducing MKTP to R̃′
K .

Proof. Since PARITY is in co-NISZKL, we know that PARITY ≤proj
m MKTP. Thus if

MKTP≤proj
m R̃′

K it follows that PARITY ≤proj
m R̃′

K . We apply the techniques of [18, Lemma
6] to show that no such projection can exist. More precisely, we show that if A is any language
that projection reduces to R̃′

K , then the 1-block sensitivity of A is at most 2. (Since the
1-block sensitivity of PARITY is n, this suffices to prove the theorem.)

Let x ∈ A be such that the block sensitivity at x is at least 3. Thus there are three
disjoint blocks of input bits B1, B2, B3, such that flipping the bits in any block Bi produces a
string xi ̸∈ A. If f is a projection reducing A to R̃′

K , then K(f(x)) ≥ 4m
5 , where m = |f(x)|,

whereas K(f(xi)) ≤ m
5 . Let di be a short description of xi; thus U(di) = xi, where U is

the universal Turing machine from the definition of Kolmogorov complexity. Any bit of the
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output of f depends on at most 1 input bit. Thus, for any i, the ith bit of f(x) agrees with
the ith bit of at least 2 of {f(x1), f(x2), f(x3)} (since the blocks B1, B2, and B3 are disjoint).
Thus we can simply take the majority vote of {U(d1), U(d2), U(d3)} to obtain any bit of f(x).
It follows that K(f(x)) ≤ |d1| + |d2| + |d3| + O(log m) < 4m

5 . This is a contradiction. ◀

In this vein, let us also remark that Kolmogorov complexity has already proved useful
in developing nonrelativizing proof techniques [33], and also that the machinery of perfect
randomized encodings (which were developed in [19] and which are essential to the results
of [14]) also does not seem to relativize in any obvious way.
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Abstract
We introduce and study the communication complexity of computing the inner product of two
vectors, where the input is restricted w.r.t. a norm N on the space Rn. Here, Alice and Bob hold
two vectors v, u such that ∥v∥N ≤ 1 and ∥u∥N∗ ≤ 1, where N∗ is the dual norm. The goal is
to compute their inner product ⟨v, u⟩ up to an ε additive term. The problem is denoted by IPN ,
and generalizes important previously studied problems, such as: (1) Computing the expectation
Ex∼D[f(x)] when Alice holds D and Bob holds f is equivalent to IPℓ1 . (2) Computing vT Av where
Alice has a symmetric matrix with bounded operator norm (denoted S∞) and Bob has a vector v

where ∥v∥2 = 1. This problem is complete for quantum communication complexity and is equivalent
to IPS∞ .

We systematically study IPN , showing the following results, near tight in most cases:
1. For any symmetric norm N , given ∥v∥N ≤ 1 and ∥u∥N∗ ≤ 1 there is a randomized protocol

using Õ(ε−6 log n) bits of communication that returns a value in ⟨u, v⟩ ± ϵ with probability 2
3 –

we will denote this by Rε,1/3(IPN ) ≤ Õ(ε−6 log n). In a special case where N = ℓp and N∗ = ℓq

for p−1 + q−1 = 1, we obtain an improved bound Rε,1/3(IPℓp ) ≤ O(ε−2 log n), nearly matching
the lower bound Rε,1/3(IPℓp ) ≥ Ω(min(n, ε−2)).

2. One way communication complexity −→
Rε,δ(IPℓp ) ≤ O(ε− max(2,p) · log n

ε
), and a nearly matching

lower bound −→
Rε,1/3(IPℓp ) ≥ Ω(ε− max(2,p)) for ε− max(2,p) ≪ n.

3. One way communication complexity −→
Rε,δ(N) for a symmetric norm N is governed by the

distortion of the embedding ℓk
∞ into N . Specifically, while a small distortion embedding easily

implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding
implies protocol with communication kO(log log k) log2 n.

4. For arbitrary origin symmetric convex polytope P , we show Rε,1/3(IPN ) ≤ O(ε−2 log xc(P )),
where N is the unique norm for which P is a unit ball, and xc(P ) is the extension complexity
of P (i.e. the smallest number of inequalities describing some polytope P ′ s.t. P is projection
of P ′).
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1 Introduction

We introduce and study a class of communication problems parameterized by a norm N on
Rn – we will denote those problems as IPN (for inner product). Here two parties (traditionally
called Alice and Bob) are given two vectors in Rn, respectively v and w, with guarantees that
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∥v∥N ≤ 1 and ∥w∥N∗ ≤ 1, where N∗ is the dual norm defined as ∥w∥N∗ := sup∥v∥N ≤1 ⟨v, w⟩.
Those players wish to use small amount of communication to compute ⟨v, w⟩. We will
focus exclusively on randomized, approximate protocols for IPN – for given ε, δ we denote
by Rε,δ(IPN ) the smallest communication cost of a private-coin protocol computing some
function f(x, y) such that |f(u, v) − ⟨v, w⟩ | ≤ ε with probability 1 − δ. Note that, by the
definition of the dual norm we always have | ⟨v, w⟩ | ≤ ∥v∥N ∥w∥N∗ ≤ 1, making this a natural
normalization for the approximate version of the problem.

As it turns out this setting is not only very natural, but also quite powerful – it is
a common generalization of few seemingly different problems that have been studied in
communication complexity on their own right, and are of tremendous importance in the field.
We will discuss some of these connections in the next few paragraphs. To start with a simple,
yet consequential example, consider a finite universe U , and a scenario where Alice has an
arbitrary probability distribution D over U and Bob has a bounded function f : U → [−1, 1],
and they wish to compute Ex∼Df(x) ± ε. The problem they are solving is equivalent to IPℓ1 .
As it turns out, there is an easy protocol for this problem using O( log |U|

ε2 ) communication –
it is enough for Alice to sample 1

ε2 elements from the distribution D, and send their names
to Bob.

Gap Hamming Distance problem and IPℓ2

The Gap Hamming Distance problem has been introduced by Indyk and Woodruff in order to
study the space complexity of the streaming Distinct-Elements problem [10]. Here, Alice
and Bob have two vectors x, y ∈ {±1}n, and they wish to distinguish whether ⟨x, y⟩ ≤ −εn

or ⟨x, y⟩ ≥ +εn.
After its introduction, this problem turned out to be extremely convenient as a reduction

target – communication complexity lower bound for the Gap Hamming Distance implies
space lower bounds for numerous streaming and data structures problems – and often
optimal ones (we refer to the monograph [19] for a detailed exposition of those consequences).
As such, understanding the communication complexity of this problem has become very
important – a sequence of lower bounds for followed [23, 11, 24, 3, 4], culminating in the
optimal Ω(min(ε−2, n)) lower bound in the public-coin model by Chakrabarti and Regev [6] –
subsequently simplified and expanded upon [20, 22].

Quite clearly, the Gap-Hamming-Distance problem is in fact a special case of the IPℓ2

problem – in particular the Ω(ε−2) lower bound for Gap Hamming Distance readily implies
that Rε,1/3(IPℓ2) ≥ Ω(ε−2).

From the upper-bound perspective, the O(ε−2) protocol in the public-coin model is very
simple for the Gap Hamming Distance, implying O(ε−2 + log n) protocol in the private coin
model, by Newmans theorem [17] – it is enough for both parties to uniformly subsample
O(ε−2) coordinated and evaluate the inner product on this subset of coordinates. That was
understood throughout the work on the Gap Hamming Distance.

In general, if x, y are not restricted to the binary vectors, but only are restricted to be
bounded in ℓ2 norm, the ideas of Johnson-Lindenstrauss random projections [21] can provide
a protocol with communication complexity O( log n

ε2 ). Specifically, when ∥u∥2 = ∥v∥2 = 1
both Alice and Bob will use a common random projection on a subspace of dimension O( 1

ε2 )
– the inner product between their two vectors is preserved up to an additive error ε. In
fact, as noticed by Canonne et. al. the space complexity of this protocol can be improved
again to O(ε−2 + log n) [5] – if Alice and Bob can use shared randomness, it is enough for
them to draw O( 1

ε2 ) random Gaussian vectors g1, g2, . . . gk ∈ Rn and compare how often
sgn(⟨gi, x⟩) = sgn(⟨gi, y⟩). The additive O(log n) term comes again from the Newman’s
theorem, in order to simulate this protocol in the private coin model.
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Quantum Communication Complexity

Another impactful example of a well-studied problem that can be phrased as IPN for some
norm N is a complete problem for quantum communication complexity (interested reader
can look at [1, 15] for relevant definitions and discussion). Specifically, let us consider the
communication problem where Alice is given a symmetric matrix A ∈ Rd×d with bounded
operator norm, and Bob a vector v ∈ Rd with ∥v∥2 = 1, and they wish to compute vT Av ± ε.
With the proper definitions in hand, it is not difficult to see that this problem has a quantum
protocol with complexity O( log d

ε2 ), and on the other hand if one has a classical protocol for
this problem, one can use it as a black-box to simulate arbitrary quantum communication
protocol [15]. As such, understanding its communication complexity has drawn significant
attention: in particular Raz showed that it has a protocol with complexity O(

√
d) [18],

whereas Klartag and Regev [13] proved Ω(d1/3) lower bound. As it turns out, this problem
can be easily seen to be equivalent to the IPS∞ , where S∞ is an operator norm on the space
of symmetric d × d matrices over R. In short, to reduce the evaluation of the quadratic
form to the IPS∞ , Bob given vector v ∈ Rn can construct a matrix vvT ∈ Rd×d, such that〈
A, vvT

〉
= Tr AT vvT = vT Av. It can be shown that ∥vvT ∥S1 = 1 where S1 is a Shatten

1-norm, dual to the operator norm. The other reduction is also relatively simple.

Extension Complexity

In the seminal and celebrated work Yannakakis [25] defined the extension complexity of
a convex polytope: extension complexity of P , denoted by xc(P ) is the smallest number
of inequalities needed to specify some higher-dimensional polytope Q, such that P is a
linear projection of Q. He showed a striking connection between extension complexity of
a polytope P and communication complexity measures of the so-called slack matrix of P

– opening a road to a number of beautiful results showing non-conditional lower bounds
for extension complexity of various explicit polytopes of interests, using communication
complexity methods (see [9, 19] as well as [7, Chapter 4.10] and references therein).

If a polytope P is origin-symmetric (i.e. satisfying P = −P ), there is a unique norm (which
we denote as ∥ · ∥P by a slight abuse of notation) for which P is a unit ball. We observe that
a short direct argument can be used to prove Rε,1/3(IPP ) ≤ O( log xc(P )

ε2 ) – norms associated
with polytopes that have small extension complexity admit efficient communication protocols
for the IPP problem. More interestingly, by contrapositive, lower bounds for communication
complexity of IPP can be used to obtain lower bounds for extension complexity of P .

1.1 Our results
We initiate a systematic study of the IPN problem, and in particular focus on one-way
and two-way communication complexity of IPN for symmetric norms N in a private-coin
model. We show that the two-way communication complexity for symmetric norm is small,
poly(log n, ε−1). In contrast, we show that one-way communication complexity is (nearly
completely) determined by whether the norm contains up to small distortion ℓk

∞ – the
k-dimensional space equipped with the ℓ∞ norm. Finally, we show connections to extension
complexity, which holds for arbitrary (non necessarily symmetric) norms.

Communication Complexity of IPℓp

Given the importance of some of the communication problems IPN , it is natural to ask
whether we can characterize the communication complexity of IPN in terms of geometric
properties of the norm N . This is quite an ambitious task: to our knowledge even the
complexity of IPℓp

has not been studied before, except for p ∈ {1, 2, ∞}, and it is not
intuitive at a first glance what answer should we expect for those norms.

ITCS 2023
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It turns out to be quite easy to see that Rε,1/3(IPℓ1) ≤ O( log n
ε2 ) – if the vector v with

∥v∥1 = 1 is non-negative Alice can treat it as probability distribution over [n] and sample 1
ε2

coordinates from this probability distribution. In the general case, they can apply the same
protocol separately for the negative and positive part of the vector v.

Interestingly, the first protocol that comes to mind for the IPℓ2 is using Johnson-
Lindenstrauss lemma – if Alice and Bob share public randomness, they can use a projection
on random subspace of dimension O(ε−2). With some care this idea can be used to get
a Rpub

ε, 1
3

(IPℓ2) ≤ O(ε−2) [5], and by Newmans theorem[17] Rε, 1
3
(IPℓ2) ≤ O(ε−2 + log n).

Unfortunately, these two protocols for IPℓ1 and IPℓ2 seem to be very different – and it is not
clear if they can be used to obtain an efficient protocol for IPℓp

for general p. As it turns
out, the first of the aforementioned protocols – the coordinate-sampling based protocol – can
actually be generalized, leading to the following theorem.

▶ Theorem 1. For any 1 ≤ p ≤ ∞, we have Rε, 1
3
(IPℓp

) ≤ O( log n
ε2 ).

On the other hand a simple reduction from the Gap-Hamming problem can be used to show
an almost matching lower bound Rε,1/3(IPℓp

) ≥ Ω(ε−2) for any ε ≥ Ω(n−1/2) (Lemma 26).

Communication Complexity of IPN for symmetric norms

The next step in the quest of trying to characterize the complexity of IPN in terms of the
geometry of the normed space (Rn, ∥ · ∥N ) is to consider a wide class of symmetric norm –
norms that are invariant under permutation of coordinates and negation of any coordinate –
for example all the ℓp norms are symmetric according to this definition.

As it turns out, Andoni et. al [2] showed that any finite dimensional normed space
equipped with a symmetric norm has near-isometric embedding into a relatively “simple” (or
at least explicit) normed space of only polynomially higher dimension (see Section 5 and
specifically Theorem 29 for details).

▶ Definition 2. We say that a normed (X, ∥ · ∥X) embeds into (Y, ∥ · ∥Y ) with distortion D

if and only if there is a linear mapping i : X → Y , such that

∀x ∈ X ∥i(x)∥Y ≤ ∥x∥X ≤ D∥i(x)∥Y .

We will use notation X ↪→D Y to signify that X embeds in Y with distortion D.

Perhaps surprisingly, it is not immediately obvious that such an embedding is useful for
designing an efficient protocol for our problem IPN – in contrast with the Approximate
Nearest Neighbours Problem for which this technique was developed. Specifically, let us
consider a norm N on Rn, such that IPN problem already has an efficient protocol, and
a linear subspace U ⊂ Rn with an induced norm N |U – restriction of the norm N to the
subspace U . Can we use the protocol for IPN to obtain an efficient protocol for IPN |U

?
Alice, with a vector u ∈ U can treat it as a vector in Rn, but what should Bob do with his
vector in U∗ (equipped with the norm dual to N |U )? This dual space cannot be interpreted
in a natural way as a subspace of (Rn, N∗). As it turns out, U∗ is actually isometric
with the quotient U∗ = Rn/U⊥ (where U⊥ := {v : ∀u ∈ U, ⟨u, v⟩ = 0}), and importantly
the unit ball of a dual norm (N |U )∗ is just an image of the ball for the norm N∗ under
the projection π : Rn → Rn/U⊥ – this is essentially a finite dimensional Hahn-Banach
theorem (or equivalently separating hyperplane theorem). We can use this fact to show that
Rε,δ(IPN |U

) ≤ Rε,δ(IPN ) – Alice can just treat her vector v ∈ U as a vector in Rn equipped
with norm ∥ · ∥N , whereas Bob given a vector w ∈ Rn/U⊥ can find a vector w̃ ∈ π−1(w) such
that ∥w̃∥N∗ = ∥w∥(N |U )∗ . Using the protocol for IPN they can approximate ⟨v, w̃⟩, which is
equal to ⟨v, w⟩ by the choice of w̃.
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It turns out that handling embeddings with distortion D ≥ 1 does not provide any
additional difficulty, and we can prove the following proposition.

▶ Proposition 3. If (Rk, ∥ · ∥X) ↪→α (Rn, ∥ · ∥Y ), then for any ε, δ we have Rε,δ(IPX) ≤
Rεα−1,δ(IPY ).

With this proposition in hand, one way to show that there is an efficient protocol for IPN for
any symmetric norm N , is just to provide an efficient protocol for the explicit target space
of the aforementioned embedding. We actually managed to implement this plan, showing
the following theorem.

▶ Theorem 4. For any symmetric norm N , we have Rε,1/3(IPN ) ≤ Õ(ε−6) log n.

One-way communication and sparsification for IPN for symmetric norms

An interesting feature of the simple protocol for IPℓ1 is that it is a one-way protocol : instead
of full bidirectional communication, Alice is the only party sending single message to Bob
based on her vector (i.e. she sends a multiset of coordinates sampled according to the
probability distribution specified by v), and Bob can report the answer right away, based on
the message he received and his own vector w. We will denote by −→

Rε,δ(IPN ) the one-way
communication complexity for the problem IPN up to additive error ε, with probability 1 − δ.

In fact, the protocol for ℓ1 is a special kind of one-way protocol, which we will call
sparsification for IPN – Alice, based on her vector v, can produce a random sparse vector
ϕ(v), such that for any fixed w that Bob could have, with probability 2/3 we have ⟨ϕ(v), w⟩ =
⟨v, w⟩ ± ε, and just send an encoding of this sparse vector to Bob.

In what follows let BN := {x ∈ Rn : ∥x∥N ≤ 1} be the unit ball for a norm N .

▶ Definition 5. We say that a norm N on Rn admits a (ε, δ, D)-sparsification, if there exist
a randomized mapping ϕ : BN → Rn, such that

For any v ∈ BN , and any w ∈ BN∗ we have ⟨ϕ(v), w⟩ = ⟨v, w⟩ ± ε with probability at
least 1 − δ.
For any v, we always have ∥ϕ(v)∥0 ≤ D (i.e. ϕ(v) has at most D non-zero coordinates).

It is not difficult to see that if a norm N admits an (ε, δ, D)-sparsification, then −→
Rε,δ(IPN ) ≤

O(D · log n
ε ) (see Proposition 27), but such a sparsification can potentially be much more

useful than arbitrary one-way protocol – in particular, note that Bob in order to compute
his answer does not have to access the entire vector w, just D of its coordinates.

As it turns out, the protocol for ℓp norms is actually achieved via such sparsification.

▶ Theorem 6. For any 1 ≤ p < ∞, and any ε > 0, the norm ℓp on Rn admits a
(ε, 1/3, O(ε− max(2,p)))-sparsification. In particular, −→

Rε,δ(IPℓp
) ≤ O(ε− max(2,p) · log n

ε ).

Interestingly, the guaranteed sparsity in the theorem above does not depend on the
ambient dimension n; for a fixed p and ε, we could approximate ⟨v, w⟩ by accessing only
constant number of coordinates of w.

In fact it is not difficult to show that this sparsification result is almost optimal. A direct
reduction from the index problem can be used to show −→

Rε,1/3(ℓ∞) ≥ Ω(n) for any ε < 1.
Since Proposition 3 has a direct analog for one-way communication complexity (with the
same proof), we have as a consequence

▶ Proposition 7. For any norm N on Rn, if (Rk, ℓ∞) ↪→ε−1 (Rn, N), then −→
Rε,δ(IPN ) ≥

Ω(k).

ITCS 2023
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We use this, together with known embeddings of low-dimensional ℓ∞ into ℓp, to deduce
lower bounds −→

Rε,2/3(IPℓp
) ≥ Ω(ε− max(2,p)) – nearly matching (up to the log n multiplicative

factor) the upper bound from Theorem 6 obtained via sparsification.
Perhaps surprisingly, among all symmetric norms N , embedding of ℓk

∞ with small
distortion is the only obstruction for a good sparsification of a norm – we prove the following
weak converse of Proposition 7.

▶ Theorem 8. If N is a symmetric norm such that (Rk, ℓ∞) ̸↪→ε−1 (Rn, N), then N admits
a (O(ε), 1/3, kO(log log k) log2 n)-sparsification.

This theorem is in fact the most technically challenging part of this paper, as well
as most unexpected – while Proposition 7 says that existence of an embedding implies a
communication complexity lower bound, which is relatively common phenomenon, here
we claim to be able to provide an efficient protocol given non-existence of any embedding
from one space to another (or, by contrapositive, claim an existence of embedding assuming
non-existence of efficient protocol).

Theorem 8 together with Proposition 7 essentially say that the one-way communication
complexity of any symmetric norm is characterized by the possibility of finding low-distortion
embedding of finite-dimensional ℓ∞ spaces into this norm.

We believe that both the weak dependency on log n and the unfortunate dependency on
k are just artifacts of our analysis. In fact, we conjecture that

▶ Conjecture 9. If N is a symmetric norm such that (Rk, ℓ∞) ̸↪→ε−1 (Rn, N), then N admits
an (O(ε), 1/3, kO(1))-sparsification.

Connections with extension complexity

For any origin symmetric convex polytope P (i.e. satisfying P = −P ), we can define the
associated norm ∥w∥P := inf{λ : w/λ ∈ P} – this is a unique norm for which P is a unit ball.
As mentioned earlier, it is easy to directly show the following relation between extension
complexity of P and communication complexity of IPP .

▶ Proposition 10. For any origin symmetric convex polytope P we have Rε,1/3(IPP ) ≤
O( log xc(P )

ε2 ).

We can sketch the proof in a single paragraph – first by dual of the Proposition 3, we show
that if P is a projection of a polytope Q, then Rε,1/3(IPP ) ≤ Rε,1/3(IPQ), by symmetry
Rε,1/3(IPQ) = Rε,1/3(IPQ∗), and finally with a sampling based argument we can show that
if the unit ball for a norm ∥ · ∥Q∗ has at most M vertices, then Rε,1/3(IPQ∗) ≤ O( log M

ε2 ) –
this step is essentially the same as the proof that Rε,1/3(IPℓ1) ≤ O( log n

ε2 ). Finally vertices of
the dual polytope Q∗ correspond exactly to facets of Q.

For a convex polytope P ⊂ Rn, specified by matrix A ∈ RM×n via P = {v : ∀i ≤
M, ⟨Ai, v⟩ ≤ bi}, we define the slack matrix SP ∈ R|V |×M with rows indexed by vertices V of
the polytope P , to be (SP )v,i := bi −⟨Ai, v⟩ – clearly this matrix is non-negative. Yannakakis
showed that xc(P ) = rk+(SP ) + O(1), where rk+(S) is a non-negative rank of S – i.e. the
smallest number k such that we can decompose S =

∑
i≤k viw

T
i for coordinatewise non-

negative vectors vi, wi [25]. Therefore, Proposition 10 can be equivalently stated as bounding
the communication complexity of IPP by the non-negative rank of the corresponding slack
matrix, i.e. Rε,1/3(IPP ) ≤ O( log rk+(SP )

ε2 ).
It turns out that Rε,1/3(IPP ) is in turn lower bounded (up to the dependency on ε) by a

closely related quantity, the approximate non-negative rank of the same matrix SP .
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▶ Definition 11 ([14]). For a non-negative matrix S ∈ Rn×m and ε ≥ 0, we define approx-
imate non-negative rank as

r̃k+
ε (S) := inf

S′:∀ij |Sij−S′
ij

|≤ε
rk+(S′).

Clearly r̃k+
ε (S) ≤ rk+(S). We will show in Section 7 that this former quantity turns out to

lower bound the communication complexity of IPP .

▶ Proposition 12. For any origin-symmetric convex polytope P we have

r̃k+
2ε(SP ) ≤ Rε,ε(IPP ) ≤ O(log ε−1Rε,1/3(IPP )).

2 Preliminaries and notation

All the results and notations in this section are standard.
In the sequel we write w = v ± ε to indicate that |w − v| ≤ ε. We will use notation A ≲ B

to denote that there exist a universal constant K such that A ≤ KB.
For a norm N , we write BN := {v : ∥v∥N ≤ 1} to denote the unit ball with respect to

norm N , and if N = ℓp we usually abbreviate Bp instead of Bℓp
.

We will also use Õ(·) notation to supress polylogartihmic factors, i.e. g = Õ(f) if and
only if g = O(f logO(1) f).

2.1 Symmetric norms
The following notion of symmetric norm will be used throughout the paper.

▶ Definition 13. A norm N on Rn is a symmetric norm if and only if it satisfies the
following two properties:
1. Invariant under permutations: ∥v∥N = ∥π(v)∥N for any permutation π : [n] → [n], where

π(v) is a vector with π(v)i = vπ(i).
2. Invariant under coordinate negation: ∥v∥N = ∥|v|∥N where |v| is a vector with |v|i = |vi|.

We will deal only with symmetric norms normalized as ∥e1∥N = 1 for a standard basis vector
e1, and this normalization will not be mentioned explicitly anymore.

▷ Claim 14. Any symmetric norm is coordinate-wise monotone: if vectors v and w satisfy
∀i|vi| ≤ |wi|, then ∥v∥N ≤ ∥w∥N .

Proof. It is enough to show this inequality in the special case where vi = wi for i ≥ 2, and
|v1| ≤ |w1|. In this case, we can define w′ ∈ Rn as w′

1 := −w1, and w′
i := wi for i ≥ 2. Clearly,

∥w′∥N = ∥w∥N , and moreover v is a convex combination of w and w′: v = λw + (1 − λ)w′

where λ = 1
2 + |v1|

2|w1| . Hence, by triangle inequality ∥v∥N ≤ λ∥w∥N + (1 − λ)∥w′∥N = ∥w∥N

◁

2.2 Probabilistic Tools
For an R-valued random variable Z and p ≥ 1, we will consider the p-norm ∥Z∥p := (E|Z|p)1/p,
and the weak p-norm:

∥Z∥p,∞ := sup
λ

Pr(|Z| ≥ λ)1/pλ.
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▶ Fact 15 (Monotonicity of Lp). For 1 ≤ p ≤ p′ ≤ ∞, we have ∥Z∥p ≤ ∥Z∥p′ and
∥Z∥p,∞ ≤ ∥Z∥p′,∞.

Markov inequality says that ∥Z∥p,∞ ≤ ∥Z∥p, and this can be weakly inverted:

▶ Lemma 16. For any 1 ≤ p′ < p, we have

∥Z∥p′ ≤
(

p

p − p′

)1/p′

∥Z∥p,∞

Proof. We assume that ∥Z∥p,∞ < ∞, because otherwise the inequality is trivial.
Integration by parts yields

E |Z|p
′

= − lim
λ→∞

Pr(|Z| ≥ λ)λp′
+ p′

∫ ∞

0
λp′−1 Pr(|Z| ≥ λ) dλ.

We can bound Pr(|Z| ≥ λ)λp′ ≤ ∥Z∥p
p,∞λp′−p →λ→∞ 0.

For the second term

p′
∫ ∞

0
λp′−1 Pr(|Z| ≥ λ) dλ ≤ p′

∫ ∞

0
λp′−1 min(1, ∥Z∥p

p,∞λ−p) dλ

≤ p′

(∫ ∥Z∥p,∞

0
λp′−1 dλ + ∥Z∥p

p,∞

∫ ∞

∥Z∥p,∞

λp′−1−p dλ

)

≤ p′
(

1
p′ ∥Z∥p′

p,∞ + 1
p − p′ ∥Z∥p′

p,∞

)
≤ p

p − p′ ∥Z∥p′

p,∞. ◀

The following lemma is also standard, we include the proof for completeness.

▶ Lemma 17. Let 1 ≤ q ≤ 2, and Z1, Z2, . . . Zs be independent random variables in R
satisfying E Zi = 0. Then

∥
∑

i

Zi∥q ≲ (
∑

i

∥Zi∥q
q)1/q.

In particular, if Zi are i.i.d., we have ∥
∑

i≤s Zi∥q ≲ s1/q∥Z1∥q.

Proof. Let Z ′
i be all independent, and Z ′

i distributed identically as Zi, and let εi be again
independent Rademacher random variables. We have

∥
∑

i

Zi∥q
(1)= ∥

∑
i

Zi − E Zi∥q

(2)
≤ ∥

∑
i

Zi − Z ′
i∥q

(3)= ∥
∑

i

εi(Zi − Z ′
i)∥q

(4)
≤ 2∥

∑
i

εiZi∥q.

The (1) equality follows as Zi are mean 0. For the (2) inequality, since q ≥ 1, the function
xq is convex, we can pull out the inner expectation (denote Z =

∑
Zi, and Z ′ =

∑
Z ′

i,
then by Jensen we have ∥Z − EZ′Z ′∥q = (EZ(EZ′ [Z − Z ′])q)1/q ≤ (EZEZ′ [(Z − Z ′)q]))1/q =
∥Z −EZ′Z ′∥q). For equality (3), note that since Zi and Z ′

i have the same distribution and are
independent, then distribution of Zi −Z ′

i is symmetric. I.e. Zi −Z ′
i has the same distribution

as −(Zi − Z ′
i) = Z ′

i − Zi. In particular, also εi(Zi − Z ′
i) has also the same distribution.

Finally inequality (4) is just a triangle inequality.
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The bound ∥
∑

εiZi∥q ≤ (
∑

∥Zi∥q
q)1/q is just the type-q inequality for the norm Lq. To

see why it is true, we can condition on Zi and apply the Khintchine inequality (which says
that for fixed numbers a1, . . . an and independent Rademacher random variables εi, we have
E ⟨ε, a⟩q ≲ (

∑
a2

i )q/2) to get

(E ⟨ε, Z⟩q)1/q = (E
Z

E
ε

⟨ε, Z⟩q)1/q ≲ (E
Z

(
∑

Z2
i )q/2)1/q,

Since q ≤ 2, we have (
∑

Z2
i )q/2 ≤

∑
Zq

i , hence

∥
∑

i

εiZi∥q ≲ (
∑

i

E Zq
i )1/q. ◀

2.3 Duality
▶ Lemma 18 (Finite dimensional Hahn-Banach theorem). Consider a normed space (Rn, ∥·∥N ),
and a subspace V ⊂ Rn with the induced norm given by the restriction of ∥ · ∥N to this
subspace.

Then the dual V ∗ is isometric with the quotient Rn/V ⊥, with the norm given by ∥w +
V ⊥∥V ∗ = minv⊥∈V ⊥ ∥w + v⊥∥N∗ .

In other words: for any vector w ∈ Rn, we have maxv∈V ∩BN
⟨v, w⟩ = minv⊥∈V ⊥ ∥w +

v⊥∥N∗ .

Proof. As usual in the duality statement, one inequality is easy: clearly, for any v ∈ V ∩ BN ,
and any v⊥ ∈ V ⊥, we have

⟨v, w⟩ =
〈
v, w + v⊥〉 ≤ ∥v∥N ∥w + v⊥∥N∗ ≤ ∥w + v⊥∥N∗ ,

so

max
v∈V ∩BN

⟨v, w⟩ ≤ min
v⊥∈V ⊥

∥w + v⊥∥N∗ .

For the other direction, consider a projection π : Rn → Rn/V ⊥. Take a vector w

such that maxv∈V ∩BN
⟨v, w⟩ = 1, and assume for the sake of reaching a contradiction that

minv⊥∈V ⊥ ∥w + v⊥∥N∗ > 1. Equivalently, this is saying that π(w) ̸∈ π(BN∗), hence by
a separating hyperplane theorem we can find a hyperplane separating π(w) from π(BN∗).
Such a hyperplane will be parametrized by r ∈ V , say with ∥r∥N = 1, s.t. ⟨r, w⟩ >

maxw′∈BN∗ ⟨v, w′⟩ = ∥r∥N = 1. But this is a contradiction with maxv∈V ∩BN
⟨v, w⟩ = 1. ◀

The following is basically a restatement of the more involved direction in the above
duality.

▷ Claim 19. If p : X → Y is an isometric embedding, then for any w ∈ X∗ we can find
w′ ∈ Y ∗, with ∥w′∥Y ∗ = ∥w∥X∗ , s.t. for any x ∈ X we have ⟨p(x), w′⟩ = ⟨x, w⟩.

▶ Remark 20. Note that the map which sends w ∈ X∗ to w′ ∈ Y ∗ described above is usually
not linear.

For a convex, origin-symmetric body K ⊂ V , we define a dual body K∗ ⊂ V ∗ as
K∗ := {w : ∀v ∈ K, ⟨w, v⟩ ≤ 1}. If N is a norm, we have B∗

N = BN∗ , moreover for any pair
of bodies we have K1 ⊂ K2 ⇐⇒ K∗

2 ⊂ K∗
1 , and K∗∗ = K. Finally, for arbitrary subset

S ⊂ V define conv(S) to be the convex hull of S.

▶ Lemma 21. If K1 and K2 are convex origin-symmetric bodies, then

(K1 ∩ K2)∗ = conv(K∗
1 ∪ K∗

2 ).
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Proof. We will first show that (K1 ∩ K2)∗ ⊂ conv(K∗
1 ∪ K∗

2 ). Equivalently we can check that
conv(K∗

1 ∪ K∗
2 )∗ ⊂ K1 ∩ K2. To this end, take arbitrary v ∈ conv(K∗

1 ∪ K∗
2 )∗. By definition,

for any w ∈ conv(K∗
1 ∪ K∗

2 ) we have ⟨v, w⟩ ≤ 1. In particular since K∗
1 ⊂ conv(K∗

1 ∪ K∗
2 ),

we have supw∈K∗
1

⟨v, w⟩ ≤ 1, therefore v ∈ K∗∗
1 = K1, and symmetrically v ∈ K2.

For the other direction, we wish to show that conv(K∗
1 ∪ K∗

2 ) ⊂ (K1 ∩ K2)∗. Note that
since K1 ∩ K2 ⊂ K1, we have K∗

1 ⊂ (K1 ∩ K2)∗, and symmetrically K∗
2 ⊂ (K1 ∩ K2)∗.

Since (K1 ∩ K2)∗ is a convex body such that K∗
1 ∪ K∗

2 ⊂ (K1 ∩ K2)∗, we also have
conv(K∗

1 ∪ K∗
2 ) ⊂ (K1 ∩ K2)∗. ◀

▶ Corollary 22. Consider two arbitrary norms N1, N2 on a linear space V , and a norm N =
max(N1, N2). We can decompose any w ∈ BN∗ as w = w1 +w2, where ∥w1∥N∗

1
+∥w2∥N∗

2
≤ 1.

3 Reductions and communication complexity lower bounds

In this section we prove that a bounded distortion embedding of a normed space (Rk, ∥ · ∥X)
into another normed space (Rn, ∥ · ∥Y ) provides a reduction between the corresponding IPX

and IPY communication problems. We use this reduction to deduce lower bounds for one-way
communication complexity of the IPX problems for spaces X that contain a (distorted) copy
of ℓ∞.

▶ Proposition 23 (Extended version of Proposition 3). If (Rk, ∥ · ∥X) ↪→α (Rn, ∥ · ∥Y ), then
for any ε, δ we have Rε,δ(IPX) ≤ Rα−1ε,δ(IPY ), and moreover −→

Rε,δ(IPX) ≤
−→
Rα−1ε,δ(IPY ).

Proof. We can decompose any embedding f : X → Y with distortion α as a composition
of linear maps f = f2 ◦ f1, where f1 : X → f(X) is an isomorphism of underlying vector
spaces (it preserves the dimension) and has distortion α and f2 : f(X) → Y is an isometric
embedding (i.e. it has distortion 1).

As such it is enough to show the statement of the proposition in those two special cases –
if the distortion is 1, or map f is in an isomorphism (perhaps with non-trivial distortion).

For isometric embedding p : X → Y the result Rε,δ(IPX) ≤ Rε,δ(IPY ) (and the same
for −→

R) follows from Claim 19 – Alice, given a vector u ∈ X, can instead consider a vector
p(u) ∈ Y , Bob on the other hand given w ∈ X∗ can find a vector w′ ∈ Y ∗ as in Claim 19 –
such that ⟨u, w⟩ = ⟨p(u), w′⟩. They can now apply the protocol for IPY on the pair of inputs
(p(u), w′).

Now, consider the assumption that f is an isomorphism of underlying vector spaces, with
distortion α. In this case we can basically think of a single vector space V , on which we have
two norms X and Y , s.t. for all v we have α−1∥v∥X ≤ ∥v∥Y ≤ ∥v∥X . It is easy to check
that in this case, for any w ∈ V ∗ we have ∥w∥X∗ ≤ ∥v∥Y ∗ ≤ α∥v∥X∗ .

Finally, if Alice has v ∈ BX (unit ball with respect to the norm ∥ · ∥X), and Bob has
w ∈ BX∗ , we have v ∈ BY and α−1w ∈ BY ∗ . They can use the protocol for the norm ∥ · ∥Y

with an error α−1ε applied to (v, α−1w) to compute jointly C = α−1 ⟨v, w⟩ ± α−1ε. Knowing
this C they can easily compute αC = ⟨x, y⟩ ± ε. ◀

▶ Lemma 24. For any α < 1, we have −→
Rα,1/3(IPℓ∞) ≥ Ω(n).

Proof. We will use reduction from the index problem on n bits – in this problem Alice
is given an n bit string x ∈ {0, 1}n, and Bob an index i ∈ [n], and he wants to output a
value xi with probability at least 2/3. It is known that one-way communication of the index
problem is Ω(n) – Alice needs to essentially send her entire bit-string to Bob [16, 19].
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Given an instance (x, i) of an indexing problem we can easily encode it as an equivalent
instance of IPℓ∞ : Alice takes her bit-string x ∈ {0, 1}n encodes it as vx =

∑
i xiei, with

∥vx∥∞ ≤ 1. Bob can recover arbitrary bit xi if he can approximate ⟨vx, ei⟩ = xi up to an
error smaller than 1. His test vector w = ei clearly has ∥w∥1 = 1. ◀

We are now ready to prove Proposition 7 announced in the introduction.

Proof of Proposition 7. We need to show that if ℓk
∞ ↪→ε−1 (Rn, ∥ · ∥X), then −→

Rε,1/3(IPX) ≥
Ω(k). It follows as a direct corollary by composing Lemma 24 together with Proposition 23.

◀

Finally, we can use Proposition 7 to show a lower bound for the communication complexity
of IPℓp

.

▶ Lemma 25. We have −→
Rε,1/3(IPℓp) ≥ Ω(min(n, ε− max(p,2))).

Proof. Let r = ε− max(p,2), and assume r < n. We wish to show that ℓr
∞ ↪→ε−1

ℓp. If p ≥ 2,
we can just take a subspace spanned by the first r basis vectors, and observe that for α ∈ ℓr

∞,
we have ∥α∥∞ ≤ ∥

∑
i≤r αiei∥p ≤ ∥α∥∞r1/p = ε−1∥α∥∞ – this inclusion gives an embedding

with distortion ε−1.
For p < 2, it is known that the Banach-Mazur distance between ℓr

p and ℓr
∞ is at most

O(
√

r) = O(ε−1) [12, Chapter 1, Section 8] – which is just the same as saying that there
exists a linear isomorphism between ℓr

∞ and ℓr
p with distortion at most O(

√
r) = O(ε−1). ◀

▶ Lemma 26. We have Rε,1/3(IPℓp) ≥ Ω(min(n, ε−2)).

Proof. We will use a reduction from the Gap-Hamming problem – in this problem Alice
and Bob are given two vectors x, y ∈ {0, 1}k, and they wish to check if ∆(x, y) < k

2 − C
√

k

or ∆(x, y) > k
2 + C

√
k, where ∆(x, y) = |{i : xi ̸= yi}| – it is known that any randomized

protocol solving this problem with probability 2/3 needs to use Ω(k) communication [6, 20].
Alice and Bob will interpret their vectors x, y directly as vectors in Rn (padding with

zeros if necessary). Note that since ∆(x, y) = ∥x∥2
2 + ∥y∥2

2 − 2 ⟨x, y⟩, if Alice and Bob
can compute ⟨x, y⟩ up to an additive error smaller than 2C

√
k, they can solve the Gap-

Hamming problem. Using the ε-approximate protocol for IPℓp
they can compute ⟨x, y⟩ ±

ε∥x∥p∥y∥q = ⟨x, y⟩ ± εk1/pk1/q = ⟨x, y⟩ ± εk. Choosing ε = 2C√
k
, we get the desired lower

bound: Rε,1/3(IPℓp) ≥ Ω(k) = Ω(ε−2). ◀

Finally, we will show we can solve the one-way communication problem IPN if the norm
N admits a sparsification.

▶ Proposition 27. If a norm N admits a (ε, δ, D)-sparsification, then −→
Rε,δ(IPN ) ≤ O(D ·

log n
ε ).

Proof. Alice, given a vector v ∈ Rn with ∥v∥N ≤ 1 can just apply a sparsification procedure
to obtain a vector ϕ(v) and try to send an encoding of ϕ(v) to Bob. In order to efficiently
encode this vector, for each of at most D non-zero coefficients she needs to send the index of
the corresponding coefficient (spending at most log n bits), and an encoding of its value up
to precision (ε/n)O(1) – for which she needs to spend O(log n + log ε−1) = O(log n

ε ) bits. ◀
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4 Sparsification for ℓp

In this section we prove Theorem 6, restated for convenience.

▶ Theorem 6. For any 1 ≤ p < ∞, and any ε > 0, the norm ℓp on Rn admits a
(ε, 1/3, O(ε− max(2,p)))-sparsification. In particular, −→

Rε,δ(IPℓp) ≤ O(ε− max(2,p) · log n
ε ).

Proof. It is enough to show the sparsification procedure ϕ for vectors v ∈ Rn with ∥v∥p = 1
– for arbitrary vector v ∈ Bp, we will then take ϕ(v) := ∥v∥pϕ(v/∥v∥p).

Given v with ∥v∥p = 1, consider a distribution Dv over [n], given by Pra∼Dv
(a = i) = |vi|p.

Consider now a random vector ṽ := eava

|va|p where a ∼ Dv and ea is a standard basis vector.
Clearly, we have E ṽ = v.

We will pick some s = Θ(ε− max(2,p)), and define ϕ(v) = 1
s

∑
j≤s ṽ(j), where ṽ(j) are i.i.d.

random vectors with the same distribution as ṽ. Again, clearly E ϕ(v) = v, and ∥ϕ(v)∥0 ≤ s.
Consider some w ∈ Bn

q , where q is such that 1
p + 1

q = 1. We wish to control the error
⟨ϕ(v), w⟩ − ⟨v, w⟩.

▷ Claim 28. We have ∥ ⟨ṽ, w⟩ ∥q ≤ 1. (This notation is a bit confusing: here ⟨ṽ, w⟩ is an
R-valued random variable, and the Lq-norm under consideration is ∥X∥q := (E Xq)1/q.)

Proof. Indeed,

∥ ⟨ṽ, w⟩ ∥q
q =

∑
i

|vi|p
(
|wi||vi|1−p

)q =
∑

i

|wi|q|vi|p+q−pq =
∑

|wi|q ≤ 1 . ◁

Consider now random variables Zj =
〈
ṽ(j), w

〉
− ⟨v, w⟩. We have E Zj = 0, and by the

above claim together with the triangle inequality ∥Zj∥q ≤ 2. Now, if q ≥ 2, this implies
that ∥Zj∥2 ≤ 2, and therefore ∥ ⟨ϕ(v), w⟩ − ⟨v, w⟩ ∥2 = ∥ 1

s

∑
j≤s Zj∥2 ≤ 2s−1/2 ≤ ε/3. The

Chebyshev inequality now implies that with probability 1/3 we have | ⟨ϕ(v), w⟩ − ⟨v, w⟩ | ≤ ε.
Similarly, if 1 < q < 2, we can apply Lemma 17, to deduce that ∥ ⟨ϕ(v), w⟩ − ⟨v, w⟩ ∥q =

∥ 1
s

∑
Zj∥q ≲ s1/q−1 = s−1/p, therefore if s = Θ(δ−1ε−p), we get ∥ ⟨ϕ(v), w⟩−⟨v, w⟩ ∥q ≤ ε/3,

and again by Chebyshev, with probability 2/3 we have | ⟨ϕ(v), w⟩ − ⟨v, w⟩ | < ε.
The upper bound on −→

Rε,δ(IPℓp
) follows by Proposition 27. ◀

We can now prove Theorem 1 stating that Rε,1/3(IPℓp
) ≤ O( log n

ε2 ).

Proof of Theorem 1. If 1
p + 1

q = 1, by symmetry between Alice and Bob we have
Rε,1/3(IPℓp

) = Rε,1/3(IPℓq
), and since for any norm Rε,1/3(IPN ) ≤

−→
Rε,1/3(IPN ), we have

Rε,1/3(IPℓp
) ≤ min(−→Rε,1/3(IPℓp

), −→
Rε,1/3(IPℓq

)).

Since for dual exponents p, q, we have min(p, q) ≤ 2, the bound follows. ◀

5 Efficient protocol for arbitrary symmetric norm

The goal of this section is the proof of Theorem 4.

▶ Theorem 4. For any symmetric norm N , we have Rε,1/3(IPN ) ≤ Õ(ε−6) log n.

The main ingredient used by us is the embedding theorem, saying that any symmetric
norm can be with low distortion embedded into an explicit, relatively simple space. Before
we can state this theorem, we need to introduce a sum operation of normed spaces – it is
necessary to describe the target space in the embedding theorem.
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For a sequence of normed spaces V1, V2, . . . Vd, and a norm h on Rd, we can construct a
normed space V called the h-sum of Vi, denoted as

V =
h⊕

i≤d

Vi,

such that the underlying vector space is V :=
⊕

i≤d Vi and norm is defined by the following
formula. For an arbitrary vector v ∈ V , with decomposition v =

∑
vi where vi ∈ Vi, we take

∥v∥V := h(∥v1∥V1 , ∥v2∥V2 , . . . ∥vd∥Vd
).

We also need to define the Top-k norm T (k) on Rn, given by

∥v∥T (k) :=
∑
j≤k

|v|(i)

Where |v|(1) ≥ |v|(2) ≥ . . . ≥ |v|(n) is a non-increasing (in the magnitude) rearrangement of
entries of v.

With those definition in hand, the aforementioned embedding theorem can finally be
stated.

▶ Theorem 29 ([2, Theorem 4.2]). For any symmetric norm N , and any δ > 0, the normed
space (Rn, ∥·∥N ) embedds with distortion 1+δ into

⊕l∞
i≤t

⊕ℓ1
k≤n T (k), where t = nO(δ−1 log δ−1).

We will use this Theorem 29 together with Proposition 3 to prove Theorem 4. To this
end, all we need to do is to show an explicit protocol for the inner product problem on a
space of form

⊕l∞
i≤t

⊕ℓ1
k≤n T (k).

5.1 Compositions of norm
We will show here that if all normed spaces Vi admit an efficient protocol for the inner
product problem, and h admits a sparsification, then also ⊕h

i Vi has an efficient protocol for
the inner product problem.

▶ Lemma 30. If V =
⊕h

i≤d Vi, then V ∗ =
⊕h∗

i≤d V ∗
i .

Proof. Consider w ∈ V ∗, such that w = w1 + . . . + wd. We have

∥w∥V ∗ = sup
v∈V,∥v∥V ≤1

⟨v, w⟩

= sup
α∈Rd,∥α∥h≤1

sup
v1,...vk

∥vi∥Vi
=αi

〈∑
vi, w

〉
= sup

α∈Rd,∥α∥h≤1

∑
i

sup
vi

∥vi∥Vi
=αi

⟨vi, wi⟩

= sup
α∈Rd,∥α∥h≤1

∑
i

αi∥wi∥V ∗
i

= h∗(∥w1∥V ∗
1

, . . . ∥wd∥V ∗
d

). ◀

▶ Lemma 31. If for each Vi we have Rε,1/3(IPVi) ≤ D1, and h has (ε, 1
9 , D2)-sparsification,

then the normed space V :=
⊕h

i≤d Vi has R2ε+γ,1/3(V ) ≤ O(D1D2 log D2 + D2 log d).
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Proof. Alice is given a vector v =
∑

i≤d vi, she can produce vector q ∈ Rd with qi = ∥vi∥Vi ,
satisfying ∥q∥h ≤ 1.

She can now apply the sparsification procedure to q, to get a sparsified ϕ(q) with
∥ϕ(q)∥0 ≤ D2. For each i ∈ supp(ϕ(q)), they simulate a protocol for Vi on vectors vi/∥vi∥V ∗

i

and wi/∥wi∥W ∗
i

. By repeating each such protocol O(log D2)-times and taking the median of
the results, they can ensure that with probability 8/9 they arrive at estimates τi satisfying
simultaneously for all i ∈ supp(ϕ(q)) the bounds τi = ⟨vi, wi⟩ ± ε∥vi∥Vi

∥wi∥Wi
.

Alice can now compute an estimate

u :=
∑

i

τiϕ(q)i/∥v∥Vi
.

We claim that with probability 2/3 we have |u −
∑

i ⟨vi, wi⟩ | ≤ 2ε + γ.
Indeed, let us first consider the vector η ∈ Rd with ηi := ⟨vi,wi⟩

∥vi∥Vi
. Note that |ηi| ≤ ∥wi∥V ∗

i
,

and therefore ∥η∥h∗ ≤ 1 (since ∥w∥V ∗ ≤ 1).
The fact that ϕ(v) was a sparsification for the norm h implies that except with probability

1/9 over ϕ, we have

⟨ϕ(q), η⟩ = ⟨q, η⟩ ± γ =
∑

i

∥vi∥Vi

⟨vi, wi⟩
∥vi∥Vi

± γ = ⟨v, w⟩ ± γ. (1)

On the other hand

⟨ϕ(q), η⟩ =
∑

i∈supp(ϕ(q))

ϕ(q)iηi =
∑

i∈supp(ϕ(q)

⟨vi, wi⟩
ϕ(q)i

∥vi∥Vi

Since for i ∈ supp(ϕ(q)) we have access to τi = ⟨vi, wi⟩ ± ε∥vi∥Vi
∥wi∥Wi

, this yields

⟨ϕ(q), η⟩ =
∑

i

τi
ϕ(q)i

∥vi∥Vi

±
∑

i

εϕ(q)i∥w∥V ∗
i

= u + ε
∑

i

ϕ(q)∥wi∥V ∗
i

. (2)

Now, using again that ϕ was promised to be a sparsification of q, and the vector
r = (∥wi∥V ∗

i
)i∈[d] has bounded h∗ norm by 1, except with probability 1/9 we have∑

i

ϕ(q)i∥wi∥V ∗
i

≤
∑

i

qi∥wi∥V ∗
i

+ γ ≤ ∥q∥h∥r∥h∗ + γ ≤ 1 + γ.

Plugging this into (2) yields

u = ⟨ϕ(q), η⟩ + (1 + γ)ε

and combining this with (1) we get

u = ⟨v, w⟩ ± (ε(1 + γ) + γ).

The total failure probability is bounded by 1/3 – we have probability 1/9 for any of τi to
differ by more than ε fom the desired value, probability at most 1/9 for ⟨ϕ(q), η⟩ to be far
from the desired value, and probability 1/9 for ⟨ϕ(q), η⟩ to be far from the desired value.

Finally, the total communication is O(D2 log d + D1D2 log D2). For each index i ∈
supp(ϕ(q)) (where |supp(ϕ(q))| ≤ D2), Alice has to communicate this index to Bob (paying
log d bits of communication). Then for each such index they use the protocol for the norm
∥ · ∥Vi with communication cost D1, and they repeat O(log D2) times to amplify the success
probability. ◀
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5.2 Top-k norm
We will now discuss properties of the Top-k norm, in order to prove that those norms
admit an efficient protocol for the inner product problem. It turns out that ∥w∥T ∗

(k)
=

max(∥w∥∞, ∥w∥1/k).

▶ Remark 32. We have isometric embeddings ℓk
∞ ↪→ (T (k))∗ and ℓ

n/k
∞ ↪→ T (k). In particular

both −→
R1−ε,1/3(T (

√
n)) ≥ Ω(

√
n) and −→

R1−ε,1/3((T (
√

n))∗) ≥ Ω(
√

n).

▶ Lemma 33. If N1 and N2 are norms, and N is a norm given by ∥v∥N = max(∥v∥N1 , ∥v∥N2),
then Rε,2δ(IPN ) ≤ Rε,δ(IPN1) + Rε,δ(IPN2).

Proof. Consider Bob with a vector w, such that ∥w∥N∗ ≤ 1. By Corrolary 22, he can
decompose w = w1 + w2, where ∥w1∥N∗

1
+ ∥w2∥N∗

2
≤ 1

They can now use protocol for N1 to compute ⟨v, w1⟩±∥w1∥N1ε, since ∥v∥N1 ≤ ∥v∥N ≤ 1,
and similarly they can use protocol for N2 to compute ⟨v, w2⟩ ± ∥w2∥N2ε. Clearly ⟨v, w⟩ =
⟨v, w1⟩+ ⟨v, w2⟩, so by adding the estimates from those two rounds, they can get the estimate
for ⟨v, w⟩ with an additive error (∥w1∥N1 + ∥w2∥N2)ε ≤ ε. The communication cost is
D1 + D2, and the failure probability is 2δ, where δ is a failure probability for protocol they
used to approximate ⟨vi, w⟩. ◀

▶ Corollary 34. Rε,1/3(IPT (k)) ≤ O( log n
ε2 ).

Proof. Follows from Lemma 33, and Theorem 1, since T ∗
(k) = max(ℓ∞, ℓ1/k). ◀

5.3 Proof of Theorem 4
Using the embedding theorem (Theorem 29) with δ = 1/2 and Proposition 3, it is enough to
bound Rε,1/3(IPV ) for the space V =

⊕ℓ∞
i≤t

⊕ℓ1
k≤n T (k).

By Corollary 34, we have R(IPT (k)) ≤ O( log n
ε2 ). Applying Lemma 31, we can deduce

that a space V ′ =
⊕ℓ1

k≤n T (k) has R(IPV ′) = O( log n
ε4 log ε−1). Finally, applying once again

Lemma 31 together with Lemma 30 and Theorem 6 for ℓ1, we get R(IPV ) = O( log n
ε6 log2 ε−1).

6 Sparsification for symmetric norms

In the sequel we will consider a normed space (Rn, ∥ · ∥N ) with a symmetric norm N , such
that ℓk

∞ ̸↪→1/ε X, and define p := log k
log ε−1 , such that ( 1

ε )p = k. Note that by Proposition 7 if
ℓk

∞ ↪→1/ε X, then −→
Rε,1/3(IPX) ≥ Ω(k). We wish to show the converse; ideally, a statement

of form if ℓk
∞ ̸↪→1/ε X, then X admits (ε, 1/3, O(k))-sparsification (see Definition 5), or

to put it differently (ε, 1/3, O( 1
εp ))-sparsification – this would be a direct generalisation of

Theorem 6.
We will in fact show only quantitatively weaker version, specifically the theorem mentioned

in the introduction.

▶ Theorem 8. If N is a symmetric norm such that (Rk, ℓ∞) ̸↪→ε−1 (Rn, N), then N admits
a (O(ε), 1/3, kO(log log k) log2 n)-sparsification.

More concretely, we will prove the following slightly stronger statement.

▶ Theorem 35. If ℓk
∞ ̸↪→1/ε (Rn, ∥ · ∥N ) for a symmetric norm N , this norm has (ε, 1/3, τ)-

sparsification, where τ = (p/ε)4p log2(n)) and p = log k
log ε−1 .
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In particular, when ε < 1
log n this yields sparsity kO(1).

The proof of this theorem will follow similar outline as the proof of Theorem 6, except
that each step along the way is more involved, and many steps are more abstract. We
recommend comparing those ideas to the ideas in more straightforward proof of Thoerem 6,
to have a mental picture of the overall strategy.

Proof of Theorem 8
Let us consider an arbitrary vector v ∈ Rn, with ∥v∥N ≤ 1, and a random variable t ∈ [n],
drawn according to some distribution Pr(t = i) = pi, which could potentially depend on the
vector v. Let us take now a random 1-sparse vector ṽ := et

vt

pt
, where et is a standard basis

vector. Clearly, by construction E ṽ = v.
We will specify a suitable distribution for a random variable t, such that we can upper

bound the quantity supw∈BN∗ ∥ ⟨ṽ, w⟩ ∥q,∞, where q is the dual exponent to p (i.e. 1/p +
1/q = 1). If we have an upper bound supw∈BN∗ ∥ ⟨ṽ, w⟩ ∥q,∞ ≤ K, it implies O((pK/ε)2p)-
sparsification for a vector v – in short because we can bound ∥ ⟨ṽ, w⟩ ∥q′ ≤ O(p)∥ ⟨ṽ, w⟩ ∥q,∞ =
O(Kp) for a slightly smaller q′, and therefore by Lemma 17 it is enough to sample O(pK/ε)2p

vectors ṽ independently at random for an average of ⟨ṽi, w⟩ to concentrate within ε of its
expectation.

In order to implement this proof idea, let us first show a convenient bound for the quantity
supw∈BN∗ ∥ ⟨ṽ, w⟩ ∥q,∞.

▶ Lemma 36. For any v ∈ Rn and the random vector ṽ := etvt/pt where t ∈ [n] is a random
variable distributed according to Pr(t = i) = pi, and any q ≥ 1, if pi = 0 for all i with vi = 0,
we have

sup
w∈BN∗

∥ ⟨ṽ, w⟩ ∥q,∞ ≤ sup
S⊂[n]

Pr(t ∈ S)−1/p∥vS∥N ,

where vS is a restriction of v to coordinates in S, and p, q are dual exponents ( 1
p + 1

q = 1).

Proof. Expanding the definition of ∥ ⟨ṽ, w⟩ ∥q,∞, we get

∥ ⟨ṽ, w⟩ ∥q,∞ = sup
λ

Pr(| ⟨ṽ, w⟩ | ≥ λ)1/qλ

= sup
S⊂[n]

Pr(t ∈ S)1/q(min
i∈S

|viwi|
pi

).

We could now take supw∈BN∗ , to see that

sup
w∈BN∗

∥ ⟨ṽ, w⟩ ∥q,∞ = sup
S⊂[n]

Pr(t ∈ S)1/q sup
w∈BN∗

min
i∈S

|viwi|
pi

. (3)

For any S, let wS be a vector with (wS)i = pi

vi
for i ∈ S, and (wS)i = 0 otherwise. When the

set S is fixed, the supremum is achieved for w = wS/∥wS∥N∗ , that is

sup
w∈BN∗

min
i∈S

|viwi|
pi

= 1
∥wS∥N∗

. (4)

Indeed, if we had any w such that at least one of the terms |viwi|
pi

was greater than the
minimum, we could decrease the corresponding |wi|, preserving the property w ∈ BN∗ , and
without affecting mini

|viwi|
pi

. Hence, there is an optimal vector w for which all terms |viwi|
pi

for i ∈ S are equal to each other – that is all |wi| for i ∈ S are proportional to pi

|vi| . Among
those, the one maximizing |viwi|

pi
is the one with maximal N∗ norm, i.e. the vector wS

∥wS∥N∗ .
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Moreover, by the definition of the dual norm, we have ⟨wS , vS⟩ ≤ ∥wS∥N∗∥vS∥N , or to
put it differently

∥wS∥N∗ ≥ ∥vS∥−1
N ⟨wS , vS⟩ = ∥vS∥−1

N (
∑
i∈S

pi) = ∥vS∥−1
N Pr(t ∈ S). (5)

Plugging together inequalities (3), (4) and (5), we get

sup
w∈BN∗

∥ ⟨ṽ, w⟩ ∥q,∞ ≤ sup
S⊂[n]

Pr(t ∈ S)1/q Pr(t ∈ S)−1∥vS∥N = sup
S⊂[n]

Pr(t ∈ S)−1/p∥vS∥N .

◀

We will leverage the assumption that ℓk
∞ ̸↪→1/ε (Rn, ∥ ·∥N ) through the following property.

▶ Lemma 37. If ℓk
∞ ̸↪→1/ε (Rn, ∥ · ∥N ), and if v1, v2, . . . vk are vectors with disjoint support,

then

∥
∑
i∈[k]

vi∥N > ε−1 min
i

∥vi∥N .

Proof sketch. We can assume without loss of generality that ∥vi∥N = ∥vj∥N for all i, j ∈ [k].
If the inequality ∥

∑
vi∥N > ε−1 mini ∥vi∥N was violated then mapping ei 7→ vk would give

an embedding of ℓk
∞ into (Rn, ∥ · ∥N ) with distortion at most ε−1. ◀

Consider now a collection of disjoint sets T1, T2, . . . TR, vectors and a vector v with
∥v∥N ≤ 1 such that vTi

= αi1Ti
, where vTi

is a restriction of the vector v to coordinates in
the set Ti., Clearly, we have v =

∑
i vTi

. We will pick probabilities pi = 1
R

1
|Tj | for i ∈ Tj (and

similarly for T∗). That is, in order to sample coordinate t ∈ [n], we first sample uniformly
one of the sets Ti or T∗, and then a uniformly random coordinate from this set. As before,
let ṽ be a random vector defined as ṽ = et

vt

pt
with probability pt.

▶ Lemma 38. For a vector v and a random index t of the form described above, we have

sup
S⊂[n]

Pr(t ∈ S)1/p∥vS∥N ≤ (kR)1/p, (6)

where ℓk
∞ ̸↪→ (Rn, ∥ · ∥N ) and p := log k

log ε−1 .

Proof. We will show that for any set S either the desired inequality (6) holds, or we can
find another set S′ with |S| < |S′| such that

Pr(t ∈ S)1/p∥vS∥N ≤ Pr(t ∈ S′)1/p∥vS′∥N .

By the mathematical induction on n − |S| this is enough to prove the lemma.
Indeed, take Si = S ∩ Ti, and consider two cases. Either there is some i0 such that

|Si0 |/|Ti0 | > 1
k , or for all i we have |Si0 |/|Ti0 | ≤ 1

k .
In the former case, we can bound ∥vS∥N ≤ ∥v∥N = 1, and

Pr(i ∈ S) = 1
R

∑
i

|Si|
|Ti|

≥ 1
R

|Si0 |
|Ti0 |

> (kR)−1.

hence Pr(i ∈ S)−1/p∥vS∥N ≤ (kR)1/p as desired.
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On the other hand if for all i we have |Si|
|Ti| ≤ 1

k , we can find a collection of disjoint sets
S(1) = S, S(2), S(3), . . . S(k) such that for all i, j we have |S(i) ∩ Tj | = |Sj |. Let us define
S′ =

⋃
i S(i), so that vS′ =

∑
i vS(i) . We can now apply Lemma 37 to vectors vS(i) (they all

have the same norm, since they are all permutations of each other), to deduce

∥vS′∥N = ∥
∑
i∈[k]

vS(i)∥N > ε−1 min
i

∥vS(i)∥N = ε−1∥vS∥N

On the other hand Pr(i ∈ S′) = 1
R

∑
i∈R

|S′∩Ti|
|Ti| = k Pr(i ∈ S). Hence,

Pr(i ∈ S)−1/p∥vS∥N ≤ k1/pε Pr(i ∈ S′)−1/p∥vS′∥N = Pr(i ∈ S′)−1/p∥vS′∥N . ◀

We will use this bound for structured vectors to show a similiar upper bound for arbitrary
vectors with R = O(log n), essentially by rounding each coordinate to the nearest value 2−j .

▶ Lemma 39. For any vector v with ∥v∥N ≤ 1, there is a distribution (p1, p2, . . . pn) of a
random variable t ∈ [n] such that the random vector ṽ := et

vt

pt
satisfies

sup
w∈BN∗

∥ ⟨ṽ, w⟩ ∥q,∞ ≤ O(k1/p log1/p(n)).

Proof. Consider sets Ti = {j : 2−i < vj ≤ 2−i+1} for i ≤ R where R := 3 log2(n) and
T+ = {j : vj ≤ 2−R}. In particular each coordinate j ∈ T+ satisfies vj ≤ 1

n3 , and therefore
∥vT+∥N ≤ 1

n2 .
We will set probabilities pj = 1

R+1
1

|Ti| for j ∈ Ti (and similarly 1
R+1

1
|T+| for j ∈ T+).

According to Lemma 36, it is enough to bound

sup
S⊂[n]

Pr(t ∈ S)−1/p∥vS∥N .

Consider now a vector v′ :=
∑

i 2−i1Ti
, and a random variable t′ where Pr(t′ = j) = 1

R
1

|Ti|
for j ∈ Ti (and Pr(t′ ∈ T+) = 0). We can apply Lemma 38 to the pair (v′, t′) and deduce

sup
S⊂[n]

Pr(t′ ∈ S)1/p∥v′
S∥N ≤ (kR)1/p.

Consider now arbitrary S and decompose S = S′ ∪S′′ where S′′ = S ∩T+ and S′ = S −S′′,
we have

Pr(t ∈ S)−1/p∥vS∥N ≤ Pr(t ∈ S)−1/p∥vS′∥N + Pr(t ∈ S)−1/p∥vS′′∥N (7)

We can bound those two terms separately. On one hand Pr(t ∈ S) ≥ Pr(t ∈ S′) =
R

R+1 Pr(t′ ∈ S′) and ∥vS′∥N ≤ 2∥v′
S′∥N (since we have coordinate-wise inequalities |vj | ≤

2|v′
j | for j ∈ S′), therefore

Pr(t ∈ S)−1/p∥vS′∥N ≤ 2
(

R + 1
R

)1/p

Pr(t′ ∈ S′)−1/p∥v′
S′∥N

≤ 2
(

R + 1
R

)1/p

(kR)1/p = 2(k(R + 1))1/p. (8)

On the other hand

Pr(t ∈ S)−1/p∥vS′′∥N ≤ ( 1
R

1
|T+|

)−1/p∥vT+∥N ≲ (n log n)1/p 1
n2 = o(1). (9)

Combining now inequalities (7), (8) and (9), get the desired result

sup
w∈BN∗

∥ ⟨ṽ, w⟩ ∥q,∞ ≤ O(k1/p log1/p n). ◀
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With this lemma in hand, we are ready to prove the Theorem 35.

Proof of Theorem 35. For a vector v ∈ BN , let us consider a random vector ṽ distributed
as in Lemma 39, and s independent copies of ṽ, say ṽ1, . . . ṽs, for some s that will be specified
later.

Take ϕ(v) := 1
s

∑
i≤s ṽi. Since ∥ṽi∥0 = 1, we have ∥ϕ(v)∥0 ≤ s, and since E ṽi = v, we

also have E ϕ(v) = v. We wish to show that for any given w ∈ BN∗ with probability 2/3 we
have ⟨ϕ(v), w⟩ = ⟨v, w⟩ ± ε.

Let us define Zi = ⟨ṽi, w⟩ − ⟨v, w⟩, moreover let us take p′ = 2p, and q′ a dual exponent
(i.e. satisfying 1/q′ + 1/p′ = 1).

By Lemma 16, we have ∥Zi∥q′ ≲ p∥Zi∥q,∞, and by Lemma 39 we have ∥Zi∥q,∞ ≤
∥ ⟨ṽ, w⟩ ∥q,∞ + 1 ≤ O(k1/p log1/p n).

Applying now Lemma 17, we have ∥ 1
s

∑
i≤s Zi∥q′ ≲ s−1/p′∥Z1∥q′ ≲ p

(
k log n√

s

)1/p

.

If we now chose s =
(

Cp
ε

)2p

(k log n)2 for some universal constant C, we can ensure that
∥ 1

s

∑
i≤s Zi∥q′ ≤ ε/5, and by Markov inequality with probability 2/3 we have | 1

s

∑
i≤s Zi| ≤ ε,

or equivalently

⟨ϕ(v), w⟩ = ⟨v, w⟩ ± ε,

as desired. ◀

▶ Remark 40. By the way, we can write (Cp/ε)4p log2 n = kO(log log k) + log3 n, if we consider
this bound to be more aesthetically pleasing.

7 Extension complexity and communication complexity of IPP

In this section we prove Proposition 10 and Theorem 12.
As a reminder, in this section we consider an arbitrary origin-symmetric polytope P

(with P = −P ) and the associated norm ∥ · ∥P on Rn for which P is a unit ball. We wish to
connect extension complexity of the polytope P with the communication complexity of the
related IPP problem.

We will first with a direct argument for Rε,δ(IPP ) ≤ O( log xc(P )
ε2 ) (Proposition 10) – more

concretely, we wish to show that if a P is a projection of some polytope Q such that Q is
defined by M inequalities, then Rε, 1

3
(IPP ) ≤ O( log M

ε2 ).

▶ Lemma 41. Let P be an origin-symmetric polytope in Rn. If P is a projection of Q then
Rε,δ(IPP ) ≤ Rε,δ(IPQ).

Proof. Consider Q ∈ Rn and a subspace U ⊂ Rn such that P is the image of Q for the
projection π : Rn → Rn/U⊥.

By Lemma 18, the norm ∥ · ∥P on Rn/U⊥ is isometrically isomorphic with the dual to
the restriction of ∥ · ∥Q∗ to the subspace U . Therefore we have

Rε,δ(IPP ) = Rε,δ(IPP ∗) = Rε,δ(IPQ∗|U
) ≤ Rε,δ(IPQ∗) = Rε,δ(IPQ),

where the inequality follows from Proposition 3. ◀

▶ Lemma 42. If P is an origin-symmetric convex polytope defined by M inequalities, then
P ∗ has at most M vertices.
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Proof. This follows from Lemma 21 – for a polytope P defined by P = {x : ∀i − 1 ≤
Aix ≤ 1} we have P =

⋂
i{x : −1 ≤ ⟨Ai, x⟩ ≤ 1}, and therefore P ∗ = conv(

⋃
i K∗

i ), where
Ki := {x : −1 ≤ ⟨Ai, x⟩ ≤ 1}. It is easy to check that K∗

i = conv({Ai, −Ai}), and therefore
P ∗ = conv({±Ai}i). ◀

▶ Lemma 43. If P is an origin-symmetric polytope with M vertices, then −→
Rε,1/3(IPP ) ≤

O( log M
ε2 ).

Proof. In the communication problem Alice has arbitrary point v ∈ Rn with ∥v∥P ≤ 1,
which is just a point v ∈ P . She can express it as a convex combination v =

∑
i λivi where

all vi are vertices of the polytope P and
∑

λi = 1. Now consider a distribution D over
vertices of P specified by the vector which has Prx∼D(x = vi) = λi.

We have ExD x = v and therefore by linearity of expectation ExD ⟨x, w⟩ = ⟨v, w⟩ for Bobs
vector w. Since ∥w∥P ∗ ≤ 1, and all vertices of P by definition have P -norm equal to one,
the random variable ⟨x, w⟩ satisfies | ⟨x, w⟩ | ≤ 1. As ususal, by the Chebyshev inequality is
enough to sample t = O(ε−2) independent copies of x from the distribution D, to ensure
that the average 1

t

∑
i≤t

〈
x(i), w

〉
= ⟨v, w⟩ ± ε with probability 2/3.

Alice can now just perform the sampling herself and send the names of those vertices
to Bob – she can specify a vertex of a polytope using O(log M) bits of communication per
sample. ◀

With those lemmas in hand we are ready to show Proposition 10.

Proof of Proposition 10. If P is a projection of Q by Lemma 41 we have Rε,1/3(IPP ) ≤
Rε,1/3(IPQ), now by symmetry between Alice and Bob we have Rε,1/3(IPQ) = Rε,1/3(IPQ∗),
and since Q was defined by M inequalities, Q∗ has at most M vertices (by Lemma 42).
Finally, since Q∗ has at most M vertices we can apply Lemma 43 to deduce Rε,1/3(IPQ∗) ≤
O( log M

ε2 ). ◀

We will now concentrate on the proof of Proposition 12. To this end we will use the
following convenient characterization of the non-negative rank of matrix S.

▶ Theorem 44 ([8]). For a non-negative matrix S ∈ RX×Y , we say that the randomized
communication protocol computes S in expectation, if Alice and Bob given x ∈ X and y ∈ Y

respectively, output a non-negative value f(x, y) such that E f(x, y) = Sx,y. Let ecc(S) be
the communication of the optimal protocol computing S in expectation, then

ecc(S) = ⌈log rk+(S)⌉.

Proof of Proposition 12. By Theorem 44 it is enough to show a protocol for Alice and Bob
that computes in expectation a matrix S′ such that ∀i, j|Si,j − S′

i,j | ≤ 2ε, assuming that
they have an efficient protocol for IPP .

Here Alice is given a vertex v ∈ P , and Bob is given an inequality i among those defining
P (either ⟨x, Ai⟩ ≤ 1 or ⟨x, Ai⟩ ≥ −1). Note that ∥Ai∥P ∗ ≤ 1, so they can in fact use the
protocol for IPP to compute a value which is with probability 2/3 in a range ⟨v, Ai⟩ ± ε.

They can improve the failure probability by instantiating it independently O(log ε−1)
times and taking the median of reported answers – this method provides an answer in range
⟨v, Ai⟩ with probability 1−ε/2 – and hence they can attempt to compute slack as 1−⟨v, Ai⟩)
(or 1 + ⟨x, Ai⟩) – and if the answer is outside the range [0, 2], they just project it to this
range.
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This way, the answer f(v, Ai) they are computing is a non-negative, random variable
bounded by 2, such that with Pr(|f(v, i) − Sv,i| > ε) < ε/2 – this implies that for all v, i we
have E f(v, i) = Sv,i ± 2ε, proving

log r̃k+
2ε(SP ) ≤ O(log ε−1Rε,1/3(IPP )). ◀
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Abstract
We prove concentration bounds for the following classes of quantum states: (i) output states of
shallow quantum circuits, answering an open question from [15]; (ii) injective matrix product states;
(iii) output states of dense Hamiltonian evolution, i.e. states of the form eιH(p)

· · · eιH(1)
|ψ0⟩ for any

n-qubit product state |ψ0⟩, where each H(i) can be any local commuting Hamiltonian satisfying a
norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use
polynomial approximations to show that these states are close to local operators. This implies that
the distribution of the Hamming weight of a computational basis measurement (and of other related
observables) concentrates. An example of (iii) are the states produced by the quantum approximate
optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a
random spin model, the QAOA can only succeed with negligible probability even at super-constant
level p = o(log log n), assuming a strengthened version of the so-called overlap gap property. This
gives the first limitations on the QAOA on dense instances at super-constant level, improving upon
the recent result [8].

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Quantum complexity theory; Theory of computation → Quantum
complexity theory

Keywords and phrases quantum computing, polynomial approximation, quantum optimization
algorithm, QAOA, overlap gap property

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.5

Related Version Full Version: https://arxiv.org/abs/2209.02715

Funding Anurag Anshu: acknowledges support through the NSF award QCIS-FF: Quantum Com-
puting & Information Science Faculty Fellow at Harvard University (NSF 2013303).
Tony Metger : acknowledges support from the ETH Zurich Quantum Center.

Acknowledgements We thank Joao Basso, David Gamarnik, Song Mei, and Leo Zhou for very
helpful discussions and especially for suggesting the application to symmetric QAOA. AA also thanks
Daniel Stilck França, Tomotaka Kuwahara, Cambyse Rouzé, and Juspreet Singh Sandhu for helpful
discussions. This work was done in part while the authors were visiting the Simons Institute for the
Theory of Computing.

1 Introduction

Concentration bounds deal with the deviation of random variables from their expectation.
Such bounds describe important structural properties of probability distributions that carry
low correlation, and as a result have become ubiquitous tools in mathematics, computer
science, and physics. A series of recent works has extended concentration bounds to the
quantum many-body setting, where weakly correlated quantum states hold physical and
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5:2 Concentration Bounds for Quantum States and Limitations on the QAOA

computational relevance and their concentration properties explain important physical effects.
For example, the concentration of expectation values in various quantum states such as
product states [23, 24, 1], Gibbs quantum states [16, 30], and finitely correlated states [3]
explains the equivalence of ensembles [9, 10, 32, 2] and eigenstate thermalisation [29] in
quantum statistical mechanics. Concentration bounds are also an important proof technique
in quantum complexity theory: for example, concentration properties of quantum states
generated by low-depth quantum circuits have been used to prove circuit lower bounds
on low-energy states of quantum Hamiltonians [17], leading to the recent proof of the
NLTS conjecture [7, 6, 5]. Furthermore, concentration results play an important role in
analysing and bounding the performance of variational quantum algorithms for classical
constraint optimisation problems, e.g. the quantum approximate optimisation algorithm
(QAOA) [19, 18, 14, 8].

The standard method to prove concentration inequalities is the moment method. The
slow growth of the moments of weakly correlated probability distributions or quantum
states serves as a signature of concentration. Arguably the simplest example is the classical
Chernoff-Hoeffding bound, which shows that the probability that the sum of n independent
random variables deviates from its expectation value by more than k is at most e−Ω(k2/n).
We call this Gaussian concentration. The moment method also extends to non-commuting
observables with product quantum states [27] or quantum states with exponential decay
of correlation [3], albeit sometimes with weaker bounds of the form e−Ω(kα/nβ) for some
α, β > 0. We call these weaker bounds exponential concentration.1

An alternative to the moment method was introduced in [28]. The idea of this approach is
to approximate the quantum state of interest by a local operator and use this approximation to
prove concentration bounds. Because the local approximation is usually constructed from low-
degree polynomials, we call this the polynomial-based method. The strength of the resulting
concentration bounds depends on the locality of the approximation. [28] used this method to
show exponential concentration of the form e−Ω(k/

√
n) for local classical observables on the

ground states of gapped local Hamiltonians. However, their method was not able to produce
Gaussian concentration even for the simplest case of local observables on an i.i.d. distribution
(e.g. the sum of i.i.d. random variables), a case in which the Chernoff-Hoeffding bound does
give Gaussian concentration results.

1.1 Main results
We extend the polynomial-based method in two ways: we show that in cases where the
moment method produces Gaussian concentration, the polynomial-based method can do
so, too; and we show that the polynomial-based method can be applied to a much wider
class of states, including the output states of shallow quantum circuits, injective matrix
product states, and the output states of dense Hamiltonian evolutions (explained below).
An example of a dense Hamiltonian evolution is the QAOA for solving classical constraint
optimisation problems (COPs). We therefore obtain concentration bounds for the QAOA,
and combining this with the so-called overlap gap property first introduced in the classical
literature [22, 21], we prove strong limitations on the performance of the QAOA even at
(admittedly only slightly) super-constant level p = o(log log n). Crucially, our method works

1 Note that with this definition, technically Gaussian concentration is a special case of exponential
concentration for α = 2 and β = 1. However, when we say “exponential concentration” it is usually
implicit that α and β are such that the bounds are generally weaker than for Gaussian concentration.
A typical case is α = 1 and β = 1/2.
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for dense COPs, which may have constraints between any variables, and our proofs are fairly
straightforward. This improves upon the recent work [8], which proved similar results for
constant-level QAOA on dense instances using a highly technical proof.

We now describe our main results in more detail. In all cases, concentration bounds
are obtained by approximating the quantum state of interest by a local operator, so in
sketching the proof ideas, we only focus on the construction of such a local approximation.
Below, we only give concentration bounds for the Hamming weight distribution Wρ of an
n-qubit quantum state ρ, i.e. the probability distribution over {1, . . . , n} describing the
Hamming weight of a computational basis measurement of ρ. More formally, Pr[Wρ = i] =∑
x∈{0,1}n:|x|=i⟨x|ρ|x⟩. However, it is straightforward to extend these bounds to other

observables that only change slowly as the Hamming weight changes.

Table 1 Main results and comparison with prior work. For each case, we consider a state on n

qubits and bound the probability that the Hamming weight of a computational basis measurements
deviates by more than k ∈ [0, n] from its median (or mean). Note that [8] were able to show
concentration over both the choice of instance and the randomness of the QAOA output, whereas
our bounds, while stronger, only deal with concentration over the latter.

Prior work This work

Depth t quantum states e−Ω(k/
√

22tn) (implicit in [28]) e−Ω(k2/22tn)

Injective matrix product
states e−Ω(k/

√
n) ([28, 3]) e−Ω(k2/n)

Dense Hamiltonian evolution on(1) for the special case of
QAOA with level p = O(1) [8]

e−Ω(n1/8) for k = o(n) and level
p = o(log log n)

Shallow quantum circuits

Consider a depth-t quantum circuit, i.e. a circuit comprised of t layers of arbitrary 2-qubit
gates applied to the initial state |0⟩⊗n. We denote the unitary implemented by this circuit
by U . The output state of this circuit is the unique maximum-energy eigenstate of a 2t-local
Hamiltonian that is a sum of commuting projectors. To see this, observe that U |0⟩⊗n is the
unique joint (+1)-eigenstate of the operators Hi = U |0⟩⟨0|iU †, where |0⟩⟨0|i acts as identity
on all qubits except i. By a standard lightcone argument, Hi only acts non-trivially on 2t
qubits, so H = 1

n

∑
Hi is a 2t-local Hamiltonian with U |0⟩⊗n as its unique (+1)-eigenstate.

Therefore, the output of the circuit can be written as U |0⟩⟨0|⊗nU † = δ1(H), where δ1(1) = 1
and δ1(x) = 0 for x ̸= 1. We can now approximate δ1(x) using a degree-d polynomial Pd
constructed in [26, 12, 4]. Polynomials spread the locality of operators in a controllable way.
We can therefore show that Pd(H) is a (d · 2t)-local operator that approximates U |0⟩⟨0|⊗nU †.
Hence, we have constructed a local operator approximation to U |0⟩⟨0|⊗nU† and can use this
approximation to show that for any depth-t circuit, the output state |ψ⟩⟨ψ| = U |0⟩⟨0|⊗nU †

has the following concentration property for k ∈ (2t
√
n, 2tn):

Pr[|Wψ − median(Wψ)| ≥ k] ≤ e
−Ω

(
k2

22tn

)
.

This generalises the Chernoff-Hoeffding bound for product distributions (which correspond
to the case t = 1) and shows Gaussian concentration for any constant-depth quantum circuit,
answering an open question from [15]. Similar statements have also appeared in [7, 6, 5].
Note that the same argument applies to any ground state of a Hamiltonian that is a sum of
commuting projectors, not just output states of shallow circuits.

ITCS 2023
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Injective matrix product states

Matrix product states (MPSs) are a widely used tensor network representation of quantum
states. Injective MPSs have an additional property that ensures that they are the unique
ground state of a local “parent Hamiltonian” with a constant spectral gap. We can therefore
approximate an injective MPS as a polynomial of its parent Hamiltonian. Using near-
optimal polynomial approximations constructed in [4], we obtain Gaussian concentration
bounds for injective MPSs. Our bounds are stronger than previous ones [3, 28], which only
showed exponential concentration. We also note that conditionally independent probability
distributions can be encoded into injective MPSs, and that in that case our concentration
bounds reproduce a (version of) Azuma’s inequality.

Dense Hamiltonian evolution

Concentration bounds are natural for quantum states that have weak long-range correlations
such as the output states of shallow quantum circuits. A priori, one would not expect similar
bounds to hold for quantum states with long-range correlations. Recently, [8] considered
the output distribution of the QAOA (explained below) on random dense COPs, i.e. local
COPs that can have constraints between any variables. For dense COPs, the operations
implemented by the QAOA can include interactions between any qubits, and as a result
the output distribution can have long-range correlations. Remarkably, [8] showed that the
variance of the average energy density (averaged over the randomness of the QAOA as well
as the choice of random instance) vanishes asymptotically. This means that the energy
density of the output, which corresponds to the quality of the COP solution produced by the
QAOA, concentrates about the average. However, [8] were only able to prove an asymptotic
statement without explicit tail bounds and the proof was highly non-trivial.

We consider a more general class of states that includes the output states of the QAOA as
a special case. Specifically, we define the output of a dense Hamiltonian evolution as a state of
the form eιH

(p) · · · eιH(1) |ψ0⟩ for any n-qubit product state |ψ0⟩. Here, each H(i) can be any
commuting local Hamiltonian (though the different H(i) themselves are of course not required
to commute). Importantly, H(i) are allowed to be dense Hamiltonians, i.e. Hamiltonians
with interactions between any qubits. As explained below, the QAOA applied to a dense
COP is a special case of dense Hamiltonian evolution.

For our concentration bounds, we further require each H(i) to satisfy a norm constraint,
which limits the norm of the Hamiltonian restricted to a subset of the qubits. In particular,
this condition is satisfied with overwhelming probability for the random dense model from [8].
Under this condition, we can prove that the output state of a dense Hamiltonian evolution is
ϵ-close in operator norm to a kp-local operator for

kp ≤ cp1n
1−(1−α)p/4 , ϵ ≤ e−Ω(n1/8) .

Here, c1 and 0 ≤ α < 1 are constants and p is level of the dense evolution, i.e. the number
of unitaries eιH(i) that have been applied. In particular, if we choose p = o(log log n), then
k = o(n). This implies the following exponential concentration result: for ρp the output of a
dense Hamiltonian evolution with level p = o(log log n) satisfying the above conditions,

Pr
[
|Wρp

− median(Wρp
)| > o(n)

]
≤ e−Ω(n1/8) .

Here, we have only stated the asymptotic result, but we can also derive explicit bounds for
any choice of p. This concentration result can also be extended beyond just the Hamming
weight of a computational basis measurement: for example, it also holds for the energy
density of ρp with respect to any classical Hamiltonian satisfying a similar norm constraint
to the one mentioned above.
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To prove that the output of a dense Hamiltonian evolution can be approximated by a local
operator, we again make use of polynomial approximations. Recall that we are interested
in states of the form ρp = eιH

(p) · · · eιH(1) |ψ0⟩⟨ψ0|e−ιH(1) · · · e−ιH(p) for a pure product state
|ψ0⟩. As a first step, we approximate |ψ0⟩⟨ψ0| by a local operator. For this, we observe
that since |ψ0⟩ = ⊗i|ψ0⟩i is a product state, it is the unique ground state of the 1-local
Hamiltonian H = 1

n

∑
|ψ0⟩⟨ψ0|i. If we apply a linear combination of Chebychev polynomials

to this Hamiltonian, we obtain a good local approximation to |ψ0⟩⟨ψ0|. Then, for each
unitary eιH(i) in the dense Hamiltonian evolution, we approximate the exponential function
by its truncated Taylor series. The fact that the Hamiltonian evolution is applied to an
approximately local operator allows us to use the norm constraint mentioned above to obtain
an improved error bound for the truncated Taylor series. Therefore, the truncated Taylor
series spreads the locality of the state in a controllable way without degrading the quality of
the approximation too much. Applying this argument recursively for each layer of the dense
Hamiltonian evolution, we obtain a local approximation to the output state ρp.

Limitations on the QAOA from concentration bounds

The QAOA [19] is an algorithm for solving local COPs (i.e. COPs consisting of any number
of clauses, each with at most q = O(1) variables) on a quantum computer. We can associate
a q-local Hamiltonian H with every q-local COP C by replacing the variables in C with
Pauli-Z matrices acting on different qubits. The resulting Hamiltonian is diagonal in the
computational basis and has the property that for any string x ∈ {0, 1}n, C(x) = ⟨x|H|x⟩.
The QAOA attempts to find a “good” solution x (i.e. one for which C(x) is as large as
possible) by starting from the state |+⟩⊗n and then applying p layers of unitaries of the form
eιβiσ

⊗n
X eιγiH . Here, βi and γi are real parameters that can be tuned to the problem instance.

It is clear that this is a special case of the dense Hamiltonian evolution we have described
earlier. Our results will apply for any choice of βi and γi and we will always implicitly
consider a family of COPs, one for each number n of input bits, in order to make asymptotic
statements.

[8] considered the performance of the QAOA on a random spin model on n qubits,
described by the q-local Hamiltonian

Hq
n(J) = 1

n(q−1)/2

n∑
i1,...iq=1

Ji1,...iqσ
Z
i1 . . . σ

Z
iq , (1)

where Ji1,...iq ∼ N (0, 1) are sampled from i.i.d. standard Gaussians. For this model, [8] were
able to show that for constant even q ≥ 4 and level p = O(1), the value achieved by the
QAOA (for fixed βi, γi) in expectation over J and the internal randomness of the QAOA is
bounded away from the optimal value by a constant as n → ∞. They were also able to show
the asymptotic concentration property described above.

Here, we use our concentration results to show limitations on the QAOA for a class of
COPs that includes the random spin model above. For this, we consider local COPs that
have the so-called overlap gap property (OGP) [20], which roughly says that “good” solutions
to the COP are clustered in the sense that two good solutions are either close or far in
Hamming distance. Combining this with our concentration results for dense Hamiltonian
evolution, we can show that for any COP with a sufficiently strong OGP whose associated
Hamiltonian satisfies a certain norm condition, if the QAOA produced a good solution with
noticeable probability, then the probability distribution over good solutions produced by
the QAOA would have to be concentrated on one such cluster. This allows us to show that
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the QAOA cannot succeed with noticeable probability on symmetric COPs (i.e. COPs that
are invariant under flipping all the input bits) that have a strong OGP. This is because the
symmetry of the COP is in contradiction with the existence of a single cluster on which most
of the probability distribution is concentrated: if such a cluster existed, we could take the
strings in that cluster and flip all their bits to produce another cluster which, by symmetry,
must have the same probability weight, a contradiction. This argument is similar to [11]. As
a result, we obtain the following limitation on the QAOA.

▶ Theorem (informal). Consider a local symmetric COP C(x) with a sufficiently strong
OGP and suppose that the associated Hamiltonian H satisfies a certain norm constraint.
Then, the value of the solution to C(x) produced by the QAOA with level p = o(log log n) is
bounded away from the optimal value by at least a constant except with probability e−Ω(n1/8).

For even q, the random spin model from Equation (1) is symmetric and satisfies the
aforementioned norm constraint with overwhelming probability. Furthermore, it was shown
in [13] that it satisfies the OGP with overwhelming probability. However, we note that here
we need a stronger version of the OGP than was shown in [13]. This stronger version appears
to be implicit in their proof, too, although we leave its formal proof for future work and
assume it here as a conjecture. Assuming this stronger OGP, we can show the following.

▶ Theorem (informal). With probability 1−O(e−n) over the choice of J (with i.i.d. Gaussian
entries), the value of the solution to the random spin model (Equation (1)) produced by
the QAOA with level p = o(log log n) is bounded away from the optimal value by at least a
constant except with probability e−Ω(n1/8).

This places strong limitations on the performance of the QAOA because it does not just
bound the expectation value away from the optimal value as in [8], but instead asserts that
the QAOA output is bounded away from the optimal value with overwhelming probability,
even at super-constant level p = o(log log n).

1.2 Discussion and open questions
We have shown that polynomial approximations can be used to derive Gaussian concentration
bounds for the output states of constant-depth quantum circuits and injective matrix product
states, and exponential concentration bounds for the output states of dense Hamiltonian
evolution. The latter can be used to derive strong limitations on the performance of the
QAOA at super-constant level p = o(log log n) even on dense instances such as random spin
models.

At first sight, it is surprising that the (provably optimal) polynomial approximations [26,
12] we use for shallow quantum circuits are able to reproduce the (likewise provably optimal)
Chernoff-Hoeffding bound in the classical case. It would be interesting to explore whether
there is a deeper conceptual connection between optimal polynomial approximations and
optimal concentration bounds.

On a more technical level, there are a number of interesting improvements one could
hope to make to our bounds. Firstly, our bounds for MPSs can only deal with sub-linear
deviations k = O(n1−δ) for any δ > 0. It would be desirable to extend this result to arbitrary
values of k. Additionally, one could hope to prove similar concentration bounds for PEPSs,
the two-dimensional analogue of MPSs.

Secondly, we only achieve exponential, not Gaussian, concentration bounds for dense
Hamiltonian evolutions with level p = o(log log n). Can one improve these results to Gaussian
concentration and also extend them to higher levels, e.g. p = O(log n) or even p = O(nδ) for a
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small δ > 0? Furthermore, we show concentration for the output states of dense Hamiltonian
evolution for a fixed instance, but we cannot show that for random COPs, the output states
also have concentration properties over the choice of random instance, e.g. over the choice of
Ji1...iq ∼ N (0, 1) in the case of the random spin model introduced earlier. [8] do show such a
concentration property, albeit only in the asymptotic regime without explicit bounds. Can
our polynomial approximation techniques also be used to prove explicit concentration bounds
over the choice of random instance? If so, it might be possible to extend the limitations on
the performance of dense evolutions for COPs proven in this work beyond symmetric COPs
and optimisers.

Finally, our techniques may also be useful for problems in condensed matter physics.
As an example, consider the Lieb-Schultz-Mattis theorem [31] and its higher-dimensional
generalisation [25], seminal results in condensed matter physics. Their main idea is that
sufficient symmetry and non-degeneracy of the ground space prevents a Hamiltonian from
being gapped. Inspired by our application to symmetric QAOA, we can ask whether an
alternative proof of this result can be obtained using concentration bounds and polynomial
approximations, e.g. by showing that the concentration properties of unique gapped ground
states are in conflict with the symmetry requirements.
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Abstract
The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to computing
the rank of a matrix whose entries are linear polynomials in noncommuting variables [23]. This
rank computation problem has deterministic polynomial-time white-box algorithms [20, 25] and a
randomized polynomial-time algorithm in the black-box setting [14]. In this paper, we propose a
new approach for efficient derandomization of black-box RIT. Additionally, we obtain results for
matrix rank computation over the free skew field and construct efficient linear pencil representations
for a new class of rational expressions. More precisely, we show:

Under the hardness assumption that the ABP (algebraic branching program) complexity of every
polynomial identity for the k × k matrix algebra is 2Ω(k) [9], we obtain a subexponential-time
black-box RIT algorithm for rational formulas of inversion height almost logarithmic in the size
of the formula. This can be seen as the first “hardness implies derandomization” type theorem
for rational formulas.
We show that the noncommutative rank of any matrix over the free skew field whose entries have
small linear pencil representations can be computed in deterministic polynomial time. While an
efficient rank computation was known for matrices with noncommutative formulas as entries [19],
we obtain the first deterministic polynomial-time algorithms for rank computation of matrices
whose entries are noncommutative ABPs or rational formulas.
Motivated by the definition given by Bergman [7], we define a new class of rational functions where
a rational function of inversion height at most h is defined as a composition of a noncommutative
r-skewed circuit (equivalently an ABP) with inverses of rational functions of this class of
inversion height at most h − 1 which are also disjoint. We obtain a polynomial-size linear pencil
representation for this class which gives a white-box deterministic polynomial-time identity
testing algorithm for the class.
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6:2 On Identity Testing and Noncommutative Rank Computation

1 Introduction

In algebraic circuit complexity the basic arithmetic operations are additions, multiplications,
and inverses. Using these arithmetic operations algebraic circuits compute either polynomials
or rational functions. A subarea of algebraic complexity is noncommutative computation
where the multiplication of variables is not commutative and the set of monomials (over the
variables) form a free monoid. Noncommutative circuits/formulas with only addition and
multiplication gates compute noncommutative polynomials in the free algebra.

In the commutative case, inverses are well understood but in noncommutative computation
inverses are quite subtle. To elaborate, it is known that any commutative rational circuit
can be efficiently transformed into the form fg−1 where f and g are polynomials that are
computed by circuits [32]. However, noncommutative rational expressions such as x−1 + y−1

or xy−1x cannot be represented as fg−1 or f−1g. If we have nested inverses then it makes
the rational expression more complicated, for example (z + xy−1x)−1 − z−1. Moreover, a
noncommutative rational expression is not always defined on a matrix substitution. For a
noncommutative rational expression r, its domain of definition dom(r) is the set of all matrix
tuples (of any dimension) where r is defined. Two rational expressions r1 and r2 are equivalent
if they agree on dom(r1) ∩ dom(r2). This defines an equivalence relation on noncommutative
rational expressions (with nonempty domains of definition). Amitsur used this in defining
the universal free skew field (denoted by F⦓

¯
x⦔ when the variable set is

¯
x = {x1, x2, . . . , xn})

and the equivalence classes are called the noncommutative rational functions [1]. This object
plays an important role in the study of noncommutative algebra [1, 12], control theory [27],
and algebraic automata theory [34].

Computationally, rational functions are represented by noncommutative arithmetic circuits
or formulas using addition, multiplication, and inverse gates [23]. The inversion height of a
rational formula is the maximum number of inverse gates in a path from an input gate to the
output gate. It is known that the inversion height of a rational formula of size s is bounded
by O(log s) [23]. Hrubeš and Wigderson introduced the rational identity testing problem
(RIT) of testing the equivalence of two rational formulas [23]. It is the same as testing
whether a rational formula computes the zero function in the free skew field. In other words,
the problem is to decide whether there is a matrix tuple (of some dimension) such that the
rational formula evaluates to nonzero on it. Rational expressions exhibit peculiar properties
which seem to make the RIT problem quite different from polynomial identity testing. The
apparent lack of canonical representations such as the sum of monomials representation for
polynomials and the use of nested inverses in noncommutative rational expressions complicate
it. For example, the rational expression (x+ xy−1x)−1 + (x+ y)−1 − x−1 of inversion height
two is a rational identity, known as Hua’s identity [24].

A second characterization of the free skew field elements is due to Cohn [12]. A linear
pencil L of size s over noncommuting variables

¯
x = {x1, . . . , xn} is an s× s matrix whose

entries are linear forms in
¯
x variables, i.e. L = A0 +

∑n
i=1 Aixi, where each Ai is an s× s

matrix over the field F. Cohn has shown that for every r in F⦓
¯
x⦔, there is a linear pencil

L such that r is an entry of the matrix inverse of L. More generally, r has a linear pencil
representation of size s, if for vectors

¯
c,

¯
b ∈ Fs and an s× s linear pencil L, r =

¯
ctL−1

¯
b where

¯
ct is the transpose of

¯
c. Hrubeš and Wigderson give an efficient reduction from RIT to the

singularity testing problem of linear pencils [23]. In particular, if r is a rational formula of
size s, they showed that r has a linear pencil representation L of size at most 2s such that
r is defined on a matrix tuple if and only if L is invertible on that tuple [23]. Using this
connection, they reduce the RIT problem to the problem of testing whether a given linear
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pencil is invertible over the free skew field in deterministic polynomial time. The latter is the
noncommutative Singular problem, whose commutative analog is the symbolic determinant
identity testing problem. The deterministic complexity of symbolic determinant identity
testing is completely open in the commutative setting [26]. In contrast, the Singular
problem in noncommutative setting has deterministic polynomial-time algorithms in the
white-box model due to the works of Garg et al. [20] which is based on operator scaling and
that of Ivanyos et al. [25] which is based on the second Wong sequence and a constructive
version of regularity lemma. As a consequence, a deterministic polynomial-time white-box
RIT algorithm follows.

A central open problem in this area is to design an efficient deterministic algorithm
for noncommutative Singular problem in the black-box case [20]. The algorithms by
Garg et al. [20] and Ivanyos et al. [25] are inherently sequential and we believe that they
are unlikely to be helpful for black-box algorithm design. It is well-known [20] that an
efficient black-box algorithm (via a hitting set construction) for Singular would generalize
the celebrated quasi-NC algorithm for bipartite matching significantly [17]. There is a
randomized polynomial-time black-box algorithm for this problem [14].

Even for the RIT problem (which could be easier than the noncommutative Singular
problem), there is limited progress towards designing efficient deterministic black-box al-
gorithm. In fact, only very recently a deterministic quasipolynomial-time black-box al-
gorithm for identity testing of rational formulas of inversion height two has been designed
[3]. It is interesting to note that in the literature of identity testing, the noncommutative
Singular problem and the RIT problem stand among rare examples where deterministic
polynomial-time white-box algorithms are designed but for the black-box case no deterministic
subexponential-time algorithm is known.

▶ Remark 1. For noncommutative polynomials computed by polynomial-size arithmetic
circuits, efficient randomized polynomial identity testing algorithms are known either for
polynomial degree bound or for exponential sparsity bound [9, 5]. In contrast, the complexity
of testing the identity of rational circuits is completely open. In fact, even in the white-box
setting we do not have a randomized subexponential-time algorithm.

1.1 Derandomization of RIT from the hardness of polynomial identities
In this paper, we propose a new approach to the RIT problem in the black-box case under a
suitable hardness assumption, based on the following conjecture due to Bogdanov and Wee
[9, Section 6.2].

▶ Conjecture 2. The ABP complexity (i.e. the minimum size of an algebraic branching
program) of a polynomial identity for the k × k matrix algebra Mk(F) is 2Ω(k).

The conjecture implies that ABPs of size s cannot evaluate to zero on all O(log s)-
dimensional matrices. Bogdanov and Wee [9] also observed that if the conjecture holds
then there is an sO(log2 s)-time black-box PIT for noncommutative ABPs1 and as supportive
evidence showed that the conjecture is indeed true for normal identities (of which the standard
identity is a special case), and the identity of algebraicity.

Consider the following variant of the usual hitting set definition.

1 Independent of the conjecture, Forbes-Shpilka [18] obtained an sO(log s)-time black-box PIT for non-
commutative ABPs.
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▶ Definition 3. For a class of rational formulas R, we say that a hitting set H is strong if
for any nonzero formula r ∈ R, there exists a matrix tuple

¯
p ∈ H such that r(

¯
p) is invertible.

In the following theorem, we show an efficient derandomization of RIT assuming Con-
jecture 2. This can be seen as the first “hardness implies derandomization” type result for
rational formulas.

▶ Theorem 4. If Conjecture 2 is true then we can construct a strong hitting set of size
(snh(γ log s)2h+2)O(h(γ log s)2h+2) for rational formulas r of size s over n variables and inver-
sion height h in deterministic (snh(γ log s)2h+2)O(h(γ log s)2h+2)-time for some constant γ > 1.
This result holds over infinite or sufficiently large finite fields and h ⩽ β(log s/ log log s) for
any 0 < β < 1.

As a special case for h = O(1), this gives a quasipolynomial-size hitting set. To get
a subexponential-size bound 2sδ on the hitting set, for δ in (0, 1), we can allow h ⩽
cδ(log s/ log log s). Here cδ ∈ (0, 1) is a constant that depends on δ.

As already mentioned, the inversion height of size s rational formula is bounded by
O(log s) [23]. Therefore, Theorem 4 solves the RIT problem in an almost general setting.

We believe that the main interesting point about Theorem 4 is that it relates the
black-box RIT derandomization that involves handling nested inverses with a problem
purely for noncommutative polynomials: we can obtain a deterministic black-box RIT
algorithm by showing an exponential size lower bound for ABPs computing any polynomial
identity for matrix algebras. Over the years such hardness assumptions have proved to
be useful in designing deterministic algorithms for problems related to identity testing
[21, 26, 6, 15, 11, 29].

Proof Sketch
The first step in proving Theorem 4 is a variable reduction step that shows the identity
testing of a rational formula r of inversion height h can be reduced to the identity testing
of another rational formula r′ over 2(h + 1) variables in a black-box manner. Notice that
for noncommutative polynomials (for which h = 0), such a reduction is standard and
given by xi → y0y

i
1y0 where y0, y1 are new noncommutative variables. We prove it by

induction on h. In fact, we use a stronger inductive hypothesis that roughly says that for
every nonzero rational formula r of inversion height h, there also exists a 2(h+ 1)-tuple of
matrices (q00, . . . , qh0, q01, . . . , qh1) such that r(p1, . . . , pn) is invertible and for each i ∈ [n],
pi =

∑h
j=0 qj0q

i
j1qj0. Once we assume the inductive hypothesis for inversion height h− 1, for

each rational formula r of inversion height h, we get a matrix tuple of the form
¯
p = (p1, . . . , pn)

where pi =
∑h−1

j=0 qj0q
i
j1qj0 such that r is defined on

¯
p. Then, using concepts from matrix

coefficient realization theory we construct the nonzero generalized series r(
¯
x+

¯
p) [34]. Now,

we can use the standard bivariate encoding trick on r(
¯
x+

¯
p) to complete the variable-reduction

step.
The next important step that we establish is that if Conjecture 2 is true then for any

rational formula r of size s and inversion height h, one can find a matrix tuple
¯
p of dimension

(γ log s)h+1 (for some constant γ) such that r(
¯
p) is an invertible matrix. This is done via

induction on h and a bootstrapping argument. For the base case, we take h = 0. In this case
the rational formula is also an ABP of size s and Conjecture 2 confirms that r is nonzero
on a generic matrix tuple

¯
p of dimension O(log s). Also r(

¯
p) is invertible by an application

of Amitsur’s theorem [1]. Inductively we assume that we can find such a matrix tuple
¯
q

of dimension dh−1 ⩽ (γ log s)h for any rational formula r of inversion height at most h− 1
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and size at most s. An easy observation shows that given a rational formula r of inversion
height h, r is defined on such a matrix tuple

¯
q. By matrix coefficient realization theory[34]

we can construct the nonzero generalized series r(
¯
x+

¯
q) by expanding r around the point

¯
q.

Substituting the variables x1, x2, . . . , xn by symbolic generic matrices over noncommuting
variables Z(1), . . . , Z(n) of dimension dh−1, we observe that each entry of the output matrix
r(

¯
Z+

¯
q) is a recognizable series computed by a small size algebraic automaton. By a standard

result in algebraic automata theory, generally attributed to Schützenberger [16, Corollary 8.3,
Page 14], we know that this series is nonzero if and only if it is nonzero when truncated to
the degree matching the size of the algebraic automaton. By Conjecture 2, we can infer that
the truncated series is nonzero on generic matrices of dimension roughly ≈ log(sdh−1). A
simple scaling trick shows that the full (infinite)-series is also nonzero on generic matrices of
same dimension. This determines the dimension of the generic matrices on which the rational
formula r is nonzero. Moreover the rational formula evaluates to an invertible matrix on
generic matrix substitution of that dimension. This is a consequence of Amitsur’s theorem [1].

Once we have these two steps, the rest of the proof is straightforward. Given nonzero r

over the variables x1, . . . , xn of height h, we apply the variable reduction step to construct
nonzero r′ of height h (and roughly of same size) over 2(h+1) variables {y00, y01, . . . , yh0, yh1}.
Now we apply the second step that says that r′ is nonzero (and hence invertible) on generic
matrices over Z variables of dimension (γ log s)h+1. We also make use of the fact that r′(

¯
y)

has a small-size linear pencil. To construct the final hitting set, we just need to hit two
sparse polynomials of sparsity bound roughly (snh(γ log s)2h+2)O(h(γ log s)2h+2) and this can
be done by applying the standard result of sparse polynomial hitting set construction [28].

1.2 Noncommutative rank of matrices over the free skew field
For a matrix M = (gi,j)m×m over the free skew field F⦓

¯
x⦔, its noncommutative rank(denoted

by ncrank(M)) is the least positive integer r ⩽ m such that M = PQ for an m× r matrix
P and an r ×m matrix Q over F⦓

¯
x⦔. This is also called the inner rank. If r = m, then M

is invertible in F⦓
¯
x⦔.

Indeed, a fundamental result of Cohn [13] showed that for any matrix M = (gi,j)m×m

over the noncommutative ring F⟨
¯
x⟩ such that ncrank(M) = r, there exists an m× r matrix

P and an r ×m matrix Q over F⟨
¯
x⟩.

As already mentioned, the problem of computing the noncommutative rank of a linear
matrix admits deterministic polynomial-time white-box algorithms [20, 25]. If the matrix
entries consist of some higher degree terms, one can use Higman’s trick [22] to reduce it to
computing rank of a linear matrix. Consider the following well-known example of a 2× 2
matrix [19]:[

1 x

y z + xy

]
.

Higman’s trick reduces it to another 3× 3 linear matrix preserving the complement of the
noncommutative rank in the following way:

[
1 x

y z + xy

]
7→

1 x 0
y z + xy 0
0 0 1

 7→
1 x 0
y z x

0 −y 1

 .
However, it would not be efficient in general. In [19, Proposition A.2], the authors

showed an effective use of Higman’s trick to efficiently reduce it to the rank computation of
a linear matrix when the entries are computed by noncommutative formulas.
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6:6 On Identity Testing and Noncommutative Rank Computation

In this paper, we consider matrix rank computation over the free skew field in a more
general setting. In particular, we obtain an efficient reduction to the rank computation of a
linear matrix even when the entries are free skew field elements computed by small linear
pencils. More precisely, we show the following.

▶ Theorem 5. Let M = (gi,j)m×m be a matrix such that for each i, j ∈ [m], gi,j in
F⦓x1, . . . , xn⦔ has a linear pencil of size at most s. Then, the noncommutative rank of M
can be computed in deterministic poly(m,n, s) time. Moreover, in deterministic poly(m,n, s)
time, we can output a matrix tuple

¯
T = (T1, . . . , Tn) of dimension d such that the matrix the

rank of matrix M(
¯
T ) is d · ncrank(M). The field F could be infinite or sufficiently large finite

field.

We note an earlier result of Garg et al. [19], showing efficient matrix rank computation
when the entries are noncommutative polynomials that are computed by formulas. The
polynomial-time deterministic algorithm of Theorem 5 is a two-fold strengthening of this:
Since noncommutative ABPs have polynomial-size linear pencils [23], the algorithm can
compute the rank of matrices with entries that are polynomials computed by ABPs. Moreover,
since noncommutative rational formulas also have polynomial-size linear pencils [23], the
algorithm computes the rank of matrices whose entries are computed by small rational
formulas.

Proof Sketch
The basic principle of our proof is to reduce the problem to the rank computation of a linear
matrix. However, there is no clear notion of degree reduction for arbitrary elements over
the free skew field. This forces us to find a new approach of constructing this linear matrix
efficiently that can also handle a matrix of skew field entries as input. The main idea here is
to show that the linear pencil representation enjoys the following closure property. Let A
be an m×m generic matrix over m2 indeterminates. Substituting each indeterminate Aij

by a free skew field element that has a linear pencil of size at most s, suppose we obtain
the matrix M . We show that there is an efficiently computable linear matrix L such that
ncrank(L) = m2s+ ncrank(M). Somewhat surprisingly, the construction of L turns out to
be relatively simple and elegant.

There are many equivalent notions of noncommutative rank for linear matrices (for
example, see [25, 20]). A notion of particular interest is the blow-up definition that is crucial
in the algorithm of Ivanyos et al. [25]. The blow-up notion enables to find a matrix tuple
on which the maximum rank is achieved. We extend this notion and introduce a blow-up
definition for noncommutative rank (denoted by ncrank∗) of matrices with free skew field
entries. We show that for any matrix M of free skew field entries, ncrank(M) = ncrank∗(M).
Introduction of the blow-up definition allows us to find efficiently the matrix tuple

¯
T of

dimension d such that the rank of M(
¯
T ) is d·ncrank(M). One can view the blow-up definition

in this case as an extension of the theory developed by Derksen and Makam [14] for the
linear case. This extension could be of independent mathematical interest.

1.3 Linear pencil representations for a new class of rational functions
The study of linear pencils seem to be the key in understanding several basic questions in
rational function theory [23, 19, 25, 34, 14]. Our main motivation here is to understand the
relation between the linear pencil representations of rational functions and their represent-
ations using basic arithmetic operations. Let RF, LR,RC denote, respectively, the class of
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polynomial-size rational formulas, the class of rational functions that have polynomial-size
linear pencil representations, and the class of polynomial-size rational circuits. Hrubeš and
Wigderson [23] have shown an exponential size lower bound for rational formulas computing
an entry of the inverse of a symbolic matrix. Moreover, they show that each entry of the
inverse of a symbolic matrix is computable by a rational circuit of polynomial size. Therefore,
the current known relation is RF ⊂ LR ⊆ RC.

Following Bergman [7], a noncommutative rational function r(
¯
x) of inversion height

at most h can be inductively defined as r(
¯
x) = f(x1, . . . , xn, g

−1
1 , . . . , g−1

m ), where f is a
noncommutative polynomial and g1, . . . , gm ∈ F⦓

¯
x⦔ are rational functions of inversion height

⩽ h− 1. Based on this, we define rational r-skewed circuits.

▶ Definition 6. A rational r-skewed circuit of inversion height 0 is a noncommutative
r-skewed circuit2 which is also a noncommutative ABP. Inductively, we define r(

¯
x) =

f(x1, . . . , xn, g
−1
1 , . . . , g−1

m ) as a rational r-skewed circuit of inversion height at most h if
f(

¯
x, y1, . . . , ym) is a noncommutative r-skewed circuit (m ⩾ 0) and for each i ∈ [m], gi(¯

x) is
a rational r-skewed circuit of inversion height ⩽ h− 1.

Let R-rSC denote the class of all rational functions computable by polynomial-size rational r-
skewed circuits. Inspecting the polynomial size rational circuit for symbolic matrix inverse [23],
we notice that each entry of the inverse of a polynomial-size symbolic matrix can indeed be
computed by a polynomial-size rational r-skewed circuit. Hence LR ⊆ R-rSC. What is the
exact expressive power of the class LR? In particular, is it true that LR = R-rSC? It now
suffices to show that R-rSC ⊆ LR. While we are unable to answer this completely, we show
such a containment under additional structural restrictions on the circuit.

▶ Definition 7. An inversely disjoint rational r-skewed circuit of inversion height 0 is a
noncommutative r-skewed circuit (which is also an ABP). Inductively, we define r(

¯
x) =

f(x1, . . . , xn, g
−1
1 , . . . , g−1

m ) as an inversely disjoint rational r-skewed circuit of inversion
height at most h if f(

¯
x, y1, . . . , ym) is a noncommutative r-skewed circuit (m ⩾ 0) and for

each i ∈ [m], gi(¯
x) is a inversely disjoint rational r-skewed circuit of inversion height ⩽ h− 1

and for all i ̸= j, the circuits of gi and gj are disjoint.

Let ID-R-rSC be the class of rational functions computed by polynomial-size inversely
disjoint r-skewed circuits. This class contains rational formulas, ABPs. We are able to give
polynomial-size linear pencil representations for this class.

▶ Theorem 8. Over any field, an inversely disjoint rational r-skewed circuit of size s has a
linear pencil representation of size O(s2) which can be computed in deterministic polynomial
time from the given circuit.

This gives the following containment:

RF ⊆ ID-R-rSC ⊆ LR ⊆ R-rSC ⊆ RC,

where we know at least one of the first two containment is proper. We do not know any
unconditional separation between RF and ID-R-rSC. This question is somewhat similar
in spirit to the separation of noncommutative formulas and ABPs which is still open
[30, 10, 33]. However, a simple inductive argument shows that functions of inversion height h

2 Usually in the literature they are called right-skew circuits. In this paper, we refer to them as right-skewed
circuits and reserve the word “skew” for skew fields.
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6:8 On Identity Testing and Noncommutative Rank Computation

in ID-R-rSC can be computed by rational formulas of size sO(h log s). By standard techniques,
a noncommutative r-skewed circuit of size s can be computed by a formula of size sO(log s).
Consider an inversely disjoint r-skewed circuit r(

¯
x, g−1

1 , . . . , g−1
m ) where each gi ∈ ID-R-rSC of

inversion height ⩽ h− 1 for each 1 ⩽ i ⩽ m. Inductively, each gi has a rational formula of
size sO((h−1) log s). Therefore, the size of the rational formula computing r can be at most
sO(h log s). If h = O(log s), we then have a quasipolynomial-size formula simulation for this
class. However, unlike rational formulas [23], it is not clear whether h can be taken as
O(log s) for a general inversely disjoint r-skewed circuit of size s.

Using Theorem 8, the following corollary is obtained by the application of rank computa-
tion algorithm in [25]. For the black-box case, we can apply the algorithm in [14]. In the
proof of the corollary we also mention how to apply the algorithm in [25] for the black-box
case and get an efficient randomized algorithm over finite fields as well.

▶ Corollary 9. Let F be infinite or a sufficiently large field. For an inversely disjoint rational
r-skewed circuit of size at most s and over n variables, we can decide whether or not it
computes zero in F⦓

¯
x⦔ in deterministic poly(s, n) time in white-box, and in randomized

poly(s, n) time in black-box.

Proof Sketch
The proof is based on a composition lemma that computes an efficient linear pencil for
f(

¯
x, g−1

1 , . . . , g−1
m ) from the linear pencils of f(

¯
x,

¯
y) and g−1

1 , . . . , g−1
m . It turns out that the

proof of this composition result is more subtle than the usual proofs of the linear pencil
constructions for rational formulas [23, 34].

We first elaborate on the composition lemma. Let L be an s × s linear pencil over
x1, . . . , xn and y1, . . . , ym. Let fi,j = (L−1)i,j for i, j ∈ [s]. Let g1, . . . , gm be rational
functions over x1, . . . , xn such that each gk has a linear pencil Lk of size at most s′. Then we
can construct a single linear pencil L̃ of size at most ms′ +m+2s2 +s in poly(s′, s,m, n)-time
such that

(L̃−1)2s2+ŝ+i,2s2+ŝ+j
= fi,j(

¯
x, g−1

1 , . . . , g−1
m ) for i, j ∈ [s], where ŝ = ms′ +m.

Given a rational function r computed by an inversely disjoint rational r-skewed circuit of
size at most s, we consider the rational function r−1 which is still in the same class (with
inversion height increased by one). Using the composition result, we construct a linear pencil
of size O(s2) for r−1. Notice that r(

¯
x,

¯
y) is a polynomial computed by an ABP or a r-skewed

circuit and it has a polynomial-size linear pencil [23]. Using a standard idea, r−1 also has a
small linear pencil L which we use as the input to the composition lemma along with the
inductively constructed linear pencils for g1, . . . , gm.

The final linear pencil L̃ which is the outcome of the composition lemma has the additional
property that for any matrix tuple r(

¯
p), r−1(

¯
p) is defined if and only if L̃(

¯
p) is invertible.

Since r ≠ 0 if and only if r−1 is defined [1], we can now use the algorithm for noncommutative
Singular problem [25] on the linear pencil L̃ to check the identity of r.

Organization
In Section 2, we mainly provide brief background on linear pencils and its connection with
the rational identity testing problem, and also present some results in matrix coefficient
realization theory. We prove Theorem 4 in Section 3. The proof of Theorem 5 is given in
Section 4.1. We give the proof of Theorem 8 in Section 5. We state some open questions in
Section 6.
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2 Preliminaries

2.1 Linear pencils and rational functions
Let F be a field. A linear pencil L of size s over noncommuting

¯
x = {x1, . . . , xn} variables is

a s× s matrix where each entry is a linear form in
¯
x. That is, L = A0 +

∑n
i=1 Aixi where

each Ai in Ms(F). Evaluation of a linear pencil at a matrix tuple
¯
p = (p1, . . . , pn) in Mn

m(F)
is defined using the Kronecker (tensor) product: L evaluated at

¯
p is A0 ⊗ Im +

∑n
i=1 Ai ⊗ pi.

Given a linear pencil L, the noncommutative Singular problem is to decide whether
there is a tuple

¯
p in Mn

m(F) of m×m matrices for some m such that the output matrix L
evaluated at

¯
p is invertible.

A rational function r in F⦓
¯
x⦔ has a linear pencil representation L of size s if r =

¯
ctL−1

¯
b

for vectors
¯
c,

¯
b ∈ Fs. Following is the re-statement of Proposition 7.1 proved in [23].

▶ Proposition 10. Let r be a rational function given by a rational formula of size s. Then
r can be represented (L−1)i,j for i, j ∈ [s] where L is a linear pencil of size at most 2s.
Moreover, r is nonzero if and only if L is invertible.

Clearly in the above proposition the choice for
¯
c,

¯
b are the indicator vectors ei and ej .

We also use the following classical result of Amitsur [1] in this paper.

▶ Theorem 11 ([1]). Let r be a rational function which is nonzero on Mk(F) where F is
infinite or any sufficiently large field. Then r(Y1, . . . ,Yn) is an invertible matrix in Mk(F(

¯
Y))

where Y1, . . . ,Yn are generic indeterminate matrices of dimension k.

▶ Remark 12. Usually Theorem 11 is stated over infinite fields. However it can be adapted
over any sufficiently large finite field F using the techniques in [25]. We briefly discuss it
here. For details we refer the reader to ALGORITHM 1 in [25]. Define the field F′ by
adjoining a kth root ζ to F i.e. F′ = F[ζ]. Let Z1 and Z be distinct formal variables and
consider the function field F′(Z1, Z). Construct a F′(Z1, Z)-linear basis Γ = {C1, . . . , Ck2}
of Mk(F′(Z1, Z)) such that the F′(Z1, Z

k)-linear span of Γ is a central division algebra over
F′(Z1, Z

k). It can be shown that r is invertible on a generic linear combination of Γ. Now by
a standard argument the generic variables can be fixed from F (assuming that F is sufficiently
large) to obtain a matrix tuple

¯
T such that r(

¯
T ) is invertible. This also implies that r(

¯
Y ) is

invertible where
¯
Y is a generic matrix tuple of dimension k.

2.2 Algebraic branching programs (ABPs)
▶ Definition 13. An algebraic branching program (ABP) is a layered directed acyclic graph
with one in-degree-0 vertex called source, and one out-degree-0 vertex called sink. Its vertex
set is partitioned into layers 0, 1, . . . , d, with directed edges only between adjacent layers (i to
i+ 1). The source and the sink are in layers zero and d, respectively. Each edge is labeled by
a linear form over F in variables {x1, . . . , xn}. The polynomial computed by the ABP is the
sum over all source-to-sink directed paths of the product of linear forms that label the edges
of the path. The maximum number of nodes in any layer is called the width of the algebraic
branching program. The size of the branching program is taken to be the total number of
nodes.

Equivalently, an ABP of width w and d many layers can be defined as an entry of a
product of d many linear matrices of size at most w. Therefore, the polynomial f computed
by an ABP is of form (M1 · · ·Md)i,j for some i, j ∈ [w].
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6:10 On Identity Testing and Noncommutative Rank Computation

▶ Proposition 14. An ABP of size s has a linear pencil of size at most 2s from the following
construction:

Lf =


Iw −M1

Iw −M2
. . . . . .

Iw −Md

Iw

 .
The ABP is computed in the upper right corner.

This construction is well-known and also used in [23].

2.3 Matrix Inverse
Let P be a 2× 2 block matrix shown below.

P =
[
p1 p2
p3 p4

]
where p1 is invertible and p2 and p3 can be any rectangular matrices and (p4 − p3p

−1
1 p2) is

also invertible. Then we note that the inverse of P has the following structure [23].

P−1 =
[
p−1

1 (I + p2(p4 − p3p
−1
1 p2)−1p3p

−1
1 ) −p−1

1 p2(p4 − p3p
−1
1 p2)−1

−(p4 − p3p
−1
1 p2)−1p3p

−1
1 (p4 − p3p

−1
1 p2)−1

]
(1)

If p3 = 0, then P−1 has a simpler structure.

P−1 =
[
p−1

1 −p−1
1 p2p

−1
4

0 p−1
4

]
. (2)

Hrubeš and Wigderson use Equation 1 to compute each entry of the matrix inverse
recursively by a small rational circuit.
▶ Theorem 15 ([23, Theorem 2.4]). Each entry of the inverse of an s× s symbolic matrix is
computable by a rational circuit of size O(sω) where ω is the exponent of matrix multiplication.
▶ Remark 16. We observe that the same construction also yields a polynomial-size rational
r-skewed circuit as defined in Definition 6 for the matrix inverse. Inspecting Equation 1, we
just need to compute the entries of p−1

1 and (p4 − p3p
−1
1 p2)−1 and after that the remaining

computation is straightforward. Notice that, in the composition step while replacing each yi

by g−1
i , Definition 6 allows any gi to be a sub-circuit of some gj . Therefore, we can reuse

the r-skewed circuit computing each entry of p−1
1 and follow the same recursive construction

to obtain a rational r-skewed circuit of size O(sω).

2.4 Recognizable series
A comprehensive treatment is in the book by Berstel and Reutenauer [8]. We will require the
following concepts. Recall that F⟨⟨

¯
x⟩⟩ is the formal power series ring over a field F. A series S

in F⟨⟨
¯
x⟩⟩ is recognizable if it has the following linear representation: for some integer s, there

exists two column vectors
¯
c,

¯
b ∈ Fs and an s× s matrix M whose entries are homogeneous

linear forms over x1, . . . , xn i.e.
∑n

i=1 αixi such that S =
¯
ct
(∑

k⩾0 M
k
)

¯
b. Equivalently,

S =
¯
ct(I −M)−1

¯
b. We say, S has a representation (

¯
c,M,

¯
b) of size s 3.

3 In the language of weighted automata, the matrix M is the transition matrix for the series S.
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The following theorem is a basic result in algebraic automata theory, generally attributed
to Schützenberger. It has a simple linear algebraic proof [16, Corollary 8.3, Page 145 ].

▶ Theorem 17. A recognizable series with representation (
¯
c,M,

¯
b) of size s is nonzero if and

only if
¯
ct
(∑

k⩽s−1 M
k
)

¯
b is nonzero.

In this paper, the theorem is used to argue that the truncated series is computable by
a small noncommutative ABP, thereby reducing zero-testing of recognizable series to the
identity testing of noncommutative ABPs.

2.5 Matrix coefficient realization theory
We do not know any canonical form for noncommutative rational functions. However,
if a noncommutative rational function is analytic (or defined) at a matrix point, then
(matrix coefficient)-realization theory Volčič [34] offers a power series representation of the
noncommutative rational function around that point. This is found useful in automata theory
and control theory.

A generalized word or a generalized monomial in x1, . . . , xn over the matrix algebra Mm(F)
allows matrices to interleave between variables. More formally, a generalized word over
Mm(F) is of the form a0xk1a2 · · · ad−1xkd

ad, where ai ∈Mm(F). A generalized polynomial
over Mm(F) is a finite sum of generalized monomials in the ring Mm(F)⟨

¯
x⟩. Similarly,

a generalized series over Mm(F) is an infinite sum of generalized monomials in the ring
Mm(F)⟨⟨

¯
x⟩⟩.

Let E = {ei,j , 1 ⩽ i, j ⩽ m} be the set of matrix units which forms a linear basis for
Mm(F). A generalized monomial m of degree d over Mm(F) can be expressed as a linear
combination of generalized monomials of the form ei0,j0xk1ei1,j1xk2 · · · eid−1,jd−1xkd

eid,jd
by

expressing each matrix a occurring in m as an F-linear combination in the E-basis. Hence,
we can express any generalized series S over Mm(F) as a sum of generalized monomials over
only E and

¯
x which we call its canonical representation. We say the series (resp. polynomial)

S is identically zero if and only if it is zero under such expansion i.e. the coefficient of each
generalized monomial in the canonical representation is zero.

The evaluation of a generalized series over Mm(F) is defined on any k′m× k′m matrix
algebra for some integer k′ ⩾ 1 [34]. To match the dimension of the coefficient matrices with
the matrix substitution, we use an inclusion map ι : Mm(F)→Mk′m(F), for example, ι can
be defined as ι(a) = a⊗ Ik′ or ι(a) = Ik′ ⊗ a. We now define the evaluation of a generalized
series (resp. polynomial) over Mm(F) in the following way. Any degree-d generalized word
a0xk1a1 · · · ad−1xkd

ad over Mm(F) on a matrix substitution (p1, . . . , pn) ∈Mn
k′m(F) evaluates

to

ι(a0)pk1ι(a1) · · · ι(ad−1)pkd
ι(ad)

under some inclusion map ι : Mm(F) → Mk′m(F). In ring theory, all such inclusions are
known to be compatible by the Skolem-Noether theorem [31, Theorem 3.1.2]. Therefore, if a
series S is zero with respect to some inclusion map ι : Mm(F)→Mk′m(F), then it must be
zero for any such inclusions. The equivalence of the two notions of zeroness follows from the
proof of [34, Proposition 3.13].

We now recall the definition of a recognizable generalized series from the same paper.

▶ Definition 18. A generalized series S in Mm(F)⟨⟨
¯
x⟩⟩ is recognizable if it has the following

linear representation. For some integer s, there exists a row-tuple of matrices c ∈ (Mm(F))1×s,
and b ∈ (Mm(F))s×1 and an s×s matrix M whose entries are homogeneous generalized linear
forms over x1, . . . , xn i.e.

∑n
i=1 pixiqi where each pi, qi ∈Mm(F) such that S = c(I−M)−1b.

We say, S has a linear representation (c,M, b) of size s over Mm(F).
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6:12 On Identity Testing and Noncommutative Rank Computation

In [34], Volčič shows the following result.

▶ Theorem 19 ([34, Corollary 5.1, Proposition 3.13]). Given a noncommutative rational
formula r of size s over x1, . . . , xn and a matrix tuple

¯
p ∈Mn

m(F) in the domain of definition
of r, r(

¯
x+

¯
p) is a recognizable generalized series with a representation of size at most 2s over

Mm(F). Additionally, r(
¯
x) is zero in the free skew field if and only if r(

¯
x+

¯
p) is zero as a

generalized series.

Proof. For the first part, see Corollary 5.1 and Remark 5.2 of [34].
To see the second part, let r(

¯
x) is zero in the free skew field. Then the fact that r(

¯
x+

¯
p)

is a zero series follows from Proposition 3.13 of [34]. If r(
¯
x) is nonzero in the free skew field,

then there exists a matrix tuple (q1, . . . , qn) ∈Mn
l (F) such that r(

¯
q) is nonzero. W.l.o.g. we

can assume l = k′m for some integer k′. Fix an inclusion map ι : Mm(F)→Mk′m(F). Define
a matrix tuple (q′

1, . . . , q
′
n) ∈Mn

k′m(F) such that q′
i = qi− ι(pi). Therefore, the series r(

¯
x+

¯
p)

on (q′
1, . . . , q

′
n) evaluates to r(

¯
q) under the inclusion map ι, hence nonzero [34, Remark 5.2].

Therefore, r(
¯
x+

¯
p) is also nonzero. ◀

▶ Remark 20. More explicitly we can say the following which is already outlined in [34,
Section 5]. For any inclusion map ι : Mm(F)→Mk′m(F)

r(
¯
q + ι(

¯
p)) = ι(c)

I2sk′m −
n∑

j=1
ι(Axj )(

¯
q)

−1

ι(b).

We also note down a few basic facts. The following is easy to show and also noted in [34].

▶ Fact 21. Let r(
¯
x+

¯
p) be a generalized series where

¯
p consists of matrices in Mm(F). If

we replace each xi by a generic matrix over noncommuting variables (yi
j,k)1⩽j,k⩽m, then we

get a nonzero matrix over the
¯
y variables. More precisely, the map ψ(xi) = (yi

j,k)1⩽j,k⩽m is
identity preserving.

Another easy fact is the following.

▶ Fact 22. Let r(
¯
x+

¯
p) has a linear representation c(I −M)−1b of size s. Then each entry

of r(ψ(
¯
x) +

¯
p) is a recognizable series with transition matrix M(ψ(x1), . . . , ψ(xn)) of size sm.

More precisely, the (i, j)th entry of r(ψ(
¯
x) +

¯
p) has a representation (

¯
ci,M(ψ(

¯
x)),

¯
bj) where

¯
ci and

¯
bj are the ith row and jth column of c and b repectively.

3 Derandomization of RIT from the Hardness of Polynomial Identities

In this section, we present a new approach to derandomize (almost general) RIT effi-
ciently in the black-box setting and prove Theorem 4. Given a noncommutative polynomial
P (x1, . . . , xn) ∈ F⟨x1, . . . , xn⟩, there is a well-known trick to reduce the identity testing of P
to the identity testing of a bivariate polynomial P ′(y0, y1) over the noncommuting variables
y0, y1 by the substitution xi ← y0y

i
1y0 for 1 ⩽ i ⩽ n.

For a rational formula r(
¯
x), such a variable reduction step preserving identity is not

immediate. Our first result in this section reduces the identity testing of an n-variate rational
formula of inversion height h to the identity testing of a rational formula of inversion height
h over 2(h+ 1) variables. But before that we record a simple fact.

▶ Fact 23. Given any rational formula r′ of of inversion height at most h− 1 and size at
most s, if we can find a matrix tuple such that r′ is invertible on that matrix tuple, then for a
rational formula r of size at most s and inversion height h, we can find a matrix tuple where
r is defined.
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Proof. Let F be the collection of all those inverse gates in the formula r such that for every
g ∈ F , the path from the root to g does not contain any inverse gate. For each gi ∈ F , let hi

be the sub-formula input to gi. Consider the formula r′ = h1h2 · · ·hk (where k = |F|) which
is of size at most s since for each i and j, hi and hj are disjoint. Clearly, r′ is of inversion
height at most h− 1. So if we find a point

¯
q such that r′(

¯
q) is invertible then r is defined at

that point
¯
q. ◀

Now we state and prove the variable reduction lemma for rational formulas.

▶ Lemma 24. Let r(x1, . . . , xn) be a rational formula of inversion height h. Then, there
exists a 2(h+ 1) variate rational formula r′ of inversion height h over the variables {yj0, yj1 :
0 ⩽ j ⩽ h} such that r is zero in F⦓

¯
x⦔ if and only if r′ is zero in F⦓

¯
y⦔. Moreover, r′ is

obtained from r by substituting xi by
∑h

j=0 yj0y
i
j1yj0 for 1 ⩽ i ⩽ n.

Proof. The proof is by induction on the inversion height h. In fact we use a stronger inductive
hypothesis: For every nonzero rational formula of inversion height h, there also exists a
matrix tuple (p1, . . . , pn) and a collection of matrices {q00, . . . , qh0, q01, . . . , qh1} such that
r(p1, . . . , pn) is invertible and for each i ∈ [n], pi =

∑h
j=0 qj0q

i
j1qj0.

It is true for noncommutative polynomials for which h = 0. It is already mentioned
that the substitution xi ← y0y

i
1y0 reduces the identity testing of P (

¯
x) to the identity

testing of P ′(y0, y1). Moreover, by Theorem 11, we know that we can find matrices q0, q1
such that the bivariate polynomial P ′(q0, q1) evaluates to an invertible matrix. Since
P (q0q1q0, q0q

2
1q0, . . . , q0q

n
1 q0) = P ′(q0, q1), we establish the base case of the induction.

Inductively, suppose that it is true for any formula of inversion height h − 1. Now
consider a nonzero rational formula r(x1, . . . , xn) of inversion height h. From the inductive
hypothesis and Fact 23, there exists a matrix tuple (p1, . . . , pn) and a collection of matrices
{q̃00, . . . , q̃(h−1)0, q̃01, . . . , q̃(h−1)1} such that r(p1, . . . , pn) is defined and for each i ∈ [n],
pi =

∑h−1
j=0 q̃j0q̃

i
j1q̃j0. Let the dimension of each pi be m. Therefore, r(

¯
x+

¯
p) is also a nonzero

generalized series by Theorem 19. Replacing each xi by y0y
i
1y0, we obtain a nonzero bivariate

generalized series and suppose it is nonzero for y0 = q̂h0 and y1 = q̂h1 of some dimension km
for an integer k. Notice from Section 2 that a generalized series is zero if and only if the
coefficient of every monomial in the canonical representation is zero. Therefore the bivariate
substitution xi → y0y

i
1y0 preserves the nonzeroness of a generalized series. Therefore,

r(q̂h0q̂h1q̂h0 + ι(p1), . . . , q̂h0q̂h1
n
q̂h0 + ι(pn))

is also nonzero. Notice that, ι(pi) =
∑h−1

j=0 ι(q̃j0)(ι(q̃j1))iι(q̃j0) for the inclusion map ι from
Mm(F) → Mkm(F). We can now define r′ substituting each xi in r by

∑h
j=0 yj0y

i
j1yj0.

Clearly, r′ is nonzero. By Theorem 11, r′ is also invertible for some matrix tuple
¯
q of same

dimension. Hence r(p1, . . . , pn) is invertible for pi =
∑h

j=0 qj0q
i
j1qj0. ◀

Next we show that if Conjecture 2 is true then any rational formula of size s and inversion
height h ⩽ β(log s/ log log s) for β ∈ (0, 1), is nonzero on a matrix tuple of dimension
(γ log s)h+1 for some constant γ.

▶ Lemma 25. Let r(x1, . . . , xn) be a nonzero rational formula of size s and inversion height
h ⩽ β(log s/ log log s) for any constant 0 < β < 1. Then, Conjecture 2 implies that there is a
matrix tuple (p1, . . . , pn) ∈Mn

m(F) such that r(p1, . . . , pn) is invertible and m = (γ log s)h+1

for some constant γ > 1.
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Proof. The proof is by induction on h. For the base case h = 0, Conjecture 2 implies that the
noncommutative formula is nonzero on generic c log s (for some constant c) dimensional matrix
tuple (Z1, . . . , Zn) where Zi = (z(i)

ℓ,k)1⩽ℓ,k⩽c log s. Also Theorem 11 says that the formula
evaluates to an invertible matrix M(Z) on substituting xi by Zi. Now using standard idea,
random substitution to the variables in Z1, . . . , Zn yields such a matrix tuple.

Inductively assume that we have already proved the dimension bound on the witness of
the invertible image for rational formulas of inversion height at most h−1. Let the dimension
of the matrices be dh−1. Now given a rational formula r of size s and inversion height h,
observe that r is defined on some dh−1 × dh−1 matrix tuple

¯
q using Fact 23.

Then by Theorem 19, r(
¯
x+

¯
q) can be represented by a recognizable generalized series of

size at most 2s such that r(
¯
x) is nonzero if and only if r(

¯
x+

¯
q) is nonzero. Using Fact 21,

apply the ψ map on the variables such that ψ(xi) substitutes the variable xi by a matrix of
fresh noncommuting variables z(i)

j,k for 1 ⩽ j, k ⩽ dh−1.
Using Fact 22, observe that we get a matrix of recognizable series and each such recog-

nizable series can be represented by an automaton of size at most ŝ ⩽ 2sdh−1. Since ψ
preserves identity, one of such recognizable series will be nonzero. So w.lo.g, let the series be
S1,1 computed at (1, 1)th entry is nonzero. Let the transition matrix for S1,1 is M1,1.Then
using Theorem 17, the truncated finite series S̃1,1 =

¯
ct
(∑

k⩽ŝ−1 M
k
1,1

)
¯
b is nonzero, which is

a noncommutative ABP.
If Conjecture 2 is true then S̃1,1 will be nonvanishing on a matrix tuple

¯
p of dimension

O(log ŝ). Now by the following simple scaling trick, we show that the infinite series S1,1 is
nonzero at a matrix tuple of dimension c log ŝ.

▷ Claim 26. We can find a matrix tuple
¯
p′ which is a scalar multiple of

¯
p such that S1,1(

¯
p′)

is nonzero.

Proof. Let τ be a commutative variable and consider the matrix tuple,

τ
¯
p = (τp{1}

1,1 , . . . , τp
{1}
dh−1,dh−1

, . . . , τp
{n}
1,1 , . . . , τp

{n}
dh−1,dh−1

).

Observe that M1,1(τ
¯
p) = τM1,1(

¯
p). From the definition of the series S1,1,

S1,1(
¯
z) = S̃1,1(

¯
z) +

∑
i⩾ŝ

¯
ctM i

1,1¯
b.

Let d be the dimension of the matrices in the tuple
¯
p. We now evaluate S1,1 at τ

¯
p to get the

following:

S1,1(τ
¯
p) = S̃1,1(τ

¯
p) +

∑
i⩾ŝ

τ i ·
(
(
¯
c⊗ Id)t ·M i

1,1(
¯
p) · (

¯
b⊗ Id)

)
.

Since S̃1,1(
¯
p) ̸= 0, we have that S1,1(τ

¯
p) evaluates to a nonzero matrix whose entries are

power series in the variable τ .
It is also true that S1,1(τ

¯
p) = (

¯
c ⊗ Id)t · (I −M1,1(τ

¯
p))−1 · (

¯
b ⊗ Id) which is rational

expression in τ where the degrees of the numerator and denominator polynomials are bounded
by poly(ŝ, d). Hence we need to avoid only poly(ŝ, d) values for τ such that S1,1(τ

¯
p) is defined

and nonzero. ◁

The above argument shows that for a specific value τ0 for the parameter τ , the generalized
series r(

¯
x+

¯
q) evaluates to nonzero on a matrix tuple (N1(τ0)+ι(q1), . . . , Nn(τ0)+ι(qn)) where

Ni is obtained from the matrix (z(i)
j,k)1⩽j,k⩽dh−1 by substituting the variables (z(i)

j,k)1⩽j,k⩽dh−1

by τ0p
(i)
j,k. Also ι is the inclusion map ι : Mdh−1(F)→Mddh−1(F) defined as ι(qi) = qi ⊗ Id.
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Hence r is nonzero on generic matrix tuples of dimension dh = ddh−1 ⩽ cdh−1 log(sdh−1).
Inductively assume that dh−1 ⩽ (2c log s)h. Since h ⩽ β(log s/ log log s), we can observe that
s ⩾ dh−1. Using this we get that dh ⩽ c(2c log s)h log(s2) and that yields dh ⩽ (2c log s)h+1.
We take γ = 2c.

Therefore by Theorem 11 r(
¯
x) evaluates to an invertible matrix on substituting xi by

generic matrices of dimension (γ log s)h+1. ◀

Now we are ready to show that if Conjecture 2 is true, then we can find a subexponential-
size hitting set for rational formulas of size s and inversion height up to c′(log s/ log log s)
for a suitable constant c′ that depends on the exponent of the subexponential function.

Proof of Theorem 4. Let r(x1, . . . , xn) be a rational formula of inversion height h and size
s. Consider, r′(y00, y01, . . . , yh0, yh1) obtained from r by substituting xi by

∑h
j=0 yj0y

i
j1yj0

for 1 ⩽ i ⩽ n. From Lemma 24, we know that r(
¯
x) is nonzero if and only if r′(

¯
y) is nonzero.

Moreover, r′ has a rational formula of size at most s′ which is of O(snh). Therefore, r′ must
be invertible on dh×dh generic matrix substitution where dh ⩽ (γ log s′)h+1 from Lemma 25.
Using Proposition 10, we know that r′ has a linear pencil L′ of size at most 2s′. W.l.o.g,
assume that r′ is computed at the (1, 1)th entry of L′−1.

Hence, if we substitute the variables y00, y01, . . . , y0h, y1h by dh × dh generic matrices
{Z(i,0), Z(i,1) : 0 ⩽ i ⩽ h)} (over commuting variables), the (1, 1)th block of L′−1(

¯
Z) will

be of form M ′(
¯
Z)

det(L′(
¯
Z)) where det(L′(

¯
Z)) is a polynomial of degree at most 2s′(γ log s′)h+1.

Further, each entry of the matrix M ′ is a cofactor of L′(
¯
Z) and therefore it is a polynomial

over the
¯
Z variables of degree at most 2s′(γ log s′)h+1. This shows that det(M ′(

¯
Z)) is a

nonzero polynomial of degree at most 2s′(γ log s′)2h+2. The sparsity of det(L′(
¯
Z)) and

det(M ′(
¯
Z)) are bounded by

κ = (s′(γ log s)2h+2)O(h(γ log s)2h+2).

Now we can use standard sparse polynomial hitting set for κ-sparse polynomials to hit
both the polynomials [28]. This gives us a strong hitting set H′ for r′. Consequently, we
get a strong hitting set of same size for r by using the substitutions of xi variables by the
y00, y01, . . . , y0h, y1h described in Lemma 24. More formally, we define

Hn,h,s = {(p1, . . . , pn) :
¯
q ∈ H′; pi =

h∑
j=0

qj0q
i
j1qj0}. ◀

An immediate corollary is the following.

▶ Corollary 27. The hitting set size and the construction time is s(log s)O(1) for h = O(1). If
we want to maintain a subexponential-size hitting set of size 2sδ for δ ∈ (0, 1), then h can be
taken to be at most cδ

(
log s

log log s

)
where cδ is a constant depending on δ.

4 Computing the Matrix Rank over the Free Skew Field

In this section, we give an efficient algorithm to compute the rank of any matrix over the
free skew field whose entries are rational functions with small linear pencils. Additionally,
we output a (witness) matrix tuple on which the rank is achieved. This is done in two
steps. We first introduce a blow-up definition for matrix rank over the free skew field
extending the results for linear pencils and show that it is equivalent to the usual definition
of noncommutative rank. Next, we show an efficient reduction from rank computation over
the free skew field to the linear case in Section 4.1. A discussion on the blow-up definition of
noncommutative rank can be found in the full version [2].
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4.1 The Rank Computation
In this section, we prove Theorem 5. The idea is to reduce rank computation of a matrix
with skew field entries from F⦓

¯
x⦔ to rank computation of a linear matrix over

¯
x incurring a

small blow-up in the matrix size.

▶ Lemma 28. Let P ∈ F⦓
¯
x⦔m×m such that,

P =
[
A B

C D

]
,

where A ∈ F⦓
¯
x⦔r×r is invertible. Then,

ncrank(P ) = r + ncrank(D − CA−1B),

Proof. If Q is an n× n invertible matrix over F⦓
¯
x⦔ then

ncrank(QP ) = ncrank(PQ) = ncrank(P ).

For if P = MN then QP = (QM)N and if QP = MN then P = (Q−1M)N . Similarly for
PQ.

The matrix[
A−1 0

0 Im−r

]
is full rank. Similarly, the matrix[

Ir 0
−C Im−r

]
is full rank because[

Ir 0
−C Im−r

] [
Ir 0
C Im−r

]
=
[
Ir 0
0 Im−r

]
.

Hence, ncrank(P ) equals ncrank(R) where

R =
[
Ir 0
−C Im−r

]
·
[
A−1 0

0 Im−r

]
·
[
A B

C D

]
=
[
Ir A−1B

0 D − CA−1B

]

Post-multiplying by the invertible matrix
[
Ir −A−1B

0 Im−r

]
we obtain

[
Ir 0
0 D − CA−1B

]
.

It is easy to see that its inner rank is r + ncrank(D − CA−1B). ◀

Next, we relate the noncommutative rank of a matrix with skew field entries with small
linear pencils to the noncommutative rank of a linear matrix.

▶ Lemma 29. Let M ∈ F⦓
¯
x⦔m×m be a matrix whose (i, j)th entry gij is computed as the

(1, 1)th entry of the inverse of a linear pencil Lij of size at most s, for each i and j. Then,
one can construct a linear pencil L of size m2s+m such that,

ncrank(L) = m2s+ ncrank(M).
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Proof. We first describe the construction of the linear pencil L and then argue the correctness.
W.l.o.g. we may assume that each linear matrix Lij is s× s (by padding it, if required, with
an identity matrix of suitable size).

Let L =


L11 0 · · · 0 B11
0 L12 · · · 0 B12
...

...
. . .

...
...

0 0 · · · Lmm Bmm

−C11 −C12 · · · −Cmm 0

 , (3)

where each Cij is an m × s and Bij is an s ×m rectangular matrix defined below. Let ei

denote the column vector with 1 in the ith entry and the remaining entries are zero. We
define

Cij =

 ei 0 · · · 0

 and, Bij =


eT

j

0
...
0

 .

To argue the correctness of the construction, we write L as a 2× 2 block matrix. As each
Lij is invertible (otherwise gij would not be defined), the top-left block entry is invertible.
Therefore, we can find two invertible matrices U, V implementing the required row and
column operations such that,

L = U


L11 0 · · · 0 0
0 L12 · · · 0 0
...

...
. . .

...
...

0 0 · · · Lmm 0
0 0 · · · 0 D̃

V,

for some m×m matrix D̃.

▷ Claim 30. The matrix D̃ is exactly the input matrix M .

Proof. From the 2× 2 block decomposition we can write,

D̃ = [C11C12 · · ·Cmm]


L−1

11 0 · · · 0
0 L−1

12 · · · 0
...

...
. . .

...
0 0 · · · L−1

mm




B11
B12

...
Bmm

 =
∑
i,j

CijL
−1
ij Bij .

Observe that, for each i, j, CijL
−1
ij Bij is an m×m matrix with gij as the (i, j)th entry and

remaining entries are 0. Hence, D̃ = M . ◀
Notice that the top-left block of L in Equation 3 is invertible as for each i, j ∈ [m], Lij is

invertible. Now the proof follows from Lemma 28. ◀

Proof of Theorem 5. For any matrix M = (gi,j)m×m such that for each i, j ∈ [m], gij in
F⦓x1, . . . , xn⦔ has a linear pencil of size at most s, construct a linear matrix L of size
m2s+m from the previous lemma. We can now compute the noncommutative rank of L
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using the algorithm of [25] in deterministic poly(s,m, n)-time. Let the rank be r. We now
output r −m2s to be the noncommutative rank of M . The correctness of the algorithm
follows from Lemma 29.

By the equivalence of the inner rank and blow-up rank, we know that ncrank∗ (M) =
r −m2s. Now we use the algorithm in [25] to compute a matrix tuple

¯
p ∈Md(F) such that

the rank of L(
¯
p) = rd for some d = O(m2s). Clearly rank(M(

¯
p)) = (r −m2s)d. Therefore,

the matrix tuple
¯
p is also a witness of the rank of M . ◀

5 Efficient Linear Pencils for Inversely Disjoint r-Skewed Circuits

We now prove that an inversely disjoint rational r-skewed circuit of size s has a linear pencil
representation of size O(s2). We first prove a more general result, a composition lemma for
linear pencils which implies Theorem 8.

▶ Lemma 31. Let L be an s × s linear pencil over x1, . . . , xn and y1, . . . , ym. Let fi,j =
(L−1)i,j for i, j ∈ [s]. Let g1, . . . , gm be rational functions over x1, . . . , xn such that each gk

has a linear pencil Lk of size at most sk. Then we can construct a single linear pencil L̃ of
size

∑m
i=1 si +m+ 2s2 + s in poly(s1, . . . , sm, s,m, n)-time such that

(L̃−1)2s2+ŝ+i,2s2+ŝ+j
= fi,j(

¯
x, g−1

1 , . . . , g−1
m ) for i, j ∈ [s], where ŝ =

m∑
i=1

si +m.

Proof. For each i, j ∈ [s], fi,j = (L−1(
¯
x, y1, . . . , ym))(i,j). We now define for each i, j ∈ [s],

hi,j = fi,j(
¯
x, g−1

1 , . . . , g−1
m ). As the variables y1, . . . , ym are indeterminates, we can rewrite

each hi,j as the following:

hi,j = (L−1(
¯
x, g−1

1 , . . . , g−1
m ))(i,j).

We first describe the construction of the linear pencil L̃ and then prove the correctness of
the construction. Let L̂ be a linear pencil over x1, . . . , xn of size ŝ where for each k ∈ [m],
there exists ik, jk ∈ [ŝ] such that g−1

k = (L̂−1)ik,jk
. The description of L̂ is given later.

Let us first define two s× s linear pencils L′ and L′′ as follows. Fix i, j ∈ [s]. Let (L)i,j =
α0 +

∑n
k=1 αk,i,jxk +

∑m
k=1 βk,i,jyk . Write L = L′ +L′′ such that (L′)i,j = α0 +

∑n
i=k αk,i,jxk

and (L′′)i,j =
∑m

k=1 βk,i,jyk. We now define L̃ as a 4×4 block linear matrix of size ŝ+2s2 +s,

L̃ =


Is2 A1 0 0
0 L̂ A2 0
0 0 Is2 A3
A4 0 0 L′

 , (4)

where Is2 is the identity matrix of size s2 and A1, A2, A3 and A4 are some rectangular
matrices of dimension s2 × ŝ, ŝ × s2, s2 × s and s × s2 respectively. We now define the
construction A1, A2, A3 and A4. Subsequently in this proof I is used for Is2 .

Let L̃1 =
[
I A1

0 L̂

]
. Then L̃−1

1 =
[
I −A1L̂

−1

0 L̂−1

]
.

We now consider the top-left 3× 3 block matrix.

Let L̃2 =

 I A1 0
0 L̂ A2
0 0 I

 . Then L̃−1
2 =

[
L̃−1

1 B1
0 I

]
,
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where B1 = −
[
I A1

0 L̂

]−1

·
[

0
A2

]
=
[
A1L̂

−1A2

−L̂−1A2

]
.

Define the s2×s2 matrix A1L̂
−1A2 = B2. Recall that, (L′′)i,j =

∑m
k=1 βk,i,jyk. We index the

rows of A1 and columns of A2 as a pair (i, j) for some i, j ∈ [s]. Define for each (i, j) ∈ [s]× [s]
and k ∈ [m], (A1)(i,j),ik

= βk,i,j , (A2)jk,(i,j) = 1 and the other entries are zero. Then,

(B2)(i,j),(i,j) =
∑
ik,jk

(A1)(i,j),ik
(L̂−1)ik,jk

(A2)jk,(i,j) =
m∑

k=1
βk,i,jg

−1
k .

We now define, for each i, j ∈ [s], (A4)i,(i,j) = −1 and 0 otherwise and (A3)(i,j),j = 1 and 0
otherwise. Since

L̃ =


I A1 0 0
0 L̂ A2 0
0 0 I A3
A4 0 0 L′

 , (5)

Now, L̃−1 =
[
∗ ∗
∗ B3

]
where, B3 =

L′ −
(
A4 0 0

)
L̃−1

2

 0
0
A3

−1

.

Simplifying further,

B3 = (L′ −A4B2A3)−1 = L−1(
¯
x, g−1

1 , . . . , g−1
k ).

Therefore, for each i, j ∈ [s], (B3)i,j = (L−1(
¯
x, g−1

1 , . . . , g−1
k ))i,j = hi,j .

Now we construct the linear pencil L̂ of size ŝ =
∑m

k=1 sk +m.
For k ∈ [m], let there are indices i′k, j′

k ∈ [sk] such that gk = (L−1
k )i′

k
,j′

k
. We now define

for each k ∈ [m],

L̃k :=
[

Lk ej′
k

−eT
i′

k
0

]
.

Here the vectors ei are the unit vector. The construction of L̂ is now as follows:

L̂ =


L̃1 0 . . . 0
0 L̃2 . . . 0
...

...
. . .

...
0 0 . . . L̃m

 . (6)

Considering the L̂−1 as an m×m block matrix where the ith block is of size si + 1, it is
easy to see that for each k ∈ [m], the bottom-right corner entry of the kth block of L̂−1 is
g−1

k . To see this apply Equation 1 with p4 = 0. ◀

Now the proof of Theorem 8 follows easily from Lemma 31.

Proof of Theorem 8. We show that inversely disjoint r-skewed rational functions of height
h and of size s have linear pencils of size at most cs2 for some constant c. We prove it
by induction on the inversion height h. For the base case h = 0, the input circuit is a
noncommutative ABP and the theorem holds by Proposition 14.

ITCS 2023
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Let f(
¯
x, g−1

1 , . . . , g−1
m ) be an input inversely disjoint r-skewed rational function of height

h computed by the circuit C ′. Replacing g−1
i by new variable yi we get a noncommutative

ABP C ′(
¯
x,

¯
y) of size s′ ⩽ s. Again by Proposition 14, C ′ can be represented by a linear

pencil of size at most 2s′. Let g1, . . . , gm are computed by inversely disjoint r-skewed circuits
of size s1, . . . , sm and inversion heights ⩽ h − 1. By the inductive hypothesis each gk is
computable by a linear pencil of size at most cs2

k.
Hence by Lemma 31, there is a linear pencil of size S representing C ′(

¯
x, g−1

1 , . . . , g−1
m )

which satisfies the following condition.

S ⩽ c
m∑

k=1
s2

k +m+ 8s′2 + 2s′.

Simplifying further,

S ⩽ c

(
m∑

k=1
s2

k +m+ s′2

)
,

for sufficiently large c. Since the sub-circuits for g1, . . . , gm are disjoint, we get that (
∑m

k=1 s
2
k+

m+ s′2) ⩽ (
∑m

k=1 sk +m+ s′)2 ⩽ s2. So, S ⩽ cs2 for some large constant c. ◀

We now prove the following property of the linear pencil constructed in Theorem 8.

▶ Proposition 32. For any inversely disjoint rational r-skewed circuit computing r ∈ F⦓
¯
x⦔

and a tuple of matrix
¯
p ∈Mn

m(F) for some finite m, the following are equivalent.
1. r is defined at

¯
p.

2. For every gate u which is an output gate or a child of an inverse gate, the pencil constructed
in Theorem 8 corresponding to the rational expression computed at u is invertible at

¯
p.

The proof of Proposition 32 can be found in the full version [2].

Proof of Corollary 9. Let r(
¯
x, g−1

1 , . . . , g−1
m ) be the input inversely disjoint r-skewed circuit

of size s. By Theorem 8, we construct a linear pencil L̃ of size O(s2) for r−1. Now by
Proposition 32, r−1 is defined at

¯
p if and only if L̃(

¯
p) is invertible. But r is nonzero if and

only if r−1 is defined [1]. So for nonzero testing of r, it is enough to apply the singularity
testing algorithms in [25] on the linear pencil L̃ in white-box case. For the black-box case
one can use the algorithm in [14]. In fact the result in [25] also gives the dimension upper
bound of O(s2) for the tensoring matrices on which L̃ should be tested for singularity. This
also leads to randomized polynomial-time black-box algorithm that simply substitutes the
variables randomly from matrices of dimension O(s2) over sufficiently large fields. ◀

6 Future Directions

Our work raises the following questions for further research:

The most important question is to obtain an unconditional derandomization of the black-
box RIT problem. The current best known result is a quasipolynomial-time black-box
RIT algorithm for rational formulas of inversion height at most two [3].
Theorem 4 opens up a new motivation to further study the Conjecture 2. In [5], it is
shown that a nonzero noncommutative polynomial of sparsity s can not be an identity
for some k = O(log s) dimensional matrix algebra. This solves a special case of the
conjecture and the proof uses automata theoretic ideas very crucially. Can we improve
these techniques to settle the conjecture completely?
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The effective use of Higman’s trick has found new applications in randomized polynomial-
time factorization algorithm for noncommutative formulas [4]. The proof of Theorem 5
does not use Higman’s trick. It would be interesting to see whether such ideas can be
applied elsewhere.
Can we exactly characterize (up to a polynomial-size equivalence) the expressive power
of linear pencil representations for some sub-class of rational circuits? In this paper, we
show that inversely disjoint r-skewed circuits have polynomial-size linear pencils. This
gives ID-R-rSC ⊆ LR. It would be very interesting to prove that rational r-skewed circuits
can be expressed by polynomial-size linear pencils. In other words, prove that R-rSC = LR.
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Abstract
In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of
clients and a set of servers, and each client comes with some nonnegative real weight. The output
is an assignment that maps each client to one of its adjacent servers, and the load of a server is
then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is
well-balanced, typically captured by (approximately) minimizing either the ℓ∞- or ℓ2-norm of the
server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for
an assignment that approximately minimizes all ℓp-norm objectives for p ≥ 1, including p = ∞,
simultaneously.

Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for
the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation
algorithm for the ℓ∞-norm objective was known in the semi-streaming setting.

Our algorithm uses a novel application of the multiplicative weights update method to a mixed
covering/packing convex program for the all-norm load balancing problem involving an infinite
number of constraints.
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1 Introduction

In the load balancing problem, the input is a bipartite graph G = (C, S, E) between clients
C and servers S together with a client weight function w : C → Z+. The goal is to find an
assignment – a mapping that sends each client to one of its neighboring servers – that is as
“balanced” as possible. The load of a server under an assignment is the sum of the weights of
the clients assigned to it, and the load vector is then the vector of server loads, indexed by
server. The notion of “balance” can be captured mathematically with a suitable norm of the
load vector – the smaller the norm, the more balanced the assignment. For example, the
often considered “min-max objective” – that of minimizing the maximum server load – is
captured by minimizing the ℓ∞-norm. Though natural, the min-max objective is not always
appropriate, as it may neglect to properly balance the clients that are not part of the main
bottleneck. Hence another common objective is to minimize the ℓ2-norm.
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7:2 All-Norm Load Balancing in Graph Streams via the MWU Method

Generalizing both the ℓ∞- and ℓ2-norm objectives, one may ask for an assignment which
minimizes the ℓp-norm of the load vector for all p ≥ 1, including p =∞, simultaneously. In
general, such an assignment may not exist [2], but, perhaps surprisingly, there is always an
assignment that is a 2-approximation for every ℓp-norm simultaneously [10] (see also [29,
15, 18]). The problem of computing an assignment that is approximately optimal for all
ℓp-norms simultaneously is called the all-norm load balancing problem.

We study the all-norm load balancing problem in the semi-streaming model [23]: the edges
of an n-vertex graph arrive one-by-one in a stream, and the algorithm is allowed to process
these edges using O(n polylog n) words of memory and a small number of passes over the
stream. These constraints capture several challenges of processing massive graphs, including
I/O-efficiency and efficiently monitoring evolving graphs. As such, the semi-streaming model
has attracted significant attention in recent years.

The load balancing problem has been studied extensively under different terms across
various models. It has a rich history in the scheduling literature as job scheduling with
restricted assignment [30, 17, 39, 29]. In the distributed computing literature, it has been
studied as the backup placement problem [28, 43, 11, 6] (see also [44, 40, 36, 46, 47] for
similar models). Load balancing has also been studied under the term the semi-matching [29,
21, 22, 35], and from the optimization perspective, it is one of canonical examples of mixed
packing-covering optimization problems.

Load balancing can be seen as a cross between maximum matching and coverage problems,
which are arguably the two most studied optimization problems in the semi-streaming model
(see [24, 41, 1, 26, 34, 32, 20, 33, 8, 25, 7, 13, 5, 14] and references therein for matching
and [4, 12, 37, 42] for coverage – this is by no means a comprehensive list of prior results).
Yet, surprisingly, not much is known about the load balancing problem in this model. To
our knowledge, the only previous work on load balancing in the semi-streaming model, due
to Konrad and Rosén [35], provided a single-pass O(

√
n)-approximation algorithm and an

O(log n)-pass O(log n)-approximation algorithm, both only for the min-max objective and
unweighted clients.1 Our goal in this paper is to address this shortcoming.

1.1 Our results
Our main result is the following theorem.

▶ Theorem 1.1 (Formalized in Theorem 4.32). There exists a deterministic semi-streaming
algorithm for the all-norm load balancing problem with weighted clients that achieves an
O(1)-approximation2 in O(log n) passes.

Theorem 1.1 vastly generalizes the semi-streaming algorithm of [35] to both weighted
clients and to the all-norm guarantee. At the same time, it improves the approximation ratio
from O(log n) to O(1).

It is worth pointing out that even for the unweighted min-max objective, obtaining a
better-than-2-approximation is at least as hard as finding a perfect matching in the input
graph. Indeed, the min-max objective value is one if and only if there is a client-perfect

1 A very recent work of [16] also studies mixed packing-covering linear programs in the semi-streaming
model. While the paper does not explicitly address the load balancing problem, their results seem
to imply an O(1)-approximation for the (unweighted) min-max objective in O(log n) passes [45]. We
discuss this connection later in our paper.

2 More precisely, we prove that our algorithm obtains a 19-approximation. We make little attempt to
optimize the constant. It seems plausible that the approximation factor can be reduced to 8, but not
below 4 without substantial modification.
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matching in the graph, and otherwise, it is at least two. Computing a perfect matching
requires at least Ω(log n/ log log n) passes in the semi-streaming model [27, 9, 19], and the
current best upper bound is n3/4+o(1) passes [7].

For weighted clients, finding a polynomial-time better-than-2-approximation algorithm
for the min-max objective has remained an open problem for 35 years, and it is NP-hard to
obtain a better-than-1.5-approximation [38]. Indeed, any algorithm that rounds a fractional
assignment using the algorithm of [38], as ours does, cannot beat a 2-approximation, even for
just the ℓ∞-norm. Thus, improving the approximation ratio of our algorithm in Theorem 1.1
to below 2 seems to be out of the reach of the current techniques.

1.2 Our techniques
We obtain the algorithm of Theorem 1.1 by approximately solving a convex program for
the all-norm load balancing via the multiplicative weights update (MWU) method. The
MWU method has been a particularly successful optimization technique in the streaming
model [1, 16, 31] as it provides a way of boosting a “feasible-on-average” solution into a
feasible and approximately optimal one. In order to apply the MWU method, one needs to
do design a suitable oracle and show that the oracle can be implemented via a semi-streaming
algorithm efficiently (see Section 2).

The min-max objective for load balancing can be formulated as a mixed packing-covering
linear program (LP). The very recent work of [16] for solving mixed packing-covering LPs
in streaming via MWU can then be used to solve this problem. However, all-norm load
balancing is more challenging; there are infinitely many non-linear constraints, and so the
previous MWU-based streaming techniques in [1, 16] do not apply.

At a high level, we implement our MWU-based algorithm by delegating all infinitely
many packing constraints of the convex program for all-norm load balancing to the MWU
oracle and use MWU itself only to satisfy the (linear) covering constraints. Roughly speaking,
this requires the oracle in each iteration of MWU to find an assignment of a large fraction
(but crucially not all) of clients to the servers that is balanced with respect to every ℓp-norm
simultaneously. Implementing this oracle is the main technical ingredient of our work. We
postpone the details of this implementation to the streamlined overview of our approach
in Section 3.

2 Preliminaries

We use R+ for the nonnegative real numbers. If f : Ω→ R for some ground set Ω, we extend
f to subsets A ⊆ Ω by defining f(A) =

∑
a∈A f(a).

Throughout the paper, G = (C, S, E) is a bipartite graph on clients C and servers S,
and w : C → R+ is a weight function on the clients. We denote the edge (c, s) ∈ E by cs.
For a vertex v, we use δ(v) = {e ∈ E : e ∋ v} to denote the set of edges incident to v.

For a function x : E → R, we define x+ by x+(e) = max{x(e), 0}.

Assignments

A partial assignment A ⊆ E is a set of edges such that every client has degree at most one
in A. We say that a client c is assigned to s (by A) if cs ∈ A. For s ∈ S, we write A−1(s)
to denote the set of clients assigned to s by A. If every client has degree exactly one in A,
we simply call A an assignment. Every assignment is also a partial assignment. The load
function LA : S → R+ of a partial assignment A is given by LA(s) =

∑
c∈A−1(s) w(c), and

for s ∈ S we call LA(s) the load of s (under A). The ℓp-norm of a partial assignment A is
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(∑
s∈S

LA(s)p

)1/p

.

A function z : E → R+ is a partial fractional assignment if z(δ(c)) ≤ 1 for all c ∈ C. If
z(δ(c)) = 1 for all c ∈ C, then we call z a fractional assignment. The load function Lz of a
partial fractional assignment z is given by Lz(s) =

∑
s∈S

∑
c∈N(s) w(c)z(cs). The ℓp-norm

of a fractional assignment A is(∑
s∈S

Lz(s)p

)1/p

.

b-matchings

For any function b : V → R+, a fractional b-matching is a function x : E → R+ such that
x(δ(v)) ≤ b(v) for all v ∈ V . The value b(v) is is called the capacity of v. A vertex v

is saturated by x if x(δ(v)) = b(v). The size of the fractional b-matching x, is given by
x(E) =

∑
e∈E x(e). We say that x is an α-approximate fractional b-matching if αx(E) ≥ y(E)

for every fractional b-matching y. We say that x contains a b-matching y if x(e) ≥ y(e) for
all e ∈ E, which we also denote by x ≥ y.

As we work with bipartite graphs on clients and servers, it will often be convenient
to specify the vertex capacities of the clients and servers separately. To that end, for
κ : C → R+ and τ : S → R+, a fractional (κ, τ)-matching is a fractional b-matching where

b(v) =
{

κ(v) v ∈ C

τ(v) v ∈ S
.

All-Norm Load Balancing

In the all-norm load balancing problem, the input is a bipartite graph G = (C, S, E) together
with a weight function w : C → Z+. We call elements of C clients and elements of S servers.
The goal is to find an assignment A ⊆ E that is approximately optimal with respect to
every ℓp-norm objective simultaneously. Indeed, we must settle for an approximation as it
is not always possible to minimize all ℓp-norms simultaneously. But there always exists an
assignment whose ℓp-norm is at most twice the optimal ℓp-norm for all p ≥ 1 [10].

An assignment A is said to be a β-approximation all-norm assignment, or more simply a
β-all-norm assignment, if ∥LA∥p ≤ β ·OPTp for all p ≥ 1, where OPTp is the ℓp-norm of
the ℓp-norm minimizing assignment.

The Multiplicative Weights Update Method

The multiplicative weights update (MWU) method is a generic and powerful meta-algorithm
that, among other things, can be used to find (approximately) feasible points in a convex set
partially defined by halfspaces.

Suppose we have a set of n linear inequalities in m variables z ∈ Rm given by ai · z ≥ bi,
where ai ∈ Rm and bi ∈ R for i ∈ {1, . . . , n}. Suppose further there is a convex set P ⊆ Rm,
and we want to find a z ∈ P such that z is feasible for the linear inequalities above. We
call the linear inequalities ai · z ≥ bi the “hard” constraints and the constraints that form
the convex set P the “easy” constraints. The MWU method introduces a value λi for
each constraint i ∈ [m] and reduces the task to the following: find a z ∈ P such that∑m

i=1 λiai · z ≥
∑m

i=1 λibi. Algorithms that solve this simpler task in service to the MWU
method are called oracles.
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Not all oracles are created equal; although the MWU method can use any oracle to obtain
a solution to the original problem, oracles that produce solutions that are “closer” to being
feasible to the actual constraints require fewer invocations.

▶ Definition 2.1. A d-bounded oracle is an algorithm which given a vector λ ∈ Rm
+ computes

an z ∈ P such that
m∑

i=1
λiai · z ≥

m∑
i=1

λibi

or correctly reports that no such z exists. Moreover, it holds that |aiz− bi| ≤ d for all i ∈ [m].

Algorithm 1 The multiplicative weights update (MWU) method.

Given: A d-bounded oracle for the feasibility problem and an error parameter
ε ∈ (0, 1).

1. Set η ← ε/(4d). Set T ← 8d2 log n/ε2. Set λ
(1)
i ← 1 for each constraint i ∈ [n].

2. For t = 1 to T ,
3. Run the given d-bounded oracle with λ(t) to obtain solution z(t). If the oracle

returns infeasible, then return infeasible.
4. Set m

(t)
i ← 1

d (bi −Aiz
(t)) for each i ∈ [n].

5. Set λ
(t+1)
i ← λ

(t)
i (1− ηm

(t)
i ) for each i ∈ [n].

6. return 1
T

∑T
t=1 z(t)

The following theorem follows from [3] and the fact that Algorithm 1 can be implemented
in the streaming setting if given an oracle for such a setting.

▶ Theorem 2.2. Let ε > 0 be an error parameter. Suppose we have a stream defining the
constraints aiz ≥ bi. Further suppose that there exists a d-bounded oracle for the feasibility
problem that makes p passes over the stream and uses s space. Then Algorithm 1 equipped
with this oracle either returns an x such that ai · x ≥ bi − ε or correctly decides that the
system is infeasible. The algorithm makes O(pd2 log m/ε2) passes over the stream and uses
O(n + sd2 log m/ε2) space.

3 High-Level Overview

Our goal is to compute an O(1)-all-norm assignment in the semi-streaming setting using
O(log n) passes over the stream. Our approach can be viewed as the following series of
reductions:
1. Computing an O(1)-all-norm assignment reduces to computing an O(1)-all-norm fractional

assignment.
2. Computing an O(1)-all-norm fractional assignment reduces, via the MWU method, to

solving a problem we call the O(1)-all-norm oracle problem.
3. The O(1)-all-norm oracle problem in turn reduces to computing a matching hierarchy

with size factor O(1).
4. Finally, computing a matching hierarchy with size factor O(1) reduces to computing

O(log2 n) maximal b-matchings.
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The algorithm providing the reduction for the first step is well-known and is due to Lenstra,
Shmoys and Tardos [38]. The second reduction is provided by the multiplicative weight
framework applied to the infinite-constraint convex program that captures the O(1)-all-
norm fractional assignment problem. The third and fourth steps are our main algorithmic
contributions. Most of the complexity is in the third step, and this section is devoted to
providing intuition for that step.

The O(1)-all-norm oracle problem

In the β-all-norm oracle problem, the input is a graph G = (C, S, E), weights w : C → R+,
and values λ : C → R+. The goal is to compute a function z : E → R+ such that∑

c∈C

λ(c)z(δ(c)) ≥
∑
c∈C

λ(c)

and∑
s∈S

( ∑
c∈N(s)

w(c)z(cs)
)p
1/p

≤ β ·OPTp

for all p ≥ 1, where OPTp is the ℓp-norm of the ℓp-norm minimizing assignment. We say
that an algorithm solves the O(1)-all-norm oracle problem if it solves the β-all-norm oracle
for some constant β.

Let us assume w(c) = 1 for all c ∈ C. This assumption is not without loss of generality,
but since it already captures many of the key algorithmic ideas in our approach, we make
this assumption to simplify the following discussion.

It suffices to find a partial assignment A ⊆ E such that∑
cs∈A

λ(c) ≥ 1
α

∑
c∈C

λ(c). (1)

for some α ≥ 1 and(∑
s∈S

|L−1(a)|p
)1/p

≤ O(1) ·OPTp. (2)

Indeed, then scaling the indicator of A by α yields a solution.

A charging scheme for partial assignments

Let A ⊆ E be a partial assignment and let ≺ be an arbitrary total ordering of C. We now
describe a useful charging scheme that allocates the quantity ∥LA∥p

p to the clients according
to ≺. More formally, we define a function ϕp : C → R+ for each p ≥ 1 with the property
that∑

c∈C

ϕp(c) = ∥LA∥p
p. (3)

The definition is simple: If A does not assign c, set ϕp(c) = 0. Otherwise, if c is the
kth smallest element (with respect to ≺) among the clients assigned to A(c), then set
ϕp(c) = kp − (k− 1)p. It is easy to see that

∑
c∈A−1(s) ϕp(c) = LA(s)p as the sum telescopes.

Hence ϕp satisfies (3) as desired.
This charging scheme will be the basis for an upper bound on the cost of the solution our

algorithm computes and also for a lower bound on the optimal cost.
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Matching hierarchies and ℓp-norms

To solve the O(1)-all-norm oracle problem – that is, to find an A ⊆ E that satisfies (1) and
(2) – we first compute a matching hierarchy. Let ℓ = ⌈log2 n⌉. A matching hierarchy is a
sequence of matchings M0, . . . , Mℓ such that Mi is a (1, 2i)-matching and M0 ⊆ · · · ⊆ Mℓ.
By definition, if a client c is matched to a server s in some Mi, then it is matched to s in
Mi′ for all i′ ≥ i. Let the rank of a client c be the smallest i such that c is matched in Mi or
∞ if no such i exists.

A matching hierarchy provides two main benefits. First, it gives us a foundation from
which to build a partial assignment. Notice that each Mi is a partial assignment of maximum
load 2i, and because the Mi’s are nested, every Mi that assigns a client c agrees on which
server to assign c to. In the end, our final solution A will be a subset of Mℓ; that is, we will
assign some clients according to Mℓ and leave others unassigned.

The second benefit of a matching hierarchy is what differentiates it from a simple
assignment. A matching hierarchy naturally defines a useful ordering of the clients, and
any ordering that lists the clients in non-decreasing order of rank will do. To see why such
an ordering is useful, consider an A ⊆ Mℓ. If c is assigned by A and c has rank i (in the
matching hierarchy) then c must appear in the first 2i clients assigned to s in A. It follows
that ϕ(c) ≤ 2ip − (2i − 1)p. Hence the ℓp-norm of A ⊆Mℓ is upper bounded by a function of
the ranks of the clients as defined by the matching hierarchy.

We can also obtain a lower bound for OPTp
p in terms of a matching hierarchy. Let A∗

be an ℓp-norm minimizing assignment and consider an arbitrary ordering of the clients. For
i ∈ {0, . . . , ℓ}, define M∗

i to be the (1, 2i)-matching that assigns to each server its first 2i

clients. Now consider the same charging scheme as before, this time applied to M∗
ℓ . A client

c of rank 0, by the definition of M∗
0 , is the first element of its server’s preimage under A,

and hence ϕ(c) = 1. A client c of rank i is preceded by at least 2i−1 clients in its server’s
preimage under A, and hence ϕ(c) ≥ (2i−1 + 1)p − 2(i−1)p.

The main takeaway is the following. The matching hierarchy A that we compute assigns
a rank to each client, and we can also decompose an optimal solution into a (different)
matching hierarchy that defines its own rank on each client. To prove that A is near-optimal,
we compare the ranks of the clients in A to those in the optimal solution.

Size factor

It is not enough to merely have many clients of low rank; we also need to make sure we have
assigned clients with enough λ-value, or else we may not satisfy (1). One approach would
be to ensure that the λ−value matched by each Mi is a constant fraction of the λ-value
matched by any other (1, 2i)-matching. We will want something a bit stronger.

Let C(j) = {c : λ(c) ≥ maxc∈C λ(c) · 2−j}, let E(j) = {cs ∈ E : c ∈ C(j)}, and
let G(j) = (C, S, E(j)). We say that a matching hierarchy M0, . . . , Mℓ has size factor
α if Mi ∩ E(j) is an α-approximate maximum cardinality (1, 2i)-matching of G(j) for all
i, j ∈ {0, . . . , log n}.

Notice that having size factor α implies, in particular, that the value matched by each
Mi is at least a 1/α fraction of the value matched by any other (1, 2i)-matching. That is,
Mi is an α-approximate maximum “weight” matching where the “weight” of an edge cs is
given by λ(c) (the quotation marks are to emphasize that this “weight” is different from the
weight w(c) of a client c).

To see why such a matching hierarchy is useful consider the following. We want to show
that compared to an optimal matching hierarchy, our solution has many low-rank clients of
high cost. Pick any rank-threshold i and note that that the maximum (1, 2i)-matching in
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7:8 All-Norm Load Balancing in Graph Streams via the MWU Method

G(j) is precisely the number of clients that have rank ≤ i in A∗ and value ≥ maxc∈C λ(c)2−j .
Thus, a matching hierarchy of size factor α has at least 1/α as many clients as A∗ of this
category. In other words, for any rank/cost tradeoff, the matching hierarchy is competitive
with M∗

0 , . . . , M∗
ℓ .

Approaches that fail

Once we compute a matching hierarchy M0, . . . , Mℓ, we then need to compute a partial
assignment satisfying (1) and (2). One naive solution is to let the partial assignment be Mℓ

itself.
To see why this fails, consider the following example. Let n be a power of two, let

C = {c1, . . . , cn} and let S = {s1, . . . , sn}. The graph G is the complete graph on C and S,
and λ(c) = 1 for all c ∈ C. The nested matching hierarchy is the following. The matching M0
matches ck to sk for k ∈ {1, . . . , n/2}. For i ≥ 1, each Mi builds on Mi−1 by assigning 2i−1

previously unassigned clients to s1. As every Mi matches the first n/2 clients, the matching
hierarchy clearly has size factor 2. But s1 has load n/2 in Mℓ, while the ℓ∞-norm of the
optimal assignment is one (G has a perfect matching).

Thus, instead of picking all of Mℓ, the idea is to let A assign some strict subset of the
clients according to Mℓ and leave the others unassigned. In light of the above example, one
other tempting option is to simply pick clients in increasing order of rank until we have
collected enough λ-value. However, this approach fails when there are many low-rank clients
with low value.

The problem with the approach in the previous paragraph is that it does not account for
the value of the clients. An equally myopic approach would be to ignore rank and assign
clients in decreasing order of value until (1) is satisfied. Our first example already shows
why this does not work.

Thus when picking the subset clients we need to maintain a balance between the cost of
the clients and their value. We already have a good proxy for the cost of a client with respect
to an ℓp-norm: if we set ϕ̂p(c) = 2ip−(2i−1)p where i is the rank of c, then ϕ̂p(c) ≤ ϕp(c). We
can therefore assign to each client then a cost and a value, and the problem then resembles
a fractional knapsack problem. It is natural therefore to try a fractional-knapsack-like
algorithm: in decreasing order of ϕ̂p(c)/λ(c), assign the clients greedily until (1) is satisfied.
Indeed, if one is only interested in minimizing a fixed ℓp-norm, this approach can be made to
work. The problem for all-norm load balancing is that ϕ̂p is a function of p, and the ordering
it induces depends on the choice of p.

Our algorithm

Our algorithm prioritizes value in the following way. First it only considers clients in C(0).
The algorithm begins collecting clients from C(0) in increasing order of rank. The next step is
crucial. Once the algorithm has collected exactly 1

α |C
(0)| clients,3 it ends the C(0) iteration.

The algorithm then expands the set of clients under its consideration to C(1) and resumes
adding clients (that it has not yet taken) in increasing order of rank. Again, once it has
collected exactly 1

α |C
(1)| clients, it proceeds to C(2). And so on.

It is not hard to see that the algorithm will collect at least a 1/α fraction of λ(C). Indeed,
by first collecting |C(0)|/α clients from C(0), then collecting C(1)/α clients from C(1), and so
on, the algorithm will end with a 1/α fraction of the total value.

3 We assume for simplicity that α divides |C(j)|. Our actual algorithm computes a fractional partial
assignment, so the issue of divisibility vanishes.
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Matching hierarchies provide us with the key tool for proving that an assignment is
near-optimal for all ℓp-norms. For every i, j, let Ni,j denote the number of clients in our
hierarchy of rank ≤ i and value ≥ maxc∈C λ(c)2−j , and let N∗

i,j be the corresponding number
for an optimal matching hierarchy. If we could guarantee that for all i, j we have Ni,j ∼ N∗

i,j

then it is not hard to check that our solution would be approximately all-norm optimal
(consider the charging scheme described above). We do not quite achieve Nij ∼ N∗

ij , but
we do achieve a slightly weaker guarantee which is still sufficient for approximate all-norm
optimality.

Weighted clients

There is well-known albeit inefficient reduction from weighted fractional load balancing to
unweighted load balancing: Replace every client c with w(c) replicas of unit weight and give
each client value λ(c)/w(c). Indeed, any assignment in this client-replicated graph can be
mapped back to a fractional assignment in the original graph with the same load vector.
Since every assignment in the weighted graph also corresponds to an assignment in the
client-replicated graph with the same ℓp-norm, it follows that a β-approximate all-norm
assignment in the client-replicated graph is a β-approximate all-norm fractional assignment
in the original graph.

Rather than explicitly running our streaming algorithm through this reduction, which, at
least if applied naively, does not work in the semi-streaming setting, we instead maintain a
fractional assignment directly. All intuition, however, comes from the idea of client-replication.
For example, in our unweighted algorithm, we consider clients in decreasing order of value. In
our weighted algorithm, emulating the unweighted algorithm on the client-replicated graph,
we consider clients in decreasing order of λ(c)/w(c).

4 All-Norm Load Balancing in the Streaming Model

4.1 The All-Norm Oracle Problem

In this subsection, we how show the multiplicative weights framework together with a classic
rounding algorithm reduce the task of O(1)-all-norm load balancing to that of solving a
simpler problem, which we call the O(1)-all-norm oracle problem. Once we establish the
reduction, the reader can safely forget about the multiplicative weights update method and
focus exclusively on solving the O(1)-all-norm oracle problem in the semi-streaming setting.

Rounding

To compute a sparse O(1)-all-norm assignment, it is sufficient to compute a sparse O(1)-all-
norm fractional assignment. Indeed, the classic algorithm of Lenstra, Shmoys, and Tardos [38]
does the trick.

▶ Lemma 4.1 ([10]). The rounding algorithm of [38] takes as input a fractional assignment
z : E → R+ and produces an (integral) assignment A ⊆ E such that ∥LA∥p ≤ ∥Lz∥p + ∥w∥p.

Furthermore, the algorithm uses O(supp(z)) space.

Hence if we can compute an O(1)-all-norm fractional assignment in the semi-streaming
setting with support O(n polylog n), then we can simply round it as a post-processing step
using Lemma 4.1.
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The O(1)-all-norm oracle problem

To compute an O(1)-all-norm fractional assignment in the semi-streaming setting, we employ
the multiplicative weights update framework. Recall that there are two types of constraints
that a β-approximate all-norm fractional assignment z : E → R+ must satisfy. First there
are the client covering constraints, which are the linear constraints

∑
s∈N(c) z(cs) ≥ 1 for

each c ∈ C. There are also the β-approximate ℓp-norm constraints, which are the convex
constraints∑

s∈S

( ∑
c∈N(s)

w(c)z(cs)
)p
1/p

≤ β ·OPTp,

for all p ≥ 1.
To apply the MWU method, we treat the β-approximate ℓp-norm constraints as defining

the convex set P. Although there are infinitely many such constraints, the set of feasible
points forms a convex set, and so the uncountable nature of the constraints poses no problem
for the framework.

In this formulation, the MWU method introduces a value λ(c) for each client c. The
task is then to design an oracle that computes a z : E → R+ such that the β-approximate
ℓp-norm constraints are satisfied for all p ≥ 1 and∑

c∈C

λ(c)z(δ(c)) ≥
∑
c∈C

λ(c). (4)

We call constraint (4) the combined client covering constraint. The problem is formally stated
in Figure 1.

In the β-all-norm oracle problem the input is a bipartite graph G = (C, S, E),
weights w(c) for each c ∈ C and values λ(c) for each c ∈ C. The goal is to compute
a z : E → R+ such that∑

c∈C

λ(c)z(δ(c)) ≥
∑
c∈C

λ(c), (CCC)

and∑
s∈S

( ∑
c∈N(s)

w(c)z(cs)
)p
1/p

≤ β ·OPTp, (LPC)

for all p ≥ 1. The algorithm is d-bounded if |z(δ(c))− 1| ≤ d for all c ∈ C.

Figure 1 The β-all-norm oracle problem.

We can now prove the main lemma of this section.

▶ Lemma 4.2. If there is a d-bounded p-pass S(n, m)-space streaming algorithm for the β-all-
norm oracle problem, then there is an O(pd2β2 log n)-pass O(S(n, m) · β2d2 log n + n)-space
streaming algorithm to compute a (β + 2)-all-norm assignment.
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Proof. Run Algorithm 1 equipped with the provided oracle and error parameter ε = 1/β. By
Theorem 2.2, the result z̄ satisfies z̄(δ(c)) ≥ 1− ε/2 for each client c and ∥Lz̄∥p ≤ β ·OPTp

for all p ≥ 1. By scaling z̄ by 1 + ε and running the rounding algorithm of Lemma 4.1 on the
result, we obtain an integral assignment ẑ such that

∥Lẑ∥p ≤ (1 + ε) ∥Lz̄∥p + ∥w∥p ≤ (1 + ε)β ·OPTp + OPTp ≤ (β + 2) ·OPTp

for all p ≥ 1, as desired.
Each invocation of the oracle requires p passes over the stream and S(n, m). Because the

width of the oracle is d, the MWU algorithm makes O(d2 log n/ε2) calls to the oracle. Hence
O(d2p log n/ε2) passes are used.

Finally, the space requirements by Theorem 2.2 are O(S(n, m) · d2 log n/ε2 + n), and
running the rounding algorithm cannot increase this by more than a factor of two. ◀

4.2 Nested Matching Hierarchies
Recall that in the all-norm oracle problem (Figure 1), each client c is associated with two
quantities, a value λ(c) and a weight w(c). Assigning clients with large value makes it easier
to satisfy the combined client covering constraint (CCC), while assigning clients with large
weight makes it harder to satisfy the ℓp-norm constraints (LPC). The value-per-unit-weight
of a client c, denoted by ρ(c), is λ(c)/w(c). Let ε > 0; we will choose ε later.

▶ Definition 4.3. The value-per-unit-weight of a client c, denoted ρ(c) is λ(c)/w(c). For j ∈ Z
define C(j) = {c ∈ C : ρ(c) ≥ maxc∈C ρ(c) · e−εj}. Also define E(j) = {cs ∈ E : c ∈ C(j)}
and G(j) = (C, S, E(j)).

We use that E(−1) = ∅ to simplify some of our proofs. Note that C(0) is the set
of clients with largest value-per-unit-weight, and also that C(j) ⊆ C(j+1) for all integers
j. The next simple lemma says that we can ignore clients outside C(j) for some j =
O(log(maxc∈C ρ(c)w(C))/ε).

▶ Lemma 4.4. Let R = maxc∈C ρ(c). For j ≥ ln(R · w(C)/ε)/ε, it holds that λ(C(j)) ≥
λ(C)− ε.

Proof. λ(C)− λ(C(j)) = λ(C \ C(j)) =
∑

c∈C\C(j) ρ(c)w(c) ≤ Re−εjw(C \ C(j)) ≤ ε. ◀

A fractional (κ, 2i)-nested-matching-hierarchy is a sequence of b-matchings x0, x1, . . . , xℓ

where each xi is a fractional (κ, 2i)-matching, for some capacity function κ, and each xi is
contained in xi+1.

▶ Definition 4.5 (Size factor). A fractional b-matching x of G has size factor α with respect
to (C(j))k

j=0 if x restricted to E(j) is a α-approximate b-matching of G(j) = G[C(j), S] for
all j ∈ {0, . . . , k}.

▶ Definition 4.6 (Fractional nested matching hierarchy). Let κ : C → R+. Let xi : E → R+ for
i ∈ {0, . . . , ℓ}. A sequence x = (x0, . . . , xℓ) is a fractional (κ, 2i)-nested matching hierarchy
(NMH) if for all i ∈ {0, . . . , ℓ},
1. xi is a fractional (κ, 2i)-matching and
2. xi(e) ≥ xi−1(e) for all e ∈ E.

We say that x has size factor α with respect to (C(j))k
j=0 if each xi has size factor α with

respect to (C(j))k
j=0.

Computing a (w, 2i)-NMH of size factor 8 with respect to (C(j))k
j=0 turns out to be

relatively simple, even in the semi-streaming setting. The algorithm boils down to computing
polylog n many maximal b-matchings. We defer the details to Section 4.5.
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4.3 Matching Hierarchies and ℓp-Norms
Given a fractional (w, 2i)-NMH x = (x0, . . . , xℓ), we can obtain a relatively good upper
bound on the ℓp-norm of the load vector of the matching xℓ in terms of the other matchings
xi.

▶ Lemma 4.7. If x = (x0, . . . , xℓ) is a fractional (w, 2i)-NMH, then

∑
s∈S

xℓ(δ(s))p ≤ p · x0(E) +
ℓ∑

i=1
p2i(p−1) · (xi − xi−1)(E).

Proof. Fix s ∈ S. Let di = xi(δ(s)) for i ∈ {−1, . . . , ℓ}. Let g : R → R be the function
g(z) = zp and recall that g′(z) = pzp−1. Since g is differentiable,

g(xℓ(δ(s))) =
ℓ∑

i=0
g(di)− g(di−1) =

ℓ∑
i=0

∫ di

di−1

g′(z)dz.

Using that g is convex and di ≤ 2i,∫ di

di−1

g′(z)dz ≤ g′(di)(di − di−1) ≤ g′(2i)(di − di−1). (5)

Hence

xℓ(δ(s))p ≤
ℓ∑

i=0
p2i(p−1)(xi − xi−1)(δ(s)).

Summing over all s ∈ S gives the result. ◀

We also prove a complementary lower bound for more structured matching hierarchies.
We first need the following definition.

▶ Definition 4.8. A fractional (κ, 2i)-NMH (x0, . . . , xℓ) is maximally-nested if xi(δ(s)) = 2i

whenever xi+1(δ(s)) ̸= xi(δ(s)) for all s ∈ S and i ∈ {0, . . . , ℓ− 1}.

Maximally-nested hierarchies are maximal in the sense that for all i ∈ {0, . . . , ℓ− 1} and all
e ∈ E, one cannot increase xi(e) without violating the inclusion property of a nested matching
hierarchy. Maximally-nested integral matching hierarchies have the following property, which
we utilize in the next proof: for all i ∈ {0, . . . , ℓ} and s ∈ S, the quantity (xi − xi−1)(δ(s)) is
either zero, or between 1 and 2i−1.

▶ Lemma 4.9. If x = (x0, . . . , xℓ) is a maximally-nested integral (w, 2i)-NMH, then

∑
s∈S

xℓ(δ(s))p ≥ x0(E) +
ℓ∑

i=1
p2(i−1)(p−1) · (xi − xi−1)(E).

Proof. The proof is similar to that of Lemma 4.7, but a bit more delicate. Fix s ∈ S and let
di = xi(δ(s)) for i ∈ {0, . . . , ℓ}. Since g is differentiable,

g(xℓ(δ(s))) = g(d0) +
ℓ∑

i=1
g(di)− g(di−1) = g(d0) +

ℓ∑
i=1

∫ di

di−1

g′(z)dz.
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Using that g is convex,∫ di

di−1

g′(z)dz ≥ g′(di−1) · (di − di−1). (6)

Now since x is maximally-nested and g′ is increasing, g′(di−1)·(di−di−1) ≥ g′(2i−1)·(di−di−1);
indeed, either di = di−1 or di−1 = 2i−1. Also, by the integrality of x, we have d0 ∈ {0, 1},
and in either case g(d0) = d0. We thus have

g(xℓ(δ(s))) ≥ g(d0) +
ℓ∑

i=1
g′(di−1) · (di − di−1) ≥ d0 +

ℓ∑
i=1

g′(2i−1) · (di − di−1).

Summing over s ∈ S yields the desired result. ◀

We conclude this section with a simple decomposition of an assignment into a maximally-
nested matching hierarchy. This will be useful when we want to apply the lower bound above
to an ℓp-norm-minimizing assignment.

▶ Definition 4.10. Let A ⊆ E be an assignment and let ℓ = ⌈log2(w(C))⌉. A (w, 2i)-nested
matching hierarchy x = (x0, . . . , xℓ) is a (w, 2i)-nested matching hierarchy decomposition of

A if x is maximally-nested and xℓ(cs) =
{

w(c) cs ∈ A

0 otherwise.

Every assignment A has a fractional (w, 2i)-NMH decomposition, constructed as follows.
Initialize xℓ as in the definition and set xi(e) = 0 for all i < ℓ and e ∈ E. Then while there is
any e ∈ E and i < ℓ for which xi(e) < xi+1(e) and xi(e) < 2i, set xi(e) = min{xi+1(e), 2i}.
Once the procedure terminates, the resulting NMH is maximally-nested by definition.

4.4 An All-Norm Oracle from a Nested Matching Hierarchy

We now describe how to solve the all-norm oracle problem (Figure 1) given an algorithm
to compute a nested matching hierarchy. We first compute a fractional (w, 2i)-NMH y =
(y0, . . . , yℓ) of size factor α with respect to (C(j))k

j=0. The computation of the NMH y is the
only step that requires access to G; the rest of the algorithm is entirely based off of y.

With y in hand, the algorithm initializes x(e) = 0 for all e ∈ supp(yℓ). The main outer
loop of the algorithm increments an iterator j from 0 to k. In iteration j, only those clients
in C(j) are considered. In this way, the outer loop implicitly maintains a large value-per-unit-
weight threshold; it starts with the largest threshold producing a non-empty set of clients
and decreases it by a factor of eε ≈ 1 + ε in each step.

Within each outer loop iteration, an inner loop increments an iterator i over the levels of
the matching hierarchy y = (y0, . . . , yℓ). Within iteration i of the inner loop, the algorithm
tries to copy the values of yi on edges in E(j) into x. However, the algorithm does not allow
x to grow too large too quickly; it enforces that x(E(j)) ≤ 1

α w(C(j)) throughout the outer
iteration j. More precisely, for any edge e ∈ E(j) such that x(e) < yi(e), the algorithm
increases x(e) continuously until either x(e) = yi(e) or αx(E(j)) = w(C(j)).

At the end of the outer loop, computing the final result is just a matter of scaling. The
algorithm sets z(cs) = (1 + ε)2αx(cs)/w(c) for cs ∈ supp(x) and returns z. See Algorithm 2.
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Algorithm 2 An O(1)-all-norm oracle.

Input : The graph G = (C, S, E), client weights w : C → Z+, client values
λ : C → R+, and an accuracy parameter ε > 0.

1. Set R← maxc∈C ρ(c).
2. Set ℓ← ⌈log2 n⌉; set k ← ⌈log(Rw(C)/ε)/ε⌉.
3. // The quantities R and ε define the sets C(j).
4. Compute a fractional (w, 2i)-NMH y = (y0, . . . , yℓ) of size factor α w.r.t. (C(j))k

j=0.
5. // The edges E of the graph are only needed in the previous step to compute y.
6. Set x(e)← 0 for e ∈ supp(yℓ).
7. For j ← 0 to k,
8. For i← 0 to ℓ,
9. While x(E(j)) < 1

α w(C(j)) and there is some e ∈ E(j) such that x(e) < yi(e),
increase x(e) by the smallest amount so that either x(E(j)) = 1

α w(C(j)) or
x(e) = yi(e).

10. Set z(cs)← (1 + ε)2 α · x(cs)/w(c) for cs ∈ supp(x).
11. Return z.

Correctness of the oracle

We now begin to prove that Algorithm 2 solves the all-norm oracle problem (Figure 1). There
are three things to prove:
1. The output z satisfies the combined client-covering constraint (CCC).
2. The output z satisfies the β-approximate ℓp-norm constraints for some constant β (LPC).
3. The output z has width O(1).

We start with a definition regarding Algorithm 2 and then collect some useful observations,
whose proofs are straightforward.

▶ Definition 4.11. The outer loop is the loop beginning on Line 7, and the inner loop is the
loop beginning on line Line 8. We say outer-iteration j to refer to iteration j of the outer
loop, and inner-iteration (j, i) to refer to iteration i of the inner loop during outer-iteration j.

▶ Observation 4.12. Let j ∈ {0, . . . , k}. At the end of iteration j of the outer loop, x is
supported on E(j).

▶ Observation 4.13. Let j ∈ {0, . . . , k}. Throughout iteration j of the outer loop, x(E(j)) ≤
1
α w(C(j)).

▶ Observation 4.14. Throughout the algorithm, x(e) monotonically increases for all e ∈ E.

▶ Observation 4.15. At the end of the algorithm, x(e) ≤ yℓ(e) for all e ∈ E.

▶ Observation 4.16. At the end of inner-iteration (j, i), either x(E(j)) = 1
α w(C(j)) or

x(e) ≥ yi(e) for all e ∈ E(j).

▶ Observation 4.17. At all times throughout the algorithm, x(δ(c)) ≤ w(c).

We now show that the inequality in Observation 4.13 is in fact met with equality at the
end of outer-iteration j.

▶ Lemma 4.18. Let j ∈ {0, . . . , k}. At the end of iteration j of the outer loop, x(E(j)) =
1
α w(C(j)).
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Proof. Let j ∈ {0, . . . , k}. By Observation 4.16, at the end of outer-iteration j – that is, at
the end of inner-iteration (j, ℓ) – either x(E(j)) = 1

α w(C(j)) or x(e) ≥ yℓ(e) for all e ∈ E(j).
It therefore suffices to show that yℓ(E(j)) ≥ 1

α w(C(j)).
Recall that yℓ is a (w, 2ℓ)-matching of size factor α. The size of a maximum (w, 2ℓ)-

matching is easily seen to be w(C). Indeed, as 2ℓ = 2⌈log2 w(C)⌉ ≥ w(C), the server capacities
of a (w, 2ℓ)-matching are so large that every client can be matched arbitrarily without
violating any server capacity. Hence α · yℓ(E(j)) ≥ w(C) ≥ w(C(j)). ◀

The next lemma establishes that the output of the oracle satisfies the combined client
covering constraint.

▶ Lemma 4.19. The output z of Algorithm 2 satisfies
∑

c∈C λ(c)z(δ(c)) ≥
∑

c∈C λ(c).

Proof. It suffices to show that at the end of the algorithm

(1 + ε)α
∑

c∈C(k)

ρ(c)x(δ(c)) ≥
∑

c∈C(k)

ρ(c)w(c). (7)

Indeed, if (7) holds, then since x is supported on E(k),∑
c∈C

λ(c)z(δ(c)) = (1 + ε)2α
∑
c∈C

ρ(c)x(δ(c))

= (1 + ε)2α
∑

c∈C(k)

ρ(c)x(δ(c))

≥ (1 + ε)
∑

c∈C(k)

ρ(c)w(c) = (1 + ε)
∑

c∈C(k)

λ(c) ≥
∑
c∈C

λ(c),

where the last inequality is by Lemma 4.4.
So let us prove inequality (7). Let rj = e−εj ·maxc∈C ρ(c) be the quantity that defines

C(j). For any function f : C → R+, we can upper- and lower-bound
∑

c∈C f(c)ρ(c) by
Riemann-like sums:

k∑
j=0

f(C(j))(rj − rj+1) ≤
∑

c∈C(k)

f(c)ρ(c) ≤
k∑

j=0
f(C(j))(rj−1 − rj). (8)

By Lemma 4.18, x(E(j)) = 1
α x(δ(C(j))) at the end of iteration j of the outer loop. Because

x increases monotonically, it follows that at the end of the algorithm, x(E(j)) ≥ 1
α x(δ(C(j)))

for all j ∈ {0, . . . , k}. Putting everything together,∑
c∈C(k)

w(c)ρ(c) ≤
k∑

j=0
w(C(j))(rj−1 − rj)

≤ α
k∑

j=0
x(E(j))(rj−1 − rj)

≤ (1 + ε)α
k∑

j=0
x(E(j))(rj − rj+1)

≤ (1 + ε)α
∑

c∈C(k)

x(δ(c))ρ(c). ◀

Having shown that the combined client covering constraint is satisfied, we now proceed to
showing that the ℓp-norm constraints are satisfied. One can think of (x∗

i )i in the lemma below
as a (w, 2i)-NMH decomposition of an ℓp-norm optimal assignment (recall Definition 4.10),
and indeed this is how we apply it later in this subsection.
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▶ Lemma 4.20. Let (x∗
0, . . . , x∗

ℓ ) be a fractional (w, 2i)-NMH decomposition of an assignment
and let x∗ = x∗

ℓ . At the end of Algorithm 2,

α · (x− yi)+(E) ≤ (x∗ − x∗
i )(E),

for all i ∈ {0, . . . , ℓ}.

Proof. Let x(j) denote the value that x takes on at the end of iteration j of the outer loop.
Equivalently, x(j) is the value that x takes on at the beginning of iteration j + 1 of the outer
loop, and so we also define x(−1) to be the zero vector.

Let P (j) be the following proposition:

α · (x(j) − yi)+(E(j)) ≤ (x∗ − x∗
i )(E(j)) for all i ∈ {0, . . . , ℓ}. (9)

We show that P (j) holds for all j ∈ {−1, . . . , k} by induction. But first, let us see why
P (k) implies the statement of the lemma. The value of x at the end of the algorithm is also
known as x(k), and so since P (k) holds, we have

α · (x(k) − yi)+(E(k)) ≤ (x∗ − x∗
i )(E(k))

for all i. The quantity on the left is the same as α · (x(k)− yi)+(E) because x(k) is supported
on E(k). The quantity on the right is trivially at most (x∗ − x∗

i )(E) since E(k) ⊆ E.
Now we return to proving P (j) for all j ∈ {−1, . . . , k}. Fix j. If j = −1, then the

claim holds trivially. Otherwise, j ≥ 0 and we may assume inductively that P (j − 1) holds.
During outer-iteration j, there are two types of inner-iterations i: those that end with
x(E(j)) < 1

α w(C(j)) (and hence x ≥ yi) and those that end because x(E(j)) = 1
α w(E(j)).

Case 1: x(E(j)) < 1
α w(C(j)) at the end of inner-iteration (j, i). We do not need the inductive

hypothesis for this case. At the end of inner-iteration (j, i), since x(E(j)) < 1
α w(C(j)), it

must be that x(e) ≥ yi(e) for all e ∈ E(j) (or else the iteration would not be complete).
By monotonicity, x(j)(e) ≥ yi(e) for all e ∈ E(j). Hence

α · (x(j) − yi)+(E(j)) = α · (x(j) − yi)(E(j)) = αx(j)(E(j))− αyi(E(j)).

By Lemma 4.18, we have αx(j)(E(j)) = w(C(j)), and w(C(j)) = x∗(E(j)) by the definition
of x∗ (see Definition 4.10). Lastly, observe that αyi(E(j)) ≥ x∗

i (E(j)) because yi is a
(w, 2i)-matching of size factor α and x∗

i is a (w, 2i)-matching.
Case 2: x(E(j)) = 1

α w(C(j)) at the end of inner-iteration (j, i). We argue that

(x(j) − yi)+(e) = (x(j−1) − yi)+(e) for all e ∈ E(j). (10)

Let us first see why this is sufficient to establish P (j), assuming P (j − 1). We have

(x(j) − yi)+(E(j)) = (x(j−1) − yi)+(E(j)) (by (10))

= (x(j−1) − yi)+(E(j−1)) (because x(j−1) is supported on E(j−1))

≤ (x∗ − x∗
i )(E(j−1)) (by P (j − 1))

≤ (x∗ − x∗
i )(E(j)).

Now let us prove (10). Let e ∈ E(j). If x(e) does not increase at all in outer-iteration
j, then we are done. So assume x(e) increases in outer-iteration j and let i∗ be the largest
integer such that x(e) increases in inner-iteration (j, i∗). Since at the end of inner-iteration
(j, i) we have x(E(j)) = 1

α w(C(j)) (by assumption), x does not increase for any inner-iteration
(j, i′) with i′ > i. We conclude that i∗ ≤ i.
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Since inner-iteration (j, i∗) is the last inner-iteration of outer-iteration j to increase x(e),
and it increases x(e) to at most yi∗(e), we have x(j)(e) ≤ yi∗(e). Since y is a nested matching
hierarchy and i∗ ≤ i, we have yi∗(e) ≤ yi(e). Hence (x(j)− yi)+(e) = 0, and by monotonicity,
(x(j−1) − yi)+(e) = 0 too. ◀

▶ Lemma 4.21. Let z be the output of Algorithm 2. For all p ≥ 1,∑
s∈S

( ∑
c∈N(s)

w(c)z(cs)
)p
1/p

≤ 21−1/p

α1/p
·OPTp.

Proof. Fix p ≥ 1. At the end of the algorithm, we have

∑
s∈S

 ∑
c∈N(s)

w(c)z(δ(s))

p

=
∑
s∈S

x(δ(s))p.

Define xi = min{x, yi} for i ∈ {0, . . . , ℓ}. To make the notation more manageable, let us
also define ai = p2i(p−1) for i ∈ {0, . . . , ℓ}. By Lemma 4.7,

∑
s∈S

x(δ(s))p ≤ a0x0(E) +
ℓ∑

i=1
ai(xi − xi−1)(E)

= a0xℓ(E) +
ℓ∑

i=1
(ai − ai−1)(xℓ − xi−1)(E).

Now let A∗ be the ℓp-norm-minimizing assignment and let x∗ = (x∗
0, . . . , x∗

ℓ ) be a maximally-
nested (w, 2i)-NMH decomposition for A∗. By Lemma 4.9,

∑
s∈S

x∗(δ(s))p ≥ x∗
0(E) +

ℓ∑
i=1

ai−1(x∗
i − x∗

i−1)(E)

= x∗
ℓ (E) + (a0 − 1)(x∗

ℓ − x0)(E) +
ℓ∑

i=2
(ai−1 − ai−2)(x∗

ℓ − x∗
i−1)(E).

The upper and lower bounds nearly match; we can use Lemma 4.20 to transform one
into the other. Recall that Lemma 4.20 states that

α · (xℓ − xi−1)(E) ≤ (x∗
ℓ − x∗

i−1)(E).

Hence

∑
s∈S

x(δ(s))p ≤ a0xℓ(E) +
ℓ∑

i=1
(ai − ai−1) · (xℓ − xi−1)(E)

≤ 1
α

(
a0x∗

ℓ (E) +
ℓ∑

i=1
(ai − ai−1)(x∗

ℓ − x∗
i−1)(E)

)

≤ 2p

α

(
x∗

ℓ (E) + (a0 − 1)(x∗
ℓ − x0)(E) +

ℓ∑
i=2

(ai−1 − ai−2)(x∗
ℓ − x∗

i−1)(E)
)

≤ 2p

α

∑
s∈S

x∗(δ(s))p = 2p

α
·OPTp

p. ◀
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▶ Lemma 4.22. For every ε > 0, Algorithm 2 produces a solution to the (1 + ε)22α1−1/p-all-
norm oracle problem.

Proof. Let z be the output of Algorithm 2 and let x be the quantity computed by the oracle
at the end of the algorithm. Since z(cs) = (1 + ε)2αx(cs)/w(c) for cs ∈ supp(x), we have∑

c∈C

λ(c)z(δ(c)) = (1 + ε)2α
∑
c∈C

ρ(c)x(δ(c)).

Lemma 4.19 then says precisely that the combined-client covering constraint is satisfied.
By Lemma 4.21,∑

s∈S

( ∑
c∈N(s)

w(c)z(cs)
)p
1/p

= (1 + ε)2α ·

(∑
s∈S

x(δ(s))p

)1/p

≤ (1 + ε)2(2α)1−1/p ·OPTp.

Finally, since x(δ(c)) ≤ w(c) for all c ∈ C, it follows that z(δ(c)) ≤ (1+ε)2α for all c ∈ C. ◀

▶ Lemma 4.23. If there is a semi-streaming algorithm to compute a (w, 2i)-NMH of size
factor α using p passes, then there is a semi-streaming algorithm to compute a (1 + ε)2α-all-
norm fractional assignment.

Proof. Run Algorithm 2 using the semi-streaming algorithm to implement Line 4. The
NMH y output must have a support of size O(n polylog n). The additional space used by
Algorithm 2 is in computing x and z, which have the same support as yℓ. Hence the entire
algorithm uses O(n polylog n) space.

By Lemma 4.22, the output is a (1 + ε)(2α + 1)-all-norm assignment. ◀

4.5 Nested Matching Hierarchies in the Semi-Streaming Model
We have reduced our task to computing a nested matching hierarchy with respect to (C(j))k

j=0
in the semi-streaming setting.

Computing b-matchings of size factor 4

Crouch and Stubbs [20] described a single-pass algorithm to compute a simple matching
(i.e., integral and unit-capacitated) of size factor 2α using any α-approximate maximum
cardinality matching algorithm. Their algorithm generalizes to the fractional b-matching
setting, and hence any α-approximate maximum cardinality b-matching algorithm can be
used to compute a b-matching with size factor 2α.

The main subroutine is a greedy algorithm MergeInto(x, y), which takes as input two
b-matchings x and y and returns a b-matching x̃ that (1) contains x and (2) has size at least
half that of the size of y. The algorithm works by simply adding edges greedily (and possibly
fractionally) from y into x subject to the capacity constraints b.

▶ Lemma 4.24. Let x and y be b-matchings. The output x̃ ← MergeInto(x, y) is a
b-matching satisfying x̃(e) ≥ x(e) for all e ∈ E and 2x̃(E) ≥ y(E).

We omit the proof of the previous lemma, which is similar to the proof that the size of a
maximal matching is at least half the size of a maximum matching.
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We use the greedy MergeInto procedure in conjunction with the α-approximate maxi-
mum cardinality matching algorithm to compute a b-matching with size factor 2α. The algo-
rithm works as follows. First it computes an α approximate b-matching x(j) for each subgraph
G(j). It then sets x̃(1) ← x(1), and for each j ≥ 1, it sets x̃(j) ←MergeInto(x̃(j−1), x(j)).

Lastly, it returns x̃(k). The algorithm is summarized in Algorithm 3.

Algorithm 3 Computing a (κ, τ)-matching of size factor 4.

Input : An iterator over the edges of G, client capacities κ, and server capacities τ .
Output : A (κ, τ)-matching of size factor 4.

1. MergeInto(x, y):
2. Set x̃(e)← x(e) for each e ∈ supp(x) ∪ supp(y).
3. For cs ∈ supp(x),
4. Increase x̃(cs) by the smallest amount such that either x̃(δ(c)) = κ(c),

x̃(δ(s)) = τ(s), or x̃(cs) = x(cs) + y(cs).
5. Return x̃.
6. Compute a maximal (κ, τ)-matching x(j) of G(j) for each j ∈ {0, . . . , k} using one

pass over the stream of edges.
7. Set x̃(0) ← x(0).
8. For j ← 1 to k, set x̃(j) ←MergeInto(x̃(j−1), x(j)).
9. Return x̃(k).

▶ Lemma 4.25. The value x̃(k) returned by Algorithm 3 is a b-matching of size factor 2α.

Proof. Let j ∈ {0, . . . , k} and let y be a b-matching. By Lemma 4.24 and a simple induction,
x̃(k) contains x̃(j). Now we have

2αx̃(j)(E(j)) ≥ αx(j)(E(j)) (by Lemma 4.24)

= αx(j)(E) (supp(x(j)) ⊆ E(j))

≥ y(E(j)). (x(j) is α-approximate in G(j)) ◀

▶ Lemma 4.26. If there is a p-pass S(n, m)-space streaming algorithm to compute an α-
approximate b-matching, then there is a p-pass O(S(n, m) · k)-space streaming algorithm to
compute a b-matching with size factor 2α with respect to (C(j))k

j=0.

Proof. The first step of Algorithm 3, Line 6, can be implemented in the semi-streaming
setting using p passes as follows. The algorithm first instantiates a streaming algorithm
Aj corresponding to G(j) for each j ∈ {0, . . . , k}. On the arrival of each edge e (over the p

passes of the stream), it sends e to each Aj for which e ∈ G(j). At the end of the p passes,
each algorithm Aj returns x(j).

The next step of the algorithm, the merge step, is computed directly from x(j) and
requires no additional passes over the stream. The total space used is O(S(n, m) · k). ◀

Just like a maximal matching can be computed in a single pass and is 2-approximate, a
maximal fractional b-matching can be computed in a single pass and is 2-approximate.

▶ Lemma 4.27. There is a single-pass O(n log n)-space algorithm to compute a 2-approximate
fractional b-matching.

ITCS 2023



7:20 All-Norm Load Balancing in Graph Streams via the MWU Method

Proof. The algorithm maintains a fractional b-matching x, initially empty. On the arrival of
each edge e, it sets x(e) to be as large as possible subject to the capacity constraints. If x(e)
is changed at all, this step always saturates one of the endpoints. Hence at the end of the
algorithm, the support of x is O(n).

The fact that x is a 2-approximation is folklore, and also follows from Lemma 4.24: If x∗

is a maximum fractional b-matching, the output x̃ of MergeSize(x, x∗) contains x and has
size at least half of x∗. Since x is maximal, x̃ must be equal to x. ◀

As a simple corollary of Lemmas 4.26 and 4.27, we can compute a b-matching of size
factor 4 in one pass. As mentioned earlier, this analogous to the algorithm of Crouch and
Stubbs [20], but for fractional b-matchings rather than simple matchings.

▶ Corollary 4.28. There is a single-pass O(n log n · k)-space streaming algorithm to compute
a b-matching with size factor 4.

We now explain how to compute a fractional (κ, 2i)-NMH of size factor 2α using an
algorithm to compute b-matchings of size factor α. The basic subroutine, HMergeInto,
takes as input a (κ, τ)-matching x and a (κ, 2τ)-matching y and returns a (κ, 2τ)-matching x̃

such that (1) x̃ contains x and (2) 2x̃(E(j)) ≥ y(E(j)) for all j ∈ {0, . . . , k}. The algorithm
works much like MergeInto, except it tries to merge the edges of y in decreasing order of
density; see Algorithm 4. The next lemma summarizes the key properties of HMergeInto.

▶ Lemma 4.29. Let x be a fractional (κ, τ)-matching let y be a fractional (κ, 2τ)-matching.
The output x̃ of HMergeInto(x, y, 2τ) satisfies
1. x̃ is a (κ, 2τ)-matching
2. x̃ contains x

3. 2x̃(E(j)) ≥ y(E(j)) for all j ∈ {0, . . . , k}.
In particular, if y has size factor α then x̃ has size factor 2α.

The proof Lemma 4.29 is routine, though somewhat tedious. We defer it to the full
version of the paper.

Algorithm 4 Computing a (κ, 2i)-NMH of size factor 8.

Input : An iterator over the edges of G, client capacities κ, and server capacities τ .
Output : A (κ, 2i)-nested-matching hierarchy of size factor 4.

1. HMergeInto(x, y, τ):
2. Set x̃(e)← x(e) for each e ∈ supp(x) ∪ supp(y).
3. For j ← 0 to k,
4. For cs ∈ supp(y) ∩ (E(j) \ E(j−1)),
5. Increase x̃(cs) by the smallest amount such that either x̃(δ(c)) = κ(c),

x̃(δ(s)) = τ(s), or x̃(cs) = x(cs) + y(cs).

6. Return x̃.
7. Compute a (κ, 2i)-matching xi with size factor 4 for i ∈ {0, . . . , ℓ} using one pass over

the stream of edges.
8. Set x̃0 ← x0.
9. For i← 1 to ℓ, set x̃i ← HMergeInto(x̃i−1, xi, 2i).

10. Return x = (x̃0, . . . , x̃ℓ).

The next lemma proves that Algorithm 4 is correct and can be implemented in in the
semi-streaming setting.
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▶ Lemma 4.30. Let κ : C → R+. If there is a p-pass S(n, m)-space streaming algorithm to
compute a fractional b-matching of size factor α, then there is a p-pass O(S(n, m) · ℓ)-space
streaming algorithm to compute a fractional (κ, 2i)-NMH of size factor 2α with respect to
(C(j))k

j=0.

Proof. Using the given algorithm, takes p passes and O(S(n, m) · ℓ) space to run Line 7 of
Algorithm 4. The other steps do not require passes over the stream and the additional space
used is also O(S(n, m) · ℓ).

It remains to show that the value x̃ returned by the stream is a fractional (κ, 2i)-NMH of
size factor 2α, which follows quickly from Lemma 4.29. First we have that x̃0 is equal to
x0 and hence x̃0 is a fractional (1, 1)-matching of size factor α. For i ∈ {1, . . . , ℓ}, we have
x̃i = HMergeInto(x̃i−1, xi, 2i), and so Lemma 4.29 states that x̃i contains x̃i−1 and x̃i has
size factor 2α. Hence (x̃0, . . . , x̃ℓ) is a fractional (1, 2i)-NMH. ◀

The upshot from this subsection is the following corollary.

▶ Corollary 4.31. There is a single-pass O(n · ℓ · k)-space streaming algorithm to compute a
fractional (κ, 2i)-NMH (x0, . . . , xℓ) of size factor 8 with respect to (C(j))k

j=0.

We conclude with our main theorem.

▶ Theorem 4.32. There exists a O(log n)-pass semi-streaming algorithm to compute an
19-all-norm assignment.

Proof. By Corollary 4.31, there is a single-pass semi-streaming algorithm to compute a
fractional (w, 2i)-NMH of size factor 8 with respect to (C(j))k

j=0. By choosing ε = 1/16, it
follows by Lemma 4.23 that there is a semi-streaming algorithm to compute a 17-all-norm
fractional assignment. This in turn implies by Lemma 4.2 that there is O(log n)-pass a
semi-streaming algorithm to compute a 19-all-norm assignment. ◀
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Abstract
Classical streaming algorithms operate under the (not always reasonable) assumption that the
input stream is fixed in advance. Recently, there is a growing interest in designing robust streaming
algorithms that provide provable guarantees even when the input stream is chosen adaptively as the
execution progresses. We propose a new framework for robust streaming that combines techniques
from two recently suggested frameworks by Hassidim et al. [NeurIPS 2020] and by Woodruff and
Zhou [FOCS 2021]. These recently suggested frameworks rely on very different ideas, each with its
own strengths and weaknesses. We combine these two frameworks into a single hybrid framework
that obtains the “best of both worlds”, thereby solving a question left open by Woodruff and Zhou.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Streaming, adversarial robustness, differential privacy

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.8

Related Version Full Version: https://arxiv.org/abs/2107.14527

Funding Idan Attias: Partially supported by the Vatat Scholarship from the Israeli Council for
Higher Education, Kreitman School of Advanced Graduate Studies, and the Lynn and William
Frankel Center for Computer Science at Ben-Gurion University.
Edith Cohen: Partially supported by the Israel Science Foundation (grant 1595/19).
Moshe Shechner : Partially supported by the Israel Science Foundation (grant 1871/19).
Uri Stemmer : Partially supported by the Israel Science Foundation (grant 1871/19) and by Len
Blavatnik and the Blavatnik Family foundation.

1 Introduction

Streaming algorithms are algorithms for processing large data streams while using only a
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an extensive theoretical study and further applications of streaming algorithms.
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8:2 A Framework for Adversarial Streaming

In this work we focus on streaming algorithms that aim to maintain, at any point in time,
an approximation for the value of some (predefined) real-valued function of the input stream.
Such streaming algorithms are sometimes referred to as strong trackers. For example, this
predefined function might count the number of distinct elements in the stream. Formally,

▶ Definition 1.1. Let A be an algorithm that, for m rounds, obtains an element from a
domain X and outputs a real number. Algorithm A is said to be a strong tracker for a
function F : X∗ → R with accuracy α, failure probability δ, and stream length m if the
following holds for every sequence u⃗ = (u1, . . . , um) ∈ Xm. Consider an execution of A on
the input stream u⃗, and denote the answers given by A as z⃗ = (z1, . . . , zm). Then,

Pr [∀i ∈ [m] : zi ∈ (1± α) · F(u1, . . . , ui)] ≥ 1− δ,

where the probability is taken over the coins of algorithm A.

While Definition 1.1 is certainly not the only possible definition of streaming algorithms,
it is rather standard. Note that in this definition we assume that the input stream u⃗ is
fixed in advance. In particular, we assume that the choice for the elements in the stream is
independent from the internal randomness of A. This assumption is crucial for the analysis
(and correctness) of many of the existing streaming algorithms. We refer to algorithms that
utilize this assumption as oblivious streaming algorithms. In this work we are interested in
the setting where this assumption does not hold, often called the adversarial setting.

1.1 The adversarial streaming model
The adversarial streaming model, in various forms, was considered by [1,2,7–11,14,15,18,19,
21, 23]. We give here the formulation presented by Ben-Eliezer et al. [7]. The adversarial
setting is modeled by a two-player game between a (randomized) StreamingAlgorithm and
an Adversary. At the beginning, we fix a function F : X∗ → R. Then the game proceeds in
rounds, where in the ith round:
1. The Adversary chooses an update ui ∈ X for the stream, which can depend, in particular,

on all previous stream updates and outputs of StreamingAlgorithm.
2. The StreamingAlgorithm processes the new update ui and outputs its current response

zi ∈ R.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect
response zi at some point i in the stream. For example, in the distinct elements problem, the
adversary’s goal is that at some step i, the estimate zi will fail to be a (1 + α)-approximation
of the true current number of distinct elements.

In this work we present a new framework for transforming an oblivious streaming algorithm
into an adversarially-robust streaming algorithm. Before presenting our framework, we first
elaborate on the existing literature and the currently available frameworks.

1.2 Existing framework: Ben-Eliezer et al. [7]
To illustrate the results of [7], let us consider the distinct elements problem, in which the
function F counts the number of distinct elements in the stream. Observe that, assuming that
there are no deletions in the stream, this quantity is monotonically increasing. Furthermore,
since we are aiming for a multiplicative error, the number of times we need to modify the
estimate we release is quite small (it depends logarithmically on the stream length m).
Informally, the idea of [7] is to run several independent copies of an oblivious algorithm (in
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parallel), and to use each copy to release answers over a part of the stream during which the
estimate remains constant. In more detail, the generic transformation of [7] (applicable not
only to the distinct elements problem) is based on the following definition.

▶ Definition 1.2 (Flip number [7]). Given a function F , the (α, m)-flip number of F , denoted
as λα,m(F), or simply λ in short, is the maximal number of times that the value of F can
change (increase or decrease) by a factor of (1 + α) during a stream of length m.

▶ Remark 1.3. In the technical sections of this work, we sometimes refer to the flip number
of the given stream (w.r.t. the target function), which is a more fine-tuned quantity.

▶ Example 1.4. Assuming that there are no deletions in the stream (a.k.a. the insertion
only model), the (α, m)-flip number of the distinct elements problem is at most O

( 1
α log m

)
.

However, if deletions are allowed (a.k.a. the turnstile model), then the flip number of this
problem could be as big as Ω(m).

The generic construction of [7] for a function F is as follows.
1. Instantiate λ independent copies of an oblivious streaming algorithm for the function F ,

and set j = 1.
2. When the next update ui arrives:

a. Feed ui to all of the λ copies.
b. Release an estimate using the jth copy (rounded to the nearest power of (1 + α)). If

this estimate is different than the previous estimate, then set j ← j + 1.
Ben-Eliezer et al. [7] showed that this can be used to transform an oblivious streaming
algorithm for F into an adversarially robust streaming algorithm for F . In addition, the
overhead in terms of memory is only λ, which is small in many interesting settings.

The simple, but powerful, observation of Ben-Eliezer et al. [7], is that by “using every
copy at most once” we can break the dependencies between the internal randomness of our
algorithm and the choice for the elements in the stream. Intuitively, this holds because the
answer is always computed using a “fresh copy” whose randomness is independent from the
choice of stream items.

1.3 Existing framework: Hassidim et al. [19]
Hassidim et al. [19] showed that, in fact, we can use every copy of the oblivious algorithm
much more than once. In more detail, the idea of Hassidim et al. is to protect the internal
randomness of each of the copies of the oblivious streaming algorithm using differential
privacy [13]. Hassidim et al. showed that this still suffices in order to break the dependencies
between the internal randomness of our algorithm and the choice for the elements in the
stream. This resulted in an improved framework where the space blowup is only

√
λ (instead

of λ). Informally, the framework of [19] is as follows.

1. Instantiate
√

λ independent copies of an oblivious streaming algorithm for the function
F .

2. When the next update ui arrives:
a. Feed ui to all of the

√
λ copies.

b. Aggregate all of the estimates given by the
√

λ copies, and compare the aggregated
estimate to the previous estimate. If the estimate had changed “significantly”, output
the new estimate. Otherwise output the previous output.

ITCS 2023



8:4 A Framework for Adversarial Streaming

In order to efficiently aggregate the estimates in Step 2b, this framework crucially relied
on the fact that all of the copies of the oblivious algorithm are “the same” in the sense that
they compute (or estimate) exactly the same function of the stream. This allowed Hassidim
et al. to efficiently aggregate the returned estimates using standard tools from the literature
on differential privacy. The intuition is that differential privacy allows us to identify global
properties of the data, and hence, aggregating several numbers (the outcomes of the different
oblivious algorithms) is easy if they are very similar.

1.4 Existing framework: Woodruff and Zhou [29]
Woodruff and Zhou [29] presented an adversarial streaming framework that builds on the
framework of Ben-Eliezer at el. [7]. The new idea of [29] is that, in many interesting cases,
the oblivious algorithms we execute can be modified to track different (but related) functions,
that require less space while still allowing us to use (or combine) several of them at any point
in time in order to estimate F .

To illustrate this, consider a part of the input stream, say from time t1 to time t2,
during which the target function F doubles its value and is monotonically increasing. More
specifically, suppose that we already know (or have a good estimation for) the value of F at
time t1, and we want to track the value of F from time t1 till t2. Recall that in the framework
of [7] we only modify our output once the value of the function has changed by more than a
(1 + α) factor. As F(t2) ≤ 2 · F(t1), we get that between time t1 and t2 there are roughly
1/α time points at which we need to modify our output. In the framework of [7], we need a
fresh copy of the oblivious algorithm for each of these 1/α time points. For concreteness, let
us assume that every copy uses space 1/α2 (which is the case if, e.g., F = F2), and hence
the framework of [7] requires space 1/α3 to track the value of the function F from t1 till t2.

In the framework of [29], on the other hand, this will cost only 1/α2. We now elaborate on
this improvement. As we said, from time t1 till t2 there are 1/α time points on which we need
to modify our output. Let us denote these time points as t1 = w0 < w1 < w2 < · · · < w1/α =
t2.1 In the framework of [29], the oblivious algorithms we execute are tracking differences
between the values of F at specific times, rather than tracking the value of F directly. (These
algorithms are called difference estimators, or DE in short.) In more detail, suppose that for
every j ∈ {0, 1, 2, 3, . . . , log 1

α} and every i ∈ {2j , 2·2j , 3·2j , 4·2j , . . . , 1
α} we have an oblivious

algorithm (a difference estimator) for estimating the value of [F(wi)−F(wi−2j )]. We refer to
the index j as the level of the oblivious algorithm. So there are log 1

α different levels, where
we have a different number of oblivious algorithms for each level. (For level j = 0 we have
1/α oblivious algorithms and for level j = log 1

α we have only a single oblivious algorithm.)
Note that given all of these oblivious algorithms, we could compute an estimation for

the value of the target function F at each of the time points w1, . . . , w1/α (and hence for
every time t1 ≤ t ≤ t2) by summing the estimations of (at most) one oblivious algorithm
from each level.2 For example, an estimation for the value of F

(
w 3

4α +1

)
can be obtained by

combining estimations as follows:

F
(

w 3
4α

+1

)
= F (w0)+

[
F

(
w 1

2α

)
−F (w0)

]
+

[
F

(
w 3

4α

)
−F

(
w 1

2α

)]
+

[
F

(
w 3

4α
+1

)
−F

(
w 3

4α

)]
.

1 Note that these time points are not known to the algorithm in advance. Rather, the algorithm needs
to discover them “on the fly”. To simplify the presentation, in Section 1.4 we assume that these time
points are known in advance.

2 Specifically, in order to reach the estimated value of F at time wt̃ one can add the estimations of
difference estimators of levels corresponds to the binary representation of t̃. That is, at most one of
each level j.
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As we sum at most log 1
α estimations, this decomposition increases our estimation error

only by a factor of log 1
α , which is acceptable. The key observation of [29] is that the space

complexity needed for an oblivious algorithm at level j decreases when j decreases (intuitively
because in lower levels we need to track smaller differences, which is easier). So, even though
in level j=10 we have more oblivious algorithms than in level 20, these oblivious algorithms
are cheaper than in level 20 such that the overall space requirements for levels j=10 and
level j=20 (or any other level) is the same. Specifically, [29] showed that (for many problems
of interest, e.g., for F2) the space requirement of a difference estimator at level j is O(2j/α).
We run O(2−j/α) oblivious algorithms for level j, and hence, the space needed for level j is
O(2−j/α · 2j/α) = O(1/α2). As we have log(1/α) levels, the overall space we need to track
the value of F from time t1 till t2 is Õ(1/α2). This should be contrasted with the space
required by [7] for this time segment, which is O(1/α3).

1.5 Our results
The framework of [29] is very effective for the insertion-only model. However, there are
two challenges that need to be addressed in the turnstile setting: (1) We are not aware of
non-trivial constructions for difference estimators in the turnstile setting, and hence, the
framework of [29] is not directly applicable to the turnstile setting.3 (2) Even assuming the
existence of a non-trivial difference estimator, the framework of [29] obtains sub-optimal
results in the turnstile setting.

To overcome the first challenge, we introduce a new monitoring technique, that aims to
identify time steps at which we cannot guarantee correctness of our difference estimators
(in the turnstile setting), and reset the system at these time steps. This will depend on the
specific application at hand (the target function) and hence, we defer the discussion on our
monitoring technique to Section 5 where we discuss applications of our framework.

We now focus on the second challenge (after assuming the existence of non-trivial difference
estimators). To illustrate the sub-optimality of the framework of [29], let us consider a
simplified turnstile setting in which the input stream can be partitioned into k time segments
during each of which the target function is monotonic, and increases (or decreases) by at
most a factor of 2 (or 1/2). Note that k can be very large in the turnstile model (up to O(m)).
With the framework of [29], we would need space Õ

(
k

α2

)
to track the value of F2 throughout

such an input stream. The reason is that, like in the framework of [7], the robustness
guarantees are achieved by making sure that every oblivious algorithm is “used only once”.
This means that we cannot reuse the oblivious algorithms across the different segments, and
hence, the space complexity of [29] scales linearly with the number of segments k.

To mitigate this issue, we propose a new construction that combines the frameworks of
[29] with the framework of [19]. Intuitively, in our simplified example with the k segments,
we want to reuse the oblivious algorithms across different segments, and protect their internal
randomness with differential privacy to ensure robustness. However, there is an issue here.
Recall that the framework of [19] crucially relied on the fact that all of the copies of the
oblivious algorithm are “the same” in the sense that they compute the same function exactly.
This allowed [19] to efficiently aggregate the estimates in a differentially private manner.
However, in the framework of [29], the oblivious algorithms we maintain are fundamentally
different from each other, tracking different functions. Specifically, every difference estimator
is tracking the value of [F(t)−F(e)] for a unique enabling time e < t (where t denotes the

3 Moshe Shechner and Samson Zhou. Personal communication, 2022.
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8:6 A Framework for Adversarial Streaming

current time). That is, every difference estimator necessarily has a different enabling time,
and hence, they are not tracking the same function, and it is not clear how to aggregate their
outcomes with differential privacy.

Toggle Difference Estimator (TDE). To overcome the above challenge, we present an
extension to the notion of a difference estimator, which we call a Toggle Difference Estimator
(see Definition 2.3). Informally, a toggle difference estimator is a difference estimator that
allows us to modify its enabling time on the go. This means that a TDE can track, e.g., the
value of [F(t)−F(e1)] for some (previously given) enabling time e1, and then, at some later
point in time, we can instruct the same TDE to track instead the value of [F(t)− F(e2)]
for some other enabling time e2. We show that this extra requirement from the difference
estimator comes at a very low cost in terms of memory and runtime. Specifically, in Section 4
we present a generic (efficiency preserving) method for generating a TDE from a DE.

Let us return to our example with the k segments. Instead of using every oblivious
algorithm only once, we reuse them across the different segments, where during any single
segment all the TDE’s are instructed to track the appropriate differences that are needed
for the current segment. This means that during every segment we have many copies of
the “same” oblivious algorithm. More specifically, for every different level (as we explained
above) we have many copies of an oblivious algorithm for that level, which is (currently)
tracking the difference that we need. This allows our space complexity to scale with

√
k

instead of linearly with k as the framework of [29]. To summarize this discussion, our new
notion of TDE allows us to gain both the space saving achieved by differential privacy (as
in the framework of [19]) and the space saving achieved by tracking the target function via
differences (as in the framework of [29]).

▶ Remark 1.5. The presentation given above (w.r.t. our example with the k segments) is
oversimplified. Clearly, in general, we have no guarantees that an input (turnstile) stream
can be partitioned into k such segments. This means that in the actual construction we need
to calibrate our TDE’s across time segments in which the value of the target function is
not monotone. See Section 3.1 for a more detailed overview of our construction and the
additional modifications we had to introduce.

We are now ready to state our main result (for the formal statement see Theorem A.10).
We present a framework for adversarial streaming for turnstile streams with bounded flip
number λ, for any function F for which the following algorithms exist:
1. An α-accurate oblivious streaming algorithm E with space complexity Space(E).
2. An oblivious TDE streaming algorithm ETDE (satisfying some conditions).

Under these conditions, our framework results in an O(α)-accurate adversarially-robust
algorithm with space4 Õ

(√
α · λ · Space(E)

)
. In contrast, under the same conditions, the

framework of [29] requires space Õ (α · λ · Space(E)).
As we mentioned, we are not aware of non-trivial constructions for difference estimators

that work in the turnstile setting. Nevertheless, in Section 5 we show that our framework is
applicable to the problem of estimating F2 (the second moment of the stream). To this end,
we introduce the following notion that allows us to control the number of times we need to
reset our system (which happens when we cannot guarantee correctness of our difference
estimators).

4 Here Õ stands for omitting poly-logarithmic factors of λ, α−1, δ−1, n, m.
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▶ Definition 1.6 (Twist number). The (α, m)-twist number of a stream S w.r.t. a functionality
F , denoted as µα,m(S), is the maximal µ ∈ [m] such that S can be partitioned into 2µ disjoint
segments S = P0 ◦V0 ◦ · · · ◦Pµ−1 ◦Vµ−1 (where {Pi}i∈[µ] may be empty) s.t. for every i ∈ [µ]:
1. F(Vi) > α · F(P0 ◦ V0 ◦ · · · ◦ Vi−1 ◦ Pi)
2. |F(P0 ◦ V0 · · · ◦ Pi ◦ Vi)−F(P0 ◦ V0 ◦ · · · ◦ Pi)| ≤ α · F(P0 ◦ V0 ◦ · · · ◦ Pi)

In words, a stream has twist number µ if there are µ disjoint segments V0, . . . ,Vµ−1 ⊆ S
such that the value of the function on each of these segments is large (Condition 1), but still
these segments do not change the value of the function on the entire stream by too much
(Condition 2). Intuitively, the twist number bounds the number of regions in which a local
view of the stream would suggest a large multiplicative change, but a global view would not.
In Section 5 we leverage this notation and present the following result for F2 estimation.

▶ Theorem 1.7 (F2 Robust estimation, informal). There exists an adversarially robust F2
estimation algorithm for turnstile streams of length m with a bounded (O(α), m)-flip number
λ and a bounded (O(α), m)-twist number µ that guarantees α-accuracy (w.h.p.) using space

complexity Õ

(√
αλ+µ

α2

)
.

This should be contrasted with the result of [19], who obtain space complexity Õ
( √

λ
α2

)
for robust F2 estimation in the turnstile setting. Hence, our new result is better whenever
µ≪ λ.

▶ Example 1.8. For F2 estimation in insertion-only streams, it holds that µ = 0 even though
λ can be large. This is the case because, in insertion only streams, Conditions 1 and 2 from
Definition 1.6 cannot hold simultaneously. Specifically, denote p = P0 ◦ · · · ◦ Pi and v = Vi,
and suppose that Condition 2 holds, i.e., ∥p ◦ v∥2 − ∥p∥2 ≤ α · ∥p∥2. Hence, in order to show
that Condition 1 does not hold, it suffices to show that ∥v∥2 ≤ ∥p ◦ v∥2−∥p∥2, i.e., show that
∥v∥2 +∥p∥2 ≤ ∥p◦v∥2, i.e., show that (v2

1 +p2
1)+ · · ·+(v2

n +p2
n) ≤ (v1 +p1)2 + · · ·+(vn +pn)2,

which trivially holds whenever pi, vi ≥ 0.

1.6 Other related works

Related to our work is the line of work on adaptive data analysis, aimed at designing tools
for guaranteeing statistical validity in cases where the data is being accessed adaptively
[5,12,17,20,22,24–28]. Recall that the difficulty in the adversarial streaming model arises from
potential dependencies between the inputs of the algorithm and its internal randomness. As
we mentioned, our construction builds on a technique introduced by [19] for using differential
privacy to protect not the input data, but rather the internal randomness of algorithm.
Following [19], this technique was also used by [6,16] for designing robust algorithms in other
settings.

2 Preliminaries

In this work we consider input streams which are represented as a sequence of updates, where
every update is a tuple containing an element (from a finite domain) and its (integer) weight.
Formally,
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8:8 A Framework for Adversarial Streaming

▶ Definition 2.1 (Turnstile stream). A stream of length m over a domain [n],5 consists of a
sequence of updates ⟨s0, ∆0⟩, . . . , ⟨sm−1, ∆m−1⟩ where si ∈ [n] and ∆i ∈ Z. Given a stream
S ∈ ([n]× Z)m and integers 0 ≤ t1 ≤ t2 ≤ m− 1, we write St1

t2
= (⟨st1 , ∆t1⟩, . . . , ⟨st2 , ∆t2⟩)

to denote the sequence of updates from time t1 till t2. We also use the abbreviation St = S1
t

to denote the first t updates.

Let F : ([n] × Z)∗ → R be a function (for example F might count the number of distinct
elements in the stream). At every time step t, after obtaining the next element in the stream
⟨st, ∆t⟩, our goal is to output an approximation for F(St). To simplify presentation we also
denote F(t) = F(St) for t ∈ [m]. We assume throughout the paper that log(m) = Θ(log(n))
and that F is bounded polynomially in n.

In Section 1, for the purpose of presentation, it was useful to refer to the quantity a flip
number of a function. Our results are stated w.r.t a more refined quantity: a flip number of
a stream.

▶ Definition 2.2 (Flip number of a stream [7]). Given a function F and a stream S of length
m, the (α, m)-flip number of S, denoted as λα(S), is the maximal number of times that the
value of F can change (increase or decrease) by a factor of (1 + α) during the stream S.

Toggle Difference Estimator. For the purpose of our framework, we present an extension
to the notion of a difference estimator (DE) from [29], which we call a toggle difference
estimator (TDE). A difference estimator for a function F is an oblivious streaming algorithm,
defined informally as follows: The difference estimator is initiated on time t = 1 and has a
dynamically defined enabling time 1 ≤ e ≤ m. Once that enabling time is set, the difference
estimator outputs an estimation for (F(St)−F(Se)) for all times t > e (provided some
conditions on that difference). That is, once the difference estimator’s enabling time is set,
it cannot be changed. And so, if an estimation is needed for some other enabling time,
say e′ ̸= e, then an additional instance of a difference estimator is needed. Our framework
requires from such an estimator to be able to provide estimations for multiple enabling times,
as long as the estimation periods do not overlap. This is captured in the following definition.

▶ Definition 2.3 (Toggle Difference Estimator). Let F : ([n]×Z)∗ → R be a function, and let
m, p ∈ N and γ, α, δ ∈ (0, 1) be parameters. Let E be an algorithm with the following syntax.
In every time step t ∈ [m], algorithm E obtains an update ⟨st, ∆t, bt⟩ ∈ ([n]×Z× {0, 1}) and
outputs a number zt. Here ⟨st, ∆t⟩ denotes the current update, and bt is an indicator for
when the current time t should be considered as the new enabling time. We consider input
streams S ∈ ([n]× Z× {0, 1})m such that there are at most p time steps t for which bt = 1,
and denote these time steps as 1 ≤ e1 < e2 < · · · < ep < m. Also, for a time step t ∈ [m] we
denote e(t) = max{ei : ei ≤ t}.

Algorithm E is a (γ, α, p, δ)-toggle difference estimator for F if the following holds for
every such input stream S. With probability at least 1− δ, for every t ∈ [m] such that

|F(St)−F(Se(t))| ≤ γ · F(Se(t)) (1)

the algorithm outputs a value zt such that zt ∈
(
F(St)−F(Se(t))

)
± α · F(Se(t)).

This definition generalizes the notion of a difference estimator (DE) from [29], in which p = 1.
In Section 4 we show that this extension comes at a very low cost in terms of the space
complexity. Note that on times t s.t. the requirements specified w.r.t. γ do not hold, there is
no accuracy guarantee from the TDE algorithm.

5 For an integer n ∈ N denote [n] = {0, 1, . . . , n − 1} (that is |[n]| = n).
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2.1 Preliminaries from Differential Privacy
Differential privacy [13] is a mathematical definition for privacy that aims to enable statistical
analyses of databases while providing strong guarantees that individual-level information
does not leak. Consider an algorithm A that operates on a database in which every row
represents the data of one individual. Algorithm A is said to be differentially private if its
outcome distribution is insensitive to arbitrary changes in the data of any single individual.
Intuitively, this means that algorithm A leaks very little information about the data of any
single individual, because its outcome would have been distributed roughly the same even if
without the data of that individual. Formally,

▶ Definition 2.4 ([13]). Let A be a randomized algorithm that operates on databases. Algo-
rithm A is (ε, δ)-differentially private if for any two databases S, S′ that differ on one row,
and any event T , we have

Pr [A(S) ∈ T ] ≤ eε · Pr [A(S′) ∈ T ] + δ.

3 A Framework for Adversarial Streaming

Our transformation from an oblivious streaming algorithm EST for a function F into an
adversarially robust algorithm requires the following two conditions.
1. The existence of a toggle difference estimator ETDE for F , see Definition 2.3.
2. Every single update can change the value of F up to a factor of (1 ± α′) for some

α′ = O(α). Formally, throughout the analysis we assume that for every stream S and for
every update u = ⟨s, ∆⟩ it holds that

(1− α′)F(S) ≤ F(S, u) ≤ (1 + α′)F(S).

▶ Remark 3.1. These conditions are identical to the conditions required by [29]. Formally,
they require only a difference estimator instead of a toggle difference estimator, but we show
that these two objects are equivalent. See Section 4.

▶ Remark 3.2. Condition 2 can be met for many functions of interest, by applying our
framework on portions of the stream during which the value of the function is large enough.
For example, when estimating L2 with update weights ±1, whenever the value of the function
is at least Ω(1/α), a single update can increase the value of the function by at most a (1 + α)
factor. Estimating L2 whenever the value of the function is smaller than O(1/α) can be
done using an existing (oblivious) streaming algorithm with error ρ = O(α). To see that we
can use an oblivious algorithm in this setting, note that the additive error of the oblivious
streaming algorithm is at most O( ρ

α )≪ 1. Hence, by rounding the answers of the oblivious
algorithm we ensure that its answers are exactly accurate (rather than approximate). As the
oblivious algorithm returns exact answers in this setting, it must also be adversarially robust.

3.1 Construction Overview
Our construction builds on the constructions of [29] and [19]. At a high level, the structure
of our construction is similar to that of [29], but our robustness guarantees are achieved
using differential privacy, similarly to [19], and using our new concept of TDE.

Our algorithm can be thought of as operating in phases. In the beginning of every
phase, we aggregate the estimates given by our strong trackers with differential privacy, and
“freeze” this aggregated estimate as the base value for the rest of the phase. Inside every
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phase, we privately aggregate (and “freeze”) estimates given by our TDE’s. More specifically,
throughout the execution we aggregate TDE’s of different types/levels (we refer to the level
that is currently being aggregated as the active level). At any point in time we estimate the
(current) value of the target function by summing specific “frozen” differences together with
the base value.

We remark that, in addition to introducing the notion of TDE’s, we had to incorporate
several modifications to the framework of [29] in order to make it compatible with our TDE’s
and with differential privacy. In particular, [29] manages phases by placing fixed thresholds
(powers of 2) on the value of the target function; starting a new phase whenever the value
of the target function crosses the next power of 2. If, at some point in time, the value of
the target function drops below the power of 2 that started this phase, then this phase ends,
and they go back to the previous phase. This is possible in their framework because the
DE’s of the previous phase still exist in memory and are ready to be used. In our framework,
on the other hand, we need to share all of the TDE’s across the different phases, and we
cannot go back to “TDE’s of the previous phase” because these TDE’s are now tracking
other differences. We overcome this issue by modifying the way in which differences are
combined inside each phase.

In Algorithm 1 we present a simplified version of our main construction, including inline
comments to improve readability. The complete construction is given in Algorithm RobustDE.

3.2 Analysis Overview

At a high level, the analysis can be partitioned into five components (with one component
being significantly more complex then the others). We now elaborate on each of these
components; see the full version of this work for the formal analysis [4].

3.2.1 First component: Privacy analysis

We show that our construction satisfies differential privacy w.r.t. the collection of random
strings on which the oblivious algorithms operate. Recall that throughout the execution we
aggregate (with differential privacy) the outcome of our estimators from the different levels.
Thus, in order to show that the whole construction satisfies privacy (using composition
theorems) we need to bound the maximal number of times we aggregate the estimates from
the different levels. However, we can only bound this number under the assumption that the
framework is accurate (in the adaptive setting), and for that we need to rely on the privacy
properties of the framework. So there is a bit of circularity here. To simplify the analysis,
we add to the algorithm hardcoded caps on the maximal number of times we can aggregate
estimates at the different levels. This makes the privacy analysis straightforward. However,
we will later need to show that this hardcoded capping “never” happens, as otherwise the
algorithm fails.6 These hardcoded caps are specified by the parameters Pj (both in the
simplified algorithm and in the complete construction), using which we make sure that the
estimators at level j are never aggregated (with differential privacy) more than Pj times.

6 We remark that as the hardcoded capping “never” happens, we can in fact remove it from the algorithm.
One way or another, however, we must derive a high probability bound on the number of times we can
aggregate estimates at the different levels.
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Algorithm 1 Simplified presentation of RobustDE.
Input: Stream S = {⟨st, ∆t⟩}t∈[m], accuracy parameter α, and a bound on the flip number λ.
Estimators used: Strong tracker EST and toggle-difference-estimator ETDE for F .

Initialization. Let β = ⌈log(α−1)⌉ denote the number of levels and let Pj = O(2−jλ). For
every level j ∈ {0, . . . , β − 1} initialize Õ(

√
Pj) = Õ(

√
2−jλ) copies of the TDE algorithm

ETDE with parameter γ = O(2jα) and set their initial estimation to be Zj = 0. Also initialize
Õ(

√
Pβ) = Õ(

√
αλ) copies of the strong tracker EST, and set their initial estimation to be

ZST = 0. (We denote j = β for the level of the strong trackers, and denote Zβ = ZST.)
Initialize counter τ .

% As the execution progresses, we update the variables Zj , in which we maintain aggregations
of the estimates given by our strong trackers and difference estimators. We make sure
that, at any point in time, we can compute an estimation for the target function by
carefully combining the values of these variables. This careful combination is handled
using the counter τ .

% It is convenient to partition the time points into phases, where during each phase the
value of ZST remains constant. Intuitively, in the beginning of every phase we compute a
very accurate estimation for the target function using EST, and then in the rest of the
phase, we augment that estimation with weaker estimations given by our TDE’s (and
accumulate errors along the way). Our error is reset at the beginning of every phase.

For every time step t ∈ [m]:
1. Get the update ⟨st, ∆t⟩ and feed it to all estimators.
2. Select the relevant estimator level according to τ into j (where j = β in case the relevant

level is that of the strong trackers, which happens only if τ = O(1/α)).
3. Let Z denote the sum of previously computed aggregates for levels i > j such that the

ith bit of τ is 1 (in binary representation). That is, Z =
∑

i>j:τ [i]=1 Zi.
% Note that if j = β then Z = 0.
4. Summed with Z, every estimator from level j suggests an estimation for F(t). If the

previous output Out is “close enough” to (most of) these suggestions, or if level j has
already been aggregated Pj times, then goto Step 5. Otherwise, modify Out as follows.

a. Zj ← Differentially private approximation for the median of the outputs given by the
estimators at level j.

b. Re-enable all TDE’s at levels i < j.
% That is, from now on, all TDE’s at levels i < j are estimating differences from future

time steps to the current time step.
c. If j = β, then set τ ← 0. Otherwise set τ ← τ + 1.
% That is, if j = β, which happens only if τ = O(1/α), then we start a new phase.
d. Out← Z + Zj .

5. Output Out
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3.2.2 Second component: Conditional accuracy
We show that if the following two conditions hold, then the framework is accurate:
Condition (1): At any time step throughout the execution, at least 80% of the estimators in

every level are accurate (w.r.t. the differences that they are estimating).
Condition (2): The hardcoded capping never happens.
This is the main technical part in our analysis; here we provide an oversimplified overview,
hiding many of the technicalities. We first show that if Conditions (1) and (2) hold then the
framework is accurate. We show this by proving a sequence of lemmas that hold (w.h.p.)
whenever Conditions (1) and (2) hold. We now elaborate on some of these lemmas. Recall
that throughout the execution we “freeze” aggregated estimates given by the different levels.
The following lemma shows that these “frozen” aggregations are accurate (at the moments
at which we “freeze” them). This Lemma follows almost immediately from Condition (1), as
if the vast majority of our estimators are accurate, then so is their private aggregation.

▶ Lemma 3.3 (informal version of Lemma A.2). In every time step t ∈ [m] in which we compute
a value Zj (in Step 14a of Algorithm RobustDE, or Step 4a of the simplified algorithm) it
holds that Zj is accurate. Informally, if the current level j is that of the strong trackers, then
|Zj −F(t)| < α · F(t), and otherwise |Zj − (F(t)−F(ej))| < α · F(ej), where ej is the last
enabling time of level j.

During every time step t ∈ [m], we test whether the previous output is still accurate
(and modify it if it is not). This test is done by comparing the previous output with (many)
suggestions we get for the current value of the target function. These suggestions are obtained
by summing the outputs of the estimators at the currently active level j together with a
(partial) sum of the previously frozen estimates (denoted as Z). This is done in Step 14 of
Algorithm RobustDE, or in Step 4 of the simplified algorithm. The following lemma, which
we prove using Lemma 3.3, states that the majority of these suggestions are accurate (and
hence our test is valid).

▶ Lemma 3.4 (informal version of Lemma A.4). Fix a time step t ∈ [m], and let j denote the
level of active estimators. Then, for at least 80% of the estimators in level j, summing their
output z with Z is an accurate estimation for the current value of the target function, i.e.,
|F(t)− (Z + z)| ≤ α · F(t).

So, in every iteration we test whether our previous output is still accurate, and our test
is valid. Furthermore, when the previous output is not accurate, we modify it to be (Z + Zj),
where Zj is the new aggregation (the new “freeze”) of the estimators at level j. So this
modified output is accurate (assuming that the hardcoded capping did not happen, i.e.,
Condition (2), as otherwise the output is not modified). We hence get the following lemma.

▶ Lemma 3.5 (informal version of Lemma A.5). In every time step t ∈ [m] we have

|Output(t)−F(t)| ≤ α · F(t).

That is, the above lemma shows that our output is “always” accurate. Recall, however,
that this holds only assuming that Conditions (1) and (2) hold.

3.2.3 Third component: Calibrating to avoid capping
We derive a high probability bound on the maximal number of times we will aggregate
estimates at the different levels. In other words, we show that, with the right setting of
parameters, we can make sure that Condition (2) holds. The analysis of this component still
assumes that Condition (1) holds.
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We first show that between every two consecutive times in which we modify our output,
the value of the target function must change noticeably. Formally,

▶ Lemma 3.6 (informal version of Lemma A.6). Let t1 < t2 ∈ [m] be consecutive times in
which the output is modified (i.e., the output is modified in each of these two iterations, and
is not modified between them). Then, |F(t2)−F(t1)| = Ω (α · F(t1)).

We leverage this lemma in order to show that there cannot be too many time steps during
which we modify our output. We then partition these time steps and “charge” different
levels j for different times during which the output is modified. This allows us to prove a
probabilistic bound on the maximal number of times we aggregate the estimates from the
different levels (each level has a different bound). See Lemma A.7 for the formal details.

3.2.4 Forth component: The framework is robust
We prove that Condition (1) holds (w.h.p.). That is, we show that at any time step throughout
the execution, at least 80% of the estimators in every level are accurate.

This includes two parts. First, in Lemma A.8, we show that throughout the execution,
the condition required by our TDE’s hold (specifically, see 1 in Definition 2.3). This means
that, had the stream been fixed in advance, then (w.h.p.) we would have that all of the
estimators are accurate throughout the execution. In other words, this shows that if there
were no adversary then (a stronger variant of) Condition (1) holds.

Second, in Lemma A.9 we leverage the generalization properties of differential privacy to
show that Condition (1) must also hold in the adversarial setting. This lemma is similar to
the analysis of [19].

3.2.5 Fifth component: Calculating the space complexity
In the final part of the analysis, we calculate the total space needed by the framework
by accounting for the number of estimators in each level (which is a function of the high
probability bound we derived on the number of aggregations done in each level), and the
space they require.

4 Toggle Difference Estimator from a Difference Estimator

We present a simple method that transforms any difference estimator to a toggle difference
estimator. The method works as follows. Let DE be a difference estimator (given as
an subroutine). We construct a TDE that instantiates two copies of the given difference
estimator: DEenable and DEfresh. It also passes its parameters, apart of the enabling times,
verbatim to both copies. As DE is set to output estimations only after receiving an (online)
enabling time e, the TDE never enables the copy DEfresh. Instead, DEfresh is used as a fresh
copy that received the needed parameters and the stream S and therefore it is always ready
to be enabled. Whenever a time t is equal to some enabling time (i.e. t = ei for some i ∈ [p]),
then the TDE copies the state of DEfresh to DEenable (running over the same space), and
then it enables DEenable for outputting estimations.

▶ Corollary 1. For any function F , provided that there exist a (γ, α, δ)-Difference Estimator
for F with space SDE(γ, α, δ, n, m), then there exists a (γ, α, δ, p)-Toggle Difference Estimator
for F with space STDE(γ, α, δ, p, n, m) = 2 · SDE(γ, α, δ/p, n, m)

ITCS 2023



8:14 A Framework for Adversarial Streaming

Note that for a DE whose space dependency w.r.t. the failure parameter δ is logarithmic,
the above construction gives a TDE with at most a logarithmic blowup in space, resulting
from the p enabling times.

5 Applications

Our framework is applicable to functionalities that admit a strong tracker and a difference
estimator. As [29] showed, difference estimators exist for many functionalities of interest in
the insertion only model, including estimating frequency moments of a stream, estimating the
number of distinct elements in a stream, identifying heavy-hitters in a stream and entropy
estimation. However, as we mentioned, we are not aware of non-trivial DE constructions in
the turnstile model. In more detail, [29] presented DE for the turnstile setting, but these DE
require additional assumptions and do not exactly fit our framework (nor the framework of
[29]).

To overcome this challenge we introduce a new monitoring technique which we use as
a wrapper around our framework. This wrapper allows us to check whether the additional
assumptions required by the DE hold, and reset our system when they do not. As a concrete
application, we present the resulting bounds for F2 estimation.

▶ Definition 5.1 (Frequency vector). Let S = (⟨s1, ∆1⟩, . . . , ⟨sm, ∆m⟩) ∈ ([n]×{±1})m be a
stream. The frequency vector of the stream S is the vector u ∈ Zn whose ith coordinate is
u[i] =

∑
j∈[m],sj=i ∆j . We write u(t) to denote the frequency vector of the stream St, i.e.,

restricted to the first t updates. Given two time points t1 ≤ t2 ∈ [m] we write u(t1,t2) to
denote the frequency vector of the stream St2

t1
, i.e., restricted to the updates between time t1

and t2.

In this section we focus on estimating F2, the second moment of the frequency vector.
That is, after every time step t, after obtaining the next update ⟨st, ∆t⟩ ∈ ([n]×{±1}), we
want to output an estimation for∥∥∥u(t)

∥∥∥2

2
=

n∑
i=1

∣∣∣u(t)[i]
∣∣∣2

.

Woodruff and Zhou [29] presented a (γ, α, δ)-difference estimator for F2 that works in
the turnstile model, under the additional assumption that for any time point t and enabling
time e ≤ t it holds that∥∥∥u(e,t)

∥∥∥2

2
≤ γ ·

∥∥∥u(e)
∥∥∥2

2
. (2)

In general, we cannot guarantee that this condition holds in a turnstile stream. To bridge
this gap, we introduce the notion of twist number (see Definition 1.6) in order to control
the number of times during which this condition does not hold (when this condition does
not hold we say that a violation has occurred). Armed with this notion, our approach is
to run our framework (algorithm RobustDE) alongside a validation algorithm (algorithm
Guardian) that identifies time steps at which algorithm RobustDE loses accuracy, meaning
that a violation has occurred. We then restart algorithm RobustDE in order to maintain
accuracy. As we show, our notion of twist number allows us to bound the total number of
possible violation, and hence, bound the number of possible resets. This in turn allows us to
bound the necessary space for our complete construction. Here we only state the result; see
the full version of this work [4] for the details.



I. Attias, E. Cohen, M. Shechner, and U. Stemmer 8:15

▶ Theorem 5.2. There exists an adversarially robust F2 estimation algorithm for turnstile
streams of length m with a bounded (O(α), m)-flip number and (O(α), m)-twist number with
parameters λ and µ correspondingly, that guarantees α-accuracy with probability at least
1− 1/m in all time t ∈ [m] using space complexity of

Õ

(√
αλ + µ

α2 log3.5(m)
)

.

As we mentioned, this should be contrasted with the result of [19], who obtain space
complexity O

( √
λ

α2 log3.5(m)
)

for robust F2 estimation in the turnstile setting. Hence, our
new result is better whenever µ≪ λ.
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A Missing Statements

In this section we provide the formal versions of the informal statements that appear in
the main body of this paper. Due to space restrictions, the analysis of these statements is
deferred to the full version of this work [4].

▶ Assumption A.1 (Accurate estimations). Fix a time step t ∈ [m]. Let j ∈ [β + 1] ∪ {W} be
a level of estimators. Recall that Kj denotes the number of the estimators in level j, and let
z1

j , . . . , z
Kj

j denote the estimations given by these estimators. Then:
1. For j ∈ {β, W} |{k ∈ [Kj ] : |zk

j −F(t)| < αST · F(t)}| ≥ (8/10)Kj

2. For j < β, |{k ∈ [Kj ] : |zk
j − (F(t)−F(ej))| < αTDE · F(ej)}| ≥ (8/10)Kj

▶ Lemma A.2 (Accuracy of frozen values). Let t ∈ [m] be a time step such that
1. Assumption A.1 holds for every t′ ≤ t.
2. NoCapping=True during time t.
3. Algorithm PrivateMed was activated during time t (on Step 14a).
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Algorithm 2 RobustDE(S, α, δ, λ, EST, ETDE).
Input: A stream S = {⟨st, ∆t⟩}t∈[m] accuracy parameter α, failure probability δ and a
bound on the flip number λ.
Estimators used: Strong tracker EST and toggle-difference-estimator ETDE for the func-
tion F .
Subroutines used: StitchFrozenVals(τ), ActiveLVL(τ).

Constants calculation:
1. StepSize(α)← O(α), αST ← O(α), αTDE ← O(α/ log(α−1)), Γ← Θ(1).
2. Phase params: let PhaseSize← ⌊ 1

StepSize(α)⌋, β ← ⌈log(PhaseSize)⌉, J ← [β + 1] ∪ {W}.
3. For j ∈ [β + 1]:Pj ← O

(
2−jλ

)
, PW ← Pβ ; For j ∈ [β]:γj ← Ω(2jα); For j ∈ J :εj =

Õ(P −0.5
j ).

4. Estimator sets: For j ∈ J set Kj ← Ω̃(ε−1
j ) and let Ēj = {Ek

j }k∈[Kj ].

Initialization:
5. Start all estimators {Ēj}j∈J .
6. Set thresholds: For j ∈ J , Tj ← Kj/2 + Lap(2 · ε−1

j ).
7. For j ∈ J set Cappj ← 0; For j ∈ [β + 1] set Zj ← 0; τ ← PhaseSize.

For t ∈ [m]:
8. Get the update ⟨st, ∆t⟩ from S and feed ⟨st, ∆t⟩ into all estimators.
9. If

∣∣∣{k ∈ [KW] : zk
W /∈

(
1
Γ · ZST , Γ · ZST

)}∣∣∣ + Lap(4 · ε−1
W ) > TW then set τ = 0, redraw

TW.
10. j ← ActiveLVL(τ)
11. For k ∈ [Kj ] get estimation zk

j ← Ek
j

12. If j = β: Z← 0 % Estimation offset of ST
13. Else: Z← StitchFrozenVals(τ − 2j + 1) % Estimation offset of TDE
14. If τ = 0 or

∣∣{k ∈ [Kj ] : Z + zk
j /∈ Output(t− 1)± ZST · StepSize(α)

}∣∣ + Lap(4 · ε−1
j ) > Tj

a. Zj ← PrivateMed({zk
j }k∈[Kj ])

b. Redraw Tj

c. For j′ ∈ [j], k ∈ [Kj′ ] set ek
j′ ← t

d. Cappj ← Cappj + 1
e. If τ [β] = 0: τ ← 2β % Starting phase
f. ElseIf τ < 2β + PhaseSize: τ ← τ + 1 % Inner phase update
g. If τ = 2β + PhaseSize: τ [β]← 0 % Ending phase

15. NoCapping←
∧

j∈J Cappj < Pj

16. If NoCapping = True: Output(t) ← StitchFrozenVals(τ)
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Algorithm 3 StitchFrozenVals(τ).
Input: A counter τ . Global Variables: α, ZST, Zj for j ∈ [β].
1. FV← {j ∈ [β]|τ [j] = 1}
2. Return ZST +

∑
j∈FV ZTDE,j

Algorithm 4 ActiveLVL(τ).
Input: A counter τ . Global parameter: β.
1. If τ [β] = 0 : Return β % Selecting the ST level
2. Else Return The LSB of (τ + 1) % Selecting a TDE level

Let j ∈ [β + 1] be the level of estimators used in time t. Let Zj be the value returned
by PrivateMed, and suppose that Kj = Ω

(
1
ε

√
Pj · log

( 1
δ′

)
log

(
Pj

δM α
log(n)

))
. Then, with

probability at least 1− δM /Pj we have that:
1. For j = β, |Zj −F(t)| < αST · F(t).
2. For j < β, |Zj − (F(t)−F(ej))| < αTDE · F(ej).

▶ Definition A.3 (Good execution). Throughout the execution of algorithm RobustDE, for
j ∈ [β + 1] ∪ {W} the algorithm draws at most 4m noises from Laplace distribution with
parameter εj . In addition, denoting by Pj for j ∈ [β + 1] the number of times that algorithm
RobustDE activates PrivateMed on estimations of level j. Denote δN = δ/(4 · (β + 2)),
δM = δ/(4 · (β + 1)). Set the algorithm parameters as follows Kj = Ω

(
1
εj

log
(

Pj

δM α
log(n)

))
,

εj = O
(

ε/
√

Pj · log
( 1

δ′

))
We define a good execution as follows:

1. All noises for all types j ∈ [β + 1] ∪ {W} are at most O
(

1
εj

log
(

m
δN

))
in absolute value.

2. For all j ∈ [β + 1], all first Pj frozen values of level j are accurate. That is, if t is the
time of the frozen value computation then:

For j = β, |Zj −F(t)| < αST · F(t).
For j < β, |Zj − (F(t)−F(ej))| < αTDE · F(ej).

▶ Lemma A.4 (Estimation error). Let t ∈ [m] be a time step such that
1. Assumption A.1 holds for every t′ ≤ t.
2. NoCapping=True during time t.
Let j ∈ [β + 1] be the level of estimators used in time step t, and let Z be the value computed
in Step 13. Let z1

j , . . . , z
Kj

j denote the estimations given by the estimators in level j. Then
assuming a good execution (see Definition A.3), for at least 80% of the indices k ∈ [Kj ] we
have∣∣F(t)− (Z + zk

j )
∣∣ ≤ αStitch · F(t),

where αStitch = Γ · (αST + β · αTDE).

▶ Lemma A.5 (Output accuracy). Let t ∈ [m] be a time step such that
1. Assumption A.1 holds for every t′ ≤ t.
2. NoCapping=True during time t.

Then assuming a good execution (see Definition A.3) we have

|Output(t)−F(t)| ≤ α · F(t),

provided that αST = O(α), αTDE = O(α/ log(α−1)) and for all j ∈ [β + 1] ∪ {W}, Kj =
Ω

(
1
εj

log
(

m
δN

))
.
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▶ Lemma A.6 (Function value progress between output-modifications). Let t1 < t2 ∈ [m] be
consecutive times in which the output is modified (i.e., the output is modified in each of these
two iterations, and is not modified between them), where
1. Assumption A.1 holds for every t′ ≤ t2.
2. NoCapping=True during time t2.
3. τ ̸= 0 during time t2.

Then, assuming a good execution (see Definition A.3) we have:
|F(t2)−F(t1)| ≥ StepSize(α) · ZST − 2 · αStitch ·max{F(t1),F(t2)}
|F(t2)−F(t1)| ≤ StepSize(α) · ZST + (2 · αStitch + MuSize(α)) ·max{F(t1),F(t2)}

▶ Lemma A.7 (Output modifications of each level). Let S be the input stream of length m

for algorithm RobustDE with a flip number λα′(S) and let t ∈ [m] be a time step such that
Assumption A.1 holds for every t′ ≤ t. Then, assuming a good execution (see Definition
A.3), for every level j ∈ [β + 1] ∪ {W} we have

Cj(t) ≤ O

(
λα′(S)

2j

)
,

where α′ = (1/2) · StepSize(α) = O(α).

▶ Lemma A.8 (bounded estimation ranges). Let t ∈ [m] be a time step such that
1. Level j ∈ [β] was selected (a TDE).
2. Assumption A.1 holds for every t′ < t.
Denote by ej the last time step during which level j estimators were enabled. Then, assuming
a good execution (see Definition A.3), the following holds:

|F(t)−F(ej)| ≤ γj · F(ej)

where γj = 1+αST
1−αST

Γ2 · 2j+1 · α = O(2j · α).

▶ Lemma A.9 (Accurate Estimations (Lemma 3.2 [19])). The following holds for a good
execution (see Definition A.3). Let t ∈ [m] be a time step such that:
1. Level j was selected.
2. Assumption A.1 holds for every t′ < t.
Let E(S, π) be the estimator of level j that was selected on time step t, and let π be its (possibly
dynamic) parameters. Let E(S, π) have (an oblivious) guarantee that all of its estimates are
accurate with accuracy parameter αE with probability at least 9

10 . Then for sufficiently small
ε, if algorithm RobustDE is (ε, δ′)-DP w.r.t. the random bits of the estimators {Ek}k∈K, then
with probability at least 1− δ′

ε , for time t we have:
1. For j ∈ {β, W}, |{k ∈ [K] : |zk −F(t)| < αE · F(t)}| ≥ (8/10)K
2. For j < β, |{k ∈ [K] : |zk − (F(t)−F(e))| < αE · F(e)}| ≥ (8/10)K

Where zk ← Ek(S, π) for a set of size K ≥ 1
ε2 log

( 2ε
δ′

)
of the oblivious estimator E(S, π)

▶ Theorem A.10 (Framework for Adversarial Streaming - Space). Provided that there exist:
1. An oblivious streaming algorithm EST for functionality F , that guarantees that with

probability at least 9/10 all of it’s estimates are accurate to within a multiplicative error
of (1± αST) with space complexity of SST(αST, n, m)

2. For every γ, p there is a (γ, αTDE, p, 1
10 )-TDE for F using space γ · STDE(αTDE, p, n, m).

Then there exist an adversarially robust streaming algorithm for functionality F that for any
stream with a bounded flip number λα/8,m < λ, s.t. with probability at least 1− δ its output
is accurate to within a multiplicative error of (1± α) for all times t ∈ [m], and has a space
complexity of

O
(√

αλ · polylog(λ, α−1, δ−1, n, m)
)
·
[
SST(O(α), n, m) + STDE(O(α/ log(α−1)), λ, n, m)

]
.
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Abstract
A prevalent assumption in auction theory is that the auctioneer has full control over the market and
that the allocation she dictates is final. In practice, however, agents might be able to resell acquired
items in an aftermarket. A prominent example is the market for carbon emission allowances. These
allowances are commonly allocated by the government using uniform-price auctions, and firms can
typically trade these allowances among themselves in an aftermarket that may not be fully under
the auctioneer’s control. While the uniform-price auction is approximately efficient in isolation, we
show that speculation and resale in aftermarkets might result in a significant welfare loss. Motivated
by this issue, we consider three approaches, each ensuring high equilibrium welfare in the combined
market. The first approach is to adopt smooth auctions such as discriminatory auctions. This
approach is robust to correlated valuations and to participants acquiring information about others’
types. However, discriminatory auctions have several downsides, notably that of charging bidders
different prices for identical items, resulting in fairness concerns that make the format unpopular.
Two other approaches we suggest are either using posted-pricing mechanisms, or using uniform-price
auctions with anonymous reserves. We show that when using balanced prices, both these approaches
ensure high equilibrium welfare in the combined market. The latter also inherits many of the benefits
from uniform-price auctions such as price discovery, and can be introduced with a minor modification
to auctions currently in use to sell carbon emission allowances.
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9:2 Making Auctions Robust to Aftermarkets

This raises the possibility that mechanisms that appear approximately efficient in isol-
ation might actually generate very poor outcomes if agents anticipate aftermarket trade
opportunities and adjust their strategies accordingly. Further complicating the issue, it may
be that neither the auction designer nor the auctioneer have any sway over the format of the
secondary market(s), and may not even be aware that they exist. We therefore ask: how
robust are different auction formats to the distortion effects of aftermarket trading? Can
existing theoretical analyses of auction efficiency at equilibrium be adapted to this setting?

Application: Markets for Carbon Emission Allowances. Our planet is warming at an
alarming rate. The Swiss Re Institute, the research arm of the reinsurance company Swiss
Re based in Zurich, Switzerland, estimated in an April 2021 report [33] on the impact of
climate change that “The world stands to lose close to 10% of total economic value by
mid-century if climate change stays on the currently-anticipated trajectory.” Due to these
dire circumstances, the United Nations made combating climate change and its impacts one
of 17 sustainable development goals [36].

Current efforts are largely focused on imposing limits on greenhouse gas emissions. This
makes the “right to emit” a scarce resource. Emission allowances are allocated via markets,
with the goal of distributing them to the industries that can provide the highest value to
society per unit of emission. A large fraction of these allowances in major markets, such as
the EU and California, are distributed via auctions on a monthly or quarterly basis. The
EU Emissions Trading System (EU ETS), for instance, allocated 57% of allowances via
auction between 2013 and 2020.2 Each of these auctions is typically run using a single-round
sealed-bid uniform-price auction. This format was adopted to reflect the priorities of the EU
commission which requires, according to Article 10(4) of DIRECTIVE 2003/87/EC, that
auctions are designed to ensure transparency, equitable informational and procedural access,
and that “participants do not undermine the operation of the auctions.”3

The uniform-price auction is known to be approximately efficient at equilibrium when
run in isolation [6]. However, emission allowances can also be traded via unregulated (or only
partially regulated) secondary markets. These secondary markets are not fully controlled by
the primary auctioning bodies and can take many forms – bilateral trade, brokered trade, and
exchanges, to name a few. The existence of these secondary markets is concerning because
they can distort outcomes, but they are also unavoidable absent extreme regulation.

What is the impact of these secondary markets on the primary market? There are
certainly potential benefits to secondary markets, such as providing simpler market access to
smaller firms who do not feel confident participating in the primary auction. But distortion
effects may be present as well. According to [10], the auction clearing prices closely track the
mean of the best-ask and best-bid prices on the EEX spot secondary market. Furthermore,
both prices rise steadily month-over-month. These facts, taken together, suggest there is
room for agents to speculate by buying allowances in the auctions and reselling them at
a later time in the secondary markets. As noted in prior work of Quemin and Pahle [27],
“regulators are currently ill-equipped to appraise the beneficial and detrimental facets of
speculation, and proper warning systems are wanting.” Their work provides a diagnostic
toolkit to assess the degree and impact of speculation in these markets. In our work, we ask
whether the design of the primary market itself can defend against detrimental speculative
behavior. Namely, are the welfare guarantees of certain auction formats (approximately)
robust to reallocation by arbitrary secondary markets? Can small changes to currently-used
auctions achieve such robustness?

2 See the article from EU ETS [11].
3 See the legal document from [13].
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A Model of Aftermarkets. Motivated by emission allowance markets, our primary model is
a multi-unit auction in which each item corresponds to an allowance for one unit of emission.
However, we note that most of our results extend to a richer class of combinatorial auctions;
see Section 2.2. In the multi-unit model, agents (buyers/bidders) have decreasing marginal
value for units, representing their value for using (consuming) the allowances. These valuation
functions are private knowledge but drawn from known distributions. Items (allowances)
acquired in the auction can be resold in a secondary market (aftermarket). To distinguish a
secondary market from a general mechanism, we impose some mild conditions on the form
these markets can take. Specifically, we assume that these are trade mechanisms: mechanisms
that are budget balanced4 and do not force participation.

Since agents anticipate the secondary market, the potential for resale can change behavior
in the primary auction. Our equilibrium notion is perfect Bayesian equilibrium (PBE).5

Roughly speaking, each agent is assumed to behave rationally in the secondary market given
the auction outcome and her beliefs about other agents (subgame perfection), and her belief
must be consistent with observed outcomes of the auction (Bayesian updating). Moreover,
each agent is forward-looking and bids at equilibrium in the auction given their beliefs about
what will occur in aftermarket trading. One subtlety is that behavior in the secondary market
can depend on the information released after the primary auction, such as whether bids are
publicly observed. We want results that are robust to this choice, so we allow an arbitrary
revelation of signals correlated with the auction bids and outcomes before the secondary
market begins. We assume that agents are fully aware of the secondary market (and what
information they’ll learn about the primary auction outcome) when participating in the
primary auction. We call the resulting mechanism that combines the primary auction and
the aftermarket trade mechanism the combined market. We seek conditions on the design
of the primary market that guarantee high welfare in every equilibrium allocation in the
combined market.

Aftermarkets can Substantially Reduce Welfare. It may seem counter-intuitive that
secondary trade mechanisms can reduce overall welfare. Indeed, given the outcome of the
primary market, as trade is voluntary, any trade in the secondary market only Pareto improves
the utilities of all agents. The problem is that the agents, being aware of the existence of the
secondary market, adjust their strategies in the primary market. In particular, aftermarkets
create opportunities for strategically acquiring items in the primary market for the sole
purpose of opportunistically reselling them later. In principle this can lead to lower welfare
overall.

To formally illustrate the problem, we show that even a uniform-price auction can suffer
arbitrarily large loss of welfare due to the presence of a secondary market. Importantly, we
insist that the equilibria we construct avoid weakly dominated strategies. Indeed, low-welfare
equilibria are already known to exist for uniform-price auctions in isolation and thus also in
combined markets, but these equilibria rely on overly aggressive bids that seem not predictive

4 Our results will hold not only for trade mechanisms that are strongly budget balanced (net payment of
0), but also for weakly budget balanced mechanisms (mechanisms that never lose money).

5 All of the positive results in this paper actually hold for all Bayes-Nash equilibria (and thus, in particular,
for all perfect Bayesian equilibria). We choose the stronger notion of PBE as our solution concept to
make the negative results more convincing, as we discuss later.
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9:4 Making Auctions Robust to Aftermarkets

and hence cannot be viewed as negative results; these equilibria are eliminated by excluding
weakly dominated strategies.6 In contrast, we establish that in the presence of a secondary
market, even equilibria that exclude weakly dominated strategies can have vanishing welfare.

▶ Theorem (informal). There exist instances of a uniform-price auction of m items followed
by a trade mechanism such that the expected welfare obtained in some perfect Bayesian
equilibrium is only a 1

Ω(log(m)) fraction of the optimal expected welfare. This is true even
when restricting to equilibria that avoid weakly dominated strategies.

What drives such bad equilibria? Intuitively, if an individual participant wins many items
in the auction, they can use their market power to distort prices in the secondary market
and increase their own revenue at the expense of efficiency. This incentivizes a speculator to
win many items in the auction. In particular, it can be perfectly rational for a speculator to
bid aggressively at auction to ensure they have many items to work with in the secondary
market. Moreover, this type of aggressive resale strategy will not necessarily be resisted by
the other agents since bidders are incentivized to keep their bids low to reduce the price of
items they are already winning. In Section 3 we present an example illustrating all of these
effects in a perfect Bayesian equilibrium in undominated strategies. Our example needs only
a very simple form of secondary market with dominant strategies, in which a reseller makes
take-it-or-leave-it price offers.

Auction Formats that are Robust to Aftermarkets. The example above shows that the
uniform-price auction is susceptible to the presence of an aftermarket. We argue however that
some market formats do have robust welfare guarantees in combined markets. First, we show
that smooth auctions maintain their welfare guarantees in such environments. Smoothness is
a technical condition introduced by Roughgarden [28] in the context of proving worst-case
guarantees on welfare properties of equilibria. We formally define smoothness in Section 4,
but for now it is enough to know that if an auction format is (λ, µ)-smooth for some λ ∈ (0, 1]
and µ ≥ 1, then any equilibrium will generate at least a λ/µ fraction of the optimal expected
welfare [35]. As noted by Syrgkanis and Tardos [35], smoothness can be thought of as a
sort of approximate First Welfare Theorem,7 whereby any loss in efficiency due to a reduced
allocation to one bidder can always be partially offset by the payment of another bidder. Our
result shows that any efficiency guarantee proven for an auction in isolation using smoothness
will immediately extend to any equilibrium of the combined market, no matter what trade
mechanism is used in the secondary market.

▶ Theorem (informal). For any combined market consisting of a (λ, µ)-smooth auction
followed by a trade mechanism, the expected welfare of any Bayes-Nash equilibrium (and thus,
in particular, of any perfect Bayesian equilibrium) is at least (λ/µ) times the optimal welfare.

We also show that this guarantee continues to hold even when agent valuations can be
arbitrarily correlated, and even if participants can choose to acquire costly information about
others’ types in advance of the auction (such as a potential speculator investigating market
forecasts).

6 For example, suppose that one agent bids infinitely high on all units, and all other bidders bid 0. The
first agent then wins all items and pays nothing, regardless of the valuations. This is technically a
Bayes-Nash equilibrium (and such a BNE exists even in the dominant-strategy Second Price Auction).
However, since the first agent’s bid in this example is dominated by bidding her true marginal values,
this equilibrium does not survive the elimination of weakly dominated strategies.

7 Informally, the First Welfare Theorem states that when prices clear the market, the allocation is socially
efficient.
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Uniform-price auctions are not (λ, µ)-smooth for any constants λ and µ; so the theorem
does not apply for such auctions. Unlike for smooth auctions, their welfare can be severely
reduced in the presence of a secondary market (as we mentioned above). Thus, current
emission allowances markets are not robust to speculation opportunities created by after-
markets. However, discriminatory-price auctions, in which each buyer pays her marginal bid
for each unit she wins, are (1 − 1/e, 1)-smooth. The smooth discriminatory-price auction
therefore guarantees 1 − 1/e fraction of the optimal welfare in the combined market.8

Is the discriminatory price auction a viable solution for allocating carbon allowances?
Unfortunately, this auction format has some downsides. First, bidding is rather challenging
and highly depends on distributional knowledge by the bidders. Second, discriminatory
auctions might be perceived as unfair since identical goods are sold for different prices,
creating envy between buyers. Finally, winners typically realize in retrospect that they could
lower their payment by lowering their bids, creating regret. These issues could discourage
participation in the auction, and indeed such concerns have been cited as reasons why this
auction format was not adopted by the EU ETS [12].

An Alternative Solution: Posted Prices. Motivated by these concerns, we also show that
one can achieve robustness to secondary market distortions in another way. Instead of
running an auction, one could use posted prices: make a quantity of items available at a
declared price and allow buyers to purchase (in an arbitrary order) while supplies last. This
combines the fixed-price feature of a carbon tax with the quantity restriction of an auction.

In general, posted-price mechanisms are not robust to secondary markets. We show by
way of example that even if a posted-price mechanism achieves high welfare on its own,
this welfare can be significantly decreased by speculation that occurs at equilibrium in
the presence of a secondary market. This motivates us to focus on a particular form of
posted-price mechanism: those that use balanced prices, which are set proportional to the
expected average welfare generated in the efficient allocation. We define balanced prices
formally in Section 5.1. It is known that balanced prices yield strong welfare guarantees
for many allocation problems, including multi-unit auctions [14, 7]. Specifically, if prices
are (α, β)-balanced for α, β ≥ 1, then the expected welfare obtained when buyers purchase
sequentially is at least a 1/(1 + αβ) fraction of the optimum [7]. We prove that the welfare
guarantee from balanced prices continues to hold at any equilibrium given any arrival order
of the buyers even in the presence of a secondary market.9

▶ Theorem (informal). For any combined market consisting of a posted-price mechanism with
(α, β)-balanced prices followed by a trade mechanism, the expected welfare of any Bayes-Nash
equilibrium (and thus, in particular, of any perfect Bayesian equilibrium) is at least 1/(1+αβ)
times the optimal welfare.

For our setting of selling identical items to buyers with decreasing marginal values, there is
a per-item price that is (1, 1)-balanced, and therefore guarantees at least half of the expected
optimal welfare even in the presence of a secondary market.

8 In the special case of a single item, the discriminatory-price auction reduces to the first-price auction. In
asymmetric buyers setting, Jin and Lu [19] show that the equilibrium welfare of first-price auction can
be at most 1 − 1

e2 fraction of the optimal when there are no aftermarkets. In the full version online, we
show that when there are two symmetric buyers, any Bayes-Nash equilibrium of the combined market
created by any trade mechanism that follows the first-price auction, is efficient.

9 Unlike with smooth auctions, this result does not extend to correlated value distributions or to settings
where buyers can acquire additional information before the auction opens. For example, it is problematic
if the buyers become more informed than the designer who set the prices.
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A Proposal: Balanced Reserves. To this point we have described two methods for allocating
items that achieve robust welfare guarantees in the presence of secondary markets. One is to
use a smooth mechanism, such as a discriminatory auction, and the other is to find a balanced
price and sell items at that price while supplies last. We have already discussed potential
drawbacks of the former solution, but the latter has its own set of practical challenges: for
one thing, it is a dramatic change relative to the uniform-price auctions typically used; for
another, if the government underestimates demand and sets its price too low, this could
encourage a rush where buyers race to purchase items at the moment they become available,
resulting in low welfare, buyer frustration, and a perception of unfairness As it turns out, one
can address these issues and obtain all of the benefits of balanced posted prices with a small
tweak to a uniform-price auction – the introduction of appropriately-chosen reserves. Reserve
prices are already common in many emission auctions, such as the one administered by the
California Air Resources Board [1], in the form of price floors. We show that an appropriate
choice of reserve prices guards against welfare loss in combined markets: namely, one can
augment a uniform-price auction with a per-allowance reserve price with bounded welfare loss,
by setting the reserve to be the balanced per-allowance price one would use in a posted-price
mechanism. We prove in Section 6 that the expected welfare at any equilibrium of this
auction is at least half of the expected optimal welfare, and this guarantee persists in the
presence of an arbitrary secondary market. We view this as a practical solution that can be
implemented with minimal effort: as long as the government can estimate just one statistic,
the expected average social value of a carbon allowance, they can mitigate the impact of
speculation and other equilibrium effects of resale by employing an appropriately-determined
auction reserve. We further show that the welfare guarantees degrade gracefully as one
adjusts the prices, meaning that unavoidable misspecifications in the price determination
will have a modest effect on the welfare guarantees.

1.1 Additional Related Work

Equilibria of Combined Markets. The challenges in analyzing equilibria in combined
markets was acknowledged in Haile [18] due to the fact that there exist endogenously induced
common value components in the auction. In the simple single-item setting with winner
posting prices as secondary markets,10 Hafalir and Krishna [16] characterized the equilibrium
behavior of the agents in the combined market, and Hafalir and Krishna [17] adopted the
characterization to show that the expected welfare of the first-price auction with secondary
markets may decrease by a multiplicative factor of 2e/(2e − 1). In addition to the above
discussions, there are many papers discussing various properties of the resale model in the
economics literature, including but not limited to the observation of bid shading in the
auction [26], and the revenue ranking of the simple auctions [21]. See the survey of Susan
[32] for more discussions on the equilibrium properties of the resale model. Finally, there
are several recent papers focusing on designing optimal mechanisms when the seller has no
control over the secondary market. Carroll and Segal [2] show that second price auction with
reserve prices is the robustly revenue optimal mechanisms with unknown resale opportunities.
Dworczak [8] considers the design of information released to the secondary markets and
show that the information structure that induces truthful behaviors are cutoff rules. He also
provides sufficient conditions for simple information structure to be optimal.

10 In this model, the authors also assume that no information, especially the bids, are revealed in the
secondary market to avoid the ratchet effect.
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Sequential Auctions. One closely related line of theoretical work is price of anarchy
for sequential auctions, which also study subgame perfect equilibrium outcomes [34, 25].
Leme, Syrgkanis, and Tardos [25] illustrate that although price of anarchy of the sequential
composition of first-price auction is small for unit-demand agents, the result breaks for agents
with submodular valuations, and the price of anarchy can be unbounded in the latter case.
In contrast, our results indicate that for submodular valuations, a simultaneous first-price
auction followed by any trade mechanism will have constant price of anarchy for the combined
market. The main difference that allows us to handle combinatorial auctions in sequential
auction format is that all items are sold only in the first market, and the secondary market
is only providing the platform for agents to retrade the items, rather than selling items
sequentially, with each item sold once in one of the auctions. Recently, Eden, Feldman,
Talgam-Cohen, and Zviran [9] bound the price of anarchy when each agent is subject to an
externality from the allocation of the other agents. The authors motivate the externality by
the resale model where those resale behaviors are assumed to be fixed exogenously, which is
substantially different from our model where agents behaviors depend on the format of the
combined market.

Price of Anarchy. As discussed earlier, our techniques leverage smoothness and balanced
pricing. For multi-unit auctions in particular, this theory has been used to derive equilibrium
welfare bounds for different auction formats in isolation [6, 24], and we extend this analysis
to settings with aftermarkets. The balanced pricing framework is a general approach for
designing posted-price mechanisms in a broad class of allocation problems [20, 14, 7]. These
constructions employ the theory of Prophet inequalities to bound the welfare obtained
when buyers sequentially purchase their preferred bundles at the proposed prices, which
are calculated using the distribution of buyer values. Similar to smoothness, we extend the
existing analysis to show that the welfare guarantees attainable through balanced pricing
extend to settings with aftermarkets.

Carbon Markets. There is a rich literature exploring market and regulation-based techniques
for reducing emissions and their effectiveness. Here we discuss a small sampling of this
literature, referring the reader to many excellent overviews such as [3] or [5] for further
details. Weitzman [37] asks whether it is better to control emissions via imposing standards
(quantity regulation) or charging taxes (price regulation), and notes that prices tend to fare
better when the social cost of emissions is close to linear, whereas quantity regulation can be
preferable in the face of uncertainty when marginal costs are variable. We note that taxes
share many similarities with the posted-pricing mechanism we study. Cramton and Kerr [4],
in turn, propose selling emission allowances in an auction (they suggest an ascending auction).
Their paper explicitly suggests these allowances be tradeable in aftermarkets to maximize
liquidity. Goldner, Immorlica, and Lucier [15] study uniform-price auctions with price floors
and ceilings, a common mechanism in practice, and prove welfare guarantees under certain
conditions in the absence of aftermarkets. Our paper complements these by exploring the
interplay of these aftermarkets and the primary auction and stating conditions under which
welfare guarantees extend to the combined market.
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2 Preliminaries

2.1 The Basic Setting
For clarity we begin by describing a basic model focused on a multi-unit auction of identical
items. Our results actually apply to a more general model of combinatorial auctions and
different information structures (including the ability to purchase information about aggregate
demand); we describe these extensions in Section 2.2.

2.1.1 The Allocation Problem
A seller initially holds a set M of m identical items to be allocated among a set N of n
buyers. A feasible allocation is a profile x = (x1, . . . , xn), where xi ∈ [m] is the number of
items obtained by agent i and

∑
i xi ≤ m. We write X for the set of feasible allocations.

Buyer i has a private valuation function vi : [m] → R≥0 where vi(xi) denotes buyer i’s
value for obtaining xi items, normalized so that vi(0) = 0. We emphasize that this is a
consumption value. Valuations are assumed to have non-increasing marginal valuations: for
each j ≥ 1, vi(j) − vi(j − 1) is non-negative and weakly decreasing in j. We will sometimes
refer to vi as the type of agent i. We write Θ = ×iΘi for the set of valuation profiles. We
assume that vi is sampled independently from a known distribution Fi, and denote the prior
product distribution over the valuations by F = ×iFi. The utility of agent i given allocation
xi and total payment pi is ui(xi, pi) = vi(xi) − pi. Buyers are assumed to be risk-neutral
and seek to maximize expected utility.

The welfare of an allocation x ∈ X when the valuations are v is defined to be Wel(v,x) =∑
i vi(xi). For any valuation profile v, let Wel(v,X ) = supx∈X Wel(v, x) be the optimal

(highest) welfare given the valuation functions v and feasibility constraint X . We say an
allocation is efficient if it achieves the optimal welfare. Let Wel(F,X ) = Ev∼F [Wel(v,X )]
be the expected optimal welfare. When X is clear from the context, we omit it in the
notation and use Wel(v),Wel(F ) to denote the optimal welfare and expected optimal welfare,
respectively.

2.1.2 Mechanisms
Agents can acquire items by participating in an auction then trading among themselves
in a secondary market. We will formally describe both the auction and the secondary
market as mechanisms. Formally, a mechanism M = (xM, pM) : A → ∆(X × Rn) is
defined by an allocation rule xM : A → ∆(X ) and a payment rule pM : A → Rn, where
A = ×iAi and Ai is the action space of agent i in the mechanism. Thus, for action
profile a = (a1, a2, . . . , an) ∈ (A1, A2, . . . , An) = A the outcome of the mechanism is the
(randomized) allocation xM(a), and each agent i is charged (in expectation) a payment of
pM
i (a) ≥ 0. The utility of agent i with valuation vi when participating in the mechanism M

in which agents take actions a ∈ A is ui(M(a)) = vi(xM(a)) − pM
i (a).

A mechanism M with valuation distribution F defines a game. A strategy σi : vi → ∆(ai)
for agent i is a mapping from her valuation vi to a distribution over her actions. With
slight abuse of notation denote by σ−i(v−i) the profile of actions taken by agents other
than i when each j ̸= i has valuation vj . A strategy σi is a best response for agent i given
strategies of the others σ−i if for any strategy σ′

i it holds that E[ui(M((σi(vi), σ−i(v−i)))] ≥
E[ui(M((σ′

i(vi), σ−i(v−i)))] for every valuation vi, where the expectation is over the valu-
ations of the other agents as well as any randomness in the mechanism and strategies. A
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profile of strategies σ = (σ1, . . . , σn) is a Bayesian Nash equilibrium (BNE) for mechanism
M with distribution F , if for every agent i, strategy σi is a best response for agent i given
strategies of the others σ−i.

By slightly overloading the notation, we also denote Wel(M, σ, F ) as the expected welfare
obtained in mechanism M using equilibrium strategy profile σ. Let the price of anarchy of
mechanism M within the family of distributions F be

PoA(M,F) = sup
F∈F

Wel(F )
infσ∈BNE(F,M){Wel(M, σ, F )}

where BNE(F,M) is the set of Bayesian Nash equilibria given distributions F and mechan-
ism M.

Auctions. We can describe multi-unit auctions as mechanisms. For example, in most
common multi-unit auctions, an action of bidder i is a bid of the form (ai1, . . . , aim) ∈
Ai = Rm≥0 representing her m marginal values, with ai1 ≥ · · · ≥ aim ≥ 0. The agents
simultaneously declare these bids to the auctioneer. The n×m received marginal bids are
then sorted from largest to smallest, and the m identical items are greedily allocated to the
bidders of the m highest marginal bids (breaking ties arbitrarily). The two most common
auction formats, uniform and discriminatory, then differ in how payments are calculated:

discriminatory auction: Each agent pays her winning bids. That is, if agent i wins xi
items, then she pays her highest xi marginal bids: pi =

∑xi

j=1 aij .
uniform-price auction: A common price p per unit is chosen, and each agent pays p for
each license won. This price p is taken to lie between the (m)-th highest marginal bid
and the (m+ 1)-st highest (within the n×m reported marginals). In other words, p lies
between the highest losing bid and the lowest winning bid. In this paper we focus on the
case where p is the highest losing bid.

We will also be interested in a simple form of posted-price mechanism. In the multi-unit
setting, the auctioneer selects in advance a price p per item. The buyers are then approached
sequentially in a fixed order. Each buyer can choose to buy as many items as desired, up to
the amount remaining, at a price of p per item. That is, if the buyers purchase in the order
1, 2, . . . , n, then each bidder i can choose any non-negative xi ≤ m−

∑
j<i xj and pays pxi.

Once all items are sold the mechanism ends.

Secondary Markets. Informally, a secondary market allows users to trade items that
they obtained from the auction. For example, one might imagine that agents could offer
to sell their items at a certain price, and other agents might choose to purchase at the
suggested price (or not). Similar to the auction, we will model the secondary market as
a mechanism. The starting point of the secondary market is the allocation picked by the
auction, which is publicly revealed. The secondary market is therefore parameterized by
an allocation x ∈ X , which we think of as the auction outcome. We will tend to use M2

to refer to secondary market mechanisms, and in a slight abuse of notation we will write
M2(a; x) = (xM2(a; x), pM2(a; x)) for the allocation and payment rules of a secondary
market M2 as a function of the initial allocation x ∈ X .11

11 In some secondary market formats it is more natural to think of actions being chosen sequentially
rather than simultaneously. E.g., in the example above, a seller first chooses a price then buyers choose
whether to purchase. One can model this by having a buyer’s “action” be a mapping from all possible
observations (e.g., prices) to a realized action (e.g., whether to buy).
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To capture our intuitive notion of a secondary market, we will introduce two mechanism
properties that we will assume in secondary markets we consider. First, we assume voluntary
participation, which informally means that each agent can choose not to participate. More
formally, voluntary participation requires that each agent has an “opt-out” action that
guarantees their utility is not reduced by the secondary market.

▶ Definition 1. A secondary market M2 satisfies voluntary participation if for each agent i,
all valuations vi, and all feasible allocations x, there exists an action a∗

i such that, for any
action profile a−i of the other agents, vi(xi) ≤ ui(M2((a∗

i ,a−i); x)).

We argue that this condition is quite mild. For example, if the secondary market is one in
which license holders can suggest take-it-or-leave-it prices, and trade happens if another user
agrees to trade at that price, then a license holder might decide not to make an offer (“not
participate”), and other agents can decide to decline any offer made (again, “not participate”).
Each agent can therefore ensure that her utility in the secondary market is the same as the
utility obtained from the initial allocation x.

We also assume that our secondary market satisfies weak budget balance, which means
that it does not run a deficit with respect to payments.

▶ Definition 2. A secondary market M2 satisfies weak budget balance if
∑
i p

M2

i (a; x) ≥ 0
for any action profile a and feasible allocation x ∈ X .

A mechanism that satisfies both voluntary participation and weak budget balance is
called a voluntary-non-subsidized-trade mechanism, or a trade mechanism for short.

2.1.3 The Combined Market
We are finally ready to formally model our setting of an auction followed by a secondary
market. We model this scenario as a two-round game G that consists of two mechanisms, M1

and M2, run sequentially. We refer to M1 as the auction and M2 as the secondary market.
In the first round of the game, the agents participate in the auction M1. We denote

the action space of M1 by A1 = ×iA
1
i . The agents simultaneously choose actions a1 ∈ A1,

resulting in outcome xM1(a1) and payments (pM1

i (a1))i. Each agent observes the outcome
of the auction and her own payment.

The second round then starts and the agents participate in the secondary market M2.
The allocation xM1(a1) from the auction is used as the initial allocation in the secondary
market. We denote the action space of M2 by A2 = ×iA

2
i . Note that the action spaces of

the two mechanisms can be different, but they share a common set of feasible allocations.
To summarize, the timing of the two-round game G(M1,M2) proceeds as follows:

1. Each agent i picks an action a1
i ∈ A1

i simultaneously. Mechanism M1 runs on actions a1.
2. Each agent i observes xM1(a1) and pM1

i (a1).
3. Each agent i picks an action a2

i ∈ A2
i simultaneously. Mechanism M2 runs on actions a2,

starting from allocation xM1(a1).
4. The total payoff to agent i in the combined market is ui(M2(a2;xM1(a1))) − pM1

i (a1).12

Note that an instance of the two-round game G(M1,M2) naturally corresponds to a
combined mechanism MC which we denote by MC = G(M1,M2), in which an action has
two components: (1) an action a1

i ∈ A1
i for the auction mechanisms, and (2) a mapping for

each agent i from the tuple of (allocation, payment) from the auction into an action for the
secondary market.

12 Note that this expression includes the payments from both the auction and the secondary market, as
the secondary market transfers are included in the utility term.
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Equilibria. The notions of BNE and PoA extend to a combined mechanism MC as before.
We note that since an action of MC encodes actions for both markets, the definition of
BNE does not require that agents are best-responding in the secondary market given the
auction’s outcome. This enables strategies with non-credible threats like “refuse to trade
with any competitors in the secondary market, even if it is beneficial to do so, unless they let
me win at least 7 items in the auction.” For multi-round games like ours, it is standard to
refine the BNE solution concept and instead consider the more restrictive class of perfect
Bayesian equilibria (PBE). We formally define this equilibrium notion in the full version
online. Roughly speaking, a PBE requires (a) subgame perfection, where behavior in the
secondary market is always rational given any auction outcome, and (b) that agents accurately
update their beliefs after the auction outcome and behave in accordance with those beliefs in
the secondary market. As it turns out, our positive results about welfare hold at any BNE,
whether or not they satisfy these requirements. So in particular our welfare bounds also
hold for any PBE as well. Moreover, each example we use to illustrate a negative result will
not only be a BNE, but rather also be a PBE. In fact, the perfect Bayesian equilibria we
consider will also satisfy the stronger conditions of sequential equilibria; see the full version
online for further discussion.

2.2 Extensions
So far we have focused on the simpler setting for ease of notation and to more directly
connect to the application of allocating emission licenses, but we will now describe two
generalizations of the model. Most of our positive results in the remainder of the paper will
actually be proven for this generalized setting.13

Combinatorial Allocation and Multiple Items. In the basic model, the items to be allocated
are all identical, so each buyer is concerned only with the number of items she obtains. More
generally, we can consider a combinatorial auction scenario where there is a set of (possibly
different) goods to allocate and each buyer has a value for each possible combination of goods.
We then interpret an allocation xi to buyer i as a subset of the available goods, xi ⊆ M . An
allocation profile x = (x1, . . . , xn) is then feasible if no item is double-allocated, meaning
that xi ∩ xj = ∅ for all i ̸= j. The basic model is the special case where all of the items are
identical and agents have non-increasing marginal values for the items. This generalization
also captures scenarios where items of different types being sold alongside each other, such
as licenses that apply to different calendar years or that permit different forms of emissions.
The natural generalization of “non-increasing marginal values” is then that agent valuations
are submodular, meaning that vi(S) + vi(T ) ≥ vi(S ∩ T ) + vi(S ∪ T ) for all sets of items
S, T ⊆ M .

Post-Auction Information Revealed. In the basic model, after the auction but before the
secondary market, each agent observes the outcome of the auction and her own auction
payment. More generally, each agent might also observe some additional information about
the auction before the secondary market begins. For example, it may be that all agents’
payments are revealed, or it might be that all bids are made public. Formally, we can think

13 In particular, our welfare bounds in Sections 4 and 5 apply in this generalized setting, assuming that
agent valuations are submodular (which is a natural generalization of the assumption that agents have
non-increasing marginal values).

ITCS 2023



9:12 Making Auctions Robust to Aftermarkets

of each buyer i as observing a private signal si ∈ Si after the auction that can be correlated
with A1, xM1(a1), and (pM1

i (a1))i. In fact, we could also allow these signals to be correlated
with the valuations of the agents, which allows the agents to receive additional information
that even the auction has no direct access to. We can write Γ for the (possibly randomized)
mapping from v, a1, xM1(a1), and (pM1

i (a1))i to the profile of signals (s1, . . . , sn) that
the agents receive after the auction. Under this generalization we would include Γ in the
description of the combined mechanism, so that MC = G(M1,Γ,M2). In the basic setting
the agents receive no signals, so we can think of Γ as being the empty mapping that always
returns a null signal.

3 Welfare Loss and Secondary Markets

In this section we present an example showing that even for uniform-price auctions (which
has high welfare in every equilibrium when runs in isolation), the presence of a secondary
market can induce a perfect Bayesian equilibrium with low expected welfare.

▶ Theorem 3. There exists a valuation distribution F , a combined market MC consisting of
a uniform-price auction followed by a trade mechanism, and a PBE σ that avoids undominated
strategies such that Wel(MC , σ, F ) ≤ 1

Ω(log(m)) Wel(F ).

The equilibrium σ that we use to exhibit Theorem 3 will have additional nice properties,
such as avoiding weakly dominated strategies.14 Before discussing this in detail, we first
describe the example.

▶ Example 4. There are m > 3 units to be allocated and 3 agents named A,B and C. Agent
A has marginal value 2 for the first unit, value uniformly sample from [1, 1.5] for the second
unit, and 0 for any subsequent units. Agent B has the following distribution over valuations.
She always has marginal value 2 for the first unit acquired, then a value zB > 0 for each
subsequent unit acquired. Here zB is a random variable drawn from a distribution with CDF
FB(z) = 1 − 1

1+(2m−1)z for z ∈ [0, 1) and FB(z) = z − 1
2m for z ∈ [1, 1 + 1

2m ]. Note that
given buyer value with distribution F , the unique revenue maximizing price is p = 1 with
expected revenue of p · Pr[zB ≥ p] = 1/(2m) per-unit. Agent C has value 0 for any number
of units; we refer to agent C as a speculator.

The primary auction is a uniform-price auction with standard bidding. In the secondary
market, the speculator C can put some or all of the items that she has acquired in the auction
up for sale, at a take-it-or-leave-it price of her choice. Agent A has the first opportunity to
purchase any (or all) of the items made available by C. Then agent B has the option to
purchase any items that are still available.

We now describe a particular choice of bidding strategies in the primary auction and agent
behavior in the secondary market. We will then prove that these form a perfect Bayesian
equilibrium in the combined market. In the auction, agents A and B each bid 2 for exactly a
single unit and 0 for the rest of the units. The speculator C bids 1 for m− 2 units and 0
for the rest of the units. Then, in the secondary market, the speculator offers all the units
she has acquired for the price of 1. Agent A buys one unit, and agent B buys all m − 3
remaining units if zB ≥ 1, and nothing otherwise. Note that under this behaviour the price
in the auction is 0. Agent C has expected utility of 1 + (m− 3)/(2m), as she makes 1 from
selling to A, and (m− 3)/(2m) in expectation from selling to B (selling the remaining m− 3
items to B when zB ≥ 1).

14 This extends a “no-overbidding” refinement commonly used when considering auctions in isolation.
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Consider the social welfare obtained in the combined market. The total expected welfare
obtained under this behavior is at most 6 (as 2 + 1.5 + 2 + 1

2m · (m − 3) ·
(
1 + 1

2m
)

≤ 6),
whereas the optimal expected welfare is at least 4 + (m− 2)E[z]. It is easy to compute that
E[z] ≥

∫ 1
0

1
1+(2m−1)zdz = Θ((logm)/m), and hence the optimal expected welfare is Θ(logm).

Thus, if this behavior occurs at equilibrium, this implies that the price of anarchy for this
combined market is Θ(logm), growing unboundedly large with m.

To complete the proof of Theorem 3 we must show that this behavior forms a perfect
Bayesian equilibrium. To see this, first note that the secondary market is dominance solvable:
agents A and B should always accept utility-improving trades offered by agent C, and
hence it is a dominant strategy for agent C to offer a revenue-maximizing price. So one
can equivalently think of the combined market as a one-shot auction game where payoffs
of the primary auction take into account the outcomes of the secondary market, which are
unambiguous (up to zero-measure ties that do not impact utilities). We can then show that
the bidding strategies described above form an equilibrium of this implied one-shot game.
Moreover, those bidding strategies are not weakly dominated, again thinking of them as
strategies in an implied single-shot game.15 The formal proof of Proposition 5 appears in
the full version online.

▶ Proposition 5. The above behaviour in the combined market forms a perfect Bayesian
equilibrium. Moreover, no agent is using a weakly dominated strategy in the primary auction
with respect to the payoffs implied by the secondary market.

Discussion. Let’s interpret this example. One thing to notice is that, at equilibrium, the
speculator is placing a very high bid for a very large number of items; much higher than
the revenue she obtains in the secondary market. Of course, the speculator can afford these
items because of the low price, but is this a “reasonable” strategy? At first glance it seems
that this sort of behavior is a form of bullying that should be excluded by removing weakly
dominated strategies (similar to overbidding in a second-price auction). But we note that, at
equilibrium, the speculator behaves as a monopolist in the secondary market. She generates
a modest amount of revenue from each license sold to agent B (namely, 1/(2m) each), plus a
large amount of revenue (revenue of 1) by selling a license to agent A. However, this sale to
agent A can only occur if agent A obtains fewer than 2 items at auction. This creates an
extra incentive for the speculator C to obtain many items, to prevent agent A from obtaining
a second one. This can cause the items to appear complementary to speculator C, depending
on the bidding behavior of agent A: obtaining one fewer items could dramatically reduce C’s
utility if that one license is won by agent A instead. This rationalizes the overbidding that
occurs at equilibrium in the primary auction, where the speculator makes an effective bid
much higher than her obtained revenue in the secondary market. It is for this reason that
the overbidding behavior of the speculator is not weakly dominated.

Another implication of speculator C’s monopolistic behavior is that she posts a high price
that distorts the allocation to agent B. Although agent B has high expected welfare for the
goods that agent C holds, the speculator C maximizes revenue by setting the probability of
trade very low and significantly reducing welfare.

15 Strategy σi is said to be weakly dominated by strategy σ′
i if σ′

i results in weakly better utility for agent
i for any actions that could be taken by the other agents, and strictly better utility in at least one
instance.
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Finally, we note that bidders A and B are systematically under-bidding in this equilibrium.
This is driven by demand reduction effects, where the bidders are strictly incentivized to
underbid in order to keep prices low. Importantly, this behavior is not driven by indifference,
and is undominated.

In this example a single speculator is obtaining nearly all of the items in the auction, and
the bound is logarithmic in the number of items he acquires. In the full version online, we
give a modified example of a market and PBE in weakly undominated strategies in which
no single agent obtains more than a γ fraction of the items in the auction, and the welfare
gap is Ω(log(γm)). Thus, the lower bound does not hinge on a single speculator becoming a
monopolist in the aftermarket, but rather degrades gracefully with the market power that is
attained by any single speculator. In particular, the inefficiency persists even though multiple
speculators obtain a large quantity of items, and there is no one speculator monopolizing the
aftermarket.

4 Price of Anarchy via Smooth Framework

In the previous section we saw that the expected welfare of a uniform-price auction may
decrease catastrophically when there is a secondary market, even in “natural” equilibria that
are sequentially rational and avoid weakly dominated strategies. Can the welfare loss due to
aftermarkets be bounded for other auction formats? Unfortunately, explicitly characterizing
the associated welfare loss is a laborious task: it requires one to construct and analyze the
equilibria in the combined market, which can depend on the agents’ distributions in subtle
ways.

In this section, we circumvent the challenges of explicitly characterizing all equilibrium
strategies by showing that while adding a secondary market might harm welfare, the worst-
case welfare guarantees of several classical mechanisms (including discriminatory auctions)
will not decrease in the combined market, as long as the auction mechanism satisfies certain
smoothness properties. In other words, while the equilibrium welfare may decrease in
particular market instances, worst-case guarantees are retained for smooth mechanisms. The
following definition captures the notion of smoothness we require.

▶ Definition 6 ([35]). Auction M with action space A is (λ, µ)-smooth for λ > 0 and µ ≥ 1,
if for any valuation profile v, there exists action distributions {Di(v)}i∈[n] such that for any
action profile a ∈ A,∑

i∈[n]

Ea′
i
∼Di(v)[ui(M(a′

i, a−i))] ≥ λ · Wel(v) − µ · Rev(a; M)

It is known that a smooth auction in isolation achieves approximately optimal welfare at
any equilibrium.

▶ Proposition 7 ([29, 35]). Let FΠ be the family of all possible product type distributions.
If a mechanism M is (λ, µ)-smooth for λ > 0 and µ ≥ 1, then the price of anarchy of M
within the family of distributions FΠ is at most µ

λ , i.e., PoA(M,FΠ) ≤ µ
λ .

We now show the main result of this section: if a smooth auction is followed by a
secondary market that satisfies voluntary participation and weak budget balance, then the
combined market is smooth as well, and hence the price of anarchy is bounded for product
type distributions.
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▶ Theorem 8. Let FΠ be the family of all possible product type distributions. For any signaling
protocol Γ and any trade mechanism M2 in the secondary market, if an auction mechanism
M is (λ, µ)-smooth for λ ∈ (0, 1] and µ ≥ 1, the combined mechanism MC = G(M,Γ,M2)
is (λ, µ)-smooth. Thus, the price of anarchy of MC within the family of distributions FΠ for
the combined market is at most µ

λ , i.e., PoA(M,FΠ) ≤ µ
λ .

The proof of Theorem 8 is given in the full version online. Here we comment on the
implications of the theorem. First, note that the welfare bound does not depend on the
details of the information revelation structure Γ or the trade mechanism M2 adopted in
the secondary market, so the bounds hold for any choice of each. Moreover, our reduction
framework does not require refinements on the equilibrium such as sequential equilibrium in
the combined market to show that the price of anarchy is small – the result holds for any
Bayes-Nash equilibrium.

We also note that Theorem 8 extends directly to settings with multiple secondary markets
executed sequentially, with any information released between each market. This is because
combining a smooth auction with a trade mechanism results with a new smooth mechanism
(with the same parameters), which we can now view as a smooth auction to be combined
with the next trade mechanism.

Theorem 8 establishes a robust welfare guarantee for a combined market as long as the
initial auction is (λ, µ)-smooth. For multi-unit allocation problems (such as in our basic
setting), it is known that the discriminatory price auction is (1 − 1/e, 1)-smooth [6]. We
therefore obtain the following corollary.

▶ Corollary 9. Consider any multi-unit auction setting with non-increasing marginal values
where the agents’ valuations are distributed independently. Let MC be a combined mechanism
that runs the discriminatory price auction followed by an arbitrary signaling protocol Γ and
trade mechanism M2. Then at any BNE of MC the expected welfare is at least (1 − 1/e)
times the expected optimal welfare.

As we know from Section 3, a similar welfare bound does not hold for uniform-price
auctions. This is because, unlike the discriminatory price auction, the uniform-price auction
is not (λ, µ)-smooth for any positive constants λ and µ.16

We can also apply Theorem 8 to other smooth auctions for more general allocation
problems, such as submodular combinatorial auctions. This can capture, for example, a
scenario where different license types are being auctioned off simultaneously. See the full
version online for further details on the implied welfare bounds.

In the remainder of this section we will extend Theorem 8 in two ways. In Section 4.1
we show that if the auction M satisfies a stronger notion of smoothness known as semi-
smoothness, the price of anarchy of the combined market is bounded even for correlated type
distributions. It turns out that the discriminatory auction is (1 − 1/e, 1)-semi-smooth, so the
welfare bound from Corollary 9 applies even if agent valuations are correlated. Second, in
Section 4.2 we show that our welfare bound continues to hold even if agents are allowed to
purchase signals correlated with the value realizations of agents in advance of the auction.
For example, this captures settings in which a speculator could invest in market research
before participating in the auction.

16 The uniform-price auction does satisfy a relaxed version of smoothness: it is weakly (1 − 1/e, 1)-
smooth, which implies a constant welfare bound in isolation as long as agents avoid weakly dominated
“overbidding” strategies [35, 6]. In contrast, our example in Section 3 shows that eliminating dominated
strategies is not sufficient to provide good welfare guarantees when this auction is part of a combined
market.
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4.1 Extension: Correlated Valuations
As Proposition 7 is proven only for independent value distributions, Theorem 8 likewise
applies only to product distributions. As it turns out, we can extend Theorem 8 to derive
similar results for correlated distributions based on semi-smoothness [23].

▶ Definition 10 ([23, 30]). Auction M with action space A is (λ, µ)-semi-smooth for λ > 0
and µ ≥ 1, if for any valuation profile v, there exists action distributions {Di(vi)}i∈[n] such
that for any action profile a ∈ A,∑

i∈[n]

Ea′
i
∼Di(vi)[ui(M(a′

i, a−i); vi)] ≥ λWel(v) − µRev(a; M)

The main difference between the definition of semi-smooth and smooth is that for each
agent i, the deviating action distribution Di(vi) in semi-smooth only depends on her private
valuation vi, not the entire valuation profile v.

▶ Proposition 11 ([23]). If a mechanism M is (λ, µ)-semi-smooth for λ > 0 and µ ≥ 1,
then the price of anarchy of M within the family of all distributions F is at most µ

λ , i.e.,
PoA(M,F) ≤ µ

λ .

Similarly to Theorem 8, we next show that combining a (λ, µ)-semi-smooth auction with
and any signaling protocol and any trade mechanism happening aftermarkets, the resulting
mechanism in the combined market has small price of anarchy for arbitrary distributions.

▶ Theorem 12. Let F be the family of all possible type distributions. For any signaling
protocol Γ and any trade mechanism M2 in the secondary market, if a mechanism M is
(λ, µ)-semi-smooth for λ ∈ (0, 1] and µ ≥ 1, the combined mechanism MC = G(M1,Γ,M2)
is (λ, µ)-semi-smooth. Thus, the price of anarchy of M within the family of distributions F
for the combined market is at most µ

λ , i.e., PoA(M,F) ≤ µ
λ .

The proof of Theorem 12 is essentially identical to Theorem 8 (up to replacing Di(v) by
Di(vi)) and hence omitted here. We can now use results regarding semi-smooth auction from
the literature to prove that the price of anarchy of the corresponding combined markets is
bounded.

▶ Proposition 13 ([6]). For multi-unit auctions with non-increasing marginal values, the
discriminatory auction is (1 − 1/e, 1)-semi-smooth.17

4.2 Extension: Acquiring Additional Information
We consider the extension where agents can acquire costly information about other agents’
private types before the auction starts. This captures the application where speculators
gather information on the demands in the carbon market, and use the acquired information
to improve their utilities through buying items in the auction and reselling them more
expensively in the secondary market. In general this could have a negative impact on the
equilibrium welfare of the combined market. In this section, we show that if the designer
uses smooth auctions, then the welfare guarantees we obtained in Theorems 8 and 12 hold
even when agents can acquire costly information.

17 In de Keijzer et al [6], the authors only explicitly state that the discriminatory auction is smooth.
However, their construction directly implies that the discriminatory auction is semi-smooth.
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Information is captured by a signal from the types of the others to some signal space.
Specifically, for each agent i, let Ψi be the set of feasible signal structures for agent i. Any
signal structure ψi ∈ Ψi is a mapping from the opponents’ valuations v−i to a distribution
over the signal space Si. Note that the information acquisition is potentially costly, i.e., there
is a non-negative cost ci(ψi; vi) for any ψi ∈ Ψi and any type vi of i. Let ψ̄ be the signal
that acquires no information with zero cost. We assume that ψ̄ ∈ Ψi for any agent i. In our
model, both the cost function ci and the set Ψi of any agent i are common knowledge among
all agents.

In the following theorem, we extend Theorem 8 and show that the price of anarchy for
smooth auctions in the combined market is bounded when agents can acquire information on
the competitors.

▶ Proposition 14. Let FΠ be the family of all possible product type distributions. For any
set of signals Ψ and any cost function c, if mechanism M is (λ, µ)-smooth for λ ∈ (0, 1] and
µ ≥ 1, then the price of anarchy of M within the family of distributions FΠ for the combined
market with information acquisition is at most µ

λ , i.e., PoA(M,FΠ) ≤ µ
λ .

The proof of Proposition 14 is provided in the full version online. Similarly, one can
extend Theorem 12 for all family of all possible type distributions when the mechanism M
is (λ, µ)-semi-smooth. As the proof is similar to the proof of Proposition 14, we omit it.

5 Welfare Guarantees under Posted Pricing

In the previous section we showed that the welfare guarantees derived from smooth auctions,
such as discriminatory price auctions, are robust to the presence of a secondary market.
Such smooth auctions have the advantage of being agnostic to the prior distributions from
which agent valuations are drawn. A downside is that bidding in such auctions can be quite
complex: constructing an optimal bidding strategy requires sophisticated reasoning and the
ability to predict market conditions. If the designer (i.e., government) has a sense of the
market conditions, then a tempting alternative to running a smooth auction is to sell a
fixed quantity of items at a pre-specified unit price, while supplies last. Such posted-price
mechanisms have the advantage of being very simple to participate in, since each potential
buyer can simply purchase her utility-maximizing bundle of the remaining items at the given
prices.

A recent literature on static posted pricing and Prophet Inequalities has illustrated
that such pricing methods can provide strong welfare guarantees in a variety of allocation
problems, even when the order of buyer arrival is adversarial. See [22] for a recent survey.
For example, consider the special case where there is a single indivisible good to be sold
and each buyer’s value is drawn independently. It is known that if there is no secondary
market, then setting a single take-it-or-leave-it price and (while the item is still available)
letting buyers in sequence each choose whether to purchase, guarantees half of the expected
maximum. Does this guarantee still hold in the presence of a secondary market?

As it turns out, the answer depends on how the fixed price is selected. The canonical
solution to the single-item problem, based on the classic Prophet inequality, chooses price
p∗ = sup{p : Pr[maxi vi > p] ≥ 1/2}. That is, the median of the distribution over maximum
values. This choice of price guarantees half of the expected optimal welfare with no secondary
market [31], but the following example shows that this is no longer the case in the presence
of a secondary market.18

18 The guarantee of half of the expected maximum welfare with no secondary market requires some care in
the case that a value is precisely equal to p. But this occurs with probability 0 in our example, so our
negative result holds regardless of how this is handled.
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▶ Example 15. There is a single item to be sold and two potential buyers. The first buyer
has value v1 drawn uniformly from [0, 1]. The second buyer has value v2 equal to 0 with
probability 1 − ϵ < 1, and with the remaining probability ϵ the value v2 is set equal to ϵ−1

times a random variable drawn from the equal-revenue distribution capped at H. That is,
with probability ϵ > 0, v2 = ϵ−1z where z is drawn from a distribution with CDF F (z) = z−1

z

for z ∈ [1, H] and F (H) = 1, and with the remaining probability v2 = 0.
The efficient allocation gives the good to buyer 2 whenever v2 > 0, leading to an expected

welfare of at least ϵ× ϵ−1 × E[z] = Θ(logH).
Note that the median price is p∗ = sup{p : Pr[maxi vi > p] ≥ 1/2} = 1

2(1−ϵ) . Suppose we
offer this price to each buyer in sequence, starting with buyer 1. If there is no secondary
market, then the first buyer will purchase only if v1 ≥ p∗, which occurs with probability less
than 1/2. The item is therefore available for purchase for the second buyer with probability
at least 1/2, leading to an expected welfare of Ω(log(H)). This mechanism therefore obtains
a constant fraction of the optimal welfare when running in isolation.

Now suppose that the posted-price mechanism is followed by a secondary market in which
the winning buyer (if any) can post a take-it-or-leave-it price offer to the losing buyer. In
this case the first buyer would always prefer to purchase the item at price p∗ = 1

2(1−ϵ) , and
then offer to resell it to the second buyer in the secondary market at price p′ = ϵ−1H. Note
that this choice of p′ is revenue-maximizing, assuming that no extra information about buyer
valuations is revealed between the auction and the secondary market, and obtains expected
revenue 1 ≥ v1. This is therefore a sequential equilibrium. The expected welfare at this
equilibrium is O(1), since v1 = O(1) and Pr[v2 ≥ ϵ−1H ] = ϵH−1. Taking H sufficiently large
leads to an arbitrarily large welfare gap.

This example shows that the pricing strategy based the median of maximum values can
lead to significant incentives for a low-value buyer to purchase with the intention to resell.
Then, due to monopolist distortions, significant welfare is subsequently lost in the secondary
market.

Another approach to setting static posted prices is based on so-called “balanced prices” [20,
7]. In the single-item example described above, this corresponds to setting a price equal to
1
2 E[maxi vi]. This approach likewise guarantees half of the optimal welfare for the single-item
prophet inequality problem [20]. We will show that, unlike Example 15, this guarantee
continues to hold even in the presence of a secondary market. This is true not only for
single-item auctions, but for the broader broad class of multi-unit auctions, and even to
combinatorial allocation problems.

To formalize this claim, we make use of a general definition of balanced prices due
to Dutting, Feldman, Kesselheim and Lucier [7]. We will state this definition in a general
combinatorial auction setting in which the set of items M are not necessarily identical. A
pricing function p assigns to each set of items x ⊆ M a price p(x) ≥ 0. For example, this
function might assign a price to each individual item and set p(x) to be the sum of item
prices, or more generally p(x) might assign arbitrary prices to each bundle.19

First some notation. Write OPT(v, S) for the welfare-optimal allocation of the items in
S ⊆ M when the valuations are v, and denote OPT(v) = OPT(v,M). In a slight abuse of
notation, write M\x for M\(∪ixi), the set of items that are unallocated in feasible solution
x. Then, in particular, OPT(v,M\x) is the welfare-optimal allocation of the items that are
unallocated in x.

19 This definition naturally extends to fractional or randomized allocations, but in order to keep notation
simple, in this section we will restrict attention to deterministic allocations. Theorem 18 can be extended
to fractional or randomized allocations with the appropriate notational adjustments.
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The following is a definition from [7] specialized to our setting.

▶ Definition 16. For a given valuation realization v, a pricing function p is (α, β)-balanced
if, for any pair of allocations x, x′ that are disjoint and jointly feasible (i.e., they allocate
disjoint sets of items), we have∑

i∈N p(xi) ≥ 1
α (v(OPT(v)) − v(OPT(v,M\x))),∑

i∈N p(x′
i) ≤ β · v(OPT(v,M\x))

That is, prices p are balanced if the price paid for any allocation x is at least the loss
in optimal welfare due to losing the items in x (up to a factor of α). Secondly, the total
price of any allocation x′ that remains feasible after x is removed, is at most β times the
optimal welfare achievable using the items not allocated in x. Note that x′ need not be the
welfare-optimal allocation of the items in M\x.

Note that this definition of balanced prices is with respect to a particular realization
v of agent types. We will use this to construct a static pricing rule (i.e., prices that are
independent of realizations) by taking an expectation over types. Formally, we say that
a posted-price mechanism uses (α, β)-balanced prices if it (a) defines an (α, β)-balanced
price function pv for all valuation profiles v, then (b) sets its actual static price function p

according to p(x) = α
1+αβEv[pv(x)]. That is, prices are set by taking expectations of the

type-specific prices over the buyer types and multiplying by the constant α
1+αβ . For example,

in the single-item prophet inequality setting, a (1, 1)-balanced price for a given realization of
values v is the price pv = maxi vi. The appropriate choice of posted price for the prophet
inequality is then 1

2 E[maxi vi], the expectation of the balanced prices times 1
2 .

It is known that in the absence of a secondary market, using balanced prices leads to a
strong welfare guarantee.

▶ Proposition 17 ([7]). Fix the valuation distributions F = ×iFi. If a posted-price mechanism
M uses (α, β)-balanced prices for α, β ≥ 1, then the expected welfare obtained by M is at
least 1

1+αβ times the expected optimal welfare.

As we now show, this result extends to any equilibrium in the combined market setting
with an arbitrary trade mechanism being used as a secondary market. This theorem applies
to multi-unit and combinatorial auction allocation problems.

▶ Theorem 18. Fix the valuation distributions F = ×iFi. For any signaling protocol Γ
and any trade mechanism M2 in the secondary market, if a posted-price mechanism M1

uses (α, β)-balanced prices for α, β ≥ 1, then the expected welfare obtained by the combined
mechanism MC = G(M1,Γ,M2) at any Bayesian-Nash equilibrium is at least 1

1+αβ times
the expected optimal welfare.

Our argument is an adaptation of a proof method due to Dutting, Feldman, Kesselheim and
Lucier [7]. The details of the proof is given in the full version online.

5.1 Application: Balanced Prices for Carbon Markets
We can apply Theorem 18 to any allocation problem for which balanced prices exist. For
example, it is known that one can design (1, 1)-balanced item prices for submodular com-
binatorial auctions [14]. A multi-unit auction with weakly decreasing marginal values is
a special case of a submodular combinatorial auction in which all items are identical. We
can therefore conclude from Theorem 18 the existence of item prices that guarantee half
of the expected optimal welfare in our model of a carbon license market with an arbitrary
aftermarket.20

20 The approximation ratio is tight even for the single-item setting [20].

ITCS 2023
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One thing to note is that in the standard construction for submodular combinatorial
auctions, there is no guarantee that all items will be assigned the same price even if the
items are identical. We next argue that in fact there always exist (1, 1)-balanced prices that
are identical across items, so in fact there is only a single price that can be interpreted as a
per-unit price offered to all prospective buyers.

Our construction is as follows. For each valuation profile v, calculate the optimal
allocation x∗(v) by greedily allocating in order of highest marginal value. Define wv ≜
1
m

∑
i vi(x∗

i (v)) ≥ 0 to be the average per-unit welfare of this optimal allocation. We use the
average per-unit welfare wv as a price for each unit of the item, so in particular all units
have the same price. That is, the price to acquire k units is pv(k) = wv × k. We claim that
this choice of unit prices is (1, 1)-balanced.

▷ Claim 19. For a multi-unit allocation problem, for any profile v of valuations with non-
increasing marginal values, the price function pv(x) = wv · |x| where wv = 1

m

∑
i vi(x∗

i (v)) is
(1, 1)-balanced.

The proof of the claim is provided in the full version online.
Given this choice of (1, 1)-balanced prices, Theorem 18 then implies that setting a

static price per unit that equals to half of the expected per-unit welfare, 1
2mE[

∑
i vi(xi(v))],

guarantees half of the optimal expected welfare in any equilibrium, under any secondary
market implementable as a trade mechanism and for any set of information revealed between
the posted-price mechanism and the secondary market.

▶ Example 20. Recall the lower bound market example in Section 3, which illustrated a
low-welfare equilibrium in a uniform auction with an aftermarket. In that example, the
welfare-maximizing allocation always allocates two goods to bidder A and the remaining m−2
goods to bidder B, for a total expected welfare of Θ(logm). In this example, Theorem 18
together with the (1, 1)-balanced prices we present in Claim 19 would set a per-unit price of
E[v(OPT(v))]/(2m) = Θ((logm)/m) and allow bidders to purchase as many units as desired
at this price, while supplies last. Theorem 18 implies that, at this price, any purchasing
behavior at equilibrium will achieve at least half of the expected optimal welfare. Intuitively,
the price is high enough to discourage the speculator agent C from buying more than two
items (since at most two items can be sold to agent A, and any items sold to agent B generate
an expected revenue of at most 1/m each, which is less than the auction per-unit reserve)
but also low enough that agent B will nearly always decide to purchase most of the available
items.

6 Best of Both Worlds: Uniform-Price Auction with Reserves

We realize that moving from an auction to a posted price mechanism is a radical change
in many markets, including the carbon allowances market. We thus consider the problem
of finding a minimal change to a uniform-price auction which will still take care of the
problem of significant efficiency loss that can happen as a result of combing the auction with
a secondary market (as illustrated in the example presented in Section 3). As we now show,
a sufficient change is to add to the uniform-price auction a per-unit reserve price based on
balanced prices. Any marginal bids strictly less than this reserve price are ignored, but bids
exactly equal to the reserve are allowed. Formally, in the following theorem we show that
the welfare bound from Theorem 18 continues to hold when we add an appropriately chosen
per-unit reserve price to the uniform-price auction. The proof of Theorem 21 is given in the
full version online.
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▶ Theorem 21. For a multi-unit allocation problem with non-increasing marginal values
sampled independently from F = ×iFi, consider mechanism M1 that is a uniform-price
auction subject to a per-unit reserve price of p = 1

2mEv∼F [v(OPT(v))]. Then for any
signaling protocol Γ and any trade mechanism M2 in the secondary market, and at any
Bayesian Nash equilibrium of the combined market MC = G(M1,Γ,M2), the expected welfare
is at least half of the expected optimal welfare.

Estimation Errors and Calculating Reserve Prices. The reserve price in Theorem 21
depends on the expected optimal welfare attainable by allocating items. As it turns out,
the welfare guarantee in Theorem 21 is robust to mistakes in the prices. This robustness
was noted by Feldman, Gravin and Lucier [14] for posted-price mechanisms in submodular
combinatorial auctions, and the argument extends to our setting without change. Specifically,
for any ϵ > 0, if instead of setting reserve p = 1

2mE[v(OPT(v))] we set a reserve price p′

such that |p′ − p| < ϵ, then the expected welfare of the resulting combined market is at least
half of the expected optimal welfare less mϵ, where recall that m is the total number of items
for sale. To see why, recall the proof of Theorem 21 and note that lowering a license’s price
by ϵ reduces the revenue obtained by at most ϵ, and increasing a license’s price by ϵ reduces
buyer surplus from purchasing that item by at most ϵ. Collecting up these additive losses
leads to a total loss of at most mϵ. A formal statement and proof are deferred to the full
version online.

One implication of this robustness result is that if one sets reserve prices based on a noisy
estimate of E[v(OPT(v))], such as obtained by samples or historical data, then the welfare
guarantee one obtains will degrade in proportion to the estimation error.

▶ Corollary 22. For a multi-unit allocation problem with non-increasing marginal values
sampled independently from F = ×iFi, suppose that the seller has access to an estimate ψ
to the optimal welfare such that with probability at least 1 − δ, ψ ∈ [(1 − ϵ)v(OPT(v)), (1 +
ϵ)v(OPT(v))] for constants δ, ϵ ∈ [0, 1]. Consider the uniform-price auction subject to a
per-unit reserve price of p = ψ

2m . Then with probability at least 1−δ, for any trade mechanism,
and at any Bayesian Nash equilibrium of the combined market, the expected welfare is at
least 1−ϵ

2 fraction of the expected optimal welfare.
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Abstract
In this work, we put forward the notion of “efficiently testable circuits” and provide circuit compilers
that transform any circuit into an efficiently testable one. Informally, a circuit is testable if one can
detect tampering with the circuit by evaluating it on a small number of inputs from some test set.

Our technical contribution is a compiler that transforms any circuit C into a testable circuit
(Ĉ, T̂) for which we can detect arbitrary tampering with all wires in Ĉ. The notion of a testable
circuit is weaker or incomparable to existing notions of tamper-resilience, which aim to detect or
even correct for errors introduced by tampering during every query, but our new notion is interesting
in several settings, and we achieve security against much more general tampering classes – like
tampering with all wires – with very modest overhead.

Concretely, starting from a circuit C of size n and depth d, for any L (think of L as a small
constant, say L = 4), we get a testable (Ĉ, T̂) where Ĉ is of size ≈ 12n and depth d+log(n)+L ·n1/L.
The test set T̂ is of size 4 · 2L. The number of extra input and output wires (i.e., pins) we need to
add for the testing is 3 + L and 2L, respectively.
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1 Introduction

A circuit compiler is a mapping that takes as input (the description of) a circuit C and outputs
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whose physical implementation will provide some useful additional security properties. Here
“functionally equivalent” means C ′ computes the same function as C but some compilers
require additional input and/or output wires or require the inputs and outputs to be encoded
in a special way. An influential line of research in this domain are private circuits [13, 12, 7],
which aim to hide secrets like cryptographic keys in the compiled circuit in the presence of
physical attacks like leakage, tampering, or hardware trojans. We will discuss these in more
detail in Section 1.3.

In this work, we consider circuits’ integrity rather than secrecy. While private circuits
address the setting where an adversary gets access to a device (like a smart card) doing
cryptographic computations and aims at extracting the key through leakage, tampering, or
by outright replacing the circuit (i.e., hardware trojans). We consider a setting where an
adversary can attack the circuit before it is delivered to the honest parties and want the
honest parties to be able to efficiently detect whether such tampering took place.

Integrity vs. Secrecy. Detecting tampering is arguably an easier task than protecting secrets.
In fact, the approach to safeguard secrets against tampering in “private circuits II” [12] and
against trojans in “private circuits III” [7] is to detect integrity violations that could lead to
information leakage and self-destruct the circuit once such a violation is detected. These
integrity checks must happen continuously whenever the circuit is evaluated, as a single
query to a tampered circuit can leak the secret.

In this work, we consider a more benign setting where an adversary can initially tamper
with a circuit, which is then delivered to the user. The user can then test the circuit to certify
its integrity. This is conceptually similar to traditional testing in circuit manufacturing (see,
e.g., [3]). However, while there the goal is the detection of random errors that creep in during
manufacturing, we consider extremely powerful adversarial tampering attacks where the
circuit (before compilation) can be adversarially designed. The tampering attack can affect
the entire (compiled) circuit as long as its topology remains unchanged.

Our notion is motivated by security aspects of cryptographic circuits (which hide a secret)
as well as non-cryptographic circuits (where we just care about integrity). As a cryptographic
example consider an adversary who tries to tamper with a smart-card used for signing to
make it output the secret key if queried on a random message only known to the adversary.
Such tampering is not detectable through normal testing, but once the cards are deployed
the adversary can extract secret keys through a simple signing query.

As an example of a non-cryptographic circuit consider a chip used in a router which is
tampered so it can be triggered with an innocent looking package to route all “interesting”
data to some particular server controlled by the adversary. Our compiler could also be
interesting in a context where we only consider benign errors, but want to be able to detect
those efficiently with 100% certainty. A great example are chips used in space exploration,
here integrity is often crucial, while the high radiation takes its toll on circuit components.

1.1 Efficiently Testable Circuits Compiler

We will construct a compiler that maps any circuit C : Zs
2 → Zt

2 into an efficiently testable
one, which is a tuple (Ĉ, T̂) where Ĉ : Zs+s′

2 → Zt+t′

2 is a circuit that is functionally equivalent
to C when setting the s′ extra inputs to 0 and ignoring the t′ extra outputs (the |t subscript
indicates that only the first t bits of the output are considered)

∀X ∈ Zs
2 : Ĉ|t(X∥0s′

) = C(X)
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Figure 1 Illustration of our toy circuit C (A) and its compiled version Ĉ (D). (B) is a trivial
solution with large output while (C) has only two extra output bits but is only secure assuming no
tampering with the chained OR/AND gadgets as explained in the text.

and T ⊆ Zs+s′

2 is a small test set. Ĉ is efficiently testable in the sense that when applying
a tampering τ to Ĉ such that this tampered circuit Ĉτ errs on at least one input, there is
already an input in the small test set which will certify this∃X ∈ Zs

2 : Ĉτ
|t(X∥0s′

) ̸= Ĉ|t(X∥0s′
)︸ ︷︷ ︸

=C(X)

 ⇒
(
∃X ∈ T : Ĉτ (X) ̸= Ĉ(X).

)

The Tampering Model. The class of tamperings we consider allows for tampering every
wire in the circuit in an arbitrary way. Concretely, the tampering τ specifies for every wire
one of four possible actions: do nothing, flip the value or set it to constant 0 or 1. There is
one restriction, the tampering is “conductive”: if a gate output wire has fan-out > 1, i.e., it
is used as input to more than one gate (where a final output is considered a gate), then the
adversary can only choose one tampering function which will affect all those wires identically.
We will refer to this as the conductivity assumption. This assumption has been used in
previous works on tamper-resilient circuit compilers including Private Circuits II [12].

While one can turn any circuit into a functionally equivalent one where all gates have
fan-out 1 by using COPY gates (cf. Figure 6), this transformation will, unfortunately, not
preserve the testability of the circuit, so we have to consider the requried fan-out as a
parameter. We refer to a circuit where no wire has fan-out ≥ k as k-conductive, and the
testable circuit created by our compiler will be 3-conductive.

1.2 Our Technical Contribution
In this section, we will sketch the main ideas behind our compiler using the toy circuit
C(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) as illustrated in Figure 1.(A) as running example.

Preprocessing - Circuits with Covering Sets. Before we can apply our compiler, we perform
some minor preprocessing of the circuit. For one thing, we need the preprocessed circuit to
be non-conductive (i.e., each gate has fan-out 1). Moreover our compiler will require that
the input circuit C : Zs

2 → Zt
2 comes with a covering set of inputs T ⊆ Zs

2, which is a set of
inputs such that for every wire w in C and every b ∈ {0, 1}, there is an input X ∈ T such
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0

y1

yAND yOR = 1

(A)
cAND cOR = 0

c = 0

y1

yAND yOR = 0

(B)
cAND cOR = 1

c = 1

SET TO 1 SET TO 1

SET TO 0

0 0 0 0 0 0 0

Figure 2 If in the core circuit some wire is tampered changing 0 to 1 (either flipping the wire or
setting to constant 1) this will be detected by the chained OR (1 to 0 by the chained AND) gadget.
Trying to tamper with the gadget (on the right one wire is set to 0 trying to “fix” the yOR output)
itself will not prevent detection as now the control output yOR will not change when we flip the
control input cOR, so the yOR output on either 00000 or 00001 will be wrong.

that in the evaluation C(X) the wire w carries value b. For our toy circuit T = {0000, 1111}
is a covering set (all wires are 0 on input 0000 and all wires are 1 on input 1111). In general,
a covering set might not exist or be hard to find (it is easily seen to be NP-complete). We
show how to derive from any circuit a functionally equivalent one together with a covering
set of size 4. This requires adding 3 extra input wires and some XOR gates. In the worst
case the size of the circuit doubles, but typically it will increase by much less.

A Trivial (but Impractical) Solution. Given a non-conductive circuit C ′ with covering
set T (as produced by the preprocessing) we can get a testable circuit (Ĉ, T̂) by using the
covering set as the test set, i.e., T̂ = T, and letting Ĉ be C ′ with an extra output wire for
every wire in C ′ as shown in Figure 1.(B). To see why (Ĉ, T̂) is testable consider any wire w

which was tampered. On some input X ∈ T̂ this wire will take the wrong value, and this
value can be directly observed on the outputs.

There is a subtle flaw in the above argument. The tampering on the particular wire w on
input X could be “undone” by some tampering higher up in the circuit. To fix the argument
it is sufficient to let w be a topologically first tampering, meaning no wire on a path from an
input to w is tampered. Let us also stress that Ĉ is 2-conductive as each wire is additionally
used as output. We can’t simply use COPY gates to make the circuit non-conductive as then
the observed outputs and values on the internal wires could be tampered with individually,
and the above argument breaks down. Thus already this impractical construction highlights
the importance of the conductivity assumption.

Assuming Non-Tamperable Test Gates. The reason the solution just outlined is not
practical is the huge number of output wires. This makes checking whether the test queries
are correct expensive. More importantly, while circuits can have billions of gates, the number
of pins (input/output wires) is much more limited for technical reasons. Assume we could
create a compiler by adding gates and wires to the circuit which the adversary is not allowed
to tamper with. Then there is a simple solution using the same test set T̂ = T as the trivial
solution just outlined, but adding just 2|T| output wires: For every X ∈ T, consider all wires
which should be 1 on this input, and output the AND of all these bits. Similarly, output the
OR of all bits set to 0.
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Recall that for our toy circuit C = {0000, 1111}. On input 0000 all wires are 0 and thus
we just need to compute one big OR whose output is denoted yOR in Figure 1.(C). Similarly,
on the other input 1111 all wires are 1 and thus we just need one big AND gadget. For
reasons that will become clear later, our gadget applies the AND/OR gates sequentially, and
not in a tree fashion, which would result in a much lower depth circuit.

For our toy circuit, this just increased the number of outputs by 2, in general, it will
increase the number of outputs by at most 8 (≤ 2 outputs for each of the ≤ 4 test queries).
The compiled toy circuit is 3-conductive. In general, this compiler will output a (|T|+ 1)-
conductive circuit, but we observe that each wire only needs to go to one OR and one AND
gadget even if it is 0 (or 1) for more than one test query. With this observation, we get a
3-conductive circuit no matter how large T is. Using this observation we also see that the
size of the circuit triples (one extra OR and AND gate for each wire).

The Actual Compiler. The previous solution is not secure once the adversary can also
tamper with the OR and AND gadgets. There is a surprisingly simple and elegant fix to
this. As illustrated in Figure 1.(D) we add one extra input, a control bit xs+1 = c. This
control bit is given as the first input to all sequential AND and OR gadgets. It is safe to use
COPY gates to create enough copies of c (i.e., we allow each of the copies to be tampered
with independently), so the circuit remains 3-conductive. For our toy circuit we just need
two copies (cAND, cOR)← COPY(c).

The test set T̂ for this compiled circuit Ĉ is twice as big as for the previous construction
where it was just the covering set T: now for each X ∈ T we add X∥0 and X∥1 to T̂. For
our toy circuits, we get

T̂ = {00000, 00001, 11110, 11111}.

Security. We will prove that a circuit (Ĉ, T̂) constructed as described from an input circuit
C is testable. Let us here just give some intuition as to why this is the case for our toy
circuit. Assume there is a tampering in the C subcircuit of Ĉ that sets some wire to 1 as
illustrated in Figure 2.(A). If there is no tampering on the OR gadget then we will detect
tampering as we get a wrong output yOR = 1 on input 00000 ∈ T̂. The adversary can tamper
with the OR gadget, say set a wire to 0 as shown in Figure 2.(B), but now yOR = 1 on input
00001 ∈ T̂ (i.e., same input but the control bit is c = 1), which is the wrong value and thus
we will detect tampering.

This is not just a particular example, we observe that whenever there is at least one wire
(other than the control bit) coming into such a sequential OR gadget that is set to 1, then no
matter how the gadget is tampered, the output of this gadget will not change if we just flip
the value of the control. An analogous statement holds for the AND gadget assuming some
input is 0.

For our toy circuit, this means that once the adversary decided to apply a tampering τ

that sets a wire to 1 in the C subcircuit of Ĉ, and using the convention that Cτ
y (X) denotes

the value of the wire y when C is tampered according to τ and evaluated on X, we will have

ĈτyOR(00000) = Ĉτ
yOR

(00001)

no matter how the gadgets are tampered with, while without tampering

ĈyOR(00000) = 0 ̸= ĈyOR(00001) = 1

and thus we will detect a wrong output on some test query. Similarly, using the AND gadget
we will detect whenever some internal wire is set to 0.
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cOR
yOR

x1 = 0 x2 = 0 x3 = 0 cOR

x1 = 0

x2 = 0

x3 = 0

yOR

set to 1

set to 1

set to 0

Figure 3 left: Our OR gadget with four inputs: a control bit cOR and three inputs x1, x2, x3. If
x1 = x2 = x3 = 0 then the output is the control yOR = xOR. The key property of this gadget used in
the proof is the following: If (at least) one of the inputs is tampered to 1 (in the figure x2 is set
to 1), then, no matter which other wires are tampered with, the output yOR will be the same if we
set cOR = 0 and cOR = 1 as the output of the 2nd OR gate will be 1 in both cases, thus “forgetting”
the value of cOR. right: Arranging the gates in a (low depth) tree structure does not have this
property. The figure shows a tampering of x2 to 1 and one more tampering such that yOR = cOR

holds if x1 = x2 = x3 = 0.

A major drawback of our construction is its depth. For a circuit C with n wires, the
OR and AND gadgets in the complied Ĉ will have depth up to n (and at least n/4), which
for most circuits is not acceptable. Unfortunately, we cannot simply replace the sequential
OR and AND gadgets with say a tree (that would only have logarithmic depth) as then the
gadgets would no longer have the property required for the security proof we just sketched,
we illustrate this problem in Figure 3.

x1 x2 x3 x4

y1

cOR

c = x5

c′ = x6

yOR AND yOR OR

cAND

yAND ANDyAND OR

x1 x2 x3 x4

y1

yAND yOR

cAND cOR

c

Figure 4 left: Compilation of our toy circuit C at the basic level L = 1. The depth of the
sequential AND and OR gadgets is as high as the number of wires in C. right: A compilation at
level L = 2, the sequential gadgets of length m are chopped up into ≈

√
m chunks, each of length

≈
√

m (here m = 7 and the chunks are of length 3, 2 and 2). The depth of the compression gadgets
drops from m to 2

√
m (and ≈ L · m1/L for general L).

Decreasing Depth. We will now outline how the depth of the “testing circuit” (i.e., the
part of Ĉ which is not the initial C circuit) can be brought down from n to L · n1/L for a
parameter L ∈ N, with L = 1 giving the basic construction outlined above. While the depth
decreases with larger L, the test set and the number of additional output wires will increase
exponentially in L. That is not really an issue as already small values of L will be sufficient
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to make the circuit depth of the testing part very small. As a numerical example, for n = 232

(4 billion gates), with L = 4 we get a depth of ≈ 4 · 232/4 = 1024 while for L = 5 that drops
to 85.

We will outline our approach for our toy circuit and L = 2 as shown on the right side of
Figure 4. For L = 2, the basic idea is to split the OR and AND gadgets into ≤

√
n smaller

ones of length
√

n. Each of them needs the control bit as the first input, which we create
using COPY gates (we can arrange them in a balanced tree, so the depth for this is just
O(log(n))). The problem is that while before we had one output from every OR/AND gadget,
now we have up to

√
n outputs (one from each shorter gadget). We can use our compression

idea recursively to compress these to 2 values.
For this, we need another control bit c′ (the first and second level control bits are shown

in blue and brown in the figure). The output of each smaller gadget (shown in orange in the
figure) is then forwarded to an OR and an AND gadget which gets the control bit c′. Let us
mention that the fan-out of the smaller gadgets is 2, and we can’t use a COPY gate to get it
down to 1 as the security proof will rely on both output wires carrying the same value.

For general L we split the gadget recursively into chunks of depth n1/L. We need L extra
input wires for the control bits and the number of additional output wires doubles if we
increase L by 1, so it is at most 8 · 2L. The test set for this more general construction also
doubles if we increase L by 1: for every x ∈ T it contains the inputs xc1c2 . . . cL for all 2L

choices of the L control bits. For our toy example where T = {0000, 1111} and L = 2 as
illustrated in the figure this means

T̂ = {000000, 000001, 000010, 000011, 111100, 111101, 111110, 111111}

x1 x2 x3 x4

y1

cOR

c = x5

c′ = x6

yOR AND yOR OR

cAND

yAND ANDyAND OR

SET TO 1

X

Figure 5 Intuition for the security proof for our toy circuity using L = 2.

Security for General L. We show that for any L, the above complied circuit (Ĉ, T̂) is
testable.

This can be proven by induction on L and we will give some intuition for our toy circuit
for L = 2 relying on the intuition we already provided for L = 1. Consider again that a
(topologically first) tampering is setting a wire to 1 as indicated in Figure 5. This wire is
going into an OR gadget, and its output, denoted α in the figure will not switch if we flip
the control input c, no matter how the compression gadget is tampered (using the same
argument as to why the yOR input didn’t flip in the L = 1 construction), so α will take the
same value on inputs of the form 00000∗ and 00001∗ where ∗ can be either 0 or 1.
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Let us assume it takes value α = 0. In this case the output (labeled yOR_AND in the
figure) of the AND gadget on the 2nd level will be identical on inputs 000010 and 000011 as
the α = 0 input to the AND gate in this gadget will make the output of this gate independent
of the c′ control bit. But yOR_AND should be different on those two inputs, so we will observe
an inconsistent output on one of those two inputs. For the case where α = 1 the argument
uses the 2nd level OR gadget for inputs 000000 and 000001.

The Sections 4,5,6 of this work give a formal description of a circuit compiler compiling
into testable circuits. The result is summarized with TestableCircuitCompiler procedure
(see Algorithm 4) that takes two parameters - a circuit C and a number L ∈ N+ - and
outputs a testable circuit - (Ĉ, T̂). The properties of the construction are summarized in the
Theorem 1.

▶ Theorem 1. Given any circuit C : Zs
2 → Zt

2 (of size n, depth d), and a number L ∈ N+,
the procedure TestableCircuitCompiler(C, L) outputs a pair (Ĉ, T̂) such that:

Ĉ is a circuit with additional 3 + L input bits and additional 2L output bits, i.e. Ĉ :
Zs+3+L

2 → Zt+2L

2 . The size of Ĉ is bounded by 12n, and its depth is bounded by d +
log(n) + L · (3n)1/L. The size of the test set T̂ is 4 · 2L.
The pair (Ĉ, T̂) is a testable circuit, i.e. for any tampering τ(

∃X ∈ Zs
2 : Ĉτ

|t(X||03+L) ̸= Ĉ|t(X||03+L)
)
⇒

(
∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

)
and Ĉ is functionally equivalent to C, i.e. ∀X∈Zs

2
: Ĉ|t(X||03+L) = C(X).

Section 6 gives a detailed description of the procedure TestableCircuitCompiler and
proof of the Theorem 1.

1.3 Related Work
Generally, this work can be viewed as a part of research on securing cryptographic imple-
mentations against the so-called physical attacks, i.e., attacks in which the adversary exploits
the physical properties of the devices, instead of attacking them on the algorithmic level.
The theoretical study of this area was initiated by Micali and Reyzin in [17]. In particular,
as already highlighted above, our results are related to the papers studying the so-called
tampering attacks, which is a long line of work initiated by [11].

The general compilers for protecting against the physical attacks were first considered
in the papers on leakage-resilience [13], and then on tamper-resilience [12]. Our model of
tampering (“resetting to 0/1”, “toggling”, and the “conductivity” assumption) is taken from
the latter paper. Other works on tamper-resilient compilers include [5, 6, 10, 9, 15] and
many more. In the context of trojan-resilience, the general compilers were considered in [7].
The model in [7] is orthogonal to ours: on one hand, it is more general, since it permits
the adversary to change the topology of the circuit. On the other hand, it uses a stronger
assumption than we do, namely: it relies on the existence of an untamperable “master
circuit”. The security guarantees of [7] are also weaker than ours, since they only provide
trojan-resilience for a limited number of executions of the device.

A general compiler for trojan-resilience has also been recently constructed in [4], where the
authors achieve security against adversaries that are more general than the ones considered
by us. They also have the advantage of not modifying the circuit specification. On the
other hand, as in [7] they require a trusted circuit. Moreover, they make an assumption that
the inputs to the device come from an iid source, and they provide only limited security
guarantees, namely, they only achieve correctness for a certain fraction of the executions of
the device.
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1

1

0 0
0

0

1

Figure 6 left: Part of a 2-conductive circuit, any tampering (a toggle is illustrated) will affect
the two inputs in the same way. right: Using a COPY gate the circuit can be made 1-conductive,
allowing more general tampering attacks where each wire can now be tampered individually.

Another, orthogonal to ours, model in this area is the one where the adversary is allowed
to replace the value of the output of the gate by one of their inputs (the so-called adversarial
short circuit errors). This model has been introduced in [16], and further studied, e.g.,
in [14, 8]. Some papers (e.g. [1, 18]) also propose to use the techniques from verifiable
computations. They typically provide strong security guarantees at a cost of significant
computational overhead. Moreover, they also rely on the “master circuit” assumption.

For an overview of practical methods of defending against the trojan attacks see, e.g., [2].
The problem of the testing errors on wires is also extensively studied in the practical
community, see, e.g., [3]. However, all these practical approaches are heuristic and do not
come with a well-defined security model and guarantees.

2 Preliminaries

Let [k] := {1, 2, ..., k}. We denote the set of wires W of a circuit C as W (C). We use
a standard computation model of Boolean circuits as e.g. used in the private circuits
literature [12]. For the most part, we will only discuss simple stateless Boolean circuits.
Extensions to more general models like allowing memory cells or randomness gates are
straightforward. A circuit C operates on a set G of allowed gates and given some input X

produces an output Y . We consider an adversary who can arbitrarily tamper with every
wire of the circuit, that is, choose one of the four possible actions: do nothing, flip the value
or set it to constant 0 or 1. It will be convenient to also model the input, output wires of the
circuit (aka. pins) as gates with indegree, outdegree 0, respectively.

We require that tampering is conductive. This means that if an output wire of a gate
is used as input to more than one gate, we think of this as a single wire for which only
one tampering action can be chosen. We leave it as a main open problem to construct a
compiler not relying on this assumption. This assumption is conciliated by the fact that in
the compiled circuit any wire is used as input to at most three gates, which we refer to as
3-conductive. We assume that the input circuit is not conductive (which means 1-conductive,
i.e., each wire is used as input to exactly one gate), this is without loss of generality as
by using copy gates (x, x) = COPY(x) every k-conductive circuit can be turned into a
non-conductive one while at most doubling the circuit size and increasing the depth by a
factor ⌈log(k)⌉.

2.1 Notation for Circuits
In this section, we define the notation for the Boolean circuits which we will use throughout
the paper. Circuits can be modeled as directed acyclic graphs (DAGs), and we will extensively
use standard graph theory notation. Concretely, a circuit is modeled as a DAG Cγ = (V, E)
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where vertices refer to gates and the directed edges refer to wires. The circuit definition Cγ

comes with a labeling function γ : V → G which assigns specific gates to the vertices. We
will often omit the parameter γ since it is chosen when specifying the circuit and cannot
be tampered with. Each wire carries a bit from Z2, and each gate is taken from the set of
allowed gates G (including {AND, OR, XOR, COPY, NOT} and two special {IN, OUT} gates).
For v ∈ V , let E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E} be the sets of v’s incoming
and outgoing edges, respectively. For e = (u, v) ∈ E we define V −(e) = u and V +(e) = v.

Fan-Out and Conductivity. Each gate type in G has some given number of input and
output wires [the OUT(IN) gate has fan-in 1(0) and fan-out 0(1), the OR, XOR, AND gates
have fan-in 2 and fan-out 1, NOT gates have fan-in, fan-out 1, COPY gates have fan-in 1,
fan-out 2]. Each output wire is used as an input wire to at least one other gate (if not the
gate is redundant and it can be removed). An output wire can lead to more than one input
wire. The fan-out of an output wire is the number of input wires it leads to. A circuit is
k-conductive if no wire has a fan-out greater than k; a 1-conductive circuit is also called
non-conductive. Every k-conductive circuit can be turned into non-conductive one by using
copy gates COPY(x) = (x, x) as illustrated in Figure 6. As said before, this transformation
does not preserve security against wire tampering as considered in this work, where tampering
with a wire of fan-out > 1 affects all the input wires in the same way. It will be convenient
to define two non-standard gates: the input and output gates denoted IN, OUT. We split
the vertices into three sets V = I ∪ G ∪ O, where I = {I1, I2, ..., Is} are vertices which are
assigned to IN, and O = {O1, O2, ..., Ot} are these assigned to OUT. Given Cγ = (V, E) and
an input X = (x1, ..., xs) ∈ Zs

2 we define a valuation function valCγ ,X : V ∪ E → Z2 which
assigns each gate the value it outputs and each wire the value it holds when the circuit is
evaluated on X. More formally the valuation function for vertices v ∈ V and edges e ∈ E is
defined as:

valCγ ,X=(x1,x2,...,xs)(v) =

xi, if v = Ii.

γ(v)(valCγ ,X(E−(v))), otherwise.

valCγ ,X(e) = valCγ ,X(V −(e)).

We will sometimes just write valX if the circuit considered is clear from the context. The
behaviour of the circuit C can be associated with the function that it evaluates, i.e. C : Zs

2 →
Zt

2. We can define this function as follows: C(X) = (valC,X(O1), valC,X(O2), ..., valC,X(Ot)).

2.2 Tampering Model
We consider an adversary who can tamper with every wire in the circuit. The tampering
of a wire is described by a function Z2 → Z2 from the class of the four possible bit tamper
functions T = {id, neg, one, zero}. The tampering of an entire circuit C = (V, E) is defined
by a function τ : E → T . mapping each wire to a tampering function. For convenience, we
sometimes write τe to denote τ(e).

Conductivity and Tampering. The only restriction we put on the tampering is: for the
output wires from a vertex with fan-out > 1 the same tampering is applied. In our graph
notation, this means that for every v ∈ V and e, e′ ∈ E+(v) we have τ(e) = τ(e′). The only
exception is the copy gate as it has two output wires. Here the tampering must fall into
one of two choices (one for each output wire), i.e., for v ∈ V where γ(v) = COPY we have
|{τ(e) : e ∈ E+(v)}| ≤ 2.
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Now we can extend our notion of the valuation to also take tampering into account in
order to define the valuation of a tampered circuit valτX : V ∪ E → Z2. The only difference
to the (non-tampered) valuation function is that we apply the tampering to each value of an
edge after it is being computed, formally:

valτCγ ,X=(x1,2,...,xs)(v) =

xi, if v = Ii.

γ(v)(valτCγ ,X(E−(v))), otherwise.

valτCγ ,X(e) = τe(valτCγ ,X(V −(e))).

By Cτ we can again understand a function that describes the input-output behaviour of
the tampered circuit: Cτ (X) = (valτC,X(O1), valτC,X(O2), ..., valτC,X(Ot)).

3 A compiler transforming circuits into testable circuits

In this work, we develop a notion of (efficiently) testable circuits. Consider some circuit
C : Zs

2 → Zt
2, then its testable version is a circuit (Ĉ : Zs+s′

2 → Zt+t′

2 , T̂ ⊂ Zt+t′

2 ) which is
functionally equivalent (i.e. Ĉ computes the same function by setting the s′ extra input bits
to 0 and ignoring the t′ extra output bits), but additionally is able to detect any non-trivial
tampering τ (i.e. any tampering that makes Ĉ output something else than output of C,
ignoring the last t′ test bits) by observing its input-output behaviour on some small set T̂ of
test inputs.

▶ Definition 2 (A testable circuit). For any circuit C : Zs
2 → Zt

2, a pair (Ĉ, T̂) - a circuit
Ĉ : Zs+s′

2 → Zt+t′

2 along with a testing set T̂ ⊂ Zs+s′

2 - is a testable circuit if and only if:
Ĉ is functionally equivalent to C, i.e. ∀X ∈ Zs

2 : Ĉ|t(X∥0s′) = C(X),
(Ĉ, T̂) is testable, i.e. for any tampering τ

∃X ∈ Zs
2 : Ĉτ

|t(X||0s′
) ̸= Ĉ|t(X||0s′

) ⇒ ∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

In the subsequent sections we construct a compiler that takes any circuit and maps it to a
testable circuit.

▶ Definition 3 (Compiler transforming into testable circuits). A circuit compiler C is an
algorithm transforming a circuit C : Zs

2 → Zt
2 into a testable circuit (Ĉ : Zs+s′

2 → Zt+t′

2 , T̂ ⊂
Zs+s′

2 ).

3.1 Parameters of our Construction

A useful circuit compiler C should meet the following (informal) conditions: (1) Ĉ is not
much more complex than the input circuit C (since we want the compiled circuit to be
practical in production and use); (2) T̂ is not too large (to allow an efficient verification).

As mentioned in the introduction, our compiler first precompiles the circuit C into an
intermediary (C ′,T) and finally outputs the compiled (Ĉ, T̂). Let n, n′, n̂ denote the number
of verticefs, and d, d′, d̂ the depth of C, precompiled C ′ and compiled Ĉ, respectively. Our
compiler takes as additional input a recursion parameter L, which then gives the parameters
described in Table 1 below.
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Table 1 Parameters summary.

Input C Preprocessed C ′ Compiled Ĉ

Input size s s + 3 s + 3 + L

Output size t t t + 2L

Number of gates n 3n 12n

Circuit depth d d + log(n) d + log(n) + L · [3n]1/L

Test set size 4 · 2L

The circuit Ĉ is 3-conductive, recall that this means that a gate can have an output wire
with fan-out of up to 3, and a tampering affects all these wires in the same way. We assume
the input circuit C is non-conductive (i.e., 1-conductive), which is without loss of generality
as any circuit can be transformed into a non-conductive one at a modest cost using COPY
gates. We cannot make Ĉ non-conductive this way as this would not preserve its testability.

4 Compilers

In this section, we will show an efficient circuit compiler, which works for arbitrary circuit.
As a warm-up, we will present two impractical (but educative) solutions: they make I/O size
or the depth of the compiled circuit linear in the size of the original circuit. We will then
build on these basic ideas to make a practical construction.

Unlike some other circuit compilers, our compiled circuit C will be a subcircuit of
the compiled Ĉ. Let us also stress that we do not rely on any tamper-free components,
randomness gates or alike.

4.1 The basic ideas
4.1.1 Covering sets
Recall, that the tampering on a wire e is a function τe : Z2 → Z2 assigned to that wire. If any
of the functions associated with wires on the circuit is not identity, the circuit is tampered.
So the general idea is to check the behaviour of every wire when it should transfer the value
0 and when it should transfer the value 1 in a smart way. To work with this intuition, we
define a covering set. It is a set of inputs for which every wire would take both values, 0 and
1. Formally speaking,

▶ Definition 4. We say, that a set of inputs T = {t1, ..., tk} is a covering set (for some
circuit C) if

∀ e ∈ E(C), b ∈ {0, 1} ∃X ∈ T : valX(e) = b .

In general, a circuit may not have a covering set at all, as some wires could be 0 or 1
on every input to the circuit. Fortunately, every circuit can be efficiently modified into a
functionally equivalent circuit with a covering set of constant size. We will demonstrate the
construction in Section 5.

Intuitively, a covering set seems to be the smallest testing set for the testable circuit. If
the circuit would be tested on a set of inputs that do not form a covering set, then there
would exist a wire which would take only one value for each test, say 0. Then we would not
detect zero tampering on this wire.

The rest of this section assumes that the circuit C under consideration has been trans-
formed into a circuit C ′ with a small covering set T.
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4.1.2 The simplest solution

A trivial solution is to simply output every wire value. For this we increase the fan-out of
every wire by one, and connect each wire to new output gates Ot+1, Ot+2, ..., Ot+n. Now we
can simply check the values of these output gates on our covering set. Since the circuit is a
DAG, there always exists a topologically first tampered wire. The output value related to
this wire must show an inconsistency for some element of the covering set.

Let us stress that already this solution increases the conductivity by one, i.e. if we start
with a non-conductive circuit, we get a 2-conductive circuit. Simply using a COPY gate for
each wire and outputting the extra wire would not increase the conductivity, but it would
also not guarantee that we detect every tampering even after evaluating the compiled circuit
on a covering set.

Nevertheless, the above construction is totally impractical. Although the circuit size only
doubles, it massively increases the number of output wires. This not only makes testing the
correctness of the outputs impractical but is also unimplementable. In practice, circuit pins
(input/output wires) are expensive and they should only constitute a tiny fraction of the
circuit size as they are large and must be placed at the border.

In the rest of this section, we will show how to compress these extra outputs in a way that
still allows us to detect inconsistency. The challenge is to achieve this while also allowing for
the compressing part of the circuit to be tampered with.

4.1.3 Sufficiently tamper-resilient gadgets

In our construction we will use gadgets (circuits) that compute multi-input OR (mOR) and
multi-input AND (mAND) functions, and are tamper-resilient to some extent. We will show
their construction a bit later. For now, we only need to define their properties. In general,
the gadget has normal and additional inputs. It should compute OR/AND functions on its
input and prevent some class of tampering on some subset of the input wires.

▶ Definition 5 (Sufficiently Tamper Resilient mOR). A multi-input OR with inputs x1, ..., xm, c

and output y, is a sufficiently tamper-resilient mOR (STRmOR) gadget if:
1. It computes OR on its inputs, i.e. valx1...xmxmc(y) = 0 iff x1 = x2 = ... = xm = c = 0.
2. If the tampering τ changes some 0 to 1 among x1, ..., xm, then valτ0m+1(y) = valτ0m1(y).

Similarly,

▶ Definition 6 (Sufficiently Tamper Resilient mAND). A multi-input AND with input
x1, ..., xm, c and output y, is a sufficiently tamper-resilient mAND (STRmAND) gadget if:
1. It computes AND on its inputs, i.e. valx1...xmxmc(y) = 1 iff x1 = x2 = ... = xm = c = 1.
2. If the tampering τ changes some 1 to 0 among x1, ..., xm, then valτ1m+1(y) = valτ1m0(y).

At the first sight, the definition says nothing about the inconsistency between the tampered
and untampered version of the gadget. However, since STRmOR (STRmAND) computes the
general OR (AND) function, the following holds for untampered versions of the gadgets: (1)
valSTRmOR,0m+1(y) ̸= valSTRmOR,0m1(y), (2) valSTRmAND,1m+1(y) ̸= valSTRmAND,1m0(y). Thus
there is an inconsistency between the outputs of the untampered circuit and its tampered
version, which can be easily verified on the input sets {0m+1, 0m1}, {1m+1, 1m0}, respectively.

The STRmOR and STRmAND can be realized as the ChainMultiOR, ChainMultiAND,
presented in the Figure 7. To simulate mOR function with m inputs we would need only m

simple OR gates.
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yc

x1 x2 xm

yc

x1 x2 xm

Figure 7 Construction of the ChainMultiOR and the ChainMultiAND. The actual inputs are on
the bottom.

1 1 1 1 10 0 0

STRmAND

STRmORCOR
i

CAND
i

Figure 9 For every element ti ∈ T we extend the circuit by one mOR, one mAND gadget, single
input gate, and 2 output gates. STRmOR, STRmAND gadgets gather as normal inputs these wires,
which are covered for value 0,1 (respectively) for this extension.

c

0 → 1

constant

Figure 8 For any tampering on the input wire which would change the value from 0 to 1, the
output becomes blind to everything that happens before. In particular, the output does not depend
on c.

▶ Lemma 7. ChainMultiOR(ChainMultiAND) is a STRmOR(STRmAND).

Proof. The first condition holds obviously. Let τ be a tampering such that xi is tampered
to 1. Consider the function f(c) := valτ00...0c(y). Then the OR gate, which takes xi as
input, is unaffected by the second input (see Figure 8), since the value 1 on on of its inputs
determines the output of OR. Therefore any change in the value of c cannot change the
value of the output of this gadget, so f(c) is a constant. An analogous proof can be made for
ChainMultiAND. ◀

4.1.4 Costly compression
Now we can present a bit more practical solution (as we will see, it has 1 main drawback -
it increases the depth of the circuit). For this we assume not 2-, but 3-conductivity. Every
internal wire of the original circuit is branched into 3 wires along with its tampering. One
continues into the circuit as before, and two others are used for the testing.

The general idea looks as follows: we get the circuit C along with its covering set T. For
each wire we choose 2 tests which cover both values 0,1 for this test. Then for each element
of T we expand the circuit by STRmOR, STRmAND gadgets with normal inputs, which are
covered by this set (as in the Figure 9.
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Algorithm 1 Compress0.

Input: (C ′,T)
/* a circuit along with its covering set */
Output: (Ĉ, T̂)
/* a testable circuit functionally equivalent to C ′ along with its

testing set */
1 Ĉ := C ′, k := |T|, T̂ = ∅
2 Construct the sets W b

j = {e ∈ E(C ′) : valtj (e) = b} for j = 1, ..., k; b = 0, 1
3 W b

j = W b
j −

⋃j−1
i=1 W b

j for j = 1, ..., k; b = 0, 1
4 Add Is+1 to the set of input gates of Ĉ

5 for j = 1, ..., k do
6 Extend Ĉ by STRmORj gadget with inputs from W 0

j ∪ {Is+1}, output OOR
j

7 Extend Ĉ by STRmANDj gadget with inputs from W 1
j ∪ {Is+1}, output OAND

j

8 end
9 for j = 1, ..., k do

10 T 0
j := tj |0

11 T 1
j := tj |1 T̂ = T̂ ∪ {T 0

j , T 1
j }

12 end
13 return (Ĉ, T̂)

▶ Lemma 8. Let (C ′,T) be a circuit with covering set and Compress0 be the Algorithm 1.
Then (Ĉ, T̂) = Compress0(C ′,T) is a testable circuit.

Proof. Assume that Ĉτ is tampered non-trivially. Thus at least one wire in the original
subcircuit C ′ is tampered. Take the topologically first tampered wire e ∈ E(C ′). Let i, j ∈ [k]
be indices such that valC′,ti

(e) = 0, valC′,tj
(e) = 1.

Assume WLOG, that the tampering on e changes 0 to 1 (i.e tampering is one or toggle

function). We will show, that the gadget STRmORi enables us to detect the tampering on Ĉτ .
Consider the tests T 0

i , T 1
i . Since the STRmORi gadget is sufficiently tamper-resilient, and at

least one of the incoming wires is tampered from 0 to 1, we will detect the inconsistency. ◀

The solution presented above has a major drawback - it makes the depth of the compiled
circuit linear in the size of the original circuit, which is unacceptable for many practical
applications. Fortunately, this can be resolved.

4.2 General construction
We are now ready to present a solution with low depth and small I/O size. The starting
point is the naive solution from the section 4.1.2. The full output will be then compressed
layer by layer - each layer will be reducing the size of the additional output by the factor
n

1
L

2 , where L is the number of layers. For every layer the additional outputs will be divided
into groups of n

1
L and every group will be compressed using the chain gadget from section

4.1.3 to 2 output bits. We call the factor n
1
L the width of the layer.

A fragment of the construction of a single layer is presented in the Figure 10.

▶ Lemma 9. Let (C ′,T) be a testable circuit of conductivity 1, size n, depth d, input size
s + k and output size t + r, where r output bits are used for testing (consistency check). Then
(Ĉ, T̂) = Compress(C,T, L) is a testable circuit of conductivity 3, depth < d+ l ·n 1

L +log(n),
input size s + l, output size t + 2L and |T′| = 2L|T|.
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Algorithm 2 Compress.

Input: (C ′ : Zs
2 → Zt

2,T), L

/* a circuit with its covering set, parameter */
Output: (Ĉ, T̂)
/* efficiently testable circuit */

1 Ĉ := C ′;
2 for e ∈ E(C ′) - append Oe as the output gate to Ĉ; for b = 0, 1, j = 1, ..., |T| - make

W b
j set out from (Oe)e∈E(C′) gates

3 for l=1,...,L do
4 Append Is+l gate to Ĉ;
5 for j = 1, ..., |T| do
6 Divide the set W b

j into the subsets W b
j,i of the size n

1
L ;

7 for i=1,... do
8 Extend Ĉ by ChainMultiOR made from W 0

j,i ∪ Is+l with V 0
i as the output;

9 Extend Ĉ by ChainMultiAND made from W 1
j,i ∪ Is+l with V 1

i as the
output;

10 end
11 W b

j =
⋃

i{V b
i }

12 end
13 end
14 T̂ :=

⋃
T ∈T T |ZL

2 ;
15 return (Ĉ, T̂) ;

Figure 10 A fragment of the subcircuit produced by Algorithm 2. We assume the chain length
parameter w1/L = 3. In the picture we can see a fragment of the construction starting with the
inputs of the Layer i − 1 ≥ 1 organized into groups of 3. They are then processed by mOR gates
connected to a single control bit Ci−1. The outputs from these gates (indicated with green, blue,
and brown lines) are then connected to new gates mOR and mAND which are again connected to
new mOR and mAND gates connected to a single control bit Ci (lines 8 and 9 of the Algorithm 2).
The mOR and mAND gates are implemented with STRmOR and STRmAND gadgets.

Proof. First, we prove, that (Ĉ, T̂) is a testable circuit. Let τ be nontrivial tamper-
ing over C ′. Consider the topologically first tampered e along with associated with Oe.
Then for some b ∈ Z2 we have τ(e)(b) = 1 − b. Let i0, i1 ∈ [k] be indices such that
valC,tib

(e) = b for b ∈ {0, 1}. The algorithm collects Oe by 2 chain gadgets. For b = 0, 1
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the output of ChainMultiOR, ChainMultiAND, respectively, is constant (along with test Tib
).

For the next step of the algorithm (i.e. l = 2) this constant value is collected by an-
other pair of ChainMultiOR/ChainMultiAND gadgets, so it works just like the tampering
on the inputs to these gadgets. For one of the gadgets this tampering meets the require-
ment for STRmOR/STRmAND (see Definition 5). By induction, we obtain, that for some
q ∈ [2L], X ∈ ZL−1

2 : valτ
Ĉ,Tib

X0
(Ot+q) = valτ

Ĉ,Tib
X1

(Ot+q), where for the not tampered Ĉ

these 2 values should be different. Therefore the inconsistency will be detected when Ĉ is
tested on all the elements of T̂. So the pair (Ĉ, T̂) is a testable circuit.

Next, we need to prove, that the algorithm Compress actually achieves the desired
parameters. It is not difficult; we can observe, that the algorithm adds L layers. Each of
them (1) adds a single input gate; (2) multiplies the number of additional output wires by
the factor 2

n
1
L

; (3) makes the depth of the circuit higher by n
1
L . Moreover, the conductivity

of the internal wires need to be 3, and of the rest of the wires - at most 2. Every test from
the original test set is duplicated 2L times (by adding a sequence of 0, 1 of length L). ◀

5 Small covering set for every circuit

5.1 Introduction
Recall that the construction Ĉ from the previous section assumes that each wire from the
input circuit C ′ takes values 0 and 1 given some inputs from the testing set - it has a covering
set (see Definition 4).

In fact, for many practical circuits, some number of random inputs should form, with
a high likelihood, a covering set for the majority of its wires (e.g. one may expect that
the majority of wires in circuits computing pseudorandom values take random values given
random inputs), but the general problem of the existence of covering set for the set of
all wires W (C) of an arbitrary circuit C is NP-hard (consider SAT instances). In this
section we will design an algorithm that transforms any circuit C : Zs

2 → Zt
2 into a circuit

C ′ : Zs+s′

2 → Zt
2 with a covering set for W (C ′) of a small size. The new circuit C ′ will be

functionally equivalent to C (i.e. ∀X∈Zs
2
C ′

|t(X||0s′) = C(X). In the case of standard circuits
with maximum fan-in of the gates equal to 2, we will obtain a 4-element covering set.

Now we will give a brief description of the algorithm. It starts the creation of the covering
set by evaluating the circuit on all zeroes input and all ones input. Next, we observe that at
all zeroes input each wire wj ∈ W (C) : V −(w) ̸= IN is evaluated to either 0 or 1 (i.e. it is
evaluated to some vj = valC,0s(wj)). Finally, the algorithm divides the wires in W from C

into a small number of subsets of wires Wi. Every subset is proceeded in one step, in which
the wires from Wi are fixed (i.e. each wire wj ∈Wi now is evaluated to v′

j ≠ vj) by adding
only 1 additional control bit at each step. The details of the algorithm are given in the next
subsections.

5.2 k-divisible circuits
In the final step of the algorithm, we fix the values on all w ∈ Wi, by manipulating the
inputs of V −(w) using a single control bit for each Wi. To this end, we need to divide W to
k disjoint subsets W1, W2, . . . , Wk, such that:

1. outputs of some gate should belong to a different Wi than inputs to this gate, i.e.

∀i ∈ [k], win, wout ∈Wi : V +(win) ̸= V −(wout);
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2. for each gate, all of its output wires belong to the same subset, i.e.

̸ ∃i ̸= j, w1 ∈Wi, w2 ∈Wj : V −(w1) = V −(w2).

We say that a set of wires W in a circuit C is k-divisible if it can be partitioned into
k subsets W1, . . . , Wk meeting the conditions above. Any family of subsets W1, W2, ..., Wk

which proves that C is k-divisible is called a k-division for C.

5.3 Every circuit with maximum fan-in d is (d+1)-divisible
Let C = (V, E) be a circuit, where every n ∈ V has maximum fan-in not greater than d. We
will show a greedy algorithm that constructs its (d + 1)-division efficiently.

It starts with the family of empty sets W1, . . . , Wd+1. Firstly we assign all the input
wires of the circuit C (i.e. all w ∈ E : γ(V −(w)) = IN) to W1. Then we process the gates
of the circuit C in the topological order: for every gate g we assign its all output wires -
w ∈ E+(g) - to Wi where the index i is the smallest one not assigned to any of the input
wires of g. It is easy to see that after finishing the algorithm, all of the wires of the circuit
w ∈W belong to some Wi, and one needs a family of size d + 1 to finish the algorithm on a
circuit C with maximum fan-in d.

5.4 Constructing small covering sets for k-divisible circuits
Let C : Zs

2 → Zt
2 be a circuit (W1, ..., Wk) and its k-division. We construct a circuit

C ′ : Zs+s′

2 → Zt
2 with s′ = k which can emulate C and has a covering set T of size k + 1.

The algorithm works in steps that correspond to parts Wi of the division. In every step,
we try to fix the values taken by the wires from the corresponding part, after which every
w ∈Wi is evaluated to both 0 and 1 on some inputs from the test set. As mentioned before,
the fixing is achieved by extending the input with a new input bit - called a control bit - and
adding to the test set a new input. All w ∈Wi are fixed by XORing the new control bit with
the wires of input bits to V −(w). It is not possible to fix all w ∈Wi at once by inserting the
required XOR gates, since the valuations of the fixed wires may depend on each other. For
this reason, we process all wires from Wi in topological order.

The Algorithm 3 below takes as input a definition of C and produces a new C ′, functionally
equivalent to C, along with a covering set T for the C ′. It constructs the new C ′ and the
new T in steps, keeping track of valuations of w in the structure V , i.e. in every moment
of the execution of the algorithm b ∈ V [w] =⇒ ∃T ∈T : valC′,T (w) = b. One needs to see
that the modifications introduced in the circuit, as gates are processed in a topological order,
may already be sufficient to fix outputs of the topologically subsequent gates, therefore the
processing in the line 15 of the algorithm may not always be necessary.

To compute C(X) we simply complement X with 0s on the control input wires: C(x) =
C ′(x||0k).

▶ Theorem 10. Given a circuit C : Zs
2 → Zt

2, the procedure Covering(C) returns a pair
(C ′,T) such that: (1) C ′ is a circuit with additional k bits, i.e. C ′ : Zs+k

2 → Zt
2, (2) C ′ is

functionally equivalent to C, i.e. ∀X∈Zs
2
C(x) = C ′(x||0k), (3) T is a covering set for C ′.

Proof. To see that ∀X∈Zs
2
C(x) = C ′(x||0k), please note that when control bits are equal to

0, then the XOR gates added to the C will not change its standard behaviour. Note that we
need only a single XOR gate for every wire in the original circuit, because all output wires
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Algorithm 3 Covering.

Input: C : Zs
2 → Zt

2
Output: (C ′,T)

1 W1, . . . , Wk+1 = k-division of C /* Computed using the algorithm from
Section 5.3 */

2 Initialize C ′ = C, V = {}, T = {1s0k}; Add k new control input wires to C ′

3 for w ∈W, b ∈ {0, 1} do
4 Append b to V [w] whenever valC′,1s0k (w) = b.
5 end
6 for i ∈ [k] do
7 Ti = 0s+i−110k−i; T = T ∪ {Ti}
8 for n ∈ V (G) (processed in a topological order) do
9 if E+(g) ⊆Wi and ∃b∈{0,1} : ∀w∈E+(g)b /∈ V [w] then

10 Set L = E+(g)
11 if ∀w∈LvalC′,Ti

(w) ̸= b then
12 Update C ′ by adding a XOR gate between the s + i’th input wire of C ′

and and input of n that sets w ∈ L to b on the input Ti

13 end
14 Append b to V [w] for all w ∈ L

15 end
16 end
17 end
18 return G′,T

from every gate are evaluated to the same value (see the details in Section 2.1) and belong
to the same subset of k-division (according to its definition). Moreover, every new XOR gate
refers to some Wi (a XOR gate refers to Wi, when it was made to fix one of the elements
of Wi).

Now we will show, that every w′ ∈ E(C ′) takes both values when C ′ on some of the test
inputs from the T. Consider the following cases:

γ(V −(w′)) = IN, therefore w′ either belongs to one of the first s input bits, or is one
of the new control bits. In the first case, w′ takes value 1 on the test input introduced
during the initialization in the line 4 of the Algorithm and the value 1 on one of the
inputs added during the processing of one of the Wi. In the second case on the test input
introduced during the initialization in the line 4 the w′ is evaluated to 0 and on one of
the tests Ti added during the processing of every Wi in the k-division it takes value 1.
γ(V −(w′)) is one of the gates of the origin C (except from input gates). In this case, w′

was evaluated to one bit b during the initialization phase in the line 4 of the Algorithm.
What is more assuming that w′ ∈Wi, then during the fixing i’th step of the Algorithm it
is assured to be evaluated to the bit 1− b on the test input with the i’th control bit set
to 1,
γ(V −(w′)) is one of the XOR gates added during the processing of the Algorithm. In this
case, one of the input wires w′′ of the XOR gate must be processed in the Algorithm at
least once. For this reason when the other - control - input wire to the XOR gate is set to
0, then the wire w′ takes its value from w′′. As shown in the point above, w′′ must be
evaluated to both bits at some inputs from the test set. ◀
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▶ Corollary 11. A circuit C with max fan-in 2 has a k-division of size 2 + 1 = 3, thus the
Algorithm 3 will produce on such input a circuit C ′ with 3 additional input bits and a test
set T of size 1 + 3 = 4.

5.5 Reducing high conductivity of the control wires
Since in any k-division W1, . . . , Wk of a set of wires W of a circuit C all wires going out of a
single gate must belong to the same Wi, the size of Wi is bounded by the number of gates of
the circuit n = |V (C)|. The i′th control bit in the Algorithm 3 can be thus used even as
many as n times. This means that the specification of the circuit requires the implementation
of highly conductive control wires. We can reduce this requirement, by reapplying COPY
gates to the control wires added by the Algorithm 3.

▶ Corollary 12. (Ĉ : Zs+k
2 → Zt

2,T) created by running the Algorithm 3 on C : Zs
2 → Zt

2
and replacing every highly conductive control wire of the intermediary wire with a log-
depth construction of copy gates is a pair such that: (1) T is a covering set for Ĉ, (2)
∀X∈Zs

2
C(X) = Ĉ(X||0k).

Proof. Note that replacing every highly conductive control wire with a construction of copy
gates creates a set of wires which are all evaluated to bit b whenever the i’th control input is
set to b. ◀

6 The main result

Finally, we can collect partial results from the previous sections and define a complete
circuit compiler. The Algorithm 4 TestableCircuitCompiler takes as parameters a
circuit C : Zs

2 → Zt
2 and a number L ∈ N+. It firstly transforms the circuit C into a

circuit C ′ with a covering set, using the Covering procedure defined in the Section 5.
Finally, it transforms the intermediary circuit into a testable circuit with an extended test
set using the procedure TestableCircuitCompiler defined in the Section 4. Algorithm 4
TestableCircuitCompiler is a circuit compiler transforming into testable circuits C.

Algorithm 4 TestableCircuitCompiler.

Input: (C, L)
/* A circuit C : Zs

2 → Zt
2 and a number of layers L ∈ N+ */

Output: (Ĉ, T̂)
/* A testable circuit Ĉ : Zs+3+L

2 → Zt+2L

2 and its test set T̂ */
1 (C ′,T)← Covering(C)
2 (Ĉ, T̂)← Compress(C ′,T, L)
3 return (Ĉ, T̂)

▶ Theorem 1. Given any circuit C : Zs
2 → Zt

2 (of size n, depth d), and a number L ∈ N+,
the procedure TestableCircuitCompiler(C, L) outputs a pair (Ĉ, T̂) such that:

Ĉ is a circuit with additional 3 + L input bits and additional 2L output bits, i.e. Ĉ :
Zs+3+L

2 → Zt+2L

2 . The size of Ĉ is bounded by 12n, and its depth is bounded by d +
log(n) + L · (3n)1/L. The size of the test set T̂ is 4 · 2L.
The pair (Ĉ, T̂) is a testable circuit, i.e. for any tampering τ(

∃X ∈ Zs
2 : Ĉτ

|t(X||03+L) ̸= Ĉ|t(X||03+L)
)
⇒

(
∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

)
and Ĉ is functionally equivalent to C, i.e. ∀X∈Zs

2
: Ĉ|t(X||03+L) = C(X).
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Proof. The testability and functional equivalence of the circuit Ĉ follows from the Theorems 9
and 10. Below we give a discussion on the parameters of our compiler. We assume that after
each subprocedure the number of wires w is approximately the same as the number of gates
n in the circuit. The first subprocedure of the algorithm produces a circuit C ′ with depth
d′ ≤ d + log(n), size n′ ≤ n + n + n, and its covering set of size k′ = 4. What is more the
intermediary circuit has added only 3 control bits to the input, i.e.: C ′ : Zs+3

2 → Zt
2. By

applying the Algorithm Compress with L layers, we can calculate the following parameters
of the output circuit:

its modified input and output size - Ĉ : Zs+3+L
2 → Zt+2L

2 ,
its modified circuit size is the number of the gates n′ of the circuit C ′ plus the number
of gates used for each layer. In the construction with L layers, the algorithm chains of
length w′1/L are used. The first layer adds w′1/L w′

w′1/L = w′ new gates and gives w′

w′1/L

output wires), the 2’nd layer adds 2 w′

w′1/L gates build upon w′

w′1/L output bits from the
first layer, the i’th layer adds 2i−1 w′

w′(i−1)/L gates. Finally, a linear number of copy gates
is added to deliver i′th control bit to chains in each layer. In general:

n̂ ≤ n′ +
L∑

i=1
2i−1 w′

w′(i−1)/L
+

L∑
i=1

2i−1 w′

w′i/L
= n′ + w′1/L(w′ − 2L)

w′1/L − 2
+ w′ − 2L

w′1/L − 2
≤

n′ + 2w′ + w′ ≤ 3n + 3 · 3n

its modified circuit depth d̂ ≤ d′ +
∑

i∈{1,...,L} w′1/L, i.e. d̂ ≤ d + log(n) + L · (n′)1/L =
d + log(n) + L · [3n]1/L, the new size of the test set k̂ = 4 · 2L. ◀

7 Conclusion and open problems

In this work, we introduced the notion of efficiently testable circuits and provided a compiler
that transforms any circuit into an efficiently testable one that detects tampering with every
wire of the circuit.

While the tampering model is already quite powerful, there are two natural ways in which
one could hope to strengthen it:

Conductivity. Our compiled circuit has gates with a fan-out up to 3, i.e., an output wire
can be used as input wire for up to 3 gates. While one can reduce the fan-out to 1 using
COPY gates, this will break security as the tampering model we (and also other works) use
crucially requires that gate input wires that come from the same output wire are tampered
in the same way. We leave it as an open problem to find a compiler satisfying a stronger
notion, where all input wires can be individually tampered, or show that such a compiler
does not exist.

Gate Tampering. While our tampering model allows tampering with every wire, it does
not allow tampering with the gates. Recall that our construction starts with a precompiled
circuit that comes with a small set of inputs to the circuit (the covering set) such that for
every wire there are inputs in that set which set this wire to 0 and 1, respectively. If we use
a more demanding set which, for every gate, contains circuit inputs that set the input wires
to that gate to all possible values (i.e., 00, 01, 10, 11 for a gate with two inputs), our compiled
circuit does achieve security against gate tampering, but only for the subcircuit which is the
input circuit, not the additional gates added by the compiler.
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Abstract
In their seminal paper that initiated the field of algorithmic mechanism design, Nisan and Ronen [27]
studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines
aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an
n-approximation and they made the bold conjecture that this is the best approximation achievable
by any deterministic strategyproof scheduling mechanism. After more than two decades and several
efforts, n remains the best known approximation and very recent work by Christodoulou et al. [11]
has been able to prove an Ω(

√
n) approximation lower bound for all deterministic strategyproof

mechanisms. This strong negative result, however, heavily depends on the fact that the performance
of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic,
and often uninformative, worst-case bounds, a surge of recent work has focused on the “learning-
augmented framework”, whose goal is to leverage machine-learned predictions to obtain improved
approximations when these predictions are accurate (consistency), while also achieving near-optimal
worst-case approximations even when the predictions are arbitrarily wrong (robustness).

In this work, we study the classic strategic scheduling problem of Nisan and Ronen [27] using the
learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism
that is 6-consistent and 2n-robust. We thus achieve the “best of both worlds”: an O(1) consistency
and an O(n) robustness that asymptotically matches the best-known approximation. We then
extend this result to provide more general worst-case approximation guarantees as a function of
the prediction error. Finally, we complement our positive results by showing that any 1-consistent
deterministic strategyproof mechanism has unbounded robustness.
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1 Introduction

In their seminal paper which initiated the field of algorithmic mechanism design, Nisan and
Ronen [27] focused on a natural job scheduling problem involving strategic agents: a set of
m jobs needs to be scheduled on a set of n machines aiming to minimize the makespan, and
each machine is owned by an agent who requires a monetary compensation in exchange for
processing the jobs assigned to them. What makes this problem particularly demanding is
that the compensation each agent receives needs to be at least as high as the cost that they
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suffer for processing the jobs assigned to them (i.e., the required processing time), yet the
actual processing times are private information that only that agent knows. Therefore, an
agent can choose to misreport (either overstate or understate) their processing times if doing
so would change the outcome (i.e., their assignment and their compensation) to one that
they prefer. To avoid this issue, the goal is to design strategyproof mechanisms that carefully
choose the outcome to ensure that no agent has an incentive to misreport their costs, while
also ensuring that the makespan of the chosen assignment is as small as possible.

Nisan and Ronen [27] proposed a strategyproof mechanism for this problem and showed
that the allocation generated by this mechanism is an n-approximation of the optimal
makespan. Even though this guarantee is much less appealing than the 2-approximation
that one can achieve in polynomial time if the costs are publicly known [21], they went on to
make the bold conjecture that this is the best possible worst-case approximation that any
deterministic strategyproof mechanism can achieve (polynomial time or not). After more than
two decades, and despite several efforts to tackle this, now classic, problem, no strategyproof
mechanism with an approximation better than O(n) is known (not even randomized).
Instead, after a sequence of inapproximability results, proving gradually increasing constant
approximation lower bounds for deterministic mechanisms (e.g., [27, 13, 19, 16, 14]), a
very recent breakthrough by Christodoulou et al. [11] made major progress by proving
a lower bound of 1 +

√
n− 1 for deterministic mechanisms. This result paints a very

pessimistic picture, implying that even if a better strategyproof mechanism exists, its worst-
case approximation will not be practical. However, this heavily depends on the, rather
unrealistic assumption, that the mechanism has no information regarding the costs of the
agents.

Facing analogous worst-case impossibility results that are overly pessimistic and rather
uninformative, a recent surge of work has focused on the “learning-augmented framework”,
aiming to achieve more refined and informative bounds, while retaining the benefits of
worst-case analysis (see [26] for a survey). This framework assumes that the designer is
provided with some machine-learned predictions that can be used to design more practical
algorithms that achieve near optimal performance when the predictions are correct (this is
called the consistency guarantee). However, rather than assuming that the predictions are
always accurate and forfeiting the benefits of worst-case analysis altogether, this framework
seeks to also provide strong guarantees, even if the predictions are arbitrarily inaccurate
(this is called the robustness guarantee). More formally, the consistency of an algorithm is
the worst-case approximation guarantee that it achieves assuming that the prediction it was
provided with is accurate, while its robustness is the worst-case approximation guarantee
without any assumptions regarding the prediction accuracy (see Section 2 for more details).
The quality of an algorithm is then evaluated based on both its consistency and its robustness.
This framework was initially restricted to algorithms, but it was very recently extended
to settings involving strategic agents [1, 17, 32], motivating the design of new mechanisms
leveraging predictions to overcome the incentive issues that arise. In this paper, we revisit the
classic scheduling problem of Nisan and Ronen [27] using the learning-augmented framework
and design mechanisms enhanced with predictions regarding the machines’ processing times.

Given predictions regarding the machines’ processing times, a naive solution would be to
assume the predictions are accurate and output a schedule with small makespan according
to the predicted processing times alone (i.e., without eliciting the agents’ true processing
times). This is a strategyproof mechanism that would achieve a consistency of O(1), but its
robustness would be unbounded (e.g., even if a single job’s processing time is mispredicted, it
could end up being assigned to a machine where its actual processing time is arbitrarily high).
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On the other hand, the mechanism of Nisan and Ronen [27] would achieve a robustness of
O(n), but its consistency would also be no better than O(n), since its output disregards the
predictions. In an attempt to provide a middle ground between these two extremes, very
recent work by Xu and Lu [32] proposed a strategyproof mechanism that can guarantee a
consistency of O(1) with bounded robustness, but the robustness guarantee of O(n3) that it
achieves is much worse than the O(n) robustness achieved in [27]. Our main result in this
paper is a strategyproof that combines the “best of both worlds”: a consistency of O(1) with
the best-known robustness of O(n).

1.1 Our results
In this paper we leverage the learning-augmented framework to develop a deeper understand-
ing of this classic strategic scheduling problem, and design much more practical mechanisms
enhanced with predictions. In particular, we assume that the mechanism is provided with
predictions p̂(i, j) regarding the amount of time that each machine i would require in order
to fully process each job j; crucially, these predictions may be highly inaccurate.

Our main result is a deterministic polynomial-time strategyproof mechanism that guaran-
tees a consistency of (4 + 2γ) and a robustness of (1 + 1

γ )n for any choice of γ ∈
(
0, n

2 − 1
)
,

which is a parameter that the designer can determine to receive their desired trade-off between
consistency and robustness. For example, setting γ = 1 yields a mechanism with a small
constant consistency of 6 (i.e., a 6-approximation of the optimal makespan when the predic-
tions are accurate) while maintaining a robustness of 2n (i.e., a worst-case approximation
guarantee that asymptotically matches the best-known approximation, irrespective of how
inaccurate the predictions may be).

Our main mechanism, ScaledGreedy, uses the predicted processing times to pre-
compute a schedule that (approximately)1 minimizes the makespan, assuming these predic-
tions are correct. The mechanism then uses this schedule as a guide and adds a “bias” in
favor of scheduling jobs on the machines that they were assigned to in this schedule. After
introducing this bias, the mechanism follows a simple greedy procedure, so the main technical
novelty is the subtle way in which this bias towards the predictions is introduced, while
ensuring that we asymptotically match the best known robustness when the predictions are
arbitrarily inaccurate. Roughly speaking, the mechanism carefully chooses a subset of jobs
and proceeds to assign each of them to the same machine as in the pre-computed schedule,
unless the processing times reported by the machines for that job differ significantly from
the predicted ones. Before presenting this mechanism and its analysis in Section 4, we
first dedicate Section 3 to a simpler mechanism, SimpleScaledGreedy, which provides a
warm-up toward our main result while combining a consistency of O(1) with a robustness of
O(n2).

In Section 5, we take one step further and propose a mechanism that provides worst-case
approximation guarantees as a function of the prediction error. In other words, rather than
focusing only on the two extremes of consistency (where the error is zero) and robustness
(where the error is unbounded), this mechanism guarantees a good approximation as long as
the prediction error is not too high. Given a prediction p̂ of the actual processing times p,
we let the prediction error η be the largest ratio between the predicted processing time and
actual processing time for any machine i, job j pair, i.e., η = maxi,j max

{
p̂(i,j)
p(i,j) , p(i,j)

p̂(i,j)

}
. Our

mechanism takes as input an error tolerance parameter η̄ > 0 and achieves an approximation
of O(η2) as long as η ≤ η̄ and O(η̄2n) otherwise.

1 Note that even if the processing times are known in advance, no known polynomial time algorithm can
achieve an approximation factor better than 2, and it is NP-hard to achieve a factor better than 1.5 [21].

ITCS 2023



11:4 Strategyproof Scheduling with Predictions

Finally, in Section 6 we complement our positive results with an impossibility result,
showing that achieving a consistency of 1, i.e., returning an optimal schedule whenever
the predictions are accurate, necessary leads to unbounded robustness (irrespective of any
computational limitations).

1.2 Related work

Strategyproof scheduling. Apart from proposing their n-approximate mechanism and
conjecturing that this is the best possible guarantee across all deterministic and strategyproof
mechanisms, Nisan and Ronen [27, 28] also proved an approximation lower bound of 2.
This lower bound was later improved to 2.41 by Christodoulou et al. [13], then 2.61 by
Koutsoupias and Vidali [19]. More recently, Giannakopoulos et al. [16] further raised this
lower bound to 2.755 and then Dobzinski and Shaulker [14] pushed it to 3. Whether a
constant approximation is possible remained an open problem until very recently, when the
breakthrough result of [11] eventually proved a lower bound of 1 +

√
n− 1. Earlier work by

Ashlagi et al. [3] had also shown a lower bound of n for the special class of mechanisms that
are anonymous. Note that although these lower bounds focus on deterministic mechanisms,
even if we allow randomization, the best known approximation guarantee achievable by a
randomized strategyproof mechanism remains O(n) [10].

Learning-augmented framework. Motivated by the shortcomings of worst-case analysis,
an exciting new literature has focused on the design and analysis of “learning-augmented
algorithms”, or “algorithms with predictions” (see [26] for a survey of some early work and [23]
for a more up-to-date list of papers in this area). This literature assumes that the algorithm
is provided with predictions regarding the instance at hand and its performance is evaluated
using consistency and robustness, which are the two primary metrics introduced by Lykouris
and Vassilvtiskii [24]. During the last five years, more than 100 papers have revisited classic
algorithmic problems using this framework, including online paging [24], scheduling [29],
and secretary problems [15, 2], optimization problems with covering [7] and knapsack
constraints [18], as well as Nash social welfare maximization [9] and several graph problems [4].
This line of work also studied online scheduling problems (e.g., [30, 25, 20, 6, 22, 8, 5]),
but it was restricted to non-strategic settings and the predictions were used to overcome
information limitations regarding the future, rather than limitations regarding privately
held information. Very recently, Agrawal et al. [1] and, independently, also Xu and Lu [32]
extended the framework to settings involving strategic agents. Agrawal et al. [1] provided
optimal learning-augmented mechanisms, focusing on the strategic facility location problem,
while Xu and Lu [32] considered a variety of different problems.

One of the problems considered in [32] was the strategic scheduling problem that we
study in this paper. The authors gave a strategyproof mechanism that is O(γ)-consistent
and O(n3/γ2)-robust, for any γ ∈ [1, n]. The mechanism in this paper used greedy allocation
with weights determined by the predictions. However, to achieve any interesting consistency
bounds (i.e., o(n)), their mechanism cannot guarantee a robustness better than ω(n2); in
particular, to achieve an optimal consistency of O(1), the mechanism’s robustness must be
Ω(n3). While our high-level approach shares similarities with this work, our mechanism
use the predictions in a more cautious way trying to avoid the unnecessary scaling. Our
main result significantly improves upon theirs achieving the best of both worlds: an optimal
consistency of O(1) and the best-known robustness of O(n).
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2 Preliminaries

Makespan minimization on unrelated machines. In the classic problem of scheduling on
unrelated machines there is a set N of n machines, a set M of m jobs, and processing times
p(i, j) for a job j ∈M to be processed on machine i ∈ N . We use x ∈ {0, 1}n×m to denote
the allocation of jobs to machines, where x(i, j) = 1 if and only if job j is allocated to
machine i. Given an instance p of processing times and an allocation x, the makespan is
the maximum over all machines of the total processing time assigned to that machine, i.e.,
MS(p, x) = maxi

∑
j p(i, j) ·x(i, j). The goal is to find an allocation x such that the makespan

is minimized. We denote the optimal makespan for an instance p by OPT(p) = minx MS(p, x)
and we let x⋆(p) denote an optimal allocation for instance p (so MS(p, x⋆(p)) = OPT(p)). We
abuse notation with OPT and x⋆ when the instance p is clear from context.

Strategic makespan minimization. In the strategic version of this problem, each machine i

is controlled by a distinct self-interested agent. Each such agent incurs a cost for processing
jobs that is equal to its load, i.e., the sum of the processing times of the jobs assigned to i

and needs to receive a payment in exchange. Specifically, given an allocation x, if agent i

receives a payment ρi, and their utility is equal to ρi −
∑

j:x(i,j)=1 p(i, j). The processing
times pi = (p(i, 1), . . . , p(i, m)) are private information that is known only to the agent
controlling machine i, and each agent can misreport this information aiming to increase
her utility. A scheduling mechanism consists of an allocation rule x(p) ∈ {0, 1}n×m for
assigning jobs to machines and a payment rule ρ(p) ∈ Rn for compensating the machines for
their costs. A scheduling mechanism is strategyproof if truthfully reporting pi is a dominant
strategy for every machine i, i.e., it is always an optimal strategy for agent i to report the
truth, regardless of what every other agent reports.

Characterization of strategyproof mechanisms. Seminal work on strategic scheduling has
characterized the family of allocations rules x(p) that admit a payment rule ρ(p) such that
(x(p), ρ(p)) is a strategyproof scheduling mechanism.

▶ Definition 1 (Monotonicity Property). An allocation algorithm is monotone if fixing the
processing time of all other agents p−i, for every two reports of agent i, pi and p′

i, the
associated allocations x and x′ satisfy∑

j∈M

(x(i, j)− x′(i, j))(p(i, j)− p′(i, j)) ≤ 0.

▶ Lemma 2 ([28, 31]). An allocation algorithm x(p) admits a payment rule ρ(p) s.t.
(x(p), ρ(p)) is a strategyproof scheduling mechanism if and only if x(p) satisfies the mono-
tonicity property.

This fundamental result reduces the mechanism design problem of strategic scheduling to an
algorithm design problem where the goal is to find a (near)-optimal monotone allocation.
One simple but natural mechanism that satisfies the above property is the greedy mechanism:
it assigns each job j to the machine with minimum processing time for job j, i.e., x(i, j) = 1
if i = arg mini′∈N p(i′, j). Nisan and Ronen [28] analyzed this mechanism and showed that
it achieves an n-approximation to the optimal makespan.

Learning-augmented mechanism design. In the learning-augmented mechanism design
framework, before requesting the processing time vector pi from each machine i, the designer
is provided with a prediction p̂ of the entire n × m processing time values p(i, j). The
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designer can use this information to choose the rules of the mechanism but, as in the
standard stretagyproof scheduling setting, the final mechanism, denoted x(p, p̂), needs to
be strategyproof. We use consistency and robustness to measure the performance of the
mechanism. where consistency is the worst-case approximation given a accurate prediction,
i.e., p = p̂ and the robustness is the worst-case approximation given any predictions. Given
a instance p, a mechanism is α-consistent if it achieves an α-approximation ratio when the
prediction is correct (p̂ = p), i.e.,

max
p

{
MS(p, x(p, p))
MS(p, x⋆(p))

}
≤ α.

A mechanism is β-robust if it achieves a β-approximation ratio even when the predictions
are arbitrarily wrong, i.e.,

max
p,p̂

{
MS(p, x(p, p̂))
MS(p, x⋆(p))

}
≤ β.

One can also evaluate the worst-case approximation ratio as a function of the predic-
tion error η ≥ 0. In this paper we define the error η(p, p̂) as the largest ratio be-
tween the predicted processing time and actual processing time for any i j pair, formally,
η = maxi∈N,j∈M max

{
p̂(i,j)
p(i,j) , p(i,j)

p̂(i,j)

}
. Given a prediction error η, a mechanism achieves a

γ(η)−approximation if

max
p,p̂:η(p,p̂)≤η

{
MS(p, x(p, p̂))
MS(p, x⋆(p))

}
≤ γ(η).

Note that for η = 1 the bound corresponds to the consistency guarantee and for η →∞ it
captures the robustness guarantee.

3 Warm-Up: a 4-Consistent and n2-Robust Mechanism

As a warm-up, we first present a strategyproof mechanism that is 4-consistent and n2-robust.
In the next section, we build on this mechanism to obtain a mechanism with O(n) robustness.

The mechanism. Nisan and Ronen [27] showed that the greedy mechanism that assigns each
job j to the machine with minimum processing time for job j has a wost-case approximation
factor of n, implying that it is n-consistent and n-robust. On the other hand, returning
a schedule that is optimal for the predicted instance gives a 1-consistent mechanism with
unbounded robustness. SimpleScaledGreedy, described formally in Mechanism 1, is a
variant of the greedy mechanism where the processing times are scaled as a function of
the predictions. More formally, instead of greedily assigning job j to the machine i with
minimum processing time p(i, j), SimpleScaledGreedy assigns j to the machine i with
minimum scaled processing time r(i, j) · p(i, j), where r(i, j) are scalars that are defined by
the mechanism. We note that even when this scaling depends arbitrarily on the predicted
instance p̂, this mechanism is monotone (which we formally show in Lemma 8), and thus
strategyproof (these scalars are independent of the reported instance p).

The central part of our mechanism thus consists of constructing scalars r(i, j) as a function
of the predictions. The mechanism first computes an assignment x̂ for the predicted instance
by using a, not necessarily strategyproof, scheduling algorithm Makespan-Min that is given
as input to the mechanism. We call x̂ the predicted assignment. Let ı̂j be the machine that
j is assigned to according to the predicted assignment, which we call the predicted machine
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of job j. Note that with scalars r(i, j) = p̂(ı̂j ,j)
p̂(i,j) , we have that r(i, j) · p̂(i, j) = p̂(̂ıj , j) for all

jobs j. Thus, with such scaling factors and by breaking ties in favor of ı̂j , each job j would be
assigned to its predicted machine ı̂j . The issue with such scaling factors is that they can be
either arbitrarily large or arbitrarily small, which causes the robustness to be unbounded since
these factors can cause a job to be allocated on an undesirable machine when the predictions
are inaccurate. To avoid this issue, we cap the scaling factors to ensure that they have values
between 1 and n. We break ties in favor of ı̂j when r(̂ıj , j) · p(̂ıj , j) = arg mini r(i, j) · p(i, j),
and otherwise we break them in favor of the machine with minimum index.

Note that when the prediction is correct, i.e., p̂ = p, the mechanism assigns a job j

to its predicted machine ı̂j unless mini p̂(i, j) ≤ p̂(ı̂j ,j)
n , i.e., unless there exists a machine i

with much smaller predicted processing time for j than the predicted machine ı̂j of job j. If
mini p̂(i, j) ≤ p̂(ı̂j ,j)

n , and the prediction is correct, the mechanism assigns j to the machine
arg mini p(i, j) with the smallest true (and predicted) processing time for j.

Mechanism 1 SimpleScaledGreedy.

1 Input: instance p ∈ Rn×m, predicted instance p̂ ∈ Rn×m, scheduling algorithm
Makespan-Min

2 x̂←Makespan-Min(p̂)
3 ı̂j ← the machine i that job j is assigned to according to x̂, i.e., x̂(̂ıj , j) = 1, for each

j ∈M

4 r(i, j)← max
(

1, min
(

p̂(ı̂j ,j)
p̂(i,j) , n

))
, for each (i, j) ∈ N ×M

5 ij ← arg mini r(i, j) · p(i, j), break ties in favor of ı̂j , for each j ∈M

6 if i = ij then x(i, j) = 1 else x(i, j) = 0, for each (i, j) ∈ N ×M

7 return x

We first analyze the mechanism’s consistency, then its robustness, and finally show that
it is strategyproof.

The consistency. We first introduce some notation. We assume that Makespan-Min is an
α-approximation algorithm for makespan minimization and let Mi = {j ∈M : x(i, j) = 1}
and M̂i = {j ∈ M : x̂(i, j) = 1} be the sets of jobs j such that j is assigned to machine i

by SimpleScaledGreedy and the predicted assignment, respectively. To bound the total
processing time of the jobs Mi assigned to machine i, for each i ∈ N , we separately bound the
total processing times of Mi ∩ M̂i and Mi \ M̂i. Bounding the total processing time of jobs
in Mi ∩ M̂i, i.e., jobs assigned to machine i according to both the mechanism’s assignment
x and the predicted assignment x̂, by αOPT is almost immediate when the predictions are
accurate.

▶ Lemma 3. Assume that p̂ = p, then, for all i ∈ N ,
∑

j∈Mi∩M̂i
p(i, j) ≤ αOPT(p).

Proof. For any machine i ∈ N, observe that∑
j∈Mi∩M̂i

p(i, j) ≤
∑

j∈M̂i

p(i, j) =
∑

j∈M̂i

p̂(i, j) ≤ MS(p̂, x̂) ≤ αOPT(p̂) = αOPT(p),

where first equality is since p = p̂, the second inequality is by definition of M̂i and the
makespan of allocation x̂, the last inequality is since Makespan-Min is an α-approximation
algorithm, and the last equality is since p̂ = p. ◀

ITCS 2023



11:8 Strategyproof Scheduling with Predictions

The main part of the analysis of the consistency bound is the total processing time of
jobs that are assigned to i even though i is not their predicted assignment, i.e., the total
processing time of Mi \ M̂i. We first show that such jobs must have a scalar r(i, j) = n.

▶ Lemma 4. For any job j ∈ M and machine i ∈ N , if p̂ = p and j ∈ Mi \ M̂i, then
r(i, j) = n.

Proof. Consider a job j ∈M and machine i ∈ N such that p̂ = p and j ∈Mi \ M̂i. Since
j ∈ Mi \ M̂i, we have that ı̂j ̸= i and r(i, j) · p(i, j) < r(̂ıj , j) · p(̂ıj , j) by definition of
SimpleScaledGreedy. We get that

r(i, j) < r(̂ıj , j) · p(̂ıj , j)
p(i, j) = max

(
1, min

(
p̂(̂ıj , j)
p̂(̂ıj , j) , n

))
· p(̂ıj , j)

p(i, j) = p(̂ıj , j)
p(i, j) = p̂(̂ıj , j)

p̂(i, j) ,

where the first equality is by definition of r(i, j) and the last equality since p̂ = p. Since
r(i, j) <

p̂(ı̂j ,j)
p̂(i,j) then again by the definition r(i, j) we get that r(i, j) = n. ◀

We are now ready to bound the total processing time of Mi \ M̂i.

▶ Lemma 5. Assume that p̂ = p, then, for all i ∈ N ,
∑

j∈Mi\M̂i
p(i, j) ≤ α · OPT(p).

Proof. Let i be an arbitrary machine and assume that p̂ = p. First, observe that∑
j∈Mi\M̂i

p(i, j) ≤
∑

j∈Mi\M̂i

r(̂ıj , j)
r(i, j) p(̂ıj , j) = 1

n

∑
j∈Mi\M̂i

p(̂ıj , j) ≤ 1
n

∑
j∈M

p(̂ıj , j) = 1
n

∑
j∈M

p̂(̂ıj , j)

where the first inequality is since j was assigned to machine i by SimpleScaledGreedy,
the first equality since r(̂ıj , j) = 1 and r(i, j) = n for j ∈ Mi \ M̂i by Lemma 4. We also
have that

1
n

∑
j∈M

p̂(̂ıj , j) = 1
n

∑
i∈N

∑
j∈M̂i

p̂(i, j) ≤ max
i∈N

∑
j∈M̂i

p̂(i, j) = MS(p̂, x̂) ≤ α · OPT(p̂) = α · OPT(p)

where the last inequality is since Makespan-Min is an α-approximation algorithm. Combing
the above two series of inequalities, we get

∑
j∈Mi\M̂i

p(i, j) ≤ α · OPT(p). ◀

By combining Lemma 3 and Lemma 5, we get that the mechanism is 2α-consistent.

▶ Lemma 6. SimpleScaledGreedy is a mechanism that is 2α-consistent.

Proof. Assume that p = p̂. For any machine i, we have∑
j∈Mi

p(i, j) =
∑

j∈Mi∩M̂i

p(i, j) +
∑

j∈Mi\M̂i

p(i, j) ≤ αOPT(p) + αOPT(p) = 2αOPT(p)

where the inequality is by Lemma 3 and Lemma 5. ◀

The robustness. The crucial part of the mechanism that allows obtaining a robustness of
n2 is that the scalars r(i, j) are bounded between 1 and n.

▶ Lemma 7. SimpleScaledGreedy is a mechanism that is Θ(n2)-robust.
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Proof. We first show that the robustness is at most n2. Consider an instance p, an optimal
assignment x⋆ for p, a job j, and a machine i such that j ∈Mi. Let i⋆

j be the machine that
j is assigned to according to x⋆. By the mechanism, we have 1 ≤ r(i′, j) ≤ n for all machines
i′. We therefore have:

p(i, j) ≤ r(i, j) · p(i, j) ≤ r(i⋆
j , j) · p(i⋆

j , j) ≤ n · p(i⋆
j , j),

where the second inequality is by line 5 and the fact that j is assigned to i. We get that

MS(p, x) = max
i∈N

∑
j∈Mi

p(i, j) ≤
∑
i∈N

∑
j∈Mi

p(i, j) ≤ n
∑
i∈N

∑
j∈Mi

p(i⋆
j , j) ≤ n2 max

i∈N

∑
j∈Mi

p(i⋆
j , j) = n2OPT.

In fact, the robustness guarantee is tight. Due to space limitation, we defer the proof to the
appendix A. ◀

Strategyproofness. We show that the mechanism is strategyproof by proving that it is
monotone and then using Lemma 2.

▶ Lemma 8. SimpleScaledGreedy is a strategyproof mechanism.

Proof. Consider a machine i ∈ N and a predicted assignment x̂. Consider two instances
p and p′ that differ only on machine i and the associated allocations x and x′ returned
by SimpleScaledGreedy when the predicted assignment is x̂. Given a fixed predicted
assignment x̂, the mechanism is deterministic, so x(i, j) ∈ {0, 1} for all i ∈ N and j ∈ M .
Since the predicted assignment is fixed, we also have that the scalars r(i, j) are fixed.

Let j ∈M be an arbitrary job. Without loss of generality, we assume that p(i, j) ≤ p′(i, j).
Consider the case where x(i, j) = 0, i.e., job j is not assigned to machine i for processing
times p. By the mechanism, this implies that i ̸= arg mini′ r(i′, j) · p(i′, j). Since (1)
p(i′, j) = p′(i′, j) for i′ ̸= i, (2) p(i, j) ≤ p′(i, j), and (3) i ̸= arg mini′ r(i′, j) · p(i′, j),
we get that i ̸= arg mini′ r(i′, j) · p′(i′, j), which implies x′(i, j) = 0. We thus obtain
that x(i, j) ≥ x′(i, j), which implies that (x(i, j) − x′(i, j))(p(i, j) − p′(i, j)) ≤ 0 since
p(i, j) ≤ p′(i, j). SimpleScaledGreedy is thus a monotone mechanism, which, by Lemma 2,
implies that it is strategyproof. ◀

The main result for SimpleScaledGreedy. Combining Lemmas 6, 7, and 8, we obtain the
main result for SimpleScaledGreedy.

▶ Theorem 9. SimpleScaledGreedy is a strategyproof, 2α-consistent, and Θ(n2)-robust
mechanism.

To obtain a polynomial-time mechanism, we can have α = 2 and a consistency of 4
with Makespan-Min being the 2-approximation algorithm for makespan minimization on
unrelated machines by Lenstra et al. [21]. By ignoring running time considerations, we can
obtain α = 1 and a consistency of 2 with Makespan-Min finding an optimal schedule.

4 The Scaled Greedy Mechanism

In this section, we present a deterministic polynomial-time mechanism that is (4 + 2γ)-
consistent and

(
1 + 1

γ

)
n-robust, where γ ∈

(
0, n

2 − 1
)

is a parameter that controls the
tradeoff between the consistency and robusntess achieved by the mechanism. This mechanism
builds on the mechanism from the previous section. In the next section, we extend this
mechanism to obtain a mechanism that achieves an approximation as a function of the
prediction error.
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4.1 The mechanism

ScaledGreedy, which is described formally in Mechanism 2, defines scalars r(i, j) and
assigns a job j to the machine i with minimum scaled processing time r(i, j) · p(i, j). As in
SimpleScaledGreedy, the mechanism first computes a predicted assignment x̂ for the
predicted instance p̂. Recall that scalars r(i, j) = p̂(ı̂j ,j)

p̂(i,j) are designed so that the mechanism
assigns a job j to its predicted assignment ı̂j when the predictions are correct, even if j has a
smaller predicted processing time on i than on ı̂j . To improve the robustness from quadratic
to linear, ScaledGreedy upper bounds the scalars r(i, j) more aggressively, and more
carefully, than SimpleScaledGreedy, which simply upper bounds them by n. Scalars that
are close to 1 are intuitively better for the robustness of the mechanism since the greedy
mechanism, which achieves an n-approximation, corresponds to the mechanism where the
scalars are all equal to 1. The mechanism upper bounds the scalars by maintaining sets Ji, I

and T .

Mechanism 2 ScaledGreedy.

1 Input: instance p ∈ Rn×m, predicted instance p̂ ∈ Rn×m, scheduling algorithm
Makespan-Min, prediction confidence parameter γ ∈ (0, n

2 − 1)
2 x̂←Makespan-Min(p̂)
3 ı̂j ← the machine i that job j is assigned to according to x̂, i.e., x̂(̂ıj , j) = 1, for each

j ∈M

4 r(i, j)← max
(

p̂(ı̂j ,j)
p̂(i,j) , 1

)
for each (i, j) ∈ N ×M

5 Ji ← ∅ for all i ∈ N

6 I ← N

7 T ← {(i, j) : j ∈M, i = arg mini′∈I:p̂(i′,j)<p̂(ı̂j ,j) p̂(i′, j)}
8 while T is not empty do
9 (i∗, j∗)← arg max(i,j)∈T

p̂(ı̂j ,j)
p̂(i,j)

10 Ji∗ ← Ji∗ ∪ {j∗}
11 for all i s.t. p̂(i∗, j∗) ≤ p̂(i, j∗) do
12 update r(i, j∗)← 1
13 I ← {i ∈ N :

∑
j∈Ji

p̂(i, j) < γMS(p̂, x̂)}
14 T ← {(i, j) : j ∈M \ (∪iJi), i = arg mini′∈I:p̂(i′,j)<p̂(ı̂j ,j) p̂(i′, j)}
15 ij ← arg mini r(i, j) · p(i, j), break ties in favor of ı̂j first and i′ if j ∈ Ji′ second, for

each j ∈M

16 if i = ij then x(i, j) = 1 else x(i, j) = 0, for each (i, j) ∈ N ×M

17 return x

Ji is the set of jobs j for which ScaledGreedy assigns j to i when the predictions are
correct even though their predicted assignment is not i. When ScaledGreedy adds a job
j∗ to Ji∗ , it allows to set the scalars r(i, j∗) to r(i, j∗) = 1, for all machines i such that
p̂(i∗, j∗) ≤ p̂(i, j∗), while guaranteeing that job j∗ is assigned to i∗ when the predictions are
correct. The sets Ji are initially empty. To maintain a good consistency, we bound the total
predicted processing time of the jobs in a set Ji by γMS(p̂, x̂). I is the set of machines for
which this bound has not yet been violated, i.e., the machines i that are such that we can
still add jobs to Ji. I initially consists of all the machines. T is the set of pairs (i, j) such
that job j is a candidate to be added to Ji. A pair (i, j) is in T if (1) j has not yet been
assigned by ScaledGreedy to another machine, i.e., j ̸∈ ∪iJi, (2) the upper bound on
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the total predicted processing time of the jobs already in Ji has not yet been violated, i.e.,
i ∈ I, (3) j has a smaller processing time on i than on its predicted assignment ı̂j , and (4)
i is the machine with minimum predicted processing time p̂(i, j) among the machines in I.
At each iteration, job j∗ is added Ji∗ where (i∗, j∗) is the pair (i, j) with maximum p̂(ı̂j ,j)

p̂(i,j)
in T . For each job j, if there are multiple machines with minimum scaled processing time
r(i, j) · p(i, j), ties are broken in favor of, in order of priority, (1) machine ı̂j and, if there is
one, (2) the machine i′ such that j ∈ Ji′ , and (3) the machine with minimum index.

4.2 The analysis
We first analyze the mechanism’s consistency and robustness, and finally show it is strate-
gyproof. The following simple observation is used for both the consistency and the robustness
analyses.

▶ Observation 10. For every machine i ∈ N and job j ∈M , at every iteration of Scaled-
Greedy, we have r(i, j) ≥ 1 and, if p̂(i, j) ≥ p̂(̂ıj , j), r(i, j) = 1.

The consistency. As in the analysis of SimpleScaledGreedy, we assume that
Makespan-Min is an α-approximation algorithm for makespan minimization and let
Mi = {j ∈ M : x(i, j) = 1} and M̂i = {j ∈ M : x̂(i, j) = 1} be the sets of jobs j

such that j is assigned to machine i by ScaledGreedy and the predicted assignment,
respectively. To bound the total processing time of the jobs Mi assigned to a machine i,
we again separately bound the total processing time of Mi ∩ M̂i and Mi \ M̂i. The next
lemma, which bounds the total processing time of Mi ∩ M̂i when the predictions are correct,
is identical as Lemma 3 for SimpleScaledGreedy, and its proof is also identical to the
proof of Lemma 3.

▶ Lemma 11. Assume that p̂ = p, then, for all i ∈ N ,
∑

j∈Mi∩M̂i
p(i, j) ≤ αOPT(p).

Next, to bound the total processing time of Mi \ M̂i, we first characterize the jobs in
Mi \ M̂i as being exactly the jobs in Ji.

▶ Lemma 12. Assume that p̂ = p, then, for every machine i ∈ N , we have that Ji = Mi\M̂i.

Proof. Consider a machine i ∈ N and a job j ∈ Ji. We want to show that j ∈Mi \M̂i. Note
that since j ∈ Ji, we had (i, j) ∈ T at some iteration of the mechanism, which implies by
Line 14 that p̂(i, j) < p̂(̂ıj , j). Since p̂(i, j) < p̂(̂ıj , j), we have that i ̸= ı̂j . Since x̂(̂ıj , j) = 1
by definition of ı̂j , we have that x̂(i, j) = 0, which implies j ̸∈ M̂i.

Next, we show that j ∈Mi, which we show by proving that r(i, j)p(i, j) ≤ r(i′, j)p(i′, j) for
all i′ ̸∈ {i, ı̂j} and r(i, j)p(i, j) < r(̂ıj , j)p(̂ıj , j). There are two cases of machines i′ ̸∈ {i, ı̂j}.
The first case is if i′ is such that p̂(i′, j) < p̂(i, j), which is the main part of the proof. Since
p̂(i, j) < p̂(̂ıj , j) (which was shown earlier in this proof), we have p̂(i′, j) < p̂(̂ıj , j), so r(i′, j)
was initialized to r(i′, j) = p̂(ı̂j ,j)

p̂(i′,j) in line 4. For all i′′ ≠ i, we have that j ̸∈ Ji′′ since, by
line 14, (i′′, j) ̸∈ T if j ∈ Ji, which implies that j cannot be added to Ji′′ . Thus, the only
iteration of the mechanism where j⋆ = j is when i⋆ = i, and since p̂(i′, j) < p̂(i, j), this
implies that r(i′, j) is never updated in line 12. Together, with the fact that it was initialized
to r(i′, j) = p̂(ı̂j ,j)

p̂(i′,j) , we have that r(i′, j) = p̂(ı̂j ,j)
p̂(i′,j) when the mechanism terminated. Thus,

when p = p̂, we have

r(i, j)p(i, j) = 1 · p̂(i′, j) < p̂(̂ıj , j) = p̂(̂ıj , j)
p̂(i′, j) · p̂(i′, j) = r(i′, j)p(i′, j). (1)
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where the first equality is since r(i, j) = 1 (because j ∈ Ji). The second case of i′ ̸∈ {i, ı̂j} is
if i′ such that p̂(i′, j) ≥ p̂(i, j). In this case, we have that

p(i, j) · r(i, j) = p̂(i, j) ≤ p̂(i′, j) ≤ p(i′, j) · r(i′, j), (2)

where the last inequality is by Observation 10. Next, note that

p(i, j) · r(i, j) = p̂(i, j) < p̂(̂ıj , j) = p(̂ıj , j) · r(̂ıj , j), (3)

where the inequality is since, at some iteration of the mechanism, (i, j) ∈ T and the last
equality since r(̂ıj , j) = 1. Since we have shown that r(i, j)p(i, j) ≤ r(i′, j)p(i′, j) for all
i′ ̸∈ {i, ı̂j} and r(i, j)p(i, j) < r(̂ıj , j)p(̂ıj , j), we have that, by line 15 of the mechanism,
x(i, j) = 1, which implies that j ∈Mi. Since we have shown that j ̸∈ M̂i and j ∈Mi, we get
j ∈Mi \ M̂i.

It remains to show that if j ∈Mi\M̂i, then j ∈ Ji. Consider an arbitrary job j ∈ Mi\M̂i.
Since j ̸∈ M̂i, i ̸= ı̂j . Since j ∈Mi and i ̸= ı̂j , we have that

r(i, j)p(i, j) < r(̂ıj , j)p(̂ıj , j) = p(̂ıj , j)

where the inequality is by line 15 of the mechanism and the equality since r(̂ıj , j) = 1. Thus,
r(i, j) <

p(ı̂j ,j)
p(i,j) , which implies r(i, j) = 1. Thus there is some iteration of the mechanism

where j⋆ = j got added to Ji⋆ for some machine i⋆. Assume by contradiction that i∗ ̸= i, so
j ∈ Ji⋆ for i∗ ≠ i. Then, by the first part of this proof, we have that j ∈ Mi⋆ , which is a
contradiction with j ∈Mi. Thus, i∗ = i and j ∈ Ji. ◀

The next lemma bounds the total processing time of jobs in Mi \ M̂i by using the fact
that Ji = Mi \ M̂i and by bounding the total processing time of jobs in Ji.
▶ Lemma 13. For any input parameter γ ≥ 0, then, for every machine i ∈ N , if Ji = Mi\M̂i,
we have that

∑
j∈Mi\M̂i

p̂(i, j) < (1 + γ)αOPT(p̂).
Proof. Consider an arbitrary machine i and let j′ denote the last job added into Ji by the
mechanism. First observer that∑

j∈Mi\M̂i

p̂(i, j) =
∑
j∈Ji

p̂(i, j) =
∑

j∈Ji\{j′}

p̂(i, j)+ p̂(i, j′) < γMS(p̂, x̂)+ p̂(i, j′) < γMS(p̂, x̂)+ p̂(̂ıj′ , j′)

where the first inequality is by Line 13 and Line 14 of the mechanism, and the last inequality
is since j′ ∈ Ji. Next, we have

γMS(p̂, x̂) + p̂(̂ıj′ , j′) ≤ (1 + γ)MS(p̂, x̂) ≤ (1 + γ)αOPT(p̂)

where the first inequality is since the makespan of an assignment is at least the processing time
of a job j on a machine i, for any j assigned to i, the second inequality since Makespan-Min
is an α-approximation algorithm. ◀

By combining Lemma 11 to bound
∑

j∈Mi∩M̂i
p(i, j) and Lemma 13 to bound∑

j∈Mi\M̂i
p(i, j), the next lemma bounds

∑
j∈Mi

p(i, j) by (2 + γ)α for any machine i,
which implies that ScaledGreedy is (2 + γ)α-consistent.
▶ Lemma 14. For any input parameter γ ≥ 0, the ScaledGreedy mechanism is (2 + γ)α-
consistent.
Proof. Assume that p = p̂ and consider an arbitrary machine i, then we have Ji = Mi \ M̂i

by Lemma 12. Thus∑
j∈Mi

p(i, j) =
∑

j∈Mi∩M̂i

p(i, j) +
∑

j∈Mi\M̂i

p(i, j) ≤ αOPT(p) +(1+ γ)αOPT(p) = (2+ γ)αOPT,

where the inequality is by Lemma 11, Lemma 13 and the assumption that p = p̂. ◀
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The robustness. Recall that the main reason that SimpleScaledGreedy achieved
bounded robustness is thanks to the scalars being individually upper bounded by n. To
show that ScaledGreedy achieves linear robustness, we give a stronger upper bound on
the sum of the largest scalar on each machine. More precisely, in Lemma 17, we show that∑

i:maxj r(i,j)>1 maxj r(i, j) ≤ n
γ , which is the main lemma to show the linear robustness. To

prove Lemma 17, we first need two helper lemmas. The first is that for a fixed machine i,
the jobs added to Ji, i.e. the jobs j with scalars r(i, j) modified from p̂(ı̂j ,j)

p̂(i,j) to 1 are the jobs
with largest ratio p̂(ı̂j ,j)

p̂(i,j) .

▶ Lemma 15. For any machine i ∈ N , job j ∈ Ji, and job j′ ̸∈ Ji, if r(i, j′) > 1, then

p̂(̂ıj , j)
p̂(i, j) ≥

p̂(̂ıj′ , j′)
p̂(i, j′) .

Proof. Assume for contradiction that p̂(ı̂j′ ,j′)
p̂(i,j′) >

p̂(ı̂j ,j)
p̂(i,j) for some j ∈ Ji and j′ ̸∈ Ji such that

r(i, j′) > 1. Since j ∈ Ji, we have that (i, j) ∈ T at some iteration of the mechanism. We let
the iteration when j is added to Ji by the mechanism be t. First note that p̂(i, j′) < p̂(̂ıj′ , j′),
otherwise p̂(ı̂j′ ,j′)

p̂(i,j′) ≤ 1 <
p̂(ı̂j ,j)
p̂(i,j) (where the strict inequality is since j ∈ Ji), which is a

contradiction.
Since j was added to Ji at iteration t, we have i ∈ I at iteration t, which implies i ∈ I at

all iterations t′ ≤ t. There are two cases. If, at iteration t, j′ ∈ Ji′ for some machine i′, then
j′ was added to Ji′ at some iteration t′ < t. Thus, (i′, j′) ∈ T at iteration t′. By line 14,
this implies that p̂(i′, j′) ≤ p̂(i, j′) since i ∈ I at iteration t′. By line 12, j′ added to Ji′ and
p̂(i′, j′) ≤ p̂(i, j′) imply r(i, j′) = 1, which is a contradiction. Thus, at iteration t, j′ ̸∈ ∪i′Ji′ .

Since p̂(i, j′) < p̂(̂ıj′ , j′) and j′ ̸∈ ∪i′Ji′ , there exists machine i′ such that (i′, j′) ∈ T at
iteration t and such that p̂(̂ıj′ , j′) ≤ p̂(i, j′). We get that

p̂(̂ıj′ , j′)
p̂(i′, j′) ≥

p̂(̂ıj′ , j′)
p̂(i, j′) >

p̂(̂ıj , j)
p̂(i, j)

where the inequality is by the assumption of the proof. Since (i′, j′) ∈ T and p̂(ı̂j′ ,j′)
p̂(i′,j′) >

p̂(ı̂j ,j)
p̂(i,j) ,

we have that (i∗, j∗) ̸= (i, j) at iteration t, which is a contradiction with j that is added to
Ji at iteration t. ◀

The second helper lemma shows that if there is a job j with scalar r(i, j) > 1 with respect
to machine i, i.e. a scalar that the mechanism did not decrease to 1, then we have that∑

j′∈Ji
p̂(i, j′) ≥ γMS(p̂, x̂), i.e., the upper bound γMS(p̂, x̂) on the total processing time of

jobs in Ji has been violated. Informally, the scalar r(i, j) couldn’t be decreased to 1 because
Ji was already full.

▶ Lemma 16. For any γ > 0, when ScaledGreedy terminates, for any machine i, if there
is a job j such that r(i, j) > 1, then

∑
j′∈Ji

p̂(i, j′) ≥ γMS(p̂, x̂).

Proof. Assume for contradiction, that there exist a machine i with r(i, j′) > 1 for some
job j′ and

∑
j∈Ji

p̂(i, j) < γMS(p̂, x̂). In other words, i ∈ I throughout the execution of
the mechanism. Since ri,j′ > 1, we have p̂(i, j′) < p̂(̂ıj′ , j′), otherwise ri,j′ = 1 by line 4.
If, at the end of the execution of ScaledGreedy, j′ ∈ Ji′ for some machine i′, then j′

was added to Ji′ at some iteration t′. Thus, (i′, j′) ∈ T at iteration t′. By line 14, this
implies that p̂(i′, j′) ≤ p̂(i, j′) since i ∈ I at iteration t′. By line 12, j′ added to Ji′ and
p̂(i′, j′) ≤ p̂(i, j′) imply r(i, j′) = 1, which is a contradiction. Thus, when ScaledGreedy
terminates, j′ ̸∈ ∪i′Ji′ .
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Since p̂(i, j′) < p̂(̂ıj′ , j′) and j′ ̸∈ ∪i′Ji′ , either there exists machine i′ such that (i′, j′) ∈ T

at the end of the execution and such that p̂(̂ıj′ , j′) ≤ p̂(i, j′) or (i, j′) ∈ T . However, both
cases can’t happen since the mechanism only terminates when T is empty. ◀

The next lemma is the main lemma for the robustness analysis, it upper bounds the sum
of the largest scalars on each machine. To prove it, we use the two previous helper lemmas.

▶ Lemma 17. For any γ > 0, when ScaledGreedy terminates, we have that∑
i:maxj r(i,j)>1

max
j

r(i, j) ≤ n

γ
.

Proof. First note that the sets Ji for i ∈ N are disjoint, since once any j is added to Ji for
some machine i, j is no longer consider for T by line 14. We therefore have:

MS(p̂, x̂) = max
i

∑
j :̂ıj=i

p̂(̂ıj , j) ≥
∑

j p̂(̂ıj , j)
n

≥
∑

i:maxj r(i,j)>1
∑

j∈Ji
p̂(̂ıj , j)

n
, (4)

Where the first equation is by the definition of predicted machine, the first inequality is
because the maximum is weakly greater than the average, and the last inequality is due to
the fact that Ji and Ji′ are disjoint for any two distinct machines i, i′ ∈ N . By Lemma 15,
for any j ∈ Ji, we have

p̂(̂ıj , j) = p̂(i, j) · p̂(̂ıj , j)
p̂(i, j) ≥ p̂(i, j) ·max

j
r(i, j). (5)

Combining Inequalities (4) and (5) we get

MS(p̂, x̂) ≥
∑

i:maxj r(i,j)>1 maxj r(i, j)
∑

j∈Ji
p̂(i, j)

n
.

By Lemma 16 we know that for any machine i such that maxj r(i, j) > 1,
∑

j∈Ji
p̂(i, j) ≥

γMS(p̂, x̂). Substitute it in the equation above we get that:

MS(p̂, x̂) ≥
∑

i:maxj r(i,j)>1 maxj r(i, j) · γMS(p̂, x̂)
n

⇒
∑

i:maxj r(i,j)>1

max
j

r(i, j) ≤ n

γ
.◀

We are now ready to show the robustness of the algorithm.

▶ Lemma 18. For any γ > 0, ScaledGreedy is a mechanism that is (1 + 1
γ )n-robust.

Proof. First note that since OPT is the maximum finishing time of any machine in the optimal
schedule, and since the maximum is greater than the average we have:

OPT ≥
∑

j∈M p(i⋆
j , j)

n
. (6)

We now partition the set of jobs M into two subsets, let S∗ be the set of jobs j such that
r(i⋆

j , j) = 1 and M \ S∗ be the rest of the jobs j with r(i⋆
j , j) > 1.

For any job j ∈ S∗, let ij be the machine the mechanism assigns j on, i.e., x(ij , j) = 1.
we have

p(ij , j) ≤ r(i, j)p(ij , j) ≤ r(i⋆
j , j)p(i⋆

j , j) = p(i⋆
j , j), (7)
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where the first inequality is by Observation 10, the second inequality is by the fact that
x(ij , j) = 1 and the last equality is by definition of S∗. Combining Inequalities (6) and (7)
we get∑

j∈S∗

p(ij , j) ≤
∑

j∈S∗

p(i⋆
j , j) ≤

∑
j∈M

p(i⋆
j , j) ≤ n · OPT. (8)

Now consider any job j ∈M \S∗, first note that since r(i⋆
j , j) > 1, i⋆

j ∈ {i : maxj r(i, j) >

1}. Similarly as the analysis of S∗ we have

p(ij , j) ≤ r(i, j)p(ij , j) ≤ r(i⋆
j , j)p(i⋆

j , j) (9)

Now consider the optimal makespan OPT again, by the definition of optimal schedule, we
have:

OPT = max
i

∑
j:i⋆

j
=i

p(i⋆
j , j) ≥ max

i:maxj r(i,j)>1

∑
j:i⋆

j
=i

p(i⋆
j , j). (10)

Combining Inequalities (9) and (10), we get:∑
j∈M\S∗

p(ij , j) ≤
∑

j∈M\S∗

r(i⋆
j , j)p(i⋆

j , j) (by Inequality (9))

≤
∑

i:maxj r(i,j)>1

∑
j:i⋆

j
=i

r(i⋆
j , j)p(i⋆

j , j)

≤
∑

i:maxj r(i,j)>1

(max
j

r(i, j)) ·
∑

j:i⋆
j

=i

p(i⋆
j , j)

≤
∑

i:maxj r(i,j)>1

(max
j

r(i, j))OPT (by Inequality (10))

≤ n

γ
· OPT, (11)

where the last inequality is due to Lemma 17. Combining Inequalities (8) and (11) we get:

max
i

∑
j∈Mi

p(i, j) ≤
∑
j∈M

p(ij , j) ≤
∑

j∈S∗

p(ij , j) +
∑

j∈M\S∗

p(ij , j) ≤
(

1 + 1
γ

)
n · OPT. ◀

Strategyproofness.

▶ Lemma 19. ScaledGreedy is a strategyproof mechanism.

Proof. Consider a machine i ∈ N and a predicted assignment x̂. Consider two instances p
and p′ that differ only on machine i and the associated allocations x and x′ returned by
ScaledGreedy when the predicted assignment is x̂. Given a fixed predicted assignment x̂,
the mechanism is deterministic, so x(i, j) ∈ {0, 1} for all i ∈ N and j ∈M . Note that line 4
to 14 don’t use p, thus the scalars are, as for SimpleScaledGreedy, independent of p.
The remaining of the proof follows identically as the analysis of SimpleScaledGreedy
being strategyproof (Lemma 8) ◀

The main result for ScaledGreedy. Combining Lemmas 14, 18, and 19, we obtain the main
result for ScaledGreedy, which is that it is a strategyproof mechanism that, with input
parameter γ being any constant, achieves constant consistency and linear robustness.
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▶ Theorem 20. For any γ ∈
(
0, n

2 − 1
)
, ScaledGreedy is a strategyproof, (2 + γ)α-

consistent, and
(

1 + 1
γ

)
n-robust algorithm.

To obtain a polynomial-time algorithm, we can have α = 2 and a consistency of 4 + 2γ

with Makespan-Min being the 2-approximation algorithm for makespan minimization on
unrelated machines by Lenstra et al [21]. By ignoring running time consideration, we can
obtain α = 1 and a consistency of 2 + γ with Makespan-Min finding an optimal schedule.

5 The Error Tolerant Scaled Greedy Mechanism

In this section, we give a mechanism that builds on the mechanism from the previous
section and achieves a constant approximation not only when the predictions are accurate,
but also when the predictions are approximately accurate. Recall from Section 2 that,
given a prediction p̂ of the actual instance p, the prediction error η is the largest ratio
between the predicted processing time and actual processing time for any i, j pair, i.e.,
η = maxi∈M,j∈N max

{
p̂ij

pij
,

pij

p̂ij

}
. This mechanism takes as input an error tolerance parameter

η̄ > 0 and achieves an approximation of (2 + γ)αη2 if η ≤ η̄ and (1 + 1
γ )η̄2n otherwise, where,

similarly as in the previous section, γ is the prediction confidence parameter and α is the
approximation of the scheduling algorithm used in the mechanism.

The mechanism. ErrorTolerantScaledGreedy, formally described in Mechanism 3,
is similar to ScaledGreedy, but takes as input an additional parameter η̄ > 0 that is the
error tolerance of the mechanism. Recall from the previous section that if j ∈ Ji for some
machine i, then, when the predictions are correct, ScaledGreedy assigns j to machine i,
otherwise it assigns j to its predicted assignment ı̂j . ErrorTolerantScaledGreedy aims
to achieve this assignment not only when the predictions are correct, but also when they
are approximately correct, with one exception that is later discussed. In order to achieve
this assignment when the predictions are approximately correct, the mechanism sets the
scalars r(i, j) of pairs i, j such that job j that should be assigned to i to r(i, j) = 1

η̄2 in
lines 12 and 16. The exception previously mentioned is that it is not only the scalar of
j⋆ ∈ Ji⋆ that is updated to 1

η̄2 in line 12, but the scalars r(i, j⋆) for all machines i such that
p̂(i∗, j∗) ≤ p̂(i, j∗). The remainder of the mechanism is identical to ScaledGreedy.

The analysis. Note that mechanisms ScaledGreedy and ErrorTolerantScaled-
Greedy are identical except lines 12, 15 and 16. It is easy to verify that Lemma 15,
Lemma 16, and Lemma 17 for ScaledGreedy also hold for ErrorTolerantScaled-
Greedy. The Observation 10 also holds true for ErrorTolerantScaledGreedy for any
r(i, j) given that i ̸= ı̂j and j /∈ Ji. We first show that the characterization of the jobs in Ji

as Ji = Mi \ M̂i for ScaledGreedy when the predictions are accurate now also holds for
ErrorTolerantScaledGreedy when the error is bounded by the error tolerance, i.e.,
η(p, p̂) ≤ η̄.

▶ Lemma 21. Given any prediction p̂ and actual instance p, if η(p, p̂) ≤ η̄, then, for every
machine i ∈ N , we have Ji = Mi \ M̂i.

Proof. By Inequality (1), (2) and (3) from the proof of Lemma 12 we know that if j ∈ Ji

for some machine i′, p̂(i′, j) ≤ p̂(i, j) · r(i, j) for any i, j pair. By line 12 of the mechanism
and the fact that the mechanism did not modify r(i, j) for any other machine i /∈ {i′, ı̂j}, we
have for any i /∈ {i′, ı̂j}:
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Mechanism 3 ErrorTolerantScaledGreedy.

1 Input: instance p ∈ Rn×m, predicted instance p̂ ∈ Rn×m, scheduling algorithm
Makespan-Min, prediction confidence parameter γ ∈ (0, n

2 − 1), error tolerance
parameter η̄ > 0

2 x̂←Makespan-Min(p̂)
3 ı̂j ← the machine i that job j is assigned to according to x̂, i.e., x̂(̂ıj , j) = 1, for each

j ∈M

4 r(i, j)← max
(

p̂(ı̂j ,j)
p̂(i,j) , 1

)
for each (i, j) ∈ N ×M

5 Ji ← ∅ for all i ∈ N

6 I ← N

7 T ← {(i, j) : j ∈M, i = arg mini′∈I:p̂(i′,j)<p̂(ı̂j ,j) p̂(i′, j)}
8 while T is not empty do
9 (i∗, j∗)← arg max(i,j)∈T

p̂(ı̂j ,j)
p̂(i,j)

10 Ji∗ ← Ji∗ ∪ {j∗}
11 for all i s.t. p̂(i∗, j∗) ≤ p̂(i, j∗) do
12 update r(i, j∗)← 1

η̄2

13 I ← {i ∈ N :
∑

j∈Ji
p̂(i, j) < γMS(p̂, x̂)}

14 T ← {(i, j) : j ∈M \ (∪iJi), i = arg mini′∈I:p̂(i′,j)<p̂(ı̂j ,j) p̂(i′, j)}
15 for all jobs j s.t j /∈ ∪i∈N Ji do
16 update r(̂ıj , j)← 1

η̄2

17 ij ← arg mini r(i, j) · p(i, j), break ties in favor of ı̂j first and i′ if j ∈ Ji′ second, for
each j ∈M

18 if i = ij then x(i, j) = 1 else x(i, j) = 0, for each (i, j) ∈ N ×M

19 return x

p(i′, j) · r(i′, j) ≤ ηp̂(i′, j) · r(i′, j) = ηp̂(i′, j) · 1/η̄2 = p̂(i′, j) η

η̄2 ≤ p̂(i′, j) · 1/η̄

≤ p̂(i, j) · r(i, j) · 1/η̄ ≤ p(i, j) · r(i, j) · η

η̄
≤ p(i, j) · r(i, j),

Where the first inequality is by the definition of η, the second inequality is due to η ≤ η̄, the
third inequality is since r(i, j) ≥ 1 by Observation 10, and the forth inequality is again by
the definition of η. We also have:

p(i′j) · r(i′, j) = p̂(i, j) · 1
η̄2 < p̂(̂ıj , j) · 1

η̄2 = p(̂ıj , j) · r(̂ıj , j)

Since p(i′, j)·r(i′, j) ≤ p(i, j)·r(i, j) and p(i′j)·r(i′, j) < p(̂ıj , j)·r(̂ıj , j), by line 17, we have
that x(i′, j) = 1 in ErrorTolerantScaledGreedy. Following a similar argument we get
for any job j such that j /∈ ∪i∈N Ji, we have x(̂ıj , j) = 1 in ErrorTolerantScaledGreedy.

◀

Given that Ji = Mi \ M̂i, we have Lemma 13 holds true. The approximation obtained
by ErrorTolerantScaledGreedy when the error is within the error tolerance is (2 +
γ)αη2. The analysis of this approximation is similar to the analysis of the consistency of
ScaledGreedy.
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▶ Lemma 22. Given an error tolerance bound η̄, and an actual error η, the approximation
ratio of mechanism ErrorTolerantScaledGreedy is (2 + γ)αη2 if η ≤ η̄.

Proof. By Lemma 21, when η(p, p̂) ≤ η̄, the assignment x returned by the mechanism over
input (p, p̂, Makespan-Min, γ, η̄) is identical to the assignment returned by ScaledGreedy
over input (p, p, Makespan-Min, γ). By Lemma 13 we have for any machine i∑

j∈Mi

p̂(i, j) · x(i, j) =
∑

j∈Mi∩M̂i

p̂(i, j) +
∑

j∈Mi\M̂i

p̂(i, j)

=
∑

j∈Mi∩M̂i

p̂(i, j) +
∑
j∈Ji

p̂(i, j) (by Lemma 21)

≤MS(p̂, x̂) + (1 + γ)MS(p̂, x̂) (by Lemma 13)
≤(2 + γ)MS(p̂, x̂)
≤(2 + γ)αMS(p̂, x̂⋆). (12)

where x̂⋆ is optimal schedule for the predicted instance and the last inequality is by the fact
that Makespan-Min is a α-approximation algorithm. Let x⋆ be the optimal schedule for
the the actual instance p, we have:

MS(p̂, x̂⋆) ≤ MS(p̂, x⋆).

Now again given the definition of error η we have:

MS(p̂, x̂⋆) ≤ MS(p̂, x⋆) = max
i

∑
j∈M

p̂(i, j) · x⋆(i, j) ≤ max
i

∑
j∈M

η · p(i, j) · x⋆(i, j) = η · OPT.

(13)

Combining Inequalities (12) and (13) we get:

max
i

∑
j∈M

p(i, j) ·x(i, j) ≤ max
i

∑
j∈M

ηp̂(i, j) ·x(i, j) ≤ (2+γ)αηMS(p̂, x̂⋆) ≤ (2+γ)αη2OPT.◀

The approximation obtained by ErrorTolerantScaledGreedy when the error is not
within the error tolerance is (1 + 1

γ )η̄2n. The analysis of this approximation is similar to the
analysis of the robustness of ScaledGreedy.

▶ Lemma 23. Given an error tolerance bound η̄, the approximation ratio of mechanism
ErrorTolerantScaledGreedy is (1 + 1

γ )η̄2n.

Proof. We again partition the set of jobs M into two subset, let S∗ be the set of jobs j such
that r(i⋆

j , j) ≤ 1 and M \ S∗ be the rest of the jobs j with r(i⋆
j , j) > 1. Since ErrorTol-

erantScaledGreedy only modify some scalar to 1
η̄2 , combining with Observation 10 we

have: r(i, j) ≥ 1
η̄2 for any i, j. Next,

1
η̄2 p(ij , j) ≤ r(i, j)p(ij , j) ≤ r(i⋆

j , j)p(i⋆
j , j) ≤ p(i⋆

j , j), (14)

where the second inequality is by the fact that x(ij , j) = 1, and the last equality is by
definition of S∗. We get that∑

j∈S∗

p(ij , j) ≤ η̄2
∑

j∈S∗

p(i⋆
j , j) ≤ η̄2

∑
j∈M

p(i⋆
j , j) ≤ η̄2n · OPT. (15)
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where the first inequality is by Equation (14) and the last inequality is by Inequality (6)
from Lemma 18. Now consider any job j ∈M \ S∗. Similarly as the analysis of S∗ we have

1
η̄2 p(ij , j) ≤ r(i, j)p(ij , j) ≤ r(i⋆

j , j)p(i⋆
j , j).

Next, we have:∑
j∈M\S∗

p(ij , j) ≤ η̄2
∑

j∈M\S∗

r(i⋆
j , j)p(i⋆

j , j) ≤ η̄2 n

γ
· OPT, (16)

where the second inequality is by Inequality (11). Combining (15) and (16) we get:

max
i

∑
j∈Mi

p(i, j) ≤
∑
j∈M

p(ij , j) ≤
∑

j∈S∗

p(ij , j) +
∑

j∈M\S∗

p(ij , j) ≤
(

1 + 1
γ

)
η̄2n · OPT. ◀

The proof for the strategyproofness ErrorTolerantScaledGreedy is identical as the
proof for the strategyproofness of ScaledGreedy(Lemma 19). Together with Lemma 22
and Lemma 23, we get the main result for ErrorTolerantScaledGreedy.

▶ Theorem 24. For any γ ∈
(
0, n

2 − 1
)

and error tolerance bound η̄ > 0, ErrorTol-
erantScaledGreedy is a strategyproof mechanism that achieves an approximation of
(2 + γ)αη2 if η ≤ η̄ and

(
1 + 1

γ

)
η̄2n otherwise, where η is the prediction error.

Thus, with any constants γ, η̄, and with Makespan-Min being the 2-approximation
scheduling algorithm from [21], we obtain a polynomial-time mechanism that achieves an O(1)-
approximation when the prediction error η is such that η ≤ η̄, and an O(n)-approximation
otherwise.

6 Perfect Consistency Implies Unbounded Robustness

Recall that every strategyproof scheduling mechanism must be monotone. Below is a very
useful lemma that comes immediately from the monotonicity property and is used in most of
the lower bound proofs.

▶ Lemma 25 ([12]). Consider instances p and p′ and let x and x′ be the allocation produced
by a strategyproof scheduling mechanism for the given two instances, respectively. If p and
p̂ only differs in the processing time of machine i in such a way that p′(i, j) > p(i, j) when
x(i, j) = 0, and p′(i, j) < p(i, j) when x(i, j) = 1, then x′ = x.

▶ Theorem 26. No deterministic strategyproof scheduling mechanism with 1-consistency can
achieve any bounded robustness.

Proof. Consider the the predicted instance p̂ instance with 2 machines and 2 jobs, and the
processing time as in the table on the left of Figure 1. Consider an actual instance that is
the same as the prediction, i.e., p = p̂.

By 1-consistency, the mechanism needs to output x11 = x22 = 1 (the allocation is marked
with ⋆). Now consider another instance p′ represent by table on the right of Figure 1
and consider machine 1, since p′(1, 1) < p(1, 1)and x(1, 1) = 1 and p′(1, 2) > p(1, 2) and
x(1, 2) = 1, by Lemma 25, any truthful mechanism needs to output x′(1, 1) = x(1, 1) = 1
and x′(1, 2) = x(1, 2) = 0, resulting a makespan at lest K. Since the optimal makespan of p′

is 1 + ϵ by assigning both jobs to machine 1, it means the robustness of any strategyproof
mechanism is at most K. Since K can be arbitrarily large, the robustness is therefore
unbounded. ◀
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m\j 1 2
1 K⋆ 1
2 ∞ K⋆

→
m\j 1 2

1 0⋆ 1 + ϵ

2 ∞ K⋆

Figure 1 The predicted (on the left) and actual (on the right) instances showing any deterministic
1-consistent mechanism suffers unbounded robustness.
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A Missing Analysis from Section 3

▶ Lemma 7. SimpleScaledGreedy is a mechanism that is Θ(n2)-robust.

Proof. We first show that the robustness is at most n2. Consider an instance p, an optimal
assignment x⋆ for p, a job j, and a machine i such that j ∈Mi. Let i⋆

j be the machine that
j is assigned to according to x⋆. By the mechanism, we have 1 ≤ r(i′, j) ≤ n for all machines
i′. We therefore have:

p(i, j) ≤ r(i, j) · p(i, j) ≤ r(i⋆
j , j) · p(i⋆

j , j) ≤ n · p(i⋆
j , j),

where the second inequality is by line 5 and the fact that j is assigned to i. We get that

MS(p, x) = max
i∈N

∑
j∈Mi

p(i, j) ≤
∑
i∈N

∑
j∈Mi

p(i, j) ≤ n
∑
i∈N

∑
j∈Mi

p(i⋆
j , j) ≤ n2 max

i∈N

∑
j∈Mi

p(i⋆
j , j) = n2OPT.

Consider the predicted instance in Figure 2 (a).

m\j 1 2 . . . n − 1 n n + 1 . . . 2n − 2
1 1 n(n − 1)
2 1 n(n − 1)

. . . 1 n(n − 1)
n − 1 1 n(n − 1)

n n n n n

(a)

m\j 1 2 . . . n − 1 n n + 1 . . . 2n − 2
1 1 + ϵ 0 0 0 0
2 1 + ϵ 0 0 0 0

. . . 1 + ϵ 0 0 0 0
n − 1 1 + ϵ 0 0 0 0

n n n n n

(b)

Figure 2 (a) Predicted instance p̂, empty entry means p̂(i, j) = ∞. (b) Actual instance p, empty
entry means p(i, j) = ∞.

Assume that Makespan-Min computes the optimal makespan for the predicted instance.
We have x̂(n, i) = 1 for i ∈ [1, n − 1]. Then the mechanism would set r(i, i) = 1

n for any
i ∈ [1, n− 1]. Now consider the actual instance in Figure 2(b), note that for any i ∈ [1, n− 1],
we have:

r(i, i) · p(i, i) = n · (1 + ϵ) > n = r(n, i) · r(n, i).

Since machine n has a lower scaled processing time for job i ∈ [1, n], the mechanism would
assign all such jobs to machine n, leading to a makespan of n(n− 1), whereas the optimal
makespan is 1 + ϵ. ◀
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Abstract
Consider an agent exploring an unknown graph in search of some goal state. As it walks around the
graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when
it reaches it. How do we reach this goal while moving only a small distance? This problem seems
hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with
“help” often arises in exploring large search spaces (e.g., huge game trees) where we assume access to
some score/quality function for each node, which we use to guide us towards the goal. In our case,
we assume the help comes in the form of distance predictions: each node v provides a prediction
f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the
goal along a shortest path. What if the predictions are unreliable and some of them are erroneous?
Can we get an algorithm whose performance relates to the error of the predictions?

In this work, we consider the problem on trees and give deterministic algorithms whose total
movement cost is only O(OP T + ∆ · ERR), where OP T is the distance from the start to the goal
vertex, ∆ the maximum degree, and the ERR is the total number of vertices whose predictions
are erroneous. We show this guarantee is optimal. We then consider a “planning” version of the
problem where the graph and predictions are known at the beginning, so the agent can use this
global information to devise a search strategy of low cost. For this planning version, we go beyond
trees and give an algorithms which gets good performance on (weighted) graphs with bounded
doubling dimension.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Algorithms with predictions, network algorithms, graph search

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.12

Funding The authors gratefully acknowledge funding received from the following sources:
Siddhartha Banerjee: NSF: ECCS-1847393, CNS-1955997, ARO: W911NF-19-0217.
Anupam Gupta: NSF awards CCF-1955785, CCF-2006953, and CCF-2224718.

Acknowledgements Part of this work was done when SB and AG were visitors to the Data-Driven
Decision Making program at the Simons Institute for Theoretical Computing in Berkeley.

1 Introduction

Consider an agent (say a robot) traversing an environment modeled as an undirected graph
G = (V, E). It starts off at some root vertex r, and commences looking for a goal vertex
g. However, the location of this goal is initially unknown to the agent, who gets to know
it only when it visits vertex g. So the agent starts exploring from r, visits various vertices
r = v0, v1, · · · , vt, · · · in G one by one, until it reaches g. The cost it incurs at timestep t is
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the distance it travels to get from vt−1 to vt. How can the agent minimize the total cost?
This framework is very general, capturing not only problems in robotic exploration, but also
general questions related to game tree search: how to reach a goal state with the least effort?

Since this is a question about optimization under uncertainty, we use the notion of
competitive analysis: we relate the cost incurred by the algorithm on an instance to the
optimal cost incurred in hindsight. The latter is just the distance D := d(r, g) between the
start and goal vertices. Sadly, a little thought tells us that this problem has very pessimistic
guarantees in the absence of any further constraints. For example, even if the graph is known
to be a complete binary tree and the goal is known to be at some distance D from the
root, the adversary can force any algorithm to incur an expected cost of Ω(2D). Therefore
the competitiveness is unbounded as D gets large. This is why previous works in online
algorithms enforced topological constraints on the graph, such as restricting the graph to be
a path, or k paths meeting at the root, or a grid [3].

But in many cases (such as in game-tree search) we want to solve this problem for broader
classes of graphs – say for complete binary trees (which were the bad example above), or even
more general settings. The redeeming feature in these settings is that we are not searching
blindly: the nodes of the graph come with estimates of their quality, which we can use to
search effectively. What are good algorithms in such settings? What can we prove about
them?

In this paper we formalize these questions via the idea of distance predictions: each node
v gives a prediction f(v) of its distance dG(v, g) to the goal state. If these predictions are
all correct, we can just “walk downhill” – i.e., starting with v0 being the start node, we can
move at each timestep t to a neighbor vt of vt−1 with f(vt) = f(vt−1)− 1. This reaches the
goal along a shortest path. However, getting perfect predictions seems unreasonable, so we
ask:

What if a few of the predictions are incorrect? Can we achieve an “input-sensitive” or
“smooth” or “robust” bound, where we incur a cost of d(g, r)+ some function of the
prediction error?

We consider two versions of the problem:

The Exploration Problem. In this setting the graph G is initially unknown to the agent: it
only knows the vertex v0 = r, its neighbors ∂v0, and the predictions on all these nodes.
In general, at the beginning of time t ≥ 1, it knows the vertices Vt−1 = {v0, v1, · · · , vt−1}
visited in the past, all their neighboring vertices ∂Vt−1, and the predictions for all the
vertices in Vt−1 ∪ ∂Vt−1. The agent must use this information to move to some unvisited
neighbor (which is now called vt), paying a cost of d(vt−1, vt). It then observes the edges
incident to vt, along with the predictions for nodes newly observed.

The Planning Problem. This is a simpler version of the problem where the agent starts off
knowing the entire graph G, as well as the predictions at all its nodes. It just does not
know which node is the goal, and hence it must traverse the graph in some order.

The cost in both cases is the total distance traveled by the agent until it reaches the goal,
and the competitive ratio is the ratio of this quantity to the shortest path distance d(r, g)
from the root to the goal.
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1.1 Our Results
Our first main result is for the (more challenging) exploration problem, for the case of trees.

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-
tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum
degree ∆, for any constant δ > 0, the algorithm incurs a cost of

d(r, g)(1 + δ) + O(∆ · |E|/δ),

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.

One application of the above theorem is for the layered graph traversal problem (see §1.3
for a complete definition).

▶ Corollary 2 (Robustness and Consistency for the Layered Graph Traversal problem.). There ex-
ists an algorithm that achieves the following guarantees for the layered graph traversal problem
in the presence of predictions: given an instance with maximum degree ∆ and width k, for any
constant δ > 0, the algorithm incurs an expected cost of at most min(O(k2 log ∆) OPT, OPT +
O(∆|E|)).

The proof of the above corollary is immediate: Since the input is a tree (with some
additional structure that we do not require) that is revealed online, we can use the algorithm
from Theorem 1. Hence, given an instance I of layered graph traversal (with predictions),
we can use the algorithm from Theorem 1 in combination with the [8], thereby being both
consistent and robust: if the predictions are of high quality, then our algorithm ensures that
the cost will be nearly optimal; otherwise if the predictions are useless, [8]’s algorithm gives
an upper bound in the worst case.

Moreover, we show that the guarantee obtained in Theorem 1 is the best possible, up to
constants.

▶ Theorem 3 (Exploration Lower Bound). Any algorithm (even randomized) for the graph
exploration problem with predictions must incur a cost of at least max(d(r, g), Ω(∆ · |E|)).

Proof. The lower bound of d(r, g) is immediate. For the second term, consider the setting
where the root r has ∆ disjoint paths of length D leaving it, and the goal is guaranteed
to be at one of the leaves. Suppose we are given the “null” prediction, where each vertex
predicts f(v) = D + ℓ(v) (where ℓ(v) is the distance of the vertex from the root, which we
henceforth refer to as the level of the vertex). The erroneous vertices are the D vertices
along the r-g path. Since the predictions do not give any signal at all (they can be generated
by the algorithm itself), this is a problem of guessing which of the leaves is the goal, and any
algorithm, even randomized, must travel Ω(∆ ·D) = Ω(∆ · |E|) before reaching the goal. ◀

Our next set of results are for the planning problem, where we know the graph and the
predictions up-front, and must come up with a strategy with this global information.

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is
an algorithm that incurs cost at most

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.
(ii) d(r, g) + 2O(α) ·O(|E|2) where α is the doubling dimension of G.

Again, E is the set of nodes with incorrect predictions.

ITCS 2023
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Note that result (i) is very similar to that of Theorem 1 (for the harder exploration
problem): the differences are that we do not lose any constant in the distance d(r, g) term,
and also that the algorithm used here (for the planning problem) is simpler. Moreover, the
lower bound from Theorem 3 continues to hold in the planning setting, since the knowledge
of the graph and the predictions does not help the algorithm; hence result (i) is tight.

We do not yet know an analog of result (ii) for the exploration problem: extending
Theorem 1 to general graphs, even those with bounded doubling metrics remains a tantalizing
open problem. Moreover, we currently do not have a lower bound matching result (ii); indeed,
we conjecture that a cost of d(r, g) + 2O(α) · |E| should be achievable. We leave these as
questions for future investigation.

1.2 Our Techniques
To get some intuition for the problem, consider the case where given a tree and a guarantee
that the goal is at distance D from the start node r. Suppose each node v gives the “null”
prediction of f(v) = D + d(r, v). In case the tree is a complete binary tree, then these
predictions carry no information and we would have to essentially explore all nodes within
distance D. But note that the predictions for about half of these nodes are incorrect, so
these erroneous nodes can pay for this exploration. But now consider a “lopsided” example,
with a binary tree on one side of the root, and a path on the other (Figure 1). Suppose the
goal is at distance D along the path. In this case, only the path nodes are incorrect, and we
only have O(D + |E|) = O(D) budget for the exploration. In particular, we must explore
more aggressively along the path, and balance the exploration on both sides of the root. But
such gadgets can be anywhere in the tree, and the predictions can be far more devious than
the null-prediction, so we need to generalize this idea.

r

a

b

g

Figure 1 The subtree rooted on r’s child a is a complete binary tree, while the subtree rooted on
b is a path to the goal g. “Null” predictions f(v) = D + d(r, v) at every v have a total error D (only
nodes on the path from r to g have errors on predictions).

We start off with a special case which we call the known-distance case. This is almost
the same as the general problem, but with the additional guarantee that the prediction of
the root is correct. Equivalently, we are given the distance D := d(r, g) of the goal vertex
from the root/starting node r. For this setting, we can get the following very sharp result:

▶ Theorem 5 (Known-Distance Case). The TreeX-KnownDist algorithm solves the graph
exploration problem in the known-distance case, incurring a cost of at most d(r, g) + O(∆|E|).

Hence in the zero-error case, or in low-error cases where |E| ≪ D, the algorithm loses
very little compared to the optimal-in-hindsight strategy, which just walks from the root to
the goal vertex, and incurs a cost of D. This algorithm is inspired by the “lopsided” example
above: it not only balances the exploration on different subtrees, but also at multiple levels.
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To generalize this idea from predictions, we introduce the concepts of anchor and loads (see
§2). At a high level, for each node we consider the subtrees rooted at its children, and identify
subset of nodes in each of these subtrees which are erroneous depending on which subtree
contains the goal g. We ensure that these sets have near-equal sizes, so that no matter which
of these subtrees contains the goal, one of them can pay for the others. This requires some
delicacy, since we need to ensure this property throughout the tree. The details appear in §3.

Having proved Theorem 5, we use the algorithm to then solve the problem where the
prediction for the root vertex may itself be erroneous. Given Theorem 5 and Algorithm 1,
we can reduced the problem to finding some node v such that d(v, g) is known; moreover
this v must not be very far from the start node r. The idea is conceptually simple: as
we explore the graph, if most predictions are correct we can use these predictions to find
such a v, otherwise these incorrect predictions give us more budget to continue exploring.
Implementing this idea (and particularly, doing this deterministically) requires us to figure
out how to “triangulate” with errors, which we do in §4.

Finally, we give the ideas behind the algorithms for the planning version of the problem.
The main idea is to define the implied-error function φ(v) := |{u | f(u) ̸= d(u, v)}|, which
measures the error if the goal is sitting at node v. Since we know all the predictions and the
tree structure in this version of the problem, and moreover ϕ(g) = |E|, it is natural to search
the graph greedily in increasing order of the implied-error. However, naively doing this may
induce a large movement cost, so we bucket nodes with similar implied-error together, and
then show that the total cost incurred in exploring all nodes with φ(v) ≈ 2i is itself close
to 2i (times a factor that depends on the degree or the doubling dimension). It remains an
interesting open problem to extend this algorithm to broader classes of graphs. The details
here appear in §5.

1.3 Related Work
Graph Searching. Graph searching is a fundamental problem, and there are too many
variants to comprehensively discuss: we point to the works closest to ours. Baeza-Yates,
Culberson, and Rawlins [3] considered the exploration problem without predictions on the
line (where it is also called the “cow-path” problem), on k-spiders (i.e., where k semi-infinite
lines meet at the root) and in the plane: they showed tight bounds of 9 on the deterministic
competitive ratio of the line, 1 + 2kk/(k − 1)k−1 for k-spiders, among other results. Their
lower bounds (given for “monotone-increasing strategies”) were generalized by Jaillet and
Stafford [23]; [24] point out that the results for k-spiders were obtained by Gal [18] before [3]
(see also [1]). Kao et al. [29, 28] give tight bounds for both deterministic and randomized
algorithms, even with multiple agents.

The layered graph traversal problem [42] is very closely related to our model. A tree is
revealed over time. At each timestep, some of the leaves of the current tree die, and others
have some number of children. The agent is required to sit at one of the current (living)
leaves, so if the node the agent previously sat is no longer a leaf or is dead, the agent is forced
to move. The game ends when the goal state is revealed and objective is to minimize the
total movement cost. The width k of the problem is the largest number of leaves alive at any
time (observe that we do not parameterize our algorithm with this parameter). This problem
is essentially the cow-path problem for the case of w = 2, but is substantially more difficult
for larger widths. Indeed, the deterministic bounds lie between Ω(2k) [17] and O(k2k) [9].
Ramesh [44] showed that the randomized version of this problem has a competitive ratio
at least Ω(k2/(log k)1+ε) for any ε > 0; moreover, his O(k13)-competitive algorithm was
improved to a nearly-tight bound of O(k2 log ∆) in recent exciting result by Bubeck, Coester,
and Rabani [8].
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Kalyanasundaram and Pruhs [26] study the exploration problem (which they call the
searching problem) in the geometric setting of k polygonal obstacles with bounded aspect ratio
in the plane. Some of their results extend to the mapping problem, where they must determine
the locations of all obstacles. Deng and Papadimitriou [12] study the mapping problem,
where the goal is to traverse all edges of an unknown directed graph: they give an algorithm
with cost 2|E| for Eulerian graphs (whereas OPT = |E|), and cost exp(O(d log d))|E| for
graphs with imbalance at most d. Deng, Kameda, and Papadimitriou [11] give an algorithm
to map two-dimensional rectilinear, polygonal environments with a bounded number of
obstacles.

Kalyanasundaram and Pruhs [27] consider a different version of the mapping problem,
where the goal is to visit all vertices of an unknown graph using a tour of least cost. They
give an algorithm that is O(1)-competitive on planar graphs. Megow et al. [37] extend
their algorithm to graphs with bounded genus, and also show limitations of the algorithm
from [27].

Blum, Raghavan and Schieber [6] study the point-to-point navigation problem of finding
a minimum-length path between two known locations s and t in a rectilinear environment;
the obstacles are unknown axis-parallel rectangles. Their O(

√
n)-competitiveness is best

possible given the lower bound in [42]. [30] give lower bounds for randomized algorithms in
this setting.

Our work is related in spirit to graph search algorithms like A∗-search which use score
functions to choose the next leaf to explore. One line of work giving provably good algorithms
is that of Goldberg and Harrelson [19] on computing shortest paths without exploring the
entire graph. Another line of work related in spirit to ours is that of Karp, Saks, and
Wigderson [31] on branch-and-bound (see also [32]).

Noisy Binary Search. A very closely related line of work is that of computing under noisy
queries [16]. In this widely-used model, the agent can query nodes: each node “points” to a
neighbor that is closer to the goal, though some of these answers may be incorrect. Some
of these works include [41, 40, 15, 10, 13, 7]. Apart from the difference in the information
model (these works imagine knowing the entire graph) and the nature of hints (“gradient”
information pointing to a better node, instead of information about the quality/score of the
node), these works often assume the errors are independent, or adversarial with bounded
noise rate. Most of these works allow random-access to nodes and seek to minimize the
number of queries instead of the distance traveled, though an exception is the work of [7].
As far as we can see, the connections between our models is only in spirit. Moreover, we
show in §A.3 that results of the kind we prove are impossible if the predictions don’t give us
distance information but instead just edge “gradients”.

Algorithms with Predictions. Our work is related to the exciting line of research on
algorithms with predictions, such as in ad-allocation [35], auction pricing [36], page mi-
gration [22], flow allocation [34], scheduling [43, 33, 39], frequency estimation [21], speed
scaling [4], Bloom filters [38], bipartite matching and secretary problems [2, 14], and online
linear optimization [5].

2 Problem Setup and Definitions

We consider an underlying graph G = (V, E) with a known root node r and an unknown
goal node g. (For most of this paper, we consider the unweighted setting where all edge have
unit length; §5.3 and §A.2 discuss cases where edge lengths are positive integers.) Each node
has degree at most ∆. Let d(u, v) denote the distance between nodes u, v for any u, v ∈ V ,
and let D := d(r, g) be the optimal distance from r to the goal node g.
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Vt

∂Vt

Figure 2 The observed vertices Vt ∪ ∂Vt (and extended subtree T
t := T [Vt ∪ ∂Vt]) at some

intermediate stage of the algorithm. Visited nodes Vt are shown in red, and their un-visited
neighbors ∂Vt in blue.

Let us formally define the problem setup. An agent initially starts at root r, and wants to
visit goal g while traversing the minimum number of edges. In each timestep t ∈ {1, 2, . . .},
the agent moves from some node vt−1 to node vt. We denote the visited vertices at the start
of round t by Vt−1 (with V0 = {r}), and use ∂Vt−1 to denote the neighboring vertices – those
not in Vt−1 but having at least one neighbor in Vt−1. Their union Vt−1 ∪ ∂Vt−1 is the set of
observed vertices at the end of time t− 1. Each time t the agent visits a new node vt such
that Vt := Vt−1 ∪ {vt}, and it pays the movement cost d(vt−1, vt), where v0 = r. Finally,
when vt = g and the agent has reached the goal, the algorithm stops. The identity of the
goal vertex is known when – and only when – the agent visits it, and we let τ∗ denote this
timestep. Our aim is to design an algorithm that reaches the goal state with minimum total
movement cost:

τ∗∑
t=1

dt−1(vt−1, vt).

Within the above setting, we consider two problems:
In the planning problem, the agent knows the graph G (though not the goal g), and in
addition, is given a prediction f(v) ∈ Z for each v ∈ V of its distance to the goal g; it
can then use this information to plan its search trajectory.
In the exploration problem, the graph G and the predictions f(v) ∈ Z are initially
unknown to the agent, and these are revealed only via exploration; in particular, upon
visiting a node for the first time, the agent becomes aware of previously unobserved nodes
in v’s neighborhood. Thus, at the end of timestep t, the agent knows the set of visited
vertices Vt, neighboring vertices ∂Vt, and the predictions f(v) for each observed vertex
v ∈ Vt ∪ ∂Vt.

In both cases, we define E := {v ∈ V | f(v) ̸= d(g, v)} to be the set of erroneous nodes.
Extending this notation, for the exploration problem, we define Et := E ∩ Vt as the erroneous
nodes visited by time t.

3 Exploring with a Known Target Distance

Recall that our algorithm for the exploration problem on trees proceeds via the known-
distance version of the problem: in addition to seeing the predictions at the various nodes as
we explore the tree, we are promised that the distance from the starting node/root r to the
goal state g is is exactly some value D, i.e., d(r, g) = D. The main result of this section is
Theorem 5, and we restate a rigorous version here.

▶ Theorem 6. If D = d(r, g), the algorithm TreeX-KnownDist(r, D, +∞) finds the goal
node g incurring a cost of at most d(r, g) + O(∆|E|).

ITCS 2023



12:8 Graph Searching with Predictions

Algorithm TreeX-KnownDist is stated in Algorithm 1. For better understanding of it,
we first give some key definitions.

3.1 Definitions: Anchors, Degeneracy, and Criticality
For an unweighted tree T , we define the level of node v with respect to the root r to be
ℓ(v) := d(r, v), and so level L denotes the set of nodes v such that d(r, v) = ℓ(v) = L.
Since the tree is rooted, there are clearly defined notions of parent and child, ancestor and
descendent. Each node is both an ancestor and a descendant of itself. For any node v, let
Tv denote the subtree rooted at v. Extending this notation, we define the visited subtree
T t := T [Vt], and the extended subtree T

t := T [Vt ∪ ∂Vt], and let T t
v and T

t

v be the subtrees
of T t and T

t rooted at v.

▶ Definition 7 (Active and Degenerate nodes). In the exploration setting, at the end of
timestep t, a node v ∈ Vt ∪ ∂Vt is active if T t

v ̸= T
t

v, i.e., there are observed descendants of v

(including itself) that have not been visited.
An active node v ∈ Vt ∪ ∂Vt is degenerate at the end of timestep t if it has a unique child
node in T

t that is active.

In other words, all nodes which have un-visited descendants (including those in the
frontier ∂Vt) are active. Active nodes are further partitioned into degenerate nodes that have
exactly one child subtree that has not been fully visited, and active nodes that have at least
two active children. See Figure 3 for an illustration.

A crucial definition for our algorithms is that of anchor nodes:

▶ Definition 8 (Anchor). For node u ∈ T , define its anchor τ(u) to be its ancestor in level
α(u) := 1

2 (D + ℓ(u)− f(u)). If the value α(u) is negative, or is not an integer, or node u

itself belongs at level smaller than α(u), we say that u has no anchor and that τ(u) = ⊥.

Figure 3 demonstrates the location of an anchor node τ(u) for given node u; it also illustrates
the following claim, which forms the main rationale behind the definition:

▷ Claim 9. If the prediction for some node u is correct, then its anchor τ(u) is the least
common ancestor (in terms of level ℓ) of u and the goal g. Consequently, if a node u has no
anchor, or if its anchor does not lie on the path P ∗ from r to g, then u ∈ E .

For any node v ∈ T , define its children be χi(v) for i = 1, 2, . . . , ∆v, where ∆v ≤ ∆
is the number of children for v. Note that the order is arbitrary but prescribed and fixed
throughout the algorithm. For any time t, node v, and i ∈ [∆v], define the visited portion of
the subtree rooted at the ith child as Ct

i (v) := T t
χi(v).

▶ Definition 10 (Loads σi and σ). For any time t, node v, and index i ∈ [∆v], define

σt
i(v) := |{u ∈ Ct

i (v) | τ(u) = v}|.

In other words, σt
i(v) is the number of nodes in Ct

i (v) that have v as their anchor. Define
σt(v) =

∑∆v

i=1 σt
i(v) to be the total number of nodes in T t

v \ {v} which have v as their anchor.

▶ Definition 11 (Critical Node). For any time t, active and non-degenerate node v, and
index j ∈ [∆v], let qj := arg mini̸=j{σt

i(v) | χi(v) is active at time t}. Call v a critical node
with respect to j at time t if it satisfies

(i) σt
j(v) ≥ 2σt

qj
(v), namely, the number of nodes of Ct

j(v) that have v as their anchor is at
least twice larger than the number of nodes of Ct

qj
(v) that have v as their anchor; and

(ii) 2σt
j(v) ≥ |Ct

j(v)|, namely, at least half of the nodes of Ct
j(v) have v as their anchor.
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f(u)

ℓ(u)

D

r u

g

τ(u)

ℓ(u)

D+ℓ(u)−f(u)
2

r u

τ(u)

r

Active and degenerate nodes Anchor node Illustrating Claim 9

c

b

d a

Figure 3 The first figure from the left illustrates active and degenerate nodes. Nodes such as a

(shaded in blue) are in ∂Vt while the rest are visited nodes in Vt. Unshaded node b is inactive (since
it has no un-visited descendant), while all other shaded nodes (blue, yellow and red) are active.
Among the active nodes, nodes such as c (shaded in yellow) are non-degenerate nodes as they have
at least two active children. Finally nodes such as d (shaded in red) are degenerate as they have
exactly one active child.
The second and third figures give an example of anchor node τ(u) (in yellow) at level 1

2 (D+ℓ(u)−f(u))
for given node u (in red) at level ℓ(u). The rightmost figure (with root r and goal g also indicated)
illustrates Claim 9, showing that when u’s prediction f(u) is correct, then its anchor is the least
common ancestor of u and goal g (since D +ℓ(u)−f(u) is equal to twice the distance of τ(u) from r).

3.2 The TreeX-KnownDist Algorithm

Equipped with the definitions in §3.1, at a high level, the main idea of the algorithm is
to balance the loads (as defined in Definition 10) of all the nodes v. Note that if the goal
g ∈ Ci(v), then the nodes u ∈ Ci(v) that have v as their anchor (i.e., τ(u) = v) have
erroneous predictions; hence balancing the loads automatically balances the cost and the
budget. To balance the loads, we use the definition of a critical node (see Definition 11):
whenever a node v becomes critical, the algorithm goes back and explores another subtree of
v, thereby maintaining the balance.

More precisely, our algorithm TreeX-KnownDist does the following: at each time step
t, it checks whether there is a node that is critical. If there is no such node, the algorithm
performs one more step of the current DFS, giving priority to the unexplored child of vt

with smallest prediction. On the other hand, if there is a critical node v, then this v must be
the anchor τ(vt). In this case the algorithm pauses the current DFS, returns to the anchor
τ(vt) and resumes the DFS in τ(vt)’s child subtree having the smallest load (say Cq(τ(vt))).
This DFS may have been paused at some time t′ < t, and hence is continued starting at
node vt′ . The variable mem(v) saves the vertex that the algorithm left the subtree rooted on
v last time. For example, in this case mem(χq(τ(vt))) = vt′ . If no such time t′ exists, the
algorithm starts a new DFS from some child of τ(vt) whose subtree has the smallest load (in
this case, mem(χq(τ(vt))) = ⊥). The pseudocode appears as Algorithm 1.

A few observations: (a) While D = d(r, g) does not appear explicitly in the algorithm, it
is used in the definition of anchors (recall Definition 8). Even when d(r, g), the predicted
distance at the root, is not the true distance to the goal (as may happen in Section 4),
given any input D in Algorithm 1, we will still define τ(v) to be v’s ancestor at level
α(u) := 1

2 (D + ℓ(u)− f(u)). (b) The new node vt is always on the frontier : i.e., the nodes
which are either leaves of T or have unvisited children. Moreover, (c) the memory value
mem(v) = ⊥ if and only if v ̸∈ Vt, else mem(v) is on the frontier in the subtree below v.
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Algorithm 1 TreeX-KnownDist(r, D, B).

1.1 v0 ← r, t← 0
1.2 mem(r)← r and mem(v)← ⊥ for all v ̸= r

1.3 while vt ̸= g and |Vt| < B do
1.4 if τ(vt) ̸= ⊥ and τ(vt) is active and not degenerate and τ(vt) is critical w.r.t. the

index of the subtree containing vt at time t then
1.5 q ← the child index q s.t. τ(vt) is critical w.r.t. q

1.6 if mem(χq(τ(vt))) = ⊥ then vt+1 ← χq(τ(vt) else u← mem(χq(τ(vt))
1.7 else
1.8 u← vt

1.9 while vt+1 undefined and u has no child do
1.10 w ← u’s closest active ancestor
1.11 q ← arg mini{σt

i(w) | χi(w) active }
1.12 if mem(χq(w)) = ⊥ then vt+1 ← χq(w) else u← mem(χq(w))
1.13 if vt+1 undefined then vt+1 ← u’s child with smallest prediction
1.14 foreach ancestor u of vt+1 do mem(u)← vt+1
1.15 t← t + 1

3.3 Analysis for the TreeX-KnownDist Algorithm
The proof of Theorem 6 proceeds in two steps. The first step is to show that the total amount
of “extra” exploration, i.e., the number of nodes that do not lie on the r-g path, is O(∆ · |E|).
Formally, let P ∗ denote the r-g path; for the rest of this section, suppose g ∈ C1(v) for
all v ∈ P ∗. Define the extra exploration to be the number of nodes visited in the subtrees
hanging off this path:

ExtraExp(t) :=
∑

v∈P ∗

∑
i̸=1
|Ct

i (v)|.

▶ Lemma 12 (Bounded Extra Exploration). For all times t∗, ExtraExp(t∗) ≤ 7∆ · |E t∗ |.

Next, we need to control the total distance traveled, which is the second step of our
analysis:

▶ Lemma 13 (Bounded Cost). For all times t∗,∑
t≤t∗

d(vt−1, vt) ≤ d(r, vt∗) + 10 ExtraExp(t∗) + 16|E t∗
|.

Using the lemmas above (setting t∗ to be the time τ∗ when we reach the goal) proves
Theorem 5. In the following sections, we now prove Lemmas 12 and 13.

3.4 Bounding the Extra Exploration
▶ Lemma 14. For any node v ∈ T t, define xt(v) as follows:

(i) if g /∈ Tv, then xt(v) := σt(v).
(ii) if g ∈ Tv \ {v}, let g ∈ Tχj(v). Define yt

1(v) := σt
j(v), yt

2(v) :=
∑

i̸=j(|Ct
i (v)| − σt

i(v))
and xt(v) := yt

1(v) + yt
2(v).

Then
∑

v∈T t xt(v) ≤ 2|E t|.
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Proof. Let P ∗ be the r-g path in T . If g /∈ Tv (i.e., v /∈ P ∗), then by Claim 9 all the nodes
with v as anchor belong to E . Else suppose g ∈ Tv (i.e., v ∈ P ∗), and suppose g ∈ Tχj(v).
Now all nodes u in Cj(v) having anchor v belong to E , since the least common ancestor of u

and g can be no higher than χj(v). This means∑
v∈T t\P ∗

xt(v) +
∑

v∈P ∗

yt
1(v) ≤

∑
v∈T t

|{u ∈ E | τ(u) = v}| ≤ |E t|.

Finally, suppose g ∈ Tv (i.e., v ∈ P ∗) and g ∈ Tχj(v). Now for any node u ∈ Tχi(v) for i ̸= j,
the least common ancestor of u and g is v. Hence nodes in Tχi(v) for i ̸= j whose anchor
is not v must be wrongly predicted. Denote the set of such nodes by Y t

2 (v). Note that
|Y t

2 (v)| = yt
2(v), and Y t

2 (v) for each v ∈ P ∗ are disjoint. Hence we have∑
v∈P ∗

yt
2(v) ≤

∑
v∈P ∗

|Y t
2 (v)| ≤ |E t|.

Summing the two inequalities we get the proof. ◀

▶ Lemma 15. For any node v ∈ T and any index i ∈ {1, 2, . . . , ∆v} such that σt
i(v) >

minq{σt
q(v) | χq(v) is active at time t}. If vt ∈ Tχj(v) for some j ̸= i then vt+1 /∈ Tχi(v).

Proof. The proof is by contradiction. Assume there is such a time t, and let w :=
arg minq{σt

q(v) | χq(v) is active at time t}. Since vt+1 ∈ Tχi(v), the subtree under node
χi(v) was not fully visited at time r and hence χi(v) was active. By the definition of w and
the condition on i in the lemma statement, we have σt

i(v) > σt
w(v). Now Algorithm 1 will

ensure that vt+1 either remains in Tχj(v) or moves into Tχw(v). ◀

▶ Lemma 16. For any node v on the r-g path P ∗, recall the assumption that g ∈ C1(v). For
any time t and any i ̸= 1, at least one of the following statements must hold:

(i) σt
i(v) ≤ 2σt

1(v).
(ii) 2σt

i(v) ≤ |Ct
i (v)|.

(iii) σt
i(v) = |Ct

i (v)| = 1, σt
1(v) = 0.

Proof. For sake of a contradiction, assume there exists t, i such that at time t none of the
three statements are true, and this is the first such time. If |Ct

i (v)| = 1, then the falsity of
second statement gives σt

i(v) > 1/2 |Ct
i (v)| = 1/2, and so σt

i(v) = 1. Then the first statement
being false implies σt

1(v) < 1/2, which means the third statement must hold.
Henceforth let us assume |Ct

i (v)| ≥ 2. Let t′ < t be the latest time such vt′ ∈ Ci(v) and
τ(vt′) = v. Because the second statement is false, σt

i(v) > 1/2 |Ct
i (v)| ≥ 1, and so such a time

t′ exists.
Since t′ is the latest time satisfying the condition, we have σt

i(v) ≤ σt′

i (v) + 1. Moreover,
the number of nodes in Ct

i (v) whose anchor is not v does not decrease, hence |Ct
i (v)|−σt

i(v) ≥
|Ct′

i (v)| − σt′

i (v). Also, the number of nodes in Ct
1(v) whose anchor is v does not decrease,

hence σt
1(v) ≥ σt′

1 (v).
Thus we can get

σt′

i (v)− 2σt′

1 (v) ≥ σt
i(v)− 2σt

1(v)− 1 ≥ 0

2σt′

i (v)− |Ct′

i (v)| ≥ 2σt
i(v)− |Ct

i (v)| − 1 ≥ 0
(1)

Now if Ct′

i (v) is completely visited, then obviously vt′+1 /∈ Ci(v). Otherwise, Ct′

i (v)
is active. Also because g ∈ C1(v), hence C1(v) cannot be completely visited unless the
algorithm ends, which means v is not degenerate and Ct′

1 (v) is still active. Furthermore,
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we have inequalities (1), hence v must be critical w.r.t. the subtree containing vt′ (because
taking q = 1 we get the two inequalities for critical hold, although σt′

1 (v) may not be the
smallest one). Hence at time t′ + 1 the algorithm will go to a node which is not in Ci(v).

If vt /∈ Ct
i (v): Note that one of the three statements holds for t′. If one of the first two

statements is true to t′, then the same statement is also true to t because σt
i(v) = σt′

i (v),
|Ct

i (v)| = |Ct′

i (v)| and σt
1(v) ≥ σt′

1 (v). Otherwise we have σt
i(v) = σt′

i (v) = |Ct
i (v)| =

|Ct′

i (v)| = 1. Then if σt
1(v) = 0, then the third statement is true to t; if σt

1(v) ≥ 1, then the
first statement is true to t.

Otherwise vt ∈ Ct
i (v): By Lemma 15, there must exist a time t > t′′ > t′ such that

σt′′

1 (v) ≥ σt′′

i (v) (otherwise the algorithm will never enter Ci(v) since C1(v) is always active).
Hence by the analysis before, we have σt′′

1 (v) ≥ σt′

i (v) ≥ 1. Because t′ is defined as the
latest time before t when vt ∈ Ci(v), we have σt′′

i (v) = σt′

i (v). Hence σt
i(v) ≤ σt′

i (v) + 1 ≤
2σt′′

i (v) ≤ 2σt′′

1 (v) ≤ 2σt
1(v), which is the first statement in this lemma. ◀

▶ Lemma 17. For any node v on the r-g path P ∗, and any time t,
(i) if f(χi(v)) = d(χi(v), g) for all i ∈ [∆v] then

∑
i̸=1 |Ct

i (v)| ≤ 3∆xt(v),
(ii) else

∑
i̸=1 |Ct

i (v)| ≤ 3∆xt(v) + ∆.

Proof. For the first case: if f(χi(v)) = d(χi(v), g) for all i, then f(χ1(v)) is the smallest label
among all f(χi(v)) since the predictions are all correct. Hence by the algorithm, the first
node reached among {χi(v)} must be χ1(v), which means the third statement in Lemma 16
cannot hold. By Lemma 16, for any i, t, σt

i(v) ≤ 2σt
1(v) or 2σt

i(v) ≤ |Ct
i (v)|.

If σt
i(v) ≤ 2σt

1(v): |Ct
i (v)| − σt

i(v) + σt
1(v) ≥ σt

1(v) ≥ σt
i(v)/2; If 2σt

i(v) ≤ |Ct
i (v)|:

|Ct
i (v)| − σt

i(v) + σt
1(v) ≥ |Ct

i (v)| − σt
i(v) ≥ σt

i(v). Either of them can lead to a conclusion
that

|Ct
i (v)| − σt

i(v) + σt
1(v) ≥ σt

i(v)/2.

Denote xt
i(v) := |Ct

i (v)| − σt
i(v) + σt

1(v). Then by σt
1(v) ≥ 0 and the inequality above, we

have |Ct
i (v)| ≤ xt

i(v) + σt
i(v) ≤ 3xt

i(v).
Hence

∑
i̸=1 |Ct

i (v)| ≤ 3
∑

i̸=1 xt
i(v) = 3

∑
i̸=1(|Ct

i (v)|−σt
i(v)+(∆−1)σt

1(v)) ≤ 3∆(σt
1(v)+∑

i̸=1 |Ct
i (v)| − σt

i(v)) = 3∆xt(v). Here the last equality is because of Lemma 14.
Second, consider other cases. By Lemma 16, σt

i(v) ≤ 2σt
1(v) + 1 or 2σt

i(v) ≤ |Ct
i (v)|+ 1.

If σt
i(v) ≤ 2σt

1(v) + 1: |Ct
i (v)| − σt

i(v) + σt
1(v) + 1/2 ≥ σt

1(v) + 1/2 ≥ σt
i(v)/2; If 2σt

i(v) ≤
|Ct

i (v)|+ 1: |Ct
i (v)| − σt

i(v) + σt
1(v) + 1/2 ≥ |Ct

i (v)| − σt
i(v) + 1/2 ≥ σt

i(v). Either of them can
lead to a conclusion that

|Ct
i (v)| − σt

i(v) + σt
1(v) + 1/2 ≥ σt

i(v)/2.

Denote xt
i(v) := |Ct

i (v)| − σt
i(v) + σt

1(v), then |Ct
i (v)| ≤ xt

i(v) + σt
i(v) ≤ 3xt

i(v) + 1.
Consequently

∑
i̸=1 |Ct

i (v)| ≤
∑

i̸=i(3xt
i(v) + 1) = 3∆xt(v) + ∆, where the last equality

is because of Lemma 14. ◀

We can finally bound the extra exploration.
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Proof of Lemma 12. Divide the set of nodes on P ∗ into two sets A, B: A contains the nodes
all of whose children are correctly labeled, and B contains the other nodes. Then

ExtraExp(t∗) =
∑
v∈A

∑
i̸=1
|Ct∗

i (v)|+
∑
v∈B

∑
i̸=1
|Ct∗

i (v)| (2)

(⋆)
≤

∑
v∈A

3∆xt∗
(v) +

∑
v∈B

(3∆xt∗
(v) + ∆) (3)

= 3∆
∑

v∈P ∗

xt∗
(v) + ∆|B|

(⋆⋆)
≤ 6∆|E t∗

|+ ∆|E t∗
| = 7∆|E t∗

|. (4)

The inequality (⋆) uses Lemma 17, and (⋆⋆) uses Lemma 14. This proves Lemma 12. ◀

3.5 Bounding the Movement Cost
In this subsection, we bound the total movement cost (and not just the number of visited
nodes), thereby proving Lemma 13.

First, we partition the edge traversals made by the algorithm into downwards (from a
parent to a child) and upwards (from a child to its parent) traversals, and denote the cost
incurred by the downwards and upwards traversals until time t by M t

d and M t
u respectively.

We start at the root and hence get M t
d = M t

u + d(r, vt); since we care about the time t∗ when
we reach the goal state g, we have

M t∗
= M t∗

u + M t∗

d = 2M t∗

u + d(r, vt). (5)

It now suffices to bound the upwards movement M t∗

u . For any edge (u, v) with v being the
parent and u the child, we further partition the upwards traversals along this edge into two
types:

(i) upward traversals when the if statement is true at time t for a node vs (which lies at or
below u) and we move the traversal to another subtree of τ(vs) (which lies at or above
v), and

(ii) the unique upward traversal when we have completely visited the subtree under the
edge.

The second type of traversal happens only once, and it never happens for the edges on
the r-g path P ∗ (since those edges contain the goal state under it, which is not visited until
the very end). Hence the second type of traversals can be charged to the extra exploration
ExtraExp(t∗). It remains to now bound the first type of upwards traversals, which we refer
to as callback traversals.

We further partition the callback traversals based on the identity of the anchor which
was critical at that timestep: let M t

u(v) denote the callback traversal cost at those times s

when v = τ(vs). Hence the total cost of callback traversals is
∑

v∈T t∗ M t∗

u (v), and

M t∗
= d(r, vt) + 2

(
ExtraExp(t∗) +

∑
v∈T t∗

M t∗

u (v)
)

. (6)

We now control each term of the latter sum.

▶ Lemma 18. For any time t and any node v ∈ T t, M t
u(v) ≤ 4σt(v).
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Proof. For node v and index j, let S be the set of times s ≤ t for which vs ∈ Cs
j (v) and the

if condition is satisfied with τ(vs) = v (i.e, τ(vs) = v, v is active and not degenerate and v is
critical w.r.t. the subtree containing vs at time s). The cost of the upwards movement at
this time is d(vs, v) ≤ |Cs

j (v)| ≤ 2σti
j (v); the latter inequality is true by criticality.

Lemma 15 ensures that we only enter Cj(v) from a node outside it at some time s when
j ∈ arg minq{σs

q(v)}. Hence, if S = {t1, . . . , tm} then for each i there must exist a time si

satisfying ti < si < ti+1 such that minq{σsi
q (v)} = σsi

j (v). Consequently,

σ
ti+1
j ≥ 2 min

q
{σti+1

q (v)} ≥ 2 min
q
{σsi

q (v)} = 2σsi
j (v) ≥ 2σti

j (v).

Hence, for each ti ∈ S,
m∑

i=1
d(vti , v) ≤

m∑
i=1

2σti
j (v) ≤ 4σtm

j (v) ≤ 4σt
j(v). (7)

This is the contribution due to a single subtree Tχj(v); summing over all subtrees gives a
bound of 4σt(v), as claimed. ◀

Proof of Lemma 13. The equation (6) bounds the total movement cost M t∗ until time t∗

in terms of D, the extra exploration, and the “callback” (upwards) traversals
∑

v M t∗

u (v).
Lemma 18 above bounds each term M t∗

u (v) by 4σt∗(v). To bound this last summation,
For each v ̸∈ P ∗, σt∗(v) = xt∗(v) by Lemma 14.
For each v ∈ P ∗, recall our assumption that g ∈ C1(v), so∑

v∈P ∗

σt∗
(v) =

∑
v∈P ∗

(
σt∗

1 (v) +
∑
i̸=1

σt∗

i (v)
)

≤
∑

v∈P ∗

xt∗
(v) +

∑
v∈P ∗

∑
i̸=1
|Ct∗

i (v)| =
∑

v∈P ∗

xt∗
(v) + ExtraExp(t∗),

where σt∗

1 (v) ≤ xt∗(v) is directly given by definition in Lemma 14.
Summing over all v (using Lemma 14), and substituting into (6) gives the claim. ◀

4 The General Tree Exploration Algorithm

We now build on the ideas from known-distance case to give our algorithm for the case where
the true target distance d(g, r) is not known in advance, and we have to work merely with
the predictions. Recall the guarantee we want to prove:

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-
tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum
degree ∆, for any constant δ > 0, the algorithm incurs a cost of

d(r, g)(1 + δ) + O(∆ · |E|/δ),

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.

Note that Algorithm TreeX-KnownDist requires knowing D exactly in computing
anchors; an approximation to D does not suffice. Because of this, a simple black-box use
of Algorithm TreeX-KnownDist using a “guess-and-double” strategy does not seem to
work. The main idea behind our algorithm is clean: we explore increasing portions of the
tree. If most of the predictions we see have been correct, we show how to find a node whose
prediction must be correct. Now running Algorithm 1 rooted at this node can solve the
problem. On the other hand, if most of predictions that we have seen are incorrect, this
gives us enough budget to explore further.
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4.1 Definitions

▶ Definition 19 (Subtree Γ(u, v)). Given a tree T , node v and its neighbor u, let Γ(u, v)
denote the set of nodes w such that the path from w to v contains u.

▶ Lemma 20 (Tree Separator). Given a tree T with maximum degree ∆ and |T | = n > 2∆
nodes, there exists a node v and two neighbors a, b such that |Γ(a, v)| > |T |

2∆ and |Γ(b, v)| > |T |
2∆ .

Moreover, such v, a, b can be found in linear time.

Proof. Let v be a centroid of tree T , i.e., a vertex such that deleting v from T breaks it
into a forest containing subtrees of size at most n/2 [25]. Each such subtree corresponds
to some neighbor of v. Let a, b be the neighbors corresponding to the two largest subtrees.
Then |Γ(a, v)| ≥ n−1

∆ > n
2∆ . Moreover the second largest subtree may contain n−|Γ(a,v)|−1

∆−1 ≥
n/2−1
∆−1 > n

2∆ when ∆ < n/2. ◀

▶ Definition 21 (Vote γ(u, c) and Dominating vote γ(S, c)). Given a center c, let the vote of
any node u ∈ T be γ(u, c) := f(u)− d(u, c). For any set of nodes S, define the dominating
vote to be γ(S, c) := x if γ(u, c) = x for at least half of the nodes u ∈ S. If such majority
value x does not exist, define γ(S, c) := −1.

4.2 The TreeX Algorithm

Given these definitions, we can now give the algorithm. Recall that Theorem 6 says that
Algorithm 1 finds g in d(rρ, g) + c1∆ · |E| steps, for some constant c1 ≥ 1. We proceed in
rounds: in round ρ we run Algorithm 1 and visit approximately ∆ · (c1 + β)ρ vertices, where
β ≥ 1 is a parameter to be chosen later. Now we focus on two disjoint and “centrally located”
subtrees of size ≈ (c1 + β)ρ within the visited nodes. Either the majority of these nodes have
correct predictions, in which case we use their information to identify one correct node. Else
a majority of them are incorrect, in which case we have enough budget to go on to the next
round. A formal description appears in Algorithm 2.

Algorithm 2 TreeX(r, β).

2.1 r0 ← r, D0 ← f(v), ρ← 0
2.2 while goal g not found do
2.3 Bρ ← (c1 + β)ρ · (2∆ + 1)
2.4 if Bρ < Dρ/β then
2.5 run TreeX-KnownDist(rρ, Dρ, Bρ)
2.6 else
2.7 run TreeX-KnownDist(rρ, Dρ, Dρ + c1Bρ)
2.8 T ρ+1 ← tree induced by nodes that have ever been visited so far
2.9 rρ+1, aρ+1, bρ+1 ← centroid for T ρ and its two neighbors promised by Lemma 20

2.10 let Da,ρ+1 ← γ(Γ(aρ+1, rρ+1), rρ+1) and Db,ρ+1 ← γ(Γ(bρ+1, rρ+1), rρ+1)
2.11 define new distance estimate Dρ+1 ← max{Da,ρ+1, Db,ρ+1}
2.12 move to vertex rρ+1
2.13 ρ← ρ + 1
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4.3 Analysis of the TreeX Algorithm
▶ Lemma 22. If the goal is not visited before round ρ when Bρ ≥ 4|E|(2∆ + 1), we have
Dρ = d(rρ, g).

Proof. First, if |E| = 0, then the conclusion holds obviously. So next we assume |E| > 0.
The execution of Algorithm 1 in round ρ− 1 visits at least Bρ−1 = (c1 + β)(ρ−1) · (2∆ + 1)
distinct nodes. Using the assumption on Bρ, we have

|T ρ| ≥ 4|E| · (2∆ + 1) > 4∆|E| > 2∆.

Lemma 20 now implies that both the subtrees Γ(aρ, rρ) and Γ(bρ, rρ) contain more than
1

2∆ |T
ρ| > 2|E| nodes. Since at most |E| nodes are erroneous, more than half of the nodes in

each of Γ(aρ, rρ) and Γ(bρ, rρ) have correct predictions.
Finally, observe that if g ̸∈ Γ(aρ, rρ), then for any correct node x in Γ(aρ, rρ) we have

f(x) = d(x, g) = d(x, rρ) + d(rρ, g), and hence its vote γ(x, rρ) = d(rρ, g). Since a majority
of nodes in Γ(aρ, rρ) are correct, we get

Da,ρ = γ(Γ(aρ, rρ), rρ) = d(rρ, g). (8)

On the other hand, if g ∈ Γ(aρ, rρ), then for any correct node x in Γ(aρ, rρ) we have
f(x) = d(x, g) ≤ d(x, aρ) + d(aρ, g) < d(x, rρ) + d(rρ, g). Thus its vote, and hence the vote
of a strict majority of nodes in the subtree Γ(aρ, rρ) have

Da,ρ < d(rρ, g). (9)

If no value is in a strict majority, recall that we define Da,ρ = −1, which also satisfies (9).
The same arguments hold for the subtree Γ(bρ, rρ) as well. Since the goal g belongs to at
most one of these subtrees, we have that Dρ = max(Da,ρ, Db,ρ) = d(rρ, g), as claimed. ◀

▶ Lemma 23. For any round ρ, d(rρ, r) ≤ O(Bρ). Moreover, for any round ρ such that
Bρ ≥ 4|E|(2∆ + 1), d(rρ, r) ≤ O(Bρ−1) + O(β|E|∆).

Proof. Since rρ is at distance at most (c1 + c3)Bρ−1 = Bρ from rρ−1, an inductive argument
shows that its distance from r0 = r is at most (B0 + · · ·+ Bρ) = O(Bρ).

Moreover, when Bρ ≥ 4|E|(2∆ + 1), we have d(rρ, g) = Dρ by Lemma 22. Hence if
Bρ ≥ Dρ/β, the algorithm finds the goal in this round by Theorem 6. Therefore, for any
rounds ρ when Bρ ≥ 4|E|(2∆ + 1) except the last round, the number of nodes visited by
Algorithm 1 is at most Bρ, hence we have d(rρ+1, r) ≤ d(rρ, r) + Bρ. We denote ρ′ to be the
first round ρ′ such that Bρ′ ≥ 4|E|(2∆ + 1). Thus by induction we have

d(rρ, r) ≤
ρ−1∑
i=ρ′

Bi + d(rρ′ , r) ≤ O(Bρ−1) + O(Bρ′) ≤ O(Bρ−1) + O(β|E|∆). ◀

Proof of Theorem 1. Firstly, for the rounds ρ when Bρ < 4|E|(2∆ + 1): in each round,
Algorithm 1 at most visits (c1 + β)Bρ = Bρ+1 nodes, the cost incurred is at most 19Bρ+1,
by Lemma 13. Moreover, the distance from the ending node to rρ+1 is a further O(Bρ+1) by
Lemma 23. Therefore, since the bounds Bρ increase geometrically, the cost summed over all
rounds until round ρ is O(Bρ+1) = O(β|E|∆).

Secondly, for any rounds ρ when Bρ ≥ 4|E|(2∆ + 1) except the last round, by Lemma 22
and Theorem 6, the number of nodes visited by Algorithm 1 is at most Bρ (the reasoning
is the same as that in Lemma 23). Hence the cost incurred is at most 19Bρ. Moreover, by
Lemma 23 the distance from the ending node to rρ+1 is at most O(Bρ) + O(β∆|E|), which
means the total cost in round ρ is at most O(Bρ) + O(β∆|E|).
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Moreover, if we denote round ρ′ to be the first round such that Bρ′ ≥ 4|E|(2∆ + 1), then
we have, for any round ρ > ρ′, Bρ > β∆|E|. Hence the cost in round ρ is O(Bρ).

Finally, consider the last round ρ∗. We only need to consider the case when Bρ∗ ≥
4|E|(2∆ + 1), otherwise the cost has been included in the first case. By Theorem 6, the cost
incurred in this round is at most Dρ∗ + c1∆|E| ≤ d(r, g) + d(rρ∗ , r) + c1∆|E|. So summing
the bounds above, the total cost is at most

O(β∆|E|) + O(Bρ′) + O(β∆|E|) +
ρ∗−1∑

i=ρ′+1
O(Bi) + d(r, g) + d(rρ∗ , r) + c1∆|E|

≤ d(r, g) + O(Bρ∗−1) + O(β∆|E|) ≤ d(r, g) + O(d(r, g)/β) + O(β∆|E|)

Here the final inequality uses that

Bρ∗−1 ≤ Dρ∗−1/β ≤ (d(r, g) + O(βBρ∗−1))/β ≤ (d(r, g) + O(Bρ∗−1))/β.

Setting β = O(1/δ) gives the proof. ◀

5 The Planning Problem

In this section we consider the planning version of the problem when the entire graph G (with
unit edge lengths, except for §5.3), the starting node r, and the entire prediction function
f : V → Z are given up-front. The agent can use this information to plan its exploration
of the graph. We propose an algorithm for this version and then prove the cost bound for
trees, and then for a graph with bounded doubling dimension. We begin by defining the
implied-error function φ(v), which gives the total error if the goal is at node v.

▶ Definition 24 (Implied-error). The implied-error function φ : V → Z maps each node
v ∈ V to φ(v) := |{u ∈ V | d(u, v) ̸= f(u)}|, which is the ℓ0 error if the goal were at v.

The search algorithm for this planning version is particularly simple: we visit the nodes in
rounds, where round ρ visits nodes with implied-error φ value at most ≈ 2ρ in the cheapest
possible way. The challenge is to show that the total cost incurred until reaching the goal is
small. Observe that |E| = φ(g), so if this value is at most 2ρ, we terminate in round ρ.

Algorithm 3 FullInfoX.

3.1 ρ← 0, S−1 ← ∅, r−1 ← r

3.2 while g not found do
3.3 Sρ ← {v ∈ T | φ(v) < 2ρ} \ (∪ρ−1

i=−1Si)
3.4 if Sρ ̸= ∅ then
3.5 Cρ ← min-length Steiner Tree on Sρ

3.6 go to an arbitrary node rρ in Sρ

3.7 visit all nodes in Cρ using an Euler tour of cost at most 2|Cρ|, and return to rρ

3.8 else
3.9 rρ ← rρ−1

3.10 ρ← ρ + 1
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5.1 Analysis
Recall our main claim for the planning algorithm:

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is
an algorithm that incurs cost at most

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.
(ii) d(r, g) + 2O(α) ·O(|E|2) where α is the doubling dimension of G.

Again, E is the set of nodes with incorrect predictions.

The proof relies on the fact that Algorithm 3 visits a node in Sρ only after visiting all
nodes in ∪s<ρSs and not finding the goal g; this serves a proof that |E| = φ(g) ≥ 2ρ. The
proof below shows that (a) the cost of the tour of Cρ is bounded and (b) the total cost of
each transition is small. Putting these claims together then proves Theorem 4. We start
with a definition.

▶ Definition 25 (Midpoint Set). Given a set of nodes U , define its midpoint set M(U) to be
the set of points w such that the distance from w to all points in U is equal.

▶ Lemma 26 (φ-Bound Lemma). For any two sets of nodes S, U ⊆ G, we have∑
v∈U

φ(v) ≥ |S \M(U)|.

Proof. If node w ∈ S does not lie in M(U), then there are two nodes u, v ∈ U for which
d(u, w) ̸= d(v, w). This means f(w) cannot equal both of them, and hence contributes to at
least one of φ(u) or φ(v). ◀

▶ Corollary 27. For any two nodes u, v ∈ G, we have d(u, v) ≤ φ(u) + φ(v).

Proof. Apply Lemma 26 for set U = {u, v} and S being a (shortest) path between them
(which includes both u, v). All edges have unit lengths so |S| = d(u, v) + 1; moreover,
|M(U) ∩ S| ≤ 1. ◀

5.1.1 Analysis for Trees (Theorem 4(i))
▶ Lemma 28 (Small Steiner Tree). If ρ = 0 then |Cρ| = 1 else |Cρ| ≤ O(∆ · 2ρ).

Proof. If ρ = 0, then Sρ contains all nodes with φ(v) = 0; there can be only one such
node. Else if |Sρ| ≤ 1 then |Cρ| ≤ 1 ≤ 2ρ, so assume that |Sρ| > 1 and let u1, u2 :=
arg maxu,v∈Sρ

{d(u, v)} be a farthest pair of nodes in Sρ. Consider path p from u1 to u2:
if all nodes w ∈ p have d(w, u1) ̸= d(w, u2), then the midpoint set |M({u1, u2})| = 0, so
Lemma 26 says |Cρ| ≤ φ(u1) + φ(u2) ≤ 2× 2ρ = 2ρ+1, giving the proof. Hence, let’s consider
the case where there exists w ∈ p with d(w, u1) = d(w, u2).

Let w’s neighbors in Cρ be q1, . . . , qk for some k ≤ ∆. If we delete w and its incident
edges, let Cρ,i be the subtree of Cρ containing qi; suppose that u1 ∈ Cρ,1 and u2 ∈ Cρ,2.
Choose any arbitrary vertex ui ∈ (Cρ,i ∩ Sρ); such a vertex exists because Cρ is a min-length
Steiner tree connecting Sρ. Let U := {u1, . . . , uk}.

Consider any node x ̸= w in Cρ: this means x ∈ Cρ,j for some j. Choose i ∈ {1, 2}
such that i ≠ j. By the tree properties, d(x, ui) = d(x, w) + d(w, ui). Moreover, we have
d(ui, u2−i) ≥ d(uj , u2−i) by our choice of {u1, u2}, so d(w, ui) ≥ d(w, uj). This means

d(x, ui) = d(x, w) + d(w, ui) ≥ d(x, w) + d(w, uj) = d(x, qj) + d(uj , qj) + 2 > d(x, uj),
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which means x /∈M(U). In summary, M(U) = {w} or |M(U)| = 0, so applying Lemma 26
in either case gives

|Cρ| ≤ |Cρ \M(U)|+ 1 ≤
k∑

i=1
φ(ui) + 1 ≤ ∆ · (2ρ + 1). ◀

▶ Lemma 29 (Small Cost for Transitions). Consider the first round ρ0 such that rρ0 ̸= r, then
d(r, rρ0) ≤ d(r, g) + |E|+ 2ρ01(ρ0>0). For each subsequent round ρ > ρ0, d(rρ−1, rρ) ≤ 2ρ+1.

Proof. If the first transition happens in round ρ0, its cost is

d(r, rρ0) ≤ d(r, g) + d(g, rρ0) ≤ d(r, g) + φ(g) + φ(rρ0) ≤ d(r, g) + |E|+ 2ρ01(ρ0>0),

where we used Corollary 27 for the second inequality. For all other transitions, Corollary 27
again gives d(rρ−1, rρ) ≤ φ(rρ−1) + φ(rρ) ≤ 2ρ−1 + 2ρ ≤ 2ρ+1. ◀

Proof of Theorem 4(i). Suppose g belongs to Sρ, then |E| ≥ 2ρ−1 · 1ρ>0. But now the cost
over all the transitions is at most d(r, g) + |E| + O(2ρ) · 1ρ>0 by summing the results of
Lemma 29. The cost of the Euler tours are at most

∑
s≤ρ 2(|Cs| − 1) by Lemma 28, which

gives at most O(∆ · 2ρ) · 1ρ>0. Combining these proves the theorem. ◀

5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))
For a graph G = (V, E) with doubling dimension α, and unit-length edges, we consider
running Algorithm 3, as for the tree case. We merely replace Lemma 28 by the following
lemma, and the rest of the proof is the same as the proof of the tree case:

u∗ v∗

c

B(c)

Figure 4 Let u∗, v∗ be the diameter of the set Sρ (i.e, u∗, v∗ = argmaxu,v∈Sρ
d(u, v)). c is any

node in N and B(c) is its neighbor. We show in Claim 31 that the size of B(c) is O(2ρ).

▶ Lemma 30. The total length of the tree Cρ is at most 2O(α) · 22ρ.

Proof. If |Sρ| ≤ 1, then |Cρ| ≤ 1. Hence next we assume that |Sρ| ≥ 2. Define R :=
maxu,v∈Sρ

d(u, v), and let u∗, v∗ ∈ Sρ be some points at mutual distance R. Let N be an
R/8-net of Sρ. (An ε-net N for a set S satisfies the properties (a) d(x, y) ≥ ε for all x, y ∈ N ,
and (b) for all s ∈ S there exists x ∈ N such that d(x, s) ≤ ε.) Since the metric has doubling
dimension α, it follows that |N | ≤ ( R

R/8 )O(α) = 2O(α) [20]. Let each point in Sρ choose a
closest net point (breaking ties arbitrarily), and let B(c) ⊆ Sρ be the points that chose c ∈ N

as their closest net point (see Figure 4 for a sketch).

▷ Claim 31. For each net point c ∈ N , we have |B(c)| ≤ O(2ρ).
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Proof. Because d(v∗, c)+d(u∗, c) ≥ d(u∗, v∗) = R, hence without loss of generality we assume
d(v∗, c) ≥ R/2. For any point w ∈ B(c), d(w, v∗) ≥ d(v∗, c)− d(c, w) ≥ R/2−R/8 > R/8 ≥
d(w, c). Hence w is not in M({c, v∗}). Hence by Lemma 26,

2ρ+1 ≥ φ(c) + φ(v∗) ≥ |Sρ \M({v∗, c})| ≥ |B(c)|. ◁

There are 2O(α) net points, so |Sρ| ≤ 2O(α) · 2ρ. Finally, Corollary 27 holds for general
unit-edge-length graphs, so the cost of connecting any two nodes in Sρ is at most 2ρ, and
therefore |Cρ| ≤ 2O(α) · 22ρ. ◀

Using Lemma 30 instead of Lemma 28 in the proof of Theorem 4(i) gives the claimed
bound of 2O(α) · |E|2, and completes the proof of Theorem 4(ii).

5.3 Analysis for Bounded Doubling Dimension: Integer Lengths
In this part, we further generalize the proof above to the case when the edges can have
positive integer lengths. Consider an graph G = (V, E) with doubling dimension α and
general (positive integer) edge lengths. Define the ℓ1 analog of the implied-error function to
be:

φ1(v) :=
∑
u∈V

|f(u)− d(u, v)|.

Since we are in the full-information case, we can compute the φ1 value for each node. Observe
that φ1(g) is the ℓ1-error; we prove the following guarantee.

▶ Theorem 32. For graph exploration on arbitrary graphs with positive integer edge lengths,
the analog of Algorithm 3 that uses φ1 instead of φ, incurs a cost d(r, g) + 2O(α) ·O(φ1(g)).

The proof is almost the same as that for the unit length case. We merely replace Corol-
lary 27 and Claim 31 by the following two lemmas.

▶ Lemma 33. For any two vertices u, v, their distance d(u, v) ≤ 1/2(φ1(u) + φ1(v)).

Proof. By definition of φ1 we have φ1(u)+φ1(v) ≥ |f(u)|+ |f(v)−d(u, v)|+ |f(u)−d(u, v)|+
|f(v)| ≥ 2d(u, v). ◀

▷ Claim 34. For each net point c ∈ N , we have
∑

v∈B(c) d(v, u∗) ≤ O(2ρ).

Proof. Let w be the node among u∗, v∗ that is further from c; by the triangle inequality,
d(c, w) ≥ R/2. By the properties of the net, d(v, c) ≤ R/8. Again using the triangle
inequality, d(v, w) ≥ 3R/8. Hence

φ1(w) + φ1(c) ≥
∑

v∈B(c)

(
|f(v)− d(v, w)|+ |f(v)− d(v, c)|

)
≥ |B(c)| · (3R/8− R/8).

Since both w, c ∈ Sρ, this implies that

|B(c)| ·R ≤ 4(φ1(w) + φ1(c)) ≤ O(2ρ).

Finally, we use that d(v, u∗) ≤ R by our choice of R to complete the proof. ◁

Now to prove Theorem 32, we mimic the proof of Theorem 4(ii), just substituting
Lemma 33 and Claim 34 instead of Corollary 27 and Claim 31.
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6 Closing Remarks

In this paper we study a framework for graph exploration problems with predictions: as the
graph is explored, each newly observed node gives a prediction of its distance to the goal.
While graph searching is a well-explored area, and previous works have also studied models
where nodes give directional/gradient information (“which neighbors are better”), such
distance-based predictions have not been previously studied, to the best of our knowledge.
We give algorithms for exploration on trees, where the total distance traveled by the agent
has a relatively benign dependence on the number of erroneous nodes. We then show results
for the planning version of the problem, which gives us hope that our exploration results
may be extendible to broader families of graphs. This is the first, and most natural open
direction.

Another intriguing direction is to reduce the space complexity of our algorithms, which
would allow us to use them on very large implicitly defined graphs (say computation graphs
for large dynamic programming problems, say those arising from reinforcement learning
problems, or from branch-and-bound computation trees). Can we give time-space tradeoffs?
Can we extend our results to multiple agents? A more open-ended direction is to consider
other forms of quantitative hints for graph searching, beyond distance estimates (studied in
this paper) and gradient information (studied in previous works).
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A Further Discussion

A.1 ℓ0-versus-ℓ1 Error in Suggestions
Most of the paper deals with ℓ0 error: namely, we relate our costs to |E|, the number of
vertices that give incorrect predictions of their distance to the goal. Another reasonable
notion of error is the ℓ1 error:

∑
v |f(v)− d(v, g)|.

For the case of integer edge-lengths and integer predictions, both of which we assume
in this paper, it is immediate that the ℓ0-error is at most the ℓ1-error: if v is erroneous
then the former counts 1 and the latter at least 1. If we are given integer edge-lengths but
fractional predictions, we can round the predictions to the closest integer to get integer-valued
predictions f ′, and then run our algorithms on f ′. Any prediction that is incorrect in f ′

must have incurred an ℓ1-error of at least 1/2 in f . Hence all our results parameterized by
the ℓ0 error imply results parameterized with the ℓ1 error as well.

A.2 Extending to General Edge-Lengths
A natural question is whether a guarantee like the one proved in Theorem 1 can be shown
for trees with general integer weights: let us see why such a result is not possible.
1. The first observation is that the notion of error needs to be changed from ℓ0 error

something that is homogeneous in the distances, so that scaling distances by C > 0 would
change the error term by C as well. One such goal is to guarantee the total movement
to be

O(d(r, g) + some function of the ℓp error),

where ℓp-error is (
∑

v |f(v)− d(v, g)|p)1/p.
2. Consider a complete binary tree of height h, having 2h leaves. Let all edges between

internal nodes have length 0, and edges incident to leaves have length L≫ 1. The goal
is at one of the leaves. Let all internal nodes have f(v) = L, and let all leaves have
prediction 2L. Hence the total ℓp error is 2L, whereas any algorithm would have to
explore half the leaves in expectation to find the goal; this would cost Θ(2h · L), which is
unbounded as h gets large.

3. The problem is that zero-length edges allow us to simulate arbitrarily large degrees.
Moreover, the same argument can be simulated by changing zero-length edges to unit-
length edges; the essential idea remains the same. and setting f(v) for each node v to be
L plus its distance to the root. Setting L ≥ 2h gives the total ℓp error to be O(L + 2h),
whereas any algorithm would incur cost at least ≈ L · 2h.

This suggests that the right extension to general edge-lengths requires us to go beyond just
parameterizing our results with the maximum degree ∆; this motivates our study of graphs
with bounded doubling dimension in §5.

A.3 Gradient Information
Consider the information model where the agent gets to see gradient information: each edge
is imagined to be oriented towards the endpoint with lower distance to the goal. The agent
can see some noisy version of these directions, and the error is the number of edges with
incorrect directions. We now show an example where both the optimal distance and the error
are D, but any algorithm must incur cost Ω(2D). Indeed, take a complete binary tree of
depth D, with the goal at one of the leaves. Suppose the agent sees all edges being directed
towards the root. The only erroneous edges are the D edges on the root-goal path. But any
algorithm must suffer cost Ω(2D).
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1 Introduction

A graph cut is a partition of the vertices of a graph into two disjoint subsets. The set
of edges that have one vertex lying in each of the two subsets determines a so-called cut-
set. Typically, the objective function to optimize involves the size of the cut-set. Graph
cuts have a ubiquitous presence in theoretical computer science, and they have also found
many real-world applications in clustering, shape matching, image segmentation, and energy
minimization problems in computer vision. We begin with the observation that graphs are
1-dimensional simplicial complexes. As we will observe in the ensuing discussion, cuts have a
natural homological interpretation. Then, it is natural to mull over how would the notion of
cuts have been defined had it first emerged in the context of simplicial complexes. Guided
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by the intuition that comes from topology, cuts as constructs need not be limited merely
to achieve separation. For instance, viewing graph cuts as arising from coboundaries of a
subset of vertices has led to the emergence of a rich and powerful theory of high-dimensional
expansion [17,18,33]. In this work, we instead aim to extend the notion of cuts to achieve
homology modification via removal of simplices.

Specifically, we study the problem of removing the minimum number of r-simplices from a
complex so that an entire homology class is destroyed. Formally, the problem Homological
Hitting Set (HHS) can be described as follows: given a nontrivial Z2 r-cycle ζ in a
simplicial complex K, find a set S of r-dimensional simplices of minimum cardinality so
that S meets every cycle homologous to ζ. HHS on graphs can be described as follows:
Suppose we are given a graph G with k components. Let C be one of the components of G.
Then, β0(G) = |k|, and each component determines a 0-cycle. So the question of HHS is to
determine the minimum number of vertices you need to remove so that C is not a component
anymore. The answer is trivial! One needs to remove all the vertices in C. For example in
Figure 1, C2 ceases to be a component if and only if all four vertices in C2 are removed. The
global variant of HHS, denoted by GHHS, asks for the minimum number of r-simplices that
need to be removed so that the class of some r-cycle is destroyed.

We note that it is the unidimensionality of graphs that makes the problem trivial.
Moreover, even the “cut” aspect of the problem is not immediately visible for graphs. In
contrast, for higher-dimensional complexes, the problem has a distinct cut flavor. For instance,
consider the planar complex shown in Figure 2. The minimum number of edges that need to
be removed so that every cycle homologous to ζ is destroyed is three (shown in red), whereas
a solution to GHHS comprises of only two edges. In Figure 3, the cocycle ϑ is the minimal
hitting set for the cycle ζ. Note that the edges in the minimal hitting sets happen to be in
the “thin” portions of the respective complexes. So although HHS does not generalize any
cut problems from graph theory, we view it as a high-dimensional cut problem that concerns
homology modification.

1.1 Related work
Duval et al. [20] studied the vector spaces and integer lattices of cuts and flows associated to
CW complexes and their relationships to group invariants. Ghrist and Krishnan [29] proved
a topological version of the max-flow min-cut theorem using methods from sheaf theory.
There is also a long line of work on cuts in surface embedded graphs [4,5,10,11,12,13,23,
24], which is closely related to our work. For a mathematical introduction to graphs on
surfaces, we refer the reader to [32, 37], and for an up-to-date algorithmic introduction to
the subject, we recommend the lecture notes and surveys by Colin de Verdière [14,16] and
Erickson [21,22], respectively. There is a growing body of work on parameterized complexity
in topology [1,3,6, 7, 8, 9, 10,30,34,35,39], and much of this paper can be characterized as
such. Independently of our work, and prior to it, Maxwell and Nayyeri [36] defined the
problem of finding combinatorial cuts in [36] which is, in some sense, dual to Homological
Hitting Set.

1.2 Summary of results
Surfaces

Our first result, expounded in Section 3, is the following: Homological Hitting Set (HHS)
admits a polynomial-time algorithm on triangulations of closed surfaces. At the heart of our
proof lies an appealing characterization of the minimal solutions in terms of the cocycles of
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Figure 1 Graph G with three components.

ζ

ξ

Figure 2 The figure shows two (simple) cycles that belong to [ζ] in green. Note that any cycle in
[ζ] must pass through at least one of the three red edges. Thus, the set of red edges constitutes a
minimal hitting set of ζ. On the other hand, ξ has a minimal hitting set of size 2.

Figure 3 The figure shows a triangulated torus. The cycle ζ is shown in purple. The cocycles η

and ϑ “transversal” to ζ are shown in black. Any cycle homologous to ζ passes through at least one
of the edges of η (resp. ϑ). ϑ has a smaller support, and is, therefore, a more desirable “hitting set”.
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the surface, which is of independent interest. Specifically, we show that a minimal solution
set is necessarily a nontrivial cocycle. Eventually, we arrive at a very simple 3-step algorithm
for HHS on surfaces.

Counterexample

In Section 4, we show that there exists a 1-cycle in a non-orientable 2-complex (which is not
a surface) whose minimal homological hitting set is not a cocycle.

W[1]-hardness and NP-hardness

For general complexes, in Section 5, we show that HHS is W[1]-hard with respect to the
solution size k as the parameter, (and hence, it is also NP-hard). The proof is based on a
reduction from Multicolored Clique. Here, the reduction shows the essence of hardness:
its description is short, but its proof exposes various “behaviors” that we find interesting.
The forward direction requires a nontrivial parity based argument, while the reverse direction
shows how to “trace” a solution through the complex.

Fixed-parameter tractability

On the positive side, in Section 6, we show that HHS admits an FPT algorithm with respect
to k + ∆, where ∆ is the maximum degree of the Hasse graph of the complex K. Here, the
main insight is that a minimal solution must be connected. Having this insight at hand, the
algorithm follows: If we search across the geodesic ball of every r-simplex in the complex K,
we will find a solution.

Problem definition

We now provide a formal definition for Homological Hitting Set (HHS).

▶ Problem 1 (Homological Hitting Set).
Instance: A d-dimensional simplicial complex K, a natural number k, a natural

number r < d and a non-bounding cycle ζ ∈ Zr(K).

Parameter: k.

Question: Does there exist a set S of r-dimensional simplices with |S| ≤ k such that
S meets every cycle homologous to ζ?

More generally, one can ask for a hitting set of minimum weight on a weighted complex
K. In Section 3, we study the weighted version of the problem on surfaces.

Let KS denote the complex obtained from K upon removal of the set of r-simplices S
along with all the cofaces of the simplices in S. In particular, the homology class [ζ] does
not survive in KS . The inclusion map ι : KS ↪−→ K induces a map ι̃ : Hr(KS) → Hr(K). Then,
S is a homological hitting set if and only if [ζ] is not in the image of ι̃. Let α̂i = ι̂(αi). Let
A denote the matrix with nontrivial r-cycles α̂i as its columns. Let M denote the matrix
[A | ∂r+1(K)] and C(M) the column space of M. The following lemma ensures polynomial
time verification for the decision variant of Homological Hitting Set.

▶ Lemma 1. ζ /∈ column space of M if and only if S meets every cycle homologous to ζ.

Proof. (=⇒) Let ρ be a cycle homologous to ζ such that S does not meet ρ. Then, ρ ∈ C(M)
since it survives in KS . The claim follows from observing that ζ is homologous to ρ.
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(⇐=) Suppose that S meets every cycle that is homologous to ζ. Thus, at least one
simplex is removed from every cycle homologous to ζ. Then, a cycle homologous to ζ (in K)
is not present in KS . The claim follows. ◀

Lemma 1 provides an easy way to check if a set constitutes a feasible solution. Let ω
denote the exponent of matrix multiplication, and n denote the size of the input complex.
Checking if a set S is a feasible solution to HHS amounts to first building the matrix M, and
then solving a linear system of equations. Both operations can also be done in O(nω) time.

▶ Lemma 2. HHS is in NP, and in XP with respect to the solution size k as the parameter.

2 Notation and Preliminaries

Simplicial homology

Given a simplicial complex K, we will denote by K(p) the set of p-dimensional simplices in K,
and np the number of p-dimensional simplices in K. The complex induced by K(p) is called
the p-dimensional skeleton of K, and is denoted by Kp. We denote by HK, the Hasse graph
of K, which is simply the graph that has a node for every simplex σ of the complex, and
an edge for every pair of simplices (σ, τ) if σ is incident on τ , and their dimensions differ
by 1. We say that a complex K is weighted if it comes equipped with a non-negative weight
function on its simplices. The link of a simplex σ in a complex K is the subcomplex of K,
denoted by lkσ, wherein a simplex τ belongs to lkσ if an only if τ is contained in a simplex
that contains σ and τ is disjoint from σ.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the form∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called a p-chain. Since

chains can be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field, Cp(K), in this
case, is a vector space of dimension np over Z2. The p-simplices in K form a (natural) basis
for Cp(K). This establishes a natural one-to-one correspondence between elements of Cp(K)
and subsets of K(p). Thus, associated with each chain is an incidence vector v, indexed
on K(p), where vσ = 1 if σ is a simplex of v, and vσ = 0 otherwise. The boundary of a
p-simplex is a (p− 1)-chain that corresponds to the set of its (p− 1)-faces. This map can
be linearly extended from p-simplices to p-chains, where the boundary of a chain is the
Z2-sum of the boundaries of its elements. Such an extension is known as the boundary
homomorphism, and denoted by ∂p : Cp(K) → Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle
if ∂pζ = 0, that is, ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As
before, since we are working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain
η ∈ Cp(K) is said to be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that is,
η ∈ im ∂p+1. The group of p-dimensional boundaries is denoted by Bp(K). In our case, Bp(K)
is also a vector space, and in fact a subspace of Cp(K). Thus, we can consider the quotient
space Hp(K) = Zp(K)/Bp(K). The elements of the vector space Hp(K), known as the p-th
homology group of K, are equivalence classes of p-cycles, where p-cycles are equivalent if their
Z2-difference is a p-boundary. Equivalent cycles are said to be homologous. For a p-cycle ζ,
its corresponding homology class is denoted by [ζ]. Bases of Bp(K), Zp(K) and Hp(K) are
called boundary bases, cycle bases, and homology bases respectively.

The coboundary of a p-simplex is a (p+1)-cochain that corresponds to the set of its (p+1)-
cofaces. The coboundary map is linearly extended from p-simplices to p-cochains, where the
coboundary of a cochain is the Z2-sum of the coboundaries of its elements. This extension
is known as the coboundary homomorphism, and is denoted by δp : Cp(K) → Cp+1(K). A
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cochain η ∈ Cp(K) is called a p-cocycle if δpη = 0, that is, η ∈ ker δp. The collection of
p-cocycles forms the p-th cocycle group of K, denoted by Zp(K), which is also a vector space
under Z2 addition. A cochain η ∈ Cp(K) is said to be a p-coboundary if η = δp−1ξ for some
chain ξ ∈ Cp−1(K), that is, η ∈ im δp−1. The collection of p-coboundaries forms the p-th
coboundary group of K, denoted by Bp(K) which is also a vector space under Z2 addition.
The three vector spaces are related as follows: Bp(K) ⊂ Zp(K) ⊂ Cp(K). Therefore, we can
define the quotient space Hp(K) = Zp(K)/Bp(K), which is called the p-th cohomology group
of K. The elements of the vector space Hp(K), known as the p-th cohomology group of K,
are equivalence classes of p-cocycles, where p-cocycles are equivalent if their Z2-difference
is a p-coboundary. Equivalent cocycles are said to be cohomologous. For a p-cocycle η, its
corresponding cohomology class is denoted by [η]. The p-th Betti number of K, denoted by
βp(K) is defined as βp(K) = dim Hp(K) = dim Hp(K). The identity ⟨δη, ζ⟩ = ⟨η, ∂ζ⟩ holds for
the maps δ and ∂.

Using the standard bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp
] whose

column vectors are boundaries of p-simplices is called the p-th boundary matrix. Likewise,
using standard bases for Cp(K) and Cp+1(K), the matrix [δpσ1 δ

pσ2 . . . δ
pσnp

] whose column
vectors are coboundaries of p-simplices is called the p-th coboundary matrix. Abusing
notation, we denote the p-th boundary and coboundary matrices by ∂p and δp, respectively.

We say that a p-cycle ζ is incident on a p-simplex σ if ζ contains σ. A set of p-cycles
{ζ1, . . . , ζg} is called a homology cycle basis if the set of classes {[ζ1], . . . , [ζg]} forms a
homology basis. For brevity, we abuse notation by using the term (p-th) homology basis
for {ζ1, . . . , ζg}. Similarly, a set of p-cocycles {η1, . . . , ηg} is called a (p-th) cohomology
cocycle basis if the set of classes {[η1], . . . , [ηg]} forms a cohomology basis. Given a weighted
complex K, the weight of a cycle is the sum of the weights of its simplices, and the weight
of a homology basis is the sum of the weights of the basis elements.We call the problem
of computing a minimum weight basis of Hp(K) the minimum p-homology basis, and the
problem of computing a minimum weight basis of Hp(K), the minimum p-cohomology basis.

For a triangulated surface (more generally a 2-manifold) L, we denote by DL, the dual
graph of L, which is simply the graph that has a node for every 2-simplex (d-simplex) and an
edge connecting two nodes if the corresponding 2-simplices (d-simplices) are incident on a
common edge ((d− 1)-simplex) in the complex L.

▶ Notation 3. Since there is a 1-to-1 correspondence between the p-chains of a complex K
and the subsets of K(p), we abuse notation by writing ∂C in place of ∂(

∑
σ∈C σ), for C ⊂ K(p).

Likewise, for p-cochains δ(
∑

τ∈C′ τ), we often write δC′.
We also abuse notation in the other direction. That is, we treat chains and cochains as

sets. For instance, sometimes we say that a (co)chain γ intersects a (co)chain ζ, when we
actually mean that the corresponding sets of simplices of the respective (co)chains intersect.
We say that a simplex σ ∈ ζ, when indeed the simplex σ belongs to the set associated to ζ.

▶ Remark 4. For the chain and cochain groups Cp(K) and Cp(K), there is a map

Cp(K) × Cp(K) → Z2, (ζ, η) 7→ η(ζ).

This bilinear map is referred to as the evaluation map. Furthermore, it induces another
bilinear map, which is also non-degenerate.

Hp(K) × Hp(K) → Z2

In particular, if we evaluate the r-cocycle η on a r-cycle ζ, then by linearity,

η(ζ) = η(
∑
σi∈ζ

σi) =
∑
σi∈ζ

η(σi).
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Owing to Z2 addition, η(ζ) ∈ {0, 1}. By non-degeneracy, we mean that:
1. η is trivial if and only if η(ζ) = 0 for all p-cycles ζ.
2. ζ is trivial if and only if η(ζ) = 0 for all p-cocycles η.

As a consequence of non-degeneracy, the evaluation map is well-defined. In particular,
for any cocycle κ ∈ [η] and any cycle ξ ∈ [ζ], η(ζ) = κ(ξ).

Parameterized complexity

Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each
instance of Π is associated with a parameter k. Here, the goal is to confine the combinatorial
explosion in the running time of an algorithm for Π to depend only on k. Formally, we
say that Π is fixed-parameter tractable (FPT) if any instance (I, k) of Π is solvable in time
f(k) · |I|O(1), where f is an arbitrary computable function of k. A weaker request is that for
every fixed k, the problem Π would be solvable in polynomial time. Formally, we say that
Π is slice-wise polynomial (XP) if any instance (I, k) of Π is solvable in time f(k) · |I|g(k),
where f and g are arbitrary computable functions of k. In other words, for a fixed k, Π has
a polynomial time algorithm, and we refer to such an algorithm as an XP algorithm for
Π. Nowadays, Parameterized Complexity supplies a rich toolkit to design FPT and XP
algorithms [15, 19, 27]. Parameterized Complexity also provides methods to show that a
problem is unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-hardness
replaces the one of NP-hardness, and for reductions we need not only construct an equivalent
instance in FPT time, but also ensure that the size of the parameter in the new instance
depends only on the size of the parameter in the original one.

▶ Definition 5 (Parameterized Reduction). Let Π and Π′ be two parameterized problems. A
parameterized reduction from Π to Π′ is an algorithm that, given an instance (I, k) of Π,
outputs an instance (I ′, k′) of Π′ such that:

(I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π′.
k′ ≤ g(k) for some computable function g.
The running time is f(k) · |Π|O(1) for some computable function f .

If there exists such a reduction transforming a problem known to be W[1]-hard to another
problem Π, then the problem Π is W[1]-hard as well. Central W[1]-hard problems include,
for example, Clique parameterized by solution size, and Independent Set parameterized
by solution size. To show that a problem Π is not XP unless P = NP, it is sufficient to show
that there exists a fixed k such that Π is NP-hard. If the problem Π is in NP for a fixed k

then it is said to be in para-NP, and if it is NP-hard for a fixed k then it is para-NP-hard.

3 Homological Hitting Set on Surfaces

Recall that the star of a vertex v of a complex K, written starK(v), is the subcomplex
consisting of all faces of K containing v, together with their faces. A triangulated surface S
in Rd is a simplicial complex consisting of a finite set of triangles such that every vertex of
the surface belongs to at least one triangle and the star of each vertex is a simplicial disk. A
closed surface is a surface that is compact and without boundary.

In this section, we describe a polynomial time algorithm for HHS on triangulated closed
surfaces. The algorithm has a very simple high-level description. See Algorithm 1. Through-
out, ζ denotes a nontrivial 1-cycle in a triangulated closed surface S equipped with a weight
function on edges.
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Figure 4 The figure illustrates a subcomplex of a closed surface. If C is a minimal solution set
and a1 ∈ C, then either f1 ∈ C or a2 ∈ C. Assuming a2 ∈ C and iterating the argument, we obtain a
cocycle η ⊂ C shown in red. Finally, we show η = C and hence the edges f1, f2, f3, f4 ̸∈ C.

Algorithm 1 An algorithm for HHS on surfaces with input cycle ζ.

1: Find a minimum 1-cohomology basis of S.
2: Arrange the cocycles in the basis in the ascending order of weight.
3: Pick the smallest weight cocycle η with η(ζ) = 1.

▶ Lemma 6. A minimal homological hitting set is a nontrivial cocycle that induces a cycle
graph in DS.

Proof. Let C be a minimal solution set, and let DS(C) be the subgraph of DS induced by C.
Targeting a contradiction, we assume that there exists a vertex in DS(C) with degree 1.

Let τ be the 2-simplex corresponding to a vertex in DS(C) with degree 1 in DS(C). Let e1
be the unique edge in DS(C) incident on τ . Let e2 and f1 be the edges incident on τ that
are not in C. From the minimality of C, we conclude that there exists a cycle γ ∈ [ζ] with
C ∩ γ = {e1}, for if this were not true then C \ {e1} would also be a hitting set, contradicting
the minimality of C. Then, for the cycle γ′ = γ + ∂τ , we have e2, f1 ∈ γ′ and e1 ̸∈ γ′. Since
γ′ differs from γ only on a simplex boundary, and since by assumption on the degree of τ in
DS(C), e2, f1 ̸∈ C, we conclude that γ′ ∩ C = ∅, a contradiction. Therefore, all the vertices in
DS(C) have degree at least 2. See Figure 4 for an example.

Hence, there exists a connected 1-cocycle η for which η ⊂ C, and Cη is a subgraph of
DS(C). In other words, for surfaces, there always exists a 1-cocycle that is supported by a
minimal solution set. By construction, there always exists a γ such that η(γ) = 1. Let γ′

be any cycle homologous to γ. Then, γ′ = γ + κ, where κ is a boundary. From Remark 4,
η(γ′) = η(γ) + η(κ), and η(κ) = 0. Hence, η(γ′) = 1. That is, η itself is a hitting set, and
η = C. ◀

▶ Corollary 7. Let k > 1 be an integer. Let ηi for i ∈ [k] be nontrivial 1-cocycles. If ηi for
i ∈ [k] are not minimal hitting sets for the input cycle ζ, then any cocycle ϑ cohomologous to∑k

i=1 ηi is also not a minimal hitting set.

Proof. A cocycle ϑ cohomologous to
k∑

i=1
ηi can be written as

k∑
i=1

ηi + δ(S) where S is a

collection of vertices. Then, by linearity,

ϑ(ζ) =
k∑

i=1
ηi(ζ) + δ(S)(ζ) =

k∑
i=1

ηi(ζ) +
∑
v∈S

δ(v)(ζ).

Using Lemma 6 and Remark 4, δ(v)(ζ) = 0 for every v ∈ S, and ηi(ζ) = 0 for i ∈ [k − 1].
The claim follows. ◀
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Although this is fairly well known, for the sake of completeness, we describe an algorithm
for computing minimum cohomology basis of a triangulated surface that uses the minimum
homology basis algorithm as a subroutine.

▶ Lemma 8. The minimum cohomology basis problem on surfaces can be solved in the same
time as the minimum homology basis problem on surfaces.

Proof. Let S be a surface with a weight function w on its edges. Let Ŝ be the dual cell
complex of S. Then, to every edge e of S there is a unique corresponding edge ê in Ŝ. We now
define a weight function on the edges of Ŝ in the obvious way: w(ê) = w(e). Let Ŝ′ be the
simplicial complex obtained from the stellar subdivision of each of the 2-cells of Ŝ. The weight
function on edges of Ŝ is extended to a weight function on edges of Ŝ′ by assigning weight ∞
to every newly added edge during the stellar subdivision. Such a complex Ŝ′ can be computed
in linear time. It is easy to check that the cocycles of S are in one-to-one correspondence
with the cycles of Ŝ, and the cminimalycles of Ŝ are in one-to-one correspondence with finite
weight cycles of Ŝ′. Moreover, if η is a cocycle of S, and if η̂ and η̂′ are the corresponding
cycles in Ŝ and Ŝ′, respectively, then w(η) = w(η̂) = w(η̂′). Hence, computing a minimum
homology basis for K̂′ gives a minimum cohomology basis for S. ◀

▶ Theorem 9. Let n denote the number of simplices in a surface, and β denote the rank
of its first homology group. Then, Algorithm 1 computes a minimal solution for HHS of a
surface in O(β3n log2 n) time.

Proof. Let {νi | i ∈ [β]} be a minimum 1-cohomology basis for S. Then, by Lemma 6,
any minimal solution set is a cocycle. So, we can let k be the smallest integer for which
νk | k ∈ [β] evaluates to 1 on the input cycle ζ. By Corollary 7, every cocycle cohomologous
to a combination of cocycles in νi | [i] ∈ [k − 1] evaluates to 0 on ζ.

On the other hand, because of the matroid structure on cohomology bases [25, Section
4], νk is the minimum weight cocycle independent of {νi | i ∈ [k − 1]}. Since the weights
are positive, νk is a simple connected graph cycle in DS. By Remark 4, νk evaluates to 1 on
every cycle in [ζ]. Therefore, νk is a minimal solution.

Step-1 of Algorithm 1 requires O(β3n log2 n) time in the worst case if one uses the
minimum (co)homology basis algorithm by Borradaile et al. [4]. Using a standard sorting
algorithm, Step-2 can be computed in O(β log β) time. Finally, Step-3 can be implemented
in O(βn log n). ◀

3.1 Improved algorithm for Homological Hitting Set
We note that to compute the minimum hitting set what we truly need is not a minimal
cohomology basis, but only the smallest weight cocycle that evaluates to 1 on the input cycle
ζ. This can be achieved by opening the black box from [4]. Given a surface S with n vertices,
let β denote the rank of the first homology group of S.

Algorithm 2 An improved algorithm for HHS on surfaces with input cycle ζ.

1: Construct the dual surface S̊. The dual of ζ, denoted by ζ̊, is a nontrivial cocycle in S̊.
2: A topological space S̊ζ called the cyclic double cover [4], which is a covering space of S̊,

is constructed.
3: A multiple source shortest path procedure is run O(β) times on S̊ζ to find the minimum

weight cycle η̊ such that ζ̊(η̊) = 1.
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In the surface S, the dual of η̊, denoted by η, is a cocycle in S satisfying η(ζ) = 1. The
costliest step in Algorithm 2 is Step-3. Using from [4, Lemma 6.8], Step-3 takes at most
O(β2n log2 n) time. This gives an improvement by a factor of β over Algorithm 1.

4 Minimal hitting sets are not necessarily cocycles

In this section, we introduce an example of a complex whose minimum hitting set is not a
cocycle. We will first introduce a special complex that we call the cactus complex of an edge.

The cactus complex

Given an edge e, the cactus complex of e of height h, denoted by Ch(e), is defined inductively
as follows.
1. The complex C1(e) is merely the edge e itself. Edge e is assigned height 1.
2. Given Ck(e), for some k ≥ 1, we now describe the procedure to obtain Ck+1(e): Identify

a 2-simplex, denoted by σf , to every edge f of height k in Ck(e). The complex obtained
at the end of all identifications is Ck+1(e). Every edge in Ck+1(e) that has a unique
2-simplex incident on it is assigned height k + 1. For every f , the associated simplex σf

is assigned height k.
See Figure 5 for an illustration of a cactus complex of the edge bc of height 5.
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Figure 5 The figure depicts a cactus complex of the edge bc of height 5. The edges of the complex
are labeled with their respective heights.

The twisted key complex

The twisted key complex can be described as follows. Start with an annulus formed by the
red 2-simplices as shown in Figure 6. Attach a pencil-like complex made of blue 2-simplices
as shown in the figure. Identify a cactus complex of height 22 to every red edge such that
the red edge has height 1 in the cactus subcomplex. Finally, identify the blue edges with the
same labels along orientations shown by directed arrows. The resulting complex is called the
twisted key complex.
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Next, we recall a lemma from Munkres [38, Lemma 3.2] that will be used to provide a
guarantee that the twisted key complex is, in fact, a simplicial complex.

▶ Lemma 10 (Munkres, [38, Lemma 3.2]). Let L be a finite set of labels. Let K be a simplicial
complex defined on a set of vertices V . Also, let f : V → L be a surjective map associating
to each vertex of K a label from L. The labeling f extends to a simplicial map g : K → Kf

where Kf has vertex set V and is obtained from K by identifying vertices with the same label.
If for all pairs v, w ∈ V , f(v) = f(w) implies that their stars starK(v) and starK(w) are

vertex disjoint, then, for all faces η, ω ∈ K we have that
η and g(η) have the same dimension, and
g(η) = g(ω) implies that either η = ω or η and ω are vertex disjoint in K.

Lemma 10 provides a way of gluing faces of a simplicial complex by a simplicial quotient
map obtained from vertex identifications. In particular, Lemma 10 provides conditions under
which the gluing does not create unwanted identifications, and the resulting complex thus
obtained is also a simplicial complex. Since the stars of the vertices that are identified are
vertex disjoint (See Figure 6), the twisted key complex is a simplicial complex by Lemma 10.

Let ζ = {DL, LN,NR,RS, SV,VH,HF,FD} be the input cycle. Next, we will show that the
minimum hitting set of ζ is not a cocycle.
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Figure 6 The figure illustrates some of the simplices of the twisted key complex. To begin with
one starts with the unlabeled complex in the figure which looks like a key. To every red edge in
this complex, one attaches a cactus complex of height 22. Then, the complex is labeled as shown.
The edges labeled E1F1 are identified with each other with the arrow depicting the orientation
of the identification. The edges labeled E1L1 are also identified with each other with the arrow
depicting the orientation of the identification. The resulting complex is the twisted key complex.
Let ζ = {DL, LN, NR, RS, SV, VH, HF, FD} be the input cycle. Then, a minimal hitting set of [ζ] has
a minimum of 21 edges. In this case, the unique minimum hitting set comprises of the blue edges of
the twisted key complex, which we denote by S. The edges E1L1, L1F1 and F1E1 belong to S and are
incident on the 2-simplex E1L1F1. Hence, S is not a cocycle.

▶ Lemma 11. If a red edge of the twisted key complex belongs to a minimum hitting set of ζ,
then the minimum hitting set has cardinality at least 22.

Proof. Without loss of generality, let AC be the red edge which belongs to a minimum hitting
set S of ζ. By minimality of S, there is a cycle γ ∈ [ζ] such that γ ∩ S = {AC}. In the cactus
complex identified to edge AC, AC is of height 1. Then, the support of γ + ∂σAC differs from
the support of γ only on the two edges of height 2 that are incident on σAC. Hence, one of
the edges of height 2 incident on σAC belongs to S. Repeating this argument inductively, we
see that if AC is in S, then there is at least one edge of height h for every 1 ≤ h ≤ 22 in the
cactus complex incident on AC that also belongs to S, proving the claim. ◀
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▶ Theorem 12. The cycle ζ of the twisted key complex T has a unique minimum hitting set
C, where C is not a cocycle of T.

Proof. If the set C does not contain any red or blue edges of T, then C is not a hitting set of
ζ. Since we aim to find a hitting set of size smaller than 22, from Lemma 11, we hypothesize
that C has at least one blue edge and no red edges. Without loss of generality let C1D1 be a
blue edge in C. By minimality of C, there exists a cycle γ such that γ ∩ C = {C1D1}. Since
the cycles γ + ∂(C1D1E1) and γ + ∂(C1D1A1) are also hit by C, we conclude that A1C1 ∈ C
and E1D1 ∈ C. Inductively applying this argument, we conclude that all blue edges must
lie in C. Therefore, |C| = 21. Since the choice of C1D1 at the beginning of the argument is
arbitrary, it follows that ζ has a unique minimal hitting set, namely, one that comprises of
all the blue edges. Finally, δC = δ

∑
e∈C e = {F1E1L1} ̸= 0. In other words, since the edges

E1F1, F1L1 and E1L1 all belong to C, and F1E1L1 is a 2-simplex in T, C is not a cocycle. ◀

5 W[1]-hardness for Homological Hitting Set

In this section, we obtain W[1]-hardness results for HHS with respect to the solution size k
as the parameter via parameterized reductions from Multicolored Clique. We begin this
section by recalling some common notions from graph theory.

A k-clique in a graph G is a complete subgraph of G with k vertices. A k-coloring of a
graph G is an assignment of one of k possible colors to every vertex of G (that is, a vertex
coloring) such that vertices of the same color do not share an edge. A graph G equipped
with a k-coloring is called a k-colored graph. Then, a multicolored k-clique in a colored graph
is a k-clique with a k-coloring. Multicolored Clique (MCC) asks for the existence of a
multicolored k-clique in a k-colored graph G. We remark that reducing from MCC is a highly
effective tool for showing W[1]-hardness [26]. Formally, MCC is defined as follows:

▶ Problem 2 (Multicolored Clique (MCC)).
Instance: A graph G = (V, E), and a vertex coloring c : V → [k].

Parameter: k.

Question: Does there exist a multicolored k-clique H in G?

▶ Theorem 13 (Fellows et al. [26]). MCC is W[1]-complete.

For i ∈ [k], the subset of vertices of color i is denoted by Vi. Clearly, the vertex coloring
c induces a partition on V :

V = ∪k
i=1Vi, and Vi ∩ Vj = ∅ for all i, j ∈ [k].

We now provide a parameterized reduction from MCC to HHS. For r = |V | − 1, we define an
(r + 1)-dimensional complex K(G) associated to the given colored graph G as follows.

Vertices. The set of vertices of K(G) contains the disjoint union of the vertices V in the
graph G, the set of colors [k], and an additional dummy vertex d. Altogether, we have
r + k + 2 vertices in K(G) so far. In what follows, further vertices are added to K(G).

Simplices. Below, we describe the simplices that constitute the complex K(G).
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τv
i,j

τu
j,i

αv
i

αv
i

βv,u
i,j

βv,u
i,j

αu
j

αu
j

σi σj

V V

d

V

Figure 7 The figure shows simplices in X ⊊ K(G). In particular, αv
i is the common face of τv

i,j

and σi, αu
j is the common face of τu

j,i and σj , and βv,u
i,j is the common face of τv

i,j and τu
j,i. The

dashed lines indicate identical facets. The set of r-simplices supported by the vertices V ∪ {d} form
a nontrivial r-cycle in K(G).

The cycle ζ. First, add the r-simplex V corresponding to vertex set V of the graph G. Next,
add the r-simplices (V \ {u}) ∪ {d} for every u ∈ V . The collection of these r + 2 simplices
of dimension r forms a nontrivial r-cycle ζ. The simplices (V \ {u}) ∪ {d} for every u ∈ V

are deemed undesirable, whereas the simplex V is classified as admissible. As explained later,
we wish to make the inclusion of undesirable simplices in solutions prohibitively expensive.

Next, we describe the sets X1 and X2, which are collections of (r + 1)-simplices.

The set X1. For every i ∈ [k], add an (r + 1)-simplex σi = V ∪ {i} to X1.
That is, X1 = {σi = V ∪ {i} | i ∈ [k]} .

▶ Definition 14 (Admissible and undesirable facets of σi). The admissible facets of σi are:
The facet V .
The facets (V \ {v}) ∪ {i} of σi for all v ∈ Vi.

The facet (V \ {v}) ∪ {i} for all v ̸∈ Vi are the undesirable facets of σi.

The idea here is that including an admissible simplex of the form (V \ {v}) ∪ {i} in S
is akin to picking the vertex v of color i for constructing the colorful clique, whereas the
coloring specified by undesirable facets is incompatible with the coloring c on vertices V .
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The set X2. For every color i ∈ [k], for every vertex v in Vi and every color j ∈ [k] \ {i},
add an (r + 1)-simplex τv

i,j = (V \ {v}) ∪ {i, j} to X2.
That is, X2 =

{
τv

i,j | i ∈ [k], v ∈ Vi, j ∈ [k] \ {i}
}
.

▶ Definition 15 (Admissible and undesirable facets of τv
i,j). The admissible facets of τv

i,j are:
(V \ {v, u}) ∪ {i, j} with u ∈ Vj and {u, v} ∈ E, and
(V \ {v}) ∪ {i},

A facet of τv
i,j that is not admissible is said to be undesirable.

By design, picking an admissible facet of the form (V \ {v, u}) ∪ {i, j} is akin to picking
the edge {u, v} of color {i, j} for constructing the colorful clique, whereas the admissible
facet (V \ {v}) ∪ {i} is common with σi. Undesirable simplices of τv

i,j correspond either to
coloring that is incompatible with c or with edges that are not even present in E.

▶ Notation 16. The admissible facets (V \ {v}) ∪ {i} and (V \ {v, u}) ∪ {i, j} are denoted
by αv

i and βv,u
i,j , respectively. For every vertex v ∈ V of color i, there is a facet αv

i . For every
edge {u, v} ∈ E, there is a facet βv,u

i,j , where i is the color of v and j is the color of u.

▶ Remark 17 (Meaning of superscripts and subscripts of simplices). A simple mnemonic for
remembering the meaning of the notation for simplices is as follows: the indices in the
subscript are the included colors, and the vertices in the superscript indicate the vertices
excluded from V . For instance, βv,u

i,j is the full simplex on the vertex set (V \ {v, u}) ∪ {i, j}.
In this case, colors i and j are included and vertices u and v are excluded. The same
notational rule applies for αv

i , σi and τv
i,j .

▶ Remark 18 (Correspondence between colors and vertices in αv
i β

v,u
i,j and τv

i,j). In our notation,
the first color corresponds to the first vertex, the second color to the second vertex.

In αv
i , vertex v is of color i, whereas in βv,u

i,j , v is of color i and u is of color j.
In τv

i,j , v is of color i and the vertex associated to color j is not specified. It is, in fact,
chosen through a facet βv,u

i,j ≺ τv
i,j .

Now, let X = X1 ∪ X2. The (r + 1)-simplices in X along with incident facets are shown
in Figure 7. We intend to make the inclusion of undesirable simplices in the solution
prohibitively expensive. For this purpose, we add an additional set Y of (r + 1)-simplices
(called inadmissible simplices).

Undesirable and inadmissible simplices. The undesirability of certain r-simplices is imple-
mented as follows: Let m = n3. Then, to every undesirable r-simplex ω = {v1, v2, . . . , vr+1},
associate m new vertices Uω = {uω

1 , u
ω
2 , . . . , u

ω
m}. Now introduce m new (r + 1)-simplices

Υω = {µi(ω) = {v1, v2, . . . , vr+1, u
ω
i } | i ∈ [m]}

that are cofacets of ω.

▶ Definition 19 (Set of inadmissible simplices associated to an undesirable simplex ω). The set
of r-simplices in {{facets of µi(ω)} | i ∈ [m]} is denoted by [ω]. The simplices in the set [ω]
are said to be inadmissible. In particular, ω itself is inadmissible.

See Figure 8 for an illustrative example. Every edge in Figure 8 is a facet of some simplex
µi(ω), and hence inadmissible, whereas ω is undesirable (as well as inadmissible).

Further, note that the set of vertices in Uω and r-simplices in Υω are unique to ω. As
we observe later, introducing these new simplices makes inclusion of ω in the solution set
prohibitively expensive. Denote by Y the set of all (r + 1)-simplices added in this step.
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ω
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µ1

uω
2

µ2

uω
3

µ3

uω
i

µi

uω
m−2

µm−2

uω
m−1

µm−1

uω
m

µm

Figure 8 For every undesirable simplex ω = {v1, v2, . . . , vr+1} m new vertices Uω =
{uω

1 , uω
2 , . . . , uω

m} are added to K(G). Also, m new (r + 1)-simplices Υω = {µi(ω) =
{v1, v2, . . . , vr+1, uω

i } | i ∈ [m]} are added to K(G) as cofacets of ω. The facets of µi(ω) for
every i ∈ [m] are the inadmissible simplices associated to ω and denoted by [ω].

The final complex K(G) used in the reduction is the complex obtained by taking closure
of simplices in X ∪ Y (under taking subsets). It is easy to check that the inadmissible and
admissible simplices of K(G) partition the set of r-simplices of K(G).

▶ Remark 20 (Size of K(G)). We note that every subset of vertices of G is a simplex in
K(G). However, K(G) is represented implicitly, and the simplices of dimensions other than r

and (r + 1) are not used in the reduction. Thus, although K(G) as a simplicial complex is
exponential in the size of G, the reduction itself is polynomial in the size of G because the
number of r and (r + 1) dimensional simplices of K(G) are polynomial in size of G.

Choice of parameter. Let (k +
(

k
2
)

+ 1 =
(

k+1
2

)
+ 1) be the parameter for HHS on K(G).

▶ Lemma 21. If there exists a multicolored k-clique H = (VH , EH) of G, then there exists a
homological hitting set S for ζ consisting of

(
k+1

2
)

+ 1 r-simplices.

Proof. We construct a set S of r-simplices that mimics the graphical structure of H. First,
we define

Sα =
{
αv

i | v ∈ Vi ∩ VH

}
Sβ =

{
βv,u

i,j | v ∈ Vi, u ∈ Vj , {i, j} ∈ EH

}
Then, we set S = {V } ∪ Sα ∪ Sβ . Next, note that every cycle ζ ′ ∈ [ζ] can be expressed as

ζ ′ = ζ +
∑

νi∈X ′

∂νi +
∑

µj∈Y′

∂µj

for some X ′ ⊂ X1 ∪ X2 and Y ′ ⊂ Y . Let X ′
1 = X ′ ∩ X1, and X ′

2 = X ′ ∩ X2. Now, we claim
that removing S from K(G) destroys every cycle ζ ′ ∈ [ζ]. We show this by establishing that
in every ζ ′ ∈ [ζ] the coefficient of at least one of the simplicies of S is 1. In other words,
S ∩ ζ ′ ̸= ∅ for every ζ ′ ∈ [ζ].
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j,i
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βv,u
i,j

βv,u
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αu
j

αu
j

σi σj

V V

|T |

d

V

|X ′
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Figure 9 In this figure, τv
i,j and τu

j,i belong to X ′′
2 , σi and σj belong to X ′

1, and αv
i and αu

j belong
to Sα. T accounts for all the incidences of the boundaries of simplices in X ′′

2 on simplices in Sα.
The final part of the argument in Case 4 of Lemma 21 is depicted here. Since |T | is even and the
coefficient of all the simplices of S \ {V } have coefficient 0 in some cycle ζ′ ∈ [ζ], we have X ′

1 = O,
and O has even cardinality. But if this is so, then the coefficient of V in ζ′ is (1 + |O|) mod 2 = 1.

Case 1: X ′ = ∅. Then, V ∈ S has coefficient 1 in cycle ζ ′. This is because simplices in Y
are not incident on V , and V ∈ ζ.

Case 2: X ′
1 ̸= ∅, X ′

2 = ∅. Then, the cycle ζ ′ can be written as

ζ ′ = ζ +
∑

σj∈X ′
1

∂σj +
∑

µℓ∈Y′

∂µℓ

Then, every αv
j ∈ S for σj ∈ X ′

1 and v ∈ VH ∩Vj has coefficient 1 in cycle ζ ′. This is because
αv

j ∈ ∂σj for every σj ∈ X ′
1, but αv

j ̸∈ ζ and αv
j ̸∈ ∂µℓ for any µℓ ∈ Y ′.

Case 3: X ′
1 = ∅, X ′

2 ̸= ∅. This case is identical to Case 1 since V ∈ S has coefficient 1
in ζ ′.

Case 4: X ′
1 ̸= ∅, X ′

2 ≠ ∅. If every simplex τv
p,q ∈ X ′

2 is such that v ∈ Vp \ VH , then this
case becomes identical to Case 2. So we will assume without loss of generality that the
set X ′′

2 =
{
τv

p,q | p, q ∈ [k], v ∈ Vp ∩ VH , τ
v
p,q ∈ X ′

2
}

is non-empty. For some {u, v} ∈ EH and
u ∈ Vq, v ∈ Vp, if τv

p,q ∈ X ′′
2 and τu

q,p ̸∈ X ′′
2 , then the coefficient of βv,u

p,q ∈ S in ζ ′ is 1 because
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the only two (r+ 1)-simplices incident on βv,u
p,q are τv

p,q and τu
q,p. So, without loss of generality

assume that the symmetric simplex τu
q,p is also in X ′′

2 . In other words, |X ′′
2 | is even. Note that

for every τv
p,q ∈ X ′′

2 , exactly one facet of τv
p,q lies in Sα, namely αv

p. Hence the cardinality of the
multiset T =

{
∂τv

i,j ∩ Sα | τv
i,j ∈ X ′′

2
}

is even. Let C(σi) =
∣∣{τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j ∩ Sα

}∣∣.
Also, let E = {σi | C(σi) is even} and O = {σi | C(σi) is odd}.

Note that |T | =
∑
σi∈E

C(σi) +
∑

σi∈O
C(σi).

Since |T | is even, |O| must be even. By construction, X ′
1 ⊆ O ∪E . For some i, let v ∈ Vi ∩VH .

Now, if σi ∈ E ∩ X ′
1, then the coefficient of αv

i ∈ S in ζ ′ is 1 because the only (r + 1)-
simplices incident on αv

i are
{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
∪ {σi}, and |

{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
|

is even when σi ∈ E . So, without loss of generality assume that E ∩ X ′
1 is empty. That

is, we assume that X ′
1 ⊆ O. But if σi ∈ O \ X ′

1, then the coefficient of αv
i ∈ Sα in ζ ′ is 1

because in that case the only (r + 1)-simplices incident on αv
i are

{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
and

∣∣{τv
i,j ∈ X ′′

2 | αv
i ∈ ∂τv

i,j

}∣∣ is odd. So, we assume that O = X ′
1. But if O = X ′

1, then
V ∈ S has coefficient 1 in ζ ′ because
1. O is even, and the simplices in O are incident on V

2. V ∈ ζ.
This completes the proof. Figure 9 illustrates the final part of the argument. ◀

While the forward direction (Lemma 21) of the reduction is unaffected by the addition of
inadmissible simplices, the inadmissible simplices are indispensable for proving the reverse
direction (Lemma 22). We defer the proof of Lemma 22 to the full version of the paper.

▶ Lemma 22. If R is a feasible solution for HHS on K(G) and |R| =
(

k+1
2

)
+ 1, then one

can obtain a k-clique H of G from R.

Theorem 13 and Lemmas 21 and 22 combine to give the following theorem.

▶ Theorem 23. HHS is W[1]-hard.

6 FPT Algorithm for Homological Hitting Set

In Section 5 we showed that HHS is W[1]-hard with the solution size k as the parameter.
This motivates the search of other meaningful parameters that make the problem tractable.
With that in mind, in this section, we prove an important structural property about the
connectivity of the minimal solution sets for HHS. First, we start with a definition.

▶ Definition 24 (Induced subgraphs in Hasse graphs). Given a d-dimensional complex K with
Hasse graph HK, and a set S of r-simplices for some r < d, the subgraph of HK induced by
S is the union of S with the set of (r + 1)-dimensional simplices incident on S.

▶ Lemma 25. Given a d-dimensional complex K, a minimal solution of HHS for a non-
bounding cycle ζ ∈ Zr(K) for some r < d induces a connected subgraph of HK.

Proof. Let HS be the subgraph of the Hasse graph HK induced by a minimum homological
hitting set S of a non-bounding cycle ζ ∈ Zr(K). Targeting a contradiction, assume that HS
is a disjoint union of C1 and C2. That is, C1 and C2 are subgraphs of HS that do not share
any (r + 1)-simplices. Since S is minimal, there exists an r-cycle ϕ ∈ [ζ] that contains an
r-simplex in C1 but not any of the r-simplices in C2, and an r-cycle ψ ∈ [ζ] that contains an
r-simplex in C2 but not any of the r-simplices in C1. Then, ϕ = ψ + ∂b, for some (r + 1)
chain b. Let b′ be an (r+1)-chain obtained from b by removing exactly those (r+1)-simplices
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that belong to C1. Now, let ϕ′ = ψ + ∂b′. By construction, ϕ′ is disjoint from C1. Also,
because C1 and C2 are disjoint, the simplices removed from b to obtain b′ do not belong to
C2. Hence, ϕ′ is disjoint from C2. In other words, ϕ′ ∈ [ζ] does not meet S, and S is not a
hitting set, a contradiction. Therefore, the induced subgraph of S is connected. ◀

Note that the path from any r-simplex to another r-simplex passing through a shared
(r+ 1)-simplex in the Hasse graph is of size 2. So it follows from Lemma 25 that any minimal
solution of size at most k lies in some geodesic ball of radius 2k of some r-simplex in the
Hasse graph. If we enumerate all the connected sets in the geodesic ball of every r-simplex in
the complex K, then we will find a solution if one exists. Algorithm 3 provides a pseudocode
for this algorithm.

Algorithm 3 FPT Algorithm for Homological Hitting Set with k + ∆ as the parameter.

1: SOL = K;
2: for each r-simplex τ of K do
3: Consider the set Sτ of all simplices within the graph distance 2k (in HK) of τ .
4: for every connected subset S ⊆ Sτ with |S| ≤ k do
5: if S is a hitting set of ζ and |S| < | SOL | then
6: SOL = S;
7: if | SOL | < k then return SOL;

Note that in Line 4 of Algorithm 3, we need to enumerate only the connected subsets S
of cardinality less than or equal to k. We use Lemmas 27 and 28 by Fomin and Villanger [28]
that provide very good bounds for enumerating connected subgraphs of graphs. First, we
introduce some notation.

▶ Notation 26. The neighborhood of a vertex v is denoted by nbd(v) = {u ∈ V : u, v ∈ E},
whereas the neighborhood of a vertex set S ⊆ V is set to be nbd(S) = ∪v∈S nbd(v) \ S.

▶ Lemma 27 ( [28, Lemma 3.1]). Let G = (V,E) be a graph. For every v ∈ V , and b, d ≥ 0,
the number of connected vertex subsets C ⊆ V such that
1. v ∈ C,
2. |C| = b+ 1, and
3. | nbd(C)| = d

is at most
(

b+d
b

)
.

▶ Lemma 28 ( [28, Lemma 3.2]). All connected vertex sets of size b+ 1 with d neighbors of
an n-vertex graph G can be enumerated in time O(n2 · b · (b+ d) ·

(
b+d

b

)
) by making use of

polynomial space.

In Algorithm 3, b = O(k) and d = O(k∆). Therefore,(
b+ d

b

)
=

(
O(k∆)
O(k)

)
≤ (k∆)O(k) = 2O(k log(k∆)). (1)

Hence, by Lemma 28, for a single r-simplex, the number of connected sets enumerated in
Line 4 is O(n2 · O(k) · O(k∆) · 2O(k log(k∆))) = O(n5 · 2O(k log(k∆))) time. Since we do this
for every r-simplex τ in K, all candidate sets in Lines 4-6 can be enumerated in at most
O(n6 · 2O(k log(k∆))) time. Using Lemma 2, one can check if the set is a feasible solution in
time O(nω), where ω is the exponent of matrix multiplication. Checking feasibility for every
enumerated connected set takes O(nω+1 · 2O(k log(k∆))) time. Hence, the algorithm runs in
O(n6 · 2O(k log(k∆))) time, which is fixed parameter tractable in k + ∆.
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▶ Theorem 29. HHS admits an FPT algorithm with respect to the parameter k + ∆, where
∆ is the maximum degree of the Hasse graph and k is the solution size. The algorithm runs
in O(n6 · 2O(k log(k∆))) time.

Proof. The correctness of Algorithm 3 follows immediately from Lemma 25. ◀

▶ Remark 30. Note that the degree ∆ of the Hasse graph HK is bounded when the dimension
of the complex is bounded and the number of incident cofacets on every simplex (or cell)
is bounded. It is easy to check that Lemma 25 and Algorithm 3 are also applicable for
cubical sets. We describe all results in this paper for simplicial complexes only to keep the
background requirements to minimum. Low dimensional cubical sets are commonly used in
dynamical systems computations [31, Definition 2.9], and provide an example of a family of
complexes for which ∆ is bounded.

7 Conclusion and Discussion

In Section 3, we describe Algorithm 1 only for triangulated surfaces. In the full version of
the paper, we will generalize Algorithm 1 to cellularly embedded graphs and manifolds.

In Section 5, we prove that Homological Hitting Set is W[1]-hard. While this may
be discouraging at first, we note in Remark 30 that for important families of complexes like
cubical sets, Homological Hitting Set is tractable in the natural parameter. Overall, we
believe that an algorithmic study of high-dimensional cuts is fruitful.
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Abstract
Query-to-communication lifting theorems, which connect the query complexity of a Boolean function
to the communication complexity of an associated “lifted” function obtained by composing the
function with many copies of another function known as a gadget, have been instrumental in resolving
many open questions in computational complexity. A number of important complexity questions
could be resolved if we could make substantial improvements in the input size required for lifting
with the Index function, which is a universal gadget for lifting, from its current near-linear size down
to polylogarithmic in the number of inputs N of the original function or, ideally, constant. The
near-linear size bound was recently shown by Lovett, Meka, Mertz, Pitassi and Zhang [20] using a
recent breakthrough improvement on the Sunflower Lemma to show that a certain graph associated
with an Index function of that size is a disperser. They also stated a conjecture about the Index
function that is essential for further improvements in the size required for lifting with Index using
current techniques. In this paper we prove the following;

The conjecture of Lovett et al. is false when the size of the Index gadget is less than logarithmic
in N .
The same limitation applies to the Inner-Product function. More precisely, the Inner-Product
function, which is known to satisfy the disperser property at size O(log N), also does not have
this property when its size is less than log N .
Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets of any size
at least 4 and yields lower bounds for a restricted class of communication protocols in which one
of the players is limited to sending parities of its inputs.
Using a modification of the same idea with improved lifting parameters we derive a strong
lifting theorem from decision tree size to parity decision tree size. We use this, in turn, to
derive a general lifting theorem in proof complexity from tree-resolution size to tree-like Res(⊕)
refutation size, which yields many new exponential lower bounds on such proofs.
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1 Introduction

In recent years, a substantial number of long-standing problems [8, 9, 19, 11, 23] have been
resolved using the method of lifting. Lifting results take a gadget function g and show that
any function f : {0, 1}N → {0, 1} that is hard to compute by decision trees can be modified
to a new function F = f ◦gN that is hard for a more powerful computational model, typically
that of 2-party communication complexity, in which case g : X × Y → {0, 1} and the inputs
for F for the two players are partitioned into x ∈ XN and y ∈ Y N .
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A particularly natural and important choice of gadget g is the Index gadget INDm :
[m] × {0, 1}m given by INDm(x, y) = yx. The Index gadget is actually universal for all
gadgets g : X × Y → {0, 1} where |X| = |Y | = m via the simple reduction where y is
replaced by the string (g(x, y))x∈X . Since INDm has a 2-party protocol of cost log2 m + 1,
the communication complexity of f ◦ INDN

m is at most O(Cdt(f) log m), where Cdt(f) is the
decision tree complexity of f . Another important gadget g is the Inner-Product function
IPb : {0, 1}b × {0, 1}b → {0, 1} given by IPb(x, y) = x · y mod 2.

An important limitation on the quality of lower bounds that can be proven by lifting
with a gadget g : X × Y → {0, 1} comes from the fact that the input size for F grows by a
factor of log2 |X|+ log2 |Y | bits from that of f . This limits the lower bounds on the lifted
function F compared to the input size of F . The original lifting theorems of [21] and [12]
used Index gadgets with m a large polynomial in N . Subsequently, [5, 25] proved a lifting
theorem for Inner-Product gadgets with b = c log2 N for some constant c > 5. Later, [5]
improved c to almost 2. The first lifting theorem for randomized computation was proved
by [13] again for Index but for m an even larger polynomial in N and later again, by [4], for
Inner-Product for b a larger constant multiple of log2 N than for deterministic lifting.

A key question asked in a precursor paper to these lifting theorems [10] is whether lifting is
possible with a sub-logarithmic or even constant-size Inner-Product gadget. Smaller gadgets
imply sharper lifting results and more general classes of functions for which lifting may be
used to prove lower bounds. Proving such lifting theorems would imply breakthrough results
in other areas. For example, proving lifting theorems with constant-size gadgets would give
us a near-complete understanding of communication complexity of lifted search problems
and would imply breakthrough results in associated areas like proof complexity and circuit
complexity1. Even improving the gadget size for Index to poly-logarithmic in N would
improve the best known monotone circuit size lower bounds [14] from 2Ω̃(n1/3) to 2Ω̃(n). In
the dream range of constant size, by the universality of Index, if there is any lifting theorem
for any constant-size gadget, there would be one for constant-size Index gadgets.

Recent work by Lovett, Meka, Mertz, Pitassi and Zhang [20] used a new bound for the
Sunflower Lemma [1] to improve the size of the Index gadget that can be used in deterministic
lifting results to O(N log N). They also identified a conjecture regarding entropy deficiency
and the disperser property of the Index gadget that is essential for further reductions in
gadget size using current techniques.

Before stating the conjecture of Lovett, Meka, Mertz, Pitassi and Zhang [20] we give an
outline of the meta-technique for proving query to communication lifting theorems, known
as the simulation theorem framework.

The lifting paradigm

The general paradigm for proving a query-to-communication lifting theorem is a step-by-step
simulation argument that begins with a communication protocol Π for f ◦ gN on inputs in
XN × Y N and derives a decision tree T computing f on inputs z ∈ {0, 1}N .

1 In this paper we focus on the setting of query-to-communication lifting where the query complexity of f
is lifted to the communication complexity of F using the gadget g. There are other lifting theorems
(see [24]) which lift analytical parameters of the function f to the communication complexity of F .
In these settings, lifting theorems with constant-size gadgets are known [24] but for many interesting
applications of lifting, there is a significant gap between analytical parameters of f like approximate-
degree (used in [24]) and the query complexity of f . Thus, such lifting theorems with constant-size
gadgets are not enough to give the results alluded to above.
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Beginning at the root of Π and with T a single root node, the simulation proceeds to
follow a path in Π maintaining sets of inputs X ⊆ XN and Y ⊆ Y N consistent with the
current node u in protocol Π. (The exact procedure for choosing the path and the sets X
and Y varies.)

At any point in time when X ×Y has revealed too much about the value of zi = g(xi, yi)
for some i, the simulation at the current leaf node v of T queries zi and adds the children
v′ and v′′ to T , one for each outcome. The simulation then splits into cases depending on
whether the 0 or 1 out-edge from v is being followed. There may be multiple i for which this
may need to be done at the same time.

The simulations maintain several invariants at each corresponding pair of nodes u in Π
and v in T that occur in this simulation. In particular, if X and Y are associated with this
pair of nodes and I ⊆ [N ] is the set of input indices queried on the path in T to v and zI is
the assignment that takes T to the node v then we require

gI(X ,Y) = zI (Consistency)

g[N ]\I(X ,Y) = {0, 1}[N ]\I
. (Disperser/Extensibility)

The consistency property is obviously required for correctness. The disperser property is
required because the simulation cannot predict what query indices will be needed for T in
the future. Overall, in order to yield a good complexity bound, the argument also has to
bound the length of the path to v in T , which is the size of the set I, as a function of the
length of the path from the root to u in Π.

In order to maintain these properties, the simulations also maintain some “nice” structure
on the sets X and Y . The most common notions of nice structure are small entropy deficiency
of the induced distributions on the unqueried coordinates [N ] \ I or high min-entropy rate
(equivalently the block min-entropy)2. The min-entropy rate is the minimum ratio of the
min-entropy of the induced distributions on any subset of unqueried blocks compared to the
maximum possible entropy on those blocks.

There are other “nice” properties that were used in the past. For example, one of the
first lifting theorems by Raz and McKenzie [21] used a combinatorial notion of niceness
defined as average-degrees in a layered graph corresponding to X . This property was also
used in the later reproving of the result by [12], and the result on extending deterministic
lifting theorems to a larger class of gadgets including Inner Product by [25, 5]3. All of the
results using this combinatorial property crucially depend on a transformation in layered
graphs from average degree to minimum degree known as the “thickness lemma” to prove the
disperser property of the gadget. It is a folklore result that such average-degree to min-degree
transformations do not work for Index gadgets of linear size. Thus, using “average-degree”
as the nice property cannot yield lifting theorems with sublinear-size Index gadgets using
existing techniques.

The LMMPZ conjecture on entropy deficiency and disperser properties of
IND
The conjecture of Lovett et al. [20] is a necessary condition for small entropy deficiency to be
sufficient for lifting with the Index function. To motivate the parameters of the conjecture
we first note how entropy deficiency relates to the numbers of bits of communication sent in
the protocol Π:

2 Many existing results for the Index gadget use bounds on the min-entropy rate on the XN side and
entropy deficiency on the Y N side.

3 [5] uses it slightly differently from the application of the property for the Index gadget.

ITCS 2023
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In the course of following a path in Π to a node u, each bit communicated may split the
set of consistent inputs in either XN or Y N by a factor of 2, which increases the entropy
deficiency by 1. If good min-entropy rate is also required, additional pruning must be done,
which further increases the entropy deficiency. Therefore, the best one can do in terms of
maintaining small entropy deficiency is to maintain a bound ∆ on entropy deficiency for X
and Y that is proportional to the number of bits sent in Π. Bounding the length of the path
in the decision in terms of the number of bits sent means that |I| should not be too large as
a function of ∆. This led Lovett et al. to formulate the following conjecture on the disperser
properties of Index as a first step towards obtaining lifting theorems for small gadget sizes:

▶ Conjecture 1.1 ([20, Conjecture 11]). There exists c, such that for all large enough m

the following holds: Let X ,Y be distributions on [m]N , ({0, 1}m)N , respectively, each with
entropy deficiency at most ∆. Then INDN

m(X ,Y) contains a sub-cube of co-dimension at most
c∆. That is, there exists I ⊆ [N ], |I| ≤ c∆, and γ ∈ {0, 1}I such that for all z ∈ {0, 1}N

with zI = γ we have

Pr
x∼X , y∼Y

[INDN
m(x, y) = z] > 0. (1)

▶ Remark. Note that the condition Equation (1) is somewhat weaker than the combination of
the consistency and disperser conditions in the above lifting paradigm. The lifting paradigm
would correspond to additionally requiring that the (x, y) pair in Equation (1) come from
some X ′ ⊆ X and Y ′ ⊆ Y such that INDI

m(X ′,Y ′) = γ. Here, one could satisfy Equation (1)
using pairs (x, y) and (x′, y′) with INDI

m(x, y) = INDI
m(x′, y′) = γ but INDI

m(x, y′) ̸= γ.
The results in [20] prove the conjecture for m = O(N log N), in fact the stronger version

with separate consistency and disperser properties required for lifting; previously it was only
known when m≫ N2. Based on a related statement about p-biased (X ,Y) proved in the
Robust Sunflower Theorem from [1], the authors [20] also suggest that it is hopeful to prove
the conjecture when m = poly(log N) using techniques from their work and [1].

Our results
We disprove the LMMPZ conjecture when m is log2 N − ω(1), even when X and Y are also
assumed to have extremely high min-entropy rate. In our counterexample the distribution
for X is uniform on [m]N and so has full entropy and maximum possible min-entropy rate.
The distribution on Y is also uniform so we view both X and Y as subsets of [m]N and
({0, 1}m)N respectively.

Though the parameter ∆ governing the entropy deficiency in the conjecture is universally
quantified, the failure of the conjecture occurs over a very wide range of values of ∆. In fact,
when m ≤ (1 − α) log2 N , we prove a much larger gap and show that |I| must be Ω(Nα)
independent of ∆ for Equation (1) to hold.

▶ Theorem 1.2. For any ∆ ≥ 1 and m with 2m ≤ N/(K∆) for K ≥ 1 there is a set
Y ⊆ ({0, 1}m)N of entropy deficiency at most ∆ and min-entropy rate at least 1− 1/m such
that for every I ⊆ [N ] with |I| ≤ (K − 1)∆, the set INDN\I

m ([m]N ,Y) does not contain the
all-0 string.

Since X = [m]N has no deficiency (and min-entropy rate 1) we immediately derive the
following:

▶ Corollary 1.3. Conjecture 1.1 is false when m ≤ log2(N/∆)− ω(1). Moreover, for all ∆,
when m ≤ (1− α) log2 N , for any set I, |I| must be Ω(Nα) for Equation (1) to hold.
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Furthermore, an analogous property applies to the Inner-Product function:

▶ Theorem 1.4. For b ≤ log2(N/(K∆)) for K ≥ 1, there is a set Y ⊂ ({0, 1}b)N of
entropy deficiency at most ∆ and min-entropy rate more than 1− 1/b for every I ⊆ [N ] with
|I| ≤ (K − 1)∆, the set IPN\I

b (({0, 1}b)N ,Y) does not contain the all-1 string.

Therefore, though lifting theorems, both deterministic and randomized, have already
been proven for Inner-Product gadgets on c log2 n bits using only properties of small entropy-
deficiency and high min-entropy rate [4], using these properties we can at best reduce the
Inner-Product gadget size in such lifting theorems by at most a constant factor since lifting
for Inner-Product gadgets with significantly fewer than log2 n bits are impossible using those
properties.

The proof idea for these theorems is quite simple and relies on the fact that for such
small values of m, it is likely that a uniformly random string y will have many blocks i where
yi = 0m and hence cannot have 1 output values in any of those coordinates.

Despite this setback, the dream of lifting theorems for constant-size gadgets remains. Our
second main result is that though we can rule out the disperser properties of Conjecture 1.1
for INDm with sub-logarithmic m, there is an interesting class of protocols, one in which
Bob’s messages are constrained to be parity functions of his input string y, in which we can
prove a deterministic lifting theorem using INDm gadget for constant size m.

Since Alice is unrestricted and Bob is restricted, we call such protocols semi-structured
protocols. We obtain a lifting theorem for semi-structured protocols showing that the
decision tree height is asymptotically at most a 1/ log m fraction of the complexity of the
communication protocol for the lifted function with INDN

m. As is typical for deterministic
lifting theorems, this works both for functions and for search problems. For protocols in
which both Alice and Bob only send parities of their inputs, we obtain an even stronger
simulation that applies to the size of the decision tree produced in terms of the number of
leaves (size) of the communication protocol for the lifted function.

In particular a modification of this idea gives us a generic theorem that lifts decision tree
lower bounds of height t or size s for any explicit function f on n inputs to a corresponding
lower bound for parity decision trees of height Ω(t) or size Ω(s) for an explicit function f ′ on
O(n) inputs.

The latter also yields new lower bounds for tree-like proofs in the Res(⊕) proof system
introduced by Itsykson and Sokolov [16, 17] who proved tight exponential lower bounds for
the pigeonhole principle as well as exponential lower bounds for a very restricted kind of
lifted formula based on Tseitin formulas from [2]. (This system is also known as ResLin2
because of its relationship to the ResLin proof system of Raz and Tzameret [22].) Huynh and
Nordström [15] gave lifting theorems for a variety of other proof systems using constant-size
Index gadgets (indeed with m = 3) but these only yield good bounds for a restricted class
of formulas whose search problems have high “critical block sensitivity”. Here we obtain
exponential lower bounds for a substantially broader class of formulas. In particular, for any
of the vast class of k-CNF formulas φ for which exponential tree-resolution lower bounds are
known, we obtain lifted O(k)-CNF formulas φ′ with a constant factor increase in number of
variables (and a constant factor increase in number of clauses if k is constant) requiring tree-
like Res(⊕) refutations of exponential size (indeed at least the tree-like resolution refutation
size for φ).

Related Work. Independently of our work, Chattopadhyay, Mande, Sanyal, and Sherif [6]
have obtained closely related lifting results for parity decision tree size and the size of tree-like
Res(⊕) proofs. Their lifting theorem works not only for lifting with Index gadgets but, more

ITCS 2023



14:6 On Disperser/Lifting Properties of the Index and Inner-Product Functions

generally, for lifting with a class of gadgets that includes Inner-Product and other simple
gadgets. Their methods and ours have considerable similarity, particularly in the use of
row-reduction as a key component.

2 Preliminaries

Notation. For a set of vectors (or a distribution X ) on UN and I ⊆ [N ], we use XI to
denote the projection of X onto the coordinates in I. For a function h on U , we let hI(X )
denote the set of all possible vectors of outputs of hI on XI ; if this set is a singleton w we
abuse notation and simply define the value to be w.

Information theory. We use several definitions for forms of entropy:

▶ Definition 2.1. The entropy deficiency (sometimes simply deficiency) of a distribution X
on a universe U , D∞(X ), is log2 |U | −H2(X ). For a subset V ⊆ U , the deficiency of V is
that of the uniform distribution on V. In particular, for example, the deficiency of a set of
inputs Y ⊆ ({0, 1}m)N of Bob satisfies

2−D∞(Y) = |Y|
2m·N .

▶ Definition 2.2. The min-entropy of a distribution X on U , H∞(X ), is

min
x∈U

log2(1/ Pr
X

(x)).

For a distribution X on a set UN , the min-entropy rate of X is the maximum τ such that
for every J ⊆ [N ], H∞(XJ) ≥ τ |J | log2 |U | or, equivalently, such that for all αJ ∈ UJ ,

Pr
x∼X

[xJ = αJ ] ≤ |U |−τ ·|J|.

We use the following fundamental fact about the effect of conditioning on the min-entropy
of a random variable.

▶ Fact 2.3. Let X be a random variable and let E be an event. Then H∞(X | E) ≥
H∞(X )− log2(1/ Pr[E]).

Probability. We will use the following nice bound on the median of any binomial distribution.

▶ Proposition 2.4 ([18]). The median of a binomial distribution B(n, p) lies between ⌊np⌋
and ⌈np⌉.

Linear algebra. We use row-reduced form to represent matrices in our simulation theorems.

▶ Definition 2.5 (Row-reduced matrices). A matrix M with r rows is said to be row reduced
if it contains an r × r identity submatrix.

Parity decision trees and Res(⊕) refutations. A parity decision tree over a set of Boolean
variables Z defining a space {0, 1}Z of Boolean vectors is a rooted binary tree in which
each internal node is labeled by a parity of variables from Z with out-edges labeled 0 and
1 respectively. Each leaf is labeled by an output value. Such a decision tree computes a
function on {0, 1}Z .
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For a function or relation f on Boolean inputs, let Cdt(f) and sizedt(f) be the minimal
height and size, respectively of any decision tree computing f and let C⊕dt(f) and size⊕(dt)(f)
be the corresponding measures for parity decision trees.

Before defining the proof system Res(⊕) and its relationship to parity decision trees, we
first review the resolution proof system and its relationship to ordinary decision trees.

A resolution (Res) refutation of an unsatisfiable CNF formula φ on variables Z is a
sequence of clauses ending in the empty clause ⊥ in which each clause is either a clause of φ,
or follows from two prior clauses using the inference rule

A ∨ zi, B ∨ zi

A ∨B

for some variable zi ∈ Z; we say that this step resolves on variable zi.
This sequence yields a directed acyclic graph (dag) of in-degree 2 each of whose nodes

is labeled by a clause on the variables in Z, with sources labeled by clauses of φ and sink
labeled by ⊥. The resolution refutation is tree-like if this associated dag is a tree and
the associated refutation is called a tree-resolution refutation of φ. For an unsatisfiable
CNF formula φ, let treeRes(φ) be the minimum size of any tree-resolution refutation of φ.
Further, let widthRes(φ) denote the minimum over all resolution refutations of φ of the
length of the longest clause in the refutation. We have the following result of Ben-Sasson
and Wigderson [3].

▶ Proposition 2.6. For any CNF formula φ with clause-size at most k, treeRes(φ) ≥
2widthRes(φ)−k.

Every unsatisfiable CNF formula φ yields an associated total search problem Searchφ

which takes as input an assignment z ∈ {0, 1}Z and produces the name of a clause that is
falsified by z.

▶ Proposition 2.7. Given any unsatisfiable formula φ, minimal tree-resolution refutations
of φ and decision trees solving Searchφ are isomorphic. This isomorphism identifies nodes
that resolve on a variable zi with those that branch on variable zi.

Each node in a decision tree naturally corresponds to the sub-cube of the input set {0, 1}Z

given by the constraints on the path to the node from the root. Similarly, any clause C

can be identified with a sub-cube of {0, 1}Z consisting of the set of all inputs falsified by C.
We say that a clause C is a weakening of a clause A iff there is some clause B such that
C = A∨B; alternatively this is equivalent to saying that the sub-cube corresponding to C is
contained in the sub-cube corresponding A. With this correspondence, the isomorphism in
the above proposition means that the sub-cube for each node in the decision tree corresponds
to a weakening of the clause at the isomorphic node in the tree-resolution refutation.

A Res(⊕) refutation of an unsatisfiable CNF formula φ in variables Z is a sequence of
affine subspaces of FZ

2 ending in the subspace FZ
2 such that each subspace in the list is either

the sub-cube corresponding to a clause of φ or follows from two prior subspaces A and B via
the inference rule:

A, B

C
if C ⊆ A ∪B.

(Alternatively, one can replace each subspace by an expression for its dual, namely a
disjunction of parity equations over F2, each of which is the negation of one of a set of
linear equations defining the affine subspace. Therefore, each line is a clause over parities
and the subspace is the set of inputs that falsifies it. In this way, the single inference rule

ITCS 2023



14:8 On Disperser/Lifting Properties of the Index and Inner-Product Functions

generalizes the weakening rule of resolution and generalizes resolving on a single literal to
resolving on a parity of variables; it is not hard to see that the subspace C must be contained
entirely in A or in B unless there is a unique linear constraint defining A whose negation
is a defining equation for B. This representation is not unique since there may be many
different choices of defining equations for an affine subspace, but we assume that the proof is
representation independent. As noted by Isykson and Sokolov [16, 17], the semantic view of
Res(⊕) refutations we have presented is a standard proof system in the sense of Cook and
Reckhow [7] since inference is explicitly verifiable in polynomial time.)

As with resolution refutations, we can define the dag of indegree (at most) 2 associated with
a Res(⊕) refutation and let tree-Res(⊕) be the proof system consisting of Res(⊕) refutations
whose associated dag is a tree. For an unsatisfiable CNF formula φ, let treeRes(⊕)(φ) be
the minimum size of any tree-Res(⊕) refutation of φ. Using the analogous ideas to the
isomorphism between decision trees and minimal tree-resolution proofs, Itsykson and Sokolov
proved the following correspondence:

▶ Proposition 2.8 ([16, 17]). Given any unsatisfiable formula φ, minimal tree-Res(⊕)
refutations of φ and parity decision trees solving Searchφ are isomorphic. This isomorphism
identifies nodes that resolve on a parity function ⊕S(z) with those that branch on ⊕S(z).

Lifting CNF formulas with INDm. There are a few options for how to do this. Since we will
use this when m = 2ℓ is a constant, we choose a simple option that has Nℓ Boolean variables
xi,j′ for j′ ∈ {0, . . . , ℓ− 1} and i ∈ [N ] and Nm Boolean variables yi,j for j ∈ {0, . . . , m− 1}
and i ∈ [N ]. As usual, the interpretation we have for INDN

m is that zi = yi,xi,ℓ−1...xi,0 .
Given a k-CNF formula φ in N variables Z = {z1, . . . , zN}, we define an (ℓ + 1)k-CNF

formula φ ◦ INDN
m on the xi,j and yi,k variables as follows: Each clause (zb1

i1
∨ · · · zbk

ik
) of φ is

replaced by mk clauses of length (ℓ + 1)k, one for each tuple (j(1), . . . , j(k)), which expresses
the statement that if the ℓ bits xi1,∗ encode value j1, those of xi2,∗ encode j2, ... and those
of xik,∗ encode jk, then yb1

i1,j1
∨ · · · ybk

ik,jk
must be true. With this definition, each clause of

φ ◦ INDN
m corresponds to a unique clause of φ. Moreover, a falsified clause of φ ◦ INDN

m on
one of its input vectors yields a falsifying assignment to the corresponding clause of φ under
the vector of z values given by INDN

m.

3 On the insufficiency of low deficiency and high min-entropy rate

In this section we prove Theorems 1.2 and 1.4.
Let K be any function of N with K ≥ 1 for all N and assume that 2m ≤ N/(K∆). We

will construct a specific distribution Y , with deficiency bounded by ∆ and min-entropy rate
at least 1− 1/m, such that for any I ⊆ [N ] with |I| ≤ (K − 1)∆, IND[N ]\I

m ([m]N ,Y) does
not contain the all-1 string.

We establish this simply by showing that for all (x, y) ∈ [m]N × Y, INDN
m(x, y) has

Hamming weight more than (K − 1)∆. Thus any projection of IND(X ,Y) onto N − |I| ≥
N − (K − 1)∆ coordinates will contain at least one 1, and would therefore miss the all-0
string.

To this end, we will construct Y as the uniform distribution on a subset S ⊆ ({0, 1}m)N

with the following properties :
1. Every y ∈ S has at least k > (K − 1)∆ blocks that are equal to 1m.
2. |S| ≥ 2mN−∆

3. The min-entropy on any subset of b ≤ N blocks is at least (m− 1)b.
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The second property ensures that the deficiency of Y is at most ∆ and the first property
guarantees that every output has at least k 1-bits no matter what the input x is. The third
property is simply that the min-entropy rate is at least (1− 1/m).

The essence of the proof idea applies in the case that ∆ = 1; the general case is a simple
extension of that special case:

Counterexample when ∆ = 1. We derive a counterexample in this case by choosing
k = ⌊K⌋ > K − 1 and setting S to be the set of all inputs in ({0, 1}m)N that have at least k

blocks of the form 1m; i.e., all-1 blocks.
The key observation that makes this work is the following:

▶ Observation 3.1. For y chosen uniformly at random from ({0, 1}m)N , the number of all-1
blocks in y is distributed according to the binomial distribution B(N, 1/2m).

In particular, since ∆ = 1 this means that the expected number of all-1 blocks in y chosen
uniformly from ({0, 1}m)N is N/2m ≥ K. By applying a bound on the median of binomial
distributions, we obtain the following:

▶ Lemma 3.2. For 2m ≤ N/K, at least 1/2 of all strings in ({0, 1}m)N have more than
K − 1 all-1 blocks.

Proof. By Observation 3.1, the number of all-1 blocks is given by the binomial distribution
B(N, 1/2m). By Proposition 2.4, the median of this distribution is at least ⌊N/2m⌋ ≥ ⌊K⌋ >

K − 1. The claim follows since the binomial is integer-valued. ◀

Lemma 3.2 shows that Y is a uniform distribution with deficiency at most 1, which
means that the projection on any b blocks has min-entropy at least mb− 1 and hence Y has
min-entropy rate at least 1− 1/m.

Counterexample for ∆ > 1 but o(N). For this we assume without loss of generality that
∆ is an integer and N = N ′∆ for some integer N ′ since rounding can add only ∆− 1 extra
coordinates.

Since 2m ≤ N/(K∆), we have 2m ≤ N ′/K. This means that we can use the
counterexample distribution Y ′ for the case ∆ = 1 on N ′ coordinates. We define Y to
the direct product of ∆ independent copies of the distribution Y ′ on disjoint coordinates.

By construction, Y has deficiency at most ∆; it also has min-entropy rate at least that of
each Y ′ which is 1− 1/m since it is a product over disjoint coordinates. Also by construction,
every y in the support of Y has more than (K − 1)∆ all-1 blocks which means that no set I

of at most (K − 1)∆ coordinates cannot cover all of the all-1 blocks of y, which would be
necessary to have the all-0 string in IND[N ]\|I|

m ([m]N ,Y).

Extending the counterexamples to other gadgets. We note that the above result also
disproves a similar conjecture for any 2-party gadget g : X×Y → {0, 1} whose communication
matrix has a row or column that has a constant value. For example, the Inner-Product
gadget on IPb : {0, 1}b×{0, 1}b has this property for the row or column of its communication
matrix indexed by 0b. That is, ⟨x, 0b⟩ = 0 for all x ∈ {0, 1}b. It is easy to see that the
above analysis works to disprove the analogous conjecture for Inner-Product under the same
conditions, though in this case, the output vector that would be missed is the all-1 vector.
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4 Lifting theorem for semi-structured protocols

Since Conjecture 1.1 is false for m = (1−o(1)) log N , without modification, existing techniques
cannot reduce the gadget size below this threshold. However, this does not rule out other
approaches to proving lifting theorems with very small gadgets, even for constant-size ones.
Are such theorems with constant-sized gadgets possible at all?

As a first step towards answering this question, in this section we prove a (deterministic)
lifting theorem with constant-size Index gadgets for a restricted family of communication
protocols.

The restricted family that we consider are deterministic communication protocols in
which Alice is unrestricted, but Bob is only allowed to communicate parities of his input bits.
Since Alice is unrestricted and Bob is restricted, we call such protocols semi-structured or
(∗,⊕)-protocols.

For a Boolean function F : X × Y → {0, 1}, we use C∗,⊕(F ) to denote the deterministic
communication complexity of F by such protocols. Similarly, for a relation (search problem)
R ⊆ X × Y ×W we use C∗,⊕(R) to denote the deterministic communication complexity of
such protocols solving R, that is, when Alice receives x ∈ X and Bob receives y ∈ Z, the
protocol outputs some w ∈W with (x, y, w) ∈ R or outputs ⊥ if no such w exists.

▶ Theorem 4.1 (Lifting theorem for semi-structured protocols). Let m ≥ 4 be an integer. For
every f : {0, 1}N → {0, 1},

C∗,⊕(f ◦ INDN
m) ≥ 1

2Cdt(f) log2 m.

Furthermore for every R ⊆ ZN ×W ,

C∗,⊕(R ◦ INDN
m) ≥ 1

2Cdt(R) log2 m.

Let Π be a (∗,⊕)-protocol for R◦INDN
m of complexity C∗,⊕(R). Without loss of generality

we can assume that C∗,⊕(R) ≤ N(log2 m + 1). Following the lifting theorem paradigm we
prove Theorem 4.1 by showing how to produce a decision tree T for R of height at most that
of Π by simulating Π.

4.1 High level overview and invariants
Since Bob is only allowed to communicate parity equations, we will follow the lifting paradigm
and maintain the set Y as an affine subspace over F[N ]×[m]

2 . We will also maintain the property
that the codimension d of Y is at most the total number of bits communicated during the
protocol.

At every point in our simulation we will maintain a set DY ⊆ [N ] × [m] of dependent
coordinates. All other coordinates in [N ]× [m] will be free. We maintain Y of codimension d

as the set of a solutions of a system E of d affine equations over F2 in row-reduced form

M · y = b,

such that M (up to permutation of rows) is a d× d identity submatrix on the columns DY
that we have designated as dependent coordinates. It is immediate from this set-up that we
have the properties:
(A) |DY | = codim(Y).
(B) For every total assignment to the free coordinates, there is a unique assignment to DY

that extends it to an element of Y.
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Bob’s communication of some parity function ⊕(i,j)∈S yi,j of his input can add at most
one new affine equation to E , depending on whether or not the value of that parity function
is already fixed on Y . There is no change to E if and only if the parity is in span(E), the F2
span of the parities defining E .

As in the general lifting paradigm, we maintain a set I ⊆ [N ] of fixed indices4 on which
there is a single fixed output for INDI

m(X ,Y). In addition to the above, we also maintain
the following invariants.
(C) For all indices that are not fixed, elements of X only point to free coordinates; that is,

for every i ∈ [N ] \ I, and every x ∈ X we have (i, xi) /∈ DY .
(D) X has min-entropy rate at least τ = 1/2 on [N ] \ I.

Maintaining (C) is quite easy: Whenever we identify a new dependent coordinate (i, j) ∈
[N ]× [m] in Y, we simply update X by removing all x ∈ X with xi = j.

We maintain (D) using the methods of Göös, Pitassi, and Watson (GPW) to restore
the min-entropy rate whenever it falls too low. Since the affine structure of Y allows for a
precise definition of dependent coordinates, our lifting theorem differs from the GPW-style
lifting theorems in its parameters and philosophy5. These differences allow us to overcome
the dependence between m and N in such theorems.

4.2 The Simulation Algorithm

As we discussed in our high-level overview, we maintain Y as an affine subspace of ({0, 1}m)N

defined by a set of linearly independent equations E in a row-reduced form that contain an
identity matrix on the set DY of dependent coordinates. We need to be able to update this
as new affine equations are added, either because of communication by Bob or because we
have added some i to the set I of fixed indices.

For this, we define a helper function row-reduce(E , DY , e) that takes as input
a set of row-reduced equations E ,
a set DY of coordinates for its dependent variables, and
a new affine equation e linearly independent of E ,

and uses Gaussian elimination to return a pair (E ′, (i, j)) where E ′ is equivalent to E ∪ {e},
(i, j) /∈ DY and E ′ is row-reduced, as witnessed by the columns of DY ∪ {(i, j)}. We note
that when a new equation is introduced while adding i to the set of fixed indices, the new
equation e will be of a particularly simple form, namely yi,j = b where (i, j) /∈ DY by our
maintenance of invariant (C), in which case the new dependent coordinate returned will be
(i, j).

We follow a variant of the simulation algorithm of GPW[12], with a few modifications
to identify and exclude dependent coordinates in Y. The algorithm uses a sub-routine
RestoreMinEntropyRateAndQuery (see Algorithm 2). This is essentially density
restoration from GPW and makes sure that X has min-entropy rate at least τ = 1/2
by adding fixed indices to I, adding queries to the decision tree and fixing some coordinate
yi,αi to the query answer for zu. Note that GPW style lifting only uses this procedure to
restore min-entropy rate at a node where Alice speaks, but we also may need this when
Bob speaks because we reduce X by removing pointers to dependent coordinates. Another
difference in our version of density-restoration is that we only chose the first part in the
partition (as we are doing deterministic lifting opposed to the randomized lifting in [13]).

4 As in the discussion so far, to keep notions separate we will use the term “indices” to refer to elements
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Algorithm 1 Simulation algorithm.

1 Algorithm: QueryΠ(z)

Data: z ∈ {0, 1}N , X = [m]N , Y = ({0, 1})N , E = ∅, DY = ∅, I = ∅, ρ = ∗n,
protocol Π for R ◦ INDN

m, v=root of Π.
Result: element of R(z).

2 while v is not a leaf do
3 Let v0, v1 be the children of v following communication 0 and 1 respectively
4 if Bob speaks at v then
5 Let the parity function at v be ⊕(i,j)∈S yi,j

6 if ⊕(i,j)∈Syi,j ∈ span(E) then
7 v ← vb for the unique b such that ⊕(i,j)∈S yi,j = b for all y ∈ Y
8 else

// Half of Y goes to v0, half to v1; we choose the smaller
subtree.

9 Choose b ∈ {0, 1} with subtree rooted at vb no larger than one rooted at
v1−b.

10 Y ←
{

y ∈ Y | ⊕(i,j)∈S yi,j = b
}

11 ( E , (i∗, j∗) )← row-reduce( E , DY , ⊕(i,j)∈S yi,j = b )
12 add (i∗, j∗) to DY
13 X ← X |xi∗ ̸=j∗ // Note: if i∗ ∈ I then xi∗ ̸= j∗ already.
14 v ← vb

15 end
16 end
17 if Alice speaks at v and partitions X into X 0 ∪ X 1 then
18 Let b ∈ {0, 1} be such that

∣∣X b
∣∣ ≥ 1

2 · |X |
19 X ← X b

20 v ← vb

21 end
22 if min-entropy-rate(X ) < τ = 1/2 then
23 RestoreMinEntropyRateAndQuery(X , z)
24 end
25 end
26 return label of v

4.3 Analysis of the simulation algorithm
We first argue that X and Y are never empty during the run of our simulation algorithm.
Thus, when the algorithm reaches a leaf node of Π we can output a correct answer. To do so
we observe the following invariants on our simulation algorithm (Algorithm 1).

▶ Lemma 4.2 (Invariants of the Simulation Algorithm (Algorithm 1)). At the beginning of
every iteration of the while loop in Algorithm 1, the following properties hold:
(a) ρ defines the path in the decision tree T that is the outcome of the queries and fixed(ρ) = I.
(b) Y is the set of inputs satisfying E which is row-reduced on DY .

of [N ] and “coordinates” to refer to elements of [N ] × [m].
5 GPW never makes queries based on Bob’s communication, but we do!
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Algorithm 2 Procedure RestoreMinEntropyRateAndQuery.

1 Algorithm: RestoreMinEntropyRateAndQuery(X , z)
Data: X ⊆ [m]N , z ∈ {0, 1}N .
Result: Updates X to restore min-entropy rate to τ = 1/2 by fixing coordinates via

queries to z.
2 Let I ′ ⊆ [N ] \ I be a maximal set on on which X has min-entropy rate < τ = 1/2
3 Let αI′ ∈ [m]I′ be such that Prx∈X [xI′ = αI′ ] > m−τ |I′|

4 X ← {x ∈ X | xI′ = αI′}
5 Query all coordinates in I ′ and let zI′ be the query answers
6 Y ←

{
y ∈ Y | y(I′,αI′ ) = zI′

}
7 foreach i ∈ I ′ do
8 ρ(i)← zi

9 ( E , (i∗, j∗) )← row-reduce( E , DY , yi,αi = ρ(i) ) // Note: i∗ = i, j∗ = αi

10 add (i, αi) to DY

11 end
12 I ← I ∪ I ′

(c) For any x ∈ X , and any i /∈ I, (i, xi) is a free coordinate of Y; that is (i, xi) /∈ DY .
(d) For every total assignment to the free coordinates ([N ] × [m]) \DY , there is a unique

assignment to DY that extends it to an element of Y.
(e) X has min-entropy rate at least τ on [N ] \ I

Proof. All but the last of the conditions of Lemma 4.2 easily can be seen to hold by inspection
of Algorithm 1 and Algorithm 2. The last follows by the argument of GPW and follows
from the maximality of the set I ′ in Algorithm 2. It is easy to see that if X has non-zero
min-entropy rate, then X is non-empty. Moreover, since every element of X points only to
free coordinates in blocks outside of I and the min-entropy on each block is large, Y must
have many free coordinates outside of I. ◀

We bound the number of queries |I| by using a potential function equal to the deficiency
of X[N ]\I . Let A be the number of bits spoken by Alice, and B be the number of bits spoken
by Bob in Π. We analyze the change in D∞(X[N ]\I) due to updates of X and I:

line 13 in Algorithm 1: removing xi∗ = j∗ from X for newly dependent (i∗, j∗):
By Lemma 4.2(e), we know that X has min-entropy rate at least τ = 1/2. Thus,
Prx∼X [xi∗ = j∗] ≤ 1/mτ ≤ 1/2 since m ≥ 4 and τ = 1/2. Consequently, Prx∼X [xi∗ ̸=
j∗] ≥ 1/2. So, by Fact 2.3, H∞(X |xi∗ ̸=j∗) ≥ H∞(X ) − 1. Therefore, the change in
D∞(X[N ]\I) is at most 1. This step is executed at most B times. (Note: For larger m we
could maintain sharper bounds, but it seems that we don’t need to do so.)
line 19 in Algorithm 1: choosing the more frequent bit of Alice to send:
This increases D∞(X[N ]\I) by at most 1. This step is executed A times.
line 4 and line 10 in Algorithm 2: querying and fixing coordinates I ′ maximal for min-
entropy loss:
First, line 4 increases D∞(X[N ]\I) by at most τ · |I ′| · log2 m as shown the proof of
Lemma 3.5 in [13]. Second, line 10 decreases D∞(X[N ]\I) by precisely |I ′| · log2 m since
it adds |I ′| blocks to I. The net total of these changes is that D∞(X[N ]\I) decreases by
at least (1− τ) · |I ′| · log2 m in this case.
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Putting these together yields:

D∞(X[N ]\I) ≤ A + B − (1− τ) · |I| · log2 m.

Since D∞(X[N ]\I) ≥ 0 we must have

|I| ≤ A + B

(1− τ) log2 m
.

Since τ = 1/2, A+B ≥ 0.5|I| log2 m and hence C∗,⊕(R◦INDN
m) ≥ A+B ≥ 0.5 Cdt(R) log2 m.

⌟
We can strengthen the above in the case that each of Alice’s bits, like Bob’s bits, either is

irrelevant or splits X exactly in half. Then, as with our simulation of Bob’s bits, we choose
to follow the side with the smaller protocol subtree. We see that the paths followed in the
protocol Π are of total length (in bits that matter to the simulation) at most the logarithm
of the size of Π.

In particular, this applies if m is a power of 2 so that each xi is represented by a series of
bits, Alice’s bits are also parities, and we replace line 13 by constraining one bit of xi∗ that
isn’t already constrained to be different from the corresponding bit of j∗. We write L⊕,⊕(R)
for the number of leaves (i.e., the size) of a protocol Π for R in which both Alice and Bob
only send parities, which we call parity communication. Using this obtain the following:

▶ Theorem 4.3. Cdt(R) is O(logm(L⊕,⊕(R ◦ INDN
m)))

4.4 Parity decision trees and Res(⊕) proofs
We can use the same ideas with small modifications to give a generic method for producing
lower bounds for parity decision trees from those for ordinary decision trees.

▶ Theorem 4.4. For any sufficiently large m that is a power of 2 and any function f :
{0, 1}N → {0, 1}, Cdt

⊕ (f ◦ INDN
m) ≥ Cdt(f) and sizedt

⊕ (f ◦ INDN
m) ≥ 2Cdt(f) ≥ sizedt(f).

Proof. We follow the ideas of the proof of Theorem 4.3 with a small modification that
combines the steps for Bob and for Alice as follows: We maintain X as an affine subspace as
before and we maintain a set DY ⊂ [N ]× [m] of coordinates as before (though Y itself is not
maintained), but now the equations that we maintain involving these coordinates depend on
the bits of the xi also. At each parity that is not already implied, we row-reduce to remove
the variables in DY .

If a coordinate (i∗, j∗) in Y remains, we choose it as the new dependent coordinate and
complete the row-reduction. We then apply the portion of the simulation designated as Bob’s
simulation in order to ensure that xi∗ does not point to j∗. If no such coordinate remains,
then this becomes a constraint on X and we apply the portion associated with Alice.

In either case, we add one defining equation for X for each bit that is sent that is not
already implied, so the deficiency of X is precisely this number. The same analysis shows
that Cdt(f) is O(logm(sizedt

⊕ (f ◦ INDN
m))) and hence O(Cdt

⊕ (f ◦ INDN
m)/ log m). By choosing

m a sufficiently large constant, we obtain that Cdt(f) ≤ log2(sizedt
⊕ (f ◦ INDN

m)) and hence
sizedt(f) ≤ 2Cdt(f) ≤ sizedt

⊕ (f ◦ INDN
m) and Cdt(f) ≤ Cdt

⊕ (f ◦ INDN
m). ◀

We can use this (in the form for relations, which we could easily have stated above) to
show that we can convert each k-CNF φ to an O(k)-CNF φ ◦ INDN

m that requires tree-like
Res(⊕) refutations for φ ◦ INDN

m that are at least linear in the size of tree-like resolution
refutations for φ.
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▶ Corollary 4.5. For any sufficiently large integer ℓ, m = 2ℓ, and any unsatisfiable k-CNF
formula with M clauses on N Boolean variables, φ ◦ INDN

m is a k(ℓ + 1)-CNF formula with
M ′ = mkM clauses on N ′ = N(ℓ + m) variables that requires treeRes(⊕)(φ ◦ INDN

m) ≥
treeRes(φ) ≥ 2widthRes(φ)−k.

Proof. By Proposition 2.8, for any minimal tree-Res(⊕) refutation of φ ◦ INDN
m there is an

isomorphic parity decision tree solving the search problem Searchφ◦INDN
m

. Using the form of
Theorem 4.4 for relations we can convert a parity communication protocol for Searchφ◦INDN

m

into one of at most the same size that solves the search problem Searchφ, since each correct
output of Searchφ◦INDN

m
yields the name of a violated clause of φ ◦ INDN

m that corresponds
to a unique clause of φ and can be output by the ordinary decision tree. The final result
follows using the equivalence of decision trees for Searchφ and tree-resolution refutations of
φ from Proposition 2.7 and the tree-size/width relationship from Proposition 2.6. ◀

We note that Itsykson and Kojevnikov [16, 17] previously used a much more specialized
lifting theorem from [2] for the specific case of Tseitin formulas to give tree-like Res(⊕)
lower bounds. Our new simple method is much more general and yields a large class of hard
formulas. We also note that Huynh and Nordström [15] gave lifting theorems for a variety of
other proof systems using constant-size index gadgets (indeed with m = 3) but these only
yield good bounds for a restricted class of formulas whose search problems have high “critical
block sensitivity”.

5 Summary and future directions

Our results show that the Index (or Inner-Product) gadget is not a good disperser for low
min-entropy deficiency rectangles X × Y when m is much smaller than log N . Thus to
reduce the gadget size beyond logarithmic using current techniques we need to consider other
properties on the rectangle X × Y maintained during the simulation that can ensure that
Index is a good disperser. Our counterexample to the conjecture of Lovett et al. [20] suggests
the following natural property for X , Y in addition to having low entropy deficiency:

Except for a small subset of blocks J of size O(∆), every block of every y in Y is “almost”
balanced in terms of the number of zeroes and ones. That is, for any i ∈ [N ] \ J and for
any y ∈ Y, |yi|1 ≈ m − |yi|1, where |yi|1 denotes the number of ones in the i-th block
of y.

Note that our counterexample is avoided by Y satisfying this property; indeed this property
is violated in the extreme by our counterexample as every y in the set Y we construct has
ω(∆) blocks that are maximally unbalanced.

The standard simulation paradigm allows considerable flexibility in choosing which subset
to focus on in the rectangle of inputs associated with each node of the communication
protocol. Maintaining something like the property above is easy to do and it is plausible
that this or related properties will indeed be sufficient to yield general lifting theorems with
very small Index gadgets.

Although our counterexample ruled out improving the gadget size to constant for Index in
deterministic lifting theorems using current techniques, we were able to prove a lifting theorem
with constant-sized gadgets for the restricted class of protocols where Bob is restricted to
sending parities. A natural extension of this direction is to consider semi-structured protocols
where Bob is restricted to sending other interesting functions of his input bits. A natural
class of restricted functions are threshold functions. The ideas used in our lifting theorem do
not work in this case. As illustrated by the application of our semi-structured lifting theorem
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to Res(⊕) lower bounds, such restricted lifting theorems may have immediate applications in
proof complexity. They may also be a natural avenue for developing new tools and techniques
that could potentially help in proving general lifting theorems with constant sized gadgets.
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Abstract
Societal accumulation of knowledge is a complex process. The correctness of new units of knowledge
depends not only on the correctness of new reasoning, but also on the correctness of old units that
the new one builds on. The errors in such accumulation processes are often remedied by error
correction and detection heuristics. Motivating examples include the scientific process based on
scientific publications, and software development based on libraries of code.

Natural processes that aim to keep errors under control, such as peer review in scientific
publications, and testing and debugging in software development, would typically check existing
pieces of knowledge – both for the reasoning that generated them and the previous facts they rely on.
In this work, we present a simple process that models such accumulation of knowledge and study the
persistence (or lack thereof) of errors. We consider a simple probabilistic model for the generation
of new units of knowledge based on the preferential attachment growth model, which additionally
allows for errors. Furthermore, the process includes checks aimed at catching these errors. We
investigate when effects of errors persist forever in the system (with positive probability) and when
they get rooted out completely by the checking process. The two basic parameters associated with
the checking process are the probability of conducting a check and the depth of the check. We show
that errors are rooted out if checks are sufficiently frequent and sufficiently deep. In contrast, shallow
or infrequent checks are insufficient to root out errors.
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1 Introduction

Understanding the robustness of systems to errors is one of the main goals of theoretical
computer science. One set of examples lies within information and coding theory, which
study this question for electronic information transmission processes. Another important
example is quantum computing; the empirical success of this field crucially relies on the
difficult challenge of controlling errors in quantum computers.

In this work we focus on yet another area where errors are prevalent, and error correction
has an important everyday role: societal knowledge accumulation. Accumulation of knowledge
in the modern world is a very rapid yet noisy process, prone to significant errors as new
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units of knowledge are established [10]. This, in turn, requires proper error mitigation
strategies. For instance, the scientific publication process is based upon the assumption that
peer reviewing is able to identify errors in submitted papers, ensuring that (for the most part)
the scientific literature remains correct and well-founded. This assumption is however very
problematic [7, 8]: there are numerous examples of important works with a huge impact on
the scientific community, whose findings were later found to be completely incorrect, either
because of errors or malicious actions, deeming decades of subsequent research essentially
useless. One very recent and prominent example is in the study of Alzheimer’s disease [12, 14],
where researchers have found evidence that some of the most influential works in the field
may be fabricated.

Knowledge accumulation processes such as the scientific process or software development
are based on incremental advances that add to the body of knowledge. Each new unit of
knowledge may rely on previously discovered ones. Each proclaimed new unit of knowledge
may potentially be erroneous on its own or because it relies on an erroneous unit. Without
some checks, errors can overwhelm such cumulative processes. As anyone who has ever
developed software knows, debugging and testing are crucial for developing reliable code.
Similarly, it is unreasonable to trust scientific discoveries in areas where reviews and replication
are not taken seriously (see more below).

In these and other areas, natural mechanisms for checking have been introduced. Our
work is motivated by the goal of quantifying the success of such procedures: How should
such checking mechanisms be measured and evaluated? What are indicators that suggest a
proclaimed fact is likely to be true? If one had control of the checking process, what steps
would be efficient and effective? Of course, we also do not want to spend too many resources
on checking as this slows down the accumulation process, so identifying the sweet spot,
where errors are rooted out without spending too many resources on checking, is perhaps
the ultimate goal.

In this work, we study these questions under a very simple model. This model which
we call the Cumulative Knowledge Process (CKP) includes certain ingredients addressing
the following fundamental questions (which are essential in any knowledge accumulation
process):
1. How is knowledge generated and represented?
2. How do errors arise?
3. When checks occur, what do they check for and what do they do in case an error is found?

We describe the precise model that we work with in Section 1.2. This model involves
some choices and here we describe the issues and try to explain our choices. For question (1)
above, it is natural to represent the body of knowledge as a directed acyclic graph (DAG),
where units of knowledge are represented as nodes, and an edge from u to v indicates that v

“builds upon” or “inherits from” u. Indeed, since v can only build upon units of knowledge
that were created before it, the directed graph describing such relations must be a DAG. Now,
when a new node v arrives, we need to pick a subset of “parents” that v shall build upon.
The choice of parents should take into account the relevance of the previous node to the new
node, which is correlated with latent features such as topics, language, or goals, and also to
the importance or impact of the previous node. The former notion (relevance) is somewhat
hard to model – multiple models exist and the best choices are still up for debate. The latter
is more familiar with models such as preferential attachment forming a good starting point.

In this work, we bypass the challenge of assessing relevance by considering a simpler
model where knowledge is represented by a tree, i.e., every new node has only one parent.
(The challenge of relevance emerges only when we try to model the set of parents, and in
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particular in determining the correlation between children of two or more parents.) In the
tree model, we can bypass this issue and simply consider the setting where a newly generated
node picks its (unique) parent based on the preferential attachment model for trees.

Thus in our model, the body of knowledge is a rooted tree, where edges are always
directed away from the root and higher degree nodes are more likely to be connected to. We
acknowledge that this choice is limiting and more general and realistic DAG processes for
cumulative knowledge growth should be studied in future work. (We comment more on this
in Section 3.)

We now turn to question (2), i.e, the model of errors. Here we model introduce so-called
“primary erroneous facts” in our model by allowing every newly generated node to be an
erroneous one with some fixed probability ε. (This is one of three parameters that specifies
our process.) Erroneous nodes remain hidden until some checking process reveals the error.
Till such stage, erroneous processes continue to produce offspring at the same rate as true
nodes. Such “children” nodes and their descendants in the tree are also erroneous and we
refer to them as secondary errors.

Finally turning to question (3), i.e., the checking process, we couple the checking of facts
with the generation of new children. When a new child is generated, with some probability
p a “check” is performed. In this check a path of length k is checked for any primary
erroneous node. If any such node is found, all its descendants along the path being checked
are “discovered” to be erroneous and no longer participate in the growth.

Our model above captures many natural ingredients of cumulative knowledge (modulo
the issue of knowledge being a tree), while still being simple enough to allow for analytic
studies. While the error and checking models also involve multiple choices, most are natural
(and perhaps not new). The checking process however merits further discussion. First, the
model associates checking with the growth of the tree – checks start at new nodes. This,
we feel, reflects a natural choice empirically. Units that are not relevant and not used
by others are less frequently checked. This is true both in scientific publications and in
software development. Indeed, the empirical nature of checking is that facts get checked
with probability growing with their impact. In our model, the only impact of a node is
in the subtree it generates (and the fraction of the subtree that is not publicly known to
be erroneous) and so it makes sense to check only when this impact grows. This leads us
to the choice of checking only up to a bounded depth k. Checking all ancestors of a node
may make checking too expensive. Our choice ensures that every new node seems to add
a “constant” amount of work independent of the size and shape of the tree, making the
checking a plausible process.

Some of the basic questions that one might want to study about errors in societal knowledge
can be posed in this model. In this paper, we introduce some phenomena one might wish to
study, such as: “Does the effect of an error survive for long, or is it fleeting?”, and “What
would be the characteristics of a CKP that would deem it reliable?”, see Definition 1. Our
results (see exact formulations in Section 2) can roughly be classified into two types:

Qualitative results: we identify two contrasting regimes of error propagation. In the
first, nodes carrying false information are guaranteed, with probability 1, to have a finite
number of descendants. In the second regime, errors may propagate ad infinitum, and
there will exist false nodes which serve as roots of trees whose size grows to infinity.
Quantitative results: within the regimes described above we prove quantitative bounds on
the types of error. Thus, even when a false tree grows to infinity we show that, depending
on the parameters, its size cannot be too large. Moreover, in the setting where false trees
are finite almost surely, we demonstrate a very desirable property: most nodes in the
tree carry truthful information.

ITCS 2023
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1.1 Related Work

1.1.1 Noisy Computation and the PMC Model
The question of how to address errors in computation has been extensively studied in many
communities. In von Neumann’s model of noisy computation [15], the model describes noisy
gates and it is shown that with sufficient duplication and provided that the error rate is
sufficiently small, errors can be controlled by duplicating gates, see also [4]. The noisy
computation model is in some sense stronger than the one considered here as it considers
gates with multiple inputs while in our model each unit depends directly only on one unit.
However, the noisy computation model has a central planner that can duplicate many copies
of the same computation, while in ours such a planner does not exist. Moreover, the noisy
computation model has an ω(1) bigger circuit than the noiseless circuit while the number of
operations in our model is only O(1) compared to the model without errors.

Another extensively studied model of error correction that was introduced is called
the PMC model [13]. The goal of the PMC model is for functional units to detect the
(adversarially) faulty units and this is shown to be achievable under various conditions, see [2]
and the references within. Again in the PMC model, it is assumed that the structure of the
network can be designed beforehand. Moreover, in our model a node may be incorrect due
to errors in previous generations and these could not be checked by immediate neighbors in
models of this type.

1.1.2 Local Error Correction and the “Positive Rate” Conjecture
There are related models of “memory” on graphs with noisy gates. The goal of these models
is to remember a single bit forever using noisy gates. Again in these models, the errors and
the checking are very local (depends just on the immediate neighbors), see e.g., [5, 11].

1.1.3 The Reproducibility and Replication Crisis
There is a large body of work indicating that a substantial fraction of published scientific
research is incorrect, as it cannot be replicated or reproduced, see, e.g., [8, 7, 6, 9]. The
scientific community is trying to come up with standards and protocols that will reduce
that fraction, see e.g., [1]. However, the study of errors in scientific literature mostly ignores
the problem of research that is incorrect because it is based on incorrect prior research, as
these dependencies are hard to understand and control. Our results provide a theoretical
framework for addressing this issue.

1.1.4 Knowledge Aggregation vs. Information Spreading
We finally comment on one recent work [3] by a subset of the current authors that considers
a similar process where some information spreads noisily through a network with some local
checking. In the setting of [3], some node in a given network receives a piece of knowledge
and spreads it through the network by local communication. Errors in this setting arise from
communication errors when transmitting information, and the checking procedure aims to
check the local consistency of knowledge. The paper studied the rate at which potentially
erroneous information spreads through the network, as opposed to the spread of the corrected
information.

The model in [3] shares similarity with our work in that errors, once generated, may
spread and affect other parts of the collective knowledge/belief. However, from this point
on, the settings diverge. In particular, a central component of our model is the knowledge
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graph (the tree) which grows with the process, whereas in [3] the network is extraneous. The
checking also models somewhat different settings, and in particular, in our case, when a node
is proclaimed to be erroneous, it is actually erroneous (while nodes that proclaim themselves
to be true may later end up being found to be false). In contrast, such one-sided guarantees
do not hold in the previous work. Finally, the nature of the questions explored in the two
models is quite different.

1.2 Models
Here we give the necessary detail and background for our model. The Cumulative Knowledge
Process (CKP) has states X0, X1, . . . , Xt, . . . where Xt is given by a finite rooted tree Tt

with each node being given a label from the set {PF, CF, CT}. We refer to any such labeled
tree as a knowledge state.

1.2.1 Semantics
CT and CF stand for “Conditionally True” and “Conditionally False” respectively. A node v

represents true knowledge if all nodes on the path from v to the root (including v and the root)
are CT. We refer to such a node as a True node. All other nodes are False nodes. PF nodes,
for “proclaimed false”, are those that are publicly false. A priori the CT vs. CF values are not
“public” (but can be checked with effort) and so given a node the observable state is either
PF or PT (for “proclaimed true”) where PT is the observation associated with both labels in
{CF, CT}. (Formally the observation is given by the function O : {PF, CT, CF} → {PF, PT}
with O(PF) = PF and O(CT) = O(CF) = PT).

1.2.2 Parameters
The CKP has three parameters: ε ∈ [0, 1] denoting the probability of introducing new errors,
p ∈ [0, 1] denoting the probability of checking, and k ∈ N denoting the length of the check.
We note that in principle, k may itself be a random variable. For simplicity, we focus on the
case where k is constant. However, as will become evident in our results, not much generality
is lost by this choice. Given these parameters, we refer to the process Xk as an (ε, p, k)-CKP.

1.2.3 State evolution
Given a state Xt at time t, the state at time t + 1, i.e., Xt+1 is obtained by the following
stochastic process:

Choosing a parent. If every node in Tt is PF then the process “stops”, i.e., Xt+1 = Xt.
Else first a random PT node u is selected from the tree Tt with probability proportional to
1 +degPT(u), where degPT(u) denotes the number of PT children of u. This is reminiscent
of the preferential attachment random tree model. The main difference lies in the fact
that once a node has been identified as PF, it may not generate new children. As we shall
see, this can drastically change the evolution of the CKP, when compared to preferential
attachment trees.
Creating a new child. A new leaf v is attached as a child to u. Set Tt+1 to be Tt with
the added leaf v.
Error introduction. v is given the label CT with probability 1 − ε and the label CF
with probability ε. Let Xtemp denote the new knowledge state.
Error correction. With probability p, the path with k edges is “checked” and if an
error (either a PF or CF node) is found then all descendants on the path are proclaimed
false. Specifically, let v0 = v, v1, . . . , vk denote the path of length k starting at v. (i.e.,
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vi is the parent of vi−1). If all vertices vi are labelled CT, then Xt+1 = Xtemp. Else let
j be the smallest index such that vi is not labeled CT. We modify Xtemp by relabelling
vj′ = PF for every 0 ≤ j′ ≤ j. That is, the entire path between v and vj is labeled PF.
Xt+1 is the resulting knowledge state.

At this point we emphasize the fact that errors can propagate in two ways: either a new
CF node is added to the tree in the Error Introduction phase, or a CT node is added as the
child of a False parent whose observable state is PT.

1.2.4 Initial state
The process we care about starts with X0 being a single root labelled CT (in other words,
the root is always True). This initialization leads to a dichotomy in the tree, False nodes are
those nodes which have a CF ancestor, added at some error introduction phase, while True
nodes are connected to the root by a path of CT nodes. Our aim is to study the difference in
behaviors between these two sets.
There is one exception to this initialization rule which we discuss now.

1.2.5 The simple CKP
To build some intuition and to simplify the proofs we consider a simplified version of
the (ε, p, k)-CKP process, in which we set ε = 0. We call such a process a (p, k)-simple
CKP. To avoid trivialities, we always set X0 to be a single CF root in the simple process.
Thus, in this process only CT nodes are added to the tree, all nodes are False, and no new
errors are introduced during the process’s evolution. This restriction introduces a top-down
directionality to the process, since a node may be labeled as PF only after the same happens
to its parent.

1.2.6 Phenomena we care about
We now make some definitions to describe the different types of behaviors demonstrated by
our results.

▶ Definition 1 (Properties of CKPs). For ε, p ∈ [0, 1] and k ∈ N, let Tt be the knowledge state
of an (ε, p, k)-CKP. For a CF node u added to the tree at some time tu, and for any time
t ≥ tu, let T u

t denote the sub-tree process rooted at u at time t.
Survival of error effects: We say that a CKP exhibits survival of error effects if the
following holds: With positive probability, there exists some CF node u for which the
process T u

t goes forever. That is, for every t, there is at least one PT node in T u
t .

Elimination of error effects: We say that a CKP exhibits elimination of error effects
if it does not exhibit survival of error effects. Specifically for every CF node u, there
exists a time t after which every node in T u

t is PF. In particular, in the simple process,
elimination of the error effects means that all nodes have become PF and so the process
stops.
φ-reliable process: Let φ : N → N satisfy φ(t) = o(t). We say the CKP process is
φ-reliable when the following holds. Let Mt stand for the maximal size of a sub-tree in Tt

of False and PT nodes. Then, for any constant c > 0,

P (Mt > φ(t)) t→∞−−−→ 0.
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Since at time t the tree always has t nodes this condition means that any False and PT
node, can only have a negligible number of descendants. We will usually take φ(t) = Θ(ta),
for some a < 1.
δ-highly reliable process: Let δ > 0. We say that the CKP process δ-highly reliable
if, for any time t, the expected proportion of False nodes labeled as PT, as opposed to
True nodes, is at most δ. We say that a process is highly reliable if for every δ > 0 it is
δ-highly reliable. (In other words, a process is highly reliable if most of the nodes that
declare themselves as True are indeed True.)

Observe that all definitions above are only a function of the parameters ε, p, and k.

We note that, other than the fact that survival and elimination of error effects are mutually
exclusive, it is not a-priori clear that one definition implies or denies another. Our main
results will identify regimes of parameters where the CKP (or its simple variant) satisfies
one, or more, of these definitions.

There are additional natural questions one may ask about the model. For example, one
could consider highly noisy regimes, when the proportion of False nodes with a PT label is
1 − o(1), and so most of the information carried by the process is corrupted. We leave such
questions for future investigations.

1.2.7 PT components
We finish this section with the following basic definition, of a proclaimed true (PT) component.
This refers to a sub-tree T in any of our processes (CKP or simple CKP), that at some time
t consists only of proclaimed true nodes; and furthermore, is maximal with respect to this
property.

▶ Definition 2 (PT Component). Consider any of the cumulative knowledge processes we
define (CKP or simple CKP) at some time t ≥ 0, and let Tt denote the (undirected version
of the) tree generated by the process. We call the sub-graph of Tt consisting of all False nodes
whose observable state is Proclaimed True (PT), simply, the PT sub-graph. A connected
component of the PT sub-graph is called a PT component. We denote by CPT(t) the set of all
PT components in the process at time t.

If C ∈ CPT(t) is a PT component, we denote by |C| the number of PT nodes in C, and if
C ′ ∈ CPT(t + 1) we use the notation C ′ ⊂ C to indicate that C ′ was created from C in one
step. Formally, this means that the root of C ′ is a descendent of the root of C.

As we shall see soon, PT components play an essential role in many of our arguments. In
particular, we base several potential functions used in our proofs on these components.

1.3 Proof Ideas and Techniques
Our model is based on the preferential attachment model, which has been studied for nearly
a century, originating in the work of Yule, [16]. By now, the model is well-understood and
the growth and evolution of many quantities of interest have been thoroughly analyzed.
Thus, our choice of the model should allow us to tap into many known results, and moreover,
the recursive nature of the tree is expected to often lend itself to an exact analysis of the
dynamics.

Having mentioned the above, we now remark that the addition of the checking procedure
to our model can be thought of as a destructive process, competing with the natural growth
process of the preferential attachment tree. While the recursive nature of our process still
exists, the dynamics of the preferential attachment tree are often distorted, and some of the
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underlying symmetry is broken. This becomes particularly evident when one looks at the
graph structure of PT nodes, which will now form a forest of fractured components, rather
than an ever-expanding tree. Still, we show that the model lends itself to the probabilistic
analysis of several relevant functionals, fundamental to our analysis. Most of the functionals
are defined as a sum of simpler functionals applied to individual components. We consider
functionals that take into account the number of leaves, the degrees of nodes and their depth,
the size of components, etc.

The functionals are analyzed by probabilistic techniques in particular using the analysis
of (sub/super)-martingales. Roughly speaking, once we show that the processes have a
drift in a certain direction, these techniques allow making asymptotic conclusions about the
process. Of course, coming up with the right functionals requires creativity and intuition
about various aspects of our process.

2 Our Results

We now describe our results. The proofs will appear in the full paper. We begin by addressing
the simple CKP model and then proceed by establishing analogs for the general model.

2.1 Results for the Simple Model
Our first two results show that, depending on the parameters p and k, error effects can both
survive and be eliminated, in the simple model.

▶ Theorem 3 (Error effect elimination in the simple model). For all p ≥ 6
7 and k ≥ 4, the

error effect in the (p, k)-simple CKP is completely eliminated.

▶ Theorem 4 (Error effect survival in the simple model). For all 0 < p ≤ 1
4 and 1 < k ≤ ∞,

the error effect in the (p, k)-simple CKP survives with positive probability.

The two theorems above demonstrate contrasting behaviors, which mainly depend on p,
the probability of checking for errors. Thus, if one wants to ensure complete elimination of
errors, one should be willing to look for errors in a reasonable proportion of knowledge units.

Let us note that the two regimes in Theorems 3 and 4 do not cover the entire parameter
space. The behavior of the process for intermediate p ∈ ( 1

4 , 6
7 ) is an interesting question

which is left open. In particular, identifying the critical p in which there is a phase transition
between survival and elimination of the error effect would be appealing.

To address the role of the parameter k in this model, we focus on the assumption k ≥ 4
in Theorem 3. Remarkably this is not a technical issue, and the model displays a striking
transition when k is small. We show that small changes to the depth of error correction can
have dramatic effects.

▶ Theorem 5 (Error effect survival when k = 2). For any 0 ≤ p < 1 the error effects in the
(p, 2)-simple CKP survive with positive probability.

Our next result further elucidates the role of k in the model by examining the reliability
of the process. Specifically, we show that even when the error effect in the simple model
survives with positive probability, for example, when p ≤ 1

4 , the process can still be reliable,
provided k is large enough.

▶ Theorem 6. Let p ∈ (0, 1). If k ∈ N is such that 12
2k−1 ≤ p then (p, k)-simple CKP is

φ-reliable, with φ(t) = Θ(t0.55).

Thus, if k is large, even if a few units of knowledge are periodically checked, it can still be
ensured that no false source will corrupt a non-negligible portion of the knowledge base.
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At this point, we do not know whether an absolute constant (such as 0.55) is the correct
term in the exponent in Theorem 6. In fact, it is reasonable to expect that the actual power
will depend on k and perhaps also on p. However, in the full paper we also show that one
cannot expect better than polynomial dependency and that with constant probability, there
will exist (False) PT components of polynomial size.

2.2 Results for the General Model

In the general model, we first generalize Theorems 4 and 3. Because of the added parameter
ε, the overall dependence on the other parameters becomes slightly more complicated. For
now, it will suffice to state simplified versions of the results. The reader is referred to full
paper for the exact dependencies.

▶ Theorem 7 (Error effect elimination in the general model). For every ε ∈ (0, 1), there
exists p0 ∈ (0, 1) and k0 ∈ N, such that for any p ≥ p0 and k ≥ k0, the error effects in the
(ε, p, k)-CKP are completely eliminated.

▶ Theorem 8 (Error effect survival in the general model). For every ε ∈ (0, 1), there exists
p0 ∈ (0, 1), such that for any k ∈ N and p ≤ p0, the error effects in the (ε, p, k)-CKP survives.

Like in the simple model, we see the critical role p plays. At least for low levels of error,
one can always invest appropriate effort by performing enough checks and guaranteeing
low-term correctness of the information state in the tree. On the other hand, if p is small
enough, the process could get overwhelmed by errors.

Using the same ideas used to generalize Theorem 4 into Theorem 8, an analog of Theorem
6 could also be derived for the general model. However, due to the dependencies introduced by
new CF nodes, the obtained result is somewhat complicated and not immediately interpretable.
Instead, we prove another desirable property that emerges when the error effect is eliminated.
Namely, we show that, not only do false sub-trees get eliminated, but that the overall
proportion of True nodes in the process remains large. Thus, we show that the process is
highly reliable.

▶ Theorem 9. Under the same conditions of Theorem 7, if p ≥ p0, and k ≥ k0, then the
(ε, p, k)-CKP is O(ε(1 − p))-highly reliable.

Note that by a given time t, we should expect to add ε(1−p)·t CF nodes to the tree; the (1−p)
factor comes from the fact that a check is performed a new node is automatically labeled as
PF and can thus be disregarded. Thus, ε(1 − p) is the proportion of errors introduced to the
tree without accounting for further propagation via attaching new descendants. With this in
mind, one way to interpret Theorem 9 is as a statement about types of errors in the process;
most errors are expected to come from very shallow sub-trees, and errors, when introduced,
tend to be quickly rectified before spreading along the process.

Let us note that there is no hope in improving Theorem 9 by more than a constant. To
see this, for a given time t > 0, it’s enough to consider all the CF nodes added after time
t
2 . It can be shown that with some constant probability, each such node will not spawn a
descendent, and hence will survive up to time t. Thus, the expected proportion of CF nodes
will be Ω(ε(1 − p)).
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3 Discussion and Open Questions

In this paper, we have studied the different behaviors of CKPs when the underlying graph
process is a tree. Our results reveal striking differences in the overall shape and persistence of
the processes. These differences depend on the interactions between the different parameters.

When k is large, Theorems 3 and 4, for the simple model, along with Theorems 7 and 8,
for the general model, identified a phase transition for the error effects, which mainly depends
on p. The results establish that the propagation of errors can be completely eliminated, with
absolute certainty, as long as we put some constant, which is necessarily not too small, fraction
of knowledge units under scrutiny. In contrast, in Theorem 5, we elucidated the dramatic role
of the depth,k, and showed that very shallow checks completely nullify the above dependence
in p. In particular, when k = 2, there is no way to guarantee the elimination of error effects,
which should discourage shallow checking procedures.

Other than considering phase transitions, we have also studied the structural properties
of the processes, in the different regimes. In Theorem 6 we focused on the case of small
p, where the error effects in the simple process can survive. According to the theorem, as
long as p is not small, as dictated by k, even when the simple model survives, one may still
guarantee that no single error can be connected to most of the entire process. In particular,
each surviving component will only have sub-linear size. Finally, Theorem 9, dealt with a
regime of the general mode in which error effects are guaranteed to be eliminated. By design,
even when error effects are eliminated, the general model continues to evolve, and we show
that, by making p still larger we may also guarantee that the proportion of False remains
almost minimal.

While we aimed to cover the wide range of possible phenomena exhibited by the CKPs,
our work also leaves some open questions. Below we list several such questions and other
possible directions for research.

Shallowness of checks: As detailed above, for the simple model, there is a strict phase
transition, depending on k. However, our results do not cover the case k = 3, and it will
be interesting to see whether the error effects can be eliminated in this case.
▶ Question. Is there some p < 1, such that the error effect in the (p, 3)-simple CKP is
completely eliminated?
It seems that a positive answer to the above question would require a more subtle potential
than our exponential potential.
Critical parameters: In a similar vein to the previous question, the, arguably challen-
ging, question of finding the critical p for the transition remains open.
▶ Question. What is the value of p0 ∈ (0, 1) (which may depend on k), such that for any
p < p0 the error effect in the (p, k)-simple CKP survives with positive probability, and for
p > p0 the error effect in the (p, k)-simple CKP is completely eliminated?
Similar questions are left open with respect to our other definitions. For example, finding
the correct polynomial power in Theorem 6 is also of interest.
Proportion of false nodes: Another possible direction would be to to complete the
picture presented in Theorem 9, and show a result in the converse direction.
▶ Question. Is there a set of non-trivial parameters p, k, ε, such that the expected
proportion of False nodes in the (ε, p, k)-CKP is 1 − o(1)?
Note that for True nodes, unlike their False counterparts, there is no a priori probabilistic
guarantee on their expected proportion. Thus, it makes sense to study regimes where all
nodes, except a negligible proportion, are False. In particular, identifying the possible
existence of intermediate regimes where False nodes exist in abundance, yet do not
overwhelm the process, is also of interest.
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More realistic models: As discussed in the introduction, we considered a simplified
model of knowledge accumulation, where each knowledge unit relies on a single existing
previous unit. This restrictive assumption naturally leads to the preferential attachment
tree we’ve considered. However, in many cases of interest, trees do not necessarily provide
a faithful representation of knowledge accumulation since new knowledge can rely on
several different sources, which leads to directed acyclic graphs.
▶ Question. Can similar results apply in more general CKPs where the underlying model
is a DAG and nodes can have an in-degree larger than 1?
The crucial point is that any extension of our model to general DAGs must also specify
a natural way for a new node to choose a set of “parents”. Unlike the tree model, it is
not satisfactory to choose a random subset of existing vertices since new units should be
more likely to rely on existing units which are similar, in some sense to be defined. So, a
general model should define a similarity metric on nodes and choose new parents based
on both their degrees and this metric, leading to a more involved analysis.
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Abstract
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at
each step, the online policy can probe and find out which of a small number (k) of choices has better
reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds
have exponentially better dependence on the time horizon compared to the classic regret bounds.
In particular, we show that probing with k = 2 suffices to achieve time-independent regret bounds
for online linear and convex optimization. The same number of probes improve the regret bound
of stochastic MAB with independent arms from O(

√
nT ) to O(n2 log T ), where n is the number of

arms and T is the horizon length. For stochastic MAB, we also consider a stronger model where a
probe reveals the reward values of the probed arms, and show that in this case, k = 3 probes suffice
to achieve parameter-independent constant regret, O(n2). Such regret bounds cannot be achieved
even with full feedback after the play, showcasing the power of limited “advice” via probing before
making the play. We also present extensions to the setting where the hints can be imperfect, and to
the case of stochastic MAB where the rewards of the arms can be correlated.
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1 Introduction

In this paper, we consider two problems that form the cornerstone of sequential analysis and
decision theory, a field first developed by Wald [53] in the 1940’s. The first is the online
linear/convex optimization problem that was initially studied in the context of repeated
games by Hannan [25] and Blackwell [13] in the 1950’s. In this problem, there is a possibly
infinite space of potential actions in a high-dimensional space. At each step, a decision maker
needs to choose one action, that is sometimes called an “arm”. Subsequently, nature presents
an adversarially chosen linear (or convex) loss function, and the decision maker incurs the
evaluation of this loss function at the chosen action. Subsequently, the decision maker is told
the loss function at that time step. The goal is to compete with an omniscient policy that
knows all the loss functions in advance, but is restricted to choosing one fixed action for all
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time steps. The difference between the loss of the policy and that of the omniscient policy
is termed regret. Over the decades, several policies have been developed [28, 36, 57] that
achieve regret O(

√
T ), where T is the horizon length, and the O(·) hides problem-dependent

parameters. Such a dependence on T is also optimal [26]. A well-known specialization is
the experts problem where the actions or arms form a discrete set, and each arm incurs an
arbitrary loss at each time step that is unrelated to the losses of the other arms [36, 16].

The second problem is the stochastic multi-armed bandit (MAB) problem that was first
formulated by Robbins [45] around 1950, though the widely used Thompson Sampling policy
for this problem dates back to the 1930’s [52]. In this problem, a decision maker is faced
with n independent arms that yield i.i.d. rewards from unknown underlying distributions.
As before, the goal is to design a policy or allocation rule to sequentially play these arms
to maximize reward. In a sense, this can be viewed as a stochastic version of the experts
problem; however, the key difference is that the decision maker only learns the reward of the
chosen arm at the end of the time step, and not the rewards of all the arms. The regret is
measured against an omniscient policy that knew the reward distributions of the arms (but
not the reward values), and chooses the single arm with maximum expected reward at all
time steps. In seminal work, Lai and Robbins [32] showed an optimal allocation policy along
with tight lower bounds on the regret incurred by any policy, assuming a parametric form
on the distributions. This result was subsequently generalized by Auer, Cesa-Bianchi, and
Fisher [5], who derived similar upper bounds without assuming a parametric form on the
distributions.

Both the online convex optimization and the stochastic MAB problem have found
numerous applications in areas ranging from clinical trial design to ad-word allocations to
recommendation systems, and continue to be extensively studied in the fields of statistics
and machine learning. For more on the history and variants of this problem, we refer the
reader to several excellent books [15, 48, 34, 26].

1.1 Probe Model and Motivation
In this paper, we study the following twist on these problems. Suppose before playing, we
are allowed to query or probe an oracle with k options, and the oracle responds with the best
of these at that step – either telling the algorithm the identity of this option and nothing
more, or telling the algorithm the rewards/losses of all the options. We subsequently play
the option suggested by the oracle. How should these probes be chosen, and can we obtain
much better regret?

Our motivation for such a probe model comes from the recent literature on designing
algorithms that can leverage machine learning (ML) based predictions. This paradigm has
been used to obtain improved guarantees for many classic online algorithmic problems [44,
38, 33, 43, 22] (see also the survery [39]). In these settings, the online algorithm is assumed
to have access to an auxiliary ML model that predicts properties of the arriving inputs. The
goal is to derive improved bounds assuming the predictions are correct, whilst doing nearly
as well as worst-case algorithms when the predictions are incorrect. Of particular relevance
is recent work on “parsimonious hints”, where the ML model provides as little information
to the online algorithm as possible. For instance, recent work has considered online linear
optimization, where the hint is a direction with a strictly positive dot product with the cost
vector [17, 10]. In such a model, for optimization over a sphere, the regret bound improves
from Ω(

√
T ) to O(ln T ), even with hints at O(

√
T ) time steps. Similarly, recent work [27]

has considered randomized caching with parsimonious hints about next request time of a few
cached pages.
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The probe model can now be viewed as a parsimonious ML hint, where the algorithm
queries the predictor with a few options, asking it either for the identity of the best option
among these, or for the losses/rewards of all these options. As an example, consider modeling
the problem of shortest path routing using stochastic bandits (where each of m paths has
its length drawn from a distribution at each step). In this case, a routing engine can query
for the length of a few paths, by possibly querying users who have chosen this path, before
routing other users.

1.2 Results and Conceptual Contribution
In this paper, we study the following question:

Can we obtain improved regret bounds for online learning and MAB problems against
the classic best arm in hindsight benchmark, if the algorithm is allowed the power of
using ML advice via a few probes before making its decision to play?

We answer this question in the affirmative: We show that just k = 2 probes (or k = 3, 4
for stronger results) suffice to drastically improve the known regret guarantees. Indeed, our
main results (in Sections 3 and 5) show a constant regret bound independent of the time
horizon, assuming the hints are correct!

Before proceeding further, it is instructive to compare our results with [17]. They consider
online linear optimization where the domain is the sphere (or more generally, strictly convex)
and show that if the hint is a direction with positive “correlation” with the cost vector, the
regret improves to O(ln T ). They also show that such an improvement cannot be obtained
if the decision space is more general, say the ℓ∞ ball, where the regret remains Ω(

√
T ). In

contrast, we show that if the algorithm is allowed to choose a direction and ask the predictor
if the cost along that direction is increasing or not, then the regret improves to constant;
further this result holds for linear optimization over any domain (not just strictly convex),
and convex optimization over any convex space.

In the literature on algorithms with ML-based predictions, one key requirement is for
the algorithms to not be “thrown off” by incorrect predictions. This aspect is referred to
as robustness [39], and the goal is to recover worst-case guarantees (ones possible without
any hints) even if the hints are adversarial. In the context of linear optimization, this was
studied in [9]. They extend the result of [17] again assuming the optimization is over a
sphere; however, their result also has a dependence of O(ln T ) on the horizon length. As
our second contribution, with B imperfect hints, our probe model improves this to obtain
regret O(

√
B + 1) (with no dependence on the horizon T ), again holding for any underlying

space over which the linear optimization is performed, as well as for convex optimization
over any convex space. We finally note that there was no extension known for [17] to the
MAB problem, and one of our contributions is to develop stochastic bandit algorithms with
improved regret bounds under parsimonious hints.

At a conceptual level, our work shows that querying or probing options via comparisons
is far more powerful than more “passive” models for hints. We believe that such query based
hint models may find other applications beyond online learning. At an even higher level, our
work is reminiscent of the power of two choices in online load balancing [7], where choosing
the lesser loaded of two random bins leads to an exponential improvement in the expected
maximum load. This paradigm has found numerous applications, such as hashing, congestion
control, and distributed memory management. Our paper is in a similar vein – we show that
allowing a few queries or hints suffices to give an exponential improvement in regret.
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1.3 Overview and Technical Highlight
We present our model and summary of results in Section 2, where we also place the regret
bounds we obtain in context. Our main probing model is the BestProbe model, where
the online policy probes a set of arms or options ahead of the play, and is told the best of
these options (without revealing the actual losses/rewards of these options). For the MAB
problem, we also consider the AllProbe model where the policy also observes the rewards
of all arms it probes. We present algorithms and regret bounds for online linear/convex
optimization in the BestProbe model in Section 3. Our results extend to the case where
the hints can be imperfect, and we present this in Section 3.3. We present analogous results
for the MAB problem in Section 4. We consider the MAB problem in the AllProbe model
in Sections 5 and 6.

At a technical level, our results require development of new probabilistic tools to lower
bound (resp. upper bound) the maximum (resp. minimum) of independent random vari-
ables(See Lemmas 5, 7, 9 and 10.) We term these as “reverse prophet inequalities”, since
they are in some sense the reverse of well-known prophet inequality results [30, 46] that
upper bound the expected maximum of a set of independent random variables by a sum of
quantities related to individual distributions. These technical lemmas are crucial to both our
algorithms as well as our improved regret analyses. Much like prophet inequalities, these
lemmas are of independent interest as stand-alone probability tools.

1.4 Other Related Work
Stochastic Probing. The question of adaptively or non-adaptively probing independent
distributions has been widely studied, with applications to database query optimization [21,
42, 18, 37], wireless communication [24], and traffic routing [12]. Much like our model, a
probe reveals the true underlying value drawn from the distribution; however, this line of
work largely focuses on algorithm design as opposed to learning. It is shown in [21] that
the problem of computing the best set of k distributions to probe in order to maximize the
expected value of the maximum of the probed set is NP-Hard when k is not a constant. A
related problem is the Pandora’s problem [55, 24, 8], where there is no bound on the number
of probes, but we seek to maximize the largest value found minus the total probing cost
spent in discovering the value. A general adaptive greedy algorithm for such problems, which
probes the next distribution conditioned on the values seen so far, was presented in [23].
Our work is different in that we assume k is a small constant (so that NP-Hardness is
not an issue); instead, we seek to understand the power of such probes in repeated bandit
interactions.

Bandits with Probes. In the cascading bandits model [31, 49], a recommendation system
(such as search engine or streaming service) needs to choose k items (or arms) to show to a
user and obtains feedback on what item the user clicks on. Similarly, in the bandits with
pre-observation model [58], the arms are wireless channels of unknown quality, and a user
needs to sequentially probe the channels until a good channel is found. This is a bandit
version of the Pandora’s problem. Finally, motivated by job scheduling applications, the
online budgeted submodular coverage problem [51] considers the more general problem where
the reward obtained by the player is an unknown submodular function of the probed arms.
Such problems have also been recently considered in the experts setting [41] where the policy
gets feedback about all arms after the play, but is allowed to make a bounded number of
probes before the play. One commonality in all the above works is that they consider policy
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regret: The benchmark is an omniscient solution that not only knows the rewards/losses
of the arms, but is also allowed as many probes per step as the online policy. In contrast,
motivated by machine learning hints, we consider probing as providing the online policy
more power compared to an omniscient benchmark and our goal is to study the resulting
improvement in regret bounds.

Dueling Bandits. Our problem is also related to dueling bandits [56], where the only
information available on playing a pair of arms is the result of a noisy comparison. Assuming
the noisy comparison model is Condorcet consistent (e.g., the Bradley-Terry model), the
goal is to minimize the error incurred in not playing the best arm. Though our problem
is superficially similar in that we allow plays of multiple arms, in our case, we observe the
reward of at least one of the played arms. Further, it is easily possible to incur zero (or even
negative) regret in our problem by playing two sub-optimal arms. This makes our problem
technically very different. Nevertheless, it is an interesting question whether techniques from
dueling bandits can be used to improve some of our results.

Predictable Sequences. In the field of online algorithms in general, recent research has
focused on incorporating machine learning predictions to obtain more optimistic bounds if
the predictions are correct, but preserve the robustness of the classic online model in case the
predictions turn out to be inaccurate. Of particular relevance is recent work [44, 54, 50] on
bandits and experts with “predictable sequences”, where improved regret bounds are shown
when the algorithm is given a prediction that is close on average to the true reward at each
step. Our work is similar in spirit if we view the probe as a perfect prediction; however, in
our case, the probes are both interactive and parsimonious, meaning that the policy itself
has to decide on the predictions to obtain each step, and further, these are few in number.

Bandits with Limited Advice. A related model to predictable sequences is the experts
model, where in each step, each of m experts makes a prediction about the best arm at
that step. In the limited advice setting [47, 29], the policy can choose only k ≪ m of the
experts in each round and obtain their predicted best arm; subsequently, the policy plays
one of the arms and obtains its reward. The goal of the policy is to compete with reward
of following the best expert in hindsight. However, the predictions of these experts can be
arbitrary, and unrelated to which arm was actually the best arm. Therefore, even if a policy
obtains the predictions of all experts, it cannot avoid Ω(

√
nT ) regret, making this problem

fundamentally different from our setting.

2 Model and Results

In the online linear optimization problem, we are given a a finite set W ⊆ Rd of options
(or arms). Assume that for all w ∈ W, we have w ∈ [−1, 1]d. At each step t, the algorithm
chooses action wt and is subsequently presented a cost vector ℓt ∈ [−1, 1]d, for which it incurs
loss ⟨ℓt, wt⟩ ∈ [−d, d]. Note that the choice of action wt only depends on the cost vectors
ℓq for q < t. We assume cost vectors ℓt are generated by an oblivious adversary that does
not know the internal randomness used by the algorithm in choosing wt. We further assume
that any linear function can be efficiently minimized over the set W . We describe the related
experts and online convex optimization settings in the full paper [11].

ITCS 2023



16:6 Online Learning and Bandits with Queried Hints

There is a horizon of T steps; we assume T is known, but this assumption can be removed
using standard techniques. We measure regret with respect to the hindsight optimum as:

Regret =
T∑

t=1
⟨ℓt, wt⟩ − min

w∈W

T∑
t=1

⟨ℓt, w⟩.

We denote OPT = minw∈W
∑T

t=1⟨ℓt, w⟩.
In the stochastic MAB problem, there are n bandit arms. Arm i yields i.i.d. rewards

Xi drawn from an independent distribution Di ∈ [0, 1]. Let µi = E[Xi]. The policy can
play one arm it at each step t, this choice can depend on the observed rewards till time
t − 1. Unlike online linear optimization, in the MAB problem, at the end of time step t, the
policy only learns the reward ritt ∼ Dit of the arm it that it plays at time t. The hindsight
optimum plays the arm with highest expected reward each step so that OPT = T maxi E[Xi].
We consider pseudo-regret, which is simply OPT − E[

∑T
t=1 ritt]. In Section 6, we extend this

to the case where there is a joint (correlated) reward distribution over arms and the rewards
are drawn i.i.d. across time from this joint distribution.

Probe Model. There are two models of probing and feedback that we consider. These
models are parameterized by a number k ≤ n, which captures the number of probes allowed.
The first model applies to both online learning and stochastic MAB, while the second applies
only to MAB.

Probes with Best Arm Feedback (BestProbe ). Any policy probes a set St of at most k

arms or options at any time step t, and learns which arm in St will incur the lowest loss
or maximum reward at step t (but not the reward/loss values). The policy plays the arm
i ∈ St with largest reward (resp. minimum loss). For instance, in the MAB problem, if
the reward of arm i at time t at step t is rit ∼ Di, the policy’s reward is R̂t = maxi∈St

rit.
Probes with All Feedback (AllProbe ). For the stochastic MAB problem, we also con-

sider a model that gives the online policy more information. In this model, the policy is
actually told the rewards rit ∼ Di for each arm i ∈ St, and it subsequently plays the arm
with largest reward, incurring reward R̂t = maxi∈St

rit at that step.

When k = 1, these models reduce to the classic versions of online linear optimization and
stochastic MAB. Note that our regret measure is a departure from work on policy regret:
In our case, OPT remains the same whether k = 1 or k > 1. In that sense, we seek to
understand the power of increasing k on the regret of the online policy. As mentioned before,
the motivation comes from viewing the k > 1 setting as ML hints received by the online
policy.

2.1 Our Results
Our main results are as follows:

In Section 3, for the online linear optimization problem in the BestProbe model, we
show a regret bound of O

(
d2 ln d

)
, independent of T with k = 2 probes. Using similar

techniques, in the full paper [11], we improve to O(ln n) for the experts model with
n experts, and we also present a horizon-independent regret bound for online convex
optimization.
In Section 3.3, we extend the model to the setting where B of the hints could be imperfect.
We show an algorithm with regret bound O

(
d2 ln d

√
B + 1

)
. The dependence on B is

trivially optimal, as can be seen by considering B = T . Similar results can be obtained
for online convex optimization.
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In Section 4, for the stochastic MAB problem in the BestProbe model, using k = 2
probes, we obtain a parameter independent regret bound of O(n2 log T ).

In Section 5, for the stochastic MAB problem in the AllProbe model, we show a regret
bound of O(n2), independent of T , with only k = 3 probes.

In Section 6, we consider the stochastic MAB problem in AllProbe model when the
rewards of arms can be correlated at each time step (whilst still being independent across
time). Here, we show a Õ(n8/3T 1/3) regret bound using k = 4 probes.

Our regret bounds in Sections 4 and 5 for the MAB problem are parameter independent,
meaning that there is no dependence of the regret bound on the means and variances of the
individual arms. All of our bounds except those in Section 6 are an exponential improvement
in T over bounds without probes, since there is a lower bound of Ω(

√
nT ) [6] for the stochastic

MAB problem, and a lower bound of Ω(
√

T ln n) [16] for the experts problem with k = 1
probes.

We also remark that the difference between the last two results is a subtle one. Typically
in the stochastic MAB problem, the rewards of the arms are assumed to be independent,
but most known results carry over to the case where the rewards can be dependent (as long
as the samples are independent across time). Informally, this is because the algorithm only
receives a feedback about one arm at each step. This is not the case when k > 1, and leads
to the main open problem of understanding if we can improve upon the Θ(

√
T ) regret for

adversarial bandits in the AllProbe or BestProbe models.

3 Online Linear Optimization in the BESTPROBE Model

We now consider online linear optimization in the BestProbe model. Recall that in standard
online linear optimization, the algorithm needs to play an option (or arm) w ∈ W each step,
and learns the linear loss function ℓt at the end of each step t. We show that with an oracle
that can return the better of k = 2 options at each step t, we can achieve regret that is
independent of T .

For simplicity, we will assume W is a convex polytope in Rd, though our result easily
extends to the case where W is any finite set of options over which linear functions can be
efficiently optimized. In more generality, our results hold as long as there are a finite set
of options S ⊆ W, such that for w ∈ S, the set Cw = {v⃗ ∈ Rd|w = argmins∈W⟨s, v⃗⟩} has
positive volume, and further, ∪w∈SCw = Rd.

Our results also extend to the more general case of online convex optimization with
arbitrary convex domains. For conceptual simplicity, we present only the linear case here
and defer the general case to the full paper [11]. In the special case of online learning with
experts (where the domain W is the n-dimensional unit simplex), we present an improved
regret bound that only depends logarithmically on the number of experts, whilst still being
independent of T . The logarithmic dependence on the number of experts is analogous to the
standard regret bounds for the experts problem, and the details are presented in the full
paper [11].

Finally, all of these algorithms can be extended to the case when hints/probes can be
incorrect at a small number of steps. Once again, we describe the algorithm only for online
linear optimization, in Section 3.3.

ITCS 2023



16:8 Online Learning and Bandits with Queried Hints

3.1 Algorithm: Differentially Private Regularization
Let us first recap the algorithmic framework of randomized regularization [28] for the setting
without probes. Let Lt−1 =

∑t−1
q=1 ℓq denote the sum of the cost vectors till time t. The

algorithm chooses a d-dimensional random cost vector x of sufficiently large variance upfront
and at step t, chooses the regularized optimum action,

wt = argminw∈W⟨Lt−1 + x, w⟩.

The analysis proceeds in two parts. First it is shown that if Lt were hypothetically used
instead of Lt−1 in the above step, the only regret would be due to adding noise x, and this
is independent of the time horizon T . Next, it is shown that since x has large variance, using
Lt−1 instead of Lt produces almost the same distribution of the regularized optimum wt.
These steps trade-off, since the larger the variance of noise, the worse the first step and
better the second. The optimal trade-off yields a O(

√
T ) bound.

In the probing model, our algorithm LwC will simply sample two random vectors x, y

and compute the regularized optimal solutions as above. The algorithm will find out which of
these solutions has smaller loss at time t, and then choose this solution as its action wt. Our
key lemma (Lemma 5) shows that if the noise vector is chosen so as to satisfy a differential
privacy property, then the error in the first step above (comparing with Lt) goes away! In
other words, the better of two samples produced using the regularized distribution obtained
using Lt−1 will be as good as a sample obtained using Lt.

We note that the use of differentially private noise was first considered in [2], who
observed that viewing randomized regularization as differential privacy of the loss across
time leads to simpler analysis and somewhat stronger regret bounds. We show an algorithmic
application of this approach for probing. Indeed, though classical regularization does not
require differentially private noise (indeed, it does not even require randomization [57]), this
seems critical to achieving our bounds.

Algorithm. We now formally describe the algorithm. Recall that the distribution Laplace(β)
has density function f(x) = 1

2β exp(−|x|/β) for x ∈ R. For η ≤ 0.4 being a constant, the
algorithm performs these steps at time t.

Choose xj ∼ Laplace(d/η) for each j ∈ {1, . . . , d}; set at = argminw∈W⟨Lt−1 + x, w⟩.
Choose yj ∼ Laplace(d/η) for each j ∈ {1, 2, . . . , d}; set bt = argminw∈W⟨Lt−1 + y, w⟩.
Let At = ⟨at, ℓt⟩ and Bt = ⟨bt, ℓt⟩. Probe to learn wt = argminat,bt{At, Bt}.
Play wt as the action at time t, incurring actual loss min(At, Bt).

We will show the following theorem:

▶ Theorem 1. The constant η ∈ (0, 0.4], the regret of the LwC algorithm is O
(
d2 ln d

)
.

3.2 Analysis
As in the classic analysis of regularization [28], define a hypothetical “Be the Regular-
ized Leader” (BtRL ) algorithm: Choose xj ∼ Laplace(d/η) independently for each
j ∈ {1, 2, . . . , d}. At step t, use ct = argminw∈W⟨Lt−1 + ℓt + x, w⟩ as the action taken at
step t. Note that BtRL is not realizable. Let D = maxw,w′∈W |w − w′|1. The next lemma
restates the classic “be the leader” result from [28].

▶ Lemma 2 ([28]). For any η ≥ 0, the regret of the BtRL algorithm is at most D ·
E[maxd

j=1 |xj |].
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For the specific setting of xj ∼ Laplace(d/η), we have E[maxd
j=1 |xj |] = O

(
d
η ln d

)
assuming η is a constant. Further, we have D = 2d, so that we obtain:

▶ Corollary 3. For constant η > 0, the regret of the BtRL algorithm is O
(

d2 ln d
η

)
In the rest of the analysis, we focus on a particular step t, and omit the superscript t.

Let D1 denote the distribution of the regularized optimum at (resp. bt) using Lt−1 in the
LwC algorithm, and D2 denote the distribution of the regularized optimum ct using Lt in
the BtRL algorithm. The following lemma is a consequence of the well-known Laplace
mechanism in differential privacy [19], and we present a proof for completeness.

▶ Lemma 4 (η-Differential Privacy). For all w ∈ W, we have: exp(−η) ≤ Pr[D1=w]
Pr[D2=w] ≤ exp(η).

Proof. Consider x, y ∼ Laplace(d/η). Let Xi and Yi denote the random variables Lt−1
i + xi

and Lt−1
i + ℓt

i + yi respectively. For any fixed value v, for any dimension i, their density
functions are related as:

fXi(v)
fYi

(v) ≤ exp(ℓt
iη/d) ≤ exp(η/d),

since ℓt
i ≤ 1. Let X denote the d-dimensional random variable whose ith dimension is Xi,

and similarly define Y . Using the above, if x⃗, y⃗ have components drawn independently from
Laplace(d/η), then for any v⃗ ∈ Rd, the density functions of X and Y are related as

fX(v⃗)
fY (v⃗) ≤

d∏
i=1

exp(ℓt
iη/d) ≤ exp(η).

A similar argument shows fY (v⃗)
fX (v⃗) ≤ exp(η). Since W is a convex polytope in Rd, the optimum

solution for any v⃗ is achieved at a vertex w ∈ W. Further, w.l.o.g., the set of v⃗ whose
optimum corresponds to w ∈ W define a convex cone in Rd with positive volume. The lemma
follows by integrating the density functions fX , fY over this cone.1 ◀

We will now overload notation and use D1 (resp. D2) to refer to the distribution of the
losses ⟨ℓt, w⟩ for w chosen according to D1 (resp. D2). Note that these new distributions are
discrete with support size equal to the number of w ∈ W that are optimum for some v⃗ ∈ Rd,
and also satisfy the previous lemma.

The crux of the analysis is the following lemma, which shows that the expected min of the
two losses of the regularized optima using Lt−1 is at most that of the regularized optimum
using Lt, that is, the per-step loss of LwC is at most that of the BtRL algorithm. We can
view this as a “reverse prophet inequality” that upper bounds the expected minimum instead
of lower bounding it.

▶ Lemma 5 (Reverse Prophet Inequality for Private Noise). Let A, B be losses drawn indepen-
dently from D1 and let C be a loss drawn from D2, where D1, D2 are of bounded support and
satisfy η-differential privacy (Lemma 4) for η ∈ (0, 0.4]. Then E[min(A, B)] ≤ E[C].

1 Note that the proof also extends to the case where W is any finite set of outcomes, since w.l.o.g., there is
a subset S ⊆ W of outcomes such that the set of v⃗ for which w ∈ S is the optimal outcome is continuous
and convex (and hence has positive volume), and the union over S of these sets of v⃗ spans Rd.
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Proof. By shifting the distributions if necessary, we may assume that the support of D1 and
D2 is the set of non-negative real numbers. Let G(x) = Pr[D1 ≥ x] and Ĝ(x) = Pr[D2 ≥ x].
Similarly, let F (x) = Pr[D1 ≤ x] and F̂ (x) = Pr[D2 ≤ x]. Let q = argminx{x|G(x) ≤
exp(−η)}. Therefore,

E[C] =
∫ q

x=0
(1 − F̂ (x))dx +

∫ ∞

x=q

Ĝ(x)dx = q −
∫ q

x=0
F̂ (x)dx +

∫ ∞

x=q

Ĝ(x)dx,

E[min(A, B)] = q −
∫ q

x=0
F (x)(2 − F (x))dx +

∫ ∞

x=q

(G(x))2dx.

Note that for x ≥ q, G(x) ≤ exp(−η). Since Ĝ(x) ≥ exp(−η)G(x), this implies (G(x))2 ≤
Ĝ(x). Further, for x ∈ [0, q], we have F (x) ≤ 1 − exp(−η), and further, F̂ (x) ≤ exp(η)F (x).
Therefore

F (x)(2 − F (x)) ≥ exp(−η)(1 + exp(−η))F̂ (x) ≥ F̂ (x)

for η ∈ (0, 0.4]. Putting this together, we infer E[C] ≥ E[min(A, B)], completing the
proof. ◀

We note that the proof of the above lemma crucially needs the two-sided bound in
Lemma 4. In contrast, the classical regret results for random regularization, for instance,
in [28], only require the total variation distance between D1 and D2 be at most η. However,
this weaker condition is insufficient for proving the lemma, as can be seen by the following
example: D1 is a deterministic value d, while D2 is d with probability 1 − η and 0 otherwise.
Then, E[min(A, B)] = E[A] = d, while E[C] = d(1 − η). This leads to a regret of ηdT over
T steps against the BtRL algorithm.

Proof of Theorem 1. The proof is now immediate. Lemma 5 implies that at step t, the
expected loss of LwC is at most that of the BtRL algorithm. Using linearity of expectation
over time steps and combining with the regret bound for BtRL from Corollary 3, we have
proved Theorem 1.

3.3 Handling Imperfect Hints
We now consider the setting where at most B of the T hints (comparisons) yield incorrect
answers. We show an algorithm that yields regret O(d2 ln d

√
B + 1). At one extreme, when

B = T , this recreates the O(
√

T ) regret guarantee for classical online linear optimization,
while at the other extreme, when B = 0, this recovers Theorem 1. It is also easy to show
that such a dependence on B is optimal for any T . To see this, simply construct an instance
where the loss function at steps where the hints are correct is identically zero, so that the
hints are vacuous. The only relevant steps are the ones where the hints are incorrect, so that
any algorithm’s regret is lower-bounded by the regret of classical online linear optimization
over B steps.

Algorithm. In the sequel, we assume B is known; the case for unknown B follows by the
standard doubling trick where we maintain a guess for B and restart the algorithm once B

doubles. This can be done since we are in the full information regime and we get to know
if a query answer was incorrect; we omit the details. Our algorithm is nearly identical to
LwC for B = 0, and proceeds as follows. We will set η = 1

5
√

B+1 in this algorithm. We
also have a parameter p = 5η. The main difference in the algorithm is the following: After
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LwC probes to learn wt = argminat,bt{At, Bt}, the new algorithm plays wt as the action
with probability p and plays at with probability 1 − p. In other words, the algorithm now
uses the hint (action wt) with probability 1 − p, else it ignores the hint at that step and
mimics classical follow the regularized leader (action at). Note that at the end of every step,
the algorithm learns if the hint was correct. This allows the algorithm to keep track of the
number of mis-predictions and is critical to using the doubling trick for unknown B.

Analysis. We will show the following theorem. We note that the generalization to the
experts and online convex optimization settings (as described in the full paper [11]), to yield
regret with a O(

√
B + 1) dependence on B, follows the same outline and is hence omitted.

▶ Theorem 6. The regret of the modified LwC algorithm with B incorrect hints is
O(d2 ln d

√
B + 1).

Our analysis hinges on the following generalization of the reverse prophet inequality
(Lemma 5) to mimic the behavior of the algorithm.

▶ Lemma 7 ((General Reverse Prophet Inequality.)). Let p > 0 be a given parameter, and let
D1, D2 be bounded support probability distributions (over losses) that satisfy η-differential
privacy (Lemma 4) for some η < p/4. Let C be a random sample from D2, and let Z be a
random variable obtained as follows: two samples A, B are drawn from D1. With probability
(1 − p), Z is set to be A. With probability p, Z = min(A, B). Then we have E[Z] ≤ E[C].

Proof. Define G(x) and Ĝ(x) as in Lemma 5. Once again, suppose that the support of the
distributions is the set of non-negative reals. By definition, we have

E[C] =
∫ ∞

0
Ĝ(x)dx and E[Z] =

∫ ∞

0

(
(1 − p)G(x) + pG(x)2) dx.

By the differential privacy property and the choice of η, we have that G(x), Ĝ(x) are within
a factor of (1 ± p

2 ) of one another for every x. Now consider two cases.
First, suppose G(x) ≤ 1/2. In this case, (1 − p)G(x) + pG(x)2 ≤ (1 − p

2 )G(x) ≤ Ĝ(x).
Next, suppose G(x) > 1/2. Now, writing F (x) = (1 − G(x)) for convenience, we have

(1 − p)G(x) + pG(x)2 = (1 − F (x))(1 − pF (x))
= 1 − F (x) − pF (x) + pF (x)2

< 1 − F (x) − p

2F (x) = 1 − (1 + p

2)F (x).

In the last inequality, we used F (x) < 1/2. By the privacy property, the final expression
is ≤ 1 − F̂ (x) = Ĝ(x). Plugging this into the above integral completes the proof of the
lemma. ◀

We now prove Theorem 6 by bounding the regret against the BtRL algorithm.

Proof of Theorem 6. Consider the BtRL algorithm with the same value of η = 1
5

√
B+1 . By

Corollary 3, this has regret O(d2 ln d
√

B + 1). We now bound the regret of our algorithm
against the BtRL algorithm. Towards this end, set S1 denote the set of time steps where
the hints are correct. By Lemma 7, the loss of our algorithm at these steps is at most that
of the BtRL algorithm.

Let S2 denote the set of steps where the hints are incorrect. At each of these steps, with
probability p the algorithm plays wt, and incurs loss O(d2). There are B · p = O(

√
B + 1)

such steps in expectation, yielding total loss (and regret) at most O(d2√
B + 1) against the
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BtRL algorithm. For the remaining steps, the algorithm plays action at. Since Laplace
noise is η-differentially private (Lemma 4), the probability that at ̸= ct is at most η,
where ct is the action taken by the BtRL algorithm. In the case where at ≠ ct, the
algorithm incurs regret O(d2). Therefore the total regret against BtRL due to these steps
is O(Bηd2) = O(d2√

B + 1). Combining with the regret of O(d2 ln d
√

B + 1) of the BtRL
algorithm, this shows our algorithm also has regret O(d2 ln d

√
B + 1) against the best fixed

action in hindsight. This completes the proof. ◀

4 Stochastic MAB in the BESTPROBE Model with k = 2 Probes

Recall that in the stochastic MAB problem in the BestProbe model, the policy can probe
k arms and learn the identity of the arm with the maximum reward. At the end of the play,
it only learns the reward of the arm that was played that step, and not the rewards of the
other arms that were probed that step. We will show a parameter independent regret bound
of O(n2 log T ) for a horizon of T steps using only k = 2 probes. As mentioned before, this is
an exponential improvement over the Ω(

√
nT ) regret necessary with k = 1 probes.

4.1 The Meta UCB-V Algorithm
The key algorithmic idea is the following: If we use an optimistic estimate of the sample
mean (similar to UCB [45]), probe the top two arms based on this estimate and choose the
arm with the higher reward, we obtain a guaranteed advantage (in expectation) over simply
choosing the top arm based on the estimate. Our key technical lemmas, Lemma 9 and 10
show that if the gap between the means of the arms played and the mean of the optimal arm
is small, the expected regret is actually ≤ 0. This is key to achieving our improved regret
bounds.

Formally, define a new classical bandit instance (with no probes) as follows. For every pair
of arms (i, j), we have a meta-arm (i, j). Therefore, the new instance as

(
n
2
)

meta-arms. If Xi

and Xj denote the random variables corresponding to the rewards of arms i and j respectively,
the reward of meta-arm (i, j) is max(Xi, Xj). Playing the meta-arm (i, j) corresponds to
probing the pair of arms i and j and obtaining/observing the value Xij = max(Xi, Xj).

Our algorithm runs the UCB-V policy [4] on the new bandit instance. We call this
algorithm Meta UCB-V. For completeness, this algorithm works as follows: At step t, suppose
(i, j) has been played st

ij times. Let mt
ij and V t

ij denote the sample mean and sample variance
over the st

ij plays:

mijt =
∑sijt

q=1 Xijq

sijt
Vijt =

∑sijt

q=1(Xijq − mijt)2

sijt
. (1)

Define the quantity UCBt
ij as: UCBt

ij = mt
ij +

√
2.4V t

ij
log t

st
ij

+ 3.6 log t
st

ij
. At time step t, the

meta-arm (i, j) with the highest value of UCBt
ij is played.

We will show the following parameter-independent regret bound as our main result; recall
that we are considering pseudo-regret throughout this paper.

▶ Theorem 8. The Meta UCB-V algorithm has regret O(n2 log T ) with k = 2 probes.

Recall that µi = E[Xi], µ∗ = maxi E[Xi], and the benchmark is OPT = Tµ∗. We now
define analogous quantities for the meta-arms. Recall that Xij = max(Xi, Xj) is the random
variable corresponding to the reward of meta-arm (i, j). Let µij = E[Xij ] and σ2

ij = Var[Xij ].
Let M∗ = max(i,j) µij and ∆ij = M∗ − µij .
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For the Meta UCB-V policy, let Tij denote the expected number of times meta-arm (i, j)
is played. Let Rij = Tij∆ij denote the expected regret against M∗ due to playing meta-arm
(i, j). The main result of Audibert et al. [4] is the following.2

Rij ≤ 10
(

σ2
ij

∆ij
+ 1
)

ln T. (2)

4.2 Reverse Prophet Inequalities
Our main technical lemmas lower bound the expected maximum of a pair of random variables
in terms of the mean and variance of the individual variables. These lemmas effectively show
that if the gap between the means of the arms played and the mean of the optimal arm is
small, the expected regret is actually ≤ 0. As mentioned before, these can be viewed as the
reverse of standard prophet inequalities [30, 46] that upper bound the expected maximum.
These lemmas forms the crux of our analysis both in this section and in Section 5, and may
be of independent interest in related settings.

▶ Lemma 9. Let X and Y be independent random variables supported on [0, 1] whose means
satisfy µY ≥ µX , and let Z = max(X, Y ). Then E[Z] ≥ µX + σ2

X/2.

Proof. We can write E[Z] =
∫ 1

t=0 E[Z|X = t]fX(t)dt, where fX is the pdf of X. We split
the integral into two sums, t ∈ [0, µX ] and t ∈ [µX , 1]. For the first integral, we use Z ≥ Y ,
and thus∫ µX

t=0
E[Z|X = t]fX(t)dt ≥

∫ µX

t=0
E[Y ]fX(t)dt ≥

∫ µX

t=0
µXfX(t)dt.

Here, the first inequality uses the independence of X and Y and the second inequality uses
µY ≥ µX . For the second integral, we use Z ≥ X, and obtain∫ 1

t=µX

E[Z|X = t]fX(t)dt ≥
∫ 1

t=µX

tfX(t)dt.

Thus, writing the t as µX + (t − µX), we get that the sum of the two integrals is bounded
as

E[Z] ≥ µX + E[(X − µX)+], (3)

where (X − µX)+ is the random variable max(0, X − µX).
Likewise, define (X − µX)− = max(0, µX − X). By the definition of the expectation, we

have E[(X − µX)+] = E[(X − µX)−]. On the other hand, because our random variables are
bounded on [0, 1], we have E[(X − µX)+] ≥ E[(X − µX)2

+] and likewise for E[(X − µX)−].
Therefore,

E[(X − µX)+] + E[(X − µX)−] ≥ E[(X − µX)2] = σ2
X . (4)

Thus both the terms are at least σ2
X/2, implying the lemma. ◀

2 We note that the result in [4] assumes the arms are independent, while our meta-arms are correlated.
However, the expected regret bounds in [4] hold as is when the arms are correlated, provided the samples
from the arms are i.i.d. across time. This suffices for our purposes.
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We next extend Lemma 9 to pairs of arms. Note that this does not follow from Lemma 9
by simply replacing “arms” with “pairs of arms”, since different pairs of arms are no longer
independent.

▶ Lemma 10. Let pair (i, j) be such that µij < µ∗. Then M∗ − µij ≥ σ2
ij

4 .

Proof. For notational convenience, let q = argmaxsµs. By assumption, we have E[Xq] =
µ∗ > µij .

Since M∗ = max(q,r) µqr, we have M∗ ≥ max(µiq, µjq). Therefore,

M∗ − µij ≥ max(µiq, µjq) − µij . (5)

We now use the same argument as the proof of Eq (3). Set Z = max(Xi, Xq) and X = Xi,
but split the integral at t = µ∗ instead of t = E[Xi]. This yields

µiq = E[Z] ≥
∫ µ∗

t=0
µ∗fXi

(t)dt +
∫ 1

t=µ∗
((t − µ∗) + µ∗)fXi

(t)dt = µ∗ + E[(Xi − µ∗)+],

A similar inequality holds for µjq. Combining with Eq (5), we have

M∗ − µij ≥ max {E[(Xi − µ∗)+], E[(Xj − µ∗)+]} + (µ∗ − µij).

Since µ∗ ≥ µij by assumption, the above implies

M∗ − µij ≥ max {E[(Xi − µij)+], E[(Xj − µij)+]}

≥1
2 (E[(Xi − µij)+] + E[(Xj − µij)+]) ≥ 1

2E[(Xij − µij)+]

To see the last inequality, simply observe that for any value a ≥ 0, we have Pr[Xij ≥
µij + a] ≤ Pr[Xi ≥ µij + a] + Pr[Xj ≥ µij + a]. Finally, using Eq (4) with X = Xij , we
obtain

M∗ − µij ≥ 1
2E[(Xij − µij)+] ≥ 1

4σ2
ij .

This completes the proof. ◀

4.3 Proof of Theorem 8
We split the set of meta-arms into two types. The first type is arms (i, j) for which µij ≥ µ∗.
Since µ∗ − µij ≤ 0, the expected regret (against the benchmark µ∗) of playing (i, j) is
non-positive.

We therefore focus on arms (i, j) with µij < µ∗. By Lemma 10, we have ∆ij = M∗ −µij ≥
σ2

ij

4 . Combining with Eq (2), we have Rij ≤ 10(4 + 1) ln T = 50 ln T . However, we have
∆ij ≥ µ∗ − µij , so that the regret of (i, j) against µ∗ is at most that against M∗. Putting all
this together, we have:

Regret =
∑

(i,j):µij<µ∗

Tij(µ∗ − µij) ≤
∑

(i,j):µij<µ∗

Tij(M∗ − µij)

=
∑

(i,j):µij<µ∗

Tij∆ij =
∑

(i,j):µij<µ∗

Rij ≤
∑

(i,j):µij<µ∗

50 ln T = O(n2 ln T )

This completes the proof of Theorem 8.
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5 Stochastic MAB in the ALLPROBE Model

We will now switch to the AllProbe model for the stochastic MAB problem, where a policy
can probe k arms, and receive as feedback the rewards of all these arms at the current time
step. In this model, we will show a regret bound of O(n2) when we are allowed k = 3 probes
per step.

In addition to using Lemma 9 from the previous section, the main observation is that
with k = 3 probes allowed, we can have one probe dedicated to exploring the arms in a
round-robin fashion. Thus AllProbe allows us to overcome the explore/exploit trade-off
and obtain better concentration bounds, albeit with the loss of an additional n factor in the
regret. The overall algorithm is reminiscent of the UCB-V algorithm of Audibert et al. [4] from
Section 4, but differs in how we construct the optimistic estimate, as well as the analysis.

Simultaneous Explore-Exploit Algorithm. Our algorithm uses one probe per step to play
the n arms in a round robin fashion. We call this the exploration probe and it enables the
algorithm to maintain the sample mean and sample variance for each arm. Therefore, at time
t ≥ 1, any arm i is observed sit ≥ ⌊ t

n ⌋ steps by the exploration probe. Let Xi1, Xi2, . . . , Xisit

denote these observations. Analogous to Eq. (1), let mit, Vit denote the sample mean and
variance of arm i after sit observations. Choose ϵ = 0.1; any other small constant will work
equally well. Let

UCBit = mit + ϵVit. (6)

The remaining two probes at time step t are used to probe the two arms with the largest
values of UCBit. We call these the exploitation probes. This completes the description of the
algorithm.

Note that in our analysis, we will assume the policy finally plays one of the two exploitation-
probed arms and not the exploration-probed arm. We use the exploration probe only to
update the estimates of mit and Vit, and the results of these probes could be obtained at
the end of that time step. This is sufficient to get constant regret. We show the following
theorem below.

▶ Theorem 11. The regret of the simultaneous explore-exploit algorithm is O(n2) for the
AllProbe model with k = 3 probes.

We remark that the bound has a slightly worse dependence on n, the number of arms,
than the standard UCB bounds [15]. Improving the bound to O(n) is an interesting open
direction. Further, it is easy to show examples where playing the top two arms with highest
UCB1 scores [5], or running Thompson Sampling twice [3], has regret that is polynomial in
T . However, we conjecture that the policy that simply plays the top two arms according to
mit also has constant regret, and we leave showing this as an interesting open question.

5.1 Some Tail Bounds
Before presenting the proof of Theorem 11, we present some well-known tail bounds for the
sample mean and variance.

We will use tail bounds that follow from Audibert et al. [4, 20]. Fix a time t and some
arm i whose distribution Di has mean µi and variance σ2

i . Note that we assume Di ∈ [0, 1].
Consider the sit exploration probes and the resulting estimates mit and Vit of the sample
mean and variance respectively:

mit =
∑sit

q=1 Xiq

sit
Vit =

∑sit

q=1(Xiq − mit)2

sit
. (7)
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▶ Theorem 12 (Implicit in Audibert et al.[4]). For any time t ≥ 1, we have the following tail
bounds on mit and Vit after sit probes of arm i.
1. For q ≥ 1

18 , we have: Pr
[
|mit − µi| > qσ2

i

]
≤ 3e−

qσ2
i

sit
23 .

2. For q ≥ 1
18 , we have: Pr

[
Vit > (1 + q)σ2

i

]
≤ 3e−

qσ2
i

sit
23 .

3. Pr[Vit < 0.65σ2
i ] ≤ 3e−0.01σ2

i sit .

We present a proof sketch of this theorem in the full paper [11].

5.2 Proof of Theorem 11
Let t0 = 4n; we will ignore the first t0 steps in the analysis, and they contribute O(n) to the
regret since the rewards are bounded in [0, 1]. This implies sit ≥ t

2n for t ≥ t0.
Let q = argmaxiµi. Let µ∗ = µq and σ2

∗ = σ2
q . At any time step t, suppose a pair of

arms (i, j) with µi ≥ µj is played by the exploitation probes. Let ∆j = µ∗ − µj . Suppose
E[max(Xi, Xj)] = µij ≥ µ∗, then the expected regret is zero, otherwise, the expected regret
is at most ∆j . We charge this regret to arm j. We will now compute the probability with
which a regret of ∆j is charged to arm j in time step t. Below, we will omit t from the
subscript when the connotation is obvious.

Let ∆j = ℓσ2
j = ρσ2

∗. We split the analysis into three cases. Note that the key hurdle with
obtaining constant regret is that the tail bounds in Theorem 12 that decay exponentially
with time at rate depending on variance only hold when the deviation from the mean is at
least a constant times the variance of the arm. We therefore split our analysis based on
whether ∆j is at least a constant times σ2

j or not. In the latter case, we use Lemma 9 to
argue that the regret is already non-positive. In the former case, we obtain exponentially
decaying regret in time, which is sufficient to obtain overall constant regret.

In the following, for notational brevity we may drop t from mjt, Vjt and sjt.

Case 1. ℓ ≤ 1
2 . In this case, setting X = Xj and Y = Xi in Lemma 9, we have

µij ≥ µj + σ2
j /2 ≥ µj + ∆j ≥ µ∗.

Therefore, playing (i, j) incurs non-positive regret.

Case 2. ℓ ≥ 1
2 and ρ ≥ 1

2 . Let w = µj + ∆j

2 . Recall the definition of UCBit from Eq (6),
and define the good event as UCBj ≤ w and UCBq ≥ w. In this case, if j is probed, then q = i,
so that there is no regret. We upper bound the probability of the good event not happening
by a union of bad events.

The first bad event is that Vj > 0.65σ2
j , where Vj is as defined in Eq (7). By Theorem 12,

there exists constant c1 > 0 such that

Pr[Vj > 0.65σ2
j ] ≤ 3e−c1ℓσ2

j sj = 3e−c1∆jsj .

Assuming this event do not happen, the second bad event is UCBj > w, which is equivalent
to mj > µj + ℓ

2 σ2
j − ϵVj , where mj is as defined in Eq (7). Since Vj ≤ 0.65σ2

j , it suffices to
bound the probability of the event

mj − µj > (ℓ/2 − 0.65ϵ)σ2
j > 0.3ℓσ2

j ,

where we have used ϵ = 0.1. By Theorem 12, there is a constant c2 > 0 so that

Pr[UCBj > w|Vj ≤ ℓσ2
j ] ≤ 3e−c2ℓσ2

j sj = 3e−c2∆jsj .
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Analogously, the third bad event is that UCBq < w = µj + ∆j

2 = µ∗ − ∆j

2 . This implies
mq < µ∗ − ρ

2 σ2
∗. Repeating the same argument as the second bad event, we obtain

Pr[UCBq < w] ≤ 3e−c2ρσ2
∗sq = 3e−c2∆jsq .

Denote the regret charged to arm j at step t as Rjt. Let c3 = min(c1,c2)
2 . Note next that

sjt, sqt ≥ t
2n . We now take the union bound over the three bad events above, and note that

the regret charged to arm j conditioned on the bad event is at most ∆j . This implies:

E[Rjt] ≤ 9∆je−c3∆j
t
n .

Case 3. ℓ ≥ 1
2 and ρ < 1

2 . We define the good event has having UCBj ≤ µ∗, and UCBq ≥ µ∗.
In this case, if arm j is played, then arm q is also played so that the regret is zero. As before,
we upper bound the probability of the good event not happening by a union of bad events.

As in Case (2), UCBj > µ∗ is captured by two bad events Vj > ℓσ2
j and UCBj > µ∗ given

Vj ≤ ℓσ2
j . It is easy to check that the probability of these events are upper bounded by those

derived for Case (2), so that:

Pr[UCBj > µ∗] ≤ 6e−c3ℓσ2
j sj = 6e−c3∆jsj .

To capture UCBq < µ∗, we consider two other bad events Vq < 0.65σ2
∗ and UCBq < µ∗

given Vq ≥ 0.65σ2
∗. Using Theorem 12 and the fact that ∆j <

σ2
∗

2 , we have:

Pr[Vq < 0.65σ2
∗] ≤ 3e−0.01σ2

∗sq ≤ 3e−c4∆jsq

for some constant c4 > 0. Assume therefore that Vq ≥ 0.65σ2
∗. The last bad event is

UCBq < µ∗, which is equivalent to µ∗ − mq > ϵVq, which implies µ∗ − mq > 0.065σ2
∗, since

ϵ = 0.1. Using Theorem 12 and the fact that ∆j <
σ2

∗
2 , there is a constant c5 > 0 such that

Pr[UCBq < µ∗|Vq ≥ 0.65σ2
∗] ≤ 3e− 0.065

23 σ2
∗sq ≤ 3e−c5∆jsq .

As before, we take the union of all these bad events and set c6 = 1
2 min(c3, c4, c5) to

obtain:

E[Rjt] ≤ 12∆je−c6∆j
t
n .

Given the tail bounds derived in each of the three cases, by linearity of expectation over
all time steps t and sub-optimal arms j to which the regret can be charged, we have:

E[Regret] ≤ O(n) +
∑
j ̸=q

T∑
t=t0

12∆je−c6∆j
t
n = O(n2),

where use a regret of t0 = O(n) for the first t0 steps, and use linearity of expectation beyond
that. This completes the proof of Theorem 11.

6 Handling Correlation Between Arms in the ALLPROBE Model

We now consider the AllProbe model when the rewards on the arms can be correlated. In
other words, the reward vector r⃗t at any time t is drawn from a joint distribution over [0, 1]n.
These draws are i.i.d. across time steps. Note that the analysis for the independent case
presented above crucially needs Lemma 9, which does not hold when arms can be correlated.
We now show a different algorithm and analysis (in the AllProbe model) that uses k = 4
probes and achieves a regret bound of Õ(T 1/3) · poly(n). Again note that such a dependence
on T cannot be achieved in the standard bandit model with k = 1 probes.
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6.1 Correlation-Exploitation Algorithm
As before the idea is to explore and exploit simultaneously, but the algorithm now plays pairs
of arms, and thus can keep track of the gain offered by playing two arms simultaneously.
More formally, the algorithm uses k = 4 probes in every step, and consists of two exploit
and two explore probes.

Explore Probes. The explore probes pull every pair (i, j) of arms in a round-robin fashion.
Using these probes, the algorithm maintains estimates of the mean reward µi, and additionally,
estimates of quantities

Gji := E[(Xj − Xi)+]. (8)

Let us call the estimates µ̂i and Ĝji respectively. The latter estimates the gain that arm j

offers over arm i when played together. These estimates turn out to be crucial in handling
correlations in the rewards. Note that since the µ̂i uses the same samples used to estimate
Ĝji, these estimates can be dependent.

Exploit Probes. For every arm i, define its “partner” as argmaxjĜji. The partner can
change with time, and is a random variable that depends on the rewards obtained so far. At
every time t, for the exploit probes, the algorithm pulls the arm i that has the highest value
of µ̂i – we call this the primary arm at time t – and its partner.

6.2 Analysis
We next turn to the analysis of the algorithm described above. Recall that ∆i = µq − µi,
where q is the arm with highest expected reward. We will show the following theorem.
Though the improvement is not as impressive as for the independent reward case, we note
that such a dependence on T cannot be obtained with k = 1 probes.

▶ Theorem 13. The regret of the correlation-exploitation algorithm is bounded by

Regret ≤ O

n3 ·
∑
i̸=q

√
log(1/∆i)

∆i

 ,

which implies a parameter independent regret bound of Õ(n8/3T 1/3).

The rest of this section is devoted to proving the above theorem. Towards the end, we
will show that the analysis is tight and the dependence on 1/

√
∆ cannot be improved for

this algorithm.
Our proof uses standard Chernoff bounds (see, e.g., [14, 40]). For completeness, we state

the version we use.

▶ Theorem 14. Let X1, X2, . . . , Xn be independent random variables with support [0, 1]. Let
pi = E[Xi], and let µ =

∑
i pi. Then we have the following:

1. (Small deviation) For any δ ∈ [0, 1],

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3,

Pr[X ≤ (1 − δ)µ] ≤ e−µδ2/3.

2. (Large deviation) For δ ≥ 1, we have

Pr[X ≥ (1 + δ)µ] ≤ e−µδ/3.
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Define Zi,t to be the random variable indicating if arm i is the primary arm at time t.
The first observation is that for all arms with ∆i > 0,

Pr[Zi,t = 1] ≤ 2 exp(−t∆2
i /4n). (9)

To see this, note that in order to choose arm i over arm q, we must have either µ̂i ≥ µi + ∆i

2
or µ̂q ≤ µq − ∆i

2 . Since we have at least t/n i.i.d. samples for each arm and since the
rewards are in [0, 1], the probability of each of these events can be bounded using Bernstein’s
inequality, and taking the union over the two events implies (9).

Next, we turn to the analysis of the quantities Gij and their estimates Ĝij . The first
observation is the following:

▶ Observation 15. For any two arms (i, j), we have E[max(Xi, Xj)] = µi +E[(Xj −Xi)+] =
µi + Gji. Furthermore, for every arm i, there exists j such that Gji ≥ ∆i.

This implies that when we play i, if we are able to identify its “optimal partner” j, then
we will incur zero regret in expectation. However, since we only estimate Gji, the actual
regret can be higher. To analyze this difference, let us define Di(t) to be E[(Xj − Xi)+],
where j is the partner of i at time t and the expectation is over the reward distribution. As
j is a random variable (depending on the rewards observed at times t′ < t), so is Di(t). The
key observation is that the expected regret at time t conditioned on i being the explore arm
is bounded by ∆i − Di(t).

Our overall approach is to bound the expected regret as∑
i

∑
t

E[Zi,t(∆i − Di(t))].

To bound this, we fix an index i and analyze the sum over t. We can further bound the sum
as: ∑

t≤Ti

E[∆i − Di(t)] +
∑
t>Ti

E[Zi,t]∆i, (10)

where Ti = 4n2 log(1/∆i)
∆2

i
. The second summation is bounded easily using (9):∑

t>Ti

E[Zi,t]∆i ≤ 2∆i

∫ ∞

t=Ti

e−t∆2
i /4n dt = 2∆i · 4n

∆2
i

· e−Ti∆2
i /4n ≤ O(1).

Let us thus focus on the first sum. For the first 12n2

∆i
time steps, we simply bound the

expectation by ∆i, which makes the sum add up to O(n2). As t increases, the following
lemma shows that (∆i − Di(t)) becomes much smaller than ∆i with high probability.

▶ Lemma 16. Assume w.l.o.g. that ∆i < 1. Suppose that t ≥ 12n2/∆i. Then for any c ≥ 0,

Pr[∆i − Di(t) ≥ c] ≤ Pr[∆i − Di(t) > c∆i] ≤ ne−c2∆it/36n2
.

Proof. First note that we can assume 0 < c < 1; the bound for c ≥ 1 is trivial. The proof
proceeds in two parts, both of which use the fact that after t steps, the explore arms (which
perform round robin) use at least (t/n2) samples for computing each of the Ĝji. First, we
show that for the optimal arm q, since Gqi ≥ ∆i from Observation 15,

Pr[∆i − Ĝqi >
c

2∆i] ≤ Pr[Ĝqi < (1 − c

2)Gqi] ≤ e−c2∆it/12n2
.

This is a direct application of Theorem 14. Next, we consider any arm j for which Gji is
≤ ∆i(1 − c). In this case, we wish to argue that Ĝij < ∆i − c

2 ∆i with high probability. For
this, we consider two cases.
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Case 1. Gji < ∆i/4. In this case, ∆i − c
2∆i > ∆i/2 > 2Gji, and thus to bound Pr[Ĝji ≥

2Gji], we can use the “high deviation” regime of Chernoff bounds (see Theorem 14) to
conclude that

Pr[Ĝji ≥ ∆i − c

2∆i] ≤ Pr[Ĝji ≥ ∆i/2] ≤ e−t∆i/6n2
.

Case 2. Gji ≥ ∆i/4. In this case, since ∆i − c
2∆i ≥ (1 + c

2 )Gji, we can use a Chernoff
bound again, to obtain

Pr[Ĝji ≥ ∆i − c

2∆i] ≤ e−c2Gjit/12n2
≤ e−c2∆it/48n2

.

Combining the two parts and taking a union bound, we have that with probability at
least 1 − ne−c2∆it/48n2 , we have that (a) maxj Ĝji ≥ ∆i − c

2∆i, and (b) the max is not
attained by any j with Gij ≤ Gji(1 − c). If both (a) and (b) hold, then ∆i − Di(t) ≤ c∆i,
and this completes the proof of the lemma. ◀

Lemma 16 can be used to bound the first term of (10), using the following technical
lemma.

▶ Lemma 17. Let n, β ≥ 1 be parameters, and Y be a random variable that satisfies the
condition:

∀c > 0, Pr[Y ≥ c] ≤ ne−c2β .

Then E[Y ] ≤ 2n√
β

.

Proof. Since we are only interested in an upper bound on E[Y ], we can ignore potential
negative values of Y , and write

E[Y ] ≤
∫ ∞

c=0
Pr[Y ≥ c] dc ≤ n

∫ ∞

c=0
e−c2βdc.

We then split the integrals into a sum over the intervals c ∈ [0, 1√
β

], [ 1√
β

, 2√
β

], [ 2√
β

, 3√
β

], . . . .

As the integrand in the (i + 1)th interval is bounded by exp(−i2), the sum can be bounded
as desired. ◀

Using the lemmas, we can bound the first summation in (10). The main observation is that
by using Lemma 16, if t = β 48n2

∆i
, the hypothesis of Lemma 17 is satisfied for Y = ∆i − Di(t).

This implies that we can bound

E[∆i − Di(t)] ≤ 2n√
β

= 12n2
√

∆i

t
.

Summing this between t = 48n2

∆i
(or even t = 1) and t = Ti = 4n2 log(1/∆i)

∆2
i

, we obtain a
bound of O

(
n2√

∆iTi

)
. Plugging in the value of Ti then completes the proof of Theorem 13.

Tight Instance
We now show an instance where the above algorithm has regret Ω(n/

√
∆). There are three

arms and n − 3 dummy arms for large n. Arm 1 has reward Xt that is drawn i.i.d. from a
Bernoulli distribution that is 1/3 with probability 1/2 and 2/3 with probability 1/2. Arm
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2 has reward Yt = Xt + At, where At is i.i.d. drawn from Bernoulli(1/3, 3∆). Arm 3 has
reward Zt = Xt + Bt, where Bt is i.i.d. drawn from Bernoulli(1/3, 3∆(1 −

√
∆)), with

Pr[Bt = 0|At = 0] = 1.
The dummy arms have reward zero at all time steps. We assume that at every step, one

pair of arms (i, j) is sampled, and these samples are used to estimate Gij , Gji, µi, and µj . The
dummy arms ensure the estimates µ̂i are approximately independent for all i, j ∈ {1, 2, 3}.
Further, Ĝji and Ĝki are independent for all i, j, k ∈ {1, 2, 3}, since these estimates are
constructed at different time steps.

On this instance, the regret is with respect to arm 2, with E[Y ] = 1
2 + ∆. However, the

construction of reward distributions ensures that E[max(X, Y )] = E[max(Z, Y )] = E[Y ].
Therefore, at any step, the expected regret of any strategy that plays pairs of arms is
non-negative.

Using the tightness of Chernoff bounds on Bernoulli distributions, we can check that on
this instance, with constant probability, the following two events happen for all t ≤ Ω(n/∆2):

µ̂1 > max (µ̂2, µ̂3), so that the algorithm plays arm 1;
Ĝ31 > Ĝ21, so that arm 3 is the partner of arm 1 and gets played.

In this event, the algorithm incurs regret ∆3/2 against the optimal arm 2 each step, for a
total regret of Ω(n/

√
∆). This shows the analysis above is tight.

7 Conclusion

We conclude with some open questions. The main open question is whether the stochastic
assumptions are needed for the MAB results. In other words, can we obtain improved regret
guarantees for the adversarial MAB problem [6]. We make progress in this direction with
our results for correlated MAB in Section 6; however, we believe our results even for this
case can be improved.

For the stochastic MAB problem, one intriguing open question is whether constant regret
is possible for k = 2 probes in the AllProbe model. Note that Theorem 8 implies a regret
of O(n2 log T ). However, unlike the celebrated Lai-Robbins result [32] that shows the log T

factor is necessary when k = 1, we have not been able to show a lower bound requiring such
dependence on T for k = 2, either for the AllProbe model or for the BestProbe model.
We leave this as an interesting open question. Another interesting question is to extend our
bandit results to the case with imperfect hints.

At a higher level, it would be interesting to explore the power of a few probes in more
complex bandit settings. One example is the linear contextual bandit problem [1, 35] where
the stochastic arms correspond to latent variables. At any step, a decision space is given and
the policy needs to choose a linear combination of these variables from the decision space,
obtaining that linear combination of the reward of the arms as its reward. Now suppose the
latent space of variables has small dimension, then does having multiple probes help with
the regret bounds?
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Abstract
Homomorphic encryption is a central object in modern cryptography, with far-reaching applications.
Constructions supporting homomorphic evaluation of arbitrary Boolean circuits have been known
for over a decade, based on standard lattice assumptions. However, these constructions are leveled,
meaning that they only support circuits up to some a-priori bounded depth. These leveled con-
structions can be bootstrapped into fully homomorphic ones, but this requires additional circular
security assumptions, which are construction-dependent, and where reductions to standard lattice
assumptions are no longer known. Alternative constructions are known based on indistinguishability
obfuscation, which has been recently constructed under standard assumptions. However, this
alternative requires subexponential hardness of the underlying primitives.

We prove a new bootstrapping theorem based on functional encryption, which is known based
on standard polynomial hardness assumptions. As a result we obtain the first fully homomorphic
encryption scheme that avoids both circular security assumptions and super-polynomial hardness
assumptions. The construction is secure against uniform adversaries, and can be made non-uniformly
secure assuming a generalization of the time-hierarchy theorem, which follows for example from
non-uniform ETH.

At the heart of the construction is a new proof technique based on cryptographic puzzles and
decomposable obfuscation. Unlike most cryptographic reductions, our security reduction does not
fully treat the adversary as a black box, but rather makes explicit use of its running time (or circuit
size).
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1 Introduction

Starting from the breakthrough work of Gentry [17], homomorphic encryption has changed
the face of cryptography, bringing about the era of encrypted computation, with an abundance
of new applications and new cryptographic tools. In the context of homomorphic encryption
for general Boolean circuits, an important distinction is between schemes that are fully
homomorphic and schemes that are only leveled homomorphic. Leveled homomorphic schemes
have an a-priori bound d on the depth of circuits for which homomorphic evaluation is
supported. In particular, the size of parameters in these schemes may scale with d. In
contrast, fully homomorphic schemes allow to evaluate circuits of arbitrary polynomial depth
with no a-priori bound.
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By now there are various, relatively simple, constructions of leveled homomorphic encryp-
tion schemes based on standard lattice assumptions (c.f. [11, 10, 19]). However, constructing
fully homomorphic encryption from similar assumptions remains a long standing open
problem. Nonetheless, Gentry [17] showed that by making an additional circular security
assumption the above schemes (and in fact any leveled scheme that can evaluate its own
decryption circuit) can be made full homomorphic. However, in this case we no longer
have a reduction to similar lattice assumptions. Furthermore, the corresponding assumption
is construction-dependent, in the sense that it assumes circular security of any specific
encryption scheme considered, rather than based on a clean problem that can be studied in
isolation.

An alternative construction of fully homomorphic encryption was shown by Canetti et
al. [13] based on indistinguishability obfuscation. Combining this with the recent breakthrough
of Jain, Lin, and Sahai [23, 24] who constructed indistinguishability obfuscation from
standard assumptions, leads to fully homomorphic encryption from standard assumptions.
The resulting construction, however, suffers from a caveat – it requires that the underlying
assumptions are all sub-exponentially secure.

The work of Agrikola et al. [1] showed that fully homomorphic encryption can be obtained
from polynomially-secure indistinguishability obfuscation and extremely lossy functions
(ELFs) [33]. However, the above mentioned constructions of indistinguishability obfuscation
are based on subexponential hardness assumptions, whereas ELFs are only known based on
exponential hardness assumptions. Other constructions of fully homomorphic encryption are
based on non-standard forms of obfuscation or functional encryption, which are not known
to be reducible to standard assumptions [2].

Overall, a construction of fully homomorphic encryption based on standard polynomial
assumptions has yet to be achieved.

1.1 Our Result
In this work we prove a new bootstrapping theorem based on functional encryption.

▶ Theorem 1 (Informal). Assuming (polynomially-secure) semi-compact public-key functional
encryption, any leveled homomorphic encryption scheme that can evaluate (slightly more
than) its own decryption circuit, can be turned into a fully-homomorphic scheme against
efficient uniform adversaries.

Such functional encryption schemes were recently constructed by Jain, Lin, and Sahai from
standard polynomial assumptions (LPN, Bilinear SXDH, and shallow PRGs) [23, 24] and
thus combining with known leveled homomorphic encryption schemes (e.g. [11] from the
LWE [30]), we obtain the first fully homomorphic encryption scheme that does not rely on
circular security nor does it require super-polynomial hardness assumptions.

Non-uniform Adversaries. Whereas above we state security for uniform adversaries, we can
further obtain security against non-uniform adversaries, by making an additional complexity-
theoretic assumption that generalizes the time-hierarchy theorem and follows for example
from non-uniform ETH. We refer the reader to the technical overview for more details.

Polynomial Security through Cryptographic Puzzles. Our main conceptual contribut-ion
is a new proof technique that leverages cryptographic puzzles for the sake of polynomial
security. An interesting aspect of the technique is that unlike most cryptographic security
reductions, our security reduction does not fully treat the adversary as a black box, but
rather makes explicit use of its running time (or circuit size).
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1.2 Technical Overview
In this section we provide an overview of the main new technical ideas behind our results.

We first briefly recall the syntax and requirements from leveled and fully homomorphic
encryption schemes. Homomorphic encryption scheme consists of an encryption algorithm Enc,
a decryption algorithm Dec, and a homomorphic evaluation algorithm Eval. These algorithms
have associated public encryption and evaluation keys ek, evk and a secret decryption key dk,
which are sampled jointly from some generation algorithm Gen. In a leveled scheme, this
generation algorithm depends on the maximal depth d of supported circuits, and the size of
keys ek, evk, dk may scale polynomially with d. In contrast, in fully homomorphic schemes
the keys are of fixed size, and yet can support the homomorphic evaluation of circuits of
arbitrary polynomial depth.

Gentry’s Bootstrapping. Our starting point is Gentry’s bootstrapping [17]. Here the basic
idea is that a leveled scheme that supports slightly more than the depth d∗ of its own
decryption circuit can be transformed into a leveled scheme for computations of arbitrary
depth. Specifically, to support circuits of depth d ≫ d∗, we generate d + 1 sets of keys
(ek0, evk0, dk0), . . . , (ekd, evkd, dkd), and produce a new set of keys:

ek = ek0

evk =
(

Encek1(dk0) Encek2(dk1) . . . Encekd
(dkd−1)

evk1 evk2 . . . evkd

)
dk = dkd

Then, starting from an encryption of the message Encek0 , a circuit of arbitrary depth d can
be homomorphically evaluated layer by layer according to the following invariant: given
encryptions Enceki

(vi) of the circuit wire values vi in layer i, we can obtain encryptions
Enceki+1(vi+1) of the wire values vi+1 in the next layer. This is done starting from
Enceki+1(dki), which is part of the evaluation key evk, and homomorphically evaluating the
circuit that given as input the decryption key dki, decrypts Enceki

(vi), and computes vi+1
from vi. The security of the scheme reduces to that of the underlying encryption by a
standard hybrid argument, where starting from Encekd

(dkd−1), we switch each encryption
Enceki(dki−1) with an encryption Enceki(0) of garbage (say, the all-zero string), which is
possible as we have already eliminated dki from the adversary’s view.

The above is still a leveled scheme as the size of keys grows with the maximal depth d

that can be evaluated. To make the scheme fully homomorphic, Gentry samples a single
set of keys (ek, evk, dk) and collapses the chain of encryptions Encek1(dk0) . . . Encekd

(dkd−1)
into one encryption Encek(dk) where the decryption key is encrypted under its corresponding
encryption key. While the size of keys is now fixed regardless of the depth of evaluated circuit,
we can no longer invoke the above reduction to the security of the underlying encryption
scheme. Proving security requires that the underlying scheme is circularly secure, namely
that an encryption of the scheme’s own decryption key does not compromise its security.

Compressing the Keys via Obfuscation. Aiming to avoid the circular security assumpti-on,
Canetti et al. [13] consider an alternative approach toward compressing Gentry’s bootstrap-
ping. (To be more precise, the exact details in [13] are somewhat different, but the core is
essentially similar). The basic observation is that, using a pseudo-random function (PRF)
family {fk}k, the process of generating the long evaluation key evk can be described by a
succinct circuit EVK that has a hardwired PRF key k. Specifically, for i ≥ 1, the randomness
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ri for generating the i-th set of keys, and encryption randomness r′
i for the i-th encryption,

are both derived using PRF fk(i). The succinct circuit EVK given input i, derives the key
generation randomness (ri−1, ri) and encryption randomness r′

i, computes the corresponding
keys, and outputs (evki, Enceki(dki−1; r′

i)). We then replace the previously large evaluation key
evk with an obfuscated version ẼVK of the succinct circuit EVK. To allow for homomorphic
evaluation of circuits of arbitrary polynomial depth, the space of input indices [d] is taken to
be of super-polynomial size λω(1) in the security parameter λ.

Using similar techniques to those in [5, 13] this construction can be proven secure if
the obfuscation is instantiated using indistinguishability obfuscation (IO) and the PRF is
puncturable [8, 25, 9] (the concept of puncturing is discussed in more detail later on). However,
the proof requires that the PRF, IO, and underlying leveled homomorphic encryption are
all super-polynomially secure. Roughly speaking, the cause for this loss is that the security
reduction extends the previously described hybrid argument, and in particular suffers a loss
in the indistinguishability gap through d = λω(1) hybrids.

Overall, this construction has two sources of super-polynomial loss:
1. The super-polynomial number of hybrids described above.
2. Known IO reductions incur a loss proportional to the size of the input space of obfuscated

circuits, which in this case is again super-polynomial (and this is in fact conjectured to
be inherent [18]).

Our solution essentially addresses these two sources of super-polynomial loss separately.
We next explain the main ideas involved.

Polynomial Number of Hybrids through Cryptographic Puzzles. The essential problem is
that the two requirements of full homomorphism on one hand, and a polynomial reduction on
the other hand, collide. To support computations of arbitrary polynomial depth, we cannot
restrict the length d of the key chain to any specific polynomial. At the same time if the
length d of the key chain is super-polynomial, then the number of hybrids and loss in the
security proof is also super-polynomial. Roughly speaking, to avoid the super-polynomial
loss, we aim that an adversary of polynomial running time (or circuit size) t = poly(λ) will
only be able to access a corresponding prefix of the key chain

Encek1(dk0) Encek2(dk1) . . . Encekt(dkt−1)
evk1 evk2 . . . evkt

Encekt+1(dkt) . . . Encekd
(dkd−1)

evkt+1 . . . evkd
.

Had we managed that, then the number of hybrids will become proportional to the adversary’s
polynomial running time, as required.

To achieve this guarantee, we use an appropriate notion of cryptographic puzzles. Generally
speaking, cryptographic puzzles are encryption schemes where decryption does not require a
decryption key, but rather the investment of some pre-specified amount of computational
resources. Relevant to our context are relaxed time-lock puzzles (RTLPs) as defined in [6],
where this resource is simply time. Specifically, a RTLP with gap ε < 1 allows anyone to
encrypt a message m relative to a difficulty parameter T so that the resulting ciphertext
(aka puzzle) Z can be decrypted in time ≈ T , whereas adversaries running in time at most
T ε do not learn anything about the underlying message. Encryption on the other hand, only
requires time polylog(T ). (Both encryption and decryption also have some fixed polynomial
dependence on the security parameter λ, which we suppress here for simplicity.)

Such RTLPs relax the notion of (non-relaxed) TLPs by Rivest, Shamir, and Wagner [31],
which requires that decryption is hard even for parallel adversaries that have sequential
time T ε, although possibly a number of processors larger than T . RTLPs against uniform
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adversaries are constructed in [6] based on succinct randomized encodings [5, 12, 27], which
in turn can be constructed from indistinguishability obfuscation with logarithmic input space
[3, 16, 26] and accordingly also from standard polynomial assumptions [23, 24]. Obtaining
RTLPs against non-uniform adversaries requires an additional rather mild assumption that
generalizes (unconditional) time-hierarchy theorems such as [21] and [4], which is used in [6].
We elaborate on this later on.

Augmenting the Construction with RTLPs. Equipped with RTLPs we augment the
previous construction as follows. Rather than considering the circuit EVK that explicitly
outputs the key chain, we augment the circuit EVK so that it outputs increasingly difficult
puzzles encrypting the key chain. That is, on input i, EVK will not output Enceki

(dki−1) in
the clear, but rather output a RTLP Zi encrypting Enceki

(dki−1). The required randomness
for computing the puzzle Zi, will again be derived by applying another PRF fk′ to i. In
terms of functionality, we can still homomorphically evaluate circuits of arbitrary polynomial
depth d, by simply solving the puzzles. This only incurs an additive overhead of ≈ d2 (we
explain later how this overhead can be reduced). At the same time, we are now able to
obtain a polynomial reduction, as we effectively prevent the adversary from accessing the
key chain, except for a polynomially bounded prefix.

In a bit more detail, given an adversary of polynomial running time t = poly(λ). The
hybrid strategy will start from index T ≈ t1/ε, where ε is the constant difficulty gap of
the RTLP. Intuitively, we can now replace the puzzle ZT encrypting the key chain link
EncekT

(dkT −1), with a puzzle that encrypts garbage. Indeed, the adversary’s running time t

is at most T ε, and thus by the puzzle security guarantee, it cannot tell the difference. Now,
having eliminated the secret key dkT −1 from the adversary’s view, we can proceed with the
hybrid argument to the next link and so on. Overall, we will have a polynomial number
T = t1/ε of hybrids. The exact details behind this hybrid argument are overall similar to [13],
they are based on IO, used to obfuscate the augmented circuit EVK, and puncturable PRFs.
(Below, when discussing how to avoid general-purpose IO, we discuss some of these details.)

Unlike typical cryptographic reductions that treat the adversary as a complete black-box,
regardless of its efficiency, our reduction depends on the specific running time of the adversary,
and has a diagonalization flavour. Indeed, in the RTLPs from [6] underlies the time hierarchy
theorem, based on diagonalization.

Avoiding the Super-polynomial Loss of General Purpose IO. Having removed the first
mentioned source of super-polynomial loss (the super-polynomial number of hybrids), we now
turn to deal with the second source, which is the inherent loss in using general-purpose IO.
Indeed, there are several known cases where constructions based on IO were subsequently
improved to obtain constructions directly from (polynomially-secure) functional encryption
[14, 15]. These latter works were later abstracted (and extended) by Liu and Zhandry [28]
into a general framework called decomposable obfuscation (DO).

Like IO, DO recompiles circuits into new circuits with the same functionality. In terms
of security, DO relaxes IO as follows. While IO guarantees that obfuscations of any two
circuits C0, C1 of the same size and functionality are computationally indistinguishable, DO
requires that this equivalence has a certificate of a specific form. Specifically, for input space
{0, 1}n, such a certificate is a set of nodes TC ⊆ {0, 1}≤n in the corresponding full binary
tree such that:

It exactly covers the leafs, in the sense that every x ∈ {0, 1}n has exactly one ancestor in
TC. Hence, it is called a tree covering.
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For every x ∈ TC, the two simplified restrictions C0(x, ·) and C1(x, ·) are identical as
circuits.
Here by “simplified”, we mean that the partial input x is propagated through the circuit in
the natural way to make it simpler (e.g. AND(0, b) is turned to the constant 0, AND(1, b)
is turned to b, unused wires and gates are removed, and so on).

In other words, the circuits C0 and C1 can both be decomposed to the same fragments
{C0(x, ·) : x ∈ TC}. Such two circuits C0, C1 are called τ -decomposing-equivalent (or
τ -equivalent in short) if the size of the tree covering TC is τ . Liu and Zhandry construct
DO based on functional encryption. The security loss in their reduction, with respect to
τ -equivalent circuits, is proportional to τ ; in particular, for polynomially-equivalent circuits
polynomially-secure functional encryption suffices. Importantly, the complexity of their
obfuscation (in particular the size of obfuscated circuits) does not grow with τ . We show
that relying on DO, and performing certain adaptations to the construction to make it
“decomposition friendly”, we can prove security. As a corollary we can base our result on
polynomially-secure functional encryption. We next provide some more details.

The High-Level Hybrid Structure. The goal of the proof is to show that we can replace the
obfuscated key chain circuit ẼVK with an obfuscated circuit that is independent of the initial
decryption key dk0, and thus any encryption Encek0(m) is semantically secure. This is shown
by a hybrid argument that gradually changes the circuit EVK till we can completely erase
dk0 from it description. We next explain the high-level structure of the hybrid argument. We
first describe how the functionality of the circuit changes through the hybrids and afterwards
turn to discuss how this changes are realized to guarantee indistinguishability.

The first hybrid changes the behavior at a point T , where instead of computing a puzzle
that encrypts the key chain link EncekT

(dkT −1), it encrypts garbage. As already mentioned,
T is chosen according to the (polynomial) adversary running time t and the difficulty gap ε.
Naming this first hybrid HT , we then consider hybrids HT −1, . . . ,H1, where in hybrid Hi,
on every index j in the interval [i, T − 1], the circuit outputs a puzzle Zj that encrypts a
fake key chain link Encekj

(0) rather than the real link Encekj
(dkj−1). In particular, in the

last hybrid H1, the secret key dk0 is not used at all.

Indistinguishability through Decomposability. Intuitively, to claim indistinguishability of
the real obfuscated circuit EVK and its tweaked version in hybrid HT , we wish to invoke
the RTLP security, whereas, to claim indistinguishability between every Hi and Hi−1, we
wish the invoke the semantic of the encryption Enceki . Indeed, had all the outputs were
simply hardwired into the circuit EVK, we could have done exactly that. However, recall
that these values are each inferred through computation using a PRF (which was the whole
point behind compression).

Roughly speaking, when using IO this difficulty is overcome by using the concept of
puncturable PRFs (starting from the work of Sahai and Waters [32] and essentially in all
subsequent IO-based constructions). Such PRFs allow creating punctured PRF keys that
enable computation of any point except for one punctured point, whereas the value at the
punctured point remains pseudorandom. Intuitively, this allows hardwiring into the circuit
one output at a time, and replacing it with a new desired output that is computationally
indistinguishable. The transition from this “hardwired output form” to and from the
“computed from the seed form” is enabled by the guarantee of IO, since these two forms are
just two ways of computing the same output.
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Using DO we aim to follow a similar strategy, but have to make sure that the transitions
between the two “hardwired” and “computed” forms are not only functionally equivalent,
but also decomposing equivalent. For this purpose, we rely on the decomposable equivalent
of puncturable PRFs, which are decomoposable PRFs (DPRFs) [28]. Roughly speaking, such
a PRF has the property that when its evaluation circuit fk is decomposed according to
a tree covering TC, any fragment fk(x, ·) where x ∈ TC is a pseudorandom function (of
the remaining bits), even given all other fragments fk(y, ·) such that y ∈ TC \ x. Liu and
Zhandry observe that the GGM PRF [20] is in fact a decomposable PRF.

DPRFs together with DO allow for example to transition quite easily from the real
obfuscated circuit EVK to the one obfuscated in HT (which on input T outputs a puzzle
ZT encrypting garbage). This is done by decomposing the circuit EVK according to a tree
covering TC that contains the input T (which is a leaf in the binary input tree). This
effectively induces a similar decomposition of the underlying DPRF fk′ used to derive
randomness for puzzles. Here any fragment EVK(y, ·) such that y ∈ TC \ T contains as
a sub-circuit the corresponding DPRF fragment fk(y, ·), and is otherwise independent of
the seed k. The fragment EVK(T, ·) is in fact a constant, which is just the output of the
circuit; namely, it is the the puzzle ZT generated using randomness fk(T ). Invoking the
DPRF security, we can resample ZT using true independent randomness and now invoke
the puzzle security to replace it with a new puzzle ZT that encrypts garbage. (Formally, we
need to consider a version of EVK that is decomposed according to TC and then efficiently
recomposed in a canonical way into a circuit. We refer to the body for details.)

Technical Challenges in the Next Hybrids. The above is a typical use case for DO, and its
relative simplicity stems from the fact that the pseudorandom coins fk(T ) are not used for
any other input i ̸= T . The next transitions between hybrids Hi and Hi−1 are more subtle.

Recall that unlike the randomness used to generate puzzles, the randomness used to
generate keys is correlated between subsequent inputs. As at any input i, we derive both ri−1
to produce dki−1 as well as ri to produce eki. Had we used IO rather than DO this wouldn’t
be an issue. Indeed, by the time we deal with input i, we have already changed the output
behavior on input i + 1, so that it does not use dki, accordingly puncturing the corresponding
PRF fk at point j does not change the functionality of the overall circuit at point j + 1.
However, in the case of DO things are more subtle. When considering a decomposition
according to some TC ∋ i as described before, we need to consider the composition of both
the DPRF circuit fk(·), but also the shifted circuit fk((·) − 1). While we are guaranteed
that for any y ∈ TC \ i, fk(y, ·) does not leak information about fk(i), this is not necessarily
guaranteed for fk((y, ·)− 1), when considering an arbitrary tree covering containing i.

Our solution is to consider a tree covering with a specific structure that is decomposition
compatible with respect to the function x 7→ x−1. In this tree covering, for any x ∈ TC \{ i },
either |x| = n or x = p||1, where p is not a prefix of i. In the first case where |x| = n we
fully compute the circuit on x, and in particular we fully compute x − 1. So if x ̸= i + 1
the DPRF circuit is evaluated on x− 1 ̸= i so the output of the circuit on that value does
not leak fk(i). The case x = i + 1 is also not problematic since we have already altered
the functionality of the circuit on that input to encrypt garbage instead of dki, so fk(i)
is not leaked. Alternatively, |x| < n and has the form x = p||1 where p is not a prefix of
i. In this case, assuming a suitable implementation which we formalize, we can partially
evaluate the function x 7→ x− 1 to get the prefix p as a partial output, and then continue
with partial evaluation of the DPRF circuit on p. Since p is not a prefix of i, fk(p, ·) does
not leak information about fk(i).
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On RTLPs Against Non-Uniform Adversaries. As mentioned RTLPs against uniform
adversaries can be based on (polynomial) functional encryption [6]. We observe that RTLPs
against non-uniform adversaries, with some gap ε < 1, can be obtained by a similar
construction and proof to that of [6], but require and additional complexity assumption.

▶ Assumption 2. There exists a constant ε < 1 such that for any polynomial t(·) there exists
a language L ∈ Dtime(t) such that any family C = {Cλ} of size-tε(λ) circuits fails to decide
Lλ = L ∩ {0, 1}λ for all large enough λ.

We find this assumption rather mild. It can be seen as a generalization of the (uncondition-
al) time-hierarchy theorem for uniform computation. It is in the same spirit of Nisan-
Impagliazzo-Wigderson style assumptions used to derandomize BPP [29, 22]. We also note
that this assumption follows for instance from the non-uniform ETH assumption. (In
the body, we slightly relax this assumption to also allow for some fixed polynomial size
non-uniformity in order to solve L.)

On the Overhead of Homomorphic Evaluation. As mentioned above, homomorphically
evaluating a circuit of depth d in our scheme incurs an additive overhead of ≈ d2. Indeed,
as the complexity of puzzles grows with time, the overall work needed is proportional to∑

i∈[d] i. This overhead can be reduced to ≈ d by embedding cryptographic puzzles only in a
sparse set of positions rather than in every position as described before. For instance, we
can embed a puzzle in every position that is a power of two. This way the overall work is∑

i∈log d 2i = O(d). This strategy still enables a polynomial security reduction.
While the amortized overhead in the above adaptation is linear, most of the computational

overhead is incurred toward the end of the homomorphic evaluation. However, by another
simple tweak to the scheme, we can ensure that the worst-case overhead in each individual
step is fixed and independent of the total depth of the computation. The idea is to equally
divide the process of solving the puzzle corresponding to position 2i among all 2i−1 steps in
the interval [2i−1, 2i), so that at every step we incur a fixed overhead. This can be easily
done by obtaining the corresponding puzzle already at step 2i−1 and unrolling the puzzle
computation through the next 2i−1 steps.

2 Preliminaries

Prefixes.
Let || denote string concatenation, e.g. if x = 0 and y = 1 then x||y = 01. Given a string
x ∈ zo∗, let |x| be its length.
Let xj be the j − th bit of x, for i ≤ j let xi,..,j be xi||...||xj , and let x[j] be x1,j , i.e. the
prefix of x of length j.
Given two strings a, b ∈ {0, 1}≤n, we say a ⪯ b if a is a prefix of b and say they are prefix
free if a ⪯̸ b and b ⪯̸ a. Given a set T ⊆ {0, 1}≤n and p ∈ {0, 1}≤n, p is prefix free with
respect to T if for any p′ ∈ T , p and p′ are prefix free. We say a set T ⊆ {0, 1}≤n is prefix
free, if for any p ∈ T , p is prefix free with respect to T \ p, i.e. any two different p, p′ ∈ T

are prefix free.

Efficient Adversaries.
We denote by PPT probabilistic polynomial-time Turing machines.
For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random
coins r, and by M(x) the random variable, given by sampling the coins r uniformly at
random.
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A polynomial-size circuit family C is a sequence of circuits C = {Cλ }λ∈N, such that each
circuit Cλ is of polynomial size λO(1) and has λO(1) input and output bits. We also
consider probabilistic circuits that may toss random coins.
An adversary A is said to be t-efficient if A is either a PPT algorithm with time bound
t(·), or a circuit family C = {Cλ }λ∈N where the size of each circuit Cλ is bounded by
t(λ).
An adversary A is said to be uniform efficient if A is a PPT algorithm. Similarly, A is
said to be non-uniform efficient if A a polynomial-size circuit family C.
An adversary A is said to be efficient if it is either uniform efficient or non-uniform
efficient.
A function f : N→ [0, 1] is negligible if f(λ) = λ−ω(1) and is noticeable if f(λ) = λ−O(1).
Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ

, Y = {Yi}λ∈N,i∈Iλ
over the same

set of indices I = ·∪λ∈NIλ are said to be computationally indistinguishable (respectively,
statistically indistinguishable), denoted by X ≈c Y (respectively, X ≈s Y), if for every
polynomial-size (respectively, unbounded) distinguisher A = {Aλ }λ∈N there exists a
negligible function negl such that for all λ ∈ N, i ∈ Iλ,

|Pr(A(Xi) = 1)− Pr(A(Yi) = 1)| ≤ negl(λ)

2.1 Relaxed Time-Lock Puzzles
We adapt the definitions of [6] for puzzles. A puzzle instance is associated with a pair of
parameters: a security parameter λ determining the cryptographic security of the puzzle,
and a difficulty parameter t determining how computationally difficult is to solve the puzzle.

▶ Definition 3 (Relaxed Time-Lock Puzzles). A relaxed time-lock puzzle scheme Puzzle is a
pair of algorithms (Puzzle.Gen, Puzzle.Solve) satisfying the following requirements:

Syntax:
Z ← Puzzle.Gen(t, s) is a probabilistic algorithm that takes as an input a difficulty
parameter t and a solution s ∈ {0, 1}λ, where λ is a security parameter, and outputs a
puzzle Z.
s← Puzzle.Solve(Z) is a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s.

Completeness: For every security parameter λ, difficulty parameter t, solution s ∈ {0, 1}λ

and a puzzle Z in the support of Puzzle.Gen(t, s), Puzzle.Solve(Z) outputs s.
Efficiency:

Z ← Puzzle.Gen(t, s) can be computed in time poly(log t, λ).
Puzzle.Solve(Z) can be computed in time t · poly(λ).

Relaxed time-lock ε-security: There exists a polynomial t(·), such that for every polyno-
mial t(·) ≥ t(·) and t′-efficient adversary A where t′(·) ≤ tε(·), there exists a negligible
function negl, such that

Pr

b← A(1λ, Z)

∣∣∣∣∣∣
s1, s2 ← A(1λ), where s1, s2 ∈ {0, 1}λ

b← {0, 1}
Z ← Puzzle.Gen(t(λ), sb)

 ≤ 1
2 + negl(λ)

Where the probability is also over the random coins tossed by A.
Such a puzzle is called Uniform Relaxed Time-Lock Puzzle (denoted URTLP) if it is secure
against uniform efficient adversaries, and Non-Uniform Relaxed Time-Lock Puzzle (denoted
NRTLP) if secure against non-uniform efficient adversaries.

ITCS 2023



17:10 Bootstrapping Homomorphic Encryption via Functional Encryption

In [6], a Uniform Relaxed Time-Lock Puzzle, for gap ε < 1, is constructed based on
succinct randomized encodings, which in turn can be based on (semi) compact functional
encryption [3, 16, 26].

We observe that Non-Uniform Relaxed Time-Lock Puzzle with some gap ε < 1 can
be obtained by a similar construction and proof, but require and additional complexity
assumption.

▶ Assumption 4. There exists a constant ε < 1 and a polynomial a(·), such that for any
polynomial t(·) there exists a language L ∈ Dtime(t)/a such that any family C = {Cλ} of
size-tε(λ) circuits fails to decide Lλ = L ∩ {0, 1}λ for all large enough λ.

We find this assumption rather mild. It can be seen as a generalization of the (uncondition-
al) time-hierarchy theorem for uniform computation. It is in the same spirit of Nisan-
Impagliazzo-Wigderson style assumptions used to derandomize BPP [29, 22]. We also note
that this assumption follows for instance from the non-uniform ETH assumption (in fact,
with advice length a = 0).

2.2 Decomposable Obfuscation
The following definitions are adapted from [28] to suit our concrete needs. see [28] for full
definitions.

▶ Definition 5 (Single Bit Partial Evaluation). Consider a circuit C defined on input length
n > 0. For any bit b ∈ {0, 1}, a partial evaluation of C on bit b denoted as C(b, ·) or Cb(·)
is a circuit defined on inputs of length n− 1, where we hardcode the input bit x1 to b and
then simplify. To Simplify, while there is a gate which some of its input is already known,
replace it with the appropriate gate or wire in the usual way, e.g. AND(1, b) is replaced with
the wire b, AND(1, 1) is replaced with hard coded 1 and AND(0, b) is replaced with hard
coded 0. Then remove all unused wires.

It is easy to see that when C is defined on a single bit, the partial evaluation of C is a
circuit with no input that just gives the output.

▶ Definition 6 (Partial Evaluation). Consider a circuit C defined on input length n > 0. For
any string x of length at most n, a partial evaluation of C on a string x denoted as C(x, ·)
or Cx(·) is a circuit defined on input of length n − |x| where we repeatedly apply partial
evaluations on the bit xi for i = 1, ..., |x| .

From now on, whenever we use the expression C(x, ·) we refer to the result of simplifying
C after hardcoding the prefix x.

▶ Definition 7 (Binary Tree). A binary tree Tn is a tree of depth n + 1 where the root is
labeled with ε (an empty string), and for any node that is not a root whose parent is labeled as
x, it is labeled as x||0 if it is a left-child of its parent; it is labeled as x||1 if it is a right-child
of its parent. The leaves of the tree Tn are labeled from 0n to 1n. Tn has 2n+1 − 1 nodes and
depth n + 1 (if the root has depth 1).

▶ Definition 8 (Tree Covering). We say a set of binary strings TC = {xi}ℓ
i = 1 is a tree

covering for all strings of length n if the following holds: for every string x ∈ {0, 1}n there
exists exactly one xj in that set such that xj is a prefix of x. TC will be referred to just as
tree covering if n is clear in the context.

A tree covering TC can also be viewed as a set of nodes in Tn such that for every leaf in
the tree, the path from ε to this leaf will pass through exactly one node in the set.
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Yet another equivalent formulation is that a tree covering is either (1) a set consisting
only of the root node of the tree, or (2) the union of two tree coverings for the sub-trees rooted
at the children the root node.

▶ Definition 9 (Partial Order on Tree Coverings). Given two tree coverings TC0, TC1, we
say TC0 is above TC1, denoted TC0 ⪯ TC1, if for every node u ∈ TC1 there exists a node
v ∈ TC0 such that v ⪯ u. We say TC1 is below TC0 if TC0 is above TC1.

▶ Definition 10 (Minimal Tree Covering). Given strings x1, ..., xm ∈ {0, 1}≤n, where A =
{x1, ..., xm} is prefix-free set, let TCx1,...,xm be the minimal tree covering containing x1, ..., xm.
Similarly, given a prefix-free set A ⊆ {0, 1}≤n denote as TCA the minimal tree covering
containing A.

▶ Observation 11 (Size of Tree Covering). Let A ⊆ {0, 1}≤n be a prefix-free set. Then,
|TCA| = O(n|A|). In particular, if A has polynomial size then so is |TCA|. Moreover, if
|A| = 1 then |TCA| ≤ n + 1 and if |A| = 2 then |TCA| ≤ 2n + 1.

proof sketch: The above observation is achieved by considering for example the following
inductive construction: Start from TC0

A = {ε}. In step i we consider ai ∈ A and generate a
tree covering TCi

A containing a1, ..., ai. This is done by removing the ancestor of ai from
TCi−1

A , followed by adding ai and at most n other nodes. This results in a tree covering
containing A with size bound O(n|A|), hence this is also a bound on TCA.

We remark that TCA can be actually obtained by this inductive construction if a minimal
set of nodes is added at each inductive step.

▶ Observation 12 (Partial Order on Tree Coverings). Let A, B ⊆ {0, 1}≤n be a prefix-free
sets. If A ⊆ B Then TCA ⪯ TCB. In particular, if A has polynomial size then so is |TCA|.

proof sketch: Suppose this is not the case. Then there exists u ∈ TCB for which there doesn’t
exist a node v ∈ TCA such that v ⪯ u. Let Su be the set of leafs in the subtree rooted at u.
Since TCA is a tree covering, there exist nodes v1, .., vk ∈ TCA which every leaf l ∈ Su is
a descendent of some vi. Hence, since for any i, vi ̸⪯ u, we must have that u ⪯ vi. Since
u ∈ TCB, for any i, vi ̸∈ B so vi ̸∈ A. Note it can’t be the case that k = 1 as then v1 = u.
Therefore, by replacing v1, ..., vk by u we obtain a tree covering TC ′ which contain A and
also |TC ′| < |TCA| contradiction.

▶ Definition 13 (Circuit assignment). We say L = {(xi, Cxi)}xi∈T C is a circuit assignment
with size ℓ, where TC = {xi}ℓ

i = 1 is a tree covering for Tn and {Cxi
}xi∈T C is a set of

circuits where Cxi is assigned to the node xi in the covering. We refer to TC as the covering
in L, and may write LT C to emphasize that.

We denote each such circuit Cxi
in the circuit assignment as fragment.

We say a circuit assignment L = {(xi, Cxi
)}xi∈T C1 is valid if each Cxi

is defined on input
length n− |xi|. A valid circuit assignment LT C = {(xi, Cxi

)}xi∈T C naturally corresponds to
a function LT C(·): on input y ∈ {0, 1}n find the unique xj ∈ TC such that y[i] = xj, and
output Cxi

(y[i+1,...,n]). From now on all circuit assignments will be valid.
Given a circuit C defined on inputs of length n and a tree covering TC, let LT C

C :=
{(x, Cx)}x∈T C be their corresponding circuit assignment defined in the natural way: every
fragment Cx from LT C

C is the partial evaluation of C on x, i.e. C(x, ·). In other words, it is
the set of partial evaluations of the circuit C with respect to the prefixes in TC. We may
simply write LC when TC is clear in the context.

Next, the following operations on circuits and circuit assignments are defined:
DecomposeTo(C, TC): Returns LT C

C = {(x, C(x, ·))}x∈T C . This operation is also
referred to as circuit decomposition.
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CanonicalMerge(L, x): Operates on an assignment L where L’s tree covering includes
both the children of the node x (but not x itself). It takes the circuits fragments Cx||0
and Cx||0 assigned to the nodes x||0, x||1 respectively, and merge them to get the circuit
fragment Cx(b, y) = (b ∧ Cx||1(y))

∨
(¬b ∧ Cp||0(y)). The new circuit assignment is then

obtained by replacing (x||0, Cx||0) and (x||1, Cx||1) in L with (x, Cx). Hence, the tree
covering of the new circuit assignment L′ contains x but not x||0, x||1.
CanonicalMerge(L): Repeatedly perform CanonicalMerge(L, x) at different x until the
tree covering in the circuit assignment becomes {ε} and we are left with a single circuit
fragment C ′

ε, i.e. merge canonically all the way to the root. To make this merge truly
canonical, we need to specify the order the nodes are merge in. We take the convention
that the lowest nodes in the tree are merged first, and between nodes in the same level,
the leftmost nodes are merged first.
The output of CanonicalMerge(L) can be thought of as a circuit or as a circuit assignment
(with {ε} as the tree covering and C ′

ε as the circuit fragment assigned to ε).

The following definition concerns a circuit C which uses a some sub circuit D in a specific
way: It evaluates D only on its own input. This definition is flexible, as if we want to run D

on some y = f(x), we can look at D′(x) = D(f(x)).

▶ Definition 14 (Sub Circuit Assignment). Given a circuit C(·, ·) defined over two inputs,
and a circuit D(·), denote by C(·, D(·)) the circuit that on input x computes y = D(x) and
then computes C(x, y). Then, given a circuit assignment L = {(x, Dx)}x∈T C , let C(·, L(·))
be the following circuit assignment:

Let TC be the tree covering in L = {(x, Dx)}x∈T C .
Let L′ = DecomposeTo(C(·, D(·)) TC) = {(x, C ′

x)}x∈T C .
The fragment in C ′

x corresponding to x ∈ TC is Cx(·, Dx(·)) simplified, which is defined
on {0s, 1}n−|x|.

In other words, we decompose C to the same tree covering, and pair Cx with Dx. In this
context, we refer to D as sub circuit and to L as a sub circuit assignment.

This above definition can be extended naturally to a circuit using multiple sub circuits,
and multiple sub circuit assignments, as long as these sub circuit assignments have the same
tree covering. In other words, let L1, ..., Lm be sub circuit assignments with the same tree
covering TC, i.e. Li = {(x, Di

x)}x∈T C . Then C(·, L1(·), ..., Lm(·)) is a circuit assignment
whose fragment corresponding to x ∈ TC is C(x, ·, D1

x(·), ..., Dm
x (·) simplified.

The following lemma (lemma 5.3 from [28]) concerns the decomposition of a circuit and
its sub circuits. Informally, the lemma says we can push down decomposition to sub circuits,
and obtain a sub circuit assignments.

▶ Lemma 15 (Push Down Circuit Decomposition, [28]). For any circuits C(·, ·), D(·) where
D takes a single input x and C takes two inputs x and D(x), for any tree covering TC, we
have:

DecomposeTo(C(·, D(·)), TC) = C(·, [DecomposeTo(D, TC)](·))

Similarly, given m + 1 circuits C, D1, ..., Dm where D1, ..., Dm take a single input x, and
C takes x and D1(x), ..., Dm(x) as inputs, we have:

DecomposeTo(C(·, D1(·), ..., Dm(·)), TC)
= C(·, DecomposeTo(D1, TC), ..., DecomposeTo(Dm, TC))
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▶ Definition 16 (Decomposing Equivalence). Given two circuits C0, C1 defined on inputs of
length n, we say they are τ -decomposing equivalent if the following holds:

There exists a tree covering X = {xi}i of size at most τ ;
DecomposeTo(C0,X ) = DecomposeTo(C1,X ), i.e. for all xi ∈ X , C0(xi, ·) = C1(xi, ·).

We now define decomposable IO (DO). Informally, decomposable IO is an indistinguisha-
bility obfuscator, but where the indistinguishability security requirement only applies to
pairs of circuits that are decomposing equivalent (as opposed to applying to all equivalent
circuits).

▶ Definition 17 (DO). DO with two PPT algorithms (DO.ParaGen, DO.Eval) is τ(n, s, λ)-
decomposable obfuscator if the following conditions hold:

Efficiency: DO.ParaGen, DO.Eval are efficient algorithms.
Functionality preserving: DO.ParaGen takes as input a security parameter λ and a circuit
C, and outputs the description Ĉ of an obfuscated program. For all λ and circuit C, for
all input x ∈ {0, 1}n, we have that DO.Eval(DO.ParaGen(1λ, C), x) = C(x).
Decomposing indistinguishability: Consider a pair of efficient adversaries (Samp, D),
where Samp outputs a tuple (C0, C1, σ), where C0, C1 are circuits with the same size
s = s(λ) with input length n = n(λ). We require that, for any such PPT (Samp, D), if

Pr[C0 is τ(n, s, λ)− decomposing equivalent to C1 | (C0, c1 σ)← Samp(1λ)] = 1

Then there exists a negligible function negl(λ) such that:

|Pr(D(σ, DO.ParaGen(1λ, C0)) = 1)
−Pr(D(σ, DO.ParaGen(1λ, C1)) = 1)| ≤ negl(λ)

DO is said to be decomposable obfuscator if it is τ(n, s, λ)-decomposable obfuscator for
any polynomial τ(n, s, λ).

The following is theorem 4.5 from [28].

▶ Theorem 18 (DO exists under FE). If semi-compact 2 single-key selective secure functional
encryption schemes and one-way functions exists, then there exists decompose obfuscator
DO.

All circuits will be padded to some upper bound before obfuscation (see Section 3.3 for a
discussion on padding upper bound).

2.2.1 Decomposing Compatible Algorithms
We follow the definition from [28] to define decomposing compatible pseudo random function
DPRF, where it was also observed that the GGM construction [20] satisfies this definition.

▶ Definition 19 (DPRF). A decomposing compatible pseudo random function DPRF consists
of the following polynomial algorithms DPRF.KeyGen and DPRF.Eval where:

Syntax:
S ← DPRF.KeyGen(1λ) is a probabilistic algorithm that samples a seed S of length
k(λ).

2 For simplicity, in [28] the statement is stated with compact FE, however same calculations as in [7] show
semi-compact FE suffices.
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y ← DPRF.Eval(S, x) is a deterministic algorithm that takes as input a seed S ∈
{0, 1}k(λ) and query input x ∈ {0, 1}n(λ) and outputs y ∈ {0, 1}p(n) for some fixed
polynomial p(n).

PRF security: For any efficient adversary A, there exists negligible function negl such
that:

∀x ∈ {0, 1}n(λ) |Pr(A(1λ, DPRF.Eval(S, x)) = 1)− Pr(A(1λ, r) = 1)| ≤ negl(λ)

Where r ← {0, 1}p(n) is chosen uniformly at random and S ← DPRF.KeyGen(1λ).
DPRF security: Let Gameλ,A,b be the following game:

The challenger prepares a seed S ← DPRF.KeyGen(1λ);
The adversary A makes queries about x and gets DPRF.Eval(S, x) back from the
challenger;
The adversary gives a tree covering TC and y∗ ∈ TC where y∗ is not a prefix of any x

that has been asked;
The challenger returns the circuit assignment Lb back to the adversary A:
∗ L0: Let D(·) = DPRF.Eval(S, ·). Then L0 = DecomposeTo(D(·), TC).
∗ L1: Same as L0, but the fragment corresponding to y∗ - which is DPRF.Eval(S, y∗, ·)

- is replaced with the partial evaluation of DPRF.Eval(S′, y∗, ·), where S′ ←
DPRF.KeyGen(1λ) is an independent seed.

The output of the game is the output of A.
Then for any efficient adversary A there exists a negligible function negl such that:

|Pr(Gameλ,A,0 = 1)− Pr(Gameλ,A,1 = 1)| ≤ negl(λ)

▶ Observation 20 (Generalization of DPRF Security). The set TC in the DPRF security
game is a tree covering w.l.o.g., and it suffices just to assume y∗ is prefix-free with respect to
TC \ {y∗}. I.e. y∗ isn’t a prefix of any other p ∈ TC, and any other p ∈ TC isn’t a prefix of
y∗. In case TC isn’t a tree covering, the sets L0,1 are defined to contain the circuit fragments
corresponding to the prefixes in TC (And again in L1 an independent seed S′ is used for y∗).

This holds as such TC can be easily transformed into a tree covering containing y∗: first
refine it to a prefix free set TC ′, where if p is prefix of q keep p. Then look at TC ′′ which is
the minimal tree covering containing TC ′. As y∗ was prefix free with respect to TC \ {y∗},
it wasn’t removed along the way, and therefore y∗ ∈ TC ′′.

▶ Definition 21 (Binary Encoding). Given x ∈ {0, 1}n, denote x̂ = Σn
i=12i−1xi. Note that x

is a binary encoding of x̂ using the most significant bit encoding.

▶ Definition 22 (Decomposing Compatible In-range Tester). A circuit C is called in-range
tester if on inputs x, y, z ∈ {0, 1}n s.t. x̂ ≤ ẑ it outputs TRUE if and only if ŷ ∈ [x̂, ẑ]. We
say C is a decomposing compatible in-range tester if it’s an in-range tester and if for any
such x, z and a prefix p ∈ {0, 1}≤n, such that p isn’t a prefix of any y such that ŷ ∈ [x̂, ẑ],
the partial evaluation of C(x, z, p, ·) is simplified to FALSE.

Note that a naïve implementation of an in-range tester is decomposing compatible.
The following definition captures the notion computing x 7→ x − 1 in a decomposing

compatible manner. That is, given a prefix p the resulting circuit computes as much bits of
the result as it could. Note that for a prefix p of the form p = y||1||0k we can already deduce
the result will begin with y (the rest of the bits depend on the rest of the input which is not
yet known).
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▶ Definition 23 (Decomposing Compatible Decreaser). A circuit C defined on inputs of length
n is called decreaser if on input x ∈ {0, 1}n it outputs y ∈ {0, 1}n such that ŷ = x̂− 1. Such
circuit shall be called decomposing compatible decreaser if on prefix p ∈ {0, 1}≤n of the form
p = y||1||0k, the partial evaluation of C on p results in a circuit C ′ defined on inputs of size
n− (|y|+ k + 1) which outputs y||x′.

2.3 Homomorphic Encryption
▶ Definition 24 (ℓ-Leveled Homomorphic Encryption). ℓ-leveled homomorphic encryption
scheme LHE consists of four PPT algorithms (LHE.Gen, LHE.Enc, LHE.Dec, LHE.Eval) sat-
isfying:
1. Depth-ℓ correctness: For any λ ∈ N, (dk, ek, evk) ← LHE.Gen(1λ), message m ∈
{0, 1}∗, and circuit C with input size |m| and depth at most ℓ,

LHE.Decdk(LHE.Evalevk(C, LHE.Encek(m))) = C(m)

LHE is then said to support homomorphic evaluation of circuits with depth ℓ or equivalently
to support ℓ-level of homomorphism.

2. Semantic Security: Let Gameλ,A,b be the following game:
The challenger samples ek, dk, evk← LHE.Gen(1λ) and sends ek, evk to A;
The adversary A generates two equal length messages m0, m1 ∈ {0, 1}poly(λ) and sends
them to the challenger;
The challenger returns LHE.Encek(mb);
The output of the game is the output of A.

Then for any efficient adversary A there exists a negligible function negl such that:

|Pr(Gameλ,A,0 = 1)− Pr(Gameλ,A,1 = 1)| ≤ negl(λ)

We also denote ε = |Pr(Gameλ,A,0 = 1)− Pr(Gameλ,A,1 = 1)| and refer to it as A’s
advantage.

3. Compactness: There exists a fixed polynomial poly, such that for any λ ∈ N,

(dk, ek, evk)← LHE.Gen(1λ), message m ∈ {0, 1}∗, and circuit C,

|LHE.Evalevk(C, LHE.Encek(m))| ≤ poly(|C(m)|, λ)

Let LHE.Decct be the decryption algorithm where the encrypted message ct is hardwired
into the circuit, and the input is only the decryption key dk.

The following definition is adapted from [17].

▶ Definition 25 (Bootstrapble Leveled Homomorphic Encryption). A ℓ-leveled homomorphic
encryption scheme LHE is said to be bootstrapble leveled homomorphic scheme if its decryption
circuit has depth d such that d + 1 ≤ ℓ.

▶ Definition 26 (Fully Homomorphic Encryption). A scheme FHE is said to be fully homomorp-
hic ecnryption scheme if it is ℓ-leveled homomorphic scheme for any polynomial ℓ(·).

A fully homomorphic ecnryption scheme FHE is said to support homomorphic evaluation of
circuits with depth any polynomial depth or equivalently to support poly-level of homomorphi-
sm. Note that the size of the keys produced by FHE.Gen are bounded by some polynomial in
λ, and do not depend on the depth of the evaluated circuits.
We use the convention that an encryption of a message m ∈ {0, 1}∗ is an encryption of its
bits separately, i.e. Encek(m) = Encek(m1), ..., Encek(m|m|).
We define the following function, which will be used for bootstrapping using the technique
from [17].
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▶ Definition 27 (Gentry’s function). Given a leveled homomorphic encryption scheme
LHE, we define the following function: GLHE.Dec

C,C′ (s) = LHE.DecC(s) NAND LHE.DecC(s) =
LHE.Decs(C) NAND LHE.Decs(C).

3 Constructing Fully Homomorphic Encryption

3.1 FHE Construction Overview
In this section we build fully homomorphic encryption scheme secure against efficient ad-
versaries. A formal description of the scheme can be found in the full version of the paper.
The construction uses the following cryptographic primitives: DPRF, LHE, DO and RTLP:
if URTLP are used the construction is secure against uniform efficient adversaries, and if
NRTLP are used the construction is secure against non-uniform efficient adversaries.

For simplicity of presentation, we assume the underlying LHE scheme used by the
construction doesn’t need an evaluation key in order to perform homomorphic evaluations.
we assume w.l.o.g. LHE.Gen and LHE.Enc use λ bits of randomness and that LHE.Eval is
deterministic. We also assume w.l.o.g. that an encryption of a decryption key has size λ, i.e.
∀dk ∈ Support(LHE.Gen(1λ)), ek′ ∈ Support(LHE.Gen(1λ)) we have that |LHE.Encek′(dk)| =
λ.

Our FHE encryption scheme has in the background an exponentially long chain, i.e.
2λ − 1 long, of encrypted keys. The i-th node in the chain is the i − 1-th decryption
key encrypted under the i − th encryption key, i.e. LHE.Enceki

(dki−1). The randomness
for generating nodes in the chain is derived from a DPRF using a seed Senc. For every i,
|DPRF.Eval(Senc, i)| = 2λ. The first λ bits are used for generating eki, dki, and the second
λ bits are used for the encryption procedure itself, i.e. in order to encrypt dki−1 under pki.

Making “decomposition friendly”. We use “decomposition friendly” algorithms, namely
DPRF (Definition 19) for deriving randomness, decomposing compatible in-range tester
(Definition 22) for testing belonging to a range and decomposing compatible decreaser
(Definition 23) for computing x 7→ x− 1.

Ciphertexts. A ciphertext in this scheme is a ciphertext of the underlying leveled homo-
morphic scheme LHE, paired with a key index, which is the index of the decryption key from
the chain that should be used for decryption. Formally, an encryption in the scheme is a
tuple ct = (c, pos), where pos represents the key index in the chain, and the decryption
of ct = (c, pos) is LHE.Decdkpos

(c). So a fresh encryption is encrypted under ek0, i.e. of
the form (ct, 0), and the output of a homomorphic evaluation of a circuit of depth d1 is
decryptable under dkd1 , i.e. of the form (c, d1). The scheme supports consecutive homo-
morphic evaluations a ciphertext, so after performing another homomorphic evaluation of a
circuit of depth d2 we get an encryption decryptable under dkd1+d2 . More generally, after
performing homomorphic evaluations of circuits of depths d1, ..., dk we get an encryption
decryptable under dkd1+d2+...+dk

. The scheme support homomorphic evaluation of any circuit
of polynomial size since there are super-polynomial number of keys.

Keys: ek, dk, evk. The encryption key of the scheme is ek0, and the decryption key is the
seed Senc from which the randomness for generating the keys is derived using DPRF. The
evaluation key evk of the scheme is a decomposable obfuscation of the EVK circuit (padded to
some upper bound, see discussion bellow in section 3.3). On input i ≥ 1 this circuit outputs
Puzzle.Gen(i, LHE.Enceki

(dki−1)) (on i = 0 it returns ⊥). Consequently, the evaluation key
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circuit induces a super-polynimally long chain of keys (actually, exponentially long), each key
encrypted under the next one (except the last one). Each such encrypted key is wrapped by
a puzzle, where the index in the chain serves as the difficulty level. The relevant puzzles are
solved by FHE.Eval so it can it use the encrypted keys. EVKa,b is defined the same, except
that on input i in the range [a, b] it outputs Puzzle.Gen(i, LHE.Enceki

(0λ)) instead.

Inputs to FHE.Eval.
a description of the function f as NAND gates.
A ciphertext ct = (c, pos), where each bit in the ciphertext is encrypted separately, that
is, c = {cj}. pos is the key index under which the ciphertext can be decrypted, e.g. for a
fresh encryption pos = 0.
Evaluation key evk, which is a decomposable obfuscation of the evaluation key circuit.
The input to that circuit is i, and the output is a puzzle of difficult i wrapping the
encryption of dki−1 under eki, i.e. Puzzle.Gen(i, LHE.Enceki(dki−1)).

Function evaluation. FHE.Eval evaluates the function layer by layer. Given a layer, the
NAND gates in that layer are homomorphically evaluated by homomorphically evaluating
Gentry’s function (see definition 27): decrypt the input wires and then compute a NAND over
them. The output is then stored in the set EWi. After computing the NAND gates of a layer,
the algorithm also upgrades every wire from EWi−1 to be encrypted under the next key and
add it to EWi, so it could be used by next layers as well. Finally, the algorithm uses the
Output algorithm for determining the output wires of the entire computation, corresponding
to the function being computed. The output of the FHE.Eval algorithm also contains the
index of the current position in the chain of keys, which is the key under which the output is
decryptable.

3.2 Correctness
We state the propositions for the correctness, the full proofs can be found in the full version
of the paper.

▶ Lemma 28 (FHE scheme consists of polynomial algorithms).

proof sketch: Recall that generating a puzzle takes time poly(log(t), λ) where t is the
difficulty parameter. Since the hardest puzzle has difficulty as the length of the key chain,
which is 2λ, we have a time bound poly(log(2λ), λ) = poly(λ). Therefore, we can take a
puzzle generation circuit of size poly(λ). The rest of the operations are clearly polynomial.

▶ Theorem 29 (FHE is fully homomorphic). Let LHE be a bootstrapable leveled homomorphic
encryption scheme. Then FHE supports homomorphic evaluation circuits with any polynomial
depth.

The proof is by inspection and follows the same lines as in [17].

3.3 Security
In this section we present the key ideas of security proof of the construction, the full security
proof can be found in the full version of the paper. Given adversary A, the idea is to “cut”
the key chain produced by the EVK algorithm at some position i∗, and switch to puzzles
containing encryptions of 0λ instead. The exact index i∗ is determined by the efficiency
of the adversary, i.e. the running time bound for a uniform adversary and the size for a
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non-uniform one. Since the difficulty level of the puzzle should be only slightly more than the
efficiency of the reduction, any efficient adversary A has has a polynomial cutting index i∗.
When we cut the chain at position i∗ we change the output of the evaluation key circuit on
input i∗ to contain an encryption of 0λ instead of an encryption of the previous decryption
key dki∗−1. We then go through a series of hybrids till we get to i = 1. At that point the
evaluation key circuit doesn’t contain any information about the decryption key dk0, and we
can apply to the semantic security of the underlying LHE scheme.

The indistinguishability of the first cut at position i∗ in the chain is due to puzzle security.
Once we have the first cut in the chain we can rely on the semantic security of underlying
encryption scheme LHE for the rest of the swaps. The number of hybrids is polynomial
in the initial cutting position i∗. Since for every efficient adversary A the first cut is at a
polynomial position i∗ we have a polynomial number of hybrids in total. Hence all underlying
cryptographic primitives are allowed to be only polynomially secure.

Hybrids structure. After the first cut in the chain, the hybrids go through the following
hybrid circuit EVKi,i∗ : output a puzzle wrapping LHE.Encekj (0λ) on input j in the range
[i, i∗], and otherwise output a puzzle wrapping LHE.Enceki

(dki−1). In other words, EVKi,i∗

is a (succinct) circuit which behaves the same as the original EVK, except on inputs in the
range [i, i∗]. Moving between the hybrids in the security proof is by the following template
inspired by the example applications described in [28].

As in [28], we decompose a circuit with respect to some tree covering, followed by
a CanonicalMerge operation. We then alter the circuit assignment corresponding to the
decomposed circuit. We use a special type of tree coverings, defined bellow.

▶ Definition 30 (Special Tree Covering). Given a tree covering TC and x ∈ {0, 1}n, let
T x be the tree covering obtained by the following process. We start with TC0 = TC.
TCk+1 is obtained from TCk by picking some element p ∈ Tk which is not a leaf (i.e.
|p| ̸= n) and not of the form p = q||1 where q is not a prefix of x. We then define
TCk+1 = TCk

⋃
{p||1, p||0} \ { p }. TCx is then defined as the final tree covering in the

proccess.

▶ Observation 31 (Size of Special Tree Covering). Given a tree covering TC and x ∈ {0, 1}n,
|TCx| = O(n|TC|).

Bellow is the template of the sub hybrids, when the behaviour of the EVK is switched on
some input i.
1. Same circuit C from previous hybrid, which is either EVK if i = i∗, or EVKi+1,i∗ if i ̸= i∗.
2. Decompose the circuit C with respect to a tree covering TC = TCi

i (corresponding to
the input i0 currently changed) to obtain the circuit assignment LC . Then reconstruct a
new circuit with a CanonicalMerge operation. Indistinguishability is due DO security as
the two circuits are |TC|-decomposing equivalent, where TC has a polynomial size. Due
to Lemma 15, the decomposition is pushed down and creates a sub circuit assignment for
the DPRF.Eval sub circuit. This lets us to treat the randomness as a separate component
in the reconstructed circuit in next hybrids.

3. Replace the seed used by the circuit on input i to an independent one S′. The switch is done
in the DPRF.Eval sub circuit assignment of the decomposed circuit. Indistinguishability
is due to DPRF security. Note the circuit uses two seeds, one for deriving randomness for
the puzzles, and one for deriving randomness for the encryptions. When we switch the
puzzles in the first cut where i = i∗ this step is immediate, as the DPRF is evaluated on
input i with the puzzle’s seed only when the input to the EVK circuit is i. However, when
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we go along the chain and switch the encryptions this requires more subtle argument, as
the DPRF is evaluated on input i with the encryption’s seed when the input to the EVK
circuit is either i or i + 1.

4. Switch a real fresh randomness on input i. Indistinguishability is due to PRF security, as
the currently used seed on i is independent from the rest of the circuit assignment.

5. Switch the underlying cryptographic instance on input i, from a puzzle wrapping
LHE.Enceki(dki−1) to a puzzle wrapping LHE.Enceki(0λ) 3. The switch is done in top level
circuit assignment (as opposed to sub circuit assignments in previous sub hybrids). In the
first time we cut the chain, indistinguishability is due to the puzzle security, and when
we go along the chain indistinguishability is due to the LHE semantic security.

6. Move back to using the original seed when computing input i by going through hybrids
3, 4 in reverse: switch back to an independent random seed and then to the original one.

7. In this hybrid we switch to EVKi,i∗ . This circuit is decomposing equivalent to the circuit
from previous hybrid and hence their obfuscation is indistinguishable. The decomposing
equivalence is with respect to the tree covering TCi

i,...,i∗ which has a polynomial size: i∗

is polynomial, so |{i, ..., i∗}| is polynomial, and then we apply observations 11 and 31.
Let EVK′ be the circuit obtained in the end of the previous step. Since {i} ⊆ {i, ..., i∗}, by
observation 12 we have that TCi ⪯ TCi,...,i∗ . It follows that TCi

i ⪯ TCi
i,...,i∗ . Therefore,

we observe that DecomposeTo(EVK′, TCi
i,...,i∗) is identical to the circuit assignment we

would have got if in sub hybrid 1 we had decomposed with respect to TC = TCi
i,...,i∗

instead of TC = TCi
i . This holds as the fragment corresponding to i is the same, and

any other fragment is just partially evaluated further. To show equivalence between
DecomposeTo(EVK′, TCi

i,...,i∗) and DecomposeTo(EVKi,i∗ , TCi
i,...,i∗), let p ∈ TCi

i,...,i∗

and consider the following cases:
In case p ∈ [i, ..., i∗] in both hybrids we have the same fragment as it’s the output of
the circuits on that input - which is the same.
If p ̸∈ [i, ..., i∗], then by the definition of the tree covering, p isn’t a prefix of anything in
the range [i, ..., i∗]. Recall the circuits check belonging to a range using a decomposing
compatible in-range tester (see definition 22). Therefore, since it’s a tree covering,
p isn’t a prefix of anything in the range [i, ..., i∗], so the tester will be evaluated to
FALSE, and the simplification process will eliminate the relevant code, after which we
just end up with the same fragment (which is actually the same as in the original EVK,
as anything else is eliminated by simplification).

Tree coverings considerations. The reason taking TCi (the minimal tree covering containing
i) isn’t enough when the seed of the encryptions is switched is due to the use of randomness
by the circuit. Given a prefix p, let DPRFSp be the DPRF equipped with the seed S after
partially evaluated on the prefix p. In order to apply to DPRF security, we need to argue
that any circuit fragment doesn’t contain DPRFSp

for any p which is prefix of i. Recall that
the DPRF is evaluated on input i when the input the EVK circuit is either i or i + 1. In
particular, the circuit has a sub circuit for computing x 7→ x− 1. Consider now a prefix q ̸= i

in the tree covering TC, and let Cq be the corresponding circuit assignment. In order for
Cq not to contain DPRFSp

for some p which is prefix of i, we need the mapping x 7→ x− 1
to be partially evaluated far enough, so the partial result would be pushed down and allow
partial evaluation of the DPRF on the seed S. This is achieved by taking TCi

i combined
with computing x 7→ x− 1 using a decomposing compatible decreaser (definition 23). For

3 To make the security proof shorter, we also do that when the first puzzle is switched at position i∗.
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demonstration, suppose we had used a tree covering with some prefix p ∈ {0, 1}<n, which is
of the form p = p′||0. Since p′ ends with 0, we can not yet deduce the prefix of the result of
the computation x 7→ x− 1. However, we can deduce these bits if p ends with 1 or if |p| = n

(as in that case we can fully compute p− 1). This is achieved by using TCi
i .

Next, in the last sub hybrid we switch to EVKi,i∗ . The main difference between this circuit
and the previous one is how the “control flow” is evaluated. Roughly speaking, in EVKi,i∗ the
control flow has the following form: if the input j is in [i, i∗] then do A, otherwise do B. In
the previous circuit the flow is essentially of the form: if the input j is in [i + 1, i∗] then do A,
otherwise if j = i do A, and otherwise do B. Observe this control flow mechanism is evaluated
and simplified to TRUE or FALSE when using the tree covering TCi

i,...,i∗ combined with a
decomposing compatible in-range tester (see definition 22). This eliminates the diffreneces
between the circuits.

Padding. Note that during the hybrids in the security proof intermediate circuits are
obtained by a CanonicalMerge of circuit assignments with |TCi

i | = O(poly(λ)) fragments
followed by replacing a fragment. Therefore, there exists some polynomial upper bound on
the size of all these circuits, which all circuits are padded to it before obfuscation.

▶ Theorem 32 (FHE scheme is secure). If DO is a poly-DO, DPRF is a secure decomposing
compatible pseudorandom function, LHE is a semantically secure leveled homomorphic en-
cryption scheme, and Puzzle is URTLP, then the FHE scheme is semantically secure against
uniform efficient adversaries. Furthermore, if Puzzle is also NRTLP, then the scheme is
semantically secure against non-uniform efficient adversaries as well.

proof sketch: We go through the following hybrids using the above sub hybrids template.

1. H0: This hybrid corresponds to the real security game, G0.
2. H1: In this hybrid we switch to use obfuscation of EVKi∗,i∗ as the evaluation key. I.e.,

same evaluation key circuit, except that on some polynomial input i∗ the output is a
puzzle wrapping LHE.Enceki∗ (0λ) (instead of wrapping LHE.Enceki∗ (dki∗−1)).

3. H2, k for k ∈ [i∗, ..., 1]: In this hybrid we use EVKk,i∗ . In other words, on inputs
in the range i ∈ [k, ..., i∗] the evaluation key circuit encrypts 0λ under eki (instead of
encrypting dki−1). In particular in H2, 1 the evaluation key circuit encrypts 0λ instead of
dk0. Hybrids H2,i∗ and H1 are the same.

4. Hfinal: Same as H2,1, except that the encryption key ek0 is sampled independently from
the evaluation key.
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Abstract
In the certification problem, the algorithm is given a function f with certificate complexity k and an
input x⋆, and the goal is to find a certificate of size ≤ poly(k) for f ’s value at x⋆. This problem
is in NPNP, and assuming P ̸= NP, is not in P. Prior works, dating back to Valiant in 1984, have
therefore sought to design efficient algorithms by imposing assumptions on f such as monotonicity.

Our first result is a BPPNP algorithm for the general problem. The key ingredient is a new notion
of the balanced influence of variables, a natural variant of influence that corrects for the bias of
the function. Balanced influences can be accurately estimated via uniform generation, and classic
BPPNP algorithms are known for the latter task.

We then consider certification with stricter instance-wise guarantees: for each x⋆, find a certificate
whose size scales with that of the smallest certificate for x⋆. In sharp contrast with our first result, we
show that this problem is NPNP-hard even to approximate. We obtain an optimal inapproximability
ratio, adding to a small handful of problems in the higher levels of the polynomial hierarchy for
which optimal inapproximability is known. Our proof involves the novel use of bit-fixing dispersers
for gap amplification.
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1 Introduction

For a function f : {0, 1}n → {0, 1} and an input x⋆ ∈ {0, 1}, a certificate for f ’s value at x⋆

is a set S ⊆ [n] of coordinates such that:

f(x⋆) = f(y) for all y such that yS = x⋆
S .

This is a set of coordinates that fully determines f ’s value on x⋆, and coordinates outside this
set are irrelevant in the sense that changing any of them in any way cannot change f ’s value.
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We write Cert(f, x⋆) to denote the size of a smallest certificate for f ’s value at x⋆, and Cert(f)
to denote maxx∈{0,1}n{Cert(f, x)}, the certificate complexity of f . Certificate complexity is
among the most basic and well-studied measures of boolean function complexity [6, 13].

With the notion of certificates in mind, an algorithmic question suggests itself: can we
design efficient algorithms for finding small certificates? This leads us to the certification
problem:

Certification Problem: Given the succinct description of a function f and an input
x⋆ ∈ {0, 1}n, find a certificate of size ≤ poly(Cert(f)) for f ’s value at x⋆.

The intractability of certification.

Valiant was the first to consider the certification problem [29]. He observed that it is likely
intractable in its full generality, since even the task of verifying the output of a certification
algorithm, i.e. checking that a purported certificate is indeed a certificate, is coNP-complete.

Furthermore, the NP-hardness of Sat easily implies the following:

▶ Fact 1. Assuming P ̸= NP, there is no efficient algorithm for the certification problem, even
if the algorithm only has to return a certificate of size Φ(Cert(f)) for any growth function
Φ : N → N. Similarly, we can rule out randomized algorithms under the assumption that
NP ̸⊆ BPP.

For completeness, we include the proofs of Valiant’s observation and Fact 1 in Section 4.

Prior certification algorithms.

In light of these intractability results, prior certification algorithms have relied on assumptions
on f . Valiant gave a simple and efficient algorithm for monotone functions, which he used as
a subroutine for PAC learning monotone DNF formulas (see also [1]). Recent works [4, 11]
give new certification algorithms for monotone functions that are furthermore highly query
efficient, with the latter paper by Gupta and Manoj achieving the optimal query complexity.
In a separate line of work, Barceló, Monet, Pérez, and Subercaseaux [2] gave an efficient
certification algorithm for halfspaces.

While the focus of these works and ours is theoretical in nature, there has also been a
recent surge of interest in certification algorithms from an applied perspective. Motivation
here comes from the growing field of explainable machine learning, where one thinks of f

as a complicated model (e.g. a neural net) and small certificates as succinct explanations
for its decisions. In this literature, certificates are more commonly referred to as “sufficient
reasons” [20] and “anchors” [17]; see [2, 5, 4] for further discussions and references regarding
this.

1.1 Our results
Departing from the theme of prior works, we consider the certification problem in its full
generality, without any assumptions on f , but allow algorithms that do not necessarily
run in polynomial time. There is a simple NPNP algorithm for general problem: first guess
a certificate for f ’s value at x⋆, and then use the NP oracle to verify that it is indeed a
certificate. Therefore, the certification problem lies within (the function version of1) NPNP,
and assuming P ̸= NP, lies outside of P. This leaves a rather wide gap between P and NPNP.

1 Throughout this paper we conflate the decision and function versions of complexity classes, except in
instances where there is a possibility of confusion.
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At first glance, one may suspect that the true complexity of the certification problem is
NPNP. Afterall, the definition of certificate complexity inherently involves two quantifiers:
there exists a set S such that f(x⋆) = f(y) for all y that agrees with x⋆ on S. Our first main
result counters this intuition with a BPPNP algorithm:

▶ Theorem 2. There is a randomized polynomial-time algorithm with NP oracle access that
takes a polynomial-size circuit representation of f : {0, 1}n → {0, 1} and a string x⋆ ∈ {0, 1}n,
and outputs w.h.p. a certificate S ⊆ [n] for f ’s value on x⋆ satisfying |S| = O(Cert(f)5).

Our algorithm does not need to be given the value of Cert(f) as an input. As an example
setting of parameters, for a function f with certificate complexity O(nε) our algorithm always
returns a certificate of size O(n5ε)≪ n. We note that the class of functions with certificate
complexity O(nε) is very expressive and includes, among other functions, all decision trees
of depth O(nε).

Our algorithm uses its NP oracle in two ways:
1. Uniform generation. Our algorithm uses as a key subroutine the ability to sample a uniform

random satisfying assignment x ∼ f−1(1) of f . Early and influential results of theoretical
computer science show that this can be done efficiently with an NP oracle [12, 3].

2. Verification. Our randomized algorithm returns a set that is a certificate for f ’s value
at x⋆ with high probability. As mentioned, the task of verifying that a set is indeed a
certificate is coNP-complete, and so we use the NP oracle for this purpose.

Regarding the BPPNP algorithms for uniform generation, while they are not efficient in
the traditional sense of worst-case complexity, there is an active line of research that seeks to
make them as practical as possible: by replacing the NP oracle with state-of-the-art SAT
solvers; optimizing the number of calls to these solvers; etc. See [30, 9] and the references
therein.

Barriers to instance-wise guarantees

In the spirit of beyond worst-case analysis, it is natural to ask if our algorithm can be
strengthened so its guarantees hold instance-wise: can it always return a certificate of size
poly(Cert(f, x⋆)) instead of poly(Cert(f))? There are two known lower bounds against such
algorithms, both in the strictest setting where the algorithm has to return a certificate of size
exactly Cert(f, x⋆). Gupta and Manoj [11] showed that any such algorithm for monotone
functions must make nΩ(Cert(f,x⋆)) many queries to f , in the setting where the algorithm
only gets black-box queries to f rather than an explicit description. Barceló, Monet, Pérez,
and Subercaseaux [2] showed that the decision version of the problem, where the goal is to
decide if Cert(f, x⋆) ≤ k for a given parameter k, is NPNP-hard.

Neither of these results rule out algorithms that return a certificate of size ≤
poly(Cert(f, x⋆)) or even O(Cert(f, x⋆)). Our second main result does so by showing that
Cert(f, x⋆) is optimally NPNP-hard to approximate:

▶ Theorem 3. The following holds for every constant ε > 0. Given a circuit representation
of f : {0, 1}n → {0, 1}, k ∈ N, and x⋆ ∈ {0, 1}n, it is NPNP-hard to distinguish between

YES: there exists a certificate of size ≤ k for f ’s value on x⋆;
NO: Every certificate for f ’s value on x⋆ has size > k · n1−ε.

There is by now a sizeable number of problems that are known to be hard for higher
levels of the polynomial hierarchy [19, 18]. However, relatively few of them are known to be
hard to approximate, and yet fewer for which optimal inapproximability ratios have been
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established. The papers [24, 25, 28, 26, 23, 14] cover many of the existing results; see also the
survey [27]. Theorem 3 thus adds an additional entry into this catalogue of natural problems
known to be inapproximable for higher levels of the polynomial hierarchy.

2 Proof overviews

2.1 Overview of the proof of Theorem 2

Minimality no longer suffices

As mentioned, many prior certification algorithms have focused on the class of monotone
functions [29, 1, 4, 11]. An especially nice feature of this setting is that it suffices to find
minimal certificates: a certificate S such that no strict subset S′ ⊊ S is a certificate:

▶ Fact 4 (Minimality suffices for monotone functions). If f is monotone, for every x⋆, every
minimal certificate S for f ’s value at x⋆ has size |S| ≤ Cert(f).

This simple fact is crucially used in all prior certification algorithms for monotone
functions. While Cert(f) is a global property of f , the minimality of a specific certificate can
be recognized locally: if at any point we have a candidate certificate S such that dropping any
of its coordinates results in it no longer being a certificate, Fact 4 tells us that |S| ≤ Cert(f)
and we are done.

Unfortunately, Fact 4 is false for general functions: the size of a minimal certificate could
be exponentially larger than its certificate complexity:

▶ Fact 5 ([13, Exercise 1.7]). For each n ∈ N, there is a function f : {0, 1}n → {0, 1} and
x⋆ ∈ {0, 1}n such that x⋆ has a minimal certificate S ⊆ [n] of size |S| ≥ Ω(n) even though
Cert(f) ≤ O(log n).

The implication of Fact 5 for the certification problem is that algorithms for general
functions can get stuck at (very bad) local minima, which necessitates a more global
understanding of the structure of functions with low certificate complexity. We include the
proofs of Fact 4 and Fact 5 in Section 4.

Our algorithm and its main subroutine

We now describe our algorithm. Its main subroutine is a BPPNP algorithm for finding a
restriction to a small number of variables under which f becomes constant:

▶ Lemma 6. Given a succinct representation of f : {0, 1}n → {0, 1} and an NP oracle, there
is a randomized polynomial-time algorithm that w.h.p. finds a restriction π to O(Cert(f)4)
variables such that fπ is a constant function.

Such an algorithm can be viewed as one that finds a certificate for some input of f (any
of the inputs that are consistent with π), but not necessarily the specific input x⋆ that we
are interested in certifying. We then convert such an algorithm into an actual certification
algorithm by calling it 2 Cert(f) times, resulting in a certificate for x⋆ of size O(Cert(f)5).
This conversion algorithm is a fairly straightforward consequence of a basic property of
certificates, that every 1-certificate and every 0-certificate must share at least one variable.
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Balanced influences

To describe our algorithm for Lemma 6, we need a new notion of the balanced influence
of variables. Recall that the influence of a variable i on f is the quantity Infi(f) :=
Prx∼{0,1}n [f(x) ̸= f(x⊕i)], where x is uniform random and x⊕i denotes x with its i-th bit
flipped. It is easy to see that Infi(f) ≤ Var(f), and so the more unbalanced f is, the smaller
its influences are. Balanced influence corrects for this by measuring influence with respect to
a distribution D(f)

bal that places equal weight on f−1(1) and f−1(0):

To sample x ∼ D(f)
bal : first sample b ∼ {0, 1} uniformly and then x ∼ f−1(b) uniformly.

▶ Definition 7 (Balanced influences). The balanced influence of a variable i ∈ [n] on
f : {0, 1}n → {0, 1} is the quantity:

BalInfi(f) := Pr
x∼D(f)

bal

[f(x) ̸= f(x⊕i)].

Though simple, this variant of influence does not appear to have been explicitly considered
before. This definition syncs up nicely with the notion of uniform generation: an algorithm
for uniform generation can be used to efficiently estimate balanced influences to high accuracy.
Given the classic BPPNP algorithms for uniform generation [12, 3], we therefore get:

▶ Lemma 8. There is a randomized algorithm that, given a succinct representation of
f : {0, 1}n → {0, 1}, an NP oracle, i ∈ [n] and ε > 0, runs in poly(n, 1/ε) time and
w.h.p. outputs an estimate ηi = BalInfi(f)± ε.

We can now state our algorithm for Lemma 6. It is simple and proceeds by iteratively
and randomly restricting the variables of f with the largest balanced influence:
1. Estimate BalInfi(f) for each i ∈ [n] to within ± 1

4n and let i⋆ be the index with the
largest estimate.

2. Randomly restrict xi⋆ ← b where b ∼ {0, 1} is uniform random.
3. Recurse on fxi⋆ =b.

We prove that f becomes constant w.h.p. within O(Cert(f)5) many iterations of this
algorithm. It is crucial that we work with balanced influence here: this same algorithm
fails (i.e. it requires Ω(n) many iterations before f becomes constant) if it is instead run on
estimates of the usual notion of influence.2

2.2 Overview of the proof of Theorem 3
Monotone Minimum Weight Word and its inapproximability

We prove Theorem 3 by reducing from the Monotone Minimum Weight Word problem.
To state this problem we first define co-nondeterministic circuits:

▶ Definition 9 (Co-nondeterministic circuit). A co-nondeterministic circuit C : {0, 1}n ×
{0, 1}n → {0, 1} accepts an input x ∈ {0, 1}n iff for all y ∈ {0, 1}n C(x, y) = 1.

2 Indeed, since the usual notion of influence can be estimated to high accuracy without an NP oracle, we
have by Fact 1 that no algorithm that is based only on estimates of usual influences can succeed unless
NP ⊆ BPP.
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We say that a co-nondeterministic circuit C accepts a non-empty monotone set if it
accepts at least one x, and for every x that it accepts, it also accepts every x′ such that
x′ ⪰ x. (Note that C : {0, 1}n × {0, 1}n → {0, 1} itself need not be a monotone function.)

▶ Definition 10 (Monotone Minimum Weight Word). The Monotone Minimum
Weight Word (MMWW) problem is the following: given a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1} that accepts a non-empty monotone set and an integer k ∈ N,
does C accept an input x ∈ {0, 1}n with at most k ones?

Umans [24] showed that the MMWW problem is NPNP-hard to approximate within n
1
5−ε.

This inapproximability ratio was subsequently improved to the optimal n1−ε by Ta-Shma,
Umans, and Zuckerman [23]:

▶ Theorem 11 (Gapped-MMWW is NPNP-hard). The following holds for every constant
ε > 0. Given a co-nondeterministic circuit C : {0, 1}n × {0, 1}n → {0, 1} that accepts a
non-empty monotone set and an integer k ∈ N, it is NPNP-hard to distinguish between:

YES: C accepts an x with ≤ k ones;
NO: Every x that C accepts has > k · n1−ε ones.

First attempt at a reduction

To describe the intuition behind our reduction, we first consider what happens when we
take an instance of Gapped-MMWW, which is specified by a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1}n and an integer k, and map it to the certification problem
with f(x, y) = C(x, y) and the input to be certified being (x⋆, y⋆) = (1n, 1n). We consider
the two possible cases:

If (C, k) is a YES instance of Gapped-MMWW, it accepts an x ∈ {0, 1}n with ≤ k ones.
Let S ⊆ [n] be the size-k set of 1-coordinates of this input x. It is straightforward to
verify that S is a certificate for f ’s value on (x⋆, y⋆), and so Cert(f, (x⋆, y⋆)) ≤ k.
If (C, k) is a NO instance of Gapped-MMWW, we would like it to be the case that
Cert(f, (x⋆, y⋆)) > k · n1−ε. Let S ⊆ [n] × [n] be a smallest certificate for f ’s value on
(x⋆, y⋆). If S only contains coordinates of x⋆, it is again straightforward to verify that C

accepts the input x ∈ {0, 1}n that is the indicator vector of S, and so |S| > k · n1−ε as
desired. However, S may contain one of more coordinates of y⋆, and in that case we do
not have a lower bound on its size.

The actual reduction

Intuitively, we would like to fix this issue by modifying C so that it becomes disproportionately
more “expensive” to include y⋆-coordinates in the certificate compared to x⋆-coordinates, in
the sense that including even a single y⋆-coordinate contributes > k · n1−ε to the size of the
certificate, compared to just one in the case of single x⋆-coordinate. We accomplish this with
this use of bit-fixing dispersers, a well-studied construct in the pseudorandomness literature.

Given an instance C : {0, 1}n × {0, 1}n → {0, 1} of Gapped-MMWW, we map it to an
instance of the certification problem where the function f : {0, 1}n × {0, 1}m → {0, 1}n is:

f(x, z) := C(x, D(z)),

and D : {0, 1}m → {0, 1}n satisfies the following properties:
1. D is explicit. There is an efficient algorithm that, given m and n, produces the circuit

description of D : {0, 1}m → {0, 1}n in poly(m, n) time. This is so that our reduction is
efficient.
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2. D retains full image under restrictions. For any set S ⊆ [m] of size ≤ k · n1−ε and
any assignment u ∈ {0, 1}|S|, the image of DS←u is all of {0, 1}n: for any y ∈ {0, 1}n

there is an z ∈ {0, 1}m−|S| such that DS←u(z) = y. This ensures that one must fix
> k · n1−ε many z-variables of f in order to fix even a single y-variable of C.

3. Small m. For the second property to hold m certainly has to be at least n. Since f is a
function over m + n variables, would like m to be as close to n as possible in order to
preserve the n1−ε ratio of Gapped-MMWW.

A simple construction of a function satisfying the first two properties is the blockwise
parity function:

BlockwisePar : ({0, 1}ℓ)n → {0, 1},

BlockwisePar(z(1), . . . , z(n))n = (⊕ℓ
j=1z

(1)
j , · · · ,⊕ℓ

j=1z
(n)
j )

where ℓ = k · n1−ε + 1. In this case m = ℓ · n = Θ(n2−ε), and so the n1−ε ratio of
Gapped-MMWW translates into a gap of n

1
2−ε for the certification problem.

Functions satisfying the first two properties are known as zero-error bit-fixing dispersers
in the pseudorandomness literature. The current best construction, due to Gabizon and
Shaltiel [10], gives m = O(n) for our setting of parameters, and so using it in place of
BlockwisePar enables us to achieve the optimal inapproximability ratio of n1−ε, thereby
yielding Theorem 3.

3 Discussion and future work

Since the certification problem is intractable unless P = NP, to further understand it we
must either rely on assumptions about f or allow algorithms that are not necessarily efficient
in the traditional sense of running in polynomial time. Complementing previous works that
take the former route, in this work we consider the latter option and study the complexity of
certification relative to an NP oracle, giving new algorithmic (BPPNP) and hardness (NPNP)
results. Our motivation is twofold. First, given how natural the problem is, we believe
that it is of independent interest to understand its inherent complexity. Second, given the
empirical success of SAT solvers and their increasing adoption in a variety of real-world
algorithmic tasks, the distinction between between problems in BPPNP (“exists an efficient
algorithm assuming all calls to the SAT solver run quickly”) versus those that are hard for
NPNP (“intractable even if all calls to the SAT solver run in unit time”) is especially relevant
in this context.

We list a couple of concrete open problems suggested by our work. A natural one is to
improve on the bound of O(Cert(f)5) given by Theorem 2:

▶ Open Problem 1. Is there a BPPNP certification algorithm that returns certificates of
length O(Cert(f))?

Next, Theorem 3 shows that given f and x⋆, it is optimally NPNP-hard to approximate the
size of the smallest certificate for f ’s value at x⋆, i.e. to approximate the quantity Cert(f, x⋆).
Since there is an NPNP algorithm that computes it exactly, this settles the complexity of the
problem. It is equally natural to consider the problem of computing/approximating Cert(f).
There is a simple Π3 algorithm that computes it exactly. However, little is known in terms
of lower bounds:

▶ Open Problem 2. Is certificate complexity Π3-hard to compute and what is the complexity
of approximating this quantity?
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Concluding on a speculative note, in the spirit of interactive proofs, it would be interesting
to extend our BPPNP algorithm to the setting where the algorithm interacts with a powerful
but untrusted oracle. More broadly, there should be much to be gained by bringing techniques
from interactive proofs to bear on problems, such as certification, that are motivated by
explainable machine learning. Such an “interactive theory of explanations” was listed as a
specific direction in the 2020 TCS Visioning Report [7] and aligns well with ongoing efforts
in machine learning [31], but to our knowledge has thus far not been explored much.

4 Basic results regarding the certification problem

4.1 The necessity of an NP oracle
Verifying a certificate is coNP-complete

Given a candidate certificate for an input, verifying the certificate is computationally hard.
Indeed, we observe that such a problem is coNP-complete. This lemma shows that we at
least need access to a coNP oracle or equivalently an NP oracle.

▶ Definition 12 (VerifyCert). Given a polynomial-size circuit for f : {0, 1}n → {0, 1},
input x ∈ {0, 1}n, and candidate certificate S ⊆ [n], decide whether S is indeed a certificate
for f ’s classification of x.

▶ Lemma 13 (Observed in [29]). VerifyCert is coNP-complete.

To prove this lemma, we give a reduction from the canonical coNP-complete problem
Tautology.

▶ Definition 14 (Tautology [8]). Given a Boolean formula φ : {0, 1}n → {0, 1}, decide
whether φ is a tautology: φ(x) = 1 for all x ∈ {0, 1}n.

Proof of Lemma 13. First, we show that VerifyCert ∈ coNP. Specifically, we observe
that VerifyCert ∈ NP. Given f : {0, 1}n → {0, 1}, an input x ∈ {0, 1}n, and a candidate
S ⊆ [n], one can nondeterministically guess a string y such that xS = yS and f(x) ̸= f(y).
This string y exists if and only if S is not a certificate for x.

Next, we show VerifyCert is coNP-hard via a reduction from Tautology. Let
φ : {0, 1}n → {0, 1} be a Boolean formula. We show how to determine if φ is a tautology
using VerifyCert. Let x ∈ {0, 1}n be arbitrary. If φ(x) = 0 output “not a tautology”.
Otherwise, call VerifyCert on the instance f = φ, S = ∅ and x. If ∅ is a certificate for
x then φ is a tautology: all y ∈ {0, 1}n satisfy φ(y) = φ(x) = 1. Otherwise, there is some
input y for which φ(y) = 0. ◀

Solving the certificate finding problem efficiently without an NP oracle would prove
P = NP (Fact 1)

Next, we show that any efficient algorithm for certification can be used to solve
GappedCert(0, Ψ): the promise problem of distinguishing whether Cert(f) is 0 or ev-
ery input requires size-Ψ(n) certificates. Perhaps surprisingly, GappedCert(0, Ω(n)) turns
out to be NP-hard. As a result, we should not expect certification to be efficiently solvable
without access to an NP oracle.

▶ Definition 15 (GappedCert(0, Ψ)). Given a polynomial-size circuit for f : {0, 1}n →
{0, 1} and a growth function Ψ : N→ N, the GappedCert(0, Ψ) problem is to distinguish
between
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YES: Cert(f, x) ≥ Ψ(n) for all x ∈ {0, 1}n;
NO: Cert(f) = 0.

As a promise decision problem, any algorithm for GappedCert(0, Ψ) is allowed to answer
arbitrarily on input instances which do not fall into the two cases. Note that SAT reduces
to GappedCert(0, 1) since GappedCert(0, 1) is equivalent to determining whether f is
constant. To obtain hardness against the certification problem, we require hardness for
GappedCert where the growth function is nonconstant.

▶ Lemma 16. GappedCert(0,
√

n) is NP-hard.

Proof. Let φ : {0, 1}n → {0, 1} be a Boolean formula. Recall the definition of BlockwisePar :
({0, 1}ℓ)n → {0, 1}n

BlockwisePar(z(1), . . . , z(n)) = (⊕ℓ
j=1z

(1)
j , . . . ,⊕ℓ

j=1z
(n)
j ).

We let f = φ ◦ BlockwisePar. For all z ∈ ({0, 1}ℓ)n, we have

Cert(f, z) ≥ Cert(φ, BlockwisePar(z)) · ℓ

since ℓ coordinates of f need to be fixed in order to fix one coordinate of φ. In particular, if φ

is nonconstant, then Cert(φ, BlockwisePar(z)) ≥ 1 and so Cert(f, z) ≥ ℓ for all z ∈ ({0, 1}ℓ)n.
Therefore, to determine satisfiability of φ it is sufficient to solve GappedCert(0, ℓ) for

the function f : ({0, 1}ℓ)n → {0, 1}. Choosing ℓ = n yields the hardness in the lemma
statement. ◀

Lemma 16 is sufficient to establish Fact 1. However, we also note that a slightly more
technical proof yields near-optimal gapped hardness.

▶ Lemma 17 (Near-optimal gapped hardness). GappedCert(0, Ω(n)) is NP-hard.

We provide a proof of Lemma 17 can be found in the appendix of the full version of the
paper.

▶ Lemma 18. If there is a polynomial-time algorithm for the certification problem which
returns certificates of size Φ(Cert(f)) for some growth function Φ : N→ N, then there is a
polynomial-time algorithm for GappedCert(0, Ψ) for all growth functions Ψ : N→ N.

Proof. Suppose such an algorithm exists for the certification problem. Let Ψ : N→ N be an
arbitrary growth function and let f : {0, 1}n → {0, 1} be an instance of GappedCert(0, Ψ).
Let S ⊆ [n] be a certificate obtained by running the algorithm for the certification problem
on f for any input x⋆ ∈ {0, 1}n. Output “NO” if |S| < Ψ(n) and “YES” if |S| ≥ Ψ(n).

The correctness of our output follows from the observation that Cert(f, x) ≤ |S| ≤
Φ(Cert(f)) and so

|S| ≥ Ψ(n) ⇒ Ψ(n) ≤ Φ(Cert(f))
|S| < Ψ(n) ⇒ Cert(f, x) < Ψ(n).

Assuming n is large enough, the first case implies Cert(f) > 0 which allows us to rule out
being in the NO case of GappedCert(0, Ψ). The second case rules out being in the YES
case of GappedCert(0, Ψ). ◀

Fact 1 follows as an immediate consequence of Lemmas 16 and 18: any polynomial-
time algorithm for the certification problem yields a polynomial-time algorithm for
GappedCert(0,

√
n) which implies NP = P. Likewise, any randomized polynomial-time

algorithm for the certification problem yields a randomized polynomial-time algorithm for
GappedCert(0,

√
n) which implies NP ⊆ BPP.
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4.2 Certificate complexity, minimal certificates, and monotonicity

In this section, we prove Fact 4 and Fact 5. We start with a formal definition of minimal
certificates.

▶ Definition 19 (Minimal certificates). A certificate S ⊆ [n] for f : {0, 1}n → {0, 1} on
x ∈ {0, 1}n is a minimal certificate if no S′ ⊊ S is a certificate for f on x.

Proof of Fact 4. Suppose S ⊆ [n] is a minimal 1-certificate for f ’s value on a string x⋆ ∈
{0, 1}n (if S is a 0-certificate the argument is symmetric). First, we observe that S can
only contain 1-coordinates of x⋆. Indeed, if S contained a 0-coordinate, the certificate S′

obtained from S by removing that 0-coordinate would still certify x⋆ by monotonicity and
would therefore contradict the minimality of S. Consider the string x′ ∈ {0, 1}n formed
by setting all the coordinates in S to 1 and all the coordinates outside S to 0. Then,
|S| = Cert(f, x′) ≤ Cert(f). Specifically, any minimal certificate for f ’s value on x′ must be
a subset of its 1-coordinates and hence a subset of S. The minimality of S implies no S′ ⊊ S

can certify f ’s value on x′. ◀

Proof of Fact 5. This fact is witnessed by the addressing function, Addressr : [r] ×
{0, 1}r → {0, 1} defined as Addressr(x, y) = yx. Viewing Addressr as a Boolean function
on log r + r bits, we have Cert(Addressr) = log r + 1 but any fixing of the r bits of y

constitutes a minimal certificate. ◀

5 A structural result for functions with low certificate complexity

Notation and useful definitions. All distributions over {0, 1}n are uniform unless otherwise
specified. We use boldface to denote random variables (e.g. x ∼ {0, 1}n) and we write
“w.h.p.” to mean with probability ≥ 1− 1/nω(1).

▶ Definition 20 (Variance). For any function f : {0, 1}n → {0, 1}, the variance of f is
defined as

Var(f) := Var
x∼{0,1}n

[f(x)] = Pr
x∼{0,1}n

[f(x) = 0] · Pr
x∼{0,1}n

[f(x) = 1].

▶ Definition 21 (Influence). For any functions f : {0, 1}n → {0, 1}, we define the influence
of the coordinate i ∈ [n] to be

Infi(f) := Pr
x∼{0,1}n

[f(x) ̸= f(x⊕i)]

where x⊕i ∈ {0, 1}n is the unique point that differs from x in only the ith coordinate. We
also define the total influence as

Inf(f) :=
∑
i∈[n]

Infi(f),

and the maximum influence as

MaxInf(f) := max
i∈[n]
{Infi(f)} .
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Main structural result

In this section we prove the following structural result: iteratively and randomly restricting
a function f by its most influential variable causes it to become constant w.h.p. after
O(Cert(f)4) iterations. To do so, we analyze the following family of decision trees.

▶ Definition 22. For a function f : {0, 1}n → {0, 1}, the influence-maximizing tree of depth
d for f , denoted Tf (d), is the complete tree of depth d such that for each internal node v, the
variable i(v) queried is the one with the largest influence in the subfunction fv:

Infi(v)(fv) ≥ Infj(fv) for all j ∈ [n].

Ties are broken arbitrarily, and for convenience, variables are still queried even if the function
is already constant before depth d.

We interpret the leaves and internal nodes of Tf (d) as functions obtained from f by
restricting each variable corresponding to an edge in that node’s path. Note that a random
leaf ℓ ∼ Tf (d) corresponds a random restriction where we iteratively and randomly restrict
the most influential variable of f for d iterations.

▶ Lemma 23. Let f be a function with certificate complexity Cert(f) ≤ k. Then, for a leaf
ℓ drawn uniformly at random from Tf (d) for d = O(k4 + k3 log(1/ε)), we have

Pr
ℓ

[
fℓ is constant

]
≥ 1− ε.

5.1 Useful facts for the proof of Lemma 23
The proof of Lemma 23 is by a potential function argument, where the potential function is
the average total influence of leaf functions fℓ in Tf (d):

ϕ(d) := Eℓ∼Tf (d)[Inf(fℓ)].

In the remainder of this subsection, we will prove an upper bound on the initial value ϕ(0)
and a lower bound on the drop in ϕ as we increment d. To do so, we use some basic facts
about certificates and query complexity, and a well-known inequality of [16].

▶ Definition 24 (Deterministic query complexity). The depth, or deterministic query complexity
of f is the depth of the minimum-depth decision tree computing f :

Depth(f) := min
T computing f

max
ℓ∈T

[depth(ℓ)].

Certificate complexity and query complexity are well known to be within a polynomial
factor of one another. See e.g. [6].

▶ Fact 25. For any f : {0, 1}n → {0, 1}, Cert(f) ≤ Depth(f) ≤ Cert(f)2.

We’ll need to lower and upper bound Inf(f) as a function of Var(f).

▶ Proposition 26. For any f : {0, 1}n → {0, 1}, 4 Var(f) ≤ Inf(f) ≤ 4 Var(f) · Cert(f).

Proof. The first inequality is the well-known Poincaré inequality for the Boolean cube [15].
For the second, let Sens(f, x) be the number sensitive coordinates of x, i.e. the number
distinct i ∈ [n] for which f(x) ̸= f(x⊕i). We rewrite the definition for the total influence
of f ,
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Inf(f) = E
x∼{0,1}n

[Sens(f, x)]

= E
x∼{0,1}n

[Sens(f, x) · 1[f(x) = 0] + Sens(f, x) · 1[f(x) = 1]].

Every sensitive edge (i.e. (x, x⊕i) where f(x) ̸= f(x⊕i)) must contain one endpoint classified
as 0 and one endpoint classified as 1. Therefore, the two terms in the above sum are
equal. Furthermore, any certificate for x must include all Sens(f, x) sensitive coordinates, so
Sens(f, x) ≤ Cert(f, x) ≤ Cert(f). We can therefore bound,

Inf(f) = 2 ·min
(
E[Sens(f, x) · 1[f(x) = 0]],E[Sens(f, x) · 1[f(x) = 1]]

)
≤ 2 · Cert(f) ·min(Pr[f(x) = 0], Pr[f(x) = 1])
≤ 4 · Cert(f) · Pr[f(x) = 0] · Pr[f(x) = 1] = 4 · Cert(f) ·Var(f). ◀

Using the bound Var(f) ≤ 1
4 for any f with range {0, 1}, we obtain the following corollary.

▶ Corollary 27. For any f : {0, 1}n → {0, 1}, Inf(f) ≤ Cert(f).

The corollary provides the upper bound on ϕ(0), since ϕ(0) is just Inf(f). To lower bound
the drop in ϕ as we increment d, we need the following two claims. Together, they lower
bound the drop in influence of subfunctions if you query the most influential variable in a
function with low query complexity.

▶ Theorem 28 (Corollary of Theorem 1.1 from [16]). For any f : {0, 1}n → {0, 1},

MaxInf(f) ≥ 4 Var(f)
Depth(f) .

▶ Proposition 29. For any function f and variable xi,

Inf(f)− Infi(f) = 1
2 (Inf(fxi=0) + Inf(fxi=1)).

Finally, in addition to these statements about the behavior of ϕ, we also need a condition
under which we can be assured that a leaf is constant.

▶ Fact 30 (Granularity of variance). Let f be a function with certificate complexity k. Then
if Var(f) < 2−k − 2−2k, it must be the case that Var(f) = 0, and thus f is constant.

Proof. Var(f) is defined as Pr[f(x) = 0] · Pr[f(x) = 1]. If f(x) = 0 for some x, then
there must be a 0-certificate for x; i.e. there must be a subcube of codimension ≤ k for
which f is constant 0. Thus, Pr[f(x) = 0] ≥ 2−k, and more generally, if f is not constant
then min(Pr[f(x) = 0], Pr[f(x) = 1]) ≥ 2−k. The function p(1 − p), for p ranging from
2−k to 1 − 2−k, is minimized at the endpoints of that interval, where it takes the value
2−k − 2−2k. ◀

5.2 Proof of Lemma 23
With the claims presented in the previous subsection in hand, we can now prove Lemma 23.
A lower bound on the drop in ϕ in terms of variable influences in Tf (d− 1) follows directly
from Proposition 29:
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▶ Corollary 31 (Corollary of Proposition 29). For any function f and depth d ≤ n,

ϕ(d) = ϕ(d− 1)− Eℓ∈Tf (d−1)[Infi(ℓ)(fℓ)],

where i(ℓ) is the variable queried at ℓ in Tf (d− 1).

▶ Lemma 32 (Upper bound on ϕ(d)). For a function f with certificate complexity k, and
any depth d ≤ n, we have

ϕ(d) ≤ k ·
(

1− 1
k3

)d

Proof. Each depth-d node of Tf (d) maximizes influence in the corresponding leaf function fℓ

of Tf (d− 1). By Theorem 28, this means its influence on fℓ is at least 4 Var(fℓ)/k2. Because
fv has certificate complexity at most k, Proposition 26 guarantees that 4 Var(fv)/k2 ≥
Inf(fv)/k3. We now apply Corollary 31:

ϕ(d) = ϕ(d− 1)− Eℓ∈Tf (d−1)[Infi(ℓ)(fℓ)] (Corollary 31)
≤ ϕ(d− 1)− Eℓ∈Tf (d−1)[Inf(fℓ)/k3] (Theorem 28)

≤ ϕ(d− 1)− ϕ(d− 1)
k3 (definition of ϕ)

≤ ϕ(0) ·
(

1− 1
k3

)d

. (solution to recurrence relation)

The lemma follows from the fact that ϕ(0) ≤ k, which is a consequence of Corollary 27. ◀

Proof of Lemma 23. Let d = k3(2k + ln k + log(1/ε)), which is O(k4 + k3 log(1/ε)). We
begin with the fact that

ϕ(d) ≤ k ·
((

1− 1
k3

)k3)2k+ln k+log(1/ε)

≤ k · e−(2k+ln k+log(1/ε))

< ε · 2−2k.

By Markov’s inequality, at least a 1− ε fraction of the leaf functions must have influence
at most 2−2k. By Proposition 26, this implies that their variance is also at most 2−2k. Since
each leaf function has certificate complexity at most k, from Fact 30 we may infer that these
leaves are constant, which concludes the proof. ◀

5.3 A robust version of Lemma 23
Algorithmically, we need not build the influence-maximizing tree in order for the potential
function argument to go through. Suppose we estimate influences to within a factor of
two instead. Then the influence of the queried variable is at least 2 Var(fv)/k2, and the
multiplicative drop in ϕ(d) becomes (1 − 1/2k3). Thus, to achieve the 1 − ε probability
guarantee with 2-approximate influences, it suffices to grow the tree to twice the depth. We
state the “robust” version of this statement as a corollary.

▶ Corollary 33 (Robust version of Lemma 23). Let f be a function with certificate complexity
at most k, and Tf be any decision tree of depth O(k4 +k3 log(1/ε)) such that for each internal
node v, the variable i(v) queried has influence within a factor of 2 of the largest influence in
the subfunction fv:

Infi(v)(fv) ≥ 1
2 MaxInf(fv).
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Then, for a leaf ℓ drawn uniformly at random from Tf , we have

Pr
ℓ

[ fℓ is constant ] ≥ 1− ε.

6 Balanced influences and an algorithmic version of Corollary 33

In this section, we will prove Lemma 6, restated below.

▶ Lemma 34 (Formal version of Lemma 6). For any n ∈ N and δ ∈ (0, 1), given any
poly(n)-sized circuit f : {0, 1}n → {0, 1} and an NP oracle, there is a randomized algorithm
running in poly(n, log(1/δ))-time that, with probability at least 1− δ, finds a restriction π to
O(Cert(f)4) variables such that fπ is a constant function.

Find-Restriction(f):
Given: A circuit representation of f : {0, 1}n → {0, 1} and an NP oracle.
Output: A restriction π such that fπ is constant.

1. Initialize π ← ∅.
2. While fπ is not constant (which is checked using the NP oracle), {

a. Using Lemma 8, estimate BalInfi(fπ) for each i ∈ [n] to within ± 1
4n with

success probabilities ≥ 1− 1
4n2 and let i⋆ be the index with the largest estimate.

b. Update π with a random restriction to xi⋆ : π ← π∪{xi⋆ ← b} where b ∼ {0, 1}
is uniform random.

}
3. Return π.

Figure 1 Algorithm for finding a restriction that fixes f to a constant.

Lemma 34 is an easy consequence of Lemma 35: The algorithm in Lemma 34 simply
repeats Find-Restriction(f) log(1/δ) times and returns the shortest certificate it outputted.

▶ Lemma 35. The algorithm Find-Restriction(f) from Figure 1, with probability at least
1
2 , returns a restriction π of length at most O(Cert(f)4).

Before proving Lemma 35 we discuss why it uses balanced influences rather than influences.
As we are applying Corollary 33, we wish to determine a variable with influence at least
half as large as MaxInf(f). The definition of influence immediately suggests an algorithm
for estimating influences: Randomly sample x ∼ {0, 1}n and then compute whether f(x) ̸=
f(x⊕i). Using poly(1/ε) iterations of that procedure, we can estimate influences to additive
accuracy ±ε. To guarantee we pick a variable with influence at least half of MaxInf(f),
we would want to estimate influences to accuracy in ± MaxInf(f)

4 . Unfortunately, the naive
influence estimator requires 1/poly(MaxInf(f)) queries to do so, which is intractable when
MaxInf is too small.

A first hope is that the bound of MaxInf(f) ≥ 4 Var(f)/Depth(f) from Theorem 28 will
ensure that MaxInf is not too small. Unfortunately, in the proof of Lemma 23, we can have
Var as small as 2−Cert(f). When Var(f) is small, almost all inputs are labeled the same
way by f , so it is unlikely that a random edge (x, x⊕i) will be labeled differently. Balanced
influences (Definition 7) correct for this effect by ensuring that the initial point, x, is equally
likely to be labeled 0 or 1 by f .
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If f is already balanced, meaning it is equally likely to output 0 or 1, then D(f)
bal is just

the uniform distribution and BalInfi(f) = Infi(f). Otherwise, as we show in the following
Lemma, balanced influences are proportional to influences scaled by variance.

▶ Lemma 36 (Balanced influences proportional to influences). For any non-constant function
f : {0, 1}n → {0, 1} and coordinate i ∈ [n],

BalInfi(f) = Infi(f)
4 Var(f) .

Proof. Let Si := {x ∈ {0, 1}n | f(x) ̸= f(x⊕i)} be the set of all inputs to f that are sensitive
at the ith coordinate. Then,

Infi(f) = Pr
x∼{0,1}n

[x ∈ Si] = |Si|
2n

.

Similarly,

BalInfi(f) = 1
2

(
Pr

x∼f−1(0)
[x ∈ Si] + Pr

x∼f−1(1)
[x ∈ Si]

)
.

The key observation is that for every x ∈ Si it is also true that x⊕i ∈ Si, so f classifies
exactly half the inputs in Si as 0, and the other half as 1. Therefore,

BalInfi(f) = 1
2

(
|Si|

2
|f−1(0)| +

|Si|
2

|f−1(1)|

)
.

For each b ∈ {0, 1}, we use pb as shorthand for Prx∼{0,1}n [f(x) = b]. Then,

BalInfi(f) = 1
4

(
|Si|
2np0

+ |Si|
2np1

)
= |Si|

2n
· p1 + p0

4p0p1

= Infi(f) · 1
4p0p1

(Infi(f) = |Si|
2n , p1 + p0 = 1)

= Infi(f)
4 Var(f) . (Var(f) = p0p1)

◀

The following is a direct corollary of Lemma 36, Theorem 28, and the fact that Depth(f) ≤ n

for any f : {0, 1}n → {0, 1}.

▶ Corollary 37. For any non-constant function f : {0, 1}n → {0, 1}, there is a coordinate
i ∈ [n] satisfying

BalInfi(f) ≥ 1
Depth(f) ≥

1
n

.

We are now able to prove Lemma 35 contingent on Lemma 8 stating that balanced
influences can be efficiently estimated, which will appear in the next subsection.

Proof of Lemma 35. Find-Restriction makes at most n2 estimates of balanced influence,
so with probability at least 3

4 , all those estimates are within ± 1
4n of the true balanced

influences. By Corollary 37, there is always a variable with balanced influence at least
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1
n , so as long as all estimates succeed, Find-Restriction will always choose an i⋆ such
that BalInfi⋆(f) ≥ maxi(BalInfi(f)). By Lemma 36, that also implies that infi⋆(f) ≥
MaxInf(f)/2.

As a result, Find-Restriction builds a uniformly random path of the tree Tf described
in Corollary 33. All but 1

4 -fraction of paths in Tf at depth O(Cert(f)4) reach a restriction π

for which fπ is constant. Hence, by a union bound, the probability Find-Restriction does
not terminate with |π| ≤ O(Cert(f)4) is at most 1

4 + 1
4 ≤

1
2 . ◀

6.1 Estimating balanced influences
Definition 7 suggests a procedure for estimating balanced influences: Randomly sample
x ∼ D(f)

bal and compute whether f(x) ̸= f(x⊕i). Using poly(1/ε) iterations of that procedure
is sufficient to estimate balanced influences to additive accuracy ±ε.

The challenge in sampling from D(f)
bal is that when Var(f) is small, the D(f)

bal is far from
the uniform distribution. Here, we utilize an NP oracle for a uniform generation algorithm.3

▶ Theorem 38 (Uniform generation with an NP oracle, [3]). There is an efficient randomized
algorithm A which, given a satisfiable poly-sized circuit f : {0, 1}n → {0, 1} and NP oracle,
with high probability, outputs a uniform x ∼ f−1(1). In the failure case, A outputs ⊥.

As an easy corollary, we can sample from D(f)
bal .

▶ Corollary 39 (Sampling from D(f)
bal). There is an efficient randomized algorithm A which,

given a poly-sized non-constant circuit f : {0, 1}n → {0, 1}, with high probability outputs a
uniform x ∼ D(f)

bal . In the failure case, A outputs ⊥.

Proof. A first samples a uniform b ∼ {0, 1}. If b is 1, it uses the uniform generation
algorithm from Theorem 38 on f . Otherwise, it uses that uniform generation algorithm on
¬f , which is still a poly-sized circuit.

By union bound, the failure probability (of outputting ⊥) of A is still small. When it
does not fail, A outputs a uniform sample from D(f)

bal . ◀

Finally, we note that Lemma 8 is a direct consequence of Corollary 39 and Definition 7:
The algorithm with failure probability 1− δ takes poly(1/ε, log(1/δ)) samples x ∼ D(f)

bal and
counts the fraction of those samples for which f(x) ̸= f(x⊕i).

6.2 Technical remarks
Comparison with [4]

[4] solved the certification problem for monotone f , and also computed influences over a certain
balanced distribution as a key step. For any non-constant monotone f : {0, 1}n → {0, 1},
there is guaranteed to be some p⋆ ∈ (0, 1), called the critical probability, satisfying,

E
x∼Dp⋆

[f(x)] = 1
2

where x ∼ Dp⋆ means each xi is independently 1 with probability p⋆ and 0 otherwise. [4]
are able to show that there is a coordinate with high influence at the critical probability,
meaning Prx∼Dp⋆ [f(x) ̸= f(x⊕i)] is large.

3 [12] gave an algorithm for approximate uniform generation, which would have also sufficed for our
purpose. For simplicity, we cite the more recent work that gives exact uniform generation.
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While the ways in which [4] and this work use the existence of a coordinate with high
influence is quite different, we find it intriguing that both rely on finding such a coordinate on
a distribution on which f is balanced. A natural avenue for future work is to establish a formal
connection between the two works. Is there some definition of “balancing a distribution for
f ,” that encompasses both this work and [4]’s techniques, and is sufficient for certification?

An alternative approach through approximate counting

Given a poly-sized circuit f : {0, 1}n → {0, 1} and coordinate i ∈ [n], we can construct the
poly-sized circuit gi(x) := 1[f(x) ̸= f(x⊕i), which measures whether f is sensitive in the ith

direction at the input. In the proof of Lemma 36, we saw that Infi(f) = |g−1
i

(1)|
2n . This gives

an alternative approach to estimating the coordinate with largest influence: Approximately
count the number of accepting inputs of gi for each i ∈ [n] and output the i maximizing
that count. This approximate count just needs to be accurate to a constant multiplicative
accuracy (i.e., counti ∈ [ 3

4 · |g
−1
i (1)|, 5

4 · |g
−1
i (1)|]).

Classical results of [21, 22] show that approximate counting can be done efficiently and
deterministically given a Σ2 oracle, and [12] observed that implicit in those results, an NP
oracle is sufficient if we allow for randomized algorithms. Furthermore, they proved an
equivalence between (almost) uniform generation and approximate counting, so it’s not
surprising that our algorithm has two alternative approaches, one through uniform generation
and one through approximate counting.

Given two equivalent approaches, we chose to highlight that through uniform generation
as we find it more intuitive. It also illuminates the possible connection, detailed earlier,
with [4]’s algorithm for certifying monotone functions.

7 Our certification algorithm: Proof of Theorem 2

In this section, we show how any procedure that takes a function as input and outputs a
certificate for an arbitrary input can be converted into a procedure that takes a function and
a string as inputs and outputs a certificate for the function’s value on that string. Using this
construction and the certification procedure from Section 5, we obtain our main certification
algorithm.

Find-Certificate(f, x⋆):
Given: A circuit representation of f : {0, 1}n → {0, 1} and an input x⋆ ∈ {0, 1}n.
Output: A certificate S ⊆ [n] for f ’s value on x⋆

1. Initialize S ← ∅
2. While S is not a certificate for f ’s value on x⋆:

a. S ← S ∪Restriction(fS←x⋆)
3. Return S

Figure 2 Algorithm for the certification problem using Restriction as a subroutine.

The procedure Restriction(f) in Figure 2 is a (possibly randomized) procedure that
takes as input a circuit representation of f : {0, 1}n → {0, 1} outputs a set of coordinates
S ⊆ [n] such that there is some u ∈ {0, 1}|S| such that fS←u is a constant function
(equivalently S is a certificate for f ’s value on some input).
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The algorithm works by iteratively building a certificate S using Restriction(·) as
a subroutine. While S is not yet a certificate for f ’s value on x⋆, the algorithm calls
Restriction(·) on the subfunction obtained by restricting f according to S and x⋆. It then
augments the candidate certificate with the output from Restriction(·).

▶ Lemma 40 (Solving the certification problem using Restriction(·)). The algorithm in
Figure 2 runs in polynomial-time with access to an NP oracle and outputs a certificate of size
at most 2 · Cert(f) · γ(Cert(f)) for f ’s value on x⋆ where γ : N→ N is any nondecreasing
function satisfying |Restriction(f)| ≤ γ(Cert(f)).

We write Cert0(f) = maxx∈f−1(0){Cert(f, x)} to denote the 0-certificate complexity of
f and Cert1(f) = maxx∈f−1(1){Cert(f, x)} for the 1-certificate complexity of f . Our proof
relies on the following fact which states that the 0-certificate complexity of a function
decreases when restricting the coordinates of a 1-certificate to any set of values and vice versa
for a 1-certificate. For the proof of this result, see [4, Theorem 6]. The main idea underlying
the proof is that every 0-certificate has a nonempty intersection with every 1-certificate.

▶ Proposition 41 (See [4, Theorem 6]). Let f : {0, 1}n → {0, 1}, S ⊆ [n] and u ∈ {0, 1}|S|.
If fS←u(x) is the constant function for all x ∈ {0, 1}n−|S|, then

Cert1(f) + Cert0(f)− 1 ≥ Cert0(fS←u) + Cert1(fS←u)

for all u′ ∈ {0, 1}|S|.

Proof of Lemma 40. We claim that the algorithm depicted in Figure 2 satisfies the lemma
statement.

Each step of the algorithm can be implemented efficiently using an NP oracle. In particular,
determining if S ⊆ [n] is a certificate for f ’s value on x⋆ is equivalent to checking if fS←x∗

is the constant function. This task can be accomplished by restricting the circuit for f

to obtain a circuit for fS←x∗ and checking whether the restricted circuit is satisfiable (or,
possibly unsatisfiable depending on whether f(x⋆) = 1). Moreover, the correctness of the
algorithm follows immediately from the condition of the while loop. Therefore, it suffices to
bound the runtime.

If S = Restriction(f), then

Cert1(f) + Cert0(f)− 1 ≥ Cert1(fS←u) + Cert0(fS←u) (Proposition 41)
> 0

for all u such that fS←u is nonconstant. Therefore, each step of the algorithm decreases
the sum Cert1(fS←x∗) + Cert0(fS←x∗) by at least 1 and terminates when this quantity
reaches 0. It follows by induction that the main loop terminates after at most 2 · Cert(f) ≥
Cert0(f) + Cert1(f) calls to Restriction(·). Each loop iteration adds

|Restriction(fS←x∗)| ≤ γ(Cert(fS←x⋆))
≤ γ(Cert(f)) (Cert(fS←x∗) ≤ Cert(f))

coordinates to the candidate certificate. Hence, the overall size of the final certificate is
bounded by 2 · Cert(f) · γ(Cert(f)). ◀

Proof of Theorem 2 using Lemmas 6 and 40. By Lemma 6, there is a randomized
polynomial-time algorithm with an NP oracle that implements Restriction(f). This
algorithm has the guarantee that |Restriction(f)| ≤ O(Cert(f)4). Therefore, the algo-
rithm in Figure 2 satisfies Theorem 2 by Lemma 40: it runs in polynomial-time with NP
oracle access and w.h.p. (over the randomness of Restriction(f)) outputs a certificate of
size O(Cert(f)5) for f ’s value on a given input. ◀
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8 Hardness of instance-wise guarantees: Proof of Theorem 3

Theorem 3 follows as a consequence of the following lemma.

▶ Lemma 42. There is a polynomial-time algorithm that takes a co-nondeterministic circuit
C : {0, 1}n × {0, 1}n → {0, 1} accepting a nonempty monotone set and a parameter m ≥ n

and outputs a circuit representation of a function f : {0, 1}n+m → {0, 1} which satisfies the
following.
1. If C accepts an input with ≤ k ones, then Cert(f, (1n, 1m)) ≤ k.
2. If every x that C accepts has > k′ ones, then |S| > min{k′, m− n− logc(m)} for every

certificate S ⊆ [m + n] of f ’s value on (1n, 1m)
where k′ > k and c > 1 is an absolute constant.

The proof of this lemma involves zero-error bit-fixing dispersers. At a high level, a
disperser is a nearly-surjective function that remains nearly-surjective even after restricting
all but a small number of the input bits. More specifically, an ε-error disperser with entropy
threshold λ is an efficiently constructible function D : {0, 1}m → {0, 1}n such that the image
of the function after restricting all but λ input bits is at least an (1− ε)-fraction of {0, 1}n.
For our application, we require ε = 0 so that the function remains fully surjective after
restricting the input bits.

▶ Definition 43 (Zero-error bit-fixing disperser with entropy threshold λ). Consider a function
D : {0, 1}m → {0, 1}n. Let S ⊆ [m] be a subset of size |S| ≤ m− λ and let u = {0, 1}|S| be
an assignment to that subset. Then DS←u : {0, 1}m−|S| → {0, 1}n is the function D with the
variables in S fixed according to u. We say that D is a zero-error bit-fixing disperser with
entropy threshold λ if for all such S and u, the image of DS←u is {0, 1}n.

We use the following key result due to [10] about explicit zero-error bit-fixing dispersers.

▶ Theorem 44 (Explicit constructions of zero-error bit-fixing dispersers [10, Theorem 9]). There
exists a constant c > 1 such that for large enough m and λ ≥ logc m, there is an explicit
zero-error bit-fixing disperser D : {0, 1}m → {0, 1}λ−logc m with entropy threshold λ.

With this theorem in hand, we are able to prove Lemma 42.

Proof of Lemma 42. Let C : {0, 1}n × {0, 1}n → {0, 1} be co-nondeterministic circuit that
accepts a non-empty monotone set and let m ≥ n be a parameter. We define the function
f : {0, 1}n × {0, 1}m → {0, 1} as

f(x, z) := C(x, D(z))

where D : {0, 1}m → {0, 1}n is a zero-error bit-fixing disperser as in Theorem 44. Note that
D’s entropy threshold is λ = n + logc(m). We show that solving the certification problem for
f ’s value on the input 1⃗ = (1n, 1m) satisfies the lemma statement. We first consider the case
where C accepts a low Hamming weight input and then consider the case where all accepted
strings have large Hamming weight.

C accepts an input with ≤ k ones. Suppose C accepts an input x ∈ {0, 1}n with ≤ k

ones. Then, by the monotonicity of C, the set S = {i : xi = 1} ⊆ [n + m] consisting of the
indices on which x is one is a certificate of size ≤ k for f ’s value on the input 1⃗.
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Every x that C accepts has > k′ ones. In this case, we show that every certificate S

for f ’s value on 1⃗ has at least min{k′, m − n − logc(m)} coordinates. Let S ⊆ [n + m] be
an arbitrary certificate for f ’s value on 1⃗. We partition S into two sets S = Sn ∪ Sm where
Sn ⊆ [n] consists of the indices from the first n-coordinates of (1n, 1m) and Sm ⊆ [m] consists
of the indices from the last m-coordinates of (1n, 1m). We split into two cases depending on
the size of Sm. In the first case, we lower bound |S| by k′ and in the second case we lower
bound |S| by m− n− logc(m). Since the two cases are exhaustive, the lemma follows.
1. Sm is small: |Sm| ≤ m − (n + logc(m)). The image of DSm←1⃗ is {0, 1}n because

D is a disperser with entropy threshold λ = n + logc(m). It follows that for every
x ∈ {0, 1}n−|Sn| and every y ∈ {0, 1}n,

CSn←1⃗(x, y) = f (⃗1).

Therefore, Sn alone is a certificate for f ’s value on 1⃗. But this implies |S| ≥ |Sn| > k′ by
our assumption that every x that C accepts has at least k′ ones.

2. Sm is large: |Sm| > m − (n + logc(m)). In this case, we have |S| ≥ |Sm| >

m− (n + logc(m)) which gives the desired lower bound.
Finally, we observe that our algorithm is efficient since a circuit for f can be constructed

by adding wires from the output gates of D to the appropriate input gates of C. ◀

8.1 Putting it all together: Proof of Theorem 3

Proof. Suppose the theorem were false. That is, there is an efficient algorithm that can
distinguish between inputs having certificate size k versus requiring size at least k · n1−ε for
some fixed constant ε > 0. Then, we will obtain a contradiction to Theorem 11 by solving
MMWW with a gap of n1−ε.

Let (C, k) be an instance of MMWW. Let f : {0, 1}n+m → {0, 1} and x⋆ = 1⃗ be the
function and input obtained from Lemma 42 for m = 3n. Run the certification algorithm on
(f, 1⃗) and output YES if the algorithm outputs YES and NO otherwise. To show correctness,
we consider the two cases of Theorem 11: either C accepts an input of length k or every
accepted input has length at least k · n1−ε.

C accepts an input with k ones. By the guarantee of Lemma 42, there is a certificate of
size ≤ k for f ’s value on 1⃗. Therefore, our algorithm correctly outputs YES.

All strings C accepts have at least k·n1−ε ones. Using k′ = kn1−ε and m = 3n, Lemma 42
guarantees that all certificates |S| for f ’s value on 1⃗ have size at least min{kn1−ε, 2n −
logc(3n)}. We observe

2n− logc(3n) > n ≥ k · n1−ε

where the last step follows by our assumption on C (trivially, any input that C accepts can
have at most n ones so n < kn1−ε would be impossible). Therefore,

|S| > min{kn1−ε, 2n− logc(3n)} = kn1−ε

for all certificates S of f ’s value on 1⃗ and therefore our algorithm correctly outputs NO. ◀
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Abstract
In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix
multiplication. Previous work within this approach ruled out certain families of groups as a route to
obtaining ω = 2, while other families of groups remain potentially viable. In this paper we turn our
attention to matrix groups, whose usefulness within this framework was relatively unexplored.

We first show that groups of Lie type cannot prove ω = 2 within the group-theoretic approach.
This is based on a representation-theoretic argument that identifies the second-smallest dimension
of an irreducible representation of a group as a key parameter that determines its viability in this
framework. Our proof builds on Gowers’ result concerning product-free sets in quasirandom groups.
We then give another barrier that rules out certain natural matrix group constructions that make
use of subgroups that are far from being self-normalizing.

Our barrier results leave open several natural paths to obtain ω = 2 via matrix groups. To
explore these routes we propose working in the continuous setting of Lie groups, in which we
develop an analogous theory. Obtaining the analogue of ω = 2 in this potentially easier setting is a
key challenge that represents an intermediate goal short of actually proving ω = 2. We give two
constructions in the continuous setting, each of which evades one of our two barriers.
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1 Introduction

The exponent of matrix multiplication is the smallest number ω such that for each ε > 0,
there exists an algorithm for multiplying two n × n matrices using O(nω+ε) field operations.
It is clear that ω ≥ 2, and a long line of work has led to the best upper bound currently
known of ω < 2.37286 from [3]. It is a longstanding and well-known open problem to resolve
the conjecture that ω = 2.

In [11] a group-theoretic approach to bounding ω was proposed. Given any finite group
G and three subsets of G satisfying a certain condition (the triple product property), this
approach yields an upper bound on ω by reducing an instance of matrix multiplication
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to multiplication in the group algebra of G. This approach can capture the Coppersmith–
Winograd family of algorithms [10], which includes the current record bound. While some
barriers are known for the group-theoretic approach, for instance that abelian groups cannot
not prove ω < 3 (see [11, Lemma 3.1]) or that certain generalizations of the constructions
in [10] cannot achieve ω = 2 [6, 7, 18], the possibility that one could show ω = 2 using a
suitable family of nonabelian groups remains wide open.1

Previous work on the group-theoretic approach has focused mainly on families of very
non-simple groups, i.e., groups built up from simple groups through repeated group extension.
For example, the best bounds known on ω can be obtained using a semidirect product
of the symmetric groups with direct products of abelian groups. At the same time, the
aforementioned barriers rule out these kinds of constructions and certain generalizations
[6, 7, 18]. But this has left the simple groups – in some sense the opposite end of the spectrum
of finite groups – largely unexplored.

In this paper we address this gap in knowledge by studying finite groups of Lie type2 in
the framework of [11]. This is an important class of groups that contains all of the finite
simple groups except alternating or cyclic groups and finitely many sporadic groups. Some
good examples to keep in mind are the classical matrix groups such as the group SL(n, q) of
determinant 1 matrices over the finite field Fq or the group of n × n orthogonal matrices
over Fq with respect to a quadratic form.

1.1 Results
We start by showing that triple product property3 constructions (see Definition 2.1) in
groups of Lie type cannot prove any bound on ω better than 2 + ε for some absolute
constant ε > 0 (Corollary 3.5). This resolves a question asked in [11]. Our proof combines
a representation-theoretic argument with known bounds on the dimension and number of
irreducible representations in groups of Lie type [15, 12]. More broadly, we identify the
second-smallest dimension of an irreducible representation as a key parameter of a group
that determines its viability for the approach of [11]: Theorem 3.2 shows that groups where
this quantity is large cannot yield good bounds on ω. For example, any family of groups for
which the second-smallest dimension of an irreducible representation grows as a power of the
size of the group cannot yield ω = 2. It had been known since [11] that the largest dimension
played a key role in the quality of the bound, but small dimensions were not previously
understood to be relevant.

This first barrier builds on Gowers’ theorem on product-free sets in quasirandom
groups [13]. We note that whereas Gowers’ result involves the minimum dimension of
a nontrivial representation, the additional structure of our problem allows us to consider the
second-smallest dimension of an irreducible representation (in other words, we can skip any
other representations of dimension 1). This gives us lower bounds in groups where Gowers’

1 Other barrier results rule out different generalizations of the Coppersmith–Winograd approach, such as
[4, 2, 1, 9], but it remains unclear the extent of the implications those barriers have for the group-theoretic
approach.

2 Specifically, by a group of Lie type we mean any one of the (possibly twisted) Chevalley groups, including
the Suzuki and Ree groups, or the quotient of such a group by its center. A Chevalley group is the fixed
points of a Steinberg endomorphism in a semisimple algebraic group over a finite field (see Definition 21.6
and Table 22.1 in [17]). Among others, this list includes SL(n, q), SU(n, q), SO(2n + 1, q), Sp(2n, q),
SO+(2n, q), and SO−(2n, q). Obtaining simple groups can require taking the quotient by the center,
but that does not change our conclusions, such as Corollary 3.5.

3 We note in Remark 3.3 that similar barriers hold for simultaneous triple product property constructions,
as defined in [10, Definition 5.1].
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result does not apply, such as SL(n, q). It is interesting that while triple product property
constructions in abelian groups cannot yield nontrivial bounds on ω, this barrier shows that
highly nonabelian groups also have significant limitations.

Next we show in Theorem 3.7 that subgroups with large normalizers cannot be used in a
triple product property construction to obtain ω = 2. This barrier is particularly effective
in the setting of matrix groups. For example, one cannot obtain ω = 2 via a triple product
property construction using three subgroups inside GL(n, q) for varying q and any fixed n,
or even inside products of such groups.

Our first barrier result rules out obtaining exponent 2 from finite groups of Lie type, but
still leaves open the possibility that such groups could serve as building blocks in efficient
algorithms for matrix multiplication. For example, the direct product of such groups escapes
the barrier entirely, since the second-smallest dimension of an irreducible representation of a
direct product equals the second-smallest dimension among the irreducible representations
of the factors. Similarly, our normalizer barrier suggests that constructions should aim to
use subgroups that are self-normalizing. We therefore view our barriers as giving us useful
information about what a possible construction using finite groups of Lie type must look
like, if it is to give ω = 2.

In the second part of the paper, we give constructions that naturally use a direct product
in a critical way (Theorem 4.9), and constructions that use self-normalizing subgroups
(Theorem 4.10). It is important to note that we know of no constructions in finite groups
of Lie type that even meet a certain “packing bound” (Definition 2.3), a prerequisite for
obtaining ω = 2. This remains an important challenge. In lieu of such constructions, we
direct our efforts at obtaining constructions in continuous Lie groups, which seems easier
and mathematically cleaner to work in, and where we can ask direct analogues of the main
questions. Here we have constructions that meet the packing bound. Moreover, we give
examples that use direct products and self-normalizing subgroups, desiderata by the barrier
results.

Our constructions do not achieve the Lie analogue of beating exponent 3, and we suggest
improving them and finding other examples as key challenges highlighted by this work.

1.2 Outline
In the next section we review the group-theoretic approach to bounding ω. In Section 3 we
give our barriers. We then introduce the Lie exponent in Section 4 and give our constructions.
We conclude with some questions in Section 5.

2 Background

In this section we review the approach of [11] to bounding ω. For a finite group G, let Irr(G)
denote the set of equivalence classes of irreducible complex representations of G, and for
X ⊆ G, let Q(X) = {xx′−1 : x, x′ ∈ X} be the quotient set of X and X−1 = {x−1 : x ∈ X}
be its collection of inverses.

▶ Definition 2.1 ([11, Definition 2.1]). We say that subsets S, T , and U of a group G satisfy
the triple product property if for all s ∈ Q(S), t ∈ Q(T ), and u ∈ Q(U),

stu = 1 =⇒ s = t = u = 1.

The simplest case is when the three subsets of G are subgroups, in which case we do not
need to take their quotient sets since Q(H) = H for every subgroup H . However, the known
constructions that achieve nontrivial upper bounds for ω do not use subgroups [10].

ITCS 2023
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Given three subsets of G that satisfy the triple product property, [11] shows how to
reduce a matrix multiplication problem to convolution of functions on G (in other words,
multiplication in the group algebra C[G]). This reduction yields the following inequality for
the exponent of matrix multiplication ω:

▶ Theorem 2.2 ([11, Theorem 4.1]). If S, T , and U satisfy the triple product property in G,
then

(|S| |T | |U |)ω/3 ≤
∑

i

dω
i ,

where di ∈ N are the dimensions of the irreducible representations of G.

If |S|, |T |, and |U | are large and the dimensions di are not too large, then this inequality
yields an upper bound for ω. For example, if

|S| |T | |U | >
∑

i

d3
i ,

then it proves that ω < 3. Using Theorem 2.2, it was shown in [10] that ω < 2.41. In
fact, this framework is powerful enough to capture the Coppersmith–Winograd family of
algorithms, including the latest record of ω < 2.37286 from [3].

In the notation of Theorem 2.2, we always have
∑

i dω
i ≥

∑
i d2

i = |G|. Thus, the
inequality in the theorem never implies a better bound on ω than (|S| |T | |U |)ω/3 ≤ |G|
would. This inequality is always consistent with ω = 2, because the multiplication maps
from S × T , T × U , and S × U to G must be injective to satisfy the triple product property,
and therefore |S| |T | |U | ≤ |G|3/2. This gives us a necessary condition for proving that ω = 2
via Theorem 2.2:

▶ Definition 2.3. We say a sequence G1, G2, . . . of finite groups meets the packing bound if
there exist subsets Si, Ti, and Ui of Gi satisfying the triple product property such that

|Si| |Ti| |Ui| = |Gi|3/2−o(1)

as i → ∞.

Several families of groups meeting the packing bound were constructed in [11]. In the
terminology of [11], meeting the packing bound means the pseudo-exponent of Gi converges
to 2 as i → ∞. A simple argument [11, Lemma 3.1] shows that this can happen only if
|Gi| → ∞.

Meeting the packing bound is a necessary condition for Theorem 2.2 to yield ω = 2: if a
family of groups contains no sequence meeting the packing bound, then there is a constant
ε > 0 such that no group in the family can prove an upper bound on ω better than 2 + ε via
Theorem 2.2. However, meeting the packing bound is not in itself sufficient to achieve ω = 2,
or even ω < 3.

3 Barriers for matrix groups

In this section we explain the two barriers mentioned in the introduction. Each of them is
based on an idea that is particularly relevant for matrix groups, although we formulate the
bounds in greater generality.
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3.1 A representation-theoretic barrier
We begin by proving our representation-theoretic barrier, which we then apply to groups of
Lie type. Our proof of Theorem 3.2 follows the Fourier-analytic proof of Gowers’ theorem on
mixing in quasirandom groups (see, for example, [8, Lemma 2.2]). Our barrier is a function
of the second-smallest dimension of an irreducible representation of G. Because we use this
parameter frequently, we introduce notation for it:

▶ Definition 3.1. For a finite nonabelian group G, let n(G) := minπ∈Irr(G): dim π>1 dim π be
the smallest dimension of an irreducible representation of G of dimension greater than 1.

▶ Theorem 3.2. If subsets S, T , and U satisfy the triple product property in a finite
nonabelian group G, then

|S| |T | |U | ≤ |G|3/2

n(G)1/2 + |G|.

Proof. Let 1X denote the indicator function of a subset X ⊆ G. For brevity, given X ⊆ G

and π ∈ Irr(G), we will write π(X) :=
∑

x∈X π(x) and dπ := dim π.
Suppose that S, T, U satisfy the triple product property. Equivalently, the value at the

identity in the 6-fold convolution 1S ∗ 1S−1 ∗ 1T ∗ 1T −1 ∗ 1U ∗ 1U−1 equals |S| |T | |U |. The
Fourier inversion formula says that a function f : G → C can be reconstructed using the
inner product ⟨X, Y ⟩ = Tr(XY ⊤) (where Y denotes the entry-wise complex conjugate) as

f(g) = 1
|G|

∑
π∈Irr(G)

dπ

〈∑
h∈G

f(h)π(h), π(g)
〉

.

Applying this formula to f = 1S ∗ 1S−1 ∗ 1T ∗ 1T −1 ∗ 1U ∗ 1U−1 and g = 1 yields

|G| |S| |T | |U | =
∑

π∈Irr(G)

dπTr(π(S)π(S−1)π(T )π(T −1)π(U)π(U−1)).

When dπ = 1,

π(S)π(S−1) =
∑
s∈S

π(s)
∑
s∈S

π(s) = |π(S)|2 ,

which is a nonnegative real number, and π(S)π(S−1) = |S|2 if π is the trivial representation.
Thus,

|G| |S| |T | |U | ≥ (|S| |T | |U |)2 +
∑

π: dπ>1
dπTr(π(S)π(S−1)π(T )π(T −1)π(U)π(U−1))

= (|S| |T | |U |)2 +
∑

π: dπ>1
dπTr(π(S−1)π(T )π(T −1)π(U)π(U−1)π(S)).

By the Cauchy–Schwarz inequality,

|G| |S| |T | |U | ≥ (|S| |T | |U |)2 −
∑

π: dπ>1
dπ∥π(S−1T )∥ · ∥π(T −1U)∥ · ∥π(U−1S)∥,

where ∥ · ∥ denotes the Frobenius norm of a matrix (i.e., ∥M∥2 = Tr(MM⊤)).
Fourier inversion implies a nonabelian version of Parseval’s identity, which states that for

any function f : G → C,

∑
g∈G

|f(g)|2 = 1
|G|

∑
π∈Irr(G)

dπ

∥∥∥∥∥∥
∑
g∈G

f(g)π(g)

∥∥∥∥∥∥
2

.
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Applying this formula with f = 1S−1 ∗ 1T , which is equal to the indicator function of S−1T

by the triple product property, we obtain

|S| |T | |G| =
∑

π∈Irr(G)

dπ∥π(S−1T )∥2,

and thus for each π ∈ Irr(G) with dπ > 1,

∥π(S−1T )∥ ≤
√

|S| |T | |G|/n(G).

Using this bound and the Cauchy–Schwarz inequality, we find that

|G| |S| |T | |U | ≥ (|S| |T | |U |)2 −
√

|S| |T | |G|/n(G)
∑

π: dπ>1
dπ∥π(T −1U)∥ · ∥π(U−1S)∥

≥ (|S| |T | |U |)2

−
√

|S| |T | |G|/n(G)
√ ∑

π: dπ>1
dπ∥π(T −1U)∥2

√ ∑
π: dπ>1

dπ∥π(U−1S)∥2,

and so by Parseval’s identity,

|G| |S| |T | |U | ≥ (|S| |T | |U |)2 −
√

|S| |T | |G|/n(G)
√

|G| |T | |U |
√

|G| |S| |U |

= (|S| |T | |U |)2 − |S| |T | |U | |G|3/2/n(G)1/2.

We conclude that

|S| |T | |U | ≤ |G|3/2

n(G)1/2 + |G|,

as desired. ◀

▶ Remark 3.3. One can show a similar bound for sets Si, Ti, Ui satisfy the simultaneous triple
product property [6, Definition 2.2]. The proof proceeds by examining the coefficient of the
identity in f ∗g ∗h, where f =

∑
i 1Si

∗1T −1
i

, g =
∑

i 1Ti
∗1U−1

i
, and h =

∑
i 1Ui

∗1S−1
i

. If the
simultaneous triple product property is satisfied, then this coefficient equals

∑
i |Si| |Ti| |Ui|,

and ∥f∥2 =
∑

i |Si| |Ti|, ∥g∥2 =
∑

i |Ti| |Ui|, and ∥h∥2 =
∑

i |Ui| |Si|. When π is the trivial
representation, π(f ∗ g ∗ h) = (

∑
i |Si| |Ti|)(

∑
i |Ti| |Ui|)(

∑
i |Ui| |Si|). Combining these facts

as before, we find that(∑
i
|Si| |Ti|

)1/2 (∑
i
|Ti| |Ui|

)1/2 (∑
i
|Ui| |Si|

)1/2
≤ |G|3/2

n(G) + |G|.

We immediately obtain the following corollary from Theorem 3.2:

▶ Corollary 3.4. No sequence G1, G2, . . . of finite groups satisfying n(Gi) ≥ Ω(|Gi|δ) with
δ > 0 can meet the packing bound.

▶ Corollary 3.5. There exists a constant ε > 0 such that no triple product property construc-
tion in a group of Lie type can yield an upper bound on ω better than 2 + ε.

This corollary is more subtle than the previous one, since it does not simply amount to a
failure to meeting the packing bound.
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Proof. First, we deal with the case of groups of Lie type of bounded rank. Such groups G

satisfy n(G) ≥ Ω(|G|δ) for some constant δ > 0, as one can check from the bounds given
in [15], and this condition suffices by Corollary 3.4.

Now let G be a group of Lie type of rank r and dimension d over Fq. Then |G| = Θ(qd)
(see, for example, [17, Table 24.1]), and the lower bound n(G) ≥ Ω(qr) holds by [15]. Hence
by Theorem 3.2,

|S| |T | |U | ≤ |G|3/2/
√

n(G) + |G| = O(q3d/2−r/2).

By [12, Theorem 1.1], there are O(qr) conjugacy classes in G. Let d1, . . . , dm be the
dimensions of the irreducible representations of G, where m is the number of conjugacy
classes of G. We have

∑
i d2

i = |G| = Θ(qd), and∑
i dω

i

m
≥

(∑
i d2

i

m

)ω/2

since x 7→ xω/2 is a convex function. Hence
∑

i dω
i ≥ Ω(qr+ω(d−r)/2), and therefore Theo-

rem 2.2 cannot yield an upper bound on ω better than

ω ≤ 3
(

r + logq C

r

)
for some absolute constant C > 0. If r is large enough, then this bound cannot approach 2,
and the case of bounded r was dealt with above. ◀

Note that this corollary holds not just for groups of Lie type, but also for simple groups
that are quotients of groups of Lie type by their centers. In particular, the second part
of argument depends on only two bounds, namely a lower bound for n(G) and an upper
bound for the number of conjugacy classes in G. Both of these bounds are preserved by
taking the quotient: a quotient group always has at most as many conjugacy classes as the
original group, and every irreducible representation of the quotient yields an irreducible
representation of the original group.

Another consequence of Theorem 3.2 is a slightly sharper estimate for how close |S| |T | |U |
can come to |G|3/2 when S, T , and U satisfy the triple product property in G. It follows
from [11, Lemma 3.1] that |S| |T | |U | < |G|3/2, but this inequality does not rule out the
possibility that |S|, |T |, and |U | might be a large as ⌊|G|1/2 − 1⌋. The following corollary
shows that this cannot happen when |G| is sufficiently large.

▶ Corollary 3.6. If subsets S, T , and U satisfy the triple product property in a finite group
G, then |S| |T | |U | ≤ |G|3/2/

√
2 + |G|.

Proof. If G is abelian, then |S| |T | |U | ≤ |G| by [11, Lemma 3.1]. Otherwise n(G) ≥ 2 and
the conclusion follows from Theorem 3.2. ◀

3.2 A barrier for subgroups that are not self-normalizing
In contrast to the previous barrier, which follows from properties of the containing group, we
now give a barrier in terms of the three subsets used in a triple product property construction.
It will apply only to the case of three subgroups, as opposed to arbitrary subsets.

For X ⊆ G, let N(X) = {g ∈ G : gXg−1 = X} denote the normalizer of X in G, and let
Z(G) = {g ∈ G : gh = hg for all h ∈ G} denote the center of G.

ITCS 2023
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▶ Theorem 3.7. Suppose that subgroups H1, H2, and H3 satisfy the triple product property
in a finite group G, and let si = |N(Hi)|/|Hi|. Then

|H1| |H2| |H3| ≤ |G|3/2

(s1s2s3)1/4 .

Proof. The main observation in this proof is that |H1| |N(H1) ∩ H2| |H3| ≤ |G| (and the
analogous inequality for any permutation of H1, H2, and H3). To prove this inequality, we
will show that the map

(h1, h2, h3) 7→ h1h2h3

is injective on H1 × (N(H1) ∩ H2) × H3. If not, then there exist (h1, h2, h3) ̸= (h′
1, h′

2, h′
3)

for which

h1h2h3 = h′
1h′

2h′
3,

which implies that

h′−1
2 h′−1

1 h1h2h3h′−1
3 = 1.

However, h′−1
2 (h′−1

1 h1)h′
2 is another element h′′

1 ∈ H1 (not equal to 1 if h′
1 ̸= h1), since h′

2
is in the normalizer of H1. We thus have h′′

1(h′−1
2 h2)(h3h′−1

3 ) = 1 with not all three factors
equal to 1, which contradicts the triple product property for H1, H2, and H3.

Now this inequality implies that

|G| ≥ |H1| |N(H1) ∩ H2| |H3| = |H1| |N(H1)| |H2|
|N(H1)H2|

|H3| ≥ |H1| |N(H1)| |H2|
|G|

|H3|.

The inequality in the theorem statement follows by repeating this argument with H2, H3
and then H3, H1 in place of H1 and H2 and taking the product. ◀

▶ Remark 3.8. The same proof in fact works for subsets S, T, U satisfying the triple product
property, not just subgroups, and leads to the conclusion that

|S| |T | |U | ≤
(

|G|3

|N(Q(S)) ∩ T | |N(Q(T )) ∩ U | |N(Q(U)) ∩ S|

)1/2

.

The following corollary shows that triple product property constructions using subgroups
of groups G satisfying |Z(G)| = Ω(|G|δ) with δ > 0 cannot meet the packing bound. For
example, this shows that triples of subgroups in GL(n, q) with fixed n cannot meet the
packing bound.4

▶ Corollary 3.9. If subgroups H1, H2, and H3 satisfy the triple product property in a finite
group G, then

|H1| |H2| |H3| ≤ |G|3/2

|Z(G)|1/2 .

4 More generally, arbitrary subsets cannot meet the packing bound, because intersecting random translates
of the subsets with SL(n, q) would give subsets of SL(n, q) meeting the packing bound in expectation,
and we have seen that this is impossible since SL(n, q) a group of Lie type of bounded rank when n is
fixed.
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Proof. Because H1 ∩ Z(G), H2 ∩ Z(G), and H3 ∩ Z(G) satisfy the triple product property
in the abelian group Z(G),

|Z(G)| ≥ |H1 ∩ Z(G)| |H2 ∩ Z(G)| |H3 ∩ Z(G)|

by [11, Lemma 3.1]. Combining this inequality with Z(G) ⊆ N(Hi) shows that

|Z(G)| ≥ |H1 ∩ Z(G)| |H2 ∩ Z(G)| |H3 ∩ Z(G)|
= |H1| |H2| |H3| |Z(G)|3/(|H1Z(G)| |H2Z(G)| |H3Z(G)|)
≥ |H1| |H2| |H3| |Z(G)|3/(|H1N(H1)| |H2N(H2)| |H3N(H3)|)
= |H1| |H2| |H3| |Z(G)|3/(|N(H1)| |N(H2)| |N(H3)|),

and therefore |N(H1)| |N(H2)| |N(H3)|/(|H1| |H2| |H3|) ≥ |Z(G)|2. The conclusion now
follows by Theorem 3.7. ◀

4 Constructions in Lie groups

In this section, we study triple product property constructions in Lie groups (i.e., groups
that are also smooth manifolds). All Lie groups will be assumed to be positive-dimensional.
We define the Lie exponent of a Lie group G in terms of the rank r(G), which we take to be
the real dimension of a Cartan subalgebra of the Lie algebra.5

▶ Definition 4.1. The Lie exponent ω(G) of a Lie group G of rank r(G) is the infimum of
the quantity

r(G)
(dim M1 + dim M2 + dim M3)/3 − (dim G − r(G))/2

over all submanifolds M1, M2, and M3 of G satisfying the triple product property and
(dim M1 + dim M2 + dim M3)/3 > (dim G − r(G))/2. (Recall that the infimum of the empty
set is +∞.) The Lie exponent of a family of groups is the infimum of ω(G) over G in the
family.

We primarily have in mind semisimple Lie groups, or more generally reductive groups,
and it is unclear how relevant the Lie exponent is for other groups. Note that if G is abelian,
then r(G) = dimR G.

Definition 4.1 is motivated by the following analogy with the finite field setting. The finite
groups of Lie type fall into families of Chevalley groups defined over Fq as q varies, with the
families corresponding to the classification of simple Lie groups (as well as some complications
such as twisting). For example, SL(n, q) is analogous to SL(n,R) or SL(n,C). Suppose
we have triple product property constructions with subsets of sizes qm1+o(1), qm2+o(1), and
qm3+o(1) in such a family of simple groups Gq as q → ∞. This is a finite analogue of having
submanifolds of dimensions m1, m2, and m3. It follows from [16, Theorem 1.3] that the
largest irreducible representation of Gq has dimension q(d−r)/2+o(1) as q → ∞, where d and
r are the dimension and rank of the corresponding Lie group.6 If the dimensions of the
irreducible representations of Gq are d1, . . . , dk, then by Theorem 2.2,

5 Note that this differs from the usual convention for complex Lie groups of using the complex dimension.
For example, this is why Table 4.1 shows that r(GL(n,C)) = 2n.

6 To deduce this result from [16, Theorem 1.3], note that the Steinberg representation has dimension
q(d−r)/2. See also [16, Theorems 5.1–5.3] for some classical groups that are not quite simple.
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q(m1+m2+m3+o(1))ω/3 ≤
∑

i

dω
i

≤
∑

i

d2
i max

j
dω−2

j

= |G| max
j

dω−2
j

= qd+(ω−2)(d−r)/2+o(1),

and taking the limit as q → ∞ shows that

ω ≤ r

(m1 + m2 + m3)/3 − (d − r)/2

if the denominator is positive. In other words, Definition 4.1 is exactly the bound on ω one
would get if the construction had an analogue in the corresponding finite groups of Lie type.
We note that we know of no general reason why such an analogue should exist; indeed, we
do not know of any finite analogues of the Lie group constructions given later in this section.
We pose the following question:

▶ Question 4.2. Is it true that for every Lie group G, the exponent of matrix multiplication
is at most ω(G)?

By Proposition 4.3 below, the answer must be yes if ω = 2. A direct proof would be of
considerable interest. Even without such a proof, we view ω(G) as a model for what groups
can do in the continuous setting, which allows for geometric constructions that may not work
over finite fields, but that we might hope give inspiration for related constructions in the
finite setting.

▶ Proposition 4.3. Every Lie group G has ω(G) > 2.

Proof. If M1, M2, and M3 satisfy the triple product property in G, then the map (m1, m2) 7→
m−1

1 m2 from M1 × M2 to G is injective, and so dim M1 + dim M2 ≤ dim G. Similarly,
dim M2 + dim M3 ≤ dim G and dim M1 + dim M3 ≤ dim G. Averaging these inequalities
shows that (dim M1 + dim M2 + dim M3)/3 ≤ (dim G)/2, and therefore the bound we obtain
for ω(G) is at least

r(G)
(dim G)/2 − (dim G − r(G))/2 = 2.

Equality could hold only if dim Mi = (dim G)/2 for all i. In that case, every continuous,
injective function from M1 × M2 to G must be open by invariance of domain, and therefore
has an open image. In particular, for m′

1 ∈ M1 and m′
2 ∈ M2 consider the map sending

(m1, m2) ∈ M1 × M2 to m′
1m−1

1 m2m′−1
2 . Its image contains a neighborhood of 1, but by the

triple product property it intersects the quotient set Q(M3) = M3M−1
3 only at 1, which is

impossible since Q(M3) contains a submanifold M3m−1
3 (for fixed m3 ∈ M3) of dimension

(dim G)/2 that contains 1. ◀

Note that in the notation of Definition 4.1, if dim M1 + dim M2 + dim M3 ≤ dim G, then
they cannot prove any better upper bound for ω(G) than 3. This conclusion is immediate if
r(G) = dim G, and one can check that it follows from r(G) ≤ dim G. In fact, the best upper
bound we know on the Lie exponent is 3, which holds for abelian groups:
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▶ Proposition 4.4. If G is abelian, then ω(G) = 3.

Proof. Let H1 = G and H2 = H3 = {1}. Then H1, H2, and H3 satisfy the triple product
property in G. Since r(G) = dim G and dim H1 + dim H2 + dim H3 = dim G, it follows that
ω(G) ≤ 3.

For the other direction, note that if G is abelian, then the product map M1×M2×M3 → G

must be injective or else the triple product property fails. If the map is injective, then
dim M1 + dim M2 + dim M3 ≤ dim G and hence ω(G) ≥ 3. ◀

There is also a Lie analogue of the packing bound from Definition 2.3.

▶ Definition 4.5. We say a sequence G1, G2, . . . of Lie groups meets the packing bound
if there exist submanifolds M1,i, M2,i, and M3,i of Gi satisfying the triple product property
such that

lim
i→∞

dim Gi

(dim M1,i + dim M2,i + dim M2,i)/3 = 2.

▶ Proposition 4.6. If Lie groups G1, G2, . . . have limi→∞ ω(Gi) = 2, then they achieve the
packing bound.

Proof. It suffices to show that for M1, M2, and M3 satisfying the triple product property in
a group G with (dim M1 + dim M2 + dim M3)/3 > (dim G − r(G))/2,

r(G)
(dim M1 + dim M2 + dim M3)/3 − (dim G − r(G))/2 ≥ dim G

(dim M1 + dim M2 + dim M3)/3 .

This assertion follows from the inequality (dim M1 + dim M2 + dim M3)/3 ≤ (dim G)/2 used
in the proof of Proposition 4.3. ◀

It was shown in [11, Theorem 6.1] that the Lie groups SL(n,R) meet the packing bound,
by taking M1, M2, and M3 to be the groups of upper unitriangular, lower unitriangular, and
orthogonal matrices. In this construction, the group is an algebraic group over R, as are the
subgroups Mi. In particular, they are all linear algebraic groups over R, i.e., subgroups of
GL(n,R) defined by polynomial equations. Algebraic groups are a little more general than
linear algebraic groups; they are to algebraic varieties as Lie groups are to manifolds.

However, algebraic varieties over C (or any algebraically closed field) cannot help:

▶ Theorem 4.7. Let G be an algebraic group over an algebraically closed field, and let V1,
V2, and V3 be subvarieties of G that satisfy the triple product property. Then

dim V1 + dim V2 + dim V3 ≤ dim G.

As a consequence, subvarieties of algebraic groups over C cannot be used to meet the
packing bound or obtain a better Lie exponent than 3.

Proof. Let v′
i be any element of Vi, and define φ : V1 × V2 × V3 → G by

φ(v1, v2, v3) = v1v′−1
1 v2v′−1

2 v3v′−1
3 .

By the triple product property, the only solution of φ(v1, v2, v3) = 1 is (v′
1, v′

2, v′
3), and so

the solution set is zero-dimensional since we are working over an algebraically closed field.
However, the fiber dimension theorem [14, Theorem 17.24] says the dimension of the solution
set must be at least dim V1 +dim V2 +dim V3 −dim G, which yields the desired inequality. ◀
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The intuitive difference between R and C here is that a variety can have fewer points
over R than one might expect by counting degrees of freedom. For example, the equation
x2

1 + · · · + x2
n = 0 defines an (n − 1)-dimensional variety, which has plenty of points over C,

but over R it consists of just a single point. Fields that are not algebraically closed may
lead to an anomalously low number of solutions, and we cannot conclude that a variety is
zero-dimensional just because it has only one real point. What Theorem 4.7 indicates is
that to obtain strong examples, we must either use constructions that are not defined by
polynomial equations, or choose equations that have fewer solutions over R than they do
over C. (Note that there are many possibilities that are not defined by polynomial equations.
For example, constructions that use complex conjugation generally do not define complex
subvarieties.)

Theorem 4.7 does rule out one superficially attractive possibility, namely obtaining Lie
exponent 2 via subvarieties of algebraic groups over Fq and then transitioning to finite groups
by using finite subfields of Fq with sizes tending to infinity.

We now give several new constructions over R with parameters that improve upon the
previously known construction from [11]. Our constructions make use of the following
observation, which relaxes the triple product property for subgroups.

▶ Lemma 4.8. Suppose that H1, H2, and H3 are Lie subgroups of a Lie group G and K

is a compact subgroup of G such that the equation h1h2h3 = 1 with hi ∈ Hi implies that
h1, h2, h3 ∈ K. Then the Lie exponent of G is at most

r(G)
(dim H1 + dim H2 + dim H3 − 2 dim K)/3 − (dim G − r(G))/2 .

We will refer to this situation as the K-triple product property. More generally, the same
holds for submanifolds Mi such that q1q2q3 = 1 with qi ∈ Q(Mi) implies q1, q2, q3 ∈ K, but
we will need it only for subgroups.

Proof. By the slice theorem [5, Theorem I.2.1], there exist submanifolds H ′
i of Hi such that

dim H ′
i = dim Hi − dim K and no two elements h, h′ ∈ H ′

i satisfy hh′−1 ∈ K unless h = h′.
Then the submanifolds H1, H ′

2, and H ′
3 of G satisfy the triple property property and yield

the asserted bound. (Note that the first submanifold is H1, not H ′
1.) ◀

4.1 Asymptotic Lie exponent 3
As mentioned above and shown in [11, Theorem 6.1], the upper unitriangular, lower unitrian-
gular, and special orthogonal groups satisfy the triple product property in SL(n,R). Since
these subgroups have dimension n(n − 1)/2 inside a group of dimension n2 − 1, the groups
SL(n,R) meet the packing bound.

However, the rank of SL(n,R) is n − 1, and so this example does not yield any Lie
exponent bound (the denominator in Definition 4.1 would vanish). In this section we modify
the construction to get a bound on the Lie exponent approaching 3 for powers of SL(n,R).

▶ Theorem 4.9. For m > 1 and n > 1, the Lie exponent of SL(n,R)m is at most

3m(n − 1)
m(n − 1) − n

.

In the proof we will denote the i, j entry of a matrix M by Mi,j . To avoid ambiguity we
will use superscripts to index sequences of matrices, with parentheses around the superscripts
to distinguish them from exponents. Recall also that a unitriangular matrix is a triangular
matrix with diagonal entries equal to 1.
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Proof. Let H1 = SO(n,R)m, let

H2 = {(A(1), . . . , A(m)) ∈ SL(n,R)m : each A(i) is upper unitriangular},

and let

H3 =
{

(B(1), . . . , B(m)) ∈ SL(n,R)m : each B(i) is lower triangular

and
m∏

i=1
B

(i)
j,j = 1 for all j

}
,

These subgroups have dimensions mn(n − 1)/2, mn(n − 1)/2, and m(n(n + 1)/2 − 1) − n,
respectively. We claim that they satisfy the K-triple product property in SL(n.R)m, where

K = {(C(1), . . . , C(m)) ∈ SL(n,R)m : each C(i) is diagonal with ±1 entries}.

Since dim SL(n,R)m = m(n2 − 1) and the rank of SL(n,R)m is m(n − 1), while dim K = 0,
the claimed bound on the Lie exponent will follow by Lemma 4.8.

Let M = (M (1), . . . , M (m)) ∈ H1, A = (A(1), . . . , A(m)) ∈ H2, B = (B(1), . . . , B(m)) ∈
H3. We will show that if MA = B, then for each i, the matrix M (i) is diagonal with ±1
diagonal entries, in which case the same follows for A(i) and B(i). We will prove by induction
on j that M (i)ej = ±ej for all i, where e1, . . . , en are the standard basis vectors.

Let the jth column of A(i) be A
(i)
j . For any i, A

(i)
1 = e1, and so M (i)e1 = B

(i)
1 . Since

M (i) is orthogonal, M (i)e1 and thus also B
(i)
1 must be unit vectors. In particular, |B(i)

1,1| ≤ 1
for all i. But since

∏m
i=1 B

(i)
1,1 = 1 this forces B

(i)
1,1 = ±1, which proves the claim for j = 1.

Now suppose M (i)ej = ±ej for all j < k and all i. For any i, A
(i)
k = ek +

∑
j<k A

(i)
j,kej

and B
(i)
k = B

(i)
k,kek +

∑
j>k B

(i)
j,kej . From the induction hypothesis we deduce that

M (i)ek = M (i)(A
(i)
k −

∑
j<k

A
(i)
j,kej

)
= B

(i)
k,kek +

∑
j>k

B
(i)
j,kej −

∑
j<k

A
(i)
j,k(±ej).

Since M (i) is orthogonal, M (i)ek is a unit vector. Because
∏

i B
(i)
k,k = 1, it follows as above

that B
(i)
k,k = ±1 for all i. Hence M (i)ek = ±ek for all i, which proves the claim. ◀

4.2 Conjugates of rotation groups
▶ Theorem 4.10. There are three conjugates of O(n,R) inside of GL(n,R) satisfying the
K-triple product property, where K is the subgroup of diagonal matrices with ±1 entries on
the diagonal.

This construction meets the packing bound. In particular, it evades the normalizer
barrier since the normalizer of O(n,R) in GL(n,R) is R× · O(n,R). However, it does not
prove a bound for ω(GL(n,R)), because each of these subgroups has dimension n(n − 1)/2,
which equals (dim GL(n,R) − n)/2, and r(GL(n,R)) = n. Note that the center of GL(n,R)
plays no role, and we could just as well have stated the theorem for conjugates of SO(n,R)
inside SL(n,R). We use the slightly more general formulation since it is convenient to allow
determinant −1 in the proof by induction.
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Proof. Let G = GL(n,R) and H = O(n,R). To specify the conjugates of H, we take
D1 = diag(x1, . . . , xn) with x1 > x2 > · · · > xn > 0 and D2 = diag(y1, . . . , yn) with
0 < y1 < y2 < · · · < yn. Then we will show that H, H1 := D1HD−1

1 , and H2 := D2HD−1
2

satisfy the K-triple product property in G, where K is the group of diagonal ±1 matrices.
In particular, we will show that for every h1 ∈ H1 and h2 ∈ H2, if h⊤

1 h1 = h⊤
2 h2, then

h1, h2 ∈ K. The conclusion then follows, since if hh1h−1
2 = I with h ∈ H, then h1h−1

2 ∈ H,
meaning (h1h−1

2 )⊤(h1h−1
2 ) = I, and hence h⊤

1 h1 = h⊤
2 h2.

Suppose that h1 = D1M1D−1
1 and h2 = D2M2D−1

2 , where M1, M2 ∈ H, and consider

h⊤
1 h1 = (D−1

1 M⊤
1 D1)(D1M1D−1

1 ).

If (a1, a2, . . . , an) is the first column of M1, then the first column of D1M1D−1
1 is

(a1, x2x−1
1 a2, . . . , xnx−1

1 an)

as is the first row of D−1
1 M⊤

1 D1, so the upper-left entry of their product h⊤
1 h1 is

a2
1 + (x2/x1)2a2

2 + (x3/x1)2a2
3 + · · · + (xn/x1)2a2

n.

Now, since a2
1 + a2

2 + · · · + a2
n = 1, we can substitute for a2

1 to obtain

1 + ((x2/x1)2 − 1)a2
2 + ((x3/x1)2 − 1)a2

3 + · · · + ((xn/x1)2 − 1)a2
n.

Because xi > x1 for all i > 1, this quantity is at most 1, with equality exactly when
a2

2 = a2
3 = · · · = a2

n = 0. By an identical argument, if (b1, b2, . . . , bn) is the first column of
M2, then the upper-left entry of h⊤

2 h2 is

1 + ((y2/y1)2 − 1)b2
2 + ((y3/y1)2 − 1)b2

3 + · · · + ((yn/y1)2 − 1)b2
n,

which is at least 1, with equality exactly when b2
2 = b2

3 = · · · = b2
n = 0. So if h⊤

1 h1 = h⊤
2 h2,

then in particular their upper-left entries are equal, and we conclude that a2
1 = b2

1 = 1, while
ai = bi = 0 for all i > 1.

Now h1 has the form
±1 0 . . . 0
0
... h′

1
0

 ,

where h′
1 is an element of D′

1 O(n − 1,R)D′−1
1 with D′

1 = diag(x2, . . . , xn), and h2 has the
form

±1 0 . . . 0
0
... h′

2
0

 ,

where h′
2 is an element of D′

2 O(n − 1,R)D′−1
2 with D′

2 = diag(y2, . . . yn). Finally, since
h1h−1

2 h = 1 we find h also has the same block-diagonal form, and so h′
1(h′

2)−1 ∈ O(n − 1,R),
and then we are done by induction on n. ◀

▶ Remark 4.11. This theorem holds when we replace G with GL(n,C) (resp., GL(n,H)), H

with U(n,C) (resp., Sp(n)), and K with the group of diagonal matrices with unit complex
(resp., quaternionic) numbers on the diagonal. This follows from a similar argument, where
one replaces transpose with conjugate transpose and uses the positivity of the complex/quater-
nionic norm. The corresponding dimensions are shown in Table 4.1.
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Table 4.1 Parameters for the real, complex, and quaternionic versions of Theorem 4.10.

(skew) field R C H

dim G n2 2n2 4n2

r(G) n 2n 4n

dim H n(n − 1)/2 n2 n(2n + 1)
dim K 0 n 3n

Meets packing bound as n → ∞ yes yes yes
Lie exponent upper bound ∞ 6 4

5 Open problems

The most important challenge highlighted by this paper is to find a construction proving that
the Lie exponent of a family of Lie groups approaches 2, or to prove that such a construction
cannot exist. Many questions can be asked along the way, including whether there is a Lie
group with Lie exponent less than 3, and whether the Lie exponent of SL(n,R) is even finite.

It follows from [18] that triple product property constructions inside SL(2, q)m cannot
give ω = 2 for fixed q and growing m, and Theorem 3.2 shows that SL(n, q)m cannot give
ω = 2 for fixed m and growing q. The proofs of these two facts are quite different: one uses
the polynomial method, and the other is Fourier analytic. Is there a common generalization
of these two facts that would rule out obtaining ω = 2 with m and q both growing?

Together with the fact that abelian groups cannot yield exponent less than 3, Theorem 3.2
implies that the alternating groups are the only simple groups left that could yield ω = 2 via
a triple product property construction. The representation-theoretic argument fails in this
case, since An has an irreducible representation of dimension n − 1 but |An| = n!/2. Can an
alternate argument rule out these groups?
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Abstract
A t-emulator of a graph G is a graph H that approximates its pairwise shortest path distances up
to multiplicative t error. We study fault tolerant t-emulators, under the model recently introduced
by Bodwin, Dinitz, and Nazari [ITCS 2022] for vertex failures. In this paper we consider the version
for edge failures, and show that they exhibit surprisingly different behavior.

In particular, our main result is that, for (2k − 1)-emulators with k odd, we can tolerate a
polynomial number of edge faults for free. For example: for any n-node input graph, we construct a
5-emulator (k = 3) on O(n4/3) edges that is robust to f = O(n2/9) edge faults. It is well known
that Ω(n4/3) edges are necessary even if the 5-emulator does not need to tolerate any faults. Thus
we pay no extra cost in the size to gain this fault tolerance. We leave open the precise range of free
fault tolerance for odd k, and whether a similar phenomenon can be proved for even k.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Emulators, Fault Tolerance, Girth Conjecture

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.20

Related Version Full Version: https://arxiv.org/abs/2209.03675 [3]

Funding Greg Bodwin: Supported in part by NSF award CCF-2153680.
Michael Dinitz : Supported in part by NSF award CCF-1909111.
Yasamin Nazari: Supported in part by Austrian Science Fund (FWF) grant P 32863-N.

1 Introduction

A basic question in theoretical computer science is to sparsify an input graph G while
approximately preserving its shortest path distances. These sparsifiers have applications in
networking, algorithms, and more (see survey [1]). We will discuss two important types of
sparsifiers: spanners and emulators.

▶ Definition 1 (Spanners). For an input graph G = (V, E, w), a t-spanner is a subgraph H

such that for all u, v ∈ V , we have distG(u, v) ≤ distH(u, v) ≤ t · distG(u, v). The parameter
t is called the stretch of the spanner.

▶ Definition 2 (Emulators). For an input graph G = (V, E, w), a t-emulator is a graph
H = (V, EH) with the following property. If we set the weight of each edge (u, v) ∈ EH to be
distG(u, v), then for all u, v ∈ V , we have distG(u, v) ≤ distH(u, v) ≤ t · distG(u, v).

Elsewhere in the literature, emulators are often defined slightly differently, as arbitrary
weighted graphs H = (V, EH , w) that approximate distances of G. However, once we choose
the edge set EH , the choice of edge weights is clear: for an emulator edge (u, v), we must
choose w(u, v) ≥ distG(u, v) to satisfy the first inequality in Definition 2, and there is no
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advantage to choosing w(u, v) strictly larger than distG(u, v).1 Hence, this optimal choice
of edge weights is hardcoded into Definition 2. (This hardcoding will be convenient in our
discussion of fault tolerant emulators below.) We also note that, for both spanners and
emulators, the first inequality distG(u, v) ≤ distH(u, v) is trivially implied by the fact that
H is a subgraph of G (for spanners) or the way the weights are set (for emulators).

Spanners were first introduced by [15, 16] in the context of distributed computing, and
they have since found many uses throughout algorithms.

Emulators were first introduced in the context of shortest path algorithms [12], but
they have close connections to distributed computing as well, e.g. they form a reasonable
model of overlay networks [7]. A priori, one could imagine that the additional flexibility of
emulators allows for a better size/stretch tradeoff than the one available to spanners. But
this possibility was refuted in a classic 1993 work of Althöfer, Das, Dobkin, Joseph, and
Soares, which determined the same (up to logs) tradeoff for both spanners and emulators:

▶ Theorem 3 ([2]). For any positive integer k, every n-node graph has a (2k − 1)-spanner
on O(n1+1/k) edges. Moreover, assuming the girth conjecture [13], this is essentially best
possible in the sense that there are n-node graphs that do not admit (2k − 1)-emulators on
o(n1+1/k/ log n) edges.

1.1 Fault-Tolerance
Distributed computing often deals with networks in which vertices or edges can temporarily
fail. Thus, when spanners and emulators are applied in distributed contexts, it is natural
to ask for fault-tolerant versions of these sparsifiers. The precise definitions are deferred to
Section 1.1.1, but at a high level we say that a spanner or emulator H is f -fault tolerant
if, for every set of at most f failing parts (edges or vertices), what remains of H is still a
spanner/emulator of what remains of G. This leads to a clear question: what is the “price”
of fault-tolerance? That is, if we want to build an f -fault-tolerant spanner or emulator with
stretch 2k − 1, what factor (depending on f) must we pay in the sparsity bound, above the
baseline size of O(n1+1/k) determined by Theorem 3 for the non-fault tolerant version?

There has been a fruitful line of work tackling this question for spanners and emulators (e.g.,
[9, 10, 5, 8, 11, 6, 7, 4, 14]). This has produced optimal bounds on the price of fault tolerance
in some settings, distinctions between edge and vertex faults, and a suite of algorithmic
techniques that allow for efficient computation of sparse fault tolerant spanners/emulators
(including in distributed and parallel models of computation). In particular, following [9, 10],
results in [5, 7, 4] have established that for edge/vertex fault tolerant spanners and for
vertex fault tolerant emulators, the price of fault tolerance is a sublinear polynomial in f .
Such a dependence can still be expensive for the important scenario where f is large, i.e. a
(sublinear) polynomial in the number of nodes n.

This paper is the first to investigate the remaining setting of edge fault tolerant emulators,
and we show a quantitative size bound that is surprisingly different from the ones for these
related objects. Our main result is that there is a parameter regime f ≤ poly(n) in which
the price of edge fault tolerance for emulators is free. That is, for fixed odd k, we construct
(2k − 1)-emulators that can handle f edge faults and only have O(n1+1/k) edges, the same
size bound settled by Theorem 3 for the non-faulty setting.

1 We mean here that there is no advantage in terms of quality of distance approximation. One could
imagine an advantage to choosing larger weights for other reasons, e.g., perhaps we want to compute
the emulator quickly and so we use a lossy approximation algorithm to set weights. But these concerns
will not arise in this paper.
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1.1.1 Fault-Tolerance Definitions and Previous Results

We now define the objects that we study and reference. For general graph spanners, fault-
tolerance was initially studied by Chechik, Langberg, Peleg, and Roditty [9], who introduced
the following definition:

▶ Definition 4 (EFT Spanners). For an input graph G, an f-edge fault tolerant (EFT)
t-spanner is a subgraph H of G such that distG\F (u, v) ≤ distH\F (u, v) ≤ t · distG\F (u, v) for
all F ⊆ E with |F | ≤ f and for all u, v ∈ V .

Equivalently, H \ F must be a t-spanner of G \ F for all possible fault sets F . Vertex
fault-tolerance is defined analogously, with F as a vertex set rather than an edge set.

After significant work following [9] (see in particular [5, 8, 11, 6, 7]), we now have a
generally good understanding of both vertex- and edge-fault tolerant spanners. Precise
bounds are given in Table 1, but the high-level view is that the price of fault-tolerance is
f1−1/k for vertex fault tolerant spanners, and even smaller for edge fault tolerant spanners
(approximately f1/2, although the exact bounds remain open). With fault-tolerant spanners
relatively well understood, fault-tolerant emulators were first studied by Bodwin, Dinitz, and
Nazari [4]. They studied emulators under vertex failures, but their model under edge failures
is the following:

▶ Definition 5 (EFT Emulators). For an input graph G = (V, E), we say that H = (V, E′)
is an f-edge fault tolerant (EFT) t-emulator H if, for all F ⊆ E with |F | ≤ f , H is a
t-emulator of G \ F .

Recall that Definition 2 hardcodes the edge weights of emulators, and thus this definition
specifically means that H approximates the distances of G \ F when the edge weights of H

are set according to distances in G \ F . That is, the following definition of EFT emulators is
equivalent to the above. Given a set F ⊆ E, let HF = (V, E′, wF ) be the weighted version
of H where the weight of each edge (u, v) ∈ E′ is set to wF (u, v) = distG\F (u, v). Then an
f -EFT t-emulator must satisfy

distG\F (u, v) ≤ distHF (u, v) ≤ t · distG\F (u, v)

for all F ⊆ E with |F | ≤ f and u, v ∈ V .
Intuitively, this means a set of edge failures F does not change the edge set of H at all;

rather, its effect on H is updated edge weights due to increasing distances in G \ F . Note
that even when an edge e is in both the emulator and the fault set, it remains as an edge in
HF ; it just has a larger weight than it does in the pre-fault graph H∅.

This model may seem too strong: why shouldn’t failures in G affect the edges left in H,
and why should the edges of H automatically get reweighted to the shortest path in G \ F?

It turns out that this weight-updating behavior arises naturally in computer networking
and distributed computing, particularly in overlay networks, which use virtual edges that
inherit their weights from the routing topology of the underlying graph. When pieces of the
underlying graph fail, the virtual edges remain intact, but the underlying routing algorithm
will automatically update to avoid failures and so the inherited lengths of the virtual edges
will reconverge to the new shortest paths. We refer the interested reader to [4] for further
practical and theoretical justification for this definition, and we also overview this discussion
ourselves in the full version [3].

ITCS 2023
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Table 1 Price of fault tolerance for edge and vertex fault tolerant spanners and emulators, proved
in [5, 8, 4, 7], including the new bounds proved in this paper (lower right). All objects also have a
lower bound of Ω(fn) edges, not reflected in this table. We note that the upper bound of O(f1/2)
for EFT emulators when k = 2 is not proved in this paper. Rather, this is inherited from the other
objects in this table; e.g., it follows from the definitions that any EFT spanner is also an EFT
emulator.

(2k − 1) Spanners (2k − 1) Emulators

Vertex Faults Θ
(

f1− 1
k

) Θ
(

f
1
2

)
if k = 2,

Θ̃k

(
f

1
2 − 1

2k

)
if k is odd,

Õk

(
f

1
2

)
and

Ωk

(
f

1
2 − 1

2k

)
if k ≥ 4 is even

Edge Faults

Θ
(

f
1
2

)
if k = 2, Θ

(
f

1
2

)
if k = 2,

Θk

(
f

1
2 − 1

2k

)
if k is odd, O

(
1 + f

3
5 n− 2

15

)
if k = 3,

Ok

(
f

1
2

)
and Ok

(
1 + f

k
k+2 n

− 2
k(k+2) + f

1
2 n

− 1
k(k+1)

)
if k is odd

Ω
(

f
1
2 − 1

2k

)
if k ≥ 4 is even Θ(1) if f = O

(
n

2
9

)
, k = 3

or f = O
(

n
2

k(k+1)

)
, k odd

1.2 Our Results
We show that EFT emulators allow for free fault-tolerance in a polynomial range of f . Our
results, together with previous work on fault-tolerant spanners and emulators, are summarized
in Table 1. We will first state our main result in the special case k = 3, for simplicity and
because for technical reasons our bound is slightly better here than for larger k.

▶ Theorem 6 (Main Result, k = 3). Every n-node graph has an f-EFT 5-emulator H

satisfying

|E(H)| = O
(

n4/3 + n6/5f3/5 + nf
)

.

▶ Corollary 7. For any n-node graph and parameter f = O(n2/9), there is an f-EFT
5-emulator H satisfying |E(H)| = O(n4/3).

Recall that there are graphs that require Ω(n4/3) edges even for a non-fault-tolerant (f = 0)
5-emulator (see Theorem 3). Thus in the parameter range f = O(n2/9), the price of edge
fault tolerance for 5-emulators is Θ(1), i.e., free. We show a similar but slightly worse bound
for general odd k:

▶ Theorem 8 (Main Result). For any fixed odd k, every n-node graph has an f-EFT
(2k − 1)-emulator H satisfying

|E(H)| = Ok

(
n1+ 1

k + n1+ 1
k+2 f

k
k+2 + n1+ 1

k+1 f
1
2 + fn

)
.

Since our theorem assumes k is fixed (a constant independent of n and f) we use Ok

notation to hide factors that depend only on k. We do not carefully track or try to optimize
these factors, but it is not hard to see that they are at most polynomial in k.

This theorem implies the following range of free fault tolerance:
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▶ Corollary 9. For any fixed odd k, n-node graph, and parameter f = O(n2/(k(k+1))), there
is an f -EFT (2k − 1)-emulator H satisfying |E(H)| = Ok(n1+1/k).

Recall that, assuming the girth conjecture, there are graphs which require Ω(n1+1/k) edges
even for a non-fault tolerant (2k− 1)-emulator. Thus we can build emulators that are robust
to O(n2/(k(k+1))) faults for free.

The exact reason why our main result holds only for odd k is rather technical, and it is
discussed in more detail at the beginning of Section 6. Very roughly, our strategy to upper
bound emulator density is based on counting a certain kind of k-path in the emulator (see
our proof overview in Section 2). Our counting strategy produces a better bound when there
exists an edge exactly in the middle of these k-paths, which is the case if and only if k is odd.
This is a similar technical issue to the one that causes inherently different upper bounds
for even/odd k in the settings of edge fault tolerant spanners [7] and vertex fault tolerant
emulators [4]; thus, this paper adds to an emerging theme that problems in this area seem
harder to understand when k is even.

We prove all our upper bounds constructively, via an algorithm which constructs EFT
emulators of the claimed size. While the “main” algorithm we analyze does not run in
polynomial time (the obvious implementation of it would take time at least Ω(nf )), in
Section 7 we show a variant that runs in polynomial time, paying an additional O(k) factor
in emulator size. This algorithm is based on ideas from [11].

At a technical level, our size analysis requires a change in strategy from prior work. The
(near-optimal) size bounds in prior work for edge fault tolerant spanners and for vertex fault
tolerant emulators happen to both be achieved by the method of analyzing alternating paths
[7, 4]; hence, this method has roughly been pushed to its limit. In order to simultaneously
benefit from the focus on edge rather than vertex faults and from the focus on emulators
rather than spanners, we need a different approach entirely, which we overview in Section 2.

On the lower bounds side, we prove two limitations on the quality of EFT emulators.
Both bounds are based on constructions that have been repeatedly used in prior work [9, 5, 7],
but which need to be reanalyzed in the setting of EFT emulators.

▶ Theorem 10 (Tight Bounds for k = 2). Every n-node graph has an f -EFT 3-emulator H

satisfying |E(H)| = O(n3/2f1/2). This is best possible, in the sense that there exist graphs
for which any f -EFT 3-emulator H has |E(H)| = Ω(n3/2f1/2)

The upper bound in Theorem 10 is inherited directly from prior work [4], while the lower
bound analysis is new in this paper. A consequence of this theorem is that EFT 3-emulators
do not confer free fault tolerance in any nontrivial range of parameters. We also have:

▶ Theorem 11. For any k, there are n-node graphs for which any f -EFT (2k − 1)-emulator
has Ω(fn) edges.

This lower bound is simple to prove and follows by considering any f/2-regular graph. It
implies that, for any k, the maximum conceivable range of free fault tolerance is f = O(n1/k).

1.3 Open Problems
The main open question left by this work is to pin down the range of f in which EFT
emulators exhibit free fault tolerance. There are two main sub-questions. The first, and
perhaps most pressing, is to determine whether free fault tolerance exists for even k ≥ 4:

▶ Open Question 12 (Is There Free Fault Tolerance for Even k?). Is there any even constant
k ≥ 4 and constant c > 0 such that, for every n-node graph and parameter f = O(nc), there
is an f -EFT (2k − 1)-emulator H satisfying |E(H)| = O(n1+1/k)?

ITCS 2023
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Our current arguments do not confer any advantage for even k, relative to the size bounds
inherited from EFT spanners and VFT emulators. The technical barrier to improved bounds
for even k is discussed briefly in Section 6. While it seems entirely plausible to apply our
techniques more carefully and obtain improved edge bounds, we think that a significant new
idea will be needed to prove (or refute) free fault tolerance for any even k in any polynomial
range of f .

The second question is to determine the range in which free fault tolerance exists for
odd k:

▶ Open Question 13 (What is the Range of Free Fault Tolerance for Odd k?). For odd k,
what is the largest constant ck such that, for every n-node graph and parameter f = O(nck ),
there is an f -EFT (2k − 1)-emulator H satisfying |E(H)| = O(n1+1/k)?

For this second question, we show that Ω
( 1

k2

)
≤ ck ≤ 1

k . It would be interesting to
asymptotically improve the lower bound on ck, improve the upper bound on ck at all, or
settle the value of c3 (we show that 2/9 ≤ c3 ≤ 1/3). It would also be interesting to obtain
“nearly-free” fault tolerance, e.g., subpolynomial price of fault tolerance in a polynomial range
of f .

2 Technical Overview and Outline

We begin with a high-level overview of our algorithm and proof strategy for constructing
f -EFT (2k − 1)-emulators.

2.1 Algorithm
Algorithmically, we will do something simple that may nevertheless be surprising: we will
run the obvious fault-tolerant variant of the greedy algorithm of Althöfer et al. [2]. That
is, we will consider the edges of G in nondecreasing weight order, and when considering an
edge (u, v) we will add it to our emulator if it is “necessary”. In the traditional non-fault
tolerant setting, “necessary” means that distH(u, v) > (2k − 1) · w(u, v), i.e., the current
spanner/emulator does not adequately preserve the distance between the endpoints u, v.
In the fault-tolerant spanner setting, where the greedy algorithm has also been used and
analyzed [5, 8, 7], “necessary” means that there is some appropriate fault set F such that
distH\F (u, v) > (2k − 1) · w(u, v) (i.e., the current solution does not adequately preserve the
distance between the endpoints under fault set F ). Analogously, in our algorithm, “necessary”
will mean that there is some fault set F ⊆ E with |F | ≤ f (and not containing (u, v)) such
that distHF (u, v) > (2k − 1) · w(u, v).

Although this fault-tolerant greedy algorithm is standard in prior work, the reason it is
surprising in our setting is that the emulator H that we construct is actually a subgraph of
the input graph G! We note this does not mean that H is a fault tolerant spanner of G.

In particular, consider what happens if there is some edge e = (u, v) ∈ E which we include
in our emulator H, and then e fails (is part of a fault set F ). In a fault-tolerant spanner,
this would mean that e also fails in the spanner: we would need H \ F to be a spanner of
G \ F , and so e would be removed from both G and H. But in a fault-tolerant emulator, e

still exists in HF : it just gets reweighted to distG\F (u, v), and hence becomes more costly to
use. In other words, the relevant distance comparisons occur between HF and G \ F , and
HF is not typically a subgraph of G \ F . Thus even though our emulator H consists only of
edges that are also in G, we strongly use the fact that we are considering emulators rather
than spanners.
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2.2 Analysis

The classical analysis of the non-fault tolerant greedy spanner algorithm works as follows.

First, one argues that H has high girth: in particular, all cycles in H will have > 2k

edges. This is a fairly straightforward consequence of the greedy algorithm.
The focus of the proof then shifts from the particular output graph of the greedy algorithm
to the more general class of graphs with high girth. One applies a counting argument
from extremal combinatorics called the Moore bounds, stating that any n-node graph H

of girth > 2k can only have O(n1+1/k) edges. The Moore bounds are a counting argument
over the non-backtracking k-paths of H, and they are proved in two steps:

(Counting Lemma) Letting d be the average degree in H, and assuming d is at least a
large enough constant, we prove that H has n · Ω(d)k non-backtracking k-paths.
(Dispersion Lemma) Say that a path meet is a pair of distinct k-paths with the same
endpoints. We then prove that any n-node graph of girth > 2k cannot have any meets
between two non-backtracking k-paths.

The Moore bounds now follow roughly by arguing that the average degree d must be only
O(n1/k), or else H will have so many non-backtracking k-paths that (by the pigeonhole
principle) two of them would share endpoints and thus form a meet.

In fault-tolerant spanners and emulators, it is unfortunately not true that the output
graph H has high girth. However, one might intuitively believe that H “almost” has high
girth, and that this might be enough to prove some type of sparsity bound. This proof
strategy was first formalized by [8], who introduced a notion of a “blocking set”: informally,
a collection of pairs (either (edge, edge) pairs or (node,edge) pairs) that hits all cycles of
length at most 2k. Intuitively, a graph that has a small blocking set “almost” has girth larger
than 2k, and so it is sometimes possible to prove similar sparsity bounds through appropriate
generalizations of the counting lemma and the dispersion lemma.

These generalized lemmas often analyze more complicated paths: not just non-
backtracking, but also satisfying a number of other technical conditions. The precise
type of paths that are considered is closely related to the precise version of blocking sets
that are used.

We follow this high-level approach. Our first technical innovation is a new kind of blocking
set, which we call a double-blocking set. The precise definition is given later in Definition 15,
but the idea is to require not just that cycles of length at most 2k are blocked, but also that
cycles of length at most k + 1 are blocked twice. We can show that the greedy emulator
H has a small double-blocking set (unlike fault-tolerant spanners). This is slightly more
difficult than the analogous part of previous work on spanners and VFT emulators, but is
still the more straightforward part of our proof.

The goal is then to show that any graph with this stronger kind of blocking set is
particularly sparse. Following the outline for the Moore bounds, we need to define some
type of path and prove a counting lemma and dispersion lemma. We introduce a new type
of path, which we call SCUM paths (Simple, Chain Unblocked, Middle-Heavy), and prove
the associated counting and dispersion lemmas (see Definition 19 for the precise definition).
The chain unblocked property is our main new technical idea, as it differs substantially from
the technical conditions on paths used in prior work. Once we have the definition of these
paths, the counting lemma is reasonably straightforward, but the dispersion lemma is more
technically involved.

ITCS 2023
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2.3 Outline

We begin in Section 3 by formally stating our algorithm, proving that the graph H it
returns is an f -EFT (2k − 1)-emulator, and then proving that H has a double-blocking set
of size at most f |E(H)|. Then in Section 4 we begin the proof that any graph with a small
double-blocking set is sparse enough to satisfy our main theorem statement. We do this by
proving a counting lemma for SCUM paths in Section 4.2, stating but not proving dispersion
lemmas for k = 3 and for general odd k in Section 4.3, and then showing in Section 4.4 how
to combine the counting and dispersion lemmas to prove that H is sparse. We then prove our
dispersion lemmas for k = 3 in Section 5, and for general odd k in Section 6. In Section 7 we
show how to modify the algorithm to run in polynomial time without significantly affecting
the sparsity bounds, and in Section 8 we construct our lower bounds.

3 Algorithm and Double-Blocking

We begin by formally giving our algorithm, proving that it does output an EFT emulator,
and then proving that the EFT emulator it outputs has a small double-blocking set.

3.1 Algorithm and Correctness

We construct our emulators using the following greedy algorithm. Recall that HF is the
version of the graph H with weights updated according to distances in G \ F . So HF is
defined with respect to an ambient graph G, which will typically be clear from context.

Algorithm 1 Algorithm for f -EFT (2k − 1)-emulators.

Input: Graph G = (V, E, w), positive integers f, k;
Let H ← (V, ∅) be the initially-empty emulator;
foreach edge (u, v) ∈ E in order of nondecreasing weight w(u, v) do

if there is F ⊆ E of size |F | ≤ f with distHF (u, v) > (2k − 1) · w(u, v) then
Add (u, v) to H;

return H;

If two edges in the input graph have the same weight, then the algorithm considers them
in arbitrary order.

Correctness of the output emulator is a standard argument:

▶ Theorem 14 (Correctness of Algorithm 1). The graph H returned by Algorithm 1 is an
f -EFT (2k − 1) emulator of the input graph G.

Proof. Let F be an arbitrary set of |F | ≤ f failing edges. Our goal is to prove that
HF is a (2k − 1)-emulator of G \ F . By a standard observation, it suffices to prove that
distHF (u, v) ≤ (2k − 1) · w(u, v) for all edges (u, v) ∈ G \ F (by considering shortest paths,
this implies the desired stretch bound for all pairs). There are two cases. First, if (u, v) ∈ H ,
then we immediately have distHF (u, v) = distG\F (u, v) ≤ w(u, v), due to the reweighting of
(u, v) in HF . Second, suppose (u, v) /∈ H. We must have considered the edge (u, v) at some
point in the algorithm, and then elected not to add it to H . By the algorithm conditional, this
implies that for every F we have distHF (u, v) ≤ (2k − 1) · w(u, v), completing the proof. ◀



G. Bodwin, M. Dinitz, and Y. Nazari 20:9

3.2 Double-Blocking Sets
In the following analysis, it will frequently be important to consider a subset of edges within
H (typically a cycle or path) and consider the last among these edges to be processed by
the main loop of our algorithm. We will use the phrase “the latest (or last) edge (in the
ordering of H)” to identify this edge. Note that if all weights are distinct then this will be the
highest-weight edge in the subset, but if some edges have the same weight then it specifically
refers to the highest-weight edge under the same tiebreaking used by the algorithm.

We begin with our new definition of double-blocking sets.

▶ Definition 15 (Double-Blocking Sets (see Figure 1 for k = 3)). Let H = (V, E) be a graph
with a total ordering on its edges, let k be a positive integer, and let B ⊆

(
E
2
)
. We say that a

cycle C in H is blocked by {e1, e2} ∈ B if we have e1, e2 ∈ C and e1 is the last edge in C in
the ordering. The set B is called a 2k double-blocking set for G if:

Every cycle C on |C| ≤ 2k edges is blocked by some b ∈ B, and
Every cycle C on |C| ≤ k + 1 edges is blocked by two distinct b1, b2 ∈ B.

The edge pairs in a blocking set are called blocks.

last

last

Figure 1 (Left) For any cycle C with ≤ 6 edges, a 6 double-blocking set B blocks C at least once,
e.g., by the pair of red edges. (Right) Additionally, for any cycle C with ≤ 4 edges, B blocks C at
least twice, e.g., by the pair of red edges and also the pair of wavy blue edges.

We note that the “short” cycles C of length k +1 have blocks of the form {e1, e2}, {e1, e3};
that is, both blocks must contain the last edge in C and thus they intersect on an edge.
We now want to show that the output emulator H of the greedy algorithm has a small
double-blocking set.

▶ Lemma 16. The emulator H returned by Algorithm 1 has a 2k double-blocking set B of
size |B| ≤ f |E(H)| (with respect to the order that the edges are added to H in Algorithm 1).

Proof. Each time we add an edge (u, v) to H, we do so because of an edge subset F(u,v)
with dist

H
F(u,v) (u, v) > (2k − 1) · w(u, v). Note that F(u,v) contains only edges earlier in the

ordering that (u, v), and hence in particular does not contain (u, v). Define

B := {{e, f} | e ∈ E(H), f ∈ Fe} .

Since |Fe| ≤ f for all e, we have |B| ≤ f |E(H)|. We now show that B is a 2k double-blocking
set.

Let C be a cycle in H of length ≤ 2k, and let (u, v) ∈ C be its last edge. When we add
(u, v) to H , the other 2k − 1 edges in C form a u⇝ v path of length ≤ (2k − 1) · w(u, v).
Thus, we must include one of these edges f ∈ C \ {(u, v)} in F(u,v), to fault this short
u⇝ v path. We thus have {(u, v), f} ∈ B, which blocks C as required.
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(See Figure 2) Now let C be a cycle in H of length ≤ k + 1, and let (u, v) ∈ C be its last
edge. By the previous item, there exists at least one edge (x, y) ∈ F(u,v) ∩ C. Suppose
towards contradiction that (x, y) is the only edge in F(u,v) ∩ C. Then:

In G \ F(u,v), we have dist(x, y) ≤ k · w(u, v). This is due to the x⇝ y path that uses
the other ≤ k edges in C, each of which has weight ≤ w(u, v). Note that this crucially
uses the “automatic edge updating” in our model.
We have

dist
H

F(u,v) (u, v) ≤ (2k − 1) · w(u, v).

This is due to the u⇝ v path that uses the other ≤ k edges in C. The ≤ k − 1 edges
besides (x, y) each have weight ≤ w(u, v), and by the previous item, the edge (x, y)
has weight ≤ k · w(u, v) in HF(u,v) .

The latter point implies that the algorithm conditional is violated and the fault set F(u,v)
would not cause us to add (u, v) to H, completing the contradiction. Hence there are at
least two distinct edges f1, f2 ∈ F(u,v) ∩ C. Since (u, v) ̸∈ F(u,v), this means that both
{(u, v), f1} and {(u, v), f2} are in B by definition, so C is double-blocked as required. ◀

u

v

x

y

× ≤ 3 · w(u, v)

u

v

x

y

×≤ 5 · w(u, v) ≤ 3 · w(u, v)

Figure 2 In the proof of Lemma 16, for the case k = 3, we argue double-blocking of 4 cycles as
follows. Suppose our greedy algorithm is currently considering whether to add (u, v), the heaviest
edge in the cycle, to the emulator. (Left) If there is only a single edge (x, y) on the cycle included
in the set of failing edges, then w(x, y) increases to at most 3 · w(u, v). (Right) This implies
dist(u, v) ≤ 5 · w(u, v), so we would not choose to add (u, v) to the emulator in the first place.

4 Main Size Analysis (assuming dispersion)

We now shift perspective. Instead of talking about the greedy algorithm or fault tolerance,
our goal in the rest of the proof is simply to limit the maximum number of edges that
can appear in an n-node graph H with a 2k double-blocking set of size |B| ≤ f |E(H)|. In
particular, we will prove the following theorems:

▶ Theorem 17 (Sparsity for k = 3). Let H be an n-node graph with an ordering on its
edges which has a 6 double-blocking set of size at most f |E(H)|. Then |E(H)| = O(n4/3 +
n6/5f3/5 + fn).

▶ Theorem 18 (Sparsity for general odd k). Let k be a positive odd integer and let H be an
n-node graph with an ordering on its edges which has a 2k double-blocking set of size at most
f |E(H)|. Then

|E(H)| = Ok

(
n1+ 1

k + n1+ 1
k+2 f

k
k+2 + n1+ 1

k+1 f
1
2 + fn

)
.

Theorem 17 and Lemma 16 imply Theorem 6 (our main bound for k = 3), and Theorem 18
and Lemma 16 imply Theorem 8 (our main bound for general odd k). So it just remains to
prove these two theorems.
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4.1 Graph Cleaning
We first use some standard combinatorial arguments to make some additional assumptions
on H without loss of generality. In particular, since our goal is to prove an upper bound on
|E(H)| based on the fact that it has 2k double-blocking set of size |B| ≤ f |E(H)|, we may
assume without loss of generality that the following are true:

Every edge in H participates in at most f pairs in B.
If d is the average degree of a node in H, then every node has degree Θ(d).
f ≤ d/(Ck) for some large constant C. Note that we are assuming k is a constant, so
this is equivalent to saying that f ≤ d/C ′ for a large constant C ′.

The proof that we can assume these without loss of generality is relatively standard, so
we defer it to the full version [3]. From now on, we will make these assumptions on H. We
also carry forward the notation d for the average degree in H.

4.2 SCUM Path Counting
As discussed in Section 2, we introduce a new type of path to analyze, called SCUM paths.

▶ Definition 19 (SCUM k-paths). Let H be a graph with an ordering of its edges, and let
B ⊆

(
E(H)

2
)

be a 2k double-blocking set. A SCUM k-path is a path π with k edges that
satisfies all of the following properties. Let (e1 = (v0, v1), . . . , ek = (vk−1, vk)) be the edge
sequence of π, and let m := (k + 1)/2,2 such that em is the middle edge of π.

(Simple) π does not repeat nodes,
(Chain Unblocked) Let us say that an oriented path q is chain unblocked (with respect to
B) if, for any edge e ∈ q and node v ∈ q where v strictly follows e (in particular v /∈ e),
there is no block of the form {e, e′} ∈ B where e′ is incident on v. We require:

The oriented subpath of π with edge sequence (em, em−1, . . . , e1) is chain-unblocked,
and
The oriented subpath of π with edge sequence (em, em+1, . . . , ek) is chain-unblocked.

(Middle-Heavy) the latest edge of π (in the edge ordering of H) is em.

The main new ingredient in this definition is the chain unblocked property. Prior work
has often focused on unblocked paths instead, e.g., where there is no {e, e′} ∈ B with e, e′ ∈ π

[7, 4].
The chain-unblocked property is qualitatively different and not directly comparable: it is

possible for a path to be chain-unblocked and yet blocked in the traditional sense, and it is
also possible for a path to be chain-blocked and yet unblocked in the traditional sense.

We now want to prove a counting lemma for our SCUM k-paths. The first technical step
is to classify the edges e ∈ E(H) into core edges and non-core edges. At the moment an edge
e ∈ E(H) is added to H, we consider the induced subgraph He ⊆ H obtained by iteratively
deleting any remaining nodes of degree ≤ d/4. If e survives in He, then it is a core edge,
otherwise it is a non-core edge. We have:

▷ Claim 20. At least half the edges of H are core edges.

Proof. Let Hnc be the subgraph that contains exactly the non-core edges of H. Notice that,
by definition of non-core edges, if we iteratively delete nodes in Hnc of degree ≤ d/4 then
every edge will eventually be deleted from Hnc. By unioning over the n nodes in Hnc, we
delete at most n · d/4 ≤ |E(H)|/2 edges in this process. Thus, ≤ |E(H)|/2 of the edges in H

are non-core edges, and the claim follows. ◁

2 We will focus on odd k, where this is integral. For even k, one would round up or down arbitrarily.
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▶ Lemma 21 (SCUM k-path Counting Lemma). There are n · Ω(d)k SCUM k-paths in H.

Proof. We may generate a SCUM k-path π as follows:
Choose a core edge em = (u, v) to act as the middle edge of π. Since π will be a k-path
and k is odd, this means that m = (k + 1)/2. Using Claim 20, there are Ω(nd) choices for
em. Let Hem ⊆ H be the subgraph witnessing that em is a core edge: that is, consider
the subgraph of H that contains only em and preceding edges in the ordering, and then
Hem is the induced subgraph obtained by iteratively deleting nodes of degree ≤ d/4.
Sequentially choose m − 1 edges em−1, em−2, . . . , e1 ∈ E(Hem

) that extend em into a
path of length m. If ei = (x, y), the next edge ei−1 may be selected among the Ω(d)
edges incident to y in Hem , disallowing (1) the ≤ k edges that connect y to a node that
already appears in π (to enforce simplicity), and (2) the ≤ fk edges that connect y to
nodes z, such that an edge already in π is blocked with an edge incident to z (to enforce
that π is chain unblocked). We have fk ≤ d/C for a large constant C, since we assume
f ≤ d/(Ck) (see Section 4.1). So there are Ω(d) choices for the next edge at each step,
for a total of Ω(d)m−1 choices.
Repeat the above process to sequentially choose edges in the suffix em+1, . . . , ek. By
identical logic, there are Ω(d) choices at each step, for a total of Ω(d)m−1 choices.

The SCUM properties follow from the construction. Since em is the middle edge of a path of
length k, and k is odd, we have m = (k + 1)/2. Thus we count

Ω(nd) · Ω(d)m−1 · Ω(d)m−1 = n · Ω(d)k

ways to generate a SCUM k-path by this process. ◀

4.3 Limiting SCUM Path Meets (Dispersion)
Now that we have a lower bound on the number of SCUM paths, we want to find an upper
bound on a related but distinct object: SCUM k-path meets. Combining the two will lead to
the desired sparsity bounds.

▶ Definition 22 (SCUM Path Meets). A SCUM k-path meet is a pair of distinct SCUM
k-paths {π1, π2} that use the same endpoints s, t.

Proving an upper bound on SCUM k-path meets is the most technically complex part of
our argument, so we defer the proofs to Section 5 for k = 3 and Section 6 for general odd k.
We separate them since the bound for k = 3 is both stronger and easier to prove than the
bound for general k. For now, we simply state the lemmas, and then in Section 4.4 we will
show how to use them to prove our main theorems.

▶ Lemma 23 (Dispersion lemma for k = 3). When k = 3, there are O(ndf3) SCUM 3-path
meets in H.

▶ Lemma 24 (Dispersion lemma for odd k). When k is odd, the number of SCUM k-path
meets in H is

Ok

(
nfkdk−2 + nf (k+1)/2dk−1

)
.

4.4 Proof Wrapup
The rest of the proof is a matter of comparing our lower bound on the number of SCUM
k-paths to the upper bound on the number of SCUM k-path meets, and algebraically
rearranging our expressions into a bound on d. We return to general k for the following
lemma.
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▶ Lemma 25. For any parameter α ≥ 0, if H has ≤ αn2 SCUM k-path meets, then
d ≤ O

(
n1/k + n1/kα1/(2k)).

Proof. Let xs,t be the number of s⇝ t SCUM k-paths. We have:

∑
(s,t)

x(s,t) =
∣∣{(s, t) | x(s,t) = 1

}∣∣ +

 ∑
(s,t)|x(s,t)≥2

x(s,t)


≤ n2 + O

n2 ·
∑
(s,t)

(
x(s,t)

2

)1/2

Cauchy-Schwarz

≤ n2 + O
(
n2 · αn2)1/2 = O

(
n2 + n2α1/2

)
.

We note that the second-to-last inequality is because, by definition, the number of s ⇝ t

SCUM k-path meets is exactly
(x(s,t)

2
)
. Thus, summing

(x(s,t)
2

)
over all pairs (s, t) counts the

number of SCUM k-path meets, which is at most αn2.
By Lemma 21, we also have the lower bound n · Ω(d)k on the total number of SCUM

k-paths. Thus,

n · Ω(d)k ≤ O
(

n2 + n2α1/2
)

.

If the former term on the right-hand side dominates, then d = O(n1/k). If the latter term on
the right-hand side dominates, then d = O(n1/kα1/(2k)). ◀

4.4.1 k = 3

We now again restrict to k = 3, and we wrap up the proof of Theorem 17. Plugging in
the bound in Lemma 23 to the previous lemma, we have d ≤ O

(
n1/3 + n1/3 (

df3/n
)1/6

)
.

If the former term dominates, then d = O(n1/3). If the latter term dominates, then
d5/6 ≤ O

(
n1/6f1/2)

and so d ≤ O
(
n1/5f3/5)

which completes the proof of Theorem 17.

4.4.2 General Odd k

We now complete the proof of Theorem 18 for general k. By Lemma 24, the number of
SCUM k-path meets is Ok

(
nfkdk−2 + nf (k+1)/2dk−1)

.
Suppose the first term dominates. Plugging into Lemma 25, we get d = O(n1/k) +

n1/k ·Ok

(
fkdk−2

n

) 1
2k . If the former term dominates, we get d = O(n1/k). If the latter term

dominates, we get dk+2 = n · Ok

(
fk

)
and so d = Ok

(
f

k
k+2 n

1
k+2

)
. Either of these bounds

on d suffices to prove Theorem 18.
On the other hand, returning to our bound on the number of SCUM k-path meets,

suppose the second term dominates. Again plugging into Lemma 25, we get d = O(n1/k) +

n1/k ·Ok

(
f(k+1)/2dk−1

n

) 1
2k . If the first term dominates we again get d = O(n1/k). If the latter

term dominates, we get dk+1 = Ok

(
n · f (k+1)/2)

and so d = Ok

(
f1/2n

1
k+1

)
. Again, either

of these bounds suffices to prove Theorem 18.
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5 Limiting SCUM Path Meets (k = 3)

In this section we prove Lemma 23, which as discussed implies Theorem 6.

5.1 Technical Lemmas on Path Structure

Our focus in this part is on k = 3 specifically (i.e., graphs with a 6 double-blocking set). In
this setting, the necessary technical lemmas about the structure of our SCUM paths become
simpler to state and use. The most important simplification is reflected by Lemma 27, which
shows that in any SCUM 3-path meet, the two paths of the meet are internally vertex-disjoint.
This lemma does not generalize to larger k, which introduces technical complexities and
makes our quantitative bounds a bit worse. Analogous structural lemmas for general k are
given in Section 6.1.

Our goal is to prepare for a dispersion lemma limiting the number of SCUM 3-path meets.
We note that, when considering a graph with a 2k blocking set, one generally focuses on
meets between k-paths (not 2k-paths). This is analogous to the Moore bounds, and the
reason is roughly because two k-paths in a meet create a cycle on ≤ 2k edges, and so our
blocking set is indeed helpful in analyzing the structure of this meet.

The following three lemmas hold only for k ≥ 3 because they rely on the set of blocks
in B (either explicitly or by discussion of SCUM paths), and we will use that B is a (≥ 6)
double blocking set in their proofs.

▶ Lemma 26. Suppose k ≥ 3, let {πℓ, πr} be a SCUM 3-path meet, let e∗ be the middle edge
of πℓ, and suppose e∗ is the latest edge in the ordering in πℓ ∪ πr. Let F ∗ be the set of edges
that appear in a block with e∗ in B. Then the middle edge of πr is in F ∗.

Proof. Notice that e∗ /∈ πr, since this would imply πℓ = πr but πℓ, πr must be distinct in a
meet. Thus, the paths πℓ ∪ πr form a cycle C of length ≤ 6, and this cycle contains e∗ as its
heaviest edge. We therefore have a block of the form {e∗, e} ∈ B with e ∈ C. Since πℓ is
chain unblocked, e cannot be incident on the first or last node of πℓ. Thus, the only possible
placement of e in πℓ ∪ πr is as the middle edge of πr. ◀

▶ Lemma 27. Suppose k ≥ 3. In any SCUM 3-path meet {πℓ, πr}, the paths πℓ, πr are
internally vertex disjoint. (That is, they intersect only on their endpoints, and otherwise do
not share nodes.)

Proof. Let s, t be the endpoints of πℓ, πr, let e∗ = (u∗, v∗) be the latest edge in the ordering
in πℓ ∪ πr, and suppose without loss of generality that e∗ is the middle edge of πℓ. Notice
that e∗ cannot be the middle edge e′ of πr, since this would imply πℓ = πr.

Seeking contradiction, suppose that πℓ, πr intersect on their first edge (s, u∗). Then the
last two edges of πℓ, πr form a 4-cycle C with nodes (u∗, v∗, t, x), which must be double-
blocked in B. It is possible that the middle edges {e∗ = (u∗, v∗), (u∗, x)} appear together in
B, which would block C once. But, since πℓ is chain unblocked, e∗ cannot appear in B with
either of the other edges {(v∗, t), (t, x)} which completes the contradiction.

The argument that πℓ, πr cannot intersect on their last edges (v∗, t) is symmetric. ◀

▶ Lemma 28. When k ≥ 3, for any nodes s, t, there are at most f + 1 simple s⇝ t paths in
H of length 2.
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Proof. Let Πs,t be the set of s⇝ t paths of length 2. Notice that any two paths in Πs,t form
a 4-cycle, which must be double-blocked. Let e∗ be the latest edge in the ordering contained
in any path in Πs,t. Then for any path π ∈ Πs,t with e∗ /∈ π, there exists a block of the form
{e∗, e} with e ∈ π. Since we may assume without loss of generality that e∗ is only blocked
with at most f other edges (see Section 4.1), it follows that |Πs,t| ≤ f + 1. ◀

5.2 Proof of Lemma 23
We can generate all SCUM 3-path meets {πℓ, πr} by the following process (see Figure 3).

Choose an edge e∗ = (u∗, v∗) to act as the latest edge in πℓ ∪ πr in the ordering. We
will assume without loss of generality that e∗ is the middle edge of πℓ. There are O(nd)
possible choices of e∗.
Let F ∗ be the edges that are paired with e∗ in B. By Lemma 26, πr uses an edge
e′ = (x, y) ∈ F ∗ as its middle edge. There are O(f) possible choices of e′.
By Lemma 27, πℓ, πr are internally vertex disjoint, so u∗ ̸= x and v∗ ̸= y. Thus, we may
complete the meet by choosing a simple u∗ ⇝ x 2-path and a simple v∗ ⇝ y 2-path. By
Lemma 28, there are O(f) ways to choose each 2-path, and thus O(f2) ways to complete
the meet in total.

Putting it together, we have O(nd · f · f2) meets.

u∗

v∗

x

y

e′ ∈ F ∗

O(f) v∗ ⇝ y 2-paths

O(f) u∗ ⇝ x 2-paths

e∗ (latest)

Figure 3 The four choices in our generation of SCUM 3-path meets lead to a bound of O(ndf3)
on the total number of meets. The common endpoints of the two paths in the meet occur as the
middle nodes of the v∗ ⇝ y and u∗ ⇝ x endpoints that we select.

6 Limiting SCUM Path Meets for General Odd k

In this section we prove Lemma 24, which as discussed implies Theorem 8.
We follow the same rough strategy as for the k = 3 case. To give intuition, let us briefly

sketch counting of meets between internally vertex-disjoint SCUM k-paths {πℓ, πr}. We can
generate such a meet by the following process (see Figure 4):
1. First choose an edge e∗ = (u∗, v∗) to act as the heaviest edge in the meet. Suppose

e∗ ∈ πℓ.
2. Similar to the k = 3 case, we can argue that there exists an edge e′ ∈ πr that is blocked

with e∗. For k = 3 we specifically had that e′ occurs in the middle position of πr; for
general k, we can only say that it occurs in position 2 through k − 1. Choose this edge e′

and its position in πr.
3. Extend e′ into a subpath of πr that contains all but the first and last edge. Let x, y be

the endpoints of this (k − 2)-length subpath of πr.
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4. Complete the meet by choosing paths of length (k + 1)/2 from u∗ to x and from v∗ to
y. Limiting the number of such paths requires a technical lemma, but we can prove a
reasonably good upper bound by exploiting the structure of the double-blocking set.

u∗

v∗

y

x

e′ ∈ F ∗e∗ (latest)

Figure 4 A sketch of an argument that counts the internally vertex-disjoint SCUM k-path meets
in H.

Challenges in extension to general k. This sketched argument is the natural analog of
our argument for k = 3. In fact, if it were true that all meets are internally vertex disjoint,
this argument would provide a range of free fault tolerance for both odd and even k > 3.
Unfortunately, we cannot make such an assumption when k > 3, and we also need to count
meets that nontrivially coincide. Counting meets that share prefixes/suffixes introduces a
new term in our dispersion lemma, which harms our bounds for general odd k relative to
k = 3, and which spoils our ability to prove free fault tolerance for any even k.

6.1 Technical Lemmas on Path Structure
In the following, we say that a path π in H is blocked if there is an edge pair {e1, e2} ∈ B

with e1, e2 ∈ π, and π is double-blocked if there are two such edge pairs in B. Note that this
differs slightly from the notion of a cycle being blocked, as we do not require that e1 is the
latest edge in π.

▶ Lemma 29 (Extends Lemma 26). Let π1, π2 be simple paths with the same endpoints s, t.
Suppose e∗ ∈ π1 is the last edge in π1 ∪ π2 in the ordering, and let F ∗ be the set of edges
that are in a block with e∗ in B. Then there exists an edge e′ ∈ F ∗ ∪ {e∗} with e′ ∈ π2 if
either of the following conditions hold:

π1, π2 are both unblocked and have length ≤ k, or
π1, π2 are both un-double-blocked and have length ≤ (k + 1)/2.

Proof. Assume π1, π2 are unblocked and have length ≤ k, and suppose e∗ /∈ π2. Then there
is a subpath of π1 and a subpath of π2 that form a cycle C with |C| ≤ 2k edges, and latest
edge e∗. This cycle must be blocked by B; since e∗ is its latest edge, there is a block of the
form {e∗, e′} ∈ B with e′ ∈ C. Since π1 is unblocked, we have e′ /∈ π1, so e′ ∈ π2, completing
the proof.

The case where π1, π2 are un-double-blocked and have length ≤ (k + 1)/2 is essentially
identical, noting that their subpaths form a cycle of length ≤ k+1 which is thus double-blocked
by B. ◀
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▶ Lemma 30 (Extends Lemma 28). For any two nodes s, t and any 1 ≤ L ≤ (k + 1)/2, there
are at most O

(
fL−1)

simple s⇝ t paths of length L that are not double-blocked.

Proof. We prove this lemma by strong induction on L. The base case L = 1 is trivial, since
there is at most 1 edge between any two nodes.

For the inductive step: let Πs,t be the set of all simple s⇝ t paths of length L that are
not double-blocked, let e∗ be the latest edge in the ordering contained in any path in Πs,t,
and let F ∗ be the edges that appear with e∗ in a block in B. By the previous lemma, every
path π ∈ Πs,t contains an edge in F ∗ ∪ {e∗}.

Fix (u, v) ∈ F ∗ ∪ {e∗} and a position i, and let us count the number of paths in Πs,t that
use (u, v) in position i.

If i ∈ {2, . . . , L− 1}, then we may apply the inductive hypothesis twice to argue that we
have O(f i−2) s⇝ u paths of length i− 1, and O(fL−i−1) v ⇝ t paths of length L− i,
which gives O(fL−3) paths that use (u, v) as their ith edge.
If i = 1 (and so s = u), then we may apply the inductive hypothesis once to argue that
we have O(fL−2) v ⇝ t paths of length L− 1.
If i = L (and so v = t), then we may apply the inductive hypothesis once to argue that
we have O(fL−2) s⇝ u paths of length L− 1.

Unioning over the ≤ k(f + 1) choices of (u, v) and i, we count O(fL−1) paths in Πs,t. ◀

The following lemma is new to general k and does not extend any previous lemmas.

▶ Lemma 31. Let s, t be nodes, let 0 ≤ L1 ≤ (k − 1)/2, and let L2 ≥ 1. Then there are
O(fL1dL2−1) pairs of simple paths (π1, π2) in H with the following properties:

π1 has length L1 and start point s. π2 has length L2 and start point t. π1, π2 have the
same endpoint node (that is: we are counting pairs of s⇝ x, t⇝ x paths, over all possible
choices of node x).
π1 is chain-unblocked.
π2 is not a subpath of π1.

Proof. First, we acknowledge that it is possible that the paths in the meet π1, π2 coincide
on a nontrivial suffix. Let c be the number of edges in the longest common suffix of π1, π2.
We begin the proof by assuming c = 0; we will revisit the general case at the end. A pair of
paths (π1, π2) as described in the lemma may be generated by the following process.

Starting from t, choose any simple path of length L2 − 1. We know from Section 4.1 that
without loss of generality we may assume that there are Θ(d) edges incident to each node,
and so there are O(d)L2−1 possible choices for this path.
Since we have assumed c = 0, we notice that π1 plus the last edge of π2 forms a simple
path q of length L1 + 1 ≤ (k + 1)/2. The last pair of edges on q (i.e., the last edge of
π1 and the last edge of π2) could possibly appear as a block in B. However, since π1
is chain unblocked, no other pair of edges on q can appear as a block. Thus, q is not
double-blocked. Applying Lemma 30, there are O(fL1) ways to complete the rest of the
meet.

We count O(d)L2−1 · O(fL1) ways to generate this meet, which gives our claimed bound
for c = 0. We then consider general c. Notice that a pair of paths (π1, π2) as described in
the lemma, which coincide on their last c edges, may be identified by (1) a pair of paths
as described in the lemma of lengths L1 − c, L2 − c, which do not share a nontrivial suffix,
and (2) an additional path of length c from their shared endpoint, representing the common
suffix. Since we assume that π2 is not a subpath of π1, we note that L2 − c ≥ 1. So we may
apply the first part of the argument, and conclude that there are O(fL1−cdL2−c−1) ways to
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choose the path pair of lengths L1 − c, L2 − c, and then there are O(d)c ways to choose the
common suffix. This gives a stronger bound of O(fL1−cdL2−1) on the number of path pairs
in the setting of general c. ◀

6.2 Proof of Lemma 24

We count SCUM k-path meets {πℓ, πr} by the following process.
Choose an edge e∗ = (u∗, v∗) to act as the latest edge in πℓ ∪ πr in the ordering. The
latest edge in the ordering must be the middle (m = (k + 1)/2) edge of either πℓ or πr;
we will assume without loss of generality that e∗ is the middle edge of πℓ. There are
O(nd) possible choices of e∗.
Let F ∗ be the edges that are paired with e∗ in B. By Lemma 29, πr contains an edge
e′ = (u′, v′) ∈ F ∗ ∪ {e∗}. Moreover, since πℓ is chain unblocked, e′ cannot be the first or
last edge in πr; rather, it occurs in position 2 through k− 1. Select one of these positions
for e′ along πr. There are ≤ (f + 1)(k − 2) possible choices of e′ and its position in πr.
We next select prefixes for πℓ, πr; that is, we determine the parts of the paths respectively
preceding nodes u∗, x. We can view the prefix of πℓ as an oriented SCU path of length
m− 1, and the prefix of πr as a simple path of length i− 1 ≥ 1. There are two cases:

If the suffix of πr is not a subpath of the suffix of πℓ, then the conditions of Lemma 31
hold. Applying this lemma, we have O(fm−1di−2) choices of prefix pairs.
If the prefix of πr is a subpath of the prefix of πℓ, then it is fully determined by a
choice of prefix of πℓ. There are O(d)m−1 possible choices of prefix.

Finally, we select suffixes for πℓ, πr. Exactly like the prefixes, we can view the suffix of πℓ

as an oriented SCU path of length m− 1, and the suffix of πr as a simple path of length
k − i ≥ 1. We have the same two cases in our counting:

In the case where the suffix of πr is not a subpath of the suffix of πℓ, then by Lemma
31 we have O(fm−1dk−i−1) choices of suffix pairs.
In the case where the suffix of πr is a subpath of the suffix of πℓ, then we have O(d)m−1

choices of suffix.

We now put the parts together. There are O(ndf) ways to make choices in the first two
steps. If neither the prefix nor suffix of πr is a subpath of the prefix/suffix of πℓ, then the
number of ways to choose prefixes and suffixes is

O
(
fm−1di−2)

·O
(
fm−1dk−i−1)

= O
(
f2m−2dk−3)

.

If the prefix of πr is a subpath of the prefix of πℓ, but the suffix is not, then the number of
choices is

O
(
dm−1)

·O
(
fm−1dk−i−1)

= O
(

fm−1dk−(i−m)−2
)

= O
(
fm−1dk−2)

,

where the last equality is because we must have i ≤ m since the prefix of πr is a subpath of
the prefix of πℓ. The counting is symmetric in the case where the suffix of πr is a subpath of
the suffix of πℓ, and leads to the same bound. Finally, we do not need to consider the case
where both the prefix and suffix of πr is a subpath of the prefix/suffix of πℓ, as this would
imply πℓ = πr but the paths in a meet must be distinct.

The claimed bound on meets in this lemma now follows by multiplying our prefix/suffix
bounds in each case by ndf , and substituting m = (k + 1)/2.
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7 Polynomial-Time Version

Algorithm 1 is actually slightly underspecified, since we do not describe how to determine
whether there is some F ⊆ E with |F | ≤ f such that distHF (u, v) > (2k − 1) · w(u, v). The
obvious approach simply tries all possible F . This is correct, but takes time at least Ω

((
m
f

))
,

which is not polynomial when f is not constant. Hence while Algorithm 1 is sufficient to
prove the structural results we claim, it is not actually efficient as an algorithm.

This parallels the situation with fault-tolerant spanners, where the first truly tight bounds
on the size used a similar greedy algorithm that did not run in polynomial time [8]. To
overcome this, Dinitz and Robelle [11] showed that slightly suboptimal bounds (by a factor
of k) could be achieved by approximating the “if” condition rather than actually solving it.
We now show that a similar result can be obtained for edge-fault-tolerant emulators: we can
modify Algorithm 1 to run in polynomial time at the cost of only O(k) in the achieved size.

Due to space constraints, we refer the interested reader to the full version of this paper [3].

8 Lower Bounds

8.1 General Lower Bound
▶ Theorem 32. For all k, f , there are n-node graphs G for which any f -EFT k-emulator H

has |E(H)| = Ω(nf).

Proof. Let G be any f/2-regular n-node graph, and let H be an f -EFT k-emulator of G.
Consider an edge (u, v) ∈ E(G), and seeking contradiction, suppose (u, v) /∈ E(H). Consider
the fault set F that contains all edges incident to u and all edges incident to v, except for
(u, v) itself. We have distG\F (u, v) = 1, and also for all nodes x /∈ {u, v}, we have

distG\F (u, x) = distG\F (v, x) =∞.

Thus, any edge incident to u or v in HF has weight ∞, and so distHF (u, v) =∞. Thus H is
not a k-emulator of G \ F , completing the contradiction. ◀

8.2 Lower Bound for k = 2
Here we prove the following lower bound for the setting k = 2, i.e., emulators with stretch 3:

▶ Theorem 33. For any f , there are n-node graphs G for which any f -EFT 3-emulator H

has |E(H)| = Ω(f1/2n3/2).

We use a standard construction in prior work [5, 4]. Start with a graph on n/f nodes,3
Ω(n/f)3/2 edges, and girth > 4. It will be a little convenient later to assume this graph
is bipartite (without loss of generality). Then, blow up each node v into a “cloud” Cv,
which contains f copies of v. For each edge (u, v) we include an edge between every copy
in Cu and every copy in Cv. This graph has Ω(f1/2n3/2) edges. Let H be an 4f -EFT
3-emulator of G (with a sufficiently large implicit constant hidden in the O). We will prove
that |E(H)| = Ω(f1/2n3/2).

Consider an edge (u, v) ∈ E(G) and define the following fault set F , whose size |F | might
be much larger than 4f . See Figure 5 for a picture.

3 We ignore issues of non-integrality, which affect our bounds only by lower-order terms.
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Fault all edges from u to any node in the cloud Cv, and fault all edges from v to any
node in the cloud Cu, except for (u, v) itself. This contributes 2f − 1 edges to F .
For each edge (u, x) ∈ E(H) for which u, x lie in different clouds and there exists a 2-path
in G of the form (u, v, x), fault the edge (v, x). Let Zu ⊆ F be all edges faulted in this
way.
For each edge (t, v) ∈ E(H) for which there exists a 2-path of the form (t, u, v), fault the
edge (t, u). Let Zv ⊆ F be all edges faulted in this way.

Cu Cv

u v

t x

Figure 5 The dotted lines in this diagram are edges in the fault set F associated to (u, v), and the
solid black lines are edges in H that are not contained in F . The dotted blue edge on the left is in
Zv, and the dotted yellow edge on the right is in Zu. For clarity, we have omitted some (unfaulted)
edges in this picture going between Cu and Cv.

Recall that HF is the reweighted version of H under this fault set F . We will describe
edges in HF as “spanner edges” if the edge is also in G \ F , or “emulator edges” if not.

▷ Claim 34. If (u, v) /∈ E(H), then distHF (u, v) > 3.

Proof. We will prove this claim in three cases. We argue that there is no one-edge u ⇝ v

path in HF , there is no short two-hop u⇝ v path in HF , and there is no short three-hop
u⇝ v path in HF . Since all edge weights in HF are at least 1, any path with ≥ 4 hops has
length ≥ 4 and may be ignored.

(One-hop paths) By assumption, (u, v) /∈ E(H), so there is no 1-hop path from u to v.
(Two-hop paths) We next argue that there is no 2-hop path from u to v of length ≤ 3.

Since G is bipartite and (u, v) ∈ E(G), there can be no 2-hop u⇝ v path in HF that
specifically uses two spanner edges.
Each emulator edge in HF has weight at least 2, so any 2-hop u⇝ v path in HF that
uses two emulator edges has length ≥ 4.
The remaining subcase is to argue that there is no 2-hop u⇝ v path of total length ≤ 3
in HF that uses exactly one spanner edge and one emulator edge. Suppose towards
contradiction that such a path π exists, and note that its emulator edge needs to have
weight exactly 2. Since G has girth > 4, the path π cannot correspond to a u ⇝ v

3-path in G that avoids the edge (u, v). It follows that the emulator edge in π either
has the form (u, x) and there is a 2-path of the form (u, v, x) in G, or it has the form
(t, v) and there is a 2-path (t, u, v) in G. In either case, the associated spanner edge
(v, x) or (t, u) is included in Zu or Zv (respectively). Thus the remaining edge in π

would not be a spanner edge, completing the contradiction.
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(Three-hop paths) Finally, we argue that there is no 3-edge path from u to v of length
≤ 3. Such a path would need to use all spanner edges, since emulator edges have weight
≥ 2. Since (u, v) /∈ E(HF ) and the original graph has girth > 4, no such 3-path may
exist. ◀

▷ Claim 35. Either (u, v) ∈ E(H), |Zu| > f , or |Zv| > f .

Proof. Suppose (u, v) /∈ E(H). From the previous claim, we have distH\F (u, v) > 3. Since
H is a 4f -EFT 3-emulator, this is possible only if |F | > 4f , which is possible only if |Zu| > f

or |Zv| > f . ◁

Now we count edges in E(H). For each pair of adjacent clouds Cu, Cv, there are two
cases:

Suppose that at least half of the edges in Cu ×Cv are present in E(H). In this case, this
cloud pair contributes Ω(f2) edges to E(H).
Otherwise, suppose that at least half of the edges in Cu × Cv are missing in E(H). Let
(u, v) be one such missing edge. By our previous claim, we have |Zu| > f or |Zv| > f .
There are two cases:

(|Zu| > f) In this case, we have f edges in E(H) of the form (t, v) with a t⇝ v 2-path
in G. Notice that all such 2-paths have the form (t, u′, v) with u′ ∈ Cu. We may charge
all > f of these edges to the pair (Cu, v).
(|Zv| > f) In this case, following identical logic to the previous case, we may charge
> f edges to the pair (u, Cv).

To summarize, at least half of the edges in Cu×Cv are missing in E(H), and each missing
edge goes between two nodes (u, v) where we have charged either (u, Cv) or (Cu, v) for
> f emulator edges. It follows that Ω(f2) total emulator edges are charged in total when
considering Cu × Cv. (We remark that each emulator edge is charged twice in total; e.g.,
once from the cloud pair Cu × Cv and again from the cloud pair Ct × Cu, but this factor
of two may be ignored.)

Putting it together: for each of the Ω((n/f)3/2) adjacent cloud pairs in G, we charge
Ω(f2) edges in H (due to one case or the other). Thus we have

|E(H)| = Ω
(

f2 · (n/f)3/2
)

= Ω
(

f1/2n3/2
)

.
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Opponent Indifference in Rating Systems:
A Theoretical Case for Sonas
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Abstract
In competitive games, it is common to assign each player a real number rating signifying their skill
level. A rating system is a procedure by which player ratings are adjusted upwards each time they
win, or downwards each time they lose.

Many matchmaking systems give players some control over their opponent’s rating; for example,
a player might be able to selectively initiate games against opponents whose ratings are publicly
visible, or abort a game without penalty before it begins but after glimpsing their opponent’s
rating. It is natural to ask whether one can design a rating system that does not incentivize a
rating-maximizing player to act strategically, seeking games against opponents of one rating over
another. We show the following:

The full version of this “opponent indifference” property is unfortunately too strong to be
feasible. Although it is satisfied by some rating systems, these systems lack certain desirable
expressiveness properties, suggesting that they are not suitable to capture most games of interest.
However, there is a natural relaxation, roughly requiring indifference between any two opponents
who are both “reasonably evenly matched” with the choosing player. We prove that this relaxed
variant of opponent indifference, which we call P opponent indifference, is viable. In fact, a
certain strong version of P opponent indifference precisely characterizes the rating system Sonas,
which was originally proposed for its empirical predictive accuracy on the outcomes of high-level
chess games.
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1 Introduction

For two-player competitive games like chess, professional sports, online gaming, etc, it is
common practice to assign players/teams a real-number rating capturing their skill level.
Ratings are commonly applied in matchmaking systems [2, 3]; some more creative recent
applications include pricing algorithms [26], item response theory [11], etc. (see Section 1.4 for
more detail on the contribution of these papers). A rating system is an algorithm that adjusts
a player’s rating upwards after each win, or downwards after each loss. Some notable rating
systems used in practice include Harkness [13], Elo [9], Glicko [12], Sonas [20], TrueSkill [14],
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URS [1], and more. We refer to the papers [12, 18, 14], which each develop a notable rating
system, for high-quality technical overviews of the inner workings and contrasts between the
rating systems in the literature.

1.1 Our Model of Rating Systems
The exact model of rating systems studied in this paper is original, although really all of
its ingredients are slight variants, rephrasings, or abstractions of ingredients that appear in
prior work (we will address these similarities as we go). Our goal is to consider a maximally
general model of rating systems that are:

One-dimensional, meaning that they only track a rating parameter for each player and
no additional statistics of performance,
Memoryless, meaning that when the system updates players’ ratings it considers only the
game that was just played and not the history of previous game outcomes, and
Zero-sum, meaning that the number of rating points gained by the winner of a game is
always equal to the number of rating points lost by the loser.

To be clear, many rating systems used in theory or practice do not satisfy these properties
for various reasons. Typically, this is because they intentionally augment a “base” rating
system (which often does satisfy these three properties) to consider additional player statistics,
game history, etc., in a way that trades simplicity and interpretability for improved empirical
predictive accuracy of game outcomes [12, 5, 17, 6, 7, 19, 18]. Thus, this paper aims to study
the space of “base” rating systems on which these more complex but practically accurate
rating systems are built.

Additionally, a few of our results will consider the following property of rating systems:
Translation-invariant, meaning that the win probabilities for two players are determined
entirely by the additive difference between their ratings. (See Definition 27 for a formal
definition.)

Translation invariance is common in practice; it implies that rating differences carry the
same meaning for low-rated players as for high-rated players, and thus it makes the system
more interpretable. Many systems specifically follow the convention that a 200-point rating
difference maps to 0.75 win probability for the higher-rated player; this rule was first applied
by the rating system ELO [9].

The goal of this paper is instead to continue a recent line of work on incentive-compatibility
as a property of rating systems. The idea is that players experience rating as an incentive,
and they will sometimes take strategic action to maximize their rating in the system. For
example, Glicko-2 was recently subject to an attack called volatility hacking in which players
achieved long-run boosts in their rating by deliberately losing certain games [8]. Some modern
rating systems like URS address the possibility of strategic action by leaving parameters of
their rating formula unpublished.2 This has several disadvantages; for example, players are
less able to predict their rating changes, which in turn makes it harder to detect transcription
errors in game outcome reporting. Similarly, bugs in the implementation of a rating system
may be harder to detect. It is desirable to achieve notions of incentive compatibility, even
when the rating system in play is entirely public knowledge.

Our focus is on a new rating system property, informally stating that the system does
not incentivize a rating-maximizing player to selectively seek games against opponents of one
rating over another (even when the player currently feels over- or underrated by the system).

2 Jeff Sonas, personal communication, 2022
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One of our main conceptual contributions is just to define this property in a reasonable
way: as we discuss shortly, the natural first attempt at a definition turns out to be too
strong to be feasible. We then describe a different version of the definition, and in support
of this definition, we show that there is a natural class of rating systems (most notably
including Sonas, described shortly) that satisfy this alternate definition. In order to explain
this progression in ideas formally, we next give details on our model of rating systems.

1.1.1 Formal Model of Rating Systems
We follow the common basic model that each player has a hidden “true rating,” as well
as a visible “current rating” assigned by the system. Although current ratings naturally
fluctuate over time, the goal of a rating system is to assign current ratings that are usually a
reasonable approximation of true ratings. When two players play a game, their respective
true ratings determine the probability that one beats the other, and their respective current
ratings are used by the system as inputs to a function that determines the changes in the
ratings of the winner and the loser.

Concretely, a rating system is composed of two ingredients. The first is the skill curve σ,
which encodes the system’s model of the probability that a player of true rating x will beat
a player of true rating y. The second is the adjustment function α, which takes the players’
current ratings as inputs, and encodes the number of points that the system awards to the
first player and takes from the second player in the event that the first player beats the second
player. We are not allowed to pair together an arbitrary skill curve and adjustment function;
rather, a basic fairness axiom must be satisfied. This axiom is phrased in terms of an expected
gain function, which computes the expected number of rating points gained by a player of
current rating x and true rating x∗, when they play a game against a player of current rating
y and true rating y∗. The fairness axiom states that, when any two correctly-rated players
play a game, their expected rating change should be 0.

▶ Definition 1 (Rating Systems). A rating system is a pair (σ, α), where:
σ : R2 → [0, 1], the skill curve, is a continuous function that is weakly increasing in its
first parameter and weakly decreasing in its second parameter. We assume the game has
no draws, and thus σ must satisfy3

σ(x, y) + σ(y, x) = 1 for all x, y. (σ Draw-Free)

α : R2 → R≥0 is the adjustment function. We assume that every game has the
possibility of changing the rating of one of the players, and thus α must satisfy

α(x, y) + α(y, x) > 0 for all x, y. (Consequential)

Let γ : R4 → R be the expected gain function, defined by

γ(x, x∗ | y, y∗) := α(x, y)σ(x∗, y∗)− α(y, x)σ(y∗, x∗).

Then we require the following fairness axiom:

γ(x, x | y, y) = 0 for all x, y.

3 We ignore the possibility of draws in this exposition purely for simplicity. In the case of draws, one
could interpret a win as 1 victory point, a draw as 1/2 a victory point, and a loss as 0 victory points,
and then interpret σ(x, y) as the expected number of victory points scored by a player of true rating x
against a player of true rating y. See [15] for more discussion, and for a rating systems that can handle
even finer-grained outcomes than the win/loss/draw trichotomy.
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The fairness axiom is only implicit in prior work. Other rating systems, including ELO,
Glicko, etc., [12, 18, 14], often define their rating system by giving a skill curve and a
K-function, which together imply an adjustment function in a sense we next explain. An
adjustment function can be implicitly defined in this way if and only if it satisfies this fairness
axiom. It will be technically convenient for us to be able to have both the explicit adjustment
function α and the K-function to reference in our proofs.

1.1.2 K-Functions
Rearranging the fairness axiom, we get the identity

σ(x, y) = α(y, x)
α(x, y) + α(y, x) .

Thus the adjustment function determines the skill curve (in the sense that, for a given
adjustment function α, there is a unique skill curve σ that satisfies the fairness axiom).
However, when designing a rating system, it is more intuitive to model the game with a
skill curve first and then pick an adjustment function second. The skill curve does not fully
determine the adjustment function; rather, the value of σ(x, y) only determines the ratio
between α(x, y) and α(y, x). The K-function is an auxiliary function that determines the
scaling. We define it as the denominator part of the previous identity.4

▶ Definition 2 (K-Functions). For a rating system (σ, α), its associated K-Function is
defined by K(x, y) := α(x, y) + α(y, x).

Note that being consequential means that K(x, y) > 0 for all x, y.
Many rating systems in the literature do not explicitly define an adjustment function;

rather, they define their adjustment function implicitly by instead giving the skill curve and
the K-function [12, 9]. Most notably, Elo uses K-factors, which are a special case of our
K-functions.5 See [21] for a discussion of the practical considerations behind choosing a good
K-function.

1.2 The Elo and Sonas Rating Systems
The most famous and popular rating system used in practice is probably Elo. Its basis is a
logistic skill curve: in a game between two players of true ratings x, y, Elo maps the quantity
x− y to a win probability for the first player using a logistic function. Many implementations
of ELO, like the one used by the chess federation FIDE, also include a thresholding rule: e.g.,
if x− y > 400, then the FIDE implementation instead treats x− y as exactly 400. In other
words, it assumes the game is chaotic enough that no player ever has more than a 96% win
probability over another. This thresholding also regularizes against extreme rating swings.

In 2002, Jeff Sonas published a famous critique of Elo [20], in which he analyzed a large
sample of FIDE rated chess games among highly-rated players. He argued that the logistic
curve is so flat within this player pool that a threshold-linear skill curve fits the data just as
well, and hence is preferable due to its simplicity. We will henceforth call skill curves that
are linear within some threshold Sonas-like skill curves:

4 One can also interpret K-functions through a gambling model where the players respectively put
α(x, y), α(y, x) of their rating points into a pot, and then the winner takes all the rating points in the
pot. The K-function K(x, y) = K(y, x) is the pot size.

5 We have chosen the name K-function to indicate that they generalize K-factors. K does not stand for
anything; is an arbitrary variable name in the Elo adjustment function formula.
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Figure 1 Left: Elo skill curve (in yellow) overlayed with empirical data on the outcomes of
FIDE-rated chess games. Right: Sonas skill curve (in red) overlayed with empirical data on the
outcomes of FIDE-rated chess games in which both players were rated 2200 or higher. Figures by
Jeff Sonas, taken from [21]. See [20, 22] for additional discussion.

▶ Definition 3 (Sonas-like skill curves). A skill curve is Sonas-like if there exist a, s > 0
such that for ratings x, y ∈ R, when |x− y| ≤ s, we have σ(x, y) = ax− ay + 0.5.

Sonas’ rating system specifically took s = 400, and assumes a flat skill curve outside this
range; that is, σ(x, y) = σ(y + 400, y) when x > y + 400. In 2011 [21], Sonas augmented
his previous analysis with an interesting nuance: when all FIDE rated chess games are
considered, including those where the participants have lower ratings, then the logistic curve
is not so flat and Elo skill curves seem superior. Thus, the relative value of Elo and Sonas
seems to depend a bit on the strength of the pool of players being modeled.

1.3 Strategyproof Rating Systems and Our Results
A system is strategyproof against a certain kind of undesirable strategic behavior if it does
not incentivize a rating-maximizing player to perform that behavior. We next overview a
recent case study, in which players in a real-world system discovered and implemented an
attack on a rating system that was missing an important strategyproofness property.

1.3.1 Volatility Hacking
An obviously-desirable strategyproofness property is that a rating-maximizing player should
always be incentivized to try their best to win each game they play. Interestingly, these
incentives were recently discovered not to hold in the popular Glicko-2 rating system.

Glicko-2 [12] is a higher-dimensional version of Elo that tracks a volatility parameter for
each player. A higher volatility parameter indicates that the system is more uncertain about
the player’s true rating, which in turn amplifies the adjustment function. This volatility
parameter was repeatedly shown to improve predictive accuracy of systems, and so it has
been widely adopted. But recently, an attack has been discovered called volatility hacking.
A player first strategically loses many games, lowering their rating to the point where they
only face much lower-rated opponents and can essentially win or lose at will. Then, the
player alternates wins and losses, which boosts their volatility parameter as much as they
like while keeping their rating roughly stable. Finally, they win a few games, and due to
their enormous volatility parameter their rating skyrockets well above its initial value.

Volatility hacking was used to attack the game Pokémon Go [25], which uses a version of
Glicko-2 to rank players. An interesting recent paper by Ebtekar and Liu [8] shows that some
other popular rating systems are also vulnerable to volatility hacking attacks, and it proposes
concrete fixes to the handling of volatility parameters that would make a Glicko-2-like system
(with a volatility parameter) strategyproof against volatility hacking.
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1.3.2 Opponent Indifference and First Main Result
This paper is about securing rating systems against a less pernicious but likely much more
common type of attack that we will call opponent selection. Many matchmaking systems
provide players with some control over their next opponent. For example, some online games
use an interface in which players view a public list of active challenges from opponents of
various ratings, and they can accept any challenge they like. Alternately, some games use
random matchmaking, but then let players abort a game without penalty after glimpsing
their opponent’s rating. If players have any control over their next opponent’s rating, then it
is clearly undesirable for a rating system to allow a player to boost their rating by exercising
this control strategically. For example, in the Elo rating system, one can compute that the
magnitude of expected gain is greatest when a (correctly-rated) opponent’s true rating is
exactly halfway between a player’s current rating and their true rating.

Which rating systems are immune to opponent selection incentives? The natural definition
would capture systems where the a player’s expected gain doesn’t depend on their opponent’s
rating, so long as that opponent is correctly rated. Formally:

▶ Definition 4 (Opponent Indifference). A rating system (σ, α) with expected gain function γ

is opponent indifferent if there is a function γ∗ : R2 → R such that

γ(x, x∗ | y, y) = γ∗(x, x∗) for all x, x∗, y.

Before we proceed, let us be more specific about the kind of opponent selection attacks
that become impossible in a rating system that satisfies this definition. The premise is
that the players in a system are not usually correctly rated, i.e., their current rating differs
significantly from their true rating. One reason is due to random walk effects, where a
player’s current rating will naturally drift over time. Another reason is that a player’s true
rating might change from day to day due to external factors like rest, stress, distraction,
etc.6 An opponent selection attack would have a player seek opponents of one rating when
they feel overrated by the system, and another when they feel underrated, causing their
rating fluctuations to hold a significantly higher average than they would without strategic
behavior.

Having motivated the axiom of opponent indifference, our next goal is to check whether
it is satisfied by any actual rating systems, and whether these systems are “reasonable.”
Although opponent indifferent rating systems exist (this follows from Lemma 24 in this
paper), we actually argue that they are not sufficiently expressive to be interesting. Our
reasoning is as follows. Most interesting games exhibit skill chains. In chess, for example,
a hobbyist can beat a beginner (say) 95% of the time, and an expert can beat a hobbyist
95% of the time, and a master can beat an expert 95% of the time, and so on. Most rating
systems allow, in theory, for an infinite chain of players of ascending ratings, with each
player beating the next with reasonably high probability. We can formalize a version of this
property as follows:

▶ Definition 5 (Full Scale). A rating system (σ, α) has full scale if there exists p > 0.5 and
an infinite ascending chain of ratings r1 < r2 < . . . such that σ (ri, ri−1) ≥ p for all i.

Our critique of opponent indifference is that it is incompatible with full scale, and thus
cannot really capture games like chess.

6 Experts have estimated that chess strength fluctuates by about ± 200 Elo rating points (in the FIDE
system) on a given day due to external factors [4]. However, we have not been able to find statistical
validation of these estimates, so they should be taken as informal.
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▶ Theorem 6 (First Main Result – See Theorem 25 in the body). There is no rating system
that simultaneously satisfies opponent indifference and full scale.

Although we note that every major rating system we are aware of satisfies full scale, one
could object at this point that full scale is too strong. One might not expect an infinite
chain of ratings r1 < r2 < . . . as in the definition of full scale to exist, but rather only a
“reasonably long” chain of ratings. The argument in our impossibility theorem (Theorem 25)
arguably restricts these rating chains to be unreasonably short. For example: if we take
parameter p = 0.75, i.e., we want a chain of ratings r1 < r2 < . . . where each rating beats the
previous one with probability ≥ 0.75, this chain can have only length 3. This implies that an
opponent indifferent rating system following the ELO convention where σ(x + 400, x) = 0.75
would have a maximum possible rating spread of only 600 points.

1.3.3 P Opponent Indifference and Second Main Result
In light of Theorem 6, our goal is now to weaken the definition of opponent indifference in a
way that escapes the impossibility result of Theorem 6, while still providing an effective type
of immunity against opponent selection attacks. Fortunately, we argue that a reasonable
relaxation of opponent indifferent is already implicit in the thresholding effects used in
implementations of Elo and in Sonas. These systems hardcode a rating difference at which
the rating system punts: the system declares that chaotic effects dominate, and ratings
are no longer a good predictor of outcome probabilities. A natural relaxation is to enforce
opponent indifference only between opponents in the “non-chaotic” rating regime.

We call this weaker version P opponent indifference, where the parameter P controls the
threshold beyond which we no longer require opponent indifference to hold. In the following,
let us say that ratings x, y are P -close if we have σ(x, y) ∈ (0.5− P, 0.5 + P ). Formally:7

▶ Definition 7 (P Opponent Indifference). For a parameter P ∈ (0, 0.5], a rating system is
P opponent indifferent if there is a function γ∗ : R2 → R such that

γ(x, x∗ | y, y) = γ∗(x, x∗)

for any x, x∗, y with x, y and x∗, y both P -close.

P opponent indifference might feel like a light tweak on opponent indifference; it places
the exact same requirements as opponent indifference on all “reasonable” games that might
be played (according to a thresholding rule). Thus it provides immunity against opponent
selection attacks in the cases of interest. But, perhaps surprisingly, this relaxation is enough
to escape impossibility. We prove the following characterization theorem.

▶ Definition 8 (P Separable). A skill curve σ is P separable if there is a weakly increasing
function β : R→ R such that σ(x, y) = β(x)− β(y) + 0.5 for all P -close x, y.

▶ Definition 9 (P Constant). For P ∈ (0, 0.5], a K-function is P constant if for all x, y

such that σ(x, y) ∈ (0.5− P, 0.5 + P ), K(x, y) = C for some constant C.

▶ Theorem 10 (Second Main Result – See Theorem 32 in the body). A nontrivial rating
system (σ, α) is P opponent indifferent if and only if σ is P separable and its K-function is
P constant.

7 See Definition 31 for the equivalent technical definition used in the paper.
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It is relatively easy from this characterization theorem to show that P opponent rating
systems exist, and that they can exhibit full scale (even with respect to any given parameter
P ).8 In the next part, we show that these desirable properties continue to hold even under a
natural strengthening of P opponent indifference.

1.3.4 Strong P Opponent Indifference and Third Main Result
P opponent indifference requires indifference between any two opponents within threshold,
assuming those opponents are correctly rated. One might want to more strictly require
indifference between two opponents that are both incorrectly rated by the same amount.
Formally:

▶ Definition 11 (Strong P Opponent Indifference). For a parameter P , a rating system is
strongly P opponent indifferent if there is a function γ∗ : R3 → R such that

γ(x, x∗ | y, y + δ) = γ∗(x, x∗, δ)

for all x, x∗, y, y + δ with x, y and x∗, y + δ both P -close.

Note that P opponent indifference is the special case where δ = 0. Fortunately, this
strengthening remains tenable, as shown by the following theorem:

▶ Theorem 12 (Third Main Result – See Corollary 41). For any 0 < P ≤ 0.5 and any
rating system (σ, α), the rating system is strongly P opponent indifferent if and only if it is
Sonas-like with a P constant K-function.

Conceptually, we interpret this theorem as a significant technical point in favor of Sonas.
For games where Elo and Sonas are equally preferable in terms of accurately modeling the
player pool, the Sonas model has the additional advantage of fighting opponent selection
attacks, which may give a reason why it should be favored.

In Corollary 30, we also discuss the analogous strengthening of (general) opponent
indifference, and we strengthen our impossibility result to show that no nontrivial strong
(general) opponent indifferent rating systems exist, whether or not they satisfy full scale.

1.4 Further Details on Previous Work
Here we supply a bit more technical detail on some prior work referenced in the above
discussion.

1.5 Applications
The most direct and common use of rating systems is in matchmaking, where a system tracks
estimates of player strength in order to create well-balanced and engaging matches. Some
recent work has focused on team matchmaking, updating estimates of player strength when
the system must create two opposing groups worth of players. See [3] and references within
for examples.

Rating systems have also been applied in economic contexts, such as pricing algorithms
[26]. Agents in the economy are given ratings, and items they might want to purchase are
also given ratings. An item is offered to an agent, at a price determined by the rating of

8 This follows e.g. as a consequence of our Corollary 41, which implies that the Sonas rating system itself
is P opponent indifferent (and it has full scale); we discuss this more next.
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the item. If the agent buys the item, then the item “wins” the interaction; its rating (i.e.,
the system’s appraisal of its value) increases, while the agent’s rating (i.e., the system’s
estimate of their stinginess) decreases. Alternately, if the agent refuses the item, then the
agent “wins” the interaction, and the item’s rating decreases. A related use case is item
response theory [11], where the goal is to categorize the difficulty of tasks, e.g., answering
various questions on a test. Here we again view each agent answering each question as a
game, where the agent “wins” the interaction if they get the question right, and the question
“wins” the interaction if the agent gets it wrong. The system then updates its beliefs about
the agent’s capabilities or the question’s difficulty accordingly.

1.6 Related Strategyproof Rating Mechanisms
Closely related to rating systems are ranking systems, where the goal is simply to order
agents by relative skill (construed broadly; e.g., this would include rankings of colleges by
“quality”). Although ranking systems often work by assigning agents a numeric score that
could be interpreted as a rating, the main difference from our work is that they are offline:
they post-process data into a ranking, rather than updating ratings in an online fashion
in response to newly arriving data. Agents who are aware of a ranking algorithm may act
strategically to optimize their position, and thus, incentive-compatibility is an important
feature of these algorithms. For some work in this area, see [16] and references therein.

In our work, we do not assume any prior knowledge of agent skill levels, and we do not
necessarily assume that agents even know their own skill level. If we assume that system or
agents do have some prior knowledge of ratings, we might want a mechanism that incentivizes
them to report their beliefs truthfully. There is a related line of work developing such
mechanisms [10, 23, 24].

1.7 Open Problems and Future Directions
We conclude our introduction by suggesting a few open problems arising from our work.
1. What systems can satisfy opponent indifference properties if we relax our model to allow

rating systems that are not one-dimensional, memoryless, or zero-sum?
2. Can opponent selection attacks be avoided by systems that separately track a display

rating, which is visible to players and which they may try to maximize, from a matchmaking
rating, used internally by the system to adjust ratings? How different would the display
ratings and matchmaking ratings need to be?9

3. Can opponent indifference properties be achieved simultaneously with other desirable
properties of rating systems? Other natural properties to consider might include fast
convergence of current ratings to true ratings, or other notions of strategyproofness, like
the one considered by Ebtekar and Liu [8].

2 Preliminaries

Some of our results in the introduction reference nontrivial rating systems. We define these
formally:

▶ Definition 13 (Trivial and nontrivial). A rating system is nontrivial if for all x there exists
a y such that σ(x, y) = 0.5, or nontrivial otherwise.

9 We are grateful to an anonymous reviewer who suggested this open problem.
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In the introduction, we discuss versions of properties that only hold over a restricted
domain of ratings (like P opponent indifference, P constant, etc). In the technical part of
this paper, we will need to similarly generalize other functions, and so the following (slightly
informal) language will be helpful:

▶ Definition 14 (Property over (A, B)). Given a property defined over a set of inputs in
R, we say that a property holds over (A, B) if it holds whenever the inputs are taken in
the interval (A, B). We will equivalently say that (A, B) is a property interval for the rating
system.

For example, a rating system is nontrivial over (A, B) if there exist x, y ∈ (A, B) with
σ(x, y) ̸= 0.5, and in this case we say that (A, B) is a nontrivial interval for the rating
system.

The definition of the expected gain function in the introduction is phrased in a way that
makes its intuitive meaning clear. However, the following alternate characterization in terms
of the K-function will be useful in some of our proofs.

▶ Lemma 15. The expected gain function for a rating system (σ, α) satisfies

γ(x, x∗ | y, y∗) = K(x, y)(σ(x∗, y∗)− σ(x, y))

Proof. We compute:

γ(x, x∗ | y, y∗) = α(x, y)σ(x∗, y∗)− α(y, x)σ(y∗, x∗)
= K(x, y)σ(y, x)σ(x∗, y∗)−K(y, x)σ(x, y)σ(y∗, x∗)

Def of α using K-function
= K(x, y)(σ(y, x)σ(x∗, y∗)− σ(x, y)σ(y∗, x∗)) K is symmetric
= K(x, y)((1− σ(x, y))σ(x∗, y∗)− σ(x, y)(1− σ(x∗, y∗))) σ Draw-Free
= K(x, y)(σ(x∗, y∗)− σ(x, y)σ(x∗, y∗)− σ(x, y) + σ(x, y)σ(x∗, y∗))
= K(x, y)(σ(x∗, y∗)− σ(x, y)). ◀

3 Opponent Indifference

In this section we will characterize all opponent indifferent rating systems. Some of our
lemmas are proved with extra generality “over (A, B)"; this generality will become useful in
the following section.

3.1 Opponent Indifference vs. Full Scale

This section is about the incompatibility between the opponent indifference and full scale
axioms discussed in the introduction. Our main technical lemma in this section is Lemma
19, which shows that any nontrivial opponent indifferent rating system has a constant
K-function; this is proved by analyzing the expected gain function under the restriction
implied by opponent indifference. We then use this result about the K-function to reveal the
structure of the skill curve. This ultimately makes full-scale impossible (Theorem 25).

▶ Lemma 16. If a rating system is both nontrivial and opponent indifferent over (A, B)
where σ(x, z) = 0.5 and σ(y, z) = 0.5, then σ(x, y) = 0.5 for x, y, z ∈ (A, B).
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Proof. Opponent indifference means that the expected gain only depends on the first two
inputs, so

γ(x, y | z, z) = γ(x, y | x, x) Opponent Indifference
K(x, z)(σ(y, z)− σ(x, z)) = K(x, x)(σ(y, x)− σ(x, x)) Lemma 15

K(z, x)(0.5− 0.5) = K(x, x)(σ(y, x)− 0.5) σ Draw-Free
0 = K(x, x)(σ(y, x)− 0.5)

Since the K-function is always positive as rating systems are consequential, we must have
σ(x, y) = 0.5. ◀

▶ Lemma 17. If a rating system is both nontrivial and opponent indifferent over (A, B),
then for all x ∈ (A, B), there exists y ∈ (A, B) such that σ(x, y) ̸= 0.5.

Proof. Suppose there was a rating x ∈ (A, B) such that σ(x, y) = 0.5. for all y ∈ (A, B).
There exists z, z∗ ∈ (A, B) such that σ(z, z∗) ̸= 0.5 by nontriviality. We then have σ(z, x) =
0.5 and σ(z∗, x) = 0.5. This implies σ(z∗, z) = 0.5 by Lemma 16 which is a contradiction. ◀

▶ Lemma 18. If a rating system is both nontrivial and opponent indifferent over (A, B),
then for x, y ∈ (A, B) such that σ(x, y) ̸= 0.5, K(x, x) = K(x, y).

Proof. Let x, y ∈ (A, B) where σ(x, y) ̸= 0.5. From the definition of opponent indifference,
the expected gain does not depend on its latter two parameters. We therefore have

γ(x, y | x, x) = γ(x, y | y, y) Opponent Indifference
K(x, x)(σ(y, x)− σ(x, x)) = K(x, y)(σ(y, y)− σ(x, y)) Lemma 15

K(x, x)(σ(y, x)− 0.5) = K(x, y)(0.5− σ(x, y))
K(x, x)(1− σ(x, y)− 0.5) = K(x, y)(0.5− σ(x, y)) σ Draw-Free

K(x, x)(0.5− σ(x, y)) = K(x, y)(0.5− σ(x, y))
K(x, x) = K(x, y). ◀

▶ Lemma 19. If a rating system (σ, α) is opponent indifferent over (A, B) and nontrivial
over (A, B), then K(x, y) is constant over (A, B).

Proof. Let x, y ∈ (A, B). We want to show that K(x, x) = K(x, y). This means that the
K-function depends only on its first input. Since additionally K is symmetric in its two
parameters, it must in fact be constant over (A, B). Lemma 18 proves the statement in the
case that σ(x, y) ̸= 0.5, so we need only cover the case that σ(x, y) = 0.5.

Lemma 17 shows that there exists z ∈ (A, B) such that σ(x, z) ̸= 0.5. Lemma 16 implies
σ(z, y) ̸= 0.5 by contrapositive as σ(x, z) ̸= 0.5 and σ(x, y) = 0.5. We can then evaluate

γ(x, z | y, y) = γ(x, z | z, z)
K(x, y)(σ(z, y)− σ(x, y)) = K(x, z)(σ(z, z)− σ(x, z))

K(x, y)(σ(z, y)− 0.5) = K(x, z)(0.5− σ(x, z))

and

γ(y, z | z, z) = γ(y, z | x, x)
K(y, z)(σ(z, z)− σ(y, z)) = K(y, x)(σ(z, x)− σ(y, x))

K(y, z)(0.5− σ(y, z)) = K(y, x)(σ(z, x)− 0.5)
K(y, z)(σ(z, y)− 0.5) = K(y, x)(0.5− σ(x, z))
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Since the K-function is symmetric, we let a = K(x, y) = K(y, x) and by Lemma 18, we let
b = K(x, z) = K(y, z). We then let c = (σ(z, y)− 0.5) and d = (0.5− σ(x, z)), giving us

a · c = b · d

and

b · c = a · d

The previous two equations imply that a = b, and thus K(x, y) = K(x, z) = K(x, x) by
Lemma 18. ◀

We comment that the nontriviality hypothesis in the previous lemmas is indeed necessary,
since otherwise K(x, y) can be essentially any symmetric function over (A, B) and the
expected gain will still be 0.

▶ Lemma 20. If a rating system (σ, α) is opponent indifferent over (A, B), then

σ(x, y) = σ(x, z)− σ(y, z) + 0.5

for all x, y, z ∈ (A, B).

Proof. If the system is trivial over (A, B) then the lemma holds immediately, so assume
nontriviality. From the definition of opponent indifference the expected gain only depends
on a player’s current rating and true rating, x and x∗, so long as all ratings are within the
interval (A, B). So we have:

γ(x, x∗ | y, y) = γ(x, x∗ | z, z) Opponent Indifference
K(x, y)(σ(x∗, y)− σ(x, y)) = K(x, z)(σ(x∗, z)− σ(x, z)) Lemma 15

C · (σ(x∗, y)− σ(x, y)) = C · (σ(x∗, z)− σ(x, z)) Lemma 19.

Now consider the possible setting x∗ = y. Under this, we continue:

C · (σ(y, y)− σ(x, y)) = C · (σ(y, z)− σ(x, z))
0.5− σ(x, y) = σ(y, z)− σ(x, z)

σ(x, y) = σ(x, z)− σ(y, z) + 0.5. ◀

▶ Definition 21 (Separable). A skill curve is separable if there is a function β : R →
[C, C + 0.5] for some constant C such that

σ(x, y) = β(x)− β(y) + 0.5.

for all x, y. β is called a bisector of the skill curve.

Note that bisectors are not unique: if β is a bisector for σ, then any vertical translation
of β is also a bisector. However, all bisectors differ by this translation:

▶ Lemma 22. For any skill curve σ that is separable over (A, B), if β, β′ are both bisectors
of σ over (A, B), then there is a constant C such that β′(x) = β(x) + C for all x ∈ (A, B).

Proof. Fix an arbitrary y ∈ (A, B). We have

σ(x, y) = β′(x)− β′(y) + 0.5 = β(x)− β(y) + 0.5

and so, rearranging, we get

β′(x) = β(x) + (β′(y)− β(y)).

Now the claim follows by taking C := β′(y)− β(y). ◀
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▶ Lemma 23. If a rating system (σ, α) is opponent indifferent over (A, B), then σ is separable
over (A, B) and all bisectors are continuous.

Proof. Suppose (σ, α) is opponent indifferent over (A, B). Let m ∈ (A, B) be an arbitrary
constant. From Lemma 20 we have

σ(x, y) = σ(x, m)− σ(y, m) + 0.5.

Therefore β(x) := σ(x, m) is a bisector for σ over (A, B), and since σ is continuous, β is
continuous as well. Finally, Lemma 22 implies that since one bisector is continuous, all
bisectors are continuous. ◀

▶ Lemma 24. If a rating system’s K-function is constant over (A, B) and the skill curve is
separable over (A, B) then the rating system is opponent indifferent over (A, B).

Proof. Plugging the equations into the expected gain function for x, x∗, y ∈ (A, B), we have

γ(x, x∗ | y, y) = K(x, y)(σ(x∗, y)− σ(x, y)) Lemma 15
= C · (β(x∗)− β(y) + 0.5− (β(x)− β(y) + 0.5))
= C · (β(x∗)− β(x)).

Thus γ depends only on its first two parameters x and x∗, implying opponent indifference. ◀

Note that Lemma 24 implies that nontrivial opponent indifferent rating systems do indeed
exist, as we can choose a constant K-function and suitable bisector function β over the entire
interval (−∞,∞). However, as discussed in the introduction, our next theorem shows that
no opponent indifferent rating system can exhibit full scale:

▶ Theorem 25. No opponent indifferent rating system (over (−∞,∞)) has full scale.

Proof. Let (σ, α) be an opponent indifferent rating system and fix some p ∈ (0.5, 1). Our
plan is to prove that for some integer N depending only on p, there does not exist a chain of
ratings r1 < · · · < rN such that for all 1 < i ≤ N , we have σ(ri, ri−1) = p. More specifically,
our strategy is to prove that

σ(rN , r1) ≥ (N − 1)p− N − 2
2 . (1)

Since σ(rN , r1) ≤ 1, this implies

(N − 1)p− N − 2
2 ≤ 1

Np− p− N

2 + 1 ≤ 1

N

(
p− 1

2

)
≤ p

N ≤ 2p

2p− 1

which is an upper bound for N depending only on p, as desired. It now remains to prove
equation (1). We do so by induction on N :

(Base Case, N = 1) We have σ(r1, r1) = 1/2, as desired.
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(Inductive Step) By Lemma 23 the skill curve is separable, and so for some bisector β we
have

σ(rN+1, r1) = σ(rN+1, rN )− σ(r1, rN ) + 0.5 Lemma 20
≥ p− (1− σ(rN , r1)) + 0.5 σ Draw-Free

≥ p−
(

1−
(

(N − 1)p− N − 2
2

))
+ 0.5 Inductive Hypothesis

= p− 1 + (N − 1)p− N − 2
2 + 0.5

= Np− N − 1
2

which verifies (1) for N + 1. ◀

We note the setting N ≤ 2p
2p−1 that arises in this theorem, which for a given p controls the

maximum possible length of a skill chain that may exist in an opponent indifferent system.
In particular, plugging in p = 0.75, we get N ≤ 1.5

0.5 = 3.

3.2 Impossibility of Strong Opponent Indifference
Here, we consider an even stronger notion of opponent indifference. While opponent indif-
ference enforces that we are indifferent between two correctly-rated opponents, we could
more strongly require indifference between two opponents misrated by the same amount. In
particular, the following definition enforces indifference between opponents who are overrated
by δ:

▶ Definition 26 (Strong Opponent Indifference). A rating system is strongly opponent
indifferent if there is a function γ∗ : R3 → R such that, for all x, x∗, y, y + δ, we have

γ(x, x∗ | y, y + δ) = γ∗(x, x∗, δ).

A strongly opponent indifferent rating system is also opponent indifferent (by considering
δ = 0), and thus by Theorem 25, it cannot exhibit full scale. We will prove an even stronger
impossibility theorem. While this is a slight detour (as we have arguably already shown
that strong opponent indifference is undesirable), the results in this section are used in the
following section. As before, we prove our intermediate lemmas over arbitrary intervals
(A, B), which provides flexibility that will be helpful later in the paper.

▶ Definition 27 (Translation Invariant). A rating system (σ, α) is translation invariant if
there is a function σ∗ : R→ [0, 1] with σ(x, y) = σ∗(x− y) for all x, y.

▶ Theorem 28. If a rating system is strongly opponent indifferent over (A, B), then it is
translation invariant over (A, B).

Proof. If the system is trivial over (A, B) then the lemma is immediate, so assume non-
triviality over (A, B). Let (σ, α) be a strongly opponent indifferent rating system. To show
translation invariance over (A, B), let x, x∗, δ be such that x, x∗, x + δ, x∗ + δ ∈ (A, B). Since
strong opponent indifference implies opponent indifference, Lemmas 15 and 19 apply. We
can therefore compute:

γ(x, x∗ | y, y + δ) = K(x, y)(σ(x∗, y + δ)− σ(x, y)) Lemma 15
= C · (σ(x∗, y + δ)− σ(x, y)) Lemma 19.
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From the definition of strong opponent indifference, the expected gain function depends
only on the first two parameters and the difference between its latter two parameters, and so
we have

γ(x, x∗ | x∗, x∗ + δ) = γ(x, x∗ | x, x + δ)
C · (σ(x∗, x∗ + δ)− σ(x, x∗)) = C · (σ(x∗, x + δ)− σ(x, x)) previous equation

σ(x∗, x∗ + δ)− σ(x, x∗) = σ(x∗, x + δ)− 0.5
σ(x, x∗) = σ(x, x∗ + δ)− σ(x∗, x + δ) + 0.5

σ(x, x + δ)− σ(x∗, x + δ) + 0.5 = σ(x∗, x∗ + δ)− σ(x∗, x + δ) + 0.5 Lemma 20
σ(x, x + δ) = σ(x∗, x∗ + δ),

which implies translation invariance over (A, B). ◀

▶ Theorem 29. If a rating system (σ, α) is strongly opponent indifferent over (A, B), then
σ has a bisector that is linear over (A, B) (i.e., on the interval (A, B) it coincides with a
function of the form β(x) = mx for some constant m).

Proof. By considering an appropriate horizontal translation of our rating system, we may
assume without loss of generality that our opponent indifferent interval is symmetric about
the origin, i.e., it has the form (−A, A). Let β be an arbitrary function that bisects σ over
(−A, A), and further assume without loss of generality that β intersects the origin, i.e.,
β(0) = 0. Our goal is to prove that, for all x, y ∈ (−A, A), we have β(x + y) = β(x) + β(y).
Since we already have that β is continuous, this implies linearity of β over (−A, A) (see
Lemma 42 in Appendix A for details).

Let x, y, x + y ∈ (−A, A). We then have

σ(x + y, x) = f(y) Theorem 28
β(x + y)− β(x) = f(y) Lemma 23
β(x + y) = β(x) + f(y). (2)

Additionally, by reversing the roles of x and y, we have

β(x + y) = f(x) + β(y). (3)

Thus, combining (2) and (3), we get

f(x) + β(y) = β(x) + f(y).

It follows from equation (2) that f(0) = 0, and we recall that β(0) = 0. Therefore, plugging
y = 0 into the previous equation, we get

f(x) + β(0) = β(x) + f(0)
f(x) = β(x)

and so, recombining with (2), we have β(x + y) = β(x) + β(y), as desired. ◀

▶ Corollary 30. A strongly opponent indifferent rating system (over (−∞,∞)) must be
trivial.

Proof. If a rating system is strongly opponent indifferent, then by Theorem 29 there exists
a bisector β that is linear over (−∞,∞). Additionally, the range of β is contained within
[C, C + 0.5] for some constant C. The only such functions are those with slope 0. Thus

σ(x, y) = 0− 0 + 0.5 = 0.5

for all x, y ∈ R, and so it is trivial. ◀
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4 P Opponent Indifference

Recall that P opponent indifference is a relaxation of (full) opponent indifference, in which
we only require indifference among opponents who are reasonably evenly matched.

▶ Definition 31 (P Opponent Indifference). For P ∈ (0, 0.5], a rating system is P opponent
indifferent if the rating system is opponent indifferent over (A, B) for all A < B where10

σ(A, B) > 0.5− P.

4.1 Characterization of P Opponent Indifference
Our next goal is to prove the following characterization theorem:

▶ Theorem 32 (Characterization of P Opponent Indifferent Rating Systems). A nontrivial
rating system is P opponent indifferent if and only if the skill curve is P separable and the
K-function is P constant.

We work towards a proof with some intermediate structural lemmas.

▶ Lemma 33. If a rating system (σ, α) is P opponent indifferent then every real number is
within an opponent indifferent interval.

Proof. Let b ∈ R. Since σ is continuous, there exists 0 < ϵ such that 0.5 ≥ σ(b− ϵ, b + ϵ) >

0.5− P . Thus (b− ϵ, b + ϵ) is an opponent indifferent interval. ◀

▶ Lemma 34. If a rating system (σ, α) is P opponent indifferent, then σ is P separable with
a continuous bisector.

Let us quickly discuss this lemma statement before we begin its proof. By Lemma 23, for
each P -interval (A, B), there exists a continuous function β that bisects σ on this interval.
But this lemma is claiming something stronger: that there is a single continuous function β

that bisects σ on all P -intervals simultaneously. This strengthening requires a bit of topology
to prove, but is overall fairly straightforward.

Proof of Lemma 34. We construct a bisector β as follows. First, we arbitrarily fix a point;
say, β(0) = 0, and all other values of β are currently undefined. Then, iterate the following
process. Let x be the current supremum of the points on which β has been defined. Let
ε > 0 be the largest value such that (x− ε, x + ε) is a P -interval. Using Lemma 23, there
exists an infinite family of bisectors over (x− ε, x + ε), which are vertical translations of each
other. However, since (x− ε, x + ε) intersects at least one previously-defined point, only one
bisector in this family is consistent with the previously-selected values of β. We may extend
β to the interval (x− ε, x + ε) using this particular bisector, and repeat infinitely.

We claim that, for every nonnegative number r, there is a constant cr such that the value
of β(r) is defined after finitely many iterations of this process. To see this, let D ⊆ R be
the set of points with this property, and suppose for contradiction that the supremum of D

is a finite real number r∗. Note that D is the union of open intervals, and thus D is open,
which means it does not contain its supremum. Since r∗ /∈ D, there is no constant cr∗ for

10 Technically, this definition differs slightly from Definition 7 of partial opponent indifference in the
introduction, because it forces all pairs among x, x∗, y to be P -close, whereas Definition 7 only explicitly
forces x, y, and x∗, y to be P -close. However, it follows as an easy corollary of the results in this section
that the two definitions are equivalent (see Lemma 43 in Appendix A for details).
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which β(r∗) is defined after cr∗ iterations. Additionally, since r∗ is the supremum of D, any
interval of the form (r∗ − ε, r∗ + ε) intersects D. Let r ∈ (r∗ − ε, r∗ + ε) ∩D. Then after
cr + 1 iterations, we would define β(r∗). Since cr + 1 is finite, this implies r∗ ∈ D, which
completes the contradiction.

By a symmetric process, we may then extend β to negative inputs. ◀

▶ Lemma 35. For a nontrivial P opponent indifferent rating system, every opponent
indifferent interval (A, B) has a constant K-function over (A, B).

Proof. The rating system is either nontrivial or trivial over (A, B). If the rating system
is nontrivial, the result is immediate by Lemma 19. Thus the remaining case is when the
system is trivial over (A, B), but nontrivial overall.

We have σ(A, B) = 0.5. Since σ is not identically 0.5, there exist B′ > B, A′ < A such
that σ(A′, B′) < 0.5. Moreover, since σ is continuous, we may specifically choose values
A′, B′ satisfying

0.5− P < σ(A′, B′) < 0.5.

So (A′, B′) is a P -interval, and σ is nontrivial over (A′, B′). By Lemma 19, we thus have a
constant K-function over (A′, B′). Since (A, B) ⊆ (A′, B′), the lemma follows. ◀

We are now ready to prove Theorem 32.

Proof of Theorem 32. (−→) Lemma 34 implies that σ is P separable, so it only remains to
show that the K-function is P constant. We prove this in two steps. First, let f(x) = K(x, x),
and we will prove that f(x) is constant. Since every x lies in an opponent indifferent interval
(Lemma 33), by Lemma 35 f is constant on that interval. In particular this implies f is
differentiable at x, with f ′(x) = 0, and thus f is constant. Finally: for any x, y in the same
opponent indifferent interval (A, B), by Lemma 35 we have K(x, y) = K(x, x), and thus the
K-function is P constant.

(←−) This direction is immediate from Lemma 24. ◀

4.2 Characterization of Strong P Opponent Indifference

In this section, we will show how the strong version of P opponent indifference characterizes
Sonas-like curves. We begin with an auxiliary lemma:

▶ Lemma 36. If a rating system’s K-function is constant over (A, B) and the skill curve
is separable over (A, B) with a linear bisector, then the rating system is strongly opponent
indifferent over (A, B).

Proof. Plugging the equations into the expected gain function for x, x∗, y, y + δ ∈ (A, B),
we have

γ(x, x∗ | y, y + δ) = K(x, y)(σ(x∗, y + δ)− σ(x, y)) Lemma 15
= C · (β(x∗)− β(y + δ) + 0.5− (β(x)− β(y) + 0.5))
= C · (β(x∗)− β(x)− β(δ))

which depends only on x, x∗, and δ. ◀
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▶ Definition 37 (Strong P Opponent Indifference). For P ∈ (0, 0.5], a rating system is
strongly P opponent indifferent if the rating system is strongly opponent indifferent over
(A, B) for all A and B where11

σ(A, B) > 0.5− P.

▶ Theorem 38 (Characterization of Strongly P Opponent Indifferent Rating Systems). A
nontrivial continuous rating system (σ, α) is strongly P opponent indifferent if and only if
the skill curve is P separable with a linear bisector and the K-function is P constant.

Proof. (−→) Assume the rating system is strongly P opponent indifferent. Because strongly
P opponent indifferent rating systems are also P opponent indifferent, we already have that
the skill curve is P separable and the K-function is P constant by Theorem 32. It only
remains to prove is that the skill curve has a linear bisector.

The skill curve has a continuous bisector β by Lemma 34. Recall from Theorem 29 that,
for any strongly opponent indifferent interval (A, B), σ is separable on this interval with a
bisector that is linear over the interval. Moreover, the slope of β on this interval must be
σ(B,A)−0.5

B−A .
From Lemma 33 and the fact that the rating system is nontrivial, we know there

exists some 0 < ϵ and a ∈ R such that (a − ϵ, a + ϵ) is a nontrivial strongly opponent
indifferent interval. Since the bisector is linear and nontrivial over (a− ϵ, a + ϵ), we know
0.5−P < σ(a− ϵ, a + ϵ) < 0.5, and thus the slope of β is positive over (a− ϵ, a + ϵ). Because
of this, there must be some value c where σ(a, c) = σ(a− ϵ, a + ϵ). Thus (a− ϵ, a + ϵ) and
(a, c) are overlapping strongly opponent indifferent intervals so β must have the same slope
over both intervals. In order for this to be the case, c = a + 2ε.

We can continue this argument, repeatedly adding ε, to show that β has the same slope
as the interval (a− ε, a + ε) for all r > a. We can also make a similar argument subtracting
ε each time to show that the bisector has the same slope as the interval (a − ε, a + ε) for
r < a. Thus, the bisector’s slope is constant. Since any vertical translation of β is also a
bisector, there exists a linear bisector.

(←−) This direction follows directly from Lemma 36. ◀

▶ Definition 39 (P Translation Invariant). A rating system (σ, α) is P translation invariant
if for every x, y ∈ R where σ(x, y) ∈ (0.5−P, 0.5 + P ), we have σ(x, y) = σ∗(x− y) for some
σ∗ : R→ [0, 1].

▶ Lemma 40. A skill curve is Sonas-like with parameters a, s if and only if it is σ(s, 0)− 0.5
separable with β(x) = ax. (Sonas-like skill curves are defined in Definition 3.)

Proof. (−→) This direction follows from Definition 3, as σ(s + x, x) is constant for all x.
(←−) From the definition of P separable and linear bisectors, for all x, x + δ where

σ(x, x + δ) ∈ (0.5− P, 0.5 + P ), we have

σ(x, x + δ) = β(x)− β(x + δ) + 0.5 = −β(δ) + 0.5,

and so the rating system is P translation invariant. Thus, for all |x − y| < s we have
σ(x, y) = ax−ay+0.5. Since σ is continuous, it additionally holds that σ(x, y) = ax−ay+0.5
when |x− y| = s. ◀

11 Similar to P opponent indifference, this definition is equivalent to the one given in the introduction,
despite looking slightly different (see Lemma 44 in Appendix A for details).
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▶ Corollary 41. A rating system is strongly P opponent indifferent if and only if it is
Sonas-like with a P constant K-function.

Proof. This follows directly from Theorem 38 and Lemma 40. ◀
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A Extra Proofs

▶ Lemma 42. If a function f : (−A, A)→ R is continuous and for x, y ∈ (−A, A) we have
f(x + y) = f(x) + f(y), then f is linear over (−A, A).

Proof. To prove linearity, we need only prove f(rx) = r · f(x) for all x, rx ∈ (−A, A). To do
this we will prove the following propositions in order:
1. f(nx) = n · f(x) for n, x such that n ∈ Z and x, nx ∈ (−A, A)
2. f(qx) = q · f(x) for q, x such that q ∈ Q and x, qx ∈ (−A, A)
3. f(rx) = r · f(x) for r, x such that n ∈ R and x, rx ∈ (−A, A).

The first proposition follows directly from the fact that f(x + y) = f(x) + f(y), and it
can be used to prove the second proposition. Let q = a

b such that a, b ∈ Z .

b · f(qx) = b · f(a

b
· x)

= ab · f(1
b
· x) f( 1

b · x) is defined

= a · f(b · 1
b
· x)

= a · f(x).

Dividing both sides of the equation by b gives

f(qx) = a

b
· f(x)

= q · f(x).

To show proposition 3, we can use proposition 2 and continuity. Since Q is dense in R, we
know there exists a sequence of rationals qn that converges to any r ∈ R. Thus we can say

f(rx) = f
(

lim
n→∞

qnx
)

= lim
n→∞

f (qnx) continuity of f

= lim
n→∞

qn · f (x) proposition 2

= r · f (x) .

So f must be linear over (−A, A). ◀

▶ Lemma 43. Definition 7 and Definition 31 are equivalent.
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Proof. (−→) Definition 7 is immediately stronger than Definition 31 since the former requires
P -closeness among fewer numbers.

(←−) If a rating system satisfies Definition 31, then we may apply Theorem 32. Thus
σ(x, y) = β(x)− β(y) + 0.5 and K(x, y) = C for some constant C for x, y P -close. Looking
at x, y and x∗, y both P -close for x, x∗, y as defined in Definition 7, we evaluate

γ(x, x∗ | y, y) = K(x, y)(σ(x∗, y)− σ(x, y)) Lemma 15
= C · (β(x∗)− β(y) + 0.5− (β(x)− β(y) + 0.5)) Theorem 32
= C · (β(x∗)− β(x))

which only depends on the first two parameters, therefore satisfying Definition 7. ◀

▶ Lemma 44. Definition 11 and Definition 37 are equivalent.

Proof. (−→) Definition 11 is immediately stronger than Definition 37, since the former
requires P -closeness among fewer numbers.

(←−) If a rating system satisfies 37, then we may apply Theorem 38. Thus σ(x, y) =
β(x) − β(y) + 0.5 where β is linear and K(x, y) = C for some constant C for x, y P -close.
Looking at x, y and x∗, y +δ both P -close for x, x∗, y, δ as defined in Definition 7, we evaluate

γ(x, x∗ | y, y + δ) = K(x, y)(σ(x∗, y + δ)− σ(x, y)) Lemma 15
= C · (β(x∗)− β(y + δ) + 0.5− (β(x)− β(y) + 0.5)) Theorem 38
= C · (β(x∗)− (β(y) + β(δ)) + 0.5− (β(x)− β(y) + 0.5)) β linear
= C · (β(x∗)− β(x)− β(δ))

which only depends on the first two parameters and the difference of the latter two parameters,
therefore satisfying Definition 7. ◀
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1 Introduction

A well-known theorem by Ramsey gives a lower bound on the size of the largest monochromatic
clique in any edge-coloring of the complete graph using two colors.

Ramsey [25] Any edge-coloring of the complete graph on n vertices with two colors contains
a monochromatic clique of size at least 1

2 log n.

Ramsey’s theorem gives rise to a natural computational search problem Ramsey [18, 16]:
given a description of an edge-coloring, output the vertices of a monochromatic clique of
size 1

2 log n. Since the theorem guarantees the existence of a monochromatic clique of this
size, Ramsey belongs to the complexity class TFNP, consisting of efficiently verifiable search
problems to which a solution is guaranteed to exist [20].

The computational complexity of Ramsey very much depends on its representation. On
the one hand, it is efficiently solvable when the graph is given explicitly; a folklore proof of
Ramsey’s theorem gives an efficient algorithm to find such a subgraph. On the other hand,
the situation is less clear when the graph is represented implicitly, e.g., via a small Boolean
circuit that, for any pair of vertices, outputs the corresponding color of the edge-coloring of
the graph.1

Another TFNP problem considered in the literature that is motivated by a result in
extremal combinatorics arises from the well-known Erdős-Rado sunflower lemma.

Erdős-Rado [10] Any family of n-sets of cardinality greater than nnn! contains an n-
sunflower of size n + 1, i.e., subsets A1, A2, . . . , An+1 ∈ F such that, for some ∆,
Ai ∩ Aj = ∆ for every distinct Ai, Aj.

Similarly to Ramsey, an instance of the total search problem Sunflower [16] can be
represented implicitly, e.g., by a Boolean circuit which outputs a characteristic vector of a
set in the family when given the index of this set.

In general, little is known of the complexity of the implicit variants of Ramsey or
Sunflower – the proofs of the corresponding theorems are either non-constructive or result
in inefficient (i.e., superpolynomial-time) algorithms. Ramsey is known to be PWPP-hard
under randomized reductions, as shown by Krajíček [18] and Komargodski, Naor, and
Yogev [16], and Sunflower is known to be PWPP-hard, as shown by Komargodski, Naor,
and Yogev [16]. This means that finding the desired substructure is at least as hard as finding
collisions in an arbitrary poly-sized shrinking circuit and, hence, hard in the worst-case if
collision-resistant hash functions exist. However, they are not known to be complete for
the class PWPP and the intriguing question of whether they give rise to a complexity class
distinct from PWPP has remained open for years.

1.1 Our Results
We explore new connections between classical theorems in extremal combinatorics and the
complexity classes PPP [23] and PWPP [14], i.e., the classes of search problems with totality
guaranteed by the (weak) pigeonhole principle. We show that PPP and PWPP can be
characterized via a number of new TFNP problems based on the following theorems.

1 Note that, given such a representation, it might be even hard to compute the degree of a node with
respect to one of the two colors.
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Erdős-Ko-Rado [9]. Any family of distinct pairwise-intersecting k-sets on a universe of size
m has size at most

(
m−1
k−1

)
.

Sperner [27]. The largest antichain, i.e., a family of subsets such that no member is
contained in any other, on a universe with 2n elements is unique and consists of all
subsets of size n.

Cayley [4]. There are exactly nn−2 spanning trees of the complete graph on n vertices.

Just as for Ramsey and Sunflower, the corresponding search problems are efficiently
solvable when given explicit access to the family of objects and, again, their computational
complexity is open when we consider implicit access to the structure, e.g., where the instance
is given by a circuit that on input i returns an encoding of the ith object in the collection.2
The totality of the problems we define follows from a common principle – the instances are
given via an implicit representation of a sufficiently large collection of objects (e.g., subsets
for Erdős-Ko-Rado) such that, by the corresponding theorem, there exists a small subset of
these objects satisfying some efficiently verifiable property (e.g, a pair of disjoint subsets for
Erdős-Ko-Rado).

In addition to the above completeness results, we define TFNP problems arising from the
following results in extremal combinatorics.

Mantel [19]. Any triangle-free graph on n vertices has at most n2/4 edges.

Turán [28]. If G = (V, E) is a graph on n = |V | vertices that does not contain any
r + 1-clique, then |E| ≤ (1 − 1

r ) n2

2 .

Ward-Szabó [29]. Any edge-coloring of the complete graph on n vertices with 2 ≤ r ≤
√

n

colors must contain a bichromatic triangle.

In the case of the Ward-Szabó theorem, we define three variants of the corresponding
computational problem. We prove that all three variants are PWPP-hard, the first one is in
PWPP and the second in in PPP. Proving the inclusion for the third variant remains open
and it joins Ramsey and Sunflower as a candidate problem that might define a new class
above PWPP. Turán’s theorem is a generalization of Mantel’s theorem. We define a weak
version of a problem based on Turán’s theorem for every r, and prove that these problems
form a hierarchy between PWPP and PPP. Furthermore, we define strong versions which,
by a reduction from [24], form a hierarchy above PPP. It is open whether these hierarchies
colllapse. An overview of our results in terms of weak and strong problems (see Section 1.3)
is given in Table 1.

1.2 Techniques and Ideas
A long-standing open problem regarding Ramsey and Sunflower has been to determine
their status with respect to the classes PWPP and PPP. For the most part, the most
challenging part in establishing completeness for some syntactic subclass of TFNP lies in
proving hardness (see, e.g., [7, 21, 11]). For subclasses of TFNP such as PPAD, PPA, and PLS,

2 Note that an implicit representation of the collection might not necessarily satisfy the assumptions of
the underlying theorem. For instance, representing sets via characteristic vectors for Erdős-Ko-Rado
does not ensure that they are actually k-sets or that they are distinct. Importantly, such a violation
could allow evading the totality of the search problem. Nevertheless, we can ensure totality by allowing
locally verifiable evidence of a malformed representation as a solution, e.g., an index not corresponding
to a k-set or two indices corresponding to the same set.

ITCS 2023
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Table 1 Summary of the complexity of problems we consider. Except for Ramsey
and Sunflower, all problems were introduced in this work. The containment results for
weak-general-Erdős-Ko-Radok and general-Erdős-Ko-Radok rely on the efficient Baranyai
assumption (Assumption 4.12). The PWPP-hardness of Ramsey is known only under randomized
reductions.

Problem Hardness Containment

Ramsey PWPP [18, 16]
TFNPSunflower

Ward-Szabó
PWPP

[Theorems 7.5, 8.4, and 8.14]

weak-Mantel PPP

[Theorems 7.8, 8.5, and 8.15]
weak-Turánr

Ward-Szabó-Colorful-Collisions
Ward-Szabó-Collisions

PWPP [Theorems 4.5, 4.14, 5.3, 6.3, 7.5, and 7.6]
weak-Erdős-Ko-Rado
weak-general-Erdős-Ko-Radok

weak-Sperner-Antichain
weak-Cayley
Erdős-Ko-Rado

PPP [Theorems 4.7, 4.16, 5.5, and 6.5]
general-Erdős-Ko-Radok

Sperner-Antichain
Cayley
Mantel PPP [Theorem 8.9] TFNP

the inclusion in a subclass mostly follows from the existence of an inefficient yet structured
algorithm for the problem at hand; for example, the chessplayer algorithm for PPA [23] or
the steepest descent algorithm for PLS [15]. However, this methodology seems inapplicable
for proving inclusion in PWPP or PPP as these classes do not exhibit any characterizing
graph-theoretic structure that could capture some class of natural algorithms.

In contrast to many existing bounds in TFNP, our work does not make use of structured
algorithms but instead makes use of encodings that translate between substructures and
collisions in circuits. In order to establish inclusion in PWPP, we encode the objects of the
collection using a “property-preserving encoding” that encodes the objects in a way that
translates some specific relation into collisions. More precisely, we want an encoding function
that is efficiently computable and (nearly) optimal, such that whenever two elements have
the same encoding, these two elements give a solution to the original problem. While this
technique is quite general, it is not always clear how to instantiate the encoding to get the
desired collisions.

Consider, for example, the total search problem corresponding to the Erdős-Ko-Rado
theorem for intersecting families of n-sets on a universe of size 2n. An instance can be given
by a Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉+1 → {0, 1}2n representing a family of subsets
of [2n], i.e., C(i) is the characteristic vector of the i-th n-set in the family. Suppose the
outputs of C define distinct n-sets. Since there are more than

(2n−1
n−1

)
of them, then, by the

Erdős-Ko-Rado theorem, there must exist a pair of inputs mapped to disjoint n-sets by C.
We define any such pair of inputs to be a solution. To ensure totality of the corresponding
search problem, circuits that do not represent distinct n-sets give rise to additional solutions
of the form (a) an i such that C(i) is not an n-set, or (b) i ̸= j such that C(i) = C(j).

When proving that the above total search problem is contained in the complexity class
PWPP, at a high level, we want to encode the n-sets of the family using a shrinking circuit,
in such a way that collisions correspond to disjoint sets. Observe that for n-sets in a universe
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of size 2n, the only disjoint sets are complements and, hence, we get an equivalent instance
of the problem if we map each set to either itself or its complement, arbitrarily. In our
construction, we map each set S to the representative not containing the element 1. That is,
if 1 ̸∈ S, the set is left unchanged and, otherwise, it is mapped to its complement S. Note
that, by the pigeonhole principle, two sets that do not contain 1 must have a non-empty
intersection since we work with n-subsets of [2n]. To obtain a shrinking circuit, we make use
of Cover encodings (Section 3.1) that give an optimal encoding of all n-sets by considering
their lexicographic order. Notice that if the input S is not an n-set, we may map it arbitrarily
to any n-set, as a collision, in this case, yields a solution to the instance of the above problem
motivated by the Erdős-Ko-Rado theorem.

In contrast, the PWPP-hardness results for Ramsey and Sunflower follow an elegant
and rather direct (compared to other hardness results for subclasses of TFNP) technique
of the graph-hash product [18, 16], which we illustrate on Ramsey. Recall that there are
known randomized constructions of edge-colorings of the complete graph K2n/4 on 2n/4

vertices that do not contain a monochromatic clique of size n/2 [8]. Given such an underlying
edge-coloring of K2n/4 and a hash function h mapping n-bit strings to n/4-bit strings, one
can construct an edge-coloring of the complete graph on 2n vertices by assigning to every
edge (u, v) ∈ {0, 1}n × {0, 1}n the color of the edge (h(u), h(v)) ∈ {0, 1}n/4 × {0, 1}n/4 from
the underlying coloring. Since the underlying edge-coloring of K2n/4 does not contain a
monochromatic clique of size n/2, it is easy to see that any monochromatic clique of size n/2
in the resulting edge-coloring of K2n (guaranteed to exist by Ramsey’s theorem) must have
been introduced via a collision in the hash h.

As noted by [16], the structure of a PWPP-hardness proof using the graph-hash product is
not restricted to total search problems corresponding to graph-theoretic theorems of existence;
indeed, [16] used the graph-hash product to prove also PWPP-hardness of Sunflower. On a
high level, for a problem to be amenable to the graph-hash product technique, it is sufficient
to be able to construct a collection of objects such that 1) it does not contain the desired
substructure, 2) the logarithm of its size is at least a constant fraction of the logarithm of the
threshold necessary for the existential theorem to apply3 and 3) it can be efficiently indexed.
Then, we can interpret the output of an appropriately shrinking hash h as an index into the
small collection of objects, and, for each index, we can efficiently compute and output the
corresponding element in the collection. Again, since the small collection does not contain
the desired substructure, all solutions of the instance constructed via graph-hash product
must in some way result from a collision in the hash h.

For example, consider the total search problem arising from Sperner’s theorem on
antichains – here, the threshold size is

(2n
n

)
, meaning that if we have a family with strictly

more than
(2n

n

)
distinct subsets of [2n] then one subset from the family must be contained in

another member of the family. It is straightforward to construct a family of subsets that
does not contain the specific substructure (i.e., a subset that is included in another one) with
size equal to the threshold size

(2n
n

)
. It suffices to consider the family of all the n-subsets of

[2n]. Similarly, for many other combinatorial problems we study, an adequate collection of
objects can be found by looking at a collection of maximum size that does not contain the
substructure.

We also show natural reductions between some of the problems we define (for instance,
from Erdős-Ko-Rado to Sperner-Antichain), which, in our opinion, highlights the
relevance of these new problems and the fact that their definition is the correct one.

3 This is a technical condition ensuring that we can reduce from a PWPP-complete variant of the problem
of finding collisions in a shrinking hash. Note that it is easy to find collisions in functions that exhibit
extreme shrinking.
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1.3 PPP-Completeness From Extremal Combinatorics
Up to this point, our discussion did not explicitly distinguish between the classes PWPP
and PPP. However, our work highlights important structural differences between the two
complexity classes. Recall that the class PWPP contains the search problems in TFNP whose
totality can be proved using the weak pigeonhole principle: “In any assignment of 2n pigeons
to n holes there must be two pigeons sharing the same hole.”

This statement can be seen as a result in extremal combinatorics bounding the maximum
number of pigeons that can be assigned to n holes without two pigeons being sent to the
same hole. More generally, we say that a theorem from extremal combinatorics is “weak” if it
gives an upper bound (which may or may not be tight) on the maximum size of a collection
of objects that does not contain some substructure (above, two pigeons sharing the same
hole). On the contrary, we say that a theorem from extremal combinatorics is “strong” if
it gives a tight upper bound on the maximum size of a collection of objects that does not
contain some substructure, as well as some structural property about the maximum families
without the substructure. For instance, the strong pigeonhole principle can be stated as: “In
any assignment of n pigeons to n holes there is either a pigeon in the first hole or two pigeons
sharing the same hole.” Note that it is exactly this formulation of the strong pigeonhole
principle that defines the class PPP.

Many results in extremal combinatorics have both a weak statement and a strong
statement. For such results, we can define a problem corresponding to the weak statement,
which often is related to PWPP, and a problem corresponding to the strong statement,
which often is related to PPP. In this paper, all PWPP-hard problems correspond to a
weak theorem in extremal combinatorics, while PPP-hard problems correspond to a strong
theorems in extremal combinatorics. As an example, consider Cayley’s formula and note that
the bound nn−2 is tight. Hence, if we are given a collection of exactly nn−2 distinct graphs
on n vertices, then either one of the graphs is not a spanning tree, or every spanning tree is in
the collection. This observation induces a TFNP problem that we show to be PPP-complete.

1.4 Related Work
In independent and concurrent work, Pasarkar, Yannakakis, and Papadimitriou [24] explored
the connections between extremal combinatorics and the class PPP. They defined a new
subclass of TFNP called PLC inspired by the proof of Ramsey’s theorem and proved that
this class contains Ramsey, a version of Sunflower and the whole PPP. Compared to
our work, they also considered the Erdős-Ko-Rado theorem, yet, in the setup where the
universe has size 2n and the subsets of this universe have size 2; they proved that this
variant is also PPP-complete. Importantly, our setup does not allow subsets of constant
size. Pasarkar et al. also considered problems based on Turán’s theorem and problems
called Bad-k-Coloring and show that these problems form a hierarchy above PPP. Their
problems based on Turán’s theorem are equivalent to our Turánr and hence their reduction
implies Turánr ≤ Turánr+1.

Another subclass of TFNP, based on approximate counting, containing Ramsey was
defined by Kołodziejczyk and Thapen [17].

Compared to the majority of subclasses of TFNP that have been extensively studied and
are known to capture various total search problems from diverse domains of mathematics,
PPP and PWPP might seem less expressive and the first non-trivial completeness results
appeared only recently. Sotiraki, Zampetakis, and Zirdelis [26] and Ban, Jain, Papadimitriou,
Psomas, and Rubinstein [1] demonstrated that PPP contains computational problems from
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number theory and the theory of integral lattices. In particular, Sotiraki et al. showed
PPP-completeness of a computational problem related to Blitchfeld’s theorem and PPP-
completeness (resp. PWPP-completeness) of a problem motivated by the Short Integer
Solution problem. Hubáček and Václavek [13] showed that some general formalizations of
the discrete logarithm problem are complete for PWPP and PPP and, motivated by classical
constructions of collision-resistant hashing, they characterized PWPP via the problem of
breaking claw-free (pseudo-)permutations.

1.5 Open Problems
Our work suggests various interesting directions for future research:

We exploit the power of strong statements in extremal combinatorics for establishing
PPP-completeness. The notorious lack of tight bounds for the Erdős-Rado sunflower
lemma and Ramsey’s theorem implies that we have no strong version of these theorems,
which may explain why showing the inclusion of the corresponding problems in, e.g., PPP
has eluded researchers.
We introduced total search problems corresponding to Mantel’s theorem, Turán’s theorem,
and Ward-Szabó’s theorem. In this work, we only prove hardness results for these problems
but no inclusion results. Hence, it is still open whether they are complete for the classes
PPP and PWPP, or whether they could define a new subclass of TFNP.
Another exciting question is whether the efficient Baranyai assumption (Assumption 4.12)
holds, as well as whether it is possible to prove the inclusion results of the problems
associated to the general version of Erdős-Ko-Rado’s theorem without that assumption.
Showing reductions between general-Erdős-Ko-Radok and general-Erdős-Ko-
Radol for k ̸= l without the efficient Baranyai assumption would also be interesting.
The Turánr problem is defined in a similar fashion to Mantel and it holds Turánr ≤
Turánr+1. It is then open whether these problems are of the same complexity or whether
they form a hierarchy above PPP.
Finally, we believe that the problems between PWPP and PPP deserve a more thorough
investigation to further our understanding of the classes. In particular, weak-Turánr

and General-Pigeonk(n) (see Section 2.1) are two potential hierarchies between these
two classes.

2 Preliminaries

We denote by log x the binary logarithm of x. We denote by [n] the set {1, 2, . . . , n}. We
interpret elements of {0, 1}∗ as strings and write them as x = x1x2 · · · xn for xi ∈ {0, 1}. Each
element xi is also called a bit. We say n is the length of x ∈ {0, 1}n, and say x is an n-bit string.
We denote by 0n (resp. 1n) the n-bit string consisting of all 0 (resp. 1). If x, y ∈ {0, 1}∗

are two strings of lengths n, m, respectively, we denote by x ∥ y = x1x2 · · · xny1y2 · · · ym the
concatenation of x and y. We denote by ≤ the lexicographical order on strings. Note that ≤
is a partial order as it is only well-defined for strings of the same length. We use x < y to
denote x ≤ y and x ̸= y. We may occasionally abuse notation and write x < k where k ∈ N,
in which case we mean the binary encoding of k on the same number of bits as x. If ⌈log k⌉
exceeds the length of x, we define x < k such that the order is total.

If Ω is a set of size n, we associate the set 2Ω with the characteristic vectors from {0, 1}n

for some arbitrary (but fixed) order on Ω. We denote by ⊆ the partial order on {0, 1}n where
x ⊆ y iff xi ≤ yi for every i = 1 . . . n. If x ∈ {0, 1}n is a string, we denote by x := x1x2 · · · xn

the complement of x, defined by xi = 1 − xi. We also use other set-theoretic operators ∩, ∪, \
that are defined in a natural way. We also denote by |x| =

∑n
i=1 xi the number of 1s in x

when the length is implicit from the context.

ITCS 2023
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2.1 Total Search Problems
A search problem is defined by a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ – a string s ∈ {0, 1}∗

is a solution for an instance x ∈ {0, 1}∗ if (x, s) ∈ R. A search problem defined by relation
R is total if for every x, there exists an s such that (x, s) ∈ R. We define TFNP as the
class of all total search problems that can be efficiently verified, i.e., there is a deterministic
polynomial-time Turing machine that, given (x, s), outputs 1 if and only if (x, s) ∈ R and,
for every instance x, there exists a solution s of polynomial length in the size of x.

To avoid unnecessarily cumbersome phrasing throughout the paper, we define TFNP
relations implicitly by presenting the set of valid instances X ⊆ {0, 1}∗ recognizable in
polynomial time (in the length of an instance) and, for each instance i ∈ X, the set of
admissible solutions Yi ⊆ {0, 1}∗ for the instance i. It is then implicitly assumed that, for
any invalid instance i ∈ {0, 1}∗ \ X, we define the corresponding solution set as Yi = {0, 1}∗.

We say that A ∈ TFNP reduces to B ∈ TFNP (written also as A ≤ B) if there exist two
poly-time computable functions f and g satisfying

∀x, y ∈ {0, 1}∗ (f(x), y) ∈ B ⇒ (x, g(x, y)) ∈ A.

Next, we recall the definitions of the complexity classes PWPP and PPP via their canonical
complete problems weak-Pigeon and Pigeon.

▶ Definition 2.1 (weak-Pigeon and PWPP [14]). The problem weak-Pigeon is defined
by the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n−1.
Solution: x1 ̸= x2 s.t. C(x1) = C(x2).
The class of all TFNP problems reducible to weak-Pigeon is called PWPP.

▶ Definition 2.2 (Pigeon and PPP [23]). The problem Pigeon is defined by the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n.
Solution: One of the following:

(i) x s.t. C(x) = 0n,
(ii) x ̸= y s.t. C(x) = C(y).

The class of all TFNP problems reducible to Pigeon is called PPP.

On several occasions, we need to change the domain size of the weak-Pigeon circuit.
The following lemma was proved by Krajíček [18], and later by Jeřábek using the well-known
Merkle-Damgård construction [22, 6].

▶ Lemma 2.3 ([14]). Let p be a polyonimal satisfying p(n) > n for every n. If we modify
the definition of the problem weak-Pigeon by having a circuit C : {0, 1}p(n) → {0, 1}n, the
new problem is equivalent to the original weak-Pigeon.

More generally, we can define the problem General-Pigeonk(n) as follows.

▶ Definition 2.4 (General-Pigeonk(n)). The problem General-Pigeonk(n) is defined by
the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n.
Solution: One of the following:

(i) x ̸= y ∈ {0, 1}n s.t. C(x) = C(y),
(ii) x ∈ {0, 1}n s.t. C(x) is one of the first k(n) elements of {0, 1}n.
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This problem is mentioned by Goldberg and Papadimitriou [12] and they denote the
class of all problems reducible to General-Pigeonk(n) by PPPk(n). Note that this problem
gets harder as the growth-rate of k(n) decreases. It is trivial for k(n) = 2n, equivalent to
weak-Pigeon for k(n) = 2n−1 and to Pigeon for k(n) = 1.

This problem induces an entire family of problems that interpolates between
weak-Pigeon and Pigeon. It is not clear how many distinct problems appear in the
hierarchy. It is also unclear whether each PWPP-hard problem that is in PPP is in
fact equivalent to one of these. This is relevant to us in Section 7, where we reduce
to General-Pigeon2n−1−2n/2−1 , and in Section 8, where we show a hierarchy of problems
weak-Turánr between PWPP and PPP.

3 Property-Preserving Encodings

A key ingredient to our proofs of inclusion in PWPP and PPP is the use of efficient encodings.
We rely on two different types of encodings. The first one simply consists of bijections
between two different representations of the same set of objects, the first one being more
natural and more convenient to work with, and the second one being more concise. The
second type of encodings, which we call property-preserving encodings, consists of shrinking
functions, in the sense that the range of the encoding is smaller than the domain, whose
collisions correspond to elements sharing some property of interest. The following definition
gives a precise description of the features we require from these encodings.

▶ Definition 3.1 (Property-preserving encoding). Let X ⊆ {0, 1}k, Y be sets, and let ∼ be an
equivalence relation on X . Let E : {0, 1}k → Y be a surjection. We say that E constitutes a
property-preserving encoding for ∼ on X if it satisfies.

(Efficiency). E can be computed in polynomial time.
(Compression). |Y| ≤ |X |.
(∼-correctness). ∀x, x′ ∈ X , [E(x) = E(x′) ⇒ x ∼ x′].

Note that bijections are a form of property-preserving encoding, where the equivalence
relation we want to preserve is equality. We describe several property-preserving encodings,
including some bijective encodings.

3.1 Cover Encodings
Our reductions in Section 4 make use of Cover encodings [5] that efficiently encode subsets
of a specified size in optimal space: namely, we may encode every subset S ⊆ {0, 1}m such
that |S| = k by considering the lexicographic order of all

(
m
k

)
such sets (in fact we consider

the lexicographic order over their characteristic vectors ∈ {0, 1}m), and mapping this into
binary strings: this requires

⌈
log

(
m
k

)⌉
bits which is optimal. We denote the encoding and

decoding functions as follows, with α(k, m) =
⌈
log

(
m
k

)⌉
.

Ek,m
Cover : {0, 1}m → {0, 1}α(k,m)

Dk,m
Cover : {0, 1}α(k,m) → {0, 1}m

We set ECover = En,2n
Cover and DCover = Dn,2n

Cover, and α = α(n, 2n). As described in [5], these
functions can be made efficient.

▶ Lemma 3.2. For every k ≤ m, Dk,m
Cover ◦ Ek,m

Cover is the identity over all k-subsets of {0, 1}m.
Similarly, Ek,m

Cover ◦ Dk,m
Cover is the identity over the first

(
k
m

)
elements in the lexicographic order

of {0, 1}α(k,m).
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Note that the behavior of Dk,m
Cover is undefined for the last 2α(k,m) −

(
m
k

)
inputs. Furthermore,

by design, Ek,m
Cover is well-defined on any subset of [m] (even if this subset does not have size k),

but the encoding only makes sense for subsets of size k. We also note the following identity
which will be useful later when dealing with n-subsets of [2n].

DCover(0α) = 0n1n = [n] (1)

▶ Remark 3.3. Consider the case of encoding n-subsets of [2n]. Since we encode sets according
to the rank of their characteristic vector in the lexicographic order, any set that does not
contain element 1 is one of the

(2n−1
n−1

)
= 1

2
(2n

n

)
≤ 2α−1 first ones in the lexicographic order,

hence its encoding starts with a 0. Conversely, if we decode an element whose first two bits
are 0’s, this means that the corresponding n-subset of [2n] is one of the first 2α−2 ≤

(2n−1
n−1

)
in the lexicographic order, hence that it does not contain the element 1.

▶ Remark 3.4. Let T1 be the tree composed of the edges (1, 2), (1, 3), . . . , (1, n). Then,
ẼPrüfer(T1) = 0β and D̃Prüfer(0β) = T1.

4 Erdős-Ko-Rado Theorem on Intersecting Families

In this section, we define total search problems motivated by the well-known Erdős-Ko-Rado
theorem on intersecting families and study their computational complexity. First, we present
a PWPP-complete variant of the problem. Next, we modify the problem using a strong
statement of the Erdős-Ko-Rado theorem to get a PPP-complete variant. Recall the definition
of an intersecting family and the statement of the Erdős-Ko-Rado theorem.

▶ Definition 4.1 (Intersecting family). Let Ω be any set. A family of sets F ⊆ 2Ω is an
intersecting family if no two sets are disjoint, i.e., if for any A, B ∈ F , it holds that A∩B ̸= ∅.

▶ Classical Theorem 4.2 (Erdős-Ko-Rado [9]). Assume m ≥ 2k. Any intersecting family
where each set has k elements on a universe of size m contains at most

(
m−1
k−1

)
sets, and this

bound is tight.

We start by defining a total search problem motivated by a special case of the Erdős-
Ko-Rado theorem for families of n-sets in a universe of size 2n presented in the following
corollary.

▶ Corollary 4.3. Any intersecting family where each set has n elements on a universe of size
2n contains at most

(2n−1
n−1

)
sets, and this bound is tight. Furthermore, if F is an intersecting

family of maximum size, then for every n-subset S, exactly one of S and S is in F .

Suppose that we have a collection containing more than
(2n−1

n−1
)

sets of size n on 2n

elements. Then, by Classical Theorem 4.2, there must be two sets that do not intersect.
This induces a total search problem of finding two such disjoint sets. We consider an implicit
representation of such a collection by a circuit C whose inputs serve as indices in the collection.
The output of the circuit is a representation of the corresponding set as a characteristic
vector of the 2n elements. Of course, this representation does not guarantee that C satisfies
the conditions required for Classical Theorem 4.2 to apply, which would make the problem
not total; in this case, we allow evidence of this fact to be a solution to the problem. Namely,
if for a given input x, we do not have |C(x)| = n, or two distinct indices x, y represent the
same set, i.e., C(x) = C(y), we allow such inputs as solutions.
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▶ Definition 4.4 (weak-Erdős-Ko-Rado). The problem weak-Erdős-Ko-Rado is
defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉+1 → {0, 1}2n.
Solution: One of the following:

(i) x s.t. |C(x)| ̸= n,
(ii) x ̸= y s.t. C(x) = C(y),
(iii) x, y s.t. C(x) ∩ C(y) = ∅.

As we discussed in the introduction, the totality of this problem is proved using a “weak”
statement in extremal combinatorics, namely the first part of Corollary 4.3, hence the name
Weak. However, the analogy with weak-Pigeon goes further. Indeed, our first main
theorem is the following.

▶ Theorem 4.5. weak-Erdős-Ko-Rado is PWPP-complete.

Due to space limitations, we present all the proofs from this and following sections and
some additional discussions in the full version of our work [3].

PPP-completeness using the tight bound

We remark that Corollary 4.3 gives a tight upper bound on the size of the collection.
Furthermore, we know some structure of any collection whose size is exactly one

(2n−1
n−1

)
: it

must either not be an intersecting family, or it must contain either [n] or [n]. This is an example
of a “strong” theorem in extremal combinatorics. As discussed in the introduction, this
observation allows us to modify the problem to be create a variant of weak-Erdős-Ko-Rado
that is to weak-Erdős-Ko-Rado what Pigeon is to weak-Pigeon. The idea is to let C

encode a collection whose size exactly matches the threshold. We then let C represent a
collection of exactly

(2n−1
n−1

)
sets, and also allow preimages of [n] and [n] as solutions. We

show that modifying the problem in this manner makes it PPP-complete, thus strengthening
the analogy with Pigeon. This technique is quite general, and we utilise it again in later
sections.

▶ Definition 4.6 (Erdős-Ko-Rado). The problem Erdős-Ko-Rado is defined by the
relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉ → {0, 1}2n.
Solution: One of the following:

(i) x s.t. |C(x)| ̸= n and x <
(2n−1

n−1
)
,

(ii) x ̸= y s.t. C(x) = C(y) and x, y <
(2n−1

n−1
)
,

(iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(2n−1

n−1
)
,

(iv) x s.t. C(x) = [n] or C(x) = [n] and x <
(2n−1

n−1
)
.

▶ Theorem 4.7. Erdős-Ko-Rado is PPP-complete.

4.1 A Generalized Erdős-Ko-Rado Problem
For the previous problems, we were only considering a very restricted version of the Erdős-
Ko-Rado theorem, namely for an intersecting family of n-subsets of [2n]. We now consider a
more general version where we consider an intersecting family of n-subsets of [kn] for some
k > 2.

We now fix some k > 2 for the rest of this section. The Erdős-Ko-Rado theorem states
that if F is an intersecting family where each set has n elements on a universe of size kn,
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then F contains at most
(

kn−1
n−1

)
sets. Then, we can define the following TFNP problem, very

similar to weak-Erdős-Ko-Rado.

▶ Definition 4.8 (weak-general-Erdős-Ko-Radok). The problem
weak-general-Erdős-Ko-Radok is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((kn−1

n−1 ))⌉+1 → {0, 1}kn.
Solution: One of the following:

(i) x s.t. |C(x)| ̸= n,
(ii) x ̸= y s.t. C(x) = C(y),
(iii) x, y s.t. C(x) ∩ C(y) = ∅.

To prove that weak-general-Erdős-Ko-Radok ∈ PWPP, we present some useful
definitions and results related to the Erdős-Ko-Rado theorem.

▶ Definition 4.9. If k divides m, a (k, m)-parallel class is a set of m/k k-subsets of [m]
which partition [m].

▶ Classical Theorem 4.10 (Baranyai, [2]). If k divides m, we can define
(

m−1
k−1

)
(k, m)-parallel

classes A1, . . . , A(m−1
k−1 ) such that each k-subset of [m] appears in exactly one Ai.

▶ Remark 4.11. Note that Baranyai’s theorem proves the Erdős-Ko-Rado theorem in the case
where the size of the subsets divides the size of the universe. Note also that, up to renaming
of the elements, we can assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n + 1, n +
2, . . . , 2n}, . . ., and {(k − 1)n + 1, (k − 1)n + 2, . . . , kn}.

However, all known proofs of this theorem are inefficient, in the sense that there is no known
way to define A1, . . . , A(m−1

k−1 ) such that given a k-subset of [m], we can find in polynomial
time the only i such that this subset appears in Ai. We make this assumption explicit.

▶ Assumption 4.12 (efficient Baranyai assumption). There is an efficient procedure to define
A1, . . . , A(m−1

k−1 ) and a circuit Bar : {0, 1}m → [
(

m−1
k−1

)
] which takes as input a k-subset of

[m] and returns the only index i such that this subset appears in Ai. Furthermore, we
assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n + 1, n + 2, . . . , 2n}, . . ., and
{(k − 1)n + 1, (k − 1)n + 2, . . . , kn}.

▶ Remark 4.13. Let X be the set of n-subsets of [kn]. We define an equivalence relation ∼ on
X by saying that two n-subsets X and Y of [kn] are equivalent if and only Bar(X) = Bar(Y ),
meaning that they are in the same (n, kn)-parallel class in the partition induced by Bar.
Then, we have that Bar is a property-preserving encoding for ∼ on X . Note that two
equivalent subsets are either equal or disjoint. Hence, the property that is preserved by Bar

is such that if two of its inputs collide, they form a solution to our problem. Then, to prove
the inclusion of weak-general-Erdős-Ko-Radok into PPP, it suffices to compose our
instance of weak-general-Erdős-Ko-Radok with Bar.

The previous two lemmas establish the following result.

▶ Theorem 4.14. Under Assumption 4.12, weak-general-Erdős-Ko-Radok is PWPP-
complete.

PPP-completeness using the tight bound

Like for the case of n-subsets of [2n], we can define a “tight” version of the previous problem,
which is very similar to Erdős-Ko-Rado.
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▶ Definition 4.15 (general-Erdős-Ko-Radok).
The problem general-Erdős-Ko-Radok is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((kn−1

n−1 ))⌉ → {0, 1}kn.
Solution: One of the following:

(i) x s.t. |C(x)| ̸= n and x <
(

kn−1
n−1

)
,

(ii) x ̸= y s.t. C(x) = C(y) and x, y <
(

kn−1
n−1

)
,

(iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(

kn−1
n−1

)
,

(iv) x s.t. C(x) = {1, 2, . . . , n} or {n + 1, n + 2, . . . , 2n}, or..., or {(k − 1)n + 1, (k − 1)n +
2, . . . , kn} and x <

(
kn−1
n−1

)
.

First, let us see why this problem is total. Suppose that we have a list of
(

kn−1
n−1

)
subsets

of [kn]. If one of the sets does not have n elements, if two of the sets are equal, or if two
of the sets do not intersect, we have a solution. Now, suppose that we have an intersecting
family of

(
kn−1
n−1

)
distinct n-subsets of [kn] and consider a collection of (n, kn)-parallel classes

A1, . . . , A(kn−1
n−1 ) such that each n-subset of [kn] appears in exactly one Ai (which exists by

Classical Theorem 4.10). Up to renaming the elements, we can assume that A1 is composed of
the k n-subsets {1, 2, . . . , n}, {n+1, n+2, . . . , 2n}, ... and {(k−1)n+1, (k−1)n+2, . . . , kn}.
Since we have an intersecting family of distinct subsets, no two subsets can be in the
same Ai, and we have as many subsets as Ais, which means that one of the subsets is
in A1, hence that it is one of the particular subsets we are looking for. This proves that
general-Erdős-Ko-Radok ∈ TFNP. We then have the following result.

▶ Theorem 4.16. Under Assumption 4.12, general-Erdős-Ko-Radok is PPP-complete.

5 Sperner’s Theorem on Largest Antichains

We now turn our attention to a different existence theorem from extremal combinatorics,
concerning antichains. We say a family of sets F ⊆ 2Ω is an antichain if for every A ̸= B ∈ F ,
it holds that A ̸⊆ B. A well-known theorem by Sperner gives a characterization of the largest
antichain. As before, for an appropriate input size, this induces a total search problem of
finding two distinct sets A, B for which A ⊆ B. As in the previous section, we consider both
a weak and a strong version, and prove the weak version to be PWPP-complete, and the
strong one PPP-complete.

▶ Classical Theorem 5.1 (Sperner [27]). The largest antichain on a universe of 2n elements
is unique and consists of all subsets of size n.

Like before, we consider an implicit representation of the collection of subsets via a
circuit C whose input corresponds to an index into the collection, and whose output is the
characteristic vector of the corresponding set.

▶ Definition 5.2 (weak-Sperner-Antichain). The problem weak-Sperner-Antichain
is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n

n ))⌉+1 → {0, 1}2n.
Solution: x ̸= y s.t. C(x) ⊆ C(y).

▶ Theorem 5.3. weak-Sperner-Antichain is PWPP-complete
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PPP-completeness using the tight bound

As with Erdős-Ko-Rado, we observe that the bound in theorem is tight, and we know the
unique antichain of size

(2n
n

)
, so we have some structural information about any collection of

size
(2n

n

)
. From that strong theorem, employing the same technique as before, we modify the

problem to let the circuit represent a collection of that exact size. By Classical Theorem 5.1,
we observe that if F is an antichain with |F| =

(2n
n

)
, then F must contain [n]. This leads us

to define the following problem.

▶ Definition 5.4 (Sperner-Antichain). The problem Sperner-Antichain is defined by
the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n

n ))⌉ → {0, 1}2n.
Solution: One of the following:

(i) x ̸= y s.t. C(x) ⊆ C(y) and x, y <
(2n

n

)
,

(ii) x s.t. C(x) = [n] and x <
(2n

n

)
.

▶ Theorem 5.5. Sperner-Antichain is PPP-complete.

6 Cayley’s Tree Formula

We consider yet another classic theorem from combinatorics, related to spanning trees. A
classic result by Cayley establishes the number of spanning trees of the complete graph on
n vertices. We observe then that if we have a collection of sufficiently many such graphs,
either one of the graphs is not a spanning tree, or two spanning trees collide. Note that two
isomorphic trees on distinct vertices are not considered a collision. This allows us to define a
total search problem of either finding a collision or finding an index not corresponding to a
spanning tree. We represent trees using a bitmap on all possible edges, ordered arbitrarily.
We show that this problem is equivalent to weak-Pigeon, in a more direct way than for
the previous results. As before, the problem can be modified using the same technique as
previously to become equivalent to Pigeon, and thus PPP-complete.

▶ Classical Theorem 6.1 (Cayley [4]). There are exactly nn−2 spanning trees of the complete
graph on n vertices.

▶ Definition 6.2 (weak-Cayley). The problem weak-Cayley is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉+1 → {0, 1}(n

2).
Solution: One of the following:

(i) x s.t. C(x) is not a spanning tree (i.e., is not spanning, not connected or contains a
cycle),

(ii) x ̸= y s.t. C(x) = C(y).

▶ Theorem 6.3. weak-Cayley is PWPP-complete.

PPP-completeness using the tight bound

Again, we observe that Classical Theorem 6.1 gives an exact bound, namely that there are
exactly nn−2 labelled spanning trees on n vertices. As before, this leads us to defining the
following problem.

▶ Definition 6.4 (Cayley). The problem Cayley is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉ → {0, 1}(n

2).
Solution: One of the following:
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(i) x s.t. C(x) is not a spanning tree and x < nn−2,
(ii) x ̸= y s.t. C(x) = C(y) and x < nn−2,
(iii) x s.t. C(x) = T1 and x < nn−2, with T1 defined as in Remark 3.4.

▶ Theorem 6.5. Cayley is PPP-complete.

7 Ward-Szabó Theorem on Swell Colorings

We now focus on a different theorem from extremal combinatorics, and more precisely
from extremal graph theory. Let G = (V, E) be the complete graph on N vertices. An
edge-coloring c : E → [r] for some r is called a swell coloring of G if it uses at least 2 colors
and if every triangle is either monochromatic or trichromatic. It is rather straightforward to
see that in any 2-coloring of G, there must exist a bichromatic triangle. On the contrary, if we
color each edge with a different color, we trivially get a swell coloring. The natural question
that appears is then to determine the minimal number of colors required to swell-color the
complete graph on N vertices. This was solved in some cases by Ward and Szabó in 1994.

▶ Classical Theorem 7.1 (Ward-Szabó [29]). The complete graph on N vertices cannot be
swell-colored with fewer than

⌈√
N

⌉
+ 1 colors, and this bound is tight when N = p2k for

some prime p and integer k.

From that theorem, we can define a TFNP problem as follows: the input is a coloring C

of the edges of the complete graph on 22n vertices with 2n colors, as well as three vertices
a, b, c such that C(a, b) ̸= C(a, c) to guarantee that at least 2 colors are used in the coloring.
A solution is then the vertices of a bichromatic triangle (which is guaranteed to exist by
Classical Theorem 7.1). We also allow extra solutions if the coloring of the graph is not
consistent.

▶ Definition 7.2 (Ward-Szabó). The problem Ward-Szabó is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z).

We also define two variants of this problem, whose totality is a consequence of the totality
of Ward-Szabó.
In the first one, we allow an extra type of solution, namely the vertices of two distinct
triangles with the same “color profile”.

▶ Definition 7.3 (Ward-Szabó-Collisions). The problem Ward-Szabó-Collisions is
defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),
(iii) Two triples, (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ≠ {x′, y′, z′}

and C(x, y) = C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′).
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In the second variant, we allow the same extra type of solution, namely the vertices of
two distinct triangles with the same “color profile”, with the additional constraint that these
triangles should be trichromatic.

▶ Definition 7.4 (Ward-Szabó-Colorful-Collisions). The problem Ward-Szabó-
Colorful-Collisions is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),
(iii) Two triples (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ≠ {x′, y′, z′},

C(x, y) = C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′) and the triangle (x, y, z) is
trichromatic.

▶ Theorem 7.5. It holds that
1. weak-Pigeon ≤ Ward-Szabó-Collisions,
2. Ward-Szabó-Collisions ≤ Ward-Szabó-Colorful-Collisions,
3. Ward-Szabó-Colorful-Collisions ≤ Ward-Szabó.

▶ Theorem 7.6. Ward-Szabó-Collisions ∈ PWPP.

▶ Remark 7.7. The last two theorems prove that Ward-Szabó-Collisions is PWPP-
complete. However, notice that the proof of inclusion into PWPP does not use solutions of
the first three types. Hence, if we call Ward-Szabó-Collisions’ the problem similar to
Ward-Szabó-Collisions but without the first three types of solutions, this new problem
is also PWPP-complete. Indeed, the proof of inclusion into PWPP would be similar, and
the proof of hardness too, only with less cases to consider. Thus, it seems (at least that
is how we prove it) that what makes Ward-Szabó-Collisions PWPP-complete is only
its last type of solutions. Now, one could wonder how hard this problem becomes if we
slightly modify this last type of solutions to make them harder to find. This is exactly what
Ward-Szabó-Colorful-Collisions does.

▶ Theorem 7.8. Ward-Szabó-Colorful-Collisions ∈ PPP.

▶ Remark 7.9. In the last proof, we define a reduction to Pigeon where the circuit C ′

only has a range of 22n−1 + 2n−1 elements. Indeed, we need exactly
(2n

2
)

= 22n−1 − 2n−1

elements to encode the pairs of colors. We also need exactly 2n elements for the fourth case.
However, we can map the x anywhere in that case if C(x, a) ∈ {C(a, b), C(a, c), C(b, c)}
because such an x would give us a bichromatic triangle. Hence, we need 2n − 3 colors for this
case. We also need 3 extra elements for a, b and c. Hence, overall, we only need a range of
22n−1 +2n−1 elements. Thus, we get a reduction from Ward-Szabó-Colorful-Collisions
to General-Pigeon2n−1−2n/2−1 .

8 Mantel’s Theorem on Triangle-Free Graphs

We move on to another classical theorem in extremal graph theory. It answers the following
question: What is the maximum number of edges in a triangle-free graph on N vertices?

▶ Classical Theorem 8.1 (Mantel [19]). If G = (V, E) is a triangle-free graph on N vertices
then |E| ≤ N2/4, and this bound is tight.
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This gives rise to the following search problem. Suppose that we are given a collection of
strictly more than N2/4 distinct edges for a graph on N vertices. Then, by Mantel’s theorem,
there must be three of these edges forming a triangle in the graph. The search problem is
then to find them. We can turn this problem into a TFNP problem if we also allow evidence
that two edges in the collection are in fact the same, or that an edge is in fact a loop. For
practical reasons, we demand that the endpoints of every edge are given in the lexicographic
order. When the edges are represented implicitly by a poly-sized circuit, we get the following
problem.

▶ Definition 8.2 (weak-Mantel). The problem weak-Mantel is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,
(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j).

▶ Remark 8.3. Like in the other problems, the size of the collection we receive (in this case,
edges) is twice the threshold size (here, 22n−2). However, here, we observe that the number
of edges we receive as input is greater than the number of possible edges since 22n−1 >

(2n

2
)
.

Thus, in any instance of weak-Mantel, there must be solutions of type (ii) or (iii).

▶ Theorem 8.4. weak-Mantel is PWPP-hard.

▶ Theorem 8.5. weak-Mantel ∈ PPP.

▶ Remark 8.6. Similarly to the proof that Ward-Szabó-Collisions ∈ PPP, we only use
the last two types of solutions, which suggests that what makes this problem reducible to
Pigeon is only the fact that we are given more edges than there are different possible edges
in a graph on 2n vertices.

▶ Remark 8.7. In fact, the range of the circuit in this last proof has size 22n−1 − 2n−1 and
therefore weak-Mantel reduces to General-Pigeon2(n−1)/2 .

Mantel’s theorem states that there is a unique triangle-free graph on 2N vertices that
has N2 edges, it is the complete bipartite graph KN,N . Now, consider any labelling of the
vertices of KN,N . If for every label x, the vertices labelled x and x + 1 mod 2N were on the
same side of the bipartition, then all the vertices would be on the same side of the bipartition,
which is impossible. Hence, there must be 2 vertices labelled x and x + 1 mod 2N on
different sides of the bipartition, and therefore there must be an edge between them. Thus,
the following problem is total.

▶ Definition 8.8 (Mantel). The problem Mantel is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−2 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,
(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j),
(iv) i s.t. C(i) = (u, v) with v = u + 1 mod 2n when we consider u and v as integers.

▶ Theorem 8.9. Mantel is PPP-hard.

ITCS 2023



22:18 PPP-Completeness and Extremal Combinatorics

8.1 Generalization with Turán’s Theorem
Mantel’s theorem investigates the maximum number of edges in a triangle-free graph on N

vertices. Similarly, one could wonder about the maximum number of edges in a graph on N

vertices that does not contain a clique on r vertices, where r ≥ 3 is an arbitrary constant.
This problem was solved by Turán in 1941.

▶ Classical Theorem 8.10 (Turán [28]). If G = (V, E) is a graph on N = |V | vertices that
does not contain any r + 1-clique, then |E| ≤ (1 − 1

r ) N2

2 and this bound is tight when r divides
N .

Now, suppose that we are given a list of strictly more than (1 − 1
r ) N2

2 edges for a graph
on N vertices. It follows from Turán’s theorem that if all these edges are distinct, the graph
must contain an r + 1-clique. This induces a total search of finding the vertices of such a
clique. If the edges are given implicitly via a Boolean circuit which on input i returns the
endpoints of the i-th edge, we get the following TFNP problem.

▶ Definition 8.11 (weak-Turánr). The problem weak-Turánr is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i1, i2, . . . i(r+1
2 ) such that C(i1), C(i2), . . . C(i(r+1

2 )) are the edges of an r + 1-
clique,

(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j).

▶ Remark 8.12. Note that r could be any polynomial in n in the previous definition and it
would still define a TFNP problem.

▶ Theorem 8.13. For every r1 < r2, weak-Turánr1 is reducible to weak-Turánr2 .

▶ Theorem 8.14. For every r ≥ 2, weak-Turánr is PWPP-hard.

▶ Theorem 8.15. For every r > 2, weak-Turánr ∈ PPP.

The proof is exactly similar to the proof of Theorem 8.5. In this case too, it appears that
what makes the problem easier than Pigeon is that we are given too many edges.

Turán’s theorem states that if r divides N , there is a unique graph on N vertices that
does not contain any r + 1-clique and that has the maximum number of edges. This graph
is the complete r-partite graph, where each part has size N/r. Like previously, there must
be 2 vertices labelled x and x + 1 mod 2N with an edge between them. We denote by N

the largest multiple of r that is at most 2n, and set M = (1 − 1
r ) N2

2 . Thus, the following
problem is in TFNP.

▶ Definition 8.16 (Turánr). The problem Turánr is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n; and,
2. Two integers N and M satisfying N ≤ 2n < N + r, r divides N , and M = (1 − 1

r ) N2

2 .
Solution: One of the following:

(i) i s.t. C(i) = (u, v) with u ≥ N or v ≥ N , and i < M

(ii) Distinct i1, i2, . . . i(r+1
2 ) such that C(i1), C(i2), . . . C(i(r+1

2 )) are the edges of an r + 1-
clique, and ij < M for every j,

(iii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order, and i < M ,
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(iv) i ̸= j s.t. C(i) = C(j), and i, j < M ,
(v) i s.t. C(i) = (u, v) with v = u + 1 mod 2n when we consider u and v as integers, and

i < M .
This last problem is in TFNP. The reduction from [24] implies Turánr1 ≤ Turánr2 for
every r1 < r2. Then, Turánr is PPP-hard because Turán2 is exactly Mantel.
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Abstract
Most recent works on cryptographic obfuscation focus on the high-end regime of obfuscating general
circuits while guaranteeing computational indistinguishability between functionally equivalent circuits.
Motivated by the goals of simplicity and efficiency, we initiate a systematic study of “low-end”
obfuscation, focusing on simpler representation models and information-theoretic notions of security.
We obtain the following results.

Positive results via “white-box” learning. We present a general technique for obtaining
perfect indistinguishability obfuscation from exact learning algorithms that are given restricted
access to the representation of the input function. We demonstrate the usefulness of this approach
by obtaining simple obfuscation for decision trees and multilinear read-k arithmetic formulas.
Negative results via PAC learning. A proper obfuscation scheme obfuscates programs from
a class C by programs from the same class. Assuming the existence of one-way functions, we
show that there is no proper indistinguishability obfuscation scheme for k-CNF formulas for any
constant k ≥ 3; in fact, even obfuscating 3-CNF by k-CNF is impossible. This result applies
even to computationally secure obfuscation, and makes an unexpected use of PAC learning in
the context of negative results for obfuscation.
Separations. We study the relations between different information-theoretic notions of indistin-
guishability obfuscation, giving cryptographic evidence for separations between them.
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1 Introduction

The study of program obfuscation and its applications has been a central research theme
in cryptography for the past two decades. Following the initial impossibility results for a
strong form of “virtual black-box” (VBB) obfuscation [6, 25], the notion of indistinguishability
obfuscation (iO) emerged as one that is liberal enough to be realized under well-studied
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cryptographic assumptions [21, 32], yet strong enough for a surprisingly wide variety of
applications [42]. In fact, iO is a best-possible form of obfuscation, in the sense that if any
obfuscation scheme suffices for a given application then iO does as well [27].

More concretely, an iO scheme is an efficient randomized algorithm that maps a source
program P into a functionally equivalent target program P̂ , while satisfying the following
intuitive security guarantee: for every two equivalent programs P, P ′ of the same size, the
corresponding obfuscated programs P̂ , P̂ ′ are computationally indistinguishable.

At this point, almost all research on iO has been focused on what we call the high-end
regime. In this regime, the source program P and/or the target program P ′ are taken from
program classes with high representational power, such as boolean circuits or branching
programs. While recent work in the area has led to a variety of general constructions, they
are all quite complex, and inherently rely on cryptographic assumptions.

In this work, we deviate from prior research and instead focus on low-end obfuscation.
Here, by “low-end” we mean (1) the input program is in a weak representation model, such
as a decision trees or low-width CNF formulas, and (2) the obfuscation algorithm should
be proper,1 in the sense that the output respects the representation of the source program.
For instance, if the source program P is a decision tree, then the target obfuscated program
P ′ should also be a decision tree. While low-end obfuscation restricts the scope of the
“best possible” guarantee of iO to other proper obfuscation schemes, it can still provide a
meaningful and useful notion of security.

Of course, one can always apply high-end obfuscation schemes to weaker computation
models; however, this has several quite significant drawbacks:

Inefficiency. Current obfuscation constructions for general circuits (or even for weaker
computation models, e.g. [11, 5, 12, 28, 48, 20]) have a large concrete overhead, typically
making them infeasible to implement.
Incompatible formats. Current constructions do not respect the structure of their
source programs: for example, even for a simple program such as a CNF formula or decision
tree, the obfuscated program is still a general boolean circuit. Simple representation
models are often desirable in practice.
Computational vs. information-theoretic security. As soon as testing satisfiability
of a program is NP-Hard (alternatively, testing equivalence is coNP-hard), information-
theoretic iO for the class implies that the polynomial-time hierarchy collapses [27, 10].
This means that computational indistinguishability is the strongest guarantee we can
hope to get for rich models like boolean circuits; this is not true for weaker representation
models.

To summarize, current high-end obfuscation schemes may be “overkill” for weak representation
models, where much more efficient algorithms can exist that have a proper output and achieve
information-theoretic security guarantees.

While we believe that low-end obfuscation is natural to study in and of itself, we note
that there are alternative motivations for studying it. One natural motivation is private data
analysis. Low-end obfuscation provides a utility-preserving (albeit much weaker) alternative
to differential privacy [17]: instead of replacing a learning algorithm with a differentially
private one, we could leave the learning algorithm unchanged and then obfuscate the output
representation in order to eliminate unnecessary information leakage about the training set.
In this context, iO provides a means for maximizing privacy without sacrificing utility. This
is similar in spirit to history-independent data structures, which aim to achieve a similar
goal in a different context [39, 41, 40].

1 We borrow the name “proper” from the corresponding notion of proper learning in learning theory where
the output hypothesis must be from the same concept class.
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On a more conceptual level, a second motivation for studying low-end obfuscation is that
it reveals interesting new connections between obfuscation and learning theory. Even in the
original work introducing iO [6] it was observed that any exact learning algorithm using
membership queries implies the strong notion of information-theoretic VBB obfuscation. This
raises the question – which we address in the present work – of pinning down the “right”
learning model for such positive results when settling for the weaker notion of information-
theoretic iO. As we will see in the sequel, an unexpected consequence of the present work is
that learning algorithms can also imply negative results for low-end obfuscation.

We note that several prior works have studied various notions of obfuscation for simple
types of source programs [14, 38, 47, 31, 2, 29, 15, 11, 5, 12, 34, 13, 16, 8, 7, 20], but with
different goals in mind. Indeed, the prior works did not impose any restrictions on the
target program, and the presented constructions continued to suffer from the drawbacks
discussed above. One prior example for proper obfuscation from the literature is for the class
of (P)OBDDs [27], which was also used to separate proper iO from proper VBB obfuscation.
We will discuss other examples of this kind later (cf. Section 3).

1.1 Our Contributions
Before stating our results, let us cover some necessary background. If iO is an indistin-
guishability obfuscation scheme for a program class P , we say that iO is proper if iO(P ) ∈ P
for all P ∈ P. As we have discussed above, when studying weaker representation models
obtaining information-theoretic security guarantees suddenly becomes an achievable goal. In
the present work, we will be interested in variations of information-theoretic security. The
weakest notion of information-theoretic iO that we consider is statistical iO, which guarantees
that for any two equivalent programs P ≡ P ′ of the same size, the output distributions iO(P )
and iO(P ′) are close in statistical distance.

Once we enter the low-end regime, however, much stronger notions of iO are attainable.
For a motivating example let us consider the class of 2-CNF formulas. It is well-known
that testing equivalence of 2-CNF formulas is computable in polynomial time, and so
the complexity-theoretic barrier for information-theoretic iO does not apply to this class.
However, for 2-CNF formulas it is not hard to see (cf. Section 3) that we can design an
obfuscation algorithm that has much stronger indistinguishability guarantees than mere
statistical obfuscation. Indeed, the output of the obfuscation is not only statistically secure
but canonizing, in the sense that iO is a deterministic algorithm such that for any pair of
equivalent 2-CNF formulas F ≡ F ′ (not even of the same size) we have iO(F ) = iO(F ′). This
is the strongest notion of indistinguishability that we consider.

In light of this we found it useful to systematically introduce further refinements of
information-theoretic indistinguishability. We define the following notions: if P ≡ P ′ are two
functionally equivalent programs of the same size then an indistinguishability obfuscation
scheme iO is

statistical, if the output distributions iO(P ) and iO(P ′) are close in statistical distance,
perfect, if iO(P ) and iO(P ′) are identically distributed,
deterministic, if iO is a deterministic algorithm, and
canonizing, if iO is deterministic and if iO(P ) = iO(P ′) for every pair of functionally
equivalent programs P ≡ P ′ (not only those of the same size2).

2 Therein lies the difference between deterministic obfuscation and canonization: the output of a determ-
inistic indistinguishability obfuscation scheme is only guaranteed to be the same on two equivalent
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Positive results via “white-box” learning

Our first contribution is a refinement of the connection between learning and information-
theoretic obfuscation. First, let us recall the observation of [6] connecting exact learning to
the very strong model of virtual black box (VBB) obfuscation. In the model of exact learning
with membership queries [3] we are given oracle access to a function f : {0, 1}n → {0, 1}
chosen from some concept class H, and the goal is to use the oracle in order to produce a
concept h ∈ H such that h ≡ f . For instance, if we have a deterministic polynomial-time
learning algorithm in this model then it is not hard to see that we also have a polynomial-time
canonizer for the class H. This is because in the canonization problem we are given a program
P representing f as input and can therefore use P to simulate the calls to the membership
oracle of f . Crucially, since the oracle calls depend only on f , and not on the particular
representation of f as a program P , the output of the underlying learning algorithm will
be the same for all functionally equivalent programs. And since membership queries can be
simulated given oracle access to f , we actually get an information-theoretic VBB obfuscator
for the program class.

Our main observation is that the weaker notion of information-theoretic iO is captured
by a stronger learning model. Concretely, since we are given the program P as input in the
obfuscation task, we are not restricted only to using membership queries and can instead use
any efficiently computable property of P that depends only on the underlying function f .
Indeed, for weak models of computation like decision trees we can make many inferences
from the representation that are impossible for strong models of computation such as boolean
circuits – for example, testing equivalence between two input programs. To capture this notion,
for a class of programs P we define a representation-oblivious hint function (cf. Section 3) to
be, roughly speaking, any efficiently computable function h : P × {0, 1}∗ → {0, 1}∗ such that
for any functionally equivalent programs P ≡ P ′ of the same size and for any x ∈ {0, 1}∗ we
have h(P, x) = h(P ′, x). Now, it is natural to define the model of exact learning with hint
functions, where the learning algorithm is given oracle access to a predefined hint function
h(P, ·) for some program P – but not the program P itself – and it must recover a hypothesis
P ′ ∈ P such that P ′ ≡ P using queries to h(P, ·). Informally speaking, we think of a hint
function as representing the information that we can compute about f when given the
representation of f by P . Note that while membership queries are one obvious example of
hint functions, there are many other possibilities, such as equivalence queries or even more
esoteric operations.

We now state our first contribution, which exactly characterizes low-end obfuscation in
terms of exact learning with hint functions.

▶ Theorem 1 (Informal). For any class of programs P, P admits a polynomial-time perfect
(resp. deterministic, canonical) iO if and only if P has a polynomial-time exact learning
algorithm with randomized (resp. deterministic, canonical) hint functions. Furthermore, the
obfuscation algorithm is proper if and only if the learning algorithm is proper.

Using this connection, we observe that several learning results from the literature in
various models of learning imply low-end obfuscation schemes. For instance, we prove a
general result stating that if a concept class C is learnable in the well-studied mistake-bound

programs of same size. For a separating example, consider a family of programs where no two circuits
have the same size; the identity function, mapping each program to itself, is then trivially a deterministic
obfuscation scheme, but is not a canonizer as soon as two different programs (of different size) in the
class are functionally equivalent. In particular, deterministic obfuscation for a program class does not a
priori imply efficient equivalence testing.
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learning model then C admits a canonical iO scheme. We believe this result is interesting
for two reasons. First, it uses both membership and equivalence queries, which reaches
beyond the membership query algorithms due to [6] (indeed, note that 2-CNF formulas
are not exactly learnable with membership queries alone). Second, it immediately implies
canonizing algorithms for decision trees,3 2-CNF formulas, and multilinear read-k arithmetic
formulas. This is particularly interesting for the case of decision trees, as it simplifies an
ad-hoc canonizing algorithm for decision trees given by [4]. We refer to Section 3 for details.

Negative results for proper iO via PAC learning

Our next contributions are new impossibility results for low-end obfuscation. In particular,
we show that proper obfuscation for the class of 3-CNF formulas is impossible, even when we
settle for computational indistinguishability and even if we allow the obfuscation algorithm
to output an O(1)-CNF as the output.

▶ Theorem 2 (Informal). If one-way functions exist, there is no polynomial-time iO of 3-CNF
formulas by O(1)-CNF formulas with computational indistinguishability.

Several remarks on this result are in order. First, we note that this theorem is tight in the
sense that 2-CNF formulas can be canonized (and therefore admit proper indistinguishability
obfuscation). Second, the proof of this theorem also relies on the usage of learning algorithms:
this time, the known PAC learning algorithms for O(1)-CNFs [46]. In fact, the proof of this
result follows from a much more general statement: namely, that it is impossible to obfuscate
3-CNF formulas by any class of programs for which the dual class (in the sense of learning
theory) is PAC learnable. While it has been long-known that learning algorithms imply
positive results in obfuscation, to the best of our knowledge this is the first example of a
learning algorithm giving a negative result in obfuscation, which we believe is of independent
interest. The high-level idea is to use the PAC learning algorithm to break a public-key
encryption scheme that could be built from a one-way function using the low-end iO. We
refer to Section 4 for details.

Separating notions of information-theoretic iO

The feasibility of information-theoretic iO in the low-end regime motivates a more refined
study of the distinction between the different flavors of information-theoretic iO discussed
above. Given the previous positive examples, one might be tempted to conjecture that
information-theoretic iO can always be made deterministic (possibly under derandomization
assumptions).

Towards a counterexample, consider a program class P as an equivalence relation R

between bit-strings representing equivalent programs. A separation between perfect and
deterministic iO implies R for which it is possible to efficiently sample uniformly from the
equivalence class of a given program P , but there is no efficient deterministic algorithm
mapping each P to a canonical representative of its class. It turns out that such a relation R

is quite easy to construct under standard cryptographic assumptions. Concretely, consider a
non-interactive commitment scheme which is dense in the sense that every bit-string is a valid
commitment of some message and is rerandomizable in the sense that given a commitment
one can efficiently sample a random commitment of the same message. Such a commitment

3 In the case of decision trees, the canonizing algorithm runs in quasi-polynomial time.
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scheme can be based on the standard Decisional Diffie-Hellman (DDH) assumption. Now,
let R be an equivalence relation on n-bit strings, where two bit-strings are equivalent if they
represent commitments to the same message. Then an efficient sampling algorithm as above
follows directly from the rerandomization property. On the other hand, an efficient algorithm
for finding a canonical representative could be used to test equality of two committed
messages, violating the secrecy property of the commitment scheme.

While a relation R as above is necessary for the desired separation, it is not sufficient.
Indeed, so far we ignored the fact that each program P should have concrete semantics
defined by an efficient evaluation algorithm, where equivalent programs must have the
same semantics. This requirement is at odds with the secrecy property of the commitment
scheme. To get around this issue we take a different approach, which we can only instantiate
using strong forms of (computational, VBB) obfuscation or alternatively in a generic “ideal
obfuscation” model. The equivalence relation R is defined via a pseudorandom partition of
n-bit strings, where each program class is assigned a distinct “evasive” function, say a random
point function, as its semantics. (We could alternatively use a random constant function if
we only wanted to rule out proper deterministic iO.) Given the bit-string representing P ,
the obfuscation gives oracle access to its assigned evasive function. To enable perfect iO
without allowing deterministic iO, we connect the programs in each equivalence class by a
random cycle of length N , and implement a “fast-forward” oracle that given program P and
integer k returns the program P ′ obtained by taking k steps along the cycle. Perfect iO is
then realized by invoking the fast-forward oracle with a uniformly random k, 0 ≤ k < N .
On the other hand, a deterministic iO in this setting can be shown to be at least as hard as
solving the discrete logarithm problem in Shoup’s generic group model [43]. This separation
can be formalized by assuming either ideal obfuscation or strong forms of (computational)
obfuscation, where a common reference string (CRS) is used for defining the pseudorandom
graph.

▶ Theorem 3 (Informal). If one-way functions exist, and under a special-purpose VBB
obfuscation assumption (alternatively, using ideal obfuscation), there is a program class
P such that P admits perfect (proper) iO in the CRS model but not deterministic (even
improper) iO in the same model.

A somewhat unexpected feature of the above separation is that it uses a computational
notion of obfuscation to separate between information-theoretic notions of obfuscation. That
being said, the separation requires a special-purpose VBB obfuscation assumption, which
means that it can either be cast in an idealized model (such as ideal multilinear maps) or
instantiated heuristically using existing general-purpose iO constructions. A similar use of
special-purpose VBB obfuscation was made in other contexts (e.g., [22, 9, 30, 1]).

1.2 Open Problems
This work suggests many open problems. We record a few of the most interesting here:
1. What other natural representation models admit information-theoretic iO?
2. By using known learning algorithms we obtain quasipolynomial-time canonizing obfus-

cation algorithms for decision trees, but there likely does not exist polynomial-time
canonizing algorithms for decision trees since this would violate known hardness-of-
approximation results for decision tree size. Is it possible to obtain polynomial-time
proper iO for decision trees using our generalized exact learning framework?
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3. Can 3-CNF formulas be properly obfuscated by AC0-circuits, or even (unbounded-width)
CNF? Note that the known learning algorithms for AC0 [35] only work over the uniform
distribution, which is not strong enough to apply the techniques from Section 4.

4. Can we separate between information-theoretic notions of iO using natural program
classes P or under cleaner assumptions?

2 Preliminaries

We recall the standard notions of perfect, statistical, and computational indistinguishability
of distribution ensembles.

▶ Definition 4 (Notions of indistinguishability). Two distribution ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are (T, ϵ)-indistinguishable, for T : N→ N and ϵ : N→ [0, 1], if for every
circuit family Aλ of size T (λ) and all sufficiently large λ it holds that:

| Pr
x

$←Xλ

[Aλ(x) = 1]− Pr
y

$←Yλ

[Aλ(y) = 1]| ≤ ϵ(λ).

We say that X and Y are:
computationally indistinguishable if they are (T, 1/T )-indistinguishable for every polyno-
mial T ;
statistically indistinguishable if they are (T ′, 1/T )-indistinguishable for every polynomial
T and arbitrary T ′;
perfectly indistinguishable if they are identically distributed, namely Xλ ≡ Yλ for all λ.

2.1 Obfuscation
Towards a unified definition of proper obfuscation, we capture different representations of
functions (such as circuits, CNF formulas, or decision trees) via the following general notion
of a program class.

▶ Definition 5 (Program class). A program class is a pair P = (Eval, Size) with the following
syntax.

Eval : {0, 1}∗×{0, 1}∗ → {0, 1}∗∪{⊥} is a polynomial-time algorithm such that Eval(P, x)
returns the output of program P on input x. The algorithm Eval returns ⊥ if P is not a
valid program or x is not a valid input for P .
Size : {0, 1}∗ → N is a polynomial-time algorithm returning a size parameter Size(P ) ≤ |P |
for a given program P .

The programs P, P ′ are functionally equivalent, written P ≡P P ′, if Eval(P, x) = Eval(P ′, x)
for all x ∈ {0, 1}∗. For notational convenience, when the program class is known from
context we will simply write P ≡ P ′ to denote equivalent programs, use the shorthand
P (x) := Eval(P, x), and also write P ∈ P to denote that P is a valid program chosen from
the class P.

Standard representation models for functions, such as (boolean or arithmetic) circuits,
formulas and decision trees, can all be cast as instances of the above definition. For these
classes, the size parameter is typically defined as the number of nodes in the corresponding
graph.

We next define a general notion of indistinguishability obfuscation that captures the
notions of proper and improper obfuscation we will consider in this work.
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23:8 On Low-End Obfuscation and Learning

▶ Definition 6 (Indistinguishability Obfuscation (iO)). A computational (resp. statistical,
perfect) indistinguishability obfuscation scheme of program class P = (EvalP , SizeP) (Defini-
tion 5) by program class P ′ = (EvalP′ , SizeP′) is a p.p.t. algorithm iO satisfying the following:

Syntax: For any security parameter λ and a program P , iO(1λ, P ) ∈ P.
Completeness: For every λ ∈ N and program P we have:

Pr
[
P ≡ iO(1λ, P )

]
= 1

where the probability is taken over the internal randomness of iO.
Indistinguishability: For every pair of program sequences P 0

λ , P
1
λ such that P 0

λ ≡ P 1
λ

and Size(P 0
λ) = Size(P 1

λ), the following distribution ensembles are computationally (resp.
statistically, perfectly) indistinguishable:

{iO(1λ, P 0
λ)}λ∈N and {iO(1λ, P 1

λ)}λ∈N .

The obfuscation scheme iO is said to be proper if P = P ′ and improper otherwise.

The standard notion of iO considered in the cryptographic literature corresponds to
proper computational iO for the class of boolean circuits. We note that perfect iO implies
statistical iO, which in turn implies computational iO. Next we define two deterministic
models of iO.

▶ Definition 7. An iO scheme for a program class P is deterministic if it is computed by a
deterministic algorithm. Formally, for any two equivalent programs P ≡ P ′ in P satisfying
Size(P ) = Size(P ′) it holds that iO(P ) = iO(P ′).

A canonization scheme for the program class P is a deterministic iO scheme such that
iO(P ) = iO(P ′) for all equivalent programs P ≡ P ′ in P.

A canonization scheme for a program class P implies very strong structural properties
for P – for example, it implies that equivalence testing for programs in P is easy. Despite
this, we show in the next section that canonization is achievable for several natural program
classes. Furthermore, we remark that deterministic iO is weaker than canonization since it
does not imply efficient equivalence testing for program classes.

We will also consider a natural extension of the above notions of iO to the common
reference string (CRS) model. Here the CRS is generated by a trusted setup algorithm and
is available both to programs and to distinguishers.

▶ Definition 8 (Virtual Black Box Obfuscation (VBB), Adapted from [6]). An (efficient) virtual
black box obfuscation scheme of program class P = (EvalP , SizeP) (Definition 5) by program
class P ′ = (EvalP′ , SizeP′) is a p.p.t. algorithm VBB satisfying the following:

Syntax: On input a security parameter 1λ and a program P , VBB outputs a program P ′.

Preserving Functionality: For every λ ∈ N, program P , and input x, the following
holds:

Pr
[
EvalP′(P ′, x) = EvalP(P, x) : P ′ $← VBB(1λ, P )

]
= 1

Polynomial Slowdown: There is a polynomial p such that for every program P , the
following holds:

Pr
[
Size(P ′) ≤ Size(P ) : P ′ $← VBB(1λ, P )

]
= 1
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“Virtual Black Box”: For any p.p.t. A, there is a p.p.t. S and a negligible function α

such that for all programs P , the following holds:

|Pr [A(VBB(P )) = 1]− Pr
[
SP (1Size(P ) = 1)

]
| ≤ α(Size(P )) .

The VBB obfuscation scheme is said to be proper if P = P ′ and improper otherwise. If we
omit the program class P, then it is assumed to be the collection of all circuits.

3 Low-End Obfuscation from Learning

As we have discussed above, several connections between various models of learning and
obfuscation have been previously observed, such as the connections between exact learning
and membership queries [6], and also with PAC learning [10]. The goal of this section is
refine the connection between learning theory and information-theoretic indistinguishability
obfuscation, and show how to use learning algorithms to give strong proper iO guarantees
for some program classes. The key idea is to think of indistinguishability obfuscation as
an exact learning task where we are given a representation of the function as a program,
but, we can only use this program to query semantic properties of the function4. Intuitively
speaking, this re-frames proper obfuscation as understanding which semantic properties we
can learn about functions when given their representations as programs. The next definition
formalizes this idea.

▶ Definition 9 (Representation-Oblivious Hint Function). Let C = (Size,Eval) be a program
class. A representation-oblivious hint function h : C×{0, 1}∗ → {0, 1}∗∪{⊥} is a randomized
polynomial-time algorithm such that for any equivalent programs c ≡ c′ with Size(c) = Size(c′)
and for any any input x ∈ {0, 1}∗ the output distributions of h(c, x) and h(c′, x) are the
same. The hint function is deterministic if it is computed by a deterministic algorithm, and
is canonical if it is deterministic and if for any equivalent programs c ≡ c′ and any input x
we have h(c, x) = h(c′, x).

For example, the evaluation function Eval for any program class C is a hint function by
definition (indeed, it is just a membership query oracle by a different name). For the family
of decision trees, a slightly more sophisticated example is the function that takes as an input
a decision tree T and outputs a uniformly random point x ∈ T−1(1). Note that we can
compute this efficiently5 and also it does not depend on the representation of the decision
tree, but only on the function the tree computes. Another example is an equivalence query:
it takes as input two decision trees T1 and T2 and either outputs “equivalent” if T1 ≡ T2 or
outputs an input x such that T1(x) ̸= T2(x); such queries are also well-known to be efficiently
computable for decision trees.

▶ Definition 10 (Exact Learning with Hint Functions). A program class C is exactly learnable
with a hint function if there is a hint function h for C and a polynomial-time algorithm L

such that the following holds. As input, the algorithm L receives |c| and oracle access to the
hint function h(c, ·) for some unknown c ∈ C, and satisfies the following property: for every
c ∈ C, L halts and outputs a hypothesis c′ such that c′ ≡ c. We say the learning algorithm is
proper if c′ ∈ C, and is improper otherwise.

4 Note that otherwise the learning task is obviously trivial since we could output the program we were
given.

5 This can be done by taking a random walk on the tree, weighted by the number of 1-leaves in the
sub-tree rooted by the current vertex in the walk.
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We emphasize that in the previous definition the algorithm L only receives access to the
program c through the hint function h(c, ·), and is not given c explicitly. Moreover, since the
hint function can only compute semantic properties of the function Eval(c, ·) corresponding
to c, it means that the learning algorithm cannot do something naive like simply outputting
c. Indeed, the main theorem of this section shows that this notion of learning is equivalent
to information-theoretic indistinguishability obfuscation.

▶ Theorem 11. A program class C can be exactly learned with a (deterministic, canonical,
resp.) hint function if and only if it can be perfectly (deterministically, canonically, resp.)
obfuscated. Moreover, the obfuscation is proper if and only if the exact learning algorithm is
proper.

Proof. First let C be a program class which admits an exact learning algorithm L with
respect to a hint function h. Consider the randomized algorithm O which, on input a
program c ∈ C, runs the learning algorithm L – answering its queries by calling h(c, ·) –
and outputs the hypothesis produced by L. O is a perfect obfuscation scheme for program
class C: completeness follows from the correctness of the learning algorithm, and perfect
indistinguishability follows from representation-obliviousness of h. Indeed, for any two
equivalent programs of same size c1 and c2, h(c1, ·) = h(c2, ·) and therefore the distributions
O(c1) and O(c2) are identical. Furthermore, it follows from inspection that if L is proper
then so is O, and that if L and h are both deterministic or canonical, then so is O.

To see the other direction, note that if a class of programs C has a perfect iO (deterministic
or statistical) Obf, then the class C can also be exactly learnt with a hint function: the hint
oracle simply sends Obf(c) to the learner. Thus, exact learning with hint functions precisely
captures the notion of proper obfuscation. ◀

It is natural to compare this result to the argument of [6] that exact learning with
membership queries implies VBB obfuscation. Since information-theoretic iO is weaker than
VBB obfuscation it makes sense that an easier learning task should capture it. Indeed, any
program class for which equivalence queries are efficiently implementable but which are not
exactly learnable with membership queries alone are not VBB obfuscatable, but they can
potentially admit information-theoretic iO. In the remainder of this section we will see three
such examples.

First, we will use Theorem 11 to prove a very general result, showing that any efficient
learning algorithm in the online mistake-bound model implies canonization, as long as we
can implement equivalence queries efficiently. We consider this an interesting result since
canonization is, arguably, the strongest form of indistinguishability obfuscation. For this we
must recall the definition of mistake-bound learning, introduced by [36].

▶ Definition 12. Let C be a class of programs. The task of mistake-bound learning of C is
defined as follows. There is a fixed target program c ∈ C that we must learn. The learner
starts with an initial hypothesis h0 ∈ C, and then receives a stream of inputs x1, x2, x3, . . .

for their hypotheses. After receiving input xi, the learner outputs the value of hi−1(xi) and
learns if hi−1(xi) = c(xi). Afterwards, if the learner makes a mistake (i.e. hi−1(xi) ̸= c(xi)),
the learner updates their hypothesis to hi ∈ C.

An algorithm A learns C in the mistake-bound model with M = M(n, |c|) mistakes if for
any c ∈ C and any ordering of inputs the algorithm A makes at most M mistakes. We say
that A is a polynomial-time learning algorithm if A runs in polynomial-time in each learning
stage, and that C is efficiently learnable if there is a polynomial-time learning algorithm A

that makes at most polynomially-many mistakes.
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Littlestone proved that learning in the mistake-bound model is closely related to exact
learning with equivalence and membership queries [36]. In particular, these models are
essentially identical up to the efficiency of implementing equivalence queries. For our
purposes we will only need one direction of this equivalence, which we record in the next
theorem.

▶ Theorem 13 ([36]). Let C be a class of programs. If there is an algorithm that learns C
in the mistake-bound model with at most M mistakes, then there is an algorithm exactly
learning C with membership and equivalence queries that makes at most M + 1 equivalence
queries and at most M + 1 membership queries.

With these results in hand we prove the following theorem.

▶ Theorem 14. Let C be a class of programs such that equivalence queries for C can be
implemented in polynomial time. If C can be learned in polynomial time in the mistake-bound
model with M mistakes, then C can be canonically obfuscated in time O(M · poly(n)).

Proof. By Theorem 13, there is an algorithm exactly learning C with membership and
equivalence queries that makes M + 1 equivalence and M + 1 membership queries. We use
this to give an exact learning algorithm for C with a canonical hint function. Let c ∈ C
be our target program. Our learning algorithm will simulate the exact learning algorithm
with membership and equivalence queries. To do this, the canonical hint function h(c, ·)
will simulate the membership queries and equivalence queries on c. Both of these queries
can be implemented in polynomial time by assumption, however, we must ensure that the
equivalence queries are themselves canonical in that whenever we make an equivalence
query to nonequivalent programs a ̸≡ c the program will always return some canonical
counterexample. Formally, we require the following guarantee: for any programs a, b, d ∈ C,
if a ≡ b, c ≡ d, and a ̸≡ c, then counterexamples returned by the equivalence queries
a ≡ c and b ≡ d must be the same.

Fortunately, this is easy to ensure. We show something stronger: since the equivalence
queries for C can be carried out in polynomial time, it follows that for any nonequivalent
a, b ∈ C we can find the lexicographically-first counterexample x such that a(x) ̸= b(x). To
see this, let a, b be non-equivalent programs and let x1, x2, . . . , xn be the n input variables
of a and b. Given a partial restriction ρ to the input variables, let a ↾ ρ be the program
obtained by substituting ρ for the appropriate input variables to a. Consider the following
algorithm. Initially, let i = 1 be a counter, let ρ = ∗n be the empty restriction, and repeat
the following process. Query if a ↾ (ρ ∪ (xi ← 0)) ≡ b ↾ (ρ ∪ (xi ← 0)). If they are not
equivalent, then update i = i+ 1 and ρ = ρ ∪ (xi ← 0); otherwise, update ρ = ρ ∪ (xi ← 1).
Once all variables are assigned it is easy to see that the (now total) assignment ρ is the
lexicographically-first input x witnessing that a(x) ̸= b(x). By using this equivalence query
algorithm in place of the original one we can make the hint function h(c, ·) canonical, and
this completes the proof. ◀

Using this theorem we can now use known results in the learning literature to canonize
some well-known program classes. First, we observe that polynomial-size decision trees can
be canonized in quasipolynomial time. This was proved directly using an ad-hoc argument
in [4], but thanks to our general result it follows automatically from known learning results.

▶ Corollary 15. The class of size-s decision trees on n variables can be canonized in time
nO(log s).
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Proof. Simon [45] proved that rank-r decision trees can be learned by a polynomial-time
algorithm in the mistake-bound model with at most M = nO(r) mistakes, and it is known
that the rank of a size-s decision tree is at most log s [18]. Furthermore, it is known that
given two decision trees T1, T2 we can compute the decision tree T1 ⊕ T2 in polynomial-time;
this means that we can efficiently perform equivalence testing of decision trees. The corollary
then follows immediately from Theorem 14. ◀

A second easy corollary is that 2-CNF formulas can be canonized.

▶ Corollary 16. The class of 2-CNF formulas can be canonized in polynomial time.

Proof. It is well known that equivalence testing of 2-CNF formulas is computable in poly-
nomial time so we focus on constructing an efficient mistake-bound algorithm for 2-CNFs.
The algorithm is just the standard “monotone disjunction” learning algorithm from learning
theory. Let n be the number of variables of the target CNF formula F . Our initial hypothesis
H is the trivial 2-CNF that contains every width-2 clause on n variables. Let x be the most
recently arrived input on the stream. If H(x) = 0 but F (x) = 1 then we remove all clauses
from H that are not satisfied; otherwise, we do not update H. Observe that H =⇒ F at
each stage of this algorithm (in other words, H contains every clause that F contains), and
thus at no point will H(x) = 1 but F (x) = 0. Finally, this algorithm achieves a mistake
bound of O(n2) since we start with O(n2) clauses in H and each mistake leads to the removal
of at least one clause. ◀

Finally, we give an example of exact learning with hint functions from algebraic circuit
complexity that does not use the mistake-bound model. Let F be a field and consider the
polynomial ring F[x1, . . . , xn]. An arithmetic circuit Φ is circuit with input gates labelled
with variables from x1, . . . , xn or field elements from F, and whose internal gates are labelled
with multiplication (·) or addition (+) operations over the field. An arithmetic circuit
computes a polynomial in F[x1, . . . , xn] in the natural way. An arithmetic circuit is a formula
if the underlying graph is a tree, it is read-k if each input variable labels at most k leaves,
and finally it is multilinear if the polynomial output by the circuit has individual degree at
most 1 for every variable.

It is interesting to note that for the class of multilinear, constant-read arithmetic formulas
there is a super-polynomial gap between the running time of the best known learning
algorithm with only membership queries (i.e. oracle access to the formula) and a learning
algorithm that is allowed to use more powerful queries. Shpilka and Volkovich proved that if
Φ is a multilinear read-k formula, then given black-box access (i.e. membership queries) to
any arithmetic circuit C computing Φ there is a deterministic algorithm that constructs a
read-k multilinear polynomial computing Φ in time nkO(k)+k log n [44, Theorem 1.6]. In other
words, this is an exact learning algorithm with membership queries, and we have already
observed that membership queries are hint functions above.

However, more interestingly, Shpilka and Volkovich observed that knowing the discrete
partial derivatives of the polynomial computed by Φ, there is an algorithm that can reconstruct
Φ in time nkO(k) . The discrete partial derivatives are a semantic property of the polynomial
Φ, and moreover they can be efficiently evaluated given an arithmetic circuit for Φ and thus
they can be implemented as hint functions. We therefore have the following theorem:

▶ Theorem 17 (cf. Theorem 1.6 in [44]). The class of multilinear read-k arithmetic formulas
over n variables can be properly obfuscated in deterministic time nkO(k) .
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4 Impossibility of Obfuscating 3-CNF to k-CNF

This section is dedicated to ruling out the existence of (computational) proper obfuscation
for the class of 3-CNF. In fact we show that there is no obfuscation from 3-CNFs to k-CNF
for any constant k (or even for slightly super-constant k, but at the cost of only ruling out
obfuscation with slightly super-polynomial security). The astute reader will note by reading
between the lines that we in fact show a more general statement (however we restrict our
proof and formalism to C1 = 3-CNF):

If a program class C1 is expressive enough to evaluate sparse pseudorandom
generators6 or injective one-way functions, then it cannot be properly obfuscated to a
class C2 whose dual (c.f. Definition 18) is PAC-learnable7.

▶ Definition 18 (Dual Class of Boolean Circuits). Let Cn be a class of n-input boolean formulae.
We define the dual class of Cn as the class of circuits taking as input a circuit in Cn and
evaluating it on a fixed, hardcoded input x ∈ {0, 1}n, i.e.

C′n :=
{
ψx : Cn → {0, 1}

ϕ 7→ ϕ(x) : x ∈ {0, 1}n

}
.

Note that Cn and C′n can both be cast as program classes as defined in Definition 5.

Before we proceed, let us clarify that in the course of the proof we will be using the fact that
the dual class is PAC-learnable from random samples with respect to any8 distribution, and
not just e.g. the uniform distribution. For this reason, the impossibility result does not a
priori rule out the existence of obfuscation from 3-CNF to AC0.

▶ Theorem 19 (PAC Attack). Assuming the existence of a one-way function, there is a
universal constant c ∈ (1, 4] such that if C′n (the dual class of Cn) is T (·, ·, ·)-PAC learnable
then for any ϵ(·), δ(·) ∈ (0, 1)N there is no (T (ϵ(nc), δ(nc), nc), ϵ(nc) + δ(nc))-secure iO
scheme from n-input 3-CNFs to Cn.

Before we proceed with the proof of Theorem 19, let us observe that, because the dual
class of k-CNF is (k + 1)-CNF – which has been shown to be nk+1-PAC learnable by [46] – it
implies the following corollaries.

▶ Corollary 20 (PAC Attack against iO of 3-CNFs to k-CNFs). Assuming the existence of
a one-way function, there is a uniform time-O(n4·(k+1)) attack with success probability
1− 1/Θ(n4·(k+1)) against any iO scheme from n-input 3-CNFs to k-CNFs.

▶ Corollary 21 (Impossibility of Properly Obfuscating 3-CNF to O(1)-CNF). Let k ≥ 3 be a
constant. Assuming the existence of a one-way function, there is no iO scheme from n-input
3-CNFs to k-CNFs with security against uniform p.p.t. adversaries.

6 A PRG is said to be sparse if a random string is outside its image with overwhelming probability, i.e. if
it has superlogarithmic stretch.

7 In fact it suffices for the impossibility result to go through that C2 be learnable on the distribution of
ciphertexts of random bits.

8 We do not require the ability to learn with respect to any distribution per se, but rather only with
respect to a single “esoteric” (i.e. not uniform or any other distribution likely to have been studied on
its own) and unknown distribution.
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In order to prove Theorem 19, we first show that assuming the existence of a one-way
function and a secure iO scheme from 3-CNFs to Cn, we can build a semantically secure
public-key encryption scheme whose decryption circuit, once the key has been hardcoded, is
in C′n (the dual class of the target class Cn of the obfuscator) with constant probability over
the randomness of the key generation algorithm. This means C′n cannot be PAC-learnable
without contradicting the security of the PKE, i.e. without contradicting the security of
(the OWF or) the iO. Note that this idea of opposing “easiness of learning” to cryptographic
assumptions has been exploited before, notably in [33]. Recall that semantic security is
equivalent to CPA-security as shown by [26], and that CPA security implies that security
must hold even if the adversary is allowed to make encryption queries. In particular the
adversary can use this power to sample random plaintexts and make encryption queries in
order to collect the positive samples required to PAC-learn the decryption circuit on the
distribution of valid encryptions of a random bit: this contradicts security of the PKE.

The PKE scheme we present is very similar in spirit to that in [19, Fig. 1], which makes
use of a sparse PRG rather than an injective one-way function. Whether one uses a sparse
PRG or an injective OWF, the idea is to have the encryption process be the obfuscation of
a “compute-and-compare” to guard access to a payload which is hard to retrieve without a
trapdoor (the secret key). However, it may not be immediately clear how this is linked to
obfuscation of 3-CNF unless the PRG or injective OWF is 3-local (which allows the “compute-
and-compare” circuit to be expressed as a 3-CNF). The main difference with [19, Fig. 1]
is that we add a specification of how a “compute-and-compare” formula is converted to
3-CNF using the Tseytin transformation in order to control the form of the decryption circuit.
Because the Tseytin transform only preserves equisatisfiability, not equivalence, special care
must be taken in order to reduce security of our PKE scheme to security of the iO for 3-CNF.

▶ Lemma 22 (PKE with Simple Decryption from 3-CNF Obfuscation). For n ∈ N, let Cn be
a class of n-input polynomial-size boolean formulae. Let C′n denote the dual class of Cn, i.e.

C′n :=
{
ψx : Cn → {0, 1}

ϕ 7→ ϕ(x)
: x ∈ {0, 1}n

}
.

Assuming the existence of an injective one-way function and of a iO9 scheme from n-input
3-CNFs to Cn, there is a PKE scheme whose decryption circuit is in C′N ∪ (1⊕C′N ), where N
is a fixed polynomial in n which only depends on the choice of the injective one-way function
and where 1⊕ C′N := {1⊕ f : f ∈ C′N} is the class of negations of C′N . Moreover, an explicit
construction is provided in Figure 1.

Proof. The proof of Lemma 22 is given by considering the PKE construction of Figure 1,
then proving its correctness and security. The construction is in two parts. The construction
relies on an “functionality-preserving conversion of compute-and-compare formulae to 3-CNF”
primitive whose properties have been abstracted out in Figure 1. Then Figure 2 provides an
explicit instantiation of this primitive.

9 The theorem holds using null-iO instead of iO.
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Public-Key Encryption Scheme

Tseytin-based Conversion to 3-CNF – Idealized

Notations. BFn := {0, 1}({0,1}n) denotes the set of all n-input boolean formulae, and
3-CNFn denotes the set of all 3-CNF with n inputs.

Requirements. The below conversion procedure is parametrized by a pair of boolean
functions f, g : {0, 1}n → {0, 1}, and applies to boolean formulae of the form
ϕf,g,y,m(x1, . . . , xn) := (f(x1, . . . , xn) == y)∧(g(x1, . . . , xn)⊕m), where y ∈ {0, 1}n,
and m ∈ {0, 1}. It is convenient to introduce a third parameter, which depends only
on f and on g: N is some polynomial in n to be made explicit.

Syntax. The conversion to 3-CNF is a pair π : {0, 1}n → {0, 1}N (the variable conver-
sion) and Cvrt : BFn → 3-CNFn+N (the formula conversion).

Properties (Functionality-Preserving Conversion). π should be injective and inde-
pendent of y and m, and ∀x ∈ {0, 1}n

, ϕf,g,y,m(x) = Cvrt(ϕf,g,y,m)(π(x)).

An explicit construction of this primitive is given in Figure 2.
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Public-Key Encryption

Requirements and Notations. An injective one-way function f , and a hardcore
predicate hc for f .
A iO scheme O which, on input an n-input 3-CNF, outputs a circuit in Cn.
(Cvrt, π) is defined as above for the choice of functions (f, g)← (f, hc).

Syntax. The encryption scheme is a triple (PKE.KeyGen,PKE.Enc,PKE.Dec) which are
defined as follows.

PKE.KeyGen(1n) : Sample x
$← {0, 1}n, set b ← hc(x), sk ← (b, π(x)), pk ←

(f(x), pp) where public parameters pp contain a succinct description of π. Output
(sk, pk).
PKE.Enc(pk,m) : On input the public key pk and a message m ∈ {0, 1},

1. Parse pk as pk = (y, pp);
2. Build the boolean formula ϕ← (f(·) == y) ∧ (hc(·)⊕m);
3. Run ψ

$← O(Cvrt(ϕ)) and output ψ.
PKE.Dec(sk, c) : On input the secret key sk and a ciphertext c ∈ Cn,

1. Parse sk as sk = (b, α);
2. Set m′ ← b⊕ c(α) and output m′.

Figure 1 PKE from injective OWF and iO for 3-CNF.
Let us now show that the triple (PKE.KeyGen,PKE.Enc,PKE.Dec) as defined in Figure 1 is
a semantically secure public-key encryption scheme.

Correctness: If (sk = (hc(x), g(x)), pk = f(x)) $← PKE.KeyGen(1n) and c
$←

PKE.Enc(pk,m), then Dec(sk, c) = hc(x) ⊕ c(π(x)) = hc(x) ⊕ Cvrt(π(x)) = hc(x) ⊕
((f(x) == f(x)) ∧ (hc(x)⊕m)) = m (note that this statement becomes probabilistic in
nature if O only preserves equivalence with probability less than 1).
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Security: Consider the following distributions:

∆0 := {(pk, c) : (sk, pk) $← PKE.KeyGen(1n), c $← Enc(pk, 0)}

∆′0 := {(pk, c) : pk← (f(x), pp) where x $← {0, 1}n s.t. hc(x) = 0, c $← Enc(pk, 0)}

∆1 := {(pk, c) : (sk, pk) $← PKE.KeyGen(1n), c $← Enc(pk, 1)}

∆′1 := {(pk, c) : pk← (f(x), pp) where x $← {0, 1}n s.t. hc(x) = 1, c $← Enc(pk, 1)}

For σ ∈ {0, 1}, the difference between ∆σ and ∆′σ is that the secret key
in the latter case is sampled (e.g. through rejection sampling) such that
hc(x) = σ. But since hc is a hardcore bit, ∆0

c
≈ ∆′0 and ∆1

c
≈ ∆′1. Indeed,

{(f(x), hc(x)) : x $← {0, 1}n}
c
≈ {(f(x), 1 − hc(x)) : x $← {0, 1}n} (the definition of a

hardcore bit) implies {f(x) : x $← {0, 1}n}
c
≈ {f(x) : x $← {0, 1}n

, hc(x) = σ}. In turn,
this implies that ∆σ

c
≈ ∆′σ for σ ∈ {0, 1}.

By security of the iO scheme O, ∆′0
c
≈ ∆′1. Indeed since f is injective, if hc(x) = m

then (f(·) == f(x)) ∧ (hc(·)⊕m), and therefore Cvrt((f(·) == f(x)) ∧ (hc(·)⊕m)), is
unsatisfiable. It follows that {(pk,O(Cvrt((f(·) == f(x)) ∧ (hc(·) ⊕ 0)))) : pk ←
(f(x), pp) where x $← {0, 1}n s.t. hc(x) = 0} c

≈ {(pk,O(Cvrt((f(·) ==
f(x)) ∧ (hc(·) ⊕ 1)))) : pk ← (f(x), pp) where x $← {0, 1}n s.t. hc(x) = 1}, i.e.
∆′0

c
≈ ∆′1.

Therefore, ∆0
c
≈ ∆′0

c
≈ ∆′1

c
≈ ∆1, which concludes the proof.

Tseytin-based Conversion to 3-CNF – Construction

Notations. BFn := {0, 1}({0,1}n) denotes the set of all n-input boolean formulae, and
3-CNFn denotes the set of all 3-CNF with n inputs.

Requirements. The below conversion procedure is parametrized by a pair of boolean
functions f, g : {0, 1}n → {0, 1}, and applies to boolean formulae of the form
ϕf,g,y,m(x1, . . . , xn) := (f(x1, . . . , xn) == y)∧(g(x1, . . . , xn)⊕m), where y ∈ {0, 1}n,
and m ∈ {0, 1}. It is convenient to introduce a third parameter, which depends only
on f and on g: N is some polynomial in n to be made explicit.

Syntax. The conversion to 3-CNF is a pair π : {0, 1}n → {0, 1}N (the variable con-
version) and Cvrt : BFn → 3-CNFn+N (the formula conversion) which is defined as
follows.

Cvrt : Consider the n-variable boolean formula ϕf,g,y,m. If f(·)|i denotes the
formula equal to the ith output of f , ϕf,g,y,m can be rewritten as follows: ϕy,m(·) ≡
(f(·)|1 == y1) ∧ · · · ∧ (f(·)|λ == yλ) ∧ (g(·)⊕m).
Consider the formula ϕ′f,g,y,m(x1, . . . , xn+λ+1) defined by:

ϕ′y,m(x1, . . . , xn+λ+1) :=(xn+1 ↔ f(x1, . . . , xn)|1) ∧ (xn+1 == y1) ∧ · · ·
(xn+λ ↔ f(x1, . . . , xn)|λ) ∧ (xn+λ == yλ) ∧
(xn+λ+1 ↔ g(x1, . . . , xn)) ∧ (xn+λ+1 ⊕m).

Using fresh variables xn+λ+2, xn+λ+3 . . . each formula of the form (xn+i ↔
f(x1, . . . , xn)|i) or (xn+λ+1 ↔ g(x1, . . . , xn)) can be converted to 3-CNF using
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the Tseytin transformation (without further specification). Crucially, these
conversions are independent of y,m and depend only on f, g. In turn, the
(xn+i == yi) and (xn+λ+1 ⊕ m) are simple literals, depending on y and m.
Plugging all these 3-CNF into ϕ′f,g,y,m yields an N -variable formula Cvrt(ϕf,g,y,m)
where N is some fixed polynomial in n which depends only on f and g (and on the
– canonical – choice of variable switches performed by the Tseytin transformation).
π : {0, 1}n → {0, 1}N : g(α1, . . . , αn) is defined as follows:

the first n outputs are equal to (α1, . . . , αn);
for i = 1 . . . λ, the (n+ i)th output is equal to f(α1, . . . , αn)|λ;
the (n+ λ+ 1)th output is equal to g(α1, . . . , αn);
similarly the last N − (n+ λ) output values are functions of (α1, . . . , αn) given
by the variable changes which introduced (xn+λ+2, . . . , xN ) as functions of
(x1, . . . , xn) in the definition of Cvrt.

Note that by construction, π is injective (and independent of y,m) and ∀x ∈
{0, 1}n

, ϕf,g,y,m(x) = Cvrt(ϕf,g,y,m)(π(x)).

Figure 2 Construction of the Tseytin-based Conversion to 3-CNF.
◀

5 Separating Forms of Information-Theoretic iO

In this section we establish a separation between two flavors of information-theoretic ob-
fuscation: perfect (randomized) iO and deterministic iO. Before we discuss our separation,
it is first worth noting what makes this an interesting and challenging problem. In order
to do this, let us begin by considering the following “toy” version of obfuscation where
instead of trying to obfuscate programs, we simply try to obfuscate some arbitrary equivalence
relation. More formally, consider a sequence of equivalence relations R = {Rn}n where
Rn ⊆ {0, 1}n × {0, 1}n for each n. We can define analogous notions of “obfuscation” for R:
for instance, a canonizer would be an algorithm Can such that for all n ∈ N and all x ∈ {0, 1}n

we have that (x,Can(x)) ∈ Rn and if (x, y) ∈ Rn then Can(x) = Can(y). Similarly, a perfect
obfuscator iOR would be a p.p.t. algorithm such that iOR(x) outputs the uniform distribution
over all y such that (x, y) ∈ Rn. From these abstract definitions we can recover the standard
notions of obfuscation simply by letting R be ≡C , the standard notion of equivalence for a
program class C.

In this more abstract setting it turns out to be quite easy to separate forms of obfuscation.
For a simple example, we can roughly sketch how to separate perfect iO from canonization (a
formal argument can be found in Appendix A). Consider any randomly self-reducible function
f : {0, 1}∗ → {0, 1}∗. Roughly speaking10, this means that there is a p.p.t. algorithm σ such
that for all n and for all x ∈ {0, 1}n, f(x) = f(σ(x)) and furthermore σ(x) is distributed
uniformly at random over the set {y ∈ {0, 1}n : f(x) = f(y)}. Given such a function we can
define the equivalence relation R by (x, y) ∈ R iff f(x) = f(y), and σ is a perfect iO for R.
However, if checking that f(x) = f(y) is hard deterministically then we cannot expect to be
able to canonize the relation R. In Appendix A we construct such a function using ElGamel
encryption, thus “separating” these abstract forms of perfect iO and canonization under the
DDH assumption.

10 The definition of random self reducibility is actually a bit different in multiple ways, e.g. it is usually
defined as a non-uniform reduction; an input x can be mapped into polynomially many “shares”, etc.
Here we explain an idea, and so for simplicity do not define random self reducibility in its full generality.
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So, what makes separating the “standard” notions of iO more difficult? In short, it is
due to the fact that the elements of the underlying equivalence relation must be programs
from some class, and two programs are equivalent if and only if they compute the same
underlying boolean functions. In our constructions below we will show already that it is
hard to distinguish between program classes which can only compute two “functions”: a
point function on the one hand, and the trivially 0 function on the other.

5.1 Separating Perfect and Deterministic Obfuscation in the CRS Model
We start by introducing the notion of iO in the CRS model in Definition 23, then state our
separation result in Theorem 24.

In the CRS model we allow program classes to be defined as a function of the CRS.
Therefore, concretely, the separation is of the form: there exists a CRS generation algorithm
Setup which yields a world in which there is a program class for which there exists a perfect
iO scheme, but no deterministic iO. In fact, we show a slightly stronger statement: there is a
proper perfect iO, but no (even improper) deterministic iO.

▶ Definition 23 (iO in the CRS model). A computational (resp. statistical, perfect) iO scheme
in the CRS model for P = (EvalP , SizeP) by P ′ = (EvalP′ , SizeP′) is a pair of p.p.t. algorithms
(Setup, iO) satisfying the following requirements:

Syntax:
Setup : On input a security parameter 1λ, Setup outputs a common reference string
CRS.
iO : On input a security parameter 1λ, a common reference string CRS, and a program
P , iO outputs a program P ′.

Completeness: For every λ ∈ N, common reference string CRS ∈ Supp(Setup(1λ)),
program P , and input x, the following holds:

Pr
[
EvalP′((CRS, P ′), x) = EvalP((CRS, P ), x) : P ′ $← iO(1λ,CRS, P )

]
= 1

Indistinguishability: For every polynomial-time nonuniform (resp. unbounded) ad-
versary A such that A(CRS) outputs a pair of programs P 0, P 1 where (CRS,P 0) ≡
(CRS,P 1) and Size(P 0) = Size(P 1), the following distribution ensembles are computa-
tionally (resp. statistically, perfectly) indistinguishable:

{iO(1λ,CRS, P 0)}λ∈N and {iO(1λ,CRS, P 1)}λ∈N.

Here the probability space is over CRS generated by Setup(1λ) and P 0, P 1 generated by
A(CRS).

▶ Theorem 24 (Conditional Separation between Perfect and Deterministic Obfuscation with
Setup). Assuming the existence of one-way functions and VBB obfuscation for a specific
circuit class (the class {Helperk : k ∈ {0, 1}λ}, as defined in Figure 3), there is a program
class for which there exists perfect but not deterministic iO in the CRS model.

The rest of this section is dedicated to proving Theorem 24, which we do by providing a
Setup algorithm (Figure 4) and defining a program class Psep (Figure 5) for which there exists
a perfect iO scheme (with respect to Setup) but no deterministic iO scheme (again, with
respect to Setup). Abstracting out all semantic details for now, for each CRS ∈ Supp(Setup)
there are 2n different programs in Psep(CRS), each described by a 2n-bit string. These
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programs are partitioned into 2n/2 different equivalence classes of size 2n/2 each. Specifically,
the CRS generated by Setup is the description of a VBB obfuscated program we call the
“helper program” Helper, defined in Figure 3, which can be seen as succinctly described oracle,
answering two types of queries:
1. Evaluation queries: These allow us to define Psep; evaluating a program in Psep is done

by making a corresponding evaluation query to the helper program.
2. Jump queries: These are used to facilitate perfect (but not deterministic) obfuscation.
The helper program has hardcoded the key to a strong pseudo-random permutation, mapping
the 2n valid program descriptions to the nodes of 2n/2 different length-2n/2 directed cycles
in such a way that each cycle corresponds to an equivalence class of ≡Psep (i.e. two programs
are functionally equivalent if any only if they label nodes in the same cycle): each program
is a point function, equal to 1 on the index of the cycle to which it belongs, and 0 elsewhere.
We are now ready to clarify what “jump queries” are: on input the description of a program,
and d ∈ {0, 1}n/2, the helper program returns the label of the dth successor on the cycle of
the node labeled P̃ . This way, the CRS can be used to achieve perfect iO in a straightforward
way: on input a program P , sample d $← {0, 1}n/2 and output the dth successor of P on the
cycle.

Program Helperk

Parameters: Helperk has hardcoded the security parameter λ, an input length para-
meter n, a strong PRP F (·, ·) : {0, 1}λ×{0, 1}2n → {0, 1}2n which admits an efficiently
computable “reverse permutation family”a G(·, ·) : {0, 1}λ × {0, 1}2n → {0, 1}2n, and a
key k ∈ {0, 1}λ. These parameters define two functions f and g:

f : {0, 1}n → {0, 1}2n

x 7→ F (k, x∥0n)

g : {0, 1}2n → {0, 1}n ∪ {⊥}

y 7→

{
[G(k, y)]1...n if [G(k, y)]n+1...2n = 0n

⊥ otherwise

// When convenient we will see g as a function from {0, 1}2n to {0, 1}n but which is
only defined on f({0, 1}n) ⊆ {0, 1}2n.

Evaluation: Helperk tries to match its input with one of the following patterns:
On input (“jump”, P̃ , d), where P̃ ∈ {0, 1}2n and d ∈ {0, 1}n/2:

1. Check that g(P̃ ) ̸= ⊥ and output ⊥ otherwise.
2. Parse g(P̃ ) as (x0, x1), with |x0| = |x1| = n/2 .
3. Output f(x0∥(x1 ⊕ d)) .

On input (“eval”, P̃ , α), where P̃ ∈ {0, 1}2n and α ∈ {0, 1}n/2:
1. Check that g(P̃ ) ̸= ⊥ and output ⊥ otherwise.
2. Compute x0 ← [g(P̃ )]1... n

2
.

3. Output (x0 == α) .

On input (“IsWellDefined”, P̃ ), where P̃ ∈ {0, 1}2n:
Output ¬(g(P̃ ) == ⊥) .

Helperk outputs ⊥ if it receives an incorrectly formatted input.
a For every choice of key k ∈ {0, 1}λ, G(k, ·) is the inverse of F (k, ·), i.e. ∀k ∈ {0, 1}λ , ∀x ∈

{0, 1}2n , F (k, G(k, x)) = G(k, F (k, x)) = x .

Figure 3 The helper program defining the evaluation of programs in Psep.
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Observe that Helperk is parameterized by a strong PRP which can be efficiently inverted
given the key. Such a permutation exists under the assumption there exists a one-way
function. By combining the seminal results of [24, 23, 37], one-way functions (constructively)
imply strong pseudorandom permutations. By inspection of this construction of a PRP, we
can observe that the resulting PRP has the desired properties. Indeed, the permutation is
defined as the sequential composition of four rounds of the Feistel network, where a single
round is the application of rdk : (x0, x1) 7→ (x1, x0 ⊕ F (k, x1)) where |x0| = |x1| and with
F (·, ·) being a pseudorandom function, which can be evaluated efficiently by definition. Each
round can be inverted by the application of rd−1

k : (y0, y1) 7→ (y1⊕F (k, y0), y0) and therefore
the reverse permutation can also be efficiently computed given k as (rd−1

k )4.

Program Setup

Parameters: Setup is parameterized by a special-purpose virtual black-box obfuscation
scheme VBB for the class {Helperk}k∈{0,1}λ .

Evaluation: On input the security parameter 1λ, Setup samples a key k
$← {0, 1}λ,

computes H $← VBB(Helperk), sets CRS ← H̃ where H̃ is a description of H, and
outputs CRS.

Figure 4 The setup procedure with respect to which there exists perfect but not deterministic iO
for Psep.

Program Psep

Parameters: Setup is defined as in Figure 4. Psep is parameterized by some hardcoded
value α, an input size n, and a string CRS of polynomial size.

Evaluation: On input ((CRS, P ), x) where P̃ ∈ {0, 1}2n and x ∈ {0, 1}n/2, Psep first
tries to parse CRS as CRS = H̃, where H̃ is the description of some program H, and
outputs ⊥ if the parsing fails; Psep outputs H(“eval”, P̃ , x) .

Figure 5 The program class Psep leading to a (conditional) separation between perfect and
deterministic iO in the CRS model.

▶ Lemma 25 (Existence of perfect iO for Psep). The procedure iO of Figure 6 is a perfect iO
scheme for Psep.

Proof. Completeness follows from the fact that ∀x0, x1, d ∈ {0, 1}n/2
, [π−1(π(x0∥(x1 ⊕

d)∥0n))]1...n/2 = x0. Perfect indistinguishibility follows from the fact that for all x0, x1 ∈
{0, 1}n/2, if d is sampled uniformly at random in {0, 1}n/2 then π(x0∥(x1 ⊕ d)∥0n) follows
the uniform distribution on {π(x0∥α∥0n) : α ∈ {0, 1}n/2}. ◀
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Obfuscator Perfect Indistinguishability Obfuscation for Psep

Setup: Setup is defined as in Figure 4.

iO: On input a security parameter 1λ, a common reference string CRS, a program
description P̃ ∈ {0, 1}2n from the class Psep,
1. Parse the CRS to retrieve the description of a program H which, on input a program

in Psep outputs a tuple of n/2 programs in Psep (and output ⊥ if the parsing fails).
2. If ¬H(“IsWellDefined”, P̃ ) then output ⊥ .
3. Sample d $← {0, 1}n/2, and compute P̃ ′ ← H(“Jump”, P̃ , d) .
4. Output P̃tmp .

Figure 6 Perfectly secure iO scheme for program class Psep.

▶ Lemma 26 (Impossibility of deterministic iO for Psep). There is no deterministic iO scheme
for Psep.

Proof. In a nutshell, the proof boils down to a reduction to the discrete logarithm problem
(in cyclic groups) in Shoup’s generic group model, which was shown in [43] to be impossible.
At a high-level, the sequence of hybrids is the following. First, observe that a deterministic
obfuscation scheme Obf (which must necessarily have perfect completeness and security) can
be used to perfectly decide equivalence of two programs. This means, by security of the
VBB obfuscation scheme, that this predicate of “functional equivalence” can also be decided
efficiently given only oracle access to the helper program. The next step is to show that,
by security of the strong PRP, Obf can also be used to decide equivalence when interacting
with an idealized helper oracle, where the PRP is replaced with a truly random permutation.
While there is a priori no reason why Obf should be an obfuscation scheme for Psep defined
with respect to the ideal oracle (as this is not the same class as Psep defined with respect to
“real” helper oracle), we show that it must still be able to decide equivalence of programs
in an average-case sense (over the randomness of the ideal oracle and that of the choice
of programs). However, because the only source of randomness for Obf is provided by the
answers to the queries it makes, it must behave the same way for two different oracles whose
answers match on those queries in particular. By a counting argument (and using the vertex
transitivity11 of a union of cycles), it is not hard to see that unless Obf is able (in the average-
case) to build a sequence of jumps from its input to its output it will be incorrect in deciding
equivalence with non-negligible probability. Because it knows the distances of the jumps, it
is able to determine the relative distance on the cycle between its input and the program
that it outputs. Therefore, running Obf on two random equivalent programs allows us to
determine their relative distance too, by transitivity. The final step is to show that this is im-
possible, by a reduction to the discrete logarithm problem in Shoup’s generic group model [43].

11 A graph is vertex-transitive if its automorphism group acts transitively on its vertices. Intuitively, this
means that there is no structural (i.e. “without using the labels”) way to distinguish vertices of the
graph.
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We now formalize the steps sketched above. By contradiction, assume there is a determ-
inistic iO scheme Obf for Psep. By completeness of Obf and VBB,

Pr


k

$← {0, 1}λ

CRS $← VBB(Helperk)
x0, x1, x

′
1

$← {0, 1}n/2

P̃ ← F (k, x0∥x1∥0n)
P̃ ′ ← F (k, x0∥x′1∥0n)

: Obf(1λ,CRS, P̃ ) = Obf(1λ,CRS, P̃ ′)

 = 1 . (1)

By security of VBB there exists a simulator S and a negligible function negl such that:

Pr


k

$← {0, 1}λ

x0, x1, x
′
1

$← {0, 1}n/2

P̃ ← F (k, x0∥x1∥0n)
P̃ ′ ← F (k, x0∥x′1∥0n)

: SHelperk (1λ, P̃ ) = SHelperk (1λ, P̃ ′)

 ≥ 1−negl(n) . (2)

The next step is to move the problem to an ideal world for ease of analysis. Consider the
family of oracles {IdealHelperπ}π∈S({0,1}2n) as defined in Figure 7, where IdealHelperπ acts
exactly as Helperk except that the strong pseudorandom permutation F (k, ·) is replaced with
a truly random permutation π

$← S({0, 1}2n). Because, by construction, the only difference
between Helperk and IdealHelperπ is that where the former uses the permutation F (k, ·) (with
its inverse G(k, ·)) the latter uses π (and π−1), they can be described as a single algorithm12

HO1,O2 where HFk,F −1
k = Helperk and Hπ,π−1 = IdealHelperπ.

Oracle IdealHelperπ

Parameters: IdealHelperπ has hardcoded the security parameter λ, an input length
parameter n. It is assumed that the oracle has sampled a truly random permutation
π : {0, 1}2n → {0, 1}2n. These parameters define two functions f and g:

f : {0, 1}n → {0, 1}2n

x 7→ π(x∥0n)

g : {0, 1}2n → {0, 1}n ∪ {⊥}

y 7→

{
[π−1(y)]1...n if [π−1(y)]n+1...2n = 0n

⊥ otherwise

// When convenient we will see g as a function from {0, 1}2n to {0, 1}n but which is
only defined on f({0, 1}n) ⊆ {0, 1}2n.

Evaluation: IdealHelperπ tries to match the query with one of the following patterns:
On input (“jump”, P̃ , d), where P̃ ∈ {0, 1}2n and d ∈ {0, 1}n/2:

1. Check that g(P̃ ) ̸= ⊥ and output ⊥ otherwise.
2. Parse g(P̃ ) as (x0, x1), with |x0| = |x1| = n/2 .
3. Output f(x0∥(x1 ⊕ d)) .

On input (“eval”, P̃ , α), where P̃ ∈ {0, 1}2n and α ∈ {0, 1}n/2:
1. Check that g(P̃ ) ̸= ⊥ and output ⊥ otherwise.
2. Compute x0 ← [g(P̃ )]1... n

2
.

3. Output (x0 == α) .

12 With the notations of Figures 3 and 7: The code of Helperk and IdealHelper is the exact same up to the
definition of f and g, and these functions can be re-written as making oracle access to (O1, O2) where
(O1, O2) is (F (k, ·), G(k, ·)) or (π, π−1).
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On input (“IsWellDefined”, P̃ ), where P̃ ∈ {0, 1}2n:
Output ¬(g(P̃ ) == ⊥) .

IdealHelperπ outputs ⊥ if it receives an incorrectly formatted input.

Figure 7 The oracle IdealHelperπ is an idealized version of the helper program Helperk, where
the PRP with key hardcoded F (k, ·) is replaced with a truly random permutation.

Now consider the following algorithm D, interacting with a pair of oracles (O1,O2) (which,
skipping ahead, should be thought of as as being either of the form (Fk, F

−1
k ) or (π, π−1)):

1. Sample x0, x1, x
′
1

$← {0, 1}n/2

2. Set P̃ ← O1(x0∥x1∥0n) and P̃ ′ ← O1(x0∥x′1∥0n)
3. Run y ← SHO1,O2 (1λ, P̃ ) and y′ ← SHO1,O2 (1λ, P̃ ′)
4. Output y == y′ .
By security of the strong PRP F , D cannot distinguish with better than negligible probability
between oracle access to (Fk, F

−1
k ) and (π, π−1) over the randomness of k $← {0, 1}λ and

π
$← S({0, 1}2n). Therefore there exists a negligible function negl′ such that

| Pr
k

$←{0,1}λ,D
[DFk,F −1

k (1n) = 1]− Pr
π

$←S({0,1}2n),D
[Dπ,π−1

(1n) = 1]| ≤ negl′(n) . (3)

Combining Equations (2) and (3) yields Pr
π

$←S({0,1}2n),D
[Dπ,π−1(1n) = 1] ≥ 1− negl(n)−

negl′(n).
In particular, this means that over the randomness of π $← S({0, 1}2n) (i.e. that of

CRS $← Setup), and for a random pair of equivalent programs P1 and P2, S IdealHelperπ (P1) is
equal to S IdealHelperπ (P2) with all but negligible probability. Therefore there is an efficient
algorithm which (over the randomness of π), and given two random equivalent programs in
Psep is able to determine their relative distance is the cycle.

Recall that in Shoup’s generic group model [43], a generic algorithm for solving the
discrete logarithm problem in ZN on S is given the access to group elements via random
labels, and may send a “group operation” oracle the labels for a and b and recover the label
for a+b. A generic algorithm can run the aforementioned “relative distance algorithm”, using
fast exponentiation to emulate the IdealHelper queries using the “group operation” oracle.
Therefore, there exists a generic algorithm which can determine the discrete logarithm of
a random group element. By [43] this is impossible, which contradicts the existence of a
deterministic iO scheme for Psep. ◀
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37th Annual ACM Symposium on Theory of Computing, pages 523–532, Baltimore, MA, USA,
May 22–24 2005. ACM Press. doi:10.1145/1060590.1060669.
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A Separating Perfect and Deterministic “Obfuscation” for Equivalence
Relations

The goal of this section is to formally separate the “abstract” notions of perfect iO and
canonization as was roughly outlined in the beginning of Section 5.

In this section, we consider a sequence of equivalence relations {Rn}n∈N, where Rn ⊆
{0, 1}n × {0, 1}n, and define similar notions of canonization and perfect obfuscation for the
equivalence classes of Rn. This can be thought of as an abstract notion of obfuscation.

▶ Definition 27 (Canonizer for Rn). A canonizer for R = {Rn}n∈N is a polynomial time
algorithm Can, such that for all n and for all x ∈ {0, 1}n it holds that (x,Can(x)) ∈ Rn.
Moreover, for all n, and for all (x, y) ∈ Rn it holds that Can(x) = Can(y)

▶ Definition 28 (Perfect obfuscation for Rn.). A perfect iO for R = {Rn}n∈N is a p.p.t.
algorithm iO, such that for all n and for all x ∈ {0, 1}n, iO(x) has the uniform distribution
over all the strings y {0, 1}n such that (x, y) ∈ Rn.

We recall the Decisional Diffie-Hellman problem. Let G be polynomial-time a group
generator that takes the security parameter λ as input and outputs (G, q, g), where G is a
multiplicative cyclic group of prime order q and g is a generator of the group.

▶ Definition 29 (Decisional Diffie-Hellman problem). Let λ be the security parameter. We say
that the decisional Diffie-Hellman problem is hard relative to G if

(G, q, g, ga, gb, gab) ≈c (G, q, g, ga, gb, gc) ,

where (G, q, g) $← G(1λ) and (a, b, c) $← Zq.

We show that under the DDH assumption there exists a relation R with a perfect iO but
without a canonizer.

▶ Theorem 30 (Separating deterministic and perfect abstract iO). Under DDH, there exists a
relation R such that:

There exists a perfect obfuscator iO for R.
There is no canonizer for R.

Proof. Let G = ⟨g⟩ be a DDH-hard group. Define the relation R ⊆ G3 ×G3 over triples of
elements in G as follows: x = (x1, x2, x3) and y = (y1, y2, y3) are in R if and only if

x3

x
logg(x2)
1

= y3

y
logg(y2)
1

,

where logg(h) is the discrete logarithm in the group G with respect to the generator g.
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First, we show how, given x = (x1, x2, x3), to sample y uniformly at random from the
equivalence class of x. In order to do so, pick k1, k2 uniformly at random from the set
{1, 2, . . . , |G|}, and return the triple

(x1g
k1 , x2g

k2 , x3x
k1
2 xk2

1 gk1k2) .

The pairs are in the same class,

x3x
k1
2 xk2

1 gk1k2(
x1gk1

)logg(x2gk2 ) = x3x
k1
2 xk2

1 gk1k2

x
logg(x2)
1 xk2

1 gk1 logg(x2)gk1k2
= x3

x
logg(x2)
1

.

Moreover, the output is distributed uniformly at random over the equivalence class of x by
construction.

We now prove the lower bound. We do so by showing that canonizing R would imply
distinguishing between the distributions D1 and D2, where

D1 = {(ga, gb, gab) : a, b $← {1, 2, . . . |G|}} ,

and

D2 = {(ga, gb, gc) : a, b, c $← {1, 2, . . . |G|}} ,

which would break the DDH assumption.
In order to distinguish between D1 and D2 given a canonizer for R, on input x =

(x1, x2, x3), the distinguisher picks arbitrary a, b ∈ {1, 2, . . . , |G|}, and canonize the triple
(ga, gb, gab). It then canonize its input x. If the results are equal (Can(x) = Can((ga, gb, gab))),
the distinguisher knows the input triple was sampled from D1, and otherwise it knows it was
sampled from D2. ◀
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24:2 On the Computational Hardness Needed for Quantum Cryptography

1 Introduction

One of the most fundamental achievements of cryptography has been the conceptualization
and eventual formalization of the forms of computational hardness that are needed for ob-
taining prevalent cryptographic tasks. Notions such as one-way functions [29, 64] (capturing
functions that can be computed efficiently but are hard to meaningfully invert) and pseudor-
andom generators [57, 64, 14] (capturing the ability to efficiently expand short random strings
into longer strings that are hard to distinguish from fully random) became foundational
pillars for the design and reduction-based analysis of cryptographic schemes that are only
“computationally secure” (that is, secure only against computationally-bounded attacks).
Furthermore, the celebrated equivalence between the two notions [14, 33, 37] has cemented
the combined concept as the “foundational computational hardness for cryptography”: One
that is essential for realizing almost any cryptographic task that requires computational
hardness, and at the same time suffices for realizing a large class of cryptographic tasks.

However, in the quantum setting, where parties can generate, process, and communicate
quantum information, the lay of the land of computational hardness turns out to be different.
First, quintessential tasks such as key-exchange with only public communication, which
classically can only be computationally secure, can be obtained without any need for
computational hardness [11, 56]. Furthermore, quantum protocols can use (quantum-hard)
one way functions to obtain tasks that are provably unobtainable from one way functions
alone in the classical setting, at least in a relativizing manner. These include non-interactive
commitments with either statistical hiding or statistical binding property [50, 63, 13], and
oblivious transfer [41, 27, 8, 35].

Even further, it has been recently shown how to obtain commitments, oblivious transfer
and general multiparty computation from a form of computational hardness that appears
to be “purely quantum”, in the sense that it does not appear to imply one way functions
(or any equivalent formulation of computational hardness) – not even ones against classical
attackers [6, 51]. Superficially, this new form of computational hardness, called Pseudorandom
States (PRS), is a straightforward generalization of pseudorandom generators: it postulates
the ability to efficiently generate quantum states that are hard to distinguish from a Haar-
random state even when given multiple instances [44, 17, 18]. However this apparent similarity
is deceiving; indeed, there are no relativizing constructions of one way functions from PRS [49].
Also, in spite of initial attempts [51], the celebrated classical equivalence between one-wayness
and pseudorandomness does not appear to naturally generalize to the quantum setting, at
least not with respect to PRS. Still, we do not know whether PRS are essential for realizing
any of the above cryptographic primitives.

This leaves quantum cryptography devoid of a convenient form of “foundational compu-
tational hardness”, namely a form of computational hardness that is both necessary for any
meaningful computational security, and sufficient for realizing a large class of tasks.

Our contributions. We formulate a relatively simple and natural primitive and show that its
existence is both necessary and sufficient for a significant class of cryptographic applications
in a quantum-enabled computational model. While many of these implications are either
known or easily derived from known results, we hope that the proposed framing, along with
the new implications, will help in understanding the computational foundations of quantum
cryptography.

The proposed primitive draws from a classical primitive considered by Goldreich [32], as
well as from the notion of canonical quantum commitments proposed by Yan [62]. Goldreich’s
primitive is aimed at capturing non-trivial and “cryptographically useful” computational
indistinguishability:
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▶ Definition 1 (EFID pairs [32]). An EFID pair is a pair of efficient (classical) sampling
algorithms such that their output distributions are statistically far but computationally
indistinguishable.

Goldreich’s work leverages the result of Impagliazzo, Levin, and Luby [40] to show that
EFID pairs exist if and only if (classical) pseudorandom generators exist. This, together with
what we know about pseudorandom generators, means the existence of a classical protocol
for almost any cryptographic task that requires computational hardness implies existence of
EFID pairs, and furthermore that EFID pairs suffice for realizing a large class of tasks. We
consider a natural quantum analogue of EFID pairs:

▶ Definition 2 (EFI pairs, informal). An EFI pair is a pair of efficient quantum algorithms
whose output states are statistically far but computationally indistinguishable.

Clearly, any quantum-hard EFID pair is also an EFI pair. On the other hand, it is
unknown whether existence of EFI pairs implies the existence of (classical) pseudorandom
generators or one-way functions. Indeed, the implication is false in the relativizing setting
(see [49], combined with [6, Theorem 4.1]).

A first indication that EFI pairs are central to quantum cryptography is the observation
that they are essentially equivalent to the statically binding variant of canonical form quantum
commitments [62]1. Building on this initial connection, we demonstrate that the existence
of EFI pairs is essential for the existence of any commitment scheme, oblivious transfer
protocols, non-trivial multi-party computation protocols, and zero-knowledge proofs for
non-trivial languages. Furthermore, for each one of these primitives, we use EFI pairs as
a tool for demonstrating that existence of protocols for a minimal version of the primitive
implies existence of protocols for a full-fledged version of that primitive. Informally:

Quantum commitment schemes. A commitment scheme is a cryptographic protocol
where a committer commits to a hidden bit so that it can be later revealed but not
modified. As mentioned, EFI pairs can be readily used to build (cannonical form)
statistically binding non-interactive quantum commitments, which subsequently imply
statistically hiding commitments [62].
We construct EFI pairs from any plain “semi-honest” interactive commitment scheme,
namely an interactive commitment scheme that is (computationally) binding and hiding
as long as both parties are honest during the commitment phase. (For commitment
schemes that are either statistically hiding or statistically binding, this implication is
essentially shown in [62]. We extend this results to any commitment.)
Quantum oblivious transfer. An oblivious transfer scheme is a cryptographic protocol
where a sender makes two bits available to a receiver in a way that enables the receiver
to obtain exactly one of them, without the sender learning which bit it obtained. Fully
secure (namely, simulation-secure against adversaries that deviate from the protocol)
quantum oblivious transfer is known to be constructible from quantum statistically
binding commitments [8, 6] (and so also from EFI pairs).
We show how to construct EFI pairs from any semi-honest OT protocol, namely any
OT protocol that is only guaranteed to be secure when both parties follow the protocol
instructions without abort and up to purifications (namely, without tracing out any
register used by each party).

1 Indeed, Yan [62] suggests studying the connections between statistically binding canonical-form commit-
ment schemes and other cryptographic primitives. This work follows the same path, while distilling EFI
as the notion of interest. See more details in Section 1.1.

ITCS 2023
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Quantum secure multiparty computation protocols. A multiparty secure compu-
tation protocol is a protocol where participating parties jointly compute the output of a
function of their secret inputs without revealing anything but the function value. Known
constructions of general MPC from any statistically binding quantum commitment [6]
imply that EFI pairs can also be used to perform secure evaluation of any functionality.
We show how any protocol for securely evaluating any non-trivial classical finite function-
ality (namely a function with an insecure minor as in [9]), even in the semi-honest model,
implies the existence of EFI pairs.
Quantum computational zero-knowledge (QCZK) proofs. Finally, a computational
zero-knowledge proof is an interactive proof system where any malicious verifier cannot
learn anything beyond the fact that the statement is true, in the sense that their view
could be efficiently simulated given only the public instance.
By observing that zero knowledge is a special case of secure two-party computation (2PC),
we have that if EFI pairs exist then QCZK = QIP, and any language in QMA also admits
QCZK proofs with negligible soundness and an efficient prover that uses only a single
copy of the witness. Conversely, we build on results from [63] to construct EFI pairs from
any honest verifier QCZK proof (QCZKHV) for any language that is hard on average for
BQP. (QCZKHV is a relaxation of QCZK where zero knowledge property is guaranteed to
hold only against purified verifiers with abort, rather than arbitrary polytime verifiers.)

Furthermore, all these equivalences relativize2. Thus, Kretschmer’s oracle separation [49]
immediately generalizes to show that none of the objects constructible from EFI pairs (or
pseudorandom states) imply the existence of one-way functions (post-quantum or not) in a
relativizing way.

1.1 Our techniques
This section presents an overview of the proofs for our results.

EFI pairs and statistical commitments. In the classical setting, building a commitment
scheme from EFID pairs would naturally go via Goldreich’s transformation to a PRG, and
then use, say, Naor’s commitment [52]. However, it is not clear how this transformation could
be generalized to the quantum setting. In particular, Goldreich’s proof crucially relies on the
fact that for a BPP (randomized) algorithm, it is possible to separate the randomness from
the rest of the computation – or even arbitrarily program the randomness. Such techniques
cannot work for quantum algorithms, as also observed by the recent work of Aaronson,
Ingram, and Kretschmer [4] comparing the complexity classes BPP and BQP.

Still, as noticed several times in the literature, EFI pairs give quantum commitments in a
rather direct way. To sketch this basic construction, we first recall the syntax of a canonical
form quantum commitment scheme:3

2 We use the term relativizing to denote that the construction works even in the presence of (quantum)
oracles. In particular, this allows the construction to invoke the next message function of a protocol as a
black box or even run its purification. An example of a relativizing implication is Watrous’s construction
of a QSZK protocol from any honest-verifier QSZKHV protocol [60].

We reserve the use of the term black-box reductions to denote reductions which are black box in a primitive,
namely reductions that use oracle access to the ideal functionality describing the primitive, irrespective of
any particular implementation (as e.g. in the work of Kilian [46]).
3 This (non-interactive) canonical form of quantum bit commitment schemes was first introduced by the

work of Yan et al. [63], but the idea dates back to the work of Chailloux, Kerenidis, and Rosgen [24].
Subsequently, it has been shown that canonical form commitments are as useful as traditional bit
commitments by Yan et al. [63, 31, 62] Its connection to (classical) EFID pairs was observed by Yan in
a 2022 revision of their work [62].
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EFI pairs Statistical binding
commitments

CommitmentsSemi-honest
oblivious transfer

By definition

MPC for
any classical
functionality

Semi-honest 2PC for
some non-trivial

classical functionality

[6]

By definition

Single-witness
QCZK for QMA;
QCZK = PSPACE

QCZKHV for
a non-trivial

language

Theorem 23Mild assumption that
PSPACE is hard on

average against BQP

Figure 1 Our results for EFI pairs illustrated. We give a more detailed overview of these
implications in Section 1.1.

To commit to b, the committer efficiently generates a bipartite (i.e., two-register) state
|ψb⟩CR, and sends the commitment register C.
To open, simply reveal the other register R and b, and the receiver can perform a rank-1
projection onto the corresponding state |ψb⟩CR (or equivalently, uncompute the state
generation unitary for committing to b and check if we get back all zeroes) to check
whether to accept the commitment.

It is possible to view the purified generation of the EFI pair as a canonical form com-
mitment where the output corresponds to the commitment register C and the purification
corresponds to the opening register R. When viewed this way, the statistical distance guar-
antee of the EFI pair translates to statistical binding property, whereas the computational
indistinguishability of the EFI pair translates to the computational hiding property of the
commitment. Thus an EFI pair is essentially a statistically binding canonical form com-
mitment. This observation (which is implicit in [62]) is indeed the starting point of our
work.

Furthermore, the round collapsing theorem in [62] shows that any quantum commitment
can be compiled into the canonical form while preserving the hiding and binding prop-
erties. Since statistically binding commitments and statistically hiding commitments are
equivalent [27, 62], we can construct EFI pairs from either one.

Showing how to construct EFI pairs from commitment schemes that are neither statistically
binding nor statistically hiding appears more challenging. One may hope to somehow
construct a candidate EFI pair of states, and prove computational indistinguishability from
computational security of the commitment, and statistical distance via an inefficient attack
on the commitment scheme. However, it is not clear how to transform an inefficient attack
against the binding property into a distinguishing attack as needed for EFI pairs. (Classically,
this part can be done using one-way functions, but, as argued above, these techniques do not
have natural quantum analogues.)

We get around this difficulty by going through oblivious transfer, where the security for
both ends can be naturally viewed as distinguishing tasks, and is thus more amenable to
constructing EFIs even without statistical security. In fact, we observe that semi-honest OT
suffices. Let us elaborate.

ITCS 2023
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EFI pairs from semi-honest OT. We first define a new notion of quantum oblivious transfer,
which considers only “purification attacks”. (This notion can be viewed as a quantum analogue
of the classical “non-erasing, honest-but-curious” attacks.) Furthermore, the semi-honest
adversaries must run the purified protocol till the end, i.e. are disallowed to abort. (Classically,
this does not matter.)

We first describe constructing EFI from semi-honest OT, which is more straightforward.
Consider the adversarial view in the following two executions:

Here the sender is honest and the receiver is semi-honest. The sender chooses the bits
uniformly at random and the semi-honest receiver chooses the choice bit uniformly at
random. (By correctness, the receiver is always able to recover one bit specified by the
choice bit with certainty. The task for the semi-honest receiver is to extract the sender’s
other bit from his purified view.)
Here the receiver is honest and the sender is semi-honest. The receiver chooses the choice
bit uniformly at random and the semi-honest sender prepares two equal superposition
states |+⟩⊗2 for her input bits. (Here the task for the semi-honest sender is to extract
receiver’s choice bit from her purified view.)

It is easy to see that these views can be computed efficiently since the OT protocol is
efficient; and by the semi-honest security of OT, both tasks should be impossible for efficient
algorithms. At the same time, the impossibility of Chailloux, Gutoski, and Sikora [23]
states that for every OT protocol, one of these two tasks can be accomplished with success
probability ≥ 2

3 inefficiently.
Now the construction of EFI pairs follows by simply reinterpreting these bit extraction

tasks as a distinguishing task. In particular, for b = 0, 1, the b-th state is simply the
concatenation of the two above views, conditioned on the correct answers being b in both
executions. In other words, the b-th state consists of the semi-honest receiver’s view of the
first execution when the sender’s other bit is b, followed by the semi-honest sender’s view of
the second execution when the receiver’s choice bit is b.

Semi-honest OT from commitments. Many prior works have already studied constructing
quantum oblivious transfer from commitments [26, 12, 28, 27, 31, 62]. However, they all start
with a commitment with some statistical security guarantee – either statistically binding
or statistically hiding. On the other hand, we want to start from an arbitrary commitment
scheme (which may be computationally binding and computationally hiding). While these
constructions could probably still carry over, since here we are aiming for a much weaker
security, we instead give a much simplified protocol with a self-contained description. Let
us begin by considering the simplest (almost trivial) quantum oblivious transfer protocol
inspired by Crépeau and Kilian [26], which is only secure if both parties are completely
honest during the protocol:
1. The sender on input two message bits b0, b1, sends two qubits |b0⟩⊗H |b1⟩, where the first

qubit encodes the first message bit in the standard basis and the second qubit encodes
the second message bit in the Hadamard basis.

2. The receiver measures both qubits in the standard basis to recover b0 and a random bit
b′

1, or in the Hadamard basis to recover a random bit b′
0 and b1.

Security is straightforward: the sender gets no information at all, and the receiver destroys
the information about the other bit by measuring it in an incompatible basis.

However, this is obviously not semi-honest secure as a purified receiver could simply
uncompute a purified measurement to recover the other bit as well. Indeed, a better way to
“erase” information in the semi-honest model is to simply send it to the other party: in this



Z. Brakerski, R. Canetti, and L. Qian 24:7

case, the receiver sends a copy of these two measured (classical) bits to the sender. Since the
semi-honest receiver’s purified view at the end has the sender’s private registers traced out,
doing this ensures that these measured bits do indeed collapse even for the purified view.

On the other hand, since these two bits contains information about the receiver’s choice
bit, we cannot simply send it in the clear as now the sender can break. One simple fix is to
have the receiver instead commit to the two measured bits to the sender. This strategy is
also often employed when designing maliciously secure OT from commitments [12, 28, 27].

It is easy to see that this committed-measurement OT remains secure against semi-honest
sender by hiding of the commitment, and security against semi-honest receiver remains to
be seen. If the commitment is statistically binding, then it can be seen that the collapse
still occurs; but the computational binding case seems less clear. Fortunately, this can be
overcome through Yan’s computational collapse theorem [62], which on a high level states that
a canonical form computationally binding commitment scheme computationally “collapses”
the commited qubit (given that the commit phase was performed semi-honestly), even if
the commitment is never opened. (Their theorem is established via reducing a collapsing
distinguishing adversary to an adversary that breaks computational binding of the canonical
form commitment.) This completes the argument.

Multiparty secure computations for classical functionalities. Using a known sequence of
transformations outlined in existing works [6] (which builds on existing works including but
not limited to [12, 8, 35]), it is already known how construct, given any statistically binding
quantum commitment scheme (and hence also given any EFI pair), multi-party protocols
that securely evaluate any classical function with any number of faults. Furthermore, these
protocols provide statistical security guarantees against at least one of the parties. As
an aside, via known results, these protocols can further be used to construct two-party
secure computations for general quantum functions (or channels) where only one party
obtains output [30], and in addition, reactive (meaning stateful and interactive) classical
functionalities [25, 42].

For the converse direction, we can now use the powerful equivalence established for
oblivious transfer above, and simply invoke the classical equivalence of Beimel, Malkin, and
Micali [9] to complete the proof. While the [9] proof contains parts which do not naturally
generalize to the quantum setting, the only thing we need from that proof is the reduction
from semi-honest OT to semi-honest 2PC for any non-trivial classical functionality (i.e. if it
contains an insecure minor), and this construction is black-box and hence extends to our
setting. While the semi-honest models are slightly different, we verify that their semi-honest
reduction also works for our model. Once we have semi-honest OT, we get EFI pairs by the
equivalence above.

Zero knowledge proofs from EFI pairs. We now turn to establishing an equivalence
between EFI pairs and non-trivial quantum computational zero knowledge (QCZK) proofs.
We first consider the task of constructing QCZK protocols for QMA from EFI pairs. Here the
commit-and-open QCZK protocol by Broadbent and Grilo [20] can be readily instantiated
by any quantum commitment. However, this protocol uses sequential repetition, and as a
consequence, requires multiple copies of the quantum witness to achieve negligible soundness.
As also proposed by Broadbent et al. [21], this limitation can be avoided via performing 2PC
for quantum (CPTP) functionalities, which can be constructed from OT [30] and thus EFI
pairs.

We now move on to general QCZK proofs without any constraint on prover efficiency and
show how to use EFI pairs to construct QCZK proofs for all of QIP. Before presenting our
protocol, let us recall the celebrated construction of Ben-Or et al. [10] that transforms any
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(without loss of generality, Arthur-Merlin or public-coin) IP protocol into a CZK protocol.
In the transformed protocol, the parties first run the original public-coin protocol, where
the prover only sends (statistically binding) commitments to its messages. Next, the parties
engage in a zero-knowledge protocol where the instance consists of the transcript so far, and
the language accepts a transcript if there exist valid openings to all the prover commitments
that would have caused the original verifier to accept.

Since QIP = IP [58, 43], it is natural to consider extending the [10] construction to
our setting. However, direct extension hits a roadblock: the statement that needs to be
proven in zero knowledge is now a quantum statement involving the commitment states
when instantiated with quantum commitments. This is not a context that is traditionally
considered by the zero knowledge literature. (Indeed, recall that even zero knowledge proofs
for QMA still consider classical statements.) Even if we attempt to mimic a zero knowledge
proof via statistical 2PC, we soon encounter another issue: how should the two parties agree
on the quantum statement that is being proven? Sure, we could make the verifier send the
quantum state in the statement to 2PC, but a malicious verifier could refuse to provide
the correct state. This becomes an issue as the verifier might be able to manipulate the
commitment message so that checking the validity of the commitments itself might reveal
non-trivial information about the committed bit.

We thus take a different path: we have the prover and the verifier engage in a secure
evaluation of the following reactive functionality (which also can be constructed from
OT [25, 42]). The verifier inputs its random challenges in the underlying interactive proof,
and the functionality uses these challenges to play the verifier role in an interactive proof
with the external prover. Finally the functionality outputs the acceptance bit to the external
verifier. Both soundness and zero knowledge follow from the security of the MPC.

EFI pairs from non-trivial QCZKHV. Finally, we show how to construct EFI pairs from
any QCZK proof for any language that is hard on average against BQP. Note that the
computational indistinguishability given by the QCZK security does not give EFI pairs
immediately as it might be possible to generate the hoenst view efficiently.

One possible approach might be to try to extend the classical result of Ostrovsky and
Widgerson [55] to our setting. However, they use the non-existence of one way functions
to build universal extrapolators that efficiently turn simulators into cheating provers, and
it is not clear how to use the non-existence of EFI pairs to construct quantum universal
extrapolators.

We instead turn to the works of Ong and Vadhan [59, 54], showing an equivalence between
instance-dependent commitments and CZK, that is a language admits an instance-dependent
commitment (a commitment, parameterized by an instance x, whose computational hiding
and statistical binding properties only hold if x is in or not in the language, respectively) if and
only if it admits a CZK proof. We note that if a hard-on-average language admits an instance-
dependent commitment, then this commitment is essentially a full-fledged commitment, thus
implying the existence of EFI pairs. Therefore, it remains to extend the equivalence to the
quantum setting, i.e. we wish to establish that any language admits a QCZK proof if and
only if it admits instance-dependent quantum commitments.

The bad news is that going from CZK to instance-dependent commitments again involve
going through instance-dependent one-way (universal hash) functions. However, we note that
the mixed states considered by Watrous [60] for handling QSZK readily gives an instance-
dependent mixed state for QCZK protocols: a weak variant of EFI states that is only required
to satisfy either statistical farness or computational indistinguishability if x is in or not
in the language, respectively. It can be seen that the transformations described before
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also readily extends to the instance-dependent setting, and thus this gives an instance-
dependent commitment. Indeed, this transformation from QCZK to instance-dependent
quantum commitments has been observed by the work of Yan et al. [63]. We then conclude
that if L is hard on average for BQP, then this instance-dependent mixed state averaged over
the hard distribution immediately gives an EFI pair.

Upon the completion of this work, we discovered a result by Chailloux, Kerenidis, and
Rosgen [24] that is similar to this part with very similar proof techniques. However, their
separation is between QIP = PSPACE and QMA, which is technically incomparable with our
separation between QCZK and BQP. Furthermore, they consider worst case hardness instead
of average case hardness here, and thus only getting quantum auxiliary-input EFI. In our
case, this difference is rather minor and the results can translate back and forth; and in their
case, it is not clear how to get standard EFI pairs from any notion of average case hardness
of QIP against QMA.4

1.2 Discussions and open questions
We now give a few open questions in this direction, organized into three categories. To keep
the discussion succinct, we point the readers to the references for details of the terminologies.

EFI and quantum complexity. One way functions (and equivalently pseudorandom gener-
ators and classical EFID pairs) have been one of the central objects in complexity theory [7].
Since EFI pairs are both essential and sufficient for much of quantum cryptography, and
furthermore are very simple to describe, it is natural to ask whether EFI pairs could also be
a useful object to study from the complexity point of view. Note that the computational
hardness underlying EFI pairs, which is the quantum state distinguishability problem, seems
especially relevant to the study of the complexity of quantum states and transformations [1].

One very important question, we think, is whether there is any barrier for proving the
existence of EFI pairs. In the classical setting, existence of one-way functions implies P ̸= NP,
but is there any barrier for establishing the existence of quantum EFI pairs? EFI pairs would
immediately imply a quantum circuit lower bound for an explicit two-outcome measurement,
but is there any reason to believe that such a lower bound would be hard to establish?

For a more concrete example, is P vs PSPACE a (classical) barrier for the existence of
EFI pairs? In other words, does the existence of EFI pairs separate BQP from PSPACE? We
know that the existence of pseudorandom states do separate BQP from PP = PostBQP [49],
but nothing is known for EFI pairs. One way to achieve this could be to demonstrate a way
to synthesize the Helstrom measurement given a PSPACE oracle, which is closely related
to the unitary synthesis problem [5]: in particular, if the unitary synthesis problem could
be done by a PSPACE oracle, then the existence of EFI pairs would separate PSPACE from
BQP.

Hardness amplification for EFI. Another intriguing challenge is hardness amplification
for EFI. Is it possible to construct full-fledged EFI pairs from weaker veriants where either
the computational distance is non-negligible, or the statistical distance is bounded away
from 1, or both? What is the minimal initial gap between the statistical and computational
distances that still allows amplification?

4 For readers that are familiar with [24], even if we assume QIP is hard on average against QMA for BQP
samplable distributions, this still does not suffice for getting EFI pairs without quantum auxiliary input.
The reason is that the quantum auxiliary input needs to specify the state that witnesses the diamond
norm of the two channels, and it is not clear how this state could be prepared efficiently.
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Candidate EFI? Given the oracle separation, are there any concrete candidate assumptions
that imply quantum EFI, with formal evidence that it does not imply one-way functions?

Two natural candidates come from pseudorandom state candidates. One possible approach
is to assume that “sufficiently large” quantum random circuits are pseudorandom unitaries.
These random quantum circuits are already being investigated with motivations like quantum
supremacy [2, 3] and the theory of black holes [22, 19, 36]. One could hope that pursuing this
direction could ultimately lead to useful quantum cryptography that could be implemented
on near-term quantum devices. The other possible approach is to consider the pseudorandom
states proposed by Bouland, Fefferman, and Vazirani [15] from the physical description of
wormholes. Intuitively, such a construction could be secure based on the physical belief that
a wormhole is highly “scrambling”. In that paper, they also prove that their construction is
a secure pseudorandom state generator if the evolution unitary is a black-box Haar random
unitary.

Another candidate is proposed by Kawachi, Koshiba, Nishimura, and Yamakami [45]. On
a high level, they consider computational indistinguishability between two types of random
coset states, and show that it is at least as hard as the graph automorphism problem.

EFI and quantum cryptography. The importance of one way functions in classical crypto-
graphy cannot be overstated: virtually any non-trivial computational cryptography (those
that cannot be realized with respect to computationally unbounded adversaries) implies
the existence of one way functions classically. Yet it still remains to be seen how much of
quantum cryptography is related to EFI. For instance:
Quantum pseudorandomness. The celebrated result of Goldreich [32] shows existence of

classical EFI pairs imply pseudorandom generators and subsequently pseudorandom
functions. While we know how to construct various quantum cryptography from quantum
EFI pairs, the way we do it completely avoids the need to construct quantum pseudor-
andomness. Nevertheless, given the many applications of both classical and quantum
pseudorandomness, an important question is whether it is possible to construct quantum
pseudorandomness (pseudorandom states, unitaries, or any other meaningful pseudoran-
dom objects) from EFI pairs.

Quantum unforgeability. Cryptographic primitives such as digital signatures, message au-
thentication codes, or quantum money appear to inherently require some flavor of
one-wayness, in that a break involves solving a computationally hard search problem
where solutions exist and are efficiently verifiable given some additional secret information.
(In the public key setting, where some classical verification key is made public, solutions
are verifiable publicly.) Another related object already proposed previously is one-way
state generators [51]. As discussed, this form of computational hardness appears very
different than indistinguishability. Still, can we show that existence of any one of these
primitives implies existence of EFI pairs? Can we construct any of these primitives from
EFI pairs?

Quantum zero knowledge arguments. It is possible to extend our proof to show that if EFI
pairs exist then we can give a QSZK argument for any QMA language with an efficient
prover having a single copy of the witness. On the other hand, we are unable to show that
if L admits an argument then the instance-dependent commitment is computationally
binding for NO instances. On a high level, the difficulty is that known techniques in the
statistical binding setting do not translate to the computational setting, since we do not
have a hardness amplification procedure for computationally binding commitments: it is
not clear whether parallel repetition of commitments decreases the computational binding
error against malicious committers. We refer the readers to the related discussions in
Yan’s work [62] for more details.
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2 Preliminaries

2.1 Quantum information
We refer the reader to [53] for a comprehensive reference on the basics of quantum information
and quantum computation. We use standard Dirac notation for quantum states.

We recall the notion of density matrices, which are PSD trace-1 matrices that represent
the complete characterization of a state of a quantum system. The state of a system can
be “pure”, i.e. in the form of a state |ψ⟩, in which case the density matrix is |ψ⟩⟨ψ| (i.e. of
rank 1), or “mixed” which corresponds to a distribution over pure states, and is represented
by a density matrix of rank > 1. Two quantum states are identical if and only if their density
matrices are equal, and the distance between quantum states is also expressed as a function
of their density matrices, as explained below.

We recall that quantum operations can always be expressed as unitary operators on some
quantum system, and they act on the density matrix of this quantum system via conjugation.
We may sometimes refer to a quantum operation that uses some auxiliary registers, or that
removes (“traces out”) registers during the computation. Such a general quantum operation
is known as a quantum channel. (Mathematically, a quantum channel can be expressed as a
completely-positive trace-preserving (CPTP) map on the space of density matrices, but this
formulation will not be required for our purposes.)

We use D(H) to denote the set of density matrices on a Hilbert space H. Let ρ, σ ∈ D(H)
be density matrices. We write TD(ρ, σ) to denote the trace distance between them, i.e.,

TD(ρ, σ) = 1
2 ∥ρ− σ∥1

where ∥X∥1 = Tr(
√
X†X) denotes the trace norm. We also use F (ρ, σ) =

(
Tr

(√√
ρσ
√
ρ
))2

to denote the fidelity of ρ and σ.

▶ Fact 3. For any two mixed states ρ, σ, (F (ρ, σ))2 + (TD(ρ, σ))2 ≤ 1.

▶ Theorem 4 (Holevo–Helstrom [39, 38]). The best success probability to (inefficiently)
distinguish two mixed states ρ, σ is given by 1

2 (1 + TD(ρ, σ)). The measurement that achieves
this success probability is called the Helstrom measurement.

▶ Corollary 5. For any mixed states ρ, σ and integer n > 0,

TD(ρ⊗n, σ⊗n) ≥ 1− exp(−nTD(ρ, σ)/2).

We recall that ρ⊗n is the state containing n-copies of the state represented by ρ.

Proof. We prove this by building a majority-vote distinguisher. Let D be the distinguisher
optimally distinguishing ρ from σ by Holevo–Helstrom theorem. We apply D on each
copy, and take the majority vote. Corollary follows by applying Hoeffding’s inequality and
Holevo–Helstrom again. ◀

2.2 Quantum algorithms
A quantum algorithm A is a family of generalized quantum circuits {An}n∈N over a discrete
universal gate set (such as {CNOT,H, T}). By generalized, we mean that such circuits can
have a subset of input qubits that are designated to be initialized in the zero state, and a
subset of output qubits that are designated to be traced out at the end of the computation.
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Thus a generalized quantum circuit An corresponds to a quantum channel. When we write
An(ρ) for some density matrix ρ, we mean the output of the generalized circuit An on input
ρ. If we only take the quantum gates of An and ignore the subset of input/output qubits that
are initialized to zeroes/traced out, then we get the unitary part of An, which corresponds
to a unitary operator which we denote by Ân. The size of a generalized quantum circuit is
the number of gates in it, plus the number of input and output qubits.

We say that A = {An}n is a quantum polynomial-time (QPT) algorithm if there exists
a polynomial p such that the size of each circuit An is at most p(n). We furthermore say
that A is uniform if there exists a deterministic polynomial-time Turing machine M that on
input 1n outputs the description of An.

We also define the notion of a non-uniform QPT algorithm A that consists of a family
{(An, ρn)}n where {An}n is a polynomial-size family of circuits (not necessarily uniformly
generated), and for each n there is additionally a subset of input qubits of An that are
designated to be initialized with the density matrix ρn of polynomial length. This is intended
to model nonuniform quantum adversaries who may receive quantum states as advice.

The notation we use to describe the inputs/outputs of quantum algorithms will largely
mimic what is used in the classical cryptography literature. For example, for a state generator
algorithm G, we write Gn(k) to denote running the generalized quantum circuit Gn on input
|k⟩⟨k|, which outputs a state ρk.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-
match between classical, pure state, and density matrix notation; for example, we may write
An(k, |θ⟩ , ρ) to denote running the circuit An on input |k⟩⟨k| ⊗ |θ⟩⟨θ| ⊗ ρ. In general, we will
not explain all the input and output sizes of every quantum circuit in excruciating detail;
we will implicitly assume that a quantum circuit in question has the appropriate number of
input and output qubits as required by context.

We assume that all parties are quantum algorithms with (noiseless) quantum communica-
tion. Furthermore, all algorithms run with the same security parameter.

A function f : N → R≥0 is negligible, if for any polynomial p, f(λ) ≤ 1/p(λ) for all
sufficiently large λ ∈ N. Otherwise, we say it is noticeable, or equivalently when it is infinitely
often at least 1/p(λ).

▶ Definition 6 (Computational indistinguishability). For two families of mixed states
{ρλ}λ, {σλ}λ, we say that they are computationally indistinguishable (against BQP/qpoly),
if for any QPT algorithm D, there exists a negligible function ε such that for any security
parameter λ and advice state α = (αλ)λ,

|Pr[D(αλ, ρλ) = 1]− Pr[D(αλ, σλ) = 1]| ≤ ε(λ).

Extending the standard cryptographic convention,the above definition considers adversaries
with non-uniform quantum advice. The definition can be adapted to the uniform setting
by simply requiring fixing α = ⊥. We note that the reductions shown in this work are
all uniform, or “advice preserving”: given an adversary with some advice, the generated
adversary uses the same advice.

3 EFI pairs of states

We define the main object considered in this work, namely pairs of efficiently generatable
mixed quantum states that are statistically far and yet computationally indistinguishable:
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▶ Definition 7. We call ξ = (ξb,λ) a pair of EFI states if it satisfies the following criteria:
1. Efficient generation: There exists a uniform QPT quantum algorithm A that on input

(1λ, b) for some integer λ and b ∈ {0, 1}, outputs the mixed state ξb,λ.
2. Statistically Far: TD(ξ0,λ, ξ1,λ) as a function of λ is at least inverse polynomial.
3. Computational Indistinguishability: (ξ0,λ)λ is computationally indistinguishable to

(ξ1,λ)λ.

Here we require exact generation of the mixed state. Since we only care about the
existence of such object, this requirement does not make a difference. In particular, if we can
approximately synthesize a certain family of states with inverse-exponential fidelity, then
taking the output of the circuit directly would also satisfy the requirement.

4 Commitments and semi-honest oblivious transfer

In this work, we without loss of generality focus on the canonical form of quantum commitment
schemes [62, Definition 5]. A commitment scheme consists of two phases. In the commitment
phase of a canonical commitment scheme, Alice (the committer) chooses a bit b, and runs a
uniform QPT circuit Qλ,b on all zeroes, which outputs two registers C,R; she then proceeds
to send the register C to Bob (the receiver). Later in the reveal phase, Alice sends the other
register R and the bit b to Bob; Bob accepts the opening if he performs Q†

λ,b on two registers
and measures all zeroes in the computational basis. We now recall the requirements on the
commitment schemes, specialized to canonical forms for convenience. It will be convenient
to define the commitment message ρλ,b := TrR(Qλ,b |0⟩⟨0|Q†

λ,b).

▶ Definition 8 (Computational hiding). A commitment scheme satisfies computational hiding,
if ρλ,0 is computationally indistinguishable to ρλ,1.

We are going to consider a specific more restricted variant of statistical binding called
honest binding. We refer the readers to related works [63, 31, 51, 62] for a more thorough
discussion on this variant (and how it is equivalent to statistical binding for canonical
commitment schemes).

▶ Definition 9 (Honest binding). A canonical commitment scheme satisfies honest computa-
tional (resp. statistical) binding if for any auxiliary state |ψ⟩ and any polynomial-time (resp.
physically) realizable unitary U , we have that∥∥∥(

Qλ,1 |0⟩⟨0|CR Q
†
λ,1 ⊗ IZ

)
(IC ⊗ URZ) (Qλ,0 |0⟩CR ⊗ |ψ⟩Z)

∥∥∥
2

is negligible.

In an oblivious transfer protocol, Bob (the sender) chooses two bits x0, x1 to send to
Alice, and Alice (the receiver) chooses the bit b to receive. At the end of the protocol, Alice
is able to recover xb. Here, we assume the protocol is able to transmit xb with probability 1.

Here, we say a (quantum) party is semi-honest (or secure against purified adversaries,
analogous to the classical honest-but-curious security), if they follow the protocol (without
abort) except that they can purify (without loss of generality) all measurements. We in
addition also allow Bob (the sender) to purify his randomness for x0, x1 if he was to sample
them randomly; on the other hand, we require Alice (the receiver) to specify a classical
input to make it easier to define security. (Looking ahead, this is also needed to invoke the
semi-honest inefficient attack [23].) At the end, they output their residual state as their view
for the distinguisher as usual.
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▶ Definition 10 (Statistical security against semi-honest Alice). We say an oblivious transfer
protocol is P ∗

A-secure against semi-honest Alice, if for every bits b, c, at the end of the protocol
with Alice’s input being b, a semi-honest Alice’s view when xb = c and x1−b = 0 is at most
P ∗

A-close to that when xb = c and x1−b = 1 in trace distance.

▶ Definition 11 (Statistical security against semi-honest Bob). We say an oblivious transfer
protocol is P ∗

B-secure against semi-honest Bob, if for every possible (purified) Bob’s inputs
(meaning an arbitrary bipartite quantum state where the first part is a qubit indicating the
input choice bit), at the end of the protocol, a semi-honest Bob’s view when b = 0 is at most
P ∗

B-close to that when b = 1 in trace distance.

Computational security against semi-honest Alice and Bob can be similarly defined, except
considering these two views to be computationally indistinguishable instead of statistically
indistinguishable.

We recall the impossibility due to Chailloux, Gutoski, and Sikora showing that oblivious
transfer protocols that are statistically secure against both parties do not exist. While
the “semi-honest” definition they have is different from here, we could open the proof and
check that the cheating strategies constructed there are indeed semi-honest according to our
definition.

▶ Theorem 12 ([23, Theorem 1.1]). For any oblivious transfer protocol, it holds that 2P ∗
B +

P ∗
A ≥ 2, where Alice chooses the choice bit uniformly at random (classically) and Bob

chooses the two bits as uniform superposition ( 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩)), and P ∗

A is the
best probability that a semi-honest Alice is able to predict Bob’s choice correctly, and P ∗

B is
the best probability that a semi-honest Bob is able to predict both bits being sent by Alice
correctly.

We briefly recall the cheating strategies constructed in their proof. Alice’s strategy
is the following [23, Section 2.1]: she randomly chooses b and then follows the protocol
semi-honestly according to our definition; at the end, she performs a gentle measurement
to learn xb (it is gentle since by completeness she is supposed to be able to learn xb with
almost certainty), and then performs the Helstrom measurement (Theorem 4) to learn
x1−b. Similarly, Bob’s strategy is the following [23, Section 2.2]: he follows the protocol
semi-honestly, purifying all measurements including the uniform sampling of x0, x1; at the
end, he performs a post-processing to try to guess b. Let the success probability of Alice and
Bob be pa, pb respectively. They establish that for these two strategies, 2pb + pa ≥ 2, and
thus the theorem follows.

The following theorem is proven in [16]:

▶ Theorem 13. The following assumptions are equivalent.
1. Existence of EFI states.
2. Existence of statistically binding (canonical-form) commitment schemes.
3. Existence of commitment schemes.
4. Existence of semi-honest oblivious transfer.

5 Dichotomy for secure two party computations

In this section, we study secure two party computations with quantum parties for classical
functionalities. A secure two-party computation protocol consists of two (interactive uniform
quantum) algorithms A,B, where they receive (implicitly) the security parameter λ and
their respective inputs a, b, take turns to run and exchange a message register back and
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forth; in the end, we denote their joint state as ⟨A,B⟩ (a, b). We can also denote Alice’s
state to be ⟨A,B⟩ (a, b)A and Bob’s to be ⟨A,B⟩ (a, b)B. Without loss of generality, we
consider the protocol so that only Bob gets the output and otherwise they do not learn any
other information [9, Definition 1]. In this case, ⟨A,B⟩ (a, b) would simply be (⊥, z) as Alice
outputs nothing and Bob outputs the evaluated result z. In particular, this evaluated result
could be the output of any efficient quantum channel [30]. We can also define the output
state ⟨A∗, B⟩ (a, b) for a malicious Alice (and analogously for Bob), where the malicious Alice
can output anything she wants and not necessarily ⊥.

We now describe the definition for malicious simulation security.

▶ Definition 14 (Malicious simulation security). Let f = (fλ)λ be a quantum channel com-
putable by a polynomial-size quantum circuit. A protocol computing f satisfies malicious
simulation security for Alice, if the following holds. For any (malicious) QPT algorithm
A∗, there exists a QPT simulator S such that for any QPT distinguisher D, there exists a
negligible function ε such that for all security parameter λ, non-uniform bipartite advice state
ρAD, and Bob’s input b (permissible by fλ),

|Pr[D(⟨A∗, B⟩ (ρA, b), ρD) = 1]− Pr[D(Sf (ρA, b), ρD) = 1]| ≤ ε(λ),

where Sf (ρA, b) is the following algorithm:
The two-stage algorithm S(1λ, ρA) is run, which outputs some a∗.
Compute (za, zb)← fλ(a∗, b) to be the output of f . (In our setup, za = ⊥ but zb is the
actual output.)
Finish executing S with input za, which in the end outputs a certain state σ.
Output (σ, zb).

Malicious simulation security for Bob can be defined in the same way as above, except
exchanging the role of Alice and Bob.

We say the malicious simulation security is statistical if it holds even against any unboun-
ded algorithms A∗ and D, and in this case there need not be a running time bound on the
simulator.

In this work, we focus on secure two-party computations although the consequences also
generalize to secure multi-party computations where possibly more than two parties are
involved and all of them could receive outputs. We refer the readers to the prior work [8] for
related literature.

Combining our equivalence theorem from before and existing work constructing one-sided
statistically secure 2PC from statistically binding (quantum) commitments [8, 6, 61], we
immediately get the following corollary.

▶ Corollary 15. Assuming EFI state pairs exist, then any P/poly functionalities can be
computed with full malicious security and one-sided statistical security.

For the rest of the section, we show EFI states are also implied by non-trivial 2PC
protocols. For that purpose, we focus on 2PC protocols for finite functionalities. By “finite”,
we mean that the function to be computed is a fixed-size function independent of the security
parameter, say Yao’s millionaires’ problem.

▶ Definition 16 (Insecure minor). Let S1, S2, S3 be finite sets and f : S1 × S2 → S3 be a
(finite) function. Then we say f contains an insecure minor, if there exists x0, x1 ∈ S1 and
y0, y1 ∈ S2 such that f(x0, y0) = f(x1, y0) and f(x0, y1) ̸= f(x1, y1).
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▶ Lemma 17 ([9, Claim 1]). If a function f(·, ·) does not contain an insecure minor, then
there is a classical one-message perfectly secure computation protocol for f .

▶ Lemma 18. If a function f(·, ·) contains an insecure minor, then we can build an semi-
honest OT protocol from an semi-honest secure computation protocol for f .

Proof. This essentially follows from the work of Beimel, Malkin, and Micali [9, Claim 3].
Since the original proof is black-box, it also immediately generalizes to our setting when the
parties are quantum. As the precise definition of semi-honest is different in our case, we give
the proof for completeness.

Let x0, x1, y0, y1 be the values guaranteed by the insecure minor, and let Πf be the
semi-honest secure computation protocol for f . The (semi-honest) oblivious transfer protocol
described in that proof works as follows:

(Recall) Alice gets as input a0, a1 and Bob gets as input a choice bit b.
Execute Πf on input xa0 , y1−b, and Bob gets output z0.
Execute Πf on input xa1 , yb, and Bob gets output z1.
Bob outputs 0 if zb = f(x0, y1), otherwise Bob outputs 1.

Correctness follows directly since the construction is black-box. A semi-honest Alice’s view
only consists of her semi-honest view from two protocol executions, and thus Alice does not
learn anything about b. Similarly, a semi-honest Bob’s view only consists of his semi-honest
view from two protocol executions, and thus semi-honest security also follows from the
property of insecure minor and Alice’s privacy against semi-honest Bob for Πf . ◀

Combining this with Theorem 12, we immediately get the following:

▶ Corollary 19. If a function f(·, ·) contains an insecure minor, then f cannot be computed
by statistically-secure semi-honest protocols.

Combining our equivalence theorem with Lemmas 17 and 18, we obtain the following
dichotomy theorem. We shall remark that this theorem, similar to the classical proof [9], is
non-black-box in the use of the functionalities [26, 46, 47] due to the use of the equivalence
theorem.

▶ Theorem 20. If there is a semi-honest two-party secure computation protocol for a classical
finite functionality f(·, ·), then either f can be computed perfectly securely in a single message
or EFI states exist.

6 Quantum computational zero knowledge proofs

The existence of one-way functions implies that all of PSPACE admit a computational zero
knowledge proof [10, 58], and NP admits computational zero-knowledge proofs where proofs
can be efficiently generated given a witness for membership [34]. Furthermore, the existence
of computational zero-knowledge proofs for any non-trivial (i.e., average-case easy) language
implies the existence of (infinitely-often) one-way functions [55]. In this section, we use our
equivalence theorem to establish the quantum analogue of these classical results.

▶ Definition 21. A language L is in QCZK if there is a (quantum) interactive protocol
between an unbounded prover and a QPT verifier (specified by an interactive quantum Turing
machine V ) such that the following holds:

Completeness: For any x ∈ L, there is an unbounded prover strategy P that would make
V accept with probability at least 1− 2|x|.
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Soundness: For any x ̸∈ L and any unbounded prover strategy, V accepts with probability
at most 2|x|.
Computational zero knowledge: For any malicious QPT verifier V ∗, there exists a QPT
simulator S such that for any QPT distinguisher D and non-uniform bipartite advice
state ρAD, there exists a negligible function ε such that for any x ∈ L,

|Pr[D(⟨P, V ∗(ρA)⟩ (x, x)V ∗ , ρD) = 1]− Pr[D(S(x, ρA), ρD) = 1]| ≤ ε(|x|).

We can also consider a (much) weaker variant of this zero knowledge requirement called
computationally zero knowledge against purified verifiers with abort (or “honest verifier”),
where we restrict the malicious V ∗ to only purifying his state and aborting after any fixed
number of rounds5. We call the corresponding class QCZKHV, similar to QSZKHV with respect
to QSZK for statistical zero knowledge [60].

Note that here, unlike semi-honest OT where we disallow a semi-honest party to prema-
turely abort, here we must allow a purified verifier to abort prematurely (this makes the
complexity class smaller). This is because otherwise we can even show the corresponding
class (for even quantum perfect zero knowledge) is trivially equal to IP, by simply asking the
IP verifier at the end to destroy all the other information he has learned by measuring them
in Hadamard basis and then returning them to the prover.

▶ Fact 22 ([58, 60, 43, 48]). BQP ⊆ QSZK = QSZKHV ⊆ QCZK = QCZKHV ⊆ QIP = IP =
PSPACE.

We first consider QCZK protocols with efficient provers (in which case the largest com-
plexity class we can consider is QMA), and then move on to QCZK with inefficient provers.
The work by Broadbent and Grilo on QCZK [20] show how to build a commit-and-open zero
knowledge protocol for QCZK using a commitment scheme, and thus combining it with a
quantum commitment scheme, we get a QCZK proof, but it requires multiple copies of the
advice to boost the soundness to negligible. We strengthen this to show that we can achieve
the same thing from the same assumption, but with a single copy of the witness. Overall,
the following theorems are proven in [16]:

▶ Theorem 23. If EFI states exist, then QCZK = QIP. Furthermore, any language in QMA
has a quantum computational zero knowledge proof with negligible soundness and with an
efficient prover that uses only a single copy of the witness.

▶ Theorem 24. If there is a language in QCZKHV that is hard on average for BQP for some
BQP-samplable distribution D, i.e. any BQP algorithm has negligible success probability in
deciding L on average over D and the algorithm’s randomness, then EFI state pairs (secure
against uniform BQP adversaries) exist.
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Abstract
We show improved monotonicity testers for the Boolean hypercube under the p-biased measure, as
well as over the hypergrid [m]n. Our results are:
1. For any p ∈ (0, 1), for the p-biased hypercube we show a non-adaptive tester that makes Õ(

√
n/ε2)

queries, accepts monotone functions with probability 1 and rejects functions that are ε-far from
monotone with probability at least 2/3.

2. For all m ∈ N, we show an Õ(
√

nm3/ε2) query monotonicity tester over [m]n.
We also establish corresponding directed isoperimetric inequalities in these domains, analogous to
the isoperimetric inequality in [15]. Previously, the best known tester due to Black, Chakrabarty
and Seshadhri [2] had Ω(n5/6) query complexity. Our results are optimal up to poly-logarithmic
factors and the dependency on m.

Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that
can be used to reduce the problem of monotonicity testing over an arbitrary product domains to
the Boolean cube. The embedding maps a function over a product domain of dimension n into
a function over a Boolean cube of a larger dimension n′, while preserving its distance from being
monotone; an embedding is considered efficient if n′ is not much larger than n, and we show how to
construct efficient embeddings in the above mentioned settings.
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1 Introduction

Let [m] = {0, 1, . . . , m − 1} be thought of as an ordered set, and consider the partial ordering
induced by it on [m]n: two points x, y ∈ [m]n satisfy x ⩽ y if and only if xi ⩽ yi for all
i = 1, . . . , n. A function f : [m]n → {0, 1} is called monotone if for every x, y ∈ [m]n such
that x ⩽ y we have f(x) ⩽ f(y). Given a function f : [m]n → {0, 1}, we measure its distance
from being monotone, with respect to a probability measure µ over [m]n, by
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25:2 Improved Monotonicity Testers via Hypercube Embeddings

ε(f ; µ) = min
g : [m]n→{0,1} monotone

∆(f, g; µ), where ∆(f, g; µ) = µ ({x ∈ [m]n | f(x) ̸= g(x)}) .

In this paper we present monotonicity testers for functions over [m]n (under the uniform
measure), as well as over the Boolean hypercube {0, 1}n with the p-biased measure, defined
as µ⊗n

p (x) = p|x|(1 − p)n−|x|. That is, we construct a randomized algorithm that makes
oracle queries to an unknown function f over the domain, which accepts with probability 1
if f is monotone, and rejects with probability ⩾ 2

3 if f is ε-far from monotone.

1.1 Prior Works
The monotonicity testing problem has received significant attention over the years, as we
shall now review. For simplicity, below we think of ε as being a small constant. The problem
was originally studied over Boolean hypercube with the uniform measure [13], where a
non-adaptive algorithm that makes O(n) queries was shown. This bound was improved by [8],
who showed an Õ(n7/8) query tester by proving a directed version of Margulis’ isoperimetric
inequality [17] and using it towards developing improved monotonicity testers. Following it,
Chen, Servedio and Tan [9] modified the algorithm and the analysis of [8] and established
a Õ(n5/6) query tester. Finally, an Õ(

√
n) query tester was given in [15], who proved a

directed version of an isoperimetric inequality due to Talagrand [19]. The tester of [15] is
tight up to poly-logarithmic factors, by a bound for non-adaptive testers due to [12]. The
best known lower bound for adaptive testers is not too far off [10], and currently stands at
Ω̃(n1/3).

Following the investigation of complexity of monotonicity testing over the hypercube,
variants of the problem were also considered in the literature, in which either the domain or
the range of the function are different [11, 7, 2, 3, 5]. Most relevant to us is the monotonicity
testing problem over different measures on the Boolean hypercube as well as the closely
related hypergrid [m]n, wherein the state of the art result is an O(n5/6poly(log m)) query
tester due to [2]. To prove their result, the authors of [2] established an analog of the directed
isoperimetric inequality of [8] for the hypergrid.

1.2 Parallel Works
Following initial submission of this paper, we have learned that Black, Chakrabarty and
Seshadhri have independently obtained results similar to ours [4]. They use a different
method, first proving analogous directed isoperimetric inequalities over the hypergrid, and
then using these to construct and analyze a monotonicity tester for the hypergrid.

1.3 Main Results
Our first result is an essentially-optimal monotonicity tester for the p-biased cube:

▶ Theorem 1. For every p ∈ (0, 1), there is a non-adaptive monotonicity tester over
({0, 1}n, µ⊗n

p ) that makes Õ(
√

n/ε2) queries.

Second, we focus on the hypergrid [m]n. Here and throughout, Um refers to the uniform
distribution over [m], and we often drop the subscript m when it is clear from the context.

▶ Theorem 2. For all m, n ∈ N, there is a non-adaptive monotonicity tester over ([m]n, U⊗n)
that makes Õ(

√
nm3/ε2) queries.
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Our techniques also imply analogs of the directed isoperimetric inequality of [15] for the
hypergrid as well as for the p-biased cube. For simplicity we state the result for the hypergrid,
and defer the statement for the p-biased cube to Theorem 13.

Let f : [m]n → {0, 1} be a function and fix an input x ∈ [m]n. The negative sensitivity
of f at x, denoted by s−

f (x), is defined to be the number of coordinates i such that there
is an input y differing from x only on the ith coordinate, such that the pair (x, y) violates
monotonicity. Namely, it is the number of coordinates i such that for the point y which
differs from x only on its ith coordinate, we have that x < y and f(x) > f(y) (if f(x) = 1)
or x > y and f(x) < f(y) (if f(x) = 0).

▶ Theorem 3. If f : [m]n → {0, 1} is ε-far from monotone with respect to U⊗n, then

E
x∈[m]n

[√
s−

f (x)
]
⩾ Ω

(
ε

m3 log(mn/ε)2

)
.

1.4 Our Technique
Our proofs rely on the following elementary notion of an embedding of a domain (that we
wish to test monotonicity over) into a hypercube of not too-large dimension.

▶ Definition 4. We say that a probability distribution ([m], µ1) can be r-locally embedded if
there is a Boolean hypercube {0, 1}r, a map ϕ : {0, 1}r → [m], a collection Ψ = {Ψω}ω∈Ω of
maps Ψω : [m] → {0, 1}r, and a probability distribution P over Ω such that:
1. Each one of ϕ and Ψω is monotone.
2. Sampling x ∼ U({0, 1}r), the distribution of ϕ(x) is µ1.
3. Sampling y ∼ µ1 and ω ∼ P , the distribution of Ψω(y) is uniform over {0, 1}r.
4. For each ω ∈ Ω, the composition ϕ ◦ Ψω is the identity on [m].

The usefulness of Definition 4 comes from the fact that given a local embedding of [m],
we can reduce the problem of testing monotonicity over ([m]n, µ⊗n

1 ) to that of testing it over
Boolean hypercubes of dimension rn, which we already know how to solve. Towards showing
the reduction we note that if ([m], µ1) can be r-locally embedded, then given a function
f : [m]n → {0, 1} we may define g : {0, 1}r×n → {0, 1} by

g(x(1), . . . , x(n)) = f(ϕ(x(1)), . . . , ϕ(x(n))).

The following lemma asserts that if f is monotone then g is also monotone, and if f is ε-far
from monotone, then g is ε-far from monotone.

▶ Lemma 5. If f is monotone, then g is monotone. Moreover, ε(g; U⊗n) ⩾ ε(f ; µ⊗n
1 ).

Proof. Assume f is monotone. Then taking any (x(1), . . . , x(n)) ⩽ (x(1)′
, . . . , x(n)′) in

{0, 1}r×n, by the monotonicity of ϕ we have (ϕ(x(1)), . . . , ϕ(x(n))) ⩽ (ϕ(x(1)′), . . . , ϕ(x(n)′)),
and using the monotonicity of f we get that g(x(1), . . . , x(n)) ⩽ g(x(1)′

, . . . , x(n)′).
For the other direction, let g′ be the closest monotone function to g, and choose ω⃗ =

(ω1, . . . , ωn) ∼ P ⊗n. Define

fω⃗(x1, . . . , xn) = g′(Ψω1(x1), . . . , Ψωn(xn)).

Since each Ψωi
is monotone we have that fω⃗ is monotone as well. Also,

E⃗
ω

[
∆(f, fω⃗; µ⊗n

1 )
]

= E⃗
ω

[
E

x∼µ⊗n
1

[
1f(x)̸=fω⃗(x)

]]
= E⃗

ω

[
E

x∼µ⊗n
1

[
1f(x)̸=g′(Ψω1 (x1),...,Ψωn (xn))

]]

= E⃗
ω

[
E

x∼µ⊗n
1

[
1g(Ψω1 (x1),...,Ψωn (xn)) ̸=g′(Ψω1 (x1),...,Ψωn (xn))

]]
,
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where in the last equality we used the fact that ϕ◦Ψω is the identity. Note that by property 3
of an embedding, given the distribution of ω⃗ and x, the distribution of (Ψω1(x1), . . . , Ψωn

(xn))
is uniform over {0, 1}r×n, so the last expression is equal to ∆(g, g′; U⊗n) = ε(g; U⊗n). It
follows that there is an ω⃗ such that ∆(f, fω⃗; µ⊗n

1 ) ⩽ ε(g; U), and the proof is concluded. ◀

For the Boolean hypercube with the uniform measure, a 2-query path tester is constructed
in [15] which always accepts monotone functions, and rejects functions that are ε-far from
monotone with probability at least

R(n, ε) = ε2
√

npoly(log n)
. (1)

Combining that tester with Lemma 5 we get the following conclusion:

▶ Lemma 6. Suppose that ([m], µ1) can be r-locally embedded; then there is a 2-query
monotonicity testing algorithm for functions over ([m]n, µ⊗n

1 ) that always accepts monotone
functions, and rejects functions that are ε-far from monotone with probability at least R(rn, ε).

Proof. Given f : ([m]n, µ⊗n
1 ) → {0, 1}, define g as above, then run the monotonicity tester

of the hypercube on g, and accept/reject accordingly. Note that a single query to g can be
answered by making a single query to f . By Lemma 5, if f is monotone then g is monotone,
hence the tester always accepts. If f is ε-far from monotone, then by Lemma 5 g is also ε-far
from monotone, hence the tester rejects with probability at least R(rn, ε). ◀

Thus, Theorems 1 and 2 follow from Lemma 6 once we show the existence of sufficiently
good local embeddings. In Section 2 we show constructions of such embeddings for the
p-biased measure on {0, 1}, as well as basic embeddings for [m]n which are not good enough
for our purpose (but gives some intuition). To construct efficient embeddings for [m]n we have
to work harder, and for divisibility reasons we only know how to construct such embeddings
for m’s that are power of 2. For other m’s, we have to consider a slightly relaxed notion of
embeddings, asserting that there are distributions µ′

1 and µ′
2 that are extremely close to the

distributions ([m], µ1) and ({0, 1}r, U) such that one can embed ([m], µ′
1) into ({0, 1}r, µ′

2);
see Sections 2.3, 2.4 for the formal definition. This relaxed notion has the same monotonicity
testing and directed isoperimetric implications. The construction of embeddings for the
hypergrid is more involved than our construction of embeddings for the p-biased cube, and
can be found in Section 3.

As for the directed isoperimetric inequalities, we recall the isoperimetric result from [15]

▶ Theorem 7. If f : ({0, 1}n, U⊗n) → {0, 1} is ε-far from monotone, then Ex

[√
s−

f (x)
]
⩾

Ω
(

ε
log(n/ε)

)
.

Combining Theorem 7 with Lemma 5 we get:

▶ Lemma 8. Suppose that ([m], µ1) can be r-locally embedded; then for any f : ([m]n, µ1) →
{0, 1} that is ε-far from monotone it holds that Ey∼µ⊗n

1

[√
s−

f (y)
]
⩾ Ω

(
ε(f)√

r log(rn/ε(f))

)
.

Proof. Define g : {0, 1}r×n → {0, 1} as above, and note that 1
r s−

g (x) ⩽ s−
f (ϕ(x)) for all x ∈

{0, 1}r×n. Indeed, letting k = 1
r s−

g (x) and viewing x = (x(1), . . . , x(n)) where x(i) ∈ {0, 1}r,
there are at least k i’s such that there is x′ such that x′(j) = x(j) for all j ̸= i and the pair x, x′

violates monotonicity of g. In that case, we see that the pair y = ϕ(x) = (ϕ(x(1)), . . . , ϕ(x(n)))
and y′ = ϕ(x′) = (ϕ(x′(1)), . . . , ϕ(x′(n))) only differ in their ith coordinate and violate
monotonicity of f , hence s−

f (ϕ(x)) ⩾ k. It follows that
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E
y∼µ⊗n

1

[√
s−

f (y)
]

= E
x∈{0,1}r×n

[√
s−

f (ϕ(x))
]
⩾

1√
r

E
x∈{0,1}r×n

[√
s−

g (x)
]

⩾
1√
r

Ω
(

ε(g)
log(rn/ε(g))

)
,

and the proof is concluded by Lemma 5. ◀

We note that Theorem 3 follows from Lemma 8 (or rather, a slight variant of it which is
suitable for slightly relaxed embeddings) by showing that ([m], U) can be r-locally embedded
for r = O(m6) (under the aforementioned slightly relaxed notion of embeddings).

2 Elementary Constructions of Embeddings

In this section we present several ideas for constructing local embeddings and prove Theorem 1.

2.1 Embedding p-biased Cubes
We begin by constructing some basic embeddings for p-biased distributions over {0, 1}, and
then combining them to prove Theorem 1. First, we show that the measure µp can be locally
embedded when p is a powers of 2.

▶ Lemma 9. Let p = 2−r, and consider the distribution µp over {0, 1} where µp(1) = p.
Then ({0, 1}, µp) can be r-locally embedded.

Proof. We define ϕ(x1, . . . , xr) = x1 ∧ . . . ∧ xr. As for Ψ, we take the distribution (Ω, P ) to
be uniform over {0, 1}r \ {⃗1}, and define Ψω(1) = (1, . . . , 1) and Ψω(0) = ω. ◀

Secondly, we show that if µp can be locally embedded, then so can µ1−p.

▶ Lemma 10. Let p ∈ (0, 1), and suppose ({0, 1}, µp) can be r-locally embedded. Then
({0, 1}, µ1−p) can be r-locally embedded.

Proof. Let (ϕ, {Ψω}ω∈Ω, P ) be an r-local embedding of µp. Define ϕ′(x) = 1 − ϕ(1 − x) and
Ψ′

ω(a) = 1⃗ − Ψω(1 − a). First, note that ϕ′ and Ψ′
ω are monotone. Second, sampling x ∼ U ,

ϕ′(x) is distributed according to µ1−p. Also,

ϕ′(Ψ′
ω(a)) = 1 − ϕ(1 − Ψ′

ω(a)) = 1 − ϕ(Ψω(1 − a)) = 1 − (1 − a) = a.

Finally, if a ∼ µ1−p, then 1 − a ∼ µp, hence Ψω(1 − a) ∼ U and so Ψ′
ω(a) ∼ U . ◀

Third, we show how µp1p2 can be locally embedded given local embeddings for µp1 and
µp2 .

▶ Lemma 11. Suppose that µp1 can be r1 locally embedded, and µp2 can be r2 locally embedded.
Then µp1p2 can be r1 + r2 locally embedded.

Proof. Let (ϕ1, {Ψ1,ω}ω∈Ω1 , P1) and (ϕ2, {Ψ2,ω}ω∈Ω2 , P2) be the local embeddings of µp1

and µp2 , respectively. We define ϕ : {0, 1}r1+r2 → {0, 1} by ϕ(x, y) = ϕ1(x) ∧ ϕ2(y).
Now let Ω′ = {0, 1}2 \ {(1, 1)}, and define P ′ to be the distribution obtained by taking

(a, b) ∼ µp1 × µp2 and conditioning on the event [(a, b) ̸= (1, 1)]. We take Ω = Ω1 × Ω2 × Ω′

and P = P1 × P2 × P ′. For w = (ω1, ω2, ω′) ∈ Ω where w′ = (a, b), we finally define Ψω as
follows:
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Ψ(ω1,ω2,ω′)(1) = (Ψ1,ω1(1), Ψ2,ω2(1)),

and

Ψ(ω1,ω2,ω′)(0) = (Ψ1,ω1(a), Ψ2,ω2(b)).

It is clear that ϕ and Ψ are monotone, that ϕ ◦ Ψω⃗ = identity, and that the distributions are
correct. ◀

Next, by an easy approximation argument we conclude that for all values of p there is
some p′ close to p such that µp′ can be locally embedded.

▶ Corollary 12. For all δ > 0 and p ∈ (0, 1), there exists a p′ ∈ (0, 1) such that |p − p′| ⩽ δ
n10

and that µp′ can be O(log2(n/δ))-locally embedded.

Proof. By Lemma 10, we may assume that p ⩽ 1/2. Set s = ⌈10 log(n/δ)⌉, and for a ∈ Zs,
define q(⃗a) =

s∏
i=1

(1 − 2−i)ai .

Below, we show that there exists a vector a ∈ Zs such that p′ = q(a) satisfies

p ⩽ p′ ⩽ p + δ

n10 , (2)

and where a1 ∈ {1, . . . , s} and ai ∈ {0, 1, 2, 3} for any i > 1. Note that this implies, by
Lemmas 9, 10, and 11, that p′ can be r-locally embedded for r ⩽ s + O(s2) = O(log2(n/δ)),
finishing the proof.

To find the required vector a, we begin by taking k to be the maximal number that
satisfies 1

2k ⩾ p. If k ⩾ s we set a1 = s, and note that we are done since the vector
a = (a1, 0, . . . , 0) satisfies (2) as required. Otherwise if k < s, we continue to set a1 = k, and
define a1 = (a1, 0, . . . , 0). We then go over i = 2, . . . , s, finding at each step the largest number
k that satisfies q(ai−1 + k · ei) ⩾ p, and then taking ai = k and ai = (a1, . . . , ai, 0, . . . , 0)
(here ei is the ith unit vector).

We set our final vector to be a = as. It follows immediately from the definition of as

that q(a) ⩾ p and that q(a) · (1 − 2−s) < p, which implies that q(a) ⩽ p · (1 − 2−s)−1 ⩽
p · (1 + 2 · 2−s) ⩽ p + 2−s ⩽ p + δ

n10 . We therefore have that a satisfies (2). It is also clear
from the definition that a1 ∈ {1, . . . , s}. To show that ai ∈ {0, 1, 2, 3} for all i > 1, we first
observe that it is clear from the definition of the ai’s that for all i, p ⩽ q(ai) ⩽ p · (1−2−i)−1.
It then follows for each i > 1 that

q(ai−1 + 4 · ei) ⩽ p · (1 − 2−(i−1))−1 · (1 − 2−i)4 < p,

as can be verified by a simple application of the binomial expansion to (1 − 2−i)4. The
definition of ai therefore dictates that ai < 4, as desired. ◀

Proof of Theorem 1

Notice that if |p′ − p| ⩽ ε
2n , a function f : {0, 1}n → {0, 1} which is ε far from monotone with

respect to µn
p is ε

2 far from monotone with respect to the measure µn
p′ . Hence it is enough to

apply a monotonicity testing algorithm to f with respect to µn
p′ . We thus use Corollary 12 to

find a p′ that is sufficiently close to p and that is r-locally embeddable for r = O(log2(n/ε)),
and then apply the tester from Lemma 6 with respect to the measure µn

p′ and the error ε/2.
To obtain Theorem 1, we independently repeat this tester 10

R(rn,ε/2) = Õ(
√

n/ε2) times.
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A directed isoperimetric inequality over the p-biased hypercube

By Corollary 12 and Lemma 8, we get an analog of Theorem 7 for the p-biased cube, stated
below.

▶ Theorem 13. For all p ∈ (0, 1), if f : ({0, 1}n, µ⊗n
p ) → {0, 1} is ε-far from monotone, then

E
x∼µ⊗n

p

[√
s−

f (x)
]
⩾ Ω

(
ε

log(n/ε)2

)
.

Proof. Let r ∈ N and p′ ∈ (0, 1) be from Corollary 12 for δ = ε3. Note that the distributions
µ⊗n

p and µ⊗n
p′ are δ/n9 close, hence f is at least ε/2 far from monotone over µ⊗n

p′ and

E
x∼µ⊗n

p

[√
s−

f (x)
]
⩾ E

x∼µ⊗n

p′

[√
s−

f (x)
]

−
√

n
δ

n9 ⩾
ε√

r log(nr/ε)
− δ

n8 ,

where the last inequality is by Lemma 8. The theorem follows as r = O(log2(n/ε)). ◀

2.2 Monotone Symmetric Embeddings
A function T : {0, 1}r → [m] is monotone and symmetric, if and only if for each i ∈ [m],
T −1(i) contains all elements x with hamming weights in some segment, and the segment that
corresponds to i is ’below’ that which corresponds to i + 1 for each i. Next, we show that
if a function T : {0, 1}r → [m] is monotone and symmetric, then the distribution T (U) is
r-locally embedded. Here by T (U) we mean the distribution over [m] resulting from choosing
x uniformly from {0, 1}r, and outputting T (x).

▶ Lemma 14. Suppose T : {0, 1}r → [m] is monotone and symmetric. Then the distribution
T (U) is r-locally embedded.

Proof. Denote ν = T (U). Defining ϕ : {0, 1}r → [m] by ϕ(x) = T (x), it is clear that ϕ

is monotone and that the distribution of ϕ(U) is the same as ν, and we next discuss the
construction of Ψω.

A monotone path in {0, 1}r is a sequence of vertices v0 = 0⃗, v1, . . . , vr = 1⃗ wherein
v0 < v1 < . . . < vr and any two consecutive vertices differ in exactly one coordinate. The
probability space (Ω, P ) indexes a uniform choice of a monotone path in {0, 1}r and additional
auxiliary randomness. One way to generate such path is by choosing a random permutation
π in Sr, considering the path going through 0⃗, e1, e1 +e2, . . . , e1 + . . .+ei, . . . , 1⃗, and applying
the permutation to re-label the indices {1, . . . , r}. We remark that taking a random path
ℓ = (v0, . . . , vr), the marginal distribution of vt is uniform in {0, 1}r among all vertices of
Hamming weight t.

To define Ψω, we look at ω which specifies a path ℓ = (v0, . . . , vr) and additional
randomness ω′. We use the additional randomness to generate, for each a ∈ [m], a Hamming
weight ta according to the distribution of |z| where we sample z ∼ T −1(a) uniformly. We
then define Ψω(a) = vta

.
Note that ϕ ◦ Ψω = identity, and that for a specific choice of ω, Ψω(0) ⩽ . . . ⩽ Ψω(m − 1)

since these are vertices from a monotone path. Finally, fixing a, the distribution of Ψω(a)
over the randomness of ω is vta

where ta = |z| and z ∼ T −1(a), so vta
is the ta vertex on

a random monotone path in {0, 1}r. In other words, Ψω(a) is a uniformly chosen vertex
from layer ta, where ta is distributed as above, hence it is uniform in T −1(a). Hence, the
distribution of Ψω(a) over ω ∼ P and a ∼ ν is uniform over {0, 1}r. ◀
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Lemma 14 can be used to show that distributions that are close to uniform over [3] can
be locally embedded. For example, one can choose two thresholds t1 < t2 and consider
the function Tt1,t2 : {0, 1}r → [3] defined as T (x) = 0 if |x| ⩽ t1, T (x) = 2 if |x| ⩾ t2, and
otherwise T (x) = 1. A straightforward argument shows that for any r, one can choose t1, t2
so that the distribution Tt1,t2(U) is O(1/

√
r) close to uniform over [3]. This implies, in

particular that as long as r ⩾ n
δ2 , the distributions Tt1,t2(U)⊗n and U⊗n over [3] are O(δ)-

close to each other,1 hence for δ < ε
1000 , if f : ([3]n, U⊗n) → {0, 1} is ε-far from monotone,

then f : ([3]n, Tt1,t2(U)⊗n) → {0, 1} is ε/2-far from monotone, and using Lemma 6 we get a
2-query monotonicity tester with rejection probability at least R(rn, ε/2). A closer inspection
shows that the resulting rejection probability is Ω(ε2/

√
rn) = Ω(ε3/n) hence worse than

known results.
Having said that, the above argument also highlights that if we can design an approximate

embedding T such that T (U) is ξ-close to uniform over [3] for ξ = o(1/
√

r), then we will
get a non-trivial monotonicity tester over [3]n. Using elementary arguments, one can show
that for any r, there is r′ = Θ(r) and thresholds t1, t2 such that Tt1,t2(U) is O(1/r)-close
to uniform, which allows one to take r = Θ(

√
n/δ2) and thus get a tester with rejection

probability Ω(ε3/n3/4), which already improves upon the state of the art result.
Using threshold as embedding strategy though has its limits. Indeed, it seems that using

thresholds we will never be able to get T (U) to be ξ-close to uniform over [3] for ξ = o(1/r3/2).
For each r′ ∈ [r, 100r] consider the threshold function T = Tt1,t2 : {0, 1}r′ → {0, 1, 2} that
minimizes the distance between T (U) and U3. Heuristically, one can think of this distance
as a random number in the interval [0, Θ(1)/

√
r], hence we would expect the minimum of

these to be of the order 1/r3/2. Thus, to get near optimal monotonicity testers we have to
venture beyond threshold functions. In the the next section we facilitate this by formulating
embeddings in the language of monotone perfect matchings (or almost perfect matchings),
and show that slight perturbations of thresholds can be used for embeddings.

2.3 Embeddings from Monotone Perfect Matchings
In this section, we present a combinatorial method of constructing embeddings using monotone
matchings on the hypercube. For simplicity, we tailor our presentation for uniform measures,
however one may consider analogs for other distributions.

We will think of the hypercube G = ({0, 1}r, E) as a directed graph, wherein (x, y) is
an edge if x < y. We may thus view any ϕ : {0, 1}r → [m] as defining a partitioning of the
vertices into sets A0, . . . , Am−1 where Ai = {x | ϕ(x) = i}.

▶ Definition 15. For δ > 0, we say a function ϕ : {0, 1}r → [m] admits a δ-almost perfect
matching if there are matchings E0, . . . , Em−2 in G, wherein Ei is a matching between Ai

and Ai+1, such that for each i, Ei covers all but δ fraction of the vertices of Ai and Ai+1.
If ϕ admits a δ-almost perfect matching for δ = 0, we simply say that ϕ admits a perfect

matching.

The following lemma asserts that a monotone function ϕ that admits a perfect matching
can be used toward constructing an embedding of ([m], U).

1 This can be observes by computing either the KL-divergence or the Hellinger distance between Tt1,t2 (U)
and U , which by sub-additivity implies a bound on that measure between Tt1,t2 (U)⊗n and U⊗n. One
may then conclude a bound on the statistical distance between Tt1,t2 (U)⊗n and U⊗n by the relation
between KL-divergence and statistical distance (via Pinsker’s inequality) or by an analogous result for
the Hellinger distance.
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▶ Lemma 16. Let m ∈ N and let ϕ : {0, 1}r → [m] be a monotone function. If ϕ admits a
perfect matching, then ([m], U) can be r-locally embedded.

Proof. Let E0, . . . , Em−2 be monotone matchings in G that cover all vertices for ϕ, and
consider the collection P of vertex disjoint paths of length m − 1 they form. I.e., starting
from a vertex x ∈ A0 we use the matching edge of x from E0 to go to a vertex A1, then use
the edge of E1 to go upwards and so on, until we reach Am−1. We construct an embedding
(ϕ, Ψ = (Ψω)ω∈Ω, Ω, P ), where the probability space Ω is P and the measure P is uniform
over Ω. We define Ψω(i) = ωi, where ωi is the vertex from Ai on the path ω.

The monotonicity of ϕ is clear by assumption and the monotonicity of Ψω follows because
ω is a monotone path. Finally, it is clear that ϕ ◦ Ψω = identity and that the distribution
of Ψω(i) when choosing i ∈ [m] uniformly and ω ∼ P is uniform over {0, 1}r, as P is a
collection of vertex disjoint paths that covers all of {0, 1}r. ◀

In light of Lemma 16, it makes sense it should be possible to locally embed ([m], U)
with good parameters. Indeed, for m = 4 we found an 9-local embedding of [4] using
computer search [1], which immediately gives near optimal monotonicity testers and directed
isoperimetric inequalities. For divisibility reasons though, to have a perfect matching m

must be a power of 2, however as we show in subsequent sections, this is the only limitation
that exists. To address the divisibility issues, we need to state an analog of approximate
embeddings and prove analogs of Lemmas 6, 8 and 16.

2.4 Monotonicity Testers and Isoperimetric Inequalities from Almost
Perfect Matchings

To circumvent the divisibility issues we consider a more general version of embeddings, which
is nevertheless sufficient for the purposes of monotonicity testing as well as for proving
isoperimetric inequalities:

▶ Definition 17. We say that a probability distribution ([m], µ1) can be r-locally embedded
in ({0, 1}r, µ2) if there are a map ϕ : {0, 1}r → [m], a collection of maps Ψ = {Ψω : [m] →
{0, 1}r}ω∈Ω and a probability distribution P over Ω such that:
1. Each one of ϕ and Ψω are monotone.
2. Sampling x ∼ µ2, the distribution of ϕ(x) is µ1.
3. Sampling y ∼ µ1 and ω ∼ P , the distribution of Ψω(y) is µ2.
4. For each ω ∈ Ω, ϕ ◦ Ψω is the identity on [m].
Definition 17 generalizes Definition 4 in the sense that now we allow the distribution over
the hypercube {0, 1}r to not be uniform. In all consequent applications of Definition 17 the
distribution µ2 will be very close to uniform, though. We now prove analogs of Lemmas 6, 8
and 16 for relaxed embeddings. We begin by showing that almost perfect matchings imply
local embeddings as per Definition 17:

▶ Lemma 18. Let m ∈ N and δ > 0, and let ϕ : {0, 1}r → [m] be a monotone function.
If ϕ admits a δ-almost perfect matching, then there are distributions µ1 over [m] and µ2
over {0, 1}r, such that µ1 is mδ-close to uniform over [m], µ2 is mδ-close to uniform2 over
{0, 1}r and ([m], µ1) can be r-locally embedded in ({0, 1}r, µ2).

2 In fact, µ1 is the uniform distribution over a subset of {0, 1}r of fractional size at least 1 − 2mδ.
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Proof. We repeat the same construction in Lemma 16, except that now the collection P
may include paths of length less than m − 1. We take P ′ ⊆ P to be the collection of paths of
length m − 1. We argue that P ′ covers at least 1 − mδ fraction of vertices of G. To see that,
note that each path in P whose length is shorter than m − 1 can be uniquely associated
with some i = 0, . . . , m − 2 and a vertex x either from Ai or Ai+1 that is not matched in Ei.
Thus, the number of paths in P shorter than m − 1 is at most the total number of (i, x) such
that x ∈ Ai is unmatched in Ei plus the number of (i, x) such that x ∈ Ai+1 is unmatched
in Ei, which is at most 2δ fraction of {0, 1}r. Since each such path contains at most m − 1
vertices, it follows that P ′ covers all but 1 − 2(m − 1)δ fraction of {0, 1}r.

With this in mind, we define the distribution µ2 over {0, 1}r by picking ℓ ∈ P ′ uniformly,
j ∈ [m] uniformly and outputting the vertex at the jth spot of the path ℓ, i.e. ℓj . The
distribution µ1 over [m] is defined by sampling x ∼ µ2 and outputting ϕ(x). We also define
(Ω, P ) by taking Ω = P ′ and P to be the uniform distribution over Ω, and take as before
Ψ = (Ψω)ω∈Ω defined as Ψ(j) = ωj .

By definition, the distribution over Ψω(j) where j ∼ µ1 and ω ∼ P ′ is µ1, and the
distribution of ϕ(x) where x ∼ µ2 is µ1. The monotonicity of ϕ, Ψω is clear as before, as well
as the fact that ϕ ◦ Ψω = identity. ◀

We now turn to the analog of Lemmas 6, 8.

▶ Lemma 19. There is an absolute constant c > 0 such that the following holds. Let
r, m, n ∈ N, ε, δ > 0 and suppose that 0 < δ < cε

mr2n2 . If there is a monotone function
ϕ : {0, 1}r → [m] that admits a δ-almost perfect matching, then:

1. there is a 2-query monotonicity testing algorithm for functions over ([m]n, U⊗n) that
always accepts monotone functions, and rejects functions that are ε-far from monotone
with probability at least R(rn, ε/4) (recall (1) for the definition of R).

2. If f : [m]n → {0, 1} is ε-far from monotone with respect to U⊗n, then

E
x∈[m]n

[√
s−

f (x)
]
⩾ Ω

(
ε√

r log(rn/ε)

)
.

Proof. Let µ1 and µ2 be the distributions from Lemma 18 from ϕ, and let (ϕ, (Ψ)ω∈Ω, P )
be an r-local embedding of ([m], µ1) in ({0, 1}r, µ2). Given f : ([m]n, U⊗n) → {0, 1}, define
g : {0, 1}r·n → {0, 1} by

g(x(1), . . . , x(n)) = f(ϕ(x(1)), . . . , ϕ(x(n))).

To prove the first item, run the monotonicity tester of the hypercube on g, and accept/re-
ject accordingly. Note that a single query to g can be answered by making a single query
to f , and that if f is monotone then g is monotone, hence the tester always accepts in this
case. If ε(f ; U⊗n) ⩾ ε, then ε(f ; µ⊗n

1 ) ⩾ ε(f) − ∆(µ⊗n
1 , U⊗n) ⩾ ε − 2mnδ > ε/2. By the

same argument as in Lemma 5, it follows that g : ({0, 1}rn, µ⊗n
2 ) → {0, 1} is ε/2-far from

monotone, and so ε(g; Urn) ⩾ ε(g; µ⊗n
2 ) − ∆(Urn, µ⊗n

2 ) ⩾ ε/2 − 2mrnδ ⩾ ε/4, hence the
tester rejects with probability at least R(rn, ε/4).



M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:11

To prove the second item, we note that

E
x∈[m]n

[√
s−

f (x)
]
⩾ E

x∼µ⊗n
1

[√
s−

f (x)
]

−
√

n∆(µ⊗n
1 , U⊗n)

⩾ E
y∼µ⊗n

2

√s−
g (y)
r

−
√

n∆(µ⊗n
1 , U⊗n)

= 1√
r

E
y∼µ⊗n

2

[√
s−

g (y)
]

−
√

n∆(µ⊗n
1 , U⊗n)

⩾
1√
r

E
y∈{0,1}rn

[√
s−

g (y)
]

−
√

rn∆(µ⊗n
2 , U⊗rn) −

√
n∆(µ⊗n

1 , U⊗n)

⩾
c√
r

ε

4 log(rn) −
√

rn∆(µ⊗n
2 , U⊗rn) −

√
n∆(µ⊗n

1 , U⊗n),

where c > 0 is an absolute constant; in the last transition, we used Theorem 7. Bounding
∆(µ⊗n

2 , U⊗rn) ⩽ 2rmnδ and ∆(µ⊗n
1 , U⊗n) ⩽ 2mnδ and using the upper bound on δ shows

that the second and third terms are negligible compared to the first, hence we get that
Ex∈[m]n

[√
s−

f (x)
]
⩾ cε

8
√

r log(rn) as required. ◀

With these lemmas in hand, to prove Theorems 2, 3 it now suffices to construct good
enough almost perfect matchings for some monotone function ϕ : {0, 1}r → [m]. The following
result asserts that such almost perfect monotone matchings exists:

▶ Theorem 20. There is an absolute constant C > 0 such that for all m ∈ N, for any
r ⩾ C · m6 there is a monotone function ϕ : {0, 1}r → [m] that admits a δ-almost perfect
matching for δ ⩽ m2−r.

The proof of Theorem 20 is deferred to Section 3. Before embarking on this proof, we quickly
show how it implies several results stated in the introduction.

▶ Lemma 21. Theorem 20 implies Theorems 2, 3.

Proof. Take r = Cm6 log(mn/ε) for sufficiently large absolute constant C > 0. By The-
orem 20 we get that there is ϕ : {0, 1}r → [m] that admits a δ-almost perfect matching for
δ ⩽ m2−r, and the result is concluded by appealing to Lemma 19. ◀

3 Constructing Efficient Monotone Matchings on the Hypercube

3.1 Theorem 20: Proof Overview
We start from a threshold embedding as in Section 2.2, that is T = Tt1,...,tm−1 : {0, 1}r → [m]
defined as T (x) = i if ti ⩽ |x| < ti+1. Using it, we can make sure that the partition it defines,
Ai = {x | T (x) = i} is δ-almost perfect matching for δ = O(1/

√
r). The reason for this δ is

that Ai’s may have sizes which differ by 2rδ, as this is the number of points in each slice.
Therefore, to improve upon this construction a natural idea is shift elements around by
adding to some Ai’s elements either from the bottom level of Ai+1 or from top level of Ai−1,
so that eventually the sizes of all Ai’s are equal up to 1. We do not know though how to
carry out this adjustment so that the embedding construction from Section 2.2 still works.
Instead, we vary the sets Ai in a randomized way, and show that with high probability there
is an almost perfect monotone matching between each Ai and Ai+1 for all i’s.
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In more details, consider a random ordering π of {0, 1}n which starts with some ordering
of {0, 1}n according to Hamming weight (that is, the vertices of Hamming weight i appear
in a chunk before the vertices of Hamming weight i + 1, for all i), and within each Hamming
weight chunk applies a random ordering. We think of π as π : {0, 1}n → [2n], wherein π−1(i)
is the ith point in the order. We then define, for each i = 1, . . . , m, the set Ai as the chunk
of
⌊ 2n

m

⌋
next elements in π, namely

Pi = π−1
({⌊

2n

m

⌋
(i − 1) + j

∣∣∣∣ j = 1, . . . ,

⌊
2n

m

⌋})
,

and show that, with high probability, there is a monotone matching between each Pi and
Pi+1.

To show that, we first develop a bit of machinery. First, we generalize the notion of
perfect matching to that of fractional perfect matching (see Definition 26): a fractional
perfect matching can be defined between two sets of equal size, in which case it is promised
that it can be replaced by a true matching. But it can also be defined over two sets that
are each endowed with a arbitrary measure, as long as the total measure of each set is the
same. Another important property is that the existence of a fractional perfect matching is
transitive, namely if there is a perfect matching between µ and ν, and also between ν and τ

(where µ, ν and τ are sets endowed with measures), then there exists a perfect matching
between µ and τ .

Then, we view Pi as a collection of t slices, s1(i), . . . , st(i) and two random subsets
S0(i) and St+1(i) of the slices s0(i) and st+1(i). We show that there is a perfect fractional
matching between the vertices of

{
x | x ∈ S0(i) or x has Hamming weight s1(i), . . . , st/2(i)

}
,

and vertices of Hamming weight st(i) (when weighted appropriately). In words, this
says that we can find a fractional matching between a union of layers with a random
subset of another subsequent layer, and a layer that is a bit above them. Using the
same arguments, we prove that there is a perfect fractional matching between the ver-
tices of

{
x | x ∈ St+1(i) or x has Hamming weight st/2+1(i), . . . , st(i)

}
and Hamming weight

st/4(i + 1) vertices. Thus, in effect we are reduced to matching complete slices again; indeed,
to show the matching between Pi and Pi+1 we break them into “lower half” and “upper half”
and use the above statements to find matchings of these with slices a bit above them and a
bit below them. Using transitivity now and the fact there are perfect fractional matchings
between st/2(i) and s0(i + 1) (which exists as we make sure that st/2(i) < s0(i + 1)), and
st/4(i + 1) and st/2(i + 1) (which again exists as we make sure that st/4(i + 1) < st/2(i + 1)),
one can then stitch these matchings to get a perfect fractional matching between Pi and
Pi+1, and thus conclude the existence of perfect matching.

The proof of statements such that “there is a perfect fractional matching between S0(i)
and the slices s1(i), . . . , st/2(i) and st/2(i) (when weighted appropriately)” consists the bulk
of the work, and to do that we show that with high probability Hall’s condition holds. To do
that, we use the notion of upper shadows (which, roughly speaking, counts the number of
neighbours a set of vertices S has in the directed hypercube graph) as well as the Kruskal-
Katona theorem which gives us a lower bound on it. We show that only sets of vertices T

which have very smaller upper shadow can violate Hall’s condition, and for them we show
by a careful application of Chernoff’s bound that, with high probaiblity, Hall’s condition
still holds. The main difficulty in the last step is that the number of such sets T is quite
large, however we show that these sets admit an efficient “ε-net” type approximations. This
reduces the number of sets T we need to union bound over enough so that Chernoff’s bound
works.



M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:13

3.2 Shadows, Kruskal-Katona and Approximating Collections with Small
Shadow

3.2.1 The Kruskal-Katona Theorem
Throughout this section, we consider slices of the Boolean hypercube,(

[n]
k

)
= {x ∈ {0, 1}n | |x| = k} ,

and denote by µk the uniform measure on
([n]

k

)
. Our proof uses the Kruskal-Katona

Theorem [14, 16, 6], which we present next. We will use a more convenient form of it as
stated in [18, Section 1.2].

▶ Definition 22. For a collection A ⊆
([n]

k

)
, define the upper shadow ∂uA and lower shadow

∂dA of A as

∂uA =
{

y ∈
(

[n]
k + 1

) ∣∣∣∣ ∃x ∈ A, x < y

}
, ∂dA =

{
y ∈

(
[n]

k − 1

) ∣∣∣∣ ∃x ∈ A, y < x

}
.

The Kruskal-Katona Theorem states:

▶ Lemma 23. For all A ⊆
([n]

k

)
we have that

µk+1(∂uA) ⩾ µk(A)1− 1
n , µk−1(∂dA) ⩾ µk(A)1− 1

n .

In words, Lemma 23 asserts that if A is a small sub-set of a slice, then the upper shadow
(as well as the lower shadow) have considerably larger densities. Typically, we will apply
the upper shadow/ lower shadow operators more than once; given A ⊆

([n]
k

)
, we will look at

µk+t(∂u . . . ∂uA) where we applied the upper shadow operator t-times. To simplify notations,
we denote this by µk+t(∂t·uA),

3.2.2 Approximating a Collection with a Small Shadow
In general, the conclusion of Lemma 23 is tight, as can be evidenced by collections of the
type

A =
{

x ∈
(

[n]
k

) ∣∣∣∣x1 = . . . = xℓ = 1
}

.

Intuitively, the reason that A above is tight for Kruskal-Katona is that for any element in
y ∈

( [n]
k+1
)
, we either have that almost all of the x < y of Hamming weight k are in A – in

which case y ∈ ∂uA, or else none of these x’s are in A. Hence, many of the x’s “vote” for
the same set of y’s to be included in the upper shadow, leading to only a moderate increase
in density. We show that in general, collections A with small shadow exhibit such behaviour,
and use it to show that this collection of families admits a small ε-net:

▶ Lemma 24. Let s, t, n ∈ N such that 0 ⩽ t ⩽ n − s, and let 0 < ε ⩽ 1
100 . If A ⊆

([n]
s

)
satisfies µs+t(∂t·uA) ⩽ (1 + ε)µs(A), then there is a collection M ⊆ A and BM ⊆

([n]
s

)
,

B′
M ⊆

( [n]
s+t

)
(defined only by M) such that

1. |M| ⩽ 100 ln(1/ε)
(s+t

t ) · |A|.
2. B′

M = ∂t·uM and µs+t(B′
M∆∂t·uA) ⩽ 6ε · µs+t(∂t·uA).

3. BM =
{

x ∈
([n]

s

) ∣∣∣Pry>x,|y|=s+t [y ∈ B′
M] ⩾ 1

2

}
and µs(BM∆A) ⩽ 18εµs(A).
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Proof. We show that taking M ⊆ A randomly of size M = 100 |A| ln(1/ε)
(s+t

t ) , the collections
BM and B′

M as defined in the statement work with positive probability.
Consider the bi-partite graph G = (V ∪ U, E) where the sides are V = A and U = ∂t·uA,

and (x, y) ∈ E is an edge if x ∈ A, y ∈ ∂t·uA and x < y. Then G is left-regular with degree
hL =

(
n−s

t

)
, and so

|E| = |V | ·
(

n − s

t

)
= µs(A)

(
n − s

t

)(
n

s

)
= µs(A) n!

s! · t! · (n − s − t)! .

As for the right side, the degree of each vertex is at most hR =
(

s+t
t

)
and the average degree

of a vertex is

|E|
|U |

=
µs(A) n!

s!·t!·(n−s−t)!

|U |
=

µs(A)
(

n
s+t

)
hR

|U |
= h

µs(A)
µs+t(A) ⩾

hR

1 + ε
.

Thus, choosing y ∈ U uniformly, the expected value of hR − d(y) is at most εhR, and by
Markov’s inequality it follows that hR − d(y) ⩽ hR/2 except with probability 2ε. Thus,
denoting by δ the fraction of y ∈ U such that d(y) < hR/2, we get that δ ⩽ 2ε. Thus,

E
M

[
µs+t(B′

M∆∂t·uA)
]
⩽ δµs+t(∂t·uA)+(1−δ)µs+t(∂t·uA)

(
1 − hR/2

|V |

)M

⩽ 3ε·µs+t(∂t·uA),

where in the last inequality we used the fact that
(

1 − hR/2
|V |

)M

⩽ e− MhR
2|V | ⩽ e−50 ln(1/ε) ⩽ ε.

The third item follows similarly, and we first upper bound EM [µs(A \ BM)]. For each
x ∈ A \ BM we have that x has at most hL/2 of its neighbours in B′

M, hence at least hL/2
of its neighbours in U \ B′

M. It follows that

E
M

[µs(A \ BM)] ⩽ 1(
n
s

) E
M

[
|U \ B′

M| hR

hL/2

]
=

2hR

(
n

s+t

)
hL

(
n
s

) E
M

[
µs+t(B′

M∆∂t·uA)
]

⩽ 6ε · µs+t(∂t·uA),

which is at most 7εµs(A). To upper bound EM [µs(BM \ A)], we note that any x ∈ BM \ A
has at least hL/2 of the y of Hamming weight s + t for which x < y in B′

M, and in particular
in U . The total number of pairs (x, y) such that x < y and x ̸∈ A, y ∈ U is at most
hR |U | − |E| (as these are all non-edges in G), so we get that

E
M

[µs(BM \ A)] ⩽ 1(
n
s

) hR |U | − |E|
hL/2 ⩽

1(
n
s

) 2hR |U | ε

hL(1 + ε) ⩽ 2ε
µs+t(U)

1 + ε
⩽ 2εµs(A).

In conclusion, we get that

E
M

[µs(BM∆A)] ⩽ 9εµs(A), E
M

[
µs+t(B′

M∆∂t·uA)
]
⩽ 3εµs+t(∂t·uA),

so by Markov’s inequality there is a choice for M satisfying the conclusion of the claim. ◀

For future reference, we state a version of Lemma 24 for the operator ∂t·d:

▶ Lemma 25. Let s, t, n ∈ N such that 0 ⩽ t ⩽ n − s, and let 0 < ε ⩽ 1
100 . If A ⊆

([n]
s

)
satisfies µs−t(∂t·dA) ⩽ (1 + ε)µs(A), then there is a collection M ⊆ A and B′

M ⊆
( [n]

s−t

)
,

BM ⊆
([n]

s

)
such that

1. |M| ⩽ 100 ln(1/ε)
( s

s−t)
· |A|.

2. B′
M = ∂t·dM and µs−t(B′

M∆∂t·dA) ⩽ 6ε · µs−t(∂t·dA).
3. BM =

{
x ∈

([n]
s

) ∣∣∣Pry<x,|y|=s−t [y ∈ B′
M] ⩾ 1

2

}
and µs(BM∆A) ⩽ 18εµs(A).

Proof. The proof is essentially the same as the proof of Lemma 24 and we omit the details. ◀
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3.3 Fractional Monotone Matchings
We now formally define the concept of a monotone fractional matching, which is central to
the proof of Theorem 20:

▶ Definition 26. Let wU : {0, 1}n → [0, ∞) and wV : {0, 1}n → [0, ∞) be weight functions
such that

∑
x∈{0,1}n

wU (x) =
∑

x∈{0,1}n

wV (x). We say there is a monotone fractional matching

from wU to wV , and denote wU ≲ wV if, letting U be the support of wU and V be the support
of wV , there is a weight function w : U × V → [0, ∞) such that w(u, v) > 0 only when u ⩽ v,
and for every x ∈ U y ∈ V it holds that∑

z∈V

w(x, z) = wU (x),
∑
z∈U

w(z, y) = wV (y).

In this section, we establish several basic properties of fractional monotone matchings.
The first of which is a fractional version of Hall’s Theorem for monotone matchings. For
completeness, we include the (straight-forward) deduction of it from the usual formulation of
Hall’s Theorem.

▶ Lemma 27. Suppose that wU and wV are as in Definition 26, let U and V their supports,
and suppose that for all S ⊆ U , defining N(S) = {v ∈ V | ∃u ∈ S, u ⩽ v} we have that∑

v∈N(S)

wV (v) ⩾
∑
u∈S

wU (u).

Then there is a monotone fractional matching between wU and wV .

Proof. By approximation, it suffices to show that statement for weight functions wV and wU

that assign rational values. Let M be a number such that all values of MwV and MwU are
integers, and define the bi-partite graph G whose sides are U ′ and V ′, where each u ∈ U has
MwU (u) copies in U ′ and v ∈ V has MwV (v) copies in V ′. We connect (u′, v′) by an edge if
they are copies of u ∈ U , v ∈ V respectively where u ⩽ v. Our assumption then implies that
G satisfies Hall’s condition, so we may find a perfect matching M ⊆ U ′ × V ′. Define

w(u, v) =
∑

u′ copy of u
v′ copy of v

1(u′,v′)∈M ,

and note that then w forms a fractional monotone matching showing wU ≲ wV . ◀

Secondly, we have the following basic properties of ≲:

▶ Lemma 28. Suppose that wU , wV , wR, wL : {0, 1}n → [0, ∞) are weight functions.
1. Transitivity: if wU ≲ wV and wV ≲ wR, then wU ≲ wR.
2. Linearity: if wU ≲ wR and wV ≲ wL, then for all p, q ⩾ 0, pwU + qwV ≲ pwR + qwL.

Proof. For the first item, let U, V, R be the supports of wU , wV and wR respectively, and let
w1 : U × V → [0, ∞) and w2 : V × R → [0, ∞) be the weight functions demonstrating that
wU ≲ wV and wV ≲ wR, respectively. Define w : U × R → [0, ∞) by

w(u, r) =
∑
v∈V

1
wV (v)w1(u, v)w2(v, r).
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First, if w(u, r) > 0 then there is v ∈ V such that w1(u, v), w2(v, r) > 0 and so u ⩽ v ⩽ r,
hence u ⩽ r. Secondly, note that for all u,∑

r∈R

w(u, r) =
∑
v∈V

1
wV (v)w1(u, v)

∑
r∈R

w2(v, r) =
∑
v∈V

1
wV (v)w1(u, v)wV (v) =

∑
v∈V

w1(u, v)

which is equal to wU (u). Similarly, for all r ∈ R we have
∑

u∈U

w(u, r) = wR(r). It follows

that w is a monotone matching between showing that wU ≲ wR.
For the second item, let U, R, V, L be the supports of wU , wR, wV and wL respectively

and let w1 : U × R → [0, ∞) and w2 : V × L → [0, ∞) be weight functions demonstrating
that wU ≲ wR and wV ≲ wL. Then w(x, y) = pw1(x, y) + qw2(x, y) is a weight function
showing that pwU + qwV ≲ pwR + qwL. ◀

Third, we show that if k ⩽ k′, then µk ≲ µk′ .

▶ Lemma 29. If k ⩽ k′, then µk ≲ µk′ .

Proof. Let P = (v1, . . . , vn) be a uniformly chosen monotone path in {0, 1}n starting at
(0, . . . , 0) and ending at (1, . . . , 1), and define w(x, y) to be the probability that vk = x and
vk′ = y. Then it is easily seen that w(x, y) > 0 only if x < y, and also for every x of Hamming
weight k,

∑
y

w(x, y) is equal to the probability a uniformly chosen vertex of Hamming weight

k is equal to x, hence is µk(x). Similarly,
∑
x

w(x, y) = µk′(y). ◀

The last statement is a standard connection between fractional matchings and perfect
matchings.

▶ Lemma 30. Suppose that µ, µ′ are distributions which are uniform over A, A′ ⊆ {0, 1}n

respectively, where |A| = |A′|. If µ ≲ µ′, then there is a monotone perfect matching between
A and A′.

Proof. Consider the bipartite graph G = (A ∪ A′, E) whose sides are A and A’ and the edge
set is E = { (a, a′) | a ∈ A, a′ ∈ A′, a ⩽ a′}. As µ ≲ µ′, we get that there is w : A × A′ →
[0, ∞) supported only on E satisfying the properties of a monotone fractional matching.
Define w′ = |A| w, and note that for all a ∈ A we have that

∑
a′∈A′

w′(a, a′) = 1 and also∑
a∈A

w′(a, a′) = 1 for all a′ ∈ A′. Thus, the fractional matching number of G is at least

∑
a∈A,a′∈A′

w′(a, a′) = |A| .

We argue that the smallest vertex cover in G has size |A|. Indeed, if W ⊆ A ∪ A′ is a vertex
cover then

|A| =
∑
e∈E

w′(e) ⩽
∑
z∈W

∑
e∋z

w′(e) =
∑
z∈W

1 = |W | .

It now follows from Kőnig’s theorem that G has a perfect matching, and we are done. ◀

3.4 Monotone Matchings on Random Subsets of the Slice
The next lemma is the heart of the proof that our construction admits a good monotone
almost perfect matching. For a collection S ⊆

([n]
k

)
, we denote µS(x) = µk(x)1x∈S .
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▶ Lemma 31. For all C > 0 there is n0 ∈ N such that the following holds. Let n, k, s, t ∈ N
and assume that n

2 − C
√

n log n ⩽ k ⩽ n
2 + C

√
n log n and 10n1/3 ⩽ t ⩽ C

√
n log n. Then

for every 0 ⩽ s ⩽
(

n
k

)
, setting ρ = s

(n
k) we have

Pr
S⊆([n]

k )
|S|=s

[(t + ρ)µk−t ≲ tµk + µS ] ⩾ 1 − 2−Ω(2n/2).

Proof. We will use Lemma 27. Denoting µ = (t + ρ)µk−t and ν = νS = tµk + µS , our goal
is to show that with high probability over the choice of S, for all T ⊆

( [n]
k−t

)
it holds that

ν(∂t·uT ) ⩾ µ(T ). Equivalently, we will upper bound the probability that there is T that
violates it, and we present two arguments depending on the fractional size of T .

The case that µk−t(T ) ⩽ 1/2. Let T be such that µk−t(T ) ⩽ 1/2, and suppose that
ν(∂t·uT ) < µ(T ). We denote by N the size of T . Then we have that

µk(∂t·uT ) ⩽ 1
t
ν(∂t·uT ) ⩽ 1

t
µ(T ) ⩽ t + 1

t
µk−t(T ), (3)

On the other hand, using Lemma 23 we can deduce a lower bound on the measure of the
upper shadow of T , namely that

µk(∂t·uT ) ⩾ µk−t(T )(1− 1
n )t

. (4)

First, this implies a lower bound on the measure of T , as we get that t+1
t µk−t(T ) ⩾

µk−t(T )(1− 1
n )t

, and standard manipulations now imply that µk−t(T ) ⩾ (1 − 1/(t + 1))n/t

and so µk−t(T ) ⩾ e−O(n/t2), which implies in particular that N ⩾ e−O(n/t2)( n
k−t

)
⩾ 20.8n.

Secondly, from (4) and the fact that µk−t(T ) ⩽ 1/2 we also get that

µk(∂t·uT ) ⩾ µk−t(T )(1/2)(1− 1
n )t−1 ⩾ µk−t(T )2t/n. (5)

Combining our assumption on T and (5) yields

0 ⩽ µ(T ) − ν(∂t·uT ) = (t + ρ)µk−t(T ) − tµk(∂t·uT ) − µk(∂t·uT ∩ S)

⩽ (t + ρ)µk−t(T ) − tµk−t(T )2t/n − µk(∂t·uT ∩ S)

⩽

(
ρ − t2

2n

)
µk−t(T ) − µk(∂t·uT ∩ S),

and in particular we get that

µk(∂t·uT ∩ S) ⩽
(

ρ − t2

2n

)
µk−t(T ) ⩽

(
ρ − t2

2n

)
µk(∂t·uT ). (6)

Noting that the expectation of the left hand side, over the choice of S, is ρµk(∂t·uT ), this
inequality suggests that the probability for this for a specific T is small. A naive application
of Chernoff’s bound is not good enough since we would need to union bound over too many
choices for T . To cut down on the number of events we union bound over, we observe that
as (3) holds we may move to a sparse approximator of T and thus handle much less sets.

More precisely, using Lemma 24 and the guarantee from (3) we get that there is M of
size at most αN for α = 100 log t

(k
t)

satisfying the conclusion of the lemma for BM and B′
M as

therein. It follows that

µk(B′
M ∩ S) ⩽ µk(∂t·uT ∩ S) + µk(∂t·uT ∆B′

M) ⩽
(

ρ − t2

2n
+ 6

t

)
µk(∂t·uT )

⩽

(
ρ − t2

2n
+ 7

t

)
µk(B′

M),
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where in the last inequality we used the fact that µk(∂t·uT ) ⩽
(
1 + 1

t

)
µk(B′

M) by the
conclusion of Lemma 24. By the condition on t, ρ − t2

2n + 7
t ⩽ ρ − t2

3n and hence we conclude
that

µk(B′
M ∩ S) ⩽

(
ρ − t2

3n

)
µk(B′

M).

We may assume that ρ ⩾ t2/3n, otherwise the last inequality is impossible. We also note
that from Lemma 24 we have µk(B′

M) ⩾ 1
2 µk(∂t·uT ) ⩾ 1

2 µk−t(T ) = N

2( n
k−t)

. From everything
claimed so far we conclude that

Pr
S

[
∃T with |T | = N such that ν(∂t·uT ) < µ(T )

]
⩽ Pr

S

[
∃ |M| ⩽ αN , µk(B′

M) ⩾ N

2
(

n
k−t

) , µk(B′
M ∩ S) ⩽

(
ρ − t2

3n

)
µk(B′

M)
]

⩽
∑

M⊆(n
k)

|M|⩽αN

µk(B′
M)⩾ N

2( n
k−t)

Pr
S

[
µk(B′

M ∩ S) ⩽
(

ρ − t2

3n

)
µk(B′

M)
]
. (7)

For each M such that |M| ⩽ αN and µk(B′
M) ⩾ N

2( n
k−t)

, let EM be the event that µk(B′
M ∩

S) ⩽
(

ρ − t2

3n

)
µk(B′

M); we upper bound the probability of each EM separately, and for
that we use Chernoff’s bound. There is a slight technical issue in applying Chernoff’s bound,
namely that S is selected to be of fixed size, and to circumvent it we consider S ′ ⊆

([n]
k

)
chosen randomly by including each set from

([n]
k

)
in it with probability ρ′ = ρ − t2/6n. Then

we get that

Pr [|S ′| > s] = Pr
[
|S ′| >

(
ρ′ + t2

6n

)(
n

k

)]
⩽ e

−Ω
(

t2
n4 ρ(n

k)
)
⩽ 0.5,

where we used Chernoff’s bound and ρ ⩾ t2/3n. Note that PrS [EM] ⩽ PrS′ [EM | |S ′| ⩽ s],
and combining with the above bound on the probability that |S ′| > s we get that

Pr
S

[EM] ⩽ 2Pr
S′

[EM] = 2Pr
S′

[
µk(B′

M ∩ S ′) ⩽
(

ρ − t2

3n

)
µk(B′

M)
]

= 2Pr
S′

[
µk(B′

M ∩ S ′) ⩽
(

ρ′ − t2

6n

)
µk(B′

M)
]

⩽ 2e
−Ω
(

t4
n2 ρ′µk(B′

M)(n
k)
)

⩽ 2e
−Ω

(
t4
n2 ρ′ N

2( n
k−t)

(n
k)
)

⩽ e
−Ω

(
t6
n3

N(n
k)

( n
k−t)

)
.

Thus, using (7) we get that the left hand side therein is upper bounded by

∑
M⊆(n

k)
|M|⩽αN

e
−Ω

(
t6
n3

N(n
k)

( n
k−t)

)
⩽ 2

nαN−Ω

(
t6
n3

N(n
k)

( n
k−t)

)
⩽ 2

N

(
nα−Ω

(
t6
n3

(n
k)

( n
k−t)

))
.
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Estimating, we get that (n
k)

( n
k−t)

⩾ 2−O(t) and α ⩽ 100 log n
(k/t)t ⩽ n−Ω(t), hence nα−Ω

(
t6

n3
(n

k)
( n

k−t)

)
⩽

−2−O(t) and plugging this above yields that the left hand side of (7) is upper bounded by
2−2−O(t)N . Thus, we conclude that

Pr
S

[
∃T with µk−t(T ) ⩽ 1/2 such that ν(∂t·uT ) < µ(T )

]
⩽

∑
N⩾20.8n

2−2−O(t)N ,

which is at most 2−2−O(t)20.8n

⩽ 2−2n/2 .

The case that µk−t(T ) > 1/2. Let T be such that µk−t(T ) > 1/2, and suppose that
ν(∂t·uT ) < µ(T ). The analysis is similar to before, except that we look at R = ∂t·uT instead
of T . Thus, we get that ν(R) > µ(T ), and we argue that ∂t·dR ⊆ T . Indeed, if x ∈ ∂t·dR,
then there is y ∈ R such that x < y, and as y ∈ R it follows that y /∈ ∂t·uT so for all x′ < y

of Hamming weight (k − t) – and in particular for x′ = x – we have that x′ ̸∈ T , so x ∈ T .
Thus, it follows that µ(∂t·dR) < ν(R) and now µk(R) = µk(∂t·uT ) = 1 − µk(∂t·uT ) ⩽

1 − µk−t(T ) ⩽ 1/2, and the rest of the argument is analogous to the previous argument. Let
N = |R|. First, we have

µk−t(∂t·dR) ⩽ 1
t
µ(∂t·dR) ⩽ 1

t
ν(R) ⩽ t + 1

t
µk(R). (8)

On the other hand, using Lemma 23 we have µk−t(∂t·dR) ⩾ µk(R)(1− 1
n )t

. As before,
this implies µk(R) ⩾ e−O(n/t2) and so N ⩾ e−O(n/t2)(n

k

)
⩾ 20.8n. Also, it implies

µk−t(∂t·dR) ⩾ µk(R)(1/2)(1− 1
n )t−1 ⩾ µk(R)2t/n. (9)

We now conclude from (9) that

0 < ν(R) − µ(∂t·dR) = tµk(R) + µk(R ∩ S) − (t + ρ)µk(∂t·dR)

⩽ µk(R ∩ S) − (t + ρ − t2−t/n)µk−t(∂t·dR)
⩽ µk(R ∩ S) − (ρ + t2/2n)µk−t(∂t·dR),

so analogously to (6) we get that

µk(R ∩ S) ⩾ (ρ + t2/2n)µk−t(∂t·dR) ⩾ (ρ + t2/2n)µk(R). (10)

As (8) holds, using Lemma 25, we get that there is M of size at most αN for α = 100 log t

(k
t)

satisfying the conclusion of the lemma for BM and B′
M as therein. It follows that

µk(BM ∩ S) ⩾ µk(R ∩ S) − µk(R∆BM) ⩾
(

ρ + t2

2n
− 18

t

)
µk(R)

⩾

(
ρ + t2

2n
− 36

t

)
µk(BM)

⩾

(
ρ + t2

3n

)
µk(BM),

where we used the fact that t ⩾ 10n1/3. We may assume ρ < 1 − t2

3n , otherwise this is
impossible. We denote ρ′ = ρ + t2

6n , so that now we are guaranteed that t2/6n ⩽ ρ′ ⩽ 1 − t2

6n .
We also get that

µk(BM) ⩾ 1
2µk(R) ⩾ N

2
(

n
k

) .
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Denote by EM the event that µk(BM ∩ S) ⩾
(

ρ + t2

3n

)
µk(BM). We now apply the Chernoff

argument again; letting S ′ ⊆
(

n
k

)
be chosen randomly by including each set with probability

ρ′′ = ρ′ + t2

12n , we get by Chernoff’s bound that |S ′| ⩾ s except with probability at most 1/2
and so

Pr
S

[EM] ⩽ 2Pr
S′

[EM] ⩽ 2e
−Ω
(

t4
n2 ρ′µk(BM)(n

k)
)
⩽ e

−Ω

(
t6
n3

(n
k)N

(n
k)

)
.

Thus, by the union bound

Pr
S

[
∃R of size N such that µ(∂t·dR) < ν(R)

]
⩽

∑
|M|⩽αN

Pr
S

[EM] ⩽ 2nαN−Ω
(

t6
n3 N

)
,

and by a direct computation the last expression is at most 2−2−O(t)N . Summing over
N ⩾ 20.8n yields that

Pr
S

[
∃T such that µk−t(T ) ⩾ 1/2, µ(∂t·uT ) > ν(T )

]
⩽Pr

S

[
∃R such that µk(R) ⩽ 1/2, µ(∂t·dR) < ν(R)

]
⩽

∑
N⩾20.8n

2−2−O(t)N ,

which is at most 2−2n/2 provided that n0 is large enough. ◀

We will also need a version of Lemma 31 that works the other way around – namely
one that matches a slice and a random subset of it with a slice above it, and we state it
separately below.

▶ Lemma 32. For all C > 0 there is n0 ∈ N such that the following holds. Let n, k, s, t ∈ N
and assume that n

2 − C
√

n log n ⩽ k ⩽ n
2 + C

√
n log n and 10n1/3 ⩽ t ⩽ C

√
n log n. Then

for every 0 ⩽ s ⩽
(

n
k

)
, setting ρ = s

(n
k) we have

Pr
S⊆([n]

k )
|S|=s

[tµk + µS ≲ (t + ρ)µk+t] ⩾ 1 − 2−Ω(2n/2).

Proof. Let S ′ = { [n] \ A | A ∈ S} and note that it is a random subset of
(

n
n−k

)
of size s, so

applying Lemma 31 on n − k instead of k we get that with probability at least 1 − 2−Ω(2n/2)

there is a monotone fractional matching w(x, y) from (t + ρ)µn−k−t to tµn−k + µS′ . Define
w′(A, B) = w(B, A), and note that it is a monotone fractional matching from tµk + µS to
(t + ρ)µk+t ◀

3.5 Matching Union of Slices and a Random Subset to a Slice
Next, we use Lemma 31 to show that given a union of consecutive slices and a random subset
of the topmost one, one can find a monotone fractional matching with each of the following:
(1) a slice which is a bit above them, and (2) a slice which is a bit below them.

▶ Corollary 33. For all C > 0 there is n0 ∈ N, such that the following holds for all n ⩾ n0.
Let n, t, k, s be as in Lemma 31, let S be random subset of

([n]
k

)
of size s and let t ⩽ d ⩽ k/2

be a parameter such that
k−1∑

i=k−d

(
n
i

)
⩾ t
(

n
k

)
. Denote T = S ∪

⋃k−1
i=k−d

([n]
i

)
, and let νT be the

uniform distribution over T . Then

Pr
S

[µk−2d ≲ νT ≲ µk+d] ⩾ 1 − 2−Ω(2n/2).



M. Braverman, S. Khot, G. Kindler, and D. Minzer 25:21

Proof. We show that with probability 1 − 2−Ω(2n/2) we have that νT ≲ µk+d, and also that
with probability 1 − 2−Ω(2n/2) we have that µk−2d ≲ νT . The statement then follows from
the union bound.

For the first statement, let ρ = s/
(

n
k

)
. By Lemma 29 we have that µi ≲ µk for i ⩽ k, so

using Lemma 28 we get that

νT =
(

n
k

)
|T |

(
ρµS +

k−1∑
i=k−d

(
n
i

)(
n
k

)µi

)
≲

(
n
k

)
|T |

(
ρµS +

k−1∑
i=k−d

(
n
i

)(
n
k

)µk

)

=
(

n
k

)
|T |

(
ρµS +

|T | − ρ
(

n
k

)(
n
k

) µk

)
.

By Lemma 32 we have that tµk + ρµS ≲ (t + ρ)µk+t with probability 1 − 2−Ω(2n/2), in which
case we get that

νT ≲

(
n
k

)
|T |

(
(t + ρ)µk+t +

|T | − ρ
(

n
k

)
− t
(

n
k

)(
n
k

) µk

)
,

where we used the fact that |T | − ρ
(

n
k

)
=

k−1∑
i=k−d

(
n
i

)
⩾ t
(

n
k

)
. Using µk ≲ µk+t and Lemma 28

again and then simplifying, we conclude that νT ≲ µk+t.
For the second statement, we note that by Lemmas 29, 31 we have that (t + ρ)µk−t ≲

tµk + ρµS with probability at least 1 − 2−Ω(2n/2).

▷ Claim 34. If (t + ρ)µk−t ≲ tµk + ρµS , then (t + ρ)µk−t−d ≲ tµk−d + ρµS .

Proof. Let w(x, y) be a weight function showing that (t + ρ)µk−t ≲ tµk + ρµS . We consider
the probability distribution p(x, y) = 1

t+ρ w(x, y), and define a probability distribution p′

over (x′, y′) as follows:
1. Sample (x, y) ∼ p and independently a random permutation π on [n].
2. Let J ⊆ [n] be the set of first d coordinates according to π wherein xj = 1. We define

x′
i = xi on i ̸∈ J and x′

i = 0 on i ∈ J .
3. If y ∈ S, with probability 1/2 take y′ = y. Otherwise, let J ′ ⊆ [n] be the set of first d

coordinates according to π wherein yj = 1, and take y′ to be the vector where y′
i = yi on

i ̸∈ J ′ and y′
i = 0 on i ∈ J ′.

We argue that w′(x, y) = (t + ρ)p′(x, y) shows that the fractional monotone matching as
stated in the claim exists. For y ∈ S we have∑

x′

w′(x′, y) = 1
2
∑

x

w(x, y) = ρ = (tµk−d + ρµS)(y),

and for y′ ̸∈ S we have that
∑
x′

p′(x′, y′) is the probability that we pick y according to µk,

turn from 1 to 0 a random set of d coordinates and reach y′, which is the µk−d(y′). Thus,∑
x′

w′(x′, y′) = (tµk−d + ρµS)(y′).

For x′,
∑
y′

p′(x′, y′) is the probability we take x ∼ µk−t, turn from 1 to 0 a random set of d

coordinates and reach x′, which is equal to µk−t−d(x′), hence
∑
y′

w′(x′, y′) = (t+ρ)µk−t−d(x′).

◁
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Using Claim 34 we get by Lemmas 28, 29

µk−2d ≲

(
n
k

)
|T |

tµk−d + ρµS +

k−1∑
i=k−d

(
n
i

)
− t
(

n
k

)
(

n
k

) µk−2d



≲

(
n
k

)
|T |

tµk−d + ρµS +

k−1∑
i=k−d

(
n
i

)
− t
(

n
k

)
(

n
k

) µk−d



=
(

n
k

)
|T |

ρµS +

k−1∑
i=k−d

(
n
i

)
(

n
k

) µk−d



≲

(
n
k

)
|T |

ρµS +

k−1∑
i=k−d

(
n
i

)
µi(

n
k

)
 ,

which is equal to νT . ◀

3.6 Proof of Theorem 20
In this section, we prove Theorem 20 which by Lemma 21 implies Theorems 2, 3. Theorem 20
is a direct consequence of the following more precise statement:

▶ Theorem 35. There exists C > 0 such that for all m ∈ N and all n ⩾ C · m6, there are m

sets P1, . . . , Pm ⊆ {0, 1}n satisfying the following properties:
1. Pi ∩ Pj = ∅ for all i ̸= j.
2. |Pi| =

⌊ 2n

m

⌋
for all i.

3. For each i, x ∈ Pi and y ∈ Pi+1 we have that |x| ⩽ |y|. For all x ∈ P1 ∪ . . . ∪ Pm and
y ̸∈ P1 ∪ . . . ∪ Pm we have that |x| ⩽ |y|.

4. For each i there is a monotone matching from Pi to Pi+1.
In particular, the following function ϕ is monotone and admits an m2−n-almost perfect
matching: ϕ(x) = i − 1 if x ∈ Pi, and otherwise ϕ(x) = m − 1.

Proof. We present a randomized construction and show that it works with probability 1−o(1).
Consider a random π : {0, 1}n → [2n] such that π(x) ⩽ π(y) whenever |x| ⩽ |y|; in other
words, we first think of an ordering of {0, 1}n as x0, . . . , x2n−1, where we first enumerate
according to Hamming weight and within each layer we order randomly. Thus, we may take
π(xi) = i.

Define the P1, . . . , Pm as

Pi = π−1
({⌊

2n

m

⌋
(i − 1) + j

∣∣∣∣ j = 1, . . . ,

⌊
2n

m

⌋})
,

so that the first three items holds trivially. In the rest of the proof, we argue that the fourth
item holds with probability 1 − o(1). Denote by ℓi and ui the smallest and largest Hamming
weight of vectors from Pi, and by νi the uniform distribution over Pi. It suffices to prove
that with probability 1 − 2−Ω(2n/2) we have that νi ≲ νi+1 for all i Indeed, then we get by
Lemma 30 that there is a monotone matching from Pi and Pi+1, and the fourth item follows.
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We now show that for each i, νi ≲ νi+1 with probability 1 − 2−Ω(2n/2), and then the
claim follows by the union bound. We intend to use Corollary 33 to show that and therefore
we break each one of νi, νi+1 into lower and upper part. Let mi be the median Hamming
weight of νi, namely such that νi({x | |x| < mi}) < 0.5 but νi({x | |x| ⩽ mi}) ⩾ 0.5. Define
pi = νi({x | |x| < mi}), qi = νi({x | |x| > mi}), and let

ν−
i (x) = νi(x)1|x|<mi

+
(

1
2 − pi

)
µmi(x), ν+

i (x) = νi(x)1|x|>mi
+
(

1
2 − qi

)
µmi(x).

Let t = ⌈10n1/3 + 1⌉. Our goal is to show that with probability 1 − 2−Ω(2n/2), for all i we
have

1
2µℓi−2t ≲ ν−

i , ν−
i ≲

1
2µmi , ν+

i ≲
1
2µui+2t,

1
2µmi ≲ ν+

i , (11)

in which case we get, using Lemma 28, that

νi = ν−
i + ν+

i ≲
1
2µmi + 1

2µui+2t ≲
1
2µℓi+1−2t + 1

2µmi+1 ≲ ν−
i+1 + ν+

i+1 = νi+1.

Here, we also the facts that mi ⩽ ℓi+1 − 2t, ui + 2t ⩽ mi+1 and Lemma 29. This follows since
the probability mass of each layer in the hypercube is at most O(1/

√
n), hence each Pi must

intersect at least Ω(
√

n/m) distinct layers and so ui −mi ⩾ Ω(
√

n/m) ⩾ Ω(C1/6n1/3) > 100t,
and in the same way mi − ℓi > 100t and ℓi+1 − mi ⩾ 100t. We also note that all of the ui, mi

and ℓi’s are all in the range [ n
2 −

√
100n log n, n

2 +
√

100n log n] since the total probability
mass outside this range is at most e− 1

2 100 log n ⩽ n−10 < 1/m.
We finish by arguing that (11) holds for each i with probability 1 − 2−Ω(2n/2), and for

that we apply Corollary 33. Set d = 2t; we argue that for each ℓ1 ⩽ k ⩽ um it holds that
k−1∑

i=k−d

(
n

i

)
⩾ t

(
n

k

)
.

Indeed, this follows since the ratio between any two consecutive binomial coefficients
(

n
i

)
for i = k − d, . . . , k is 1 + O(

√
log n/n), so the ratio between any two (not necessarily

consecutive) binomial coefficients in that range is at most
(

1 + O(
√

log n/n)
)d

= 1 + o(1),

so
k−1∑

i=k−d

(
n
i

)
⩾ (1 + o(1))d

(
n
k

)
= (2 + o(1))t

(
n
k

)
> t
(

n
k

)
. Thus, the conditions of Corollary 33

hold, and applying it for various k’s we get that (11) holds with probability 1 − 2−Ω(2n/2).
Below, we explain in details how to deduce that 1

2 µℓi−2t ≲ ν−
i , and the other arguments are

similar.
We view νi(x)1|x|<mi

as a uniform weight function over the part of Pi of Hamming weight
less than mi, which is a union of slices and a random subset of the appropriate size of the slice
ℓi. Thus by Corollary 33 we get that piµℓi−2t ≲ νi(x)1|x|<mi

with probability 1 − 2−Ω(2n/2),
and as µℓi−2t ≲ µmi

we get from Lemma 28 that 1
2 µℓi−2t ≲ ν−

i . ◀
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Abstract
A regular graph G = (V, E) is an (ε, γ) small-set expander if for any set of vertices of fractional size
at most ε, at least γ of the edges that are adjacent to it go outside. In this paper, we give a unified
approach to several known complexity-theoretic results on small-set expanders. In particular, we
show:
1. Max-Cut: we show that if a regular graph G = (V, E) is an (ε, γ) small-set expander that

contains a cut of fractional size at least 1 − δ, then one can find in G a cut of fractional size at
least 1 − O

(
δ

εγ6

)
in polynomial time.

2. Improved spectral partitioning, Cheeger’s inequality and the parallel repetition theorem over
small-set expanders. The general form of each one of these results involves square-root loss that
comes from certain rounding procedure, and we show how this can be avoided over small set
expanders.

Our main idea is to project a high dimensional vector solution into a low-dimensional space while
roughly maintaining ℓ2

2 distances, and then perform a pre-processing step using low-dimensional
geometry and the properties of ℓ2

2 distances over it. This pre-processing leverages the small-set
expansion property of the graph to transform a vector valued solution to a different vector valued
solution with additional structural properties, which give rise to more efficient integral-solution
rounding schemes.
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1 Introduction

Expander graphs are important combinatorial objects with myriad of applications throughout
theoretical computer science (see [11]). One of the reasons for that are the numerous
equivalent definitions of expander graphs, that offer different views on this basic object.
Combinatorially, a d-regular graph G = (V, E) is said to be a combinatorial expander if the
edge expansion of any S ⊆ V of size at most n/2 is at least an absolute constant.

▶ Definition 1. Let G = (V ∪ U, E) be an undirected regular graph. The edge expansion
of S ⊆ V is defined as Φ(S) = |{ (v,u) |v∈S,u ̸∈S}|

|{ (v,u) |v∈S}| . In words, Φ(S) is the fraction of edges
adjacent to S going outside it.

Spectrally, a graph is said to be an expander if, letting AG be the normalized transition
matrix of G, the second eigenvalue of AG is at most 1 − Ω(1). A basic result in spectral
graph theory, called Cheeger’s inequality, asserts that qualitatively, spectral expanders and
combinatorial expanders are equivalent.
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The main object studied in this paper is small set expanders, which is a relaxation of
expander graphs defined as follows.

▶ Definition 2. A graph G = (V ∪ U, E) is said to be (ε, γ) small-set expanding if for any
S ⊆ V of size at most ε |V | we have that Φ(S) ⩾ γ.

Upon first sight, small-set expanders may seem like a slight variation over the combinatorial
definition of expander graphs. However this seemingly small change makes a big of difference,
and indeed small-set expanders are more difficult to study. For instance, there is no general
known equivalence between the spectrum of the adjacency matrix of a graph and the small-set
expansion of the graph. This is partly the reason that small-set expanders are typically much
harder to work with.

The main goal of this paper is to present the idea of “low-dimension embeddings” and
show how to use it to give alternative, more direct proofs to several results concerning
computational problems over small set expanders. In particular, we (1) recover the results
of [23, 16] about strong parallel repetition for Unique-Games over small set expanders, (2)
we show an improved Cheeger’s inequality as well as approximation algorithm for Max-Cut
over small set expanders, recovering results of [14, 15].

Conceptually, we show that for several cases (such as the computational problems men-
tioned above), it is beneficial to consider an intermediate “low-dimensional” projection step
which incurs less quantitative loss when compared to the usual integral rounding procedures.
In a low dimension, one has additional tools in their disposal to manipulate a vector valued
solution so that it is possible to perform a final integral rounding procedure with better
performance. We believe that such ideas may be helpful towards getting improved analysis
of other semi-definite programming relaxations of combinatorial optimization problems, and
hope that the current work encourages research along this direction.

1.1 Our Results
In this section, we formally state the main results of this paper.

1.1.1 Solving Max-Cut on Small Set Expanders
Our first result addresses the Max Cut problem. We show that on small set expanders, one
can get an algorithm achieving a better approximation ratio compared to the Geomans-
Williamson algorithm [9].

▶ Theorem 3. There exists an absolute constant C > 0, such that the following holds for all
ε, δ, γ > 0. There is an efficient algorithm for the following task:
Input: a regular, (ε, γ) small-set expander G = (V ∪ U, E) containing a cut of fractional size

1 − δ.
Output: a bipartition V = V1 ∪ V2 of the vertices that cuts at least 1 − C δ

εγ6 fraction of the
edges.

1.1.2 Spectral Partitioning
Our second result is an improved quantitative for Cheeger’s inequality when the underlying
graph is a small set expander. Recall that one side of Cheeger’s inequality states that if
G = (V, E) is a regular graph such that λ2(G) ⩽ 1 − δ, then one can find in polynomial
time a set S ⊆ V of size at most |V | /2 such that Φ(S) ⩽

√
2δ. The other side of Cheeger’s

inequality asserts that if λ2(G) = 1 − δ, then min|S|⩽|V |/2 Φ(S) ⩾ δ/2, hence the upper
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bound is tight up to the square root (and constant factors). We show that for small set
expanders, one can considerably improve on the upper bound, and get a result which is much
closer to the lower bound in Cheeger’s inequality:

▶ Theorem 4. There exists an absolute constant C > 0, such that if G is a (ε, γ) small
set expander and λ2(G) ⩾ 1 − δ, then G contains a set of size at most n/2 such that
Φ(S) ⩽ C · δ

γ3ε3 . Furthermore, such set S can be found efficiently.

1.1.3 Parallel Repetition
Our third result is about parallel repetition when applied on Unique-Games over small-set
expanders. We begin by formally defining the Unique-Games problem.

▶ Definition 5. A Unique-Games instance is composed of a graph G = (V, E), a finite
alphabet Σ and a collection of constraints {ϕe}e∈E, one for each edge. The constraint on an
edge e is a 1-to-1 relation ϕe ⊆ Σ × Σ, specifying for each edge the tuples of labels that are
considers satisfactory.

Given a Unique-Games instance Ψ = (G, Σ, Φ = {ϕe}e∈E), the value of Ψ, denoted by val(Ψ),
is the maximum fraction of constraints that may be satisfied by any assignment A : V → Σ. A
central conjecture in complexity theory, called the Unique-Games Conjecture [12], asserts for
any ε, δ > 0, there is k ∈ N such that given a Unique-Games instance Ψ with alphabet size k,
it is NP-hard to distinguish between the case that val(Ψ) ⩾ 1−ε and the case that val(Ψ) ⩽ δ.
A well known approach to the Unique-Games Conjecture proceeds by first establishing a weak
form of the conjecture, wherein δ is also close to 1, and then amplifying the gap via parallel
repetition. Here, given a Unique-Games instance Ψ and a parameter t ∈ N, the t-fold repeated
game corresponds to the tensor product of the game is Ψ⊗t = (G′ = (V t, E′), Σt, Φ′), where

E′ = { ((u1, . . . , ut), (v1, . . . , vt)) | (ui, vi) ∈ E ∀i ∈ [t]} ,

and Φ′ = {ϕe′}e′∈E′ where the constraint on edge e′ corresponds to the AND of the t

constraints on the t edges of the original graph G.
The parallel repetition theorem of Raz [20] and subsequent improvements [10, 4, 19] turn

out not to be good enough; such results are only able to show that for a unique game Ψ, if
val(Ψ) ⩽ 1 − ε, then the value of the t-fold repeated game is at most (1 − ε2)Ω(t). This square
root often times does not matter in application, however in the context of Unique-Games it is
crucial. Indeed, the weak forms of the Unique-Games conjecture that seem plausible may go
to soundness which is as small as δ = 1 − Θ(

√
ε) (though current technology does not even

close to this), thereby offering a quadratic difference at best. This makes the quadratic loss
in parallel repetition unaffordable for the purposes of proving the Unique-Games Conjecture.

This raises the question: on which classes of graphs can one prove an improved parallel
repetition theorem, surpassing the square barrier? Much effort had been devoted to study
this question, starting with the tightness of the parallel repetition theorem [20, 13, 1, 8] and
subsequently studying parallel repetition over special classes of graphs [3, 2, 21, 6, 23, 16, 17],
most popularly on expanders and small-set expanders. It is worth noting that while it is
known that the Unique-Games fails on such graph [2, 18], it is still possible that there is a
regime of parameters for which a weak form of the Unique Games Conjecture holds, and for
which a strong version of the parallel repetition theorem holds.

Using our technique, we are able to recover the result of [23, 16], and show that strong
parallel repetition holds for unique games over small set expanders:

ITCS 2023
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▶ Theorem 6. There exists an absolute constant c > 0, such that the following holds for all
0 < ε, γ, δ < 1. If Ψ = (G, Σ, Φ) is a Unique-Games instance such that G is (ε, γ) small-set
expanding, regular graph whose value is at most 1 − δ, then val(Ψ⊗t) ⩽ (1 − δ)cε3γ3t.

We remark that our proof applies to the more general class of projection games, but we state
it only for Unique-Games for the purpose of this introduction.

1.2 Our Technique
The proofs of Theorems 3 and 4 follow a similar theme. In both cases, there are well
known classical results that are very much similar to it except that they incur an additional
square-root loss: Cheeger’s inequality and the Goemans Williamnson algorithm [9]. The
source for this quadratic loss comes from a rounding phase in their proofs, which transforms a
vector-valued solution with an ℓ2

2 distances guarantee to an integral valued solution with an ℓ1
distances guarantee via rounding. Our proofs of Theorems 3 and 4 avoid this quadratic loss
by incorporating a preprocessing phase and a “soft” rounding phase, which incur constant
factors loses depending on the small set expansion parameters of the graphs, but ensures
that the subsequent integral rounding phase would be almost lossless.

Low-dimensional embeddings

Our arguments also utilize the idea of low-dimensional embeddings. Here, one is given a
collection of vectors (typically an SDP solution to some problem, such as Max-Cut or Unique-
Games) which a-priori may lie in a high dimensional Euclidean space. Common wisdom,
which manifests itself in standard rounding algorithms (such as Geomans-Williamson [9]),
utilize such vectors to generate 1-dimensional Gaussians vectors with certain correlations.
Our idea is to use higher (but constant) dimensional projections as a way to reduce the
dimension of the vector while roughly preserving the quality of the solution. This allows us
to apply ideas from low-dimensional geometry and construct a rounding scheme, which for
small-set expanders, outperforms the standard rounding schemes for these problems.

Similar, yet different ideas of low-dimensional projections have already made some
appearances in the literature, in the context of higher order Cheeger inequalities [15] and in
establishing improved bounds on the Grothendieck constant [5]. Below, we explain in more
detail our proof strategy for our results.

1.2.1 Proof of Theorem 3
Our proof of Theorem 3 makes use of the Goemans-Williamson semi-definite program
relaxation of Max-Cut [9]. Our algorithm proceeds by the following steps:
1. Solving the SDP program: We find unit vectors in Rm that achieve value at least

1 − δ, where m ⩽ n. In the next two steps we pre-process these vectors to get a (different)
collection of vectors that can be used in a rounding scheme with improved guarantees.

2. Dimension reduction: We show, via appropriate random projections, that we can
reduce m to 3 as long as we are willing to take a multiplicative cost in the error. More
precisely, we show we can find a solution consisting of unit vectors in R3 that achieve
value at least 1 − Cδ, for some absolute value C > 0. Denote them by (xv)v∈V .
We remark that it is also possible to reduce the dimension down to 2, and moreover that
it simplifies subsequent steps. However, doing so may reduce the value of the resulting
solution to 1 − Cδ log(1/δ), and we would like to avoid this logarithmic factor.
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3. Soft rounding: The main issue in the standard hyperplane rounding procedure in the
Goemans-Williamson algorithm is the case that the vectors xv are uniformly distributed
on the sphere, satisfying that ∥xu − xv∥2 = Θ(

√
δ) for a typical edge (u, v) in the graph.

In this step, we show that in the case of small set expanders, this cannot be the case. To
be more precise, we show that such case can be avoided if we are willing to pay constant
factors depending on the expansion parameters of the graph.
Towards this end, we show that given a low-dimension solution (xv)v∈V from the previous
step, one may produce a solution (yv)v∈V with similar value, such that the set of vertices
V may be divided into two sets, Z1, Z2, where vectors corresponding to vertices in Z2
occur in the union of at most 1/ε balls with small ℓ2 radius, and for any edge (u, v)
that has at least one of its endpoints in Z1 must either have 0 or long ℓ2 distance, i.e.
∥yv − yu∥2 = 0 or ∥yv − yu∥2 ⩾ ε. Thus, in a sense the “bad structure” that may occur
for the hyperplane rounding procedure in the Goemans-Williamson algorithm can only
occur inside Z2.

4. Rounding: Finally, we show an improved analysis of the standard hyperplane rounding
when performed on a collection of vectors with the structure from the previous step.
Intuitively, as Z2 is small, we can show via a union bound that with constant probability,
a random hyperplane doesn’t cut any of the small balls in which vectors from Z2 occur.
Then, we sample a hyperplane conditioned on this event happening and show that a
square loss does not occur for the rest of the edges (as the distance over these edges
already has a “Boolean-type” behaviour of either being 0, or far from 0).

1.2.2 Proof of Theorem 4
To prove Theorem 4, we view the second eigenvector of G, call it x as an embedding of the
graph into R. Recall that the square-root loss in the standard proof of Cheeger’s inequality
comes from an application of Cauchy-Schwarz, which bounds

∑
(u,v)∈E

|xv| |xu − xv| by the

square root of spectral gap of G. We wish to circumvent this loss, and for that we observe
that if the ratios of entries in x were either 1 or bounded away from 1, i.e. outside the
interval [1 − ε, 1 + ε], then one may indeed proceed as

∑
(u,v)∈E

|xv| |xu − xv| =
∑

(u,v)∈E

|xv|2 |xu/xv − 1| ⩽
∑

(u,v)∈E

|xv|2 |xu/xv − 1|2

ε

= 1
ε

∑
(u,v)∈E

|xu − xv|2.

Thus, our goal is to preprocess x so that we obtain this property, while at the same time
not increasing

∑
(u,v)∈E

|xu − xv|2 by too much. Indeed, we show that a soft rounding strategy

inspired by the above algorithms can be used in this case. We partition R “dyadically” into
intervals of the form [(1 + ε)i, (1 + ε)i+1). We show that inside each one of these intervals,
there is a way to round each entry of x to one of the endpoints without incurring too much
of a loss in

∑
(u,v)∈E

|xu − xv|2.

1.2.3 Proof of Theorem 6
The proof of Theorem 6 follows the information theoretic approach to parallel repetition [20,
19, 10, 4]. Our proof follows the outline of [4], except that in the rounding phase in that
result – which uses Pinkser’s inequality to transform a KL-divergence closeness between
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26:6 Rounding via Low Dimensional Embeddings

distributions to a statistical distance closeness guarantee between the same distributions – we
perform a preprocessing step. Indeed, we show that one may appeal to our improved version
of Cheeger’s inequality to change the distributions so that the KL-divergence between them
does not change too much and yet the square root loss in Pinsker’s inequality does not occur.
From there, the rest of our proof follows the outline of [4].

2 Solving Max-Cut on SSE’s: Proof of Theorem 3

In this section, we prove Theorem 3 following the outline given in the introduction.

2.1 The Goemans-Williamson Semi-definite Program Relaxation
Below is the standard semi-definite program relaxation of Max-Cut. Instead of think-
ing of the graph G, it will be more convenient for us to work with the graph G′ =
(V ′, E′), wherein each vertex has two copies, V ′ = V × {−1, 1}, and the edges are E′ =
{ ((v, b), (u, b′)) | (v, u) ∈ E, b ̸= b′}. We have the following claim.

▷ Claim 7. The following two assertions hold:
1. If G has a cut of fractional size 1 − δ, then G′ has a cut of fractional size at least 1 − δ.
2. If G is an (ε, γ) small set expander, then G′ is a (ε/2, γ/2) small set expander.

Proof. The first item is obvious. For the second item, suppose S′ ⊆ V ′ is a set of fractional
size at most ε/2, and let S = {v | ∃b ∈ {−1, 1}, (v, b) ∈ S′}. Then S has fractional size at
most ε, and we may write

Φ(S′) ⩾ Pr
(v,b)∈S′,(u,b′) neighbour

[(u, b′) ̸∈ S′] ⩾ Pr
(v,b)∈S′,(u,b′) neighbour

[u ̸∈ S].

Note that sampling (v, b) ∈ S′, the distribution of v may not be uniform over S, but the
probability of each v ∈ S is either 1/ |S′| or 2/ |S′|, hence

Pr
(v,b)∈S′,(u,b′) neighbour

[u ̸∈ S] ⩾ 1
2 Pr

v∈S,u neighbour
[u ̸∈ S] = 1

2Φ(S) ⩾ γ

2 . ◀

We thus write the program below, which is the standard semi-definite program relaxation
for Max-Cut for the graph G′:

min 1
|E′|

∑
((u,b),(v,b′))∈E′

∥xu,b − xv,b′∥2
2

subject to ∥xv,b∥2 = 1 ∀(v, b) ∈ V ′,

x(v,b) ∈ R2n ∀(v, b) ∈ V ′,

x(v,−b) = −x(v,b) ∀(v, b) ∈ V ′.

It is clear that if G′ contains a cut of fractional size at least 1 − δ, then there a solution for
the above program with value at most δ. Using the ellipsoid algorithm, we may efficiently
find a collection of vectors (xv)v∈V achieving value at most δ + ξ = δ′ where ξ decays with
the runtime of the algorithm; we take ξ = δ and fix such solution henceforth.

2.2 Reducing the Dimension of the Semi-Definite Program Solution
The goal of this section is to prove the following lemma.
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▶ Lemma 8. There exists an absolute constant C > 0 such that the following holds. There is
an efficient, randomized procedure that given a solution (xv)v∈V ′ to SDP program to Max-Cut
with value at most δ′ consisting of vectors from Rn, outputs a solution (zv)v∈V ′ consisting of
vectors from R3, whose value is at most Cδ′.

Proof. Let g1, g2, g3 ∼ N(0, In) be independent multi-dimensional Gaussians. For each v ∈ V ,
define

yv = (⟨xv, g1⟩, ⟨xv, g2⟩, ⟨xv, g3⟩) , zv = yv

∥yv∥2
.

Clearly, (zv)v∈V ′ is a solution to the SDP program, and we next analyze the object-
ive value that it gets. Fix u, v ∈ V ′, and let δu,v = ∥xu − xv∥2

2. We will show that,
Eg1,g2,g3

[
∥zv − zu∥2

2
]

= O(δu,v) from which the claim follows by linearity of expectation over
all the edges of the graph.

Denote z = yv

∥yu∥2
, then

E
g1,g2,g3

[
∥zv − zu∥2

2
]

⩽ 2 E
g1,g2,g3

[
∥zv − zu∥2

21∥yv∥2⩽∥yu∥2

]
⩽ 4 E

g1,g2,g3

[
∥zv − z∥2

21∥yv∥2⩽∥yu∥2

]
︸ ︷︷ ︸

(I)

+4 E
g1,g2,g3

[
∥zu − z∥2

21∥yv∥2⩽∥yu∥2

]
︸ ︷︷ ︸

(II)

,

and we upper bound each expectation separately, each by O(δu,v), thereby finishing the
proof.

▷ Claim 9. (II) ⩽ O(δu,v).

Proof. We write

E
g1,g2,g3

[
∥zu − z∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥21∥yu∥2<δu,v

]
+ E

g1,g2,g3

[
∥yu − yv∥2

2
∥yu∥2

2
1∥yv∥2⩽∥yu∥21∥yu∥2⩾δu,v

]
.

For the first expectation, as ∥yv∥2 ⩽ ∥yu∥2 we have ∥yu−yv∥2
2

∥yu∥2
2

⩽ 4, so the first expectation is
bounded by

4 E
g1,g2,g3

[
1∥yv∥2⩽∥yu∥21∥yu∥2<δu,v

]
⩽ 4 E

g1,g2,g3

[
1∥yu∥2<δu,v

]
⩽ 4 Pr

G∼N(0,1)
[|G| ⩽ δu,v],

which is O(δu,v). For the second expectation, we upper bound it by
∞∑

k=0
E

g1,g2,g3

[
∥yu − yv∥2

2
22kδ2

u,v

12kδu,v⩽∥yu∥2<2k+1δu,v

]
.

We bound the tail, that is the sum over k ⩾ log(1/δu,v), by
∞∑

k=⌈log(1/δu,v)⌉
E

g1,g2,g3

[
∥yu − yv∥2

212kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽ E

g1,g2,g3

[
∥yu − yv∥2

2
]

= O(∥xu − xv∥2
2)

= O(δu,v).
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26:8 Rounding via Low Dimensional Embeddings

As for the sum on k = 0, . . . , ⌈log(1/δu,v)⌉ − 1, take p ∈ N sufficiently large (p = 4 will
do), and let p′ be the Hölder conjugate of p. Then

E
g1,g2,g3

[
∥yu − yv∥2

2
22kδ2

u,v

12kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽

1
22kδ2

u,v

(
E

g1,g2,g3

[
∥yu − yv∥2p

2

])1/p(
E

g1,g2,g3

[
12kδu,v⩽∥yu∥2<2k+1δu,v

])1/p′

. (1)

First, we have

E
g1,g2,g3

[
∥yu − yv∥2p

2

]
= E

g1,g2,g3

[(
G2

1 + G2
2 + G2

3
)p
]
⩽ 3p−1 E

g1,g2,g3

[
G2p

1 + G2p
2 + G2p

3

]
= 3p E

g1,g2,g3

[
G2p

1

]
,

where G1 = ⟨g1, xu − xv⟩, G2 = ⟨g2, xu − xv⟩, G3 = ⟨g3, xu − xv⟩. As G1 is a Gaussian
random variable with mean 0 and variance δu,v, we know that

E
g1,g2,g3

[
G2p

1

]
= Op(δp

u,v).

Second,

E
g1,g2,g3

[
12kδu,v⩽∥yu∥2<2k+1δu,v

]
⩽ Pr

g1,g2,g3

[
|⟨g1, xu⟩| , |⟨g2, xu⟩| , |⟨g3, xu⟩| ⩽ 2k+1δu,v

]
,

and as g1, g2, g3 are independent, the last probability is at most 23(k+1)δ3
u,v.

Plugging everything into (1) we get that the sum on k = 0, . . . , ⌈log(1/δu,v)⌉ − 1 is at
most

⌈log(1/δu,v)⌉−1∑
k=0

1
22kδ2

u,v

Op(δu,v)
(

23(k+1)δ3
u,v

)1/p′

= δ3/p′−1Op(1)
⌈log(1/δu,v)⌉−1∑

k=0
2(3/p′−2)k.

For sufficiently large p, 3/p′ − 2 > 0, and we may bound the last sum by

O(2(3/p′−2)⌈log(1/δu,v)⌉) = δ2−3/p′

u,v ,

and plugging that in yields the bound Op(δu,v). ◁

▷ Claim 10. (I) ⩽ O(δu,v).

Proof. We write

E
g1,g2,g3

[
∥zv − z∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[
∥yv

(
1

∥yv∥2
− 1

∥yu∥2

)
∥2

21∥yv∥2⩽∥yu∥2

]
= E

g1,g2,g3

[(
1 − ∥yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]

= E
g1,g2,g3

[(
∥yu∥2 − ∥yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]

⩽ E
g1,g2,g3

[(
∥yu − yv∥2

∥yu∥2

)2
1∥yv∥2⩽∥yu∥2

]
= (I),

hence the claim follows from the prior claim. We used the fact that |∥a∥ − ∥b∥| ⩽ ∥a − b∥.
◁

◀
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2.3 The Soft Rounding: the Cubicular Rounding
In this section, we pick off where the last section ended with a solution vector collection
(zv)v∈V ′ consisting of vectors from R3 that has value δ′′ where δ′′ ⩽ O(δ′) = O(δ). Our goal
is to construct a new vector solution {z′′

v }v∈V ′ whose value is at most δ′′′ for δ′′′ = O(δ′′/γ)
that satisfies the following property. The set of vectors {z′′

v }v∈V ′ can be partitioned into two
collections, Z1 and Z2, such that |Z2| ⩽ 1/ε, and for any edge (u, v) such that z′′

u ≠ z′′
v and

z′′
u ∈ Z1 it holds that ∥z′′

u − z′′
v ∥2 ⩾ Ω(ε). In Section 2.4 we show how to use this property to

perform a more efficient analysis of the standard hyperplane rounding.

2.3.1 Partitioning the 3-dimensional sphere into cubes
Consider the 3 dimensional sphere S2 =

{
z ∈ R3

∣∣ ∥z∥2 = 1
}

. We will use a simple construc-
tion of triangulation of the sphere (geodesic polyhedron), that we describe next. Starting
with a standard cube in R2, denoted it by T6 (that has 6 faces and 8 vertices), we may
partition each face of it (which is a square) into 4 squares in the natural way (i.e. by adding
the lines that connect the midpoints of opposing sides). We then project the 4 new points
that were generated by each face into S2, and get a more refined regular polygon with square
faces, with 4 times as many faces; denote it by T24. We will perform this operation several
times to reach a sufficiently refined shape; we need the perimeter of each face to be small
compared to ε, say at most ε

K for sufficiently large absolute constant K. We note that at
each iteration, the perimeter of the faces shrinks by factor 2, hence we may pick a power
of 4, t ⩾ K′

ε2 for K ′ depending only on K, and have that each phase of Tt has perimeter at
most ε

K . We summarize this discussion with the following standard fact.

▶ Fact 11. For all K > 0 there is K ′ = K ′(K), such that for all ε > 0, taking t the smallest
number of the form 6 · 4m that is larger than K ′/ε2, there is a regular polygon Tt ⊆ R3 that
can be constructed in Oε(1) time such that:
1. Each face of Tt is a square.
2. Central symmetry: P is a face of Tt if and only if −P is a face of Tt.
3. Tt has t faces and 4

3 t vertices.
4. The perimeter of each face is at most ε/K.

2.3.2 Division of the sphere
Using the triangulation Tt from Fact 11, we may define a division of S2 by projecting each
face of Tt into the sphere. This way, we get a partition P1 ∪ . . . ∪ Pt of S2. We also note
that the perimeter of each of Pi is the same, and is at most order of the perimeter of a face
from Tt, i.e. at most O(ε/K).

For each i define the neighbourhood of Pi by:

P ↑
i =

{
u ∈ S2 ∣∣ ∃p ∈ Pi, ∥u − p∥2 ⩽ ε

}
.

For each subset of A ⊆ S2, we define the mass of A as mass(A) = |{v ∈ V | zv ∈ A}|.

▷ Claim 12.
t∑

i=1
mass(P ↑

i ) = O(n).

Proof. Consider the bipartite graph G̃ = ([t]× [t], Ẽ) wherein we connect i to j if P ↑
i ∩Pj ̸= ∅.

We note that the degree of each vertex in G̃ is O(1), and P ↑
i ⊆ ∪j:(i,j)∈ẼPj . Thus,

t∑
i=1

mass(P ↑
i ) ⩽

t∑
i=1

∑
j:(i,j)∈Ẽ

mass(Pj) =
t∑

j=1

deg(j)mass(Pj) = O

(
t∑

j=1

mass(Pj)

)
= O(n). ◀
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26:10 Rounding via Low Dimensional Embeddings

It follows that for all but at most 2/ε of the i’s we have that mass(Pi ↑) ⩽ εn/2. We refer to
such i’s as light parts of the partition. In the following section we show that one may change
a vector zv such that v is in Pi for a light i, to be a vector in the boundary of Pi, and only
incur a constant factor loss in the objective value, effectively reducing these vectors to be
2-dimensional.

2.3.3 Rounding to the Boundary
We now modify the solution (zu)u∈V to (z′

u)u∈V as follows. For u, consider the i such that
zu ∈ Pi. If Pi is heavy we set z′

u = zu, and otherwise we modify it as follows. Let pi be the
center of Pi, and consider the segment from pi to zu, and in particular its two intersection
points with the boundary of Pi. We let z′

u be the intersection point closer to zu among
these 2.

▶ Lemma 13. The collection of vectors z′
u defined about is a solution to the Max-Cut program,

and
1

|E′|
∑

(u,v)∈E′

∥z′
u − z′

v∥2
2 ⩽ δ′′′

for δ′′′ = O(δ′′/γ3).

Proof. First, it is clear that all of the zu’s are norm 1 vectors, and also that they respect
the conditions zu,−b = −zu,b as the part of a vector z and its negation have the same mass
(as if Pi is the part of z, then −Pi is the part of z).

Fix a light Pi and denote costi =
∑

u:zu∈P ↑
i

(u,v)∈E′

∥zu − zv∥2
2. We argue that costi grows multiplic-

atively by at most factor O(1/γ3) due to the change of the procedure on the vectors inside
Pi. This finishes the proof, as the only other effect of the procedure we need to make note of
is that for each edge e = (u, v) ∈ E′ such that u ∈ Pi, v ∈ Pj , ∥z′

u − z′
v∥2 = O(∥zu − zv∥2),

so each edge in costj increases by a constant factor at most once by the procedure on other
Pi’s.

We now argue that costi grows multiplicatively by at most factor O(1/γ3), and assume
towards contradiction this is not the case. For simplicity of notation, we drop the subscript
i as we will only be concerned with Pi from now on. Let B0 = {u | zu ∈ P}, and let
W > 0 be a large absolute constant to be determined. As a result of our soft rounding, the
contribution of edges whose endpoints are both outside B0 grows by at most factor O(1),
and the contribution of edges that have at least one of their endpoints in B0 grows additively
by at most 2d |B0| ε2. Hence, if cost ⩾ γ3ε2

50W 2 d |B0| we would have be done, so we assume
from now on that cost < γ3ε2

50W 2 d |B0|
Consider ℓ1 = γ

W ε and let B1 = {u | ∃p ∈ B0, ∥zu − p∥2 ⩽ ℓ1}. Also, define ℓ2 = 2ℓ1
and set B2 = {u | ∃p ∈ B0, ∥zu − p∥2 ⩽ ℓ2}. As B1 ⊆ P ↑, mass(B1) ⩽ εn so by small set
expansion at least γd |B1| of the edges touching B1 escape it. If |B2 \ B1| ⩽ γ

2 |B1|, we would
get that at least γ

2 d |B1| of the edges touching B1 go outside B2, hence

cost ⩾ γ

2 d |B1| (ℓ2 − ℓ1)2 = γℓ2
1

2 d |B1| >
γ3ε2

50W 2 d |B0|

and contradiction. Hence |B2| ⩾ (1 + γ/2) |B1|. Next, define ℓ3 = ℓ2 +
√

|B0|
|B2| ℓ1 as well

as B3 = {u | ∃p ∈ B0, ∥zu − p∥ ⩽ ℓ3}. Then given ℓ2 ⩽ ε, we have that mass(B2) ⩽ ε and
similar argument to before gives that |B3| ⩾ (1 + γ/2) |B2|. Indeed, otherwise we get that at
least γ

2 d |B2| of the edges touching B2 go outside B3, and then
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cost ⩾ γ

2 d |B2| (ℓ3 − ℓ2)2 = γℓ2
1

2 d |B0| ,

and contradiction. This way, we continue iteratively, and once ℓk and Bk have been defined
we take

ℓk+1 = ℓk +

√
|B0|
|Bk|

ℓ1, Bk+1 = {u | ∃p ∈ B0, ∥zu − p∥ ⩽ ℓk+1}

and provided that ℓk ⩽ ε we conclude that |Bk+1| ⩾ (1 + γ/2) |Bk|. Note that provided we
have gotten to the k + 1 step, we have

ℓk ⩽
∞∑

r=0
(1 + γ/2)−r/2ℓ1 ⩽ O(ℓ1/γ) = O(ε/W ) ⩽ ε

for sufficiently large absolute constant W , so we can ensure that the argument goes through
indefinitely. This is a contradiction, as at some point the size of Bk would exceed εn. ◀

2.3.4 Rounding to the Corners
Next, we modify the vector-valued solution (z′

u)u∈V to a different vector-valued solution
(z′′

u)u∈V wherein (roughly speaking) vectors belonging to vertices on light Pi’s can only be in
the corners of Tt.

Towards this end, consider the boundary of the partition P and a particular arc in it.
This arc has 2 neighbouring cells, say Pi and Pj . If Pi and Pj are light, we look at that arc,
mark its middle point pi,j . We then round the each vector z′

u on that arc to the closer of the
two endpoints of the arc to it (namely, according to the side of z′

u with respect to pi,j).

▶ Lemma 14. The collection of vectors z′′
u defined about is a solution to the Max-Cut program,

and

1
|E′|

∑
(u,v)∈E′

∥z′′
u − z′′

v ∥2
2 ⩽ δ′′′

for δ′′′′ = O(δ′′′/γ3).

Proof. Consider a single arc on which we perform the operation, denote it by L, and let

costL =
∑

(u,v)∈E:z′
u∈L

∥z′
u − z′

v∥2
2.

We argue that as a result of the above operation, costL increases by factor at most O(1/γ3).
This quickly finishes the proof since the only other effect of the operation we need to take
note of, is the effect of other arcs on costL. For that, it suffices to observe that for each edge
(u, v) ∈ E such that u ∈ L and v ∈ L′, the quantity ∥z′

u − z′
v∥2

2 increases by factor at most
O(1) due to the operation on L′.

Let L be the length of the arc L (noting it is of the order of ε), p be its midpoint and let
W > 0 be a large absolute constant. Let ℓ0 = γL

W , and consider

B0 = {u | z′
u ∈ L, ∥z′

u − p∥ ⩽ ℓ0} .
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As a result of our operation, costL changes as follows: the contribution of edges that have
both endpoints outside B0 grows by factor O(1) at most, whereas the contribution of
edges that have an endpoint inside B0 increases additively by at most L2d |B0|. Hence, if
costL ⩾ γ3L2

50W 2 d |B0| we are done, so assume otherwise.
Let ℓ1 = 2ℓ0, and note that m(B0) ⩽ m(L) ⩽ εn, so by small set expansion at least

γd |B0| of the edges touching B0 go outside it. At most d |B1 \ B0| of these edges go to B1,
hence if |B1 \ B0| ⩽ γ/2 |B0| we get that

costL ⩾
1
2γd |B0| (ℓ1 − ℓ0)2 >

γ3L2

50W 2 d |B0| ,

and contradiction. Thus, |B1 \ B0| > γ/2 |B0|, and so |B1| ⩾ (1 + γ/2) |B0|. Continuing this
way, iteratively define

ℓj+1 = ℓj +

√
|B0|
|Bj |

ℓ1, Bj+1 = {u | z′
u ∈ L, ∥z′

u − p∥ ⩽ ℓj+1} .

If ℓj+1 ⩽ L we can apply the small set expansion argument again to argue that |Bj+1| ⩾
(1 + γ/2) |Bj |.Thus, provided that ℓj ⩽ L we may continue with the argument indefinitely
and keep on increasing Bj , which is clearly impossible, giving us the desired contradiction.
We note that if W is large enough, then indeed we always have ℓj ⩽ L, as we may bound

ℓj ⩽
j∑

r=0

√
|B0|
|Br|

ℓ1 ⩽
j∑

r=0
(1 + γ/2)−rℓ1 = O(ℓ1/γ) = O(L/W ) < L

for large enough W . ◀

2.4 The Integral Rounding Procedure
We next describe the integral rounding procedure using the vector solution z′′

u from Lemma 14.
Let Heavy be the collection of all parts Pi that are not light, denote by Heavy′ be the collection
of all Pj ’s adjacent to a face in Heavy, and let H be the union of boundaries of faces in
Heavy ∪ Heavy′.

Consider choice of a hyperplane H ⊆ R3 uniformly at random.

▷ Claim 15. There exists K > 0, such that in the above set-up,

Pr
H

[∃L ∈ H such that H ∩ L ̸= ∅] ⩽ 1/2.

Proof. By Claim 12, the number of heavy Pi’s is O(1/ε), and as each one of them has O(1)
many arcs in its boundary, we deduce that

∣∣Heavy ∪ Heavy′∣∣ = O(1/ε). As each face has
O(1) arcs in the boundary, we conclude that |H| = O(1/ε). The length of each L ∈ H
is at most ε/K, so we get that the probability that H intersects a given arc is at most
O(ε/K). Thus, by the Union bound the probability that H intersects some arc in H is at
most O(1/K) ⩽ 1/2, provided that K is large enough. ◁

We now sample H conditioned on it not intersecting any face or arc from Heavy. We
claim that, for any edge (u, v) such that H intersects the line between z′′

u and z′′
v , it must be

the case that ∥z′′
u − z′′

v ∥2 ⩾ Ω(ε). There are a few cases to consider:
1. Either z′′

u or z′′
v is not a corner of P , say z′′

u . In this case, zu is in a face Pj that is either
heavy or adjacent to a heavy Pi. In either case, to cross the line between z′′

u and z′′
v the

hyperplane H must cross the boundary of Pj , but this does occur due to the conditioning
on H.
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2. Else, z′′
u and z′′

v are two corners of P , so either they are the same corner, or at least Ω(ε)
apart in ℓ2-distance.

We consider the cut S =
{

v ∈ V | ⟨z′′
v,1, xH⟩ ⩾ 0

}
, and prove in the following lemma that

the expected size of the cut is at least
(

1 − O
(

δ′′′′

ε

))
|E|. Given such guarantee, standard

techniques show that such cut may be found in polynomial time by a randomized algorithm,
thereby finishing the proof of Theorem 3.

▶ Lemma 16. EH [Cut(S) | H does not hit H] ⩾
(

1 − O
(

δ′′′′

ε

))
|E|.

Proof. The expected size of the cut is∑
v,u

EH

[
1H separates z′′

u,1 and z′′
v,1

∣∣∣H does not hit H
]
,

so the deficit in the cut size (i.e. |E| minus its size) has expectation∑
v,u

EH

[
1H separates z′′

u,1 and z′′
v,−1

∣∣∣H does not hit H
]
.

For H to separate z′′
u,1 and z′′

v,−1, by the discussion proceeding the lemma, we must have
∥z′′

u,1 − z′′
v,−1∥2 ⩾ Ω(ε), so we get that the last sum is at most

2
∑
v,u

E
H

[
1H separates z′′

u,1 and z′′
v,−1

]
1∥z′′

u,1−z′′
v,−1∥2⩾Ω(ε).

Here, we used the fact that the probability that H does not hit H is at least 1/2. Letting
θ(zu,1, zv,−1) be the angle between the two vectors, we have

E
H

[
1H separates z′′

u,1 and z′′
v,−1

]
= 1

π
θ(z′′

u,1, z′′
v,−1) = O(∥z′′

u,1 − z′′
v,−1∥2),

hence the expected deficit in the size of the cut defined by S is at most

O

(∑
v,u

∥z′′
u,1 − z′′

v,−1∥21∥zu,1−zv,−1∥2⩾Ω(ε)

)
= 1

ε
O

(∑
v,u

∥z′′
u,1 − z′′

v,−1∥2
2

)
= O

(
δ′′′′

ε
|E|
)

.◀

3 Spectral Partitioning

In this section, we use our techniques to establish stronger algorithmic spectral partitioning
results for the second largest eigenvalue of a graph G, proving Theorem 4. We also state
an analogous result for the smallest eigenvalue of a small set expander G (but omit the
mostly-identical proof).

3.1 Cheeger’s Inequality on SSE’s
As explained in the introduction, to avoid the square root loss in Cheeger’s inequality, we
must make sure that we perform the rounding phase of it on vectors in which the ratio
between any two coordinates is either 1, or is bounded away from 1. Below, we formalize
this notion via a notion we refer to as ε-quantization.

▶ Definition 17. Let ε > 0. We say a vector x ∈ Rn is ε-quantized if for each i, j ∈ [n]:
1. x(i) = 0 or x(j) = 0;
2. otherwise, |x(i)| = |x(j)|, |x(i)| ⩾ (1 + ε) |x(j)|, or |x(i)| ⩽ (1 − ε) |x(j)|.
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26:14 Rounding via Low Dimensional Embeddings

Next, we prove that for an SSE graph G and a vector x such that E(u,v)∼E

[
(x(u) − x(v))2]

is small, one can transform x to a vector y that is quantized while not increasing the square
distances by much.

▶ Lemma 18. Suppose that G = (V, E) is a d-regular, (ε, γ) small set expander. If x ∈ Rn is
a vector such that E(u,v)∼E

[
(x(u) − x(v))2] ⩽ δ, then there is an ε-quantized vector y ∈ Rn

such that:
1. E(u,v)∼E

[
(y(u) − y(v))2] ⩽ O

(
δ

γ3ε2

)
.

2. For each v ∈ V , y(v) = 0 if and only if x(v) = 0.
3. For each v ∈ V , (1 − ε)x(v) ⩽ y(v) ⩽ (1 + ε) ⩽ x(v) if x(v) ⩾ 0, and (1 + ε)x(v) ⩽

y(v) ⩽ (1 − ε)x(v) otherwise.

Proof. Let V+ = {v | x(v) > 0}, V− = {v | x(v) < 0}, and denote M = ⌈maxu |x(u)|⌉. We
partition V+ and V− as

V+ =
∞⋃

j=0
V+,j , V− =

∞⋃
j=0

V−,j ,

where

V+,j =
{

v ∈ V+ | M(1 + ε)−j−1 ⩽ x(v) < M(1 + ε)−j
}

,

V−,j =
{

v ∈ V− | − M(1 + ε)−j ⩽ x(v) < −M(1 + ε)−j−1} .

The construction of the vector y. To construct the vector y, for each vertex V ∈ V we
find the part V+,j (if x(v) is positive) or V−,j (if x(v) is negative) that v belongs to, and set
the value of y(v) to be one of the endpoints of the interval defining that part. Towards this
end, for each j we will choose points pj,+ and pj,− (in a way that we describe shortly) in the
intervals [M(1+ε)−j−1, M(1+ε)−j ] and [−M(1+ε)−j , −M(1+ε)−j−1] respectively, and use
them to define the vector y that satisfies the assertion of the lemma. More specifically: we set
y(u) = 0 if x(u) = 0; otherwise – without loss of generality say that x(u) > 0 – we take j such
that u ∈ V+,j , and define y(u) = M(1 + ε)−j if x(u) > pj,+ and else y(u) = M(1 + ε)−j−1.

Choosing the cut-off points pj,+ and pj,−. Next, we describe the choice of the points
pj,+ and pj,−. As the argument is analogous in both cases, we focus on pj,+. We define the
mass of V+,j as the cardinality of it. We say V+,j is heavy if its mass is at least εn, and
otherwise we say it is light. The choice of p+,j is done differently in light intervals and in
heavy intervals, and below we elaborate on these two cases. To do so, we consider the cost
associated with interval j,

costj = 1
n

∑
u∈V+,j ,v neighbour

(x(u) − x(v))2,

and show that the cost of V+,j only increases by factor O(1/γ3) as a result of the operation
on V+,j .

Light intervals. In this case, we take pj,+ to be the midpoint of its respective interval,
that is

pj,+ = 1
2
(
M(1 + ε)−j−1 + M(1 + ε)−j

)
.
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We denote by Lj the length of the interval, that is

Lj = M(1 + ε)−j − M(1 + ε)−j−1 = Mε(1 + ε)−j−1.

Let costj be the contribution of points from V+,j to the average square distances i.e.

costj = 1
n

∑
u∈V+,j ,v neighbour

(x(u) − x(v))2.

We show that doing the rounding at pj,+ as described above only increases costj by factor
O
(

1
γ3

)
.

Let ℓ1 = γ
K , where K is an absolute constant to be determined later. Consider the

interval B1 = [pj,+ − ℓ1Lj , pj,+ + ℓ1Lj ]. We will show that costj >
γℓ2

1L2
j

100 d |B1|, and then
noting that rounding at pj,+ increases costj additively by at most d |B1| L2

j it follows that
the cost of V+,j increases by at most factor O(1/γ3) as a result of the rounding.

We now prove that costj >
γℓ2

1L2
j

100 d |B1|, and to do so we assume towards contradiction
the contrary inequality holds. Let ℓ2 = 2ℓ1, and set B2 = [pj,+ − ℓ2Lj , pj,+ + ℓ2Lj ]. We claim
that |B2| ⩾

(
1 + γ

2
)

|B1|. Indeed, otherwise we consider outgoing edges from B1, and note
that as |B1| ⩽ |Vj,+| ⩽ εn, the small set expansion property implies that at least dγ |B1| of
them escape outside B1, where d is the degree of G′. As |B2| ⩽

(
1 + γ

2
)

|B1|, at most dγ
2 |B1|

of them can go to B2 \ B1, and hence at least dγ
2 |B1| of them go outside B2 \ B1. Hence, we

conclude that

costj ⩾
dγ

2 |B1| (ℓ2 − ℓ1)2L2
j = γℓ2

1
2 L2

jd |B1| ,

and contradiction. We thus have that |B2| ⩾
(
1 + γ

2
)

|B1|.
Next, we set ℓ3 = ℓ2 +

√
|B1|
|B2| ℓ1 and consider B3 = [pj,+ − ℓ3Lj , pj,+ − ℓ3Lj ]. Similarly

to before, if |B3| ⩽
(
1 + γ

2
)

|B2| we get a contradiction to the upper bound on costj .
Continuing this argument, we define iteratively ℓr+1 = ℓr +

√
B1

|Br| ℓ1 and then Br+1 =
[pj,+ − ℓr+1Lj , pj,+ + ℓr+1Lj ], and prove that |Br+1| ⩾

(
1 + γ

2
)

|Br| if ℓr+1 ⩽ 1/10. Note
that

ℓj+1 ⩽ ℓ1

∞∑
k=0

(
1 + γ

2

)−k/2
= O(ℓ1/γ) = O(1/K) ⩽ 1/10

provided K is sufficiently large, so we way we keep on increasing |Br| which is clearly
impossible.

This contradiction implies that costj ⩾ γℓ2
1L2

100 d |B1|, hence the cost of V+,j increases by
at most factor 1/(γℓ2

1) = O(1/γ3). In total, we get that throughout the process the cost of
each light interval increases by factor at most O(1/γ3).

Additionally, the cost of each edge (between intervals) may increase by a factor of 4.
Therefore, after rounding all light intervals, the cost of each light interval increases by factor
at most O(1/γ3), and of any other interval by factor O(1).

Heavy intervals. If V+,j is heavy, say it contains between rεn and (r +1)εn points for r ∈ N,
we partition J = [M(1 + ε)−j−1, M(1 + ε)−j) into 3 equal thirds, consider the middle third,
and take equally spaced points v1, . . . , vr+2 in it such that v1 and vr+2 are the endpoints of
the middle third. In a formula,
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26:16 Rounding via Low Dimensional Embeddings

vi = M(1 + ε)−j−1 + Lj
r + 1 + i

3r + 5 ,

where again Lj is the length of J , Lj = Mε(1 + ε)−j−1.
We could repeat the previous argument with each one of the points vi, but this time since

Vj,+ is heavy, the argument could terminate because small-set expansion no longer holds,
in which case we have enlarged the interval around vi to contain at least εn vertices. We
change the definition of ℓ1 to be γ

rK , so that if the argument fails for vi it means we have
found an interval around vi of length at most Lj/(100r) that contains at least εn vertices.
Note that these intervals must be disjoint (as the distance between two vi’s is greater than
Lj/(50r)), and thus in total these interval cover no more than |V+,j | ⩽ (r + 1)εn vertices,
meaning the argument could fail on at most (r + 1) many of the vi’s. Thus, there is a vi

in which the argument succeeds, so we choose it to be pj,+, so that running the previous
argument using pj,+ gives that costj increases by at most factor O

(
1/(γℓ2

1)
)

= O(γ−3ε−2).
Besides that, the cost of edges that have one endpoint in V+,j and one outside V+,j may

increase by factor O(1). Thus, in total the effect of rounding the heavy intervals is that it
may increase the cost of each heavy interval by at most O(γ−3ε−2), and each light interval
by factor at most O(1). ◀

With Lemma 18 in hand we can prove Theorem 4, restated below.

▶ Theorem 19. There exists an absolute constant C > 0, such that the following holds for
all ε, γ, δ > 0. Suppose that G is a d-regular graph whose second normalized eigenvalue is
at least 1 − δ, and suppose G is an (ε, γ) small set expander. Then there exists a set S of
vertices of fractional size at most n/2, such that

Φ(S) ⩽ C · δ

γ3ε3 .

Furthermore, such S can be found efficiently.

Proof. Let x be an eigenvector of G with eigenvalue λ2 ⩾ 1−δ and suppose that E
[
x(v)2] = 1;

hence E(u,v)∈E

[
(x(u) − x(v))2] ⩽ 2δ. We assume without loss of generality that x1 ⩽ x2 ⩽

. . . ⩽ xn.
Let z = x + c⃗1 an appropriate constant c so that zn/2 = 0. We note that this constant

is at most 3 in absolute value, otherwise the absolute value of xn/2 is greater than 3, say
xn/2 > 3, and then

E
v

[
x(v)2] ⩾ 1

232 > 1.

We also note that Ev

[
z(v)2] = Ev

[
x(v)2]+ c2 (we used the fact that x is perpendicular to

1⃗), which is at constant between 1 and 10, so we may divide z by an appropriate constant
and get its 2-norm back to 1. We note that performing all of these operations changes δ by
at most a constant factor.

Using Lemma 18 on z we find an ε-quantized y satisfying the properties of the lemma.
We divide the entries of y by a suitable factor A so that y2

1 + y2
n = 1, and note that the

operation of Lemma 18 preserves orders and 0-entries so that y1 ⩽ . . . ⩽ yn and yn/2 = 0.
We now perform the standard Cheeger’s inequality rounding scheme. Namely, choose t in

[y1, yn] according to the density function 2 |t|. We note that
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1. If a, b have the same signs, the probability that t ∈ [a, b] is
∣∣b2 − a2

∣∣;
2. If a, b have different signs, the probability that t ∈ [a, b] is a2 + b2.
3. Therefore, in either case the probability that t ∈ [a, b] is at most |a − b| (|a| + |b|).
Let S = {v | y(v) ⩽ t}. We compute the expectation of the number of edges that escape S,
as well as the expectation of min(|S| , |V \ S|).

By the above observation, the probability that a given edge (u, v) crosses the cut of S is
at most |y(u) − y(v)| (|y(u)| + |y(v)|). If y(u) = y(v) then this is 0 and in particular equal to
|y(u) − y(v)|2; if y(u), y(v) are negated in signs this is same as |y(u) − y(v)|2; finally, if either
y(v) = 0 or y(u) = 0 this is again the same as |y(u) − y(v)|2. Otherwise, as y is ε-quantized
we have that either |y(u)| ⩾ (1 + ε) |y(v)| or |y(u)| ⩽ (1 − ε) |y(v)|, and then

|y(u) − y(v)| |y(v)| =
∣∣∣∣y(u)
y(v) − 1

∣∣∣∣ |y(v)|2 ⩽ ε−1
∣∣∣∣y(u)
y(v) − 1

∣∣∣∣2 |y(v)|2 = ε−1 |y(u) − y(v)|2 .

Similarly, flipping the roles of u and v we have that either |y(v)| ⩾ (1 + ε) |y(u)| or |y(v)| ⩽
(1 − ε) |y(u)|, and then

|y(u) − y(v)| |y(u)| =
∣∣∣∣y(v)
y(u) − 1

∣∣∣∣ |y(u)|2 ⩽ ε−1
∣∣∣∣y(v)
y(u) − 1

∣∣∣∣2 |y(u)|2 = ε−1 |y(u) − y(v)|2 .

Combining everything, we get that the probability that a given edge (u, v) crosses the cut
of S is at most 2ε−1 |y(u) − y(v)|2, so the expected number of edges between S and V \ S is
at most∑

(u,v)∈E

2ε−1 |y(u) − y(v)|2 ⩽ O

(
δ

γ3ε3
1

A2 |E|
)

.

As for E [min(|S| , |V \ S|)], if t ⩽ 0 the set S is smaller and otherwise V \ S is smaller.
We show that for each v, the probability that v is in the smaller among S and V \ S is at
least y(v)2, from which it follows that

E [min(|S| , |V \ S|)] ⩾
∑
v∈V

y(v)2 ⩾
1

A2 (1 − ε)n.

This would imply Theorem 4, as then we get that

E [|Edges(S, V \ S)|]
dE [min(|S| , |V \ S|)] = O

(
δ

γ3ε3

)
,

hence there is a choice of t for which

|Edges(S, V \ S)|
d min(|S| , |V \ S|) = O

(
δ

γ3ε3

)
.

Furthermore, standard techniques show that such t can be found in polynomial time, giving
us a set S as desired.

To finish the proof, we argue that for any vertex v, the probability that v is in the smaller
among S and V \ S is at least y(v)2. We consider the case that y(v) ⩽ 0 and the case that
y(v) > 0 separately. In the first case, we have

Pr [v in smaller among S, V \ S] = Pr [t ⩽ 0]Pr [v ∈ S | t ⩽ 0]

= Pr [t ⩽ 0]Pr [y(v) ⩽ t | t ⩽ 0],
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which is equal to Pr [t ∈ [y(v), 0]] = y(v)2. If y(v) > 0,

Pr [v in smaller among S, V \ S] = Pr [t > 0]Pr [v ∈ V \ S | t > 0]

= Pr [t > 0]Pr [y(v) > t | t ⩽ 0],

which is equal to Pr [t ∈ [0, y(v)]] = y(v)2. ◀

3.2 Dense cuts on SSE’s
Using the same proof strategy as above, one may establish the following improved spectral
partitioning result based on the smallest eigenvalue of G when the graph is a small-set
expander [22].

▶ Theorem 20. There exists an absolute constant C > 0, such that the following holds for
all ε, γ, δ > 0. Suppose that G is a d-regular graph with λn(G) ⩽ −1 + δ, and suppose G is
an (ε, γ) small set expander. Then there is y ∈ {−1, 0, 1}n such that∑

(u,v)∈E

|y(u) + y(v)|

d
∑

u∈V

|y(u)| ⩽ C · δ

γ3ε3 .

Furthermore, such S can be found efficiently.

As the proof is very close in spirit, we omit the details. We remark that Trevisan [22] proves
a version of Theorem 20 for general graphs and uses it to get a spectral approximation
algorithm for Max-cut with better approximation ratio than 1/2. In that context, a solution
as in Theorem 20 is to be interpreted as a partial cut, and after finding y Trevisan considers
the set of vertices which receive value 0 in y and applies the algorithm on them recursively.
One may expect such approach to also work in our case to get an algorithm for Max-cut,
however the recursive nature of Trevisan’s approach may not preserve the small-set expansion
of the induced graph. We were therefore led to seeking a more direct approach for applying
the soft-rounding idea to the Max-cut problem, and indeed our proof of Theorem 3 was
found in this way.

4 Strong Parallel Repetition for Unique-Games on SSE’s

In this section, we prove a more general version of Theorem 6 for the class of projection games.
Our proof goes through the information theoretic approach to parallel repetition [20, 10, 19, 4],
and we will closely follow the argument in [4]. Our argument differs only towards the end of
the argument, but we sketch for completeness. We will prove that for sufficiently large absolute
constant K > 0, setting T = ⌈ K

ε3γ3δ ⌉, for t ⩾ T it holds that val(Ψt) ⩽
(
1 − Ω(δε3γ3)

)t. The
result for any other t then follows automatically: for any t ⩽ T , letting ℓ = ⌊T/t⌋ we have
that T ⩾ ℓt so

1 − Ω(1) ⩾ val(ΨT ) ⩾ val(Ψℓt) ⩾ val(Ψt)ℓ,

so

val(Ψt) ⩽ (1 − Ω(1))1/ℓ = e−Ω(t/T ) = (e−Ω(1/T ))t = (1 − Ω(1/T ))t,

as desired. From now on, we assume that t ⩾ T .
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Notations

We will denote random variables by boldface capital letters, and instantiations of them by
small letters. We use standard information theoretic tools presented in the appendix for
completeness (see also [7]). The KL-divergence from Q to P is denoted by DKL (P ∥ Q),
however for space considerations, we will sometimes denote it by

DKL

P

Q

 .

4.1 Parallel Repetition: the Information Theoretic Set-up
We will refer to the players in the game as Alice and Bob. The challenges of Alice are in
the t-fold repeated game Ψ⊗n are denoted by X1, . . . , Xt and her answers are denoted by
(A1, . . . , At) = f(X1, . . . , Xt). Similarly, the challenges of Bob are denoted by Y1, . . . , Yt,
and his answers are denoted by (B1, . . . , Bt) = g(Y1, . . . , Yt). Finally, we denote by W the
event that Alice and Bob win on all of the t challenges. We will prove the counter positive
statement, namely that if Pr [W ] > (1 − cδε3γ3)t for sufficiently small absolute constant c,
then val(Ψ) > 1 − δ (we recall that t ⩾ T ).

4.1.1 The information theoretic approach
Let sg, sh be uniformly chosen integers in {3/4t + 1, . . . , t}, and let σ ∈ St be a uniformly
chosen permutation. Denote

H = σ([sh]) = {σ(i) | i ∈ [sh]} , G = σ({t−sg+1, . . . , t}) = {σ(i) | i ∈ {t − sg + 1, . . . , t}} .

Let I ∈ G∩H be chosen uniformly, and let ℓ ∈ [t/4] be chosen uniformly. Let S ⊆ (G∩H)\{I}
be chosen uniformly of size ℓ. Denote

LS,G,H,I = (XG\{I}, YH\{I}, BS).

Below we state Lemmas 5.2, 5.3, 5.4 and 5.5 from [4]. We omit the proofs as they are
identical to the proofs therein.

▷ Claim 21. ES,G,H,I [I(AI; YI|XI, LS,G,H,I, W )] ⩽ 4
t log(1/Pr [W ]).

▷ Claim 22. ES,G,H,I [I(LS,G,H,I; YI|XI, W )] ⩽ 8
t log(1/Pr [W ]).

▷ Claim 23. ES,G,H,I [I(LS,G,H,I; XI|YI, W )] ⩽ 8
t log(1/Pr [W ]).

▷ Claim 24. ES,G,H,I [I(BI; 1W |XI, YI, LS,G,H,I, AI)] ⩽ 4
t H(1W ).

The next claim is Lemma 4.6 from [4].

▷ Claim 25. EI [DKL (XI, YI | W ∥ XI, YI)] ⩽ 1
t log

(
1

Pr[W ]

)
.

The next claim is Lemma 4.9 from [4].

▷ Claim 26. Suppose G, H, Sa, Sb ⊆ [t] and i ∈ [t] such that G ∪ H = [t] \ {i}. Then for any
x̄, ȳ, ā, b̄, x, y in the support of XG, YH , ASa

, BSb
, Xi and Yi, for all a, b it holds that

Pr
[
Ai = a, Bi = b | (XG, YH , ASa

, BSb
, Xi, Yi) = (x̄, ȳ, ā, b̄, x, y)

]
= Pr [Ai = a | (XG, YH , ASa , Xi) = (x̄, ȳ, ā, x)]

· Pr
[
Bi = b | (XG, YH , BSb

, Yi) = (x̄, ȳ, b̄, x)
]
.
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Next, we state and prove an analog to Lemma 5.6 from [4]. The Lemma therein applies
to the case that the probability of W is small, and below we make a small adjustment to it
(using the fact that the number of repetitions is assumed to be large in our case) to remove
that assumption.

▶ Lemma 27. Suppose ζ = δε3γ3 and that Pr [W ] ⩾ 2−ζt/K . There exist fixings G = G,
H = H, S = S and I = I such that the following properties hold:
1.

E
(x,y)∼(XI ,YI )|W

[DKL (LS,G,H,I | XI = x, YI = y, W ∥ LS,G,H,I | XI = x, W )] ⩽ O

(
ζ

K

)
.

2.

E
(x,y)∼(XI ,YI )|W

[DKL (LS,G,H,I | XI = x, YI = y, W ∥ LS,G,H,I | YI = y, W )] ⩽ O

(
ζ

K

)
.

3.

DKL (XI , YI | W ∥ XI , YI) ⩽ O

(
ζ

K

)
.

4. Sampling (x, y) ∼ (XI , YI)|W and L ∼ LS,G,H,I |XI = x, YI = y, W , we have

E
[
DKL (AI |XI = x, YI = y, LS,G,H,I = L, W ∥ AI |XI = x, LS,G,H,I = L, W )

]
⩽ O

(
ζ

K

)
.

5. Sampling (x, y) ∼ (XI , YI)|W and L ∼ LS,G,H,I |XI = x, YI = y, W , we have

E

DKL

 AI , BI |XI = x, YI = y, LS,G,H,I = L, W

AI |XI = x, LS,G,H,I = L, W ⊗ BI |YI = y, LS,G,H,I = L, W


⩽ O

(
ζ

K

)
.

Proof. We calculate the expected value of each one of these over the choice of S, G, H, I,
show that each one of these expectations is at most O

(
1
t log

(
1

Pr[W ]

))
, and then the result

follows from Markov’s inequality together with the union bound.
The expectation of the first item is, by Fact 36, equal to the mutual information in

Claim 22, so the bound follows from there. The expectation of the second item is, by
Fact 36, equal to the mutual information in Claim 23, so the bound follows from there. The
expectation of the third item is computed in Claim 25. The expectation of the fourth item is
equal to the mutual information in Claim 21, and the bound follows from there.

For the fifth expectation, using the chain rule we can write it as

E
G,H,S,I

(x,y)∼(XI,YI)|W
L∼LS,G,H,I|x,y,W

[
DKL (AI|x, y, LS,G,H,I = L, W ∥ AI|x, LS,G,H,I = L, W )︸ ︷︷ ︸

(I)

+ E
a∼AI

∣∣∣ XI=x,YI=y
LS,G,H,I=L,W

DKL (BI|x, y, LS,G,H,I = L, AI = a, W ∥ BI|y, LS,G,H,I = L)

︸ ︷︷ ︸
(II)

]



M. Braverman and D. Minzer 26:21

The expectation of (I) is the expectation of the fourth item in the lemma, hence at most
O
(

1
t log

(
1

Pr[W ]

))
. For (II), first looking at Claim 26, summing over a and setting Sa = {I},

Sb = S we get that the distributions BI|YI = y, LS,G,H,I = L and BI|XI = x, YI =
y, LS,G,H,I = L, AI = a are identical, so our goal is to upper bound the expectation of

DKL (BI|x, y, LS,G,H,I = L, W, AI = a, W ∥ BI|x, y, LS,G,H,I = L, AI = a) .

Letting w ∼ 1W and sampling the rest of the random variables conditioned on it, we see that
the expectation of the above expression is at most 1

Pr[W ] times the expectation of

DKL

BI|XI = x, YI = y, LS,G,H,I = L, 1W = w, AI = a

BI|XI = x, YI = y, LS,G,H,I = L, AI = a


since the probability that w = 1 is Pr [W ]. By Fact 36, the expectation of the last KL-
divergence is the mutual information in Claim 24, hence at most 4

t H[1W ].
All in all, we get that the expectation of (II) is upper bounded by

4H[1W ]
tPr [W ] .

Denote q = Pr [W ]. If q ⩽ 1/2, then we may bound H [1W ] ⩽ O(q log(1/q)), and then we get
the bound O

(
log(1/Pr[W ])

t

)
⩽ O

(
ζ
K

)
on (II). Otherwise, q > 1/2 and we have the bound

H [1W ] ⩽ 1, and we get the bound O(1/t). By the assumption in the beginning of this section,
t ⩾ T ⩾ Ω(K/ζ), so O(1/t) ⩽ O

(
ζ
K

)
. ◀

4.1.2 Departing from [4]
In the next part of the proof, we insert an additional ingredient on top of [4], and before
that we quickly explain how the proof there proceeds using Lemma 27.

First, a protocol is designed so that if the players received challenges from the distribution
XI , YI |W , then the players succeed with probability close to 1; given that, the third item
in Lemma 27 shows that the players succeed with probability close to 1 given challenges
distributed as XI , YI .

The correctness of the protocol is argued by appealing to Pinsker’s inequality on the
third item of Lemma 27, to get that Alice and Bob can jointly sample from distributions that
are O(

√
ζ/K) close to LS,G,H,I | XI = x, YI = y, W , i.e. with probability 1 − O(

√
ζ/K)

they get a joint sample from that distribution. Assuming the joint sampling was successful,
the players can sample the answer AI , BI conditioned on the information they have so far.
Note that in the distribution AI , BI |Xi = x, YI = y, LS,G,H,I = L, W the players win the
coordinate I with probability 1 (since W was conditioned on), and by the fifth item in
Lemma 27 the KL-divergence between that distribution and the joint distribution of the
answers of the players in the designed protocol is at most O(ζ/K), and one conclude that
the winning probability of the players in the protocol (conditioned on the joint sampling
being successful) is at least 2−O(ζ/K) ⩾ 1 − O(ζ/K). Overall, the designed protocol wins
with probability 1 − O(

√
ζ/K).

The source of the square loss above is thus due to the application of Pinsker’s inequality,
and we will circumvent that by appealing to the small set expansion property. More precisely,
we will use the first and second item in Lemma 27 in order to come up with distributions
L̃S,G,H,I | XI = x, W , L̃S,G,H,I | XI = y, W that are very close to the original distribution
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(the probability of each atom changes by at most factor (1 ± ε), but from which the players
can jointly sample without losing the square root in Pinsker’s inequality (and instead loses
some factors depending on the small set expansion parameters of the graph). From that
point, the rest of the proof proceeds in the same way.

4.2 Qunatizing the Random Variables
Throughout this section, we have a graph G = (V, E), and we associate a distribution Dv

with each vertex v. We will also need to consider pseudo-distributions, which we define next.

▶ Definition 28. A pseudo-distribution D over a finite domain Ω is a map D : Ω → [0, ∞).

Sometimes we will want to sample from a pseudo-distribution; by that, we mean that we
first normalize D so that the sum of its values is 1, and then sample from it. One may define
Hellinger distance as well as statistical distance for pseudo-distributions as well (though one
has to be careful with using properties of them that only hold for distributions).

▶ Definition 29. A collection of pseudo-distributions Dv∈V over a finite domain Ω is
called ε-quantized if for any w ∈ Ω and u, v ∈ V we either have that Dv(w) = Du(w), or
Dv(w) ⩽ (1 − ε)Du(w), or Dv(w) ⩾ (1 + ε)Du(w).

The following lemma explains the benefit of quantized pseudo-distributions: it allows us
to move from Hellinger distance to statistical distance without square root loss.

▶ Lemma 30. If P, Q are pseudo-distributions such that the collection {P, Q} is ε-quantized.
Then SD(P, Q) = O

( 1
ε Hellinger(P, Q)2).

Proof. By definitions, the inequality we wish to show is that for large enough absolute
constant C > 0 it holds that∑

w∈Ω
|P (w) − Q(w)| ⩽ C

ε

∑
w∈Ω

∣∣∣√P (w) −
√

Q(w)
∣∣∣2 .

We show that the inequality in fact holds term by term. Without loss of generality, P (w) ⩾
Q(w). If Q(w) = 0 it is clear. Otherwise, letting t = P (w)/Q(w), the inequality we wish to
show is that t − 1 ⩽ C

ε (
√

t − 1)2. If t = 1 the inequality is clear, and otherwise it is equivalent
to

√
t + 1 ⩽ C

ε (
√

t − 1). Solving for t, we get that

√
t ⩾

C/ε + 1
C/ε − 1 = 1 + 2

C/ε − 1 = 1 + 2ε

C − ε

By the fact that {P, Q} is ε-quantized and t ̸= 1, it follows that t ⩾ 1 + ε and hence√
t ⩾ 1 + ε/4, and for large enough C (C = 10 will do) we get that this is indeed more than

1 + 2ε
C−ε . ◀

The next lemma shows that one may modify distributions associated with vertices of
small set expanders by small multiplicative modifications to make them quantized, and only
incur a constant multiplicative increase in Hellinger distance.

▶ Lemma 31. There exists an absolute constant C > 0, such that the following holds. Suppose
that G = (V, E) is a regular graph as well as a (ε, γ) small set expander, and (Dv)v∈V is a
collection of distributions over domain Ω such that

E
(u,v)∈E

[
Hellinger(Du, Dv)2] ⩽ η.
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Then there exists a collection of pseudo-distributions (D̃v)v∈V over Ω satisfying the following
properties:
1. E(u,v)∈E

[
Hellinger(D̃u, D̃v)2] ⩽ C η

γ3ε2 .
2. For all w ∈ Ω and v ∈ V it holds that (1 − ε)Dv(w) ⩽ D̃v(w) ⩽ (1 + ε)Dv(w).
3. The collection (D̃v)v∈V is ε/2-quantized.

Proof. For each w ∈ Ω, define the contribution of w to the Hellinger distance squared as

cw = E
(u,v)∈E

[(√
Du(w) −

√
Dv(w)

)2
]
,

and define the vector xw ∈ [0, 1]V by xw(v) =
√

Dv(w). Then by Lemma 18 we may find a
vector yw that is ε-quantized and

c′
w

def= E
(u,v)∈E

[
(yw(u) − yw(v))2] ⩽ C

cw

γ3ε2 .

For each v, define the pseudo-distribution D̃v(w) = yw(v)2. Then as yw is ε-quantized, it
is easy to see that this collection of distributions is ε/2 quantized. Also, the second item
follows immediately from the corresponding properties of yw. Finally,

E
(u,v)∈E

[
Hellinger(D̃u, D̃v)2] =

∑
w

E
(u,v)∈E

[
(yw(u) − yw(v))2] ⩽∑

w

C
cw

γ3ε2 = C

γ3ε2

∑
w

cw,

which is at most C η
γ3ε2 as the sum of cw is exactly E(u,v)∈E

[
Hellinger(D̃u, D̃v)2]. ◀

4.3 Using the Random Variables to Derive a Strategy
We now have all of the ingredients to prove Theorem 6. We will show that assuming that
Pr [W ] ⩾ 2−ζt/K for ζ = δε3γ3, we can design a protocol for the players to win the game
with probability 1 − O(δ/K), so taking K large enough yields a contradiction.

Apply Lemma 27 to find a fixing of S, H, G, I. In the protocol we design, the input of
the players will be a pair of challenges distribution (x, y) ∼ (XI , YI). We will analyze the
protocol under a different distribution of challenges, namely under (x, y) ∼ (XI , YI) | W , and
prove that the players succeed with probability at least 1 − O(δ/K). From this, Lemma 42
together with the third item in Lemma 27 gives that the players win under the original
distribution of challenges with probability at least 1 − O(δ/K), as ζ ⩽ δ.

We set up some notations. Given a challenge x to Alice and y to Bob (which are vertices
in Ψ), they define the random variable

Dx = LS,G,H,I | XI = x, W Dy = LS,G,H,I | YI = y, W

respectively. We also define Dx,y = LS,G,H,I | XI = x, XI = y, W for convenience (though
we stress no player has access to it). Then the first and second items in Lemma 27,

E
(x,y)∼(XI ,YI ) | W

[DKL (Dx,y ∥ Dx) + DKL (Dx,y ∥ Dy)] ⩽ O(ζ/K),

and applying Lemma 41 we get that

E
(x,y)∼(XI ,YI ) | W

[
Hellinger(Dx, Dy)2] ⩽ O(ζ/K).
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Thus, by Lemma 44

E
(x,y)∼(XI ,YI )

[
Hellinger(Dx, Dy)2] ⩽ O(ζ/K),

and from Lemma 31 there are pseudo-distributions (D̃x) as in the lemma such that

E
(x,y)∼(XI ,YI )

[
Hellinger(D̃x, D̃y)2

]
⩽ O

(
ζ

Kε2γ3

)
= O

(
δε

K

)
.

We note that Hellinger(D̃x, D̃y)2 ⩽ 2 for all x, y (it can be more than 1 as these are pseudo-
distributions, but by the second item in Lemma 31 their sum of values is at most (1 + ε)).
Thus we may apply Lemma 44 in the other direction to conclude that

E
(x,y)∼(XI ,YI ) | W

[
Hellinger(D̃x, D̃y)2

]
⩽ O

(
δε

K

)
.

Thus, from Lemma 30 we have that

E
(x,y)∼(XI ,YI ) | W

[
SD(D̃x, D̃y)

]
⩽ O

(
δ

K

)
From Lemma 45, it thus follows that the players can jointly sample dx ∼ D̃x, dy ∼ D̃y such
that

Pr
(x,y)∼(XI ,YI ) | W

dx,dy

[dx ̸= dy] = O(δ/K).

We can now state the protocol for the players.
Input: Alice is given x, Bob is given y such that (x, y) ∼ (XI , YI) | W .
Protocol:

1. Alice and Bob use correlated sampling to jointly sample dx ∼ D̃x, dy ∼ D̃y.
2. Alice samples a ∼ AI |XI = x, Dx = dx, W and sends it to the referee.
3. Bob samples b ∼ BI |YI = x, Dy = dy, W and sends it to the referee.

The following claim finishes the proof.

▷ Claim 32. The above protocol is a strategy for the players that succeeds with probability
at least 1 − O(δ/K).

Proof. Consider the alternative protocol, where instead of the first step, Alice samples dx

and then comminutes it to Bob. Clearly, as the probability that dx ̸= dy is at most O(ζ/K),
this change increases the success probability of the players by at most O(ζ/K), so it suffices
to show that this modified protocol has success probability at least 1 − O(δ/K).

We first analyze the protocol where we modify the distribution of dx, and then argue the
implication to the protocol with the correct distribution over dx. Suppose Alice sampled dx ∼
Dx; we show that in this case, the success probability is at least 1 − O(ζ/K). To show that,
by the first item of Lemma 27 and Lemma 42, it suffices to sow that the success probability of
the protocol is at least 1 − O(ζ/K) if we sample dx ∼ Dx,y. In that case, the answers of the
players are distributed according to (AI |XI = x, Dx,y = dx, W ) ⊗ (BI |YI = x, Dy = dy, W ).
Thus, by the fifth item in Lemma 27 and Lemma 42 it suffices to show that the success
probability of the players with (a, b) ∼ (AI , BI |XI = x, YI = y, Dx,y = dx, W ) is at least
1 − O(ζ/K), which is clear since we have conditioned on the event W so all coordinates are
won.
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Thus, letting Z(d) be a random variable denoting the failure probability of the modified
protocol with dx = d, we have that Ex,y [E,d∼Dx

[Z(d)]] ⩽ O(ζ/K), hence

E
x,y

[
E

d∼D̃x

[Z(d)]
]

= E
x,y

[∑
d

Pr
[
D̃x = d

]
Z(d)

]
⩽ E

x,y

[
(1 + ε)

∑
d

Pr [Dx = d]Z(d)
]

,

which is O
(

ζ
K

)
. Therefore the success probability of the protocol when dx ∼ D̃x is at least

1 − O
(

ζ
K

)
, finishing the proof. ◁
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A Information Theory

In this section, we present a few basic notions from information theory. First, we define the
notions of Shannon entropies and conditional Shannon entropies.

▶ Definition 33. Let X, Y be random variables with a finite support.
1. The Shannon entropy of X is H[X] =

∑
x

Pr [X = x] log
(

1
Pr[X=x]

)
.

2. The Shannon entropy of X conditioned on Y is H[X | Y ] = Ey∼Y [H[X | Y = y]], where
H[X | Y = y] =

∑
x

Pr [X = x | Y = y] log
(

1
Pr[ X=x |Y =y]

)
.

Second, we define mutual information between random variables as well as conditional
mutual information.

▶ Definition 34. Let X, Y, Z be random variables with a finite support.
1. The mutual information between X and Y is I[X; Y ] = H[X] − H[X|Y ].
2. The mutual information between X, Y conditioned on Z is I[X; Y | Z] = H[X | Z] −

H[X | Y, Z].

Third, we define the KL-divergence between random variables.

▶ Definition 35. Let X, Y be random variables with a finite support. The KL-divergence
from Y to X is DKL (X ∥ Y ) =

∑
x,y

Pr [X = x] log
(

Pr[X=x]
Pr[Y =y]

)
.

We will need the following standard facts from information theory (for proofs, see [7] for
example).

http://arxiv.org/abs/2103.08743
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▶ Fact 36. Let X, Y, Z be random variables. Then

I[X, Y ; Z] = E
(x,y)∼(X,Y )

[DKL (Z|X=x,Y =y ∥ Z)].

▶ Fact 37. Let X, Y1, . . . , Yn be random variables. Then

I[X; Y1, . . . , Yn] =
n∑

i=1
I[X; Yi | Y<i].

▶ Fact 38. Let X, Y, Z be random variables. Then I[X; Y | Z] ⩽ I[X; Y, Z].

B Probability Theory

We will use several standard distance measures between probability measures as well as
relations between them that we give in this section.

▶ Definition 39. Let X, Y be random variables supported over a finite set Ω. The statistical
distance between X and Y is defined as

SD(X, Y ) = 1
2
∑
w∈Ω

∣∣∣Pr [X = w] − Pr [Y = w]
∣∣∣

▶ Definition 40. Let X, Y be random variables supported over a finite set Ω. The Hellinger
distance between X and Y is defined as

Hellinger(X, Y ) =

√√√√1
2
∑
w∈Ω

∣∣∣∣√Pr [X = w] −
√

Pr [Y = w]
∣∣∣∣2

B.1 A Relation Between KL-divergence and Hellinger Distance
The KL divergence metric does not obey a triangle inequality, and the following lemma
replaces it in our inteded application. It asserts that if the KL divergence between X and
Z is small, and the KL divergence between Y and Z is small, then the Hellinger distance
between X and Y is small.

▶ Lemma 41. Let X, Y and Z be random variables supported on a finite set Ω. Then

2Hellinger(X, Y )2 ⩽ DKL (Z ∥ X) + DKL (Z ∥ Y ) .

Proof. Let us think of X and Y as fixed random variables, and attempt to minimize
DKL (Z ∥ X) + DKL (Z ∥ Y ) over all random variables Z. In other words, we wish find
non-negative numbers (pZ(w))w∈Ω summing up to 1 minimizing the form

∑
w∈Ω

pZ(w) log
(

pZ(w)
pX(w)

)
+ pZ(w) log

(
pZ(w)
pY (w)

)
=
∑
w∈Ω

pZ(w) log
(

pZ(w)2

pX(w)pY (w)

)
Using Lagrange multipliers, we get that there exists λ ∈ R such that the optimum satisfies
the equations

log
(

pZ(w)2

pX(w)pY (w)

)
− 1

ln 2 − λ = 0 ∀w ∈ Ω.
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In other words, pZ(W ) = c
√

pX(w)pY (w) for some c > 0, and we next compute the constant
c. By the constraint that the sum is 1, we get

1 = c

2
∑
w∈Ω

2
√

pX(w)pY (w) = c

2(2−
∑
w∈Ω

(
√

pX(w)−
√

pY (w))2) = c(1−Hellinger(X, Y )2),

so c = 1
1−Hellinger(X,Y )2 . Plugging that into pZ(w), we get that the minimum of DKL (Z ∥ X)+

DKL (Z ∥ Y ) is at least

∑
w∈Ω

pZ(w) log
(

pZ(w)2

pX(w)pY (w)

)
=
∑
w∈Ω

c
√

pX(w)pY (w) log
(

c2pX(w)pY (w)
pX(w)pY (w)

)
.

Simplifying, we get that this is equal to

c log c2
∑
w∈Ω

√
pX(w)pY (w) = 2 log c = −2 log

(
1 − Hellinger(X, Y )2) ⩾ 2Hellinger(X, Y )2,

where the last inequality uses log(s) ⩽ s − 1 for all s > 0. ◀

B.2 Small KL-divergence and high probability events
The next few lemmas are concerned with a pair of distributions that have a small KL-
divergence. They show that an event has probability close to 1 with respect to one distribution
if and only if it has probability close to 1 with respect to the other distributions; we then
generalize this facts to bounded functions.

▶ Lemma 42. Suppose P and Q are distributions such that DKL (P ∥ Q) ⩽ η ⩽ 1/100, and
suppose that E is an event.
1. If P [E] ⩾ 1 − η, then Q(E) ⩾ 1 − 10η.
2. If Q(E) ⩾ 1 − η, then P (E) ⩾ 1 − 10η.

Proof. By the data processing inequality, η ⩾ DKL (P ∥ Q) ⩾ DKL (Ber(P (E)) ∥ Ber(Q(E))).
For the first item, if we assume Q(E) ⩽ 1 − 10η then we get that

η ⩾ DKL (Ber(1 − η) ∥ Ber(1 − 10η)) = (1 − η) log
(

1 − η

1 − 10η

)
+ η log

(
η

10η

)
= (1 − η) log

(
1 + 9η

1 − 10η

)
− η log (10)

⩾ (1 − η) log(1 + 9η) − η log(10).

Using the fact that log(1 + s) ⩾ s/2 for s ⩽ 1, we get that the last expression is at least
4.5η(1 − η) − η log(10), and as log(10) ⩽ 3.4 we get that it is at least 1.1η − 4.5η2 ⩾
1.1η − 0.045η > η, and contradiction.

For the second item, if we assume that P (E) ⩽ 1 − 10η, then we get that

η ⩾ DKL (Ber(1 − 10η) ∥ Ber(1 − η)) = (1 − 10η) log
(

1 − 10η

1 − η

)
+ 10η log

(
10η

η

)
= (1 − 10η) log

(
1 − 9η

1 − η

)
+ 10 log (10) η

⩾ −(1 − 10η) 18η

1 − η
+ 10 log(10)η,
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where we used log(1 − s) ⩾ −2s for s ⩽ 0.1. As 1/(1 − η) ⩽ 1 + 2η, we get that the last
expression is at least

(10 log(10) − 18)η − 216η2 ⩾ 10η − 216
100η2 > η,

and contradiction. ◀

▶ Lemma 43. Suppose X, Y are random variables in [0, 1], and DKL (X ∥ Y ) ⩽ η, for
η ⩽ 1/100. Then
1. If E [X] ⩾ 1 − η, then E [Y ] ⩾ 1 − 10η.
2. If E [Y ] ⩾ 1 − η, then E [X] ⩾ 1 − 10η.

Proof. We prove the first item, and the second item follows similarly.
Consider the following randomized process T : given a number x ∈ [0, 1] sample a Bernoulli

random variable b such that Pr [b = 1] = x. Then by the data processing inequality we have
that

η ⩾ DKL (X ∥ Y ) ⩾ DKL (X ∥ Y) .

Let E be the event that the output of the process is 1. Then

Pr [X ∈ E] = E [X] ⩾ 1 − η,

so we get by Lemma 42 that

E [Y ] = Pr [Y ∈ E] ⩾ 1 − 10η. ◀

▶ Lemma 44. Suppose f : Ω → [0, 2], η ⩽ 1/100 and P, Q are distributions such that
DKL (P ∥ Q) ⩽ η. Then
1. If Ez∼P [f(z)] ⩽ η, then Ez∼Q [f(z)] ⩽ 20η.
2. If Ez∼Q [f(z)] ⩽ η, then Ez∼P [f(z)] ⩽ 20η.

Proof. We prove the first item, and the second item follows similarly.
Consider the random variables X = 1 − 1

2 f(z) where z ∼ P , and Y = 1 − 1
2 f(z)

where z ∼ Q. By the Data processing inequality DKL (X ∥ Y ) ⩽ DKL (P ∥ Q) ⩽ η, and by
assumption E [X] ⩾ 1−η, so by Lemma 43 we get that 0.5Ez∼Q [f(z)] = 1−E [Y ] ⩽ 10η. ◀

B.3 Correlated sampling
Correlated sampling is an important motive in parallel repetition theorems that has been
introduced in [10]. Below, we state a version of it for pseudo-distributions, and include a
proof for completeness.

▶ Lemma 45. There exists a randomized procedure R.
Let η ⩽ 1/100 and 0 < ε < 1/2. Suppose P and Q are distributions, and P̃ , Q̃ are

pseudo-distributions all over Ω such that
1. SD(P̃ , Q̃) ⩽ η

2. for all w ∈ Ω, (1 − ε)P (w) ⩽ P̃ (w) ⩽ (1 + ε)P (w), (1 − ε)Q(w) ⩽ Q̃(w) ⩽ (1 + ε)Q(w).
Then, Alice generates a sample p ∼ P̃ , Bob generates a sample q ∼ Q̃ such that

Pr [p ̸= q] ⩽ O(ξ).
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Proof. Alice and Bob consider, as public randomness, an infinite string of uniform tuples
from Ω × [0, 1 + ε], say (w1, r1), (w2, r2) and so on. Alice picks the first i such that

ri ⩽ P̃ (wi),

and outputs wi. Similarly Bob picks the first j such that

rj ⩽ Q̃(wj),

and outputs wj . It is clear that wi ∼ P̃ and wj ∼ Q̃, and we next bound the probability
that i ̸= j. This happens if for the smallest k such that rk ⩽ max(P̃ (wk), Q̃(wk)), it holds
that rk > min(P̃ (wk), Q̃(wk)). The probability for that is

Pr
(r,w)

[
r > min(P̃ (w), Q̃(w))

∣∣ r ⩽ max(P̃ (w), Q̃(w))
]

=

∑
w

Prr

[
min(P̃ (w), Q̃(w)) < r < max(P̃ (w), Q̃(w))

]
∑
w

Prr

[
r ⩽ max(P̃ (w), Q̃(w))

] .

We finish the proof by upper bounding the numerator by η, and lower bounding the
denominator by 1/4. The numerator may be bounded as∑

w

∣∣max(P̃ (w), Q̃(w)) − min(P̃ (w), Q̃(w))
∣∣ =

∑
w

∣∣P̃ (w) − Q̃(w)
∣∣ ⩽ η.

As for the denominator, it may be lower bounded by

∑
w

Pr
r

[
r ⩽ P̃ (w)

]
=
∑

w

P̃ (w)
1 + ε

⩾
∑

w

(1 − ε)P (w)
1 + ε

= 1 − ε

1 + ε
⩾

1
4 . ◀
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We study the problems of counting copies and induced copies of a small pattern graph H in a large
host graph G. Recent work fully classified the complexity of those problems according to structural
restrictions on the patterns H. In this work, we address the more challenging task of analysing the
complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed
patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running
in time f(H) · |G|O(1) for some computable function f . Our main results present exhaustive and
explicit complexity classifications for families that satisfy natural closure properties. Among others,
we identify the problems of counting small matchings and independent sets in subgraph-closed graph
classes G as our central objects of study and establish the following crisp dichotomies as consequences
of the Exponential Time Hypothesis:

Counting k-matchings in a graph G ∈ G is fixed-parameter tractable if and only if G is nowhere
dense.
Counting k-independent sets in a graph G ∈ G is fixed-parameter tractable if and only if G is
nowhere dense.

Moreover, we obtain almost tight conditional lower bounds if G is somewhere dense, i.e., not
nowhere dense. These base cases of our classifications subsume a wide variety of previous results
on the matching and independent set problem, such as counting k-matchings in bipartite graphs
(Curticapean, Marx; FOCS 14), in F -colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate
graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs
(Curticapean et al.; Algorithmica 19).

At the same time our proofs are much simpler: using structural characterisations of somewhere
dense graphs, we show that a colourful version of a recent breakthrough technique for analysing
pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed
somewhere dense class of graphs, yielding a unified view of our current understanding of the
complexity of subgraph counting.
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1 Introduction

We study the following subgraph counting problem: given two graphs H and G, compute
the number of copies of H in G. For several decades this problem has received widespread
attention from the theoretical community, leading to a rich algorithmic toolbox that draws
from different techniques [40, 2, 8, 30] and to deep structural results in parameterised com-
plexity theory [20, 13]. Since it was discovered that subgraph counts reveal global properties
of complex networks [36, 37], subgraph counting has also found several applications in fields
such as biology [1, 44] genetics [46], phylogeny [31], and data mining [47]. Unfortunately,
the subgraph counting problem is in general intractable, since it contains as special cases
hard problems such as Clique. This does not mean however that the problem is always
intractable; it just means that it is tractable when the pattern H is restricted to certain graph
families. Identifying these families of patterns that are efficiently countable has been a key
question for the last twenty years. A long stream of research eventually showed that, unless
standard conjectures fail, subgraph counting is tractable only for very restricted families of
patterns [20, 17, 10, 15, 29, 35, 13, 42, 22].

To circumvent this “wall of intractability”, in this work we restrict both the family
of the pattern H and the family of the host G. Formally, given two classes of graphs H
and G, we study the problems #Sub(H → G), #IndSub(H → G), and #Hom(H → G),
defined as follows. For all of them, the input is a pair (H, G) with H ∈ H and G ∈ G.
The outputs are respectively the number of subgraphs of G isomorphic to H, denoted
by #Sub(H → G), the number of induced subgraphs of G isomorphic to H, denoted by
#IndSub(H → G), and the number of homomorphisms (edge-preserving maps) from H to
G, denoted by #Hom(H → G). Our goal is to determine for which H and G these three
problems are tractable. To formalize what we mean by tractable, we adopt the framework
of parameterized complexity [16]: we say that a problem is fixed-parameter tractable, or in
the class FPT, if it is solvable in time f(|H|) · |G|O(1) for some computable function f . For
instance, we consider as tractable a running time of 2O(|H|) · |G| but not one of |G|O(|H|).
This captures the intuition that H is “small” compared to G, and is the main theoretical
framework for subgraph counting [20]. Thus, the goal of this work is understanding the
fixed-parameter tractability of #Sub(H → G), #IndSub(H → G), and #Hom(H → G) as a
function of H and G. Moreover, when those problems are not fixed-parameter tractable we
aim to show that they are hard for the complexity class #W[1], which can be thought of as
the equivalent of NP for parameterized counting.

We first briefly discuss which properties of G are worthy of attention. When G is the class
of all graphs, it is well known that each of the three problems is either FPT or #W[1]-hard
depending on whether certain structural parameters of H (such as treewidth or vertex cover
number) are bounded or not. Thus, when G is the class of all graphs, the problem is solved.
However, when G is arbitrary, no such characterization is known. This is partly due to the
fact that “natural” structural properties related to subgraph counting are harder to find for G
than for H; subgraph counting algorithms themselves usually exploit the structure of H but
not that of G (think of tree decompositions). There is however one deep structural property
that, if held by G, yields tractability: the property of being nowhere dense, introduced by
Nešetřil and Ossona de Mendez [38]. In a nutshell G is nowhere dense if, for all r ∈ N0, its
members do not contain as subgraphs the r-subdivisions of arbitrarily large cliques; it can be
shown that this generalizes several natural definitions of sparsity, including having bounded
degree or bounded local treewidth, or excluding some topological minor. In a remarkable
result, Nešetřil and Ossona de Mendez proved:
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▶ Theorem 1 (Theorem 18.9 in [39]). If G is nowhere dense then the problems #Hom(H → G),
#Sub(H → G), and #IndSub(H → G) are fixed-parameter tractable and can be solved in
time f(|H|) · |V (G)|1+o(1) for some computable function f .

We note that, in the realm of decision problems, an even more general meta-theorem is
known for first-order model-checking on nowhere dense graphs [27].

Thus the case that G is nowhere dense is closed, and we can focus on its complement –
the case where G is somewhere dense. Hence the question studied in this work is: when are
#Sub(H → G), #IndSub(H → G), and #Hom(H → G) fixed-parameter tractable, provided
that G is somewhere dense?

2 Our Results

We prove dichotomies for #Sub(H → G), #IndSub(H → G), and #Hom(H → G) into FPT
and #W[1]-hard cases, assuming that G is somewhere dense. It is known [43] that a fully
general dichotomy is impossible even assuming that G is somewhere dense; thus we focus
on the natural cases where H and/or G are monotone (closed under taking subgraphs) or
hereditary (closed under taking induced subgraphs). Our dichotomies are expressed in terms
of the finiteness of combinatorial parameters of H and G, such as their clique number or
their induced matching number. Existing complexity dichotomies for subgraph counting are
based on using interpolation to evaluate linear combinations of homomorphism counts [13].
This technique has been exploited for families of host graphs that are closed under tensoring
– the closure is used to create new instances for the interpolation. The host graphs in our
dichotomy theorems do not have this closure property. Nevertheless, we obtain a dichotomy
for all somewhere dense classes using a combination of techniques involving graph fractures
and colourings.

The rest of this extended abstract presents our main conceptual contribution (Section 2.1),
gives a detailed walk-through of our complexity dichotomies (Sections 2.2 - 2.4), provides
some context (Section 3), and overviews the techniques behind our proofs (Section 4). For
full proofs of our claims we refer the reader to the full version of this paper.

Basic preliminaries

We concisely state some necessary definitions and observations. We denote by U the class of
all graphs. We denote by ω(G), α(G), β(G), and m(G) respectively the clique, independence,
biclique, and matching number of a graph G. The notation extends to graph classes by
taking the supremum over their elements. Induced versions of those quantities are identified
by the subscript ind (for instance, mind denotes the induced matching number). Gr denotes
the r-subdivision of G, and F × G denotes the tensor product of F and G. All of our lower
bounds assume the Exponential Time Hypothesis (ETH) [28]; and most of them rule out
algorithms running in time f(k) · no(k/ log k) for any function f , and are therefore tight except
possibly for a O(log k) factor in the exponent.1 All of our #W[1]-hardness results are actually
#W[1]-completeness results; this holds because #Sub(H → G), #IndSub(H → G), and
#Hom(H → G) are always in #W[1] due to a characterisation of #W[1] via parameterised
model-counting problems (see [21, Chapter 14]).

1 This O(log k) gap is not an artifact of our proofs, but a consequence of the well-known open problem
“Can you beat treewidth?” [33, 34].
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27:4 Counting Subgraphs in Somewhere Dense Graphs

2.1 Simpler Hardness Proofs for More Graph Families
Our first and most conceptual contribution is a novel approach to proving hardness of
parameterized subgraph counting problems for somewhere-dense families of host graphs. This
approach allows us to significantly generalize existing results while simultaneously yielding
surprisingly simpler proofs.

The starting point is the observation that proving intractability results for parameterized
counting problems is discouragingly difficult, as it often requires tedious and involved
arguments. For instance, after Flum and Grohe conjectured that counting k-matchings is
#W[1]-hard [20], the first proof required nine years and relied on sophisticated algebraic
techniques [11]. This partially changed in 2017 when Curticapean, Dell and Marx [13] showed
how to express a subgraph count #Sub(H → G) as linear combination of homomorphism
counts

∑
F aF · #Hom(F → G), and that computing that linear combination has the same

complexity as computing the hardest term #Hom(F → G) such that aF ̸= 0; a similar
claim holds for induced subgraph counts as well. Thanks to this technique one can prove
intractability of several subgraph counting problems, including for instance the problem of
counting k-matchings.2 These hardness results ultimately yielded complexity dichotomies for
general subgraph counting problems, including notably #Sub(H → G) and #IndSub(H → G)
when G is the class of all graphs.

The technique of [13] does not work for proving hardness of #Sub(H → G) and
#IndSub(H → G) when G ̸= U . Indeed, one caveat of that technique is that the fam-
ily of host graphs G must satisfy certain conditions. One of those conditions is that G is
closed under tensoring, i.e., that G × G′ ∈ G for all G ∈ G and all G′ ∈ U . The reason is
that the interpolation relies on evaluating, say, Sub(H → G × Gi) for several carefully chosen
graphs Gi, with the goal of constructing a certain invertible system of linear equations;
for this to yield a reduction towards counting patterns in graphs from G, it is crucial that
G × Gi ∈ G for all such Gi (Section 4 gives a concrete example using the problem of counting
k-matchings). This is why the technique of [13] works smoothly for G = U ; closure under
tensoring holds trivially in that case. But many other natural graph families G are not closed
under tensoring, including somewhere dense ones (for instance, the family of d-degenerate
graphs for any fixed integer d ≥ 2). Until now, this has been the main obstacle towards
proving hardness of subgraph counting for arbitrary somewhere dense graph families. The
central insight of our work is that this obstacle can be circumvented in a surprisingly simple
way. Using well-established results from the theory of sparsity, we prove the following claim,
which we explain in detail in Section 4:

Every monotone and somewhere dense class of graphs is closed
under vertex-colourful tensor products of subdivided graphs.

Ignoring for a moment its technicalities, this result allows us to lift the interpolation technique
via graph tensors to any monotone somewhere dense class of host graphs, including for
instance the aforementioned class of d-degenerate graphs. In turn this yields complexity
classifications for #Hom(H → G), #Sub(H → G), and #IndSub(H → G) that subsume
and significantly strengthen almost all classifications known in the literature (see below).
Moreover, our approach yields simple and almost self-contained proofs, helping understand
the underlying causes of the hardness.

2 In the field of database theory a similar technique expressing answers to unions of conjunctive queries
as linear combinations of answers of conjunctive queries was independently discovered by Chen and
Mengel [9].
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2.2 The Complexity of #Sub(H → G)
This section presents our results on the fixed-parameter tractability of #Sub(H → G). We
start by presenting a minimal3 family H for which hardness holds: the family of all k-
matchings (or 1-regular graphs). In this case we also denote #Sub(H → G) as #Match(G).
In the foundational work by Flum and Grohe [20], #Match(U) was identified as a central
problem because of the significance of its classical counterpart (counting the number of
perfect matchings); a series of works then identified #Match(U) as the minimal intractable
case [11, 15, 13]. In this work, we show that #Match(G) is the minimal hard case for every
class G that is monotone and somewhere dense:

▶ Theorem 2. Let G be a monotone class of graphs4 and assume that ETH holds. Then
#Match(G) is fixed-parameter tractable if and only if G is nowhere dense. More precisely,
if G is nowhere dense then #Match(G) can be solved in time f(k) · |V (G)|1+o(1) for some
computable function f ; otherwise #Match(G) is #W[1]-hard and cannot be solved in time
f(k) · |G|o(k/ log k) for any function f .

Theorem 2 subsumes the existing intractability results for counting k-matchings in bipartite
graphs [15], in F -colourable graphs [43], in bipartite graphs with one-sided degree bounds [14],
and in degenerate graphs [7]. It also strengthens the latter result: while [7] establishes
hardness of counting k-matchings in ℓ-degenerate graphs for k + ℓ as a parameter, Theorem 2
yields hardness for d-degenerate graphs for every fixed d ≥ 2.5 Additionally, we show that
Theorem 2 cannot be strengthened to achieve polynomial-time tractability of #Match(G)
for nowhere dense and monotone G, unless #P = P.

As a consequence of Theorem 2 we obtain, for hereditary H, an exhaustive and detailed
classification of the complexity of #Sub(H → G) as a function of invariants of G and H.

▶ Theorem 3. Let H and G be graph classes such that H is hereditary and G is monotone.
Then the complexity of #Sub(H → G) is exhaustively classified by Table 1.

Table 1 The complexity of #Sub(H → G) for hereditary H and monotone G. Here “hard” means
#W[1]-hard and, unless ETH fails, without an algorithm running in time f(|H|)·|G|o(|V (H)|/ log |V (H)|);
“hard†” means the same, but without an algorithm running in f(|H|) · |G|o(|V (H)|).

G n. dense G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
β(G) = ∞

G s. dense
ω(G) < ∞
β(G) < ∞

m(H) < ∞ P P P P

mind(H) = ∞ FPT hard hard hard

mind(H) < ∞, βind(H) = ∞ P hard† hard† P

Otherwise P hard† P P

3 Minimal means that, for every class H′, #Sub(H′ → G) is intractable if and only if the monotone
closure of H′ includes H. The same holds for #IndSub with “monotone” replaced by “hereditary”.

4 We emphasize that we do not need our classes to be computable or recursively enumerable. This is due
to the assumed closure properties of the classes.

5 The class of all d-degenerate graphs is somewhere dense for all d ≥ 2.
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27:6 Counting Subgraphs in Somewhere Dense Graphs

Note that the unique fixed-parameter tractability result in Table 1 is a “real” FPT case: we
can show that, unless P = #P, it is in FPT but not in P.

From the classification of Theorem 3 one can derive interesting corollaries. For example,
when H and G are monotone one has essentially the same classification of the case G = U :
only the boundedness of the matching number of H (or equivalently, of its vertex-cover
number) counts [15].

▶ Theorem 4. Let H and G be monotone classes of graphs and assume that ETH holds. Then
#Sub(H → G) is fixed-parameter tractable if m(H) < ∞ or G is nowhere dense; otherwise
#Sub(H → G) is #W[1]-complete and cannot be solved in time f(|H|)·|G|o(|V (H)|/ log(|V (H)|))

for any function f .

We conclude by remarking that Table 1 and the proofs of its bounds suggest the existence of
three general algorithmic strategies for subgraph counting:
1. If G is nowhere dense (first column of Table 1), then one can use the FPT algorithm of

Theorem 1, based on Gaifman’s locality theorem for first-order formulas and the local
sparsity of nowhere dense graphs (see [39]).

2. If m(H) < ∞ (first row of Table 1), then one can use the polynomial-time algorithm of
Curticapean and Marx [15], based on guessing the image of a maximum matching of H

and counting its extensions via dynamic programming.
3. All remaining entries marked as “P” are shown to be essentially trivial. Concretely, we

will rely on Ramsey’s theorem to prove that minor modifications of the naive brute-force
approach yield polynomial-time algorithms for those cases.

2.3 The Complexity of #IndSub(H → G)

In the previous section we proved that, when G is somewhere dense, k-matchings are the min-
imal hard family of patterns for #Sub(H → G). In this section we show that k-independent
sets play a similar role for #IndSub(H → G). Let #IndSet(G) = #IndSub(I → G) where
I is the set of all all independent sets (or 0-regular graphs). We prove:

▶ Theorem 5. Let G be a monotone class of graphs and assume that ETH holds. Then
#IndSet(G) is fixed-parameter tractable if and only if G is nowhere dense. More precisely,
if G is nowhere dense then #IndSet(G) can be solved in time f(k) · |V (G)|1+o(1) for some
computable function f ; otherwise #IndSet(G) cannot be solved in time f(k) · |G|o(k/ log k)

for any function f .

This result subsumes the intractability result for counting k-independent sets in bipartite
graphs of [12]. It also strengthens the result of [7], which shows #IndSet(G) is hard when
parameterized by k+d where d is the degeneracy of G. More precisely, [7] does not imply that
#IndSet(G) is hard for G being the class of d-degenerate graphs, for any d ≥ 2; Theorem 5
instead proves such hardness for every d ≥ 2. Finally, we point out that the FPT case of
Theorem 5 is not in P unless P = #P.

As consequence of Theorem 5, when H is hereditary (and thus in particular monotone)
we obtain:

▶ Theorem 6. Let H and G be classes of graphs such that H is hereditary and G is monotone.
Then the complexity of #IndSub(H → G) is exhaustively classified by Table 2.
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Table 2 The complexity of #IndSub(H → G) for hereditary H and monotone G. Here
“hard” means #W[1]-hard and, unless ETH fails, without an algorithm running in time
f(|H|) · |G|o(|V (H)|/ log |V (H)|); “hard†” means the same, but without an algorithm running in
f(|H|) · |G|o(|V (H)|).

G n. dense G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
α(G) = ∞

|H| < ∞ P P P

α(H) = ∞ FPT hard† hard

Otherwise P hard† P

2.4 The Complexity of #Hom(H → G)

Finally, we study the parameterized complexity of #Hom(H → G). We denote by tw(H)
the treewidth of a graph H. Informally, graphs of small treewidth admit a decomposition
with small separators, which allows for efficient dynamic programming. In this work we
use treewidth in a purely black-box fashion (e.g. via excluded-grid theorems); for its formal
definition see [16, Chapter 7]. We prove:

▶ Theorem 7. Let H and G be monotone classes of graphs.
1. If G is nowhere dense then #Hom(H → G) is fixed-parameter tractable and can be solved

in time f(|H|) · |V (G)|1+o(1) for some computable function f .
2. If tw(H) < ∞ then #Hom(H → G) is solvable in polynomial time, and if a tree decom-

position of H of width t is given, then it can be solved in time |H|O(1) · |V (G)|t+1.
3. If G is somewhere dense and tw(H) = ∞ then #Hom(H → G) is #W[1]-hard and,

assuming ETH, cannot be solved in time f(|H|) · |G|o(tw(H)) for any function f .
(The novel part is 3.; we included 1. and 2. to provide the complete picture.)

Unfortunately, in contrast to #Sub and #IndSub, we do not know how to extend
Theorem 7 to hereditary H. We point out however that for hereditary H the finiteness of
tw(H) cannot be the correct criterion: if H is the set of all complete graphs and G is the set
of all bipartite graphs, then H is hereditary and tw(H) = ∞, but #Hom(H → G) is easy
since |V (H)| ≤ 2 or #Hom(H → G) = 0. More generally, the complexity of #Hom(H → G)
appears to be far from completely understood for arbitrary classes H. In fact, it has been
recently posed as an open problem even for specific monotone and somewhere dense G such
as the family of d-degenerate graphs [7, 3]. There is some evidence that the finiteness of
induced grid minors is the right criterion for tractability [7].

In what follows we provide a detailed exposition of our proof techniques, starting with a
brief summary of the state of the art.

3 Related Work

The general idea of using interpolation as a reduction technique for counting problems dates
back to the foundational work of Valiant [48]. Roughly speaking, the key to interpolation is
constructing a system of linear equations that is invertible and thus has a unique solution.
For example, in the classic case of polynomial interpolation (where one has to infer the
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coefficients of a univariate polynomial given an oracle that evaluates it) the system corresponds
to a Vandermonde matrix, which is nonsingular and thus invertible. In the case of linear
combinations of homomorphism counts, an invertible system of linear equations can be
constructed via graph tensoring arguments, as proven implicitly by works of Lovász (see
e.g. [32, Chapters 5 and 6]). It was then discovered by Curticapean et al. in [13] that these
interpolation arguments could be extended to subgraph and induced subgraph counts, by
showing that those counts may be expressed as linear combinations of homomorphism counts.
Using this fact, they proved that interpolation through graph tensoring applies to a wide
variety of parameterised subgraph counting problems. However, their technique fails when
one restrict the class of host graphs G, see above; our work shows how to circumvent this
obstacle.

The idea of using graph subdivisions for proving hardness results appeared in the context
of linear-time subgraph counting in degenerate graphs [4, 5, 3]. For example, [4] observed
that counting triangles in general graphs, which is conjectured not to admit a linear time
algorithm, reduces in linear time to counting 6-cycles in degenerate graphs by subdividing
each edge once (which always yields a 2-degenerate graph). Our work makes heavy use of
graph subdivisions as well, although in a more sophisticate fashion. This is not surprising
since, for each d ≥ 2, the class of d-degenerate graphs constitutes an example of a monotone
somewhere dense class of graphs.

4 Overview of Our Techniques

The present section expands upon Section 2.1 and gives a detailed technical overview of
our proofs of hardness for #Sub(H → G) and #IndSub(H → G) (Section 4.1) and for
#Hom(H → G) (Section 4.2). Those hardness proofs contain virtually all the effort in
characterizing the complexity of the problems, since the complexity of the tractable cases
follows mostly from the running time of existing algorithms.

4.1 Classifying Subgraph and Induced Subgraph Counting
We start by analysing a simple case. Recall that a graph family G is somewhere dense
if, for some r ∈ N0, for all k ∈ N there is a G ∈ G such that Kr

k is a subgraph of G.
From this characterization it is immediate that, if G is somewhere dense and monotone,
then it contains the r-subdivisions of every graph. In turn, this implies that detecting
subdivisions of cliques in G is at least as hard as the parameterised clique problem [19].
Since the parameterised clique problem is W[1]-hard, we deduce that #Sub(H → G) and
#IndSub(H → G) are intractable when H = {Kr

k : k, r ∈ N} and G is monotone and
somewhere dense. Unfortunately, it is unclear how to extend this approach to arbitrary H,
since the elements of H are not necessarily r-subdivisions of graphs that are hard to count.
To show how this obstacle can be overcome, we will focus on #Sub(H → G) when H is
the class of k-matchings, M = {Mk : k ∈ N}; in other words, on the problem of counting
k-matchings, #Sub(M → G). This problem will turn out to be the minimal hard case for
#Sub(H → G), and its analysis will contain the key ingredients of our proof. The proof for
#IndSub(H → G) will be similar.

Let us start by outlining the hardness proof of #Sub(M → G) when G = U , by using
the interpolation technique discussed in Section 3. From [13], we know that for every k ∈ N
there is a function ak : U → Q with finite support such that, for every G ∈ U ,

#Sub(Mk → G) =
∑
H

ak(H) · #Hom(H → G) (1)
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where the sum is over all isomorphism classes of all graphs. By a classic result of Dalmau and
Jonsson [17], computing #Hom(H → G) is not fixed-parameter tractable for H of unbounded
treewidth, unless ETH fails. Hence, if we could use (1) to show that an FPT algorithm
for computing #Sub(Mk → G) yields an FPT algorithm for computing #Hom(H → G) for
some H whose treewidth grows with k, we would conclude that computing #Sub(Mk → G)
is not fixed-parameter tractable unless ETH fails. This is what [13] indeed prove. The idea
is to apply (1) not to G, but to a set of carefully chosen graphs Ĝ1, . . . , Ĝℓ such that the
counts #Hom(Mk → Ĝ1), . . . , #Hom(Mk → Ĝℓ) can be used to solve a linear system and
infer #Hom(H → G) for all H appearing on the right-hand side of (1).

Let us explain this idea in more detail. Suppose we had an oracle for #Sub(M → U), so
that we could quickly compute #Sub(Mk → G) for any desired G. Let ℓ be the size of the
support of ak, which as said above is finite and thus a function of k, and let {Gi}i=1,...,ℓ be
a set of graphs such that each Gi has size bounded by a function of k. It is a well-known
fact that, for all graphs H, G, G′,

#Hom(H → G × G′) = #Hom(H → G) · #Hom(H → G′). (2)

By combining (1) and (2), for each i = 1, . . . , ℓ we obtain

#Sub(Mk → G×Gi) =
∑
H

ak(H)·#Hom(H → Gi)·#Hom(H → G) =
∑
H

ak(H)̸=0

bi
H ·XH , (3)

where bi
H := #Hom(H → Gi) and XH := ak(H) · #Hom(H → G). Now, we can compute

#Hom(H → Gi) in FPT time since |Gi| is bounded by a function of k, and we can compute
#Sub(Mk → G × Gi) using the oracle. Therefore, in FPT time we can comput a system of ℓ

linear equations with the XH as unknowns. By applying classical results due to Lovász (see
e.g. [32, Chapter 5]), Curticapean et al. [13] showed that there always exists a choice of the
Gi’s such that this system has a unique solution. Hence, using those Gi’s one can compute
#Hom(H → G) in FPT time for all H with ak(H) ̸= 0. In particular, one can compute
#Hom(Fk → G) where Fk is any k-edge graph of maximal treewidth, since [13] also showed
that ak(H) ̸= 0 for all H with |E(H)| ≤ k. This gives a parameterized reduction from
#Hom(F → U) to #Sub(M → U), where F is the class of all maximal-treewidth graphs Fk.
Since #Hom(F → U) is hard by [17], the reduction establishes hardness of #Sub(M → U)
as desired.

Our main question is whether this strategy can be extended from U to any monotone
somewhere dense class G. This it not obvious, since the argument above relies on two crucial
ingredients that may be lost when moving from U to G:
(I.1) We need to find a family of graphs F̂ = {F̂k | k ∈ N} such that #Hom(F̂ → G) is hard

and, for all k ∈ N, ak(F̂k) ̸= 0.
(I.2) We need to find graphs Gi such that G × Gi ∈ G. This is necessary since the argument

performs a reduction to the problem of counting #Sub(Mk → G × Gi), and is not
straightforward since G × Gi may not be in G even when both G, Gi are.

It turns out that both requirements can be satisfied in a systematic way. First, we study
#Sub(H → G) in some carefully chosen vertex-coloured and edge-coloured version. It is
well-known that the coloured version of the problem is equivalent in complexity (in the
FPT sense) to the uncoloured version; so, to make progress, we may consider the coloured
version. Next, coloured graphs come with a canonical coloured version of the tensor product
which satisfies (2), so we can hope to apply interpolation via tensor products in the colorful
setting, too. The introduction of colours in the analysis of parameterised problems is a
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common tool for streamlining reductions that are otherwise unnecessarily complicated (see e.g.
[15, 41, 18, 22]). The technical details of the coloured version are not hard, but cumbersome
to state; since here we do not need them, we defer them to the full version. Let us now give
a high-level explanation of how we achieve (I.1) and (I.2).

For (I.1), we let F̂ be the class of all r-subdivisions of a family E of regular expander
graphs. A simple construction then allows us to reduce #Hom(E → U), which is known to
be hard, to #Hom(F̂ → Ur), where Ur is the set of all r-subdivisions of graphs. As noted
above Ur ⊆ G, hence #Hom(F̂ → G) is hard. We show in the coloured version that for each
graph Fk ∈ F̂ with k edges, ak(Fk) ̸= 0. Thus, (I.1) is satisfied.

For (I.2) we construct, for each k, a finite sequence of coloured graphs G1, G2, . . . satisfying
the following two conditions: the system of linear equations given by (the coloured version
of) (3) has a unique solution, and the coloured tensor product between each Gi and any
coloured graph in Ur is in G. Concretely, we choose as Gi the so-called fractured graphs
of the r-subdivisions of the expanders in E . Fractured graphs are obtained by a splitting
operation on a graph and come with a natural vertex colouring. They have been introduced
in recent work on classifying subgraph counting problems [41] and we describe them in detail
in the full version.

Together, our resolutions of (I.1) and (I.2) yield a colourful version of the framework
of [13] that applies to any monotone somewhere dense class of host graphs. As a consequence
we obtain that #Hom(E → U), the problem of counting homomorphisms from expanders in
E to arbitrary hosts graphs, reduces in FPT time to #Sub(M → G) whenever G is monotone
and somewhere dense. Since #Hom(E → U) is intractable, this proves the hardness of
#Sub(M → G) for all monotone and somewhere dense G, as stated in Theorem 2. From this
result we will then be able to prove our general classification for #Sub(H → G) (Theorem 3)
by combining existing results and Ramsey-type arguments on H and G.

This concludes our overview for #Sub(H → G). The proofs for #IndSub(H → G) are
similar, but instead of #Sub(M → G), they use as a minimal hard case #IndSet(G), the
problem of counting k-independent sets in host graphs from G.

4.2 Classifying Homomorphism Counting via Wall Minors
The proof of our dichotomy for #Hom(H → G) for monotone H and G (Theorem 7) requires
us to establish hardness when G is somewhere dense and tw(H) = ∞. Recall that our solution
of (I.1) relied on a reduction from (the coloured version of) #Hom(E → U) to (the coloured
version of) #Hom(F̂ → Ur), where E is a family of regular expander graphs, F̂ is the class
of all r-subdivisions of graphs in E , and Ur is the class of r-subdivisions of all graphs. Since
for all monotone somewhere dense classes G there is an r such that Ur ⊆ G, we would be
done if we could make sure that every monotone class of graphs of unbounded treewidth H
contains F̂ as a subset. Unfortunately, this is not the case. As a trivial example, H could
be the class of all graphs of degree at most 3 while E is a family of 4-regular expanders.
Straightforward weakenings of this condition also fail.

To circumvent this problem, we use a result of Thomassen [45] to prove that, for every
positive integer r and every monotone class of graphs H with unbounded treewidth, the
following holds: for each wall Wk,k, the class H contains a subdivision of Wk,k in which each
edge is subdivided a positive multiple of r times. Now, the crucial property of the class of
all walls W := {Wk,k | k ∈ N} is that #Hom(W → U) is intractable by the classification of
Dalmau and Jonsson [17]. Refining our constructions based on subdivided graphs, we are
then able to show that #Hom(W → U) reduces to #Hom(H → G) whenever H is monotone
and of unbounded treewidth, and G is monotone and somewhere dense. Theorem 7 will then
follow as a direct consequence.
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5 Outlook

Due to the absence of a general dichotomy [43], the following two directions are evident
candidates for future analysis.

Hereditary Host Graphs

Is there a way to refine our classifications to hereditary G? While such results would naturally
be much stronger, we point out that a classification of general first-order (FO) model-checking
and model-counting in hereditary graphs is wide open. Concretely, even if H = U , it currently
seems elusive to obtain criteria for hereditary G which, if satisfied, yield fixed-parameter
tractability of #Sub(H → G), #IndSub(H → G), and #Hom(H → G) and which, if not
satisfied, yield #W[1]-hardness of those problems. In a nutshell, the problem is that there
are arbitrarily dense hereditary classes of host graphs for which those problems, and even
the much more general FO-model counting problem, become tractable; a trivial example is
given by G being the class of all complete graphs. See [23, 25, 26] for recent work on specific
hereditary hosts and [24, 6] for general approaches to understand FO model checking on
dense graphs.

Arbitrary Pattern Graphs

Can we refine our classifications to arbitrary classes of patterns H, given that we stay in
the realm of monotone classes of hosts G? We believe this question is the most promising
direction for future research. While a sufficient and necessary criterion for the fixed-parameter
tractability of, say #Sub(H → G), must depend on the set of forbidden subgraphs of G, we
conjecture that the structure of monotone somewhere dense graph classes is rich enough to
allow for an explicit combinatorial description of such a criterion. In fact, such criteria have
already been established for some specific classes of host graphs, e.g. bipartite graphs [15]
and degenerate graphs [7].
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Abstract
In a monogamy-of-entanglement (MoE) game, two players who do not communicate try to simul-
taneously guess a referee’s measurement outcome on a shared quantum state they prepared. We
study the prototypical example of a game where the referee measures in either the computational or
Hadamard basis and informs the players of her choice.

We show that this game satisfies a rigidity property similar to what is known for some nonlocal
games. That is, in order to win optimally, the players’ strategy must be of a specific form, namely a
convex combination of four unentangled optimal strategies generated by the Breidbart state. We
extend this to show that strategies that win near-optimally must also be near an optimal state of
this form. We also show rigidity for multiple copies of the game played in parallel.

We give three applications: (1) We construct for the first time a weak string erasure (WSE)
scheme where the security does not rely on limitations on the parties’ hardware. Instead, we add
a prover, which enables security via the rigidity of this MoE game. (2) We show that the WSE
scheme can be used to achieve bit commitment in a model where it is impossible classically. (3) We
achieve everlasting-secure randomness expansion in the model of trusted but leaky measurement
and untrusted preparation and measurements by two isolated devices, while relying only on the
temporary assumption of pseudorandom functions. This achieves randomness expansion without
the need for shared entanglement.
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1 Introduction

Monogamy-of-entanglement (MoE) games provide an intuitive way to understand the strength
of quantum multipartite correlations. Such games pit two cooperating players, usually named
Bob and Charlie, against an honest referee, Alice. The players try, without communicating,
to simultaneously guess the outcome of Alice’s measurement on a quantum state provided
by the players and with which they may share entanglement freely. Interestingly, any one of
the players can always correctly guess the result of any projective measurement Alice makes,
by providing her with one register of a maximally entangled state, whereas two players are
prohibited from simultaneously doing as well since tripartite correlations of the shared state
are weaker.
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The quintessential MoE game is the original example introduced by Tomamichel, Fehr,
Kaniewski, and Wehner [35]. In this game, Alice’s space consists of a single qubit and
she measures either in the computational or the Hadamard basis with equal probability to
get a one-bit answer. As shown there, Bob and Charlie can win with probability at most
cos2 π

8 ≈ 0.85. The TFKW game has a particularly simple optimal strategy: Bob and Charlie
share no entanglement; they just send Alice a pure Breidbart state |β⟩ ∝ |0⟩+ |+⟩, and always
guess 0 for the measurement outcome. Due to the symmetries of Alice’s measurement bases
under the Pauli operators, there are 4 optimal unentangled strategies: the Wiesner-Breidbart
states |β⟩, X|β⟩, Z|β⟩, XZ|β⟩, illustrated in Figure 1. But the question remains: are these
all the possible optimal strategies or are there optimal strategies where the players use
entanglement? This question is tantamount to asking about the rigidity of the TFKW game.

The idea of rigidity, first formally introduced by Mayers and Yao [24], is that certain
games can be used to “self-test” quantum states: if such a game is won with high enough
probability, then the self-test property tells us that the players must hold some quantum state,
up to local isometry. Up until now, the study of rigidity has been limited to nonlocal games.
This area of study grew around the CHSH game, introduced by Clauser, Horne, Shimony, and
Holt [8], was known, even before rigidity was formalised, to self-test a maximally-entangled
state on two qubits [36]. This result was later extended to be robust [25] and to hold under
parallel repetition [9]. Rigidity of nonlocal games has found many applications [17,31].

Our main contribution is to prove the first rigidity result for a monogamy-of-entanglement
game:

▶ Main Theorem (informal). The state of any optimal strategy for the TFKW game is given
as a convex combination of the unentangled optimal states |β⟩, X|β⟩, Z|β⟩, XZ|β⟩. This is
robust and extends to multiple rounds played in parallel.

Here, by convex combination, we mean a superposition of separable states where the
components on Alice’s register are the Wiesner-Breidbart states and the components on Bob
and Charlie’s register are simultaneously distinguishable by a measurement. A similar notion
of rigidity holds for some nonlocal games [22]. This requirement on optimal strategies of
the TFKW game forces Bob and Charlie to not use any of their shared entanglement while
playing.

For applications, it is often necessary to extend the rigidity result to be robust and
to the scenario where games are played in parallel, because playing the game once gives
no information on the winning probability. What can be done to remedy this is to play
many rounds at the same time to build up statistics about the win rate. This requires the
result to be robust – a guarantee that the state is near-optimal if the winning probability
is near-optimal. Also, the result needs to hold for games played in parallel, to ensure that
there is no way entanglement helps in winning multiple games optimally.

Application: Weak string erasure and bit commitment

We construct for the first time a weak string erasure (WSE) scheme that is secure against
adversaries with unrestricted quantum systems. WSE is a cryptographic primitive introduced
by König, Wehner, and Wullschleger [19] that allows the sharing of partial information
between mistrustful parties, a sender Alice and a receiver Bob. WSE implies both bit
commitment and oblivious transfer. Since these are information-theoretically impossible in
both the classical and quantum plain model [7, 21, 23], additional assumptions are necessary
to be able to realise WSE. In [19], they use a noisy-storage model to limit the amount of
storage a dishonest party can access.
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|0⟩

|1⟩

|+⟩|−⟩

|β⟩

X|β⟩XZ|β⟩

Z|β⟩

Figure 1 Positions of the Wiesner-Breidbart states on the Bloch sphere. They form a pair of
bases analogous to the conjugate-coding bases, but rotated by π

4 so that each vector is located at
the midpoint between a vector from the computational basis and one from the Hadamard basis.

In our model, we introduce a third party, a prover Charlie in full collusion with Bob
but isolated from him. Under the assumption of a public broadcast from Alice to Bob and
Charlie, we exploit the rigidity of the TFKW game to arrive at a secure scheme for WSE,
which requires no entanglement and may be run in one round – it can be realised as a
relativistic prepare-and-measure scheme.

Two-prover bit commitment was studied before in the classical context [3], where it was
shown that separating the sender into two isolated parties can be used to ensure the binding
property (see also [13]). In contrast, the WSE that we achieve implies, using [19], a bit
commitment with two isolated receivers and a single sender. To the best of our knowledge,
this is the first such scheme; furthermore, we show that, with classical communication only,
our model reduces to the single-receiver model, so we have identified a new qualitative
advantage for quantum communication in cryptography.

Application: Everlasting randomness expansion

Randomness is a precious resource for computation and cryptography. Pseudorandom
generators are functions that produce large amounts of randomness from a small random
seed, but the quality of this randomness is inherently based on a computational assumption,
e.g. one-way functions. Thus, given sufficient computational power or time, an adversary can
eventually break the scheme.

Quantum entanglement has long been known to provide an advantage in creating uncon-
ditionally secure randomness [1, 11]. Due to the randomness inherent in quantum mechanics,
verifying that two isolated parties violate a Bell inequality provides intrinsic, fresh random-
ness, which can be used to yield exponential randomness expansion [38]. Further, using
the rigidity of the CHSH game, it is possible to guarantee that the randomness is secure
against side information, providing arbitrarily large randomness expansion [12]. The technical
difficulty with these schemes is that they require entanglement between isolated parties,
which remains difficult to generate in sufficient quantities.

Here, we give a protocol where entanglement between isolated parties is not required in
order to expand randomness, using the rigidity of TFKW. To allow Alice to start with only a
small random seed, the questions she asks are pseudorandom rather than uniformly random,
requiring a computational assumption to hold during the interaction of the protocol, after
which the output randomness becomes nearly identical to uniform, providing everlasting
security [33,37]. By verifying a near-optimal strategy, Alice extracts randomness using her
knowledge of the state. Furthermore, we note that in our model, all of the measurement
settings Alice uses can be leaked as she measures, without compromising the security or
uniformity of the randomness.

ITCS 2023
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1.1 Summary of Techniques

In this section, we summarise the techniques used to show our results. First, we mention
our interpretation of MoE games, and then go through the general method we follow to
prove rigidity of the TFKW game and apply it to achieve weak string erasure and everlasting
randomness expansion.

Monogamy-of-entanglement games

We give an expression of a two-answer MoE game, such as the TFKW game, in terms of a
game polynomial where the variables are Bob and Charlie’s observables. In this way, we may
study the strategies of a game by studying the positivity of this operator-valued polynomial.
This technique expands upon one that has been used previously to study nonlocal games [14].

Rigidity

We present a sum-of-squares (SOS) decomposition of the game polynomial for the TFKW
game. The state |ψ⟩ of any optimal strategy is an eigenspace of the game polynomial in terms
of the observables of that strategy, which provides a selection of relations for the observables.
There are two types of relations that come out: one allows to exchange Bob and Charlie’s
observables and the other gives that |ψ⟩ is an eigenvector of a particular sum of observables.
In particular, these imply that either of the players’ observables must commute with respect
to the state, generating a |ψ⟩-representation of Z2

2. As such, we invoke the Gowers-Hatami
theorem as in [39] to locally dilate the players’ space isometrically and transform this into a
bona fide representation. These observables are simultaneously diagonalisable, so the dilated
shared space can be decomposed as a direct sum of orthogonal subspaces on which they
act as scalars. Returning to the relations from the SOS decomposition using the dilated
observables allows us to constrain where the shared state lives in this orthogonal sum and
show that the components on Alice’s space must take the form Xs0Zs1 |β⟩.

We then build on this technique to show the rigidity in the robust case. Here, however,
since the winning probability is assumed to be some ε > 0 smaller than optimal, the value
of each of the terms in the SOS decomposition are not zero when acting on the state, but
rather in O(ε). Nevertheless, we can use the relations to get an approximate representation,
which we dilate similarly with Gowers-Hatami. This cannot give that the state is exactly a
convex combination as above, but rather that its projection onto the unwanted subspaces is
small, giving that this is O(

√
ε) close to an optimal state.

The most general rigidity result we prove is the robust case of the parallel repetition of
TFKW games. To generalise the exact-case method, we use a technique of [9] to extract
sufficiently many strategies for TFKW that win near-optimally. Proceeding by showing a
relation between the near-optimal strategies on each qubit, we get that the state is O(n3√

ε)
away from an optimal state given by a convex combination of tensor product of states
Xs0Zs1 |β⟩.

Finally, we adapt a technique of [31] to be able to pass from winning statistics Alice may
observe when playing TFKW games in parallel to a guarantee on the winning probability of
a large subset of the games. Knowing upper bounds on the winning probability of each of
the games, we can couple independent Bernoulli random variables to each game, and use
Hoeffding’s inequality to show that there is but a low probability that the players win most
games while the winning probability for too many of them is more than ε away from optimal.
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Weak string erasure

We construct a WSE scheme whose security is based upon the rigidity of the TFKW game.
The receiver Bob prepares a state ρABC shared between Alice, Bob, and Charlie, where
Alice holds N ∈ poly(n) qubits. In the honest case, this has the form of an optimal state
for the parallel-repeated TFKW game, which Alice verifies by playing the game on N − n

of her qubits. On the remaining n qubits, however, she measures in a random Wiesner-
Breidbart basis, i.e. either the basis |β⟩, XZ|β⟩ or the basis Z|β⟩, X|β⟩. Informing Bob
which basis she chose for these n qubits, he may guess on average half of the bits and have
no information about the rest. This provides security against a dishonest Bob. For security
against a dishonest Alice, we note that the rigidity still gives Bob the freedom to choose
the Wiesner-Breidbart state on the register he gives to Alice. It can be seen from Figure 1
that these states constitute a pair of mutually-unbiased bases. Therefore, if Bob chooses
the state randomly, this eliminates Alice’s chance of guessing which bits he knows. The
isolation requirement between Bob and Charlie is necessary to prevent an attack where they
jointly share a maximally entangled state with Alice and then can always measure each bit
in the correct basis. The requirement that Alice broadcast publicly which n bits are used to
generate the output string is to prevent an attack where she asks Bob and Charlie to play
the TFKW game on different bits, and uses Charlie’s replies to extract information about
Bob’s prepared conjugate-coding basis.

Everlasting Randomness Expansion

We use the rigidity of the TFKW game, as well as a computational assumption on the
existence of pseudorandom generators, to construct a randomness expansion scheme that is
everlasting, in the sense that the output randomness is guaranteed to be near-uniform in
trace norm, as long as the computational assumption is not broken during the execution of
the protocol. As in the previous protocol, Alice interacts with a pair of adversaries, Bob
and Charlie, and they play the TFKW game on N − n of the qubits. However, rather than
choosing the locations and questions for the TFKW game rounds uniformly at random, she
chooses them by sampling the output of a pseudorandom generator, given a random seed.
Bob and Charlie, who are assumed to be computationally bounded, have only a negligible
probability of distinguishing this from the uniformly random case, and thus this check has
only a negligibly small probability of failure. Alice measures each of the remaining n qubits
in the basis |0⟲⟩, |1⟲⟩ that diagonalises the Pauli Y operator. Since this basis is mutually
unbiased with both of the Wiesner-Breidbart bases, the outcome is nearly uniformly random,
and neither Bob nor Charlie have information on what this outcome is, as long as they stay
isolated.

Further Related Work
The study of monogamy-of-entanglement games is a burgeoning field in quantum information,
with several applications to cryptography. Johnston, Mittal, Russo, and Watrous [18] adapted
the overlap technique of [35] to show that all MoE games with two questions can be won using
an unentangled strategy and satisfy perfect parallel repetition, and gave a generalisation
of the NPA hierarchy [27] that can be used on MoE games. Broadbent and Lord [6] used
the TFKW game to study uncloneable encryption in the quantum random oracle model.
Most recently, Coladangelo, Liu, Liu, and Zhandry [10] defined a new MoE game of a slightly
different style where Bob and Charlie try to guess different strings, for which an upper
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bound on the winning probability was shown by Culf and Vidick [15] using overlaps. In [10],
they use this game along with some computational assumptions to construct schemes for
uncloneable decryption and copy-protection of pseudorandom functions.

Our randomness expansion scheme may be contrasted with the work of Brakerski, Chris-
tiano, Mahadev, Vazirani, and Vidick [4], where they also use a short-term computational
assumption to achieve everlasting randomness expansion. They use the learning with errors
(LWE) assumption to construct noisy trapdoor claw-free functions, to verify that an untrusted
quantum device approximately prepares states in the Hadamard basis. This protocol does not
require a communication assumption or a trusted measurement, but it requires a particular
computational assumption and a full fault-tolerant quantum computer in the honest case.
Less demanding models, where some aspects of the devices are trusted, have also been
considered. In a semi-device-independent model, it is assumed that the dimensions of the
devices’ Hilbert spaces are constrained [30]. Randomness expansion schemes in this model
do not require entanglement, but make use of strong assumptions on the devices: a finite
distribution of states and measurements, and no entanglement with another system [20].
There are also more asymmetric models, like quantum steering, where one of the devices
may be completely trusted while the other is untrusted [5].

1.2 Outline

In Section 2 we present the notation and technical facts from the theories of quantum inform-
ation, probability, and approximate representation of finite groups that we use throughout
the paper. Next, in Section 3, we formally define the concept of a monogamy-of-entanglement
game and present different ways of understanding the winning probabilities of strategies for
these games. In Section 4, we prove rigidity for the TFKW game. Our most general rigidity
results are given by Theorem 18 and Theorem 21. Lastly, in Section 5 we apply the rigidity
result to construct a weak string erasure scheme, which we relate to a construction of bit
commitment; and combine it with a computational assumption to construct a everlasting
randomness expansion scheme.

2 Preliminaries

In this section, we go over the basic technical facts needed in the remainder of the paper.
First, in Section 2.1, we introduce the general notation we use, which is largely standard.
Next, in Section 2.2, we go over the basic objects from quantum information theory we need,
including the definitions and properties of some important states and operators on the space
of a qubit we see throughout. In Section 2.3, we touch on some notation and results from
probability theory. Finally, in Section 2.4, we recall some results from the representation
theory of finite groups and its generalisation to approximate representations. We also prove
that operators we encounter later generate approximate representations.

2.1 Notation

A Hilbert space is a C-vector space with an inner product that is complete as a metric
space. Here, we only consider finite-dimensional Hilbert spaces so the completeness is always
guaranteed. As is customary, we use Dirac bra-ket notation. For a one-dimensional Hilbert
space, we write |v⟩ to mean spanC{|v⟩} when there is little chance of confusion.
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Let H and K be Hilbert spaces. We denote the space of all linear operators H → K as
L(H,K), and write L(H) := L(H,H). We denote the set of these operators P(H) and often
write P ≥ 0 to mean P ∈ P(H). The set of isometries is U(H,K) and the set of unitaries is
U(H) = U(H,H). Operators A,B ∈ L(H) are said to commute if AB = BA and anticommute
if AB = −BA. The commutator of two operators is [A,B] = AB −BA.

We consider the natural numbers to be N = {1, 2, 3, . . .}, and for n ∈ N write the subset
[n] = {1, . . . , n} ⊆ N. We see elements of the vector space Zn

2 for n ∈ N as bit strings, so
we write them as a concatenation x = x1x2 . . . xn. We define, for i ∈ [n], 1i ∈ Zn

2 as the
bit string that is 1 in position i and 0 elsewhere. Analogously, for a subset I ⊆ [n], write
xI = xi1xi2 . . . xik

for I = {i1, . . . , ik} with i1 < i2 < . . . < ik; and 1I ∈ Zn
2 the string that is

1 at indices in I and 0 elsewhere.

2.2 Quantum Information
The classical states of a system are represented by a finite set H called a register. The pure
quantum states are represented by superpositions of elements of the register, so vectors with
norm 1 in the Hilbert space H = spanC {|h⟩|h ∈ H} ∼= C|H|, where the spanning set is an
orthonormal basis. More generally, a quantum state may be seen as a mixed state, which is
represented as a density operator, a positive, trace-one operator. We write this set D(H) of
density operators. Every mixed state may be purified by appending some auxiliary register.
We call a state classical if it is diagonal in the canonical basis of H – it corresponds exactly
to a probability distribution on H.

A quantum measurement is represented by a positive operator-valued measurement
(POVM), which is a map P : X → P(H), x 7→ Px where X is the (finite) set of possible
measurement outcomes and

∑
x Px = IH . The probability of measuring outcome x given

a state ρ ∈ D(H) is given by Born’s rule as Tr(Pxρ). Again, any measurement may be
purified, by adding auxiliary registers, to a projector-valued measurement (PVM), which is a
measurement where the Px are orthogonal projectors PxPy = δx,yPx.

Given two registers H and K, the corresponding joint quantum system is given by the
tensor product Hilbert space H ⊗ K. If necessary, we (perhaps inconsistently) add the name
of the register as a subscript onto a state/operator to distinguish which register it acts
on/belongs to. A state |ψ⟩ ∈ H ⊗ K is separable if it can be written as a pure tensor of the
form |ψ⟩ = |v⟩H ⊗|w⟩K . Otherwise, the state is entangled. An operation is local if it acts as a
pure tensor. The partial trace of a register H is the linear map TrH : L(H⊗K) → L(K) defined
on pure tensors as TrH(A⊗B) = Tr(A)B (and extended linearly), corresponding to making
a measurement on the space H and then forgetting the result. For a state ρHK ∈ D(H ⊗ K),
we write the state on H as ρH = TrK(ρHK).

The Euclidean norm ∥|v⟩∥ =
√

⟨v|v⟩ gives the appropriate distance metric between pure
states. For mixed states, we use the trace distance dTr(ρ, σ) = ∥ρ−σ∥Tr = 1

2 Tr|ρ−σ|, where
the absolute value of an operator is |L| =

√
L†L. For other operators, we use the operator

norm ∥L∥ = sup
{

∥L|v⟩∥
∣∣ ⟨v|v⟩ = 1

}
.

An important system is the bit Q = Z2 = {0, 1}, and its corresponding Hilbert space,
the qubit Q ∼= C2. The basis {|0⟩, |1⟩} is the computational basis and the basis {|+⟩, |−⟩}
where |+⟩ = 1√

2 (|0⟩ + |1⟩) and |−⟩ = 1√
2 (|0⟩ − |1⟩) is the Hadamard basis. The Hadamard

operator is the Hermitian unitary H : Q → Q that maps the computational basis to the
Hadamard basis, which is expressed in either basis as H = 1√

2 [ 1 1
1 −1 ]. In the computational

basis, the Pauli operators are Z = [ 1 0
0 −1 ], X = [ 0 1

1 0 ], and Y = [ 0 −i
i 0 ]. It is direct to check

that Z and X anticommute, and that the Hadamard diagonalises X, so that X = HZH.
We define the Breidbart operator b : Q → Q as the Hermitian unitary that diagonalises

ITCS 2023
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H, so H = bZb and in the computational basis b = [ cos π
8 sin π

8
sin π

8 − cos π
8

]; and the Breidbart state
|β⟩ = b|0⟩. Important relations that follow from the definition are H|β⟩ = |β⟩, Z|β⟩ = b|+⟩,
X|β⟩ = b|−⟩, and ZX|β⟩ = b|1⟩. Finally, we define the conjugate-coding/Wiesner/BB84
states on n ∈ N qubits for x, θ ∈ Zn

2 as |xθ⟩ = Hθ|x⟩ = Hθ1 |x1⟩ ⊗ · · · ⊗Hθn |xn⟩ ∈ Q⊗n; and
we also call the states b⊗n|xθ⟩ the Wiesner-Breidbart states.

More details are given in any of the many resources for quantum information, such
as [28,40].

2.3 Probability
Any probability distribution on a finite set X may be represented by a function π : X → [0, 1]
such that

∑
x∈X π(x) = 1. Then, the probability of an event S ⊆ X is Pr(S) =

∑
x∈S π(x).

For any function f : X → V, where V is a C-vector space, we write the expectation
value with respect to this distribution as Ex←π f(x) =

∑
x∈X π(x)f(x). We distinguish the

uniform probability distribution u : X → [0, 1], which is u(x) = 1
|X| ; and we write Ex∈X to

mean Ex←u. Any probability distribution π on X can be represented as a classical state
µπ = Ex←π |x⟩⟨x| ∈ D(X), where we write in particular the maximally mixed state as the
classical state of the uniform distribution µX := µu. For a random variable Γ, we use the
same notation Ex←Γ to denote x sampled from the image of Γ with repsect to its distribution.
If Γ has image in a vector space, we write its expectation as Ex←Γ x = EΓ. An important
bound we make use of is Hoeffding’s inequality. Let Γ1, . . . ,Γn be independent random
variables with image in [0, 1], and write their sum Γ = Γ1 + . . .+ Γn. The inequality states
that for any t ≥ 0, Pr(Γ − EΓ ≥ t) ≤ e−2 t2

n .

2.4 Exact and Approximate Representation Theory
Throughout this section, let G be a finite group. A unitary representation of G over C is a
group homomorphism γ : G → U(V), where V is a finite-dimensional C-vector space. Let
Irr(G) be a set of representatives for the isomorphism classes of the irreducible representations;
Irr(G) has finitely many elements and the sum

∑
γ∈Irr(G) dγ Tr(γ(g)) = |G|δg,1, where dγ is

the dimension of the representation γ. The only irreducible representations of an Abelian
group are 1-dimensional. The important example we see in this paper is Zn

2 under addition.
The irreducible representations are indexed by the elements s ∈ Zn

2 , and they take the form
γs(x) = (−1)x·s, where x · s = x1s1 + x2s2 + . . .+ snxn. Complete explanations are available
from many perspectives, such as [32,41]. We now go into rather more detail about the theory
of approximate representations, which hinges on a result of Gowers and Hatami [16].

▶ Definition 1. Let V and W be Hilbert spaces and let |ψ⟩ ∈ V ⊗ W. For ε ≥ 0, an
(ε, |ψ⟩)-representation of G is a map f : G → U(V) such that, for every y ∈ G,

E
x∈G

∥(f(x)f(y) − f(xy))|ψ⟩∥2 ≤ ε2. (1)

The following theorem characterises how close an approximate representation is to a true
representation. Note that it has a slightly different form from how they were presented in
previous work [14,39]. The proof is given in the full version and is almost identical to the
proof of [39].

▶ Theorem 2 (Gowers-Hatami). Let f : G → U(V) be a (ε, |ψ⟩)-representation. Then, there
exists a Hilbert space V′, an isometry V : V → V′, and a representation g : G → U(V′) such
that, for any x ∈ G, ∥(V f(x) − g(x)V )|ψ⟩∥ ≤ ε.
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Later, we naturally come across approximate representations of Zn
2 . These representations

are induced by approximate commutation relations of the generators. To show they are
in fact approximate representations, we need to relate approximate commutation of the
generators to approximate commutation of all the elements. The proofs of these results
are provided in the full version. First, we tackle the case that needs no extra assumptions,
G = Z2

2.

▶ Lemma 3. Let V and W be Hilbert spaces, let |ψ⟩ ∈ V ⊗ W, and let U0, U1 ∈ U(V) be self-
inverse such that ∥[U0, U1]|ψ⟩∥ ≤ δ, for some δ ≥ 0. Then, the function f : Z2

2 → U(V) defined
by f(00) = I, f(01) = U0, f(10) = U1, and f(11) = U0U1 is an ( δ√

2 , |ψ⟩)-representation of
Z2

2.

Extending a result of this form to Zn
2 for n > 2 requires another condition on the unitaries,

in order to be able to use the commutation with respect to |ψ⟩ even when there are operators
sitting between the state and the unitaries. To do this, we impose an additional relation,
arising from our sum-of-squares decomposition, which allows to swap operators onto another
register while incurring only a small error.

▶ Lemma 4. Let V,W be Hilbert spaces, let |ψ⟩ ∈ V ⊗ W, and let U1, ..., Un, V1, ..., Vn ∈ U(V)
be a collection of self-inverse unitaries such that ∥[Ui, Uj ]|ψ⟩∥ ≤ δ, ∥Ui|ψ⟩ − Vi|ψ⟩∥ ≤ ϵ, and
[Ui, Vj ] = 0 for some δ, ϵ ≥ 0. Then, the map f : Zn

2 → U(V) defined as f(x) = Ux :=
Ux1

1 · · ·Uxn
n , is an (n2(3ϵ+ δ), |ψ⟩)-representation of Zn

2 .

3 Monogamy-of-Entanglement Games

In this section, we formally introduce the concept of a MoE game. In Section 3.1, we define
MoE games and how to play them, and introduce the game from [35] we study in this paper.
In Section 3.2, we introduce a different way to look at winning a game, and use this to get
an algebraic approach, adapted from a technique for nonlocal games [2], to upper bounding
the winning probability.

yB

y

yC

ρ Bob

Alice

Charlie

Θ

Figure 2 Scenario of a monogamy-of-entanglement game. Note that Alice’s measurements, though
not included in the diagram, are fixed by the description of the game.

3.1 Definitions
Informally, a monogamy-of-entanglement (MoE) game is a game played by three quantum
parties: a trusted referee, Alice, against two collaborating adversaries, Bob and Charlie, who
may agree on a strategy but do not communicate while the game is in play. Such a game is
played as follows:
1. The adversaries prepare a quantum state ρABC shared between the three players. After

this, they may no longer communicate.
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2. Alice chooses a measurement to make on her space and provides Bob and Charlie the
information about what measurement she chose.

3. Alice measures, and Bob and Charlie both try to guess her outcome using their parts of
the state.

4. The adversaries win the game if they simultaneously guessed Alice’s outcome correctly.
The setup for a generic MoE game is given in Figure 2. Note that if there were only one
adversary, they would always be able to guess Alice’s measurement (as long as it is projective)
by sharing a maximally entangled state. However, this is not in general true for MoE games
because there is no maximal tripartite entanglement. We can define such a game more
formally as follows.

▶ Definition 5. An monogamy-of-entanglement (MoE) game is a tuple G = (Θ, Y,A, π, A),
where

Θ is a finite set representing the possible questions;
Y is a finite set representing the possible answers;
A is the complex Hilbert space that Alice holds;
π : Θ → [0, 1] is a function representing the probability that Alice chooses each question;
A : Θ × Y → P(A), (θ, y) 7→ Aθ

y is a function where, for each θ, Aθ : Y → P(A) is a
POVM.

The strategies Bob and Charlie may use are constrained only by the laws of quantum
mechanics. There are other classes of strategies based on other resource theories [18] that
are not studied here.

▶ Definition 6. A quantum strategy for an MoE game G = (Θ, Y,A, π, A) is a tuple S =
(B,C, B, C, ρ), where

B and C are the complex Hilbert spaces that Bob and Charlie hold, respectively;
B and C are Bob and Charlie’s quantum measurements, so positive operator-valued
functions B : Θ × Y → P(B), (θ, y) 7→ Bθ

y and C : Θ × Y → P(C), (θ, y) 7→ Cθ
y , such

that Bθ and Cθ are POVMs.
and ρ ∈ D(A ⊗ B ⊗ C) is a shared quantum state.

▶ Definition 7. The winning probability of a strategy S for a game G is

wG(S) = E
θ←π

∑
y∈Y

Tr
[(
Aθ

y ⊗Bθ
y ⊗ Cθ

y

)
ρ
]
. (2)

The optimal winning probability of the game is the supremum over strategies wG = supS wG(S).

Note that there is no a strategy that wins with probability wG if the set of winning
probabilities is not closed. The MoE game we study here is the original game of this kind
introduced in [35], where they find that the winning probability of the TFKW game is about
0.85.

▶ Definition 8. The TFKW game is the MoE game TFKW = (Z2,Z2,Q,u, A), where u(θ) = 1
2

is the uniform distribution and Aθ
y = |yθ⟩⟨yθ|.

▶ Theorem 9 ([35]). wTFKW = cos2(
π
8

)
= 1

2 + 1
2
√

2 .

The canonical strategy for this game is unentangled, i.e. Bob and Charlie share no
entanglement: they simply provide Alice with the Breidbart state |β⟩ and always guess
outcome 0. Note that there are optimal strategies using any of the single-qubit Wiesner-
Breidbart states due to the symmetries of Alice’s measurement operators. The behaviour of
these strategies is given in Table 1.
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Table 1 Answers y for the unentangled optimal strategies of the TFKW game. Bob and Charlie
reply with the same answer, depending on both θ and the Wiesner-Breidbart state they chose.

State θ = 0 θ = 1

|β⟩ 0 0
Z|β⟩ 0 1
X|β⟩ 1 0

XZ|β⟩ 1 1

A result of [35] gives that a strategy for an MoE game may be assumed to be pure, i.e.
the shared state is pure and Bob and Charlie’s measurements are projective.

▶ Theorem 10 ([35]). A strategy S = (B,C, B,C, ρ) for an MoE game G may be purified to a
pure strategy S̃ = (B̃, C̃, B̃, C̃, ρ̃), where B̃ and C̃ are projective and ρ̃ = |ψ⟩⟨ψ| is pure, that
wins with the same probability.

We called a strategy purified if it is pure as in the above lemma, but there additionally
exists an auxiliary register R to which none of the players have access, such that |ψ⟩ ∈
A ⊗ B ⊗ C ⊗ R. In this way, we may reach the state of any general strategy simply by tracing
out this independent.

One way to construct new MoE games is using parallel repetition. Given an MoE
game G, a parallel repetition is the game where G is played some fixed number of times n
simultaneously. To win the parallel repetition, the adversaries must win all n copies of G.

▶ Definition 11. Let G = (Θ, Y,A, π, A) be an MoE game and let n ∈ N. The n-fold
parallel repetition of G is the MoE game Gn =

(
Θn, Y n,A⊗n, πn, An

)
for πn(θ1, . . . , θn) =

π(θ1) · · ·π(θn) and (An)(θ1,...,θn)
(y1,...,yn) = Aθ1

y1
⊗ · · · ⊗ Aθn

y1
.

For convenience, we write in general A⊗n = A1 ⊗ · · · ⊗ An where Ai = A, to distinguish
terms in different positions. The major result of [35] is that they show that the adversaries
cannot do better at the parallel-repeated TFKW game than by just playing a separate
optimal strategy of the single game on each copy. This leads to an exponentially-decreasing
bound on the winning probability.

We use a different notion of winning probability here. Instead of considering the probability
of winning all the games at once, we consider the probability for each game using the same
strategy.

▶ Definition 12. Let G = (Θ, Y,A, π, A) be an MoE game, let i ∈ [n], and S = (B,C, B,C, ρ)
be a strategy for Gn. Then, the i-th winning probability of Gn is

wi
Gn(S) = E

θ←πn

∑
y∈Y

Tr
[(
Aθ

y,i ⊗Bθ
y,i ⊗ Cθ

y,i

)
ρ
]
, (3)

where Aθ
y,i =

∑
x∈Y n

xi=y
(An)θ

x and Bθ
y,i =

∑
x∈Y n

xi=y
Bθ

x with analogous definition for Cθ
y,i.

Due to the tensor product structure of An, Aθ
y,i depends only on the i-th element of θ.

Explicitly, Aθ
y,i = I1 ⊗ · · · ⊗ Ii−1 ⊗Aθi

y ⊗ Ii+1 ⊗ · · · ⊗ In. The operators Bθ
y,i and Cθ

y,i depend
in general on all the elements of θ. Nevertheless, some important properties of the Aθ

y,i still
hold: if the adversaries’ measurements are projective, the operators commute for the same
value of θ, i.e. [Bθ

y,i, B
θ
y′,j ] = 0, and satisfy the product relation Bθ

y = Bθ
y1,1B

θ
y2,2 · · ·Bθ

yn,n;
these hold identically for the Cθ

y,i.
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3.2 Observables, Bias, and Positivity
In this section, we work with a two-answer MoE game, so we identify Y with Z2: G =
(Θ,Z2,A, π, A). As is done for nonlocal games [14], we express the winning probability in
terms of observables.

▶ Definition 13. Let P : Z2 → P(H) be a POVM. Then, the observable of P is P = P0 −P1.

The observable characterises the measurement as Py = 1
2
(
I + (−1)yP

)
; and P is unitary if

and only if P is a POVM. In the context of an MoE game, we write the observables Aθ = Aθ

for simplicity. It is a direct calculation to express the winning probability in terms of the
observables:

wG(S) = 1
4 E

θ←π

Tr[(Aθ ⊗ (Bθ ⊗ IC + IB ⊗ Cθ) + IA ⊗ (IBC +Bθ ⊗ Cθ))ρ]. (4)

As in the case of a nonlocal game, we study the bias of a strategy to quantify how much it
differs from a random but coordinated guess: it is a value in [−2, 2] and is 0 if the winning
probability is 1

2 .

▶ Definition 14. The bias of a strategy S for an MoE game G is

bG(S) = 4wG(S) − 2 = E
θ←π

Tr[(Aθ ⊗ (Bθ ⊗ IC + IB ⊗ Cθ) − IA ⊗ (IBC −Bθ ⊗ Cθ))ρ]. (5)

The optimal bias of the game is bG = supS bG(S).

The optimal bias of the TFKW game is bTFKW =
√

2. To simplify, we
define bθ = Bθ ⊗ IC , cθ = IB ⊗ Cθ, and omit identity operators. Then,
bG(S) = Eθ←π Tr[(Aθ ⊗ (bθ + cθ) − 1 ⊗ (1 − bθcθ))ρ]. For any strategy, we call∑

θ∈Θ π(θ)(Aθ ⊗ (bθ + cθ) − 1 ⊗ (1 − bθcθ)) the game polynomial. For the TFKW game,
the observables are Pauli operators A0 = Z and A1 = X, giving game polynomial

1
2(Z ⊗ (b0 + c0) +X ⊗ (b1 + c1) − 1 ⊗ (1 − b0c0) − 1 ⊗ (1 − b1c1)). (6)

A simple but powerful observation is that a value β ∈ R upper bounds the bias β ≥ bG(S) if

β − E
θ←π

(Aθ ⊗ (bθ + cθ) − 1 ⊗ (1 − bθcθ)) ≥ 0 (7)

as operators. By considering the eigenvalues, the smallest value of β for which this always
holds is the optimal bias bG. Conversely, checking whether Equation (7) holds for some fixed
β shows β ≥ bG.

This provides a way to upper bound the winning probability of an MoE game via a
positivity argument. Formally, we consider whether a polynomial in a certain noncommutative
algebra is positive under the matrix representations of the algebra. In language like [29],
we consider the semi-pre-C∗-algebra L(A)[F2

|Θ|×F
2
|Θ|], where Fk

n is the free group with
n generators of order k. The first copy of F2

|Θ| gives Bob’s observables, since they are
self-inverse. Similarly, the second corresponds to Charlie’s observables, in Cartesian product
since they commute with Bob’s. The algebra is then the matrix algebra over the group
algebra C[F2

|Θ|×F
2
|Θ|], extending the scalars to contain Alice’s observables. An element P

corresponding to the game polynomial belongs to this algebra, and a unitary representation
where the free groups are in tensor product is a strategy.
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As in [29], one way to approach positivity is with a sum-of-squares (SOS) argument. That
is, if β − P (cf. Equation (7)) decomposes as a sum of Hermitian squares

∑
i S
†
i Si, then it is

positive under any representation as a Hermitian square is always a positive matrix. In fact,
an SOS decomposition must exist for all β > bG [29]. We use an SOS decomposition with
β = bG for the TFKW game.

4 Rigidity of the TFKW Game

In this section, we prove that the TFKW game is rigid. In Section 4.1, we give an SOS
decomposition for the game polynomial. In Sections 4.2 and 4.3, we show rigidity for one
round in the optimal then the nearly optimal cases. In Section 4.4, we extend this to games
played in parallel. The main rigidity result is Theorem 18. Finally, in Section 4.5, we relate
the winning statistics to the rigidity.

4.1 Sum-of-Squares Decomposition
Let P be game polynomial for TFKW. Then, bTFKKW − P =

√
2 − P decomposes as the SOS

1
4
√

2

[
(Z ⊗ b0 +X ⊗ c1 −

√
2)2 +(Z ⊗ c0 +X ⊗ b1 −

√
2)2

]
+ 1

4
[
(b0 − c0)2 + (b1 − c1)2]

. (8)

The form of the SOS takes inspiration from the one used to prove Tsirelson’s bound for the
CHSH game [2, 14]. First, it directly implies that

√
2 upper bounds the bias of TFKW, giving

an alternate proof of the winning probability to that of [35]. Conversely, an optimal state
must be in the 0 eigenspace of this operator, and therefore it must be in the 0 eigenspace of
each of the squared terms.

4.2 Exact Rigidity
Before dealing with the more involved robust and eventually parallel-repeated rigidity, we
can get intuition from working with the exact case, where the strategy wins with exactly
optimal probability.

▶ Theorem 15 (exact rigidity). Let S = (B,C, B,C, |ψ⟩⟨ψ|) be a purified strategy for TFKW.
If this strategy is optimal, then there exist Hilbert spaces B′, C′ and isometries V : B → B′

and W : C → C′ such that we have a decomposition of the state

(V ⊗W )|ψ⟩ =
∑

s∈Z2×Z2

Xs0Zs1 |β⟩ ⊗ |ψs⟩, (9)

where the supports of the |ψs⟩ ∈ B′⊗ C′⊗ R on both B′ and C′ are orthogonal; and there exist
commuting operators B′θ ∈ U(B′) and C ′θ ∈ U(C′) such that

V Bθ|ψ⟩ = B′θV |ψ⟩
WCθ|ψ⟩ = C ′θW |ψ⟩, (10)
B′θ|ψs⟩ = C ′θ|ψs⟩ = (−1)sθ |ψs⟩. (11)

It is a direct to see that these strategies win optimally. Intuitively, what the players must
do to win optimally is agree on a Wiesner-Breidbart state, seen in Figure 1, to give Alice,
which they can do without communicating using the simultaneous distinguishability, and
then guess accordingly.
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Proof. Letting P be the game polynomial (Equation (6)), we know ⟨ψ|
√

2 − P |ψ⟩ = 0.
Then, each of the terms in the SOS (Equation (8)) is positive so they must all be zero,
giving four relations (Z ⊗ b0 +X ⊗ c1)|ψ⟩ =

√
2|ψ⟩, (Z ⊗ c0 +X ⊗ b1)|ψ⟩ =

√
2|ψ⟩, b0|ψ⟩ =

c0|ψ⟩, and b1|ψ⟩ = c1|ψ⟩. These imply a relation with only Alice and Bob’s observables,
(Z⊗b0+X⊗b1)|ψ⟩ =

√
2|ψ⟩. Squaring, 2|ψ⟩ = (Z⊗b0+X⊗b1)2|ψ⟩ = 2|ψ⟩+2ZX⊗[b0, b1]|ψ⟩,

so the commutator [b0, b1]|ψ⟩ = 0, that is b0 and b1 commute with respect to |ψ⟩. Thus,
the group generated by B0 and B1 is a (0, |ψ⟩)-representation f of Z2

2. By the Gowers-
Hatami theorem (Theorem 2), there exists an isometry V : B → B′ and a representation
g : Z2

2 → U(B′) such that V f(x)|ψ⟩ = g(x)V |ψ⟩. Defining B′0 = g(01) and B′1 = g(10), these
are commuting unitaries such that V Bθ|ψ⟩ = B′θV |ψ⟩. Further, as g is a representation,
the dilated space decomposes as a direct sum of irreducible representations B′ =

⊕
s∈Z2

2
Bs,

such that the operators act as B′θ =
∑

s∈Z2
2
(−1)sθ IB,s, where IB,s is the projection onto Bs.

Following an identical line of reasoning for Charlie’s observables, there exists an isometry
W : C → C′ and commuting unitaries C ′0, C ′1 ∈ U(C′) such that WCθ|ψ⟩ = C ′θW |ψ⟩; and the
space decomposes as C′ =

⊕
s∈Z2

2
Cs so that C ′θ =

∑
s∈Z2

2
(−1)sθ IC,s. Defining the dilated

state |ψ′⟩ = (V ⊗W )|ψ⟩, we have that the relations extend to the dilated spaces as

(Z ⊗B′0 +X ⊗B′1)|ψ′⟩ =
√

2|ψ′⟩ (12)
B′0|ψ′⟩ = C ′0|ψ′⟩ (13)
B′1|ψ′⟩ = C ′1|ψ′⟩. (14)

Now, since |ψ′⟩ ∈ A ⊗ B′ ⊗ C′ ⊗ R =
⊕

s,s′∈Z2
2

A ⊗ Bs ⊗ Cs′ ⊗ R, we can decompose it
accordingly as |ψ′⟩ =

∑
s,s′∈Z2

2
|vs,s′⟩. Then, Equation (13) gives that

∑
s,s′∈Z2

2
(−1)s0 |vs,s′⟩ =∑

s,s′∈Z2
2
(−1)s′

0 |vs,s′⟩, so |vs,s′⟩ = 0 if s0 ̸= s′0. Doing the same with Equation (14) gives that
|vs,s′⟩ = 0 if s ̸= s′ so |ψ′⟩ =

∑
s∈Z2

2
|vs,s⟩ ∈

⊕
s∈Z2

2
A ⊗ Bs ⊗ Cs ⊗ R. Next, the decomposition

of the spaces means that (Z ⊗B0 +X ⊗B1) ⊗ ICR =
∑

s∈Z2
2
((−1)s0Z + (−1)s1X) ⊗ IB,s ⊗

ICR; and Equation (12) says that |ψ′⟩ must belong to the
√

2-eigenspace of this operator.
Since (−1)s0Z + (−1)s1X =

√
2Xs0Zs1HZs1Xs0 , the

√
2-eigenspace is simply the span of

Xs0Zs1 |β⟩. Thus,

|ψ′⟩ ∈
⊕

s,s′∈Z2
2

Xs0Zs1 |β⟩ ⊗ Bs ⊗ Cs′ ⊗ R. (15)

Taking the intersection of the spaces |ψ′⟩ belongs to, |ψ′⟩ ∈
⊕

s∈Z2
2
Xs0Zs1 |β⟩ ⊗ Bs ⊗ Cs ⊗ R,

which gives the result. ◀

4.3 Robust Rigidity
Now, we move on to the study of the robust rigidity, where the winning probability is slightly
below optimal. We can approach the proof as in the exact case, while keeping track of the
error.

▶ Theorem 16 (robust rigidity). Let S = (B,C, B,C, |ψ⟩⟨ψ|) be a purified strategy for TFKW
that wins with probability wTFKW(S) ≥ cos2 π

8 − ε for some ε ≥ 0. Then there exists a constant
K = 110 and isometries V : B → B′ and W : C → C′ such that the distance between quantum
states∥∥∥(V ⊗W )|ψ⟩ −

∑
s∈Z2

2

Xs0Zs1 |β⟩ ⊗ |ψs⟩
∥∥∥ ≤ K

√
ε, (16)
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where the |ψs⟩ ∈ B′ ⊗ C′ ⊗ R have orthogonal supports on both B′ and C′; and there exists a
constant L = 18, and commuting observables B′θ ∈ U(B′) and C ′θ ∈ U(C′) such that

∥V Bθ|ψ⟩ −B′θV |ψ⟩∥ ≤ L
√
ε

∥WCθ|ψ⟩ − C ′θW |ψ⟩∥ ≤ L
√
ε, (17)

B′θ|ψs⟩ = C ′θ|ψs⟩ = (−1)sθ |ψs⟩. (18)

As seen for the CHSH game in [31], the O(
√
ε)-dependence of this upper bound is in fact

necessary, though it may be possible to improve the constants: if we take an unentangled
optimal strategy for TFKW and perturb by a vector of length δ, the winning probability
decreases O(δ2).

Proof. By hypothesis, the bias bTFKW(S) ≥
√

2 − 4ε, so ⟨ψ|
√

2 − P |ψ⟩ ≤ 4ε. Using the SOS,

16
√

2ε ≥ ⟨ψ|(Z ⊗ b0 +X ⊗ c1 −
√

2)2|ψ⟩ + ⟨ψ|(Z ⊗ c0 +X ⊗ b1 −
√

2)2|ψ⟩

+
√

2
[

⟨ψ|(b0 − c0)2|ψ⟩ + ⟨ψ|(b1 − c1)2|ψ⟩
]
. (19)

We have 8
√

2ε ≥ min
{

⟨ψ|(Z ⊗ b0 +X ⊗ c1 −
√

2)2|ψ⟩ , ⟨ψ|(Z ⊗ c0 +X ⊗ b1 −
√

2)2|ψ⟩
}

and 16ε ≥ ⟨ψ|(bθ − cθ)2|ψ⟩, since each term is positive. These the Euclidean norm conditions

2(8)1/4√
ε ≥ min

{∥∥∥(Z ⊗ b0 +X ⊗ c1 −
√

2)|ψ⟩
∥∥∥, ∥∥∥(Z ⊗ c0 +X ⊗ b1 −

√
2)|ψ⟩

∥∥∥}
(20)

4
√
ε ≥ ∥(bθ − cθ)|ψ⟩∥. (21)

Using Equation (21) in Equation (20), we get

∥(Z ⊗ b0 +X ⊗ b1 −
√

2)|ψ⟩∥ ≤ ∥(Z ⊗ b0 +X ⊗ c1 −
√

2)|ψ⟩∥ + ∥X ⊗ (b1 − c1)|ψ⟩∥ (22)

∥(Z ⊗ b0 +X ⊗ b1 −
√

2)|ψ⟩∥ ≤ ∥(Z ⊗ c0 +X ⊗ b1 −
√

2)|ψ⟩∥ + ∥Z ⊗ (b0 − c0)|ψ⟩∥, (23)

which gives
∥∥(Z ⊗ b0 +X ⊗ b1 −

√
2)|ψ⟩

∥∥ ≤ 2(2 + 81/4)
√
ε. Noting ZX⊗[b0, b1]=(Z ⊗ b0 +

X ⊗ b1)2 −2=(Z ⊗ b0 +X ⊗ b1 +
√

2)(Z ⊗ b0 +X ⊗ b1 −
√

2), we have that

∥[b0, b1]|ψ⟩∥=∥ZX⊗[b0, b1]|ψ⟩∥≤∥Z⊗b0 +X⊗b1 +
√

2∥∥(Z⊗b0 +X ⊗ b1 −
√

2)|ψ⟩∥

≤ 2(2 +
√

2)(2 + 81/4)
√
ε, (24)

that is, Bob’s operators almost commute with respect to |ψ⟩. We use Lemma 3 with
U0 = B0 and U1 = B1 to generate a

(√
2(2 +

√
2)(2 + 81/4)

√
ε, |ψ⟩

)
-representation f of

Z2
2. By Gowers-Hatami, there exists an isometry V : B → B′ to some Hilbert space

and a representation g : Z2
2 → U(B′) such that ∥(V f(x) − g(x)V )|ψ⟩∥ ≤

√
2(2 +

√
2)(2 +

81/4)
√
ε. Defining B′0 = g(01) and B′1 = g(10), they are commuting observables such that

∥(V Bθ −B′θV )|ψ⟩∥ ≤
√

2(2 +
√

2)(2 + 81/4)
√
ε; and since g is a representation, there exists

an orthogonal decomposition B′ =
⊕

s∈Z2
2

Bs where B′θ =
∑

s∈Z2
2
(−1)sθ IB,s. In the same

way, C′ =
⊕

s∈Z2
2

Cs and C ′θ =
∑

s∈Z2
2
(−1)sθ IC,s, and there exists an isometry W : C → C′

such that ∥(WCθ − C ′θW )|ψ⟩∥ ≤
√

2(2 +
√

2)(2 + 81/4)
√
ε. Defining |ψ′⟩ = (V ⊗W )|ψ⟩, we

can extend Equation (20) and Equation (21) to the dilated spaces as∥∥∥(Z ⊗B′0 +X ⊗B′1 −
√

2)|ψ′⟩
∥∥∥ ≤ 2(3 + 2

√
2)(2 + 81/4)

√
ε (25)

∥B′θ|ψ′⟩ − C ′θ|ψ′⟩∥ ≤ 4((1 +
√

2)(2 + 81/4) + 1)
√
ε. (26)
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From the decomposition of Bob and Charlie’s spaces, A⊗B′⊗C′⊗R =
⊕

s,s′∈Z2
2

A⊗Bs⊗Cs′ ⊗R,
thus the state decomposes accordingly as |ψ′⟩ =

∑
s,s′∈Z2

2
|vs,s′⟩. Using this in Equation (26)

gives 4((1 +
√

2)(2 + 81/4) + 1)
√
ε ≥ ∥

∑
s,s′∈Z2

2
((−1)sθ − (−1)s′

θ )|vs,s′⟩∥ = 2∥
∑

sθ ̸=s′
θ
|vs,s′⟩∥.

We write |v0⟩ =
∑

s|vs,s⟩ and |v1⟩ =
∑

s̸=s′ |vs,s′⟩, so that |ψ′⟩ = |v0⟩ + |v1⟩ and ∥|v1⟩∥ ≤
∥
∑

s0 ̸=s′
0
|vs,s′⟩∥ + ∥

∑
s1 ̸=s′

1
|vs,s′⟩∥ ≤ 4((1 +

√
2)(2 + 81/4) + 1)

√
ε. Writing |βs⟩ = Xs0Zs1 |β⟩,

we can decompose Z ⊗ B′0 + X ⊗ B′1 −
√

2 =
∑

s((−1)s0Z + (−1)s1X −
√

2) ⊗ IB,s =
2
√

2
∑

s( |βs⟩⟨βs| − I) ⊗ IB,s. Also, define the projection |vβ⟩ =
∑

s( |βs⟩⟨βs| ⊗ I)|vs,s⟩, so that
Equation (25) implies

∥|ψ′⟩ − |vβ⟩∥ ≤
∥∥∥∑

s,s′

( |βs⟩⟨βs| − I)|vs,s′⟩
∥∥∥ +

∥∥∥∑
s̸=s′

( |βs⟩⟨βs| ⊗ I)|vs,s′⟩
∥∥∥

≤ 1
2
√

2

∥∥∥(Z ⊗B′0 +X ⊗B′1 −
√

2)|ψ′⟩
∥∥∥ + ∥|v1⟩∥ ≤ [(6 + 11

2

√
2)(2 + 81/4) + 4]

√
ε. (27)

Note that although |vβ⟩ is not necessarily normalised, it must be subnormalised and the above
implies that

∥∥∥ |vβ⟩
∥|vβ⟩∥ − |vβ⟩

∥∥∥ = 1 − ∥|vβ⟩∥ ≤ ∥|ψ′⟩ − |vβ⟩∥ ≤ [(6 + 11
2

√
2)(2 + 81/4) + 4]

√
ε.

Defining |ϕ⟩ = |vβ⟩
∥|vβ⟩∥ , we have by construction that |ϕ⟩ =

∑
s|βs⟩ ⊗ |ψs⟩, where |ψs⟩ =

1
∥vβ∥ (⟨βs| ⊗ I)|vs,s⟩ ∈ Bs ⊗ Cs ⊗ R, so simultaneously distinguishable by Bob and Charlie.
Thus, to complete the proof,

∥|ψ′⟩ − |ϕ⟩∥ ≤ ∥|ψ′⟩ − |vβ⟩∥ + ∥|vβ⟩ − |ϕ⟩∥ ≤ 2[(6 + 11
2

√
2)(2 + 81/4) + 4]

√
ε. ◀

4.4 Parallel-Repeated Robust Rigidity
Now, we consider the robust rigidity of the parallel-repeated game. In the full version, we
first consider the exact parallel case, but for conciseness, we skip this here. First, we need a
lemma that relates the operators of any two strategies that share the same state.

▶ Lemma 17. Let 0S and 1S be purified strategies for TFKW that both win with probability
wTFKW(iS) ≥ cos2(

π
8

)
− δ for some δ ≥ 0. If we suppose their shared states are equal, |ψ⟩ =

|0ψ⟩ = |1ψ⟩, then there is a constant Q = 6300 such that for every θ ∈ Z2,∥∥0Bθ|ψ⟩ − 1Bθ|ψ⟩
∥∥ ≤ Q

√
δ∥∥0Cθ|ψ⟩ − 1Cθ|ψ⟩

∥∥ ≤ Q
√
δ. (28)

Proof. For each strategy, we use Theorem 16 where we may assume that the isometries are
equal, since their images have equal dimension. Then, there exist K,L ≥ 0; Hilbert spaces
with two decompositions B′ =

⊕
s∈Z2

2

iBs and C′ =
⊕

s∈Z2
2

iCs; isometries V : B → B′ and
W : C → C′; and vectors

∣∣ψi
s

〉
∈ iBs ⊗ iCs ⊗ R such that ∥(V ⊗W )|ψ⟩ −

∑
s∈Z2

2
|βs⟩ ⊗ |ψi

s⟩∥ ≤
K

√
δ. Further, for each θ ∈ Z2, there exist unitary observables iB′θ ∈ U(B′) and iC ′θ ∈ U(C′)

such that∥∥(V iBθ − iB′θV )|ψ⟩
∥∥ ≤ L

√
δ,

∥∥(W iCθ − iC ′θW )|ψ⟩
∥∥ ≤ L

√
δ,

iB′θ|ψi
s⟩ = iC ′θ|ψi

s⟩ = (−1)sθ |ψi
s⟩, [iB′0, iB′1] = 0, [iC ′0, iC ′1] = 0. (29)

First, utilising the triangle inequality, the distance between the two rigidity decompositions
is ∥

∑
s∈Z2

2
|βs⟩ ⊗ |ψ0

s⟩ −
∑

s∈Z2
2
|βs⟩ ⊗ |ψ1

s⟩∥ ≤ 2K
√
δ. Expanding A in the basis {|β00⟩, |β11⟩},∥∥∥(

|ψ0
00⟩ + 1√

2 (|ψ0
01⟩ + |ψ0

10⟩)
)

−
(

|ψ1
00⟩ + 1√

2 (|ψ1
01⟩ + |ψ1

10⟩)
)∥∥∥ ≤ 2K

√
δ (30)∥∥∥(

|ψ0
11⟩ + 1√

2 (|ψ0
01⟩ − |ψ0

10⟩)
)

−
(∣∣ψ1

11
〉

− 1√
2 (|ψ1

01⟩ − |ψ1
10⟩)

)∥∥∥ ≤ 2K
√
δ. (31)
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We use projectors iΠB
s = iB′

0
s0

iB′
1
s1

, iΠC
s = iC ′

0
s0

iC ′
1
s1

. These are norm 1 so acting by
0ΠB

00 ⊗ 1ΠC
s on Equation (31) gives ∥0ΠB

00|ψ1
11⟩∥ ≤ 2K

√
δ, ∥0ΠB

00|ψ1
01⟩∥, ∥0ΠB

00|ψ1
10⟩∥ ≤

2
√

2K
√
δ. Acting by 0ΠB

00 on Equation (30) gives ∥|ψ0
00⟩ − 0ΠB

00|ψ1
00⟩∥ ≤ 6K

√
δ. This holds

for other values of s, so∥∥|ψ0
00⟩ − |ψ1

00⟩
∥∥ ≤

∥∥|ψ0
00⟩ − 0ΠB

00|ψ1
00⟩

∥∥ +
∑
s̸=00

∥∥0ΠB
s |ψ1

00⟩
∥∥ ≤ 4(2 +

√
2)K

√
δ. (32)

The same thing holds in the same way for the other values of s in the ket. Then∥∥(0Bθ − 1Bθ)|ψ⟩
∥∥ =

∥∥(V ⊗W )(0Bθ − 1Bθ)|ψ⟩
∥∥ ≤

∥∥(0B′θ − 1B′θ)(V ⊗W )|ψ⟩
∥∥ + 2L

√
δ

≤
∥∥∥0B′θ

∑
s∈Z2

2

|βs⟩ ⊗ |ψ0
s⟩ − 1B′θ

∑
s∈Z2

2

|βs⟩ ⊗ |ψ1
s⟩

∥∥∥ + 2K
√
δ + 2L

√
δ

=
∥∥∥ ∑

s∈Z2
2

(−1)sθ |βs⟩ ⊗ (|ψ0
s⟩ − |ψ1

s⟩)
∥∥∥ + 2K

√
δ + 2L

√
δ ≤ 2

[
(17 + 8

√
2)K + L

]√
δ (33)

We can do the same with Charlie’s observables. ◀

▶ Theorem 18 (robust parallel-repeated rigidity). Let n ∈ N and let S = (B,C, B,C, ρ = |ψ⟩⟨ψ|)
be a purified strategy for TFKWn. Suppose that for some ε ≥ 0, for each i ∈ [n], the i-th game
wins with probability wi

TFKWn(S) ≥ cos2 π
8 −ε. Then, there exists a constant K = 320 000+o(1),

Hilbert spaces B′ and C′, and isometries V : B → B′ and W : C → C′ such that the distance
between quantum states∥∥∥(V ⊗W )|ψ⟩ −

∑
t∈(Z2

2)n

Xt10Zt11 |β⟩ ⊗ · · · ⊗Xtn0Ztn1 |β⟩ ⊗ |ψt⟩
∥∥∥ ≤ Kn3√

ε, (34)

where the |ψt⟩ ∈ B′ ⊗ C′ ⊗ R have orthogonal supports on both B′ and C′; and there exists a
constant L = 230 000 and commuting observables φ,iB′θ ∈ U(B′) and φ,iC ′θ ∈ U(C′) such that∥∥V φ,iBθ|ψ⟩ − φ,iB′θV |ψ⟩

∥∥ ≤ Ln2√
ε∥∥W φ,iCθ|ψ⟩ − φ,iC ′θW |ψ⟩

∥∥ ≤ Ln2√
ε (35)

φ,iB′θ|ψt⟩ = φ,iC ′θ|ψt⟩ = (−1)tiθ |ψt⟩, (36)

for at least one value of φ for each i.

Here, the i-th strategies φ,iS =
(
B,C, φ,iB, φ,iC, ρ

)
where φ,iB

θ
y = Bφ+θ1i

y,i and φ,iC
θ
y =

Cφ+θ1i

y,i , for the game where Aθ
y = (An)θ1i

y,i . We make use of the fact that the i-th winning
probability is wi

TFKWn(S) = Eφi=0wTFKW(φ,iS). However, since this is not optimal, showing
that the φ,iS win near-optimally is an obstacle. To get past this, we adapt a technique of [9].
It guarantees that there is a “good set” of strategies that win nearly as well, and the set is
large enough to continue the proof.

Proof. Define εφ,i ≥ 0 such that wTFKW(φ,iS) = cos2 π
8 − εφ,i. Then, we have that, for each i,

ε ≥ Eφi=0εφ,i We want enough terms where εφ,i is not much larger than ε. To do so, let
the set of good values of φ be Gi = {φ ∈ Zn

2 , φi = 0|εφ,i ≤ 5ε} . As in [9], we claim |Gi| ≥
2n−2+2n−3+1. In fact, suppose |Gi| < 2n−2+2n−3+1. Then, there are at least 2n−3 values of
φ where εφ,i > 5ε. But ε ≥ 1

2n−1

∑
φ εφ,i >

1
2n−1 2n−3(5ε) = 5

4ε > ε, which is a contradiction.
Now, as for a single game, for φ ∈ Gi, the SOS implies

∥∥(Zi ⊗ φ,iB0 +Xi ⊗ φ,iB1 −
√

2)|ψ⟩
∥∥ ≤

2
√

5(2 + 81/4)
√
ε and

∥∥φ,iBθ|ψ⟩ − φ,iCθ|ψ⟩
∥∥ ≤ 4

√
5
√
ε. We get commutation of φ,iB0 and

φ,iB1 with respect to |ψ⟩
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∥∥[φ,iB0,
φ,iB1]|ψ⟩

∥∥ ≤ 2
√

5(2 +
√

2)(2 + 81/4)
√
ε =: K0

√
ε. (37)

Now, we need commutation between operators for different values of i. Let i ̸= i′ ∈ [n],
θ, θ′ ∈ Z2 and φ,φ′ ∈ Zn

2 such that φi = φ′i′ = 0. By the pigeonhole principle, there exists a
χ ∈ (Gi + θ1i) ∩ (Gi′ + θ′1i′), so using Lemma 17 with δ = 5ε, there exists Q ≥ 0 such that∥∥∥(φ,iBθ − χ+θ1i,iBθ)|ψ⟩

∥∥∥ ≤
√

5Q
√
ε

∥∥∥(φ′,i′
Bθ′ − χ+θ′1i′

,i′
Bθ′)|ψ⟩

∥∥∥ ≤
√

5Q
√
ε, (38)

and identically for Charlie’s observables. Thus, knowing ∥[χ+θ1i,iBθ,
χ+θ′1i′

,i′
Bθ′ ]|ψ⟩∥ ≤

K0
√
ε,∥∥∥[φ,iBθ,

φ′,i′
Bθ′ ]|ψ⟩

∥∥∥ ≤
∥∥∥(φ,iBθ ⊗ φ′,i′

Cθ′ − φ′,i′
Bθ′ ⊗ φ,iCθ)|ψ⟩

∥∥∥ + 8
√

5
√
ε

≤
∥∥∥(χ+θ1i,iBθ ⊗ χ+θ′1i′

,i′
Cθ′ − χ+θ′1i′

,i′
Bθ′ ⊗ χ+θ1i,iCθ)|ψ⟩

∥∥∥
+ (4

√
5Q+ 8

√
5)

√
ε ≤ (4

√
5(Q+ 4) +K0)

√
ε. (39)

For each i, pick some φ ∈ Gi to define iBθ := φ,iBθ, so ∥[iBθ,
i′
Bθ′ ]|ψ⟩∥ ≤ (4

√
5(Q+4)+K0)

√
ε.

Then, Lemma 4 with Uiθ = iBθ, Viθ = iCθ, ϵ = 4
√

5
√
ε, and δ = (4

√
5(Q + 4) + K0)

√
ε

generates
(
Ln2√

ε, |ψ⟩
)
-representation of (Z2

2)n for L = 4(4
√

5(Q+ 7) +K0). The same holds
for Charlie.

This lets us use the Gowers-Hatami theorem again. There exist Hilbert spaces with
decompositions B′ =

⊕
t∈(Z2

2)n Bt and C′ =
⊕

t∈(Z2
2)n Ct; isometries V : B → B′ and W : C →

C′; and observables iB′θ =
∑

t∈(Z2
2)n(−1)tiθ IB,t ∈ U(B′) and iC ′θ =

∑
t∈(Z2

2)n(−1)tiθ IC,t ∈
U(C′) such that∥∥(V iBθ − iB′θV )|ψ⟩

∥∥ = Ln2√
ε

∥∥(W iCθ − iC ′θW )|ψ⟩
∥∥ = Ln2√

ε. (40)

Let |ψ′⟩ = (V ⊗W )|ψ⟩. We can put these observables back into the original inequalities to
get ∥∥∥(Zi ⊗ iB′0 +Xi ⊗ iB′1 −

√
2)|ψ′⟩

∥∥∥ ≤ (2Ln2 + 2
√

5(2 + 81/4))
√
ε (41)∥∥(iB′θ − iC ′θ)|ψ′⟩

∥∥ ≤ (2Ln2 + 4
√

5)
√
ε. (42)

Since the quantum state |ψ′⟩ ∈
⊕

t,t′∈(Z2
2)n A1 ⊗ · · · ⊗ An ⊗ Bt ⊗ Ct′ ⊗ R, we can write it as

|ψ′⟩ =
∑

t,t′∈(Z2
2)n |vt,t′⟩. Using Zi ⊗ iB′0 +Xi ⊗ iB′1 −

√
2 = 2

√
2

∑
t( |βti

⟩⟨βti
|i − I) ⊗ IB,t and

defining |vβ,i⟩ =
∑

t,t′∈(Z2
2)n( |βt1⟩⟨βt1 |1 ⊗ · · · ⊗ |βti

⟩⟨βti
|i)|vt,t′⟩, we have

∥|ψ′⟩ − |vβ,n⟩∥ ≤
n−1∑
i=1

∥|vβ,i⟩ − |vβ,i+1⟩∥ ≤ 1
2
√

2

n−1∑
i=1

∥∥∥(Zi ⊗ iB′0 +Xi ⊗ iB′1 −
√

2)|ψ′⟩
∥∥∥

≤ n√
2 (Ln2 +

√
5(2 + 81/4))

√
ε. (43)

Equation (42) implies (2Ln2 + 4
√

5)
√
ε ≥

∥∥∥∑
t,t′((−1)tiθ − (−1)t′

iθ )|vt,t′⟩
∥∥∥ =

2
∥∥∥∑

tiθ ̸=t′
iθ

|vt,t′⟩
∥∥∥. Writing |ψ′⟩ = |v0⟩ + |v1⟩ where |v0⟩ =

∑
t∈(Z2

2)n |vt,t⟩ and |v1⟩ =∑
t̸=t′ |vt,t′⟩. Then,

∥|v1⟩∥2 =
∑
t ̸=t′

⟨vt,t′ |vt,t′⟩ ≤
∑

θ

n∑
i=1

∑
tiθ ̸=t′

iθ

⟨vt,t′ |vt,t′⟩ ≤ 2n
[
(Ln2 + 2

√
5)

√
ε
]2
. (44)
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Now, let |vβ⟩ =
∑

t∈(Z2
2)n( |βt1⟩⟨βt1 | ⊗ · · · |βtn⟩⟨βtn |)|vt,t⟩, then ∥|vβ⟩ − |vβ,n⟩∥ ≤

∥|v1⟩∥, so ∥|ψ′⟩ − |vβ⟩∥ ≤ ∥|ψ′⟩ − |vβ,n⟩∥ + ∥|vβ,n⟩ − |vβ⟩∥ ≤[
n√
2 (Ln2 +

√
5(2 + 81/4))+

√
2n(Ln2 +2

√
5)

]√
ε. To normalise |vβ⟩, let |ϕ⟩ = |vβ⟩

∥|vβ⟩∥ ,
where ∥|ϕ⟩ − |vβ⟩∥ = ∥|ψ′⟩∥ − ∥|vβ⟩∥ ≤ ∥|ψ′⟩ − |vβ⟩∥, giving

∥|ψ′⟩ − |ϕ⟩∥ ≤ 2∥|ψ′⟩ − |vβ⟩∥ ≤
√

2
[
n(Ln2 +

√
5(2 + 81/4)) + 2

√
n(Ln2 + 2

√
5)

]√
ε ◀

We can generalise this result slightly to a general strategy. using the properties of purified
strategies

▶ Corollary 19. Let n ∈ N and let S = (B,C, B,C, ρ) be an arbitrary strategy for TFKWn.
Suppose that for some ε ≥ 0, for each i ∈ [n], the i-th game wins with probability wi

TFKWn(S) ≥
cos2 π

8 − ε. Then there exists a constant K ≥ 0 and isometries V : B → B′ and W : C → C′

such that∥∥(V ⊗W )ρ(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥

Tr ≤ Kn3√
ε, (45)

where R is an auxiliary register such that |ϕ⟩ =
∑

t∈(Z2
2)n Xt10Zt11 |β⟩⊗· · ·⊗Xtn0Ztn1 |β⟩⊗|ψt⟩

for some vectors |ψt⟩ ∈ B′ ⊗ C′ ⊗ R with orthogonal supports on both B′ and C′.

To prove Corollary 19 we use the relation between the Euclidean and trace distances
(see full version), trace out R, and use the fact that measurement purification is isometric
(Theorem 10).

4.5 Observed Statistics
In any self-testing scenario, the referee cannot actually query the winning probability of the
adversaries’ strategy. To get around this, she may play many rounds of the game in parallel
and use the winning statistics to approximate their winning probability. The information
Alice receives might not be meaningful as the players’ strategies need not be independent for
the different rounds of the game. A technique of [31] allows us to get around this.

▶ Lemma 20. Let 0 < ε, η < 1 and let δ ∈ R such that δ ≤ ηε. Let S be a strategy for
TFKWn. Let E ⊆ {0, . . . , n} be the set of rounds i such that wi

TFKWn(S) ≥ cos2 π
8 − ε, and let

W ∈ {0, . . . , n} be the number of rounds the adversaries win. Then, if |E| < (1 − η)n,

Pr
(
W ≥ (cos2 π

8 − δ)n
)

≤ e−2n(ηε−δ)2
. (46)

We use this in contrapositive. That is, except with small probability, if the adversaries
win at least (cos2 π

8 − δ)n games, then at least (1 − η)n of them win near-optimally. This
result is analogous to a similar result for sequentially repeated games in [31]; a proof is given
in the full version.

In view of applications, we give in Theorem 21 a version of Corollary 19 where Alice has
less information about the winning probabilities of the strategy. Rather than assuming that
she knows that they win each round near-optimally, we assume that Alice only knows with
high probability that each round wins near-optimally. Then, we ascertain the behaviour of
the shared state in expectation. This will allow us to directly apply the result of Lemma 20
to get conclusions about the state.

▶ Theorem 21. Let n ∈ N and let S = (B,C, B, C, ρ) be a strategy for TFKWn. Suppose that
for some ε, η ∈ [0, 1], for each i ∈ [n], there is a probability 1 − η that the i-th game wins
with probability wi

TFKWn(S) ≥ cos2 π
8 − ε. Then, there exists a constant K ≥ 0, Hilbert spaces
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B′ and C′, and isometries V : B → B′ and W : C → C′ such that the expected value of
the distance between quantum states E

∥∥(V ⊗W )ρ(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥ ≤ Kn3√

ε+ nη,

where |ϕ⟩ =
∑

t∈(Z2
2)n Xt10Zt11 |β⟩ ⊗ · · · ⊗ Xtn0Ztn1 |β⟩ ⊗ |ψt⟩ for some auxiliary register R

and |ψt⟩ ∈ B′ ⊗ C′ ⊗ R with orthogonal supports on both B′ and C′.

Proof. For each i ∈ [n], let Hi be the random variable indicating if wi
TFKWn(S) ≥ cos2 π

8 − ε.
We have Pr(Hi = 1) = 1 − η. Let H ⊆ [n] be the register-valued random variable such that
i ∈ H if and only if Hi = 1; let L = [n]\H be the complement. Since for any round in H,
wi

TFKWn(S) ≥ cos2 π
8 −ε, we can apply the rigidity of Corollary 19 to those rounds. Then, there

exists a constant K ≥ 0, Hilbert spaces B′ and C′, isometries V : B → B′ and W : C → C′, and
a state |ϕ⟩ ∈ AH ⊗AL ⊗B′⊗C′⊗R of the form |ϕ⟩ =

∑
t∈(Z2

2)|H| |βt⟩AH
⊗|ψt⟩ ∈ A⊗B′⊗C′⊗R

where the supports of the |ψt⟩ ∈ AL ⊗ B′⊗ C′⊗ R on both B′ and C′ are orthogonal such that∥∥(V ⊗W )ρ(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥

Tr ≤ K|H|3
√
ε ≤ Kn3√

ε. (47)

Let σ = |β⟩⟨β|⊗L
AL

⊗ TrALR( |ϕ⟩⟨ϕ|). Then, σ has the form we want and ∥TrR( |ϕ⟩⟨ϕ|) − σ∥ ≤
n − |H|, giving that E∥TrR( |ϕ⟩⟨ϕ|) − σ∥ ≤ n −

∑
iHi = nη. The triangle inequality gives

the result. ◀

We give an example of the results of this section by considering an explicit choice of
parameters.

▶ Example 22. Fix some large n ∈ N. Take ε = n−8, η = n−2, and δ = 1
2n
−10. Suppose

Alice plays N = n21 rounds of the TFKW game in parallel with Bob and Charlie, and
that the players are able to win at least cos2 π

8N − 1
2n

11 of them. Then Lemma 20 implies
that, other than with probability e−

n
2 , there are at least (1 − n−2)N rounds that won

with probability wi
TFKWn(S) ≥ cos2 π

8 − n−8. Then Alice can check the rigidity on n rounds
chosen uniformly at random: call this register A′. Due to the uniform randomness, each of
the n has probability 1 − n−2 of being within n−8 of optimal. Then, we can use the
rigidity of Theorem 21 to say that there exists a constant K ≥ 0, Hilbert spaces B′

and C′, and isometries V : B → B′ and W : C → C′ such that the expected value of
the distance between quantum states E

∥∥(V ⊗W )ρA′BCR(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥ ≤ K+1

n ,

where |ϕ⟩ =
∑

t∈(Z2
2)n Xt10Zt11 |β⟩ ⊗ · · · ⊗Xtn0Ztn1 |β⟩ ⊗ |t⟩BCR for some auxiliary register

R and |t⟩BCR ∈ B′ ⊗ C′ ⊗ R with orthogonal supports on both B′ and C′.

5 Applications

In this section, we present applications of our rigidity result. In Section 5.1, we introduce
further definitions we will need. In Section 5.2, we construct a three-party weak string erasure
scheme and in Section 5.3, we discuss its implications for bit commitment. In Section 5.4,
we construct an everlasting randomness expansion protocol in a model closely following the
model for MoE games.

5.1 Preliminaries and Notation
A classical-quantum state (cq) is a state ρXH that takes the form ρXH =∑

x∈X px |x⟩⟨x|X ⊗ ρx
H ∈ D(X ⊗ H), where px ≥ 0,

∑
x px = 1, and the ρx

H ∈ D(H)
are quantum states. We write the ccq state with the classical part duplicated as
ρXXH ∈ D(X ⊗ X ⊗ H). If a quantum register decomposes as a product H = H1 × · · · ×Hn,
for any set ι = {i1, . . . , ik} ⊆ [n] with i1 < . . . < ik and state ρH ∈ D(H), write
ρHι

= ρHi1 ···Hik
∈ D(Hι) = D(Hi1 ⊗ · · · ⊗ Hik

). For a cq state ρIH ∈ D(I ⊗ H), where
I ⊆ P([n]), write ρIHI

=
∑

ι∈I pι |ι⟩⟨ι| ⊗ ρι
Hι

∈ D
(⊕

ι∈I |ι⟩ ⊗ Hι

)
⊆ D(I ⊗ H).
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The conditional min-entropy is Hmin(H|K)ρ = − lg inf{Tr(σK)|ρHK ≤ IH ⊗ σK , σK ∈
P(K)}. If ρ is classical on H, 2−Hmin(H|K)ρ is the probability of guessing H knowing K. For ε >
0, Hε

min(H|K)ρ = sup {Hmin(H|K)σ|σ ∈ P(H ⊗ K), ∥ρ− σ∥Tr ≤ Tr(ρ)ε,Tr(σ) ≤ Tr(ρ)}, is
the robust version of this entropy, called the smooth min-entropy. For more information,
see [34].

Generally, the evolution of a quantum system is given by a quantum channel, which
is represented by a completely positive trace-preserving (CPTP) map. The partial trace
provides an example. Write the basis diagonalising Pauli Y as |0⟲⟩ = 1√

2 (|0⟩ + i|1⟩) and
|1⟲⟩ = 1√

2 (|0⟩ − i|1⟩). Write negl(n) for the set of negligible functions in n, those f such
that p(n)f(n) → 0 for all polynomials p; abusing notation, we also use negl(n) to represent
an element of the set.

5.2 Weak String Erasure
Weak string erasure (WSE) is a fundamental cryptographic primitive, introduced in [19].
A WSE protocol provides a sender Alice with a random string x ∈ Zn

2 , and a receiver Bob
with a string x̂ ∈ Zn

2 and a subset ι ⊆ [n] such that |ι| is on average n/2, such that xι = x̂ι.
Security for such a scheme consists of Alice not knowing ι, while Bob does not know the
substring xιc .

▶ Definition 23 ([19]). A (n, λ, ε)-weak string erasure (WSE) scheme is a protocol between
two parties, Alice and Bob, that creates a state ρXAIX̂B, where X, I, and X̂ are classical
registers such that X = Zn

2 holds string x, X̂ = Zn
2 holds Bob’s guess of x, and I = P ([n])

holds ι; and A and B are optional quantum registers corresponding to Alice and Bob’s
remaining quantum states. The scheme must satisfy correctness, and security for both Alice
and Bob:
Correctness: If both Alice and Bob are honest then ρXIX̂I

= ρXIXI
and ρXI = µX ⊗ µI .

Security for Alice: If Alice is honest Hε
min(X|B)ρ ≥ λn.

Security for Bob: If Bob is honest, ρAI = ρA ⊗ µI in the event that Alice does not abort.

We say that a protocol is a (n, λ, ε)-WSE scheme that fails with probability p if any one of
the three conditions does not hold with probability at most p. However, as it implies bit
commitment, WSE is not information-theoretically possible in the plain model. We use a
new model with an additional dishonest prover, Charlie, who colludes with the receiver,1

and with restrictions on the communication.

▶ Definition 24. A WSE scheme in the three-party model consists of a sender, Alice, a
receiver, Bob, and a prover, Charlie. It satisfies the following:

Charlie is dishonest if and only if Bob is dishonest.
Alice communicates by publicly broadcasting.
Bob and Charlie are isolated from each other once Alice starts broadcasting.

In this model, the state takes the form ρXAIX̂BC , where C is the register held by Charlie.
If he is dishonest, he should not be able to get more information than his collaborator, Bob.
Thus, we require that security for Alice from Definition 23 is satisfied with respect to either
Bob or Charlie.

1 In [42], the consider oblivious transfer in a three-party model with much stronger assumptions, where an
untrusted third party prepares states for Alice and Bob: the third party produces each state identically
and independently, Alice and Bob cooperate to verify the states before running the protocol, and the
third party does not collude with them.

ITCS 2023



28:22 Rigidity for MoE Games

Sender
(Alice)

J, θ

Prover
(Charlie)

yC
Jc

Receiver
(Bob)

yB
Jc

yJ yB
J , ι(θ, φ)

∆t/2 ∆t/2

Figure 3 A setup for the three-party weak string erasure scheme Protocol 26. The parties
communicate by broadcasting publicly, and as there is only one round of communication, the
spacelike separation between Bob and Charlie ensures they do not communicate in the time ∆t

needed to run the protocol.

▶ Definition 25. A (n, λ, ε)-WSE scheme in the three-party model is a protocol that produces
a shared state ρXAIX̂BC such that
Two-party WSE: ρXAIX̂B, the state with Charlie’s register traced out, satisfies Definition 23.
Symmetric security for Alice: If Alice is honest Hε

min(X|C) ≥ λn.

For our protocol, an honest sender exploits the rigidity of the TFKW game to achieve
security. Note that Charlie much remain isolated from Bob for it to stay secure. Bob’s
security is because Alice must broadcast, so Bob and Charlie receive the same TFKW game
questions even if she is dishonest.

▶ Protocol 26 (three-party weak string erasure).
1. Bob prepares the shared state b⊗N |xφ⟩A ⊗ |xφ⟩B ⊗ |xφ⟩C for x, φ ∈ ZN

2 chosen
uniformly at random. Bob and Charlie are then no longer allowed to communicate.

2. Alice chooses a set of n indices J ⊆ [N ] and a string θ ∈ ZN
2 uniformly at random.

She measures each of her qubits 1 ≤ i ≤ N in basis {|0θi⟩, |1θi⟩} if i /∈ J and in
basis {b|0θi⟩,b|1θi⟩} if i ∈ J . This produces a string y ∈ ZN

2 that she keeps; and she
broadcasts J and θ.

3. Bob and Charlie, without communicating, each measure their subspaces to get
strings corresponding to their optimal guess at the TFKW game on Jc, yB = yC =
x+ 1Jc ∧ θ ∧ φ ∈ ZN

2 , and they then send yB
Jc and yC

Jc , respectively, to Alice.
4. Alice checks if her string everywhere but the index set, yJc , matches yB

Jc and yC
Jc

simultaneously on at least (cos2 π
8 − δ)N bits. If it does not, she aborts.

5. Alice takes as output yJ , and Bob takes as output the set ι(θ, φ) ⊆ J where the bits
of θ and φ match, and the string yB

J .

In Figure 3, we give a setup for our WSE scheme, where we see that the single round of
communication makes it possible to devise a way to run the protocol relativistically. Also, it
requires no quantum storage to run honestly. Alice samples θ and J before Bob prepares the
state, measures her register as she is receiving it, and only after reveal θ and J . Since her
measurements are local, this has the same effect as if she waited until Bob and Charlie finish
communicating to measure.

It is a direct computation to see that the scheme is correct. A proof is given in the full
version.
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▶ Theorem 27. Let K be the constant from Theorem 21. For N,n ∈ N and ε, η, δ ∈ (0, 1)
with ηε > δ, Protocol 26 is a (n, lg( 4

3 ),Kn3√
ε + nη)-WSE scheme failing with probability

e−2N(ηε−δ)2 .

Proof. First, we show security for Bob. Bob, as he is honest, prepares the shared state
ρABC = Ex,φ∈ZN

2
b⊗N |xφ⟩⟨xφ|A b⊗N ⊗ |xφ⟩⟨xφ|B ⊗ |xφ⟩⟨xφ|C . Alice must send some J and

θ to Bob and Charlie and get y, θ, J by a channel Φ : L(A) → L(Y ⊗ A′), ρY A′BC =
Ex,φ

∑
y,θ,J |yθJ⟩⟨yθJ |Y ⊗ ⟨yθJ |Y Φ(b⊗N |xφ⟩⟨xφ|A b⊗N )Y A′ |yθJ⟩Y ⊗ |xφθJ⟩⟨xφθJ |B ⊗

|xφθJ⟩⟨xφθJ |C . Bob provides Alice with yB
Jc = xJc + θJc ∧ φJc and Charlie with the

same. Bob produces ι(θ, φ) so the state is ρY ′A′IX̂C = Ex,φ

∑
y,θ,J |yθJyB

Jc⟩⟨yθJyB
Jc |Y ′ ⊗

⟨yθJ |Y Φ(b⊗N |xφ⟩⟨xφ|A b⊗N )Y A′ |yθJ⟩Y ⊗ |ι(θ, φ)⟩⟨ι(θ, φ)|I ⊗ |xJ⟩⟨xJ |X̂ ⊗ ρx,φ,θ,J
C . If Alice

does not abort, for her to guess ι, she needs to guess φJ . Since she has no information about
xJ , she does no better than uniformly random:

ρY ′A′I=E
x,φ

∑
y,θ,J

|yθJyB
Jc⟩⟨yθJyB

Jc|Y ′⊗⟨yθJ |Y Φ(b⊗N|xφ⟩⟨xφ|Ab
⊗N)Y A′ |yθJ⟩Y ⊗|ι(θ,φ)⟩⟨ι(θ,φ)|I

=
∑
y,θ,J

E
xJc ,φJc

|yθJyB
Jc⟩⟨yθJyB

Jc |Y ′⊗⟨yθJ |Y Φ(b⊗|J
c| |xφJc

Jc ⟩⟨xφJc

Jc |AJc
b⊗|J

c|⊗µAJ
)Y A′ |yθJ⟩Y

⊗E
φJ

|ι(θ, φ)⟩⟨ι(θ, φ)|I = ρY ′A′ ⊗ µI , (48)

which implies that any action Alice does locally gives rise to an uncorrelated final state
ρAI = ρA ⊗ µI .

Now, we study security for Alice. We show that H
Kn3√ε+nη
min (X|B)ρ ≥ − ln

( 3
4
)
n.

Bob may produce any shared state ρABC . The next three steps consist of playing
N − n TFKW games in parallel and verifying the rigidity condition. Therefore, if
Alice does not abort, then by Lemma 20 and Theorem 21 there exists K ≥ 0, iso-
metries V : B → B′ and W : C → C′, an auxiliary register R, and a state |ϕ⟩ =∑

x,φ∈Zn
2
b⊗n|xφ⟩ ⊗ |x, φ⟩BCR where the |x, φ⟩BCR ∈ B′ ⊗ C′ ⊗ R have orthogonal support

on B′ and C′ such that EJ

∥∥(V ⊗W )ρAJ BC(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥

Tr ≤ Kn3√
ε + nη,

with probability 1 − e−2N(ηε−δ)2 . Let σAJ BC = TrR( |ϕ⟩⟨ϕ|) and we study first what
happens if the shared state is σ. Since Bob and Charlie may not communicate, we
trace out Charlie’s state. By the orthogonality from the rigidity theorem, σAJ ΘB =
Eθ

∑
x,φ b⊗n |xφ⟩⟨xφ|b⊗n ⊗ |θ⟩⟨θ|Θ ⊗ TrCR( |x, φ⟩⟨x, φ|)B . Alice’s measurement gives her

X and makes the state

σXΘB =E
θ

∑
x,y,φ

∣∣ ⟨y|HθJ +φ|x⟩
∣∣2 |y⟩⟨y|X ⊗ |θ⟩⟨θ|Θ ⊗ TrCR( |x, φ⟩⟨x, φ|)B

=E
θ

∑
x,y,φ

xι(θ,φ)=yι(θ,φ)

1
2|θJ +φ| |y⟩⟨y|X ⊗ |θ⟩⟨θ|Θ ⊗ TrCR( |x, φ⟩⟨x, φ|)B . (49)

Noting that Bob’s register is uncorrelated with part of Alice’s register Xι(θ,φ)c , that gives
that Bob’s probability of guessing any bit in that register is 1

2 . So, Bob’s probability of
guessing X is

( 3
4
)n
, giving min-entropy Hmin(X|B)σ ≥ − lg( 3

4 )n, where B is Bob’s register
including Θ. Now we relate this to the smooth min-entropy of ρ. Since V ⊗W is an isometry,
H

Kn3√ε+nη
min (X|B)ρ = H

Kn3√ε+nη
min (X|B)(V⊗W )ρ(V⊗W )† ≥ Hmin(X|B)σ ≥ − lg

( 3
4
)
n. Note

that this holds in the same way for Charlie, so he cannot extract any more information that
Bob can if he is dishonest. ◀
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5.3 Bit Commitment from WSE
Bit commitment (BC) is a cryptographic primitive where a sender, Alice, sends an encoded
bit (or more generally a bit string) to a receiver, Bob, and may choose to reveal it at a later
time. Accordingly, a scheme for BC consists of a commit protocol and a reveal protocol.
The scheme should be hiding – Bob is unable to learn the bit until Alice chooses to reveal it
– and binding – Alice must reveal the same bit that she originally chose. We define such a
scheme in essentially the same way as in [19].

▶ Definition 28. A (ℓ, ε)-randomised bit string commitment (RBC) scheme is a pair of
protocols between two parties Alice and Bob: a protocol commit that creates a state ρY AB

and a protocol reveal that creates from this a state ρY A′Ŷ F B′ . Here, Y = Zℓ
2 holds Alice’s

committed string; Ŷ = Zℓ
2 holds the string Alice reveals; F = Z2 indicates whether Bob

accepts (1) or rejects (0) the reveal; and A,A′ and B,B′ are additional quantum registers
for Alice and Bob, respectively. The scheme must be correct, ε-hiding, and ε-binding:
Correctness: If Alice and Bob are honest, for σY F = µY ⊗ |1⟩⟨1|, ∥ρY Ŷ F − σY Y F ∥Tr ≤ ε.
ε-hiding: If Alice is honest, ∥ρY B − µY ⊗ ρB∥ ≤ ε.
ε-binding: If Bob is honest, there exists a state σY AB where ∥ρY AB − σY AB∥Tr ≤ ε such

that, applying reveal to it to get σY A′Ŷ F B′ , Pr[Y ̸= Ŷ ∧ F = 1] ≤ ε.
We say this scheme fails with probability p if any one of these conditions does not hold with
probability at most p. In [19], they provide a construction of a

(
λn− (n− k) − d, 2ε+ 2−d/2)

-
RBC scheme using an (n, λ, ε)-WSE scheme and an (n, k, d)-linear code. Our WSE scheme
Protocol 26 gives RBC in a two-receiver model where Alice is a sender who broadcasts, and
Bob and Charlie are isolated colluding receivers. As for WSE, we only require that Bob be
able to read the revealed string.

▶ Corollary 29. Let K,N, n, ε, η, δ be constants that satisfy Theorem 27, and fix an (n, k, d)-
linear code. Then, for ℓ = (lg 4

3 )n − (n − k) − d and ω = 2Kn3√
ε + 2nη + 2−d/2, in the

two-receiver model, there exists a (ℓ, ω)-RBC scheme that fails with probability e−2N(ηε−δ)2 .

Bit commitment in a classical model with two senders who may not communicate is known [3].
In contrast, bit commitment is classically impossible in our two-receiver model. The first
step of a protocol in our model is the preparation of a shared state, which is classically just
sampling from a probability distribution and sharing the result. Next, Alice communicates
by broadcasting, so Bob and Charlie receive exactly the same information from her, and may
respond to all the same challenges. As such, classically, our model is equivalent to the plain
model, where bit commitment is impossible.

5.4 Everlasting Randomness Expansion
The creation of fresh randomness is important for many computational and cryptographic
tasks; quantum procedures should be useful for this, as they are probabilistic. A major
theoretical hurdle is the difficulty of characterising the behaviour of an untrusted quantum
device. Major methods to achieve this require durable entanglement, which can be an
impractical requirement. In our contribution, we instead make the assumption of a trusted
but leaky measurement and a standard computational assumption. First, we formalise this
model, based on the structure of an MoE game.

▶ Definition 30. The MoE model for randomness expansion consists of three quantum
parties: a trusted verifier Alice, who interacts with two untrusted provers, Bob and Charlie.
The model satisfies
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Bob and Charlie are able to prepare a tripartite shared state but then are isolated.
Alice can make trusted measurements on her register, which are leaky in the sense that
Bob and Charlie can learn the measurement bases.

▶ Definition 31. A (s(n), ε)-local randomness expander is a protocol in the MoE model,
where, given a uniformly random seed in S = Zs(n)

2 , Alice, Bob, and Charlie construct a
quantum state ρY SBC , where Y = Zn

2 and S are classical registers that Alice holds and B

and C are potentially quantum registers that Bob and Charlie hold, respectively, such that

∥ρY SB − µY ⊗ µS ⊗ ρB∥Tr ≤ ε ∥ρY SC − µY ⊗ µS ⊗ ρC∥Tr ≤ ε, (50)

if Alice does not abort during the execution. As before, we say this scheme fails with
probability p if these conditions do not hold with probability at most p.

In this definition, Alice’s output is always approximately uniformly random, and we get
the additional guarantee that Bob and Charlie cannot guess the output using their side
information if they remain isolated. However, we do not constrain their ability to guess the
output if they interact. The main computational tool we will be making use of is the idea of
a pseudorandom generator.

▶ Definition 32. An algorithm Q : Z∗2 → Z∗2 is quantum polynomial time (QPT) if there
exists a Turing machine T such that, for each n ∈ N, T (n) outputs in polynomial time the
description of a quantum circuit that, on input x ∈ Zn

2 , outputs Q(x).

▶ Definition 33. A family of functions Gn : Zs(n)
2 → Zn

2 is a pseudorandom generator (PRG)
if, for uniform random variables Γ in Zs(n)

2 and ∆ in Zn
2 , and for every QPT algorithm

Q : Z∗2 → Z2,
∣∣∣Pr[Q(Gn(Γ)) = 1] − Pr[Q(∆) = 1]

∣∣∣ ∈ negl(n). The input is the seed and s(n)
is the seed length.

Because of brute force attacks against Gn, s(n) ∈ O(lg n) is a strict lower bound on
the seed length. Thus, we cannot hope for exponential randomness expansion with this
method, but we can nevertheless expect large polynomial or even superpolynomial expansion.
Against computational adversaries, rigidity extends to the TFKW game with pseudorandom
questions. This is discussed in detail in the full version. Keeping this in mind, we present
the randomness expansion protocol.

▶ Protocol 34 (randomness expansion).
1. Alice samples (t, u) ∈ Zs(N)+s(⌈lg (N

n)⌉)
2 uniformly at random. She computes θ =

GN (t) and J = G⌈lg (N
n)⌉(u), where she interprets J as a subset of [N ] of cardinality

n.
2. Bob and Charlie prepare a shared state ρABC and then are isolated.
3. Alice measures each of her qubits i ∈ [N ] in basis {|0θi⟩, |1θi⟩} if i /∈ J and in basis

{|0⟲⟩, |1⟲⟩} if i ∈ J . This produces a string y ∈ ZN
2 that she keeps.

4. Alice sends Bob and Charlie the key θ and J . Bob and Charlie each reply with a
guess of y, yB and yC respectively.

5. Alice verifies that they win the TFKW game yi = yB
i = yC

i for at least (cos2(
π
8

)
−δ)N

of the i ∈ [N ]\J , and then, if she accepts, takes yJ to be her output.

The protocol is similar to Protocol 26 since it also makes use of rigidity; the main
differences are that Alice samples questions and test qubits pseudorandomly and always
measures in the same basis, mutually unbiased with all of the Breidbart states to give a

ITCS 2023



28:26 Rigidity for MoE Games

uniformly random result. Also, Alice shares θ and J immediately after measuring, so they
have full information about her measurement bases, so the measurement can be seen as leaky.
Bob and Charlie may provide randomness without entanglement by preparing the Breidbart
state |β⟩⊗N and guessing 0 on all the TFKW game rounds.

▶ Theorem 35. Let K be the constant from Theorem 21, ε, η, δ ∈ (0, 1) such that ηε > δ,
and N ∈ poly(n). Assuming the existence of a pseudorandom generator, Gn : Zs(n)

2 → Zn
2 ,

Protocol 34 is a (s(N) + s(lg
(

N
n

)
), 2Kn3√

ε+ 2nη + negl(n))-local randomness expander in
the MoE model with QPT provers, that fails with probability e−2N(ηε−δ)2 + negl(n).

Proof. Write b =
⌈
lg

(
N
n

)⌉
. Let U, V,W be random variables, where U is the number of

rounds Bob and Charlie win, V is the number of rounds they would have won if Alice
chose J uniformly random (among the subsets of [N ] with cardinality n), and W is the
number of rounds they would have won if Alice chose both J and θ uniformly random.
Take Q(θ, J) to be the QPT algorithm computed by steps 2-5 of Protocol 34, output-
ting 1 if Alice accepts the verification of the TFKW games and else 0. Then, taking
Γ1,Γ2,∆1,∆2 to be uniform random variables in Zs(N)

2 , Zs(b)
2 , ZN

2 , and Zb
2, we know

that Pr[Q(GN (Γ1), Gb(Γ2)) = 1] = Pr
[
U ≥ (cos2(

π
8

)
− δ)N

]
, Pr[Q(GN (Γ1),∆2) = 1] =

Pr
[
V ≥ (cos2(

π
8

)
− δ)N

]
, and Pr[Q(∆1,∆2) = 1] = Pr

[
W ≥ (cos2(

π
8

)
− δ)N

]
, giving

|Pr[U ≥ (cos2( π
8 ) − δ)N ] − Pr[W ≥ (cos2( π

8 ) − δ)N ]| ≤ |Pr[U ≥ (cos2( π
8 ) − δ)N ] − Pr[V ≥

(cos2( π
8 ) − δ)N ]| + |Pr[V ≥ (cos2( π

8 ) − δ)N ] − Pr[W ≥ (cos2( π
8 ) − δ)N ]| ∈ negl(n),

as N ∈ poly(n) and b ∈ O(n lg n). Now, using Lemma 20 as in Theorem 27, if
less than (1 − η)N of the rounds have winning probability greater than cos2(

π
8

)
− ε,

then Pr
[
W ≥ (cos2(

π
8

)
− δ)N

]
≤ e−2N(ηε−δ)2

. By the above, Pr
[
U ≥ (cos2(

π
8

)
− δ)N

]
∈

e−2N(ηε−δ)2 + negl(n). If we select n rounds uniformly random, each of the rounds has
probability 1 − η of winning with probability greater than cos2(

π
8

)
− ε. We claim that Bob

and Charlie have a negligible probability of distinguishing the real case and the uniform case.
Let E ⊆ [N ] be the set of rounds that win with probability greater than cos2(

π
8

)
−ε, and write

J = {j1(J), . . . , jn(J)}, where j1(J) < . . . < jn(J). Then, for each i ∈ [n], by using their
strategy to play TFKW a polynomial number of times, there is a QPT algorithm that, on input
J , outputs whether ji(J) ∈ E correctly with 1 − negl(n) probability. Using pseudorandom-
ness, we know |Pr[ji(Gb(Γ2)) ∈ E] − Pr[ji(∆2) ∈ E]| ∈ negl(n). As Pr[ji(∆2) ∈ E] ≥ 1 − η,
each of the rounds chosen pseudorandomly has probability at least 1 − η− negl(n) of having
winning probability greater than cos2(

π
8

)
− ε. So, by Theorem 21 there exists a constant

K ≥ 0, isometries V : B → B′ and W : C → C′, an auxiliary register R, and a state
|ϕ⟩ =

∑
x,φ∈Zn

2
b⊗n|xφ⟩ ⊗ |x, φ⟩BCR where the |x, φ⟩BCR ∈ B′ ⊗ C′ ⊗ R have orthogonal

support on both B′ and C′ such that

E
J←Gb(Γ2)

∥∥(V ⊗W )ρAJ BC(V ⊗W )† − TrR( |ϕ⟩⟨ϕ|)
∥∥

Tr ≤ Kn3√
ε+ nη + negl(n). (51)

Let σAJ BC = TrR( |ϕ⟩⟨ϕ|). If Alice measures her register in the basis {|y⟲⟩|y ∈ Zn
2 }, she

gets σY B =
∑

y,x,φ∈Zn
2
| ⟨y⟲|b⊗n|xφ⟩|2 |y⟩⟨y|Y ⊗TrCR( |x, φ⟩⟨x, φ|)B =

∑
y,x,φ∈Zn

2

1
2n |y⟩⟨y|Y ⊗

TrCR( |x, φ⟩⟨x, φ|)B = µY ⊗σB . So, following the protocol, Alice measures AJ of ρ in this basis,
givingEJ←Gb(Γ2)∥V ρYJ BV

†−µY ⊗σB∥Tr ≤ Kn3√
ε+nη+negl(n). Acting with the trace non-

increasing channel ρ 7→ V †ρV , EJ←Gb(Γ2)∥ρYJ B −µY ⊗V †σBV ∥Tr ≤ Kn3√
ε+nη+negl(n),

where in particular, EJ←Gb(Γ2)∥ρB − V †σBV ∥Tr ≤ Kn3√
ε + nη + negl(n), so, using the

triangle inequality, EJ←Gb(Γ2)∥ρYJ B − µY ⊗ ρB∥Tr ≤ 2Kn3√
ε+ 2nη + negl(n). Let S be a

classical register holding the seed, and let I = Gb(S) be the register that holds J . Then,
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∥ρY SB − µY ⊗ µS ⊗ ρB∥Tr ≤
∥∥∥ E

t∈Zs(b)
2

|t⟩⟨t|S ⊗ |Gb(t)⟩⟨Gb(t)|I ⊗
(

ρYGb(t)B − µY ⊗ ρB

)∥∥∥
Tr

= E
t∈Zs(b)

2

∥∥∥ρYGb(t)B − µY ⊗ ρB

∥∥∥
Tr

≤ 2Kn3√
ε + 2nη + negl(n) (52)

The same proof holds for ρY SC . ◀
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Abstract
Majority vote is a basic method for amplifying correct outcomes that is widely used in computer
science and beyond. While it can amplify the correctness of a quantum device with classical output,
the analogous procedure for quantum output is not known. We introduce quantum majority vote
as the following task: given a product state |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ where each qubit is in one of two
orthogonal states |ψ⟩ or |ψ⊥⟩, output the majority state. We show that an optimal algorithm for
this problem achieves worst-case fidelity of 1/2 + Θ(1/

√
n). Under the promise that at least 2/3 of

the input qubits are in the majority state, the fidelity increases to 1 − Θ(1/n) and approaches 1 as
n increases.

We also consider the more general problem of computing any symmetric and equivariant Boolean
function f : {0, 1}n → {0, 1} in an unknown quantum basis, and show that a generalization of
our quantum majority vote algorithm is optimal for this task. The optimal parameters for the
generalized algorithm and its worst-case fidelity can be determined by a simple linear program of size
O(n). The time complexity of the algorithm is O(n4 log n) where n is the number of input qubits.
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Abstract

Connections between proof complexity and circuit complexity have become major tools for obtaining
lower bounds in both areas. These connections – which take the form of interpolation theorems and
query-to-communication lifting theorems – translate efficient proofs into small circuits, and vice
versa, allowing tools from one area to be applied to the other. Recently, the theory of TFNP has
emerged as a unifying framework underlying these connections. For many of the proof systems which
admit such a connection there is a TFNP problem which characterizes it: the class of problems which
are reducible to this TFNP problem via query-efficient reductions is equivalent to the tautologies
that can be efficiently proven in the system. Through this, proof complexity has become a major
tool for proving separations in black-box TFNP. Similarly, for certain monotone circuit models, the
class of functions that it can compute efficiently is equivalent to what can be reduced to a certain
TFNP problem in a communication-efficient manner. When a TFNP problem has both a proof and
circuit characterization, one can prove an interpolation theorem. Conversely, many lifting theorems
can be viewed as relating the communication and query reductions to TFNP problems. This is
exciting, as it suggests that TFNP provides a roadmap for the development of further interpolation
theorems and lifting theorems.

In this paper we begin to develop a more systematic understanding of when these connections
to TFNP occur. We give exact conditions under which a proof system or circuit model admits a
characterization by a TFNP problem. We show:

Every well-behaved proof system which can prove its own soundness (a reflection principle) is
characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved
proof system which proves its own soundness.

Every well-behaved monotone circuit model which admits a universal family of functions is
characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved
monotone circuit model with a universal problem.

As an example, we provide a TFNP characterization of the Polynomial Calculus, answering a question
from [25], and show that it can prove its own soundness.
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1 Introduction

In recent years, connections between proof systems and monotone circuit models have
revolutionized the areas of proof and circuit complexity, allowing for the tools from one area
to be applied to problems from the other. These connections take the form of

Interpolation Theorems, which translate small proofs into efficient computations in an
associated model of monotone circuit [6, 16,17,19,30,34–36,41,43,45].
Query-to-Communication Lifting Theorems, which translate efficient monotone computa-
tions into small proofs in an associated proof system [10,14,15,21,27–29,33,37,39,40,44,47].

Recently, the landscape of total functional NP (TFNP) has emerged as an organizing principle
for connections between proof systems and models of monotone circuits [12,26]. For many of
the proof systems which admit an interpolation theorem or lifting theorem there is a TFNP
problem which characterizes it in the following sense: the set of TFNP problems which are
reducible to this problem, via query-efficient reductions, is equivalent to the set of tautologies
that can be efficiently proven in the system. This has resulted in proof complexity becoming
a major tool for proving separations in black-box TFNP. Conversely, the novel perspective
offered by TFNP has provided a number unique results for proof complexity, such as complete
tautologies for certain proof systems, as well as striking intersection theorems [25].

An analogous phenomenon has emerged for monotone circuit complexity. For many
monotone circuit models, the set of functions which can be computed efficiently is equivalent
to the set of problems that can be reduced to a certain TFNP problem using communication-
efficient reductions. When these TFNP problems collide – that is, when there is both a proof
and circuit characterization of a particular TFNP problem – then we immediately obtain an
interpolation theorem between this proof system and circuit model [46]! Moreover, many of
the query-to-communication lifting theorems can be viewed as constructing a query-efficient
reduction to a particular TFNP problem out of a communication-efficient reduction to that
problem. This is exciting as it suggests understanding when TFNP problems admit such
characterizations as a pathway for developing further connections between proof complexity
and circuit complexity.

In this paper we give exact conditions under which a proof system or monotone circuit
model admits a characterization by a TFNP problem. For proof complexity, we show that
every well-behaved1 proof system which can prove its own soundness (a reflection principle)
is characterized by a TFNP problem – simply the search problem associated with its reflection
principle. This gives a recipe for constructing a TFNP problem which characterizes a given
proof system, simply write down the search problem for a reflection principle corresponding
to that proof system! Conversely, every TFNP problem gives rise to a well-behaved proof
system which proves its own soundness and which is closed under decision tree reductions.
Furthermore, this result is constructive: for every TFNP problem we give a proof system
which it characterizes. As an example, we provide a TFNP characterization of the Polynomial
Calculus, answering a question from [25], and show that it can prove its own soundness. For
circuit complexity, we show that every well-behaved model of monotone circuit which admits
a universal family of functions is characterized by a natural TFNP problem. Conversely,
every TFNP problem gives rise to a well-behaved monotone circuit model with a universal
problem.

1 We will say that a proof system of monotone circuit model is well-behaved if it satisfies some minor
technical conditions discussed in Subsection 1.2.
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1.1 Overview: Connections Proof Complexity, and Circuit Complexity,
and TFNP

The connections between proof systems and monotone circuit models can be understood as
relating the complexity of two families of total search problems whose complexity characterizes
proof and circuit complexity respectively.

False Clause. SF for an unsatisfiable CNF formula F = C1 ∧· · ·∧Cm: given an assignment
x ∈ {0, 1}n output the index i ∈ [m] of a clause such that Ci(x) = 0.
Monotone Karchmer-Wigderson. mKWf for a monotone boolean function f : given
x, y ∈ {0, 1}n such that f(x) = 1 and f(y) = 0 output i ∈ [n] such that xi > yi.

The theory of total function NP considers the total search problems for which solutions
can be efficiently verified, grouping them into the class TFNP. There is believed to be no
complete problem for TFNP [42], and therefore much of the work on this subject has focused
on identifying sub-classes which do admit complete problems. This has resulted in a rich
landscape of classes which capture a wide variety of important problems in a range of areas
including cryptography, economics, and game theory. These classes are typically defined as
everything that can be efficiently reduced to a certain existence principle (of exponential size).
For example, PPA is the class of search problems that can be reduced to an (exponential
size) instance of the handshaking lemma. These exponential-size instances are given in a
white-box fashion: they are represented as a polynomial-size circuit which can be queried to
obtain each bit of the input.

The principal goal in the study of TFNP is to understand how these sub-classes relate.
However, a separation between any pair of sub-classes would imply P ̸= NP. Instead, a line
of work has sought to provide evidence of their relationships by proving black-box separations.
As opposed to the white-box setting, one is only given oracle access to the circuit, which may
be queried for each bit of the input; one may no longer observe how the circuit is defined.

Black-Box TFNP and Proof Complexity

Beginning with [3], proof complexity has become a major tool for proving black-box TFNP
separations. In fact, black-box TFNP – denoted TFNPdt – can be viewed as the study of the
false clause search problem. Every TFNPdt problem is equivalent to SF for some unsatisfiable
CNF formula F . Using this connection, Göös et al. [26] observed that many prominent
TFNPdt problems are characterized by associated proof systems in the sense that the CNF
formulas F that are efficiently provable in that proof system are exactly the problems SF

that are reducible to the TFNPdt problem. This has led to the characterization of many
well-studied TFNPdt subclasses:

FPdt = TreeRes [38].
PLSdt = Res [9].
PPAdt = F2-NS [26].
PPAdt

q = Fq-NS for any prime q [31]
PPADSdt = unary-NS [25].
PPADdt = unary-SA [25].
SOPLdt = RevRes [25].
EOPLdt = RevResT [25].

That is, these proof systems are characterized by complete problems for these classes, and
therefore an unsatisfiable formula F can be efficiently proven in one of these proof systems iff
SF lies in the corresponding class. Thus, separations between these proof systems translate
into separations between their corresponding TFNPdt subclasses. This has resulted in a
complete picture of how the most prominent TFNPdt subclasses relate [2, 7, 25,26].
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This relationship has led to a number of striking results for proof complexity as well.
These include:

Complete Problems: Any proof system which is characterized by a TFNPdt problem SF

has F as its complete problem, in the sense that it has short proofs of exactly the formulas
F ′ for which SF ′ can be efficiently reduced to SF . [26]
Intersection Theorems: Proof systems which can efficiently prove a formula iff that
formula has short proofs in several other proof systems [25].
Coefficient Separations: Separations between the complexity of certain algebraic proof
system when their coefficients are represented in unary versus binary [25].

Despite all of this there are still many important TFNPdt problems – such as PPPdt-
complete problems – which have thus far evaded characterization by a proof system, as well
as many important proof systems for which no corresponding TFNPdt problem is known.

Communication TFNP and Monotone Circuit Complexity

Karchmer and Wigderson [32] showed that the monotone formula complexity of any mono-
tone function f is equal to the communication complexity of mKWf . Building on this,
Razborov [45] considered reductions between black-box TFNP classes where one measures the
amount of communication needed to perform the reduction (for some suitable partition of the
input), denoted TFNPcc, and showed that PLScc-complete problems characterize monotone
circuit complexity. There is good reason for this; analogous to how TFNPdt is the study
of the false clause search problem, TFNPcc can be viewed as the study of the monotone
Karchmer-Wigderson game. Indeed, every R ∈ TFNPcc is equivalent to mKWf (over the
same partition of the variables) for some associated monotone function f [20, 26].

Following these results, a number of TFNPcc problems have been characterized by models
of monotone circuits [17, 26]. However, there remain many important circuit models for
which no TFNPcc-characterization is known.

A Theory of Interpolation and Lifting Theorems

As we have just discussed, certain proof systems are characterized by TFNPdt problems, while
certain models of monotone circuits are characterized by problems in TFNPcc. Göös et al. [26]
observed that in all-known examples of TFNP problems which admit both a characterization
by a proof system and a monotone circuit, there exists both an interpolation theorems and
query-to-communication lifting theorem between that proof system and monotone circuit.
This is to be expected, as a key component of both interpolation and query-to-communication
lifting theorems proceeds by relating SF to mKWf for associated pairs (F, f). In fact, it is
not difficult to see that whenever a TFNP class admits a characterization by both a proof
system and a monotone circuit model then there is an interpolation theorem between this
proof system and circuit model – this follows by the simple observation that communication
protocols can simulate decision trees [46]! Thus, the landscape of TFNP, together with
characterizations of TFNP problems by proofs and circuits, appears to provide a roadmap for
potential interpolation and query-to-communication lifting theorems.

1.2 Our Results
Our first main result is a characterization of when a proof system admits a characterization
by a TFNPdt problem. We show that this occurs for any any proof system P which meets
the following two criteria:
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i) Closure under decision-tree reductions: whenever there is a small P -proof of a formula
H, and SF efficiently reduces to SH , then there is also a small P -proof of F .

ii) Proves its own soundness: P can prove that its proofs are sound. That is, P has small
proofs of a reflection principle about itself, encoded in an efficiently-verifiable manner.

Conversely, we show that every TFNPdt problem has a proof system which characterizes it.
Furthermore, this proof system satisfies both conditions (i) and (ii). Out first main results
can be informally stated as follows.

▶ Theorem 1 (Informal). The following hold:
For any TFNPdt problem R there is a proof system P satisfying (i) and (ii) such that R

characterizes P in the sense that P has short proofs of F iff SF is efficiently reducible to
R.
For any proof system P which satisfies (i) and (ii) there is a TFNPdt problem R such
that R characterizes P .

By writing down an efficiently verifiable reflection principle for a proof system, this provides
a somewhat systematic way of generating a TFNPdt problem which characterizes that proof
system. As an example, we define a new TFNP subclass called IND-PPA, which contains
problems which can be solved by inductive inductive parity arguments. We show that the
IND-PPA-complete problem characterizes the F2-Polynomial Calculus proof system, and
furthermore that the F2-Polynomial Calculus can prove its own soundness.

▶ Theorem 2 (Informal). IND-PPAdt = F2-PC. As well, F2-PC has small proofs of an
efficiently verifiable reflection principle about itself.

As a bonus, we show that the technique that we use to generate the TFNPdt problem which
characterizes the F2-Polynomial Calculus can readily be applied in order to generate TFNPdt

problems which characterize all of the dynamic variants of static proof systems for which
TFNPdt are known. In Subsection 2.4, we provide TFNPdt problems for Fq-Polynomial
Calculus, unary Polynomial Calculus, and unary dag-like Sherali-Adams.

Our second main result is a characterization of the conditions under which monotone circuit
models admit corresponding TFNPcc problems. We formalize the concept of a monotone
circuit model as a monotone partial function complexity measure (mpc) – a mapping of
partial monotone functions to non-negative integers. We show that a TFNPcc problem is
characterized by a mpc iff the mpc meets the following criteria:

i) Closure under low-depth reductions: if whenever f is a partial function and h is comput-
able by a depth-d monotone Boolean circuit then mpc(f ◦ h) is only polynomially larger
in 2d and mpc(f).

ii) Admits a universal family: a family of functions Fm such that whenever mpc(g) ≤ m

for a monotone partial function g, there is a string zg so that F (x ◦ zg) solves g(x).

▶ Theorem 3 (Informal). Let mpc be a complexity measure. There is a R ∈ TFNPcc such
that Rcc characterizes mpc iff mpc satisfies (i) and (ii).

Finally, we investigate whether this characterization can be extended from partial function
complexity measures to total function measures. Since complexity measures on total functions
induce measures on partial functions, this allows us to give a general condition under which
a complexity measure on total functions has a TFNPcc characterization (Theorem 17) by
applying Theorem 3.
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A Note on the Provability of Reflection Principles

Theorem 1 establishes that the property of P having short proofs of a reflection principle about
itself is closely related to having a TFNPdt characterization of P . The reflection principle for
propositional proof systems has already been studied in prior work. In particular, Cook [11]
showed that extended Frege (eF) has short proofs its consistency statements, and Buss [8]
showed that Frege (F) has short proofs of its consistency statements. From their results, it
follows readily that both proof systems, extended Frege and Frege, have short (polynomial
size) proofs of their reflection principles. It is also well-known that the extended Frege
and Frege proof systems can be characterized as very strong TFNPdt classes characterizable
in terms of second-order theories of bounded arithmetic, see [5]. Analogous results were
obtained for even stronger propositional proof systems by [23]. On the other hand, Garlik [22]
showed that resolution requires exponential length for refutations of (a particular “leveled”
version of) its reflection principle, and Atserias-Müller [1] gave exponential lower bounds on
resolution refutations of a relativized reflection principle.

Theorem 1 requires that the proof system P has short proofs of a variant of a reflection
principle about itself. There are two main differences between our encodings and previous
ones in the literature. The first is that the reflection principle is parameterized by a complexity
parameter c (see Section 2) rather than the typical size parameter. The second is that the
reflection principle must be efficiently verifiable, meaning that an error in the purported
P -proof in the reflection principle can always be verified by examining in a small number of
bits. Thus, for example, the bound of Garlik [22] does not contradict our results.

2 Proof Complexity and Black-Box TFNP

We begin by defining black-box TFNP. A total search problem is a sequence of relations
Rn ⊆ {0, 1}n × On, one for each n ∈ N which is total – for each x ∈ {0, 1}n there is i ∈ O
such that (x, i) ∈ Rn. A total search problem is in TFNPdt its solutions are verifiable: for
each i ∈ O there there is a decision tree T o

i of polylog(n) depth such that

T o
i (x) = 1 ⇐⇒ (x, i) ∈ Rn.

Decision Tree Reductions. A decision tree reduction from Q ∈ {0, 1}s × O′ to R ⊆
{0, 1}n × O is a set of decision trees Ti : {0, 1}s → {0, 1} for i ∈ [n] and T o

j : {0, 1}s → O′

for j ∈ O such that for any x ∈ {0, 1}s,

((T1(x), . . . , Tn(x), j) ∈ R =⇒ (x, T o
j (x)) ∈ Q.

That is, the Ti’s map inputs to from Q to R, and the T o
j ’s maps solutions to R back to

solutions to Q. The depth of the reduction is d, the maximum depth of any of the decision
trees involved, and the size is n. The complexity of the reduction is log n + d and the
complexity of reducing Q to R, denoted Rdt(Q), is the minimum complexity of any decision
tree reduction from Q to R. The TFNPdt subclass associated with R, denoted Rdt, is the set
of all Q ∈ TFNPdt such that Rdt(Q) = polylog(n).

Black-box TFNP is intimately connected with proof complexity. This connection can be
summarized by the following claim from [25,26].

▷ Claim 1. Let R ∈ {0, 1}n × O be any search problem in TFNPdt. Then there exists an
unsatisfiable CNF formula F on |O|-many variables such that R is equivalent to SF .
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Proof. As R ∈ TFNPdt there are polylog(n)-depth decision trees {Ti}i∈O which verify R.
Define a canonical CNF formula associated with R to be

F :=
∧
i∈O

¬T o
i ,

where we have abused notation and associated T o
i with the DNF obtained by taking a

disjunction over the (conjunction of the literals along) the accepting paths in T o
i . This makes

a ¬T o
i a CNF formula expressing that T 0

i outputs 0. It is not difficult to check that a solution
to SF is equivalent to a solution to R. ◁

The upshot is that black-box TFNP is exactly the study of the false clause search problem!
Thus, it suffices to study the search problems for the canonical CNF formulas SF associated
with R ∈ TFNPdt instead of R itself. Furthermore, note that this is robust as for any pair of
decision trees {T o

i } and {T ′o
i } that verify the same R ∈ TFNPdt, the resulting false clause

search problems SF and SF ′ are polylog(n)-reducible.
Using this connection, Göös et al. [26] observed that many important proof systems are

characterized by associated TFNPdt problems in the sense that the CNF formulas F that
are efficiently provable in that proof system are exactly the problems SF that are efficiently
reducible to that TFNPdt problem.

Complexity Measure. The known characterizations of proof systems by TFNPdt problems
are in terms of a somewhat non-standard, but very natural, complexity parameter. For a
proof system P and unsatisfiable CNF formula F let the complexity required by P to prove
F be

P (F ) := min{deg(Π) + log size(Π) : Π is a P -proof of F},

where deg denotes an associated degree measure of the proof system. For Nullstellensatz and
Sherali-Adams, this degree measure is the maximum degree of any polynomial in their proofs,
while for Resolution, degree is the proof width. While nonstandard, this complexity parameter
is very natural. Indeed, all of the query-to-communication lifting theorems referenced in the
introduction lift lower bounds on a complexity parameter for some proof system to lower
bounds on some monotone circuit model.

We say that a TFNPdt problem R characterizes a proof system P if Rdt = {SF : P (F ) =
polylog(n)}; this is reflexive and so we also say that P characterizes R. In fact, many of these
characterizations hold in the following stronger sense: let P be any of the proof systems
listed above, and R be the canonical complete problem for its corresponding TFNPdt class,
then for any unsatisfiable CNF formula F ,

P (F ) = Θ(Rdt(SF )).

In this section we give necessary and sufficient conditions for such a characterization to
occur. The first condition is that the proof system proves an efficiently verifiable variant of a
reflection principle.

What is a Reflection Principle?
The second condition of Theorem 1 is that the proof system must be able to prove its own
soundness. A reflection principle RefP for a proof system P states that P -proofs are sound;
it says that if Π is a P -proof of a CNF formula H then H must be unsatisfiable. This is
formalized with variables encoding a CNF H, a proof Π, and a truth assignment α to H.
The formula (falsely) asserts that Π is a P -proof of H and α satisfies H,

ProofP (H, Π) ∧ Sat(H, α).

ITCS 2023



30:8 TFNP Characterizations of Proof Systems and Monotone Circuits

We say that a reflection principle is efficiently verifiable if it is encoded as a low-width
CNF formula. In this case, solutions to the false clause search problem for the reflection
principle (also known as the wrong proof problem [4, 24]) can be efficiently verified, which is
essential for the reflection principle search problem to belong to TFNP.

For a proof system P , there are many ways to encode its proofs, with the choice of the
encoding potentially affecting the complexity of proving the associated reflection principle.
Rather than worrying about the particular encoding, we will instead define one reflection
principle for each efficiently verifiable way of encoding P -proofs, which we call a verification
procedure. Recall that the complexity c of a proof is always an upper bound on the width of
the CNF being proven. For this reason, and to simplify notation, we will bound the width of
the CNF H by c.

Verification Procedure. A verification procedure V for a proof system P is a mapping of
tuples (n, m, c) to CNF formulas that generically encodes complexity-c (or O(c)) P -proofs of
n-variate CNF formulas with m clauses of width at most c. Specifically, the CNF formula
Vn,m,c has three sets of variables x, H, Π, such that:

An assignment to the variables H := {Ci,j : i ∈ [m], j ∈ [c]} specifies a CNF formula with
m clauses over n variables, where Ci,j ∈ [2n] is the index of the j-th literal of the i-th
clause of H; if Ci,j ≤ n then it specifies a positive literal, and otherwise it specifies a
negative literal.
An assignment to the variables Π specifies a (purported) P -proof of H, such that any
error in Π can be verified by looking at the assignment to at most poly-logarithmically
many variables of Vn,m,c.
The CNF formula Vn,m,c has 2Θ(c) many variables.

As the complexity parameter c bounds the logarithm of the size of the proof, and by the
third point, the number of variables is exponential in Θ(c), the second condition ensures that
Vn,m,c has width poly(c) and can be verified by looking at polynomial-in-c many variables.
The third condition can be relaxed, and larger numbers of variables can be tolerated at the
cost of worse bounds in Theorem 6. We give a concrete example of a verification procedure
for the Polynomial Calculus proof system in Section 2.3.

For concreteness, we have fixed a particular encoding of H in order to avoid pathological
codings; e.g., ones in which a SAT oracle is used to decide whether the formula is satisfiable.
Since we allow arbitrary codings of proofs, this will be robust under different encodings of
CNFs as long as they are polynomial-time computable from ours.

We can now define a reflection principle for any proof system based on a verification
procedure.

Reflection Principle. Let P be a proof system and V be a verification procedure for P -proofs.
The reflection principle RefP,V associated with (P, V ) is the unsatisfiable formula

ProofnH ,mH ,c(H, Π) ∧ SatnH ,mH ,c(H, α),

where H is a CNF formula over nH variables with mH clauses of width at most c. The j-th
literal (if any) of the i-th clause of H is specified by a vector Ci,j of log(2nH + 1) many
Boolean variables, and

ProofnH ,mH ,c(H, Π) := VnH ,mH ,c(H, Π).
SatnH ,mH ,(d,nF )(H, α) is the CNF formula stating that α is a satisfying assignment for
H. This is expressed as,
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∀i ∈ [mH ], ∃j ∈ [c]
[(

[[Ci,j = xk]] ∧ αk

)
∨
(
[[Ci,j = ¬xk]] ∧ ¬αk

)]
,

where [[p = ℓ]] is the indicator function of p being equal to ℓ. This can be encoded as a
CNF formula of width O(c log nH) and size mH exp(O(c log nH)).

For simplicity of notation, we will drop the subscripts P, V from Ref when the proof
system and verification procedure is clear. One technicality is that TFNPdt problems have
one instance for each number of variables n; to ensure that this is the case for Ref we could
use a pairing function on the multiple sets of variables for Ref, however we are going to ignore
this detail. Each reflection principle gives rise to a TFNPdt problem. Indeed, by construction
Ref is verifiable by observing polylog(n) many bits, where n is the total number of variables.

Conditions for a TFNP Characterization
The first necessary condition for a proof system to admit a characterization by a TFNPdt

problem will be that the proof system must efficiently prove a reflection principle about itself.
The second necessary condition is that the proof system must be closed under decision-tree
reductions, as TFNPdt is closed under these reductions.

Closure under Decision Tree Reductions. A proof system P is closed under decision tree
reductions if whenever there is a P -proof of complexity c of an unsatisfiable formula F , and
H reduces to F by depth-d decision trees, then there is a P -proof of H of complexity O(cd).

In all of the proof systems which are known to admit characterization by a TFNPdt

problem, closure under decision tree reductions takes the form of directly substituting (an
appropriate encoding of) decision trees into the proofs, resulting in a proof of complexity
O(cd). For example, if H reduces to F and we have a Resolution proof of F , then we
can obtain a Resolution proof of H by replacing each variable in the proof of F by the
(DNF formula corresponding to the accepting paths of) corresponding decision tree from the
reduction.

We are now ready to prove Theorem 1, which we state formally as follows.

▶ Theorem 1. The following hold:
i) For any TFNPdt problem R there is a proof system P such that R characterizes P .

Furthermore, P is closed under decision tree reductions and there is a reflection principle
RefP for P such that P (RefP ) ≤ polylog(n).

ii) For any proof system P which is closed under decision tree reductions and for which
there is a reflection principle RefP of which P has polylog(n)-complexity proofs, there is
a TFNPdt problem R which characterizes P .

In fact, we prove a tighter characterization over the following two subsections, from which
Theorem 1 will follow. Part (i) follows from Theorem 6, with the “furthermore” part proven
in Theorem 5, while part (ii) is proven in Theorem 4.

2.1 A Proof System for any TFNP Problem
We begin by describing how any TFNPdt problem R can be transformed into a proof system
for refuting unsatisfiable CNF formulas of polylog width. The key observation is that because
each TFNPdt problem is equivalent to the search problem for some unsatisfiable CNF formula,
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we can view decision tree reductions between TFNPdt problems as proofs in a proof system
– indeed, these reductions are sound and efficiently verifiable! More formally, a proof Π in
this proof system, of the (unsatisfiability) of a CNF formula H, will consist of a low-depth
decision reduction from SH to an instance of the false clause search problem SF for the
unsatisfiable formula F associated with the TFNP problem R. For this, we first define a
notion of reduction between CNF formulas.

Suppose C is a clause over n variables, and T = {Ti}i∈[n] is a sequence of depth-d decision
trees, where Ti : {0, 1}s → {0, 1}. We write C(T ) to denote the CNF formula obtained by
substituting the decision trees Ti for each of the variables xi in C and rewriting the result as
a CNF formula. Formally, C(T ) is formed by creating the a stacked decision tree T C that
sequentially runs the trees Ti for each variable xi used in C. A leaf of T C is labelled with
a 1 if the root-to-leaf path causes the trees Ti to output a satisfying assignment for C; the
other leaves are labelled with 0. Then C(T ) is the CNF

C(T ) :=
∧

{¬p : p is a rejecting path of T},

where a path p is identified with the conjunction of the literals set true along the path, and
¬p is its negation.

Reductions Between CNF Formulas. Next, we define what is means to reduce one false
clause search problem to another. We say that a CNF formula H on nH variables and mH

clauses reduces to an unsatisfiable F = C1 ∧ · · · ∧ Cm over n variables via depth-d decision
trees if there exist depth-d decision trees T = {Ti}i∈n where Ti : {0, 1}nH → {0, 1}, and
{T o

i }i∈[m] with T o
i : {0, 1}nH → [mH ] so that the following conditions hold. Let FH be the

CNF formula

FH :=
∧

i∈[m]

∧
p∈T o

i

Ci(T ) ∨ ¬p,

where p ranges over all paths of T o
i . Since Ci(T ) is a CNF, FH is readily written as a CNF

by distributing ¬p into Ci(T ). Then each clause Ci(T ) ∨ ¬p must either be tautological
(contains a literal and its negation) or be a weakening of the clause of H indexed by the label
at the end of the path p.

Observe that a depth-d decision tree reduction of SH to SF introduces a new false clause
search problem SFH

that is directly a refinement of H. Clearly, if F is unsatisfiable, then so
is FH and consequently also H is unsatisfiable.

Canonical Proof System. Let SF ∈ TFNPdt. The canonical proof system PF for SF proves
an unsatisfiable CNF formula H on nH variables if H is reducible to an instance of F on some
n variables. A PF -proof Π consists of the decision trees T = {Ti}i∈[n] and T 0 = {T o

i }i∈[m] of
the reduction. The size of Π is the number of variables n of the instance of F , and the depth
is the maximum depth among the decision trees. The complexity of proving an unsatisfiable
CNF formula H is then the minimum over all P -proofs of H,

PF (H) := min{depth(Π) + log size(Π) : Π is a PF -proof of H}.

This proof system is sound as any substitution of an unsatisfiable CNF formula is also
unsatisfiable. To see that it is efficiently verifiable, observe that it suffices to form the CNF
FH from F and the decision trees Ti and T 0

i , and check that each of the clauses of FH is
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either tautological or is a weakening of a clause in H. This can be done in polynomial-time
in the size of the proof. Finally, note that the Note that the canonical proof system is closed
under decision tree reductions.

The next theorem states that PF has a short proof of H iff SH efficiently reduces to SF .
This is almost immediate from the definitions.

▶ Theorem 4. Let SF ∈ TFNPdt and H be an unsatisfiable CNF formula. Then,
(a) If H has a size s and depth d proof in PF , then SH has a depth d and size O(s) reduction

to SF .
(b) If SH has a size s and depth d reduction to SF , then H has a size s2O(d) and depth d

proof in PF .
In particular, Sdt

F (SH) = Θ(PF (H)).

Proof. To prove (b), suppose T1, . . . , Tn and T o
1 , . . . , T o

m is a size-s and depth-d decision-tree
reduction from SH to SF . Construct FH as above using these decision trees. Let L be a
clause of Ci(T ) for some i ∈ [m] and let p be a path in T o

i . If Ci(T ) ∨ ¬p is tautological,
then we are done. Otherwise, we will argue that it is a weakening of a clause of H. Fix any
assignment x which falsifies L ∨ ¬p, then Ci is falsified by the assignment T1(x), . . . , Tn(x)
and T o

i (x) follows path p. Thus, by the correctness of the reduction, whenever L ∨ ¬p is false,
the T o

i (x)-th clause of ¬H must also be false, and so L ∨ ¬p is a weakening of this clause.
Each decision tree in the proof has depth at most d and therefore the size is at most s2O(d).

To prove (a), let n, T1, . . . , Tn, T o
1 , . . . , T o

m be a PF proof of H of size s and depth d. We
claim that this is also a reduction from SH and SF . Indeed, fix any assignment x such that
T1, . . . , Tn(x) falsifies clause Ci of F and the decision tree T o

i (x) follows some path p. Then,
a clause of the formula Ci(T ) ∨ ¬p is falsified under x, and furthermore that clause is a
weakening of the T o

i (x)-th clause of H. Thus, (x, T o
i (x)) ∈ SH . This reduction has depth d

and size n = O(s). ◀

Canonical Proof Systems Prove their own Soundness
In this section we define a natural formulation of the reflection principle for the proof system
PF for any TFNPdt problem SF by way of defining a verification procedure for PF . We show
that the canonical proof system can prove this encoding of the reflection principle. To encode
proofs Π in the canonical proof system – which are decision tree reductions – we require the
notion of a generic of a decision tree, which is a template for decision trees of depth at most
d – any decision tree of depth at most d (over a set of variables α1, . . . , αn and output set
O) can be recovered from an assignment to the variables of a generic decision tree.

A generic decision tree of depth d over variables α1, . . . , αn and with output in O is a
complete binary tree in which the label of every internal vertex v is given by a vector of log n

of variables xv whose value specifies the index of some variable αi, and such that one child of
v is labelled 0 and the other is labelled 1. Each leaf l is labelled with log |O| variables xl. For
a given truth assignment to the variables xv, the generic decision tree induces a decision tree
that queries the variables α1, . . . , αn as specified by the values of all of the xv’s. Specifically,
for a given internal vertex v, the truth values assigned to the vector xv at v in the generic
decision tree determines a value i so that αi is queried at the corresponding vertex of the
induced decision tree. Similarly, for a leaf l, the values of the variables xl specify an j ∈ O
which is the label for the corresponding leaf in the induced decision tree.

Recall that in the reflection principle Proof(H, Π) states that the proof Π (which we will
encode using generic decision trees) is indeed a proof of H. To state Proof(H, Π), it will be
helpful to have the following definition. The decision tree simulating a generic decision tree
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T̂ is obtained from T̂ as follows: Replace each internal vertex v of T̂ by a complete binary
tree querying the variables of xv, and at each leaf where xv = i, queries αi. The leaves l of
the generic decision tree are replaced with complete binary trees querying xl in which each
leaf where xl = j is labelled by the output j ∈ O.

Verification Procedure for PF . Let SF ∈ TFNPdt. We define a verification procedure
V PF

nH ,mH ,(d,nF ) for PF , which encodes a complexity c = (d + log nF ) P -proof Π of a CNF
formula H on nH variables and mH clauses as follows. Π is specified by nF depth-d generic
decision trees T̂1, . . . , T̂nF

with output in {0, 1} and mF depth-d generic decision trees
T̂ o

1 , . . . , T̂ o
mF

with output in [mH ]. The constraints of Proof enforce that each clause of the
reduced CNF formula FH is a weakening of a clause of H. For each i ∈ [nF ], let Si be the
decision tree simulating T̂i but eliminating the queries to the variables αi.2 Recall that the
assignment of truth values to the vector of variables xv at a vertex v determines the index
i ∈ [nH ] of the variable being queried at v in the decision tree. Let zk ∈ [nF ] denote the k-th
variable of F .

We will construct the constraints of Proof from the following decision trees TCi , for each
clause Ci in F : First, it runs the decision trees Sk for every k ∈ [nF ] such that Ci involves zk:
this determines the literals which occur in one of the clauses of FH , namely in one of the
clauses that is formed by applying the decision trees T̂i to the clause Ci. We temporarily
use C ′ to denote this clause of FH . Note that C ′ involves variables of H; however, the truth
values (the αi values) of the variables in C ′ have not been queried and are instead treated in
the next phase as being set to the values that falsify C ′. Second, it runs the decision tree
simulating T̂i. A vertex of T̂i labelled with an xv is handled by querying the variables xv.
The results of the queries to xv specify a variable αi. The variable αi may appear in C ′ and
if so is treated as having the value that falsifies C ′. If, however, the variable αi does not
appear in C ′, then it is non-deterministically queried; that is, the tree TCi

branches to try
both 0 and 1 as truth values for αi. The result of running the decision tree simulating T̂i is a
value ℓ specifying a clause of H . Third, it queries the vector of variables Cℓ,j for j ∈ [c]: this
determines the literals of the ℓ-th clause of H . If a path in this decision tree determines that
the clause C ′ of FH is not a weakening of the ℓ-th clause of H , then the path is called “bad”.

The CNF formula ProofnH ,mH ,(d,nF )(H, Π) is
∧

bad p ¬p, expressing that there is no bad
path. It thus is satisfied only when the Π is a valid PF -proof of H.

As each generic decision tree has depth at most d, F has width at most polylog(nF ), and H

has width at most c, the resulting CNF formula has width dpolylog(nF ) + log mH + c log nH .

Canonical Reflection Principle. Let SF ∈ TFNPdt. We define its canonical reflection
principle RefF to be the conjunction

ProofnH ,mH ,(d,nF )(H, Π) ∧ SatnH ,mH ,(d,nF )(H, α),

where Sat is defined as in the definition of the reflection principle and Proof := V P
nH ,mH ,(d,nF ).

In total, this is a CNF formula of width d log nF + log mH + c log nH over n = mF 2d+1 +
nF 2d log nH + cmH log 2nH many variables. In particular, under any assignment to the
variables, any clause of RefF can be evaluated by looking at the values of polylog(n) many
variables, where n is number of variables of Ref. Thus, SRefF

∈ TFNPdt.

▶ Theorem 5. For any SF ∈ TFNPdt, PF (RefF ) ≤ polylog(n).

2 ProofnH ,mH ,(d,nF )(H, Π) does not involve the variables αi.
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Proof. Fix an instance of SRefF
. By Theorem 4, it suffices to show that SRefF

is reducible to
an instance of SF . Let the instance of RefF be specified with parameters (nH , mH , (d, nF )),
letting c = d + log nF . For each generic decision tree T̂i of RefF , let Si be the decision tree
that simulates it. As well, let So

i be the decision tree that simulates T̂ o
i .

We will define the decision trees T1, . . . , TnF
, T o

1 , . . . , T o
mF

of the reduction from SRefF

to an instance of SF on nF variables. Define Ti := Si, and let T o
i be the decision tree

implementing the following algorithm which takes as input x ∈ {0, 1}n and outputs a falsified
clause of RefF (x) provided that the truth assignment (T1(x), . . . , TnF

(x)) falsifies clause Ci

of F . First, the algorithm runs the decision trees Ti for each i ∈ vars(Ci), and then it runs
the decision tree for So

i .
Let x∗ be the restriction of x to the variables queried thus far in the algorithm. As

(T1(x∗), . . . TnF
(x∗)) falsifies Ci, there must be a clause of FH falsified by x∗. This clause

should be a weakening of T o
i (x∗)-th clause of H . To check whether this is indeed the case, we

ask for the indices of the variables that occur in the T o
i (x∗)-th clause of H – this requires us

to query at most c log nH many variables. If our clause is indeed a weakening of the T o
i (x∗)-th

clause of H, then our x∗ must falsify the T o
i (x∗)-th clause of H, violating a constraint of

SAT. Thus, our algorithm will output the index of this violated clause SAT. Otherwise, if
this is not the case, then x∗ must falsify a clause of Proof, and so we can output the index of
this violated clause.

To convert this algorithm into a decision tree we must label the leaves which are the
terminals of paths which are not followed in any run of this algorithm. For a path not to be
followed by this algorithm, it must either correspond to a partial assignment x∗ such that
(T1(x∗), . . . , TnF

(x∗)) satisfies Ci, and therefore the output at that leaf can be arbitrary. As
H has width at most c and F has width polylog(nF ), the depth d∗ of the resulting decision
tree is d∗ = O(c(d log nH + log mH)) + polylog(nF ) and the number of variables is nF ; thus
the complexity of the reduction is d∗ + log nF , which is poly-logarithmic in n, the number of
variables of RefF . ◀

2.2 TFNP Problems for Proof systems which Prove their own Soundness
In this section we identify the necessary conditions for a proof system to be characterized by
a TFNPdt problem. The first necessary condition is that the proof system must be closed
under decision-tree reductions, as TFNPdt is closed under these reductions. That is, it must
admit short proofs of a reflection principle about itself. As we will show, any verification
procedure for its proofs will do.

▶ Theorem 6. Let P be a proof system that is closed under decision tree reductions, let V be
a verification procedure for P , and denote RefP,V by Ref. For any unsatisfiable CNF formula
H, the following hold.

i) Sdt
Ref(SH) ∈ O(P (H)).

ii) P (H) ∈ O(Sdt
Ref(SH)P (Ref)).

In particular, if P has polylog(n)-complexity proofs of Ref then P is characterized by SRef .

The first statement says that any P -proof of H induces a reduction from SH to SRef of the
same complexity. The second statement is a converse, saying that if there is a reduction from
SH to SRef and P can efficiently prove Ref then there is a P -proof of H whose complexity
is not much larger than the complexity of the reduction – in particular, it is factor of the
complexity needed for P to prove Ref larger than the complexity of the reduction.

Before proving this theorem we will give a high-level sketch of the proof for the case of
polylog(n)-complexity reductions. Let P be any proof system that is closed under decision
tree reductions. Observe that SRef ∈ TFNPdt as Ref is efficiently verifiable. Consider any
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SH ∈ TFNPdt such that Sdt
Ref(SH) = polylog(n) (SH reduces to SRef with polylog-depth decision

trees). Then, as P is closed under decision tree reductions and there is a O(polylog(n))-
complexity P -proof of RefP , there must also be an efficient P -proof of H. Conversely,
suppose that Π is a polylog(n)-complexity P -proof of an unsatisfiable CNF formula H. We
can construct a reduction from SH to SRef by hard-wiring H and Π into SRef , leaving the
only truth assignment variables free. On any input α to the variables of H, the hard-wired
instance of SRef must output a falsified clause of H as Π is a valid P -proof of H.

Proof of Theorem 6. We will begin by proving (ii). Let H be any unsatisfiable CNF formula
and recall that Sdt

Ref(SH) denotes the complexity of reducing SH to SRef . As P is closed under
decision tree reductions, there is a P -proof of H with complexity P (H) = O(Sdt

Ref(SH)P (Ref)).
To prove (i), suppose that Π is a complexity c := P (H) proof in P of an unsatisfiable

CNF formula H . We will construct a reduction from SH to an instance of SRef as follows. Let
nH , mH be the number of variables and number of clauses of H respectively. The reduction
T = (T1, . . . , Tn) hardwires the input (H, Π) into the instance of SRef with parameters
nH , mH , c, using constant decision trees, leaving only α unspecified. Next, we argue that
this reduction is correct. Let α ∈ {0, 1}nH be any assignment to SH then, as Π is a valid
P -proof of H, the only outputs of SRef(T (α)) are clauses of H which are falsified under α.
As the number of variables of the instance of Ref is exponential in Θ(c), and the decision
trees T are constant, Sdt

Ref(SH) = O(P (H)). ◀

2.3 Example: The Polynomial Calculus
As an example, we give a characterization of the Polynomial Calculus by a natural TFNPdt

problem and show that it can prove a reflection principle about itself, establishing Theorem 2.
This answers an open question from [25], asking for a characterization of the Polynomial
Calculus. To define our characterization of the F2-Polynomial Calculus, we will leverage the
characterization of its static variant, F2 Nullstellensatz, by PPA-complete problems [26]. PPA
is the class of TFNP problems which can be solved by parity arguments, and the standard
PPA-complete problem is LEAF – given a fan-in ≤ 2 graph and a designated leaf v∗, find
another leaf. To characterize the F2-Polynomial Calculus, we define the TFNP class IND-PPA
which corresponds to inductive parity arguments, and whose complete problem is the LEAF

problem defined over a directed acyclic graph. At the end of this section we discuss how
this appears to be a general phenomenon – for any TFNP problem which characterizes a
static proof system, we can define an induction variant of that problem to characterize the
dynamic variant of that proof system. Using this, we give TFNP problems which characterize
the Fq-Polynomial Calculus, unary Polynomial Calculus, and unary dag-like Sherali-Adams.

The Polynomial Calculus (PC). The F2-Polynomial Calculus proves that an unsatisfiable
system of F2-polynomial equations {pi(x) = 0}i∈[m] has no solutions over {0, 1}. An
unsatisfiable CNF formula F = C1 ∧ . . . ∧ Cm is encoded as such a system of equations by
mapping each clause to the equation Ci such that Ci(x) = 1 iff Ci(x) = 0 (for example,
(x1 ∨ ¬x2 ∨ x3) represented as (1 + x1)x2(1 + x3) = 0). Note that the degree of Ci is equal to
the width of Ci. We will operate exclusively with multilinear arithmetic; that is, x2

i and xi

are represented by the same function. Formally, we operate modulo the ideal ⟨x2
i = xi⟩i∈[n].

A F2-PC proof is a derivation of the trivially false polynomial 1 = 0 from {pi(x) = 0}i∈[m]
by the following two rules:
Addition. From two previously derived polynomials p, q, deduce p + q.
Multiplication by a Variable. From a previously derived polynomial p, deduce xip for some

i ∈ [n].
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The size of a proof is the number of monomials (with multiplicity) in the proof, the length is
the number of lines (applications of rules), and the degree is the maximum degree of any
polynomial at any step in the proof. The complexity of proving an unsatisfiable CNF formula
F in F2-PC is

min{size(Π) + log degree(Π) : F2-PC proofs Π of F}

Next, we define IND-PPA, the subclass of TFNPdt problems which are reducible to the
IND-PPA-complete problem IND-LEAF, which will characterize F2-PC. At a high level
this is the LEAF problem defined over a directed acyclic graph (dag). An instance of this
problem is given by a set set of N nodes (corresponding to monomials) and a set of L pools
(corresponding to lines in the proof). The pools are arranged in a dag; each pool ℓ ∈ [L] has
a set of immediate predecessors described by variables P

(ℓ)
ℓ′ ∈ {0, 1} for ℓ′ < ℓ. Each pool

ℓ is associated with a set of nodes A(ℓ) ⊆ [N ] and we hard-code that the root pool L has
A(ℓ) = {1} for some distinguished 1-node. We have an instance of LEAF defined over the
nodes of this dag as follows: for each pool ℓ we have a matching M (ℓ) between the nodes of ℓ

and the nodes of its predecessors; see Figure 1. Since the L-th pool contains only a single
node, there must be some pool with an unmatched node. A solution is an unmatched or
mismatched node.

We remark that the dag of pools is specified by input variables P
(ℓ)
ℓ′ to the problem. This

is crucial; if the dag was fixed in advance, then this problem would be in PPA – there is a
simple reduction to LEAF – and thus gives rise to a Nullstellensatz proof.

Induction PPA. The IND-PPA-complete problem IND-LEAF is defined as follows
Structure. [L] pools and [N ] nodes. We think of each ℓ ∈ [L] as being associated with its
own copy of [N ].
Variables. For each ℓ ∈ L and ℓ′ < ℓ we have P

(ℓ)
ℓ′ ∈ {0, 1} indicating whether ℓ′ is an

immediate predecessor of pool ℓ. For each pool ℓ ∈ [L] and node m ∈ [N ], we have a
variable A

(ℓ)
m ∈ {0, 1} indicating whether node m is active at pool ℓ. Finally, we have

a matching between the nodes of ℓ ∈ [ℓ] and the nodes of all of its predecessors: For
each ℓ′ < ℓ and m ∈ [N ] there is a variable M

(ℓ)
ℓ′,m′ ∈ [ℓ] × [N ] indicating where ℓ′’s copy

of node m′ is matched in the matching for pool ℓ. The root pool L has A
(L)
1 = 1 and

A
(L)
m = 0 for all m ̸= 1.

Solutions. Since the root has an odd number of active nodes, and each matching is
even, there must be some pool ℓ ∈ [L] with an erroneous matching. A solution is any
triple (ℓ, ℓ′, m) ∈ [L]2 × [N ] such that ℓ′ is a predecessor of ℓ and m is an active node
for ℓ′, and m is matched to some node m′ of some pool ℓ′′ which is not matched to
m. That is, P

(ℓ)
ℓ′ = 1, A

(ℓ)
m = 1, M

(ℓ)
(ℓ′,m) = (ℓ′′, m′), and either P

(ℓ)
ℓ′′ = 0, A

(ℓ′′)
m′ = 0, or

M
(ℓ)
ℓ′′,m′ ̸= (ℓ′, m).

Observe that this problem is in TFNPdt, as any candidate solution can be verified by
observing the values of O(log n) many variables.

▶ Theorem 7. For any unsatisfiable CNF formula F ,
If there is a depth-d reduction fron SF to an instance of IND-LEAF on s variables, then
there is a degree-O(d), size-s22O(d) F2-PC proof of F .
If F has a size-s and degree-d F2-PC proof of F , then there is a depth-O(d) reduction
from SF to an instance of IND-LEAF on O(s2)-variables.

In particular, IND-LEAFdt(SF ) = Θ(F2-PC(F )).

ITCS 2023



30:16 TFNP Characterizations of Proof Systems and Monotone Circuits

1

3

5
7

1
2

7

2

55
3

1

Pool 4

Pool 1 Pool 2

Pool 3

M
(4)
3,2 = (2, 2) and M

(4)
2,2 = (3, 2)

A
(3)
5 = 1

P
(4)
3 = P

(4)
2 = 1 and P

(4)
1 = 0

Figure 1 An example matching for Pool 4. The pink area indicates the active predecessors of
Pool 4. The yellow circles indicate the active nodes for that pool; for example Pool 1 has only node
1 active: A

(1)
1 = 1, while A

(1)
m = 0 for all m ̸= 1. The edges correspond to the matching for pool 4.

For example, M
(4)
2,2 = (3, 2) and M

(4)
3,2 = (2, 2) meaning that in the matching for pool 4, the copy of

node 2 in pools 3 and 2 are matched.

We remark that an analogous statement holds for the F2-PCR proof system, which builds
on F2-PC to include additional “dual” variables xi for each i ∈ [n] to represent ¬xi, along
with the additional axioms xi + xi = 0. Indeed, this is only a change to the encoding of the
CNF formula F as a set of polynomials and does not affect the resulting TFNPdt problem.
Note that this does not contradict the separation between PC and PCR due to de Rezende et
al. [13], as their separation is in terms of size, while this characterization is in terms of the
complexity measure.3

We break the proof of this theorem into two lemmas, Lemma 8 and Lemma 9. In the
proofs of both lemmas we will crucially use the fact that any depth-d decision tree (as well
as any path in that decision tree) can be encoded as a degree-d polynomial.

▶ Lemma 8. Let F be an unsatisfiable CNF formula. If SF is reducible to an instance of
IND-LEAF on n variables using decision trees of depth at most d then there is an O(d)-degree
and size-n22O(d) F2-Polynomial Calculus proof of F .

Proof. Let F be an unsatisfiable CNF formula and suppose that SF is reducible to an
instance of IND-LEAF on n variables using decision trees of depth at most d. That is, each
variable x of the IND-LEAF instance is computed by a depth-d decision tree Tx querying

3 Indeed, for any CNF formula F of width w, there are 2w-depth decision tree reductions between SF and
SD where D is the encoding of F as a system of polynomial equations using dual variables. That SF

reduces to SD is immediate. To reduce SD to SF define decision trees Ti = xi for each i ∈ [n] (querying
the positive dual variable for xi). For each clause Cj of F define decision trees T o

j as follows: for each
variable xi ∈ Cj , query xi and its dual variable xi; if these variables are not consistent, output the
index of the constraint xi + x̄i = 0 which is violated. Otherwise, if all xi and x̄i are consistent, output
the index of the (polynomial encoding the) clause Cj .



S. Buss, N. Fleming, and R. Impagliazzo 30:17

variables of F ; for simplicity, we will abuse notation and associate each variable x with
the polynomial formed by taking the sum over the (product of the literals on each of the)
accepting paths of Tx (those labelled 1). As well, let {T o

i }i be the decision trees for each
solution i of the IND-LEAF instance.

For ℓ ∈ L let

qℓ :=
∑

m∈[N ]

A(ℓ)
m ,

over F2. We will derive by induction on ℓ = 1, . . . , L that qℓ = 0. Roughly, this polynomial
states that there is a perfect matching between the nodes in ℓ and the nodes in its predecessors.
This will be sufficient to complete the proof as A

(L)
1 = 1 and A

(L)
m = 0 for all m ≠ 1, and so

the decision trees for these variables are identically 1 and 0 respectively. Thus, we will have
derived 0 =

∑
m∈[N ] A

(L)
m = A

(L)
1 = 1.

Now, suppose that we have derived qℓ′ = 0 for all ℓ′ < ℓ with with a degree-O(d) F2-PC
proof; we show how to drive qℓ = 0. At a high level, this follows from the fact that there is a
perfect matching between the nodes of pool ℓ and all of its predecessors. For simplicity of
exposition, we will define an additional variable P

(ℓ)
ℓ := 1, whose decision tree is the constant

1 function.

▷ Claim 2. There is a degree-O(d), size-NL2O(d) F2-PC proof of the polynomial∑
ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m = 0,

from the axioms.

This claim is sufficient to complete the proof. Indeed, we can use it in order to derive
qℓ = 0 from qℓ′ = 0 for ℓ′ < ℓ (which we have derived by induction) without significantly
increasing the degree. To see this, multiply each qℓ′ by P

(ℓ)
ℓ′ and sum them to obtain∑

ℓ<ℓ′

P
(ℓ)
ℓ′ qℓ′ =

∑
ℓ<ℓ′

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m = 0.

Adding this polynomial to
∑

ℓ′≤ℓ P
(ℓ)
ℓ′
∑

m∈[N ] Aℓ′

m = 0, which has a low-degree proof from F

by the previous claim, gives pℓ = 0. Note that since every pℓ′ is a degree-d polynomial, each
of these polynomials has degree at most 2d. Therefore, this inductive step requires degree
O(d) and size LN2O(d). ◀

Proof of Claim 2. To prove this claim we will show that this polynomial can be written as a
sum of indicator functions of whether each active monomial in a predecessor of ℓ is correctly
matched. Then, we break this polynomial up into indicators corresponding to correct and
erroneous matchings. We show that the correct matchings sum to 0 by a parity argument,
and that the erroneous matchings can be derived from the axioms (using the fact that they
produce a solution to the IND-LEAF instance).

For any function f element o in the range of f , denote by [[f = o]] the indicator polynomial
which is 1 on input x if f(x) = o and 0 otherwise. For m ∈ [N ] and ℓ′ < ℓ consider the
polynomial

match(ℓ)
m,ℓ′ :=∑

m∗∈[N ],
ℓ∗∈[ℓ]

[[
M

(ℓ)
m,ℓ′ = (m∗, ℓ∗)

]] ∑
α,β∈{0,1}

[[
P(ℓ)

ℓ∗ = α
]][[

A
(ℓ∗)
m∗ = β

]] ∑
m̂∈[N ],

ℓ̂∈[ℓ]

[[
M

(ℓ)
m∗,ℓ∗ = (m̂, ℓ̂)

]]
,
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which records all possible matchings for m and matchings of the node that it is matched
to. That is, match(ℓ)

m,ℓ′ is the sum over all of the paths in the decision tree that results
from sequentially running the decision trees for M

(ℓ)
m,ℓ′ , P

(ℓ)
ℓ∗ , A

(ℓ∗)
m∗ , and finally M

(ℓ)
m∗,ℓ∗ . As

match(ℓ)
m,ℓ′ is the sum over all of the paths in a decision tree, it follows that match(ℓ)

m,ℓ′ = 1.
Using this polynomial, define

match(ℓ) :=
∑

ℓ′∈[ℓ]

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m match(ℓ)

m,ℓ′ ,

which records the matching for pool ℓ. Note that match(ℓ) =
∑

ℓ′∈[ℓ]
∑

m∈[N ] P
(ℓ)
ℓ′ A

(ℓ′)
m as

match(ℓ)
m,ℓ′ is equal to 1.

We will partition the terms of match(ℓ) into two sets, where C is the set of terms where
the copy of m belonging to ℓ′ is correctly matched – that is, for all ℓ′ ≤ ℓ and m ∈ [N ]
with P

(ℓ)
ℓ′ = 1 and A

(ℓ′)
m = 1, m is matched to a node m∗ ∈ [N ] belonging to a pool

ℓ∗ ≤ ℓ (M (ℓ)
ℓ′,m = (ℓ∗, m∗)) with P

(ℓ)
ℓ∗ = 1 and A

(ℓ∗)
m∗ = 1 which is matched back to m

(M (ℓ)
ℓ∗,m∗ = (ℓ′, m)) – and E the remaining terms corresponding to erroneous matchings.

Observe that each term in C occurs an even number of times, as (m, ℓ′) is matched to (m∗, ℓ∗)
iff (m∗, ℓ∗) is matched to (m, ℓ′). Thus, summing over the terms in C gives

∑
t∈C t = 0.

Consider a term t ∈ E. This term corresponds to a node m in some pool ℓ′ being incorrect
matched; let s be this incorrect matching and we will denote by ts that t witnesses the
incorrect matching s. Let T o

s be the decision tree for solution s and abuse notation by
identifying it with the polynomial obtained by summing over (the product of the literals on)
each of its paths. Recalling that the result of summing over all paths in a decision tree is 1,
we have

match(ℓ) =
∑

t∗∈C

t∗ +
∑

ts∈E

ts = 0 +
∑

ts∈E

ts · T o
s .

An incorrect matching s is a solution to IND-LEAF instance. Thus, as this instance of
IND-LEAF solves SF , any truth assignment x which satisfies ts must also falsify the T o

s (x)-
th clause of F . It follows each term of ts · T o

s which is not identically 0 must contain
the polynomial C for some clause C of F , and therefore ts · T o

s = 0 can be derived by
multiplication from the axiom C = 0. Thus, as each of the P (ℓ), M (ℓ), and A(ℓ) variables are
computed by depth-d decision trees,∑

ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m =

∑
ℓ′∈[ℓ]

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m match(ℓ)

m,ℓ′ = match(ℓ) =
∑

ts∈E

ts · T o
s = 0

has a degree-6d and size-NL2O(d) F2-PC derivation. ◁

We now prove the converse of Theorem 7, which follows from the next lemma noting that
the length of a F2-PC proof is always upper-bounded by the size.

▶ Lemma 9. Let F be an unsatisfiable CNF formula on n variables. If there is a F2-
Polynomial Calculus proof of F with size s, length-L, and degree-d then SF is reducible by
decision trees of depth O(d) to an instance of IND-LEAF on O(sL) variables.

A representation of this construction is given in Figure 2.
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x1x2 + x1x3

x1x2 + x1 x1x3 + x1

x3 + x1

x1x2

x1

x1

x1x3

x3

x1

x1x3

x1x2

x1

11

Figure 2 A IND-LEAF instance constructed from a Polynomial Calculus derivation. Left: a
Polynomial Calculus derivation. Right: the corresponding IND-LEAF instance. The non-zero
variable of the IND-LEAF is labelled with the variables that they query in their decision tree.
The red area is represents the children of the pool corresponding to the line x1x2 + x1x3 (i.e.,
P

(4)
2 = P

(4)
3 = 1), while the blue area indicates the children of the line x1x3 + x1 (P (2)

1 = x1). The
black lines indicate the matchings.

Proof. Let N be the number of distinct monomials that appear in the F2-PC proof of F . We
construct an instance of IND-LEAF over pools [L] and nodes [N ]. We will abuse notation and
associate each ℓ ∈ [L] with the ℓ-th line in the proof and each m ∈ [N ] with its corresponding
monomial.

Fix some ℓ ∈ [L] and for each monomial m ∈ [N ] occurring in line ℓ define A
(ℓ)
m to be

the depth-d decision tree which outputs 1 iff m(x) = 1. For the remaining monomials m,
set A

(ℓ)
m = 0. Next, we set the predecessor variables as follows. If ℓ was derived by addition

from ℓ′, ℓ′′, then set P
(ℓ)
ℓ′ = P

(ℓ)
ℓ′′ = 1 and P

(ℓ)
ℓ∗ = 0 for all other ℓ∗ ∈ [L]. Otherwise, if ℓ was

derived by multiplication by a variable xi from ℓ′, then we set P
(ℓ)
ℓ′ = xi and P

(ℓ)
ℓ∗ = 0 for all

ℓ∗ ̸= ℓ′. Finally, if ℓ was an initial clause of F then we set P
(ℓ)
ℓ∗ = 0 for all ℓ∗.

Next, we set the matching variables of each ℓ which does not correspond to an initial
clause of F as follows. Observe that if ℓ was derived by addition from ℓ′, ℓ′′ then every
monomial m in ℓ must occur in exactly one of ℓ′, ℓ′′ as otherwise it would have cancelled
over F2. Thus, if ℓ′ is the child of ℓ in which m also occurs, then we set M

(ℓ)
ℓ′,m = (ℓ, m) and

M
(ℓ)
ℓ,m = (ℓ′, m), matching those two occurrences of the m-th node. Otherwise, if m does not

appear in ℓ, but is in one of the predecessors of ℓ, say ℓ′, then it must also appear in ℓ′′. In
this case we set M

(ℓ)
ℓ′,m = (ℓ′′, m) and M

(ℓ)
ℓ′′,m = (ℓ′, m). Finally if m does not occur in any of

these lines, then we set M
(ℓ)
ℓ∗,m arbitrarily for ℓ∗ ∈ {ℓ, ℓ′, ℓ′′}.

Otherwise, if ℓ was derived from ℓ′ by multiplication with some variable xi then we set
the matching in a similar way as above. A monomial m occurs in ℓ if either m or m \ xi

occurs in ℓ′, but not both. For each m ∈ [N ], if m occurs in ℓ then we set M
(ℓ)
ℓ,m match it

to the m or m \ xi that occurs in ℓ′, and set the matching variable for this node to match
it back to (ℓ, m). Otherwise, if m and m \ xi occur in ℓ′ then set M

(ℓ)
ℓ′,m = (ℓ′, m \ xi) and

M
(ℓ)
ℓ′,m\xi

= (ℓ′, m). Finally, for match the m which do not occur in ℓ or ℓ′ arbitrarily.
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Lastly, we set the matching variables of the ℓ ∈ L which correspond to an axiom
A ∈ {C : C ∈ F}. Each M

(ℓ)
ℓ,m is defined by querying the variables in A (of which there are

at most d by definition). If A is satisfied, then we fix an arbitrary matching between the
monomials of A, and otherwise if A is falsified then we fix an arbitrary false matching (say,
match each of the monomials in A in a cycle).

Observe that violations occur only in the matchings of ℓ ∈ [L] which correspond to clauses
of F that are falsified. Thus, any solution to this instance of IND-LEAF will be a solution
to SF and we can define the output decision trees for these clauses as such. The output
decision trees corresponding to other solutions can be set to output a fixed arbitrary solution
as those solutions will never occur. ◀

The Polynomial Calculus Proves its own Soundness
Next, we state a reflection principle for the F2-Polynomial Calculus using a natural verification
procedure.

A Verification Procedure for F2-PC. We define the following verification procedure
V PC

nH ,mH ,(d,s,L)(H, Π) for c = d + log s + log L. For simplicity of description we have in-
cluded a length parameter L, however since L ≤ s, we could have used s instead and included
additional variables to indicate which lines are actually part of the proof and which are not;
this would only affect the complexity up to log-factors. As well, for simplicity, we will group
the F2-PC rules into a single inference rule:

l1 l2
l1x + l2y

for any x, y ∈ {0, 1, x1, . . . , xn}.
Every line ℓ ∈ [L] is described by a list of s degree-d monomials mon(ℓ)

m for m ∈ [s], where
mon(ℓ)

m,i ∈ [nH ] for i ∈ [d] specifies the i-th variable in m. The (nh + 1)-st value is understood
to indicate the 1 polynomial. However, not every line contains all s monomials, and so we
include a variable a

(ℓ)
m ∈ {0, 1} which indicates whether the i-th monomial is active – that is,

whether it occurs in line ℓ. We reserve the first mH lines ℓ ∈ [L] for the input clauses of H.
Each line ℓ > mH has two predecessor pointers p

(ℓ)
1 , p

(ℓ)
2 ∈ [ℓ − 1] indicating the lines from

which ℓ was derived (if any), and a pair of indices v
(ℓ)
1 , v

(ℓ)
2 ∈ [nH + 2] indicating the variables

x, y that the lines indicated by p
(ℓ)
1 , p

(ℓ)
2 were multiplied by in order to obtain ℓ; the final two

values nH + 1, nH + 2 indicate the constants 0 and 1 respectively. Finally, to ensure that each
inference is sound, for every line ℓ there is a matching between the monomials of ℓ and those
of ℓ′ < ℓ. We will require that each active monomial for ℓ is matched to an appropriate active
monomial of its predecessors. The matching is given by variables match(ℓ)

ℓ′,m′ ∈ {0, 1, 2} × [s],
where 0 indicates that m′ is matched to a monomial in ℓ, 1 to a monomial in p

(ℓ)
1 and 2

means that it is matched to a monomial in p
(ℓ)
2 . For the leaves ℓ ∈ [mH ] we enforce that

there is a matching between its active monomials match(ℓ)
ℓ,m′ ∈ [s].

The constraints are as follows:
Initial Clauses. We enforce that the first mH lines are active, that the monomials of
ℓ ∈ [mH ] are exactly the monomials of the ℓ-th clause of H , and that each active monomial
is matched with another active monomial in ℓ.
Root. To require that this is indeed a proof of H , we enforce that the root L of the proof
has a

(L)
1 = 1, mon(L)

1,i = nH + 1 (i.e., is the constant 1 polynomial) for all i ∈ [d], and
a

(ℓ)
m = 0 for all m ̸= 1.
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Inference. To express the inference rule, we will require that if line ℓ > mH was derived
from lines p

(ℓ)
1 , p

(ℓ)
2 with variables v

(ℓ)
1 , v

(ℓ)
2 , then the monomials of ℓ are exactly those in

v
(ℓ)
1 p

(ℓ)
1 + v

(ℓ)
2 p

(ℓ)
2 after cancelling mod2. More concretely, that each active monomial in ℓ

is matched to the active monomial in p
(ℓ)
1 or p

(ℓ)
2 from which it was derived.

Define RefPC := Sat ∧ ProofPC where ProofPC := V PC. We show that F2-PC has efficient
proofs of RefPC.

▶ Theorem 10. PC(RefPC) ≤ polylog(n).

Proof. By Theorem 7 it suffices to construct a reduction from SRefPC to the IND-PPA-
complete problem IND-LEAF Fix an instance of RefPC with parameters nH , mH , (d, s, L).
We construct an instance of IND-LEAF with L pools and s nodes. The high-level idea of
the proof is simple: we view RefPC as IND-LEAF, where each node for each line corresponds
to a monomial which is encoded by d log nH bits. We then arrange the matching in the
IND-LEAF instance so that two nodes m, m′ that are matched in RefPC are matched in
IND-LEAF if they were correctly derived – if m is derived from m′ by multiplication by a
variable x then we check that indeed m = m′x.

First, we define the decision trees for the variables of IND-LEAF. For each ℓ ∈ [L] and
ℓ′ < ℓ, we define its predecessor variables P

(ℓ)
ℓ′ by querying p

(ℓ)
1 and p

(ℓ)
2 and outputting 1 if

either of these is ℓ′, and 0 otherwise.
We define the activity A

(ℓ)
m of the m-th node of ℓ by querying whether a(ℓ) = 1, then

querying the d log nH bits of mon(ℓ)
m , and then checking that αi = 1 for all i ∈ Vars(mon(ℓ)

m )
(the variables in monomial m). A

(ℓ)
m = 1 if all of these checks pass, and 0 otherwise.

Finally, the matching variables M
(ℓ)
ℓ′,m′ are defined as follows. If ℓ′ ̸= ℓ we query p

(ℓ)
1 and

p
(ℓ)
2 to determine if ℓ′ is one of the children of ℓ. If it is not then the output of M

(ℓ)
ℓ′,m′ can

be arbitrary. Otherwise, if ℓ′ = ℓ then we can continue. We query v
(ℓ)
1 to determine the

variable y that was used to derive monomial m′, and we query match(ℓ)
ℓ′,m to obtain a pair

j ∈ {0, 1, 2} × [s] and m∗ ∈ [s] indicating to which child of ℓ and which monomial m∗ the
monomial m is matched. As well, we query match(ℓ)

p
(ℓ)
j

,m∗
to ensure that this matching is

consistent. Finally, query mon(ℓ)
m and mon(p

(ℓ)
j

)
m∗ , where p

(ℓ)
0 := ℓ. If the variables occurring in

m are not the the same as those in v
(ℓ)
1 m∗, then let M

(ℓ)
ℓ′,m be some arbitrary (ℓ̂, m̂) such that

ℓ̂ ̸= p
(ℓ)
1 , p

(ℓ)
2 . In particular, this means that a(ℓ̂) = 0 and this will cause a violation (solution).

Otherwise, set M
(ℓ)
ℓ′,m = (p(ℓ)

j , m∗).
Next, we define the output decision trees for the solutions of this instance of IND-LEAF.

Let (ℓ, ℓ′, m) be a solution, we create a decision tree mapping this solution back to a falsified
clause of RefPC as follows. If ℓ is one of the initial clauses Cℓ of H, i.e., ℓ ≤ mH , then we
query whether Cℓ(α) = 0, and if so we output the index of the falsified constraint of SAT
which states that the ℓ-th clause of H is satisfied under α. Otherwise, this decision tree
queries the decision tree for M

(ℓ)
ℓ′,m. If we discover that m is matched to a monomial m∗ with

m ̸= v
(ℓ)
1 m∗, or if m is matched to a monomial m∗ but that monomial is not matched to m,

then we output the index of the clause of RefPC which states that this should not happen.
This completes the description of the reduction. Each of the decision trees involved

queries at most polylog(n) many variables and thus by Theorem 7 it follows that there is a
polylog(n)-complexity F2-PC proof of RefPC. ◀
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2.4 Characterizing Dynamic Variants of Static Systems
We end this section by discussing how induction variants of TFNP problems can be used
to generalize TFNPdt characterizations of static proof systems (such as Nullstellensatz and
Sherali-Adams) to characterizations of their dynamic variants (such as the Polynomial
Calculus and dag-like Sherali-Adams). At a high-level, this is done as follows: if a static
proof system is characterized by a TFNP problem R then we can define an IND-R problem
to characterize the dynamic version of the proof system as follows: there are pools 1, . . . , L

which correspond to the lines of the proof, and each ℓ ∈ [L] has children defined by variables
P

(ℓ)
ℓ′ which indicates whether ℓ′ is an immediate predecessor of ℓ. Thus, the pools together

with their predecessors define the dag-structure of the proof. We then have an instance of the
TFNP problem R defined over this dag. The crucial part is that the predecessors P (ℓ) of ℓ are
not fixed. As examples of this, we show how to leverage the known TFNPdt characterizations
of the static proof systems Fq-Nullstellensatz [31], unary Nullstellensatz [25], and unary
Sherali-Adams [25] to define TFNPdt problems which characterize their dynamic variants,
Fq-PC, unary PC, and unary dag-like Sherali-Adams.

Fq-Polynomial Calculus
First, it is straightforward to generalize the IND-PPA-complete problem IND-LEAF to
characterize Fq-Polynomial Calculus for other q ̸= 2. The IND-PPAq-complete problem IND-
LEAFq will be defined as IND-LEAF except that one matches q-tuples rather than pairs. It
is not difficult to see that this characterizes Fq-Polynomial Calculus. Using IND-LEAFq, one
can obtain a variant of Theorem 7 for Fq-PC by an almost identical proof.

Unary Polynomial Calculus.
The unary Polynomial Calculus (uPC) proof system is the Polynomial Calculus operating
over the integers, rather than a finite field. Unary refers to the fact that the size of a uPC
proof is measured with coefficients written in unary – if a monomial αm, for α ∈ Z, occurs
in some line in the proof then it contributes |α| towards the size. We will use the following
non-standard definition of the Polynomial Calculus over the integers. An unsatisfiable
CNF formula F = C1 ∧ . . . ∧ Cm is encoded as a system of equations by mapping each
Ci clause to the polynomial equation Ci such that Ci(x) = 1 iff Ci(x) = 0. The unary
Polynomial Calculus will prove that F is unsatisfiable by deriving the constant −1 from the
equations {Ci(x) = 0, −Ci(x) = 0 : Ci ∈ F} using the the addition and multiplication by a
variable rules as stated for F2-PC4. As before, we operate over the ideal ⟨x2

i = xi⟩i∈[n], thus
multi-linearization is done implicitly.

Using the characterization of the unary Nullstellensatz proof system (the static version of
uPC) by the PPAD-complete problem END-OF-LINE [25], one can define an IND-END-OF-
LINE problem which will be complete the complete problem for a corresponding IND-PPAD
class, in order to characterize uPC. The main difference between IND-END-OF-LINE and
IND-LEAF is that the edges in the matchings of IND-END-OF-LINE are directed. The
direction of the edges in the matching will be used to indicate the signs of monomials in

4 Typically, the Polynomial Calculus is defined with a multiplication rule rather than addition, where
one may derive αp + βq from previously derived polynomials p, q and α, β ∈ Z. However, as we are
measuring coefficients in unary, multiplication by positive coefficients may be simulated by repeated
addition. To simulate the use of negative coefficients, we push the negations to the leaves of the proof
and include both Ci = 0 and −Ci = 0 as axioms.
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the uPC proof as follows: If a node m ∈ [N ] belonging to pool ℓ occurs are the head of an
arrow (directed edge) in the matching M (ℓ) then it is considered positive, while if it occurs
are the tail of an arrow in M (ℓ) then it is negative. However, if m belongs to a pool ℓ then if
it occurs at the head of an arrow in M (ℓ∗) for ℓ∗ > ℓ then it is considered negative and if
it as the tail then it is positive. This change in meaning depending on whether this is the
matching for the pool ℓ to which it belongs versus a parent pool should be thought of as the
sign of monomials propagating from the children ℓ to the parent ℓ∗ in the matching M (ℓ∗).

Induction PPAD

The IND-PPAD complete problem IND-END-OF-LINE is defined as follows:
Structure. [L] pools and [N ] nodes. Each ℓ ∈ [L] will correspond to a line in the
polynomial calculus proof and be associated with its own copy of [N ].
Variables. For each ℓ ∈ [L] and ℓ′ < ℓ we will have a predecessor variable P

(ℓ)
ℓ′ ∈ {0, 1}

indicating whether ℓ′ is a predecessor of ℓ. For each pool ℓ ∈ [L] and each node m ∈ [N ]
we have a variable A

(ℓ)
m ∈ {0, 1} indicating whether node m is active in pool ℓ. There

is a distinguished node 1 ∈ [N ] and we hardcode that A
(ℓ)
1 = 1 and A

(ℓ)
m = 0 for all

m ̸= 1. Finally, we have a directed matching between the nodes in pools ℓ′ ≤ ℓ, defined
by variables M

(ℓ)
ℓ′,m ∈ {−, +} × [L] × [M ] indicating to which node and pool ℓ′’s copy of

m is matched in a directed fashion, and whether it appears at the head (+) or tail (-) of
the arrow.
Solutions. IND-PPAD will state the following: (i) For each pool ℓ with no predecessors,
M (ℓ) enforces that there is a matching between the nodes of pool ℓ. (ii) if ℓ′ < ℓ is a
predecessor of pool ℓ then either every active node of m of ℓ occurs at the opposite end of
an arrow in the matching M (ℓ) for ℓ than in matching for M (ℓ′) (e.g., m occurs at the
tail of an edge in M (ℓ) and the head of an edge in M (ℓ′)), or every active node m of ℓ

occurs at the same end of an arrow in M (ℓ) as in M (ℓ′). (iii) The root pool L contains
only a distinguished 1-node. Observe that (i) – (iii) cannot hold simultaneously, and thus
IND-PPAD is total. Formally, the solution of IND-PPAD are as follows:

Matching Solutions. A triple (ℓ, ℓ′, m) ∈ [L]2 × [N ] such that ℓ′ is either a predecessor
of ℓ or ℓ itself, m is an active node of ℓ′ and m is matched to a node m′′ of some
pool ℓ′′ but m′′ is not matched back to m. That is, P

(ℓ)
ℓ′ = 1 or ℓ = ℓ′, A

(ℓ′)
m = 1,

M
(ℓ)
ℓ′,m = (α, ℓ′′, m′′) for some ℓ′′ ∈ [L], m′′ ∈ [N ], α ∈ {−, +}, but either A

(ℓ′′)
m′′ = 0 or

M
(ℓ)
ℓ′′,m′′ ≠ (β, ℓ′, m), where β is the opposite sign of α (i.e., m is the head of an arrow

to m′′, but m′′ is not the tail).
Polarity Solutions. A tuple (ℓ, ℓ′, m) ∈ [L]2×[N ]2 which violates (ii). That is, A

(ℓ′)
m = 1,

P
(ℓ)
ℓ′ = 1, M

(ℓ′)
ℓ′,m = (α, ∗, ∗) and M

(ℓ)
ℓ′,m = (α, ∗, ∗).

A portion of an instance of IND-END-OF-LINE is depicted in Figure 3.

▶ Theorem 11. For any unsatisfiable CNF formula F ,
If there is a depth-d reduction from SF to an instance of IND-END-OF-LINE on s

variables then there is a degree-O(d) and size-s32O(d) uPC proof of F .
If F has a size-s and degree-d uPC proof of F then there is a depth-O(d) reduction from
SF to an instance of IND-END-OF-LINE on O(s2)-many variables.

In particular, IND-END -OF-LINEdt(SF ) = Θ(uPC(F )).

A proof of this theorem is given in the Appendix.
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2

5 3

1 is a negative node in pool 4 3 is a positive node in pool 4

Pool 2’s positive node 2 cancels with Pool 3’s negative node 2

Pool 3

Pool 2 Pool 1

Figure 3 Part of an IND-END-OF-LINE instance. The yellow circles indicate the active nodes of
each pool; for example A

(4)
1 = A

(4)
3 = A

(4)
5 = 1 and A

(4)
m = 0 for all other m. The pink area indicates

the predecessors of pool 4; P
(4)
1 = P

(4)
2 = 1. The solid arrows indicate the matching M (4) for pool 4,

while the dashed arrows indicate that matchings for pools 1 and 2. For example M
(4)
4,1 = (+, 2, 1)

and M
(4)
2,1 = (−, 4, 1). Positive nodes are nodes which correspond to positive monomials in the uPC

proof, while negative nodes correspond to negative monomials.

Unary DAG-Like Sherali-Adams
The unary dag-like Sherali-Adams proof system is a generalization of the uPC proof system
and the Sherali-Adams proof system (see e.g., [18] for a definition), which allows one to
introduce additional conical juntas at each step in the proof. A conical junta is a polynomial
of the form J =

∑
λiDi where λi ≥ 0 and Di is of the form

∏
i∈S xi

∏
j∈T (1 − xj) for some

S, T ⊆ [n]. Formally, unary dag-like Sherali-Adams (uDSA) proves that an unsatisfiable
CNF formula F is unsatisfiable by deriving the contradiction −1 ≥ 0 from the equations
{Ci(x) = 0, −Ci(x) = 0 : Ci ∈ F} using the addition and multiplication by a variable rules
from uPC along with the following addition rule:

Junta Rule. From a previously derived polynomial p ≥ 0, derive p + J ≥ 0 for ay conical
junta J .

As before, we work over the ideal ⟨x2
i = xi⟩i∈[n], multi-linearizing implicitly. We measure the

degree of a uDSA proof by the maximum degree of any polynomial derived, and the size as
the sum of the sizes of the polynomials derived, where coefficients are written in unary.

Using the characterization of unary Sherali-Adams by the PPADS complete problem
SINK-OF-LINE, we can define a TFNP subclass IND-PPADS whose complete problem IND-
SINK-OF-LINE will characterize uDSA. IND-SINK-OF-LINE restricts the solutions of
IND-END-OF-LINE to permit nodes occurring at the head of arrows to be incorrectly
matched. This corresponds to allowing one to introduce positive monomials (and thus conical
juntas) free-of-charge in the uDSA proof. Formally, we replace the matching solutions with
the following:
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1. Matching Solutions*. A triple (ℓ, ℓ′, m) ∈ [L]2 × [N ] such that m is an active node of ℓ′

and either (a) ℓ′ is a predecessor of ℓ and m is matched to some node m′′ of some pool
ℓ′′ but m′′ is not matched back to m, or (b) ℓ′ = ℓ and m occurs at the tail of an arrow
in the matching for ℓ and m is matched to a node which is not matched back to it. That
is, A

(ℓ′)
m = 1 and either

(a) P
(ℓ)
ℓ′ = 1 and M

(ℓ)
ℓ′,m = (α, ℓ′′, m′′), but either A

(ℓ′′)
m′′ = 0 or M

(ℓ)
ℓ′′,m′′ ≠ (β, ℓ′, m), where

β is the opposite sign of α, or
(b) ℓ = ℓ′ and M

(ℓ)
ℓ,m = (−, m′′, ℓ′′) for some m′′ ∈ [N ], ℓ′′ < ℓ and M

(ℓ)
ℓ′′,m′′ ≠ (+, ℓ′, m) or

P
(ℓ)
ℓ′′ = 0.

We also add the following solution5, which requires that the node in the final line occurs
at the tail of an arrow (is negative) in M (L).

Final Pool Solution. A pair (L, 1) such that M
(L)
L,1 = (+, ℓ′, m) for some ℓ′ ≤ ℓ and

m ∈ [N ].
One can obtain a characterization theorem of uDSA by IND-SINK-OF-LINE (analogous
to Theorem 11) by combining by combining the proof of Theorem 11 with the proof of the
characterization of uSA by SINK-OF-LINE from [25].

3 Communication TFNP and Monotone Circuit Complexity

In addition to proof system characterizations of black-box TFNP problems, the communication
versions of TFNP problems have provided characterizations of monotone circuit models
[26, 32, 45]. When combined with lifting techniques translating decision tree lower bounds to
communication complexity lower bounds, this has resulted in numerous new lower bounds for
a variety of monotone circuit models. For example, bounds on the F2-Nullstellensatz proof
system, which is characterized by black-box PPA were lifted to communication-PPA lower
bounds, which characterizes F2-monotone span programs [40]. Converseley, as described in
the introduction, a black-box and communication characterization of the same TFNP subclass
generically gives rise to a monotone interpolation theorem, translating small proofs in the
associated proof system into efficient computations in the associated model of computation.

In this section, we give generic conditions under which a monotone circuit model has
a communication-TFNP characterization. We will formalize monotone circuit models as
complexity measures on partial monotone functions. As has been pointed out in the past,
there is a direct mapping from TFNP problems to partial monotone functions, and we utilize
this mapping. This will allow us to give an exact characterization of when a complexity
measure on partial functions has a TFNP characterization, proving Theorem 3. Since
complexity measures on total functions induce complexity measures on partial functions,
this also gives a general condition under which a complexity measure on total monotone
functions has a TFNP characterization. Unfortunately, we don’t have a converse statement
for total functions and it is conceivable that measures that don’t meet our criteria also have
TFNP characterizations.

It would be plausible to propose that some of the results in this section might have
analogs for non-monotone models of computation. However, the techniques we use seem not
to hold for these models, which might indicate why TFNP or other communication complexity
characterizations of non-monotone circuits are much more difficult to use to prove lower
bounds.

5 Note that we could have added this final pool solution to our definition of IND-END-OF-LINE without
changing its complexity. Indeed, this solution just enforced that the final line is −1 in the uPC proof,
which can be assumed without loss of generality, and thus IND-END-OF-LINE with the final pool
solution reduces to IND-END-OF-LINE.

ITCS 2023



30:26 TFNP Characterizations of Proof Systems and Monotone Circuits

3.1 Communication TFNP
For n bit strings x and x′, we say that x′ dominates x, written x ≤ x′, if xi ≤ x′

i for every
i ∈ [n]. A partial Boolean function f on n bit strings is described by two disjoint sets of
inputs, Nof which is the set of strings that f rejects, and Yesf , the strings that it accepts.
f is total if Nof ∪ Yesf = {0, 1}n. A partial Boolean function f is monotone if whenever
x ∈ Nof and x′ ≤ x, then x′ ∈ Nof and whenever y ∈ Yesf and y ≤ y′ then y′ ∈ Yesf . For
partial functions f and g, we say f is solved by g if Nof ⊆ Nog and Yesf ⊆ Yesg. That is, g

contains f as a sub-function.
Let h : {0, 1}n → {0, 1}n′ , and let f be a partial function on n′-bit inputs. Then f ◦ h is

the partial function where Yesf◦h = {x|h(x) ∈ Yesf } and Nof◦h = {x|h(x) ∈ Nof }. If h is
monotone in its input, and f is monotone, then f ◦ h is monotone.

Monotone Partial Function Complexity Measures

A monotone partial function complexity measure mpc is a map from partial monotone
functions to non-negative integers that is Monotone Under Solutions: whenever g solves
f , mpc(g) ≥ mpc(f).6 Typical such measures are the minimum circuit size in a monotone
model of a total function that solves f , but we won’t include a circuit model explicitly.

We are now ready to define what a communication-TFNP characterization of a measure
means. For a partial Boolean function f on n inputs, the Karchmer-Wigderson game for f ,
denoted KWf , is the communication problem where one player has x ∈ Nof the other has
y ∈ Yesf and the output is a position i so that xi ̸= yi. Similarly, for a monotone Boolean
function f on n inputs, the monotone Karchmer-Wigderson game for f , denoted mKWf , is a
restriction of the Karchmer-Wigderson game to require that the output is a position i such
that xi < yi. Karchmer and Wigderson [32] showed that communication complexity of KWf

(mKWf ) is an exact characterization of the (monotone) circuit depth needed to compute f ,
or equivalently communication-FP.

Communication TFNP

Consider relational communication problems defined by a predicate R ⊆ X × Y × [ℓ]. The
corresponding communication problem has one player given x ∈ X, the other y ∈ Y , and
the goal being to output an index i so that R(x, y, i) holds. We say this problem is in t-bit
communication-TFNP if for every x ∈ X, y ∈ Y , for some i, R(x, y, i); and given i, there is a
t-bit communication protocol V (x, y, i) to determine whether R(x, y, i) holds. We say that
R ∈ TFNPcc if R is in polylog(n)-bit communication TFNP.

We say that one communication problem R ⊆ X × Y × [ℓ] mapping reduces to another
R′ ⊆ X ′ ×Y ′ × [ℓ′] with communication t if there are functions MX : X → X ′ , MY : Y → Y ′

and a t-bit communication protocol S(x, y, i′) which outputs i so that

R′(MX(x), MY (y), i′) =⇒ R(x, y, S(x, y, i′)).

In particular this means that R requires at most t more bits of communication than R′ to
solve. We say that two communication problems R, R′ are equivalent under t-bit mapping
reductions if they t-bit mapping reduce to each other.

6 Recall that a partial function g solves f if Nof ⊆ Nog and Yesf ⊆ Yesg.
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The following lemma says that TFNPcc is exactly the study of the monotone Karchmer-
Wigderson search problem.

▶ Lemma 12. For any search problem R ⊆ X × Y × [ℓ] in t-bit communication TFNP, there
is a partial function F , on 2tℓ many variables, such that R is equivalent to mKWF under
t-bit mapping reductions.

Proof. Let S(x, y, j) be a t-bit protocol that verifies that j ∈ [ℓ] is a valid solution on input
(x, y). We define a partial function F on N = 2tℓ input bits. We think of each coordinate as
representing a solution j ∈ [ℓ] and a communication pattern for S(x, y, j). We then construct
the accepting and rejecting sets for F ; for each x ∈ X we construct an input α(x) ∈ {0, 1}N

in NoF as follows: for each j ∈ [ℓ] and t-bit communication pattern p ∈ {0, 1}t we set

α
(x)
(j,p) =

{
1 if there is a y ∈ Y such that S(x, y, j) evolves according to p and S(x, y, j) = 1,
0 otherwise.

To construct YesF we build an input β(y) ∈ {0, 1}N in the same way, except we reverse 0
and 1:

β
(y)
(j,p) =

{
0 if there is a x ∈ X such that S(x, y, j) evolves according to p and S(x, y, j) = 1,
1 otherwise.

We claim that mKWF is equivalent to R, using this construction as the map. Let j

be a solution to R on input (x, y). We simulate S(x, y, j) and output j together with
the communication pattern p for the simulation. This gives an index (j, p) such that
α

(x)
(j,p) = 1 > 0 = β

(y)
(j,p), which is a solution to mKWF on input (α(x), β(y)). In the reverse

direction, if we are given a bit (j, p) such that α(x) > β(y), then we know that S(x, y, j)
accepts, and we can return j. ◀

Thus, we can restrict attention to instances of the monotone Karchmer-Wigderson search
problem. Analogous to black-box TFNP, we measure the complexity of reducing one search
problem to another as the amount of communication needed together with the logarithm of
the number of bits of the resulting input (up to a constant). Formally, let Rn ⊆ Xn ×Yn × [ℓn]
be a sequence of TFNPcc-problems where Xn, Yn ⊆ {0, 1}poly(n) and ℓn = poly(n). Define the
complexity measure Rcc on monotone partial Boolean functions f as

Rcc(mKWf ) := min log n + t,

over the set of n, t so that mKWf mapping reduces to Rn with t-bits of communication. We
say that a family of TFNPcc problems R characterizes a mpc if Rcc(mKWf ) = logΘ(1) mpc(f)
for every monotone function f .

We will also need the following notion which will essentially allow us to pad a search
problem. Say that the sequence Rn is paddable if there is a quasi-polynomial function p

and a function t(n) = polylog(n) so that Rn is t(n′)-communication reducible to Rn′ for
all n′ ≥ p(n). The condition that the sequence Rn be paddable looks a bit artificial at
first. However, if we drop it, we would allow totally unrelated TFNP subclasses to be
used in a characterization, e.g., a class that is essentially PPA for infinitely many sizes and
suddenly switches to the pigeon-hole principle, and back again. Or have all of TFNP by
slowly introducing TFNP problems into the sequence in a non-computable way. So we think
natural subclasses of TFNP with complete problems will have the paddable property.
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In the remainder of this section we will prove Theorem 3. We will first give conditions
for a TFNPcc characterization which involve a stronger notion of a universal family of
functions, which we will call complete families (Theorem 13). Using this, we then weaken the
requirement of having a complete family to admitting a universal family (Theorem 17), which
gives Theorem 3. In between, we explore sufficient conditions for TFNPcc-characterizations
of total functions.

3.2 Complete Problems give TFNP Characterizations
Our first characterization of mpc measures with TFNPcc connections involves three properties:

i) Closed Under Reductions. Say that an mpc is closed under reductions if for any
h : {0, 1}n → {0, 1}n′ that is computable by monotone Boolean circuits of depth d, and
any partial monotone function f on n′ bit inputs, mpc(f ◦ h) ≤ poly(n, n′, mpc(f), 2d).

ii) Admits a Complete Family. A complete family for an mpc is a family Fm of partial
functions on N(m) ≤ quasipoly(m) bit inputs such that for every partial monotone
function f with mpc(f) ≤ m, there is a polylog(m)-depth monotone circuit computing a
function h so that Fm ◦ h solves f , and mpc(Fm) ≤ quasipoly(m).7

We are now ready to prove the main theorem of our section which describes when mpc
measures have TFNPcc characterizations.

▶ Theorem 13. Let mpc be a complexity measure. Then there is a paddable sequence of
TFNP communication problems Rn which characterizes mpc iff (i) and (ii) hold. Moreover,
the sequence Rn can be made explicit (i.e., computably described) iff the sequence of complete
functions for f can be made explicit.

To prove this, we will use the following lemma which says that reductions between
monotone Karchmer Wigderson games and monotone reductions between functions are
identical. Note that while this is intuitive and has a simple proof, the proof does not seem
to extend to non-monotone complexity. This might be an important distinction between
monotone and non-monotone circuit complexity.

▶ Lemma 14. Let f and g be monotone partial Boolean functions. Then mKWf has a
communication-t mapping reduction to mKWg iff there is a function h computable by a
depth-t monotone circuit so that g ◦ h solves f .

Proof. As before, let Yesf , Nof and Yesg, Nog be the set of accepting and rejecting inputs of
f and g respectively.

For the if direction, suppose that there is a function h computable by depth-t monotone
circuits such that g ◦ h solves f . From this, we define a reduction from mKWf to mKWg

as follows: first, we let h be both MX and MY ; it remains to define S. Since g ◦ h solves
f , for every (x, y) ∈ Nof × Yesf , we have (h(x), h(y)) ∈ Nog × Yesg. Thus, (h(x), h(y)) is
a valid input to mKWg. A solution to mKWg on this input is a bit position i such that
h(x)i < h(y)i. Let hi be the partial function, defined on inputs in Nof ∪ Yesf , which outputs
the i-th bit of h. Since h is computable by depth-t monotone circuits, so is hi. Thus, by the
Karchmer-Wigderson transformation [32], there is a t-bit communication protocol Si(x, y)

7 Note that in the definition of admitting a complete family are insisting that f reduce to Fm for an m
only dependent on its complexity, not its input size. Most natural notions of circuit complexity have
circuit size be always at least the number of bits the function actually depends on, and the reduction
can ignore the irrelevant bits, so this should not usually be a problem.
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for mKWhi . Following this protocol on any input (x, y) for which h(x)i < h(y)i will output a
position j such that xj < yj , which is a solution to mKWf . Thus, we can define S as follows:
on input (x, y, i) it runs Si(x, y) and outputs the answer.

Conversely, suppose that we have a t-bit communication reduction MX , MY , S(x, y, i)
from mKWf to mKWg. From the protocol S, which maps solutions i to mKWg on input
MX(x), MY (y) back to solutions S(x, y, i) to mKWf on input (x, y), we construct a function
h computable with depth-t monotone circuits such that g ◦ h solves f . For each i, consider
the monotone partial function Hi whose no-inputs are the x for which there is an x ≤ x′

with x′ ∈ Nof and MX(x′)i = 0, and whose yes-inputs are those y for which there is y ≤ y′

with y′ ∈ Yesf and MX(y′)i = 1; we call such an input pair a dominating and dominated
pair for Hi.

By the definition of reduction, whenever x′ ∈ Nof , MX(x′)i = 0, y′ ∈ Yesf and MY (y′)i =
1, the communication protocol S(x′, y′, i) returns a position j with x′

j < y′
j . Given any input

pair (x, y) to mKWf where there is a dominating and dominated pair (x′, y′) for Hi as above,
the parties can, without communication, find x′ and y′ respectively and then run the protocol
S(x′, y′, i) to obtain the index j. By definition, xj ≤ x′

j < y′
j ≤ yj , so this modified protocol

solves the mKWHi game. Therefore, by the Karchmer-Wigderson transformation [32], there is
a depth-t monotone circuit computing a function hi that rejects all x ∈ Nof with MX(x)i = 0
and accepts all y ∈ Yf with MY (y)i = 1; it follows that hi(x) ≤ MX(x)i for all x ∈ Nof , and
if y ∈ Yesf then MY (y)i ≤ hi(y). Letting h = (h1, . . . , hn), where n is the number of input
bits to f , we have that for each x ∈ Nof , h(x) ≤ MX(x) ∈ Nog, so by monotonicity of g,
h(x) ∈ Nog. Similarly, if y ∈ Yesf , MX(y) ≤ h(y) and h(y) ∈ Yesg. Thus, g ◦ h solves f and
g is computable by depth-t monotone circuits. ◀

We will now use the lemma to prove the theorem.

Proof of Theorem 13. Let mpc be a complexity measure with properties (i) and (ii) and
let Fm be the complete family of partial monotone functions guaranteed by (ii). Let Rm :=
mKWFm be the monotone Karchmer-Wigderson game for Fm. Observe that as Fm is complete,
it reduces to Fm′ for all m′ ≥ mpc(Fm) = quasipoly(m) via depth-polylog(m′) reductions.
Thus by Lemma 14, Rn = mKWFm reduces to Rm′ = mKWFm′ with communication-
polylog(m′) for all such m′, and so R is paddable.

We claim Rcc(mKWf ) = logΘ(1) mpc(f) for every monotone partial function f . Letting
m = mpc(f), f reduces to Fm with a polylog(m)-depth monotone circuit, as Fm is complete.
Then by Lemma 14, mKWf reduces to mKWFm

with polylog(m) bits of communication.
It follows by definition that Rcc(mKWf ) ≤ polylog(m) = polylog(mpc(f)). In the other
direction, let Rcc(mKWf ) = M . Then there are n, t with t + log n = M so that mKWf is
t-communication reducible to mKWFn . By Lemma 14, it follows that Fn ◦ h solves f for
some depth-t circuit h. Then by monotonicity under solutions, and closure under reductions,

mpc(f) ≤ mpc(Fn ◦ h) ≤ poly(mpc(Fn), 2t) = poly(n, 2t) = 2O(M).

Next we prove the converse direction of the theorem. Let Rn be any paddable sequence of
communication TFNP problems and define a monotone partial function complexity measure
mpc as

mpc(f) := 2Rcc(mKWf )

for every monotone partial function f . By construction, mpc is monotone under solutions.
We will show that mpc has the properties (i) and (ii). First, assume g ◦ h solves f and h is
computable by depth-t monotone circuits. Then by Lemma 14, mKWf has a t-bit reduction to
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mKWg. As well, mKWg has a t′ bit reduction to Rn where t′ +log n = Rcc(mKWg). Stringing
these together, f has a t + t′ bit reduction to Rn, and so Rcc(mKWf ) ≤ t + t′ + log n =
t + Rcc(mKWg), and mpc(f) ≤ 2tmpc(g). Therefore, mpc is closed under reductions.

Finally, we give a complete family for mpc. Let FN be the sequence of partial monotone
functions given by Lemma 12 such that RN is equivalent to mKWFN

. Note that by definition
FN has at most N2t many input bits where t = polylog(N) is the number of bits that
need to be communicated in order to verify solutions to RN , and also that mpc(FN ) =
2Rcc(mKWFN

) ≤ 2t = quasipoly(N).
We will show that for each m, there is an N ′ = quasipoly(m) so that every partial function

f with mpc(f) ≤ m reduces to FN ′ via a polylog(m)-depth reduction. Fix some f with
mpc(f) ≤ m and let M = log mpc(f) = Rcc(mKWf ). Then mKWf reduces to some Rn in t

bits of communication, where t + log n = M ; in particular, t is at most M and log n ≤ M .
Then by paddability, we can reduce this to some RN ′ where N ′ = quasipoly(n) ≤ quasipoly(M)
is a fixed function of m, and the further communication is at most polylog(M). Then by
Lemma 14, f has a polylog(M)-depth circuit reduction to FN ′ as desired. Thus, mpc is
closed under reductions and admits a complete family. ◀

A Partial Characterization for Complexity Measures on Total Functions
Analogous to measures on partial functions, let a monotone (total function) complexity
measure mc map total monotone functions to non-negative integers. From any mc we can
extract a monotone complexity measure mpc on partial functions by

mpc(F ) := min{mc(f) : total f solving F}.

Observe that mpc will always satisfy monotonicity under solutions because if g solves f , the
set of total functions that solve g is a subset of those that solve f , so the min for g will be at
least that for f .

Generalizing the definition for partial functions, say that a monotone complexity measure
mc has a complete family if there is a family of total monotone functions Fm such that for
every total monotone function f on n bit inputs with mc(f) ≤ m, there is a log m-depth
monotone circuit computing a function h so that Fm ◦ h solves f , and mc(Fm) ≤ poly(m).

We will prove the following lemma, whose corollary gives sufficient conditions for a
monotone complexity measure to give rise to a corresponding TFNPcc problem.

▶ Lemma 15. mpc is closed under reductions and has a complete (partial function) family
if and only if mc is closed under reductions and has a complete total function family.

An immediate consequence is the following.

▶ Corollary 16. If a monotone complexity measure mc is closed under reductions and has a
complete family, then it has a TFNPcc characterization by a sequence of paddable relations.
If not, mc has no such characterization.

This still leaves open the possibility that there is a characterization of the complexity
measure that does not extend to partial functions for some complexity measures without
complete problems.

Proof of Lemma 15. To prove the lemma, we will first assume mc is closed under reductions,
e.g., mc(f ◦ h) ≤ poly(mc(f), 2d) when h is computable in depth d. Let F be a partial
function, and let f be a total function of minimal complexity solving F . Then f ◦ h solves
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F ◦ h, so mpc(F ◦ h) ≤ mc(f ◦ h) ≤ poly(mc(f), 2d) = poly(mpc(F ), 2d). Conversely, since
mpc(f) = mc(f) for total functions, it follows immediately that if mpc is closed under
reductions, then so is mc.

If Fm is a family of complete partial functions for mpc, let fm be the corresponding minimal
complexity total functions solving Fm. Note that mc(fm) = mpc(Fm) = quasipoly(m). Let g

be any total function and let m = mpc(g) = mc(g). Then there is a function h computable
by polylogm-depth monotone circuits such that Fm ◦ h solves h. Furthermore, fm ◦ h solves
Fm ◦ h, and so fm ◦ h solves g. However, the only way for one total function to solve another
is if they are equal, so fm ◦ h = g. It follows that fm is also complete and, by assumption, is
total.

Conversely, if fm is complete for mc, then let G be any partial function, let g be a minimal
complexity total function solving G, and let m = mpc(G) = mc(g). Then g = fm ◦ h for
some function h computable by polylogm-depth circuits, and so solves G. Thus, fm is also
complete for mpc. ◀

3.3 Universal Functions vs. Complete Functions
We can simplify the condition that there be complete functions in the class to having universal
families of functions, replacing (ii) in Theorem 17 by the following:

ii†) Admits a Universal Family. Let Fm be a sequence of partial monotone functions, and
let mpc be a complexity measure on such functions. We say Fm is universal for mpc if
whenever mpc(g) ≤ m , there is a fixed string zg so that F (x ◦ zg) solves g(x). Observe
that such an Fm can be viewed as complete under depth 0 reductions.

▶ Theorem 17. Let mpc be a monotone partial function complexity measure satisfying (i)
and (ii). Then mpc admits a universal family if and only if it admits a complete family.

Using Lemma 15, we can derive an analogous statement to Corollary 16 for total functions
as well. Next, we state Theorem 3 formally, which follows immediately from Theorem 17
and Theorem 13.

▶ Theorem 3. Let mpc be a complexity measure. Then there is a paddable sequence of TFNP
communication problems Rn which characterizes mpc iff (i) and (ii†) hold. Moreover, the
sequence Rn can be made explicit (i.e., computably described) iff the sequence of complete
functions for f can be made explicit.

Proof of Theorem 17. If there is a universal family Fm for mpc then we can let Gm = Fm

since as mentioned above, Fm is complete under depth 0 reductions.
Conversely, say that a monotone partial complexity measure mpc admits a complete

family under d(m)-depth reductions if there exists a family Gm of functions such that
mpc(Gm) ≤ 2d(m) and for every partial monotone function f with mpc(f) ≤ m, there is a
depth-d(m) monotone circuit computing a function h so that Gm ◦ h solves f . Suppose that
Gm(x) is complete under depth d(m) reductions, where the input size |x| = M ≤ poly(m).
We want to construct a partial function Fm which can code any composition g(x) = Gm(h(x))
for any g with mpc(g) ≤ m and for any h computable by monotone circuits of depth at
most d(m). We will actually end up coding a more powerful set of reductions, because we
cannot code exactly this family and be monotone. Observe that h has at most m input bits,
M output bits, and at most 2d(m) gates total. Thus, we can embed h into a depth-2d(m)
alternating unbounded fan-in ∧-∨ circuit with m inputs, M outputs, and 2d(m)M gates at
each intermediate level. We can represent the connectivity of the embedding by having one
bit for each pair of gates, including inputs and outputs, saying whether the earlier gate is an
input to the later one.

ITCS 2023



30:32 TFNP Characterizations of Proof Systems and Monotone Circuits

So, we let Fm be a partial monotone function with m + (m + (2d(m) − 2)M2d(m) + M)2

inputs. The first m inputs to Fm code the input x to g, and the other bits, denoted Bi,j ,
code the connectivity relation for the circuit computing h. The gates at even levels will be
∨-gates, and those at odd levels ∧-gates. Because we need the circuit evaluation problem to
be monotone, we cannot enforce that each gate has exactly two incoming wires, so we allow
the gates to be arbitrary fan-in instead. If j is a gate on an even levels, for each earlier gate
i including input positions, we let Bi,j be 1 if i is an input to j and 0 otherwise. For odd
levels, we reverse the roles of 0 and 1.

To compute Fm, we work our way up the circuit computing a bit Hi for each gate i. For
i in the first level, Hi is the i-th input bit (the i-th bit of x. For other levels, we use the rule
Hj =

∨
(Hi ∧ Bi,j) at even levels, and Hj =

∧
(Hi ∨ Bi,j) at odd levels, where the scope of i

is all gates at earlier levels. After computing the values Hj for the gates at the top level, we
apply Gm to the result.

By construction, Fm reduces to Gm via a depth 4d(m) monotone circuit with fan-in
M2d(m) ∧’s and ∨’s, which can also be computed by a depth 4d(m)(d(m) + log M) depth fan-
in two monotone circuit. Thus, by composition with reductions, mpc(Fm) is quasi-polynomial
in m. Also, for any g with mpc(g) ≤ m, g can be solved by F ◦h where h can be computed by
monotone depth-d circuits. The input zg includes the values Bi,j according to the connectivity
for h; unused bits in zg can be set to 0. By construction, Fm(x ◦ zg) = Gm(h(x)) which
solves g. ◀

4 Future Directions

The TFNP connection, mapping proof systems to circuit lower bounds via lifting, has been
extremely successful. Our results show that this TFNP connection is generic , and characterize
the conditions under which it can be made. However, there are many gaps left in making
these lower bounds systematic rather than ad hoc, and extending them to new models of
computation and proof systems.

In particular,
1. We have a generic relationship between proof systems and decision tree TFNP problems,

and a generic relationship between monotone circuit complexity problems and circuit
lower bounds. Can we complete the chain by proving a generic lifting theorem, and
show that for each TFNP problem, lower bounds for the corresponding proof systems and
complexity measures are equivalent?

2. Our characterization of proof systems that correspond to TFNP problems involves proving
their own soundness. Can we use this to show a version of Gödel’s second incompleteness
theorem, that some proof systems cannot prove their own soundness because they do not
have a tight TFNP connection?

3. TFNP has a direct connection to monotone complexity via the monotone KW games.
Can we similarly characterize the class of communication problems corresponding to
non-monotone KW games?

4. We showed that reductions between the monotone KW games were equivalent to small
depth monotone reductions between the corresponding functions. Does this extend to
non-monotone games and non-monotone reductions? If not, can we give an example
of functions with reductions between the KW games and no reductions between the
corresponding functions? (Since this is interesting even for sub-logarithmic bit reductions,
this could possibly be shown unconditionally without proving new formula lower bounds.)
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A Appendix: Proof of Theorem 11

In this appendix we prove Theorem 11, which we break into the following two lemmas. Recall
that the length of a uPC proof is the number of lines (deductions) in the proof.

▶ Lemma 18. Let F be an unsatisfiable CNF formula on n variables. If there is a uPC proof
of F with size-s, length-L, and degree-d then there is a depth-O(d) decision-tree reduction
from SF to an instance of IND-END-OF-LINE on O(sL) many variables.

Proof. Fix a unary Polynomial Calculus proof Π of some unsatisfiable CNF formula F . For
each monomial m, let cm be the maximum absolute value of any coefficient of m that occurs
in Π, and define N :=

∑
m cm. We will have cm nodes for monomial m and implicitly identify

any of these cm nodes with the monomial m. We define an IND-END-OF-LINE instance on
L pools and N nodes in much the same way as we did for F2-PC.
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For each ℓ ∈ [L], we define the active nodes m ∈ [N ] for pool ℓ as follows. If monomial m

occurs in the ℓ-th line of Π with coefficient c, let m1, . . . , mc be the first c nodes corresponding
to copies of monomial m and set A

(ℓ)
mi = m(x) for all i ∈ [c]. Fix A

(ℓ)
m′ = 0 for the remaining

nodes m′ ∈ [N ] \ {m1, . . . , mc}. Note that as m is a monomial of degree ≤ d, m(x) can be
computed by a depth-d decision tree.

If line ℓ is derived by addition from two lines ℓ′, ℓ′′, set P
(ℓ)
ℓ′ = P

(ℓ)
ℓ′′ = 1 and P

(ℓ)
ℓ∗ = 0 for

all ℓ∗ ̸= ℓ′, ℓ′′. If ℓ was derived from ℓ′ by multiplication by some variable xi set P
(ℓ)
ℓ′ = xi

and P
(ℓ)
ℓ∗ = 0 for all ℓ∗ ̸= ℓ′.

Finally, for each ℓ ∈ [L] we define the matching M (ℓ) as follows. For this it will be
convenient to think of each line ℓ in Π as a multi-set of monomials, each with an associated
positive or negative coefficient, and a corresponding node in N . There are three cases:
Case 1. If ℓ was derived by addition from some ℓ′, ℓ′′ < ℓ then every monomial m in line

ℓ comes from one of ℓ′, ℓ′′ – suppose that m comes from ℓ′ – and so we match m to
the copy of m in ℓ′. If m has a positive coefficient in ℓ, then we set M

(ℓ)
ℓ,m = (+, ℓ′, m)

and M
(ℓ)
ℓ′,m = (−, ℓ, m), and if it has a negative coefficient we set M

(ℓ)
ℓ,m = (−, ℓ′, m) and

M
(ℓ)
ℓ′,m = (−, ℓ, m).

It remains to define the matchings for all monomials m which occur in ℓ′ or ℓ′′ but not in ℓ;
suppose that m belongs to ℓ′. For this to happen, m must have cancelled with a negative
coefficient copy of itself in ℓ′′ and so we match them. That is, if m occurs positively
in ℓ′ then we set M

(ℓ)
ℓ′,m = (−, ℓ′′, m) and M

(ℓ)
ℓ′′,m = (+, ℓ′, m), and if it occurs negatively

then we set M
(ℓ)
ℓ′,m = (+, ℓ′′, m) and M

(ℓ)
ℓ′′,m = (−, ℓ′, m). The matching variables for the

remaining nodes (which do not correspond to monomials occurring in lines ℓ, ℓ′, ℓ′′) can
be set arbitrarily.

Case 2. If ℓ was derived by multiplication by a variable xi from some ℓ′ < ℓ then for every
monomial m in line ℓ, there must be a monomial m′ = m \ xi or m′ = m belonging to
ℓ′ from which it was derived. If m is positive in ℓ then match M

(ℓ)
ℓ,m = (+, ℓ′, m′) and

M
(ℓ)
ℓ′,m′ = (−, ℓ, m), and if m is negative in ℓ then M

(ℓ)
ℓ,m = (−, ℓ′, m′) and M

(ℓ)
ℓ,m = (+, ℓ, m).

Finally, we match the remaining nodes corresponding to monomials in ℓ′ that have yet to
be matched. Each of these remaining monomials must have cancelled after multiplication
by xi so as to not appear in ℓ. The only cancellations which can occur are pairs
(m, mxi) such that m does not contain xi and m and mxi occur with different signs in ℓ′.
Suppose that m occurs positively in ℓ′ then we match M

(ℓ)
ℓ′,m = (−, ℓ′, mxi) and M

(ℓ)
ℓ′,mxi

=
(+, ℓ′, m), and similarly if m occurred negatively then we match M

(ℓ)
ℓ′,m = (+, ℓ′, mxi) and

M
(ℓ)
ℓ′,mxi

= (−, ℓ′, m). The remaining nodes (which do not correspond to nodes in ℓ or ℓ′)
may be matched arbitrarily.

Case 3. If ℓ is an axiom of F – that is, ℓ is C for some C ∈ F – then for each monomial
m ∈ C, the matching M

(ℓ)
ℓ,m is defined by querying the ≤ d variables in C. If we discover

that C(x) = 0 (that is, C is satisfied) then we fix an arbitrary matching between the
positive and negative monomials in C which are not set to 0 under x such that each
negative monomial is at the tail of some arrow and each positive monomials is at the
head of some arrow. Otherwise, if C(x) ̸= 0 then we fix the matching variables arbitrarily
(there will always be a solution in this case).

Observe that the only solutions to the constructed IND-END-OF-LINE instance occur
at the pools ℓ ∈ [L] corresponding to an axioms C ∈ F for which C(x) = 0. Thus, any
solution to IND-END-OF-LINE will be in a violated clause of F , a solution to SF . Using
this, we can define the output decision trees: for any solution s belonging a pool ℓ ∈ [L]
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which corresponds to an initial clause Ci ∈ F , the output decision tree T o
s outputs i. The

output decision trees corresponding to the remaining solutions (which do not occur in this
instance of IND-END-OF-LINE) can be set arbitrarily. ◀

▶ Lemma 19. Let F be an unsatisfiable CNF formula. If SF reduces to an instance of
IND-END-OF-LINE on n variables using depth-d decision trees, then there is an degree-O(d)
and size n32O(d) uPC proof of F .

Proof. Let F be an unsatisfiable CNF formula and suppose that SF reduces by depth-d
decision trees to an IND-END-OF-LINE instance on n variables. For each variable x of the
IND-END-OF-LINE let Tx be the decision tree computing x. As before, we will associate Tx

with the polynomial formed by taking a sum over the accepting paths in Tx. As well, for
each solution s of the IND-END-OF-LINE instance let T o

s be the output decision tree. We
will say that a node m which active for ℓ is positive if it appears at the head of an arrow
in M (ℓ) and negative otherwise. Recall that for a function f element o in the range of f ,
[[f = o]] denotes the indicator polynomial which is 1 on input x if f(x) = o and 0 otherwise.

For ℓ ∈ [L] define the polynomial

qℓ :=
∑

m∈[N ]

A(ℓ)
m

( ∑
m∗∈[N ],ℓ∗≤ℓ

[[
M

(ℓ)
ℓ,m = (+, ℓ∗, m∗)

]]
−

∑
m∗∈[N ],ℓ∗≤ℓ

[[
M

(ℓ)
ℓ,m = (−, ℓ∗, m∗)

]])

which records the difference between the number of positive and negative nodes for pool ℓ.
We will derive by induction on ℓ = 1, . . . , L that qℓ = 0 and −qℓ = 0. This will complete the
proof as for pool L, A

(L)
1 = 1 and A

(L)
m = 0 for all m ̸= 1 and so

0 = qL =
∑

m∗∈[N ],ℓ∗≤L

[[
M

(L)
L,1 = (+, ℓ∗, m∗)

]]
−

∑
m∗∈[N ],ℓ∗≤L

[[
M

(L)
L,1 = (−, ℓ∗, m∗)

]]
.

From which we can derive the 1 = 0 by the following claim, noting that the terms of qL are
exactly the paths in the decision tree for M

(L)
L,1 .

▷ Claim 3. Let T be any depth-d decision tree and let q(x) =
∑

p∈T αpp(x), where the
sum is taken over (the polynomial representation of) each root-to-leaf path p in T , and
αp ∈ {±1}. Then there is a uPC degree-2d and size O(|T |) derivation of 1 = 0 from q(x) = 0
and −q(x) = 0.

Proof. From q = 0 we will derive p = 0 for each p ∈ T . This completes the proof as∑
p∈T p = 1 for any decision tree T . For any path p′ ∈ T with αp′ = 1 observe that

p′q =
∑

p∈T αpp′p = p′ as any pair of paths p ̸= p′ contain an opposing literal (i.e., x and
(1 − x) for some variable x) and thus sum to 0. Similarly, we can derive p′ = 0 for any p′ ∈ T

with αp′ = −1 by multiplying −q = 0 by p′. ◁

It remains to show that qℓ = 0 can be derived from qℓ′ = 0 for ℓ′ < ℓ. Note that we can
derive −qℓ = 0 by a symmetric argument by using −A(x) = 0 for each axiom A(x) = 0 used
in the derivation of qℓ = 0. Our induction will rely on (i) the matching M (ℓ), and (ii) the
consistencies of polarities – if m is a node of ℓ′ which occurs at one end of an arrow in the
matching for ℓ′, then it must occur at the other end of an arrow in the matching for ℓ, if ℓ′

is a predecessor of ℓ. We will represent (i) by the following polynomial which records the
difference between the number of positive and negative nodes involved in the matching for
pool ℓ
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deriv(ℓ) :=
∑
ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

 ∑
m∗∈[N ],ℓ∗≤ℓ′

[[
M

(ℓ)
ℓ,m = (+, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ,m = (−, ℓ∗, m∗)

]] ,

where, for convenience of notation, we have introduced an additional variable P
(ℓ)
ℓ which is

fixed to 1.
We will represent (ii) by the polynomial

consist(ℓ)
ℓ′ = P

(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ

([[
M

(ℓ)
ℓ′,m = (−, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ′,m = (+, ℓ∗, m∗)

]])
−P

(ℓ)
ℓ′ qℓ′ .

The equation consist(ℓ)
ℓ′ = 0 states that the active nodes for line ℓ′ must occur with the same

polarity in the matching for pool ℓ′ as in the matching for pool ℓ. The following claims give
short uPC derivations of these polynomials from the axioms.

▷ Claim 4. For any ℓ ∈ [L], deriv(ℓ) = 0 has a degree-O(d) and size-NL2O(d) uPC proof
from the axioms.

▷ Claim 5. For any ℓ ∈ [L] and ℓ′ < ℓ, consist(ℓ)
ℓ′ has a degree-O(d) and size-NL2O(d) uPC

proof from the axioms.

Assuming these claims, we show how to derive qℓ = 0 from qℓ′ = 0 for all ℓ′ < ℓ. For each
ℓ′ < ℓ, sum the polynomial P

(ℓ)
ℓ′ qℓ′ = 0 with consist(ℓ)

ℓ′ to deduce

P
(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ

([[
M

(ℓ)
ℓ′,m = (−, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ′,m = (+, ℓ∗, m∗)

]])
= 0.

Summing these polynomials with deriv(ℓ) = 0 gives qℓ = 0. We apply Claim 4 ℓ ≤ L times
and Claim 5 once. Thus, this induction step can be performed in degree O(d) and size
NL22O(d). ◀

Proof of Claim 4. For ℓ′ ≤ ℓ, m ∈ [N ] and α ∈ {−, +} define

match(ℓ)
α,m,ℓ′ :=

∑
m∗∈[N ],

ℓ∗∈[ℓ]

[[
M

(ℓ)
m,ℓ′ = (α, m∗, ℓ∗)

]] ∑
γ,δ∈{0,1}

[[
P

(ℓ)
ℓ∗ = γ

]][[
A

(ℓ∗)
m∗ = δ

]]
·

∑
m̂∈[N ],ℓ̂∈[ℓ]

β∈{−,+}

[[
M

(ℓ)
m∗,ℓ∗ = (β, m̂, ℓ̂)

]]
,

which records whether node m belonging to ℓ′ is at the head or tail of an arrow, and whether
it is correctly matched in the matching M (ℓ) for ℓ. Note that∑

γ,δ∈{0,1}

[[
P

(ℓ)
ℓ∗ = γ

]][[
A

(ℓ∗)
m∗ = δ

]] ∑
m̂∈[N ],ℓ̂∈[ℓ]

β∈{−,+}

[[
M

(ℓ)
m∗,ℓ∗ = (β, m̂, ℓ̂)

]]
= 1, (1)

as it is the polynomial obtained from summing over all paths in the stacked decision tree
obtained by running the decision trees for P

(ℓ)
ℓ∗ , A

(ℓ∗)
m∗ and then M

(ℓ)
m∗,ℓ∗ .

Now, consider the polynomial P
(ℓ)
ℓ′ A

(ℓ′)
m match(ℓ)

α,m,ℓ′ and partition its terms into two sets,
a set C

(ℓ′,m)
α which corresponds to correct matchings – that is, m is matched to a node

m∗ ∈ [N ] belonging to a pool ℓ∗ ≤ ℓ (M (ℓ)
ℓ′,m = (α, ℓ∗, m∗)) with P

(ℓ)
ℓ∗ = 1 and A

(ℓ∗)
m∗ = 1 which
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is matched back to m, meaning that M
(ℓ)
ℓ∗,m∗ = (γ, ℓ′, m), where γ is the opposite sign of α –

and E
(ℓ′,m)
α which will contain the remaining terms, corresponding to erroneous matchings.

Using these polynomials, define

match(ℓ) :=
∑

ℓ′∈[ℓ]

∑
m∈[N ]

A(ℓ′)
m P

(ℓ)
ℓ′

(
match(ℓ)

+,m,ℓ′ − match(ℓ)
−,m,ℓ′

)
,

which records the matching for pool ℓ. By (1), this polynomial is equivalent to deriv(ℓ),
and therefore it suffices to show that this polynomial has a low-degree derivation from the
axioms. To do so, partition the terms of match(ℓ) into three sets, C+, C−, E as above, where
Cα =

⋃
C

(ℓ′,m)
α for α ∈ {−, +}, and E =

⋃
E

(ℓ′,m)
+ ∪ E

(ℓ′,m)
− where the unions are taken over

ℓ′ ≤ ℓ and m ∈ [N ]. Observe that because the matchings in C+ and C− are correct, for
every node at the head of an arrow, a node occurs at the tail of that arrow. It follows that∑

t∈C+
t −

∑
t′∈C−

t′ = 0.
Next, consider a term t ∈ E. This term corresponds to a node m in some pool ℓ′ ≤ ℓ

that is incorrectly matched; let s be this incorrect matching. We will denote by ts that the
term t witnesses s. Let T o

s be the output decision tree for solution s and abuse notation by
letting T o

s also denote the polynomial formed by taking the sum over all of the paths in the
decision tree T o

s . Recalling that the sum over all paths in a decision tree is 1,

match(ℓ) =
∑

t∈C+

t −
∑

t′∈C−

t′ +
∑

ts∈E

ts = 0 +
∑

ts∈E

ts =
∑

ts∈E

ts · T o
s .

An incorrect matching is a solution to IND-END-OF-LINE. Therefore, because this instance
solves SF , any truth assignment x which satisfies ts must falsify the T o

s (x)-th clause of F . It
follows that each term of ts · T o

s that is not identically 0 must contain the polynomial C = 0
for some clause C of F . Thus, ts · T o

s can be derived by multiplication from the axioms C = 0
and −C = 0. It follows that deriv(ℓ) has a proof of degree at most the degree and size of
match(ℓ), which are 6d and NL2O(d) respectively. ◁

Proof of Claim 4. For α ∈ {−, +}, define the polarity polynomial

pol(ℓ′)
α := P

(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ′,m∗∈[N ]

[[
M

(ℓ′)
ℓ′,m = (α, ℓ∗, m∗)

]] ∑
ℓ̂≤ℓ,m̂∈[N ]
β∈{−,+}

[[
M

(ℓ)
ℓ′,m = (β, ℓ̂, m̂)

]]
,

which records for each node at the α-end of an arrow in the matching for ℓ′, which end
of an arrow it occurs at in the matching for pool ℓ′. We will partition the set of terms of
this polynomial into two sets, C

(ℓ′)
α and E

(ℓ′)
α C

(ℓ′)
α . C

(ℓ′)
α will be the terms t which are the

indicators of correct assignments of polarities of the nodes in pool ℓ′ in the matchings M (ℓ)

and M (ℓ′) – that is, if m is an active node for ℓ′ and m occurs at the head of an arrow in
the matching for M (ℓ′) then it is at the tail of an arrow in the matching for M (ℓ) if ℓ′ is
a predecessor of ℓ. E

(ℓ′)
α C

(ℓ′)
α will be the remaining terms which correspond to erroneous

assignments of polarities. As well, observe that

pol(ℓ′)
α = P

(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ′,m∗∈[N ]

[[
M

(ℓ′)
ℓ′,m = (α, ℓ∗, m∗)

]]
· 1,

as
∑

ℓ̂≤ℓ,m̂∈[N ],β∈{−,+}[[M (ℓ)
ℓ′,m = (β, ℓ̂, m̂)]] is the polynomial obtained by taking a sum over

all paths in the decision tree for M
(ℓ)
ℓ′,m = (β, ℓ̂, m̂), which sums to 1.
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Similarly, let

pol(ℓ)
α := P

(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ,m∗∈[N ]

[[
M

(ℓ)
ℓ′,m = (α, ℓ∗, m∗)

]] ∑
ℓ̂≤ℓ′,m̂∈[N ]

β∈{−,+}

[[
M

(ℓ′)
ℓ′,m = (β, ℓ̂, m̂)

]]
,

be the polynomial which records for each active node of ℓ′ which occurs at the α-end of an
arrow in M (ℓ), which end of an arrow it occurs at in M (ℓ′). Define C

(ℓ)
α and E

(ℓ)
α analogously,

and note that

pol(ℓ)
α = P

(ℓ)
ℓ′

∑
m∈[N ]

A(ℓ′)
m

∑
ℓ∗≤ℓ,m∗∈[N ]

[[
M

(ℓ)
ℓ′,m = (α, ℓ∗, m∗)

]]
· 1,

by the same reasoning as above.
Putting these together, we have

consist(ℓ)
ℓ′ = pol(ℓ)

− − pol(ℓ)
+ − pol(ℓ′)

+ + pol(ℓ′)
− .

We will derive pol(ℓ)
+ −pol(ℓ′)

− = 0 and pol(ℓ)
− −pol(ℓ′)

+ = 0 separately from the axioms, beginning
with pol(ℓ)

+ − pol(ℓ′)
+ = 0. Consider any term t in C

(ℓ′)
+ and observe that since t is correct,

it records that an active monomial m of ℓ′ which occurs at the head of an arrow in M (ℓ′)

occurs at the tail of an arrow in M (ℓ). Thus, t occurs also in C
(ℓ)
− . By a symmetric argument,

any term t occurring in C
(ℓ)
− occurs in C

(ℓ′)
+ . Thus,

∑
t∈C

(ℓ′)
+

t −
∑

t∈C
(ℓ)
−

t = 0, and also∑
t∈C

(ℓ′)
−

t −
∑

t∈C
(ℓ)
+

t = 0 by a similar argument. Denoting the union of all of the error sets

by E := E
(ℓ)
+ ∪ E

(ℓ)
− ∪ E

(ℓ′)
+ ∪ E

(ℓ′)
− , we have

consist(ℓ)
ℓ′ =

( ∑
t∈C

(ℓ′)
+

t −
∑

t∈C
(ℓ)
−

t
)

+
( ∑

t∈C
(ℓ′)
−

t −
∑

t∈C
(ℓ)
+

t
)

+
∑
t∈E

t = 0 +
∑
t∈E

t.

It remains to show that each term t ∈ E can be derived from the axioms with a low-degree
uPC proof. As each t ∈ E witnesses a node which switched polarity between the matching for
line ℓ′ and the matching for line ℓ, this is a solution s to IND-END-OF-LINE ; we will denote
denote t by ts to record the fact that t witnesses solution s. Let T o

s be the output decision
tree corresponding to solution s, and abuse notation by identifying it with polynomial formed
by taking the sum over all paths in T o

s . As the sum over all paths in a decision tree gives the
1 polynomial, we have ts = ts · T o

s . As ts witnesses solution s, it follows that any assignment
x such that ts(x) = 1 must falsify the T o

s (x)-th clause C of F . Thus, ts · T o
s can be derived

from the axioms C = 0 and −C = 0. It follows that

consist(ℓ)
ℓ′ = 0 +

∑
ts∈E

ts · T o
s = 0

has a uPC proof from the axioms of degree at most 4d and size NL2O(d). ◁
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Abstract
We study the classical metric k-median clustering problem over a set of input rankings (i.e.,
permutations), which has myriad applications, from social-choice theory to web search and databases.
A folklore algorithm provides a 2-approximate solution in polynomial time for all k = O(1), and
works irrespective of the underlying distance measure, so long it is a metric; however, going below
the 2-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known
edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty,
Das, and Krauthgamer [SODA, 2021] provided a (2 − δ)-approximation algorithm for k = 1, where
δ ≈ 2−40.

Our primary contribution is a new algorithmic framework for clustering a set of permutations.
Our first result is a 1.999-approximation algorithm for the metric k-median problem under the Ulam
metric, that runs in time (k log(nd))O(k)nd3 for an input consisting of n permutations over [d]. In
fact, our framework is powerful enough to extend this result to the streaming model (where the n

input permutations arrive one by one) using only polylogarithmic (in n) space. Additionally, we
show that similar results can be obtained even in the presence of outliers, which is presumably a
more difficult problem.
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1 Introduction

Clustering is one of the ubiquitous tasks used in data analysis, which partitions a set of
objects into several groups so that similar items lie in the same group. One of the most
widely studied variants is the metric k-median clustering. In this problem, given an input
set S of n data points, the goal is to find a set of k median points from the underlying space
(not necessarily from S) such that the sum of distances of all the data points in S to its
nearest median point is minimized. (See Section 2 for a formal definition.) Throughout
this paper, we consider the above variant and refer to it simply by the k-median problem.
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For k = 1, the problem is also referred to as the geometric median (or simply median)
problem. For many applications, it suffices to find an approximate solution to the problem,
i.e., find a set of points from the metric space whose objective value approximates the
minimum multiplicatively (for a formal definition, see Section 2). This problem has been
studied extensively in theory as well as in applied domains, both for k = 1 and arbitrary
k. The complexity of the problem varies with the underlying metric space. For k = 1,
perhaps the most well-studied version is over a Euclidean space (aka the Fermat-Weber
problem), for which a near-linear time (1 + ϵ)-approximation algorithm (for any ϵ > 0) is
known [20]. Other spaces that have been considered for the median problem include Hamming
(folklore), the edit metric [48, 36, 43, 15], rankings/permutations [24, 2, 15], Jaccard distance
between sets [19], and many more [26, 40, 13]. The problem is clearly more challenging for
general k. For points in Rd, Chen [18] gave (1 + ϵ)-approximation algorithm with running
time O(ndk + 2(k/ϵ)O(1)

d2 logk+2 n) (see references therein for an overview) using coresets.
For arbitrary metric spaces, O(1)-approximation algorithms (with a trade-off between the
approximation factor and the running time) are known, e.g. [16, 32, 6, 28, 39, 18]. Better
approximation results are known for specific metric spaces, like Hamming [44], shortest-path
metric in a graph [50], etc.

One of the fundamental metrics (other than Euclidean and Hamming) that finds numerous
applications is the edit metric. The edit distance is a well-known dissimilarity measure between
strings, which counts the minimum number of basic edit operations, like character insertion,
deleting, and substitution, required to transform one string into the other. The k-median
clustering problem over the edit metric is of utter importance in various domains, including
computational biology [29, 46], DNA storage system [27, 47], speech recognition [35], and
classification [38]. For k = 1, it is also referred to as the median string problem [35] (an
equivalent formulation is known as multiple sequence alignment [29]). Despite being an
important problem, we only know that it is NP-hard, even for k = 1 [23, 43]. Although
several heuristics exist [14, 37, 45, 1, 31, 41], we do not know any approximation result better
than what holds for arbitrary metrics.

We study the k-median problem over the Ulam metric, which is a variant of the edit
metric, by restricting strings to be permutations. The Ulam metric of dimension d is (Sd, ∆),
where Sd is the set of all the permutations over [d] and ∆(x, y) is the minimum number of
character-move operations needed to transform x into y [3].1 Studying the Ulam metric
is beneficial from two facets. First, it is a close variant of the edit metric defined over
permutations and thus captures many inherent difficulties of the edit metric. Thus, progress
in the Ulam metric may provide insights to the same problem under a more general edit
metric. Second, it is a natural dissimilarity measure between rankings that arise in diverse
areas ranging from social-choice theory [9] to information retrieval [30], and indeed has been
studied from different algorithmic perspectives [21, 17, 4, 5, 42, 8].

There is a folklore O(nk+1 ·f(d))-time algorithm (where f(d) denotes the time to compute
the distance between two points) that provides a 2-approximate solution to the k-median
problem for an arbitrary metric space, by simply reporting the best k-tuple from the input
set as the median points (see Procedure 1). Breaking below the 2-factor even in nO(k) time
is one of the most notorious challenges, even for some specific metrics. So far, we do not
know any affirmative result for the Ulam metric. Very recently, Chakraborty, Das, and

1 In a permutation, a character move can be thought of as “picking up” a character and “placing” it in
another position. Since it is equivalent to one deletion and one insertion, one can define the distance
alternatively using character insertions and deletions [21].
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Krauthgamer [15] provided a (2− δ)-approximation algorithm only for the special case of
k = 1 (aka rank aggregation under the Ulam), where δ ≈ 2−40 is a tiny constant. On
the contrary, the median problem concerning Kendall’s tau distance, yet another popular
dissimilarity measure over permutations (e.g., [33, 51, 52, 24, 2]), possesses a PTAS [34, 49],
which can be extended to k-median using coresets [22].

We fruther study this problem (k-median under the Ulam metric) in the streaming
model, i.e., when the input arrives sequentially; more specifically, the n input permutations
x1, x2, . . . , xn ∈ Sd arrive one by one. This is sometimes called an insertion-only stream,
because an input permutation cannot be deleted after its arrival. One of the challenges in
this model is that the algorithm cannot freely access the input, and the main goal is to devise
an algorithm with an amount of space that is sublinear (ideally, logarithmic) in n. The
k-median problem in the insertion-only streaming model has also been studied extensively,
e.g., [28, 18, 10, 12]. However, no non-trivial result (other than what holds for an arbitrary
metric) is known for the Ulam metric.

1.1 Our Contribution
Our main result is a streaming algorithm for the k-median problem under the Ulam metric
that achieves better than the 2-approximation factor.

▶ Theorem 1.1. There is a (randomized) streaming algorithm that, given a set of permutations
x1, x2, . . . , xn ∈ Sd (arriving in streaming fashion), provides a 1.9999995-approximate solu-
tion to the (metric) k-median problem under the Ulam metric, using only k2d polylog(nd) bits
of space, with high probability. Moreover, the algorithm has update time (k log n)O(1)d log2 d

and query time (k log(nd))O(k)d3.

It is worth mentioning that here the input size is O(nd log d) bits (since each permuta-
tion of Sd requires O(d log d) bits). In our algorithm, we only need to maintain a subset
of k2 polylog(nd) permutations. For k = 1, we can improve the space-bound to only
O(d log d log2 n) (Theorem 5.1). Also, all our algorithms require only a single pass.

To achieve our result, we first develop a new algorithm framework that provides a 1.999-
approximate solution to the median problem (i.e., for k = 1) deterministically (Theorem 3.1).
Compared to the previous approximation result of [15], our algorithm is superior in various
aspects. First, the approximation factor is 1.999, an improvement over the 2 − δ, where
δ ≈ 2−40 in [15]. Second, our analysis is much simpler than that in [15], which was roughly
divided into the following two cases: In the first case, a large fraction of the optimum
objective value is “concentrated on a small fraction of symbols of [d]”, and in the second is
the optimum objective value is “spread out throughout all the symbols of [d]” (see also the
Technical Overview below). Analyzing these two cases separately and then combining them
makes the entire analysis quite complicated and also affects the approximation guarantee. In
contrast, our analysis is pretty simple and argues that for k = 1,

either there exists five input permutations from which we can reconstruct an approximate
median (by essentially solving the feedback vertex set problem over a special type of
tournament graph);
or, there is an input permutation around which there is a large cluster (and thus would
also provide a good approximate solution to the entire input);
or, there is an input permutation that is close to an (unknown) optimal median (and
thus, again, would be a good approximate median).

Third, and perhaps most importantly, because the final output is either an input permu-
tation or derived from only five input permutations, we essentially show that there are at
most n5 candidate points, one of which provides a 1.999-approximate solution. For general
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k, the same argument is clearly true also for each of the clusters induced by an optimal
k-median solution, and thus we can easily extend our framework to the k-median problem,
for arbitrary k, with running time nO(k)d3 (Theorem 3.4). This running time can further be
improved to (k log(nd))O(k)nd3 using the sampling technique described in Section 4. Further,
we can extend it to the k-median problem with outliers (see Section 3.2 for the definition
and the details), presumably a more challenging problem. Such extensions were not possible
to the algorithm of [15]. Lastly, our algorithm can be implemented in a streaming fashion by
storing (with the help of a “clever” sampling) only k2 poly log(nd) input permutations and
then running our offline algorithm (with a slight modification) on them. We emphasize that
randomization is used only while implementing it in the streaming model.

1.2 Technical Overview

The algorithm of Chakraborty, Das and Krauthgamer [15] computes, given a set S of n

permutations over [d], a (2 − δ)-approximate 1-median under the Ulam metric for δ ≈
2−40. Their algorithm starts with the following simple observation: Fix an optimal median
permutation y∗, and let ℓ be the average distance between y∗ and the input permutations.
Now if S contains a permutation x such that the distance between y and x is ≤ (1− δ)ℓ, for
some constant δ > 0, then x provides a (2− δ)-approximation to the optimal objective value.
Otherwise, they first considered the case where the average distance is large, i.e., ℓ = Ω(d).
In this case, using a counting argument, they show that there exists x ∈ S such that at least
Ω(n) other input permutations are at a distance at most (2 − δ′)ℓ. Thus taking x as an
approximate median provides better-than-2 approximation to the optimal objective value.
Of course, this x ∈ S is not known, but outputting the input permutation that minimizes the
objective serves the purpose. In the other case, where the average distance ℓ is small, if the
cost is distributed only over a few symbols of [d], then restricting the input permutations only
to these symbols gives rise to an instance with a large average objective, and thus one can
reuse the large-distance algorithm mentioned above. If, however, the total cost is distributed
over many symbols, then for almost all the symbols in [d], the cost is small. Now consider
two such small-cost symbols; as both are aligned together in most of the input permutations,
their relative order in all these permutations is the same as that in y∗, and thus can be
computed by examining all the input permutations and taking the majority. Moreover, using
random sampling, this majority can be decided by looking at only O(log n) permutations.
However, this dependency on log n input permutations becomes ineffective when we try to
lift these ideas to k-median for k > 1, and this is where our new framework plays a crucial
role.

We start by providing an algorithm that shows that either an input permutation breaks
the 2-factor or the input set S contains 5 permutations from which we can derive a permu-
tation whose distance is small from an optimal median y∗, and it thus gives better-than-2
approximation to the optimal objective value. This dependency on the number inputs is
significantly better than in [15], and it is specifically important for the k-median problem
(general k > 1), where the grouping of the input permutations into k clusters is not known.
However, using our framework, one can try all

(
n
5
)

different ways of picking 5 input per-
mutations and use them to derive candidates for approximate median. These can serve as
candidates for all the k clusters (simultaneously) without knowing the optimal partitioning
of S. This approach breaks down for the algorithm of [15], where the candidates are derived
from Ω(log n) inputs, thus giving

(
n

log n

)
candidates overall. We proceed to present next our

new framework for computing 1-median.



D. Chakraborty, D. Das, and R. Krauthgamer 31:5

New algorithm for 1-median. Our algorithm (in Section 3) is based on a three-step
framework. First, similar to [15], we use the fact that if the input set S contains a permutation
x such that the distance between x, y∗ is at most (1−δ)ℓ then x serves as a (2−δ)-approximate
median.

Next, for the sake of analysis, we fix an optimal alignment between each input x and y∗.
Let Ix denote the symbols that are not aligned in this optimal alignment. In step two, we
consider the scenario where all the permutations are at a distance at least (1− δ)ℓ from y∗

and moreover, there is a subset T ⊆ S containing five permutations x1, . . . , x5 such that for
any pair xi, xj their corresponding sets of unaligned characters have a very small overlap,
i.e., |Ixi ∩ Ixj | ≤ ϵℓ. In this case, we design an algorithm MedianReconstruct that just
by using x1, . . . , x5 constructs a permutation x̃ such that the distance between x̃ and y∗

is at most (1 − δ)ℓ. Let B = ∪i,j∈[5](Ixi
∩ Ixj

). Then |B| ≤ 10ϵℓ. Now for any pair of
symbols a, b ∈ [d] \B, as each of a, b can be unaligned in at most one xi, together they are
aligned in at least three out of five permutations x1, . . . , x5. Thus by looking at the relative
order of a and b in these five permutations and taking the majority, we correctly deduce
their order in y∗. This observation makes our algorithm framework significantly stronger
than [15] by reducing the dependency on the number of input permutations that are actually
required to construct a good approximate median. However, we might not get the correct
relative order for the pair of symbols that come from the set B. Instead, they may create
conflict with other useful orders. To solve this, following a similar idea as in [15], we create a
relative order graph H that contains d vertices corresponding to the d symbols in the input
permutations. For every pair of symbols a, b, we add an edge from a to b if at least in three
of the five permutations from T , a appears before b; otherwise, add an edge from b to a.
Next, we generate from H an acyclic graph H ′ by removing cycles iteratively while deleting
the smallest one first. Here, since H is a tournament, the shortest cycle length is always
three. Along with this, each cycle should contain at least one vertex from B. As |B| ≤ 10ϵℓ,
this process removes very few vertices, and thus most of the symbols survive in H ′. Next, we
create a permutation x̃ by taking a topological ordering on H ′ and appending the missing
symbols at the end. Our analysis vastly differs from the one given in [15], where the relative
order graph is not a tournament. This simplifies our cycle removal process and provides a
better approximation guarantee.

Lastly, we consider the case where there are at most four input permutations whose
corresponding sets of unaligned symbols in the optimal alignment with y have a small overlap.
Again here, for at least one of them (call it x), there are Ω(n) other inputs x′ such that the
sets of unaligned symbols for x and x′ have a large overlap, and thus the distance between x

and x′ is strictly smaller than 2ℓ. Thus considering x as an approximate median provides
a better-than-2 approximation of the optimal objective value. Our algorithm also finds an
input permutation that minimizes the total objective and finally outputs the best among
those generated by MedianReconstruct and the best input permutation.

Approximating k-median. Next, we show how our 1-median algorithm can be extended to
k-median for general k. For analysis purpose, fix k optimal medians y∗

1 , . . . , y∗
k, and let Ci

be the set of input permutations served by y∗
i . Following the 1-median algorithm, either Ci

contains a permutation that provides < 2 approximation, or it includes 5 permutations using
which we can construct the approximate median for Ci. However, to start with, we do not
know the optimal k-partition of the input set. Nevertheless, we can construct a set M of
potential approximate k medians as follows: For each of the

(
n
5
)

different choices of 5 input
permutations, create a permutation using the MedianReconstruct algorithm and add it
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to the set M . Next, add all input permutations to M . It is straightforward to see that the
set M contains k permutations ỹ1, . . . , ỹk such that each ỹi is a better-than-2 approximate
median for Ci. To identify these k permutations, we try all possible size-k subsets of M and
output the one that minimizes the total objective. We can bound the overall running time of
the algorithm by nO(k)d3. The details of this algorithm can be found in Section 3.1. This
running time can further be improved to (k log(nd))O(k)n2d3 using the sampling technique
used in the streaming algorithm described next.

Streaming Algorithm for Approximating k-Median. For the k-median problem, we have
shown that for each cluster Ci, at most 5 permutations are enough to construct an approximate
median. However, without knowing the optimal k-partitioning of the input S, we need to
try all possible

(
n
5
)

choices. Unfortunately, this step becomes infeasible when the n input
permutations arrive in a stream, and we can afford to store only a few (preferably polylog)
of them. Towards this, we design a streaming algorithm that requires several techniques,
including an efficient sampling of the input permutations, coreset construction, etc. This
algorithm provides a (2 − δ)-approximation of k-median while storing O(k2 log4 n log d)
permutations. Next, we provide a brief overview of this algorithm. The details can be found
in Section 4.

Sampling procedure. Let OPT be the total optimal objective for all k clusters. The
key component of our streaming algorithm is a “clever” sampling technique that selects
a set R1 of O(k log4 n log d) permutations from the input stream and ensures that for any
cluster Ci if its optimal objective Oi is at least a constant fraction of the average objective,
i.e., Oi = Ω( OPT

k ), then either R1 contains a permutation that serves as a better-than-2
approximate median for Ci, or there are 5 permutations in R1 such that applying the
MedianReconstruct algorithm on them we can generate an approximate median. To
explain this, we fix a cluster Ci and let ni = |Ci|, y∗

i be an optimal median of Ci, and
ℓi = Oi/ni be the average objective. Next, we argue that if we sample each permutation in
the input stream independently, uniformly at random with probability log2 n/ni, then the
sample set satisfies the above-mentioned properties.

For this, we first consider the case when at least 1/ log n fraction of the permutations in
Ci are close, i.e., at a distance < (1− δ)ℓi from the optimal median y∗

i . Note that all such
permutations are good candidates for an approximate median. Also, following our sampling
rate, we will sample at least one of them with a high probability.

Thus from now on, we assume even fewer permutations are close to y∗
i . Note, there

can be at most ni

1+δ permutations in Ci that are at distance > (1 + δ)ℓi from y∗
i . Hence a

constant fraction of permutations is at a distance between (1− δ)ℓi and (1+ δ)ℓi from y∗
i . Let

Cavg
i be the set of all these permutations. Now for every permutation x ∈ Cavg

i , we define a
neighboring set C(x) containing all other permutations z ∈ Cavg

i such that the intersection
between the set of unaligned characters in optimal alignments between x, y∗

i and z, y∗
i is

large and thus they are close. Note here x serves as a better-than-2 approximate median for
C(x). Now we call x to be in Cavg,dense

i if |C(x)| is large i.e., |C(x)| = Ω(|Cavg
i |) = Ω(ni).

This means for each permutation x in Cavg,dense
i there is a large cluster of size Ω(ni) around

x and as x serves as a better-than-2 approximate median for C(x), overall by considering x

to be the approximate median for Ci we get < 2 approximation of the optimal objective Oi.
Now, if Cavg,dense

i is large, then again, by our sampling strategy with high probability, we
will sample a permutation x from it.

Lastly, we consider the case where Cavg,dense
i is small. Here using an iterative argument,

we show that our sampling algorithm will sample at least 5 permutations such that their
corresponding set of unaligned symbols has a small overlap. Thus, using algorithm Median-
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Reconstruct, we can construct an approximate median. To see this notice as Cavg,dense
i

is small with high probability, we will sample a permutation x1 ∈ Cavg
i \ Cavg,dense

i and
thus C(x1) is small. Moreover, as C(x1) is small, we will sample another permutation x2
such that C(x2) is small and x2 /∈ C(x1) and thus x1 and x2 have small overlap between
their unaligned character set. We can continue this process and show overall, with a high
probability, 5 permutations can be sampled with the small overlap property. Thus we can
apply algorithm MedianReconstruct on these 5 strings and compute an approximate
median with objective < 2Oi.

Here for the sampling to work for cluster Ci, we use a sampling rate log2 n/ni. However,
as we do not know ni in advance, we try all sampling rates in {1/(1 + ϵ), 1/(1 + ϵ)2, . . . , 1/n}
and we can ensure that one of them is arbitrarily close to log2 n/ni. The challenge here
is that for a sampling rate much larger than log2 n/ni, the sample size can grow beyond
our space limit. For this, whenever a sample set grows beyond k log3 n, we discard that set.
Though this limits the space complexity, it can destroy a good sample set that is necessary
to keep from computing an approximate median for Ci. Next, we need to show for the right
sampling rate, the sample set size always stays within the limit, and thus we do not miss the
useful permutations. To ensure this in the uniform sampling process, we also incorporate
a pruning strategy. Note with a sampling rate log2 n/ni (or (1 + ϵ) log2 n/ni), with high
probability, we sample at most 10 log2 n permutations from Ci. However, if there is a cluster
Cj such that |Cj | >> |Ci|, then we end up sampling much more permutations from Cj and
the sampling set size goes beyond k log3 n, and we discard it. To upper bound this while
adding a new permutation to our sample set, we ensure all previously added permutations
are at a distance at least βℓi (for a small constant β) from it. Now to start with, as we
assumed Oi = Ω( OPT

k ), we can show that the total number of sampled permutations from all
clusters Cj ̸= Ci is bounded by k log3 n with high probability. Also, because of the pruning,
we get an extra additive error βℓi. This can be bounded by setting β appropriately.

Approximating small objective clusters. Now we focus on the clusters whose objective is
much smaller than the average objective OPT/k. Notice that the total objective contributed by
the small objective clusters is very small. For these clusters, it suffices just to give a constant
approximation of their optimal cost. For this we use the monotone faraway sampling (MFS)
from [12] to sample a set R2 ⊆ S of size O(k2 log k log(kn)) such that for each cluster Ci, R2
contains a permutation ỹi such that the objective of Ci w.r.t. ỹi is at most 5Oi + ρOPT/k.
Thus by keeping ρ small, we achieve the required approximation.

Computing approximate k-median using coreset. After sampling set R1 and R2,
following the offline k-median algorithm, we design a potential k-median set M̃ by adding
all permutations of R1, R2 to M̃ . Together with this for each subset T of R1 of size 5, run
algorithm MedianReconstruct(T ) and add the output x̃T to M̃ . However, to decide
which k permutations from M̃ minimize the total objective, we need access to the actual
input set S (which we cannot store using a small space). Now again, to upper bound the
space complexity, instead of storing S explicitly, we construct a (k, λ)-coreset (see Section 4
for the definition) for S with respect to the implicit potential median set M . Here M is a set
containing all permutations from S. Moreover, for each subset T ⊆ S of size 5, the output
of MedianReconstruct(T ) is also present in M . This coreset ensures that considering
any k-size subset of M̃ as a potential k-median if we compute the corresponding objectives
for set S and the coreset then these two objectives are close when λ is small. Thus we can
use the coreset to decide the best candidate k-median from M̃ . Moreover, as |M | ≤ O(n5),
following Theorem 4.3, we can show that the coreset size is also bounded by O(k2 log2 n).
We remark that to make our algorithm space efficient, instead of explicitly storing each x̃T

to M̃ , we recompute it whenever x̃T is a part of a candidate k-median.
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Approximating k-median with outliers. We further extend our k-median algorithm in the
presence of outliers. In the k-median with outliers problem, given a parameter p ∈ [0, 1) and
input set S, the goal is to find a set of at most k permutations that minimizes the k-median
objective value of a subset of S of size at least (1 − p)|S|. (See Section 3.2 for a formal
definition.) Using the argument the same as that for the k-median problem (without outlier),
we claim that a subset of at most k permutations from a candidate set M (of potential
medians) of size at most O(n5) achieves a 1.999-factor approximation for the outlier variant
as well (Theorem 3.5).

1.3 Conclusion
In this paper, we study the (metric) k-median problem under the Ulam metric, which is
known to be NP-hard even for k = 2. The Ulam metric is of utter importance because it
is a variant of the more general edit metric and an interesting dissimilarity measure over
rankings (or permutations). There is a folklore 2-approximation algorithm that works for any
metric space, and breaking this factor-2 barrier is one of the interesting challenges. Despite
being an important metric, the problem under the Ulam metric does not possess any better
approximation algorithm. For the special case of k = 1, there is a (2 − δ)-approximation
(where δ ≈ 2−40) algorithm known [15]. However, that algorithm does not provide any
non-trivial result for arbitrary values of k.

We provide a 1.9999995-approximation algorithm for the k-median problem, with running
time (k log(nd))O(k)nd3. Moreover, our algorithm works in the insertion-only streaming
model, using only polylogarithmic (in the number of input permutations) space. Further, we
can extend our framework to get a similar result even in the presence of outliers, which is
presumably a more complex problem. We also would like to highlight that our framework is
not very specific to the Ulam metric; in fact, it (with slight modification) also provides a
similar result for other metrics like Kendall’s tau defined over rankings/permutations. One
exciting direction is to see whether our new framework can give similar results to the other
known distance measures involving rankings, such as Spearman’s footrule, Minkowski, Cayley,
swap-and-mismatch, etc. Another stimulating future direction is to use this new framework
to get a similar result for another essential variant of the clustering problem, namely the
k-center clustering problem (under the Ulam metric). Finally, extending our result to the
more general edit metric (even with certain restrictions on the input) would, of course, be
super intriguing.

2 Preliminaries

Notations. We use [d] to denote the set {1, 2, · · · , d}. Let Sd denote the set of all permuta-
tions over [d]. Throughout the paper, we consider a permutation x (over [d]) as a sequence
a1, a2, · · · , ad such that x(i) = ai.

Ulam metric and the k-median problem. For any two permutations x, y ∈ Sd, the
Ulam distance between them, denoted by ∆(x, y), is the minimum number of character
move operations2 that is needed to transform x into y. Equivalently, it can be defined as
d− |LCS(x, y)|, where LCS(x, y) denotes a longest common subsequence between x and y.

2 A single move operation in a permutation can be thought of as “picking up” a character from its position
and then “inserting” that character in a different position.
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For any two permutations (permutations) x and y of lengths dx and dy respectively, an
alignment g is a function that maps [dx] to [dy] ∪ {⊥} such that:
∀i ∈ [dx], if g(i) ̸= ⊥, then x(i) = y(g(i));
For any two distinct i, j ∈ [dx] where g(i), g(j) ̸= ⊥, i < j ⇔ g(i) < g(j).

For an alignment g between two permutations (permutations) x and y, we say g aligns
a character x(i) with some character y(j) if and only if j = g(i). Thus the alignment g is
essentially a common subsequence between x and y.

For any permutation x ∈ Sd and a set Y ⊆ Sd, let us define the distance between x and
Y as ∆(x, Y ) := miny∈Y ∆(x, y) (i.e., the minimum distance between x and a permutation
from Y ). Given a set S ⊆ Sd and a subset Y ⊆ Sd, we define the median objective value of S

with respect to Y as Obj(S, Y ) :=
∑

x∈S ∆(x, Y ).
Given a set S ⊆ Sd, the k-median problem asks to find a subset Y ⊆ Sd of size at most3 k

such that Obj(S, Y ) is minimized, i.e., Y ∗ = arg minY ⊆Sd:|Y |≤k Obj(S, Y ). We refer to the set
Y ∗ as k-median of S. We refer Obj(S, Y ∗) as OPT(S), or simply OPT when S is clear from the
context. Note, for k = 1, y∗ = arg miny∈Sd

Obj(S, y) is referred to as a median (or geometric
median or 1-median). We call a set Ỹ a c-approximate k-median of S, for some c > 0, if
Obj(S, Ỹ ) ≤ c ·OPT(S). Further, note, each set {y1, · · · , yk} induces a partitioning (clustering)
of S into k-clusters C1, · · · , Ck, where Ci := {x ∈ S | ∆(x, yi) ≤ ∆(x, yj) for all j ̸= i} (if for
some x ∈ S, ∆(x, yi) = ∆(x, yj) for some i ̸= j, then break the ties arbitrarily to form Ci’s).

It is worth emphasizing that in the above definition of the k-median problem, the k-median
set Y ∗ need not be a subset of the input S. In the literature, this variant is sometimes
referred to as the continuous k-median problem. On the other hand, the discrete variant asks
to find a set Y ∗ of size at most k, strictly from S that minimizes the median objective value
(over all the subset of S of size at most k). It follows directly from the triangle inequality
that any optimum discrete k-median set is a 2-approximate solution to the (continuous)
k-median problem.

Since in the discrete version, the median points are necessarily from S, by brute force
over all the O(nk) (where |S| = n) possibilities, we can compute an optimum solution. We
refer to this algorithm as Procedure BestFromInput (Procedure 1). So, the Procedure
BestFromInput provides a 2-approximate solution to the (continuous) k-median problem.
The running time is O(nk + n2d log d), since for any x, y ∈ Sd, we can compute ∆(x, y) in
O(d log d) time.

Algorithm 1 BestFromInput(S, k).
Require: S ⊆ Sd.
Ensure: A subset Y ⊆ S of size at most k.

1: For all pairs of permutations xi, xj ∈ S, compute ∆(xi, xj)
2: return arg minY ⊆S:|Y |≤k Obj(S, Y ).

3 Approximation Algorithm for 1-Median

▶ Theorem 3.1. There is a deterministic polynomial-time algorithm that, given a set S of n

permutations over [d], finds a 1.999-approximate median.

3 Here Y is not a multi-set. If we allow Y to be a multi-set, then we can ask Y to be of size exactly k.
Note, both formulations are equivalent.
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Description of the algorithm. Let us start with the description of our algorithm. Our
algorithm consists of two procedures. The first procedure is BestFromInput (by setting
k = 1), which simply outputs a permutation ỹ ∈ S with the minimum median objective value
among all the inputs, i.e., ỹ = arg miny∈S

∑
x∈S ∆(x, y). The second procedure enumerates

all subsets of S of size five (i.e., 5-tuples of input permutations) and runs the procedure
MedianReconstruct. For a subset T ⊆ S, MedianReconstruct works as follows: It
constructs a directed graph H with vertex set [d] and edge set

E(H) := {(a, b) | a appears before b in at least three permutations of T}.

Observe, the graph H is a tournament4, but may not be acyclic. Next, the procedure iterates
over all the vertices and while iterating over a vertex v, it finds a shortest cycle containing v

and deletes all its vertices (along with all the incident edges). Let H ′ be the final resulting
acyclic graph. Then the procedure performs a topological sorting on the vertices of H ′ and
let x̃′ denote the sorted ordering. Finally, it appends the remaining symbols ([d] \ V (H ′)) at
the end of x̃′ in an arbitrary order and outputs the resulting permutation x̃.

Algorithm 2 MedianReconstruct(T ).
Require: T ⊆ S.
Ensure: A permutation x̃ over [d].

1: H ← ([d], E) where
E = {(a, b) | a appears before b in at least three permutations of T}

2: for all v ∈ [d] do
3: Cmin ← cycle of minimum length containing v in H

4: H = H − V (Cmin)
5: end for
6: H ′ ← H

7: x̃′ ← permutation formed by topological ordering of V (H ′)
8: x̃ ← permutation formed by appending to x̃′ the symbols [d] \ V (H ′) in an arbitrary

order
9: return x̃.

For a subset T ⊆ S, let us denote the output of MedianReconstruct by x̃T . Consider
the set

M = {ỹ} ∪ {x̃T | for all T ⊆ S such that |T | = 5}.

The final algorithm ApproxMedian(S) (Algorithm 3) outputs the best permutation z among
the set M that minimizes the median objective value, i.e., z = arg miny∈M

∑
x∈S ∆(x, y).

Running time analysis. Note, each ∆(x, y) computation takes O(d log d) time. Then the
first procedure BestFromInput takes only O(n2d log d) time. There are at most O(n5)
subsets of S of size exactly five. For each such subset, the MedianReconstruct procedure
takes O(d2) time to construct the graph H. Then, computing a minimum length cycle
passing through a vertex v at each iteration takes O(d2) time. Since it iterates over all the
vertices v ∈ [d], the running time for the whole cycle removal step is O(d3). The topological
ordering can be performed in O(d2) time. So the running time of MedianReconstruct is
O(d3). Hence, the overall running time of the final algorithm ApproxMedian is O(n5d3).
Later in Section 4, we will comment on how to reduce the running time to Õ(d3).

4 A directed graph is called a tournament if between every pair of vertices there is a directed edge.
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Algorithm 3 ApproxMedian(S).
Require: S ⊆ Sd.
Ensure: A subset Y ⊆ S of size at most k.

1: Initialize an empty set M

2: ỹ ← BestFromInput(S, 1)
3: Add ỹ to M

4: For all the subsets T ⊆ S of size 5, run MedianReconstruct(T) and add the output
to M

5: return arg miny∈M Obj(S, y).

Analyzing the approximation factor. Suppose S = {x1, x2, · · · , xn}. Let x∗ be an arbitrary
optimal median of S. So, OPT(S) =

∑
xi∈S ∆(xi, x∗). For each xi ∈ S, consider an arbitrary

optimal alignment between xi and x∗, and let Ixi
(or for brevity, Ii) denote the set of unaligned

symbols (⊆ [d]) with respect to this alignment. Recall, by the definition, ∆(xi, x∗) = |Ii| for
each xi ∈ S. WLOG assume, |I1| ≤ |I2| ≤ · · · ≤ |In|.

Consider ϵ = 0.03319 and α = ϵ/11. WLOG assume,

|I1| ≥ (1− α)OPT/n. (1)

Otherwise,

Obj(S, x1) ≤
∑

xi∈S

∆(xi, x1)

≤
∑

xi∈S

(∆(xi, x∗) + ∆(x∗, x1)) (by triangle inequality)

≤ (2− α)OPT. (2)

It is straightforward to see that Obj(S, ỹ) ≤ Obj(S, x1), and thus the final output z satisfies
Obj(S, z) ≤ (2− α)OPT. So from now, we assume Equation 1.

▶ Lemma 3.2. Consider ϵ = 0.03319 and α = ϵ/11. Then one of the following holds:
1. Either there are five inputs xi1 , xi2 , xi3 , xi4 , xi5 (with i1 < · · · < i5) such that for any two

r, ℓ ∈ {i1, i2, i3, i4, i5} with ℓ > r, |Ir ∩ Iℓ| ≤ ϵ|Ir| and |Ii4 | ≤ (1 + α)OPT/n;
2. Or there exists xj ∈ S such that Obj(S, xj) ≤ 1.999 · OPT.

Proof. Let us consider the set of far points, defined as

F := {xi ∈ S | |Ii| ≥ (1 + α)OPT/n}.

Let F̄ := S \ F . For any subset R ⊆ S, let us define OPTR :=
∑

xi∈R ∆(xi, x∗).
Recall, we assume that |I1| ≤ · · · ≤ |In|. Then it is straightforward to see that for all

xi ∈ S, ∆(xi, x1) ≤ ∆(xi, x∗) + ∆(x∗, x1) = |Ii|+ |I1| ≤ 2|Ii| = 2∆(xi, x∗). Further, observe,
by an averaging argument, |I1| ≤ OPT/n. Then for all xi ∈ F ,

∆(xi, x1) ≤ |Ii|+ |I1| (by the triangle inequality)
≤ |Ii|+ OPT/n

≤ |Ii|+ |Ii|/(1 + α) ≤ (2− α/2)|Ii|.

As a consequence, we get that

Obj(S, x1) ≤ 2OPTF̄ + (2− α/2)OPTF = 2OPT− α

2 OPTF . (3)
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So if OPTF ≥ 2
3 OPT, we get that Obj(S, x1) ≤ 1.999 · OPT. So from now, assume

OPTF <
2
3OPT. (4)

Next, consider the following procedure A that processes x1, · · · , xn ∈ S one by one.
Initialize a set T ← x1. For each xi ∈ S, if for all xj ∈ T , |Ij ∩ Ii| ≤ ϵ|Ij |, add xi in T . Break
when |T | ≥ 5.

It is worth noting that the above procedure is considered only for the sake of analysis.
Now when the above procedure terminates, suppose T = {xi1 , xi2 , · · · , xi5}, where 1 = i1 <

i2 < · · · < i5, and xi4 ∈ F̄ . Then clearly it satisfies Item 1 of the statement of the lemma.
If not, then either xi4 ∈ F or |T | ≤ 4. By the procedure A, xi4 ∈ F implies that for

all xi ∈ F̄ , there exists xj ∈ T ∩ F̄ such that |Ij ∩ Ii| > ϵ|Ij |. Then by a simple averaging
argument, there exists j ∈ T ∩ F̄ and R ⊆ F̄ such that

OPTR ≥ OPTF̄

|T ∩F̄ | ≥
OPTF̄

3 ; and
For all xi ∈ R, |Ij ∩ Ii| > ϵ|Ij |.

Consider this j ∈ T ∩ F̄ and R ⊆ F̄ . It follows from the triangle inequality that
(i) For all xi ∈ F , ∆(xi, xj) ≤ 2∆(xi, x∗);
(ii) For all xi ∈ F̄ , ∆(xi, xj) ≤ (2 + 3α)∆(xi, x∗);
(iii) For all xi ∈ R, ∆(xi, xj) ≤ (2− ϵ)∆(xi, x∗).
To see this, observe, for any two xi, xr ∈ S, ∆(xi, xr) ≤ |Ii|+ |Ir| − |Ii ∩ Ir|. Now, since for
all xi ∈ F , |Ij | ≤ |Ii|, the first item follows. For the second item, observe, for all xi ∈ F̄ ,
|Ij | ≤ (1 + α)OPT/n ≤ (1 + 3α)|Ii| (since |Ii| ≥ (1−α)OPT/n by assumption Equation 1). For
the third item, note, for all xi ∈ R, |Ii ∩ Ij | > ϵ|Ij |, and further |Ij | ≤ |Ii| (by the description
of procedure A).

Thus

Obj(S, xj) = (2− ϵ)OPTR + 2OPTF + (2 + 3α)OPTF̄ \R

≤ 2OPT− (ϵ + 3α

3 − 3α)OPTF̄ (since OPTR ≥
OPTF̄

3 )

≤ (2− 5α/9)OPT (by Equation 4 and ϵ = 11α)
≤ 1.999 · OPT (for α = ϵ/11 = 0.03319/11).

When xi4 ∈ F̄ , but |T | ≤ 4, in a similar way we can argue that there exists xj ∈ T and
R ⊆ S such that

OPTR ≥ OPT
4 ; and

For all xi ∈ R, |Ij ∩ Ii| > ϵ|Ij |.
Hence, again, we can argue as before that

(i) For all xi ∈ F , ∆(xi, xj) ≤ 2∆(xi, x∗);
(ii) For all xi ∈ F̄ , ∆(xi, xj) ≤ (2 + 3α)∆(xi, x∗);
(iii) For all xi ∈ R, ∆(xi, xj) ≤ (2− ϵ)∆(xi, x∗).
Thus

Obj(S, xj) = (2− ϵ)OPTR + 2OPTF \R + (2 + 3α)OPTF̄ \R

= 2OPT− ϵOPTR + 3αOPTF̄ \R

≤ 2OPT− ϵOPTR + 3α(OPT− OPTR)

= 2OPT− (ϵ + 3α

4 − 3α)OPT (since OPTR ≥
OPT
4 )

≤ (2− α/2)OPT (by setting ϵ = 11α)
≤ 1.999 · OPT (for α = ϵ/11 = 0.03319/11).

This concludes the proof. ◀
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Clearly, if there exists xj ∈ S such that Obj(S, xj) ≤ 1.999 · OPT, then

Obj(S, z) ≤ Obj(S, ỹ) ≤ Obj(S, xj) ≤ 1.999 · OPT.

So it only remains to show that if there are five inputs xi1 , xi2 , xi3 , xi4 , xi5 (with i1 < · · · < i5)
such that
1. For any two r, ℓ ∈ {i1, i2, i3, i4, i5} with ℓ > r, |Ir ∩ Iℓ| ≤ ϵ|Ir|, and
2. |Ii4 | ≤ (1 + α)OPT/n,
then Obj(S, z) ≤ 1.999 · OPT. For that purpose, consider T = {xi1 , xi2 , xi3 , xi4 , xi5}, and
the output x̃T of MedianReconstruct on input T . We want to claim that Obj(S, x̃T ) ≤
1.999 · OPT, and hence Obj(S, z) ≤ Obj(S, x̃T ) ≤ 1.999 · OPT, which will complete the analysis.

▷ Claim 3.3. For T = {xi1 , xi2 , xi3 , xi4 , xi5}, Obj(S, x̃T ) ≤ 1.999 · OPT.

Proof. Let us define the set of bad symbols as

B := ∪r ̸=ℓ∈{i1,··· ,i5}(Ir ∩ Iℓ).

Note,

|B| ≤ 4ϵ|Ii1 |+ 3ϵ|Ii2 |+ 2ϵ|Ii3 |+ ϵ|Ii4 | ≤ 10ϵ|Ii4 | (5)

(recall, by our assumption |Ii1 | ≤ · · · ≤ |Ii4 |). Let us define the set of good symbols as
G := [d] \B. Observe, a symbol a ∈ G if and only if a ∈ Ir for at most one r ∈ {i1, · · · , i5}.
Hence, for any two distinct a, b ∈ G, for at least three x ∈ T , a, b ̸∈ Ix, in other words, both
a, b are aligned between x and x∗. Thus, by the construction of H, (a, b) ∈ E(H) if a appears
before b in x∗, for every distinct a, b ∈ G.

Next, observe that for any subset V ⊆ [d], for any vertex v ∈ [d] and a shortest cycle C
containing v in the subgraph H − V ,
1. C must contain at least one bad symbol (i.e., from B);
2. C must be of length 3.
The first condition is straightforward since a set of good symbols cannot form a cycle (because
they form a directed path according to their ordering in x∗). For the second condition,
suppose C is of length strictly greater than 3 and v, a, b are three consecutive vertices in C.
Observe, between any two vertices in the subgraph H − V , there is a directed edge (because
for any two symbols a1, a2, either a1 appears before a2 or a2 appears before a1 in at least
three permutations out of five). So either the edge (b, v) or (v, b) must be in the subgraph
H − V . In the first case, we get a length 3 cycle consisting of v, a, b, and in the second
case, we get a shorter cycle (by taking the edge (v, b) while bypassing the vertex a of C)
contradicting the fact that C is a shortest cycle containing v.

Due to the above observation, after iterative cycle removal in MedianReconstruct,
we get a subgraph H ′ with |V (H ′) ∩G| ≥ |G| − 2|B| = d− 3|B|. Since x̃′ is a topological
ordering of the vertices in V (H ′), the length of a longest common subsequence between x∗

and x̃′ must be

|LCS(x̃′, x∗)| ≥ |V (H ′) ∩G| ≥ d− 3|B|.

Hence,

∆(x̃T , x∗) = d− LCS(x̃T , x∗)
≤ d− LCS(x̃′, x∗)
≤ 3|B| ≤ 30ϵ|Ii4 | (by Equation 5). (6)
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Recall, |Ii4 | ≤ (1 + α)OPT/n. So, we get that

Obj(S, x̃T ) =
∑

xi∈S

∆(xi, x̃T ) ≤
∑

xi∈S

(∆(xi, x∗) + ∆(x∗, x̃T )) (by triangle inequality)

≤ (1 + 30ϵ(1 + α))OPT

≤ 1.999 · OPT

for the choice of α = ϵ/11 = 0.03319/11. ◁

3.1 Extension to the k-Median
Now we argue that our algorithm framework described so far can be extended to the k-median
problem. More specifically, we show the following result.

▶ Theorem 3.4. There is a deterministic algorithm, that given a set S of n permutations
over [d], finds a 1.999-approximate k-median in time nO(k)d log d + O(n5d3).

We would like to highlight that the above running time can further be improved to
(k log(nd))O(k)nd3 by running the algorithm described in this section on a sample set.
However, such a modification slightly worsens the approximation factor. We describe the
sampling procedure in detail in Section 4.

Proof. Here we briefly describe how to extend our median algorithm to the k-median problem.
We build a set M by adding the output permutations of the procedure MedianRecon-
struct(T ) for all the subsets T ⊆ S such that |T | = 5. Then, we also add the permutations
in the input set S to M . Finally, we output a subset Ỹ of M , of size at most k that
minimizes the k-median objective value, i.e., Ỹ = arg minY ⊆M :|Y |≤k Obj(S, Y ). We refer to
this algorithm as Approx k-Median.

By the construction, |M | = O(n5), and by the running time analysis of the procedure
MedianReconstruct, constructing the set M takes time O(n5d3). The final step that
outputs a subset of M which minimizes the objective function, takes n5k+1d log d time. So
the overall running time is nO(k)d log d + n5d3.

To argue about the approximation guarantee of the above algorithm, let us first consider
an arbitrary optimal k-median Y ∗ (which is of size at most k). This set Y ∗ implicitly induces
a partitioning of S into at most k clusters C1, C2, · · · , Ck (where some of the Ci’s could be
empty depending on the size of Y ∗). WLOG assume, |Y ∗| = k and Y ∗ = {y∗

1 , · · · , y∗
k}. Then

Ci := {x ∈ S | ∆(x, y∗
i ) ≤ ∆(x, y∗

j ) for all j ̸= i} (if for some x ∈ S, ∆(x, y∗
i ) = ∆(x, y∗

j ) for
two y∗

i ̸= y∗
j , then break the ties arbitrarily to form Ci’s). It is straightforward to see that y∗

i

is an optimal median of the set/cluster Ci. Then, by the analysis of ApproxMedian (in the
previous section), a permutation ỹi will be added in M that is a 1.999-approximate median
of the cluster Ci, for all i ∈ [k]. Since in the final step we output a subset Ỹ of M , of size at
most k that minimizes the k-median objective value, clearly it would be a 1.999-approximate
k-median of the input set S. ◀

3.2 Extension to the k-median with outliers
The algorithm described in the previous section can produce a 1.999-approximate median
even in the presence of outliers. In the k-median with outliers problem, we are given a
parameter p ∈ [0, 1). Given an input set S, the problem then asks to find a set of size at
most k (which is not necessarily a subset of S) that minimizes the k-median objective value
of a subset of S of size at least (1− p)|S|. Formally, we define the objective value of S with
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respect to a set Y ⊆ Sd as Objp(S, Y ) := minS′⊆S:|S′|≥(1−p)|S| Obj(S′, Y ). The problem asks
to output a set Y ∗ ⊆ Sd that minimizes Objp(S, Y ). Note, Obj0 is the same as the standard
k-median objective function Obj (as defined in Section 2).

▶ Theorem 3.5. There is a deterministic algorithm, that given a set S of n permutations
over [d] and p ∈ [0, 1), finds a 1.999-approximate solution to the k-median with outliers
problem with parameter p, in time nO(k)d log d + n5d3.

Proof. The algorithm is the same as that without outliers, i.e., that described in Theorem 3.4,
with the only exception that now we consider Objp as the objective function. So the running
time also remains the same. To argue about the approximation guarantee, let us first
consider an arbitrary optimal k-median Y ∗. Let the corresponding subset of S be S∗ (i.e.,
S∗ = arg minS′⊆S:|S′|≥(1−p)|S| Obj(S′, Y ∗)). Then the argument would be exactly the same
as that in Theorem 3.4 on the set S∗. ◀

4 Streaming Algorithm for Approximating k-Median

In the streaming model, we are given a set S of n permutations x1, x2, . . . , xn over [d] that ar-
rive in a stream. Our objective is to design an algorithm that uses space O(d log20 n log6 d) and
computes k permutations ỹ1, . . . , ỹk over [d] such that

∑
x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤

(2 − δ)OPT for some constant δ > 0 in polynomial time. Here OPT denotes the optimal
objective.

▶ Theorem 1.1. There is a (randomized) streaming algorithm that, given a set of permutations
x1, x2, . . . , xn ∈ Sd (arriving in streaming fashion), provides a 1.9999995-approximate solu-
tion to the (metric) k-median problem under the Ulam metric, using only k2d polylog(nd) bits
of space, with high probability. Moreover, the algorithm has update time (k log n)O(1)d log2 d

and query time (k log(nd))O(k)d3.

Before proving the above theorem, let us first introduce a few tools which will be critical
for our algorithm.

Coreset and streaming. One of the important tools to solve the clustering problem is
coresets.

▶ Definition 4.1 ((k, ϵ)-coreset). For a set S of points in an arbitrary metric space X and an
implicit set X ⊆ X (of potential centers/medians), a weighted subset P ⊆ S (with a weight
function w : P → R) is a (k, ϵ)-coreset of S with respect to X for the k-median problem if

(1− ϵ)Obj(S, Y ) ≤
∑
x∈P

w(x) ·∆(x, Y ) ≤ (1 + ϵ)Obj(S, Y )

for all subsets Y ⊆ X of size at most k.

There are several coreset constructions known in the literature. In this paper, we consider
the following coreset construction, which is implied from [25] (and further explained in [7, 11]).

▶ Theorem 4.2 ([25, 7, 11]). There is an algorithm that, given a set S of points of an
arbitrary metric space X and an implicit set X ⊆ X (WLOG assume S ⊆ X), outputs a
(k, ϵ)-coreset of S with respect to X for the k-median problem, of size O(ϵ−2k2 log |X|).
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In this paper, we are interested in solving the k-median problem over the Ulam metric in
the streaming model. We consider the insertion-only streaming model, where a set of points
(in our case, permutations) x1, x2, · · · , xn arrive one after another in a streaming fashion. By
combining Theorem 4.2 and the framework provided by [10], it is possible to build a coreset
for the k-median problem over an arbitrary metric space using polylogarithmic space. More
specifically, we use the following result.

▶ Theorem 4.3. There is a streaming algorithm that, given a set S of points of an arbitrary
metric space X , arriving in an insertion-only stream and an implicit set X ⊆ X (WLOG
assume S ⊆ X), maintains a (k, ϵ)-coreset of the input with respect to X for the k-median
problem, by storing at most O(ϵ−2k2 log |X| log n) points of S. Furthermore, the algorithm
has worst-case update time of (ϵ−1k log n)O(1).

Monotone Faraway Sampling (MFS). Another important tool that we will use to design a
streaming algorithm for the k-median problem is the monotone faraway sampling (MFS),
introduced in [12]. This sampling method allows us to sample “a few” points from an
(insertion-only) stream such that the sample set includes a set of candidate medians that
achieves O(1)-approximation. Although the approximation factor involved is much larger
than 2, roughly speaking, it is sufficient for the clusters that contribute a small amount to
the overall objective. We use the following result implied from [12].

▶ Theorem 4.4 ([12]). There is a streaming algorithm that, given a set S of points of an
arbitrary metric space X , arriving in an insertion-only stream and parameters κ, ρ ∈ (0, 1),
samples a subset F ⊆ S of size O(k2(ρκ)−1 log k log(1 + kκn)) such that the following holds:
Suppose Y ∗ = {y∗

1 , · · · , y∗
k} be an arbitrary optimum k-median of S (where OPT = Obj(S, Y ∗))

and let C1, · · · , Ck denote the induced clustering of S. Then for each i ∈ [k], there exists a
y′

i ∈ F such that∑
x∈Ci

∆(x, y′
i) ≤ 2

(
1 + 1

1− κ

) ∑
x∈Ci

∆(x, y∗
i ) + ρ

OPT
k

.

Moreover, the algorithm requires both space and update time of O(k2(ρκ)−1 log k log(1+kκn)).

All the above algorithms are randomized and err with probability at most 1/10. Now we
are ready to describe our streaming algorithm for the k-median problem.

Algorithm Description. The algorithm is similar to the k-median algorithm described in
Section 3.1, and we refer to it as Approx k-MedianStreaming. However, because of
the space limitation, instead of storing all the permutations, we run the algorithm on a
sample set instead of the whole input. Let us consider the following set M of (implicit)
potential k-medians: M contains all the input permutations. Further, it also contains all
the output of MedianReconstruct(T ) for all T ⊆ S such that |T | = 5. Our algorithm
works in two phases. In the first step, it samples a set R of O(log4 n log d) permutations
from the stream x1, . . . , xn. Additionally, it also constructs a coreset (P, w) for the set
M of (implicit) k-medians on input S in a streaming fashion. Then we show using these
sampled permutations and the coreset we can compute k permutations ỹ1, . . . , ỹk such that∑

x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤ (2− δ)OPT for some constant δ > 0.

Step 1 (Sampling Algorithm): Given set S and parameters β, γ > 0 (the values of which
are to be fixed later), we sample a set of permutations R from S as follows.
For each ℓ ∈ {1, (1 + γ), (1 + γ)2, . . . , d} and p ∈ {1, 1

(1+γ) , 1
(1+γ)2 , . . . , 1

n}, we create a set
Sℓ,p ⊆ S as follows:
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Step i) For each xi, discard xi with probability 1− p.
Step ii) If ∀xj ∈ Sℓ,p, ∆(xi, xj) ≥ βℓ, add xi to Sℓ,p.
Step iii) If |Sℓ,p| ≥ k log3 n, set Sℓ,p = ∅.

Then set R =
⋃

ℓ,p Sℓ,p.

Step 2 (Monotone Faraway Sampling): Consider parameters κ = 1/3, ρ > 0. Given the
input set S, we use the monotone faraway sampling (MFS) from Theorem 4.4 due to [12]
to get a subset F ⊆ S of size O(k2 log k log(kn)) such that the following holds: Suppose
Y ∗ = {y∗

1 , · · · , y∗
k} be an arbitrary optimum k-median of S (where OPT = Obj(S, Y ∗)) and

let C1, · · · , Ck denote the induced clustering (to be defined formally later) of S. Then
for each i ∈ [k], there exists a y′

i ∈ F such that∑
x∈Ci

∆(x, y′
i) ≤ 2

(
1 + 1

1− κ

) ∑
x∈Ci

∆(x, y∗
i ) + ρOPT/k = 5

∑
x∈Ci

∆(x, y∗
i ) + ρOPT/k. (7)

Step 3 (CoreSet Construction): Given a set of input permutations S and a parameter
λ > 0, define a set M containing all input permutations from S. Further, it also
contains the output of MedianReconstruct (T ) for all T ⊆ S such that |T | = 5.
Following Theorem 4.3, construct a (k, λ)-coreset (P, w) for S with respect to the implicit
set M of potential medians.

Step 4 (Computing Approximate k-median): At the end of the stream, we use R, F and
(P, w) to simulate Approx k-Median. More specifically, we run algorithm MedianRe-
construct () on every subset T ⊆ R of size five, and then add those outputs x̃T to a set
M̃ . Next, add all the elements of R, F to M̃ . Finally, for each k-tuple (y1, . . . , yk) ∈ M̃k,
compute

∑
x∈P w(x) min(∆(x, y1), . . . , ∆(x, yk)) and output the k-tuple that attains the

minimum value.

Analyzing the algorithm. For analysis purpose we fix k optimal medians y∗
1 , y∗

2 , . . . , y∗
k. For

i ∈ [k], define Ci = {x ∈ S | ∀j ∈ [k], ∆(x, y∗
i ) ≤ ∆(x, y∗

j )}. Let Oi = Obj(Ci, y∗
i ). Thus

OPT = O1 + O2 + . . . , Ok. We show our sampling algorithm satisfies the following.

▶ Lemma 4.5. Consider γ = 0.1. For any constant ζ > 0 and every i ∈ [k], if Oi ≥ ζOPT
k ,

then ∃ℓ ∈ {1, (1 + γ), (1 + γ)2, . . . , d} and p ∈ {1, 1
(1+γ) , 1

(1+γ)2 , . . . , 1
n} such that Sℓ,p satisfies

at least one of the following with high probability.
1. Sℓ,p contains a permutation y where Obj(Ci, y) ≤ (1.999999 + β)Oi.
2. Sℓ,p contains a subset T = {x1, x2, x3, x4, x5} such that Obj(Ci, x̃T ) ≤ (1.995 + 61β)Oi

Proof. We start with a few definitions. Let di = Oi

|Ci| . For some constant α > 0, let Cfar
i be

the set of permutations in Ci whose distance from y∗
i is α fraction more than the average

distance di. Formally we define,

Cfar
i = {x | x ∈ Ci; ∆(y∗

i , x) > di + αdi}.

Let Cclose
i be the set of permutations in Ci whose distance from y∗

i is α fraction less than
the average distance di. Formally we define,

Cclose
i = {x | x ∈ Ci; ∆(y∗

i , x) < di − αdi}.

Lastly, let Cavg
i be the set of permutations in Ci whose distance from y∗

i is roughly the
average distance di. Formally we define,

Cavg
i = {x | x ∈ Ci; di − αdi ≤ ∆(y∗

i , x) ≤ di + αdi}.
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Case 1: First we consider the case where |Cclose
i | ≥ |Ci\Cfar

i
|

log n . Note by definition |Cfar
i | <

|Oi|
(1+α)di

= |Ci|
(1+α) . Thus |Ci \ Cfar

i | ≥ α|Ci|
(1+α) and |Cclose

i | ≥ α|Ci|
(1+α) log n . We consider the

set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. As |Cclose
i | ≥ α|Ci|

(1+α) log n , and
p ≥ 2 log2 n

|Ci| , using Chernoff bound, with high probability the sampling algorithm samples
at least α log n

10(1+α) permutations from Cclose
i in Step (i). Let y be such a permutation. If

y survives in Step (ii) then it satisfies Obj(y, Ci) ≤ (2 − α)Oi by triangle inequality.
Otherwise Sℓ,p contains a permutation z such that ∆(z, y) ≤ βℓ ≤ βdi (as ℓ ≤ di). Thus
Obj(y, Ci) ≤ (2 − α + β)Oi. By setting α = .0005, we get Obj(y, Ci) ≤ (1.995 + β)Oi.
Next, we show Sℓ,p is never modified in Step (iii) and thus z ∈ Sℓ,p.
Again with high probability in Step (i) we sample at most 10 log2 n permutations from
Ci. Lastly, we argue that for each other cluster Cj ̸= Ci the following holds. Among the
permutation sampled from Cj , at most one permutation which is at distance < βℓ

2 from
y∗

j survives at Step (ii). Otherwise let there be two permutations p1, p2 ∈ Cj such that
both p1, p2 are at distance < βℓ

2 from y∗
j and both of them survive in Step (ii). However,

by triangle inequality, their distance is < βℓ and we get a contradiction. Thus all but at
most one permutation from Cj that survives in Step (ii) will be at a distance of at least
βℓ/2 from y∗

j . Let Tj ⊆ Cj be the set of permutations that are at distance ≥ βℓ/2 from
y∗

j . Thus

∑
j∈[k]
j ̸=i

|Tj | ≤
2
βℓ

∑
j∈[k]
j ̸=i

Oj

≤ 2OPT
βℓ

≤ 2kOi

ζβℓ
(since Oi ≥

ζOPT
k

)

<
2k(1 + γ)Oi

ζβdi
(since di < (1 + γ)ℓ)

≤ 4k|Ci|
ζβ

(since di = Oi

|Ci|
)

As p < 4 log2 n
|Ci| with high probability we sample at most 100k log2 n

ζβ permutations from
S \Ci. Thus with high probability |Sℓ,p| ≤ k log3 n and it is never modified in Step (iii).

Case 2: Now on, we assume |Cclose
i | <

|Ci\Cfar
i

|
log n . Again as |Ci \ Cfar

i | ≥ α|Ci|
(1+α) we have

|Cavg
i | ≥ (log n−1)|Ci\Cfar

i
|

log n ≥ α(log n−1)|Ci|
(1+α) log n . For the analysis purpose, we fix an optimal

alignment between each x ∈ Ci and y∗
i and let Ix be the set of symbols from [d] that

are unaligned in this optimal alignment. For a permutation x ∈ Cavg
i we define set

C(x) = {z|z ∈ Cavg
i ; |Ix ∩ Iz| ≥ ϵdi}, where ϵ > 0 is a constant. Let Cavg,dense

i =
{x|x ∈ Cavg

i ; |C(x)| ≥ |Cavg
i

|
6 }. Here we consider the case where |Cavg,dense

i | ≥ |Cavg
i

|
10 ≥

α(log n−1)|Ci|
10(1+α) log n .

Again we consider the set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. As
|Cavg,dense

i | ≥ α(log n−1)|Ci|
10(1+α) log n , and p ≥ 2 log2 n

|Ci| , with high probability the sampling algorithm
samples at least log n/10 permutations from Cavg,dense

i in Step (i). Let y be such a
permutation. If y survives in Step (ii) then it satisfies Obj(y, Ci) ≤ 2Oi+(2α+ 2

log n−
ϵ
6 )|Ci\

Cfar
i |di by triangle inequality (as in Section 3). Otherwise Sℓ,p contains a permutation z
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such that ∆(z, y) ≤ βℓ ≤ βdi. Thus Obj(y, Ci) ≤ (2+β)Oi+(2α+ 2
log n−

ϵ
6 )|Ci\Cfar

i |di ≤
(2 + β + 2α2

(1+α) + 2α
(1+α) log n −

ϵα
6(1+α) )Oi. By setting ϵ = .0333 and α = .0005 we get

Obj(y, Ci) ≤ (1.999999 + β)Oi.
Following a similar argument as Case 1, we show Sℓ,p is never modified in Step (iii).

Case 3: We define set Cavg,sparse
i = Cavg

i \ Cavg,dense
i . Now we consider the case where

|Cavg,dense
i | < |Cavg

i
|

10 . Thus |Cavg,sparse
i | ≥ 9|Cavg

i
|

10 ≥ 9α(log n−1)|Ci|
10(1+α) log n .

Again we consider the set Sℓ,p where ℓ ≤ di < (1 + γ)ℓ and p
(1+γ) < 2log2n

|Ci| ≤ p. We argue
Sℓ,p contains a set of five permutations T = {x1, . . . , x5} such that ∀i, j ∈ [5], |Ixi

∩ Ixj
| ≤

(ϵ + 2β)di. For this, we define five events e1, e2, . . . , e5. Here e1 is the event that at
least one permutation is sampled from Cavg,sparse

i . Note as |Cavg,sparse
i | ≥ 9α(log n−1)|Ci|

10(1+α) log n

and p ≥ 2log2n
|Ci| with high probability we sample at least 10 log n permutations from

Cavg,sparse
i . Let x1 be such a permutation. Next given e1, let e2 be the event that

at least one permutation is sampled from Cavg,sparse
i \ C(x1). As |C(x1)| <

|Cavg
i

|
6 ,

|Cavg,sparse
i \ C(x1)| ≥ 9|Cavg

i
|

10 − |Cavg
i

|
6 ≥ 11α(log n−1)|Ci|

15(1+α) log n . Thus with high probability, we
sample at least 10 log n permutations from Cavg,sparse

i \ C(x1). Let x2 be such a sting.
In a similar way given e1, e2, . . . ej−1 (where j ≤ 5) let ej be the event that at least one
permutation is sampled from Cavg,sparse

i \ (C(x1) ∪ · · · ∪C(xj−1)). Again using a similar
argument as before we can show ej is satisfied with high probability and let xj be a
permutation sampled from Cavg,sparse

i \ (C(x1)∪· · ·∪C(xj−1)). Thus all these five events
are satisfied together with high probability.
Given T = {x1, . . . , x5}, we can construct a permutation x̃T using the MedianRecon-
struct () algorithm (Algorithm 2), such that Obj(Ci, x̃T ) ≤ (1 + 30(ϵ + 2β)(1 + α))Oi.
By setting ϵ = .0333 and α = .0005 we get Obj(Ci, x̃T ) ≤ (1.9995 + 61β)Oi.
Again, following a similar argument as Case 1, we show Sℓ,p is never modified in Step (iii).

◀

Proof of Theorem 1.1. Given the input set of permutations S arriving in a stream, we
run Algorithm Approx k-MedianStreaming with the following parameter setting: β =
0.0000001, λ = 0.0000001 and ρ = 0.00000001. Let the algorithm outputs k permutations
ỹ1, . . . , ỹk. We show with high probability

∑
x∈S min(∆(ỹ1, x), . . . , ∆(ỹk, x)) ≤ 1.9999995OPT,

the algorithm uses k2d polylog(nd)) bits space and has update time (k log n)O(1)d log2 d and
query time (k log(nd))O(k)d3.

First, we argue the space complexity. In the sampling step (Step 1), there are O(log d)
different choices for ℓ and O(log n) different choices for p. Moreover |Sℓ,p| < k log3 n. Thus the
sampled set R contains O(k log4 n log d) permutations. Moreover as we consider all subsets
T ⊆ R of size 5, there are at most |R|5 = O(k5 log20 n log5 d) different choices for x̃T . However,
instead of storing x̃T explicitly, we compute it whenever we use x̃T as a candidate k-median.
Thus storing only set R is enough. Next, by the MFS algorithm of Theorem 4.4, the sample
set F contains at most O(k2 log k log(kn)) input permutations with high probability.Also, as
the size of the implicit set M can be bounded by O(n5), using Theorem 4.3, we can claim
that the size of the coreset (P, w) is O(k2 log2 n). Each permutation can be stored using
d log d bits. Thus the total space is bounded by k2d polylog(nd)).

Next, we show the algorithm has update time O(k2d log2(kn) log2 d) and query time
(k log(nd))O(k)d3. For a given pair of permutations of length d, their distance can be
computed in time O(d log d). As |R| = O(k log4 n log d), the update time of the first sampling
step is O(kd log4 n log2 d). Next, by the MFS algorithm of Theorem 4.4, the update time
to construct set F and following Theorem 4.3 the update time to construct the coreset
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(P, w) is (k log n)O(1). Thus the total update time is (k log n)O(1)d log2 d. Next, we argue
the query time. As |R| = O(k log4 n log d), there are at most |R|5 = O(k5 log20 n log5 d)
different choices for x̃T . Thus |M̃ | = kO(1) polylog(nd). Now to bound the space complexity
instead of storing x̃T explicitly, we compute it whenever it is used as a candidate k-median.
Using Algorithm MedianReconstruct () it can be constructed in time Õ(d3). Moreover
|M̃ | = kO(1) polylog(nd), total number of different candidate k-median is (k log(nd))O(k).
Also evaluating the total objective of a candidate k-median using the coreset takes time
O(k3d log(kn) log d). Thus the total query time can be bounded by (k log(nd))O(k)d3.

Lastly, we argue the approximation guarantee. Let S1 := {i ∈ [k] | Oi < OPT
40000000k}. Thus∑

i∈S1
Oi ≤ OPT

40000000 . By Equation 7, for each i ∈ [k], there exists y′
i ∈ F such that

Obj(Ci, y′
i) ≤ 5Oi + ρ

k
OPT.

Thus∑
i∈S1

Obj(Ci, y′
i) ≤ 5

∑
i∈S1

Oi + ρOPT (since |S1| ≤ k)

≤ OPT
10000000 (for ρ = 0.00000001).

Next following Lemma 4.5 for each i ∈ [k] \ S1, with high probability, either the sample
set R and thus M̃ contains a permutation y such that Obj(Ci, y) ≤ 1.9999991Oi (as β =
0.0000001) or R contains a tuple T = (x1, . . . , x5) such that Obj(Ci, x̃T ) ≤ 1.9950061Oi. In
this case in Step (iii) we compute x̃T and add this to M̃ . Thus M̃ contains k permutations
with total objective ≤ 1.999999OPT + OPT

10000000 = 1.9999992OPT. As we evaluate this using
the (k, λ) coreset (P, w), the total objective is 1.9999992(1 + λ)OPT ≤ 1.9999995OPT as
λ = 0.0000001. ◀

5 Improved Space Bound for (1-)Median

In this section, we extend the result of Section 3 in the streaming model. More specifically,
suppose a set of input permutations x1, · · · , xn ∈ Sd arrive one after another as an insertion-
only stream (a permutation, once arrived, cannot be deleted). Here we show a result similar
to Theorem 3.1 in the streaming model using o(nd) bits (note, the input size is O(nd log d)
bits) of space.

▶ Theorem 5.1. There is a randomized streaming algorithm that, given a set S of n permuta-
tions over [d] arriving on a stream, finds a 1.9999-approximate median using O(d log d log2 n)
bits of space.

It is worth emphasizing that the space is only needed to maintain at most O(log n) permuta-
tions at any point of time of the stream.

Description of the algorithm. The algorithm is essentially the same as that described in
Section 3, except now we will run the algorithm on a sample set instead of the whole input.
Let us consider the following (implicit) set M (of potential medians): M contains all the
input permutations. Further, it also contains the output of MedianReconstruct(T ) for
all T ⊆ S such that |T | = 5. Our algorithm consists of two components. First, it picks
each input permutation independently with probability log n/n. (Alternatively, we can use
standard reservoir sampling to sample O(log n) permutations uniformly at random.) Let
R denote the sampled set. Second, consider an ϵ ∈ (0, 1) (the value of which is to be fixed
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later). Then it constructs a (1, ϵ)-coreset (P, w) (where P ⊆ S and w : P → R) for S with
respect to the (implicit) set M , in streaming fashion. At the end of the stream, we use R

and (P, w) to simulate ApproxMedian. More specifically, we run MedianReconstruct
on every subset T ⊆ R of size five and then add those outputs to a set M ′. Next, add all the
elements of R to M ′. So,

M ′ = R ∪ {x̃T | for all T ⊆ R such that |T | = 5}

where x̃T denotes the output of MedianReconstruct(T ). Finally, for each y ∈ M ′,
compute

∑
x∈P w(x)∆(x, y), and output one that attains the minimum value.

Since the analysis of the approximation factor is similar to that for the k-median problem
(as in Section 4), we omit the details. The only difference is that since now we have only one
cluster, we can entirely avoid the “clever” sampling used in Step 1 and the MFS sampling
(Step 2) of the algorithm described in Section 4. Instead, we can just use the uniform
sampling from the input and then follow a similar argument as used in Lemma 4.5. We focus
on analyzing the space usage of our algorithm.

Space usage. Clearly, the first sampling step requires O(log n) input permutations to store
(with high probability). By Theorem 4.3, the coreset construction needs to maintain at most
O(ϵ−2 log |M | log n) = O(ϵ−2 log2 n) (since |M | = O(n5)) permutations. So the overall space
usage is O(ϵ−2d log d log2 n) bits of space (since to store each permutation over [d], we need
O(d log d) bits of space).
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1 Introduction

There still remains much to be understood about the complexity of Boolean functions and
the many complexity measures that are used to study various models of computation such
as certificate complexity, degree, sensitivity, block sensitivity, their variants, to name a few.
Some of the questions we ask about these measures are: How are these measures related,
and what polynomial upper bounds can be given on these measures in terms of the smaller
measures such as sensitivity? What separations can be shown between the measures? Do they
have a natural computational interpretation? What properties do they have, for example, do
they behave well under composition? How do they behave for symmetric functions? Since
the sensitivity conjecture was resolved [23], one important new goal is to determine precisely
how the larger measures, such as query complexity and certificate complexity, are bounded
above by smaller measures such as sensitivity. The best known upper bound on deterministic
query complexity is D(f) ≤ O(s(f)6), [34, 31, 23] while the best separation is cubic [13]. For
certificate complexity we know that C(f) ≤ O(s(f)5), whereas the best known separation
is cubic [9]. Many more of these upper bounds and separations are listed in the tables of
known results in [42, 4].

With these questions in mind, we introduce a new complexity measure based on the
Karchmer-Wigderson relation of a Boolean function. This relation was introduced by Karch-
mer and Wigderson [25] and it has been extensively studied in communication complexity.
Let f : {0, 1}n → {0, 1} be a Boolean function. The relation Rf ⊆ f−1(0) × f−1(1) × [n] is
defined as Rf = {(x, y, i) : xi ̸= yi}. (As a matter of convention, x denotes an input in f−1(0)
and y denotes an input in f−1(1) unless otherwise stated.) Karchmer and Wigderson [25]
showed that the communication complexity of Rf is equal to the circuit depth of f . We
study the following 2-player certificate game, where the goal of the players is to solve the
Karchmer-Wigderson relation in a zero-communication setting.

▶ Definition 1 (Certificate game). Let f : {0, 1}n → {0, 1} be a (possibly partial) Boolean
function. One player is given x ∈ f−1(0) and the other player is given y ∈ f−1(1). Their
goal is to produce a common index i such that xi ̸= yi, without any communication.

We look at how well they can solve this task in several zero-communication settings. We
consider four models: when they only have private coins, when they share a public random
source, and when they share an entangled quantum state (also called quantum model) that
does not depend upon their inputs. The fourth model allows any non-signaling strategy which
we describe in Section 2.2. In all these models, we consider the probability of success that
they can achieve, for the best strategy and worst case input pair. The multiplicative inverse
of the winning probability is called the certificate game complexity of the function (CG for
the private coin model, CGpub for the public coin model, CG∗ for the shared entanglement
model and CGns for the non-signaling model).

To illustrate how to achieve such a task without communication, we consider the following
simple strategy. Let f be a Boolean function whose 0-certificate complexity is c0 and whose
1-certificate complexity is c1. Then on input x such that f(x) = 0, Alice can output a
random i in a minimal 0-certificate for x (similarly for Bob with a minimal 1-certificate
for y). Then since the certificates intersect, the probability that they output the same index
is at least 1

c0·c1
. This shows that CG(f) ≤ C0(f) · C1(f). This simple upper bound is tight
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for many functions including OR and Parity, but there are other examples where CG(f) can
be much smaller, and it is interesting to see what other upper and lower bounds can apply.
We will also see that access to shared randomness can significantly reduce the complexity.

We show that the certificate game complexity measures in the four different models hold
a pivotal position with respect to other measures, thus making them good candidates for
proving strong lower and upper bounds on various measures. The operational interpretation
in terms of winning probability of certificate games makes them convenient for proving upper
bounds. Furthermore, the public coin and non-signaling versions are linear programs and
therefore their dual formulation is convenient for proving lower bounds.

1.1 Motivation for certificate games
The two main ingredients in our certificate games are two-player zero-communication games,
and the Karchmer-Wigderson relation. Two-player zero-communication games have been
studied in many different contexts. They are called two-prover games in the context of
parallel repetition theorems, central to the study of PCPs and the Unique Games Conjecture
(we don’t consider the case where there could be a quantum verifier, which has been studied
in some papers). They also appear under the name of zero-communication protocols in the
context of communication and information complexity. Finally, they are known as local or
quantum games in the study of quantum nonlocality, an extensive field motivated by the
study of quantum entanglement and the relative power of quantum over classical behaviors.
Quantum behaviors are modeled by two parties making measurements on a shared bipartite
quantum state, and in the classical setup, the two parties can share “hidden variables”, or
shared randomness. There has been extensive work, for instance, on simulating quantum
behaviors with various resources, such as communication, post-selection, noise and more.
There are also strong connections between finding separations between quantum and classical
communication complexity, and between quantum and classical zero-communication games.
A survey on quantum non-locality can be found in references [16, 35], and on the interactions
between communication complexity and nonlocality in reference [17].

The Karchmer-Wigderson relation Rf appears in many contexts in the study of complexity
measures, including the Adversary bound on quantum query complexity, and its variants [5,
38]. It is key in understanding how hard a function is and captures the intuition that if
one is to distinguish the 0-instances from the 1-instances of a function, then some i in the
relation has to play a key role in computing the function. Another measure where the
Karchmer-Wigderson relation appears implicitly is Randomized certificate complexity (RC)
defined by Aaronson [2]. It was further shown to be equivalent to fractional block sensitivity
and fractional certificate complexity (FC) [39, 21]. The non-adaptive version can be viewed
as a one-player game where the player is given an input x and should output an index i. The
player wins against an input y (with f(x) ̸= f(y)) if xi ̸= yi.

1.2 Our results
We show that the certificate game complexity measures of a Boolean function f take pivotal
roles in understanding the relationships between various other complexity measures like
Randomized certificate complexity RC(f), Certificate complexity C(f), randomised query
complexity R(f), zero-error randomized query complexity R0(f) and other related measures.
Our results also demonstrate the power of shared randomness over private randomness, even
in a zero-communication setting. At the same time, our results also illustrate an interesting,
and somewhat counter-intuitive, difference between the quantum world and the classical
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world. Our main results for total functions are compiled in Figure 1. While most of our
results also hold for partial functions, for simplicity we don’t indicate that in the Figure.
Instead we specify in each theorem whether our result holds for partial functions.

Shared entanglement can simulate shared randomness, and shared randomness gives more
power to the players compared to private randomness so

CG∗(f) ≤ CGpub(f) ≤ CG(f).

A natural question that arises is how separated are these measures. In other words, how
much advantage does shared randomness give over private randomness and how much
advantage does shared entanglement give over shared randomness? Because of the operational
interpretation of certificate game complexity in terms of the winning probability of certificate
games, proving upper bounds on certificate game complexity can be achieved by demonstrating
a strategy for the game. We provide techniques to prove lower bounds.

Lower bounds on certificate games with shared entanglement. One surprising result of
our work concerns the shared entanglement model. In order to prove lower bounds for this
model, we introduce non-signaling certificate games. Non-signaling is a fundamental concept
that comes from quantum non-locality; it states that when making a quantum measurement
the outcome on one should not leak any information about the measurement made on the
other side. This “non-signaling bottleneck” is shared by all of our certificate game complexity
measures. Identifying it turned out to be the key insight which led to a very strong lower
bound on all these measures, including the quantum model, with a single, simple proof, not
involving any of the technical overhead inherent to the quantum setting. The simplicity of the
proof comes from the fact that the non-signaling model has several equivalent formulations
as linear programs, and the strength of the bounds comes from the fact that it captures
precisely a fundamental computational bottleneck. It also neatly highlights one of the key
differences between quantum and classical query models, since the quantum query model
somehow averts this bottleneck.

Our main lower bound result is a simple and elegant proof (Theorem 23) that

CGns ≥ FC

which in turn lower bounds the other three variants of certificate game complexity. The idea
is that when a strategy satisfies the non-signaling condition, the marginal distribution of
one of the players’ output does not depend on the other player’s input. Therefore, playing
according to the marginal distribution of one of the players is a successful strategy for the
FC game. It follows from this lower bound that while the quantum query complexity of the
ORn function1 is Θ(

√
n), its quantum certificate game complexity is CG∗(ORn) = Θ(n).

Upper bounds on certificate games with shared randomness. The fact that CG∗ is
lower bounded by FC gives us examples (like the ORn function) where the quantum query
complexity Q, can be quadratically smaller than CG∗. In other words, a quantum query
algorithm that computes the ORn function using

√
n queries, cannot reveal to players of a

certificate game an index where their inputs differ, with probability better than 1/n, because
of the non-signaling constraint on quantum games. This, somewhat surprisingly, contrasts

1 ORn is the OR of n variables. From Grover’s algorithm [22, 15] we have Q(ORn) =
√

n. On the other
hand FC(ORn) = Ω(s(ORn)) = Ω(n).
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with the randomized setting where the players can run their randomized query algorithm
on their respective inputs using the same random bits and pick a common random query in
order to find an index where the inputs differ, with probability 1

R(f) , for any f . Thus, we
prove (Theorem 19) that for any Boolean function f ,

CGpub(f) ≤ O(R(f)).

Whether the zero-error randomized query complexity, R0(f) is upper bounded by the
square of FC(f) is a long standing open problem. A natural step towards solving the open
problem is to use a measure just above FC and show that R0 is upper bounded by the
square of that measure. In [24] the authors introduced such a measure, called expectational
certificate complexity, EC, and showed that R0(f) ≤ O(EC(f)2). Showing that EC ≤ O(FC)
would solve the long-standing open problem. They made significant progress towards this
by showing that EC(f) ≤ O(FC(f)·

√
s(f)). Thus one of the main questions that remained

unanswered in [24] was: “Is EC(f) = O(FC(f))?” and if the answer is negative, how to prove
it? We show that CGpub is bounded above by EC(f) up to constant factors (Theorem 18).
Combining with our results,

FC(f) ≤ CGns(f) ≤ CG∗(f) ≤ CGpub(f) ≤ O(EC(f)).

Hence, certificate games may give us a handle on how to resolve the FC versus EC question:
either prove that these measures are all equivalent, or give a separation between any of them.

A first step towards proving a separation could be to show a separation between the
shared randomness and shared entanglement models. For Boolean predicates, it is known
that the gap between the quantum and randomized winning probabilities can be at most
constant (by Grothendieck’s theorem, see for example Proposition 4.5 in [35]). But for games
with non-Boolean outcomes, as is the case with certificate games, this limitation does not
apply, and such a separation, or an impossibility result, in the special case of certificate
games, could be of independent interest.

For total Boolean functions our upper bound on CGpub by EC implies that CGpub is also
upper bounded by certificate complexity C (up to constant factors), since EC(f) ≤ C(f) for
total functions [24]. We also give a direct proof that CGpub(f) ≤ O(C(f)) for total functions
(Theorem 17) as a “warmup” to the stronger upper bound by EC (see the full version).

Bounds on certificate games with private randomness. The private randomness model of
certificate game complexity, CG, is upper bounded by the product of 0-certificate complexity,
C0, and 1-certificate complexity, C1, and also by the square of EC (Theorem 22). On the
other hand the argument of [24] to show R0(f) ≤ O(EC(f)2) extends to show that CG is
lower bounded by R0. Therefore, R0(f) ≤ O(CG(f)) ≤ O(C0(f)C1(f)).

In fact, CG(f) can be larger than the arity of the function. This is because, we show (in
Theorem 22) that CG(f) is lower bounded by the square of the Minimax formulation of the
positive adversary bound, MM(f), which sits between Q(f) and the spectral sensitivity λ(f).

Relationships between the various models of certificate games. Combining our results
with the fact that EC(f) ≤ O(FC(f)·

√
s(f)), [24], we have (in Corollary 26)

CGpub(f) ≤ O(EC(f)) ≤ O(CGns(f)3/2) ≤ O(CG∗(f)3/2).

Furthermore, since CG(f) ≤ O(EC(f)2) we have (in Corollary 27)

CG(f) ≤ O(CGns(f)3).
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The Tribes√
n,

√
n = OR√

n ◦ AND√
n (Definition 15) function demonstrates a quadratic

separation between CGpub and R and hence between CGpub and CG. Since CGpub ≤ C for total
functions, we see that CGpub(Tribes√

n,
√

n) = O(
√

n), while R(Tribes√
n,

√
n) = Ω(n). The fact

that public coins can be used cleverly to design the strategy for Tribes√
n,

√
n is not obvious at

first glance. In fact, the strategy for the Tribes√
n,

√
n function helps us to see the how public

coins can be used effectively (via a hashing framework) for any function. Furthermore, since
the Tribes√

n,
√

n function is a composition of the AND√
n and OR√

n function, we also notice
that the measures CGpub, CG∗ and CGns do not compose (Corollary 28), that is, there are
Boolean functions f and g such that the measures for the function (f ◦g) is not asymptotically
the same as the product of the measures for f and for g.

Certificate game complexity for partial functions. While Tribes√
n,

√
n demonstrates a

quadratic gap between R and CGpub, we know the largest gap between R and CGpub for total
functions is at most cubic (since D ≤ (bs)3 [11, 33]). But for partial functions the situation
is different. Ben David and Blais [12] demonstrated a function, approximate index ApInd
(Definition 30), for which there is exponential separation between R and FC 2. We show that
CGpub of ApInd is at most O(log(R)) (Theorem 31) and hence demonstrate an exponential
separation between R and CGpub for partial Boolean functions.

Single-bit versions of certificate games. Our final set of results is in the context of single-bit
versions of certificate games. Single-bit versions of certain complexity measures were used in
early circuit complexity bounds [26, 28]. More recently Aaronson et al. [4] defined single-bit
versions of several formulations of the adversary method, and showed that they are all equal
to the spectral sensitivity λ. Informally, single-bit versions of these measures are obtained by
considering the requirements only with respect to pairs x, y such that f(x) = 0 and f(y) = 1
and x and y differ only in a single bit.

We show that the single-bit version of private coin certificate game complexity is equal
to λ2 (Theorem 38). One of our main results is that the single-bit version of public coin
certificate game complexity, CGpub

[1] (f) is asymptotically equal to sensitivity s(f) (Theorem 38).
This gives a new and very different interpretation of sensitivity, which is one of the central
complexity measures in this area. This interpretation of sensitivity in the context of certificate
games may give us a handle on resolving the sensitivity-block sensitivity conjecture (which
asks if block sensitivity bs(f) is O(s(f)2), and remains open in this stronger form), by trying
to construct a strategy for CGpub using a strategy for CGpub

[1] .

A note on partial functions. Our notion of certificate games naturally extends to partial
functions, and many of our results hold for partial as well as total functions. The formal
definitions are given in the full version of this paper [18]. We indicate here which results
extend to partial functions.

1.3 Overview of our techniques
The main contribution of this paper is to give lower and upper bounds on certificate game
complexity in different models: private coin, public coin and shared entanglement. The
bounds on private coin certificate game complexity are obtained by manipulating previously
known results and use standard techniques.

2 [12] introduced a measure called noisyR in an attempt to answer the question of whether R composes,
that is, whether R(f ◦ g) = Θ(R(f) · R(g)). They studied noisyR for the approximate index function
ApInd and showed an exponential separation between noisyR and R for this partial function.
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The principal contribution, in terms of techniques, is in giving upper and lower bounds
on certificate game complexity of public coin and shared entanglement model (CGpub and
CG∗). These techniques can naturally be divided into two parts.

Upper bounds. We prove strong (and arguably surprising) upper bounds on CGpub by
constructing strategies using shared randomness. The challenge for giving a certificate game
strategy is to get the two players to coordinate their strategies so that the index they output
is the same. In public coin setting, we can take advantage of using shared randomness.
We show multiple examples where using shared randomness to choose hash functions or
permutations turns out to be helpful. We express the ideas behind our public coin strategies
in a general framework based on using hash functions. However, the strategies that fall
within this framework still require a separate analysis, which in some cases can be technically
quite involved.

Lower bounds. Lower bounds on CGpub can be obtained by taking the dual of its linear
programming formulation. For the shared entanglement model, which is not linear, we turn
to more general non-signaling games. The resulting non-signaling certificate game complexity,
CGns, is a lower bound on CG∗. It can be expressed as a linear program and lower bounds
on CG∗ can be obtained by taking the dual of this linear program and constructing feasible
solutions for it.

2 Certificate game complexity

In this section, we give the formal definitions of our Certificate Game complexity measures.
A two-player game G is given by a relation R(x, y, a, b) ⊆ X × Y × A × B, where x ∈ X

is the first player’s input, y ∈ Y is the second player’s input. The players output a pair of
values, (a, b) ∈ A × B, and they win if R(x, y, a, b) holds. A deterministic strategy is a pair
of functions A : X →A and B : Y→B. A randomized strategy with private randomness is the
product of two mixed individual strategies. A randomized strategy with shared randomness is
a mixture of pairs of deterministic strategies. A quantum or shared entanglement strategy
is given by a shared bipartite state that does not depend on the input, and a family of
projective measurements for Alice, indexed by her input, similarly for Bob. (More general
measurements could be considered, but projective measurements suffice [19].)

For any strategy, we will write p(a, b|x, y) to mean the probability that the players output
(a, b) when their inputs are x, y. The marginal distribution of Alice’s output is p(a|x, y) =∑

b p(a, b|x, y), and similarly, p(b|x, y) =
∑

a p(a, b|x, y) is Bob’s marginal distribution.
Non-signaling is a notion that comes from quantum games, which says that if players are

spatially separated, then they cannot convey information to each other instantaneously. All
the types of strategies described above verify the non-signaling condition.

▶ Definition 2 (Non-signaling strategy). Let p(a, b|x, y) be the probability that players, on input
x, y output a, b. Then p is non-signaling if p(a|x, y) = p(a|x, y′) and p(b|x, y) = p(b|x′, y) for
all inputs x, x′, y, y′ and all outcomes a, b.

Since nonsignaling means that Alice’s output does not depend on Bob’s input, we can write
p(a|x) for Alice’s marginal distribution, similarly, we will write p(b|y) for Bob.

Surprisingly, non-signaling strategies are characterized by the affine combinations of local
deterministic strategies that lie in the positive orthant. This has been known since the 1980s
[20, 37, 27, 41]. A more recent proof is given in [36].
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1. Theorem 22. Separation: GSS1 (follows from the fact that C1(GSS1) = Θ(n) and
C0(GSS1) = Θ(n2)). Tightness: ⊕.

2. Theorem 22, Separation: OR, Tightness: ⊕.
3. Implicit in[24] (Theorem 22). Separation: ⊕, Tightness: OR.
4. Theorem 22 Separation: Pointer function in [6] and the cheat sheet version of the

k−Forrelation function [10, 3]. Tightness: OR.
5. Theorem 19 and Proposition 20. Separation: Tribes (Theorem 16 and RS(Tribes√

n,
√

n) =
Θ(n) because RS composes [14]). Tightness: ⊕.

6. Theorem 18. Separation: OPEN, Tightness: ⊕.
7. Theorem 23. Separation: OPEN, Tightness: ⊕.

Figure 1 Some known relations among complexity measures for total functions. An arrow from
A to B indicates that for every total Boolean function f , B(f) = O(A(f)). Double arrows indicate
results in this paper, and boxes indicate new complexity measures. Single arrows indicate known
results and references are omitted from the diagram for space considerations. Most references can
be found in the tables in [42, 4] and we cite others in later sections. Known relations about EC are
given in [24], and FC = O((MM)2) is implicit in [8]. Fractional certificate complexity FC is equal
to fractional block sensitivity and to randomized certificate complexity RC (up to multiplicative
constants). MM is the minimax formulation of the positive adversary method. MM = O(FC) is
proved in [29].



S. Chakraborty, A. Gál, S. Laplante, R. Mittal, and A. Sunny 32:9

▶ Proposition 3 (Characterization of non-signaling strategies). A strategy p is non-signaling
if and only if it is given by a family of coefficients λ = {λAB}AB (not necessarily nonneg-
ative), AB ranging over pairs (A, B) of deterministic strategies, such that p(a, b|x, y) =∑

AB:A(x)=a,B(y)=b λAB, and λ verifies
∑

AB λAB = 1, and
∑

AB:A(x)=a,B(y)=b λAB ≥ 0 for
all a, b, x, y.

Given a Boolean function f on n variables, define a two-player game such that X = f−1(0),
Y = f−1(1), A = B = [n] and R(x, y, a, b) = 1 if and only if a = b and xa ̸= ya. Notice that
this setting gives rise to a certificate game according to Definition 1.

2.1 Certificate games with public and private coins

In case of private coins, a randomized strategy for each player amounts to assigning, for
every input x ∈ {0, 1}n, a probability px,i of producing i as its outcome, for each i ∈ [n].
▶ Definition 4 (Private coin certificate game complexity). For a (possibly partial) function f ,

CG(f) = min
p

max
x,y∈f−1(0)×f−1(1)

1
ω(p; x, y) ,

with p a collection of nonnegative variables {px,i}x,i satisfying,
∑

i∈[n] px,i = 1, ∀x∈f−1(0) ∪
f−1(1), and ω(p; x, y) =

∑
i:xi ̸=yi

px,ipy,i is the probability that both players output a common
index i that satisfies Rf (x, y, i).

When the players share randomness, a public-coin randomized strategy is a distribution
over pairs (A, B) of deterministic strategies. We assign a nonnegative variable pA,B to each
strategy and require that they sum to 1. We say that a pair of strategies (A, B) is correct on
x, y if A(x) = B(y) = i and xi ̸= yi.

▶ Definition 5 (Public coin certificate game complexity). For a (possibly partial) function f ,

CGpub(f) = min
p

max
x,y∈f−1(0)×f−1(1)

1
ωpub(p; x, y) ,

where p is a collection of nonnegative variables {pA,B}A,B satisfying
∑

(A,B) pA,B = 1 and
ωpub(p; x, y) =

∑
(A,B) correct on x,y pA,B.

2.2 Certificate games with quantum and non-signaling strategies

Similar to non-local games (see [19]), when the players can share a bipartite quantum
state, a general quantum strategy for a certificate game consists of a shared state between
the two players, and projective measurements made on their respective part of the shared
state that depend on their input. CG∗ is the multiplicative inverse of the winning probability
(in the worst case) for the best quantum strategy. The formal definition is given in the
full version of this paper [18]. Non-signaling strategies (Definition 2) are a generalization
of quantum strategies and are useful to give lower bounds on quantum games. They are
particularly well-suited when in a given problem, the bottleneck is that shared entanglement
cannot allow players to learn any information about each others’ inputs. This is the case for
the OR function (Theorem 23).
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▶ Definition 6 (Non-signaling certificate game complexity). For a (possibly partial) function f ,

CGns(f) = min
λ

max
x,y∈f−1(0)×f−1(1)

1
ωns(λ; x, y) ,

where λ is a collection of (possibly negative) variables {λA,B}A,B with A, B ranging over all
pairs of deterministic strategies satisfying

∑
(A,B) λA,B = 1 and

ωns(λ; x, y) =
∑

A,B:A(x)=B(y)=i

and xi ̸=yi

λAB .

2.3 Dual formulation of CGpub and CGns

In the public coin setting, maximizing the winning probability in the worst case can be
written as a linear program. This allows us to write a dual formulation, so (since it becomes
a minimization problem, and we are considering its multiplicative inverse) this form will be
more convenient when proving lower bounds. The dual variables µx,y can be thought of as a
hard distribution on pairs of inputs, and the objective function is the µ-size of the largest set
of input pairs where any deterministic strategy is correct. The next two propositions follow
by standard LP duality.

▶ Proposition 7 (Dual formulation of CGpub). For a two-player certificate game Gf cor-
responding to a (possibly partial) Boolean function f , CGpub(f) = 1/ωpub(Gf ), where the
winning probability ωpub(Gf ) is given by the following linear program.

ωpub(Gf ) = min
δ,µ

δ

such that
∑

x,y: A,B correct on x,y

µx,y ≤ δ for every deterministic strategy A, B

∑
x,y

µxy = 1, µx,y ≥ 0,

where µ = {µx,y}x∈f−1(0), y∈f−1(1). A, B correct on x, y implies A(x) = B(x) = i and xi ≠ yi.

To prove lower bounds on CG∗, we cannot proceed in the same way since the value of
CG∗ cannot be written as a linear program. However, a key observation is that in many
cases (and in all the cases we have considered in this paper), the fundamental bottleneck for
proving lower bounds on quantum strategies is the non-signaling property, which says that in
two-player games with shared entanglement, the outcome of one of the player’s measurements
cannot reveal the other player’s input. This was the original motivation for defining CGns: if
we only require the non-signaling property of quantum strategies, it suffices to prove a lower
bound on CGns, which is a lower bound on CG∗. Using the characterization of non-signaling
strategies in terms of an affine polytope (see Proposition 3), we obtain a convenient linear
programming formulation for CGns.

Definition 6 shows that the value of ωns(G) is a linear optimization problem. Its dual, a
maximization problem, allows us to prove lower bounds on CGns and in turn CG∗.
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▶ Proposition 8 (Dual formulation of CGns). For a certificate game G corresponding to
a (possibly partial) Boolean function f , CGns(f) = 1/ωns(Gf ), where winning probability
ωns(Gf ) can be written as the following linear program.

ωns(Gf ) = min
µ,γ,δ

δ

such that
∑

x,y: A,B correct on x,y

µx,y +
∑
x,y

γA(x),B(y),x,y = δ for every deterministic strategy A, B

∑
x,y

µxy = 1, µx,y ≥ 0, γa,b,x,y ≥ 0,

where µ = {µx,y}x∈f−1(0), y∈f−1(1) and γ = {γi,j,x,y}i,j∈[n],x∈f−1(0), y∈f−1(1) .

The dual of the non-signaling variant can be used to bound on CG∗(Promise-ORn) from
below. The intuition comes from the fact that any quantum strategy for the certificate game
for OR has to be non-signaling. Let one of the player have input x = 0n, and the other
player have one of n strings x(i) (x with the i-th bit flipped). At the end of the game, they
output i with probability p = 1

CG∗(Promise-OR)
. If this probability were bigger than 1

n , then
the player with input x would learn some information about the other player’s input.

Since we have considered progressively stronger models, the following holds trivially.

▶ Proposition 9. For any (possibly partial) Boolean function f ,

CGns(f) ≤ CG∗(f) ≤ CGpub(f) ≤ CG(f).

3 Preliminaries

We define many known complexity measures in this section. Almost all definitions are given
for arbitrary Boolean functions, including partial functions. A few notable exceptions are
certificate complexity, sensitivity and block sensitivity. Additional details for these measures
in case of partial functions are given in the full version [18]. We use the following notation.
A total Boolean function f is f : {0, 1}n → {0, 1}. Except when noted otherwise, inputs
x ∈ {0, 1}n are in f−1(0) and inputs y ∈ f−1(1), and sums over x range over x ∈ f−1(0),
similarly for y. For partial functions we use f−1 for f−1(0) ∪ f−1(1).

Indices i range from 1 to n and xi denotes the ith bit of x. We write x(i) to mean the
string x with the ith bit flipped. When not specified, sums over i range over i ∈ [n].

3.1 Query complexity
We recall briefly the standard notations and definitions of query complexity for Boolean
functions f : {0, 1}n → {0, 1}. The deterministic query complexity (or decision tree com-
plexity) D(f) is the minimum number of queries to bits of an input x required to compute
f(x), in the worst case. Randomized query complexity, denoted R(f), is the number of
queries needed to compute f , in the worst case, with probability at least 2/3 for all inputs.
Zero-error randomized query complexity, denoted by R0(f), is the expected number of queries
needed to compute f correctly on all inputs. The relation R(f) ≤ R0(f) ≤ D(f) holds for all
Boolean functions f . It will be useful to think of a randomized decision tree as a probability
distribution over deterministic decision trees. When computing the probability of success,
the randomness is over the choice of a deterministic tree.

Quantum query complexity, written Q(f), is the number of quantum queries needed to
compute f correctly on all inputs with probability at least 2/3.
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In this paper we will consider the positive adversary method, a lower bound on quantum
query complexity. It was shown by Spalek and Szegedy [38] that several formulations were
equivalent, and we use the MinMax formulation MM here.

▶ Definition 10 (Positive adversary method, Minimax formulation). For any (possibly partial)
Boolean function f , MM(f) = minp maxx∈f−1(0),y∈f−1(1)

1∑
i:xi ̸=yi

√
px,ipy,i

, where p is taken

over all families of nonnegative px,i ∈ R such that for all x ∈ f−1 (where f is defined),∑
i∈[n] px,i = 1

3.2 Sensitivity, certificate complexity and their variants
The sensitivity of a function is the number of bits that can be flipped, for the worst case
input, so that the value of the function changes. Similarly, block sensitivity is the number of
disjoint blocks that can be flipped.

For a total Boolean function f , a certificate is a partial assignment of the bits of an input
to f that forces the value of the function to be constant, regardless of the value of the other
bits. A certificate for input x is a partial assignment consistent with x that is a certificate
for f .

▶ Definition 11 ([40]). For any total Boolean function f and input x, C(f ; x) is the
size of the smallest certificate for x. The certificate complexity of the function is C(f) =
max0,1{C0(f), C1(f)}, where Cb(f) = maxx∈f−1(b){C(f ; x)}.

Certificate complexity is a lower bound on query complexity, for total Boolean functions.
Randomized certificate complexity was introduced by Aaronson as a randomized version

of certificate complexity [2], and subsequently shown to be equivalent (up to constant factors)
to fractional block sensitivity and fractional certificate complexity [39, 29, 21]. We use the
fractional certificate complexity formulation.

▶ Definition 12 (Fractional certificate complexity). For any (possibly partial) Boolean func-
tion f FC(f) = maxz∈f−1 FC(f, z), where FC(f, z) = minv

∑
i vz,i , subject to

∑
i:zi ̸=z′

i
vz,i ≥

1 for all z′ ∈ f−1 such that f(z) = 1 − f(z′), with v a collection of variables vz,i ≥ 0.

Another equivalent formulation is, FC(f) = minw max z,z′∈f−1

f(z)=1−f(z′)

∑
i

wz,i∑
i:zi ̸=z′

i

wz,i
, where w

is a collection of non-negative variables wz,i.
Randomized certificate complexity (in its non-adaptive formulation) can be viewed as a

game where a player is given an input z and should output an index i (say with probability
pz,i = wz,i∑

j
wz,j

). The player wins against an input z′ (with f(z) = 1 − f(z′)) if zi ̸= z′
i.

Then, FC(f), for total functions, is (up to constant factors) the multiplicative inverse of
the probability of winning the game in the worst case [2, 39, 21]. Expectational certificate
complexity was introduced as a quadratically tight lower bound on R0 [24].

▶ Definition 13 (Expectational certificate complexity [24]). For any (possibly partial) Boolean
function f , EC(f) = minw maxz∈f−1

∑
i∈[n] wz,i with w a collection of variables 0 ≤ wz,i ≤ 1

satisfying
∑

i:zi ̸=yi
wz,iwz′,i ≥ 1 for all z, z′ s.t. f(z) = 1 − f(z′).

The following relations are known to hold for any total Boolean function f .

▶ Proposition 14 ([24]). FC ≤ EC ≤ C ≤ O(R0) ≤ O(EC2).
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4 Public and private randomness in certificate games

As a starting point, we give an upper bound of C on CGpub using a public coin protocol
which illustrates how shared randomness can be used by the players to coordinate their
outputs (Section 4.3). We then go on to show EC (Section 4.3), R and RS (Section 4.4) are
upper bounds on CGpub. Finally, we give several upper bounds on private coin variant, CG
(Section 4.5).

4.1 Public coin certificate game for the Tribes function

To construct a strategy for a certificate game, the main challenge is to match the index of the
other side. In public coin setting, we can take advantage of having access to shared randomness
to achieve this task. We illustrate this idea by giving a CGpub strategy for the Tribes function.
The Tribess,t function is a composition of two functions, Tribess,t = ORs ◦ ANDt.

▶ Definition 15 (Tribes). Tribess,t : {0, 1}st → {0, 1} is defined using the DNF formula

Tribess,t(x) =
s∨

i=1

t∧
j=1

xi,j .

The Tribes function is a very well studied problem in complexity theory. It has full
randomized query complexity, in particular, R(Tribes√

n,
√

n) = Θ(n). On the other hand,
the functions ORs and ANDt have full sensitivity, and by Theorem 23, CGpub of OR√

n and
AND√

n are Θ(
√

n). In Theorem 16 we prove that the CGpub of Tribes√
n,

√
n is O(

√
n). Thus

the function Tribes√
n,

√
n demonstrates a quadratic separation between R(f) and CGpub(f),

and also implies that, under function composition, CGpub is not the product of the CGpub of
the individual functions. We describe the main idea behind the strategy here.

For the Tribesk,k function, we want a strategy that wins the certificate game with
probability Ω(1/k) (instead of the obvious Ω(1/k2)). The input of Tribesk,k consists of k

blocks of k bits each. We will reduce the general problem to the case when all blocks of
Alice’s input have a single 0, and Bob has exactly one block with all 1’s and Alice and Bob
wins when they both can output the unique index i where Alice’s bit is 0 and Bob’s bit is 1.

Here we discuss this special case. Let us view Alice’s input as an array A of k values,
specifying the position of the 0 in each block (each entry is in {1, 2, · · · , k}). On the other
hand, Bob’s input can be thought of as an index, say j, between 1 and k, identifying his all-1
block. Alice wants to find j and Bob wants to find A[j], so both can output a position where
their inputs differ.

Consider the case where all of the entries of Alice’s array are distinct. Bob simply picks a
random number r and outputs the r-th index of the j-th block. Alice can use the same r

(due to shared randomness), and find the unique j such that A[j] = r. Whenever Bob picks r

such that A[j] = r, they win the game. The probability that a random r matches A[j] is 1/k.
For the harder case when some of the entries of A coincide, we use the shared randomness

to permute entries of each block. This ensures that, with constant probability, we have a
unique j such that A[j] = r. This gives the required success probability Ω(1/k).

▶ Theorem 16. CGpub(Tribes√
n,

√
n) = O(

√
n).
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4.2 A framework for upper bounds based on hashing
We give the following general framework for CGpub protocols, building on the idea of using
hash functions and permutations. Let f : {0, 1}n → {0, 1} be a (possibly partial) Boolean
function. Alice is given x ∈ f−1(0) and Bob is given y ∈ f−1(1). Their goal is to produce a
common index i ∈ [n] such that xi ̸= yi.

Let T ⊆ [n] be a set of potential outputs, known to both players, and let S be a finite set.
T and S are fixed in advance as part of the specification of the strategy (they do not depend
on the input, only on the function f). Let Ax ⊆ T denote a set of potential outputs of Alice
on x that belong to the set T , and By ⊆ T denote a set of potential outputs of Bob on y

that belong to the set T . The players proceed as follows:

1. Using shared randomness, they select a random mapping h : T → S.
2. Using shared randomness, they select a random element z ∈ S.
3. Alice outputs a (possibly random) element of h−1(z) ∩ Ax (if this set is empty,

she outputs an arbitrary element). Similarly, Bob outputs a (possibly random)
element of h−1(z) ∩ By (if this set is empty, he outputs an arbitrary element).

This general strategy will be correct with good enough probability, if the following two
conditions can be ensured:

(i) h−1(z) ∩ W is not empty, where W ⊆ Ax ∩ By denotes the set of correct outputs from
Ax ∩ By, that is, for any i ∈ W , xi ̸= yi.

(ii) h−1(z) ∩ Ax and h−1(z) ∩ By are “small enough”.
Note, Condition (i) implies that both sets, h−1(z) ∩ Ax and h−1(z) ∩ By, are not empty.
We will apply this general framework in various ways. We use it for proving that CGpub

is bounded above by C and even by EC. We also use it to get a strong upper bound for the
approximate index function ApInd in Section 6.2. Finally, we use the hashing framework to
prove that the single-bit version of CGpub characterizes sensitivity up to constant factors in
the proof of Theorem 38. While each of these proofs fits into the framework we described
above, their analyses are technically quite different.

4.3 Upper bounds on CGpub by C and EC
We will take advantage of having access to shared randomness by using the hashing based
approach outlined above. To illustrate the ideas of the proof, we start with a simple argument
to show that CGpub is always upper bounded by certificate complexity. A slightly more
involved argument will show a stronger upper bound by EC.

▶ Theorem 17. For a total Boolean function f , CGpub(f) ≤ O(C(f)).

Proof. Let S be a finite set of cardinality C(f). An element z ∈ S is fixed as part of the
specification of the protocol (z does not depend on the input).

Using shared randomness, the players select a function h : [n] → S as follows. Let
h : [n] → S be a random hash function such that for each i ∈ [n], h(i) is selected independently
and uniformly from S.

For x ∈ f−1(0) we fix an optimal 0-certificate Cx, and denote by Ax ⊆ [n] the set of
indices fixed by Cx. Similarly, for y ∈ f−1(1) we fix an optimal 1-certificate Cy, and denote
by By ⊆ [n] the set of indices fixed by Cy.

After selecting h using shared randomness, the players proceed as follows. On input x,
Alice outputs an index i ∈ Ax such that h(i) = z, and on input y, Bob outputs an index
j ∈ By such that h(j) = z. If they have several valid choices, they select randomly, and if
they have no valid choices they output arbitrary indices.
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Let i∗ ∈ Ax ∩ By, such that xi∗ ̸= yi∗ . By the definition of certificates, such an element i∗

exists for any x ∈ f−1(0) and y ∈ f−1(1), and i∗ is a correct answer on input (x, y) if both
players output i∗. Next, we estimate what is the probability that both players output i∗.

First recall that by the definition of h, the probability that h(i∗) = z is 1
|S| = 1

C(f) .
Next, notice that for any i ∈ Ax ∪ By the number of elements different from i in Ax ∪ By

is ℓ = |Ax ∪ By| − 1 ≤ |Ax| + |By| − 2. Thus for any z ∈ S and any i ∈ Ax ∪ By the
probability (over the choice of h) that no element other than i in Ax ∪ By is mapped to z

by h is (1 − 1
|S| )

ℓ ≥ 1
e2 , since max{|Ax|, |By|} ≤ C(f) = |S| and thus ℓ ≤ 2(|S| − 1).

Thus, the players output a correct answer with probability at least 1
e2

1
C(f) . ◀

The previous theorem is stated for total functions and its proof critically depends on
the intersection property of 0- and 1-certificates. The theorem fails to hold for the partial
function “Greater than Half” [7] (see full version for more details [18]), for which it is the
case that C(GTH) = 1 whereas CGpub(GTH) is Θ(n). We obtain a stronger upper bound on
CGpub by EC, the proof of which can be found in the full version [18].

▶ Theorem 18. For a (possibly partial) Boolean function f , CGpub(f) ≤ O(EC(f)).

4.4 Upper bound on public coin certificate game complexity by R

▶ Theorem 19. For any Boolean (possibly partial) function f , CGpub(f) ≤ O(R(f)).

Proof. From the definition of R(f) there is a randomized decision tree R that on any input x

outputs f(x) correctly with probability at least 2/3, and R only reads at most R(f) number
of bits of x. To prove CGpub(f) ≤ R(f) let us consider the following strategies used by the
two players:

Both the players run the algorithm R on their respective inputs using the same random
coins (using the shared randomness). Both the player also use shared randomness to pick a
number t uniformly at random between 1 and R(f). Both the players output the t-th index
that is queried by R.

Let x and y be the inputs to the players respectively. Since f(x) = 1 − f(y), with
probability at least 4/9 the algorithm R will output different answers when the players run
the algorithm on their respective inputs. Also since the algorithm R is run using the same
internal coins, the initial sequence of indices queried by both the runs of the algorithm is the
same until the algorithm queries an index k such that xk ≠ yk. Note that with probability
1/R(f), the random number t picked by t is the same as k. So with probability 4

9 · 1
R(f) , the

players correctly output the same index t such that xt ̸= yt. Hence CGpub(f) ≤ O(R(f)). ◀

A proof that sabotage complexity RS [14] is bounded below by CGpub is in the full version [18].

▶ Proposition 20. The public coin certificate game complexity of a (possibly partial) function f

is at most its sabotage complexity: CGpub(f) ≤ 9
2 RS(f).

4.5 Upper and lower bounds for private coin certificate games

We first observe that the following formulation is equivalent to CG. The essential idea is
rescaling, and the objective function gets squared because the constraints are quadratic.
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▶ Proposition 21 (Equivalent formulation for CG). For any (possibly partial) function f ,

CG(f) = min
{wx,i}

max
x

{∑
i

wx,i

}2

such that
∑

i:xi ̸=yi

wx,iwy,i ≥ 1 ∀x ∈ f−1(0), y ∈ f−1(1)

wx,i ≥ 0 ∀x, i

We show that the following relations hold for CG. In the full version, we also make the
distinction on which of these relations hold for partial functions [18].

▶ Theorem 22. For any total Boolean function f ,

1. MM(f)2 ≤ CG(f)
2. R0(f) ≤ CG(f) ≤ O(EC(f)2) [24]

3. CG(f) ≤ O(CGpub(f)2s(f)) [24]
4. CG(f) ≤ C0(f)C1(f)

5 Lower bounds on quantum certificate game complexity

In this section, we give a very short and simple proof that fractional certificate complexity
(FC) is a lower bound on all of our certificate game models.

To illustrate the idea behind the proof and the technique we use, we start with a quantum
lower bound on the OR function. Consider a hypothetical strategy with shared entanglement
that would allow two players to win the certificate game with probability more than 1/n.
Then the players could use this strategy for the certificate game as a black box, to convey
information (without using communication) in the following way. Assume Alice wants to
send an integer i ∈ {1, . . . , n} to Bob. Bob uses input y = 0n and Alice uses input x = y(i)

(all 0s with the i-th bit 1). Bob could learn i by taking the majority output of several runs
of this game, which would violate the non-signaling principle of quantum information. To
make this formal, we give a satisfying assignment to the dual formulation of CGns.

The previous lower bound on the OR function can be generalized, with a slightly more
complicated weight assignment, to show that block sensitivity is a lower bound on the
non-signaling value of the certificate games. We can prove a stronger result by using the
primal formulation of CGns (Definitions 2 and 6) to prove that CGns is an upper bound on FC.

▶ Theorem 23. For any (possibly partial) Boolean function f , FC(f) ≤ CGns(f).

Proof. Let p(i, j|x, y) be the distribution over outcomes in an optimal nonsignaling strategy
for CGns(f). Then p verifies the nonsignaling condition,

∑
j p(i, j|x, y) =

∑
j p(i, j|x, y′) for

all x, y, y′, i, so we can write the marginal distribution for x as p(i|x) =
∑

j p(i, j|x, y), since
it does not depend on y. Notice that p(i|x) =

∑
j p(i, j|x, y) ≥ p(i, i|x, y) for all x, y, i.

With δ = 1
CGns(f) , we have that

∑
i:xi ̸=yi

p(i, i|x, y) ≥ δ for all x, y such that f(x) = 1−f(y).
Let vx,i = p(i|x)/δ for some arbitrary y. Then

∑
i vx,i = 1

δ for all x (since p is a distribution)
and

∑
i:xi ̸=yi

vx,i =
∑

i:xi ̸=yi
p(i|x)/δ ≥

∑
i:xi ̸=yi

p(i, i, x, y)/δ ≥ 1. Since this is a feasible
solution to FC, we have that FC(f) ≤ CGns(f). ◀

The lower bound can further be improved by slightly modifying the proof to hold for
the Classical Adversary bound, denoted CMM. This measure was introduced in [1, 30] as a
lower bound for randomized query complexity R and was shown to equal fractional certificate
complexity FC for total functions (but can be larger for partial functions) [7].
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▶ Definition 24 (Classical Adversary Bound). For any (possibly partial) Boolean func-
tion f , the minimax formulation of the Classical Adversary Bound is as: CMM(f) =
minp max x,y∈S

f(x)=1−f(y)

1∑
i:xi ̸=yi

min{px(i),py(i)}
, where px is a probability distribution over [n].

▶ Theorem 25. For any (possibly partial) Boolean function f , CMM(f) ≤ CGns(f).

To summarize the key idea of this section, introducing the non-signaling model of
Certificate games provides a very clean and simple way to give lower bounds on all of our
previous models, including the shared entanglement model. It has several linear formulations,
making it very easy to give upper and lower bounds. Finally, it captures an essential feature
of zero-communication games, which we think of as the “non-signaling bottleneck”. As an
added bonus, it allows us to give proofs on the shared entanglement model without having
to get into the technicalities of what characterizes quantum games.

6 Relations and separations between measures

6.1 Relationship between the various models of certificate games
Understanding the relationships between the various models of certificate game complexity
can help us understand the power of shared randomness over private randomness and the
power of quantum shared entanglement over shared randomness in the context of certificate
games. The following results follow from results in the previous sections together with the
fact that EC(f) ≤ O(FC(f)·

√
s(f)) [24]. We start with relating CGpub and CGns.

▶ Corollary 26. For any total Boolean function f , CGns(f) ≤ CGpub(f) ≤ O(CGns(f)3/2).

Since CGns(GTH) = Θ(n) and FC(GTH) = O(1), the partial function GTH separates CGns

and FC (see [18]). We don’t know of a total Boolean function for which FC is significantly
lower than CGpub. In fact we have following set of open problems:

▶ Open Problem 1. Are any two complexity measures in the following chain of inequalities
asymptotically separated by a total function?

FC(f) ≤ CGns(f) ≤ CG∗(f) ≤ CGpub(f) ≤ O(EC(f))

Note that if FC = Θ(EC), it would follow that R0 ≤ O(FC2), a well-known open problem.

We now present the best known relation between CG and CGns.

▶ Corollary 27. For any total Boolean function f , CGns(f) ≤ CG(f) ≤ O(CGns(f)3).

The above corollary implies that CG ≤ O(CGns)3. Hence,

▶ Open Problem 2. Is there a c < 3 such that CG(f) ≤ O(CGns(f)c)?

For the case of CG versus CGpub, the best known exponent is also 3. There are total
functions f , for which CG(f) = Θ(CGpub(f)2). One such example is the Tribes function.

▶ Corollary 28. While CGpub(OR√
n) = CGns(OR√

n) = Θ(
√

n), for Tribes√
n,

√
n := OR√

n ◦
AND√

n, CGns(Tribes√
n,

√
n) = CGpub(Tribes√

n,
√

n) = Θ(
√

n), and CG(Tribes√
n,

√
n) = Θ(n).

The Tribes function also demonstrates a quadratic separation between CGpub and R while
showing that the CGpub measure does not compose. Also note that any function with
λ(f) = n, like the parity function, demonstrates a quadratic gap between CG and CGpub.
This is because CG(f) = Ω((MM(f))2), from Theorem 22, and MM(f) = Ω(λ(f)). Thus for
any such functions, CG is Θ(n2) while CGpub is Θ(n). Hence,
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▶ Open Problem 3. Is CG(f) ≤ O(CGpub(f)2) for all functions f?

Note that Open Problem 3 and Open Problem 2 are related (for total functions). Also,
we already know that for any total function CG(f) ≤ O(CGpub(f)2 · s(f)).

The two inequalities that we used in the corollaries and discussion above are CG = O(EC2)
and CG = Ω(MM2). Obtaining tighter versions of these inequalities may help us obtain
tighter bounds between CG and CGpub (or CGns).

We observe that the bound CG(f) ≤ O(EC(f)2) is indeed tight for the parity function ⊕.
On the other hand, there is a quadratic gap between CG and EC2 for the function ORn. From
Theorem 22, we have CG ≤ C0 · C1, and hence CG(ORn) = Θ(n) but EC(ORn) ≥ FC(ORn) =
Ω(n).

Another question is: what is the biggest separation between CG(f) and MM(f)? To the
best of our knowledge, the best upper bound on CG for total functions in terms of MM is

CG ≤ O(FC2s) ≤ O(MM6),

where the final inequality follows from the fact that FC ≤ MM2[8] and s ≤ λ2 ≤ MM2. The
biggest separation between CG and MM in this direction is cubic: there is a total Boolean
function f for which CG(f) ≤ Ω(EC(f)3/2). In [6] they constructed a “pointer function” g,
for which R0(g) = Ω(Q(g)3). We observe that, for the pointer function,

CG(g) ≥ Ω(R0(g)) ≥ Ω(Q(g)3) ≥ Ω(MM(g)3),

where the first inequality follows from Theorem 22 and the other inequalities follows from
earlier known results. This separation can also be achieved by the cheat sheet version of
k−Forrelation function that gives a cubic separation between Q and R [10, 3].

However (from Theorem 22) for any total Boolean function f , (MM(f))2 ≤ O(CG(f))
and this inequality is in fact tight (for any total function with full spectral sensitivity, such
as parity). In fact, the two quantities, CG and (MM)2, are asymptotically identical for
symmetric functions [32].

We also note that inequality that CG(f) ≥ Ω(R0(f)) (from Theorem 22) is not tight: that
is, there are functions like the parity function which separates CG from R0 (see [18]).

Another upper bound on CG that we observe is CG ≤ C0 · C1. While for some functions
(like the Tribes function) the two quantities CG and C0 · C1 are asymptotically equal we note
that there are functions for which CG is significantly less than C0 · C1.

▶ Corollary 29 ([24, 21]). There exists a total function f : {0, 1}N → {0, 1} for which,
C0(f) = Θ(N), C1(f) = Θ(

√
N) and EC(f) = Θ(

√
N). Thus C0(f) · C1(f) = Ω(CG(f)3/2).

6.2 Approximate Index: Exponential gap between R and CGpub for a
partial Boolean function

We saw that CGpub of a Boolean function lies between its randomized query complexity and
randomized certificate complexity; the same is true for noisyR. The measure noisyR was
introduced in [12] (please refer to [12] for the formal definition) to study how randomised query
complexity R behaves under composition and it was shown that R(f ◦ g) = Ω(noisyR(f)R(g)).
As it was also shown that almost all lower bounds (except Q) on R are also lower bounds on
noisyR, it would be interesting to see whether CGpub is also a lower bound on noisyR.

▶ Open Problem 4. Is it the case that for all f , CGpub(f) ≤ O(noisyR(f))?
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Ben-David and Blais [12] constructed the approximate index function, which is the only
function known where noisyR and R are different. However, this is partial Boolean function,
not a total Boolean function.

Let ApIndk be the approximate index function where the input has an address part, say a,
of k bits and a table with 2k bits. The function is defined on inputs where all positions of
the table labelled by strings within k

2 −
√

k log k Hamming distance from a have the same
value (either 0 or 1), and all positions that are farther away from a have 2 in them, i.e.

▶ Definition 30. ApIndk : {0, 1}k × {0, 1, 2}2k → {0, 1, ∗} is defined as

ApIndk(a, x) =


xa if xb = xa ∈ {0, 1} for all b that satisfy |b − a| ≤ k

2 −
√

k log k

and xb = 2 for all other b,
∗ otherwise.

Note that, even though the range of ApIndk (as defined above) is non-Boolean, it can be
converted into a Boolean function by encoding the input appropriately. This will only affect
the lower/upper bounds by a factor of at most two.

Ben-David and Blais showed that noisyR(ApIndk) = O(log k), and R(ApInd) = Θ(
√

k log k).
As an indication that CGpub could be a lower bound on noisyR, we show the following theorem.

▶ Theorem 31. The public coin certificate game complexity of ApInd on n = k + 2k bits is
CGpub(ApIndk) = O(log k).

Sketch of Proof of Theorem 31. A central ingredient to the proof of this theorem is the
following lemma that captures yet another application of the hashing based framework
introduced in Section 4.2 (we state it in a more general form).

▶ Lemma 32. Let L be an integer. Assume that for every x ∈ f−1(0) and y ∈ f−1(1) there
are sets Ax depending only on x, and By depending only on y, of size L, such that any
element of Ax ∩ By is a correct output on the input pair (x, y), i.e. for any i ∈ Ax ∩ By, we
have xi ̸= yi. If for any x ∈ f−1(0) and y ∈ f−1(1), L = |Ax| = |By| ≤ t|Ax ∩ By| , then
CGpub(f) ≤ O(t2).

Before we see how the hashing lemma helps prove Theorem 31, we define the following
notation. The Hamming Sphere of radius r centred at a k-bit string a, denoted as Sa(r),
contains all strings z ∈ {0, 1}k that are at distance exactly r from a. Similarly the Hamming
Ball of radius r centred at a, denoted as Ba(r), contains all strings z ∈ {0, 1}k such that
d(a, z) ≤ r. For the ApIndk function, a valid input has the function value in all positions in
the table indexed by strings in Ba

(
k
2 −

√
k log k

)
where a is the address part.

Our analysis reduces to a very natural question: what is the intersection size of two
Hamming balls of radius k

2 −
√

k log k whose centers are at a distance k
log k ? We are able

to show that the intersection is at least an Ω( 1√
logk

) fraction of the total volume of the
Hamming ball. This result and the techniques used could be of independent interest.

To bound the intersection size, we focus on the outermost
√

k layers of the Hamming
ball (since they contain a constant fraction of the total volume), and show that for each such
layer the intersection contains an Ω( 1√

log k
) fraction of the elements in that layer.

For a single layer, the intersection can be expressed as the summation of the latter half
of a hypergeometric distribution Pk,m,r from m

2 to m (m = k
log k is the distance between

the Hamming Balls and r is the radius of the layer). By using the “symmetric” nature of
the hypergeometric distribution around m

2 for a sufficient range of values, this reduces to
showing a concentration result around the expectation with width

√
m (as the expectation

for our choice of parameters is m
2 − O(

√
m)).
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We use the standard concentration bound on hypergeometric distribution with width
√

r

and reduce it to the required width
√

m by noticing a monotonicity property of the hyper-
geometric distribution. The strategies of Alice and Bob and how the above ideas help in
proving Theorem 31 can be found in the full version [18]. ◀

Although we have proven an upper bound on CGpub(ApInd), a lower bound has not been
shown and we leave it as an open problem.

▶ Open Problem 5. Give a lower bound on CGpub(ApInd).

7 Single bit versions

Aaronson et al. [4] defined single-bit versions of several formulations of the adversary method,
and showed that they are all equal to the spectral sensitivity λ. Informally, single-bit versions
of these measures are obtained by considering the requirements only with respect to pairs
x, y such that x, y ∈ f−1(0) × f−1(1) and x and y differ only in a single bit.

We denote by d(x, y) the Hamming distance of x and y, and by x(i) the string obtained
from x by flipping the value of the i-th bit xi to its negation. The single-bit version of MM(f)
was defined in [4] as follows.

MM[1](f) = min
{wx,i}

max
x

∑
i

wx,i such that wx,iwx(i),i ≥ 1 ∀x, i with f(x) = 1−f(x(i)) (1)

where x ∈ {0, 1}n and i ∈ [n].
Similarly to the proof of Proposition 21 it can be shown that this is equal to the following

formulation, which we include for comparison with some of our other definitions.

MM[1](f) := min
p

max
x,y∈f−1(0)×f−1(1)

d(x,y)=1

1∑
i:xi ̸=yi

√
px,ipy,i

= min
p

max
x,i:f(x)=1−f(x(i))

1
√

px,ipx(i),i

(2)

where p is taken over all families of nonnegative px,i ∈ R such that for all x,
∑

i∈[n] px,i = 1.
Note that the definition of MM[1](f) is well defined for partial functions provided that

there exist x, y ∈ f−1(0) × f−1(1) such that x and y differ in exactly one bit. This is
equivalent to sensitivity, s(f), being non-zero. Aaronson et al. [4] proved the following
theorem which also hold for these partial functions.

▶ Theorem 33 (Thm. 28 in [4]). For any Boolean function f , λ(f) = MM[1](f) .

Here we consider single-bit versions of CGpub and CG and show that they characterize
sensitivity and λ2, respectively, up to constant factors.

▶ Definition 34 (Single-bit private coin certificate game complexity). For any (possibly partial)
Boolean function f with s(f) ̸= 0

CG[1](f) := min
p

max
x,y∈f−1(0)×f−1(1)

d(x,y)=1

1
ω(p; x, y) = min

p
max

x,i:f(x)=1−f(x(i))

1
px,ipx(i),i

,

where p is a collection of nonnegative variables {px,i}x,i that satisfies, for each x∈ {0, 1}n,∑
i∈[n] px,i = 1, and ω(p; x, x(i)) is the probability that both players output the unique index i

where x and x(i) differ. (Note that ω(p; x, x(i)) = px,ipx(i),i.)
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Recall that when the players share randomness, a public-coin randomized strategy is a
distribution over pairs (A, B) of deterministic strategies. We assign a nonnegative variable
pA,B to each strategy and require that they sum to 1. We say that a pair of strategies (A, B)
is correct on x, y if A(x) = B(y) = i and xi ̸= yi.

▶ Definition 35 (Single-bit public coin certificate game complexity). For any (possibly partial)
Boolean function f with s(f) ̸= 0

CGpub
[1] (f) := min

p
max

x,y∈f−1(0)×f−1(1)
d(x,y)=1

1
ωpub(p; x, y) = min

p
max

x,i:x∈f−1(0),x(i)∈f−1(1)

1
ωpub(p; x, x(i))

,

where p is a collection of nonnegative variables {pA,B}A,B satisfying
∑

(A,B) pA,B = 1 and
ωpub(p; x, y) =

∑
(A,B) correct on x,y pA,B.

We define single-bit versions of FC and EC, and show that both are equal to sensitivity.

▶ Definition 36. For any (possibly partial) Boolean function f with s(f) ̸= 0,
FC[1](f) = maxx∈{0,1}n FC[1](f, x), where FC[1](f, x) = minv

∑
i vx,i, subject to vx,i ≥ 1

for all i such that f(x) = 1 − f(x(i)), with v a collection of variables vx,i ≥ 0.
EC[1](f) = minw maxx

∑
i∈[n] wx,i, with w a collection of variables 0 ≤ wx,i ≤ 1 satisfying

wx,iwx(i),i ≥ 1 for all x, i s.t. f(x) = 1 − f(x(i)).

▶ Proposition 37. For any (possibly partial) Boolean function f : {0, 1}n → {0, 1} with
s(f) ̸= 0, s(f) = FC[1](f) = EC[1](f) .

We prove the following about the single bit versions of the certificate games. We only
include the proof of the first part here and proof of the second part can be found in the full
version [18].

▶ Theorem 38. For any (possibly partial) Boolean function f with s(f) ̸= 0,
1. s(f) = FC[1](f) = EC[1](f) = Θ(CGpub

[1] (f)) .

2. CG[1](f) = λ2 .

Proof.
Upper bound by sensitivity. We use the hashing based approach, similarly to the upper
bounds on CGpub by C and EC (Section 4.3).

Let S be a finite set of cardinality s(f). An element z ∈ S is fixed as part of the
specification of the protocol (z does not depend on the input). Using shared randomness, the
players select a function h : [n] → S as follows. Let h : [n] → S be a random hash function
such that for each i ∈ [n], h(i) is selected independently and uniformly from S. For x ∈ f−1(0)
let Ax be the set of indices of the sensitive bits of x, that is Ax = {i ∈ [n]|f(x) = 1 − f(x(i)}.

Similarly, for y ∈ f−1(1) let By = {i ∈ [n]|f(y) = 1 − f(y(i)}.
After selecting h using shared randomness, the players proceed as follows. On input x,

Alice outputs an index i ∈ Ax such that h(i) = z, and on input y, Bob outputs an index
j ∈ By such that h(j) = z. If they have several valid choices, or if they have no valid choices
they output arbitrary indices.

Let i∗ ∈ Ax ∩ By, such that xi∗ ̸= yi∗ . Notice that for x ∈ f−1(0) and y ∈ f−1(1) such
that d(x, y) = 1 there is exactly one such index i∗.

Next, we estimate what is the probability that both players output i∗. Recall that by the
definition of h, the probability that h(i∗) = z is 1

|S| = 1
s(f) . Notice that for any i ∈ Ax ∪ By

the number of elements different from i in Ax ∪ By is ℓ = |Ax ∪ By| − 1 ≤ 2(|S| − 1), since
max{|Ax|, |By|} ≤ s(f) = |S|. Thus for any z ∈ S and any i ∈ Ax ∪ By the probability (over
the choice of h) that no element other than i in Ax ∪By is mapped to z by h is (1− 1

|S| )
ℓ ≥ 1

e2 .
Thus, the players output a correct answer with probability at least 1

e2
1

s(f) .

ITCS 2023
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Lower bound by sensitivity. We will use the dual formulation of CGpub
[1] obtained similarly to

Proposition 7. The only difference is that the distribution µ takes nonzero values only on pairs
x, x(i) (on pairs with Hamming distance 1). Let x∗ be an input such that s(f ; x∗) = s(f) =: s,
and assume without loss of generality that f(x∗) = 0. Consider the following distribution µ

over input pairs at Hamming distance 1. µx∗,y = 1
s for y ∈ f−1(1) such that d(x∗, y) = 1

and µx∗,y = 0 for every other y. Furthermore, µx′,y = 0 for any y and x′ ̸= x∗. Thus, we
only have s input pairs with nonzero measure.

Let A, B be any pair of deterministic strategies for Alice and Bob. Since A is a determ-
inistic strategy, Alice will output the same index i for every pair x∗, y. This means that
the probability over µ that the players win is at most 1

s(f ;x) = 1
s = 1

s(f) for any pair of
deterministic strategies. ◀

One of the enticing open problems in this area of complexity theory is the sensitivity-block
sensitivity conjecture. The best gap between bs(f) and s(f) is quadratic: that is there
exists a function f such that bs(f) = Θ(s(f)2). The conjecture is that this is indeed tight,
that is, for any Boolean function f , bs(f) = O(s(f)2). In the seminal work of [23] the
degree of a Boolean function was bounded by the square of sensitivity, and this is tight for
Boolean functions. Since the degree of a Boolean function is quadratically related to the
block sensitivity, we have bs(f) ≤ O(s(f)4. Unfortunately, this approach via degree will not
be able to give any tighter bound on block sensitivity in terms of sensitivity.

Estimating certificate game complexity may be a possible way to prove a tighter bound
on block sensitivity in terms of sensitivity. Given the result in Theorem 38, designing a
strategy for CGpub using CGpub

[1] may help us solve the sensitivity-block sensitivity conjecture.

▶ Open Problem 6. What is the smallest c such that, for any Boolean function f , CGpub(f) =
O(CGpub

[1] (f)c)?

Note that proving CGpub(f) = O(CGpub
[1] (f)2) would prove that bs(f) ≤ O(s(f)2). It may

seem too much to expect that the single-bit version of the game can help get upper bounds
on the general public coin setting, but thanks to Huang’s breakthrough result [23], we already
know that CGpub(f) = O(CGpub

[1] (f)5) for any total Boolean function f .
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Abstract
We show that the deterministic decision tree complexity of a (partial) function or relation f lifts
to the deterministic parity decision tree (PDT) size complexity of the composed function/relation
f ◦ g as long as the gadget g satisfies a property that we call stifling. We observe that several
simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits,
Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing
randomized communication lifting theorems ([Göös, Pitassi, Watson. SICOMP’20], [Chattopadhyay
et al. SICOMP’21]) imply PDT-size lifting. However there are two shortcomings of this approach:
first they lift randomized decision tree complexity of f , which could be exponentially smaller than its
deterministic counterpart when either f is a partial function or even a total search problem. Second,
the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to
f . Reducing the gadget size to a constant is an important open problem at the frontier of current
research.

Our result shows that even a random constant-size gadget does enable lifting to PDT size.
Further, it also yields the first systematic way of turning lower bounds on the width of tree-like
resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size
of tree-like proofs in the resolution with parity system, i.e., Res(⊕), of the unsatisfiability of closely
related constant-width CNF formulas.
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1 Introduction

Theorems that lift the complexity of a function in a weaker model of computation to that of
the complexity of a closely related function in a stronger model, have proved to be extremely
useful and is a dominant theme of current research (see, for example, [10, 4, 11, 2, 15]). One
early use of this theme is in the celebrated work of Raz and McKenzie [16], that built upon
the earlier work of Edmonds et al. [7] to yield a separation of the hierarchy of monotone
circuit complexity classes within NC. The central tool of that work is an argument lifting
the query complexity of a (partial) relation f to the two-party communication complexity
of the composed relation f ◦ g, where g is a two-party function, now commonly called a
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gadget. It required much technical innovation to prove the natural intuition that, if the
gadget g is obfuscating enough, the best that the two players can do to evaluate f ◦ g is
to follow an optimal decision tree algorithm Q for f , solving the relevant instance of g to
resolve each query of Q encountered along its path of execution. The major utility of this
theorem lies in the fact that it reduces the difficult task of proving communication complexity
lower bounds to the much simpler task of proving decision tree complexity lower bounds.
Indeed, this point was driven home more recently, in the beautiful work of Göös, Pitassi and
Watson [10], who established tight quadratic gaps between communication complexity and
(rectangular) partition number, resolving a longstanding open problem. This was, arguably,
largely possible as the task was reduced to finding an appropriate analog of that separation
in the query world. This last work triggered a whole lot of diverse work on such lifting
theorems. Such theorems have been proved for the randomized model [11, 2], models with
application to data-structures [3], proof and circuit complexity (see, for example, [6, 8, 9]),
quantum computing [1], extended formulations [14] etc.

Most of these lifting theorems work with gadgets whose size is at least logarithmic in the
arity of the outer function. A current challenge in the area is to break this barrier and prove
lifting with sub-logarithmic gadget size (see, for example, [15]), ultimately culminating in
constant-size gadgets. It is not clear whether existing ideas/methods can be pushed to achieve
this. Faced with this, we consider lifting decision-tree (DT) complexity to intermediate
models that are more complex than DT but simpler than 2-party communication. Parity
decision tree (PDT) is a natural choice for such a model. Indeed, in tackling another major
open problem in communication complexity, the Log-Rank Conjecture (LRC), researchers
have realized the importance and utility of such intermediate models. For instance, the
natural analogue of LRC is open for PDTs (see [18, 19]) giving rise to a basic conjecture
in Fourier analysis. The analogue of LRC was recently proved for AND-decision trees [13]
bringing forth interesting techniques. Further, the randomized analog of LRC, known as the
Log-Approximate-Rank Conjecture (LARC) was recently disproved [5] using a surprisingly
simple counter-example. The key to discovering this counter-example lay in finding the
corresponding counter-example against the analog of the LARC for PDTs.

Taking cue from these developments, we consider lifting DT complexity using small
gadgets to PDT and allied complexity in this work. We are able to find an interesting
property of gadgets, which we call “stifling”, that we prove is sufficient for enabling such
lifting even with constant gadget size. We define a Boolean function g : {0, 1}m → {0, 1} to
be k-stifled if for all subsets of k input variables and for all b ∈ {0, 1}, there exists a setting
of the remaining m − k variables that forces the value of g to b (i.e., the values of the k

variables are irrelevant under the fixing of these m− k variables). Formally,

▶ Definition 1. Let g : {0, 1}m → {0, 1} be a Boolean function. We say that g is k-stifled if
the following holds:

∀S ⊆ [m] with |S| ≤ k and ∀b ∈ {0, 1},

∃ z ∈ {0, 1}[m]\S such that for all x ∈ {0, 1}m with x|[m]\S = z, g(x) = b.

We refer the reader to Section 2.1 for formal definitions of complexity measures. We
obtain a lifting theorem from decision tree complexity (DT(·)) of a function f to parity
decision tree size (PDTsize(·), denoting the minimum number of nodes in a parity decision
tree computing the function) of f composed with a gadget g that is stifled.1

1 We remark here that even a lifting theorem from DT(f) to deterministic communication complexity
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▶ Theorem 2. Let g : {0, 1}m → {0, 1} be a k-stifled function and let f ⊆ {0, 1}n ×R be a
relation. Then PDTsize(f ◦ g) ≥ 2DT(f)·k.

In order to prove this, we start with a PDT for f ◦g of size 2d, say, and construct a depth-(d/k)
DT for f by “simulating” the PDT. Using a similar simulation, we also give lower bounds
on the subspace decision tree complexity of f ◦ g, where subspace decision trees are decision
trees whose nodes can query indicator functions of arbitrary affine subspaces. Let sDT(·)
denote subspace decision tree complexity.

▶ Theorem 3. Let g : {0, 1}m → {0, 1} be a k-stifled function, and let f ⊆ {0, 1}n ×R be a
relation. Then sDT(f ◦ g) ≥ DT(f) · k.

We observe in Claim 22 that the bounds in the above two theorems are equivalent up to
logarithmic factors. More precisely we show that Theorem 2 follows (up to a constant factor
in the exponent in the RHS) from Theorem 3, and that Theorem 3 follows (up to a log n

factor in the RHS) from Theorem 2. It is easy to see that both of the above theorems
individually imply a lifting theorem from DT(f) to PDT(f ◦ g). We choose to state this
as a separate theorem since it is interesting in its own right, and we feel that the proof of
Theorem 4 gives more intuition.

▶ Theorem 4. Let g : {0, 1}m → {0, 1} be a k-stifled function, and let f ⊆ {0, 1}n ×R be a
relation. Then PDT(f ◦ g) ≥ DT(f) · k.

Examples of stifled gadgets (functions that are k-stifled for some integer k ≥ 1) are the
well-studied Indexing function and the Inner Product Modulo 2 function, as we show in
Claim 7 and Claim 8. It is worth noting that we obtain tight lifting theorems for constant-
sized gadgets. Although there is no gadget of arity 1 or 2 that is stifled, both the Indexing
gadget on three bits and the Majority gadget on three bits are stifled. Define the Majority
function on n input bits by MAJn(x) = 1 iff | {i ∈ [n] : xi = 1} | ≥ n/2. Define the Indexing
function as follows.

▶ Definition 5 (Indexing Function). For a positive integer m, define the Indexing function,
denoted INDm : {0, 1}m+2m → {0, 1}, by INDm(x, y) = ybin(x), where bin(x) denotes the
integer in [2m] represented by the binary expansion x.

In the above definition, we refer to {xi : i ∈ [m]} as the addressing variables, and
{yj : j ∈ [2m]} as the target variables.

▶ Definition 6 (Inner Product Modulo 2 Function). For a positive integer m, define the Inner
Product Modulo 2 Function, denoted IPm : {0, 1}2m → {0, 1}, by IPm(x1, . . . , xn, y1, . . . , yn) =
⊕n

i=1(xi ∧ yi).

We show that INDm is m-stifled for all integers m ≥ 1, and IPm is 1-stifled for all integers
m ≥ 2. We refer the reader to Appendix A for proofs of the three claims below. We also
show in Appendix A that the Majority function MAJm on m input bits is (⌈m/2⌉− 1)-stifled
and no Boolean function on m input bits is ⌈m/2⌉-stifled (hence, “Majority is stiflest”).

of f ◦ g would not imply Theorem 2 as a black box. This is because deterministic communication
complexity can be much larger than the logarithm of PDTsize (for instance, for the Equality function).
However a lifting theorem from randomized decision tree complexity of f to randomized communication
complexity of f ◦ g does imply a lifting theorem from randomized decision tree complexity of f to
PDTsize of f ◦ g (see Claim 24 and the following discussion).
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▷ Claim 7. For all integers m ≥ 1, the function INDm is m-stifled.

▷ Claim 8. For all integers m ≥ 2, the function IPm is 1-stifled.

We also show that a random Boolean function (the output on each input is chosen
independently to be 0 with probability 1/2 and 1 with probability 1/2) on m input variables
(where m is sufficiently large) is (log m/2)-stifled with high probability.

▷ Claim 9. Let g : {0, 1}m → {0, 1} be a random Boolean function with m sufficiently large.
Then with probability at least 9/10, g is ((log m)/2)-stifled.

Theorem 4, Theorem 3 and Theorem 2 imply the following results for the Indexing gadget
in light of Claim 7.

▶ Corollary 10. Let f ⊆ {0, 1}n ×R be a relation. Then for all positive integers m,

PDT(f ◦ INDm) ≥ DT(f) ·m
sDT(f ◦ INDm) ≥ DT(f) ·m,

PDTsize(f ◦ INDm) ≥ 2DT(f)·m.

We now show that the Parity function witnesses tightness of the above corollary. It is easy to
see that for all relations f PDT(f ◦INDm) ≤ DT(f)·(m+1). In fact, our proof can be modified
to show PDT(f ◦ INDm) ≥ DT(f) ·m + 1 (see Remark 20). Let ⊕n denote the Parity function
on n input variables. It outputs 1 if the number of 1s in the input is odd, and 0 otherwise.
It is well known that DT(⊕n) = n. We have PDT(⊕n ◦ INDm) ≤ DT(⊕n) ·m + 1 = nm + 1:
query all the m addressing variables in each block to find out the relevant variables using
nm queries. The output of the function (which is the parity of all relevant target variables)
can now be computed using a single parity query. Thus our result is tight.

Since IPm is 1-stifled for all integers m ≥ 2 (Claim 8), we analogously obtain the following
results for the Inner Product Modulo 2 gadget.

▶ Corollary 11. Let f ⊆ {0, 1}n ×R be a relation. Then for all positive integers m ≥ 2,

PDT(f ◦ IPm) ≥ DT(f),
sDT(f ◦ IPm) ≥ DT(f),

PDTsize(f ◦ IPm) ≥ 2DT(f).

Since a random gadget on m inputs is (Ω(log m))-stifled (Claim 9), we obtain analogous
results for random gadgets as well.

1.1 Consequence for proof complexity
A central question in the area of proof complexity is “Given an unsatisfiable CNF C, what is
the size of the smallest polynomial-time verifiable proof that C is unsatisfiable?” To give
lower bounds on the size of such proofs for explicit formulas C, the question has been studied
with the restriction that the proof must come from a simple class of proofs. Two of these
classes are relevant to us: resolution and linear resolution. Resolution is now well understood
and strong lower bounds on the size of resolution based proofs are known for several basic and
natural formulas, like the pigeonhole principle, Tseitin formulas and random constant-width
CNFs. However, linear resolution introduced by Raz and Tzameret [17], where the clauses are
conjunctions of affine forms over F2, are poorly understood. In fact, it remains a tantalizing
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challenge to prove super-polynomial lower bounds on the size of linear resolution proofs for
explicit CNFs. One promising way to make progress on this question is to prove a lifting
theorem that lifts ordinary resolution proof-size lower bounds for a CNF to linear resolution
proof-size lower bounds for a lifted CNF. Indeed, relatively recently, riding on the success
and popularity of lifting theorems on communication protocols, Garg, Göös, Kamath and
Sokolov [8] showed that ordinary resolution proof-size complexity, among other things, can be
lifted to cutting plane proof-size complexity. However, lifting to linear resolution proof-size
still evades researchers.

A first step towards the above would be to lift tree-like resolution proof-size bounds
to tree-like linear resolution proof-size bounds. Although lower bounds for tree-like linear
resolution proof-size were established by Itsykson and Sokolov [12], there was no systematic
technique known that would be comparable to the generality of a lifting theorem. Our lifting
theorem provides the first such technique as explained below.

The starting point is the well-known fact that the size of the smallest tree-like resolution
proof that C is unsatisfiable is the same as the size of the smallest decision tree that computes
the relation SC := {(x, C) : C is a clause of C and C(x) = 0}. Similarly, the size of the
smallest tree-like Res(⊕) (linear resolution over F2) proof that C is unsatisfiable is the same
as the size of the smallest parity decision tree that computes SC .

Let C be a CNF with n variables and t clauses, each of width at most w. For a gadget
g : {0, 1}m → {0, 1}, we define the CNF C◦g as follows. For each clause C ∈ C, take the clauses
of a canonical CNF computing ΓC : (y1, . . . , yn) ∈ ({0, 1}m)n 7→ C(g(y1), g(y2), . . . , g(yn)).
Note that ΓC is a function of at most mw variables, and thus can be expressed as a CNF
with at most 2mw clauses, each of width at most mw. Define C ◦ g to be the CNF whose
clauses are

⋃
C∈C ΓC .

Our results in this paper yield PDT lower bounds against SC ◦ g given DT lower bounds
against SC . To compute SC ◦ g we get as input y = (y1, . . . , yn) ∈ ({0, 1}m)n and we have
to output a clause C ∈ C such that C(x) = 0 where x = (g(y1), . . . , g(yn)). On the other
hand to compute SC◦g we get as input y and we have to output a clause D ∈

⋃
C∈C ΓC such

that D(y) = 0. However if D(y) = 0 and D ∈ ΓC , then by definition of ΓC , C(x) = 0 where
x = (g(y1), . . . , g(yn)). Hence computing SC◦g is sufficient to compute SC ◦ g and our lower
bounds against SC ◦ g translate to lower bounds against SC◦g, bringing us back to the realm
of proof complexity.

Our size lifting (Theorem 2) is particularly relevant, when applied with g as the Indexing
gadget on 3 bits, for example. Let C be a 3-CNF C with n variables and t clauses, with
tree-like resolution width at least d. Our theorem implies a tree-like Res(⊕) size lower bound
of 2d for the CNF C ◦ IND1, with 3n variables and O(t) clauses, each of maximum width at
most 9.

1.2 Related work
Independently and concurrently with our work, Beame and Koroth obtained closely related
results. They show that a particular property of a gadget, conjectured recently by Lovett et
al. [15] to be sufficient for lifting using constant size, is in fact insufficient to yield constant-size
lifting. Using properties special to Indexing, they obtain a lifting theorem from decision tree
height complexity of f to the complexity of f ◦ IND in a restricted communication model
that they define, where IND has constant size. Further, modifying the proof of this result
they also lift decision tree complexity of f to PDT size complexity of f ◦ IND.
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We, on the other hand, prove directly a lifting theorem for PDT size, from deterministic
decision tree height, that works for any constant size gadget that satisfies the abstract
property of stifling. Examples of such gadgets are IND, IP, Majority and random functions.
While there are some similarities between our and their arguments, especially in the use of
row-reduction, our proof is entirely linear algebraic with no recourse to information theory.

2 The simulation

In Section 2.1 we introduce necessary notation for proving our theorems. In Section 2.2 we
give an overview of the simulation for Theorem 4 (i.e., we show an algorithm that takes
a low-depth PDT computing f ◦ g and constructs a low-depth DT computing f). We do
this for the sake of simplicity; the simulations used to prove Theorem 2 and Theorem 3 are
small modifications of the simulation used to prove Theorem 4. In Section 2.3 we show the
simulation in full detail, with a key subroutine explained in Section 2.4. We then analyze
correctness of the simulation in Section 2.5. We conclude the proofs of all of our theorems in
Section 2.6.

2.1 Notation
Throughout this paper, we identify {0, 1} with F2. We identify vectors in Fn

2 with their
characteristic set, i.e., a vector x ∈ Fn

2 is identified with the set {i ∈ [n] : xi = 1}. For vectors
a, b ∈ Fn

2 , let ⟨a, b⟩ denote
∑n

i=1 aibi modulo 2. We say a vector in Fn
2 is non-zero if it does

not equal 0n. For a positive integer n we use the notation [n] to denote the set {1, 2, . . . , n}
and the notation [n]0 to denote the set {0, 1, . . . , n− 1}. Throughout this paper R denotes
an arbitrary finite set. When clear from context, “+” denotes addition modulo 2.

2.1.1 Decision trees and complexity measures
A parity decision tree (PDT) is a binary tree whose leaf nodes are labeled in R, each internal
node is labeled by a parity P ∈ Fn

2 and has two outgoing edges, labeled 0 and 1. On an
input x ∈ {0, 1}n, the tree’s computation proceeds from the root down as follows: compute
val(P, x) := ⟨P, x⟩ as indicated by the node’s label and follow the edge indicated by the
computed value. Continue in a similar fashion until reaching a leaf, at which point the
value of the leaf is output. When the computation reaches a particular internal node, the
PDT is said to query the parity label of that node. A decision tree (subspace decision tree,
respectively), denoted DT (sDT, respectively), is defined as above, except that queries are to
individual bits (indicator functions of affine subspaces of Fn

2 , respectively) instead of parities
as in PDTs.

A DT/PDT/sDT is said to compute a relation f ⊆ {0, 1}n × R if the output r of
the DT/PDT/sDT on input x satisfies (x, r) ∈ f for all x ∈ {0, 1}n. The DT/PDT/sDT
complexity of f , denoted DT(f)/PDT(f)/sDT(f), is defined as

DT(f)/PDT(f)/sDT(f) := min
T :T is a DT/PDT/sDT computing f

depth(T ).

The decision tree size (parity decision tree size, respectively) of f , denoted DTsize(f)
(PDTsize(f), respectively), is defined as

DTsize(f)/PDTsize(f) := min
T :T is a DT/PDT computing f

size(T ),

where the size of a tree is the number of leaves in it.
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2.1.2 Composed relations and simulation terminology
For positive integers n, m, a relation f ⊆ {0, 1}n × R, a function g : {0, 1}m → {0, 1}
and strings {yi ∈ {0, 1}m : i ∈ [n]}, we use the notation gn(y1, . . . , yn) to denote the n-bit
string (g(y1), . . . , g(yn)). The relation f ◦ g ⊆ ({0, 1}m)n ×R is defined as (y1, . . . , yn, r) ∈
(f ◦ g) ⇐⇒ (g(y1), . . . , g(yn), r) ∈ f .

We view the input to f ◦ g as an mn-bit string, with the bits naturally split into n blocks.
A parity query P to an input of f ◦ g can be specified as an element of (Fm

2 )n. For i ∈ [n]
and a parity query P , P |i ∈ Fm

2 refers to the restriction of P to the ith block. For a parity
query P and a set of indices S ⊆ [m]× [n], P |S refers to the restriction of P to the set of
indices S. We say parity P touches block i or P touches a set S if P |i is non-zero or P |S is
non-zero, respectively.

A string y′ ∈ ({0, 1}m)n is said to be a completion of a partial assignment y ∈ ({0, 1, ∗}m)n

if y′
i = yi for all i ∈ [m]× [n] with yi ̸= ∗.
For a node N in a PDT and bit a ∈ {0, 1}, we use child(N, a) to denote the node reached

on answering the parity at the node N as a. For a parity P and a partial assignment y such
that yi ̸= ∗ for all i ∈ P , val(P, y) denotes ⟨P, y⟩.

2.2 Overview of the simulation
In this subsection we sketch and describe our simulation algorithm with the goal of proving
Theorem 4. The proofs of Theorem 2 and Theorem 3 follow along similar lines, and are
formally proved in Section 2.6. We prove Theorem 4 via a simulation argument: given a
PDT of depth d for f ◦ g, we construct a DT of depth at most d/k for f .

On input x ∈ {0, 1}n, our decision tree algorithm simulates the PDT traversing a path
from its root to a leaf, and outputs the value that the PDT outputs at that leaf. During
this traversal the decision tree algorithm queries bits of x. It also keeps track of a partial
assignment y ∈ ({0, 1, ∗}m)n satisfying the following property that guarantees correctness:
For all w ∈ {0, 1}n consistent with the queried bits of x there is a completion y′ of y such
that

gn(y′) = w, and
the path traversed by the PDT on input y′ is the same as that traversed in the simulation.

This ensures that once the simulation reaches a leaf of the PDT, every input w that is
consistent with the queried bits of x has the same output as the output at the leaf. That is,
the simulation is a valid query algorithm for f .

To carry out the simulation we assign to every parity query along the path a block that
the parity query touches, unless its output value is already determined by y. We say that
the parity query has that block marked. At a high level, if a block has been marked by only
a few parity queries, then we have enough freedom in the block to do the following:

set its output (i.e., the value of g on the variables in the block) to any bit we wish by
setting some of the variables in the block (this uses the stifling property of g), and
retroactively complete this partial assignment so that each of the parity queries marking
the block evaluate to any bit of our choosing on the completed input.

We use these to prove the property that guarantees correctness. The first point helps us in
getting a partial assignment y such that gn(z) = w for all completions z of y, and the second
helps us complete it to a y′ that reaches the leaf we want it to reach. A formal statement of
the required properties is in Claim 17.

During the simulation once a block, say block i, has been marked by k parity queries
we carefully choose k bits of the block that we will keep unset in our partial assignment
throughout the simulation. These k bits are what allow us to perform the completion as in
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the second bullet above. We then query the value of xi and set the other m− k bits in block
i to ensure that the output of block i is set to xi. The fact that we can do this crucially uses
the assumption that the gadget g is k-stifled. In the process above, every parity in the PDT
simulation marks at most one block, and a variable xi is not queried until the ith block is
marked k times. Thus the depth of the resultant DT is at most d/k.

A situation that may arise is when a parity P marks block i but a previous parity query P ′

that marked block i has P |i = P ′|i, for example. However, at some point we may be required
to set P |i to 0 and P ′|i to 1 in order to follow the path in the simulation, which is impossible.
To avoid such issues we preprocess each parity query P to ensure that when it marks block
i, P |i is not in the linear span of {P ′|i : P ′ is an earlier parity that marks block i}. The
simulation algorithm is given in Algorithm 1 with the preprocessing subroutine given in
Algorithm 2. Algorithm 1 uses two other functions, described below.

▶ Definition 12. Let g : {0, 1}m → {0, 1} be a k-stifled Boolean function. We define the
function STIFLEg to be a canonical function that takes as input a set S ⊆ [m] with |S| ≤ k

and a bit b and outputs a partial assignment y ∈ {0, 1, ∗}m such that
for all i ∈ [m], i ∈ S ⇐⇒ yi = ∗, and
for all completions y′ of y, g(y′) = b.

The existence of such a function in the definition above is guaranteed since g is k-stifled.

▶ Definition 13. Define the function FINDVARS to be a canonical function that takes as
input a set {P1, . . . , Pℓ} of ℓ linearly independent vectors in Fm

2 and outputs a set S of ℓ

indices in [m] such that {Pi|S}i∈[ℓ] are also linearly independent vectors.

The existence of such a function in the definition above is guaranteed by the fact that an
ℓ×m matrix of rank ℓ has ℓ linearly independent columns, and the ℓ× ℓ matrix defined by
restricting the original matrix to these columns also has rank ℓ.

2.3 The simulation algorithm
In Algorithm 1, we start with a PDT T of size 2d for f ◦g, and an unknown input x ∈ {0, 1}n.
Our simulation constructs a decision tree for f of depth at most d/k.2 This would prove
Theorem 2. We use the following notation in Algorithm 1:

num is the number of parity queries in T that are simulated so far.
M is an array storing parity queries made so far (after processing).
A is an array storing the answers to the parities in M . These are such that answering the
queries in M with the answers in A is equivalent to answering the queries in the PDT to
reach the node reached by the simulation algorithm.
For all i ∈ [n], MARK[i] is the set of indices in M of parity queries that have the ith
block marked. That is, MARK[i] = {j ∈ [num]0 : M [j] marks block i}.
y is the partial assignment stored by the simulation algorithm. It is initialized to (∗m)n.
For all i ∈ [n], FREE[i] is the set of indices in block i of y that have not yet been set.
That is, FREE[i] = {(i, j) : j ∈ [m], yi,j = ∗}. It is initialized to {i} × [m] for each i ∈ [n].
Q is the set of indices of x queried during the simulation.

The algorithm starts at the root node of the PDT and does the following for each parity
query P it comes across in its traversal down the PDT (Line 9).

2 Our algorithm is designed to work with k ≥ 1. For instance, Line 16 is intended to catch the kth time a
block is marked, which does not make sense for k = 0.
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In Line 10 it processes the parity query using the ROW-REDUCE subroutine. The
subroutine outputs a parity P ′, a “correction” bit b and an index j ∈ [n] denoting which
block was marked by the parity (or ⊥ if no block was marked). As stated in Claim 14,
these outputs satisfy the following: for all y ∈ {0, 1}mn,[

val(M [i], y) = A[i] ∀i ∈ [num]0
]

=⇒
[
val(P, y) = 0 ⇐⇒ val(P ′, y) = b

]
.

In other words, for all inputs consistent with the answers to the previous parity queries
made along the path, P evaluates to 0 if and only if P ′ evaluates to b.
It adds P ′ to the list M of processed parities in Line 11. There are now two possibilities:

If P ′ does not mark a block (Line 12), then all variables appearing in P ′ are already
set in y (see Claim 16). Hence A[num] is set to val(P ′, y) (Line 13) and the simulation
algorithm answers val(P ′, y) + b to the original parity query at the current node
(Line 26).
If P ′ marks block j:
∗ If this is the kth parity to mark block j (Line 16), the simulation queries the value

of xj (Line 17). It then uses the FINDVARS function to select k bits in the jth block
to keep unset (Line 19). It sets the remaining m− k bits of the jth block of y using
the STIFLEg function to ensure that the output of the jth block is xj (Line 20).
The stifling property of g is crucially used in this step.

∗ The algorithm sets the value of A[num] (in Line 24) such that the simulation
algorithm answers the parity query at the current node (Line 26) so as to go to the
smaller subtree.

When it reaches a leaf it outputs the value at that leaf.

2.4 The ROW-REDUCE subroutine
We now discuss the ROW-REDUCE subroutine, which describes how to process an in-
coming parity and choose which block it should mark. Algorithm 2 takes as inputs
P ,M ,A,MARK,FREE, each of which are described below.

P is the new parity query to be processed.
The previously processed parity queries are stored in M .
The answers given in the simulation to the parities in M are stored in A.
MARK[i] is the set of indices of parity queries that have the ith block marked.
FREE[i] is the set of unset variables in block i in the partial assignment (referred to as y

in Section 2.2) of the input to f ◦ g that the simulation keeps.

The processed parity P ′ is initialized to P , and a correction bit b is initialized to 0. In
Line 4, we go through the blocks of variables in order looking for a block to assign the
incoming parity to. The check made on Line 5 is to see whether this parity can mark the
current block j. It cannot mark block j if its restriction to FREE[j] is in the linear span of
the restrictions of earlier parities that marked block j. We detail what the algorithm does
based on this check below.

In Lines 5 to 8, we consider the case where the parity being processed, restricted to the
jth block, is a linear combination of the restrictions of earlier parities that marked the jth
block. That is, there is a set S ⊆ MARK[j] such that P ′|FREE[j] =

∑
i∈S M [i]|FREE[j]. In

Line 7 we update the parity by adding
∑

i∈S M [i] to P ′. This ensures that P ′|FREE[j] = 0.
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Algorithm 1 Simulation of a PDT T for f ◦ g to obtain a DT for f .

Input: x ∈ {0, 1}n

1: P0 ← root(T ) ▷ Starting the simulation of the
PDT

2: num← 0
3: M ← []
4: A← []
5: MARK[i]← ∅∀i ∈ [n]
6: y ← (∗m)n

7: FREE[i]← {i} × [m] ∀i ∈ [n]
8: Q← ∅
9: while Pnum is not a leaf of T do

10: P ′, b, j ← ROW-REDUCE(Pnum, M, A, MARK, FREE) ▷

Process the current parity query
and return the processed query,
a correction bit and the index
of the marked block.

11: M [num]← P ′

12: if j = ⊥ then ▷ If no block has been marked
13: A[num]← val(M [num], y) ▷ By Claim 16, all variables

appearing in M [num] have been
set in y.

14: else
15: MARK[j]← MARK[j] ∪ {num}
16: if |MARK[j]| = k then ▷ If this is the kth time the jth

block is marked
17: Query xj

18: Q← Q ∪ {j} ▷ Update set of queried variables.
19: S ← FINDVARS({M [i]|j : i ∈ MARK[j]}) ▷ Select k bits of block j that

will remain unset in y.
20: y|j ← STIFLEg(S, xj) ▷ Set other bits in block j to

force the jth block to output
value xj. This is possible
since g is k-stifled.

21: FREE[j]← {j} × S

22: end if
23: b′ ← arg mina size(child(Pnum, a))
24: A[num]← b′ + b

25: end if
26: Pnum+1 ← child(Pnum, A[num] + b) ▷ If no block was marked

(Line 12-13), go to the child
as dictated by the set variables.
Else, go to the child with the
smaller subtree, as ensured by
Lines 23 and 24.

27: num← num + 1
28: end while
29: Output the value output at Pnum
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Algorithm 2 The ROW-REDUCE routine.

Input: P ,M ,A,MARK,FREE
1: markedindex← ⊥
2: P ′ ← P

3: b← 0
4: for j from 1 to n do
5: if P ′|FREE[j] is in the linear span of

{
M [i]|FREE[j] : i ∈ MARK[j]

}
then

6: Let S ⊆ MARK[j] be such that P ′|FREE[j] =
∑

i∈S M [i]|FREE[j].
7: P ′ ← P ′ +

∑
i∈S M [i] ▷

Observe that P ′|FREE[j] = 0FREE[j] after this step.
8: b← b +

∑
i∈S A[i]

9: else
10: markedindex← j

11: break ▷ Ensure that no more than 1 block is marked.
12: end if
13: end for
14: return P ′, b, markedindex

Then in Line 8 we update the correction bit b by adding
∑

i∈S A[i] to it. This is so that
the following holds for all y.[

val(M [i], y) = A[i] ∀i ∈ [num]0
]

=⇒
[
val(P, y) = 0 ⇐⇒ val(P ′, y) = b

]
.

In Lines 9 to 11, we consider the case when the current parity restricted to FREE[j] is
not a linear combination of the restrictions of the earlier parities that marked the jth
block. In this case we have the current parity mark the jth block (Line 10) and then
return P ′, b, j.

Notice that a block is marked only in the latter case. If this case does not occur for any of
the [n] blocks, then no block is marked and the procedure returns P ′, b,⊥.

2.5 Correctness
We first address the fact that we primarily deal with the values of the processed parities
rather than the original parity queries from the PDT. The following claim says that answering
the processed parity is in fact equivalent to answering the original parity from the PDT.

▷ Claim 14. Let P ′, b, j be the output of ROW-REDUCE when run with its first three inputs
being P, M and A. Let num be the number of entries in M . Then for all y ∈ {0, 1}mn,[

val(M [i], y) = A[i] ∀i ∈ [num]0
]

=⇒
[
val(P, y) = 0 ⇐⇒ val(P ′, y) = b

]
.

Proof. The output P ′ is computed from the input P only through modifications by Line 7 of
Algorithm 2. That is, there is some subset S ⊆ [num]0 such that P ′ = P +

∑
i∈S M [i]. The

output b is also modified alongside the modifications of P ′ so that b =
∑

i∈S A[i].
Hence for any input y, val(P ′, y) = val(P, y) +

∑
i∈S val(M [i], y). The claim follows. ◁

As a corollary, we get that analyzing inputs that answer all the processed parities according
to the answer array A is the same as analyzing inputs that follow the path taken by the
PDT simulation.
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▶ Corollary 15. The following statement is a loop invariant for the while loop in Line 9 of
Algorithm 1. For all y ∈ {0, 1}mn,[

val(M [i], y) = A[i] ∀i ∈ [num]0
]
⇐⇒

[
y reaches Pnum

]
.

Proof. The loop is initially entered with the array M being empty and Pnum being the root
of the PDT. Clearly the statement holds at this point. We now prove by induction that it is
a loop invariant.

Suppose the statement holds at the beginning of an execution of the loop. M [num] is
populated in this execution by the parity output by the ROW-REDUCE subroutine in Line 10.
By Claim 14 and the fact that the statement held at the beginning of the execution, every
input y that reaches the node Pnum satisfies val(M [num], y) = val(Pnum, y) + b. In Line 26 we
go to the node Pnum+1 = child(Pnum, A[num] + b). Hence the inputs that reach Pnum+1 are
exactly those that reach Pnum and satisfy M [num] = A[num]. We then increment num and
the loop ends, so the statement holds at the end of an execution of the loop. ◀

We now show that the processed parities are very structured.

▷ Claim 16. Let num be the number of queries made by the simulated PDT at a certain
point in the simulation. Recall that the processed parities are stored in M [0] to M [num− 1].
1. Let i ∈ [num]0. If the parity M [i] marks block j (i.e., i ∈ MARK[j]), then for

every block j1 < j, M [i] ∩ FREE[j1] = ∅, where M [i] is viewed as the set of indices
{α ∈ [m]× [n] : M [i]α = 1}.
If M [i] does not mark any block, then the above holds for all j1 ∈ [n].

2. For every block j ∈ [n], the parities
{

M [i]|FREE[j] : i ∈ MARK[j]
}

are linearly independent.

Proof. We prove the two properties in order.
1. We prove the first property by induction on i.

Let’s assume that the property holds for all i′ < i. Note that M [i] is the processed
parity output by ROW-REDUCE when it was called to process Pi. Similarly j is the
block marked by ROW-REDUCE during the same call. During the processing, the
algorithm ran through all blocks j1 < j in order (or j1 ≤ n if no block was marked) and
took the branch of Line 5 of Algorithm 2 in each. To prove that M [i] ∩ FREE[j1] = ∅
for each j1 < j, we use a second induction on j1.

When the algorithm looks at block j1 (i.e., in the j1th iteration of Line 4 in
Algorithm 2), we assume that the partially processed parity P ′ has, for each j2 < j1,
P ′ ∩ FREE[j2] = ∅. When looking at block j1, the algorithm may process P ′ further
by adding to it some previously processed parities that had marked block j1 (Line 7).
But any previously processed parity would be stored in M [i′] for some i′ < i. By
our first induction hypothesis we know that any such M [i′] that had marked block
j1 has, for each j2 < j1, M [i′]∩FREE[j2] = ∅. Hence even after adding such parities
to P ′ it still holds that for each j2 < j1, P ′ ∩ FREE[j2] = ∅. The added parities
explicitly ensure that P ′ ∩ FREE[j1] = ∅ and so for each j2 ≤ j1, P ′ ∩ FREE[j2] = ∅.
This completes the second induction.

Since this second induction proves the required statement for all j1 < j, this completes
the first induction as well.

2. For the second property we note that if a processed parity P ′ marks a block j (Line 10 of
Algorithm 2), then P ′|FREE[j] is not in the linear span of P ′′|FREE[j] for previous parities
P ′′ that have block j marked (since the if condition Line 5 was not satisfied). Hence the
set of parities that mark a block are necessarily linearly independent. Moreover, when
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FREE[j] is modified (see Line 19 of Algorithm 1), it is chosen to be the output of the
function FINDVARS on input {M [i]|j : i ∈ MARK[j]}. By the definition of FINDVARS,
this ensures that

{
M [i]|FREE[j] : i ∈ MARK[j]

}
remains linearly independent. ◁

We finally prove the correctness of the simulation.

▷ Claim 17. For any string w ∈ {0, 1}n consistent with the queried bits of x there is an
input y to f ◦ g that reaches the leaf Pnum and satisfies gn(y) = w.

Proof. Fix a string w ∈ {0, 1}n consistent with the queried bits of x. We start with the
partial assignment y maintained by the PDT simulation and complete it.

Fixing variables in y to ensure gn(y) = w: The bits of y that are already fixed ensure
that for any queried bit xj , g(y|j) = wj (these are set in Line 20 of Algorithm 1).
Now for each unqueried bit xj , first note that ℓ := |MARK[j]| < k (otherwise Line 17 of
Algorithm 1 ensures that xi is queried). We do the following:

Get a set S = FINDVARS({M [i]|j}i∈MARK[j]) of ℓ indices such that {M [i]|S}i∈MARK[j]
are still linearly independent.
Assign y|j to be STIFLEg(S, wj) to ensure that all the bits of y|j indexed in S are
unset, those outside are set, and all completions of y|j evaluate to wj when g is applied
to them. This is possible since g is k-stifled and ℓ < k.3 We will continue to use
FREE[j] to refer to the set S.

Now we are guaranteed that any extension of y with bits set as above will yield the string
w when gn is applied to it.
Before we move on to ensuring that y reaches the leaf Pnum, let us make the useful
observation that at this point |MARK[j]| = |FREE[j]| for all j ∈ [n]. We have ensured
this for all j that were unqueried by the simulation. For those that were queried, note
that the simulation only queries xj when |MARK[j]| = k, and on querying xj , FREE[j] is
modified to have size k (Lines 16 and 21 of Algorithm 1). By Claim 16, we know that{

M [i]|FREE[j] : i ∈ MARK[j]
}

are linearly independent parities. Hence in Algorithm 2,
when processing block j, Line 5 will always fire and block j is never marked again. This
ensures that MARK[j] and FREE[j] do not get modified again.
Extending y to guarantee that it reaches the leaf Pnum:
By Corollary 15 the inputs y that reach the leaf Pnum are exactly those that answer A[i]
to each processed parity query M [i].
We analyze each parity query in M . There are two cases: one where the current parity
query under consideration marks a block, and the other where the parity query under
consideration does not mark a block.

When i /∈
⋃

j MARK[j]: By Claim 16 the only non-zero entries of M [i] are variables
that have previously been set in y (in Line 20 of Algorithm 1). Hence the parity query
M [i] has to evaluate to val(M [i], y) when queried on any extension of y, and indeed
A[i] is set to val(M [i], y) in Line 13 of Algorithm 1.
When i ∈

⋃
j MARK[j]: Let I =

⋃
j MARK[j]. Note that |I| =

∑
j |MARK[j]| since

at most one block gets marked for each parity. Since |FREE[j]| = |MARK[j]| for all
j ∈ [n], there are still |I| unset bits of y. Let us refer to these variables by unset(y)
and their complement by set(y).

3 It suffices to assume ℓ ≤ k here. See Remark 20 for a discussion on how we can modify our simulation
to exploit this.
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A|1,1

A|2,1

A|n,1

A|1,2

A|2,2

A|n,2

A|1,n

A|2,n

A|n,n

· · ·MARK[1]

...

FREE[1]

· · ·MARK[2]

...

FREE[2]

· · ·MARK[n]

...

FREE[n]

. . .

Figure 1 The structure of the matrix A. A|i,i is a linearly independent submatrix for each i ∈ [n],
and A|i,j is the all-0 matrix when i > j.

Let us now construct a matrix M∈ FI×[mn]
2 where the rows are indexed by I and row

i is the vector M [i]. We also consider the column vector b ∈ FI
2 where the rows are

indexed by I and the entry bi = A[i].
Our goal is to find a column vector v ∈ F[mn]

2 such that vset(y) = yset(y) and Mv = b.
Setting the unset bits of y according to v would give us what we want, a completion of
y that answers A[i] to each parity query M [i]. To this end let us write the matrix M
as follows (after an appropriate permutation of columns).

M =
[
A | A′] ,

where the first set of columns corresponds to indices in unset(y), and the second set of
columns corresponds to indices in set(y).
Let b′ = A′vset(y). If we find a setting of vunset(y) such that Avunset(y) = b + b′,
then Mv = b and this would conclude the proof. We prove the existence of such a
setting by noting below that the rows of A are independent and hence its image is
FI

2. To prove the independence of the rows of A, view A as a block matrix made
up of submatrices {A|i,j}i,j∈[n] with A|i,j containing the rows MARK[i] and columns
FREE[j] (see Figure 1). Note that submatrices of the form A|i,i are square matrices
since |MARK[i]| = |FREE[i]| for all i ∈ [n].
By Claim 16 and the way we defined FREE[i] using the FINDVARS function (ensuring
that the restriction of parities in MARK[i] to FREE[i] preserves independence),
∗ A|i,i is a linearly independent submatrix for each i ∈ [n], and
∗ A|i,j is the all-0 matrix when i > j.
The independence of the rows of A easily follows from this “upper triangular”-like
structure. ◁

We require the following observation for the proof of Theorem 3 since we work with a
slightly modified simulation algorithm there.
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▶ Observation 18. The correctness analysis of Algorithm 1 described in this section still
holds if we set A[num] to bnum ∈ {0, 1} in Line 24, where bnum is an arbitrary function of the
history of the simulation.

Finally we observe that the number of queries made by the simulation is at most d/k.

▶ Observation 19. Algorithm 1 makes at most d/k queries to x.

Proof. First observe that every parity in the simulation marks at most one block. The query
xj is made by the simulation (Line 17) only when MARK[j] gets k elements in it (Line 16).
So the number of queries made is at most

∣∣∣⋃j∈[n] MARK[j]
∣∣∣/k ≤ d/k, since the number of

iterations in the simulation (captured by num) is at most the depth of the PDT, which is d

by assumption. ◀

It follows from the correctness of Algorithm 1 and the observation above that PDT(f ◦g) ≥
DT(f) · k (proving Theorem 4). We observe below that our simulation can be modified so as
to give a stronger bound of PDT(f ◦ g) ≥ DT(f) · k + 1. Note that this bound is tight since
PDT(⊕n ◦ IND1) ≤ n + 1, for instance.
▶ Remark 20. Note that we query xj in Algorithm 1 when the jth block is marked for the
kth time. The reason behind this is that we can handle a block being marked k times while
still having the freedom to set its output by the stifling property of g. Moreover this might
not be true after the block is marked for the (k + 1)th time. However querying xj in the same
iteration where the jth block is marked for the kth time (Lines 16 and 17) is premature. We
can modify our algorithm so as to query xj after block j is marked k times and a new parity
attempts to mark it for the (k + 1)th time. With this modification, once we query xj and set
variables so that its output is fixed, the parity can no longer mark block j and needs to be
reprocessed using Algorithm 2 with the updated value of FREE[j] so that it either triggers a
query in a later block (in which case we repeat this process), marks a later block, or marks
no block at all. If the set of queries to x is denoted by Q, then the number of parity queries
being made by the simulation is at least |Q|k + 1: When the last of the queries in Q is made,
say xj , then the jth block and all blocks corresponding to previously queried variables had
already been marked k times before the parity query appeared that triggered the query of xj .
Hence there were at least |Q|k parity queries processed before the parity query that resulted
in the simulation querying xj . As a result we get PDT(f ◦ g) ≥ DT(f) · k + 1.

2.6 Simulation theorems
In this section we conclude the proofs of Theorem 4, Theorem 3, Theorem 2, Corollary 10
and Corollary 11.

Proof of Theorem 4. It follows from the correctness of Algorithm 1 described in the previous
section, and Observation 19. ◀

Proof of Theorem 2. Consider a PDT TP for f ◦ g of size s. Suppose the DT T we get
for f from the simulation makes d queries on a worst-case input, say on x ∈ {0, 1}n. Note
that whenever a parity marks a block in the simulation algorithm (i.e., Line 14 fires), the
algorithm then chooses to go to the child with the smaller subtree (Lines 24 and 26). So
in Line 26, the size of the subtree rooted at Pnum+1 is at most half the size of the subtree
rooted at Pnum. When the simulation algorithm is run on input x, it reaches a leaf of TP ,
and at least dk parities are such that they mark some block in the process. This is because
the simulation queries a variable only after its corresponding block has been marked k times.
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Hence the size of the subtree rooted at the reached leaf is at most a 2−dk fraction of s. Thus,
s ≥ 2dk. The theorem now follows from the correctness of Algorithm 1 described in the
previous section. ◀

Towards the proof of Theorem 3, we work with a modified query model instead of
considering subspace decision trees. This query model is described below.

For each affine subspace choose an arbitrary ordering of the constraints. We define a
“parity constraint” query to be a query of the form ⟨v, x⟩ ?= a where v ∈ Fmn

2 , a ∈ F2. Define
a “parity constraint” query protocol as a protocol that makes parity constraint queries. The
answer to a query ⟨v, x⟩ ?= a is either “Right” if ⟨v, x⟩ = a or “Wrong” if ⟨v, x⟩ ̸= a. The cost
of the protocol is defined to be the worst-case number of queries that were answered “Wrong”
during a run of the protocol.

Now given a subspace decision tree T , we construct a parity constraint query protocol as
follows:

When an affine subspace query is made in T , instead query the parity constraints making
up the affine subspace query in a canonical order. Stop when any of the parity constraints
is answered “Wrong”.
If a constraint has been answered “Wrong”, traverse T as if the affine subspace query had
failed. If no constraint has been answered “Wrong”, traverse T as if the affine subspace
query had succeeded.

Clearly the number of wrong answers in any execution of this protocol is upper bounded
by the worst case number of affine subspace queries made by T , and the parity constraint
protocol computes the same relation as the original subspace decision tree.

Proof of Theorem 3. From a subspace decision tree computing f ◦ g, construct a parity
constraint query protocol T computing f ◦ g without increasing the cost, as described above.
Note that a parity constraint query protocol tree is just a parity decision tree except that for
every internal node its outgoing edges have an extra label of “Right” and “Wrong”.

We modify Lines 23 and 24 of Algorithm 1 as follows. We look at the current query node
in the PDT to see what answer b′ ∈ F2 corresponds to a “Wrong” edge. We set A[num] to
b′ + b so that in Line 26 the simulation does take the “Wrong” edge.

Hence for every i ∈
⋃

j∈[n] MARK[j], the parity query M [i] corresponds to a “Wrong”

answer. Thus note that cost(T ) ≥
∣∣∣⋃j∈[n] MARK[j]

∣∣∣. On the other hand, the query xj is
made by the simulation only when MARK[j] gets k elements in it. So the number of queries
made is at most

∣∣∣⋃j∈[n] MARK[j]
∣∣∣/k ≤ cost(T )/k. The correctness of this modified algorithm

follows from the correctness of Algorithm 1 described in the previous section, along with
Observation 18. ◀

Corollary 10 and Corollary 11 follow from Theorem 4, Theorem 3, Theorem 2, the fact
that INDm is m-stifled (Claim 7) and the fact that IPm is 1-stifled (Claim 8).

2.7 Non-adaptive and round-respecting simulations
When run on a non-adaptive parity decision tree for f ◦ g of cost d, our simulation algorithm
actually results in a non-adaptive decision tree for f of cost d/k. This observation relies on
the fact that in the course of every iteration (of Line 9 of Algorithm 1), the updates done
to M, MARK, Q and FREE depend solely on the sequence of parities P that are processed.
More formally,
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The outputs P ′ and j from the ROW-REDUCE routine are functions of P, M, MARK, k and
FREE. They do not depend on the input A. M and MARK are then updated depending
solely on these outputs.
The decision to query a variable xj (and hence to append j to Q, in Lines 17 and 18 of
Algorithm 1) depends only on MARK, and the resulting update to FREE[j] (Line 21 and
the two preceding lines of Algorithm 1) only depends on M and MARK.

Now consider a run of the simulation algorithm on a non-adaptive PDT. By Observation 19
this results in a DT that computes f with cost at most d/k. By the observations above and
since the parity decision tree is non-adaptive, the simulation algorithm processes the same
sequence of parity queries regardless of what path it takes down the non-adaptive PDT. Hence
the set Q (and hence the queries made) does not depend on what path the simulation algorithm
takes, and they can be made non-adaptively. Thus, we obtain the following theorem where
NADT(·) denotes non-adaptive decision tree complexity and NAPDT(·) denotes non-adaptive
parity decision tree complexity.

▶ Theorem 21. Let g : {0, 1}m → {0, 1} be a k-stifled function, and let f ⊆ {0, 1}n ×R be
a relation. Then NAPDT(f ◦ g) ≥ NADT(f) · k.

This argument can easily be adapted to say that when run on a “t-round” PDT (that
is, parity queries are done simultaneously in each round), the simulation algorithm results
in a t-round DT with the guarantee that if the parity decision tree has made at most di

queries during its first i rounds, the decision tree makes at most di/k queries during its first
i rounds.
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A Deferred proofs

▷ Claim 22. Theorem 2 follows (up to a constant factor in the exponent in the RHS) from
Theorem 3. Theorem 3 follows (up to a log n factor in the RHS) from Theorem 2.

This claim immediately follows from the following bounds relating PDTsize and sDT.

▷ Claim 23. Let F ⊆ {0, 1}n ×R be a relation. Then,

log PDTsize(F )
log n

≤ sDT(F ) ≤ 2 log PDTsize(F ).

The first inequality can be shown by a naive simulation of a sDT by a PDT, and the
second one via a standard tree/protocol-balancing trick. Due to space constraints, we defer
these proofs to the full version of our paper.
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We next state a claim that shows that the randomized communication complexity of
a function is bounded from above by its PDT size. Let Rcc

ε (·) denote ε-error randomized
communication complexity. It is well known that the public-coin ε-error randomized commu-
nication complexity of the Equality function on 2n input bits is O(log(1/ε)). It is easy to see
that the same protocol and same upper bound also holds for the communication complexity
of checking whether a joint input lies in an arbitrary (but known to both players) affine
subspace.

▷ Claim 24. Let F ⊆ {0, 1}n × {0, 1}n ×R be a relation. Then,

Rcc(F ) ≤ O(log(PDTsize(F ))× log log(PDTsize(F ))).

Proof. Consider a PDT T of size s computing F . Just as in the previous proof, Alice and
Bob jointly identify a node v′ in T that has at least s/3 and at most 2s/3 leaves under
it. They use O(log log s) bits of communication to find out with error probability at most
1/(6 log s) whether the computation of T on their joint input reaches v′. This can be done
since the set of inputs reaching v′ is an affine subspace. Irrespective of the outcome, the
size of the resultant PDT reduces to at most 2s/3. The players then recurse at most 2 log s

times to reach a leaf and output the value at that leaf. By a union bound, the error of this
protocol is at most 1/3. The total cost of this protocol is at most O(log s log log s). ◁

In particular, the claim above implies that a lifting theorem from randomized decision tree
complexity of f to Rcc(f ◦ g) (see, for example, [11, 2], for such lifting theorems, albeit
for gadgets of super-constant size) implies a lifting theorem from randomized decision tree
complexity of f to PDTsize(f ◦ g).

Proof of Claim 7. Let S be an arbitrary subset of [m]⊔ [2m] of size m, and let b ∈ {0, 1}. We
need to show that there exists a setting of variables in [m] ⊔ [2m] \ S that fixes the value of
INDm to b. Suppose there are ℓ addressing variables and m− ℓ target variables in S. Fix the
remaining 2m −m + ℓ target variables to value b.

We now claim that there exists a setting of the free (outside of S) m − ℓ addressing
variables such that the “relevant” target variable is always one of the free (outside of S)
target variables, regardless of the setting of the ℓ “Majority is stiflest” addressing variables
in S. This would prove the claim since we have set all of the free target variables to value
b, and hence INDm would always output b regardless of the assignments to variables in S.
Towards a contradiction, suppose not. Then, for each setting of the free m− ℓ addressing
variables there exists a setting of the constrained addressing variables such that the relevant
target variable is one of the m− ℓ constrained target variables. Thus, 2m−ℓ ≤ m− ℓ, which
is easily seen to be false for all ℓ ∈ {0, 1, . . . , m− 1} and all integers m ≥ 1. ◁

Proof of Claim 8. Let the inputs to IPm be denoted by x1, x2, . . . , xm, y1, y2, . . . , ym. Pick an
arbitrary set of size 1. Without loss of generality we may assume that this set is {x1}. Given
b ∈ {0, 1} we need to show that there exists a setting of the variables x2, . . . , xm, y1, . . . , ym

that fixes the value of IPm to b. To this end, fix y1 = 0. This implies x1 ∧ y1 = 0. Hence, re-
gardless of the value of x1, the function now evaluates to IPm−1(x2, . . . , xm, y2, . . . , ym). Since
m ≥ 2, IPm−1 is a non-constant function, and we can set the values of x2, . . . , xm, y2, . . . , ym

such that IPm−1(x2, . . . , xm, y2, . . . , ym) (and thus IPm(x1, x2, . . . , xm, y1, y2, . . . , ym)) evalu-
ates to b. This concludes the proof. ◁

▶ Remark 25. The parameters in Claim 7 and Claim 8 cannot be improved. That is,
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INDm is not (m + 1)-stifled: Consider the set S of all addressing variables and a single
target variable. We have |S| = m + 1. Regardless of how we set the remaining variables,
the restricted function is never fixed because the addressing variables could be assigned
values to point to the target variable in S (which could have value either 0 or 1).
IPm is not 2-stifled: Consider the set x1, y1. Regardless of how we set the remaining
variables, the function value is different when x1∧y1 = 1 as compared to when x1∧y1 = 0.

We observe below that “Majority is stiflest”. More precisely, we show that MAJn :
{0, 1}n → {0, 1} is (⌈n/2⌉ − 1)-stifled and no Boolean function on n inputs is ⌈n/2⌉-stifled.

▷ Claim 26 (Majority is stiflest). Let f : {0, 1}n → {0, 1} be a Boolean function. Then, f

cannot be ⌈n/2⌉-stifled. Moreover MAJn is (⌈n/2⌉ − 1)-stifled.

Proof. We prove the two claims in order.
Towards a contradiction, assume f is ⌈n/2⌉-stifled. Pick an arbitrary set S of size ⌈n/2⌉.
By definition, there exists a setting of variables in S̄ that forces the value of f to 0. Since
|S̄| = ⌊n/2⌋ ≤ ⌈n/2⌉, the assumption also implies the existence of a setting of variables
in S that forces the value of f to 1. Since these settings are on disjoint sets of variables,
this implies a setting of variables that forces the value of f to both 0 and 1, which yields
a contradiction.
Pick an arbitrary set of variables S of size ⌈n/2⌉ − 1 and an arbitrary b ∈ {0, 1}. By
definition of the Majority function, fixing all variables in S̄ to value b forces the function
value to be b, concluding the proof. ◁

Proof of Claim 9. Fix S ⊆ [m] with |S| = k = log m/2. For z ∈ {0, 1}[m]\S and z′ ∈ {0, 1}S ,
let the input (z, z′) ∈ {0, 1}m be defined by (z, z′)|S = z′ and (z, z′)|[m]\S = z. We have for
every fixed z ∈ {0, 1}[m]\S ,

Pr[∀z′ ∈ {0, 1}S , g(z, z′) = 0] = 1
22k .

Since these events are independent for each z ∈ {0, 1}[m]\S ,

Pr[∄z ∈ {0, 1}[m]\S such that ∀z′ ∈ {0, 1}S , g(z, z′) = 0] =
(

1− 1
22k

)2m−k

.

Thus, the probability that “S isn’t 0-stifled” is at most
(

1− 1
22k

)2m−k

. The same bound
holds for the probability that S isn’t 1-stifled. By a union bound over all S ⊆ [m] with
|S| = k, we get

Pr[g is not k-stifled] ≤
(

m

k

)
· 2

(
1− 1

22k

)2m−k

≤ 2k log m+1 · exp
(
−2m−k−2k

)
using standard inequalities

≤ 2(log2 m)/2+1−2(m−log m−
√

m) log e

≤ 1/10,

where the last inequality holds for sufficiently large m. ◁
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Abstract
In this paper, we obtain several new results on lower bounds and derandomization for ACC0 circuits
(constant-depth circuits consisting of AND/OR/MODm gates for a fixed constant m, a frontier class
in circuit complexity):

1. We prove that any polynomial-time Merlin-Arthur proof system with an ACC0 verifier (denoted
by MAACC0 ) can be simulated by a nondeterministic proof system with quasi-polynomial running
time and polynomial proof length, on infinitely many input lengths. This improves the previous
simulation by [Chen, Lyu, and Williams, FOCS 2020], which requires both quasi-polynomial
running time and proof length.

2. We show that MAACC0 cannot be computed by fixed-polynomial-size ACC0 circuits, and our hard
languages are hard on a sufficiently dense set of input lengths.

3. We show that NEXP (nondeterministic exponential-time) does not have ACC0 circuits of sub-
half-exponential size, improving the previous sub-third-exponential size lower bound for NEXP
against ACC0 by [Williams, J. ACM 2014].

Combining our first and second results gives a conceptually simpler and derandomization-centric
proof of the recent breakthrough result NQP := NTIME[2polylog(n)] ̸⊂ ACC0 by [Murray and Williams,
SICOMP 2020]: Instead of going through an easy witness lemma as they did, we first prove an ACC0

lower bound for a subclass of MA, and then derandomize that subclass into NQP, while retaining its
hardness against ACC0.

Moreover, since our derandomization of MAACC0 achieves a polynomial proof length, we indeed
prove that nondeterministic quasi-polynomial-time with nω(1) nondeterminism bits (denoted as
NTIMEGUESS[2polylog(n), nω(1)]) has no poly(n)-size ACC0 circuits, giving a new proof of a result
by Vyas. Combining with a win-win argument based on randomized encodings from [Chen and
Ren, STOC 2020], we also prove that NTIMEGUESS[2polylog(n), nω(1)] cannot be 1/2 + 1/poly(n)-
approximated by poly(n)-size ACC0 circuits, improving the recent strongly average-case lower bounds
for NQP against ACC0 by [Chen and Ren, STOC 2020].

One interesting technical ingredient behind our second result is the construction of a PSPACE-
complete language that is paddable, downward self-reducible, same-length checkable, and weakly
error correctable. Moreover, all its reducibility properties have corresponding AC0[2] non-adaptive
oracle circuits. Our construction builds and improves upon similar constructions from [Trevisan and
Vadhan, Complexity 2007] and [Chen, FOCS 2019], which all require at least TC0 oracle circuits for
implementing these properties.
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1 Introduction

Background. Proving unconditional circuit lower bounds for explicit functions (with the
flagship problem of NP ̸⊂ P/poly) is one of the holy grails in complexity theory and theoretical
computer science. As the first step toward lower bounds for general circuits, constant-depth
circuits received a lot of attention in the 1980s, with classical works culminating in exponential
lower bounds against AC0 [1, 12, 40, 15] (constant-depth circuits consisting of unbounded
fan-in AND/OR gates) and AC0[q] (AC0 circuits with MODq gates) for prime power q [25, 30].

Unfortunately, after the 1980s, the initial successes met an obstacle: lower bounds for
AC0[m] have been extremely difficult to establish for composite m, despite the conjecture that
AC0[m] cannot compute the majority function. In fact, it had been a notorious open question
whether NEXP (nondeterministic exponential time) has polynomial-size ACC0 circuits (ACC0

denotes the union of AC0[m] for all constants m), until a decade ago Williams [36, 39] finally
proved such a lower bound, via an algorithmic approach to circuit lower bounds [35, 37].
Combining many classical results from complexity theory, such as the nondeterministic
time hierarchy theorem [27, 41], hardness vs. randomness [24], and the PCP theorem [3, 4],
Williams’ work shows how non-trivial circuit-analysis algorithms can be generically applied
to prove circuit lower bounds.

In 2018, Murray and Williams [22] significantly improved Williams’ lower bound by
showing NQP := NTIME[2polylog(n)] is not contained in ACC0. A line of recent work [11, 10, 6,
8] generalized the algorithmic approach to the average-case setting, culminating in the result
that NQP cannot be (1/2 + 1/poly(n))-approximated by poly(n)-size ACC0 circuits [8].1

Motivation: making the algorithmic method direct. Most of the proofs following the
algorithmic method are indirect and make heavy use of proof by contradiction or win-win
analysis.2 These proofs are considered by some to be conceptually hard to understand. A
natural question is whether we can give a more direct (i.e., no win-win analysis or proof by
contradiction) proof of the separation NQP ̸⊂ ACC0 [23], which might be (hopefully) easier
to understand.

Inspired by [38, 33] and motivated by the goal of proving average-case lower bounds
for NQP against ACC0, Chen [6] proposed a derandomization-centric perspective of the
algorithmic method, which consists of the following two steps:
1. Assuming that the desired lower bound is false (e.g., NQP ⊆ ACC0 or NQP is average-case

easy for ACC0), [6] gave a derandomization of a certain sub-class of MA into NQP.
2. [6] then proved that this sub-class of MA contains a language that is hard against ACC0,

and its hardness is retained after the aforementioned derandomization into NQP, from
which the desired lower bound for NQP against ACC0 follows immediately.

Following this perspective from [6], [9] managed to refine both of the two steps above to
prove the strongly average-case lower bounds for NQP against ACC0. Still, the proofs from [6]
and [9] are not direct, since the first step involves a proof by contradiction.3 Later, [7]
managed to give a derandomization of the sub-class of MA with ACC0 verifier (i.e., MAACC0 ;
see the full version for a formal definition.)

1 The journal versions of [22] and [8] are [23] and [9], respectively.
2 A win-win analysis often goes as follows: for some classes A and B, if A ⊆ B, then our desired lower

bound follows in one way, and if A ̸⊆ B, then our desired lower bound follows in another way.
3 It can be interpreted as a “conditional derandomization”, since we can derandomize MA assuming the

lower bound is false.
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One may hope that we can replace the derandomization in the first step of [6] by a direct
application of the new derandomization by [7], but this does not work for the following
technical reason: The specific sub-class of MA considered in [6] is MANC, meaning that the
verifier of the Merlin-Arthur protocol has polylog(n)-depth circuits. This is (much) stronger
than the class MAACC0 that [7] can derandomize. So to make [6]’s derandomization-centric
perspective completely direct, we will need a lower bound for MAACC0 against ACC0, so that
the derandomization of [7] can be applied to the corresponding hard language.

1.1 Our Results
Let C be a circuit class. We use MAC to denote the sub-class of MA whose verifier can be
implemented by C circuits. More formally, we say that L ∈ MA if there is a polynomial-time
algorithm V (x, y, z) with |x| = n and |y|, |z| ≤ poly(n) such that (1) x ∈ L implies that
there exists y satisfying Prz[V (x, y, z) = 1] = 1 and (2) x /∈ L implies that for all y it
holds that Prz[V (x, y, z) = 1] ≤ 1/3. And we say that L ∈ MAC if V can be computed by
polynomial-size C circuits.4

1.1.1 A direct proof of NQP ̸⊂ ACC0

Our first result is an affirmative answer to the question above by proving the following results.

▶ Theorem 1 (Informal). For every k, d⋆, m⋆ ∈ N, there is a language L ∈ MAACC0 and a
constant c ∈ N such that for every sufficiently large n ∈ N, there exists an input m ∈ [n, nc]
such that Lm (the restriction of L on m-bit inputs) does not have mk-size AC0

d⋆
[m⋆] circuits.5

Intuitively speaking, our hard language L is not only hard against mk-size AC0
d⋆

[m⋆]
circuits, but its hard input lengths are not sparse in the sense that every interval [n, nc]
contains a hard input length.6 This stronger hardness condition is crucial for the hard language
to remain hard after the infinitely often derandomization from [7]. Combining Theorem 1
and the derandomization from [7], we then have an alternative proof of NQP ̸⊂ ACC0.7

A subtle caveat. Interestingly, the direct derandomization proof above indeed only proves

(L1) : NQP ̸⊂ AC0
d⋆

[m⋆] for every d⋆, m⋆ ∈ N,

which is different from

(L2) : NQP ̸⊂ ACC0.8

This issue occurs in [23] as well, as a direct application of their easy witness lemma (which is
the core technical result of [23]) also only proves (L1). Nonetheless, [23] resolved this issue

4 Our formal definition of MAC is slightly more technical and contains more languages (see the full version
for details), but for the sake of the introduction, it might be easier to think of this simpler definition.

5 The hard language also needs one bit of advice per input length, we omit this technical issue in the
introduction. We also indeed prove a weakly average-case lower bound against AC0

d⋆
[m⋆]; see the full

version for more detail.
6 This is weaker than the “almost almost-everywhere” hardness notion in [23].
7 We remark that there are previous papers [20, 5] that simplifies some parts of Williams’ original

proof [36]. However, these works do not change the high-level structure of Williams’ proof: they still
argue by a proof of contradiction using an easy witness lemma. Our goal here is to eliminate the proof
by contradiction completely.
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by proving that (L1) implies (L2) via a simple win-win analysis.9 Unfortunately, we do not
know how to get rid of this particular win-win analysis and leave this as an intriguing open
question. Still, we believe that a direct proof of (L1) is already sufficiently interesting.

In Section 2, we give a detailed overview of new derandomization-centric alternative
proofs for the main results of both [23] and [9].

1.1.2 An improved derandomization of MAACC0

Our next result is an improvement of the derandomization of MAACC0 from [7]. Below,
NTIMEGUESS[T (n), G(n)] denotes the class of languages computable by nondeterministic
algorithms with T (n) time and G(n) bits of nondeterminism.

▶ Theorem 2.

MAACC0 ⊂ i.o.-NTIMEGUESS[2polylog(n), poly(n)].

Theorem 2 is most interesting when viewed as a derandomization of randomized proof
systems. It says that we can derandomize Merlin Arthur proof systems with ACC0 verifier
into a nondeterministic proof system with roughly the same proof length, albeit the running
time goes up to a quasi-polynomial of the original running time. We hope such derandom-
ization might have some applications in the derandomization of some recently purposed
algebraic proof systems whose verifiers are randomized (i.e., they are MA proof systems), for
example [14].

As a consequence of Theorem 2, we give another proof of a result by [32].

▶ Corollary 3 ([32]). For every α(n) ≥ ω(1),

NTIMEGUESS[2polylog(n), nα(n)] ̸⊂ ACC0.

Combining the win-win argument from [9], we also strengthen Corollary 3 to the average-
case, thus improving on [9].

▶ Theorem 4. There is a β ∈ N such that for every α(n) ≥ ω(1), NTIMEGUESS[2logβ n, nα(n)]
cannot be 1/2 + 1/poly(n)-approximated by ACC0.

Indeed, similar to all previous works following the algorithmic method, we prove a
generic connection between circuit analysis algorithm and NTIMEGUESS[2polylog(n), nω(1)]
lower bounds; see the full version for formal statements.

1.1.3 An improved lower bound for NEXP against ACC0

Our third result is an improvement over the original lower bound for NEXP against ACC0

in [39]. Roughly speaking, we say that a reasonable time-bound10 function g(n) is sub-half-
exponential if for every k ∈ N, g(g(n)k)k ≤ 2no(1) , and we say call g sub-third-exponential if
g(g(g(n)k)k)k ≤ 2no(1) for every k ∈ N. In [39], it was proved that NEXP has no sub-third-
exponential-size ACC0 circuits. We improve that size bound to be sub-half-exponential.

9 If P ̸⊂ ACC0, clearly (L2) is true. If P ⊂ ACC0, then P/poly collapsed to AC0
d⋆

[m⋆] for some fixed
d⋆, m⋆ ∈ N≥1, hence (L1) implies NQP ̸⊂ P/poly.

10 see the full version for a formal definition.
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▶ Theorem 5. For every sub-half-exponential reasonable time-bound function g(n), NE has
no g(n)-size ACC0 circuits.11

Although our proof of Theorem 5 is still an indirect argument via a win-win analysis that
is similar to and inspired by [33], we managed to nicely abstract out the indirect part by the
following lemma. Recall that E := TIME[2O(n)] denotes the class of languages computable by
single exponential-time deterministic algorithms.

▶ Lemma 6 (Informal). Let g(n) be a sub-half-exponential reasonable time-bound function.
Assume that E has g(n)-size ACC0 circuits. Then

MATIMEACC0

[
2no(1)

]
̸⊂ i.o.-SIZE[g(n)].

Theorem 5 then follows immediately by the following win-win argument: If E has no g(n)-
size ACC0, then we are done; otherwise, we apply our quasi-polynomial-time derandomization
to show

MATIMEACC0 [2no(1)
] ⊆ i.o.-NTIME[2n],

which immediately implies that NTIME[2n] ̸⊂ SIZE[g(n)].

1.1.4 An improved construction of PSPACE-complete language
Finally, as a key technical ingredient behind the proof of Theorem 1, we construct a PSPACE-
complete language with several nice reducibility properties that can all be implemented by
non-adaptive AC0[2] circuits; see the full version for formal definitions of these properties.

▶ Theorem 7. There is a PSPACE-complete language LPSPACE that is paddable, non-adaptive
AC0[2] downward self-reducible, non-adaptive AC0[2] same-length checkable and non-adaptive
AC0[2] weakly error correctable.

Theorem 7 improved upon a similar construction from [6, 9] (following [31, 26]), which gave
a PSPACE-complete language that is paddable, non-adaptive TC0 downward self-reducible,
non-adaptive TC0 same-length checkable and non-adaptive TC0 weakly error correctable.

1.2 Intuition
Let us briefly discuss the intuition behind our results.

Lower bounds for MAACC0 and construction of PSPACE-complete languages. We will first
discuss the intuition and technical challenges behind the proof of Theorem 1 and Theorem 7.
Our proof of Theorem 1 follows the proof of a similar statement from [6].12 In the following,
we will ignore all minor details and only focus on the part relevant to us. In the framework
of [6], to prove a lower bound against C circuits, the verifier of the constructed hard MA
language first guesses a C circuit C of a certain size and then runs the instance-checker
of the PSPACE-complete language from [6]. Thus, because the PSPACE-complete language
from [6] only admits a TC0 instance checker, the complexity of the verifier above is at least
TC0, even if we only aim to prove lower bounds against weaker classes such as ACC0.

11 Here NE := NTIME[2O(n)].
12 Roughly speaking, [6] proved that MATIMENC[2polylog(n)] has no logd n-depth circuits for any fixed d.
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Since our new Theorem 7 improves the instance-checker complexity of the PSPACE-
complete language to AC0[2], we managed to prove Theorem 1 by plugging this new ingredient
into the old framework of [6]. Along the way, we need several clever technical manipulations.

Next, we explain the ideas and technical challenges behind our proof of Theorem 7. It
is instructive to recap some relevant details from the construction of the PSPACE-complete
language LChe19 from [6]. Roughly speaking, on input length n, LChe19 computes a polynomial
Pn : Fm(n)

n → Fn, where Fn = GF(2r(n)) for some r(n) ∈ N≥1. Omitting many details,13

the computational bottleneck in implementing these reducibility properties (say, instance-
checkability) is indeed polynomial interpolation on a single variable. That is, for example, for
some fixed x2, . . . , xm(n) ∈ Fn, we wish to interpolate a polynomial p : Fn → Fn such that
p(x) = Pn(x, x2, . . . , xn) for every x ∈ Fn, given oracle access to Pn.

A direct algorithm for the task above first queries Pn to obtain Pn(zℓ, x2, . . . , xn) for
ℓ ∈ [d+1], where zℓ is the ℓ-th element in Fn and d is the degree of Pn, and then uses Lagrange
interpolation to obtain the description of p. Unfortunately, the Lagrange interpolation (as
well as other interpolation methods) requires multiplying at least d elements from Fn together.
Since d ≥ n in [6], we will need a TC0 circuit [17, 16] to compute the interpolated polynomial p.

To improve the complexity of computing p to AC0[2], we observe that for the argument
above to work, d only has to be greater than the maximum individual degree of Pn as opposed
to the total degree.14 Moreover, interpolation over Fn for a constant-degree polynomial can
be done in AC0[2]. Hence, we made several careful non-trivial modifications to the language
LChe19 so that the corresponding polynomials always have a constant maximum individual
degree while preserving the required AC0[2] downward self-reducibility. These modifications
allow us to implement the instance checker in AC0[2]; see the full version for more detail.

Improved derandomization of MAACC0 . Next we discuss the intuition behind the proof
of Theorem 2.

Fix d⋆, m⋆ ∈ N≥1, our goal is to derandomize MAAC0
d⋆

[m⋆] into
NTIMEGUESS[2polylog(n), poly(n)]. Let C = AC0

d⋆
[m⋆]. For the sake of gaining intu-

ition, let us assume that we have a magical PRG construction G, such that when given a
function f : {0, 1}n → {0, 1} that is worst-case hard against S(n)-size C circuits, Gf takes
O(n) bits of seeds and fools all S(n)-size C circuits.15 Then we can start from the worst-case
witness lower bound against C from [33]. Roughly speaking, [33] proved that there exists
ε ∈ (0, 1) and a linear time algorithm Vtt : {0, 1}∗ → {0, 1}, such that for infinitely many
n ∈ N, Vtt(tt(f)) = 1 for some f : {0, 1}n → {0, 1},16 and for every f : {0, 1}n → {0, 1}
such that Vtt(tt(f)) = 1, we know that f has no 2nε-size C circuits. Again, for the sake
of intuition, we assume that the condition above holds for all n ∈ N, instead of only for
infinitely many n ∈ N.

Making these two unrealistic assumptions, we can easily derandomize MATIMEC [n]. Let
L ∈ MATIMEC [n] and V (x, y, z) be its verifier, such that x ∈ L implies that there exists
y ∈ {0, 1}n such that Prz[V (x, y, z) = 1] ≥ 2/3, and x /∈ L implies that for all y ∈ {0, 1}n

we have Prz[V (x, y, z) = 1] ≤ 1/3. We can construct the following new verifier V ′(x, (y, f)),

13 These polynomials are derived from the proof of IP = PSPACE [21, 29], following [31].
14 The individual degree of a polynomial p with respect to a variable xi, is the largest power of xi appearing

in a monomial of p.
15 This PRG is too-good-to-be-true for two reasons: it starts from worst-case hardness instead of average-

case hardness, and the circuit size it fools has no loss compared to its hardness. But we only use it to
highlight the key intuition behind our proof.

16 For a function f : {0, 1}n → {0, 1}, tt(f) denotes the 2n-length string that represents the truth-table of
f .
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where 2logε |f | = n (i.e., |f | = 2log1/ε n.) V ′ first verifies that Vtt(f) = 1, and then verifies
that Prs∈O(log |f |)[V (x, y, Gf (s)) = 1] ≥ 1/2. We can see that V ′ runs in quasi-polynomial
time, and indeed V ′ puts L ∈ NQP.

However, the derandomization above requires that the whole truth-table f is given as
the witness, which has length |f | = 2polylog(n). To improve this, we consider a thought
experiment: letting ℓ = log |f | = log1/ε n, what if for some f : {0, 1}ℓ → {0, 1} such that
Vtt(tt(f)) = 1, f indeed has a 22·ℓε-size C circuit? Assuming this is true, then we observe
that we do not have to guess the whole truth-table f in our verifier V ′ anymore, and can
instead just guess a 22·logε |f | = poly(n)-size circuit C : {0, 1}log1/ε n → {0, 1} and use its
truth-table as f ! Hence, in this thought experiment, we dramatically reduce our witness
length from 2polylog(n) to poly(n).

Of course, what if the hypothesis in our thought experiment is not true? Namely, what if
for every f : {0, 1}ℓ → {0, 1} such that V (tt(f)) = 1, f has no 22·ℓε-size C circuits as well?
Staring at this for a moment, one can realize that now V certifies not only 2ℓε hardness,
but indeed 22·ℓε hardness! This essentially means that we can keep doing this argument
and eventually obtain a quasi-polynomial-time derandomization of MAC with only poly(n)
witnesses.

Of course, the above is just an idealized setting that captures our key ideas; see the full
version for detailed proofs of how we managed to get rid of the “magic PRG assumption”
using machinery developed in [7].

2 Overview of the Derandomization-centric Perspective on the
Algorithmic Method

This section aims to give a detailed overview of the derandomization-centric perspective on
the algorithmic method.

In Subsection 2.1, we will first provide an overview of the original proofs from [39] and [23].
We will give a somewhat different presentation from that of [39, 23]. Our presentation is
centered around the concept of easy witness lemmas (EWLs), which converts witness lower
bounds into circuit lower bounds for nondeterministic time classes. Thus, we can decompose
the proof into two parts: first, we prove a witness lower bound; second, we apply an easy
witness lemma to convert the obtained witness lower bound into a circuit lower bound for
nondeterministic time classes.

Next, in Subsection 2.2, we give an overview of our results on circuit lower bounds for
nondeterministic time classes, which follows a derandomization-centric perspective. Roughly
speaking, our proofs are centered around derandomization of Merlin-Arthur classes. Our
proofs for lower bounds for nondeterministic time classes can also be naturally decomposed
into two parts: first, we prove a circuit lower bound for a certain subclass of Merlin-Arthur
protocols; second, we derandomize the same subclass into a nondeterministic time class. To
obtain average-case circuit lower bounds for nondeterministic time classes, it amounts to
start from average-case lower bounds for Merlin-Arthur classes and apply a careful win-win
analysis (adopted from [9]).

We first recall the definitions of the following standard derandomization problems.

CAPP (Circuit Acceptance Probability Problem) with error δ (denoted CAPPδ):
Given a circuit C on n inputs, estimate Prx∈R{0,1}n [C(x) = 1] within an additive error of
δ. When not explicitly stated, δ is set to be 1/3 by default.
CAPP with inverse-circuit-size error (denoted as C̃APP): Given a circuit C of size
S on n input bits, estimate Prx∈{0,1}n [C(x) = 1] within an additive error of 1/S.
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Notation. We use N to denote all non-negative integers and N≥1 to denote all positive
integers. We say a circuit class C is concrete if we can talk about the C complexity of
a single function f : {0, 1}n → {0, 1} (as opposed to a family of functions {fn}n∈N≥1). For
example, for fixed d, m ∈ N≥1, AC0

d[m] is a concrete circuit class, but AC0 is not (because the
depth can vary). We say a concrete circuit class C is typical if it is closed under (1) taking
the negation of the output, (2) taking the projections of the input, and (3) flipping input
bits.

2.1 An Overview of Williams’ EWL-centered Proofs
We begin by formally stating the generic connection between non-trivial circuit analysis
algorithms and lower bounds from [37, 39, 23].17

▶ Theorem 8 ([37, 39]). Let C be a typical concrete circuit class. If there is a 2n/nω(1)-time
algorithm for CAPP of poly(n)-size n-input AC0

2 ◦ C circuits, then NE ̸⊂ C .

▶ Theorem 9 ([23]). Let C be a typical concrete circuit class and ε ∈ (0, 1). If CAPP for
2nε-size AC0

2 ◦ C can be solved in 2n/nω(1) time, then NQP ̸⊂ C .

Notation. Let s : N → N and C be a concrete circuit class. We say that NE does not admit
s(n)-size C witnesses, if there exists a verifier V (x, y) that takes input |x| = n, |y| = 2n and
runs in 2O(n) time, such that for infinitely many x ∈ {0, 1}∗, the following hold:
1. there exists y ∈ {0, 1}2|x| such that V (x, y) = 1;
2. for every y ∈ {0, 1}2|x| such that V (x, y) = 1, it follows that func(y) has no s(n)-size C

circuit.18

Moreover, we say that unary NE does not admit s(n)-size C witnesses, if for some verifier
V and for infinitely many n ∈ N≥1, the above two conditions hold for x = 1n. This is a
stronger statement and implies that NE does not admit s(n)-size C witnesses.

2.1.1 Overview for the proof of Theorem 8
The easy witness lemma of [18] says the following:

▶ Lemma 10 (EWL for NE [18]). Let C be a typical concrete circuit class. If NE does not
admit poly(n)-size C witnesses19, then NE ̸⊂ C .

Indeed, the original statement says the contrapositive of Lemma 10: if NE ⊆ C , then NE
admits polynomial-size C witnesses. Hence the name of easy witness lemma (i.e., NE admits
small circuit implies that NE admits easy witnesses).20 We present it in this way since it is
clear that witness lower bounds imply circuit lower bounds.

Williams then gave a way to prove witness lower bounds from non-trivial derandomization.
The lemma below is from [38], but the proof ideas are similar to that from [37, 39].

17 We remark that in Theorem 8 and Theorem 9, CAPP can be replaced by Gap-UNSAT: a circuit-analysis
problem that is weaker than both CAPP and SAT (see [23] for details). We will work with CAPP for
simplicity.

18 Here we use func(y) to denote the |x|-bit Boolean function whose truth-table is y.
19 More precisely, NE does not admit nk-size C witnesses for every k ∈ N≥1.
20 [18] indeed talks about NEXP instead of NE; we choose to work with NE since it simplifies the discussions.
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Non-trivial derandomization of C

C witness lower bounds
(Lemma 11 and Lemma 13)

Easy witness lemmas
(Lemma 10 and Lemma 12)

NE/NQP lower bounds against C

(Theorem 8 and Theorem 9)

Figure 1 High-level structure of Williams’ EWL-centered proofs.

▶ Lemma 11 ([38]). Let C be a typical concrete circuit class. If CAPP for polynomial-size
AC0

2 ◦ C circuits can be solved in 2n/nω(1) time, then unary NE does not admit poly(n)-size
C witnesses.

Combining Lemma 10 and Lemma 11 immediately proves Theorem 8.

2.1.2 Overview for the Proof of Theorem 9
To obtain lower bounds for NQP, [23] proved the following easy witness lemma. Again, we
state their lemma in the contrapositive.

▶ Lemma 12 (EWL for NQP [23]). Let C be a typical concrete circuit class. If NE does not
admit 2nε-size C witnesses for some ε ∈ (0, 1), then NQP ̸⊂ C .

We note that the lemma above is weaker than the easy witness lemma for NQP in [23],21

but we observe that it still suffices for circuit lower bounds for NQP. To obtain NQP ̸⊂ C ,
we need the following adaption of Lemma 11.

▶ Lemma 13 ([38]). Let C be a typical concrete circuit class and ε ∈ (0, 1). If CAPP for
2nε-size AC0

2 ◦ C can be solved in 2n/nω(1) time, then unary NE does not admit 2nε/2-size C

witnesses.

Now, combining Lemma 12 and Lemma 13, Theorem 9 follows immediately.

2.2 NQP Lower Bounds via Derandomization of Merlin-Arthur Protocols
In the rest of this section, we give outlines of our alternative proofs of the following two
results: (1) NQP ̸⊂ ACC0 [23] and (2) there is a constant β ∈ N≥1 such that NTIME[2logβ n]

21 Its contrapositive says that if NQP ⊂ C , then NE admits 2nε

-size C witnesses for every ε ∈ (0, 1); this
consequence is weaker than NQP admits polynomial-size C witnesses.
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Non-trivial derandomization of C

Derandomization of MAC into NQP
(Theorem 14)

MAC lower bounds against C NQP lower bounds against C

Figure 2 High-level structure of the new derandomization-centric perspective for proving NTIME
lower bounds.

cannot be 1/2+1/poly(n)-approximated by poly(n)-size ACC0 circuits [9].22 See Theorem 19
and Theorem 23 for detailed statements. In the full version, we prove stronger versions
of Theorem 19 and Theorem 23 using our improved NPRG construction from, but the proof
outlines are identical.

Derandomization of MAC . Recall that MAC denotes the sub-class of Merlin-Arthur
protocols whose verification can be simulated by C circuits for every possible witness, and
NPRG is a weaker version of PRG that suffices to derandomize Merlin-Arthur protocols; see
the full version for formal definitions.

The following theorem is from [7].

▶ Theorem 14 ([7, Theorem 7.1]). Let C be a typical concrete circuit class and ε ∈ (0, 1).
Suppose that C̃APP of 2nε-size AND4 ◦ C ◦ AC0

2 circuits can be solved in 2n−nε time. Then
there is a δ ∈ (0, 1) and an infinity often NPRG for 2nδ -size C circuits with error 2−nδ ,
seed-length poly(n), and 2poly(n) running time. Consequently, MAC ⊆ i.o.-NTIME[2logβ n]
for some β ∈ N≥1.

2.2.1 NQP Lower Bounds via Derandomization
In order to apply Theorem 14 to get circuit lower bounds for NQP, (roughly speaking) we will
prove an MAC lower bounds against C . In more detail, we will prove the following theorem.

22We note that both of [23] and [9] indeed proved NQP lower bounds against 2loga n-size ACC0 circuits
for every a ∈ N≥1. We only consider lower bounds against all polynomial-size ACC0 circuits in this
paper for simplicity, but our proofs can be straightforwardly modified to prove the same lower bounds
from [23, 9].
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▶ Theorem 15. Let C be a typical concrete circuit class. There is a universal constant
dv ∈ N≥1 such that for all a ∈ N≥1, it holds that(

MAAC0
dv

[2]◦C

)
/1

̸⊂ C -SIZE[na].

It seems that assuming the required C̃APP algorithm for AC0
dv+1[2] ◦ C ◦ AC0

2 and ap-
plying Theorem 14,23 we will be able to derandomize the hard

(
MAAC0

dv
[2]◦C

)
/1

language

from Theorem 15 into NTIME[2logβ n] (we ignore the extra one bit of advice in the hard
language for now), which should imply NQP ̸⊂ C . However, there is a huge caveat that we
explain below.

Retaining the hardness after derandomization. The issue is that the MA/1 hard language
L from Theorem 15 is only infinitely often hard, meaning that we only know for infinitely
many input lengths n ∈ N≥1, Ln is hard against C circuits. Also, the derandomization
of Theorem 14 works infinitely often too, in the sense that our new NQP language L′ only
agrees with the hard language L on infinitely many input lengths n. Let Ihard and Iderand be
the input lengths that Ln is hard and L′

n = Ln, respectively. We see that it is possible that
Ihard ∩ Iderand = ∅, meaning that our new NQP language L′ does not retain any hardness of L.

Following [23], the idea is to make both Ihard and Iderand larger so that they must intersect
at infinitely many input lengths.

In more detail, we first strengthen Theorem 14 by showing the following theorem.

▶ Theorem 16. Let C be a typical concrete circuit class. Suppose that there is a constant
ε ∈ (0, 1) and an infinity often NPRG for 2nε-size C circuits with poly(n) seed-length and
2poly(n) running time.

Then, there is a constant β ∈ N≥1 that only depends on ε such that for every L ∈ (MAC )/1

and c ∈ N≥1, there is an L′ ∈ NTIME[2logβ n]/O(log log n) such that for infinitely many n ∈ N,
for every m ∈ [n, nc], L and L′ agree on all m-bit inputs.

Combining Theorem 14 and Theorem 16, we immediately have the following strengthening
of Theorem 14.

▶ Corollary 17. Let C be a typical concrete circuit class and ε ∈ (0, 1). Assuming the
hypothesized C̃APP algorithm from Theorem 14, the conclusion of Theorem 16 holds.

Roughly speaking, Corollary 17 says that by allowing O(log log n) bits of advice, we can
enlarge Iderand from a set of infinitely many integers to a union of infinitely many segments
of the from [n, nc], where c is a constant of our choice.

Next, we have the following strengthening of Theorem 15, which fits perfectly with the
larger Iderand above.

▶ Theorem 18. Let C be a typical concrete circuit class. There is a universal constant
dv ∈ N≥1 such that for all a ∈ N≥1, there is a constant c ∈ N≥1 and a language L ∈(

MAAC0
dv

[2]◦C

)
/1

such that, for all large enough n ∈ N≥1, there exists m ∈ [n, nc] such that
Lm does not have ma-size C circuits.

23We recommend reader to think of C = AC0
d[6] for some large constant d ∈ N≥1, then we only need

non-trivial C̃APP for AC0
d+O(1)[6], which follows from [39, 34].
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Essentially, it says that we can enlarge Ihard to be a hitting set for all segment [n, nc]:
for every large enough n ∈ N≥1, [n, nc] ∩ Ihard ̸= ∅. This fits perfectly with the Iderand
above, which consists of infinitely many segments of the form [n, nc]. Hence, we have that
Ihard ∩ Iderand is an infinite set.

Therefore, combining Corollary 17 and Theorem 18, we immediately have the following
theorem.24

▶ Theorem 19. Let C be a typical concrete circuit class, ε ∈ (0, 1), and dv ∈ N≥1 be the
constant from Theorem 18. Suppose that C̃APP of 2nε-size AC0

dv+1[2] ◦ C ◦ AC0
2 circuits can

be solved in 2n−nε-time. Then NQP ̸⊂ C .

As a corollary from the theorem above and Williams’ #SAT algorithm for ACC0 [39, 34],
we immediately have that NQP ̸⊂ AC0

d⋆
[m⋆] for every d⋆, m⋆ ∈ N, which implies NQP ̸⊂, as

discussed in Subsubsection 1.1.1.

2.2.2 Average-case Lower Bounds for NQP via Randomized Encodings
Finally, we strengthen Theorem 19 to give average-case lower bounds as well. Given
the discussions above, it seems that we can simply strengthen the MAC lower bounds
of Theorem 18 to average-case, and our derandomization from Corollary 17 would immediately
imply average-case lower bounds for NQP.

We are indeed able to strengthen Theorem 18 to an average-case lower bound, but only
with very weak inapproximability.

▶ Theorem 20. Let C be a typical concrete circuit class. There are universal constants
dv, τ ∈ N≥1 such that for all a ∈ N≥1, there is a constant c ∈ N≥1 and a language L ∈(

MAAC0
dv

[2]◦C

)
/1

such that, for all large enough n ∈ N≥1, there exists m ∈ [n, nc] such that

Lm cannot be (1 − m−τ )-approximated by ma-size C circuits.25

Combining with Corollary 17, we immediately have the following theorem.

▶ Theorem 21. Let C be a typical concrete circuit class, ε ∈ (0, 1), and dv, τ ∈ N≥1 be the
constants from Theorem 20. Suppose that C̃APP of 2nε-size AC0

dv+1[2] ◦ C ◦ AC0
2 circuits can

be solved in 2n−nε time. Then NQP cannot be (1 − n−τ )-approximated by poly(n)-size C

circuits.

To improve the inapproximability of Theorem 21 from 1−n−τ to 1/2+1/poly(n), we wish
to perform some mild-to-strong average-case hardness amplification (e.g., an XOR Lemma).
Unfortunately, we currently do not have such an amplification for weak circuit classes such
as ACC0 (and there are barriers against such possibilities, see, e.g., [28, 13]).

Chen and Ren [9] overcame the issue above with a clever win-win argument based on
randomized encodings [19, 2] and approximate linear sums. Recall that for a Sum ◦ C circuit
L =

∑
i∈[m] αi · Ci (where each Ci is a C circuit), the complexity of L is defined as

max

 ∑
i∈[m]

|αi|,
∑

i∈[m]

SIZE(Ci)

 .

24 A direct application of Corollary 17 yields a hard language in NQP/O(log log n) instead of just NQP.
Those advice can nonetheless be removed via a straightforward enumeration trick (from [11]).

25 We remark that in the full version we will indeed prove a stronger version where the hard language L is
in

(
(MA ∩ coMA)AC0

dv
[2]◦C

)
/1

. We will discuss why this is needed at the end of this subsection.
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For a function F : {0, 1}n → {0, 1}, we say that F admits a S̃umδ ◦ C circuit of complexity S,
if there exists a Sum ◦ C circuit L with complexity at most S, such that |F (x) − L(x)| ≤ δ

for every x ∈ {0, 1}n.
Using the techniques from randomized encodings, [9] proved the following win-win result.

▶ Lemma 22 ([9]). Let C be a typical concrete circuit class. There is a language L ∈ P such
that one of the following holds:
1. For every k ∈ N≥1, L cannot be (1/2 + n−k)-approximated by nk-size C circuits.
2. There is a constant γ ∈ N≥1 such that every S-size formula admits a S̃um0.01 ◦ C circuit

of complexity Sγ .

In other words, either (Item (1)) we already have strongly average-case lower bounds for
P against C , or (Item (2)) formulas can be simulated by S̃um ◦ C with a polynomial blow-up
in size. The key observation now is that an NPRG that fools C circuits with a small error
also fools functions admitting low-complexity S̃um ◦ C circuits. Hence, now we are able to
perform the following win-win analysis:

Suppose Item (1) of Lemma 22 holds. Then it immediately follows that NQP cannot be
(1/2 + 1/poly(n))-approximated by poly(n)-size C circuits.
Otherwise, Item (2) of Lemma 22 holds. Then under the condition of Theorem 14, we
would have i.o. NPRG for formulas (note that the i.o. NPRG from Theorem 14 indeed
has a small error). Applying Theorem 16, this implies that we can now derandomize
MAFormula as follows:
There is a constant β ∈ N≥1 such that for every L ∈ (MAFormula)/1 and every c ∈ N≥1,
there is an L′ ∈ NTIME[2logβ n]/O(log log n) such that for infinitely many n ∈ N, for every
m ∈ [n, nc], L and L′ agree on all m-bit inputs.
Noting that formulas are closed under taking an AC0[2] circuit at the top, we now can
use the derandomization above together with Theorem 20 to obtain an NQP language
that is (1 − n−τ )-hard against polynomial-size formulas, which can then be amplified
to (1/2 + 1/poly(n))-hardness against formulas, using mild-to-average-case hardness
amplification for formulas.
If we further assume that C can be simulated by Formula, then we also have that NQP
cannot be 1/2 + 1/poly(n)-approximated by poly(n)-size C circuits.

To summarize, we have the following theorem.

▶ Theorem 23 (strong average-case lower bound for NQP via an additional win-win argument).
Let C be a typical concrete circuit class that can be simulated by formulas. Suppose that for
some η ∈ (0, 1), C̃APP of 2nη -size AND4 ◦ C ◦ AC0

2 circuits can be deterministically solved
in 2n−nη time. Then, there is β ∈ N≥1 such that NTIME[2logβ n] cannot be 1/2 + 1/poly(n)-
approximated by poly(n)-size C circuits.

Note that applying the theorem above directly only shows that for every d⋆, m⋆ ∈ N≥1,
there is β ∈ N≥1 that depends on d⋆, m⋆ such that NTIME[2logβ n] cannot be 1/2+1/poly(n)-
approximated by poly(n)-size AC0

d⋆
[m⋆] circuits. To swap the quantifiers before d⋆, m⋆ and

β, we can apply another win-win analysis from [9]; see the full version for details.
Finally, we give one technical remark.

Mild-to-strong hardness amplification requires (N∩coN)QP lower bounds. Recall that
we wish to apply an XOR Lemma to the mildly average-case hard NQP language L from The-
orem 21. This causes a subtle issue: L⊕2(x, y) := L(x) ⊕ L(y) may not be in NQP, since to
certify L⊕2(x, y) = 1, one needs to prove exactly one of L(x) and L(y) is 1 and the other
one is 0; we cannot prove (say) L(y) = 0 since this requires that L ∈ coNQP.
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To resolve this issue, we wish to get a mildly average-case hard language L from
(N∩coN)QP instead of NQP. It is easy to see that the derandomization from Corollary 17
also derandomize (MA ∩ coMA)/1 languages into (N∩coN)QP/O(log log n) languages. Hence,
we strengthen Theorem 20 so that the hard languages now belong to (MA ∩ coMA)/1.
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Abstract
Following Razborov and Rudich, a “natural property” for proving a circuit lower bound satisfies three
axioms: constructivity, largeness, and usefulness. In 2013, Williams proved that for any reasonable
circuit class C , NEXP ̸⊂ C is equivalent to the existence of a constructive property useful against C .
Here, a property is constructive if it can be decided in poly(N) time, where N = 2n is the length of
the truth-table of the given n-input function.

Recently, Fan, Li, and Yang initiated the study of black-box natural properties, which require
a much stronger notion of constructivity, called black-box constructivity: the property should be
decidable in randomized polylog(N) time, given oracle access to the n-input function. They showed
that most proofs based on random restrictions yield black-box natural properties, and demonstrated
limitations on what black-box natural properties can prove.

In this paper, perhaps surprisingly, we prove that the equivalence of Williams holds even with
this stronger notion of black-box constructivity: for any reasonable circuit class C , NEXP ̸⊂ C is
equivalent to the existence of a black-box constructive property useful against C . The main technical
ingredient in proving this equivalence is a smooth, strong, and locally-decodable probabilistically
checkable proof (PCP), which we construct based on a recent work by Paradise. As a by-product,
we show that average-case witness lower bounds for PCP verifiers follow from NEXP lower bounds.

We also show that randomness is essential in the definition of black-box constructivity: we
unconditionally prove that there is no deterministic polylog(N)-time constructive property that is
useful against even polynomial-size AC0 circuits.
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1 Introduction

In a seminal paper [30], Razborov and Rudich argued the following:
1. Most known proofs of circuit lower bounds yield an efficient algorithm (called a natural

property) which takes Boolean truth tables of functions as input, accepts a large fraction
of its inputs, and rejects all functions computable in some circuit class C . (These kinds
of proofs are called “natural proofs”.)

2. Such an efficient algorithm would imply that C cannot support exponentially secure
pseudorandom functions (PRFs), as the algorithm could break any such candidate.

Since PRFs are widely believed to be implementable with even TC0 circuits (constant-depth
circuits of polynomial size, consisting of MAJORITY and NOT gates) [24, 19, 22], the
Razborov-Rudich barrier strongly suggests that proofs yielding natural properties cannot
prove lower bounds against weak circuit classes such as TC0. In this paper, we reconsider
the question of how to “avoid” natural proofs.
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To formally discuss the barrier, we begin with some notation. Let Bn denote the set of
all n-bit Boolean functions. We use N to denote 2n (the length of a truth table of a function
in Bn). A promise property has the form P = {(Pyes

n ,Pno
n )}n∈N, where Pyes

n ,Pno
n ⊆ Bn and

Pyes
n ∩ Pno

n = ∅ for each n ∈ N. When Pyes
n ∪ Pno

n = Bn, we simply call P a property. (The
original paper [30] only considered properties of Boolean functions; here we consider “promise”
versions, as we wish to study sub-linear time decidable properties.)

Let Γ be a complexity class, and let C be a circuit class. A Razborov-Rudich natural
property satisfies three criteria, defined as follows.

▶ Definition 1.1 (Natural Property). Let P be a promise property.
(Usefulness) We say P is useful against C of size s(n), if (1) |Pyes

n | ≥ 1 for every n ∈ N and
(2) for every function family f = {fn ∈ Bn}n∈N such that f admits s(n)-size C circuits,
there are infinitely many n ∈ N such that fn ∈ Pno

n .1
We say P is useful against C if it is useful against nk-size C circuits for all k ∈ N.

(Largeness) We call P large if there is a polynomial p : N→ N such that for all but finitely
many n ∈ N, Prf∈Bn [f ∈ Pyes

n ] ≥ 1/p(n).
(Constructivity) We say that P is Γ-constructive, if there is a promise-Γ algorithm A such

that for every f ∈ Pyes
n , A(tt(f)) accepts and for every f ∈ Pno

n , A(tt(f)) rejects.
A Γ-natural property against C [30] is a Γ-constructive large property useful against C .2

Circumventing Natural Properties. Since Razborov and Rudich’s work, a considerable
amount of effort (see, e.g., [1, 13, 10]) has gone into the problem of circumventing the
natural proofs barrier, by identifying properties of functions which fail to satisfy one of the
three criteria of natural properties. The usefulness criterion is necessary3, so the goal is
to find properties avoiding either constructivity (the property does not admit an efficient
algorithm) or largeness (the property does not accept a large fraction of functions). In 2013,
Williams [36] proved that constructivity is unavoidable, in a rigorous sense: if even
“weak” circuit lower bounds hold (against NEXP) then there must exist properties satisfying
both constructivity and usefulness.

▶ Theorem 1.2 ([36, 33]). Let C ∈ {AC0, ACC0, TC0, NC1, NC, P/poly}. The following are
equivalent:

NEXP ̸⊂ C .
There is a P/ log N -constructive property useful against C .4

This theorem suggests that we should focus on looking for hard properties that are easily
recognizable on specific functions, but generally do not hold for random functions or for
“easy” functions.

Another Crack in The Natural Proofs Barrier? One potential weakness of the Natural
Proofs barrier is that it does not seem to apply to proving fixed-polynomial size lower
bounds (for a reference, see the discussions by Allender and Koucký in [1, 2]). For example,

1 In particular, this means for every function family f = {fn}n∈N such that fn ∈ Pyes
n , f does not have

s(n)-size C circuits.
2 We also refer to P-natural properties as simply “natural properties”. Razborov and Rudich [30] proved

that assuming there are exponentially secure PRFs computable by C , there is no natural property useful
against C . Indeed, the same argument also shows there is no P-constructive large promise property
useful against C , under the same assumption.

3 f /∈ C if and only if there is a property that accepts f , and rejects all functions computable by C .
4 Recall that P/ log N denote the class of poly(N) time algorithm with log N bits of advice on N -bit inputs.
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the best known size lower bounds against DeMorgan formulas have been stuck at nearly cubic
(n3−o(1)) for more than two decades [4, 17],5 and the Natural Proofs barrier apparently does
not say anything about the hardness of proving n3+ε-size DeMorgan formula lower bounds.

Partially motivated by this limitation, a line of work on amplifying hardness or hardness
magnification [2, 20, 26, 21, 25, 11] suggested a way to bypass the Natural Proofs barrier
with a two-step process:
(1) prove a weak (fixed-polynomial, say n3+ε-size) lower bound for a specific function, and
(2) prove some “bootstrapping” or “hardness magnification” result showing that the weak

lower bound actually implies a desired super-polynomial lower bound.

These hardness magnification phenomena are especially interesting because of certain
“threshold” phenomena, where one can prove decent weak lower bounds for a specific function,
and one can prove that slight improvements over the decent lower bound would imply
breakthrough lower bounds. For instance, Chen, Jin, and Williams [12] proved that (1) a
sparse variant of MCSP does not have n2−o(1)-size probabilistic De Morgan formulas and (2)
if the lower bound could be improved to n2+ε size6, then we would have major breakthroughs
in complexity theory: more precisely, NP does not have nk-size formulas for every k ∈ N,
and ⊕P ̸⊂ NC1.

Black-Box Natural Properties: Another Barrier. To better understand these bootstrapping
results and their limitations, Fan, Li, and Yang [14] defined the notion of Black-Box Natural
Properties, and applied it to provide a new barrier to bootstrapping results. Black-box
natural properties are natural (promise) properties that are decidable by sublinear-time
randomized algorithms.

▶ Definition 1.3 (Black-Box Natural Properties, [14]). A black-box natural property against C

is a BPTIME[polylog(N)]-constructive large promise property useful against C . In particular,
there is a polylog(N)-time7 randomized oracle algorithm A such that for every f ∈ Pyes

n , Af

accepts with probability at least 2/3, and for every f ∈ Pno
n , Af rejects with probability at

least 2/3.

The authors showed negative results for hardness magnification, in that:
(1) all known non-trivial lower bounds for the specific functions studied in hardness magni-

fication actually yield black-box natural properties, and
(2) under plausible cryptographic assumptions, no black-box natural property can establish

the lower bounds needed in the corresponding bootstrapping results.

Taking Chen-Jin-Williams [12] as an example, their n2−o(1)-size probabilistic formula
lower bound for sparse MCSP yields a black-box natural property, but no black-box natural
property can yield a n2+ε-size lower bound against probabilistic formulas.8

5 There are some recent low-order improvements [31, 32].
6 Under plausible cryptographic assumptions, this sparse variant of MCSP is not even in P/poly, so we

definitely believe the n2+ε-size lower bound should hold.
7 That is, for every f ∈ Bn, Af runs in poly(n) = polylog(N) time.
8 We also remark that prior to Fan, Li, and Yang [14], the work [11] proposed another barrier for

bootstrapping results, called the locality barrier. We do not discuss this barrier here as it is not relevant
to the results in this paper, and refer readers to [11] for details.

ITCS 2023



35:4 Black-Box Constructive Proofs Are Unavoidable

1.1 Our Results
1.1.1 Equivalence of Black-Box Constructive Properties and Circuit

Lower Bounds
Given the results of Fan, Li, and Yang [14], suppose we still wish to apply a bootstrapping
result such as the one from Chen, Jin, and Williams [12]. We would need to find a property
that either avoids black-box constructivity, or avoids largeness (again, usefulness is necessary).
A priori, it may appear that one should try to avoid black-box constructivity, as it is an
extremely strong requirement.

Strengthening the equivalence of Williams [33], we prove that even black-box constructivity
is unavoidable for proving NEXP lower bounds. In fact, we are able to prove that NEXP ̸⊂ C

is equivalent to the existence of a much stronger type of black-box constructive property,
in which the algorithm only makes one-sided error and can distinguish hard functions from
all functions which can be approximated by small circuits. That is, the usefulness criterion
corresponds to an average-case lower bound.

▶ Theorem 1.4 (Black-Box Constructivity is Unavoidable). Let C be a circuit class such that
any s-size AC0[2] ◦ C circuit family can be simulated by an poly(n, s)-size C circuit family.
The following are equivalent:

NEXP ̸⊂ C .
There is a coRTIME[polylog(N)]/ log N -constructive property useful against avgn−6-C .

More precisely, the second item above states there is a promise property P such that:
1. (Average-case useful) For every function family f = {fn ∈ Bn}n∈N such that f can be

(1−n−6)-approximated by s(n)-size C circuits, there are infinitely many n ∈ N such that
fn /∈ Pno

n .9
2. (One-sided error) There is a polylog(N)-time randomized oracle machine A which takes

log N bits of advice, such that every f ∈ Pyes
n is accepted by A with probability 1 and

every f ∈ Pno
n is accepted by A with probability at most 1/3.

The following is an interesting corollary of Theorem 1.4, showing that average-case circuit
lower bounds follow from (worst-case) circuit lower bounds, while only assuming the weak
circuit class contains AC0[2].

▶ Corollary 1.5. Let C be a circuit class such that any s-size AC0[2] ◦ C circuit family can
be simulated by an poly(n, s)-size C circuit family. Then, NEXP ̸⊂ C implies that EXPNP

cannot be (1− 1/n6)-approximated by C .

Can These Properties be Derandomized? It is natural to ask whether we can further
strengthen Theorem 1.4 so that NEXP ̸⊂ C is equivalent to the existence of DTIME[polylog(n)]-
constructive or RTIME[polylog(n)]/ log N -constructive properties useful against C . We show
that this is impossible by proving that for essentially all circuit classes, DTIME[polylog(n)]-
constructive properties useful against them do not exist. In fact we prove that even
NTIME[polylog(N)]/polylog(N)-constructive properties do not exist for any circuit class C

that is expressible enough to simulate CNF formulas (see Section 5 for more details).

▶ Theorem 1.6. For any circuit class C such that all CNFs of t clauses have poly(n, t)-size
C -circuits, there is no DTIME[polylog(n)]-constructive property useful against C .

9 [9] studied a similar notion called tolerant natural proofs, which can be seen as natural proofs for proving
average-case circuit lower bounds.
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On the positive side, we observe two settings in which natural properties can be imple-
mented in deterministic sublinear time, by examining some random restriction lemmas from
prior work [15, 12].

▶ Theorem 1.7. For every ε ∈ (0, 1), there is a DTIME[polylog(N)]-constructive large
property useful against n2−ε-size formulas.

▶ Theorem 1.8. For every d, k ∈ N, there is a DTIME[polylog(N)]-constructive large property
useful against depth-d AC0 circuits of size nk.

It is important to note that Theorem 1.8 does not contradict Theorem 1.6, since The-
orem 1.6 only says there is no single DTIME[polylog(n)]-constructive property that is useful
against all polynomial-size CNF.

How to Remove the log N -bit Advice. Similar to Williams [33], our equivalence of black-
box constructive properties and NEXP circuit lower bounds from Theorem 1.4 requires
n = log N bits of advice for constructivity. An natural question is whether this advice can
be removed in some cases.

We show that removing the advice is possible, when the NEXP lower bound is proved via
the algorithmic method [35, 37]. Recall that CAPP (Circuit Acceptance Probability
Problem) with error δ (denoted CAPPδ) is the following problem: Given a circuit C on n

inputs, estimate Prx∈{0,1}n [C(x) = 1] within an additive error of δ.

▶ Theorem 1.9. Let K ∈ N be a sufficiently large constant. Let C be a circuit class and
s(n) ≥ n be a size parameter. If there is a 2n/n10 time CAPP0.1 algorithm for s(n)K-size
AC0

2 ◦ C circuits, then there is a coRTIME[polylog(N)]-constructive property useful against
s(n)-size C circuits.

The following corollary follows immediately from Theorem 1.9 and the CAPP algorithm
for ACC0 [37, 34]. (Indeed, the reference [34] provides an algorithm for exactly counting
satisfying assignments.)

▶ Corollary 1.10. For every constant d, m ∈ N, there is a constant ε ∈ (0, 1) and a
coRTIME[polylog(N)]-constructive property useful against 2nε-size AC0

d[m] circuits.

1.1.2 Bootstrapping Results on Black-box Natural Properties
We also obtain some new insights regarding black-box natural properties defined by Fan, Li,
and Yang [14] (i.e., BPTIME[polylog(N)]-constructive large promise properties). We prove
that black-box natural properties against rather small circuit size can be bootstrapped to
black-box natural properties against nk-size circuit classes, for every k ∈ N. This is similar
to (but not implied by) the bootstrapping results for pseudorandom functions of Fan, Li,
and Yang.

We will state our results in the context of De Morgan formulas, but we note that it
applies to all well-studied circuit classes as well; see Section 6 for details.

▶ Theorem 1.11. If there is a black-box natural property a.e.-useful against DeMorgan
formulas of size n2+ε for some ε ∈ (0, 1), then for all k ∈ N, there is a black-box natural
property a.e.-useful against formulas of size nk.10

10 See Definition 2.1 for a formal definition of a.e.-useful properties.

ITCS 2023



35:6 Black-Box Constructive Proofs Are Unavoidable

This theorem is striking in that it shows, regardless of whether PRFs exist or not, proving
an n2+ε-size formula lower bound via a black-box natural property implies superpolynomial-
size formula lower bounds (for example, NEXP ̸⊂ NC1).

Here we consider a.e.-usefulness instead of the (i.o.-)usefulness defined in Definition 1.1,
because all known black-box natural properties are indeed a.e.-useful. It is instructive to
compare Theorem 1.11 to the following result of Fan, Li, and Yang [14].

▶ Theorem 1.12 ([14]). If there is a PRF computable by formulas of polynomial size, then
there is a PRF computable by formulas of size n2.01.

We note that a black-box natural property against C implies that there is no PRF
computable in C , but the reverse direction is not known to hold. Hence, an interesting open
question is to prove an equivalence between black-box natural proofs and the non-existence
of PRFs, or to give evidence that the two notions are not equivalent.

no BB natural proof against Formula[n2.01] no BB natural proof against Formula[nk]

PRF in Formula[n2.01] PRF in Formula[nk]
[14]

Theorem 1.11

Figure 1 Relationships between black-box natural properties and PRFs.

2 Preliminaries

We assume basic knowledge to complexity theory such as the complexity classes P, NP, P/poly,
and ACC0; see the textbook by Arora and Barak [5] for an excellent reference. We define
NE = NTIME[2O(n)]. For constant depth circuit classes such as AC0, we use AC0

d to denote
its subclass of depth at most d.

Let f : {0, 1}n → {0, 1} be a Boolean function. We always use N = 2n to denote the
length of its truth table. We denote the truth table of the function f by tt(f), which is an
N -bit string, where the i-th bit (0-index, base-2) is equivalent to f(i). We define Bn as the
set of all n-bit Boolean functions.

Let C be a circuit class. We define avgδ-C to be the class of function families that are
(1− δ)-approximable by C circuits. More precisely, a function family f = {fn}n∈N belongs
to avgδ-C , if there is another function family g = {gn}n∈N ∈ C such that fn and gn agree
on a least a (1− δ) fraction of inputs from {0, 1}n for every n ∈ N.

We use the notation C -SIZE[s(n)] to denote the class of languages computable by a family
of C circuits of size at most s(n) for all sufficiently large n. Letting D be another circuit
class, we let D ◦ C be the class of circuits with C circuits in the bottom layer (nearest the
inputs) and a D circuit on the top. We say that the class C is closed under D , if D ◦C = C ,
i.e., composing with a D circuit on top does not increase the power of C . We call a circuit
class typical if it is closed under negations, projections, and conjunctions.

Let x, y ∈ {0, 1}n be two bit strings. The statistical distance between x and y is defined
by

∆(x, y) ≜ ∥x− y∥0

n
,
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where ∥x− y∥0 is the number of indices i ∈ [n] such that xi ̸= yi. We say that x is δ-close to
y if ∆(x, y) ≤ δ. Conversely, we say that x is δ-far from y if it is not δ-close to y. Similarly,
the statistical distance from a string x to a set S is defined by ∆(x, S) = miny∈S ∆(x, y). If
S is empty, we define ∆(x, S) to be 1 for convenience.

2.1 Sublinear Time Classes
We will extensively use complexity classes for problems solvable in sublinear time, such as
DTIME[polylog(N)] and coRTIME[polylog(N)]. Specifically, the underlying Turing machine
of DTIME[polylog(N)] and coRTIME[polylog(N)] has two tapes: an input tape and a work
tape. While the work tape is a “normal” one in the Turing machine sense, the input tape is
read-only and our machine is allowed random access to it.

An alternative way of viewing the situation is that our algorithm has oracle access to
the input string, and our algorithm is required to accept or reject within a sublinear (or
even polylog(N)) number of steps. For example, let A(tt(f)) be an algorithm that takes
the truth-table of a function f ∈ Bn as input. If A is in DTIME[polylog(N)], then A can be
equivalently viewed as a poly(n)-time algorithm Âf (1n) that takes 1n as input and is given
oracle access to the function f ∈ Bn.

These two views are essentially equivalent, and we will use the second one (where we
have oracle access to the input string) when describing our algorithms.

2.2 Properties
We are now ready to formally define what it means for a property being constructive, large,
and useful. Recall that a promise property is P = {(Pyes

n ,Pno
n )}n∈N, where Pyes

n ,Pno
n ⊆ Bn

and Pyes
n ∩ Pno

n = ∅ for every n ∈ N.

▶ Definition 2.1 (Usefulness). For a circuit class C , we say that P is useful against s(n)-size
C circuits, if the following two conditions hold:
|Pyes

n | ≥ 1 for all input lengths n ∈ N,
For every function family f = {fn ∈ Bn}n∈N admitting s(n)-size C circuits, there is an
infinite increasing sequence of input lengths {ni}i∈N such that fni

∈ Pno
ni

for every i ∈ N.

Similarly, we say that P is almost-everywhere useful (a.e.-useful) against s(n)-size C

circuits, if fn ∈ Pno
n for all but finitely many input lengths n ∈ N.

▶ Definition 2.2 (Largeness). A property P is called large if there is a constant c ≥ 1 such
that for all but finitely many n ∈ N,

Pr
f∈Bn

[f ∈ Pyes
n ] ≥ n−c.

Note that the definition above of largeness is different from the definition in [30], where
Prf∈Bn

[f ∈ Pyes
n ] is only required to be greater than 1/poly(2n). These two definitions are

equivalent when we are considering P-constructive properties. Our largeness definition is
more suitable when studying (say) BPTIME[polylog(N)]-constructive properties.

▶ Definition 2.3 (Constructivity). Let Γ be a complexity class. A property P is called
Γ-constructive, if there is a promise-Γ algorithm A such that the following hold:

For every f ∈ Pyes
n , A(tt(f)) accepts.

For every f ∈ Pno
n , A(tt(f)) rejects.
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If a property P is both Γ-constructive and large, we call it Γ-natural. We now compare
these three axioms with previously studied notions in the literature.

▶ Example 2.4 (Natural proof). The classical notion of a natural proof against C [30] can
be stated in our terminology as a P-constructive large property (i.e., P-natural property)
useful against C .

▶ Example 2.5 (Black-box natural proof). The notion of a black-box natural proof against C

defined by Fan, Li, and Yang [14] can be stated as a BPTIME[polylog(N)]-constructive large
(i.e., a BPTIME[polylog(N)]-natural) property useful against C . In other words, there is a
randomized oracle algorithm A such that:

For every f ∈ Bn, A(tt(f)) runs in poly(n) = polylog(N) time.
For every f ∈ Pyes

n , A(tt(f)) accepts with probability at least 2/3.
For every f ∈ Pno

n , A(tt(f)) accepts with probability at most 1/3.

2.3 Nondeterministic Classes and Easy Witnesses
We first need a definition of what it means for a language (and a complexity class) to
have small circuits encoding its witnesses. Similar to Williams [33], we restrict ourselves to
“good” verifiers that only examine witnesses of length equal to a power of two, so that the
witnesses can be viewed as truth-tables of Boolean functions. The following definition is
from Williams [33].

▶ Definition 2.6. Let L ∈ NTIME[T (n)], where T (n) ≥ n is time constructible and always a
power of 2.11 An algorithm V (x, y) is a good predicate for L if

V runs in time O(T (|x|)), and
for all x ∈ {0, 1}∗, x ∈ L if and only if there is a string y ∈ {0, 1}T (|x|) (a witness for x)
such that V (x, y) accepts.

We call T (n) the witness length of V . Let L(V ) denote the language accepted by V .12

Let V be a good predicate with witness length T (n) and C be a circuit class. Let
ℓ(n) = log T (n). We say that V has C witnesses of size s(n), if for all input sequences
{xn}n∈N such that |xn| = n, there is an s(n)-size C circuit family {Cn ∈ Bℓ(n)}n∈N, such
that for all sufficiently large n ∈ N, if x ∈ L, then V (x, tt(C|x|)) accepts.

For simplicity, we say that V has C witnesses if for some polynomial p, V has C witnesses
of size p(n). We say that the class NTIME[T (n)] has C witnesses (of size s(n)), if for every
L ∈ NTIME[T (n)], every good predicate for L has C witnesses (of size s(n)). And similarly,
we say that NEXP has C witnesses (of size s(n)), if for every polynomial p(n), NTIME[2p(n)]
has C witnesses (of size s(n)).

▶ Lemma 2.7 (Theorem 3.1, [33]). Let C be a typical polynomial-size circuit class such that
AC0 ◦ C ⊆ C . NEXP ⊂ C is equivalent to NEXP having C witnesses.13

11 We require T (n) to be a power of 2 for convenience. We note that this is without loss of generality since
any running time bound can be rounded up to the nearest power of 2, which only incurs a constant
multiplicative overhead.

12We note that L is indeed defined by both V and T , so strictly we should write L(T, V ). But T will
always be clear from the context so we will slightly abuse the notation and write it as L(V ).

13 Williams [33] only considered C ∈ {AC0, ACC0, TC0, NC1, NC, P/poly}, but the proof of his equivalence
only requires that AC0 ◦ C ⊆ C .
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2.4 Probabilistically Checkable Proofs
We now give a brief description of probabilistically checkable proofs (PCPs); see for example
Harsha’s PhD thesis [16] for a comprehensive introduction. We begin with the definition of a
PCP verifier.

▶ Definition 2.8 (PCP verifier). Let T (n) ≥ n be time constructible and always a power
of 2. Let V (x, y) be a good predicate for some language L ∈ NTIME[T (n)]. Let n = |x| be
the input length. A PCP verifier PCPV takes x as input, runs in poly(n) time, and outputs
a non-adaptive oracle circuit PCPV (x, ·) which takes an additional randomness r as input,
makes q queries to the oracle, and satisfies the following two constraints:
(Completeness) For all x ∈ L, there is a proof π such that Prr[PCPV (x, r)π accepts] = 1.
(Soundness) For all x /∈ L and proofs π, we have Prr[PCPV (x, r)π accepts] < 1/3.

The length of the additional randomness r is called the randomness complexity, the
number of queries q made by the oracle circuit is called the query complexity, and the
maximum size of all oracle circuits Dx,r is called the decision complexity.

In general, we can assume that each oracle query is of length ℓ(n) = ⌈|r| log q⌉,14 so we
can identify the oracle π above with a binary string of length 2ℓ(n) (i.e., a Boolean function
on ℓ(n) bits).

We define a PCP system for NTIME[T (n)] to be a mapping that maps every good predicate
V for some language L ∈ NTIME[T (n)], into PCPV , a PCP verifier for L.

We can similarly say that the PCP system has randomness complexity r(n), query
complexity q(n), and decision complexity d(n), if every PCPV in its image has such random-
ness/query/decision complexity.

Note that here we require the oracle circuit to be non-adaptive, meaning that there
is at most one oracle query on any path from an input to the output. We will construct
non-adaptive PCPs in Section 3; restricting ourselves to the non-adaptive setting makes
things cleaner. For simplicity, we define the notation

pacc(PCPπ
V (x)) ≜ Pr

r
[PCPV (x, r)π accepts]

to refer to the acceptance probability of the circuit with oracle π on input x. Then, the
completeness and soundness constraints can be rephrased as “pacc(PCPπ

V (x)) = 1” and
“pacc(PCPπ

V (x)) < 1/3”, respectively. Also for simplicity, we define

Wx ≜ {π | pacc(PCPπ
V (x)) = 1}

to be the set of witnesses to the our PCP verifier.
The standard PCP theorem [6, 7] is equivalent to saying that there exists a PCP system

for NTIME[T (n)] with randomness complexity O(log T (n)), query complexity O(1), and
decision complexity polylog(T (n)).

2.4.1 PCP Witnesses
Similarly to Section 2.3, we can formally define when the PCP verifiers have succinct witnesses.
We first define the witness of a PCP verifier.

14 This is because the number of positions of the oracle to be queried is bounded by 2ℓ(n)q, so we can
always reorganize the oracle so that every query is of this particular length.
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▶ Definition 2.9 (PCP witness). Let T (n) ≥ n be time constructible and always a power of
2. Let PCPV be a PCP verifier for some language L ∈ NTIME[T (n)], and x ∈ L be an YES
instance. An oracle π ∈ Bℓ(n) (ℓ(n) is the query length of PCPV on n-bit inputs) is called a
PCP witness for x if pacc(PCPπ

V (x)) = 1.

Let PCPV be a PCP verifier. Let ℓ(n) be the query length to the oracle while |x| = n.
Similar to a good predicate having C witnesses, we say that PCPV has C PCP witnesses of
size s(n) if for any sequence of inputs {xn}n∈N where xn is of length n, there is a family of
circuits {Cn ∈ Bℓ(n)}n∈N computable by C circuits of size s(n), such that for all sufficiently
large input length n ∈ N, if xn ∈ L, then tt(Cn) is a PCP witness for xn.

Fixing a PCP system, we say that NTIME[T (n)] has C PCP witnesses of size s(n), if
for any good predicate V for some language in NTIME[T (n)], its corresponding PCP verifier
PCPV has C PCP witnesses of size s(n).15

2.4.2 An Efficient PCP System from [8]
In Section 4.2, we will need a PCP construction by Ben-Sasson and Viola [8]. We now
formally state it.

▶ Theorem 2.10 ([8], Theorem 1.1). Let T (n) ≥ n be time constructible and always a power
of 2. Let V (x, y) be a good predicate for some language in L ∈ NTIME[T (n)]. There exists
a PCP verifier PCPV for L with randomness complexity log T (n) + O(log log T (n)), query
complexity polylog(T (n)), and decision complexity polylog(T (n)), such that for any input x,
the oracle circuit PCPV (x, ·) is an AC0

2 oracle circuit.

We note that the decision procedure of the PCP system above is extremely simple: an
AC0 oracle circuit of depth 2. This will be crucial in our later applications.

3 Technical Ingredient: Smooth, Strong, and Locally-Decodable PCPs

In this section, we construct a PCP system which is smooth, strong, and is local-decodable us-
ing low-depth circuits. These properties will be crucial when we prove the equivalence between
NEXP lower bounds and the existence of coRTIME[polylog(N)]-constructive properties in
Section 4.1.

3.1 Definitions
We begin by the notions of smoothness, strongness, and locally decodability.

3.1.1 Smoothness
The notion of smoothness was formally defined by Paradise [28], although the concept
appeared implicitly in much earlier works [23, 27]; see [28] for more discussions.

15 Strictly speaking, we should that say NTIME[T (n)] has C PCP witnesses of size s(n) with respect to a
certain PCP system, as the definition depends on the PCP system we use. We slightly abuse notation
here, since the relevant PCP system will always be clear from the context.
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▶ Definition 3.1 (Smoothness). A PCP verifier is called smooth if for every input x, the
probability of each bit of the proof oracle π being queried remains the same over randomness
r. Formally, if we define A(x, r, i) be the predicate that PCPπ

V (x, r) queries the i-th bit of the
oracle π, then for every input x and i1, i2 ∈ {0, 1}⌈|r| log q⌉, we have

Pr
r

[A(x, r, i1)] = Pr
r

[A(x, r, i2)].

A PCP system is called smooth if every PCP verifier in its image is smooth.

Sometimes, smoothness is defined by the queries being “marginally uniform”. These
two definitions are essentially equivalent, as long as the queries are non-adaptive (see, e.g.,
Remark 1.4 of [28]). Intuitively, smoothness guarantees that the bits of the proof weigh
equally, so that if an oracle π is close in Hamming distance to some correct witness, then the
verifier is not likely to distinguish π from a correct witness. This was made formal by Alman
and Chen [3]. We include a proof since it is quite short and simple.

▶ Lemma 3.2 (Claim 1 of [3]). Suppose PCPV is a smooth PCP verifier with query complexity
q. For any input x and oracle string π of length 2ℓ(n), it holds that

pacc(PCPπ
V (x)) ≥ 1− q ·∆(π, Wx).

Proof. Suppose that x ∈ L is an accepting input and π is an oracle string. Let y ∈ Wx

be a witness with minimum statistical distance with π, and δ be their statistical distance.
Let I = {i | πi = yi} be the set of indices where π and y coincides, then |I| = (1− δ) · 2ℓ(n)

by the definition of statistical distance. By the union bound and the smoothness of PCPV ,
with probability at least 1− qδ over the randomness r, the oracle circuit PCPV (x, r) only
queries positions in I. Therefore, PCPV (x, r) accepts π with probability at least 1 − qδ,
which completes the proof. ◀

3.1.2 Strongness
We now introduce the notion of strong PCPs, which complements Lemma 3.2.

▶ Definition 3.3 (Strongness). A PCP verifier PCPV is called α-strong if, in addition to the
PCP constraints, it satisfies the strong soundness defined as below:
(Strong soundness) For all x ∈ {0, 1}n and oracle π ∈ {0, 1}2ℓ(n) , we have

pacc(PCPπ
V (x)) ≤ 1− α ·∆(π, Wx).

We call it strong if it is α-strong for some constant α ∈ (0, 1). We say that a PCP system is
(α-)strong, if every PCP verifier in its image is (α-)strong.

We remark here that strongness implies the traditional soundness, since for any x /∈ L,
the set Wx should be empty, so Pr[PCPπ

V (x)] ≤ 1−α. And indeed, α-strongness is a stronger
constraint, since it not only gives an upper bound on the acceptance probability for x /∈ L,
but also for “far from correct” proofs even if x ∈ L.

Completeness and strongness together give us an upper and lower bound on the acceptance
probability of an “incorrect” proof for a YES instance. The following corollary can be observed
directly from Lemma 3.2 and the definition of strongness.

▶ Corollary 3.4. Suppose PCP is a smooth and strong PCP system with constant query
complexity. Then there exist constants 0 < α < 1 < β such that the following holds. For any
good predicate V for some language L, let PCPV be the PCP verifier. For any x ∈ {0, 1}n

and oracle π ∈ {0, 1}2ℓ(n) , we have

α ·∆(π, Wx) ≤ Pr
r

[PCPV (x, r)π rejects] ≤ β ·∆(π, Wx).
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3.1.3 Local Decodability
We also need our PCP system to be locally decodable. To formally define locally decodable
PCPs, we need to first define canonical PCPs.

▶ Definition 3.5 (Canonical PCP). A PCP system is called canonical, if for any good
predicate V (x, y), along with the PCP verifier PCPV , there exists a canonical mapping ΠV :
{0, 1}n×{0, 1}|y| → {0, 1}2ℓ(n) , such that for any oracle π ∈ {0, 1}2ℓ(n) , pacc(PCPπ

V (x)) = 1 if
and only if π = ΠV (x, y) for some y with V (x, y) = 1. That is, there is a canonical mapping
from the witnesses for V to the PCP witnesses for PCPV .

Now we define locally decodable PCPs.

▶ Definition 3.6 (Locally decodable PCP). Let PCP be a canonical PCP system. Let V (x, y)
be a good predicate where |y| = 2ℓ(|x|), let PCPV be its corresponding PCP verifier, and let
ΠV (x, y) be the canonical mapping of witnesses. It is called C -locally decodable within
distance δ, if for any input x ∈ L, there exists a collection of poly(ℓ(|x|))-size C oracle
circuits Cx with input length ℓ(|x|), that satisfies the following. Randomly picking a circuit
C from the collection Cx, when C is given oracle access to π with ∆(π, Wx) < δ, if we let
ŷ = tt(Cπ), then V (x, ŷ) = 1 and ∆(π, ΠV (x, ŷ)) < δ with constant probability. That is,
tt(Cπ

x ) gives a correct witness for the verifier V whose corresponding PCP witness is close to
π. Formally, for any π with ∆(π, Wx) < δ, we have

Pr
C∈Cx

[ŷ ← tt(Cπ); V (x, ŷ) = 1 and ∆(π, ΠV (x, ŷ)) < δ] > 2/3.

A locally decodable PCP provides an efficient way of reconstructing a correct witness
for V from an almost-correct witness for the PCP verifier. Conversely, if a PCP verifier has
succinct witnesses, then the original verifier V has succinct witnesses as well. This property
will be crucial when we prove the equivalence between NEXP lower bounds and the existence
of coRTIME[polylog(N)]-constructive properties.

3.2 The Construction
In this section, we construct a PCP which is smooth, strong, and AC0[2]-locally decodable.
The construction is based on the smooth and strong PCP by Paradise [28]. We observe that
his PCP is locally decodable with an AC0[2] circuit. We firstly restate the theorem formally.

▶ Theorem 3.7. Let V (x, y) be an NTIME[T (n)] verifier for some T = T (n) ≥ n, where
n = |x| is the input length and |y| ≤ T (n) is the proof length. There exists a constand
d ≥ 1 and some PCP verifier PCPV with randomness complexity O(log T ), query complexity
O(1), and decision complexity polylog(T ), such that it is also smooth, strong, canonical, and
AC0

d[2]-locally decodable within distance log−4(T (n)).

Proof. Throughout this proof, we assume that the reader is familiar with the PCP in
Paradise [28].

We only need to show that the PCP there, which is actually based on the original
proof of the PCP theorem ([6, 16]), is AC0[2]-locally decodable within distance log−4(T (n)).
To do so, we only have to focus on what a correct PCP witness looks like. Without
loss of generality, we only need to prove for the particular PCP verifier deciding circuit
satisfiability (CktSAT)16, since every good predicate can be reduced to a CktSAT instance

16 The problem CktSAT is defined as, given a circuit C (under some canonical representation), decide
whether there exists an input x such that C(x) = 1.
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without modifying the witnesses. In particular, any good predicate running in time T (n) can
be efficiently implemented by a circuit of size s = O(T (n) log T (n)).17 We will prove that it
is AC0[2]-locally decodable within distance log−3(s).

From now on, for simplicity we let n represent the input length to the circuit C (the input
length to C is actually O(T (n)), but redefining to n will significantly simplify the notation
below). In the PCP system of Paradise [28], on an input circuit C ∈ Bn, any x ∈ {0, 1}n

making C(x) = 1 can be transformed into a canonical PCP witness πx, which consists of
several parts πx = πx,1 ◦πx,2 ◦ · · · ◦πx,t.18 Moreover, in the partition of πx, the length of each
part only depends on C and |x|, and there exists a universal constant c ∈ (0, 1) (independent
of C and x), such that |πx,i| ≥ c|πx| for each i ∈ [t] (and hence t ≤ 1/c).

We are mostly interested in one of the parts, πx,1 (since as we will see shortly, from πx,1
alone we can locally decode the original witness x). We now describe its construction as
follows (one may refer to either Section 5.4.1 of [16] and Section 5.4 of [28]).
(1) Let s be the number of gates (including the input gates) in the circuit C. We can

assume without loss of generality that s = Θ(n log n) since we are constructing PCPs for
good predicates (so the running time of the verifier should be linear in the length of the
witnesses).

(2) Let m = ⌊log s/ log log s⌋. We can assume without loss of generality that s = hm for
some integer h, since we can always add dummy gates to the circuit C. Note that
h ≤ O(log s).

(3) The input x induces a unique evaluation of the circuit C, which can be represented as a
function A : [s]→ {0, 1}, where A(i) is the output of the i-th gate in C. For notational
convenience, we permute the ordering of gates in C so that for every i ∈ [n], the i-th
gate in C is the i-th input gate of C. Since s = hm, we can identify [s] with [h]m, so
that we may view A as a function [h]m → {0, 1}.

(4) Let F be a characteristic-two with order which is a sufficiently large polynomial in h and
m (hence |F| ≤ polylog(s)), so that there is an integer ℓ making |F| = 22·3ℓ . We identify
[h] with h distinct elements in F such that the 0 and 1 of [h] map to the 0 and 1 in F,
respectively. There is a unique polynomial Â : Fm → F, with degree at most h − 1 in
each variable, which agrees with A on all inputs from [h]m. We can represent Â by a
table of its values, which can be viewed as a string σ of length |F|m over the alphabet F.

(5) Let ECC : F→ {0, 1}b be an error-correcting code of constant rate and distance, where
2b = O(|F|). We encode each symbol in the string σ using ECC, and obtain an encoded
string σ ∈ ({0, 1}b)|F|m . In other words, the i-th symbol of σ is σi = ECC(σi).

(6) The proof πx,1 is then κ(s) = poly(s) copies of σ.

Now for any oracle π that is log−3(s)-close to a correct witness πx, we can also partition
π into corresponding π1, π2, . . . , πt. Since |π1| ≥ c|π|, π1 should be 1/(c log3(s))-close to
πx,1. Now given i ∈ [n] as input, we wish to recover xi using π1. To do so, we only need to
evaluate A(i). Let d = (h− 1)m be the total degree of the polynomial Â. We first present
the decoding algorithm in Algorithm 1, and then analyze it.

First, we will prove that Algorithm 1 is a local decoding algorithm; after that, we will
argue that the algorithm can be implemented in AC0[2]. To prove the local decoding property,
we observe that since a is a random element in Fm, the element j should also be uniformly
random, so the marginal distribution of each query made by the algorithm (which is µj for a
uniformly selected copy µ) is uniform. By the union bound, with probability at least

17 Without loss of generality, we work over T (n)-time multitape Turing machines, which can be implemented
with circuits of size O(T (n) log T (n)) [29].

18 For two strings x and y, x ◦ y means the concatenation of x and y.
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Algorithm 1 Locally-decoding algorithm in AC0[2].

Input : Oracle access to π1, which is assumed to be πx,1
Input : An index i ∈ [n]

1 Identify i as an element in [h]m ⊆ Fm;
2 Draw a ∈ Fm uniformly at random;
3 Let e1, e2, . . . , ed+1 be distinct non-zero elements in F;
4 for k ← 1 to d + 1 do
5 Let j ← i + a · ek ∈ Fm;
6 Select one copy out of the κ(s) supposed copies of σ in π1 uniformly at random;

let µ ∈ ({0, 1}b)|F|m denote the selected copy;
7 Query the corresponding positions in π1 to get µj ;
8 Decode µj from µj using the decoding algorithm for the ECC;
9 µj should be an element in F which is supposed to be the value Â(j);

10 Let f(ek)← µj ;
11 end
12 Let f̂ : F→ F be the unique polynomial of degree d such that f̂(ek) = f(ek) for all

1 ≤ k ≤ d + 1;
13 return f̂(0);

1− (d + 1)b
c log3(s)

≥ 1− o(1)

every query q by the algorithm has (π1)q = (πx,1)q, that is, π1 and πx,1 coincide at this
position. So with probability at least 1− o(1), f(k) = Â(i + ak) for all 1 ≤ k ≤ d + 1. Since
Â is a polynomial of degree at most d, f̂(0) must be equal to Â(i), hence is equal to A(i).

To prove that the decoding algorithm is implementable in AC0[2], we only need to show
that the ECC decoding and the computation of f̂(0) are both implementable in AC0[2]. For
the ECC decoding, note that b = O(log log s), so we can simply use a look-up table that is
implementable by an AC0

2 circuit of 2O(b) = polylog(s) size. The computation of f̂ itself does
not seem to be computable in AC0[2]. However, observe that we only need the value f̂(0),
which is equal to the constant term of the polynomial f̂ . By Lagrange interpolation, defining

ck =
∏

z∈[d+1]\{k}
(−ez)∏

z[d+1]\{k}
(ek−ez)

, we have

f̂(0) =
d+1∑
k=1

f(k) · ck,

To compute f̂(0), we can hardwire the coefficients ck in the circuit. What remains is an
addition of d + 1 products of f(k) with some hardcoded coefficients. Since F is characteristic
two and has order 22·3ℓ , multiplication and iterated addition are implementable in AC0

d′ [2]
for some universal constant d′ ≥ 1, by work of Healy and Viola [18]. This completes the
proof. ◀
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4 Black-Box Constructive Properties are Unavoidable

4.1 Equivalence with NEXP Lower Bounds
In this subsection, we prove our main result (Theorem 1.4). We begin by recalling our
theorem.

▶ Theorem 4.1 (Formal version of Theorem 1.4). Let C be a polynomial-size circuit class such
that any s-size AC0[⊕] ◦ C circuit family can be simulated by an equivalent poly(n, s)-size C

circuit family. The following are equivalent:
(1) NEXP ̸⊂ C .
(2) There is a P/ log N -constructive property useful against C .
(3) There is a QP/ log N -constructive19 property useful against C .
(4) There is a BPTIME[polylog(N)]/ log N -constructive property useful against C .
(5) There is a coRTIME[polylog(N)]/ log N -constructive property useful against avgn−6-C .

In the theorem, (2) is the standard constructive property considered in Williams [33],
(4) corresponds to the black-box constructive property in Fan, Li, and Yang [14], and (5)
makes the black-box constructive property both one-sided error and average-case useful. Our
theorem says that they are all equivalent to NEXP circuit lower bounds.

Proof. Note that (5) ⇒ (4) ⇒ (3) is trivial, (2) ⇒ (1) follows from Theorem 1.2, and (3) ⇒
(2) follows from a direct padding argument. So we only need to prove (1) ⇒ (5).

In the rest of the proof, we use the PCP system in Theorem 3.7 that is smooth, strong,
canonical, and AC0[2]-locally decodable within distance log−4(T (n)). We break the theorem
into two claims. The first claim transforms NE witness lower bounds into NE PCP wit-
ness lower bounds; the second claim transforms the NE PCP witness lower bound into a
constructive property.

▷ Claim 4.2. Let s(n) ∈ [n2, 2n/(10n)] be some size function. If NE does not have
C -SIZE[s(n)] witnesses, then there is some constant c ∈ (0, 1) such that NE does not have
avgn−5 -C -SIZE[s(cn)c] PCP witnesses.

▷ Claim 4.3. Let s(n) ∈ [n2, 2n/(10n)] be some size function. If NE does not have
avgn−5 -C -SIZE[s(n)] PCP witnesses, then there is a coRTIME[polylog(N)]/ log N -constructive
property useful against avgn−6 -C -SIZE[s(Ω(n))].

Indeed, with these two claims and Lemma 2.7, the implication (1)⇒ (5) directly follows.20

The rest of the proof is devoted to proving the two claims.

Proof of Claim 4.2. If NE does not have C -SIZE[s(n)] witnesses, then there is some good
predicate V for some language L ∈ NE, and there is an input sequence {xn}n∈N with |xn| = n,
such that the following holds:

For every circuit family C = {Cn}n∈N that admits s(n)-size C circuits21, there are
infinitely many n ∈ N such that xn ∈ L and V (xn, tt(Cn)) = 0.

19 QP = DTIME[2polylog(n)] is the class deterministic quasi-polynomial time.
20 Also note that NE has C witnesses of size s(n) if and only if for every L ∈ NEXP there is a k such that

L has C witnesses of size s(knk).
21 Suppose L ∈ NTIME[T (n)] for some T (n) = 2Θ(n). Then Cn has log T (n) = Θ(n) bits of input. Note

that here the size bound on Cn is s(n).
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Now let us consider the corresponding PCP verifier PCPV . Recall that we use the notation
ℓ(n) to denote the oracle query length in the PCP system at inputs of length n. For the class
NE here, we should keep in mind that ℓ(n) = Θ(n). We will show that for the same input
sequence {xn}, for some constant c ∈ (0, 1), for every function family π = {πn ∈ Bℓ(n)}n∈N
that can be (1−n−5)-approximated by s(cn)c-size C circuits, there are infinitely many n ∈ N
such that xn ∈ L and πn is not a witness for xn.

Suppose (for a contradiction) that for every c ∈ (0, 1), there is a function family

π = {πn ∈ Bℓ(n)}n∈N

that can be (1− n−5)-approximated by s(cn)c-size C circuits, such that for all sufficiently
large n ∈ N, xn ∈ L implies that πn is a witness for xn. By the assumption on π, there is
another function family π′ = {π′

n ∈ Bℓ(n)}n∈N that admits s(cn)c-size C circuits, such that
π′

n and πn agree on at least a (1− n−5) fraction of inputs, for every n ∈ N.
We now apply the local decoding algorithm of our PCP system. For all sufficiently large

n ∈ N, if xn ∈ L, then there is a collection of poly(n)-size AC0
d[2] oracle circuits Cxn (where d

is the constant in Theorem 3.7), such that for any π with ∆(π, Wxn
) < n−4,

Pr
C∈Cxn

[V (xn, tt(Cπ)) = 1] > 2/3.

So there is some circuit Cn ∈ Cxn
such that V (x, tt(Cπ′

n)) = 1. However, since Cn is an
AC0

d[2] oracle circuit for every n (we can set Cn be the trivial circuit if xn /∈ L) and π′ admits
a C circuit family of size s(cn)c, so {Cπ′

n
n }n∈N admits a C circuit family of size (s(cn)c)K

for some universal constant K > 1.22 This implies a contradiction when c < 1/K. ◁

Proof of Claim 4.3. By the assumption, there is some constant d > 1 and a PCP verifier
PCPV deciding a language L ∈ NTIME[2dn], and an input sequence {xn}n∈N with |xn| = n

such that the following holds:
For every function family π = {πn ∈ Bℓ(n)}n∈N that is (1−n−5)-approximable by s(n)-size
C circuits, there are infinitely many n ∈ N such that xn ∈ L and Prr[PCPπn

V (xn, r)] < 1.

Suppose that on input x of length n, PCPV has a proof oracle of input length ℓ(n). Note
that since L ∈ NTIME[2dn], ℓ(n) > dn. Our first step is to show the following:

For every function family π = {πn ∈ Bℓ(n)}n∈N that can be (1−n−5)-approximated by s(n)-
size C circuits, there are infinitely many n ∈ N such that xn ∈ L and Prr[PCPπn

V (xn, r)] <

1− n−6.

Indeed, if the above does not hold, then there is a function family π = {πn ∈ Bℓ(n)}n∈N
that can be (1− n−5)-approximated by s(n)-size C circuits, such that for every sufficiently
large n ∈ N, xn ∈ L implies that Pr[PCPπn

V (x)] ≥ 1−1/n6. By the smoothness and strongness
of our PCP (Corollary 3.4), there is a family of correct PCP witnesses π̂ = {π̂n}n∈N that is
Θ(n−6)-close to π. There also exists a function family π′ = {π′

n ∈ Bℓ(n)}n∈N that admits a
s(n)-size C circuit family and is n−6-close to π. Therefore, π′ is also Θ(n−6)-close to π̂. But
this means that π̂ is a family of correct PCP witness that can be (1−Θ(n−6))-approximated
by s(n)-size C circuits, a contradiction to our assumption.

Now we can define a property P that is useful against avgn−6 -C -SIZE[s(Ω(n))]. The
property is defined in Algorithm 2 where N = 2n and n = ℓ(m) for some integer m.

22 This step crucially uses our assumption on the circuit class C .



L. Chen, R. Williams, and T. Yang 35:17

Algorithm 2 The coRTIME[polylog(N)]/ log N -constructive property P.

Input : Oracle access to a function f : {0, 1}log N → {0, 1}
Advice : αN ∈ {0, 1}∗ and βN ∈ {0, 1}

1 if N ̸= 2ℓ(|αN |) or βN = 0 then
2 accept;
3 else
4 for i← 1 to 100 log6 N do
5 Draw a uniformly random r as the randomness for PCPV ;
6 if PCPV (αN , r)f rejects then
7 reject;
8 end
9 end

10 accept;
11 end

On input length N = 2ℓ(m), we give xm as the advice to Algorithm 2. Since N > 2dm,
the advice length is m < log N . Moreover, it is easy to see that Algorithm 2 runs in
poly(m) = polylog(N) time.

It remains to verify that the usefulness criterion holds. On input length N , if N ̸= 2ℓ(m)

for all m ∈ N, then P accepts every f . If N = 2ℓ(m) for some m ∈ N, if xm /∈ L, then P
again accepts every f . (We use an additional bit of advice, βN , to tell P whether xm ∈ L).
If xm ∈ L, then Algorithm 2 accepts any PCP witness f for PCPV (x) with certainty (since
xm ∈ L, such f exists). In either case, Pyes

N ̸= ∅.
On the other hand, for any function family f = {fℓ(m) ∈ Bℓ(m)}m∈N that can be

(1− ℓ(m)−6)-approximated by s(m)-size C circuits, there are infinitely many m ∈ N such
that PCPfℓ(m)

V (xm) rejects with probability at least 1/m6 > log−6 N . For those m, Algorithm
2 rejects with probability at least 1/6. Hence it indeed defines a coRTIME[polylog(N)]/ log N -
constructive property useful against avgn−6 -C -SIZE[s(Ω(n))]. ◁

◀

Note that by combining Lemma 2.7 and Claim 4.2, we can derive average-case witness
lower bounds directly from NEXP circuit lower bounds.

4.2 Eliminating the Advice with CAPP Algorithms

In this subsection, we prove Theorem 1.9, showing how a nontrivial CAPP algorithm implies
a randomized sublinear-time constructive property without any advice.

▶ Theorem 1.9 Let K ∈ N be a sufficiently large constant. Let C be a circuit class and
s(n) ≥ n be a size parameter. If there is a 2n/n10-time CAPP0.1 algorithm for s(n)K-size
AC0

2 ◦ C circuits, then there is a coRTIME[polylog(N)]-constructive property useful against
s(n)-size C circuits.

Proof of Theorem 1.9. Take an unary language L in NTIME[2m] \ NTIME[2m/m] [38]. We
use the PCP system of Ben-Sasson and Viola [8], which has a PCP verifier PCPL satisfying
the following:
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(Efficiency) PCPL(x, ·) is an non-adaptive AC0
2 oracle circuit that takes ℓ(m) bits of random-

ness, and queries an oracle O : {0, 1}ℓ(m) → {0, 1}, where ℓ(m) = m + O(log m). Without
loss of generality, we assume that ℓ(m) is an increasing function.

(Completeness) If x ∈ L, there is some π : {0, 1}ℓ(m) → {0, 1} such that pacc(PCPπ
L(x)) = 1.

(Soundness) If x /∈ L, then for all π : {0, 1}ℓ(m) → {0, 1}, we have pacc(PCPπ
L(x)) < 1/3.

We now claim there is a coRTIME[polylog(N)]-constructive property useful against C .
On input length n ∈ N, let m ∈ N be such that n = ℓ(m). If there is no such m or 1m /∈ L,
then define Pyes

n = {0, 1}n and Pno
n = ∅. Otherwise, we define the promise property as:

Pyes
n contains all oracles π : {0, 1}n → {0, 1} such that pacc(PCPπ

L(1m)) = 1,
Pno

n contains all oracles π : {0, 1}n → {0, 1} such that pacc(PCPπ
L(1m)) < 2/3.

Suppose the property defined above is not useful against s(m)-size C circuits. Then there
exists a function family f = {fm ∈ Bℓ(m)}m∈N such that for all sufficiently large input length
m, either 1m /∈ L, in which case pacc(PCPπ

L(1m)) < 1/3 for all oracles π ∈ Bℓ(m); or 1m ∈ L

and Pr[PCPfm

L (1m)] > 2/3.
We can then design another algorithm APCP that attempts to solve L faster: On in-

put x, reject immediately if x ̸= 1|x|. Otherwise, guess an s(m)-size ℓ(m)-input C cir-
cuit C, and apply the assumed CAPP0.1 algorithm to estimate the acceptance probability
Prr∈{0,1}ℓ(m) [PCPC

L (x, r)] within an additive error of 0.1 (note that PCPC
L (x, r) for a fixed x

is an ℓ(m)-input AC0
2 ◦ C circuit of s(m)K size, since K is sufficiently large). Our algorithm

accepts if and only if the estimated probability is at least 1/2. The algorithm decides L

on all sufficiently large input lengths, and runs in at most 2m/m nondeterministic time,
contradicting the fact that L /∈ NTIME[2m/m]. ◀

5 On the Impossibility of Stronger Constructivity Notions

Seeing that coRTIME[polylog(N)]-constructive useful properties are equivalent to NEXP
lower bounds, one may naturally ask whether the same equivalence holds for even weaker
constructivity notions (say, DTIME[polylog(N)]) instead of coRTIME[polylog(N)]. In this
section, we show that we cannot prove the same equivalence for RTIME[polylog(N)], or even
NTIME[polylog(N)], in place of coRTIME[polylog(N)].

First, we show in Section 5.1 an impossibility result: there are no DTIME[polylog(N)]-
constructive properties which are useful against all polynomial-size CNFs. In fact, we prove
a stronger statement that even allows both non-determinism and non-uniformity. In Section
5.2, we complement this impossibility result by showing that if we only want our property to
be useful against constant-depth circuits of some fixed polynomial size, then super-efficient
deterministic constructive (and even large) properties can be obtained from known results
on pseudorandom restrictions.

5.1 Non-existence of Deterministic Constructive Properties against
Polynomial-size Classes

We first show the general impossibility result.

▶ Theorem 5.1. Let C be a circuit class such that all CNFs of t clauses have poly(n, t)-size
C circuits. There is no NTIME[polylog(N)]/polylog(N)-constructive property useful against
C -SIZE[poly].
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Proof. Towards a contradiction, assume there is a constant c > 1 and some O(logc(N))-size
non-deterministic circuit C (with an oracle for the input truth table) computing a property
useful against C . We can express the computation of C as a collection of decision trees
D = {Di} of O(logc(N))-depth, where for any input x ∈ {0, 1}N ,

C(x) accepts ⇐⇒ ∃Di ∈ D such that Di(x) accepts.

By usefulness of the property, there exists some x̂ such that C(x̂) accepts, so there is also
some D̂j ∈ D such that D̂j(x̂) accepts.

Let I = {i1, i2, . . . , ik} be the bit positions queried by the decision tree D̂j on the input
x̂. Since D̂j has depth O(logc(N)), we have k ≤ O(logc(N)) ≤ O(nc). We now define a
function f that agrees with x̂ on I, and is defined to be 1 on all other positions. Formally,

f(j) =
{

x̂j , j ∈ I

1, otherwise
.

Observe that f can be implemented by a CNF with k clauses. Since we assumed that CNFs
of size s can be implemented by poly(s, n) C circuits, we have f ∈ C -SIZE[poly]. However,
as the truth table of f agrees with x̂ on I, D̂j(tt(f)) should accept. This contradicts the
assumption that the family of decision trees D defines a property that is useful against C . ◀

5.2 DTIME[polylog(N)]-natural Properties against
Fixed-polynomial-size Classes from Pseudorandom Restrictions

We can obtain very efficient deterministic properties against classes of circuits for which
there is a pseudorandom restriction of short seed length that simplifies circuits from the class.
In more detail, we need the pseudorandom restriction to have only logarithmic randomness.
Combining with known pseudorandom restrictions in the literature, we can prove Theorem
1.7 and 1.8 from the introduction.

First, we will first formally define what a pseudorandom restriction lemma is; then, we
will show how to derive DTIME[polylog(N)]-natural properties from such a lemma.

▶ Definition 5.2 (Pseudorandom Restriction Lemma). A class C is said to admit a pseudoran-
dom restriction lemma with randomness r(n) and freedom d(n), if there exists a poly(n)-time
algorithm A that on input 1n takes randomness of length r(n) and produces a restriction
ρn ∈ {0, 1, ∗}n (a.k.a. a partial assignment) to n bits of input, such that

(i) The number of undetermined (unset) variables in ρn is at least d(n).
(ii) For every family of circuits C = {Cn ∈ Bn}n∈N ∈ C and for all sufficiently large n,

the function computed by Cn restricted to ρn becomes a constant (all-zeros or all-ones)
function with constant probability. Formally, for all sufficiently large n,

Pr
z∈{0,1}r(n)

[
ρn ← A(1n, z) such that Cn↾ρn

is a constant
]
≥ Ω(1).

▶ Theorem 5.3. Let C be any circuit class. If C admits a pseudorandom restriction
lemma with randomness r(n) = O(log n) and freedom d(n) = 2 log log n, then there is a
DTIME[polylog(N)]-natural property useful against C .

Proof. Without loss of generality, we can assume that the number of undetermined variables is
always exactly d(n), as we can arbitrarily restrict variables until the number of undetermined
variables becomes d(n). Suppose that the algorithm for constructing the pseudorandom
restriction is A(1n, z), where z ∈ {0, 1}r(n) is the randomness. Our property is simple:
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given oracle access to a function f , enumerate over all 2r(n) = poly(n) possible seeds z, and
test if any of the restrictions ρz ← A(1n, z) makes f constant by enumerating all possible
assignments to the inputs left unset by ρz (note there are only 2d(n) = polylog(n) such
assignments). We formally describe this procedure in Algorithm 3.

Algorithm 3 DTIME[polylog(N)]-natural property from pseudorandom restrictions.

Input : Oracle access to a function f : {0, 1}n → {0, 1}
1 for z ∈ {0, 1}r(n) do
2 Let ρz ← A(1n, z).;
3 if f↾ρz

is a constant function then
4 Reject;
5 end
6 end
7 Accept;

The algorithm clearly runs in poly(n) = polylog(N) time. We only need to show that
the largeness and usefulness criteria are satisfied by the algorithm. To prove usefulness,
consider any function f ∈ C . Since A is a pseudorandom restriction as defined in Definition
5.2, by property (ii) there exists some randomness z ∈ {0, 1}r(n) making f↾ρ constant, so
our algorithm must reject. To establish largeness, we upper bound the probability that
Algorithm 3 rejects a random function. This can be done by a simple union bound:

Pr
f∈{0,1}n→{0,1}

[Algorithm 3 rejects] ≤ 2r · 2 · 2−2d

= 2O(log n)−log2 n < o(1). ◀

Applying known pseudorandom restriction lemmas with the desired parameters, we can
obtain DTIME[polylog(N)]-natural properties useful against certain classes. For example,
Goldreich and Wigderson [15] proved that for any constant c > 0, the class of AC0 circuits
of size at most nc admits a pseudorandom restriction lemma with randomness O(log n)
and freedom nΩ(1).23 Therefore by Theorem 5.3, there is a DTIME[polylog(N)]-natural
properties useful against AC0 circuits of size nc (hence proving Theorem 1.8). Applying
the pseudorandom restriction of [14] to Theorem 5.3, we obtain a DTIME[polylog(N)]-
natural property useful against probabilistic DeMorgan formulas of n2−ε size (hence proving
Theorem 1.7).

6 A Bootstrapping Result For Black-Box Natural Properties

We prove general bootstrapping results on the existence of coRTIME[polylog(N)]-constructive
natural properties in this section. In particular, we show that if a circuit class is capable of
efficiently implementing almost-universal hash functions, then black-box natural properties
useful against fixed polynomial size imply such natural properties against all polynomial-size
circuits. We follow an idea of [14] for reducing the complexity of computing PRFs: “kernelize”
the oracle with an almost universal hash function. To begin, we define the notion of almost
universal hash functions.

23 Technically, Theorem 3.2 of [15] only shows that with high probability the restricted function is a
constant-junta (i.e., the remaining function after the restriction depends on at most O(1) variables).
Note that we can always randomly restrict an additional fraction of the inputs to cover all the O(1)
dependent inputs with constant probability.
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▶ Definition 6.1 (Almost universal hash function). A family of hash function is a collection
H = {Hn}n∈N, where each Hn is defined as a distribution of functions from {0, 1}n to {0, 1}m

with output length m = m(n). H is called ε-almost universal if for all sufficiently large n

and any two x, y ∈ {0, 1}n with x ̸= y,

Pr
h∈Hn

[h(x) = h(y)] ≤ ε(n).

We say that H is almost-universal, if it is n−α(n)-almost universal for some α(n) = ω(1).
We say that H is computable by C circuits of size s(n), if every sequence of functions

from the collection h = {hn ∈ Hn}n∈N admits a C circuit family of size s(n).
We say that H is uniform if the distribution Hn is samplable in poly(n) time.

We now prove that efficient C -circuit constructions of almost-universal hash functions
imply bootstrapping results for black-box natural properties against C -circuits. Recall
that a property is BPTIME[polylog(N)]-natural if it is BPTIME[polylog(N)]-constructive
and large, and a property is a.e.-useful against a circuit class C if it is useful against C

for all but finitely many input lengths. We say that a circuit class C is efficiently closed
under composition, if given two circuit families f = {fn : {0, 1}n → {0, 1}m1(n)}n∈N and
g = {gn : {0, 1}n → {0, 1}m2(n)}n∈N computable by C circuits of size s1(n) and s2(n)
respectively, their composition g ◦ f = {gm1(n) ◦ fn}n∈N can be computed by C circuits of
size s1(n) + s2(m1(n)). Note that all “typical” classes, such as P/poly, NC1, TC0, and AC0,
satisfy this property.

▶ Theorem 6.2. Let C be a circuit class efficiently closed under composition and let s(n) be
a polynomial in n. Suppose for every c ∈ (0, 1), there is a family of almost-universal hash
functions with output length m = m(n) = nc that is uniform and computable by C circuits
of size s(n). Then the following holds:

If there are BPTIME[polylog(N)]-natural properties a.e.-useful against C circuits of size
s(n) +

√
n, then for all k ≥ 1, there are BPTIME[polylog(N)]-natural properties a.e.-useful

against C circuits of nk size.

Proof. Assume there is a BPTIME[polylog(N)]-natural property P = {(Pyes
n ,Pno

n )}n∈N that
is a.e.-useful against C circuits of size s(n) +

√
n. That is, there is a constant c > 0 and an

algorithm Af (1n, r) with randomness |r| ≤ poly(n) and oracle access to f ∈ Bn, running in
nc time, such that

For every f ∈ Pyes
n , Prr

[
Af (1n, r) accepts

]
≥ 2/3.

For every f ∈ Pno
n , Prr

[
Af (1n, r) accepts

]
≤ 1/3.

By the largeness criterion, there is a polynomial p(n) such that Prf∈Bn
[f ∈ Pyes

n ] ≥ 1/p(n).
Let k ≥ 1 be an arbitrary constant such that nk > s(n) for all sufficiently large n. We

now define a BPTIME[polylog(N)]-natural property that is a.e.-useful against C circuits of
size nk. The property is defined by Algorithm 4. In particular, let Algorithm 4 be denoted
by Âf (1n, r) where r = (r0, h) is its internal randomness. We define a (promise) property
P̂ = {(P̂yes

n , P̂no
n )}n∈N as follows: for a function f ∈ Bn,

f ∈ P̂yes
n if Prr

[
Âf (1n, r) accepts

]
≥ 5/8.

f ∈ P̂no
n if Prr

[
Âf (1n, r) accepts

]
≤ 3/8.

We now prove that the property P̂ satisfies the desired conditions.
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Algorithm 4 BPTIME[polylog(N)]-natural property a.e.-useful against nk size C circuits.

Input : 1n

Oracle : oracle access to a function f : {0, 1}n → {0, 1}
1 Let n̂ = n2k, and H be an almost-universal hash function with output length

m(n) = n1/(2k);
2 Randomly sample a function h← Hn̂ in poly(n̂) = poly(n) time;
3 Define f ′ : {0, 1}n̂ → {0, 1} as f ′(x) = f(h(x));
4 Simulate Af ′(1n̂, r0) on random r0, and accept if and only if the simulation accepts;

(Constructivity) Showing P̂ is constructive amounts to showing that Algorithm 4 runs in
poly(log N) time. This follows because A is constructive (it can be implemented in poly(log N)
time).

(Largeness) To prove largeness, we need to show that Prf∈Bn
[f ∈ P̂yes

n ] ≥ 1/poly(n) for all
sufficiently large n.

Fix an input length n and randomness r0. Assume that over oracle f ′, the distinct
positions of the oracle f ′ queried by A(1n̂, r0) are z1, z2, . . . , zt where t ≤ n̂c = nck. Since H
is almost universal, by a simple union bound,

Pr
h∈Hn̂

[∀i ̸= j, h(zi) ̸= h(zj)] ≥ 1− n2ck−ω(1) ≥ 1− n−ω(1).

Let En(h, r0, f ′) denote the event that for all i ̸= j, h(zi) ̸= h(zj). Then we calculate that

Ef∈Bn,r0,h∈Hn̂

[
Âf (1n, r0, h) accepts

]
≥ Ef∈Bn,r0,h∈Hn̂

[
Âf (1n, r0, h) accepts ∧ En(h, r0, f ′)

]
≥ Er0,f ′∈Bn̂

[
Af (1n, r0) accepts

]
− n−ω(1)

≥ 2
3p(n) − n−ω(1).

Applying Markov’s inequality, we find that

Pr
f∈Bn

[
Pr

r0,h∈Hn̂

[
Âf (1n, r0, h) accepts

]
≥ 5/8

]
≥ Ω(1/p(n)),

hence proving the largeness criterion.

(Usefulness) To prove usefulness, we consider any sufficiently large input length n, and
any function f ∈ Bn that admits a C circuit of size nk. For every choice of h ∈ Hn̂, by
our assumptions on C , the function f ′(x) = f(h(x)) is computable by a C circuit of size
s(n̂)+nk = s(n̂)+

√
n̂. By the usefulness of A, we have that Prr0

[
Af ′(1n̂, r0) accepts

]
≤ 1/3.

As this inequality holds for every choice of h, we have

Pr
r0,h∈H

n̂

[
Âf (1n, r0, h) accepts

]
≤ 1/3,

hence f ∈ Pno
n . ◀
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Abstract
We consider protocols where users communicate with multiple servers to perform a computation
on the users’ data. An adversary exerts semi-honest control over many of the parties but its view
is differentially private with respect to honest users. Prior work described protocols that required
multiple rounds of interaction or offered privacy against a computationally bounded adversary.
Our work presents limitations of non-interactive protocols that offer privacy against unbounded
adversaries. We prove that these protocols require exponentially more samples than centrally private
counterparts to solve some learning, testing, and estimation tasks. This means sample-efficiency
demands interactivity or computational differential privacy, or both.
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1 Introduction

Following the seminal work by Dwork, McSherry, Nissim, and Smith [11], much research
in differential privacy takes place in the central model. This assumes owners of data are
willing to give their data to a central analysis server – an analyst for short – who runs a
differentially private algorithm and reports the output to the (adversarial) world. Such an
algorithm will guarantee that, loosely speaking, its output will not leak much information
about any individual who gave their data. But the analyst could run other algorithms, so
leaks and data misuse can still occur.

To keep data out of an analyst’s hands, prior research has produced a variety of alternative
models. A well-studied example is the local model. Here, users of mobile phones or web
browsers run differentially private algorithms on their data and send the resulting messages
to the analyst [22, 18]. The local nature of the randomization ensures privacy for any user
even when the analyst and all others users are corrupted by the adversary. An inherent
limitation of such a protocol is that the privacy noise from the users significantly weakens
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the signals they are meant to send; Kasiviswanathan, Lee, Nissim, Raskhodnikova, and
Smith showed that locally private parity learning demands exponentially more samples than
centrally private parity learning [18].

A line of work augments local protocols with a shuffler, an intermediary that applies
a random permutation on user messages before sending the result to the analyst [6, 9].
The anonymity offered by the shuffler acts as a second layer of protection, atop the local
randomization. The shuffler can be securely instantiated via anonymous broadcast protocols
(e.g. Eskandarian & Boneh [13]) or classic mixnets (see Chaum [7]).

We focus on an alternative relaxation of the local model that appears in various forms
in prior work [20, 2, 21, 5]: instead of just one analysis server, we assume there are k ≥ 2
servers who share responsibility in processing user messages. An adversary can corrupt all
but one of the users (as in the local model) and a large and unknown subset of the servers.1
The adversary observes the messages received by parties it corrupts; we would like this view
to change only slightly when an honest user changes their contribution. We remark that
this multi-server model subsumes the shuffle model, since Eskandarian & Boneh create a
multi-server protocol that performs anonymous broadcast [13].

That construction relies on the assumption that the adversary is computationally bounded.
As noted by Steinke [20], such an assumption also implies accurate simulation of centrally
private algorithms via secure multiparty computation. But classic work in central and local
privacy allow unbounded adversaries. The natural line of thought is to explore the power of
multi-server protocols when playing against that stronger class of adversary.

We are also interested in practical protocols: they should ideally be computationally
lightweight, consume low bandwidth, and take place over few rounds of interaction. We focus
on interactivity. Specifically, we would like to know how many rounds are needed to solve
problems with few samples. There is precedent for such results in distributed differential
privacy: in the local model, Joseph, Mao, and Roth showed exponential separations between
r-round and r + 1-round protocols [17].

As a starting point for adapting this to the multi-server setting, we can consider 1-round
or non-interactive protocols. Here, each party produces one batch of outputs and never
receives feedback. Refer to Figure 1 for a visualization.

In Appendix B, we sketch a non-interactive multi-server protocol that ensures differential
privacy against an unbounded adversary. It accurately estimates the sum of bits held by
users. But aside from this basic task, what can multi-server protocols compute if they must
be non-interactive and ensure privacy against an unbounded adversary?

1.1 Our Results
We show that the protocols of interest cannot perform some learning, testing, and estimation
tasks without exponentially more samples than centrally private algorithms. An example is
parity learning.

▶ Theorem 1.1 (Informal). Consider the family of non-interactive multi-server protocols that
offer ϵ-differential privacy against unbounded adversaries that control ≤ ⌈k/2⌉ servers. If each
user samples d binary features and a binary label from the same distribution, any member of
the protocol family requires Ω(2d/2/ϵ) samples to find a parity function that predicts the label
of a fresh sample.

1 Steinke [20] and Talwar [21] describe protocols that ensure privacy holds when k − 1 servers are corrupt.
Our results apply to protocols with a weaker guarantee.
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Figure 1 Diagram of a non-interactive two-server protocol. Users input their data into local
randomizers, which send one message to each server. The first server produces a intermediary value,
which the second server uses to produce the output. No party responds to messages (there are no
cycles in the graph).

For comparison, Kasiviswanathan et al. show that O(d/ϵ) samples suffice under ϵ-central
privacy [18]. In the full version of this work, we present similar exponential gaps in sample
complexity for feature selection, simple hypothesis testing, and sparse mean estimation.
Finally, we present a lower bound for uniformity testing, which is polynomially larger than
the upper bound in the central model.

Our lower bounds have the following implication:

To solve some tasks with as few samples as the central model, multi-server protocols
must be interactive or only ensure computational differential privacy, or both.

We note that our result holds in the case where the adversaries are honest but curious,
meaning that the adversaries follow the protocol but they use the information they have
access to in arbitrary ways. Our result implies a lower bound on sample complexity for more
general adversaries, because the adversary can still choose to follow protocol.

1.1.1 Techniques
To arrive at our lower bounds, we take two high-level steps. First, we transform a multi-server
protocol Π into an internally private online algorithm AΠ. Such an algorithm reads its input
in a single for-loop and ensures that its internal state at the end of any single iteration
respects differential privacy. This ensures that an adversary does not gain much advantage
by intruding into the algorithm’s memory. In our second step, we invoke lower bounds for
internally private algorithms. As noted in the thesis by Cheu [8], these lower bounds are
implied by the work of Cheu and Ullman [10] and Amin, Joseph, and Mao [1].

Section 3.2 describes the complete transformation for the two-server case; we briefly
sketch the main ideas here. AΠ processes its input stream x1, . . . , xm in two batches. The
first batch, labeled [n] = {1, . . . , n}, serves as the input to an execution of Π (on n samples):
AΠ simulates the construction of messages from every user i ∈ [n] to server 1. It is tempting
to also simulate the messages to server 2, but the pair of messages may be non-private.2

This motivates the second batch of samples, labeled {n + 1, . . . , m}.

2 Consider additive secret sharing amongst two servers: one share reveals nothing but the joint distribution
is wholly dependent on the data value.

ITCS 2023
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Table 1 A non-exhaustive sampling of work on multi-server differential privacy. Most existing
protocols are interactive and assume a bounded adversary. We are the first to give lower bounds.

No. No. Corrupt Bounded > 1 Notes
Servers Servers Adversary? round?

[2] 3 ≤ 2 A protocol for histograms.

Yes Users prove inputs are valid.

[5] 2 ≤ 1 A protocol for histograms
with optimal ℓ∞ error

[20]
≤ k − 1

Yes, Yes Protocols for counting, heavy-
for some hitters, feature selection

[21] Not if servers A protocol for vector sum.
k agree on coins Rejects a user’s vector if too big.

This
≤ ⌈k/2⌉ No No Lower bounds for feat. selection,

Work parity learning, and more

Naively, we could use the second batch to sample from the marginal distributions of the
messages to server 2. But the message a user sends to server 2 could depend on the one it
sent to server 1. So we instead rely on a technique by Joseph, Mao, Neel, and Roth [16]: for
each user i, AΠ obtains a fresh sample from D conditioned on having seen the message from
i to server 1. This proxy for i’s data is then used to produce the message from i to server 2.
A technical hurdle arises from the fact that the desired conditional distribution requires the
specification of D, which is unknown to the algorithm. But AΠ approximates a sample from
the conditional distribution by performing rejection sampling on the second batch of samples
from D.

Joseph et al. developed their technique in the context of local protocols, where the
adversary can see all of the messages that an honest user generates [16]. In our model, the
adversary can only see a subset of them. As a consequence, the simulator AΠ will purge old
messages from memory when they are no longer needed: once AΠ simulates the message
from i to server 2, it erases the message from i to server 1.

▶ Remark 1.2. It is conceivable that one could prove our transformations satisfy pan-privacy.
An online algorithm satisfying this notion ensures differential privacy for any pairing of
internal state and output. The lower bounds by Cheu & Ullman and Balcer et al. were
originally stated for pan-privacy [10, 3]. But proofs of pan-privacy require an extra layer of
case analysis, so we choose to prove only internal privacy to ease readability.

1.2 Related Work
The whitepaper by Apple & Google presents an interactive protocol for exposure notification
analytics [2]. It offers protection against bounded adversaries. Bell, Gascon, Ghazi, Ku-
mar, Manurangsi, Raykova, and Schoppmann also describe an interactive protocol offering
computational DP [5]. It provably achieves asymptotically optimal ℓ∞ error for histogram
estimation. Talwar [21] and Steinke [20] both describe information-theoretically secure pro-
tocols, though the vector summation protocol in [21] assumes shared coins. Computational
guarantees are offered by some protocols in [20]. See Table 1 for a summary of the above
works. To our knowledge, we are the first to prove lower bounds in the multi-server model.

Other works, while not in the same model that we study, are of sufficient similarity to
warrant mentioning below.
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McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [19] present lower bounds in
the two-party model, as do Haitner, Mazor, Silbak, and Tsfadia [14]. In that model, each of
two servers has direct access to half of all user data and an honest server interacts with its
peer in a way that ensures differential privacy for its half of the users. The model captures
the scenario where users are evenly divided on which server to trust. In contrast, users in the
two-server case of our model are all uncertain as to which server is honest. This distinction
has an important consequence: a server in the two-party model can simply run a centrally
private algorithm on their half of the samples, so the sample complexity in the central and
two-party models are asymptotically identical. This holds for parity learning but also for
any of the statistical estimation and testing problems we consider.

Beimel, Nissim, and Omri [4] study protocols that ensure privacy against an unbounded
adversary like we do, but they focus on a user-to-user setting without dedicated servers.
More significantly, the authors limit their constructions to secure function evaluation of
differentially private algorithms, while we do not impose that constraint.

Finally, we remark that our online algorithms differ from the type found in the continual
release literature (see Jain, Raskhodnikova, Sivakumar, and Smith [15] & citations within).
There, the online algorithm outputs a value after every read. The stream of outputs must
respect differential privacy and also serve as a good estimate of some function as applied to
each prefix (e.g. sum). In contrast, the online algorithms we construct only produce output
at the end of the stream. Moreover, we define privacy with respect to an arbitrary internal
state chosen by the adversary but a private continual release algorithm could conceivably
maintain a non-private internal state.

1.3 Open Questions
An intriguing open question is whether interactivity alone suffices to learn parity with low
sample complexity. We can also ask the more fine-grained question that motivated our work:
are there strong separations between r and r + 1 round protocols like in the local model?

Our work also leaves open the possibility of sample-efficient, non-interactive parity learning
with computational differential privacy. We do not know the minimal assumptions needed to
perform parity learning with polynomial sample complexity. For example, it is unknown if
one-way functions suffice.

2 Preliminaries

For any (possibly randomized) algorithm M and distribution D over inputs of M , M(D) is
shorthand for the distribution of M(x) when x ∼ D. For any pair of distributions P, Q, the
expression SD (P, Q) denotes the statistical (total variation) distance between the two.

We write P ≈ε,δ Q if, for all events Y , both of the following are true:

P [P ∈ Y ] ≤ eε · P [Q ∈ Y ] + δ

P [Q ∈ Y ] ≤ eε · P [P ∈ Y ] + δ

In the case where δ = 0, we simply write P ≈ε Q.

▶ Fact 2.1 (Post-Processing). If P ≈ε,δ Q, then for any algorithm M , M(P) ≈ε,δ M(Q)

Throughout this work, user refers to a party who holds a single input value and server
refers to a party who does not hold any input.

ITCS 2023
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2.1 Non-interactive Multi-Server Protocols
Here, we take the number of users to be n and the number of servers to be k > 1. A protocol
Π in the non-interactive multi-server model is specified by a tuple ({Ri}i∈[n], {Aj}j∈[k], G).
Each Ri is a local randomizer run by user i on their data; if all randomizers are identical,
we simply write R. Meanwhile, Aj is an algorithm run by server j ∈ [k]. Finally, G is a
k-node directed acyclic graph that determines the communication pattern between servers.
We assume nodes (servers) are named according to a topological ordering. For brevity, we
will drop the term “non-interactive” when discussing these protocols. Algorithm 1 describes
how Π is executed.

Algorithm 1 The execution of a multi-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) on
input x⃗.

For i ∈ [n]
User i samples (yi,1, . . . , yi,k) from Ri(xi)
User i sends yi,j to server j, for all j ∈ [k]

For j ∈ [k]
Server j receives y1,j , . . . , yn,j from users and zj′→j from servers j′ where
(j′, j) ∈ G

If j = k :
The protocol’s output is zout ← Aj({yi,j}i∈[n], {zj′→j}(j′,j)∈G)

Else
Server j samples {zj→j′′}(j,j′′)∈G from Aj({yi,j}i∈[n], {zj′→j}(j′,j)∈G)
Server j sends zj→j′′ to server j′′

An attack Φ is specified by a tuple (Cu, Cs). Cu ⊂ [n] is the set of corrupted users while
Cs ⊂ [k] is the set of corrupted servers. For any multi-server protocol Π, input x⃗, and attack
Φ, an adversary’s view in execution ΠΦ(x⃗) is the random variable

ViewΠ
Φ(x⃗) := (zout, {zj→j′}(j,j′)/∈Cs×Cs

, {yi,j}(i,j)/∈Cu×Cs
, {xi}i∈Cu

)

That is, an adversary attacking Π with Φ can observe the output of the protocol, all messages
except those between honest parties, and the data of corrupted users.

For differential privacy to be satisfied, the adversary’s view must be insensitive to any
one user.

▶ Definition 2.2 (Multi-Server Differential Privacy). Π is (ε, δ)-differentially private against c

corrupted servers if, for all Φ where |Cs| ≤ c and for every neighboring pair x⃗ ∼ x⃗ ′ differing
on i /∈ Cu,

ViewΠ
Φ(x⃗) ≈ε,δ ViewΠ

Φ(x⃗ ′)

Our work relies on a variety of constructions involving local randomizers, so we close
this subsection with some relevant notation. For any subset of servers S, let Ri,S be the
algorithm that, on input x, computes (yi,1, . . . , yi,k) ← Ri(x) and reports only {yi,j}j∈S .
For any event E and disjoint subsets of servers S, S′, let Ri,S(x) | Ri,S′(x) ∈ E denote the
distribution of {yi,j}j∈S conditioned on {yi,j}j∈S′ ∈ E, where {yi,j}j∈[k] are jointly drawn
from Ri(x). We use Ri,S(D) and Ri,S(D) | Ri,S′(D) ∈ E to denote the distributions when x

is first sampled from D.
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2.2 Online Algorithms
An online algorithm M is specified by three algorithms (Minit, Mupdate, Mout). Algorithm 2
depicts how M is executed on a stream x⃗ of length n: after initializing state, it repeatedly
updates the state based upon the input stream.

Algorithm 2 The execution of an online algorithm M = (Minit, Mupdate, Mout).

Initialize internal state S0 ←Minit(·)
For i ∈ [n]

Update internal state Si ←Mupdate(i, Si−1, xi)
Compute output zout ←Mout(Sn)
Return zout

To define privacy in this model, we mirror the previous section and define adversarial
views. We make two assumptions: Mupdate is atomic and the privacy adversary can only
view one internal state.

▶ Definition 2.3 (Internally Private Online Algorithms). For any online algorithm M , input x⃗,
and time of intrusion t, let ViewM

t (x⃗) := St where St is generated as in Algorithm 2. M is
(ε, δ)-internally private if and only if the following holds for every neighboring pair x⃗ ∼ x⃗ ′

and intrusion time t:

ViewM
t (x⃗) ≈ε,δ ViewM

t (x⃗ ′)

The above definition originates in the thesis by Cheu [8]. It is a relaxation of pan-privacy,
wherein the adversary’s view also includes the output zout [12, 1, 3, 10].

3 From Multi-Server Protocols to Online Algorithms

▶ Theorem 3.1. Suppose Π is a k-server protocol that takes n inputs and offers (ε, δ)-privacy
against ⌈k/2⌉ corrupt servers. There exists a (7ε, O(e5εδ))-pan-private algorithm AΠ that
takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for any distribution D
over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

We proceed in three stages. First, we prove some essential technical lemmas regarding
local randomizers. Next, we describe how to simulate Π with an online algorithm in the
case where k = 2. Finally, we argue that any protocol with larger k can be simulated by a
two-server protocol with the same privacy parameters.

3.1 Properties of Local Randomizers
Although Π’s privacy guarantee does not imply any Ri is differentially private, it is straight-
forward to show that any strict subset of the randomizer’s outputs is (ε, δ)-private.

▷ Claim 3.2. For any user i ∈ [n] and subset of servers S ⊂ [k] where |S| ≤ ⌈k/2⌉, Ri,S is
(ε, δ)-differentially private.

Proof. Consider any attack Φ where Cs = S and i /∈ Cu. Fix any x⃗ ∼ x⃗ ′ that differ on
i. Both ViewΠ

Φ(x⃗) and ViewΠ
Φ(x⃗ ′) contain messages from user i to servers in S in the same

positions; closure under post-processing (Fact 2.1) implies Ri,S(xi) ≈ε,δ Ri,S(x′
i). ◁
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It is easier to work with local randomizers that satisfy pure differential privacy than those
that only satisfy approximate differential privacy. For this reason, we present the following
technical lemma:

▶ Lemma 3.3. If RL : X → Y is (ε, δ)-differentially private, there exists an algorithm R̃L

that is 2ε-differentially private such that, for any x ∈ X , SD
(
RL(x), R̃L(x)

)
≤ δ.

Proofs of Lemma 3.3 can be found in prior work; see e.g. Lemma 3.7 in Cheu and Ullman
[10]. By combining this lemma with Claim 3.2, we obtain a very useful corollary:

▶ Lemma 3.4. For any user i ∈ [n] and subset of servers S ⊂ [k] where |S| ≤ ⌈k/2⌉, there ex-
ists a 2ε-differentially private algorithm R̃i,S such that for any x ∈ X , SD

(
Ri,S(x), R̃i,S(x)

)
≤

δ.

3.2 The Two-server Case
▶ Theorem 3.5. Suppose Π is a two-server protocol that takes n inputs and offers (ε, δ)-
privacy against one corrupt server. There exists a (7ε, O(e5εδ))-internally-private online
algorithm AΠ that takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for
any distribution D over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

We construct a sequence of algorithms M1, M2, M3. Each approximates its predecessor
and we show that M3, by erasing unnecessary random variables, is our desired internally
private algorithm AΠ.

▶ Remark 3.6. M1 and M3 are online algorithms but to enhance readability, we avoid
explicitly decomposing them into initialization, update, and output sub-routines as done in
Section 2.2.

3.2.1 Step One: Shifting to Pure Differential Privacy
The pseudocode of M1 is given in Algorithm 3. The sole difference between M1 and the
correct execution of Π (Algorithm 1) is swapping Ri,1 with R̃i,1, the (2ε, 0)-d.p. version
of Ri,1. We do this to ease downstream analysis. Note that this step can be skipped if Π
already guarantees δ = 0.

Algorithm 3 M1(x⃗), an online algorithm that approximates Π(x⃗).

For i ∈ [n]
yi,1 ∼ R̃i,1(xi) /* Refer to Lemma 3.4 */
yi,2 ∼ Ri,2(xi) | Ri,1(xi) = yi,1

z1→2 ∼ A1(y1,1, . . . , yn,1)
zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

▷ Claim 3.7. For any protocol inputs x⃗, SD (M1(x⃗), Π(x⃗)) ≤ nδ

Proof. Lemma 3.4 implies that swapping out Ri,1 for R̃i,1 changes the distribution only by δ

at each of the n sample points. A union bound completes the proof. ◁
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3.2.2 Step Two: Generating Messages to Server 2 via Bayesian
Re-Sampling

The pseudocode of M2 is given in Algorithm 4. It proceeds in two phases, each dedicated
to simulating a server’s inputs. Like M1, it creates the messages to server 1 by running
R̃1,1, . . . , R̃n,1 on the input. Unlike M1, M2 does not generate the messages to server 2
{yi,2}i∈[n] directly from the input. Instead, it performs Bayesian re-sampling as done by
Joseph, Mao, Neel, and Roth [16]: to produce yi,2, it runs the local randomizer on a fresh
sample from D conditioned on having seen yi,1.

Algorithm 4 M2(x⃗), an algorithm that uses Bayesian re-sampling to simulate M1(x⃗)
when x⃗ ∼ Dn.

/* First Phase: Create messages to server 1 */
For i ∈ [n]

yi,1 ∼ R̃i,1(xi)
z1→2 ∼ A1(y1,1, . . . , yn,1)
/* Second Phase: Create messages to server 2 by re-sampling data */
For i ∈ [n]

x̂i ∼ D | R̃i,1(D) = yi,1
yi,2 ∼ Ri,2(x̂i) | Ri,1(x̂i) = yi,1

zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

We visualize the second phase of M2 in Figure 2.

Figure 2 Visualization of how M2 simulates the messages to server 2.

▷ Claim 3.8. The distribution M2(Dn) is identical to M1(Dn)

For brevity, we defer the proof to Appendix A.

3.2.3 Step Three: Implementing Bayesian Re-Sampling via Rejection
Sampling

M2 requires us to sample from D conditioned on R̃i,1(D) = yi,1, for every i. Since D is the
unknown distribution that is the subject of study, M2 can only be a thought experiment.
But we approximate the desired conditional distribution by performing private rejection
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sampling on independent samples from D, as done by Joseph et al. [16]. This modification is
presented in M3 (Algorithm 5). It takes in m > n samples, the excess being used for the
rejection sampling. The updated second phase is visualized in Figure 3.

Algorithm 5 M3(Dm), an online algorithm that approximates M2(Dn).

/* First Phase: Create messages to server 1 */
For i ∈ [n]

yi,1 ∼ R̃i,1(xi)
z1→2 ∼ A1(y1,1, . . . , yn,1)
/* Second Phase: Create messages to server 2 by re-sampling data */
/* Re-sampling approximated by rejection sampling */
i← 1
For h ∈ {n + 1, . . . , m}

Compute acceptance rate rateh ←
P[R̃i,1(xh)=yi,1]

2·maxu P[R̃i,1(u)=yi,1]
ah ∼ Ber(rateh)
Erase rateh from internal state
If ah = 1 :

yi,2 ∼ Ri,2(xh) | Ri,1(xh) = yi,1
Erase yi,1 from internal state
i← i + 1
If i = n + 1 :

Break loop

zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

For brevity, Appendix A contains the proofs of the statements in this subsection.

▷ Claim 3.9. For any β ∈ (0, 1), there is some m = O(e4εn + e2ε log(1/β)) where
SD (M3(Dm), M2(Dn)) ≤ β

We briefly sketch where this claim comes from. Because each R̃i,1 is 2ε private (Lemma
3.4), we can see that rateh – the rate at which we accept a sample in the second batch as
a proxy for a sample in the first batch – is at least exp(−2ε)/2. The expected number of
consumed samples is therefore O(e2εn). We note that number of consumed samples is a sum
of geometrically distributed random variables; a tail bound accounts for the extra e2ε factor
and the e2ε ln(1/β) term.

Our last step is to prove M3 ensures internal differential privacy.

▷ Claim 3.10. If Π is (ε, δ)-private against 1 corrupt server, then M3 is (7ε, O(e5εδ))-internally
private.

It is conceivable that our transformation is pan-private, meaning that the pairing of
internal state and output is differentially private, but proving so would double the number of
cases in our analysis. We state our cases as separate sub-claims.

▷ Claim 3.11. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ differ only on i∗ ∈ [n],
then for any intrusion time t > i∗

ViewM3
t (x⃗) ≈2ε ViewM3

t (x⃗ ′)
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Figure 3 Visualization of how M3 simulates the messages to server 2, assuming it has sample
access to D.

At a high level, the above comes from the fact that intrusions will either yield only
information accessible to server 1 (which is 2ε-private), or yield only a post-processing of
z1→2 (which comes from server 1’s view).

▷ Claim 3.12. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ that differ only on
i∗ ∈ [n + 1, m], then for any intrusion time t > i∗,

ViewM3
t (x⃗) ≈7ε,3e5εδ ViewM3

t (x⃗ ′)

To see where the above comes from, note that an adversary intruding at time t can only
obtain at and precisely one of yi,1 and yi,2 (determined by at). Privacy of at follows from
privacy of each R̃i,1. If the adversary views yi,1, we again have privacy via R̃i,1. Otherwise,
we argue that the marginal distribution of yi,2 is close to that of R̃i,2(xt) which is private.

Why are Interactive Protocols Difficult to Transform?

One can imagine a two-server protocol where server 2 sends some z2→1 to server 1, who then
produces the output zout. This is challenging to transform into a private online algorithm.
To see why, recall that we need to simulate the view of the server who produces output,
which is here the joint random variable (y1,1, . . . , yn,1, z1→2, z2→1). Our method allows
us to privately simulate a different random variable (y1,2, . . . , yn,2, z1→2, z2→1). We could
attempt to iteratively replace each yi,2 with yi,1 by again using Bayesian re-sampling, but the
construction must now involve z1→2. This random variable is obtained from n independent
samples from D, unlike one in Algorithm 4. Rejection sampling is now quite difficult: we
would need a way to compute an acceptance rate for a batch of n users, all while trying to
maintain privacy of the internal state after reading each user’s data.

3.3 The Multi-server Case
Here, we construct a reduction from the k-server case to the two-server case.

▷ Claim 3.13. If the k-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) is (ε, δ)-differentially
private against ⌈k/2⌉ corrupted servers, then there exists a two-server protocol Π′ =
({R′

i}i∈[n], {A′
j}j∈[2], G′) which is (ε, δ)-differentially private against 1 corrupted server and

Π(x⃗) = Π′(x⃗) for any input x⃗ = (x1, . . . , xn).
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We provide the proof sketch here. The formal proof is deferred to Appendix A

Proof Sketch. In the two-server protocol Π′, the first server A′
1 plays the role of servers

A1, . . . , A⌈k/2⌉ – meaning it simulates all their code and interactions – while the second server
A′

2 plays the role of A⌈k/2⌉+1, . . . , Ak. The message from each user to A′
1 (resp. A′

2) is a
tuple consisting of messages from that user to A1, . . . , A⌈k/2⌉ (resp. A⌈k/2⌉+1, . . . , Ak). Next,
the message from A′

1 to A′
2 is a tuple consisting of messages from the first half of servers in

Π to the second half. Finally, the output of A′
2 is the output of Ak.

For the accuracy, every computation in the servers of Π is done in A′
1 and A′

2, so the
output of A′

2 is the same with the output of Ak. For the privacy, since the protocol Π can
defend the corruption of ⌈k/2⌉ servers, it can keep private when the first half of servers are
corrupted or when the second half of servers are corrupted. Thus the protocol Π′ can keep
private when A′

1 or A′
2 is corrupted. ◁

Combining Theorem 3.5 and Claim 3.13, we finally arrive at Theorem 3.1. We restate it
below for convenience:

▶ Theorem 3.1. Suppose Π is a k-server protocol that takes n inputs and offers (ε, δ)-privacy
against ⌈k/2⌉ corrupt servers. There exists a (7ε, O(e5εδ))-pan-private algorithm AΠ that
takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for any distribution D
over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

4 Application: A Lower Bound for Parity Learning

Given Theorem 3.1, we can invoke any one of the lower bounds for pan-privacy. For brevity,
we only present a parity learning lower bound (and accompanying definitions). Other lower
bounds can be found in the full version of our work.

To streamline the presentation, we assume ε = O(1) and δ ≪ 1/n.
Let X = {±1}d+1 be the domain; we will treat the last bit of every member string as

the label of the string. The error of a parity function (ℓ, b) ∈ 2[d] × {±1} with respect to a
distribution D over X is

errD(ℓ, b) := P
x∼D

b ·
∏
j∈ℓ

xj ̸= xd+1



Figure 4 Visualization of how to use two servers to simulate the execution of k servers.
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▶ Definition 4.1 (Parity Learning). An algorithm M performs (d, t, α)-parity learning with
sample complexity n if it takes n independent samples from a distribution D over X and
reports a tuple (L, B) ∈ 2[d] × {±1} such that, with probability 99/100, |L| ≤ t and

errD(L, B) ≤ min
|ℓ|≤t,b

errD(ℓ, b) + α

The following lower bound can be found in the thesis by Cheu [8].
(

d
≤t

)
is shorthand for∑t

j=0
(

d
j

)
.

▶ Theorem 4.2. If online algorithm M performs (d, t, α)-parity learning with sample
complexity n and is (ε, δ)-pan-private for δ = 0 or δ log

((
d

≤t

)
/δ

)
≪ α2ε2/

(
d

≤t

)
, then

n = Ω
(√(

d
≤t

)
/αε

)
.

We remark that the above still holds if we had set a smaller success probability in the
problem definition (e.g. 9/10 instead of 99/100). Such flexibility allows us to combine the
above theorem with Theorem 3.1 and obtain the following bound on the sample complexity
of any parity learner in the (non-interactive) multi-server model.

▶ Theorem 4.3. If Π is a k-server protocol that solves (d, t, α)-parity learning with sample
complexity n and offers (ε, δ)-differential privacy against ⌈k/2⌉ corrupt servers for δ = 0 or
δ log

((
d

≤t

)
/δ

)
≪ α2ε2/

(
d

≤t

)
, then n = Ω

(√(
d

≤t

)
/αε

)
In contrast, Kasiviswanathan et al. show that O(d/αε) samples suffice under ε-central

privacy [18].

Proof of Theorem 4.3. Fix β to be a small constant. From Theorem 3.1 and our bound on
ε, we can create an (O(ε), O(δ))-pan-private algorithm that takes O(n) inputs and produces
output that is within nδ + β of the parity learner in statistical distance. Note that this gap
is bounded by a small constant (e.g. 9/100) due to the magnitude of δ and our choice of β.
So the pan-private algorithm learns parity with only a slightly smaller success probability
and O(n) samples. Theorem 4.2 will still apply. ◀
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A Deferred Proofs

▷ Claim 3.8. The distribution M2(Dn) is identical to M1(Dn)

Proof. Because the outputs of M1, M2 are determined by running A2 on (z1→2, {yi,2})i∈[n]),
it will suffice to show that (z1→2, {yi,2})i∈[n]) has the same distribution in both M2(Dn) and
M1(Dn).

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗)

]
=

∑
v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗), ∀i yi,1 = vi

]
=

∑
v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

M2(Dn)
[∀i yi,1 = vi]

=
∑

v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

yi,1∼R̃i,1(D)
[∀i yi,1 = vi]

(By construction)

=
∑

v⃗

P [A1(v⃗) = z] ·
n∏

i=1
P

M2(Dn)
[yi,2 = ui | yi,1 = vi]︸ ︷︷ ︸

T

· P
yi,1∼R̃i,1(D)

[∀i yi,1 = vi] (1)

(1) follows from the fact that y1,2, . . . , yn,2 are mutually independent and also independent
of z1→2.

We know that the term T is equal to P
M1(Dn)

[yi,2 = ui | yi,1 = vi] because M2 merely

changes the sampling order from “data, message 1, message 2” to “message 1, data, message
2.” Thus,

(1) =
∑

v⃗

P [A1(v⃗) = z] · P
M2(Dn)

[∀i yi,2 = ui | ∀i yi,1 = vi] · P
yi,1∼R̃i,1(D)

[∀i yi,1 = vi]

=
∑

v⃗

P
M1(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

M1(Dn)
[∀i yi,1 = vi]

= P
M1(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗)

]
◀

▷ Claim 3.9. For any β ∈ (0, 1), there is some m = O(e4εn + e2ε log(1/β)) where
SD (M3(Dm), M2(Dn)) ≤ β

Proof. As before, our analysis will condition on an arbitrary realization of (z1→2, {yi,1})i∈[n]).
We will in fact spend much of the proof studying M∞

3 (D∞), a version of M3 which
takes in an unbounded stream of samples (replace the second for-loop with a while-loop).
After establishing basic facts, we show that this alternate algorithm correctly simulates
M2(Dn). Then we show that this alternate algorithm consumes only m samples with ≥ 1−β

probability. Therefore, stopping at the m-th sample changes the overall distribution by at
most β.

Facts about M∞
3 (D∞): Let η1 be the number of iterations of the while-loop until we

obtain y1,2 and move pointer i to 2. For i > 1, let ηi be number of iterations between
sampling yi−1,2 and sampling yi,2.
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We now characterize the distribution of every ηi. To do so, note that, for any step h in
the while-loop before yi,2 is sampled,

P
xh∼D

[ah = 1] =
∫ 1

v=0
v · P

xh∼D
[rateh = v] dv

=
∫ 1

v=0
v · P

xh∼D

[
P

[
R̃i,1(x) = yi,1

]
2 ·maxu P

[
R̃i,1(u) = yi,1

] = v

]
dv

=: pi ∈
[

1
2e2ε

,
1
2

]
(2)

The last step comes from Lemma 3.4. The immediate corollary is that ηi is drawn from
Geo(pi), the geometric distribution characterizing the number of Ber(pi) trials until success.

Correctness of M∞
3 (D∞): Because we have shown that the acceptance rate of a sample

is nonzero (pi > 0), the algorithm eventually samples yi,2 for every i. We claim this implies
correct simulation. Specifically, conditioned on ah = 1, we claim that xh is drawn from the
correct posterior D | R̃i,1(D)yi,1. The calculation below is adapted from an equivalent step
in Joseph et al. [16]:

P [xh = x | ah = 1] = P [ah = 1 | xh = x] · P [xh = x]
P [ah = 1]

=
P

[
R̃i,1(x) = yi,1

]
2 ·maxu P

[
R̃i,1(u) = yi,1

] · P [xh = x]∑
x̂ P [xh = x̂] · P[R̃i,1(x̂)=yi,1]

2·maxu P[R̃i,1(u)=yi,1]

=
P

[
R̃i,1(x) = yi,1

]
· P [xh = x]∑

x̂ P [xh = x̂] · P
[
R̃i,1(x̂) = yi,1

]
= P

v∼D

[
v = x | R̃i,1(v) = yi,1

]
Distance between M∞

3 (D∞) and M3(Dm): The total number of samples consumed by
M∞

3 (D∞) is n+
∑n

i=1 ηi. Since we know each ηi is a geometric random variable, the following
lemma is useful:

▶ Lemma A.1 (Tail Bound for Geometric Convolutions). Fix any p1, . . . , pn, ℓ ∈ (0, 1/2] such
that ℓ ≤ pi for every i ∈ [n]. If we sample ηi from Geo(pi) for every i ∈ [n], then

n∑
i=1

ηi = O

(
n

ℓ
ln 1

ℓ
+ 1

ℓ
ln 1

β

)
with probability at least 1− β, for any β ∈ (0, 1).

Refer to the full version of our paper for a proof. From (2), we have that ℓ = 1/2e2ε so
that substitution implies

n∑
i=1

ηi = O

(
e2εn ln(2e2ε) + e2ε ln 1

β

)
= O

(
e4εn + e2ε ln 1

β

)
(ln(2e2ε) < 1 + 2ε)

So setting m to the above (plus n) ensures M3(Dm) is within β of M∞
3 (D∞) in statistical

distance. Because we know M∞
3 (D∞) matches M2(Dn), the proof is complete. ◁
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▷ Claim 3.10. If Π is (ε, δ)-private against 1 corrupt server, then M3 is (7ε, O(e5εδ))-internally
private.

▷ Claim 3.11. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ differ only on i∗ ∈ [n],
then for any intrusion time t > i∗

ViewM3
t (x⃗) ≈2ε ViewM3

t (x⃗ ′)

Proof. We proceed with case analysis, first with t ∈ [n]. The state St (resp. S′
t) consists of all

random variables created by M3(x⃗) (resp. M3(x⃗ ′)) up to time t, which includes the messages
{yi,1} (resp. {y′

i,1}) for i ∈ [t]. When t = n, the state also includes z1→2 (resp. z′
1→2), the

message between the servers. But these random variables are obtained from post-processing
the messages. Thus, it will suffice to show

{yi,1}i∈[n] ≈2ε {y′
i,1}i∈[n]

Because R̃i∗,1 is (2ε, 0)-private, we have that yi∗,1 ≈2ε y′
i∗,1. And by construction, every

other yi,1 is identically distributed with y′
i,1. The claim follows by the mutual independence

of the messages.
For other intrusion times t ∈ [n + 1, m], observe that xi∗ (resp. x′

i∗) is never read again
so that the claim again holds by post-processing. ◁

▷ Claim 3.12. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ that differ only on
i∗ ∈ [n + 1, m], then for any intrusion time t > i∗,

ViewM3
t (x⃗) ≈7ε,3e5εδ ViewM3

t (x⃗ ′)

Proof. In this case, notice that the view on input x⃗ is3

ViewM3
t (x⃗) = (z1→2, y1,2, . . . , yı̂−1,2, yı̂,1, . . . , yn,1, an+1, . . . , at)

where each ah is a bit sampled from Ber(rateh) and ı̂ = 1 +
∑t

h=n+1 ah is the index of the
user in the first batch whose data we are re-sampling. Likewise,

ViewM3
t (x⃗ ′) = (z′

1→2, y′
1,2, . . . , y′

ı̂′−1,2, y′
ı̂′,1, . . . , y′

n,1, a′
n+1, . . . , a′

t)

where each a′
h is sampled from Ber(rate′

h) and ı̂′ = 1 +
∑t

h=n+1 a′
h.

Let v(i∗) ∈ [n] (resp. v′(i∗)) be the value of the pointer i at the beginning of iteration i∗

in M3(x⃗) (resp. M3(x⃗) ′).
We will argue that (ai∗ , yv(i∗),2) ≈7ε,3e5εδ (a′

i∗ , yv′(i∗),2). This suffices because the other
pairs of variables in ViewM3

t (x⃗) are either (a) identically distributed with counterparts in
ViewM3

t (x⃗ ′) or (b) obtained by post-processing (ai∗ , yv(i∗),2).
By the privacy of every R̃i,1, we have that P [ah = 1],P [a′

h = 1] ∈ [1/2e2ε, 1/2] for any
h ∈ [n + 1, m]. Then,

P [ah = 1]
P [a′

h = 1] ≤
1/2

1/2e2ε
= e2ε

P [ah = 0]
P [a′

h = 0] ≤
1− 1/2e2ε

1/2 = 2− e−2ε < e2ε (Taylor series)

3 Similar to before, the views include zout and z′
out when t = m but closure under post-processing will

again ensure that this does not affect the proof.
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Consequently,

P
[
(ai∗ , yv(i∗),2) ∈ E

]
= P

[
(ai∗ , yv(i∗),2) ∈ E, ai∗ = 0

]
+ P

[
(ai∗ , yv(i∗),2) ∈ E, ai∗ = 1

]
≤ e2ε · P

[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 0

]
· P [a′

i∗ = 0]
+ e2ε · P

[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
· P [a′

i∗ = 1]

= e2ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 0
]
· P [a′

i∗ = 0]

+ e2ε · P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
· P [a′

i∗ = 1] (3)

The last step comes from two facts. First, xi∗ (resp. x′
i∗) will not be used in the creation

of yv(i∗),2 (resp. y′
v(i∗),2) when ai∗ = 0 (resp. a′

i∗ = 0) because the bit indicates rejection.
Second, v(i∗) is identically distributed with v′(i∗) because the inputs x⃗, x⃗ ′ are by definition
identical prior to i∗.

If ai∗ = 1, xi∗ will be used to generate yv(i∗),2. Let Yj be the range of Rv(i∗),j and we
assume without loss of generality it is discrete.

P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
=

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
yv(i∗),1 = y | ai∗ = 1

]
=

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
R̃v(i∗),1(xv(i∗)) = y

]
≤ e2ε ·

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
R̃v(i∗),1(xi∗) = y

]
(Lemma 3.4)

≤ e2ε ·

δ +
∑

y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
Rv(i∗),1(xi∗) = y

]
(Lemma 3.4)

= e2ε · P
[
Rv(i∗),2(xi∗) ∈ F

]
+ e2εδ (4)

where F be the subset of Y2 such that y ∈ F if and only if (1, y) ∈ E.
Symmetric reasoning yields

P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]
≥ e−2ε · P

[
Rv′(i∗),2(x′

i∗) ∈ F
]
− e−2εδ (5)

We also know that v(i∗) is identically distributed with v′(i∗) and, for any i,

P [Ri,2(xi∗) ∈ F ] ≤ eεP [Ri,2(x′
i∗) ∈ F ] + δ, (6)

Combining (4), (5), and (6), we obtain

P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
< e5ε · P

[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]

+ 3e3εδ

When we substitute the above into (3), we have

P
[
(ai∗ , yv(i∗),2) ∈ E

]
< e2ε · P

[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 0
]
· P [a′

i∗ = 0]

+ e2ε ·
(

e5ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]

+ 3e3εδ
)
· P [a′

i∗ = 1]

< e7ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E

]
+ 3e5εδ

which is what we wanted to prove. ◁
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▷ Claim 3.13. If the k-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) is (ε, δ)-differentially
private against ⌈k/2⌉ corrupted servers, then there exists a two-server protocol Π′ =
({R′

i}i∈[n], {A′
j}j∈[2], G′) which is (ε, δ)-differentially private against 1 corrupted server and

Π(x⃗) = Π′(x⃗) for any input x⃗ = (x1, . . . , xn).

Proof. Recall that the i-th local randomizer in Π has the form Ri(xi) = (yi,1, . . . , yi,k).
R′

i(xi) (Algorithm 6) constructs (y′
i,1, y′

i,2), where the first element is (yi,1, . . . , yi,⌈k/2⌉) and
the second is (yi,⌈k/2⌉+1, . . . , yi,k).

Algorithm 6 R′
i, the i-th local randomizer in the two-servers protocol.

Let Ri be the i-th local randomizer in the k-server protocol.
Input: xi

1 Sample (yi,1, . . . , yi,k) ∼ Ri(xi).
2 Let y′

i,1 = (yi,1, . . . , yi,⌈k/2⌉) and y′
i,2 = (yi,⌈k/2⌉+1, . . . , yi,k).

3 Return (y′
i,1, y′

i,2)

A′
1 (Algorithm 7) simulates the execution of A1 . . . A⌈k/2⌉ and A′

2 (Algorithm 8) simulates
A⌈k/2⌉+1 . . . Ak. Since we assume that all servers in Π are named according to a topological
ordering, A′

2 will not produce a message destined for a server simulated by A′
1: there is no

interaction between the two servers. Let z′
1→2 be the collection of messages from the first

half of the k servers to the second half.

Algorithm 7 A′
1, the first server in the two-server protocol.

Let A1, . . . , A⌈k/2⌉ be the 1-st to ⌈k/2⌉-th servers in the k-server protocol.
Input: y′

1,1, . . . , y′
n,1, where y′

i,1 = (yi,1, . . . , yi,⌈k/2⌉+1) for i ∈ [n]
1 Sample (z1→2, . . . , z1→k) ∼ A1(y1,1, . . . , yn,1).
2 For j ∈ {2, . . . , ⌈k/2⌉}
3 Sample (zj→j+1, . . . , zj→k) ∼ Aj(y1,j , . . . , yn,j , z1→j , . . . , zj−1→j).
4 Let z′

1→2 = (z1→⌈k/2⌉+1, . . . , z1→k, . . . , z⌈k/2⌉→⌈k/2⌉+1, . . . , z⌈k/2⌉→k).
5 Return z′

1→2

Algorithm 8 A′
2, the second server in the two-server protocol.

Let A⌈k/2⌉+1, . . . , Ak be the ⌈k/2⌉+ 1-th to k-th servers in the k-server protocol.
Input: y′

1,2, . . . , y′
n,2, z′

1→2, where y′
i,2 = (yi,⌈k/2⌉+1, . . . , yi,k) for i ∈ [n] and

z′
1→2 = (z1→⌈k/2⌉+1, . . . , z1→k, . . . , z⌈k/2⌉→⌈k/2⌉+1, . . . , z⌈k/2⌉→k)

1 For j ∈ {⌈k/2⌉+ 1, . . . , k − 1}
2 Sample (zj→j+1, . . . , zj→k) ∼ Aj(y1,j , . . . , yn,j , z1→j , . . . , zj−1→j).
3 Sample zout ∼ Ak(y′

1→k, . . . , y′
n→k, z1→k, . . . , zk−1→k

4 Return zout

The new protocol preserves accuracy because the output of A′
2 is identical to the output

of Ak.
We now argue that Π′ is (ε, δ)-differentially private against 1 corrupted server if Π is

(ε, δ)-differentially private against ⌈k/2⌉ corrupted servers. This is done by arguing any
attack Φ′ = (C ′

u, C ′
s) against Π′ corresponds to an attack Φ against Π. Specifically, let the

set of corrupted users in Φ to be Cu = C ′
u. If the set of corrupted servers in Φ′ is C ′

s = {1},
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let Cs = {1, . . . , ⌈k/2⌉}. If C ′
u = {2}, let Cs = {⌈k/2⌉+ 1, . . . , k}. Note that |Cs| ≤ ⌈k/2⌉

and the view of the adversary in both attacks are identical. Since Π is (ε, δ)-differentially
private against Φ, Π′ must be (ε, δ)-differentially private against Φ′. ◁

B A Two-Server Protocol for Robust Count Estimates

Here, we sketch an example of a protocol in our model. It performs differentially private
counting (summation of {0, 1} values). Steinke [20] gave a simple protocol for this problem
but a malicious user can greatly skew the count estimate.4 The protocol by Talwar [21] is
designed with such attacks in mind. It performs high-dimensional addition (summation of
values in the unit ℓ2 ball). The one-dimensional nature of counting admits a greatly simpler
construction.

Before we define the algorithms that make up the protocol, we give some preliminary
notation. For predicate p, I{p} is 1 if p is true and 0 if it is false. For natural number t, let
Dt be the distribution over [t] such that P

η∼Dt

[η = v] ∝ exp(−ε · |t/2− v|).
On input xi, the local randomizer R samples ηi from Dt and reports

(yi,1 ← xi + ηi, yi,2 ← ηi)

The first server samples α1 from Dt and reports

z1→2 := α1 +
∑
i∈[n]

yi,1 · I{yi,1 ∈ [0, t + 1]}

to the second server, who then reports

zout := z1→2 + α2 − t−
∑
i∈[n]

yi,2 · I{yi,2 ∈ [0, t + 1]}

where α2 is yet another sample from Dt.

In our analysis, we make the simplifying assumption that δ ≪ ε < 1.

▷ Claim B.1. For t = Θ( 1
ε log 1

δ ), the protocol is (ε, δ)-differentially private against 1
(semi-honest) corrupted server.

Proof Sketch. Without loss of generality, we will ensure privacy for user 1 and assume the
adversary corrupts all other users.

If server 1 is corrupted but server 2 is honest, the only variables pertaining to user 1 the
adversary can obtain are y1,1 and α2 + y1,1 − y1,2 = α2 + x1. The former is received directly
from user 1. The latter is obtainable by subtracting the other user’s messages from zout. y1,1
is the result of adding noise from a truncated discrete Laplace distribution to x1, a value
with sensitivity 1. The same is true for α2 + x1. Hence we have (ε, δ)-differential privacy
from composition (and the right choice of parameters).

If server 2 is corrupted (but server 1 is honest), the adversary can observe y1,2 and the
value α1 + y1,1. The former is direct from user 1 while the latter is obtained by subtracting
the other user’s messages from z1→2. The adversary can compute α1 + y1,1 − y1,2 = α1 + x1
which is (ε, δ)-differentially private for the same reason that α2 + x1 is private. ◁

4 Each honest user secret-shares their value across servers, so the modulus must be at least n. But a
single malicious user can send shares that encode a Ω(n) value instead of a {0, 1} value and honest
servers cannot detect this.
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▷ Claim B.2. If all parties are honest and t is set as above, then the protocol produces an
unbiased estimate of the count such that, with 90% probability, the error is O

( 1
ε

)
. If there

are m malicious users and no malicious servers, the error is O
(

m
ε log 1

δ

)
.

Proof Sketch. We first argue that there is no bias in the honest execution. In this case, we
equate zout with the sum of h1 = α1 + α2 − t and h2 =

∑
i∈[n] yi,1 · I{yi,1 ∈ [0, t + 1]} − yi,2 ·

I{yi,2 ∈ [0, t + 1]}. The random variable h1 has mean 0 because t = E [α1 + α2]. And observe
that the construction of yi,1, yi,2 implies h2 =

∑
xi.

Now we argue the error is likely low. By manipulating geometric series, it can be shown
that |α1 − t/2| is at most k with probability (eε + 1− e−εk)/(eε + 1−Θ(δ)). Invoking our
bounds on δ and ε, this probability is at least 0.95 when k = Θ(1/ε). The same goes for α2.
A union bound completes the proof.

We conclude with the analysis of the manipulation case. The honest servers limit the
influence of any user on the output to be O(t) because they only add messages that belong
in the range [0, t + 1]. Hence, no coalition of m users can introduce more than O

(
m
ε log 1

δ

)
bias. ◁
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Abstract
The so-called welded tree problem provides an example of a black-box problem that can be solved
exponentially faster by a quantum walk than by any classical algorithm [3]. Given the name of
a special entrance vertex, a quantum walk can find another distinguished exit vertex using
polynomially many queries, though without finding any particular path from entrance to exit.
It has been an open problem for twenty years whether there is an efficient quantum algorithm for
finding such a path, or if the path-finding problem is hard even for quantum computers. We show
that a natural class of efficient quantum algorithms provably cannot find a path from entrance to
exit. Specifically, we consider algorithms that, within each branch of their superposition, always
store a set of vertex labels that form a connected subgraph including the entrance, and that only
provide these vertex labels as inputs to the oracle. While this does not rule out the possibility
of a quantum algorithm that efficiently finds a path, it is unclear how an algorithm could benefit
by deviating from this behavior. Our no-go result suggests that, for some problems, quantum
algorithms must necessarily forget the path they take to reach a solution in order to outperform
classical computation.
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1 Introduction

Quantum algorithms use interference of many branches of a superposition to solve problems
faster than is possible classically. Shor’s factoring algorithm [13] achieves a superpolynomial
speedup over the best known classical algorithms by efficiently finding the period of a modular
exponentiation function, and several other quantum algorithms (e.g., [7, 8, 9]) provide a
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entrance exit

Figure 1 Example of a welded tree graph with n = 3.

speedup by similarly detecting periodic structures. While a few other examples of dramatic
quantum speedup are known – notably including the simulation of quantum dynamics [11]
– our understanding of the capabilities of quantum algorithms remains limited. To gain
more insight into the possible applications of quantum computers, we would like to better
understand the kinds of problems they can solve efficiently and what features of problems
they are able to exploit.

Another example of exponential quantum speedup is based on quantum analogs of random
walks. Specifically, quantum walks provide an exponential speedup for the so-called welded
tree problem [3]. The symmetries of this problem, and the structure of the quantum algorithm
for solving it, seem fundamentally different from all preceding exponential quantum speedups.
In particular, the welded tree problem provably requires polynomial “quantum depth” to
solve efficiently [6], whereas all previously known exponential quantum speedups only require
logarithmic quantum depth, including Shor’s factoring algorithm [5]. (The only other known
computational problem exhibiting an exponential quantum speedup, yet requiring polynomial
quantum depth, was recently constructed in [2].)

The welded tree problem is defined on a “welded tree graph” that is formed by joining
the leaves of two binary trees with a cycle that alternates between them, as shown in
Figure 1. The root of one tree is designated as the entrance, and the root of the other
tree is designated as the exit. The graph structure is provided through an oracle that gives
adjacency-list access to the graph, where the vertices are labeled arbitrarily. Given the label
of the entrance vertex and access to the oracle, the goal of the welded tree problem is to
return the label of the exit vertex. On a quantum computer, this black box allows one to
perform a quantum walk, whereby the graph is explored locally in superposition. Interference
obtained by following many paths coherently causes the quantum walk to reach the exit in
polynomial time. In contrast, no polynomial-time classical algorithm can efficiently find the
exit – essentially because it cannot distinguish the welded tree graph from a large binary
tree – so the quantum walk achieves exponential speedup.

While the quantum walk algorithm efficiently finds the exit by following exponentially
many paths in superposition, it does not actually output any of those paths. Classical
intuition might suggest that an efficient algorithm for finding the exit could efficiently find a
path by simply recording every intermediate state of the exit-finding algorithm. However, in
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general, the intermediate state of a quantum algorithm cannot be recorded without destroying
superposition and ruining the algorithm. In other words, the welded tree problem can be
viewed as a kind of multi-slit experiment that takes the well-known double-slit experiment
into the high-complexity regime. This raises a natural question: Is it possible for some
quantum algorithm to efficiently find a path from the entrance to the exit? This question
already arose in the original paper on the welded tree problem [3] and has remained open
since, recently being highlighted in a survey of Aaronson [1].

In one attempt to solve this problem, Rosmanis studied a model of “snake walks”, which
allow extended objects to move in superposition through graphs [12]. The state of a snake
walk is a superposition of “snakes” of adjacent vertices, rather than a superposition of
individual vertices as in a standard quantum walk. While Rosmanis did not show conclusively
that snake walks cannot find a path through the welded tree graph, his analysis suggests that
a snake walk algorithm is unlikely to accomplish this using only polynomially many queries
to the welded tree oracle. Although this is only one particular approach, its failure supports
the conjecture that it might not be possible to find a path efficiently. If such an impossibility
result could be shown for general quantum algorithms, it would establish that, in order to
find the solution to some computational problems, a quantum algorithm must necessarily
“forget” the path it takes to that solution. While forgetting information is a common feature
of quantum algorithms, which often uncompute intermediate results to facilitate interference,
many algorithms are able to efficiently produce a classically verifiable certificate for the
solution once they have solved the problem.1 In contrast, hardness of path finding in the
welded tree problem would show not only that trying to remember a path would cause one
particular algorithm to fail, but in fact no algorithm can efficiently collect such information.

In this paper, we take a step toward showing hardness of the welded tree path-finding
problem. Specifically, we show hardness under two natural assumptions that we formalize in
Section 2, namely that the algorithm is genuine and rooted.

First, we assume that the algorithm accesses the oracle for the input graph in a way that
we call genuine. A genuine algorithm is essentially one that only provides meaningful vertex
labels as inputs to the welded tree oracle. Both the ordinary quantum walk [3] and the snake
walk [12] can be implemented by genuine algorithms. It is hard to imagine how non-genuine
algorithms could gain an advantage over genuine algorithms, but we leave further exploration
of this topic for future work.

We also assume that the algorithm is rooted. Informally, a rooted algorithm is one that
always maintains (i.e., remembers) a path from the entrance to every vertex appearing in
its state. Note that the exit-finding algorithm of [3] is crucially not rooted. Nonetheless, it
is natural to focus on rooted algorithms when considering the path-finding problem, since
a non-rooted path-finding algorithm would effectively have to detach from the entrance
and later find it again. While we cannot rule out this possibility, it seems implausible.
Although remembering a path to the entrance limits how quantum interference can occur,
it does not eliminate interference entirely – in fact, rooted algorithms can exhibit exponential
constructive and destructive interference. Furthermore, if the snake walk [12] were to find a
path from entrance to exit, it would most naturally do so in a rooted fashion.

Our main result is that a genuine, rooted quantum algorithm cannot find a path from
entrance to exit in the welded tree graph using only polynomially many queries. To
establish this, we show that for any genuine, rooted quantum query algorithm A, there is a

1 For example, in Simon’s algorithm [14], we learn the hidden string and can easily find collisions. In
Shor’s algorithm [13], the factors reveal the structure of the input number and their correctness can be
easily checked.
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classical query algorithm using at most polynomially more queries that can approximately
sample from the output state of A (measured in the computational basis) up to a certain
error term |ψugly⟩ (defined in Section 4.4). This error term can be intuitively described as the
part of the superposition of rooted configurations that has ever encountered a cycle or the
exit in the welded tree graph during the entire course of the algorithm. Because elements of
a quantum superposition need not have a well-defined classical history, the precise definition
of our error term is somewhat involved. Nonetheless, we are able to bound the sampling
error of our efficient classical simulation of A using an inductive argument.

We construct the classical simulation as follows. First, using exponential time and
only a constant number of classical queries, the algorithm processes the circuit diagram of
the genuine, rooted quantum algorithm and samples a “transcript” (defined in Section 3)
that describes a computational path the quantum algorithm could have taken, neglecting
the possibility of encountering a cycle or the exit. The classical algorithm then makes
polynomially many queries to the classical oracle, in a manner prescribed by the sampled
transcript, and outputs the vertices of the welded tree graph that were reached by those
queries. We prove in Section 4 that this efficient classical query algorithm is almost as likely
to find an entrance–exit path as the original genuine, rooted quantum algorithm. We do
this by showing that the classical algorithm exactly simulates the part of the quantum state
that does not encounter a cycle or the exit, and that the remaining error term, |ψugly⟩, is
exponentially small. A major technical challenge is that our classical hardness result (shown
in Section 5) does not immediately show that |ψugly⟩ is small as it may be possible for a
quantum algorithm to foil a classical simulation by computing and uncomputing a cycle, and
“pretending” to have never computed it. We overcome this issue by considering the portions
of the state that encounter a cycle at each step and inductively bounding their total mass.

A subtle – yet unexpectedly significant – detail in our analysis is that we consider a version
of the welded tree problem in which the oracle provides a 3-coloring of the edges of the graph,
instead of using a 9-coloring as in the lower bound of [3].2 This alternative coloring scheme
substantially reduces the complexity of the analysis in Sections 2–4. This is because it allows
us to determine, with high probability, whether starting at the entrance and following the
edges prescribed by a polynomial-length color sequence t will lead to a valid vertex of the
welded tree graph, using only a constant number of classical queries to the welded tree oracle.
In particular, it suffices to check whether t departs from the entrance along one of the two
valid edges (which can be determined using only three queries to the oracle). This is a key
property used in our argument that the transcript state (see Definition 15) can track much
of the behavior of a genuine, rooted quantum algorithm while only making a small number
of classical queries to the welded tree oracle.

However, our choice of the 3-coloring model comes at the cost of having to redesign the
proof of classical hardness of finding the exit vertex in the welded tree graph. The original
classical hardness proof [3] crucially considers a special type of 9-coloring with the property
that, starting from a valid coloring, the color of any edge can be altered arbitrarily, and only
edges within distance 2 need to be re-colored to produce a valid coloring with that newly
assigned edge color. This “local re-colorability” property is used at the crux of the classical
hardness result, first in reducing from Game 2 to Game 3, and again implicitly in part (i) of
the proof of Lemma 8 [3]. In contrast, a valid 3-coloring of the welded tree graph does not
have this “local re-colorability” property: changing a single edge color might require a global

2 Note that the quantum walk algorithm can solve the welded tree problem using a 3-coloring, or even if
it is not provided with a coloring at all [3].
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change of many other edge colors to re-establish validity of the coloring. Thus we are forced
to develop a modification of the classical hardness proof, given in Section 5, which may also
be of independent interest.

Note that our hardness result for exit-finding in the 3-color model implies the hardness
result for exit-finding in the colorless model of [3] (which is equivalent to a restricted class
of locally-constructible 9-colorings), but not the other way around. This is because, a priori,
the given 3-coloring could leak global information about the graph that the 9-coloring does
not. On the other hand, our hardness result for exit-finding in the 3-color model combined
with the analysis of Section 2 implies hardness of path finding for genuine, rooted algorithms
in both the 3-color and 9-color models, as well as the colorless model.

While our result does not definitively rule out the possibility of an efficient quantum
algorithm for finding a path from entrance to exit in the welded tree graph, it constrains
the form that such an algorithm could take. In particular, it shows that the most natural
application of a snake walk to the welded tree problem, in which the snake always remains
connected to the entrance, cannot solve the problem. While it is conceivable that a snake
could detach from the entrance and later expand to connect the entrance and exit, this
seems unlikely. More generally, non-genuine and non-rooted behavior do not intuitively seem
useful for solving the problem. We hope that future work will be able to make aspects of
this intuition rigorous.

Due to space limitations, no proofs are included in this condensed version of the paper.
For a full technical version including all proof details, see Ref. [4].

Open questions

This work leaves several natural open questions. The most immediate is to remove the
assumption of a rooted, genuine algorithm to show unconditional hardness of finding a path
(or, alternatively, to give an efficient path-finding algorithm by exploiting non-genuine or
non-rooted behavior). We also think it should be possible to show classical hardness of the
general welded tree problem when the oracle provides a 3-coloring. Finally, it would be
instructive to find a way of instantiating the welded tree problem in an explicit (non-black
box) fashion, giving a quantum speedup in a non-oracular setting.

2 Genuine and rooted algorithms

In this section, we precisely define the aforementioned notion of genuine, rooted quantum
query algorithms. Intuitively, an algorithm is genuine if it only allows for “meaningful”
processing of vertex labels, and it is rooted if it remains “connected to the entrance”
throughout its course. We begin by describing our setup and recalling the definition of the
welded tree oracle.

▶ Definition 1 (Welded tree). A graph Gn is a welded tree of size n if it is formed by joining
the 2 · 2n leaves of two balanced binary trees of height n with a cycle that alternates between
the two sets of leaves (as shown in Figure 1). Each vertex in Gn is labeled by a 2n-bit string.

Henceforth, we refer to the input welded tree graph of size n as G. We use VG to denote
the set of vertices of G. Since G is bipartite and each vertex v ∈ VG has degree at most
3, G can be edge-colored using only 3 colors [10]. Therefore, we suppose that the edges
of G are colored from the set C := {red, green, blue}. We define a classical oracle function
ηc : {0, 1}2n → {0, 1}2n that encodes the edges of color c ∈ C in G.
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▶ Definition 2 (ηc). For any v ∈ VG and c ∈ C, let Ic(v) be the indicator variable that is 1
if the vertex labeled v has an edge colored c and 0 otherwise. If Ic(v) = 1 for some v ∈ VG
and c ∈ C, let Nc(v) be the label of the vertex joined to v with an edge of color c. Then

ηc(v) :=


Nc(v) v ∈ VG and Ic(v) = 1
noedge v ∈ VG and Ic(v) = 0
invalid v /∈ VG ,

(1)

where noedge and invalid are special reserved strings in {0, 1}2n \ VG. We also define
SpecialVertices := {02n, entrance, exit,noedge, invalid}.

Since G is 3-colored, for any vertex label v ∈ VG , Ic(v) = 0 only if v ∈ {entrance, exit}.
We now describe the spaces that our algorithms act on.

▶ Definition 3 (Vertex register and vertex space). A vertex register is a 2n-qubit register that
stores a vertex label. We consider quantum states that have exactly p(n) vertex registers, and
refer to the 2np(n)-qubit space consisting of all the vertex registers as the vertex space.

Any computational basis state in the vertex space stores p(n) vertex labels, corresponding
to a subgraph of G. A quantum algorithm can also store additional information using its
workspace.

▶ Definition 4 (Workspace and workspace register). A workspace register is a single-qubit
register that can store arbitrary ancillary states. We allow for arbitrarily many workspace
registers, and refer to the space consisting of all workspace registers as the workspace.

2.1 Genuine algorithms
We now precisely describe the set of gates that we allow quantum query algorithms to employ
for querying and manipulating the vertex labels in a meaningful way.

▶ Definition 5 (Genuine circuit). We say that a quantum circuit C is genuine if it is built
from the following unitary gates.
1. Controlled-oracle query gates Oc for c ∈ C where the control qubit is in the workspace, and

Oc acts on the jth and kth vertex registers for some distinct j, k ∈ [p(n)] := {1, . . . , p(n)}
as Oc : |vj⟩|vk⟩ 7→ |vj⟩|vk ⊕ ηc(vj)⟩ where ηc is specified in Definition 2.
Furthermore, in a genuine circuit, Oc can only be applied if vk = 02n or vk = ηc(vj) for
every vj , vk pair appearing in those respective registers in the superposition.
We let ∧(A) denote a controlled-A gate, so that ∧(Oc) denotes the controlled-Oc gate.

2. Controlled-eiθT rotations for any θ ∈ [0, 2π) where the control qubit is in the workspace
and the Hamiltonian T is defined, similarly to [3], to act on the jth and kth vertex
registers for some distinct j, k ∈ [p(n)] as T : |vj⟩|vk⟩ 7→ |vk⟩|vj⟩. As per part 1, ∧(eiθT )
denotes the controlled-eiθT gate.

3. Equality check gates E , which act on the jth and kth vertex registers for some distinct j, k ∈
[p(n)], and on the ath workspace register for some workspace index a, as E : |vj⟩|vk⟩|wa⟩ 7→
|vj⟩|vk⟩|wa ⊕ δ[vj = vk]⟩ where δ[P ] is 1 if P is true and 0 if P is false.

4. noedge check gates N , which act on the jth vertex register for some j ∈ [p(n)],
and on the ath workspace register for some workspace index a, as N : |vj⟩|wa⟩ 7→
|vj⟩|wa ⊕ δ[vj = noedge]⟩.

5. zero check gates Z, which act on the jth vertex register for some j ∈ [p(n)], and on the ath
workspace register for some workspace index a, as Z : |vj⟩|wa⟩ 7→ |vj⟩

∣∣wa ⊕ δ[vj = 02n]
〉
.

6. Arbitrary two-qubit gates (or, equivalently, arbitrary unitary transformations) restricted
to the workspace register.
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We now define the notion of genuine algorithms using Definition 5. Let O = {Oc : c ∈ C}
denote a particular randomly selected welded tree oracle, and let A(O) denote a quantum
algorithm that makes quantum queries to O.

▶ Definition 6 (Genuine algorithm). We call a quantum query algorithm A genuine if, for
the given welded tree oracle O, A(O) acts on the vertex space and the workspace as follows.
1. A(O) begins with an initial state |ψinitial⟩ := |entrance⟩⊗

(∣∣02n〉)⊗(p(n)−1)⊗|0⟩workspace.
2. Then, it applies a p(n)-gate genuine circuit C (as in Definition 5) on |ψinitial⟩ to get the

state |ψA⟩.
3. Finally, it measures all the vertex registers of |ψA⟩ in the computational basis and outputs

the corresponding vertex labels.

We focus on genuine algorithms because they are easier to analyze than fully general
algorithms, but do not seem to eliminate features that would be useful in a path-finding
algorithm. Genuine algorithms are only restricted in the sense that they cannot use vertex
labels other than by storing them, acting on them with the input or output register of an
oracle gate, performing phased swaps of the vertex label positions, and checking whether
they are equal to zero or noedge. Since the vertex labels are arbitrary and uncorrelated
with the structure of the welded tree, it is hard to imagine how a general quantum algorithm
could gain an advantage over genuine quantum algorithms by using the vertex labels in any
other way.3 Thus, genuine algorithms describe a natural class of strategies that should offer
insight into the more general case.

We also emphasize that the only proposed algorithms for the welded tree problem (and
the associated path-finding problem) are genuine. The only such algorithms we are aware of
are the exit-finding algorithm of [3] and the snake-walk algorithm analyzed by Rosmanis [12].

Intuitively, the exit-finding algorithm of [3] is genuine since it performs a quantum walk
on the welded tree graph, and such a process does not depend on the vertex labels. More
concretely, a close inspection of the exit-finding algorithm of [3] reveals that every gate in
the algorithm is an allowed gate in Definition 5 (even with the above minor modification).
This means that the algorithm is genuine as per Definition 6. (As a technical aside, note
that the algorithm works with any valid coloring of the welded tree graph, so in particular,
it works for our chosen 3-color model by simply limiting the set of colors in the algorithm.)

Similarly, in [12], Rosmanis defines a quantum snake walk algorithm on a particular
welded tree graph G to be a quantum walk on a corresponding “snake graph” Gℓ, which has
one vertex for each distinct “snake” of length ℓ in G. Here a “snake” of length ℓ refers to a
length-ℓ vector of consecutive vertices of G. Although it is more complicated to decompose
this algorithm into the gates of Definition 5, this can be done, showing that the snake walk
algorithm is genuine. Furthermore, it is intuitive that the snake walk algorithm should not
depend on the specific vertex labels simply because it is defined to be a quantum walk on
Gn, a graph whose connectivity does not depend on the vertex labels of G.

2.2 Rooted algorithms
We now define the notion of a rooted algorithm. Intuitively, a state in the vertex space
is rooted if it corresponds to a set of labels of vertices from VG (and the noedge and 02n

labels) that form a connected subgraph containing the entrance (neglecting the noedge
and 02n labels, if present).

3 The proof that classical algorithms cannot efficiently find the exit effectively shows that classical
algorithms cannot benefit from non-genuine behavior [3]. While it seems harder to make this rigorous
for quantum algorithms, similar intuition holds.
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▶ Definition 7 (Rooted state). We say that a computational basis state |ψ⟩ in the vertex
space is rooted if entrance is stored in some vertex register of |ψ⟩ and, for any vertex
label v stored in any of the vertex registers of |ψ⟩, v ∈ VG ∪ {02n,noedge}, and if v ̸= 02n,
then there exist r vertex registers storing vertex labels vj1 , . . . , vjr such that vj1 = entrance,
vjr

= v, and for each k ∈ [r − 1], ηc(vjk
) = vjk+1 for some c ∈ C.

We say that an algorithm is rooted if all its intermediate states are superpositions of
rooted states.

▶ Definition 8 (Rooted algorithm). A quantum query algorithm A is rooted if, for the given
welded tree oracle O, at each intermediate step of A(O), every computational basis state in
the support of the vertex space of the quantum state maintained by A is rooted.

Non-rooted behavior can be useful for exploring the welded tree graph. In particular, the
algorithm of [3] for finding the exit is not rooted, since it only maintains a single vertex
(in superposition). However, a path-finding algorithm must store information about many
vertices, and the value of detaching from the entrance is unclear since the algorithm must
ultimately reattach. Note that the snake walk [12] is initially rooted, the most natural way
for it to find a path from entrance to exit is arguably to do so while remaining rooted,
though the algorithm may become non-rooted if it is run for long enough.

3 Transcript states

For any genuine quantum query algorithm A that makes p(n) oracle queries to the oracle O
of the input welded tree G, we associate a quantum state |ϕA⟩, which we call the transcript
state of A(O). As we will see in Definition 15 below, instead of storing the label of a vertex
v, the transcript state |ϕA⟩ stores a path from the entrance to v. We refer to this path as
the address of v, which we now define.

▶ Definition 9 (Vertex addresses). We say that a tuple t of colors from C is an address of
a vertex v of G if v is reached by starting at the entrance and following the edge colors
listed in t. For completeness, we assign special names zeroaddress, noedgeaddress,
and invalidaddress to denote the addresses of vertex labels 02n, noedge, and invalid,
respectively. We denote the empty tuple by the special name emptyaddress. Let
SpecialAddresses := {zeroaddress, emptyaddress,noedgeaddress, invalidaddress}.
Finally, we define Addresses := SpecialAddresses ∪

⋃
i∈[p(n)] Ci where Ci denotes the set of all

i-tuples of colors from C.

Note that a given vertex can have many different associated addresses. Indeed, two
addresses that differ by an even-length palindrome of colors are associated to the same vertex.
Even greater multiplicity of addresses can occur because of the cycles in G. We define the
notion of the address tree to deal with the former issue, and we delay consideration of the
latter issue. To define the address tree, we need to know the color c∗ that does not appear
at the entrance.

▶ Definition 10 (The missing color at the entrance). Let c∗ ∈ C be the unique color such that
there is no edge of color c∗ incident to the entrance in G.
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empty

r b noedge zero

r,g r,b b,g b,r invalid

r,g,b r,g,r r,b,g r,b,r b,g,r b,g,b b,r,g b,r,b

Figure 2 Address tree T of depth 3. For the sake of brevity, we have removed the suffix
address for all the addresses in SpecialAddresses and the tuple brackets for all the addresses not in
SpecialAddresses. Notice that, for each vertex, there is an edge (either directed or undirected) of
each color outgoing from each vertex in T .

▶ Definition 11 (Address tree). The address tree T (see Figure 2) is a binary tree of
depth p(n) with 3 additional vertices.4 Its vertices and edges are labeled by addresses and
colors, respectively, as follows. The 3 additional vertices are labeled by each address in
SpecialAddresses \ {emptyaddress}. The root of T is labeled by emptyaddress. It is
joined to the vertex labeled noedgeaddress by a directed edge of color c∗, and to 2 other
vertices, each by an undirected edge of a distinct color from C \ {c∗}. For each color c ∈ C,
the vertices labeled zeroaddress and noedgeaddress have a directed edge colored c to
the vertex labeled invalidaddress. The vertex labeled invalidaddress also has 3 self-loop
edges, each of a distinct color from C. Every other vertex in t is joined to 3 other vertices,
each by an undirected edge of a distinct color from C. Every vertex t of T whose label is not
in SpecialAddresses is labeled by the sequence of colors that specifies the (shortest) path from
emptyaddress to t in T . For any vertex t of T , let λc(t) be the vertex that is joined to t
by an edge of color c in T .

The following simple observations about the address tree T may be instructive.

Since the 3-coloring of T is a valid coloring, no vertex label of T contains an even-length
palindrome.
Beginning at the vertex labeled emptyaddress and traversing any sequence of colors
in T leads to some vertex of T . Therefore, in the definition of the transcript state
(Definition 15), and hence in the algorithm analyzed in Section 4, the addresses that we
consider are valid labels of vertices in T , by construction.
The color c∗ can be computed with 2 queries to the oracle O. Therefore, the entire
address tree can be computed with only 2 queries to O.

Intuitively, the transcript state |ϕA⟩ is the state that results from running the algorithm
A on the address tree T instead of the actual welded tree graph G. If A does not explore
cycles in G to a significant extent, then |ϕA⟩ should be a good approximation of the state
|ψA⟩ produced by running A on G, as in Definition 6. In Section 4, we show that this is
indeed the case for any genuine, rooted quantum algorithm A.

4 The address tree is not technically a tree, but we use this name since it contains no non-trivial cycles.
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Now we define a mapping B that turns addresses into strings, and another mapping Binv

that turns strings into addresses, such that Binv is the inverse of B on the range of B. In our
analysis, the registers we consider can never contain any string that is not in the range of
the B mapping. Therefore, it is sufficient to define Binv over the range of B. Nevertheless,
we define Binv over {0, 1}2p(n) for the sake of completeness.

▶ Definition 12 (B mapping). Let VT denote the set of labels of vertices of the
address tree T . Let S be a subset of {0, 1}2p(n) of size |VT | containing 02p(n).
Let emptystring, noedgestring, and invalidstring be any distinct fixed strings
in S \ {02p(n)}. Then B : VT → S is a bijection mapping zeroaddress to
02p(n), emptyaddress to emptystring, noedgeaddress to noedgestring, and
invalidaddress to invalidstring. Furthermore, the mapping Binv : {0, 1}2p(n) → VT
sends s ∈ S to B−1(s) and s /∈ S to invalidaddress.

We now define analogs of the spaces introduced in Definitions 3 and 4 that our transcript
state (Definition 15) lies in and that our classical simulation algorithm (Algorithm 2) acts on.

▶ Definition 13 (Address register and address space). An address register is a 2p(n)-qubit
register storing bit strings that are the image, under the map B, of the address of some
vertex label in the address tree T . We consider quantum states that have exactly p(n) address
registers, and refer to the 2p(n)2-qubit space of all the address registers as the address space.

▶ Definition 14 (Address workspace and address workspace register). An address workspace
register is a single-qubit register that stores arbitrary ancillary states. We allow arbitrarily
many address workspace registers, and refer to the space consisting of all address workspace
registers as the address workspace.

Notice the similarity between the definitions of workspace and address workspace. Indeed,
we will later observe that the projection of |ψA⟩ on the workspace is the same as the projection
of the transcript state on the address workspace in the subspace not containing the exit or
a cycle. We are now ready to state the definition of the transcript state |ϕA⟩ associated with
the quantum state |ψA⟩.

▶ Definition 15 (Transcript state). Consider a p(n)-query genuine, rooted quantum algorithm
A. Given a circuit C that implements A, acting on the vertex space and the workspace, let
C̃ be the quantum circuit that acts on the address space and the address workspace, obtained
by the following procedure.5
1. Determine c∗ using two queries to the oracle O.
2. Replace each vertex register with an address register and each workspace register with an

address workspace register. Replace the initial state used in the genuine algorithm (recall
Definition 6) with the new initial state |ϕinitial⟩ := |emptystring⟩⊗

(∣∣02p(n)〉)⊗(p(n)−1)⊗
|0⟩addressworkspace.
In parts 3–8 below, we describe gates that act on the address space analogously to how
the gates in Definition 5 act on the vertex space. For any vertex v ∈ VG, we write
sv ∈ {0, 1}2p(n) to denote the contents of the address register corresponding to the vertex
register storing v. The transcript state is produced by the unitary operation that results
by replacing each vertex-space gate in the quantum algorithm A with the corresponding
address-space gate defined below.

5 Notice that the time complexity of this procedure is linear in the size of the circuit C.
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3. Replace any controlled-oracle gate in C (controlled on workspace register a and acting on
vertex registers j and k) with controlled-Õc (controlled on address workspace register a and
acting on address registers j and k), where Õc : |sj⟩|sk⟩ 7→ |sj⟩

∣∣sk ⊕B(λc(Binv(sj)))
〉
.

4. Replace any controlled-eiθT gate in C (controlled on workspace register a and acting on
vertex registers j and k) with a controlled-eiθT̃ gate (controlled on address workspace
register a and acting on address registers j and k), where T̃ : |sj⟩|sk⟩ 7→ |sk⟩|sj⟩.

5. Replace any equality check gate E in C (controlled on vertex registers j and k and acting
on workspace register a) with Ẽ (controlled on address registers j and k and acting on
address workspace register a), where Ẽ : |sj⟩|sk⟩|wa⟩ 7→ |sj⟩|sk⟩|wa ⊕ δ[sj = sk]⟩.

6. Replace any noedge-check gate N in C (controlled on vertex register j and acting on
workspace register a) with Ñ (controlled on address register j and acting on address
workspace register a), where Ñ : |sj⟩|wa⟩ 7→ |sj⟩|wa ⊕ δ[sj = noedgestring]⟩.

7. Replace any zero-check gate Z in C (controlled on vertex register j and acting on
workspace register a) with Z̃ (controlled on address register j and acting on address
workspace register a), where Z̃ : |sj⟩|wa⟩ 7→ |sj⟩

∣∣wa ⊕ δ[sj = 02p(n)]
〉
.

8. Leave gates acting on the workspace unchanged.

The transcript state |ϕA⟩ is obtained by applying the circuit C̃ to the string
emptystring = B(emptyaddress), together with p(n)− 1 ancilla address registers storing
the string 02p(n) = B(zeroaddress). In other words, |ϕA⟩ := C̃|ϕinitial⟩.

Notice that whereas C updates the vertex registers by making many oracle queries to O,
the circuit C̃ only makes two queries to O.

4 Classical simulation of genuine, rooted algorithms

We now describe a classical algorithm for simulating genuine, rooted quantum algorithms.
We begin in Section 4.1 by describing procedures for checking that the behavior of a quantum
algorithm is genuine and rooted. While these procedures have no effect on a quantum
algorithm with those properties, they enforce properties of the transcript state that are useful
in our analysis. Then, in Section 4.2, we describe a mapping that sends states in the address
space to states in the vertex space, which is used to describe our simulation algorithm in
Section 4.3. In Section 4.4, we decompose the state into components that assist in our analysis.
We show in Section 4.5 that the “good” part of the state of a genuine, rooted algorithm is
related, via the mapping L defined in Definition 22, to the “good” part of the state of our
simulation at each intermediate step. Finally, we establish in Section 4.6 (using the result of
Section 5) that no genuine, rooted quantum algorithm can find an entrance–exit path (or
a cycle) with more than exponentially small probability.

4.1 Checking procedures
It is possible to efficiently check whether, for an oracle query ∧(Oc) with the input vertex
register storing |vj⟩, the output vertex register contains 02n or ηc(vj).
▶ Remark 16 (Checking genuineness). Given any genuine circuit C with |C| gates, one can
efficiently construct a genuine circuit C ′ consisting of O(|C|) gates such that C ′ has the same
functionality as C and verifies the condition stated in part 1 of Definition 5 before applying
each oracle call Oc. Therefore, we assume without loss of generality that the given genuine
circuit C has built-in gadgets that verify this condition.

The consequence of Definition 15 and Remark 16 is a crucial observation about transcript
states, which will turn out be useful in our analysis in Section 4.
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▶ Lemma 17. For any given rooted genuine circuit C, any string stored in any computational
basis state in the support of the address space of the state C̃|ϕinitial⟩ is in the range of B.

We can use a similar approach to efficiently modify a given quantum query algorithm to
ensure that its state is always rooted. This modification will be useful for the analysis in
Sections 4.4 and 4.5.

▶ Remark 18 (Checking rootedness). Given any genuine circuit C with |C| gates, one can
efficiently construct a rooted genuine circuit C ′ consisting of poly(|C|) gates such that C ′ has
the same functionality as C and before applying each gate G, C ′ checks whether the resulting
state will remain rooted after the application of G. Therefore, we assume without loss of
generality that the given rooted genuine circuit C has built-in rootedness check gadgets.

Analogous to the notion of a rooted state defined in Definition 7, we define the notion of
an address-rooted state as follows. Informally, a state in the address space is address rooted
if, when it contains a string that encodes an address, it also contains the string that encodes
its parent in T .

▶ Definition 19 (Address-rooted state). We say that a computational basis state |ϕ⟩ in the
address space is address rooted if for any string s stored in any of the registers of |ϕ⟩,
whenever the vertex Binv(s) ∈ VT has a parent t ̸= zeroaddress, there exists a register of
|ϕ⟩ that stores the string B(t).

Using Remark 18, one can show that the notion of address rooted for states in the
address space is analogous to the notion of rooted for states in the vertex space. This result
substantially simplifies the analysis in Section 4.

▶ Lemma 20. For any given rooted genuine circuit C, any computational basis state in the
support of the address space of the state C̃|ϕinitial⟩ is address rooted.

4.2 Mapping addresses to vertices
We now define an efficiently computable function L′ that maps an address t to a corresponding
vertex label v, and observe some relationships of addresses and the vertices they map to
under L′. For t ∈ {zeroaddress, invalidaddress}, this function simply outputs the
corresponding vertex label. Otherwise, the image of t under L′ is obtained by performing a
sequence of oracle calls to determine the vertices reached by following edges of the colors
specified by t, and outputting the vertex label reached at the end of that sequence. More
precisely, L′(t) is computed as follows.

Algorithm 1 Classical query algorithm for computing L′(t).

Input: An address t
Output: A vertex label v

1 if t = zeroaddress then
2 return 02n

3 if t = invalidaddress then
4 return invalid
5 v ← entrance;
6 for i = 1 . . . |t| do
7 v ← ηt[i](v);
8 return v;
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Here |t| denotes the length of the address t (the number of colors in its color sequence)
and t[i] denotes the ith color.

An implication of the definition of L′ in Algorithm 1 is the following critical lemma.
Informally, it states that if an address t does not encode an entrance–exit path or a cycle
in G, then the c-neighbor of the vertex corresponding to t in G is the same as the vertex
corresponding to the c-neighbor of t in T .

▶ Lemma 21. Let v be any vertex label, let t be an address of v, and let c ∈ C. Furthermore,
if t /∈ SpecialAddresses, suppose that following the edge colors of t starting at the entrance
does not result in reaching the exit or finding a cycle in G. Then L′(λc(t)) = ηc(v).

4.3 The classical algorithm

We now describe our classical algorithm (Algorithm 2) for simulating genuine quantum
algorithms. To state the algorithm, we introduce several definitions, beginning with a map
based on the function L′ defined in Section 4.2.

▶ Definition 22. For any m ∈ [p(n)], the mapping L :
(
{0, 1}2p(n))m → (

{0, 1}2n)m sends
m address strings to m vertex labels by acting as L′Binv on each of the m registers.

When considering the map L applied to a quantum state |χ⟩ on both the workspace and
the address space, we use the shorthand L|χ⟩ to denote the state (Iworkspace ⊗ Lvertex)|χ⟩,
with the map acting as the identity on the workspace register and as L on the vertex register.

To describe and analyze Algorithm 2, we consider individual gates and sequences of
consecutive gates from the genuine circuit C defined in Definition 6. For this purpose, we
consider the following definition.

▶ Definition 23. For any i ∈ [p(n)], let Ci denote the ith gate of the circuit C in Definition 6.
For any i, j ∈ [p(n)] ∪ {0} with i < j, Let Ci,j be the subsequence of gates from the circuit
C starting with the (i+ 1)st gate and ending with the jth gate. That is, Ci,j := Cj · · ·Ci+1.
Similarly, using the circuit C̃ constructed in Definition 15, we define C̃i and C̃i,j for each
i, j ∈ [p(n)] ∪ {0} with i < j.

Note that Ci,i = I and Ci−1,i = Ci (and similarly, C̃i,i = I and C̃i−1,i = C̃i) for all i ∈ [p(n)].
We use these gates to define transcript states and states of the quantum algorithm for partial
executions.

▶ Definition 24. For each i ∈ [p(n)] ∪ {0}, let
∣∣∣ϕ(i)

A

〉
:= C̃0,i|ϕinitial⟩ be the transcript state

for the quantum algorithm A restricted to the first i gates of C̃. Similarly, let
∣∣∣ψ(i)

A

〉
:=

C0,i|ψinitial⟩ denote the state of the quantum algorithm A restricted to the first i gates of C.

In particular, the state
∣∣∣ϕ(p(n))

A

〉
= |ϕA⟩ is the transcript state corresponding to the

quantum state
∣∣∣ψ(p(n))

A

〉
= |ψA⟩ introduced in Definition 6. Now consider the following

classical query algorithm for finding a path from the entrance to the exit.
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Algorithm 2 Classical query algorithm C(A(O)).

1 for i ∈ [p(n)] do
2 Given the circuit diagram C0,i, compute the transcript state

∣∣∣ϕ(i)
A

〉
as per

Definition 15.
3 Sample a computational basis state

∣∣ϕ(i)〉 in the address space at random with

probability
∥∥∥〈
ϕ(i)

∣∣∣ϕ(i)
A

〉∥∥∥2
.

4 Compute the computational basis state L
∣∣ϕ(i)〉 in the vertex space.

5 Output the labels of the vertices in L
∣∣ϕ(i)〉.

Note that when A is genuine and rooted, the output of Algorithm 2 must be a connected
subgraph of G containing the entrance. Therefore, if the output of Algorithm 2 contains
the exit, it must reveal an entrance-to-exit path. In the remainder of Section 4, we
show that the output of Algorithm 2 contains the exit (or a cycle) with exponentially small
probability.

4.4 The good, the bad, and the ugly

We now define states
∣∣∣ψ(i)

good

〉
,

∣∣∣ψ(i)
bad

〉
, and

∣∣∣ψ(i)
ugly

〉
, which are components of the state

∣∣∣ψ(i)
A

〉
.

Intuitively,
∣∣∣ψ(i)

good

〉
represents the portion of the state of the algorithm after i steps that

has never encountered the exit or a near-cycle (i.e., a subgraph that differs from a cycle by
a single edge) at any point in its history,

∣∣∣ψ(i)
bad

〉
represents the portion of the state of the

algorithm after i steps that just encountered the exit or a near-cycle at the ith step, and∣∣∣ψ(i)
ugly

〉
combines the portions of the state of the algorithm after i steps that encountered

the exit or a near-cycle at some point in its history. To formally define these states, we
introduce the notion of good and bad states, which we define as follows.

▶ Definition 25. We say that a computational basis state |ϕ⟩ in the address space is ϕ-bad
if the subgraph corresponding to L|ϕ⟩ contains the exit or is at most one edge away from
containing a cycle. A computational basis state |ϕ⟩ in the address space is ϕ-good if it is
not ϕ-bad, i.e., if L|ϕ⟩ does not contain the exit and is more than one edge away from
containing a cycle.

Similarly, a computational basis state |ψ⟩ in the vertex space is ψ-bad if the subgraph
corresponding to |ψ⟩ contains the exit or is at most one edge away from containing a cycle
and is ψ-good if it is not ψ-bad.

Note that the map L is used to define the notion of good and bad states in the address
space, but is not used for the corresponding notions in the vertex space. The good and bad
states span the good and bad subspaces, respectively.

▶ Definition 26. The ϕ-BAD subspace is ϕ-BAD := span{|ϕ⟩ : |ϕ⟩ is a ϕ-bad state}. The
ϕ-GOOD subspace is ϕ-GOOD := span{|ϕ⟩ : ∀|ϕ′⟩ ∈ ϕ-BAD, ⟨ϕ′|ϕ⟩ = 0} = span{|ϕ⟩ : |ϕ⟩ is a
ϕ-good state}. Let Πϕ

bad and Πϕ
good denote the projectors onto ϕ-BAD and ϕ-GOOD, respec-

tively. The subspaces ψ-BAD and ψ-GOOD, and the projectors Πψ
bad and Πψ

good, are defined
analogously.

Notice that Πϕ
badΠϕ

good = Πϕ
goodΠϕ

bad = 0 and Πϕ
bad + Πϕ

good = I. Similarly, Πψ
badΠψ

good =
Πψ

goodΠψ
bad = 0 and Πψ

bad +Πψ
good = I. We now define the states

∣∣∣ψ(i)
good

〉
,

∣∣∣ψ(i)
bad

〉
, and

∣∣∣ψ(i)
ugly

〉
that were described informally above.
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▶ Definition 27. We define
∣∣∣ϕ(i)

good

〉
:= Πϕ

good

(∣∣∣ϕ(i)
A

〉
− C̃i

∣∣∣ϕ(i−1)
ugly

〉)
and

∣∣∣ϕ(i)
bad

〉
:=

Πϕ
bad

(∣∣∣ϕ(i)
A

〉
− C̃i

∣∣∣ϕ(i−1)
ugly

〉)
where

∣∣∣ϕ(i)
ugly

〉
:=

∑i
j=1 C̃j,i

∣∣∣ϕ(j)
bad

〉
. Moreover, let |ϕgood⟩ :=∣∣∣ϕ(p(n))

good

〉
and |ϕugly⟩ :=

∣∣∣ϕ(p(n))
ugly

〉
. For each i ∈ [p(n)], we define

∣∣∣ψ(i)
good

〉
,

∣∣∣ψ(i)
bad

〉
,

∣∣∣ψ(i)
ugly

〉
,

|ψgood⟩, and |ψugly⟩ analogously (using C in lieu of C̃).

Based on the intuitive description of
∣∣∣ψ(i)

good

〉
and

∣∣∣ψ(i)
bad

〉
that we provided earlier, we

anticipate that the size (as quantified by the total squared norm) of the portion of the state∣∣∣ψ(i)
A

〉
that never encountered the exit or a near-cycle at any point in its history, and the

size of the respective portions of the state
∣∣∣ψ(i)

A

〉
that encountered the exit or a cycle at

the ith or earlier steps, to sum to the size of
∣∣∣ψ(i)

A

〉
. The following lemma formalizes this

intuition.

▶ Lemma 28. Let i ∈ [p(n)] ∪ {0}. Then
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥2
+

∑
j∈[i]

∥∥∥∣∣∣ψ(j)
bad

〉∥∥∥2
= 1.

We conclude this section strengthening the observations made in Remark 18 and
Lemma 20.

▶ Lemma 29. Let i ∈ [p(n)] ∪ {0}. Then any computational basis state in the support of∣∣∣ψ(i)
good

〉
or

∣∣∣ψ(i)
bad

〉
is rooted, and any computational basis state in the support of

∣∣∣ϕ(i)
good

〉
or∣∣∣ϕ(i)

bad

〉
is address rooted.

4.5 Faithful simulation of the good part
As any subtree of G without the exit can be embedded in T , one might expect that the
size of the portion of the state

∣∣∣ψ(i)
A

〉
that never encountered the exit or a near-cycle at

any point in its history is the same as the size of the portion of the state
∣∣∣ϕ(i)

A

〉
that never

encountered the exit or a near-cycle. We formally show this via a sequence of lemmas that
culminate in Lemma 40. We restrict our attention to the good parts of the states

∣∣∣ψ(i)
A

〉
and∣∣∣ϕ(i)

A

〉
in this subsection, beginning with a useful decomposition of

∣∣∣ϕ(i)
good

〉
.

▶ Definition 30. We define an indexed expansion of
∣∣∣ϕ(i)

good

〉
in the computational basis, as

follows. Write
∣∣∣ϕ(i)

good

〉
=

∑
p,q α

(i)
p,q

∣∣q(i)〉∣∣∣ϕ(i)
p

〉
, where each

∣∣∣ϕ(i)
p

〉
denotes a computational

basis state in the vertex register, each
∣∣q(i)〉 specifies a computational basis state in the

workspace register, and each α(i)
p,q is an amplitude. Define P(i)

goodA
to be the set of all indices

p appearing in the expansion of
∣∣∣ϕ(i)

good

〉
with any corresponding non-zero amplitude α(i)

p,q.

Analogous to Definition 27, we define computational basis states
∣∣∣ψ(i)
p

〉
from

∣∣∣ϕ(i)
p

〉
, and

hence from
∣∣∣ϕ(i)

A

〉
rather than

∣∣∣ψ(i)
A

〉
.

▶ Definition 31. For i ∈ [p(n)] ∪ {0} and p ∈ P(i)
goodA

, let
∣∣∣ψ(i)
p

〉
:= L

∣∣∣ϕ(i)
p

〉
.

Notice that it is not immediate from this definition that
∣∣∣ψ(i)
p

〉
is in the support of the

part of the state
∣∣∣ψ(i)

A

〉
that is in the vertex space. However, by the end of this section, we

will show that indeed this is the case.
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We now show that the mapping L, defined in Definition 22, is a bijection from the set of
address-rooted states in

∣∣∣ϕ(i)
good

〉
to the set of address-rooted states in L

∣∣∣ϕ(i)
good

〉
.

▶ Lemma 32. Let i ∈ [p(n)] and p, p′ ∈ P(i)
goodA

. Suppose that
∣∣∣ψ(i)
p

〉
=

∣∣∣ψ(i)
p′

〉
. Then∣∣∣ϕ(i)

p

〉
=

∣∣∣ϕ(i)
p′

〉
.

The next lemma forms a key ingredient of Lemma 39, where we essentially show that the
mapping L and the gate Ci commute: applying L followed by Ci is equivalent to applying
C̃i followed by L.

▶ Lemma 33. Let i ∈ [p(n)], let p ∈ P(i)
goodA

, and let q be any workspace index. Then

LC̃i
∣∣q(i−1)〉∣∣∣ϕ(i−1)

p

〉
= Ci

∣∣q(i−1)〉∣∣∣ψ(i−1)
p

〉
.

Notice that the non-oracle gates in Definition 5 do not produce any “new information”
about vertex labels. Based on this intuition, one might expect that the portion of

∣∣∣ψ(i−1)
A

〉
(respectively

∣∣∣ϕ(i−1)
A

〉
) that has never encountered the exit or a cycle will not encounter the

exit or a cycle on the application of Ci (respectively C̃i) at the ith step. We formalize this
as follows.

▶ Lemma 34. Let i ∈ [p(n)] and suppose that Ci is a genuine non-oracle gate. Then∣∣∣ϕ(i)
good

〉
= C̃i

∣∣∣ϕ(i−1)
good

〉
and

∣∣∣ψ(i)
good

〉
= Ci

∣∣∣ψ(i−1)
good

〉
.

For the analysis of oracle gates, we now define a subset of P(i−1)
goodA

that contains indices
corresponding to computational basis states in the address space that do not contain the
exit or a cycle even after the application of an oracle gate at the ith step. Inspired by
the decomposition in Definition 30, we then define the components

∣∣∣ϕ(i−1)
great

〉
and

∣∣∣ψ(i−1)
great

〉
of∣∣∣ϕ(i−1)

A

〉
and

∣∣∣ψ(i−1)
A

〉
, respectively.

▶ Definition 35. Let i ∈ [p(n)]. Suppose that Ci = ∧(Oc) for some c ∈ C. Then, define
P(i−1)

greatA
:=

{
p ∈ P(i−1)

goodA
: ∃p′ ∈ P(i)

goodA
such that C̃i

∣∣∣ϕ(i−1)
p

〉
=

∣∣∣ϕ(i)
p′

〉}
. Also, let

∣∣∣ϕ(i−1)
great

〉
:=∑

p∈P(i−1)
greatA

∑
q α

(i−1)
p,q

∣∣q(i−1)〉∣∣∣ϕ(i−1)
p

〉
and

∣∣∣ψ(i−1)
great

〉
:=

∑
p∈P(i−1)

greatA

∑
q α

(i−1)
p,q

∣∣q(i−1)〉∣∣∣ψ(i−1)
p

〉
.

In the following lemma, we show that the L mapping preserves the relationship between
computational basis states in the support of

∣∣∣ϕ(i−1)
good

〉
and

∣∣∣ϕ(i)
good

〉
: applying the oracle gate

to a computational basis state in the support of
∣∣∣ϕ(i−1)

good

〉
results in a computational basis

state in the support of
∣∣∣ϕ(i)

good

〉
exactly when applying the oracle gate to a computational

basis state in the support of L
∣∣∣ϕ(i−1)

good

〉
results in a computational basis state in the support

of L
∣∣∣ϕ(i)

good

〉
.

▶ Lemma 36. Let i ∈ [p(n)], p ∈ P(i−1)
goodA

and p′ ∈ P(i)
goodA

. Suppose that Ci = ∧(Oc) for

some c ∈ C. Then C̃i

∣∣∣ϕ(i−1)
p

〉
=

∣∣∣ϕ(i)
p′

〉
if and only if Ci

∣∣∣ψ(i−1)
p

〉
=

∣∣∣ψ(i)
p′

〉
.

Definition 35 and Lemma 36 give rise to the following alternative definition of P(i−1)
greatA

.

▶ Corollary 37. Let i ∈ p[n]. Suppose that Ci = ∧(Oc) for some c ∈ C. Then P(i−1)
greatA

={
p ∈ P(i−1)

goodA
: ∃p′ ∈ P(i)

goodA
such that Ci

∣∣∣ψ(i−1)
p

〉
=

∣∣∣ψ(i)
p′

〉}
.



A. M. Childs, M. Coudron, and A. S. Gilani 37:17

By the definition of P(i−1)
greatA

, there seems to be a bijective correspondence between elements
of P(i−1)

greatA
and P(i)

goodA
. We make this precise in the following lemma.

▶ Lemma 38. Let i ∈ [p(n)] and c ∈ C. Suppose that Ci = ∧(Oc) for some c ∈ C. Then∣∣∣ϕ(i)
good

〉
= C̃i

∣∣∣ϕ(i−1)
great

〉
. Moreover,

∣∣∣ψ(i)
good

〉
= Ci

∣∣∣ψ(i−1)
great

〉
if L

∣∣∣ϕ(i−1)
good

〉
=

∣∣∣ψ(i−1)
good

〉
.

The above analysis helps establish the following key lemma, which states that the states∣∣∣ϕ(i)
good

〉
and

∣∣∣ψ(i)
good

〉
are related by the mapping L. Intuitively, the oracle Õ based on the

address tree T can faithfully simulate (modulo mapping L) the portion of the state
∣∣∣ψ(i)

A

〉
of

the algorithm A that does not encounter the exit or a cycle.

▶ Lemma 39. For all i ∈ [p(n)] ∪ {0}, L
∣∣∣ϕ(i)

good

〉
=

∣∣∣ψ(i)
good

〉
.

Finally, we show the following relationship between the norms of
∣∣∣ϕ(i)

good

〉
and

∣∣∣ψ(i)
good

〉
,

which will be very useful in bounding the probability of success of Algorithm A in Section 4.6.

▶ Lemma 40. Let i ∈ [p(n)] ∪ {0}. Then
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥ =
∥∥∥∣∣∣ψ(i)

good

〉∥∥∥.

4.6 The state is mostly good
In the remainder of this section, we conclude that it is hard for any rooted genuine quantum
algorithm to find the exit (and hence, an entrance–exit path). We achieve this goal by
bounding the mass of the quantum state |ψA⟩ associated with any arbitrarily chosen rooted
genuine quantum algorithm A that lies in the ψ-BAD subspace. We proceed by first using
the result of Section 5 to bound the mass of the quantum state

∣∣∣ϕ(i)
A

〉
that lies in the ϕ-BAD

subspace.

▶ Lemma 41. Let i ∈ [p(n)] ∪ {0}. Then
∥∥∥Πϕ

bad

∣∣∣ϕ(i)
A

〉∥∥∥2
≤ 4p(n)4 · 2−n/3.

From the result of Lemma 41, one might intuitively conjecture that the size of the portion
of the state

∣∣∣ϕ(i)
A

〉
after i steps that encountered the exit or a near-cycle at some point in

its history is small. We formalize this as follows.

▶ Lemma 42. For all i ∈ [p(n)] ∪ {0},
∥∥∥∣∣∣ϕ(i)

ugly

〉∥∥∥ ≤ 2ip(n)2 · 2−n/6.

The bound on the size of the portion of the state
∣∣∣ϕ(i)

A

〉
after i steps that never encountered

the exit or a near-cycle directly follows from Lemma 42 as stated by the following corollary.

▶ Corollary 43. Let i ∈ [p(n)]. Then
∥∥∥∣∣∣ϕ(i)

good

〉∥∥∥ ≥ 1− 2ip(n)2 · 2−n/6.

In the next lemma, we bound the mass of the portion of the state
∣∣∣ψ(i)

A

〉
after i steps

that encountered the exit or a near-cycle at some point in its history. This is a crucial
lemma for our result in this section where we invoke Lemma 40 to deduce a statement about
the quantum state of the genuine algorithm A using known properties of the state of our
classical simulation of A.

▶ Lemma 44. Let i ∈ [p(n)]. Then
∥∥∥∣∣∣ψ(i)

ugly

〉∥∥∥2
≤ 4i2p(n)2 · 2−n/6.

The results in this section help establish our main theorem, which formally proves the
hardness of finding an entrance–exit path for genuine, rooted quantum query algorithms.

▶ Theorem 45. No genuine, rooted quantum query algorithm for the path-finding problem
can find a path from entrance to exit with more than exponentially small probability.

ITCS 2023



37:18 Quantum Algorithms and the Power of Forgetting

5 Hardness of classical cycle finding with a 3-color oracle

In this section, we analyze the classical query complexity of finding the exit or a cycle
in a randomly chosen 3-colored welded tree graph of size n. More precisely, we show in
Theorem 57 that the probability of finding the exit or a cycle for a natural class of classical
algorithms is exponentially small even for a welded tree graph whose vertices are permuted
according to the distribution Dn specified in Definition 48 below. Informally, Dn gives
rise to the uniform distribution on welded tree graphs over the set that is constructed by
fixing a 3-colored welded tree graph G and randomizing the edges of the WELD (defined in
Definition 46), making sure that the resulting graphs are valid 3-colored welded tree graphs.

The key ingredient of our analysis is Lemma 54, which informally says that for a welded
tree graph sampled according to the aforementioned distribution, it is exponentially unlikely
for a certain natural class of classical algorithms (i) to get “close” to the entrance or the
exit starting on any vertex in the WELD without backtracking, or (ii) to encounter two
WELD vertices that are connected by multiple “short” paths. Note that statement (i) implies
that it is hard for any such classical algorithm to find the exit whereas statement (ii) has a
similar implication for finding a cycle.

An astute reader might notice the resemblance of Lemma 54 with Lemma 8 of [3]. Indeed,
the latter lemma shows that it is hard for any classical algorithm with access to a colorless
welded tree oracle to satisfy either statement (i) or (ii) mentioned above. However, the
argument of [3] is different than ours in two major ways: our proof is by induction, and we
use randomness of the WELD and graph theoretic properties of any 3-coloring of a welded
tree graph to argue the unlikeliness of statements (i) and (ii) while they use the hardness of
guessing multiple coin tosses along with randomness of the WELD.

We begin by considering the following induced subgraphs of G.

▶ Definition 46. Define TL, TR, and WELD to be the induced subgraphs of G on vertices in
columns {0, . . . , n}, columns {n+ 1, . . . , 2n+ 1}, and columns {n, n+ 1} of G, respectively.

Informally, TL and TR are induced subgraphs of G on vertices in the left and right binary
trees of G, respectively, while WELD is the induced subgraph of G on the leaves of the left and
right binary trees of G. Note that TL and TR are height-n subtrees of G rooted at entrance
and exit, respectively. Furthermore, the vertices of TL and TR provide a bipartition of the
vertices of G, and the edges of TL, TR, and WELD provide a tripartition of the edges of G.

We categorize the vertices of WELD depending on whether they belong to TL or TR, and
on the colors of the edges joining them to non-WELD vertices.

▶ Definition 47. For any leaf v of the tree TL and any c ∈ C, if the color of the edge
connecting v with TL in G is c, then we say that v is a c-left vertex. Similarly, we define the
notion of a c-right vertex for each c ∈ C.

As an example, the vertices colored lavender and plum in Figure 3a are red-left vertices.
Next, we define permutations that map valid 3-colored welded tree graphs to valid 3-colored
welded tree graphs (as we show in Lemma 49). Note that Definition 47 partitions the vertices
of WELD into 6 parts. The following definition is crucial for describing a distribution of
welded tree graphs that is classically “hard”.

▶ Definition 48 (Color-preserving permutations). A permutation σ of the vertices of WELD
is a color-preserving permutation if for any vertex v of WELD, and any c ∈ C, v is c-left
(respectively c-right) iff σ(v) is c-left (respectively c-right). We will sometimes refer to a
color-preserving permutation σ as a permutation of VG that acts as σ on vertices of WELD
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entrance exit

(a) G.

entrance exit

(b) Gσ.

Figure 3 Example of a color-preserving permutation σ. The permutation σ is the identity
permutation except that it maps the vertex colored lavender to the vertex colored plum. Note that
the resulting graph Gσ is a valid 3-colored welded tree graph.

and as identity on non-WELD vertices. For any color-preserving permutation σ, let WELDσ

denote the graph obtained by applying σ to the vertices of WELD. For any color-preserving
permutation σ, let Gσ denote the graph on vertex set VG obtained by permuting the WELD
edges of G according to σ (and leaving the rest of the graph G as it is): if u, v are WELD
vertices, then there is an edge of color c ∈ C in G joining vertices u and v if and only if
there is an edge of color c in Gσ joining vertices σ(u) and σ(v); otherwise, there is an edge
of color c ∈ C in G joining vertices u and v if and only if there is an edge of color c in Gσ
joining vertices u and v. Define Dn to be the uniform distribution over all color-preserving
permutations σ.

Figure 3 illustrates an example of a color-preserving permutation. Note that VGσ = VG ,
and the non-WELD vertices and edges of G remain invariant under σ. Therefore, the induced
subgraph of Gσ on vertices of TL (respectively TR) is TL (respectively TR). Moreover, WELDσ

is the induced subgraph of Gσ on vertices of WELD. One can verify that the graphs obtained
by applying color-preserving permutations on G are valid 3-colored welded tree graphs.

▶ Lemma 49. Let σ be a color-preserving permutation. Then Gσ is a valid 3-colored welded
tree graph.

Recall that Definition 2 specifies the classical oracle function ησc for each c ∈ C associated
with Gσ for the identity permutation σ. The following definition generalizes this by specifying
the classical oracle function ησc for each c ∈ C associated with Gσ for any color-preserving
permutation σ.

▶ Definition 50. Let VG, Ic, and Nc for each c ∈ C, noedge, and invalid be defined as in
Definitions 1 and 2. Let VWELD refers to the set of vertices of WELD. For any color-preserving
permutation σ, let ησc (v) be σ(ηc(σ−1(v)) whenever v, ηc(v) ∈ VWELD and ηc(v) otherwise.
Let ησ := {ησc : c ∈ C} be the oracle corresponding to the color-preserving permutation σ.
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We now define the notion of path-embedding in Gσ for a sequence of colors t, which
informally refers to the path resulting from beginning at the entrance and following the
edge colors given by t in order.

▶ Definition 51 (Path-embedding). Let σ be any color-preserving permutation. Let ℓ ∈ [p(n)]
and t ∈ Cℓ. That is, t = (c1, . . . , cℓ) for some c1, . . . , cℓ ∈ C. Then, define the path-embedding
of t under the oracle ησ, denoted by ησ(t), to be a length-ℓ tuple of vertex labels as follows.
The first element of ησ(t) is ησc1

(entrance) whereas for j > 1, the jth element of ησ(t) is
ησcj

(ησ(t)j−1). We say that the path-embedding ησ(t) encounters a vertex v if ησ(t)j = v for
some j ∈ [ℓ], and that ησ(t) encounters an edge joining vertices v and u if ησ(t)j = v and
ησ(t)j+1 = u (or the other way around) for some j ∈ [ℓ− 1]. Moreover, ησ(t) encounters a
cycle in Gσ if it encounters a sequence of vertices and edges that forms a cycle in Gσ.

We restrict our attention to the color sequences that do not contain even-length palin-
dromes. For such a sequence t, the path-embedding ησ(t) encounters a cycle exactly when it
encounters a vertex twice.

Now we describe notation for each time a certain path-embedding crosses the WELD so
that we can refer to the tree that it goes to and the WELD edge that it goes through.

▶ Definition 52. Let σ be any color-preserving permutation and let t be any sequence of colors
that does not contain even-length palindromes. We use T σt,i to denote the ith subtree and eσt,i
to denote the ith edge of the WELD encountered by the path-embedding ησ(t). Furthermore,
let ℓσ(t) denote the number of subtrees encountered by the path-embedding ησ(t).

Note that the number of WELD edges encountered by the path-embedding ησ(t) is
ℓσ(t)− 1. For each i ∈ [ℓσ(t)− 1], the edge eσt,i joins a vertex in T σt,i to a vertex in T σt,i+1.

The following definition formalizes statements (i) and (ii) that we described intuitively at
the beginning of this section.

▶ Definition 53. Let σ be any color-preserving permutation and let t be any sequence of colors
that does not contain an even-length palindrome. We say that t has small displacement if after
encountering a WELD vertex, the path-embedding ησ(t) does not encounter any vertex that is
distance at least n/3 away from the closest vertex of WELD. We say that t is non-colliding if
for any edge e joining some leaf of T σt,i with some leaf of T σt,j for some i, j ∈ [ℓσ(t)], e must
be eσt,i or eσt,j. We say that t is desirable if t has small displacement and is non-colliding.

Note that, in the above definition, if e = eσt,i, then j = i+ 1 and if e = eσt,j , then j = i− 1.
Thus, t being non-colliding essentially means that if there is an edge e between trees T σt,i and
T σt,j for some i, j ∈ [ℓσ(t)], then j = i+ 1 or j = i− 1, and T σt,i and T σt,j are not joined by any
edge other than e.

It is easy to see that for any sequence of colors t that does not contain an even-length
palindrome, beginning from the entrance and following the sequence of colors specified by
t will not result in reaching the exit if t has small displacement, and will not result in going
through a cycle if t is non-colliding. The following lemma is crucial for our argument in this
section, which essentially argues that for a fixed sequence of colors and a uniformly random
color-preserving permutation σ, it is improbable for the corresponding path-embedding to
contain the exit or a path that forms a cycle in Gσ.

▶ Lemma 54. Let ℓ ∈ [p(n)] and t ∈ Cℓ such that t does not contain an even-length
palindrome. Choose the permutation σ according to the distribution Dn. Then the probability
that the path-embedding ησ(t) encounters the exit or a cycle in Gσ is at most 4p(n)2 · 2−n/3.
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We can extend the result of Lemma 54 about polynomial-length sequences of colors to
polynomial-size subtrees of the address tree T (see Definition 11). For this purpose, we
define the notion of subtree-embedding of subtrees of T .

▶ Definition 55 (Subtree-embedding). Let σ be any color-preserving permutation. Let
ℓ ∈ [p(n)] and t ∈ Cℓ. Let T be a subtree of the address tree T of size p(n) that contains the
vertex labeled emptyaddress but does not contain vertices having labels in SpecialAddresses\
{emptyaddress}. For any vertex of T labeled by t ̸= emptyaddress, let c|t| denote the
last color appearing in the sequence t and let pre(t) denote the color sequence formed by
removing the last color from t. Define the subtree-embedding of T under the oracle ησ, denoted
ησ(T ), to be a tree isomorphic to T whose vertex labels are in VG and specified as follows.
The vertex ησ(T )t of ησ(T ) corresponding to the vertex of T labeled by t is entrance if
t = emptyaddress and is ησc|t|

(ησ(T )pre(t)) otherwise. We say that the subtree-embedding
ησ(T ) encounters the exit if it contains a vertex labeled exit and that ησ(T ) encounters a
cycle if it contains two vertices having the same label.

For any tree T specified in Definition 55, the root of T will always be emptyaddress, so
the root of ησ(T ) will always be entrance. The subtree-embedding ησ(T ) of a tree T will
correspond to the subgraph of Gσ that contain vertices which can be reached by following
the addresses given by vertex labels of T in Gσ beginning at the entrance.

Next, we show that for a fixed sub-tree of T and a randomly chosen color-preserving
permutation σ, it is not possible for the corresponding subtree-embedding to contain the
exit or a path that forms a cycle in Gσ, except with exponentially small probability.

▶ Lemma 56. Let T be a subtree of the address tree T of size p(n) that contains the
vertex labeled emptyaddress but does not contain vertices having labels in SpecialAddresses\
{emptyaddress}. Let the permutation σ be chosen according to the distribution Dn. Then
the probability that the subtree-embedding ησ(T ) encounters the exit or a cycle is at most
4p(n)42−n/3.

We conclude this section with our main result about the existence of a distribution for
which it is hard for a natural class of classical algorithms to find the exit or a cycle in the
welded tree graph sampled according to this distribution.

▶ Theorem 57. Let S be the set of subtrees of the address tree T of size p(n) that contain the
vertex labeled emptyaddress but do not contain vertices having labels in SpecialAddresses \
{emptyaddress}. Then there exists a distribution Dn over size-n 3-colored welded tree
graphs G′ such that for any classical query algorithm Aclassical that samples a tree T from S
and computes the associated subtree-embedding in G′, the probability that Aclassical finds the
exit or a cycle in G′ is at most 4p(n)42−n/3.
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Abstract
We propose a new conjecture on hardness of 2-CSP’s, and show that new hardness of approximation
results for Densest k-Subgraph and several other problems, including a graph partitioning problem,
and a variation of the Graph Crossing Number problem, follow from this conjecture. The conjecture
can be viewed as occupying a middle ground between the d-to-1 conjecture, and hardness results
for 2-CSP’s that can be obtained via standard techniques, such as Parallel Repetition combined
with standard 2-prover protocols for the 3SAT problem. We hope that this work will motivate
further exploration of hardness of 2-CSP’s in the regimes arising from the conjecture. We believe
that a positive resolution of the conjecture will provide a good starting point for other hardness of
approximation proofs.

Another contribution of our work is proving that the problems that we consider are roughly
equivalent from the approximation perspective. Some of these problems arose in previous work,
from which it appeared that they may be related to each other. We formalize this relationship in
this work.
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1 Introduction

In this paper we consider several graph optimization problems, the most prominent and
extensively studied of which is Densest k-Subgraph. One of the main motivations of this
work is to advance our understanding of the approximability of these problems. Towards
this goal, we propose a new conjecture on the hardness of a class of 2-CSP problems, and
we show that new hardness of approximation results for all these problems follow from
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this conjecture. We believe that the conjecture is interesting in its own right, as it can be
seen as occupying a middle ground between the d-to-1 conjecture, and the type of hardness
of approximation results that one can obtain for 2-CSP problems via standard methods
(such as using constant-factor hardness of approximation results for 3-SAT, combined with
standard 2-prover protocols and Parallel Repetition). While our conditional hardness of
approximation proofs are combinatorial and algorithmic in nature, we hope that this work
will inspire complexity theorists to study the conjecture, and also lead to other hardness of
approximation proofs that combine both combinatorial and algebraic techniques.

We prove a new conditional hardness of approximation result for Densest k-Subgraph
based on our conjecture. In addition to the Densest k-Subgraph problem, we study three other
problems. The first problem, called (r,h)-Graph Partitioning, recently arose in the hardness
of approximation proof of the Node-Disjoint Paths problem of [18], who mention that the
problem appears similar to Densest k-Subgraph, but could not formalize this intuition. We
also study a new problem that we call Dense k-Coloring, that can be viewed as a natural
middle ground between Densest k-Subgraph and (r,h)-Graph Partitioning. The fourth problem
that we study is a variation of the notoriously difficult Minimum Crossing Number problem,
that we call Maximum Bounded-Crossing Subgraph. This problem also arose implicitly in [18].
We show that all four problems are roughly equivalent from the approximation perspective, in
the regime where the approximation factors are somewhat large (but some of our reductions
require quasi-polynomial time). We then derive conditional hardness of approximation results
for all these problems based on these reductions and the conditional hardness of Densest
k-Subgraph.

The main contribution of this paper is thus twofold: first, we propose a new conjecture on
hardness of CSP’s and show that a number of interesting hardness of approximation results
follow from it. Second, we establish a close connection between the four problems that we
study. The remainder of the Introduction is organized as follows. We start by providing a
brief overview of the four problems that we study in this paper. We then state our conjecture
on hardness of CSP’s and put it into context with existing results and well-known conjectures.
Finally, we provide a more detailed overview of our results and techniques.

Densest k-Subgraph

In the Densest k-Subgraph problem, given an n-vertex graph G and an integer k > 1, the
goal is to compute a subset S of k vertices of G, while maximizing the number of edges in
G[S]. Densest k-Subgraph is one of the most basic graph optimization problems that has
been studied extensively (see e.g. [2, 7–10, 12, 15, 25–30, 36, 41, 44, 46, 47, 52]). At the same
time it seems notoriously difficult, and despite this extensive work, our understanding of its
approximability is still incomplete. The best current approximation algorithm for Densest
k-Subgraph, due to [8], achieves, for every ε > 0, an O(n1/4+ε)-approximation, in time
nO(1/ε). Even though the problem appears to be very hard, its hardness of approximation
proof has been elusive. For example, no constant-factor hardness of approximation proofs
for Densest k-Subgraph are currently known under the standard P ̸= NP assumption, or
even the stronger assumption that NP ̸⊆ BPTIME(npoly log n). In a breakthrough result,
Khot [36] proved a factor-c hardness of approximation for Densest k-Subgraph, for some
small constant c, assuming that NP ̸⊆ ∩ε>0BPTIME(2nε). Several other papers proved
constant and super-constant hardness of approximation results for Densest k-Subgraph under
average-case complexity assumptions: namely that no efficient algorithm can refute random
3-SAT or random k-AND formulas [2, 25]. Additionally, a factor 2Ω(log2/3 n)-hardness of
approximation was shown under assumptions on solving Planted Clique [2]. In a recent
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breakthrough, Manurangsi [46] proved that, under the Exponential Time Hypothesis (ETH),
the Densest k-Subgraph problem is hard to approximate to within factor n1/(log log n)c , for
some constant c. Proving a super-constant hardness of Densest k-Subgraph under weaker
complexity assumptions remains a tantalizing open question that we attempt to address
in this paper. Unfortunately, it seems unlikely that the techniques of [46] can yield such a
result. In this paper we show that, assuming the conjecture on hardness of 2-CSP that we
introduce, Densest k-Subgraph is NP-hard to approximate to within factor 2(log n)ε , for some
constant ε > 0.

The (r, h)-Graph Partitioning Problem

A recent paper [18] on the hardness of approximation of the Node-Disjoint Paths (NDP)
problem formulated and studied a new graph partitioning problem, called (r,h)-Graph Par-
titioning. The input to the problem is a graph G, and two integers, r and h. The goal
is to compute r vertex-disjoint subgraphs H1, . . . , Hr of G, such that for each 1 ≤ i ≤ r,
|E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. A convenient intuitive way of thinking about

this problem is that we are interested in obtaining a balanced partition of the graph G into
r vertex-disjoint subgraphs, so that the subgraphs contain sufficiently many edges. Unlike
standard graph partitioning problems, that typically aim to minimize the number of edges
connecting the different subgraphs in the solution, our goal is to maximize the total number
of edges that are contained in the subgraphs. In order to avoid trivial solutions, in which
one of the subgraphs contains almost the entire graph G, and the remaining subgraphs are
almost empty, we place an upper bound h on the number of edges that each subgraph may
contribute towards the solution. Note that the subgraphs Hi of G in the solution need not
be vertex-induced subgraphs.

The work of [18] attempted to use (r,h)-Graph Partitioning as a proxy problem for proving
hardness of approximation of NDP. Their results imply that NDP is at least as hard to
approximate as (r,h)-Graph Partitioning, to within polylogarithmic factors. In order to prove
hardness of NDP, it would then be sufficient to show that (r,h)-Graph Partitioning is hard
to approximate. Unfortunately, [18] were unable to do so. Instead, they considered a
generalization of (r,h)-Graph Partitioning, called (r,h)-Graph Partitioning with Bundles. They
showed that NDP is at least as hard as (r,h)-Graph Partitioning with Bundles, and then proved
hardness of this new problem. In the (r,h)-Graph Partitioning with Bundles problem, the input
is the same as in (r,h)-Graph Partitioning, but now graph G must be bipartite, and, for every
vertex v, we are given a partition B(v) of the set of edges incident to v into subsets that are
called bundles. We require that, in a solution (H1, . . . , Hr) to the problem, for every vertex
v ∈ V (G), and every bundle β ∈ B(v), at most one edge of β contributes to the solution;
in other words, at most one edge of β may lie in

⋃
i E(Hi). This is a somewhat artificial

problem, but this definition allows one to bypass some of the barriers that arise when trying
to prove hardness of (r,h)-Graph Partitioning from existing hardness results for CSP’s.

It was noted in [18] that the (r,h)-Graph Partitioning problem resembles the Densest
k-Subgraph problem for two reasons. First, in Densest k-Subgraph, the goal is to compute a
dense subgraph of a given graph, with a prescribed number of vertices. One can think of
(r,h)-Graph Partitioning as the problem of computing many vertex-disjoint dense subgraphs
of a given graph. Second, natural hardness of approximation proofs for both problems
seem to run into the same barriers. It is therefore natural to ask: (i) Can we prove that
the (r,h)-Graph Partitioning problem itself is hard to approximate? In particular, can the
techniques of [18] be exploited in order to obtain such a proof? and (ii) Can we formalize
this intuitive connection between (r,h)-Graph Partitioning and Densest k-Subgraph? In this
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paper we make progress on both these questions. Our conditional hardness result for
Densest k-Subgraph indeed builds on the ideas from [18] for proving hardness of (r,h)-Graph
Partitioning with Bundles. We also provide “almost” approximation-preserving reductions
between (r,h)-Graph Partitioning and Densest k-Subgraph: we show that, if there is an efficient
factor α(n)-approximation algorithm for Densest k-Subgraph, then there is a randomized
efficient factor O(α(n2) · poly log n)-approximation algorithm to (r,h)-Graph Partitioning. We
also provide a reduction in the opposite direction: we prove that, if there is an efficient α(n)-
approximation algorithm for (r,h)-Graph Partitioning, then there is a randomized algorithm for
Densest k-Subgraph, that achieves approximation factor O

(
(α(nO(log n)))3 · log2 n

)
, in time

nO(log n). Therefore, we prove that Densest k-Subgraph and (r,h)-Graph Partitioning are roughly
equivalent from the approximation perspective (at least for large approximation factors and
quasi-polynomial running times). Combined with our conditional hardness of approximation
for Densest k-Subgraph, our results show that, assuming the conjecture on hardness of 2-CSP
that we introduce, for some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε -approximation
algorithm for (r,h)-Graph Partitioning, unless NP ⊆ BPTIME(nO(log n)).

Maximum Bounded-Crossing Subgraph

The third problem that we study is a variation of the classical Minimum Crossing Number
problem. In the Minimum Crossing Number problem, given an input n-vertex graph G, the
goal is to compute a drawing of G in the plane while minimizing the number of crossings in the
drawing. We define the notions of graph drawing and crossings formally in the Preliminaries,
but these notions are quite intuitive and the specifics of the definition are not important in
this high-level overview.

The Minimum Crossing Number problem was initially introduced by Turán [54] in 1944,
and has been extensively studied since then (see, e.g., [13,14,16,19,20,32,33], and also [48–51]
for excellent surveys). But despite all this work, most aspects of the problem are still
poorly understood. A long line of work [16, 17, 20, 21, 24, 32, 33, 43] has recently led to
the first sub-polynomial approximation algorithm for the problem in low degree graphs.
Specifically, [21] obtain a factor O

(
2O((log n)7/8 log log n) · ∆O(1)

)
-approximation algorithm

for Minimum Crossing Number, where ∆ is the maximum vertex degree. To the best of
our knowledge, no non-trivial approximation algorithms are known for the problem when
vertex degrees in the input graph G can be arbitrary. However, on the negative side, only
APX-hardness is known for the problem [3,11]. As the current understanding of the Minimum
Crossing Number problem from the approximation perspective is extremely poor, it is natural
to study hardness of approximation of its variants.

Let us consider two extreme variations of the Minimum Crossing Number problem. The
first variant is the Minimum Crossing Number problem itself, where we need to draw an input
graph G in the plane with fewest crossings. The second variant is where we need to compute
a subgraph G′ of the input graph G that is planar, while maximizing |E(G′)|. The latter
problem has a simple constant-factor approximation algorithm, obtained by letting G′ be
any spanning forest of G (this is since a planar n-vertex graph may only have O(n) edges).

In this paper we study a variation of the Minimum Crossing Number problem, that we
call Maximum Bounded-Crossing Subgraph, which can be viewed as an intermediate problem
between these two extremes. In the Maximum Bounded-Crossing Subgraph problem, given
an n-vertex graph G and an integer L > 0, the goal is to compute a subgraph H ⊆ G,
such that H has a plane drawing with at most L crossings, while maximizing |E(H)|.
Unless we are interested in constant approximation factors, this problem is only interesting
when the bound L on the number of crossings is Ω(n). This is since, from the Crossing
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Number Inequality [1, 42], if |E(G)| ≥ 4|V (G)|, then the crossing number of G is at least
Ω(|E(G)|3/|V (G)|2). Therefore, for L = O(n), a spanning tree provides a constant-factor
approximation to the problem. We emphasize that the focus here is on dense graphs, whose
crossing number may be as large as Ω(n4).

The Maximum Bounded-Crossing Subgraph problem was implicitly used in [18] for proving
hardness of approximation of NDP, as an intermediate problem, in the reduction from
(r,h)-Graph Partitioning with Bundles to NDP. Their work suggests that there may be a
connection between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph, even
though the two problems appear quite different. In this paper we prove that the two
problems are roughly equivalent from the approximation perspective: if there is an efficient
factor α(n)-approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient
O(α(n) · poly log n)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On
the other hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing
Subgraph implies an efficient O((α(n))2 · poly log n)-approximation algorithm for (r,h)-Graph
Partitioning. Combined with our conditional hardness of approximation for (r,h)-Graph
Partitioning, we get that, assuming the conjecture on hardness of 2-CSP that we introduce,
for some constant 0 < ε ≤ 1/2 there is no efficient 2(log n)ε-approximation algorithm for
Maximum Bounded-Crossing Subgraph, unless NP ⊆ BPTIME(nO(log n)).

Dense k-Coloring

The fourth and last problem that we consider is Dense k-Coloring. In this problem, the input
is an n-vertex graph G and an integer k, such that n is an integral multiple of k. The goal
is to partition V (G) into n/k disjoint subsets S1, . . . , Sn/k, of cardinality k each, so as to
maximize

∑n/k
i=1 |E(Si)|. This problem can be viewed as an intermediate problem between

Densest k-Subgraph and (r,h)-Graph Partitioning. The connection to (r,h)-Graph Partitioning
seems clear: in both problems, the goal is to compute a large collection of disjoint subgraphs
of the input graph G, that contain many edges of G. While in (r,h)-Graph Partitioning we
place a limit on the number of edges in each subgraph, in Dense k-Coloring we require that
each subgraph contains exactly k vertices. The connection to the Densest k-Subgraph problem
is also clear: while in Densest k-Subgraph the goal is to compute a single dense subgraph
of G containing k vertices, in Dense k-Coloring we need to partition G into many dense
subgraphs, containing k vertices each. We show reductions between the Dense k-Coloring
and the Densest k-Subgraph problem in both directions, that provide very similar guarantees
to the reductions between (r,h)-Graph Partitioning and Densest k-Subgraph. In particular, our
results show that, assuming the conjecture on the hardness of 2-CSP that we introduce, for
some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε -approximation algorithm for Dense
k-Coloring, unless NP ⊆ BPTIME(nO(log n)).

Our Conjecture on Hardness of 2-CSP’s

We now turn to describe our new conjecture on hardness of 2-CSP’s. We consider the following
bipartite version of the Constraint Satisfaction Problem with 2 variables per constraint (2-
CSP). The input consists of two sets X and Y of variables, together with an integer A ≥ 1.
Every variable in X ∪ Y takes values in [A] = {1, . . . , A}. We are also given a collection C
of constraints, where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X

and y ∈ Y . For each such constraint, we are given a truth table that, for every pair of
assignments a to x and a′ to y, indicates whether (a, a′) satisfy the constraint. The value
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of the CSP is the largest fraction of constraints that can be simultaneously satisfied by an
assignment to the variables. For given values 0 < s < c ≤ 1, the (c, s)-Gap-CSP problem is
the problem of distinguishing CSP’s of value at least c from those of value at most s.

We can associate, to each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L, R, E),
where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely defined by
X, Y, A, C, and the graphs in {GC}C∈C , so we will denote I = (X, Y, A, C, {GC}C∈C). We
let the size of instance I be size(I) = |C| · A2 + |X| + |Y |. We sometimes refer to A as the
size of the alphabet for instance I. We say that instance I of 2-CSP is d-to-d′ iff for every
constraint C, every vertex of GC that lies in L has degree at most d, and every vertex that
lies in R has degree at most d′. (We note that this is somewhat different from the standard
definition, that requires that all vertices in L have degree exactly d and all vertices of R have
degree exactly d′. In the standard definition, the alphabet sizes for variables in X and Y

may be different, that is, variables in X take values in [A] and variables of Y take values in
[A′] for some integers A, A′. However, this difference is insignificant to our discussion, and it
is more convenient for us to use this slight variation of the standard definition).

The famous Unique-Games Conjecture of Khot [35] applies to 1-to-1 CSP’s. The conjecture
states that, for any 0 < ε < 1, there is a large enough value A, such that the (1−ε, ε)-Gap-CSP
problem is NP-hard for 1-to-1 instances with alphabet size A. The conjecture currently
remains open, though interesting progress has been made on the algorithmic side: the results
of [4] provide an algorithm for the problem with running time 2nO(1/ε1/3) .

A conjecture that is closely related to the Unique-Games Conjecture is the d-to-1 Conjec-
ture of Khot [35]. The conjecture states that, for every 0 < ε < 1, and d > 0, there is a large
enough value A, such that the (1, ε)-Gap-CSP problem in d-to-1 instances with alphabet size
A is NP-hard.

Håstad [31] proved the following nearly optimal hardness of approximation results for
CSP’s: he showed that for every 0 < ε < 1, there are values d and A, such that the problem
of (1, ε)-Gap-CSP in d-to-1 instances with alphabet size A is NP-hard. The value d, however,
depends exponentially on poly(1/ε) in this result. In contrast, in the d-to-1 Conjecture, both
d and ε are fixed, and d may not have such a strong dependence on 1/ε.

On the algorithmic side, the results of [4, 53] provide an algorithm for (c, s)-Gap-CSP
on d-to-1 instances. The running time of the algorithm is 2nO(1/(log(1/s))1/2) , where the O(·)
notation hides factors that are polynomial in d and A.

A recent breakthrough in this area is the proof of the 2-to-2 conjecture (now theorem),
that builds on a long sequence of work [5,6,22,23,37–40]. The theorem proves that for every
0 < ε < 1, there is a large enough value A, such that the (1 − ε, ε)-Gap-CSP problem is
NP-hard on 2-to-2 instances with alphabet size A.

In this paper, we propose the following conjecture regarding the hardness of Gap-CSP in
d-to-d instances.

▶ Conjecture 1. There is a constant 0 < ε ≤ 1/2, such that it is NP-hard to distinguish
between d(n)-to-d(n) instances of 2-CSP of size n, that have value at least 1/2, and those of
value at most s(n), where d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε .

We now compare this conjecture to existing conjectures and results in this area that we
are aware of. First, in contrast to the d-to-1 conjecture, we allow the parameter d and the
soundness parameter s to be functions of n – the size of the input instance. Note that the
size of the input instance depends on the alphabet size A, so, unlike in the setting of the
d-to-1 conjecture, A may no longer be arbitrarily large compared to d and s.
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The hardness of approximation result of Håstad [31] for d-to-d CSP’s only holds when d

depends exponentially on poly(1/s), (in particular it may not extend to the setting where
s(n) = 1/264(log n)1/2+ε , since the size n of the instance depends polynomially on d(n)).

We can also combine standard constant hardness of approximation results for CSP’s (such
as, for example, 3-SAT) with the Parallel Repetition theorem, to obtain NP-hardness of
(1, s(n))-Gap-CSP on d(n)-to-d(n) instances. Using this approach, if we start from an instance
of CSP of size N and a constant hardness gap (with perfect completeness), after ℓ rounds of
parallel repetition, we obtain hardness of (1, s)-Gap-CSP on d-to-d instances with s = 2−O(ℓ),
d = 2O(ℓ), and the resulting instance size n = NO(ℓ). Note that d = (1/s)Θ(1) holds,
wich is different from the relationship between these parameters required by the conjecture.
Specifically, by setting the number of repetition to be ℓ = Θ

(
(log N)(1/2+ε)/(1/2−ε)), we can

ensure the desired bound s(n) = 1/264(log n)1/2+ε . However, in this setting, we also get that
d(n) = 2Ω((log n)1/2+ε), which is significantly higher than the desired value d(n) = 2(log n)ε .

Lastly, one could attempt to combine the recent proof of the 2-to-2 conjecture with Parallel
Repetition in order to reap the benefits of both approaches, but the resulting parameters
also fall short of the ones stated in the conjecture.

From the above discussion, one can view Conjecture 1 as occupying a middle ground
between the d-to-1 conjecture, and the results one can obtain via standard techniques of
amplifying a constant hardness of a CSP, such as 3SAT, via Parallel Repetition. We note
that, while the conjecture appears closely related to the Unique Games Conjecture and
d-to-1 conjecture, we are not aware of any additional formal connections, except for those
mentioned above.

We now proceed to discuss our results and techniques in more detail.

1.1 A More Detailed Overview of our Results and Techniques
In addition to posing Conjecture 1 that we already described above, we prove conditional
hardness of approximation of the four problems that we consider. We also prove that all
four problems are roughly equivalent approximation-wise. We now discuss the conditional
hardness of approximation for Densest k-Subgraph and the connections between the four
problems that we establish.

Conditional Hardness of Densest k-Subgraph

Our first result is a conditional hardness of Densest k-Subgraph. Specifically, we prove that,
assuming that Conjecture 1 holds and that P ̸= NP, for some 0 < ε ≤ 1/2, there is no efficient
approximation algorithm for Densest k-Subgraph problem that achieves approximation factor
2(log N)ε , where N is the number of vertices in the input graph.

We now provide a brief overview of our techniques. The proof of the above result employs
a Cook-type reduction, and follows some of the ideas that were introduced in [18]. We
assume for contradiction that there is a factor-α algorithm A for the Densest k-Subgraph
problem, where α = 2(log N)ε . Given an input instance I of the 2-CSP problem of size n, that
is a d(n)-to-d(n) instance, we construct a constraint graph H representing I. We gradually
decompose graph H into a collection H of disjoint subgraphs, such that, for each subgraph
H ′ ∈ H, we can either certify that the value of the corresponding instance of 2-CSP is at
most 1/4, or it is at least β, for some carefully chosen parameter β. In order to compute
the decomposition, we start with H = {H}. If, for a graph H ′ ∈ H, we certified that the
corresponding instance of 2-CSP has value at most 1/4, or at least β, then we say that graph
H ′ is inactive. Otherwise, we say that it is active. As long as H contains at least one active
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graph, we perform iterations. In each iteration, we select an arbitrary active graph H ′ ∈ H
to process. In order to process H ′, we consider an assignment graph G′ associated with H ′,
that contains a vertex for every variable-assignment pair (x, a), where x is a variable whose
corresponding vertex belongs to H ′. We view G′ as an instance of the Densest k-Subgraph
problem, for an appropriately chosen parameter k, and apply the approximation algorithm A
for Densest k-Subgraph to it. Let S be the set of vertices of G′ that Algorithm A computes
as a solution to this instance. Note that S is a set of vertices in the assignment graph G′,
while H is a family of subgraphs of the constraint graph H. We exploit the set S of vertices
in order to either (i) compute a large subset E′ ⊆ E(H ′) of edges, such that, if we denote by
C′ ⊆ C the set of constraints corresponding to E′, then at most 1/4 of the constraints of C′

can be simultaneously satisfied; or (ii) compute a large subset E′ ⊆ E(H ′) of edges as above,
and certify that at least a β-fraction of such constraints can be satisfied; or (iii) compute a
subgraph H ′′ ⊆ H ′, such that |V (H ′′)| ≪ |V (H ′)|, and the number of edges contained in
graphs H ′′ and H ′ \ V (H ′′) is sufficiently large compared to E(H ′). In the former two cases,
we replace H ′ with graph H ′[E′] in H, and graph H ′[E′] becomes inactive. In the latter case,
we replace H ′ with two graphs: H ′′ and H ′ \ V (H ′′), that both remain active. The algorithm
terminates once every graph in H is inactive. The crux of the analysis of the algorithm is to
show that, when the algorithm terminates, the total number of edges lying in the subgraphs
H ′ ∈ H is high, compared to |E(H)|. The specific fraction of edges that remain in the
subgraphs H ′ ∈ H is governed by the parameters s(n) and d(n), and the specific relationship
between these parameters in Conjecture 1 is selected to ensure that many edges remain in the
graphs of H when the algorithm terminates. The algorithm for decomposing graph H into
subgraphs and its analysis employ some of the techniques and ideas introduced in [18], and
is very similar in spirit to the hardness of approximation proof of the (r,h)-Graph Partitioning
with Bundles problem, though details are different. We employ this decomposition algorithm
multiple times, in order to obtain a partition (E0, E1, . . . , Ez) of the set E(H) of edges
of the constraint graph into a small number of subsets, such that, among the constraints
corresponding to the edges of E0, at most a 1/4-fraction can be satisfied by any assignment
to X ∪ Y , and, for all 1 ≤ i ≤ z, a large fraction of constraints corresponding to edges of Ei

can be satisfied by some assignment. Depending on the cardinality of the set E0 of edges we
then determine whether I is a Yes-Instance or a No-Instance.

Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest
k-Subgraph

We show that, if there is an efficient factor α(n)-approximation algorithm for the Densest
k-Subgraph problem, then there is a randomized efficient O(α(n2) · poly log n)-approximation
algorithm for Dense k-Coloring, and a randomized efficient O(α(n2)·poly log n)-approximation
algorithm for (r,h)-Graph Partitioning. The two reductions are very similar, so we focus on
describing the first one. We believe that the reduction is of independent interest, and uses
unusual techniques.

We assume that there is an α(n)-approximation algorithm for the Densest k-Subgraph
problem. In order to obtain an approximation algorithm for Dense k-Coloring, we start by
formulating a natural LP-relaxation for the problem. Unfortunately, this LP-relaxation has
a large number of variables: roughly nΘ(k), where n is the number of vertices in the input
graph and k is the parameter of the Dense k-Coloring problem instance. We then show an
efficient algorithm, that, given a solution to the LP-relaxation, whose support size is bounded
by poly(n), computes an approximate integral solution to the Dense k-Coloring problem.
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The main challenge is that, since the LP relaxation has nΘ(k) variables, it is unclear
how to solve it efficiently. We consider the dual linear program, that has poly(n) variables
and nΘ(k) constraints. Using the α(n)-approximation algorithm for Densest k-Subgraph as
a subroutine, we design an approximate separation oracle for the dual LP, that allows us
to solve the original LP-relaxation for Dense k-Coloring, obtaining a solution whose support
size is bounded by poly(n). By applying the LP-rounding approximation algorithm to this
solution, we obtain the desired approximate solution to the input instance of Dense k-Coloring.

Reductions from Densest k-Subgraph to (r,h)-Graph Partitioning and Dense
k-Coloring

We prove that, if there is an efficient α(n)-approximation algorithm for Dense k-Coloring,
then there is a randomized algorithm for the Densest k-Subgraph problem, whose running
time is nO(log n), that with high probability obtains an O(α(nO(log n)) · log n)-approximate
solution to the input instance of the problem. We also show a similar reduction from Densest
k-Subgraph to (r,h)-Graph Partitioning, but now the resulting approximation factor for Densest
k-Subgraph becomes O((α(nO(log n)))3 · log2 n). By combining these reductions with our
conditional hardness result for Densest k-Subgraph, we get that, assuming Conjecture 1,
for some constant 0 < ε ≤ 1/2, there is no efficient 2(log n)ε-approximation algorithm for
(r,h)-Graph Partitioning and for Dense k-Coloring, unless NP ⊆ BPTIME(nO(log n)).

The two reductions are very similar; we focus on the reduction to Dense k-Coloring in
this overview. Our construction is inspired by the results of [34], and we borrow some of our
ideas from them. Assume that there is an efficient α(n)-approximation algorithm for Dense
k-Coloring. Let G be an instance of the Densest k-Subgraph problem. The main difficulty in
the reduction is that it is possible that G only contains one very dense subgraph induced by
k vertices, while the Dense k-Coloring problem requires that the input graph G can essentially
be partitioned into many such dense subgraphs. To overcome this difficulty, we construct
a random “inflated” bipartite graph H, that contains nO(log n) vertices, where n = |V (G)|.
Every vertex of G is mapped to some vertex of H at random, while every edge of G is
mapped to a large number of edges of H. This allows us to ensure that, if G contains a
subgraph G′ induced by a set of k vertices, where |E(G′)| = R, then graph H can essentially
be partitioned into a large number of subgraphs that contain k vertices each, and many of
them contain close to R edges. Therefore, we can apply our α(n)-approximation algorithm
for Dense k-Coloring to the new graph H. The main challenge in the reduction is that,
while this approximation algorithm is guaranteed to return a large number of disjoint dense
subgraphs of H , since every edge of G contributes many copies to H , it is not clear that one
can extract a single dense subgraph of G from dense subgraphs of H. The main difficulty in
the reduction is to ensure that, on the one hand, a single k-vertex dense subgraph in G can
be translated into |V (H)|/k dense subgraphs of H ; and, on the other hand, a dense k-vertex
subgraph of H can be translated into a dense subgraph of G on k vertices. We build on and
expand the ideas from [34] in order to ensure these properties.

Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph

Lastly, we provide reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph in both directions. First, we show that, if there is an efficient factor α(n)-
approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient O(α(n) ·
poly log n)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On the other
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hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing Subgraph
implies an efficient O((α(n))2 ·poly log n)-approximation algorithm for (r,h)-Graph Partitioning.
Combined with our conditional hardness of approximation for (r,h)-Graph Partitioning, we
get that, assuming Conjecture 1, for some constant 0 < ε ≤ 1/2, there is no efficient
2(log n)ε-approximation algorithm for Maximum Bounded-Crossing Subgraph, unless NP ⊆
BPTIME(nO(log n)).

Both these reductions exploit the following connection between crossing number and
graph partitioning: if a graph G has a drawing with at most L crossings, then there is a
balanced cut in G, containing at most O

(√
L + ∆ · |E(G)|

)
edges, where ∆ is maximum

vertex degree in G. This result can be viewed as an extension of the classical Planar Separator
Theorem of [45]. Another useful fact exploited in both reductions is that any graph G with
m edges has a plane drawing with at most m2 crossings. In particular, if H = {H1, . . . , Hr}
is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a
drawing of graph H =

⋃r
i=1 Hi, in which the number of crossings is bounded by r · h2. These

two facts establish a close relationship between the (r,h)-Graph Partitioning and Maximum
Bounded-Crossing Subgraph problems, that are exploited in both our reductions.

We have now obtained a chain of reductions, showing that all four problems, Dens-
est k-Subgraph, Dense k-Coloring, (r,h)-Graph Partitioning, and Maximum Bounded-Crossing
Subgraph are almost equivalent from approximation viewpoint, if we consider sufficiently
large approximation factors and allow randomized quasi-polynomial time algorithms. We
also obtain conditional hardness of approximation results for all four problems based on
Conjecture 1.

Organization

We start with preliminaries in Section 2. In Section 3 we provide the conditional hardness
of approximation proof for the Densest k-Subgraph problem. In Section 4 we provide our
reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph, and in
Section 5 we provide reductions in the opposite direction. Lastly, in Section 6 we provide
reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. Due
to lack of space, some of the proofs are deferred to the full version of the paper.

2 Preliminaries

By default, all logarithms are to the base of 2. For a positive integer N , we denote by
[N ] = {1, 2, . . . , N}. All graphs are finite, simple and undirected. We say that an event holds
with high probability if the probability of the event is 1 − 1/nc for a large enough constant c,
where n is the number of vertices in the input graph.

2.1 General Notation
Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G

induced by S. For two disjoint subsets A, B of vertices of G, we denote by EG(A, B) the set
of all edges with one endpoint in A and the other endpoint in B, and we denote by EG(A)
the set of all edges with both endpoints in A. Given a graph G and a vertex v ∈ V (G),
we denote by degG(v) the degree of v in G. For a subset S of vertices of G, its volume is
volG(S) =

∑
v∈S degG(v). We sometimes omit the subscript G if it is clear from the context.

Given a graph G, a drawing φ of G is an embedding of G into the plane, that maps every
vertex v of G to a point (called the image of v and denoted by φ(v)), and every edge e of
G to a simple curve (called the image of e and denoted by φ(e)), that connects the images
of its endpoints. If e is an edge of G and v is a vertex of G, then the image of e may only
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contain the image of v if v is an endpoint of e. Furthermore, if some point p belongs to the
images of three or more edges of G, then p must be the image of a common endpoint of all
edges e with p ∈ φ(e). We say that two edges e, e′ of G cross at a point p, if p ∈ φ(e) ∩ φ(e′),
and p is not the image of a shared endpoint of these edges. Given a graph G and a drawing
φ of G in the plane, we use cr(φ) to denote the number of crossings in φ, and the crossing
number of G, denoted by CrN(G), is the minimum number of crossings in any drawing of G.

2.2 Problem Definitions and Additional Notation
In this paper we consider the following four problems: Densest k-Subgraph, Dense k-Coloring,
(r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. We now define the
problems, along with some additional notation.

Densest k-Subgraph

In the Densest k-Subgraph problem, the input is a graph G and an integer k > 0. The goal is
to compute a subset S ⊆ V (G) of k vertices, maximizing |EG(S)|. We denote an instance
of the problem by DkS(G, k), and we denote the value of the optimal solution to instance
DkS(G, k) by OPTDkS(G, k).

We also consider a bipartite version of the Densest k-Subgraph problem, called
Bipartite Densest (k1, k2)-Subgraph. This problem was first studied in [2]. The input to the
problem is a bipartite graph G = (A, B, E) and positive integers k1, k2. The goal is to
compute a subset S ⊆ V (G) of vertices with |S ∩A| = k1 and |S ∩B| = k2, such that |EG(S)|
is maximized. An instance of this problem is denoted by BDkS(G, k1, k2), and the value of
the optimal solution to instance BDkS(G, k1, k2) is denoted by OPTBDkS(G, k1, k2). The
following lemma shows that the Bipartite Densest (k1, k2)-Subgraph problem and the Densest
k-Subgraph problem are roughly equivalent from the approximation viewpoint. Similar results
were also shown in prior work.

▶ Lemma 2. Let α : Z+ → Z+ be an increasing function such that α(n) = o(n). Then the
following hold:

If there exists an α(n)-approximation algorithm for the Densest k-Subgraph problem with
running time at most T (n), where n is the number of vertices in the input graph, then there
exists an O(α(N2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph
problem, with running time O(T (N2) · poly(N)), where N is the number of vertices in
the input graph. Moreover, if the algorithm for Densest k-Subgraph is deterministic, then
so is the algorithm for Bipartite Densest (k1, k2)-Subgraph.
Similarly, if there exists an efficient α(N)-approximation algorithm for the Bipartite
Densest (k1, k2)-Subgraph problem, where N is the number of vertices in the input graph,
then there exists an efficient O(α(2n))-approximation algorithm for the Densest k-Subgraph
problem, where n is the number of vertices in the input graph. Moreover, if the algorithm
for Bipartite Densest (k1, k2)-Subgraph is deterministic, then so is the algorithm for
Densest k-Subgraph.

Dense k-Coloring

The input to the Dense k-Coloring problem consists of an n-vertex graph G and an integer
k > 0, such that n is an integral multiple of k. The goal is to compute a partition of V (G)
into n/k subsets S1, . . . , Sn/k of cardinality k each, while maximizing

∑n/k
i=1 |EG(Si)|. An

instance of the Dense k-Coloring problem is denoted by DkC(G, k), and the value of the
optimal solution to instance DkC(G, k) is denoted by OPTDkC(G, k).
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(r, h)-Graph Partitioning

The input to the (r,h)-Graph Partitioning problem consists of a graph G, and integers r, h > 0.
The goal is to compute r vertex-disjoint subgraphs H1, . . . , Hr of G, such that for all
1 ≤ i ≤ r, |E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. An instance of the (r,h)-Graph

Partitioning problem is denoted by GP(G, r, h), and the value of the optimal solution to
instance GP(G, r, h) is denoted by OPTGP(G, r, h).

Maximum Bounded-Crossing Subgraph

In the Maximum Bounded-Crossing Subgraph problem, the input is a graph G and an integer
L > 0. The goal is to compute a subgraph H ⊆ G with CrN(H) ≤ L, while maximizing
|E(H)|. An instance of the Maximum Bounded-Crossing Subgraph problem is denoted by
MBCS(G, L), and the value of the optimal solution to instance MBCS(G, L) is denoted by
OPTMBCS(G, L). We note that we can assume that L ≤ |V (G)|4, as otherwise the optimal
solution is the whole graph G, since the crossing number of a simple graph G is at most
|E(G)|2 ≤ |V (G)|4.

3 Conditional Hardness of Densest k-Subgraph

3.1 Conjecture on Hardness of 2-CSP’s
We consider the Bipartite 2-CSP problem, that is defined as follows. The input to the problem
consists of two sets X, Y of variables, together with an integer A > 1. Every variable
z ∈ X ∪Y takes values in set [A] = {1, . . . , A}. We are also given a collection C of constraints,
where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X and y ∈ Y . For
each such constraint, we are given a truth table that, for every pair of assignments a to x

and a′ to y, specifies whether (a, a′) satisfy constraint C(x, y). The value of the CSP is the
largest fraction of constraints that can be simultaneously satisfied by an assignment to the
variables.

We associate with each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L, R, E),
where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely determined by
X, Y, A, C, and the graphs in {GC}C∈C , so we will denote I = (X, Y, A, C, {GC}C∈C). The
size of instance I is defined to be size(I) = |C| · A2 + |X| + |Y |.

Consider some instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP. We say that I is a
d-to-d instance if, for every constraint C, every vertex of graph GC = (L, R, E) has degree
at most d.

Consider now some functions d(n), s(n) : R+ → R+. We assume that, for all n,
d(n) ≥ 1 and s(n) < 1. In a (d(n), s(n))-2CSP problem, the input is an instance I =
(X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP, such that, if we denote by n = size(I), then the
instance is d(n)-to-d(n). We say that I is a Yes-Instance, if there is some assignment
to the variables of X ∪ Y that satisfies at least |C|/2 of the constraints, and we say that
it is a No-Instance, if the largest number of constraints of C that can be simultaneously
satisfied by any assignment is at most s(n) · |C|. Given an instance I of (d(n), s(n))-2CSP
problem, the goal is to distinguish between the case where I is a Yes-Instance and the
case where I is a No-Instance. If I is neither a Yes-Instance nor a No-Instance, the
output of the algorithm can be arbitrary. We now state our conjecture regarding hardness of
(d(n), s(n))-2CSP, that is a restatement of Conjecture 1 from the Introduction.
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▶ Conjecture 3. There is a constant 0 < ε ≤ 1/2, such that the (d(n), s(n))-2CSP problem
is NP-hard for d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε .

3.2 Conditional Hardness of Densest k-Subgraph
In the remainder of this section, we prove the following theorem on the conditional hardness
of Densest k-Subgraph.

▶ Theorem 4. Assume that Conjecture 3 holds and that P ̸= NP. Then for some 0 < ε ≤ 1/2,
there is no efficient approximation algorithm for Densest k-Subgraph problem that achieves
approximation factor 2(log N)ε , where N is the number of vertices in the input graph.

In fact we will prove a slightly more general theorem, that will be useful for us later.

▶ Theorem 5. Suppose there is an algorithm for the Densest k-Subgraph problem, that,
given an instance DkS(G, k) with |V (G)| = N , in time at most T (N), computes a factor
2(log N)ε-approximate solution to the problem, for some constant 0 < ε ≤ 1/2. Then there
is an algorithm, that, given an instance I of (d(n), s(n))-2CSP problem of size n, where
d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε , responds “YES” or ”NO”, in time O(poly(n) ·
T (poly(n))). If I is a Yes-Instance, the algorithm is guaranteed to respond “YES”, and if
it is a No-Instance, it is guaranteed to respond “NO”.

Theorem 4 immediately follows from Theorem 5. The remainder of this section is
dedicated to proving Theorem 5. A central notion that we use is a constraint graph that is
associated with an instance I of 2-CSP.

Let I = (X, Y, A, C, {GC}C∈C) be an instance of the Bipartite 2-CSP problem. The
constraint graph associated with instance I is denoted by H(I), and it is defined as follows.
The set of vertices of H(I) is the union of two subsets: set V = {v(x) | x ∈ X} of vertices
representing the variables of X, and set U = {v(y) | y ∈ Y } of vertices representing the
variables of Y . For convenience, we will not distinguish between the vertices of V and the
variables of X, so we will identify each variable x ∈ X with its corresponding vertex v(x).
Similarly, we will not distinguish between vertices of U and variables of Y . The set of
edges of H(I) contains, for every constraint C = C(x, y) ∈ C, edge eC = (x, y). We say
that edge eC represents the constraint C. Notice that, if E′ is a subset of edges of H(I),
then we can define a set Φ(E′) ⊆ C of constraints that the edges of E′ represent, namely:
Φ(E′) = {C ∈ C | eC ∈ E′}. Next, we define bad sets of constraints and bad sets of edges.

▶ Definition 6 (Bad Set of Constraints and Bad Collection of Edges). Let C′ ⊆ C be a collection
of constraints of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP. We say that C′ is
a bad set of constraints if the largest number of constraints of C′ that can be simultaneously
satisfied by any assignment to the variables of X ∪ Y is at most |C′|

4 . If E′ ⊆ E(H(I)) is a
set of edges of H(I), whose corresponding set Φ(E′) of constraints is bad, then we say that
E′ is a bad collection of edges.

The next observation easily follows from the definition of a bad set of constraints.

▶ Observation 7. Let I = (X, Y, A, C, {GC}C∈C) be an instance of bipartite 2-CSP, and let
C′, C′′ ⊆ C be two disjoint sets of constraints that are both bad. Then C′ ∪ C′′ is also a bad set
of constraints.

Next, we define good subsets of constraints and good subgraphs of the constraint graph
H(I).
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▶ Definition 8 (Good Set of Constraints and Good Subgraphs of H(I)). Let C′ ⊆ C be a
collection of constraints of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP, and
let 0 < β ≤ 1 be a parameter. We say that C′ is a β-good set of constraints, if there is an
assignment to variables of X ∪ Y that satisfies at least |C′|

β constraints of C′. If E′ ⊆ E(H(I))
is a set of edges of H(I), whose corresponding set Φ(E′) of constraints is β-good, then we say
that E′ is a β-good collection of edges. Lastly, if H ′ ⊆ H(I) is a subgraph of the constraint
graph, and the set E(H ′) of edges is β-good, then we say that graph H ′ is β-good.

The next observation easily follows from the definition of a good set of constraints.

▶ Observation 9. Let I = (X, Y, A, C, {GC}C∈C) be an instance of bipartite 2-CSP, let
0 < β ≤ 1 be a parameter, and let H ′, H ′′ be two subgraphs of H(I) that are both β-good and
disjoint in their vertices. Then graph H ′ ∪ H ′′ is also β-good.

The observation follows from the fact that, since graphs H ′, H ′′ are disjoint in their
vertices, if we let C′ = Φ(E(H ′)), C′′ = Φ(E(H ′′)) be the sets of constraints associated with
the edge sets of both graphs, then the variables participating in the constraints of C′ are
disjoint from the variables participating in the constraints of C′′.

The following theorem is key in proving Theorem 5.

▶ Theorem 10. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Densest k-Subgraph problem, whose running time is at most T (N), where
N is the number of vertices in the input graph, and α(N) = 2(log N)ε . Then there is an
algorithm, whose input consists of an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP
and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds, and
I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . Let β = 28(log n)1/2+ε ,
and let r = ⌈β · log n⌉. The algorithm returns a partition (Eb, E1, . . . , Er) of E(H(I)), such
that Eb is a bad set of edges, and for all 1 ≤ i ≤ r, set Ei of edges is β3-good. The running
time of the algorithm is O(T (poly(n)) · poly(n).

The proof of Theorem 5 easily follows from Theorem 10. Assume that there exists a
constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph
problem, whose running time is at most T (N), where N is the number of vertices in the
input graph, and α(N) = 2(log N)ε . We show an algorithm for the (d(n), s(n))-2CSP problem,
for d(n) = 2(log n)ε and s(n) = 1/264(log n)1/2+ε . Let I = (X, Y, A, C, {GC}C∈C) be an input
instance of the Bipartite 2-CSP problem, with size(I) = n, so that I is a d(n)-to-d(n) instance
of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . If n is bounded by a constant, then we can determine
whether I is a Yes-Instance or a No-Instance by exhaustively trying all assignments to
its variables. Therefore, we assume that n is greater than a large enough constant. We apply
the algorithm from Theorem 10 to this instance I. Let (Eb, E1, . . . , Er) be the partition of
the edges of E(H(I)) that the algorithm returns. We now consider two cases.

Assume first that |Eb| > 2|C|/3. Let Cb ⊆ C be the set of all constraints that correspond
to the edges of Eb. Recall that set Cb of constraints is bad, so in any assignment, at most
|Cb|

4 of the constraints in Cb may be satisfied. Therefore, if f is any assignment to variables
of X ∪ Y , the number of constraints in C that are not satisfied by f is at least 3|Cb|

4 > |C|
2 .

Clearly, I may not be a Yes-Instance in this case. Therefore, if |Eb| > 2|C|/3, we report
that I is a No-Instance.

If |Eb| ≤ 2|C|/3, then we report that I is a Yes-Instance. It is now enough to show
that, if |Eb| ≤ 2|C|/3, then instance I may not be a No-Instance. In other words, it is
enough to show that there is an assignment that satisfies more than |C|

264(log n)1/2+ε constraints.
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Indeed, since |Eb| ≤ 2|C|/3, there is an index 1 ≤ i ≤ r, with |Ei| ≥ |C|
3r . Since set Ei of

edges is β3-good, there is an assignment to the variables of X ∪ Y , that satisfies at least
|Ei|
β3 ≥ |C|

3rβ3 constraints that correspond to the edges of Ei. Recall that β = 28(log n)1/2+ε

and r = ⌈β · log n⌉. Therefore, 3rβ3 ≤ 6β4 log n ≤ 264(log n)1/2+ε . We conclude that there is
an assignment satisfying at least |C|/264(log n)1/2+ε constraints, and so I may not be a No-
Instance. It is easy to verify that the running time of the algorithm is O(T (poly(n))·poly(n).

To conclude, we have shown that, if there is an α(N)-approximation algorithm A for
the Densest k-Subgraph problem, with running time at most T (N), where N is the number
of vertices in the input graph, and α(N) = 2(log N)ε , then there is an algorithm for the
(d(n), s(n))-2CSP problem, for d(n) = 2(log n)ε and s(n) = 1/28(log n)1/2+ε , whose running
time is O(T (poly(n)) · poly(n).

In the remainder of this section we prove Theorem 10.

3.3 Proof of Theorem 10
The following theorem is the main technical ingredient of the proof of Theorem 10.

▶ Theorem 11. Assume that there exists an α(N)-approximation algorithm A for the
Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where
N is the number of vertices in the input graph. Then there is an algorithm, that, given
an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that
size(I) ≤ n, β ≥ 230(α(n))3(log n)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP,
for some function d(n), in time O(T (n) · poly(n)), does one of the following:

either correctly establishes that graph H(I) is β3-good; or
computes a bad set C′ ⊆ C of constraints, with |C′| ≥ |C|

8 log2 n
; or

computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), for which the following hold:
|X ′| ≤ 2d(n)·|X|

β ;
|Y ′| ≤ 2d(n)·|Y |

β ; and
|E′| ≥ volH (X′∪Y ′)

2048d(n)·α(n)·log4 n
.

The proof of Theorem 11 partially relies on ideas and techniques from [18], and is deferred
to the full version of the paper. We now complete the proof of Theorem 10 using Theorem 11,
starting with the following simple corollary, whose proof is deferred to the full version of the
paper.

▶ Corollary 12. Assume that there exists an α(N)-approximation algorithm A for the Bipartite
Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where N is the
number of vertices in the input graph. Then there is an algorithm, whose input consists of
an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that
size(I) ≤ n, β ≥ 230(α(n))3(log n)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP.
The algorithm returns a partition (E1, E2) of E(H(I)), where E1 is a bad set of edges, and:

either the algorithm correctly certifies that E2 is a β3-good set of edges; or
it computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), with E(H ′) ⊆ E2, for which the
following hold:

|X ′| ≤ 2d(n)·|X|
β ;

|Y ′| ≤ 2d(n)·|Y |
β ; and

|E′| ≥ |E∗
2 |

2048d(n)·α(n)·log4 n
, where E∗

2 is a set of edges containing every edge e ∈ E2 with
exactly one endpoint in V (H ′).

The running time of the algorithm is O(T (n) · poly(n)).
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Next, we obtain the following corollary.

▶ Corollary 13. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at
most T (N), where N is the number of vertices in the input graph, and α(N) = 2(4 log N)ε .
Then there is an algorithm, whose input consists of an instance I = (X, Y, A, C, {GC}C∈C)
of Bipartite 2-CSP and parameter n that is greater than a large enough constant, so that
size(I) ≤ n holds, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε .
Let β = 28(log n)1/2+ε . The algorithm returns a partition (E1, E2, E3) of E(H(I)), where E1
is a bad set of constraints, E2 is a β3-good set of constraints, and |E1 ∪ E2| ≥ |E(H(I))|

β . The
running time of the algorithm is O(T (n) · poly(n)).

Proof. Throughout the proof, we assume that there exists a constant 0 < ε ≤ 1/2, and
an α(N)-approximation algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem,
whose running time is at most T (N), where N is the number of vertices in the input graph,
and α(N) = 2(2 log N)ε . Assume that we are given an instance I = (X, Y, A, C, {GC}C∈C) of
Bipartite 2-CSP, together with a parameter n that is greater than a large enough constant, so
that size(I) ≤ n, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . For
convenience, we denote H = H(I). Our algorithm uses a parameter η = 212d(n) ·α(n) · log4 n.

The algorithm is iterative. Over the course of the algorithm, we maintain a collection H
of subgraphs of H, and another subgraph Hg of H. We will ensure that, throughout the
algorithm, all graphs in H ∪ {Hg} are mutually disjoint in their vertices. We denote by
Eg = E(Hg) and E1 =

⋃
H′∈H E(H ′). Additionally, we maintain another set Eb of edges of

H, that is disjoint from Eg ∪ E1, and we denote by E0 = E(H) \ (Eg ∪ Eb ∪ E1) the set
of all remaining edges of H. We ensure that the following invariants hold throughout the
algorithm.

I1. set Eg = E(Hg) of edges is β3-good;
I2. set Eb of edges is bad; and
I3. all graphs in H ∪ {Hg} are disjoint in their vertices.

Intuitively, we will start with the set H containing a single graph H, and Eg = Eb =
E0 = ∅. As the algorithm progresses, we will iteratively add edges to sets Eg, Eb and E0,
while partitioning the graphs in H into smaller subgraphs. The algorithm will terminate
once H = ∅. The key in the analysis of the algorithm is to ensure that |E0| is relatively
small when the algorithm terminates. We do so via a charging scheme: we assign a budget
to every edge of E1 ∪ Eg ∪ Eb, that evolves over the course of the algorithm, and we keep
track of this budget over the course of the algorithm.

In order to define vertex budgets, we will assign, to every graph H ∈ H a level, that is an
integer between 0 and ⌈log n⌉. We will ensure that, throughout the algorithm, the following
additional invariants hold:

I4. If H ′ ∈ H is a level-i graph, then the budget of every edge e ∈ E(H ′) is at most ηi; and
I5. Throughout the algorithm’s execution, the total budget of all edges in Eg ∪ Eb ∪ E1 is at

least |E(H)|.

Intuitively, at the end of the algorithm, we will argue that the level of every graph in H
is not too large, and that the budget of every edge in Eg ∪ Eb ∪ E1 is not too large. Since
the total budget of all edges in Eg ∪ Eb ∪ E1 is at least |E(H)|, it will then follow that
|Eg ∪ Eb ∪ E1| is sufficiently large. We now proceed to describe the algorithm.
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Our algorithm will repeatedly use the algorithm from Corollary 12, with the same
functions α(N), d(n), and parameter β. In order to be able to use the corollary, we need
to estalish that β ≥ 230(α(n))3(log n)12. This is immediate to verify since β = 28(log n)1/2+ε ,
α(n) = 2(4 log n)ε , and n is large enough.

At the beginning of the algorithm, we set E0 = Eg = Eb = ∅, and we let H contain a
single graph H, which is assigned level 0. Note that E1 = E(H) must hold. Every edge
e ∈ E(H) is assigned budget b(e) = 1. Clearly, the total budget of all edges of E1 ∪ Eg ∪ Eb

is B =
∑

e∈E1∪Eg∪Eb b(e) = |E(H)|. The algorithm performs iterations, as long as H ̸= ∅.
In every iteration, we select an arbitrary graph H ′ ∈ H to process.

We now describe an iteration where some graph H ′ ∈ H is processed. We assume
that graph H ′ is assigned level i. Notice that graph H ′ naturally defines an instance
I ′ = (X ′, Y ′, A, C′, {GC}C∈C′) of Bipartite 2-CSP, where X ′ = V (H ′) ∩ X, Y ′ = V (H ′) ∩ Y ,
C′ = {C ∈ C | eC ∈ E(H ′)}, and the graphs GC for constraints C ∈ C′ remain the same as
in instance I. Clearly, size(I ′) ≤ size(I) ≤ n, and H(I ′) = H ′. Furthermore, instance I ′

remains a d(n)-to-d(n) instance. We apply the algorithm from Corollary 12 to instance I ′,
with parameters n and β remaining unchanged. Consider the partition (E1, E2) of E(H ′)
that the algorithm returns. Recall that the set E1 of edges is bad. We add the edges of E1
to set Eb. From Invariant I2 and Observation 7, set Eb of edges continues to be bad. If
the algorithm from Corollary 12 certified that E2 is a β3-good set of edges, then we update
graph Hg to be Hg ∪ (H ′ \ E1), and we add the edges of E2 to set Eg. We then remove
graph H ′ from H, and continue to the next iteration. Note that, from Observation 9 and
Invariants I1 and I3, the set Eg of edges continues to be β3-good. It is easy to verify that all
remaining invariants also continue to hold.

From now on we assume that the algorithm from Corollary 12 returned a subgraph
H ′′ = (X ′′, Y ′′, E′′) of H ′, with E′′ ⊆ E2, such that |X ′′| ≤ 2d(n)·|X′|

β and |Y ′′| ≤ 2d(n)·|Y ′|
β .

In particular, |V (H ′′)| = |X ′′| + |Y ′′| ≤ 2d(n)
β · (|X ′| + |Y ′|) ≤ 2d(n)

β · |V (H ′)|. Additionally,
if we denote by E∗

2 the subset of edges of E2 containing all edges with exactly one endpoint
in X ′′ ∪ Y ′′, then |E′′| ≥ |E∗

2 |
2048d(n)·α(n)·log4 n

must hold. We let H∗ be the graph obtained
from H ′ \ E1, by deleting the vertices of H ′′ from it, so V (H∗) ∪ V (H ′′) = V (H ′), and
E(H∗) ∪ E(H ′′) ∪ E∗

2 = E2. We remove graph H ′ from H, and we add graphs H ′′ and H∗

to H, with graph H ′′ assigned level (i + 1), and graph H∗ assigned level i. We also add the
edges of E∗

2 to E0, and we update the set E1 of edges to contain all edges of
⋃

H̃∈H E(H̃).
Since we did not modify graph Hg in the current iteration, it is immediate to verify that
Invariants I1–I3 continue to hold. Next, we update the budgets of edges, in order to ensure
that Invariants I4 and I5 continue to hold. Intuitively, the edges of E∗

2 are now added to
set E0, so we need to distribute their budget among the edges of E(H ′′), in order to ensure
that the total budget of all edges in Eg ∪ Eb ∪ E1 does not decrease. This will ensure that
Invariant I5 continues to hold. At the same time, since the level of graph H ′′ is (i + 1), while
the level of graph H ′ was i, we can increase the budgets of the edges of E(H ′) and still
maintain Invariant I4.

Formally, recall that Corollary 12 guarantees that |E∗
2 | ≤ |E′′| · (2048d(n) · α(n) · log4 n) =

|E′′|·η
2 . From Invariant I4, the current budget of every edge in E′′ ∪ E∗

2 is bounded by ηi.
Therefore, at the beginning of the current iteration:

∑
e∈E′′∪E∗

2
b(e) ≤ ηi · (|E∗

2 | + |E′′|) ≤
ηi · |E′′| ·

(
1 + η

2
)

< ηi+1 · |E′′|.
We set the budget of every edge in E′′ to be ηi+1, and leave the budgets of all other

edges unchanged. It is easy to verify that
⋃

e∈Eg∪Eb∪E1 b(e) does not decrease in the current
iteration, so Invariant I5 continues to hold. It is also easy to verify that Invariant I4 continues
to hold. Therefore, all invariants continue to hold at the end of the iteration. This completes
the description of an iteration.
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The algorithm terminates when H = ∅. Clearly, we obtain a partition (Eg, Eb, E0) of
E(H) into disjoint subsets, where the set Eb of edges is bad, and the set Eg of edges is
β3-good. It remains to show that |Eg ∪ Eb| ≥ |E(H)|

β . We use the edge budgets in order to
prove this. Let L∗ be the largest level of any subgraph of H that belonged to H at any time
during the algorithm. We start with the following key observation, whose proof is deferred
to the full version of the paper.

▶ Observation 14. L∗ ≤ (log n)1/2−ε.

From Invariant I4, throughout the algorithm, for every edge e ∈ E1, b(e) ≤ ηL∗ must
hold. Once an edge is added to Eb ∪ Eg, its budget does not change. Therefore, at the end
of the algorithm, the budget of every edge in Eg ∪ Eb is at most ηL∗ . On the other hand,
from Invariant I5, at the end of the algorithm, the total budget of all edges in E1 ∪ Eg ∪ Eb

is at least |E(H)|. Therefore, at the end of the algorithm, |Eg ∪ Eb| ≥ |E(H)|
ηL∗ holds.

We now bound ηL∗ . Recall that η = 212d(n)·α(n)·log4 n ≤ 24(log n)ε , since d(n) ≤ 2(log n)ε ,
α(n) = 2(4 log n)ε , and n is large enough. Since, from Observation 14, L∗ ≤ (log n)1/2−ε, we
get that ηL∗ ≤ 24(log n)1/2

< β, since β = 28(log n)1/2+ε . Therefore, |Eg ∪ Eb| ≥ |E(H)|/β as
required.

Lastly, it is easy to verify that the algorithm has at most poly(n) iterations, and the
running time of each iteration is bounded by O(T (n) · poly(n)), so the total running time of
the algorithm is at most O(T (n) · poly(n)). ◀

We are now ready to complete the proof of Theorem 10. Assume that there exists a
constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph
problem, whose running time is at most T (N), where N is the number of vertices in the
input graph, and α(N) = 2(log N)ε . From Lemma 2, there exists an α′(N)-approximation
algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, where N is the number of
vertices in the input graph, and α′(N) ≤ O(α(N2)) ≤ O

(
2(2 log N)ε)

. The running time of
the algorithm is at most O(T (N2) · poly(N)). Denote by T ′(N) = O(T (N2) · poly(N)) this
bound on the running time of the algorithm, and let α′′(N) = 2(4 log N)ε . Then there is an
α′′(N)-approximation algorithm for Bipartite Densest (k1, k2)-Subgraph with running time at
most O(T ′(N)).

Assume now that we are given an instance I = (X, Y, A, C, {GC}C∈C) of Bipartite 2-CSP
and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds,
and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(log n)ε . Let β = 28(log n)1/2+ε ,
and let r = ⌈β · log n⌉. For convenience, we denote H = H(I). Initially, we set Eb = ∅. Our
algorithm performs r iterations, where for all 1 ≤ j ≤ r, in iteration j we construct the set
Ej ⊆ E(H) of edges, that is β3-good, and possibly adds some edges to set Eb. We ensure
that, throughout the algorithm, the set Eb of edges is bad.

We now describe the jth iteration. We assume that sets E1, . . . , Ej−1 of edges of
H were already defined. We construct graph Hj , that is obtained from graph H, by
deleting the edges of E1 ∪ · · · ∪ Ej−1 ∪ Eb from it. Notice that graph Hj naturally defines
an instance Ij = (X, Y, A, Cj , {GC}C∈Cj ) of Bipartite 2-CSP, with Hj = H(Ij), where
Cj = {C ∈ C | eC ∈ E(Hj)}. We apply the algorithm from Corollary 13 to graph Hj , with
parameters n, β, and d(n) remaining unchanged. Consider a partition (E1, E2, E3) of E(Hj)
that the algorithm returns. We add the edges of E1 to set Eb. Since both sets of edges are
bad, from Observation 7, set Eb of edges continues to be bad. We also set Ej = E2, which
is guaranteed to be a β3-good set of edges. Recall that Corollary 13 also guarantees that
|E1 ∪ E2| ≥ |E(Hj)|/β. We then continue to the next iteration.
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Since, from the above discussion, for all 1 ≤ j < r, |E(Hj+1)| ≤
(

1 − 1
β

)
|E(Hj)|, and

since r = ⌈β · log n⌉, at the end of the algorithm, we are guaranteed that the final collection
Eb, E1, . . . , Er of subsets of edges indeed partitions E(H).

Notice that the running time of a single iteration is bounded by O(T ′(n) · poly(n)) ≤
O(T (poly(n)) · poly(n)). Since the number of iterations is bounded by poly(n), the total
running time of the algorithm is bounded by O(T (poly(n)) · poly(n)).

4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to
Densest k-Subgraph

Our reductions from the Dense k-Coloring and (r,h)-Graph Partitioning problems to Densest
k-Subgraph are summarized in the following theorem.

▶ Theorem 15. Let α : Z+ → Z+ be an increasing function, such that α(n) ≤ o(n). Assume
that there is an efficient α(n)-approximation algorithm for the Densest k-Subgraph problem,
where n is the number of vertices in the input graph. Then both of the following hold:

there is an efficient randomized algorithm that, given an instance of Dense k-Coloring
whose graph contains N vertices, with high probability computes an O(α(N2) · poly log N)-
approximate solution to this instance; and
there is an efficient randomized algorithm that, given an instance of (r,h)-Graph Partitioning
whose graph contains N vertices, with high probability computes an O(α(N2) · poly log N)-
approximate solution to this instance.

The proof of the theorem is deferred to the full version of the paper, due to lack of space.
We provide a high-level overview of the proof of the first assertion: a reduction from Dense
k-Coloring to Densest k-Subgraph. The proof of the second assertion is similar. We start by
considering an LP-relaxation of the Dense k-Coloring problem, whose number of variables
is at least

(
N
k

)
. Due to this high number of variables, we cannot solve it directly. We first

show an algorithm, that, given an approximate fractional solution to this LP-relaxation,
whose support size is polynomial in N , computes an approximate integral solution to the
Dense k-Coloring problem instance. We then show an efficient algorithm that computes an
approximate solution to the LP-relaxation, whose support is relatively small. In order to do
so, we design an approximate separation oracle to the dual LP of the LP-relaxation, that
relies on an approximation algorithm for Densest k-Subgraph.

5 Reductions from Densest k-Subgraph to Dense k-Coloring and
(r,h)-Graph Partitioning

Our reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning are
summarized in the following theorem.

▶ Theorem 16. Let α : Z+ → Z+ be an increasing function with α(n) ≤ o(n). Then the
following hold:

If there exists an efficient α(n)-approximation algorithm A for the Dense k-Coloring prob-
lem, where n is the number of vertices in the input graph, then there exists a randomized
algorithm for the Densest k-Subgraph problem, whose running time is NO(log N), that with
high probability computes an O(α(NO(log N)) · log N)-approximate solution to the input
instance of the problem; here N is the number of vertices in the input instance of Densest
k-Subgraph.
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If there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning
problem, where n is the number of vertices in the input graph, then there exists a random-
ized algorithm for the Densest k-Subgraph problem, whose running time is NO(log N), that
with high probability computes an O((α(NO(log N)))3 · log2 N)-approximate solution to the
input instance of the problem; here N is the number of vertices in the input instance of
Densest k-Subgraph.

Due to lack of space, we defer the proof of the theorem to the full version of the paper.
The key to both reductions is a randomized algorithm, that, given an instance DkS(G, k) of
the Densest k-Subgraph problem, constructs an auxiliary graph H. Intuitively, if instance
DkS(G, k) of Densest k-Subgraph has a solution of value h, then with high probability, graph
H has close to |V (H)|/k subgraphs that contain close to h edges each. On the other hand,
there is an algorithm that, given a subgraph H ′ ⊆ H that contains at most k vertices, extracts
a subgraph of the original graph G, containing at most k vertices, and close to |E(H ′)|
edges. If |V (G)| = N , then our construction of graph H ensures that |V (H)| ≤ NO(log N),
which leads to the quasi-polynomial time of our reductions. The specific construction of the
graph H is inspired by the ideas from [34]. We obtain the following immediate corollary of
Theorem 16, whose proof is deferred to the full version of the paper due to lack of space.

▶ Corollary 17. Assume that Conjecture 3 holds and that NP ̸⊆ BPTIME(nO(log n)). Then
for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(log n)ε′

-approximation algorithm for
(r,h)-Graph Partitioning, and there is no efficient 2(log n)ε′

-approximation algorithm for Dense
k-Coloring.

6 Reductions between (r,h)-Graph Partitioning and Maximum
Bounded-Crossing Subgraph

We establish a connection between the (r,h)-Graph Partitioning and Maximum Bounded-Crossing
Subgraph problems via the following two theorems.

▶ Theorem 18. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume
that there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning
problem, where n is the number of vertices in the input graph. Then there exists an efficient
O(α(N) · poly log N)-approximation algorithm for Maximum Bounded-Crossing Subgraph,
where N is the number of vertices in the input instance of Maximum Bounded-Crossing
Subgraph.

▶ Theorem 19. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume that
there exists an efficient α(N)-approximation algorithm for the Maximum Bounded-Crossing
Subgraph problem, where N is the number of vertices in the input graph. Then there exists an
efficient O((α(n))2 · poly log n)-approximation algorithm for (r,h)-Graph Partitioning, where n

is the number of vertices in the input instance of (r,h)-Graph Partitioning.

The proofs of the above two theorems are deferred to the full version of the paper. Both
proofs exploit well-known connections between crossing number and graph partitioning, that
can be viewed as an extension of the classical Planar Separator Theorem of [45]: namely,
if a graph G has a drawing with at most L crossings, then there is a balanced cut in G,
containing at most O

(√
L + ∆ · |E(G)|

)
edges, where ∆ is maximum vertex degree in G.

Another useful fact exploited in the proofs of both these theorems is that any graph G with
m edges has a plane drawing with at most m2 crossings. For example, if H = {H1, . . . , Hr}
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is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a
drawing of graph H =

⋃r
i=1 Hi, in which the number of crossings is bounded by r · h2. These

two facts are exploited in order to establish a close relationship between the (r,h)-Graph
Partitioning and Maximum Bounded-Crossing Subgraph problems, and complete the proofs of
Theorems 18 and 19. By combining Theorem 19 with Corollary 17, we obtain the following
corollary, whose proof is deferred to the full version of the paper.

▶ Corollary 20. Assume that Conjecture 3 holds and that NP ̸⊆ BPTIME(nO(log n)). Then
for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(log n)ε′

-approximation algorithm for
Maximum Bounded-Crossing Subgraph.
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Abstract
Composition theorems are general and powerful tools that facilitate privacy accounting across
multiple data accesses from per-access privacy bounds. However they often result in weaker bounds
compared with end-to-end analysis. Two popular tools that mitigate that are the exponential
mechanism (or report noisy max) and the sparse vector technique, generalized in a recent private
selection framework by Liu and Talwar (STOC 2019). In this work, we propose a flexible framework
of private selection and testing that generalizes the one proposed by Liu and Talwar, supporting a
wide range of applications. We apply our framework to solve several fundamental tasks, including
query releasing, top-k selection, and stable selection, with improved confidence-accuracy tradeoffs.
Additionally, for online settings, we apply our private testing to design a mechanism for adaptive
query releasing, which improves the sample complexity dependence on the confidence parameter for
the celebrated private multiplicative weights algorithm of Hardt and Rothblum (FOCS 2010).
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39:2 Generalized Private Selection and Testing with High Confidence

One approach to do that is to use composition theorems [14]. Compositions theorems
yield overall privacy cost that scales linearly or sometimes even with square-root dependence
on the number of accesses. The disadvantage, however, is that compositions theorems are
designed for a scenario where all the intermediate outputs are released and do not benefit in
their privacy accounting from the particular way in which the results of the intermediate
accesses are aggregated. Powerful tools from the literature for mitigating this generally fall
under the two categories of private testing and private selection. Private testing includes
the sparse vector technique [12, 32, 20], where each access tests a hypothesis over the data,
and only accesses with positive output incur a privacy “charge.” Private selection includes
the exponential mechanism [26] that allows to select an approximate best solution (out of a
large set of possible solutions) while incurring a privacy cost close to that of estimating the
quality of a single solution. These tools have many variations and extensions [24, 22, 30],
most prominently, a fairly recent framework by Liu and Talwar [23].

We propose a general template for private selection and testing that is described in
Algorithm 1. We view it as a system that provides two functions to users, Selection and
Test. The calls to these functions can be interleaved and adaptive (that is, inputs may
depend on prior outputs). Algorithm 1 is initialized by randomly sampling an internal
parameter p that later serves as a “pass” probability (where the data is not accessed if not
“passed”). The distribution of p is controlled by the parameter γ, where a smaller γ pushes
the distribution closer to 0, lowering the privacy cost, and a higher γ pushes the distribution
closer to 1, increasing utility. Generally, the choice of γ provides a tradeoff between privacy
and utility. We will illustrate the tradeoff in several applications later.

The function Selection inputs a parameter τ and a collection of k mechanisms {Mi}k
i=1,

all with outputs from the same ordered domain1. It generates a collection S of outputs
and then returns Best(S) := maxx∈S x. The parameter τ may be set differently in each
call to Selection, and its role is to amplify utility by repetition. Intuitively, a larger τ

can compensate for a smaller p as each of the mechanisms Mi produces in expectation τp

candidates for the Best selection. Surprisingly, as we shall soon see, the privacy accounting
allows us to gain from separating p and τ . The function Test provides a basic functionality
of hypothesis testing subjected to the “pass” probability p. Utility amplification (that also
compensates for small pass probability p) can be achieved by multiple calls to Test with the
same hypothesis.

Meta Privacy Theorems

We establish meta privacy theorems for the system in Algorithm 1. We first provide separate
bounds for Selection and Test calls.

▶ Theorem 1 (Privacy guarantee for Selection). Suppose that following initialization of
Algorithm 1, there are c ≥ 1 calls to Selection (with possibly varying inputs τ, k, and
{Mi}k

i=1). If the mechanisms fed into Selection in this process satisfy (ε, δi)-DP with
δi ≥ 0, then the list of c outputs satisfies ((2c + γ)ε, τ

∑
i δi)-DP.

1 For example, the output space of Mi can consist of pairs (s, q) ∈ X × R, where s is a solution and
q ∈ R is a quality score measuring how good s is. We can then order pairs in the decreasing order of
q, and use Selection to select a solution with the best quality score. We remark that this is also the
illustrating example presented in [23].
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▶ Theorem 2 (Privacy guarantee for Test). Suppose that following initialization of Algorithm 1,
there are repeated calls to Test until c ≥ 1 ⊤ responses are received. If all the mechanisms
fed into Test in this process satisfy (ε, δi)-DP with δi ≥ 0, then the collection of outputs
satisfies ((2c + γ)ε,

∑
i δi)-DP or

(
O
(

εγ + ε
√

c log(1/δ)
)

, δ +
∑

i δi

)
-DP for all δ > 0.

The statements of Theorem 1 and Theorem 2 provide separate bounds for the privacy cost
of each type of call (Selection or Test). Importantly, our framework allows for interleaved
calls where the inputs are adaptive (depending on prior outputs). In this case, the privacy
costs simply add up except for the γε factor: If there are c1 calls to Selection and c2 calls
with ⊤ output to Test, each with mechanisms that are (ε, 0)-DP, then the total privacy cost
is ((2c1 + 2c2 + γ)ε, 0)-DP.

The proofs of the meta-privacy theorems are provided in Section 2. Interestingly, the
O(ε

√
c log(1/δ)) dependence in the statement of Theorem 2 does not follow as a direct

consequence of advanced composition [14]. It requires some delicate calculations and is one
of the primary technical contributions of our work.

Algorithm 1 Private Selection and Testing.

Input: A dataset D = {x1, . . . , xn}. Parameter γ ∈ (0,∞).
1 initialize:
2 Sample p from [0, 1] where Pr[p ≤ x] = xγ , ∀x ∈ [0, 1].
3 Function Selection(τ, k, M1, . . . , Mk): // (Mi) are mechanisms with outputs

from an ordered domain
4 S ← ∅
5 for i = 1, . . . , k do
6 for j = 1, . . . , τ do
7 ri,j ∼ Ber(p)
8 if ri,j = 1 then
9 si,j ←Mi(D)

10 S ← S ∪ {si,j}

11 return Best(S) // The top value in the ordered set S.

12 Function Test(H): // H is a private algorithm with output {⊤,⊥}
13 r ∼ Ber(p)
14 if r = 1 then
15 Γ← H(D)
16 return Γ
17 else
18 return ⊥

1.1 Relation to Prior Work

Our framework and its applications can be viewed as both a natural extension of the sparse
vector technique (SVT) [12, 32, 20] and a simpler and more versatile alternative to the
private selection framework of Liu and Talwar [23].

ITCS 2023



39:4 Generalized Private Selection and Testing with High Confidence

Comparison with SVT

In a nutshell, SVT allows one to test hypotheses of the form “fi(D) ⪅ t” (i.e., test if fi(D) is
approximately below the threshold t up to small additive error) while only incurring privacy
loss for “Above” results. We first show that Test calls provide this functionality: To test
if fi(D) ⪅ t we specify an algorithm H as follows: H computes f̂i(D) = fi(D) + Lap(1/ε)
and outputs ⊤ if and only if f̂i(D) ≥ t. It is easy to see that H is (ε, 0)-private. Given
the pass parameter p, a single call of Test(H) is insufficient for a reliable response and we
therefore amplify the confidence by repetition. For example, when p ∼ [0, 1] it holds that
Pr[p ≥ β] = 1−β, therefore, if we repeat Test(H) for 1

β2 times and none of these test returns
⊤, we are very confident that fi(D) ⪅ t. On the other hand, if fi(D) ≤ t− 10

ε log(1/β), the
probability that we observe a ⊤ response is at most β.

Our meta-privacy proofs for Selection and Test turn out to be natural generalization
of the proof of the standard SVT [13]. The role of the “pass” probability p in our algorithm
is very similar to the noisy threshold in SVT, and we prove the privacy property by carefully
coupling the executions of Algorithm 1 on two neighboring inputs D, D′ with different p

parameters. See Section 2 for the detail.
In Section 1.5, we further extend our framework to design a private Test procedure,

which yields improved confidence-accuracy tradeoffs for SVT. In doing so, we borrow insights
from several previous works. This includes the observation that SVT does not necessarily
need to re-initialize the noisy threshold [24], the framework that uses Rényi-Differential
Privacy [27] to analyze SVT [37], and the reductions from analyzing general mechanisms to
analyzing simpler coin-flipping games with binary outcomes [19, 29, 28, 22].

Comparison with Liu-Talwar [23] private selection framework

The hypothesis testing functionality, Test, in our framework does not seem to have an
analogue in [23]. The advantages of our Selection procedure compared with [23] are as
follows:

Operationally, [23] implements selection from k mechanisms by “combining” the k mech-
anisms into a single mechanism M , defined as follows. M chooses a random index i ∼ [k],
runs Mi and outputs its result. Then M is run for a random number T times and the best
output is returned. A disadvantage is that to ensure utility, we need to set T to be large
enough so that all mechanisms are selected enough times, which increases privacy costs
when the base mechanisms Mi’s only satisfy approximate DP. In contrast, we avoid a
random search and consider each mechanism separately, which significantly simplifies the
derivation of utility and privacy bounds. This advantage is illustrated in the application
to the stable selection task: see Section 1.4.3.
The privacy analysis in [23] considers one-time private selection calls and is not known to
benefit from composition. In contrast, our algorithm (see Theorems 1 and 2) only pays
the γε term once (which is possible because we initialize p once). This tighter composition
benefits applications where there are multiple accesses to the data and adaptive accesses.
In particular, the tighter composition for Test facilitates our improved sparse vector
algorithm.

There is another improvement to [23] by Papernot and Steinke [30], who primarily consider
private selection subject to Rényi-DP constraints. They showed that given a private algorithm
A, privately running A for T rounds and selecting the best trial preserves privacy, as long as
T is a random variable drawn from a carefully designed distribution. They established privacy
theorems for T drawn from the Poisson distribution or the truncated negative binomial
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distribution. To compare, the Liu-Talwar algorithm shows that when T obeys a geometric
distribution, the privacy is also preserved. Our result implies that when T is uniform in
{0, 1, . . . , n}, the selection is private. However, the algorithm by [30] works by random search,
and is subject to the same limitations as we have discussed above: namely, the utility of
the algorithm is harder to characterize, and the algorithm is not known to benefit from
compositions.

1.2 Applications
We overview applications of our framework in Section 1.3, where we demonstrate improvements
of results in [23], and in Section 1.4, where we list direct applications of private selection
to fundamental tasks in differential privacy, including query releasing, top-k selection and
stable selection

A separate major contribution of our work is detailed in Section 1.5, where we apply
our privacy accounting theorem (Theorem 2) to improve the sparse vector techniqe (SVT)
and through that, improve the private multiplicative weight update algorithm [20] and the
sample complexity for adaptive data analysis with linear queries.

1.3 Private Selection: Improving better-than-median selection
Liu and Talwar [23] formulated the problem of finding a better-than-median solution of a
private algorithm using oracle calls to the algorithm. The problem was also implicitly studied
in [19].

▶ Definition 3 (Private Better-than-median). Let A : Xn → Y ×R be an (ε, δ)-DP algorithm,
where the output of A consists of a solution y ∈ Y and a score s ∈ R.

Fix D ∈ Xn to be a dataset. Let sm = median{s(A(D))} be the median score one gets
when running A on D. A better-than-median algorithm A∗ with confidence parameter β

uses oracle calls to A and is such that the score of the output of A∗(D) is larger than sm

with probability at least 1− β.

The performance of a better-than-median algorithm is measured by computation (number
of oracle calls to A), privacy guarantee, and confidence. Liu and Talwar provided algorithms
with the following tradeoffs:

▶ Theorem 4 ([23]). For every β ∈ (0, 1), for (ε, δ)-DP A with ε ∈ (0, 1) and δ ≥ 0, there is
a better-than-median algorithm A∗ with confidence 1− β and the following properties.

In expectation, A∗ makes O( 1
β ) oracle calls to A.

A∗ is (3ε, O(δ/β))-differentially private.
Furthermore, for every α ∈ (0, 1) and β, δ̂ ∈ (0, 1), there is an algorithm A∗ such that:

With probability 1, A∗ makes T ≤ Õ(( 1
β )12+ 24

α ln(1/δ̂)) oracle calls to A.
A∗ is ((2 + α)ε, Tδ + δ̂)-differentially private.

It was shown in [23] that the privacy guarantee of any better-than-median algorithm is at
least 2ε. Surprisingly, Theorem 4 shows that the failure probability β can be made as small
as desired at the cost of (1) additive increase of ε in the privacy parameter and (2) number
of oracle calls that scales linearly with 1

β . The privacy cost can be lowered further smoothly
to be arbitrarily close to 2ε by increasing the number of oracle calls using the parameter
α ∈ (0, 1).

ITCS 2023
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Our improvement

We design a new algorithm that provides a smooth trade-off between utility and efficiency:

▶ Theorem 5. For every α ∈ (0,∞) and β ∈ (0, 1), for (ε, δ)-DP A with ε ∈ (0, 1) and
δ ≥ 0, there is a better-than-median algorithm A∗ with confidence 1 − β that satisfies the
following:

With probability 1, A∗ makes at most T oracle calls to A, where

T =


⌈

2
β

⌉
if α = 1⌈

5( 2
β )1/α log(1/β)

⌉
otherwise

.

A∗ is ((2 + α)ε, Tδ)-differentially private.

Theorem 5 follows using Algorithm 1: Consider the case α = 1 and (arbitrary) β ∈ (0, 1).
A∗ initializes Algorithm 1 with γ = 1 and calls Selection with arguments (k = 1, τ =
⌈ 2

β ⌉, M1 = A). It follows from Theorem 1 that A∗ is (3ε, τδ)-DP. As for the utility, note
that Selection runs A for m ∼ Bin(τ, p) times where p is uniformly random in [0, 1].
Equivalently, m is uniformly random in {0, 1, . . . , τ}2. Therefore, the probability that A∗

fails to get a better-than-median solution is at most

1
τ + 1

τ∑
m=0

2−m ≤ 2
τ + 1 ≤ β.

The privacy-computation tradeoffs by varying α, as stated in Theorem 5, are obtained
by varying γ in the initialization of Algorithm 1. We provide details in Section 3.1. In
contrast, in the regime α ∈ (0, 1), the Liu-Talwar algorithm (Theorem 4) uses estimates of
the “quantiles” of the outputs of A and a complex simulation of SVT. Consequently, they
only obtain approximate-DP guarantees3 and utilize many more (in the exponent) oracle
calls to A. Our improvement in the number of oracle calls in the regime α < 1 answers an
open question posed in [23].

An additional advantage of Theorem 5 is that it applies in the regime α > 1 that allow
for dramatic improvement in the number of oracle calls when we sacrifice a bit more privacy.
For example, with α = 2, the number of oracle calls has square-root dependence on 1/β and
with α = log(1/β), the number of oracle calls is only logarithmic in 1/β.

1.4 Direct Applications of Private Selection
In the following, we mention several applications of the private selection algorithm. We
note that the applications can also be obtained using the Liu-Talwar framework but using
Algorithm 1 gives simpler proofs and smaller constants. The primary contribution in this
subsection is making the connection between the private selection framework and these
concrete applications.

1.4.1 Query Releasing
Consider the task of answering k sensitivity-1 queries f1, . . . , fk : Xn → R. A fundamental
and extensively studied [33, 15, 18, 7] problem is to characterize the privacy-accuracy tradeoff
for the query releasing task. That is, for a given privacy budget (ε, δ), determine the smallest

2 As for all m ∈ {0, 1, . . . , τ},Ep∼U [0,1]
(

τ
m

)
pm(1 − p)τ−m = 1/(τ + 1).

3 Namely, the parameter δ̂ has to be non-zero in Theorem 4.
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error e, such that there is an (ε, δ)-DP algorithm that releases answers to all of the k queries
within ℓ∞-error e. A naive application of the Gaussian mechanism gives expected ℓ∞-error

O

(√
k log(1/δ) log(k)

ε

)
, which was improved to O

(√
k log(1/δ) log log(k)

ε

)
by Steinke and Ullman

[35]. Recently, the question was raised again as an open question [34] and two significant
advances were made [18, 7]. We resolve the problem completely by applying the private
selection framework together with an algorithm from [18]:

▶ Theorem 6. There is a constant C > 0 such that the following holds. For every ε ∈
(0, 1), δ ∈ (0, 1/2) and k ∈ N, there is an (ε, δ)-DP algorithm that answers k given sensitivity-1
queries f1, . . . , fk, such that

Pr̃
f

[
∥f − f̃∥∞ ≤ C

√
k log 1/δ + log(1/δ)

ε

]
= 1,

where f̃ := (f̃1, . . . , f̃k) denotes the responses released by the algorithm.

▶ Remark 7. The log(1/δ)
ε term in the error is necessary if one desires the answers to be

accurate with probability one. There is a lower bound even for the case k = 14.
Theorem 6 is tight, and improves on the two incomparable previous works [18, 7].
[7] shows how to achieve the aforementioned accuracy with probability 1. However, their
algorithm only works for δ > 2− k

log2 k log4(log k) .
[18] shows an algorithm for the full range of δ ∈ (0, 1/2). However, their algorithm only
promises to release an answer vector f̃ that is accurate (in ℓ∞ sense) with probability
1 − 1

poly(k) . It was posed as an open question in [18] whether one can release accurate
responses (within ℓ∞ distance) with probability one. Theorem 6 answers this question
affirmatively.

Proof intuition

In [18], it was shown how to (ε, δ2)-privately release a vector (f̃1, . . . , f̃k) such that, with
probability at least 1

2 , one has

∥f − f̃∥∞ ≤ O

(√
k log(1/δ)

ε

)
.

In the following, we use A to denote the GKM algorithm with privacy parameters (ε, δ2).
The high level idea is to use the better-than-median algorithm of Theorem 5 to amplify

the success probability. Consider applying Theorem 5 on top of A with α = 1 and β = δ.
Theorem 5 shows that the number of oracle calls to A is bounded by O(1/δ). Then, it follows
that the resulting algorithm is (O(ε), O(δ))-differentially private. Moreover, the algorithm
releases an accurate vector with probability 1 − δ. We can further improve the success
probability to 1 by non-privately correcting erroneous vectors. Since we do the non-private
correction with probability at most δ, the result algorithm is still (O(ε), O(δ))-DP. See
Section 3.2 for the detail.

4 To see this lower bound, let A be an arbitrary query-releasing mechanism. We construct a sensitivity-1
function f and two private inputs D0, D1 of distance log(1/δ)

5ε such that f(D0) − f(D1) = log(1/δ)
5ε . Since

A is (ε, δ)-DP, the supports of A(f, D0) and A(f, D1) overlap, which means that there is v ∈ R and
D ∈ {D0, D1} such that |v − f(D)| ≥ log(1/δ)

10ε but Pr[A(f, D) = v] > 0.

ITCS 2023
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1.4.2 Top-k Selection

We consider optimization over a finite set, which is another fundamental task in DP. Suppose
there are m candidates. Each of them is associated with a sensitivity-1 score function
f1, . . . , fm : Xn → R. We want to select k candidates from the m options with largest scores.
This is a well-known and fundamental task that has been studied extensively (see, e.g.,
[26, 13, 25, 9, 8, 31]).

To measure the utility of a selection algorithm, a common criterion is the suboptimality
gap. Suppose the algorithm releases a subset S ⊆ [m] of candidates. The suboptimality gap
of S is defined as

Gap(S) := max
i̸∈S
{fi(D)} −min

j∈S
{fj(D)}.

Namely, this is the difference between the best option outside S and the worst option inside S.
The standard algorithm for top-k applies the exponential mechanism sequentially for

k times. If we aim for (ε, δ)-DP for the final algorithm, each round of the exponential
mechanism needs to be ( ε√

k log(1/δ)
, 0)-DP. Let S denote the output of this algorithm. The

standard calculation shows that

Pr
[

Gap(S) ≥
√

k log(1/δ)
ε

· log(m/β)
]
≤ β.

Namely, with probability 1 − β, the suboptimality gap is
√

k log(1/δ)
ε log(m/β). If one is

interested in very high confidence β ≤ m−ω(1), this bound on the gap can be very large. We
offer an algorithm where the suboptimality gap has improved dependency on 1/β.

▶ Theorem 8. There is an absolute constant C > 0 such that the following holds. For every
ε, δ, β ∈ (0, 1), there is an (ε, δ)-DP algorithm for top-k selection satisfying the following.
Let S denote the output of the algorithm. Then

Pr
[

Gap(S) ≥ C

√
k log(1/δ)

ε
· log(m) + C

log(1/β)
ε

]
≤ β.

While we cannot avoid paying log(1/β) completely, we only pay log(1/β) once instead of√
k log(1/δ) times as was in the standard algorithm.
The proof of Theorem 8 uses a similar strategy as that of Theorem 6. Suppose we

iteratively run the exponential mechanism for k rounds to get k candidates S. With
probability at least 1

2 we have that Gap(S) ≤ O(
√

k log(1/δ)
ε · log(m)). We can use Theorem 5

on top of the naive algorithm to boost the success probability from 1
2 to 1− β.

1.4.3 Stable Selection

The private selection algorithm also has implications to stable selections. Generally, there is
a lower bound saying that the Ω( 1

ε log(m)) suboptimality gap is necessary when we select
from m candidates with sensitivity-1 score functions. However, when there is a “structure”
within the candidate family, we can often do better. We show two representative examples
in the following.
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Choosing Mechanism

Let F be a family of sensitivity-1 functions. Say that F is k-bounded, if for any two
neighboring datasets D, D′, it holds that

∑
f∈F |f(D)− f(D′)| ≤ k. For k-bounded function

families, we can do private selection with suboptimaility gap O( 1
ε log(k)).

▶ Theorem 9. Suppose F is a k-bounded function family. For every ε, δ ∈ (0, 1), there is an
(ε, δ)-DP algorithm A that holds a dataset D and selects a function f ∈ F such that, with
probability at least 1− β,

f(D) ≥ max
f∗∈F

{f∗(D)} −O(1
ε

log(k/δβ)).

Theorem 9 generalizes several previous mechanisms for this setting [2, 17], which all
require additional assumptions on the family F .

Stable Selection

In some settings, there is a noticeable quality gap between the best solution in F and
the (k + 1)-th best solution. In this case, we can also obtain a private selection algorithm
with improved suboptimality gap. In more detail, let F be the function family. For any
given dataset D, sort functions in F by the decreasing order of f(D). Namely, write
F = {f1, f2, . . . , fm} so that f1(D) ≥ f2(D) ≥ · · · ≥ fm(D). Define the k-th gap of D on F
as Gk(D,F) = f1(D)− fk+1(D).

▶ Theorem 10. For any k ≥ 1 and ε, δ, β ∈ (0, 1), there is an (ε, δ)-DP algorithm A that
holds a dataset D and achieves the following. For any 1-Lipschitz function family F , suppose
Gk(D,F) ≥ 10

ε log(k/δβ). Then, with probability at least 1− β, A selects a function f ∈ F
such that

f(D) ≥ max
f∗∈F

{f∗(D)} −O(1
ε

log(k/δβ)).

There is a known algorithm for this task with asymptotically the same performance
(see [3, 4] and references therein). However, our algorithm and its analysis are very different.
In particular, we demonstrate how easily this problem can be solved under the private
selection framework.

The proofs of Theorems 9 and 10 are deferred to Section 3.3 and the full version of the
paper.

1.5 Improved Sparse Vector Technique with Applications
In Section 1.4, we have shown that one can use the private selection framework to improve
the confidence-accuracy tradeoff for query releasing and top-k selection. However, note that
these two applications work in the offline setting: in the query releasing and top-k selection
tasks, we are given the k queries and the m candidates in advance, respectively.

It is natural to ask if similar improvements can be obtained in the online setting. In
the following, we demonstrate this is possible by designing a modification of the well-known
sparse vector technique, which offers an improved confidence-accuracy tradeoff. We further
apply our SVT to improve the private multiplicative weight algorithm [20] and the sample
complexity of adaptive data analysis.

ITCS 2023



39:10 Generalized Private Selection and Testing with High Confidence

1.5.1 Review of Sparse Vector Technique and its Applications
Roughly speaking, the sparse vector technique provides an algorithm to answer an unbounded
number of queries of the form fi(D) ⪅ t, while one only incurs privacy loss for queries that
are above the thresholds. See Section 1.5.2 for a more technical and precise description.

Application to private multiplicative weights

SVT is the main subroutine in the celebrated private multiplicative weights algorithm [20],
which can be used to answer a large number of linear queries subject to privacy constraints.
We recall the problem setup first. Suppose there is a universe X of size |X |. We want to
design an algorithm A that receives a private input D = (x1, . . . , xn) ∈ Xn consisting of n

data points from X , and answers m queries from an adversary B. Each query is specified
by a function fi : Xn → [0, 1], and the algorithm needs to report an estimation f̃i for
Ej∼[n][fi(xj)]. The error of the algorithm is defined as maxi∈[m]{|f̃i − Ej∼[n][fi(xj)]|}.

The private multiplicative weight update (MWU) algorithm allows one to privately answer
m linear queries, while the error grows only logarithmically with m, as shown in the following
theorem.

▶ Theorem 11 ([20], see also [13]). For every ε, δ ∈ (0, 1), there is an (ε, δ)-DP algorithm
that answers m adaptively chosen linear queries with the following utility guarantee. Let
(f̃i)i∈[m] denote the outputs of A. For every β ∈ (0, 1), with probability 1− β we have that
maxi∈[m]{|f̃i − Ej∈[n][fi(xj)]|} ≤ α = α(β), where

α(β)2 ≤ O

(√
log |X | log(1/δ) log(m/β)

nε

)
.

Theorem 11 can be used to perform adaptive data analysis with linear queries. We
recall the setup: given the universe X , there is a distribution D over X . An adaptive data
analysis algorithm receives as input n samples from D, denoted by S ∼ Dn. It needs to
adaptively answer m linear queries, where each query is specified by a function fi : X → [0, 1]
and the algorithm needs to output an estimation of Ex∼D[f(x)]. An algorithm is called
(α, β, m)-accurate, if it can answer m (adaptive) linear queries within additive error α with
probability at least 1− β. We consider the sample complexity of the problem. That is, fixing
X , m, α, β, we want to find out the smallest n such that there exists an (α, β, m)-accurate
algorithm that only uses n samples from D.

The generalization property of DP [10, 1] shows that, if we design an algorithm to
output estimations of Ex∼S [fi(x)] in a privacy-preserving manner, then Ex∼S [fi(x)] is a good
approximation of Ex∼D[fi(x)]. Combining the privacy-preserving algorithm by Theorem 11
with the generalization property, one obtains the following well-known sample complexity
upper bound.

▶ Theorem 12 ([1]). For every finite universe X , every m ≥ 1 and α, β ∈ (0, 1), there is an
(α, β, m)-accurate adaptive data analysis algorithm with sample complexity

n ≤ O

(√
log |X | log(1/β) log(m/β)

α3

)
.

Our improvement

Using our improved sparse vector algorithm, we obtain the following improved private
multiplicative weight update algorithm.
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▶ Theorem 13. There is an absolute constant C > 0 such that the following is true. For
every ε, δ ∈ (0, 1), m ∈ N and β ≥ 2−m, there exists

α ≤ C ·

(√
log |X | log(1/δ) log(m)

nε · α
+ log(1/β)

nε

)

and an (ε, δ)-DP algorithm that answers m adaptively chosen linear queries such that, with
probability 1− β, we have maxi∈[m]{|f̃i − Ej∈[n][fi(xj)]|} ≤ α.

We get the following improved sample complexity for adaptive data analysis as a corollary
of Theorem 13 and the generalization property by [1].

▶ Theorem 14. For every finite universe X , every m ≥ 1 and α ∈ (0, 1), β ≥ 2−m, there is
an (α, β, m)-accurate adaptive data analysis algorithm with sample complexity

n ≤ O

(
min

(√
log |X | log(1/β)

α3 ,
log |X |

α4

)
log m + log(1/β)

α2

)
.

We compare Theorem 14 with Theorem 12. Overall, the sample complexity given
by Theorem 14 scales at most linearly with log(1/β), and we manage to “decouple” the
dependence on log(1/β) from that on other parameters. For the non-adaptive setting, it is
known (by the Chernoff bound) that the optimal sample complexity is Θ( log m/β

α2 ). Therefore,
in the high confidence regime (in particular, when log(1/β) > log |X |

α2 log m), the bound given
by Theorem 14 asymptotically matches the non-adaptive bound.

1.5.2 Intuition
Now we discuss the proof idea of our improved sparse vector technique.

Review of the standard SVT

Let us briefly review how the standard SVT works. Let X be the private input, t ∈ R be a
threshold, and f1, . . . , fm be a list of sensitivity-1 queries. The sparse vector algorithm works
by adding independent Laplace noises Lap(1/ε) to the threshold and each query function.
Then, it outputs the first index i such that the (noisy) query value f̂i(X) is larger than the
(noisy) threshold t̂.

The standard approach to argue the utility of the algorithm works as follows. First,
with probability at least 1 − β, all the Laplace noises sampled in the SVT algorithm are
bounded by 1

ε log(m/β). Conditioning on this event and letting i∗ be the index returned by
the algorithm, we have that fi∗(X) ≥ t− 2

ε log(m/β) and fj(X) ≤ t + 2
ε log(m/β) for every

j < i∗. Therefore, we conclude that the algorithm is “approximately accurate” within error
O( 1

ε log(m/β)) with probability 1− β.
In many scenarios (including the private MWU algorithm), one usually wants to repeatedly

run SVT for k rounds, to identify k meaningful queries. Suppose we desire the final algorithm
to be (ε, δ)-private. In each round of SVT, we need to set the privacy budget as ε′ = ε√

k log(1/δ)
.

Doing the analysis above, the error bound becomes 1
ε

√
k log(1/δ) log(m/β). This is somewhat

unsatisfactory, as we need to pay the log(1/β) term “O(
√

k)” times5.

5 However, we remark that the
√

k log(m) term is necessary (i.e., there is a lower bound of Ω(
√

k log(m)).
See, e.g. [5, 33, 36]).
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Our improvement

In the following, we show a modification of the sparse vector algorithm with better
confidence-accuracy trade-off. In particular, our algorithm is accurate within error
O( 1

ε

√
k log(1/δ) log(m)+ log(1/β)

ε ) with probability 1−β. To compare, the standard SVT has
error O( 1

ε

√
k log(1/δ) log(m/β)). See the full version of the paper for the formal description

of our new algorithm. We explain the intuition and the main technical challenges below.
Recall that we want to run SVT for k rounds, and desire the final privacy guarantee to be

(ε, δ)-DP. Given this constraint, each round of SVT has to be (ε′, 0)-DP for ε′ = ε√
k log(1/δ)

.

To illustrate the idea, suppose for now that we do not need to add a noise to the threshold.
(Namely, let us suppose that t̂ = t always holds.) Now, given a query fi(X), the sparse vector
algorithm first obtains a noisy estimation f̂i(X) = fi(X) + Lap(1/ε′), and then compares
f̂i(X) against t̂. If the comparison result is f̂i(X) ≤ t̂, then we are (1 − β)-confident that
f̂i(X) ≤ t̂ + 2

ε′ log(1/β). Observe that the error gap 2
ε′ log(1/β) keeps increasing as we desire

a higher and higher confidence.
We can amplify confidence more economically by repetition. Let τ = log(1/β). Consider

drawing τ independent noisy estimations of fi(X). Namely, we calculate f
(j)
i (X) = fi(X) +

Lap(1/ε′) for every j ∈ [τ ]. Suppose that all of these noisy estimations are below t̂. Then we
are (1−β)-confident that fi(X) ≤ t̂. Here, somewhat magically, we get the higher confidence
without compromising privacy, as the SVT algorithm only incurs a privacy loss when one
observes an “Above-Threshold” result.

However, the situation becomes more complicated when we get the “Above-Threshold”
result. If there is one estimation f

(j)
i (X) exceeding t̂, we cannot immediately declare that

fi(X) ≥ t̂. Indeed, for every fixed fi(X) and t̂, as τ tends to infinity, with probability one,
we will eventually see a noisy estimation that is above t̂. Hence, the larger τ is, the less
confident we are about the conclusion fi(X) ≥ t̂. To ensure that we can be equally confident
in the “Above-Threshold” case, we use the following strategy. We set a new threshold
t̂lower = t̂ − 6 log(m)

ε′ . Then we test if fi(X) ≥ t̂lower. Similarly, we amplify confidence by
repetition. Namely, we obtain τ independent estimations of fi(X), and compare them against
t̂lower. We pass the test if and only if all the τ estimations are above t̂lower. If we pass the
test, then we are very confident that fi(X) ≥ t̂lower. If we fail the test, we switch back to test
if fi(X) ≤ t̂ (using another τ independent estimations of fi(X)). In general, we alternate

between two tests fi(X)
?
≤ t̂ and fi(X)

?
≥ tlower, until we pass one of them.

Two challenges

To implement the idea, there are two remaining issues.
In the standard SVT algorithm, we only pay for each “Above-Threshold” answer, and
every such answer can identify a meaningful query for us. However, in our modified
version of SVT, we will repeatedly test fi(X)

?
≤ t̂ and fi(X)

?
≥ t̂lower until we pass one of

them. Each time we fail a test, we need to pay the privacy loss. How do we ensure that
we can use the vast majority of our “privacy budget” to answer meaningful queries?
In the argument above, we ignored the issue that t̂ is only a noisy version of t. Indeed, if
we construct t̂ by t̂ = t+Lap(1/ε′), we are only (1−β)-confident that |t̂−t| ≤ 1

ε′ log(1/β).
Therefore, there is a noticeable chance (e.g., with probability 10β) that we will start with
an erroneous noisy threshold t̂ (e.g., |t̂− t| ≥ 1

ε′ log( 1
10β )). If this does happen, then the

“alternate testing” algorithm does not make much sense.
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We resolve the first issue by allowing a gap of 6
ε′ log(m) between t̂lower and t̂. Then, for

any query fi(X), at least one of the following is true:

fi(X) ≤ t̂− 3
ε′ log(m), or fi(X) ≥ t̂lower + 3

ε′ log(m).

We assume τ = log(1/β) ≤ m. In this case, if fi(X) ≤ t̂ − 3
ε′ log(m), we can pass the test

fi(X)
?
≤ t̂ with probability at least 1 − 1

m2 . If fi(X) ≤ t̂ − 3
ε′ log(m) and we do fail the

test fi(X)
?
≤ t̂, then we say that a “mistake” happens and one round of SVT is “wasted”.

Similarly, we will say one round of SVT is wasted if fi(X) ≥ t̂lower + 3
ε′ log(m) but we fail the

test fi(X)
?
≥ t̂lower. Since the probability of making a mistake is small (i.e., the probability

is at most 1
m2 ), we can show that if we run our version of SVT for k rounds to handle m

queries, then with probability 1− β, at most log(1/β)
log(m) rounds are wasted. Therefore, we can

still use the algorithm to identify k − log(1/β)
log(m) meaningful queries.

We resolve the second issue by noting that there is a version of SVT that only requires
one to noisify the threshold once (see, e.g., [24]). Here, the crucial point is that when we only
add noise to the threshold once, we can add a much smaller noise to ensure privacy. However,
the result from [24] only considers pure-DP case, and the privacy loss scales linearly with
kε in their analysis. We manage to prove Theorem 2, which shows that the privacy scales
proportionally with

√
kε if we relax the requirement to approximate DP.

To be more precise, we explain the utility improvement quantitatively. In the standard
SVT algorithm, we need to re-initialize the noisy threshold before starting each of the k

rounds, and we draw noises from the distribution Lap(1/ε′) to achieve privacy. With our
new composition theorem, we only need to add one noise drawn from Lap(1/ε). Recall that
1
ε′ ≈

√
k log(1/δ)

ε . The latter noise is considerably smaller than the former one.
In the formal proof, we design our algorithm under the framework of Algorithm 1,

using the Test procedure as the main subroutine, which turns out to be more amenable to
mathematical manipulations. In the discussion above, we chose to discuss our algorithmic
idea under the standard SVT framework, because SVT is arguably more well-known, and it
might help readers gain the intuition better.

The possibility of not noisifying threshold

We also note that there are variants of SVT that do not add noise to the threshold at all (see,
e.g., [20, 21]). It is tempting to apply those variants to address the second issue. However,
looking into the privacy proofs for those variants, one can note that their δ parameter has
to be at least 2−k, where k is the number of rounds that we run SVT (i.e., the number of
⊤ responses we can get before halting the algorithm). In most applications, requiring δ to
be at least 2−k would not be an issue. However, in the application to private multiplicative
weights and data analysis, we are also interested in the case where δ ≪ 2−k. In this case,
adding a noise to the threshold and using Theorem 2 to do the privacy accounting give us
the best possible result.

More precisely, if we use a version of SVT that does not noisify the threshold, we will end
up with weaker versions of Theorems 13 and 14. Specifically, the error bound in Theorem 13
degrades to

O

(√
log |X | log(1/δ) log(m)

nεα
+ log(1/δ) log(m)

nε

)
,
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and the sample complexity in Theorem 14 degrades to

n ≤ O

(
min

(√
log |X | log(1/β)

α3 ,
log |X |

α4

)
log m + log(1/β)

α2

)
.

2 Proof of Privacy Theorems

2.1 Proof of Theorem 1
Proof. We first consider the case that all the mechanisms Mi’s satisfy pure-DP (i.e., δi = 0
for all i). At the end the proof, we explain how to deal with candidates with approximate
DP property. Let Pγ denote the CDF for the parameter p. Namely, Pγ(v) = Pr[x ≤ v] = vγ .
Fix c ≥ 1. Let B be an adversary that adaptively calls Selection for c rounds. Denote
Algorithm 1 as A. For each p ∈ [0, 1], let Ap denote Algorithm 1 conditioning on it having
sampled p in the initialization step.

In one round, suppose that the B calls Selection with (τ, k, M1, . . . , Mk). By duplicating
each mechanism for τ times, we can assume without loss of generality that τ = 1. Let
(i, s) ∈ [k] × Y be a potential outcome. Let D and D′ be two neighboring datasets. Let
Ap(D, (M1, . . . , Mk)) denote the output of Ap given input D and query (M1, . . . , Mk). We
prove

Pr[Ap(D, (M1, . . . , Mk)) = (i, s)] ≤ e2ε Pr[Ap/eε

(D′, (M1, . . . , Mk)) = (i, s)].

Note that A on this Selection call returns (i, s), if and only if both of the following events
hold:

Event E1: ri,1 = 1 and Mi outputs s.
Event E2: For every i′ ̸= i, either ri′,1 = 0 or Mi′ outputs a solution inferior than s.

Now, observe that

Pr[E1 | Ap(D)] = p · Pr[Mi(D) = s]
≤ eεp Pr[Mi(D′) = s]

≤ e2ε p

eε
Pr[Mi(D′) = s]

= e2ε Pr[E1 | Ap/eε

(D′)]. (1)

For every i′ ̸= i, we have

Pr[ri′,1 = 1 ∧Mi′ outputs a solution better than s | Ap(D)]
= p · Pr[Mi′(D) outputs a solution better than s]

≥ p

eε
· Pr[Mi′(D′) outputs a solution better than s]

= Pr[ri′,1 = 1 ∧Mi′ outputs a solution better than s | Ap/ε(D′)].

Therefore,

Pr[ri′,1 = 0 ∨Mi′ outputs a solution worse than s | Ap(D)]

≤ Pr[ri′,1 = 0 ∨Mi′ outputs a solution worse than s | Ap/eε

(D′)].

Consequently,

Pr[E2 | Ap(D)] ≤ Pr[E2 | Ap/eε

(D′)]. (2)
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Combining (1) and (2) yields that

Pr[Ap(D, (M1, . . . , Mk)) = (i, s)] ≤ e2ε Pr[Ap/eε

(D′, (M1, . . . , Mk)) = (i, s)].

Note that this inequality holds for all (M1, . . . , Mk), independently of the private input. Now,
suppose B interacts with Ap(D) (or Ap/eε(D′)) for c rounds. We can apply the argument
above for the c rounds separately. Let IT(B : A) denote the random variable recording the
interaction transcript between B and A. For every possible collection E of outcomes, we have

Pr[IT(B : Ap(D)) ∈ E] ≤ e2cε Pr[IT(B : Ap/eε

(D′)) ∈ E].

Finally, we have

Pr[IT(B : A(D)) ∈ E]

=
∫ 1

0
Pr[IT(B : Ap(D)) ∈ E]dP (p)

≤
∫ 1

0
e2cε Pr[IT(B : Ap/eε

(D′)) ∈ E] · (γpγ−1) · dp

≤
∫ eε

0
e2cε+ε Pr[IT(B : Ap/eε

(D′)) ∈ E] · (γ(p/eε)γ−1) · e(γ−1)ε · d(p/eε)

≤
∫ eε

0
e(2c+γ)ε Pr[IT(B : Ap/eε

(D′)) ∈ E] · dP (p/eε)

= e(2c+γ)ε Pr[IT(B : A(D′)) ∈ E].

This completes the proof.
Now, we consider the case that each mechanism Mi is (ε, δi)-DP with δi ≥ 0. For

two neighboring inputs D, D′, we can decompose Mi(D) = (1 − δi)Ni(D) + δiEi(D) and
Mi(D′) = (1− δi)Ni(D′) + δiEi(D′), where Ni(D) and Ni(D′) are (ε, 0)-indistinguishable
and Ei(D), Ei(D′) are arbitrary. Then, each time we run Mi(D), we can first sample from
(Ni(D), Ei(D)) with probability (1− δ, δ), and run the chosen mechanism. It follows that
with probability at least 1 − τδi, all the executions involve only the Ni-part. We union-
bound over i, and conclude that with probability at least 1 − τ

∑
i δi, all the executions

involve only the Ni-part. Conditioning on this event, the argument above shows that the
outputs of the algorithm on D, D′ are ((2c + γ)ε, 0)-DP. It follows that the original system is
((2c + γ)ε, τ

∑
i δi)-DP. ◀

2.2 Proof of Theorem 2
In this section, we prove Theorem 2. To ease the presentation, we will assume that all
the mechanisms fed into Test satisfy pure-DP. Having proved for this case, the proof for
approximate-DP mechanisms can be verified using similar arguments as in the proof of
Theorem 1.

2.2.1 Preliminaries
We will use the Rényi Differential Privacy [27] framework to prove Theorem 2. Recall the
definition. For two distributions P, Q on the universe X and a real α ∈ (1,∞), we define the
α-order Rényi divergence of P from Q as

Dα(P∥Q) := 1
α− 1 log

(∑
x∈X

P (x)
(

P (x)
Q(x)

)α−1
)

.
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The max-divergence is defined as

D∞(P∥Q) := log(max
x
{P (x)/Q(x)}).

Since we will defer most of the technical manipulations to the full version of the paper,
we don’t discuss properties of divergences here.

2.2.2 Reduction to an Asymmetrical Coin Game
We use A to denote Algorithm 1. For p ∈ [0, 1], let Ap denote the algorithm A conditioning
on it having sampled p in the initialization step. Fix two neighboring dataset S, S′6. Let
IT(B : A) denote the random variable recording the interaction between the two randomized
systems B and A. Let B be an adversary that interacts with A by calling Test. Fix p ∈ [0, 1],
we first compare IT(B : Ap(S)) with IT(B : Ap/eε(S′)). It turns out that the two interactions
can be captured by the following experimental game, which we call the “0-favored” coin
flipping game. Our formulation of the coin-flipping game is inspired by several coin-flipping
mechanisms appeared in previous works [19, 29, 28, 22].

Algorithm 2 The 0-favored coin-flipping mechanism.

Input: An input bit b ∈ {0, 1}, a privacy parameter ε ∈ (0, 1), an integer k ≥ 1.
1 initialize:
2 c← 0
3 while c < k do
4 Receive a query (p, q) ∈ [0, 1]2, promised that 0 ≤ q ≤ p ≤ eεq and

(1− q) ≤ eε(1− p)
5 if b = 0 then
6 Sample r ∼ Ber(p)
7 else
8 Sample r ∼ Ber(q)
9 if r = 1 then

10 c← c + 1
11 Output r

We call this mechanism 0-favored, because for each query (p, q), we always have q ≤ p,
meaning that the algorithm is more likely to output 1 when its private input is b = 0.

We claim that Algorithm 2 with privacy parameter 2ε can simulate IT(B : Ap(S)) and
IT(B : Ap/eε(S′)). To see this, suppose that B knows that he is interacting with either Ap(S)
or Ap/eε(S′). When B prepares a hypothesis H, he can compute

p0 = Pr[Ap(S) on Test(H) outputs ⊤]

and

p1 = Pr[Ap/eε

(S′) on Test(H) outputs ⊤].

It follows that p0 = p · Pr[H(S) = ⊤] ≥ p
eε Pr[H(S′) = ⊤] = p1, p0 ∈ (e−2εp1, e2εp1) and

(1 − p0) ∈ (e−2ε(1 − p1), e2ε(1 − p1)). Therefore, sending a query H to Algorithm 1 is
equivalent to sending a query (p0, p1) to Algorithm 2.

6 We use S, S′ to denote data sets in this subsection, since the letter “D” is reserved for divergence.
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2.2.3 Analysis of the Coin Game
Algorithm 2 appears not to be differentially private. Nevertheless, it satisfies a “one-sided”
stability property, which can be captured by max-divergence and Rényi divergence, as shown
in the following two lemmas.

▶ Lemma 15. Consider Algorithm 2. Fix B to be an arbitrary adversary interacting
with Algorithm 2. Let P, Q denote the distributions of the interaction between A and
Algorithm 2 when the private input is 0 or 1, respectively. Then, for any α ∈ (1,∞), we have
D∞(P∥Q) ≤ kε.

▶ Lemma 16. Consider the same setup as in Lemma 15. For any α ∈ (1,∞), we have
Dα(P∥Q) ≤ 3kαε2.

Intuitively, the two lemmas hold because for each query (p, q) with q ≤ p, the algorithm
is always more likely to output 0 when the private input is b = 1. Hence, when we consider
D∞(P∥Q) (i.e., when we consider the divergence of P from Q), we can “pass” the “0” outputs
“for free”. Essentially, the divergence increases only when we observe “1” outputs. The counter
c counts the number of “1” outputs that we have seen so far. Since we halt the algorithm once
c reaches a pre-defined threshold k, naturally, one would expect that the divergence bound
of P from Q grows only with k (and is independent of the number of queries). Lemmas 15
and 16 confirm this intuition.

The formal proof for Lemma 16, however, is quite delicate and involved. We defer proofs
of both lemmas to the full version of the paper.

2.2.4 Wrap-up
Now, let B be an adversary interacting with Ap(S) or Ap/eε(S′). Lemma 15 shows that for
every collection of outputs E, it holds that

Pr[IT(B : Ap(S)) ∈ E] ≤ e2cε Pr[IT(B : Ap/eε

(S′)) ∈ E].

By Hölder’s inequality and Lemma 16 (see also the conversion from Rényi DP to approximate
DP, e.g., [27]), there is an absolute constant D ≥ 1 such that

Pr[IT(B : Ap(S)) ∈ E] ≤ e2D
√

c log(1/δ)ε Pr[IT(B : Ap/eε

(S′)) ∈ E] + δ.

To finish the proof of Theorem 2, we integrate over p ∈ [0, 1]. This step is the same as the
proof of Theorem 1 and we do not repeat it here.

3 Proofs for Selected Applications

In this section, we prove several selected theorems listed in Sections 1.3 and 1.4, to further
illustrate the power of the private selection framework.

Notation

For ε, δ > 0, we define the truncated Laplace mechanism TLap(ε, δ) as follows. The
support of TLap(ε, δ) is [− log(1/δ)

ε , log(1/δ)
ε ]. For every v ∈ [− log(1/δ)

ε , log(1/δ)
ε ], we have

Pr[TLap(ε, δ) = v] ∝ e−|v|ε. The truncated Laplace mechanism can answer a sensitivity-1
query f : Xn → R by publishing f(D) + TLap(ε, δ). It is well known that this mechanism
is (ε, δ)-DP [16].
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3.1 Better-Than-Median Selection
In this section, we prove Theorem 5, restated below.

Reminder of Theorem 5. For every α ∈ (0,∞) and β ∈ (0, 1), for (ε, δ)-DP A with ε ∈ (0, 1)
and δ ≥ 0, there is a better-than-median algorithm A∗ with confidence 1− β that satisfies the
following:

With probability 1, A∗ makes at most T oracle calls to A, where

T =


⌈

2
β

⌉
if α = 1⌈

5( 2
β )1/α log(1/β)

⌉
otherwise

.

A∗ is ((2 + α)ε, Tδ)-differentially private.
Furthermore, if A is (ε, δ)-DP with δ > 0, then A∗ is (ε, Tδ)-DP.

Proof. We design A∗ that initializes Algorithm 1 with γ = α and calls Selection with
arguments (k = 1, τ = T, M1 = A) where T given by the theorem statement. If follows
from Theorem 1 that A∗ is ((2 + α)ε, τδ)-DP. As for the utility, we have shown the utility
guarantee for α = 1. When α ̸= 1, we argue as follows.

First, with probability at least 1− (β/2), we have that p ≥ (2β)1/α. We condition on this
event. By our choice of T , we know that A will be run for at least t ≥ log(4/β) times with
probability at least 1 − (β/4). We further condition on this event. Then, the probability
that the t calls of A fail to yield a better-than-median solution is at most 1− (β/4). Overall,
the probability that A∗ fails to output a better-than-median solution is at most 1− β, as
desired. ◀

3.2 Query Releasing
In this section, we prove Theorem 6, restated below.

Reminder of Theorem 6. There is a constant C > 0 such that the following is true. For
every ε ∈ (0, 1), δ ∈ (0, 1/2) and k ∈ N, there is an (ε, δ)-DP algorithm that answers k given
sensitivity-1 queries f1, . . . , fk, such that

Pr̃
f

[
∥f − f̃∥∞ ≤ C

√
k log 1/δ + log(1/δ)

ε

]
= 1,

where f̃ := (f̃1, . . . , f̃k) denotes the responses released by the algorithm.
To prove Theorem 6, we need the following theorem due to [18].

▶ Theorem 17 ([18]). There is a constant C1 > 0 such that the following is true. For every
ε ∈ (0, 1), δ ∈ (0, 1/2) and k ∈ N, there is an (ε, δ)-DP algorithm that, given k non-adaptive
sensitivity-1 queries f1, . . . , fk, returns a list of answers (f̃1, . . . , f̃k), such that

Pr̃
f

[
∥f − f̃∥∞ ≤ C1

√
k log 1/δ

ε

]
≥ 1

2 .

The following statement follows as a simple corollary of Theorem 17.

▶ Corollary 18. There is a constant C2 > 0 such that the following is true. For every
ε ∈ (0, 1), δ ∈ (0, 1/2) and k ∈ N, there is an (ε, δ)-DP algorithm that, given k non-adaptive
sensitivity-1 queries f1, . . . , fk, returns a list of answers (f̃1, . . . , f̃k) and a real s ∈ R+

satisfying the following.
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With probability 1, it holds that ∥f − f̃∥∞ ≤ s.
With probability at least 1

2 , it holds that

s ≤ C2

(√
k log 1/δ

ε
+ log(1/δ)

ε

)
.

Proof. Let A1 be an instantiation of the algorithm from Theorem 17 with privacy parameter
set to (ε/2, δ/2). Given a list of queries (f1, . . . , fk). We first run A1 to produce a list of
responses (f̃1, . . . , f̃k). Let g = ∥f − f̃∥∞. We compute s = g + 2 log(1/δ)

ε + TLap(ε/2, δ/2).
Finally, we release (f̃1, . . . , f̃k) and s. It follows that s is an upper bound for ∥f − f̃∥2 with
probability 1. Moreover, since ∥f − f̃∥∞ ≤ 4C1

√
k log 1/δ

ε happens with probability at least
1
2 , it follows that s ≤ max(4C1, 4) ·

(√
k log 1/δ

ε + log(1/δ)
ε

)
with probability at least 1

2 . Since

the truncated Laplace mechanism is (ε/2, δ/2)-DP, by the basic composition theorem, the
whole algorithm is (ε, δ)-DP. ◀

Given Corollary 18, Theorem 6 follows by tuning parameters properly.

Proof of Theorem 6. We will combine Corollary 18 with Theorem 5. In particular, given
the target privacy budget (ε, δ), let A be an instantiation of Corollary 18 with privacy
parameters (ε/3, δ2/10). Then we use Theorem 5 on top of A with γ = 1 and β = δ/10, to
select a vector (f̃1, . . . , f̃k) with the smallest associated quality score s. Let C2 = max(4C1, 4).

If s ≤ C2

(√
k log 1/δ

ε + log(1/δ)
ε

)
, then we simply output (f̃1, . . . , f̃k). Otherwise, we non-

privately output the original vector (f1, . . . , fk). Since s is an upper bound of ∥f − f̃∥∞, the
utility guarantee is evident.

It remains to verify that the algorithm is (ε, δ)-DP. The vector (f̃i)i∈[k] selected by
Theorem 5 is (ε, δ/5)-DP with respect to the private input. Moreover, with probability at
least 1− δ/5, it holds that

s ≤ C2

(√
k log 1/δ

ε
+ log(1/δ)

ε

)
.

Therefore, we will do the non-private correction with probability at most δ/5. Consequently,
the whole algorithm (ε, δ)-DP. ◀

3.3 Stable Selection
In this section, we prove one result for stable selection (Theorem 9) to illustrate the idea.
The proof of Theorem 10 is similar, and can be found in the full version of the paper.

Choosing Mechanism

Let F be a family of 1-Lipschitz functions. Recall that F is k-bounded, if for any two
neighboring datasets D, D′, it holds that

∑
f∈F |f(D)−f(D′)| ≤ k. We now prove Theorem 9,

which is restated below.

Reminder of Theorem 9. Suppose F is a k-bounded function family. Then, there is an
(ε, δ)-DP algorithm A that receives a private input X and selects a function f ∈ F such that,
with probability at least 1− β,

f(D) ≥ max
f∗∈F

{f∗(D)} −O(1
ε

log(k/δβ)).
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Proof. For each function fi ∈ F , construct a mechanism Mi as follows: Mi receives the
takes as input the dataset D and outputs a pair (i, fi(D) + TLap(ε, δβ

5k )).
We use the Selection function in Algorithm 1 with parameters γ = 1, τ = 4

β and
mechanisms {Mi}fi∈F , and output the index i returned from the Selection.

To see the privacy, we fix an arbitrary pair of adjacent datasets D, D′. It follows
that

∑
f∈F |f(D) − f(D′)| ≤ k. Moreover, it is easy to see that that i-th mechanism is

(ε, δβ
5k · |fi(D)− fi(D′)|)-DP. Therefore, by Theorem 1, our mechanism is (3ε, δ)-DP.
To see the utility, fix the dataset D and let i∗ be the index of the best candidate. Then,

with probability at least 1−β, at least one trial of Mi∗(D) returns a pair (i, s) with s ≥ fi∗(D).
We condition on this event. Let (j, s′) be the result returned from Selection. It follows
that fj(D) ≥ s′ − 5

ε log(k/βδ) ≥ s− 5
ε log(kβ/δ) ≥ fi∗(D)− 5

ε log(k/βδ), as desired. ◀

The advantage of non-random search

Looking into the proof of Theorems 9, we can find that it works by selecting from a large
number of candidates (M1, . . . , Mm). Since the number of candidates is huge, we need to
add truncated Laplace noises to balance between privacy and utility. Consequently, for
each i ∈ [m], the best we can say about Mi is that it only satisfies (ε, δi)-DP with δi > 0.
Fortunately, fixing two neighboring inputs D, D′, we can compare Mi(D) with Mi(D′) for
every i ∈ [m], and prove that the δi parameters add up to at most O(k). Since our private
selection considers each mechanism separately, we can bound the overall probability of
privacy failure (i.e., δ) easily. If one were to use the Liu-Talwar framework to solve the stable
selection problem, then one needs to bound the privacy failure probability very carefully
(perhaps via an advanced concentration inequality).
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Determining the maximum size A2(n, d) of a binary code of blocklength n and distance d remains
an elusive open question even when restricted to the important class of linear codes. Recently,
two linear programming hierarchies extending Delsarte’s LP were independently proposed to upper
bound ALin

2 (n, d) (the analogue of A2(n, d) for linear codes). One of these hierarchies, by the authors,
was shown to be approximately complete in the sense that the hierarchy converges to ALin

2 (n, d) as
the level grows beyond n2. Despite some structural similarities, not even approximate completeness
was known for the other hierarchy by Loyfer and Linial.

In this work, we prove that both hierarchies recover the exact value of ALin
2 (n, d) at level n.

We also prove that at this level the polytope of Loyfer and Linial is integral. Even though these
hierarchies seem less powerful than general hierarchies such as Sum-of-Squares, we show that they
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1 Introduction

A binary code is any subset of binary strings C ⊆ Fn
2 . Two fundamental parameters of a code

are the size |C| and the minimum (Hamming) distance d between pairs of distinct codewords.
Determining the maximum size A2(n, d) of a binary code of blocklength n and distance
d remains an elusive open problem despite much effort and interest in this fundamental
question [21, 6, 20].
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When the distance is d := ⌊δn⌋ for some constant δ ∈ (0, 1/2), the growth of A2(n, d) is
known to be exponential in n. It is then convenient to consider the asymptotic rate R2(δ)
defined as

R2(δ) := lim sup
n→∞

1
n

log2 (A2(n, ⌊δn⌋)) .

Roughly speaking, the maximum size of a code grows as 2R2(δ)n up to lower order terms.
However, the precise asymptotic rate function R2(δ) remains unknown, so this exponential
growth is not fully understood.

The best lower bound on R2(δ) dates back to the work of Gilbert [5] and Varshamov1 [22].
Their bound, known as the GV bound, follows from a simple argument for the distance
versus rate trade-off of random codes. The best upper bound on R2(δ) dates back to the
work of McEliece, Rodemich, Rumsey and Welch (MRRW) [13] and it is based on linear
programming (LP) techniques. Specifically, A2(n, d) is upper bounded by the value of an LP
of Delsarte [2], which they upper bound by constructing a dual solution using the theory of
orthogonal polynomials.

Here, we will focus on the family of Delsarte’s LPs used in the so-called first MRRW
bound2, which is based on the so-called Krawtchouk polynomials [21] and MacWilliams
inequalities [12, 11] since this family is closer to our work. The precise details of this family
of LPs are not important at this point.

Linear codes (i.e., linear subspaces) are arguably one of the most important and widely
studied classes of codes [21, 6]. We denote by ALin

2 (n, d) and RLin
2 (δ) the versions of A2(n, d)

and R2(δ), respectively, corresponding to linear codes. Even for this important class of codes,
the known lower and upper bounds for RLin

2 (δ) are the same as those for R2(δ) for general
codes.

Delsarte’s linear programs are a convex relaxation for A2(n, d) and there is a known
gap between the value of the LP and the GV bound [16, 14]. In other words, if the GV
bound is indeed tight, then Delsarte’s LP is not sufficient to prove it (this would be called
an integrality gap of the LP). For this reason, it is natural to look for approaches that are
provably sufficient to settle the growth of A2(n, d) while having the hope of being amenable
to theoretical analysis. Note that Delsarte’s LPs do not distinguish between general and
linear codes, hence they do not provide better bounds for ALin

2 (n, d) nor to the asymptotic
rate RLin

2 (δ).
There have been attempts to improve the upper bound using stronger convex relaxations

of A2(n, d). The problem of computing A2(n, d) is equivalent to computing the independence
number of a graph whose vertex set is Fn

2 and pairs of vertices are adjacent if they violate
the minimum distance constraint. In principle, one can employ general convex programming
hierarchies such as Sum-of-Squares [8] or Sherali–Adams, which provably equal the true value
A2(n, d) at a sufficiently large level. Delsarte’s LP is equivalent to a convex relaxation for
independent set known as Schrijver’s ϑ′ function [18, 8]. This is a slight strengthening of the
Lovász ϑ function [9], which is equivalent to the first level of the Sum-of-Squares hierarchy for
independent set. However, analyzing these general hierarchies remains elusive; in fact it even
remains open to analyze an SDP proposed by Schrijver [19], which lies between Delsarte’s
LP and the second level of the Sum-of-Squares of hierarchy. The only convex programs we
know how to analyze for this problem are Delsarte’s LPs, and there are now a few different
techniques for this analysis [13, 4, 14, 15, 17].

1 Varshamov showed Gilbert’s bound for general codes remains the same for linear codes.
2 In [13], they also analyze (in the second MRRRW bound) another family of LPs based on the Johnson

association scheme.
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Recently, two new convex programming hierarchies for ALin
2 (n, d) were proposed, one by

Coregliano, Jeronimo, and Jones [1] (see also [7] for an alternative exposition) and another
by Loyfer and Linial [10] (in fact both hierarchies can be defined over general finite fields).
In this paper, we study these hierarchies further.

The two hierarchies are similar in spirit but not exactly the same. Both hierarchies are
a family of LPs (rather than SDPs) that extend Delsarte’s LP into a hierarchy of tighter
and tighter convex relaxations for ALin

2 (n, d), while retaining some structural similarities
with Delsarte’s LP. Since Delsarte’s LP is the only convex program with known theoretical
analysis, there is a hope that analyzing these two new hierarchies may be possible.

The Krawtchouk hierarchy KrawtchoukLPFq

Lin(n, d, ℓ) of [1] was shown to be approximately
complete beyond level n2 in the following sense. The level of the hierarchy is ℓ, where ℓ = 1
recovers Delsarte’s LP.

▶ Theorem 1 ([1]). For ℓ ≥ Ωε,q(n2), we have

ALin
q (n, d) ≤ val(KrawtchoukLPFq

Lin(n, d, ℓ))1/ℓ ≤ (1 + ε) · ALin
q (n, d).

Our first result is the exact completeness at level n of the Krawtchouk hierarchy as
follows.

▶ Theorem 2. For ℓ ≥ n, we have ALin
q (n, d) = val(KrawtchoukLPFq

Lin(n, d, ℓ))1/ℓ.

Instead of relying on integrality of the feasible region (i.e., it is exactly the convex hull
of true solutions corresponding to linear codes) to deduce completeness as is the case for
general hierarchies such as Sherali–Adams or Sum-of-Squares, it is only possible to show
that optimum solutions are integral, giving an unusual proof of completeness for a convex
programming hierarchy. We also show that the polytope of KrawtchoukLPFq

Lin(n, d, ℓ) is never
integral (see Proposition 13). Nonetheless, any given non-integral solution becomes infeasible
as the level grows (see Proposition 14).

The partial Krawtchouk hierarchy PartialKrawtchoukLPFq

Lin(n, d, ℓ) of [10] is similar to
the Krawtchouk hierarchy of [1], but it has additional constraints and a different objective
function (see Section 4). Due to this different objective function and the fact that the
approximate completeness proof of Theorem 1 crucially relies on the objective function
of the Krawtchouk hierarchy being “dense”, the proof of Theorem 1 did not extend to
the Loyfer and Linial hierarchy. Our proof here of Theorem 2 does extend to show that
PartialKrawtchoukLPFq

Lin(n, d, ℓ) is complete at level n. More precisely, our second result is
the following.

▶ Theorem 3. For ℓ ≥ n, we have ALin
q (n, d) = val(PartialKrawtchoukLPFq

Lin(n, d, ℓ)).

Curiously, we show that the additional constraints of the Loyfer and Linial hierarchy
make the polytope integral for ℓ ≥ n (see Proposition 15). This integrality is not obvious
from the original formulation of the hierarchy and it relies on a new perspective uncovered
by this work.

The exact completeness theorems at level n (Theorems 2 and 3) improve our understanding
of these hierarchies, consolidating them as provable approaches to resolve the longstanding
question of improving bounds for ALin

2 (n, d), and justifying them as natural objects in their
own right. The primary open research direction is a theoretical analysis of these hierarchies
to obtain tighter bounds on RLin

2 (δ). It is not clear which hierarchy is better suited for such
a task: the Krawtchouk hierarchy may be simpler to analyze, which is of critical importance
here, but the partial Krawtchouk hierarchy may provide tighter values at the same level
given its additional constraints.
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Proof Outline. We first briefly recall the approximate completeness proof from [1]. The
hierarchy KrawtchoukLPFq

Lin(n, d, ℓ) can be seen as a symmetrization of the ϑ′ of a graph
from a carefully chosen association scheme under the actions of symbol permutation by Sn

and translation by Fn
q (see [2, 3] and [1, §5] for more on association scheme theory). The

approximate completeness is then obtained via a counting argument over the unsymmetrized
ϑ′ formulation, which requires level ℓ ≥ n2 to yield non-trivial bounds.

A key insight of this work is a novel third formulation of the Krawtchouk hierarchy
from which exact completeness can be obtained at level n. Instead of factoring symmetries
that lead to variables indexed by Hamming weights, we now factor different symmetries
leading to variables indexed by linear subspaces. Using a linear transformation (namely,
Möbius inversion of the poset of subspaces of Fn

q ), we then rewrite the LP in terms of new
variables that can interpreted as a pseudoprobability distribution over linear codes (see
Section 3). In this pseudoprobability formulation, integral solutions correspond to true
probability distributions and via a mass transfer argument we show that optimum solutions
are integral. An interesting feature of this third formulation of the hierarchy is that the
number of variables and constraints remains constant regardless of the level (see Section 3.2).
Curiously, we show (Proposition 13) that the polytope of this formulation is not integral,
i.e., there are non-optimum solutions that are not integral. As mentioned, these ideas also
generalize to show that the partial Krawtchouk hierarchy of [10] also has exact completeness
for ℓ ≥ n (see Section 4).

Bibliographic Note. A preliminary version of the completeness of the Krawtchouk hierarchy
KrawtchoukLPF2

Lin(n, d, ℓ) (over the binary field) is included in the dissertation of one of the
authors [7].

2 Preliminaries

We denote by Fq the finite field of size q (which must be a prime power). A code of blocklength
n ∈ N+ (over Fq) is a non-empty subset C ⊆ Fn

q . We denote by ∆(x, y) := |{i ∈ [n] | xi ̸= yi}|
the Hamming distance between x, y ∈ Fn

q . The minimum distance of a code C is the minimum
of ∆(x, y) over all distinct x, y ∈ C. The rate r(C) of C is defined as r(C) := logq(|C|)/n. We
denote by Aq(n, d) the maximum size of a code of blocklength n (over Fq) and minimum
distance at least d. We say that C is linear if it is an Fq-linear subspace. For linear codes,
we have r(C) = dimFq (C). We denote by ALin

q (n, d) the analogue of Aq(n, d) when codes are
required to be linear.

For α ∈ Fn
q , we denote by χα : Fn

q → C the (additive) Fourier character associated with
α and we denote by 1α : Fn

q → {0, 1} be the indicator function of α. If T is a vector space
(over Fq), we will use the notation S ≤ T to mean that S is a subspace of T and S < T to
mean that S is a proper subspace of T .

The rest of this section is devoted to informal descriptions of the hierarchies from [1]
and [10] in their symmetrized form. Since all arguments of this paper start from the
unsymmetrized versions in Figures 3 and 6 of Sections 3 and 4 to factor different symmetries,
the descriptions below serve only as guiding intuition and will not be used in any proof.

The hierarchy from [1] extends Delsarte’s LPs by considering not only the Hamming
weight of single codewords, but by also considering the Hamming weights of every codeword
in subspaces of dimension up to a parameter ℓ ∈ N+, which is the level of the hierarchy.
Given an ℓ-tuple of words (x1, . . . , xℓ) ∈ (Fn

q )ℓ, one associates a configuration function
mapping c ∈ Fℓ

q to the Hamming weight |
∑

j∈[ℓ] cj · xj | (in the binary case, it is typical to
naturally identify Fℓ

2 with the set 2[ℓ] of subsets of [ℓ]). The set of functions Fℓ
q → N that
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are configurations of some ℓ-tuple of codewords is denoted Config. If the words x1, . . . , xℓ

belong to some linear code C of minimum distance d, then their configuration cannot have
numbers from [d − 1] := {1, . . . , d − 1} in its image. This means that if we let ag be
the number of tuples (x1, . . . , xℓ) in C whose configuration is g, then ag = 0 whenever
g ∈ ForbConfig := {h ∈ Config | [d − 1] ∩ im(h) ̸= ∅}. It is clear that a0 = 1 for the zero
configuration (as 0 ∈ C since C is linear) and that |C|ℓ =

∑
g∈Config ag. Finally, by observing

that the Fourier transform of the indicator 1C is (up to a multiplicative constant) the indicator
of the dual code C⊥, hence a nonnegative function, one derives the so-called (higher-order)
MacWilliams inequalities based on a higher-order version of the Krawtchouk polynomials.
The level ℓ of this hierarchy for codes over the field Fq is denoted by KrawtchoukLPFq

Lin(n, d, ℓ)
and it is a relaxation (i.e., an upper bound) for Aq(n, d)ℓ. The program in Figure 1 provides
an informal description of this hierarchy, where variables are indexed by configurations and
Kh is the higher-order Krawtchouk polynomial associated with configuration h. In this
formulation, it is immediate that the first level of this hierarchy is simply Delsarte’s LP. Since
we will work with a different formulation of the hierarchy (see Figure 3 in Section 3), we
point the interested reader to [1, 7] for a more detailed description of this Hamming weight
formulation of the hierarchy.

max
∑

g∈Config

ag

s.t. a0 = 1 (Normalization)
ag = 0 ∀g ∈ ForbConfig (Distance constraints)∑
g∈Config

Kh(g) · ag ≥ 0 ∀h ∈ Config (MacWilliams inequalities)

ag ≥ 0 ∀g ∈ Config (Nonnegativity).

Figure 1 Informal description of KrawtchoukLPFq

Lin(n, d, ℓ). Its optimum value is an upper bound
for ALin

q (n, d)ℓ.

As we mentioned in the introduction, Loyfer and Linial in [10] independently proposed
another linear programming hierarchy PartialKrawtchoukLPFq

Lin(n, d, ℓ) for linear codes that
bears many structural similarities with the Krawtchouk hierarchy KrawtchoukLPFq

Lin(n, d, ℓ)
of [1], but it is different in two important aspects. Firstly, PartialKrawtchoukLPFq

Lin(n, d, ℓ)
uses a different objective function that sums only over configurations in Config1 := {g ∈
Config | ∀c ∈ Supp(g), {1} ⊆ Supp(c)} (configurations in Config1 correspond to ℓ-tuples
of codewords of the form (x1, 0, . . . , 0)); this provides an upper bound for ALin

q (n, d) (as
opposed to its ℓth power). Secondly, by using partial Fourier transforms as well as the
usual Fourier transform (see [10] or Section 4 below for more details), the hierarchy
PartialKrawtchoukLPFq

Lin(n, d, ℓ) also has “partial MacWilliams inequality” constraints that
are not present in KrawtchoukLPFq

Lin(n, d, ℓ). The program in Figure 2 provides an informal
description of this hierarchy, where variables are indexed by configurations and KS

h is the
partial higher-order Krawtchouk polynomial associated with configuration h and set S ⊆ [ℓ].

3 Exact Completeness of the Krawtchouk LP Hierarchy

In this section, we prove the exact completeness at level n of the Krawtchouk hierarchy for
linear codes, namely, we show that ALin

q (n, d) = val(KrawtchoukLPFq

Lin(n, d, n))1/n. We first
give an alternative formulation of this hierarchy in terms of pseudoprobabilities in Section 3.1.
Using this representation, we then show the exact completeness result in Section 3.2.
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max
∑

g∈Config1

ag

s.t. a0 = 1 (Normalization)
ag = 0 ∀g ∈ ForbConfig (Distance constraints)∑
g∈Config

KS
h (g) · ag ≥ 0 ∀h ∈ Config, ∀S ⊆ [ℓ] (Partial MacWilliams inequalities)

ag ≥ 0 ∀g ∈ Config (Nonnegativity).

Figure 2 Informal description of PartialKrawtchoukLPFq

Lin(n, d, ℓ). Its optimum value is an upper
bound for ALin

q (n, d). The nonnegativity constraints ag ≥ 0 are redundant as they are also obtained
as the partial MacWilliams inequalities corresponding to S = ∅. The original formulation also
enforces GLℓ(Fq) symmetries, but these are omitted here for simplicity.

3.1 A Pseudoprobability LP Formulation
We first recall the unsymmetrized formulation of the hierarchy from [1] given in Figure 3; it
corresponds to the ϑ′ formulation of the Krawtchouk hierarchy expressed in “diagonalized”
form using the Fourier basis. Here, we use this unsymmetrized formulation as our starting
point. The interested reader is referred to [1] for more details about the connection between
these equivalent formulations of the hierarchy.

Variables: ax x ∈ (Fn
q )ℓ

max
∑

x∈(Fn
q )ℓ

ax

s.t. a0 = 1 (Normalization)
a(x1,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ). |w| ∈ [d − 1] (Distance constraints)∑
x∈(Fn

q )ℓ

axχα(x) ≥ 0 ∀α ∈ (Fn
q )ℓ (Fourier coefficients)

ax = a−x ∀x ∈ (Fn
q )ℓ (Reflection)

ax ≥ 0 ∀x ∈ (Fn
q )ℓ (Nonnegativity).

Figure 3 Unsymmetrized higher-order Krawtchouk hierarchy KrawtchoukLPFq

Lin(n, d, ℓ) for
Aq(n, d).

To each linear code C ≤ Fn
q , we have a corresponding true solution aC given by

aC
x := 1[∀j ∈ [ℓ], xj ∈ C],

whose value is |C|ℓ. Note that aC is feasible for the program in Figure 3 if and only if C has
minimum distance at least d.

On the other hand, the program in Figure 3 is invariant under the natural basis change
action of the general linear group GLℓ(Fq); this means that by symmetrizing a solution a

under such action, we may assume that ax = ay whenever span(x) = span(y); after such
symmetrization, we can denote by aS (S ≤ Fn

q ) the value of ax for any x ∈ (Fn
q )ℓ such that

span(x) = S. Note that the true solutions aC corresponding to linear codes C ≤ Fn
q are

already symmetrized:

aC
x = 1[span(x) ⊆ C] =: aC

span(x). (1)
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Equation (1) above suggests that we should interpret the variables aS as the relaxation
of the indicator 1S⊆C for a code C; or more precisely as aS = P̃[S ⊆ C̃], where C̃ is a formal
variable that represents a code drawn from a pseudodistribution of linear codes.

The next lemma uses Möbius inversion to provide a linear transformation into variables
of the form P̃[S = C̃] and shows that (symmetrized) integral solutions are precisely those
in which P̃[S = C̃] (S ≤ Fn

q ) is a (true) probability distribution (recall that a solution a is
integral if it is a convex combination of true solutions aC).

▶ Lemma 4. For every S ≤ Fn
q , let P̃[S ⊆ C̃], P̃[S = C̃] ∈ R be real numbers. Then the

following are equivalent.
1. For every S ≤ Fn

q , we have P̃[S ⊆ C̃] =
∑

S≤T ≤Fn
q
P̃[T = C̃].

2. For every S ≤ Fn
q , we have P̃[S = C̃] =

∑
S≤T ≤Fn

q
µ(S, T )P̃[T ⊆ C̃], where µ is the Möbius

function of the poset of subspaces of Fn
q under inclusion.

Furthermore, if P̃[S ⊆ C̃], P̃[S = C̃] (S ≤ Fn
q ) satisfy the above, then for every S ≤ Fn

q , we
have

P̃[S ⊆ C̃] =
∑

T ≤Fn
q

P̃[T = C̃] · aT
S .

In particular, the solution aS := P̃[S ⊆ C̃] (S ≤ Fn
q ) is integral if and only if P̃[S = C̃]

(S ≤ Fn
q ) is a probability distribution.

Proof. Recall that the Möbius function µ is inductively defined3 by

µ(S, T ) :=


1, if S = T ,

−
∑

S≤U<T

µ(S, U), if S < T ,

0, if S ̸≤ T ,

which in particular means that we have
∑

S≤U≤T µ(S, U) =
∑

S≤U≤T µ(U, T ) = 1[S = T ]
for every S ≤ T ≤ Fn

q .
For the implication 1 =⇒ 2, note that for every S ≤ Fn

q , we have∑
S≤T ≤Fn

q

µ(S, T )P̃[T ⊆ C̃] =
∑

S≤T ≤Fn
q

µ(S, T )
∑

T ≤U≤Fn
q

P̃[U = C̃]

=
∑

S≤U≤Fn
q

P̃[U = C̃]
∑

S≤T ≤U

µ(S, T ) = P̃[S = C̃].

For the implication 2 =⇒ 1, note that for every S ≤ Fn
q , we have∑

S≤T ≤Fn
q

P̃[T = C̃] =
∑

S≤T ≤Fn
q

∑
T ≤U≤Fn

q

µ(T, U)P̃[U ⊆ C̃]

=
∑

S≤U≤Fn
q

P̃[U ⊆ C̃]
∑

S≤T ≤U

µ(T, U) = P̃[S ⊆ C̃].

3 In fact, one can show that µ(S, T ) = (−1)dim(T/S)q(dim(T/S)
2 ) when S ≤ T (and 0 when S ̸≤ T ), but we

will not need this explicit formula.
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For the second assertion, since aC
S = 1[S ⊆ C], from 1, we have

P̃[S ⊆ C̃] =
∑

T ≤Fn
q

P̃[T = C̃] · 1[S ≤ T ] =
∑

T ≤Fn
q

P̃[T = C̃] · aT
S ,

that is, the solution P̃[ · ⊆ C̃] is written as the linear combination

P̃[ · ⊆ C̃] =
∑

T ≤Fn
q

P̃[T = C̃] · aT

of the true solutions aT ; this linear combination is a convex combination precisely when
P̃[T = C̃] ≥ 0 for every T ≤ Fn

q and
∑

T ≤Fn
q
P̃[T = C̃] = 1. ◀

The idea of the proof of completeness is to rewrite the linear program in terms of
the variables P̃[S = C̃] and then argue about the program from the perspective of the
pseudoprobabilities. For simplicity, let us now shorten the notation to P̃[S] := P̃[S = C̃].

Variables: P̃[S] S ≤ Fn
q

max
∑

S≤Fn
q

|S|ℓP̃[S]

s.t.
∑

S≤Fn
q

P̃[S] = 1 (Normalization)

P̃[S] = 0 ∃w ∈ S. |w| ∈ [d − 1] (Distance Constraints)∑
S≤U

|S|ℓP̃[S] ≥ 0 ∀U ≤ Fn
q (Fourier coefficients)

∑
S≥U

P̃[S] ≥ 0 ∀U ≤ Fn
q (Nonnegativity).

Figure 4 KrawtchoukLPFq

Lin(n, d, ℓ) in terms of pseudoprobabilities for ℓ ≥ n.

▶ Lemma 5. If a is a GLℓ(Fq)-invariant solution of the program KrawtchoukLPFq

Lin(n, d, ℓ)
in Figure 3 and P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn

q )ℓ, then P̃[S = C̃] given by Lemma 42
is a solution of the program in Figure 4 with the same value.

Conversely, if P̃[S = C̃] is a solution of the program in Figure 4, then setting ax :=
P̃[span(x) ⊆ C̃] via Lemma 41 gives a solution of KrawtchoukLPFq

Lin(n, d, ℓ) with the same
value.

Proof. We rewrite the (GLℓ(Fq)-symmetrization of the) program KrawtchoukLPFq

Lin(n, d, ℓ)
in Figure 3 in terms of the variables P̃[S] obtained from P̃[S ⊆ C̃] := aS via Lemma 4.

The rewritten objective function is∑
x∈(Fn

q )ℓ

P̃[span(x) ⊆ C̃] =
∑

x∈(Fn
q )ℓ

∑
span(x)≤T ≤Fn

q

P̃[T ] =
∑

S≤Fn
q

|S|ℓP̃[S].

The left-hand side of the distance constraint for S ≤ Fn
q such that there exists w ∈ S

with |w| ∈ [d − 1] is

P̃[S ⊆ C̃] =
∑
T ≥S

P̃[T ]
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By induction downwards on the dimension of S, requiring the above to be equal to 0 is
equivalent to the constraints

P̃[S] = 0 (S ≤ Fn
q : ∃w ∈ S. |w| ∈ [d − 1]).

The left-hand side of the Fourier constraint for α is∑
x∈(Fn

q )ℓ

P̃[span(x) ⊆ C̃]χα(x) =
∑

x∈(Fn
q )ℓ

χα(x)
∑

span(x)≤T ≤Fn
q

P̃[T ] =
∑

S≤Fn
q

P̃[S]
∑

x∈Sℓ

χα(x).

Let us now show the following claim.

▷ Claim 6. For α ∈ (Fn
q )ℓ, S ≤ Fn

q , we have

∑
x∈Sℓ

χα(x) =
{

|S|ℓ, if S ≤ span(α)⊥,
0, otherwise.

Proof of Claim 6. If S ≤ span(α)⊥, then all terms of the sum are 1, so the result follows.
On the other hand, if S ̸≤ span(α)⊥, then there exist y ∈ S and β ∈ span(α) such that
χβ(y) ̸= 1. Write β =

∑
j∈[ℓ] cj · αj for cj ∈ Fq and let z ∈ Sℓ be given by zj := cj · y (j ∈ [ℓ]).

Then we have∑
x∈Sℓ

χα(x) =
∑

x∈Sℓ

χα(x + z) = χα(z) ·
∑

x∈Sℓ

χα(x) = χβ(y) ·
∑

x∈Sℓ

χα(x),

and since χβ(y) ̸= 1, we conclude that
∑

x∈Sℓ χα(x) = 0. ◁

From Claim 6 above, it follows that the Fourier constraint for α is equivalent to∑
S≤span(α)⊥

|S|ℓP̃[S] ≥ 0,

concluding the proof. ◀

It will also be convenient to consider a weakening of this formulation that is more
amenable to analysis. Let k0 := logq(ALin

q (n, d)) be the maximum dimension of a linear code
of minimum distance at least d. The program of Figure 5 below is obtained from that of
Figure 4 by replacing the distance constraints with the following “dimension constraints”.

a(x1,...,xℓ) = 0 if dim(span(x1, . . . , xℓ)) > k0 (Dimension constraints)

▶ Lemma 7. The program in Figure 5 is a relaxation of KrawtchoukLPFq

Lin(n, d, ℓ).

Proof. Since k0 := logq(ALin
q (n, d)), any subspace of dimension larger than k0 must have

minimum distance less than d, so the distance constraints imply the dimension constraints.
Thus, the result follows. ◀

From Lemmas 5 and 7, to show exact completeness of KrawtchoukLPFq

Lin(n, d, ℓ), it suffices
to show that the weakened program of Figure 5 has optimum value ALin

q (n, d)ℓ. The advantage
of working with the formulations that use the variables P̃[S] is that the Fourier constraints no
longer have sign alternations. However, the challenge is now to show that optimum solutions
must force P̃[S] to take nonnegative values.
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Variables: P̃[S] S ≤ Fn
q

max
∑

S≤Fn
q

|S|ℓP̃[S]

s.t.
∑

S≤Fn
q

P̃[S] = 1 (Normalization)

P̃[S] = 0 if dim(S) > k0 (Dimension constraints)∑
S≤U

|S|ℓP̃[S] ≥ 0 ∀U ≤ Fn
q (Fourier coefficients)

∑
S≥U

P̃[S] ≥ 0 ∀U ≤ Fn
q (Nonnegativity).

Figure 5 KrawtchoukLPFq

Lin(n, d, ℓ), weakened to dimension constraints, in terms of pseudoproba-
bilities for ℓ ≥ n.

3.2 Exact Completeness Proof

Before we start the proof, note that by level n there is a variable for each possible basis of a
subspace of Fn

q , which means that just writing down the distance constraints of the program
KrawtchoukLPFq

Lin(n, d, n) allows one to deduce the true value of ALin
q (n, d). However, the LP

hierarchy does not know how to use this kind of reasoning, hence our proof of completeness
is more involved. On the other hand, a feature of this subspace formulation of the hierarchy
is that the number of variables and constraints remains constant regardless of the level ℓ (as
long as ℓ ≥ n).

Note that we do not show that the polytope is integral, meaning that feasible solutions
are integral (i.e., convex combinations of true solutions). In fact, we will see in Proposition 13
that the polytope is not integral when k0 ≥ 2.

We now restate and prove our main result.

▶ Theorem 8. For ℓ ≥ n, we have ALin
q (n, d) = val(KrawtchoukLPFq

Lin(n, d, ℓ))1/ℓ. More
precisely, every GLℓ(Fq)-invariant optimum solution of KrawtchoukLPFq

Lin(n, d, ℓ) is integral.

Proof of Theorem 8. Since the program KrawtchoukLPFq

Lin(n, d, ℓ) is GLℓ(Fq)-invariant, the
first assertion follows from the second assertion.

An immediate consequence of Lemmas 4 and 5 is that to show integrality of GLℓ(Fq)-
invariant optimum solutions of KrawtchoukLPFq

Lin(n, d, ℓ), it is sufficient to prove that every
optimum solution P̃[S] (S ≤ Fn

q ) of the program in Figure 4 is a probability distribution.
Now we claim that it is sufficient to prove that every optimum solution of the program in

Figure 5 is a probability distribution. Indeed, if this is the case, then the optimum value of
both programs in Figures 4 and 5 must be |Fq|k0·ℓ = ALin

q (n, d)ℓ, since the definition of k0
implies that there must be at least one true solution corresponding to a code C of dimension
k0 and minimum distance at least d. In particular, every optimum solution of the former
program must also be an optimum solution of the latter, hence a probability distribution.

Let us then show that an optimum solution P̃ of the program Figure 5 is a probability
distribution. Since

∑
S≤Fn

q
P̃[S] = 1 already follows from the normalization constraint, we

only have to show that P̃ is nonnegative.
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If S is a space in the support of P̃ of minimum dimension, then P̃[S] ≥ 0 by the Fourier
constraint on S. Thus, to show that P̃ is nonnegative, it suffices to show that every such
space of minimum dimension has dimension exactly k0 (note that spaces of dimension larger
than k0 are not in the support of P̃ due to the dimension constraints). To that end, let Smin
be a subspace of minimum dimension in the support of P̃, assume for the sake of contradiction
that dim(Smin) < k0 and let us show that there is a way to increase the objective value of P̃.
Indeed, we construct another solution P̃+ by transferring the probability mass from Smin
and dividing it equally among the S > Smin with dim(S) = dim(Smin) + 1. Formally, letting
S := {S ≥ Smin : dim(S) = dim(Smin) + 1} and m := |S| be the number of such spaces, we
define:

P̃+[S] :=


0, if S = Smin,

P̃[S] + P̃[Smin]
m

, if S ≥ Smin and dim(S) = dim(Smin) + 1,

P̃[S], otherwise.

Let us verify that P̃+ remains a feasible solution.
P̃+ respects the normalization

∑
S≤Fn

q
P̃+[S] = 1.

The dimension constraints are not violated since dim(S) = dim(Smin) + 1 ≤ k0 for the
spaces S ∈ S in the second case above.
In Fourier constraints with U ̸≥ Smin, nothing changes. In the ones with U = Smin, the
left-hand side is 0. Finally, when U > Smin, U contains at least one of the subspaces
S ∈ S with increased mass. Therefore the change in the left-hand side is at least

|S|ℓ · P̃[Smin]
m

− |Smin|ℓ · P̃[Smin] .

Since m ≤ |Fq|n while |S|ℓ

|Smin|ℓ = |Fq|ℓ ≥ |Fq|n, this is nonnegative.
In the nonnegativity constraints, if U is not below any space in S, then nothing changes.
If U is below Smin, then the sum in the nonnegativity constraint is unchanged since all
S ∈ S appear in the sum. Finally, if U ∈ S, then the sum increased by P̃[Smin]/m.

Finally, note that objective value of the new solution P̃+[S] is∑
S≤Fn

q

|S|ℓP̃+[S] =
∑

S≤Fn
q

|S|ℓP̃[S] + |Smin|ℓ
(
|Fq|ℓ − 1

)
P̃[Smin],

which is strictly larger than the previous objective value since P̃[Smin] > 0, a contradiction.
Therefore, P̃ must be supported only on spaces of dimension exactly k0, it is nonnegative

and integral, and the proof is complete. ◀

4 Exact Completeness of the Partial Krawtchouk LP Hierarchy

The hierarchy from [10] differs from the one in the previous section in two ways. Firstly,
besides the Fourier constraints, it includes the following partial Fourier constraints:∑

x∈(Fn
q )ℓ

axθα(x) ≥ 0 ∀α ∈ (Fn
q )ℓ, where

θα := θα1 ⊗ · · · ⊗ θαℓ
,

θαi ∈ {χαi ,1αi}

(Partial Fourier)
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In the expression above, 1αi : Fn
q → Fn

q is the indicator function of αi. Secondly, its objective
function is slightly different, meant to be a relaxation for the value Aq(n, d) rather than
Aq(n, d)ℓ.

We denote by PartialKrawtchoukLPFq

Lin(n, d, ℓ) the level ℓ of the partial Krawtchouk
hierarchy for Aq(n, d) from [10]. An unsymmetrized version of this hierarchy is presented in
Figure 6. The exact description of the hierarchy factors GLℓ(Fq) and Sn symmetries (see
also Figure 2).

Variables: ax x ∈ (Fn
q )ℓ

max
∑

x1∈Fn
q

a(x1,0,...,0)

s.t. a0 = 1 (Normalization)
a(x1,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ). |w| ∈ [d − 1] (Distance constraints)∑
x∈(Fn

q )ℓ

axθα(x) ≥ 0 ∀α ∈ (Fn
q )ℓ, where

θα := θα1 ⊗ · · · ⊗ θαℓ ,

θαi ∈ {χαi ,1αi }

(Partial Fourier)

ax = ay ∀x, y ∈ (Fn
q )ℓ, span(x) = span(y) (GLℓ(Fq)-symmetries)

ax ≥ 0 ∀x ∈ (Fn
q )ℓ (Nonnegativity).

Figure 6 Unsymmetrized partial Krawtchouk hierarchy PartialKrawtchoukLPFq

Lin(n, d, ℓ).

To show exact completeness of the partial Krawtchouk hierarchy, we will first give an
alternative description in terms of pseudoprobabilities in a similar way as done for the
Krawtchouk hierarchy in Section 3.1. It is enough to show exact completeness for the
following weakening given in Figure 6, where only full Fourier constraints are included. Note
that FullKrawtchoukLPFq

Lin(n, d, ℓ) is the same as hierarchy of Figure 3 from Section 3 with
a different objective function.

Variables: ax x ∈ (Fn
q )ℓ

max
∑

x1∈Fn
q

a(x1,0,...,0)

s.t. a0 = 1 (Normalization)
a(x1,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ). |w| ∈ [d − 1] (Distance constraints)∑
x∈(Fn

q )ℓ

axχα(x) ≥ 0 ∀α ∈ (Fn
q )ℓ (Full Fourier)

ax = ay ∀x, y ∈ (Fn
q )ℓ, span(x) = span(y) (GLℓ(Fq)-symmetries)

ax ≥ 0 ∀x ∈ (Fn
q )ℓ (Nonnegativity).

Figure 7 Unsymmetrized partial Krawtchouk hierarchy FullKrawtchoukLPFq

Lin(n, d, ℓ), weakened
to only full Fourier constraints.
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4.1 A Pseudoprobability LP Formulation

Similarly to Section 3.1, we will show that the program in Figure 8 is a reformulation of the
weakening of the partial Krawtchouk hierarchy FullKrawtchoukLPFq

Lin(n, d, ℓ).

Variables: P̃[S] S ≤ Fn
q

max
∑

S≤Fn
q

|S|P̃[S]

s.t.
∑

S≤Fn
q

P̃[S] = 1 (Normalization)

P̃[S] = 0 if dim(S) > k0 (Dimension constraints)∑
S≤U

|S|ℓP̃[S] ≥ 0 ∀U ≤ Fn
q (Fourier coefficients)

∑
S≥U

P̃[S] ≥ 0 ∀U ≤ Fn
q (Nonnegativity).

Figure 8 FullKrawtchoukLPFq

Lin(n, d, ℓ), weakened to dimension constraints and with only the
full Fourier constraints, in terms of pseudoprobabilities for ℓ ≥ n.

▶ Lemma 9. If a is a GLℓ(Fq)-invariant solution of FullKrawtchoukLPFq

Lin(n, d, ℓ) from
Figure 7 and P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn

q )ℓ, then P̃[S = C̃] given by Lemma 42 is
a solution of the program in Figure 8 with the same value.

Conversely, if P̃[S = C̃] is a solution of the program in Figure 8, then setting ax :=
P̃[span(x) ⊆ C̃] via Lemma 41 gives a solution of FullKrawtchoukLPFq

Lin(n, d, ℓ) with the same
value.

Proof. Since the program of Figure 6 is the same as the program of Figure 3 except for the
objective function, the proof is the same as that of Lemma 5 only differing in the objective
function analysis. But note that the rewritten objective function is∑

x=(x1,0,...,0):x1∈Fn
q

P̃[span(x) ⊆ C̃] =
∑

x=(x1,0,...,0):x1∈Fn
q

∑
span(x)≤T ≤Fn

q

P̃[T ] =
∑

S≤Fn
q

|S|P̃[S],

concluding the proof. ◀

For the exact completeness, it will be sufficient to consider the above weakened pseudoprob-
ability formulation of Lemma 9. However, to cover some integrality properties of Section 5, it
will also be useful to give a pseudoprobability formulation of PartialKrawtchoukLPFq

Lin(n, d, ℓ)
that includes all partial Fourier constraints.

▶ Lemma 10. If a is a GLℓ(Fq)-invariant solution of PartialKrawtchoukLPFq

Lin(n, d, ℓ) from
Figure 6 and P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn

q )ℓ, then P̃[S = C̃] given by Lemma 42 is
a solution of the program in Figure 9 with the same value.

Conversely, if P̃[S = C̃] is a solution of the program in Figure 9, then setting ax :=
P̃[span(x) ⊆ C̃] via Lemma 41 gives a solution of PartialKrawtchoukLPFq

Lin(n, d, ℓ) with the
same value.
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Variables: P̃[S] S ≤ Fn
q

max
∑

S≤Fn
q

|S|P̃[S]

s.t.
∑

S≤Fn
q

P̃[S] = 1 (Normalization)

P̃[S] = 0 ∃w ∈ S. |w| ∈ [d − 1] (Distance Constraints)∑
T ≤S≤U

|S|rP̃[S] ≥ 0 ∀T ≤ U ≤ Fn
q : n−dim(U)≤r≤ℓ,

dim(T )≤ℓ−r (Partial Fourier coefficients)

∑
S≥U

P̃[S] ≥ 0 ∀U ≤ Fn
q (Nonnegativity).

Figure 9 KrawtchoukLPFq

Lin(n, d, ℓ) in terms of pseudoprobabilities for ℓ ≥ n.

Proof. The program in Figure 9 is the same as the program in Figure 8 with additional
partial Fourier constraints. We can then follow the proof of Lemma 5 except for these
additional constraints which we now analyze.

For I ⊆ [ℓ] and α ∈ (Fn
q )ℓ, let θα := θα1 ⊗ · · · ⊗ θαℓ

, where θαi
:= χαi

for i ∈ I and
θαi

:= 1αi for i ∈ [ℓ] \ I. The left-hand side of the Fourier constraint for θα is∑
x∈(Fn

q )ℓ

P̃[span(x) ⊆ C̃]θα(x) =
∑

x∈(Fn
q )ℓ

θα(x)
∑

T ≥span(x)

P̃[T ] =
∑

S≤Fn
q

P̃[S]
∑

x∈Sℓ

θα(x).

We now prove the following claim.

▷ Claim 11. For I ⊆ [ℓ], α ∈ (Fn
q )ℓ and S ≤ Fn

q , we have

∑
x∈Sℓ

θα(x) =


|S||I|

∏
j∈[ℓ]\I

1αj∈S , if S ≤ span(αi : i ∈ I)⊥,

0, otherwise.

Proof of Claim 11. Clearly, if there exists j ∈ [ℓ] \ I such that αj /∈ S, then the sum above is
zero. Suppose then that for every j ∈ [ℓ] \ I, we have αi ∈ S. Then the sum becomes∑

x∈SI

∏
j∈I

χαj
(xj),

and the result follows by Claim 6. ◁

Let U := span(αi : i ∈ I)⊥ and let T := span(αi : i ∈ [ℓ] \ I). By Claim 11, the Fourier
constraint corresponding to θα is equivalent to∑

T ≤S≤U

|S||I|P̃[S] ≥ 0.

Since the program in Figure 9 has the partial Fourier constraints∑
T ≤S≤U

|S|rP̃[S] ≥ 0 ∀T ≤ U ≤ Fn
q : n−dim(U)≤r≤ℓ,

dim(T )≤ℓ−r ,

it remains to show every U and T above can be obtained as U = span(αi : i ∈ I)⊥ and
T = span(αi : i ∈ [ℓ] \ I).
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Indeed, for every such U ≤ Fn
q with u := dim(U) ≥ n − ℓ, we can use r ∈ {n − u, . . . , ℓ}

entries in the vector α to specify a spanning set for U⊥. These entries will correspond to
some I ⊆ [ℓ] of size r. We then use the remaining ℓ − r entries of α to specify a spanning set
for the space T ≤ U of dimension at most ℓ − r, concluding the proof. ◀

4.2 Exact Completeness Proof
We now prove the exact completeness of the partial Krawtchouk hierarchy of [10].

▶ Theorem 12. For ℓ ≥ n, we have ALin
q (n, d) = val(PartialKrawtchoukLPFq

Lin(n, d, ℓ)). More
precisely, every GLℓ(Fq)-invariant optimum solution of PartialKrawtchoukLPFq

Lin(n, d, ℓ) is
integral.

Proof. By Lemma 9 and similarly to Theorem 8, it is enough to show that every optimum
solution P̃ of the pseudoprobability program in Figure 8 is nonnegative.

Note that the feasible region of this pseudoprobability program is the same as the one of
the pseudoprobability program of Figure 5, so we can follow the same completeness proof
of Theorem 8, except for the objective function analysis. Inspecting that proof, we see
that it only requires the property that the objective value increases if mass is moved to
larger dimensional spaces. This property is also satisfied by the new objective function∑

S≤Fn
q
|S|P̃[S] so we are done. ◀

5 On Integrality Related Properties

In this section, we discuss some properties related to the integrality of the Krawtchouk
hierarchies. Recall that by the results of Sections 3 and 4, integrality of GLℓ(Fq)-invariant
solutions is equivalent to nonnegativity of solutions in the pseudoprobability formulations;
as such, we will slightly abuse notation and say that the polytope of the pseudoprobability
formulation is integral when all its feasible solutions are nonnegative.

We start by showing that the polytope of the pseudoprobability formulation of the
program KrawtchoukLPFq

Lin(n, d, ℓ) is not integral no matter how large is the level of the
hierarchy.

▶ Proposition 13. The polytope defined by the constraints of the pseudoprobability formulation
from Figure 4 is not integral for any k0 ≥ 2.

Proof. We construct a feasible solution to the program in Figure 5 having a negative
pseudoprobability. Let T ≤ Fn

q be any subspace of dimension k0 of minimum distance at
least d and let T ′ ≤ T be an arbitrary one dimensional space. Since k0 ≥ 2, we have T ′ ̸= T .
Let ε ∈ (0, 1). Now for each S ≤ Fn

q , we set

P̃[S] :=



1 −
(

ε − ε

|S|ℓ

)
, if S = T ,

− ε

|S|ℓ
, if S = T ′,

ε, if S = {0},
0, otherwise.
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We claim that the above is a feasible solution. The proof is a simple verification. The values
P̃[S] clearly sum to 1 satisfying the normalization constraint. Since T has minimum distance
at least d, so does T ′, hence the distance constraints are satisfied. The Fourier constraint of
T ′ is

|T ′|ℓP̃[T ′] + P̃[{0}] = 0.

Since all values except from P̃[T ′] are nonnegative and the Fourier constraint of T ′ is satisfied,
we have that all Fourier constraints hold. The nonnegative constraint for T ′ is

∑
S≥T ′

P̃[S] = P̃[T ] + P̃[T ′] = 1 −
(

ε − ε

|S|ℓ

)
− ε

|S|ℓ
= 1 − ε ≥ 0,

where the last inequality follows from our choice of ε. All other nonnegative constraints are
easily seen to hold and we conclude the proof. ◀

Despite the polytope not being integral no matter how large is the level, the following
approximate integrality property holds: any given non-integral solution becomes infeasible at
a sufficiently large level.

▶ Proposition 14. Let {P̃[S]}S≤Fn
q

be a feasible solution to level ℓ of program Figure 4. If
one of the variables is negative, then there exist ℓ′ ≥ ℓ large enough such that this solution is
infeasible for level ℓ′.

Proof. Let U ≤ Fn
q be any space such that P̃[U ] < 0 and its dimension is maximum with this

property. Note that U is well-defined by assumption. We claim that the Fourier constraint∑
S≤U

|S|ℓ
′
P̃[S] ≥ 0

becomes violated for a sufficiently large ℓ′ ≥ ℓ. By dividing this Fourier constraint by |S|ℓ′ ,
only the coefficient of P̃[U ] remains 1 while all other coefficients shrink as ℓ′ grows since U is
the space of largest dimension appearing in the sum. ◀

Let us now show that the additional partial Fourier constraints ensure that the polytope
of the pseudoprobability formulation of the hierarchy PartialKrawtchoukLPFq

Lin(n, d, ℓ) is
actually integral for ℓ ≥ n. Note that this provides an alternative proof of exact completeness.

▶ Proposition 15. The polytope defined by the constraints of the pseudoprobability formulation
from Figure 9 is integral for ℓ ≥ n.

Proof. We will show that P̃[T ] ≥ 0 for every T ≤ Fn
q . Combined with the normalization

constraint
∑

T ≤Fn
q
P̃[T ] = 1, we will have a true probability distribution over valid codes and

thus the polytope will be integral. Recall the Fourier constraints from Figure 9,∑
T ≤S≤U

|S|rP̃[S] ≥ 0 ∀T ≤ U ≤ Fn
q : n−dim(U)≤r≤ℓ,

dim(T )≤ℓ−r .

Since ℓ ≥ n, by choosing r := n − dim(U), we can take T := U . In this case, the sum
above reduces to only the term P̃[U ] with the coefficient |U |r > 0. This readily implies
P̃[U ] ≥ 0. ◀
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6 Conclusion

In this paper, we proved exact completeness by level n of the LP hierarchies KrawtchoukLP
and PartialKrawtchoukLP of [1] and [10], respectively. Our techniques involved passing
to a formulation of these hierarchies in terms of pseudoprobabilities (after appropriate
symmetrization under the natural GLℓ(Fq) action) and showing that optimum solutions are
integral (i.e., are convex combinations of true solutions, corresponding to linear codes). We
also observed two structural properties about the feasible polytopes of these hierarchies: while
for KrawtchoukLP no level guarantees integrality of the polytope, for PartialKrawtchoukLP,
the polytope is integral by level n.

As mentioned before, the completeness results of these hierarchies should be seen as
theoretical results that can serve as basis for a theoretical analysis of the asymptotic behavior
of ALin

q (n, d). However, neither of the hierarchies should be computationally run as high
as level ℓ = n, since even writing the constraints at this level involves checking which
ℓ-dimensional subspaces satisfy the distance constraints. If ℓ > k0 := logq ALin

q (n, d), then
we would be able to deduce the value of k0 by simply noting that no subspace of dimension
k0 + 1 satisfies the distance constraints. This simple observation makes plausible that the
hierarchies could be complete by an earlier level, say O(k0).
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Abstract
Multicalibration is a powerful and evolving concept originating in the field of algorithmic fairness.
For a predictor f that estimates the outcome y given covariates x, and for a function class C,
multi-calibration requires that the predictor f(x) and outcome y are indistinguishable under the
class of auditors in C. Fairness is captured by incorporating demographic subgroups into the class
of functions C. Recent work has shown that, by enriching the class C to incorporate appropriate
propensity re-weighting functions, multi-calibration also yields target-independent learning, wherein
a model trained on a source domain performs well on unseen, future, target domains (approximately)
captured by the re-weightings.

Formally, multicalibration with respect to C bounds
∣∣E(x,y)∼D[c(f(x), x) · (f(x) − y)]

∣∣ for all
c ∈ C. In this work, we view the term (f(x) − y) as just one specific mapping, and explore the
power of an enriched class of mappings. We propose s-Happy Multicalibration, a generalization of
multi-calibration, which yields a wide range of new applications, including a new fairness notion
for uncertainty quantification, a novel technique for conformal prediction under covariate shift,
and a different approach to analyzing missing data, while also yielding a unified understanding of
several existing seemingly disparate algorithmic fairness notions and target-independent learning
approaches.

We give a single HappyMap meta-algorithm that captures all these results, together with a
sufficiency condition for its success.
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1 Introduction

Prediction algorithms score individuals or individual instances, assigning to each a score
in [0, 1] typically interpreted as a probability, for example, the probability that it will rain
tomorrow. The predictions are calibrated if, for all v ∈ [0, 1], among those instances assigned
the value v, a v fraction have a positive outcome. Calibration has been viewed as the sine
qua non of prediction for decades [7].

The requirement that a predictor be simultaneously calibrated on each of two or more
disjoint groups, meaning, it is calibrated on each group when viewed in isolation, was
first proposed as a fairness condition by Kleinberg, Mullainathan, and Raghavan [28].
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Inspired by [28] and in an attempt to bridge the gap between individual fairness [13], which
demands that similar individuals be treated similarly but requires task-specific measures of
similarity, and group fairness, which can be specious [13], Hébert-Johnson, Kim, Reingold,
and Rothblum proposed multicalibration, which requires calibration on a (possibly large)
pre-specified collection of arbitrarily intersecting sets that can be identified within a specified
class of computations [21]. A related, independent, work of Kearns, Neel, Roth, and Wu
considered the analogous setting but for Boolean-valued classifiers. They argued that including
intersecting groups can prevent fairness gerrymandering, and developed multi-parity [25].

The area has blossomed in theory and in application. For example, multicalibration has
been used for fair ranking [14], and for providing an indistinguishability-based interpretation of
individual probabilibilities, i.e., probabilities for non-repeatable events [15]. Multicalibration
has also been shown to yield omniprediction, meaning that for every “nice” loss function ℓ,
the scores assigned by the multicalibrated predictor can be post-processed, with no additional
training, to be competitive, on the training distribution, with the best predictor in C [18].

▶ Definition 1 (Multicalibration [21] as presented in [27]). Let C ⊆ {[0, 1] × X → R} be a
collection of functions. For a given distribution supported on X ×Y, a predictor f : X 7→ [0, 1]
is (C, α)-multicalibrated over D if ∀c ∈ C:∣∣∣E(x,y)∼D[c(f(x), x) · (f(x) − y)]

∣∣∣ ≤ α. (1)

Fairness is captured by incorporating demographic subgroups into the class of functions C.
By enriching the class C to incorporate appropriate propensity re-weighting functions,
multicalibration also yields target-independent learning, wherein a model trained on a source
domain performs well on unseen, future, target domains (approximately) captured by the
re-weightings. [27].

In this work, we view the term (f(x) − y) in Equation (1) as just one specific mapping
s(f, y) : R × Y → R, and explore the power of an enriched class of mappings. To this end,
we propose HappyMap, a generalization of multicalibration, which yields a wide range of new
applications, including a new algorithm for fair uncertainty quantification, a novel technique
for conformal prediction under distributional (a.k.a. covariate) shift, and a different approach
to analyzing missing data, while also yielding a unified understanding of several existing
seemingly disparate algorithmic fairness notions and target-independent learning approaches.

We give a single HappyMap meta-algorithm that captures all these results, together with
a sufficiency condition for its success. Roughly speaking, the requirement is that the mapping
have an anti-derivative satisfying a smoothness-like assumption (see Section 3). We say such
a mapping is happy. Loosely speaking, the anti-derivative serves as a potential function,
which yields an upper bound on the number of iterations of our algorithm.

Summary of Contributions.
1. We propose HappyMap, a generalization of multicalibration, by enriching the class of

mappings (alternatives for the term (f(x) − y) in Equation 2), as discussed above,
and provide a HappyMap meta-algorithm having comparable running time and sample
complexity to the other multicalibration algorithms in the literature, and give sufficient
conditions for its success (Section 3).

2. We demonstrate the flexibility of HappyMap by first applying it to obtain generalized
versions of fair uncertainty quantification [32] (Section 4).

3. Furthermore, we apply HappyMap to problems in target-independent learning that lie
beyond the statistical estimation problems considered in [27], obtaining target-independent
statistical inference and uncertainty quantification. Our approach also yields a fruitful new
perspective on analyzing missing data, giving new solutions to this problem (Section 5).
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A High-Level Perspective. The seminal work of Hébert-Johnson et al. [21] has long
tantalized us with the suggestion of a new paradigm for machine learning. We coin the term
micro-learning to describe gradient descent, a learning paradigm paradigm based on loss
minimization, consisting of a sequence of local model updates. In contrast, the multiaccuracy
and multicalibration algorithms of [21] produce predictors via interactions (through weak
agnostic learning) with auditors who find large problem areas without the intercession of
a loss function, and make correspondingly large model updates, suggested to us what we
call macro-learning. This perspective has a compelling transparency story, “the learning
algorithm finds large errors and fixes them”, which is particularly appealing when the auditors
are interrogating the treatment of demographic subgroups. The fact that macro-learning can
be used as post-processing [21] tells us that the two paradigms can work in concert. The
concept of s-Happy Multicalibration proposed in this paper advances the broad vision of
macro-learning.

2 Preliminaries

2.1 Notation
For d ∈ N+, any convex set S ⊆ Rd and vector v ∈ Rd, we use ΠS(v) to denote the the
projection of v on S under Euclidean distance. We sometimes use the probability notion P
also for density function, for instance P(x) means the density function evaluated at x for
continuous random vector x. Let us denote X ∈ X as the feature vector (typically X = Rd),
Y ∈ Y (typically Y = R for regression problems and Y = {0, 1} for classification problems)
as the response that we are trying to predict. For a joint distribution of (x, y) ∈ X × Y,
let us denote the marginal distribution of x and y as DX and DY respectively. For two
positive sequences {ak} and {bk}, we write ak = O(bk) (or an ≲ bn), and ak = o(bk), if
limk→∞(ak/bk) < ∞ and limk→∞(ak/bk) = 0 respectively. Õ(·) denotes the term, neglecting
the logarithmic factors. We also write ak = Θ(bk) (or ak ≍ bk) if ak ≲ bk and bk ≲ ak. We
use Op(·) to denote stochastic boundedness: a random variable Zk = Op(ak) for some real
sequence ak if ∀ϵ > 0, there exists M, N > 0 such that if k > N , P(|Zk/ak| > M) ≤ ϵ. For
two numbers a < b, we use the notation U(a, b) to denote the uniform distribution on [a, b].
For µ ∈ R and σ > 0, we use N(µ, σ2) to denote a normal distribution with mean µ and
variance σ2.

3 s-Happy Multicalibration

We now formally state our generalization of multicalibration.

▶ Definition 2 (s-Happy Multicalibration). Let C ⊆ {R× X → R} be a collection of functions.
For a given distribution supported on X × Y and a mapping s : R × X 7→ R, a predictor
f : X 7→ R is (C, α)-s-happily multicalibrated over D and s if for all c ∈ C:∣∣∣E(x,y)∼D[c(f(x), x) · s(f(x), y)]

∣∣∣ ≤ α. (2)

When D and s are clear from the context, we will also simply say f is (C, α)-happily
multicalibrated. Sometimes we will constrain the range of f to a certain convex set O, for
example, [0, 1]; in this case we say f : X 7→ O is (C, α)-s-happily multicalibrated when it
satisfies Eq. (2). When c(f(x), x) is independent of f and only depends on x, we will simply
write c(x).

ITCS 2023
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s-Happy Multicalibration (Equation (2)) captures several multi-group fairness notions in
the literature. For example, if we let c(f(x), x) be be independent of f , and take s(f(x), y) =
f(x) − y, we recover multi-accuracy [26, 21]; if we take c(f(x), x) = c̃(x) · w(f(x)) for some
functions c̃ and w and s(f(x), y) = f(x) − y, we recover the low-degree multicalibration
notion in [19]; if we take s(f(x), y) to be a non-negative loss function and c(x) to be indicator
functions of different groups, we recover the minimax group fairness in [9].

The HappyMap Meta-Algorithm. We now describe the HappyMap meta-algorithm and
prove its key properties. For simplicity, we describe the population version of our algorithm,
where we are allowed to access E(x,y)∼D[c(f(x), x)s(f(x), y)]. Of course, in practice, we will
need to estimate these quantities from training data, and so we describe the sample version
of Algorithm 1 in Appendix B.1 and derive the corresponding required sample complexity.
In keeping with the multi-group fairness literature [21, 26], we can either use a fresh sample
per iteration or, when samples are limited, apply techniques from adaptive data analysis
[10, 11, 12] to re-use the same samples in each iteration, as suggested in [21].

We consider the general case and aim to return a f : X 7→ O, for a given convex set O,
which is (C, α)-happily multicalibrated. Without loss of generality, let us assume the class C
is symmetric in the sense that c and −c are both in C (we can always augment C̃ by including
−c for c ∈ C̃, so this is without loss of generality). The algorithm is invoked with an initial
predictor f0, which can be trivial (f0(x) = c for all x ∈ X ) or can be an artisanal predictor
imbued with extensive domain knowledge.

Algorithm 1 HappyMap.

Input: Tolerance α > 0, step size η > 0, bound T ∈ N+ on number of iterations,
initial predictor f0(·), distribution D, convex set O ⊆ R, mapping
s : R × Y → R

Set t = 0
while t < T and ∃ct ∈ C : E(x,y)∼D[ct(ft(x), x)s(ft(x), y)] > α do

Let ct be an arbitrary element of C satisfying the condition in the while statement
∀x ∈ X , ft+1(x) = ΠO

[
ft(x) − η · c(f(x), x)

]
t = t + 1

end
Output: ft(·)

As in previous work [21, 32, 27, 25], we do not address the complexity of the weak learner
whose job it is to search for functions ct ∈ C satisfying the condition of the while loop, or
to report that none exists. The problem is at least as hard as agnostic learning [21, 25].
See [5] for discussion of this issue and its implications for fairness. Henceforth, our unit of
computational complexity will be an invocation of the weak learner, i.e., an iteration of the
while loop.

Analysis. Theorem 3 below summarizes the theoretical guarantees for Algorithm 1. As is
common in the literature, the proof of termination relies on a potential function argument
(see, e.g., [4, 21]). The key new ingredient is the notion of a happy mapping, which provides
the conditions under which we can find the necessary potential function.

We will require some assumptions, which we state and discuss before stating the theorem.

Three Assumptions. (a) For all c ∈ C, x ∈ X , Ex∼DX [c2(f(x), x)] ≤ B, where DX is the
marginal distribution of D on x; (b) There exists a potential function L : R × Y 7→
R, constants Cl

L, Cu
L, positive constant κL > 0, such that (1) for all f, f̃ : X 7→ R,
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Cl
L ≤ E(x,y)∼D[L(f(x), y)], (2) Cl

U ≥ E(x,y)∼D[L(f0(x), y)] for the initialization f0, and
(3) E(x,y)∼D[L(f(x), y) − L(f̃(x), y)] ≥ E(x,y)∼D[(f(x) − f̃(x))s(f(x), y)] − κLEx∼DX [(f(x) −
f̃(x))2]; (c) For all y ∈ Y and v ∈ R, L(ΠO[v], y) ≤ L(v, y).

Assumption (a) is routine and Assumption (c) says that the potential function decreases
upon projection with respect to its first coordinate. One concrete example is the case in
which O = Y = [0, 1] and L(v, y) = |v − y|2.

We now turn to Assumption (b), focusing on how to construct the potential function L.
First note that the assumption is closely related to smoothness, a widely used concept in
optimization. We use the following fact.

Fact. If L(·, ·) : R × X 7→ R is 2κL-smooth with respect to its first coordinate, i.e. L(·, ·) is
continuously differentiable with respect to its first coordinate, and the corresponding partial
derivative is 2κL-Lipchitz, then, for all x ∈ X , y ∈ Y and f, f̃ : X 7→ R,

L(f(x), y) − L(f̃(x), y) ≥ ∂uL(u, y)|u=f(x)(f(x) − f̃(x)) − κL(f(x) − f̃(x))2. (3)

Thus, if s(f(x), y) is differentiable with respect to its first coordinate and |∂us(u, y)| ≤ κL,
we can take the potential function to be the anti-derivative of s, specifically, L(f(x), y) =∫ f(x)

g
s(u, y)du for any g ∈ R, as long as we can ensure

∫ f(x)
g

s(u, y)du ≥ Cl
L for all f(x)

and y. Then, taking expectation over both sides of this equation and (3), we can satisfy
(b). In fact, even when the function s(u, y) is not differentiable everywhere with respect
to u, we can still follow the general idea above to construct L, and assumption (b) can
still be satisfied with respect to the expectation of L. For example, in Section 5.2, when
s(u, y) = 1{u ≤ y} − (1 − δ), taking L(f(x), y) = (1 − δ) · f(x) − min(f(x) − y, 0) will satisfy
the desired condition.

▶ Theorem 3. Under Assumptions (a)-(c) above, and if C is symmetric1, then Algorithm 1
with a suitably chosen η = O(α/(κLB)) converges in T = O((Cu

L − Cl
L)κLB/α2) iterations

and outputs a function f satisfying∣∣∣E(x,y)∼D[c(f(x), x)s(f(x), y)]
∣∣∣ ≤ α.

Proof of Theorem 3. First, since the class C is symmetric, that means as long as we can
prove for all c ∈ C,

E(x,y)∼D[c(ft(x), x)s(ft(x), y)] ≤ α,

for the output ft(·) of Algorithm 1, we will also have for all c ∈ C,∣∣∣E(x,y)∼D[c(ft(x), x)s(ft(x), y)]
∣∣∣ ≤ α.

By our assumption, there exists a potential function L, a constant CL, and a non-negative
constant κL, such that for any x ∈ X ,

E(x,y)∼DL(ft(x), y) − E(x,y)∼DL(ft+1(x), y) ≥ E(x,y)∼D(ft(x) − ft+1(x))s(ft(x), y)
− E(x,y)∼DκL(ft(x) − ft+1(x))2.

1 Recall that symmetry is without loss of generality.
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As a result, we have

E(x,y)∼DL(ft(x), y) − E(x,y)∼DL(ft+1(x), y)
≥E(x,y)∼DL(ft(x), y) − E(x,y)∼DL

(
ft(x) − ηct(ft(x), x), y

)
≥E(x,y)∼Dηct(ft(x), x) · s(ft(x), y) − κLE(x,y)∼D(ηct(ft(x), x))2.

The first inequality is because of (c) in our assumption and the second inequality is because
of (b) in our assumption.

Given Ex∼DX [c2(f(x), x)] ≤ B, if there exists ct ∈ C, E(x,y)∼D[ct(ft(x), x)s(ft(x), y)] > α

E(x,y)∼DL(ft(x), y) − E(x,y)∼DL(ft+1(x), y)
≥ηE(x,y)∼Dct(ft(x), x) · s(ft(x), y) − κLE(x,y)∼D(ηct(ft(x), x))2 ≥ ηα − κLη2B.

Take η = α/(2κLB), we have

E(x,y)∼DL(ft(x), y) − E(x,y)∼DL(ft+1(x), y) ≥ α2

2κLB
.

Since Cu
L ≥ E(x,y)∼DL(f0(x), y) and E(x,y)∼DL(f(x), y ≥ Cl

L for all f by assumption,
each update will result in a progress at least α2

2κLB for each iteration if it happens, we know
there are at most 2κLB(Cu

L − Cl
L)/α2 updates. ◀

In the following sections, we will always assume C is symmetric. Also, for simplicity, we
assume C is closed with respect to L2-norm.

4 Application: Algorithmic Fairness in Prediction Intervals

Conformal prediction is a popular approach to uncertainty quantification in prediction models.
Continuing in this vein, Romano et al. proposed a new group fairness criterion, equalized
coverage [32], in which the goal is to construct a prediction interval I(x) that covers y

with comparable probability across all protected groups of interest. More precisely, given
a collection of disjoint protected demographic groups A ⊂ 2X , the set-valued function
I : X → R provides equalized coverage if

P(y ∈ I(x) | x ∈ A) ≥ 1 − δ, for all A ∈ A. (4)

In this section, we focus for simplicity on one-sided prediction intervals; by applying our
results twice, or to a non-conformity score, we achieve two-sided intervals (see Corollary 5 and
Remark 6 below). Moreover, as usual in the multicalibration literature, our results hold even
for the case of arbitrarily intersecting population subgroups. A somewhat different version of
the intersectional case was also studied in [20, 24]; later, we will explain how HappyMap can
be used for this as well.

In the one-sided version of (4), we let I(x) = (lδ(x), ∞) be a one-sided (1 − δ)-prediction
interval, and study the following coverage criterion:

P(x ∈ A) · |P(y ≥ lδ(x) | x ∈ A) − (1 − δ)| ≤ α, for all A ∈ A, (5)

which can then be rewritten as

|E[1(x ∈ A) · (1(y ≥ lδ(x)) − (1 − δ))]| ≤ α, for all A ∈ A.
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A few remarks about the problem definition are in order. First, there is a trivial deterministic
solution to the original equalized coverage problem in Equation (4), whether or not the
groups are disjoint: just set I(x) = R.2 Similarly, while our (one- or two-sided) version
in Equation (5) rules this out, it admits the trivial randomized solution in which we take
lδ(x) = −∞ with probability 1−δ, and lδ(x) = ∞ with probability δ. One approach to ruling
out both trivial solutions is to require a stronger condition, multivalidity, proposed in [20, 24].
Adopting our notation, instead of asking for a small |P(y ≥ lδ(x) | x ∈ A) − (1 − δ)| as in
Eq. (6), multivalidity requires |P(y ≥ lδ(x) | x ∈ A, lδ(x)) − (1 − δ)| to be small. Analogous
to the relationship between multicalibration and multi-accuracy, multivalidity is stronger
than our requirement in Equation (6). As discussed below, we can use HappyMap for this as
well. In Theorem 9, we will further provide a different argument that our algorithm is doing
something nontrivial, even when we do not enforce multivalidity.

In the following, we generalize Eq. (5) to obtain the Intersectional Equalized Coverage
requirement:

sup
c∈C

∣∣∣E[c(x)(1{y ≥ lδ(x)} − (1 − δ))]
∣∣∣ ≤ α, (6)

where C denotes an arbitrary pre-specified collection of functions (including indicator functions
of pre-specified sub-populations, and also more general continuous functions, which is typical
in the multicalibration literature). For example, C might be the functions that can be
computed by decision trees of a fixed depth. Applying HappyMap with s(l, y) = (1−δ)−1{l ≤
y}, yields the following result.

▶ Theorem 4. Suppose that y | x is a continuous random variable 3, the conditional density
of y given x is upper bounded by Kp, and |E[y]| < C for some universal constant C > 0.
In addition, suppose that Ex∼DX [c2(x)] ≤ B for all c ∈ C. Then for a suitably chosen
η = O(α/(KpB)), using the potential function L(l, y) = (1 − δ) · l − min(l − y, 0), HappyMap
(Algorithm 1) converges in T = O(KpB2/α2) steps, and outputs a function lδ(·) satisfying

sup
c∈C

∣∣∣E[c(x)(1{y ≥ lδ(x)} − (1 − δ))]
∣∣∣ ≤ α.

Proof of Theorem 4. In order to apply Theorem 3, it is sufficient to verify that the potential
function L(l, y) = (1 − δ)l − min(l − y, 0) satisfies the smooth-like condition, that is

E[L(l, y) − L(l′, y)] ≥ E[(l(x) − l′(x))s(f(x), y)] − κLE[(l(x) − l′(x))2].

In particular, we have

L(l, y) − L(l′, y) =(1 − δ)(l − l′) + min(l′ − y, 0) − min(l − y, 0)
=(1 − δ)(l − l′) + (l′ − l)1{l − y, l′ − y < 0} − (l − y)1{1′ − y > 0 > l − y}

+ (l′ − y)1{1′ − y < 0 < l − y}
=(1 − δ)(l − l′) + (l′ − l)1{l − y < 0} − (l′ − y)1{1′ − y > 0 > l − y}

+ (l′ − y)1{1′ − y < 0 < l − y}
=(l − l′)((1 − δ) − 1{l − y < 0}) + (l′ − y)(1{1′ < y < l} − 1{1′ > y > l}).

2 This does not mean that previous algorithms are trivial!
3 Our analysis can be directly extended to the case where y is stored in finite precision and α is taken to

be larger than the precision error
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We have

|(l′ − y)(1{1′ < y < l} − 1{1′ > y > l})| ≤|l − l′| · (1{1′ < y < l} + 1{1′ > y > l})).

The above inequality is due to the fact that if a |l − l′| perturbation can change the sign of
l′ − y, then |l′ − y| < η|c(x)|.

Assuming the conditional density of y given x is upper bounded by Kp, we then have

E[|(l′ − y)(1{ℓ′ < y < l} + 1{ℓ′ > y > l})|] ≤ Lη2E[c(x)2] ≤ Kp|l − l′|2.

In addition, we verify that E[L(l, y)] has a uniform lower bound. We discuss in cases. If
l −y < 0 (i.e., l < y), we have L(l, y) = (1−δ) · l −min(l −y, 0) = (1−δ) · l − l +y = y −δ · l >

(1−δ)·y; if l−y > 0 (i.e., l > y), we have L(l, y) = (1−δ)·l−min(l−y, 0) = (1−δ)·l > (1−δ)·y.

Since |E[y]| < C for some universal constant C > 0 by assumption, we have

E[L(l, y)] ≥ −(1 − δ)C. ◀

The following Corollary is immediate from Theorem 4.

▶ Corollary 5. If we apply the algorithm above (i.e. the HappyMap specialized to our current
setting) to two different cutoff values δ/2 and (1 − δ/2) and obtain lδ/2(x) and l1−δ/2(x)
respectively, we obtain the two-sided prediction interval I(x) = [lδ/2(x), l1−δ/2(x)] such that
supc∈C E[c(x)(1{y ∈ I(x)} − (1 − δ))] ≤ 2α.

▶ Remark 6. In the conformal prediction literature, there is another commonly used way to
construct two-sided prediction intervals based on non-conformity scores. More specifically, the
non-conformity score m(x, y) is a metric that measures how the response y fails to “conform”
to a prediction h(x), where h is an arbitrarily fixed prediction function. For example, a
popular choice of the non-conformity score for regression tasks is m(x, y) = |y − h(x)|. More
choices of the non-conformity scores can be found in [35, 1]. Given a non-conformity score
m(x, y), the set {y : m(x, y) ≤ f(x)} will naturally yield a two-sided interval for y. To this
end, applying our method directly to (x, ỹ) with ỹ := m(x, y) will then produce a valid (1− δ)
prediction interval.

Recall that multivalidity [20, 24] bounds |P(y ≥ lδ(x) | x ∈ A, lδ(x)) − (1 − δ)|" for all
A and value of lδ(x). Analogous to the relationship between multicalibration and multi-
accuracy, multivalidity is generally stronger than the requirement in Equation (6), resulting
in potentially much longer prediction intervals (a more detailed discussion is deferred to
Section E.3). By considering c of the form c(lδ(x), x) = 1{lδ(x) ∈ I} for I ∈ I, where I is the
collection of small bins I = {[−C, −C + λ], [−C + λ, −C + 2λ], ..., [C − 2λ, C − λ], [C − λ, C]}
for some discretization level λ and C being the upper bound of |y|, s-Happy Multicalibration
recovers multivalidity, and applying Algorithm 1 yields a new algorithm that achieves
multivalidity.

The extension of (4) to intersecting sets is also considered in [17]. They define the set
collection A ex post facto, after the training data have been collected, to be all sufficiently
large subsets of the training set, and then enumerate over all these (exponentially many) sets.
In contrast, as is typical in the multicalibration literature, we name the sets a priori and rely
on weak learning, which can be more efficient than exhaustive search when the collection A
has special structure, even if the collection is infinite.

HappyMap produces a prediction interval that is fair with respect to a large collection
of groups. In the following, we present a result analyzing the utility, i.e., the width of the
constructed prediction interval, when HappyMap is applied as post-processing of a high-
quality, but not necessarily group-fair, initial conformal map l0. We are agnostic regarding
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the source of l0: it may be given to us or we may obtain it by splitting the sample and
building a high-quality but fairness unawareness conformal mapping using any standard
method.

To facilitate the analysis, we first introduce the following two definitions on quantiles.
These definitions are standard and follow the literature of quantile estimation, see [6, 36]
and the reference therein.

▶ Definition 7. For a distribution Q with supp Q ⊂ [−C, C] for a universal constant C > 0,
let us denote the τ -quantile of Q by Fτ (Q) := {t ∈ R : Q((−∞, t]) ≥ τ and Q([t, ∞)]) ≥ 1−τ}.
In case of Fτ (Q) being an interval, we write tmin(Q) = min Fτ (Q) and tmax(Q) = max Fτ (Q).
Q is said to have a τ -quantile of type q ∈ (1, ∞) if there exist constants αQ > 0 and bQ > 0
such that for all s ∈ [0, αQ],

Q(tmin − s, tmin) ≥ bQsq−1

Q(tmax, tmax + s) ≥ bQsq−1.

Since we are not interested in a single distribution Q on R but in distributions P on X × R,
the following definition extends the previous definition to such P .

▶ Definition 8. Let p ∈ (0, ∞], q ∈ (1, ∞) and P be a distribution on X × R. P is said to
have a τ -quantile of p-average type q, if there exists a set ΩX ⊂ X such that P(x ∈ ΩX ) = 1,
supp(P (·|x)) ⊂ [−C, C] for a universal constant C > 0, P (·|x) has a τ -quantile of type q

for all any x ∈ ΩX , and there exist αP (·|x) and bP (·|x) as defined in Definition 7, such that
E[|b−p

P (·|x)(x) · α
(1−q)p
P (·|x) (x)|] < ∞.

We then have the following result showing that applying HappyMap comes at nearly no
cost in the width of the prediction interval: if the input l0 is close to the optimal quantile
function, then the HappyMap algorithm can preserve this approximation.

▶ Theorem 9. Suppose the conditions in Theorem 4 hold, and P , the distribution on X × Y,
has a δ-quantile of p-average type q. Assume pq/(p + 1) ≥ 2. Let l∗

δ (x) ∈ Fδ(P (· | x)) be any
element in the δ-quantile of Y | X = x. If an input l0 satisfies Ex∼PX

(l0(x) − l∗
δ(x))2 ≤ β,

then there exists a universal constant C, such that the output of the HappyMap Algorithm 1,
lδ, satisfies

E(lδ(x) − l∗
δ(x))2 ≤ Cβ.

Proof of Theorem 9. Recall that we use the potential function L(l, y) = (1−δ)l−min(l−y, 0)
when we apply HappyMap to this current problem. According to the derivations in the Proof
of Theorem 4. We have that

|E[L(l, y)] − E[L(l′, y)]|
≤ |E[(l − l′)((1 − δ) − 1{l − y < 0})]| + |E[(l′ − y)(1{1′ < y < l} − 1{1′ > y > l})]|
≤ |E[(l − l′)((1 − δ) − 1{l − y < 0})]| + Kp · E[|l − l′|2].

Since l∗
δ(x) = arg minl E[L(l, y) | x], and P(l∗

δ(x) < y | X = x) = 1 − δ, we have

E[L(l0, y)] − E[L(l∗
δ , y)] ≤ Kp · E|l0(x) − l∗

δ(x)|2 ≤ Kpβ.

Moreover, by the Proof of Theorem 4, we have E[L(l, y)] ≤ E[L(l0, y)], implying

E[L(l, y)] − E[L(l∗
δ , y)] ≤ Kpβ.
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Then by Theorem 2.7 in [36], and use the fact that the function L2 norm is dominated by
the function Lpq/(p+1) norm when pq/(p + 1) ≥ 2, we have

E[|l(x) − l∗
δ(x)|2] ≤ C ′ · E[L(l, y)] − E[L(l∗

δ , y)] ≤ C ′Kpβ. ◀

The above theorem indicates that when the conditional distribution Y | X = x is unimodal
and symmetric4, if we have a good initialization function f0 with approximation error
β = o(1), then the prediction interval constructed as in either Corollary 5 or Remark 6 would
converge to the width of the optimal (1 − δ) prediction interval [l∗

δ/2(x), l∗
1−δ/2(x)] where we

know the distribution Y | X = x exactly. We note that β = o(1) can be potentially achieved
by first splitting the data into two halves: l0 is trained on the first half, and processed by
HappyMap on the second half. Such data-splitting is common in the conformal prediction
literature [29, 33, 30].

5 Application: Target-independent Learning

Kim et al. [27] demonstrated that, with an appropriate collection C of propensity reweighting
functions, training a (C, α)-multicalibrated predictor on source data Dso yields efficient
estimation of statistics of interest on data drawn from previously unseen target distributions
Dta [27]. In this section, we use HappyMap to extend these results to problems in target-
independent learning that lie beyond the statistical estimation problems considered in [27]:
target-independent prediction and uncertainty quantification. Our approach also yields a
fruitful new perspective on analyzing missing data, giving new solutions to this problem.

Let us use Z = {so, ta} to indicate sampling in the source and target distributions,
respectively. As in [27], we consider a joint distribution Djoint over (x, y, z) triples. The
source, respectively, target, populations Dso and Dta can be viewed as the joint distribution
on (x, y), conditioning on z = ta or z = so, respectively. We similarly use the notation DX

z

and DY
z to denote the marginal distributions obtained by conditioning on z ∈ Z. As in [27],

we assume certain functional relationship between x and y is the same on the distributions
Dso and Dta, which is known as “ignorability” in the causal inference literature and “covariate
shift” in machine learning. Formally, we have:

▶ Assumption 10 (Covariate shift assumption). For a triplet (x, y, z) drawn from Djoint,

P(x,y,z)∼Djoint
(x, y, z) = P(x)P(y|x)P(z|x).

Based on Assumption 10, we have

P(x,y)∼Dso (y|x) = P(x,y)∼Dta (y|x).

By convention and without loss of generality, throughout this section, we assume uniform
prior over Z = {so, ta}, i.e. P(z = ta) = P(z = so).

A common tool for performing covariate shift studies is Propensity score reweighting.
The propensity score is defined to be e(x) = P(z = so|x), and the propensity score ratio
1−e(x)

e(x) = P(z=ta|x)
P(z=so|x) can be used to convert an expectation over DX

so to an expectation over
DX

ta. However, without observing samples from Dta at training time, we cannot estimate the
propensity score ratio. Kim et al. [27] proposed multicalibrating with respect to the class
C = { 1−σ(x)

σ(x) : σ ∈ Σ}, for a family of functions Σ that (it is hoped) captures the propensity
score ratios of interest. They showed that multicalibration with respect to this class (in fact,

4 Similar assumptions have been used in conformal prediction literature, see, e.g. [29, 30].
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even multi-accuracy with respect to this class) ensures that the resulting predictor provides
estimation accuracy competitive with the best propensity reweighting function in the class C,
a notion they call universal adaptability. In the realizable, case, when the propensity ratio
for the unseen target domain is in the class C, f is guaranteed to yield a good estimate for
the statistic of interest on the target domain.

5.1 Universally Adaptive Predictors under ℓ2 Loss
As a warm-up exercise, which does not require the full power of HappyMap, we consider
universal adaptivity of predictors f : X → [0, 1] under ℓ2 loss. This is more complex than
statistical estimation under covariate shift, and it requires a more complicated class of
functions c(f(x), x).

Formally, our goal is to obtain a prediction f with a small estimation error

E(x,y)∼Dta
(f(x) − E(x,y)∼Dta

[y|x])2

for Y = [0, 1]. We note that this quantity is commonly used as a measure of the quality of a
prediction function. By Assumption 10 (covariate shift), E(x,y)∼Dso

[y|x] = E(x,y)∼Dta
[y|x]),

yielding

E(x,y)∼Dta
(f(x) − E(x,y)∼Dta

[y|x])2 = E(x,y)∼Dta
(f(x) − E(x,y)∼Dta

[y|x])(f(x) − y)
= E(x,y)∼Dta

(f(x) − E(x,y)∼Dso
[y|x])(f(x) − y).

Using the propensity score ratio, we have

E(x,y)∼Dta
(f(x)−E(x,y)∼Dso

[y|x])(f(x) − y) =

E(x,y)∼Dso

(
1 − e(x)

e(x) (f(x) − E(x,y)∼Dso
[y|x])

)
(f(x) − y).

At training time, we cannot see the samples from Dta, so we cannot estimate e(·) from
samples as in the classical reweighting approach. However, following [27], one can use a
class { 1−σ(x)

σ(x) : σ ∈ Σ} to represent the propensity score ratios of interest, and try to find an
f : R 7→ [0, 1] with a small error:

sup
σ∈Σ

E(x,y)∼Dso

(
1 − σ(x)

σ(x) (f(x) − E(x,y)∼Dso
[y|x])

)
· (f(x) − y).

This almost gives us the form we need in Eq. (2); it remains only to deal with E(x,y)∼Dso
[y|x].

This is accomplished by introducing a class P = {p : X 7→ [0, 1]} containing, it is hoped, a
good approximation of E(x,y)∼Dso

[y|x], and trying to find an f : R 7→ [0, 1] such that∣∣∣ sup
σ∈Σ,p∈P

E(x,y)∼Dso

(
1 − σ(x)

σ(x) (f(x) − p(x))
)

· (f(x) − y)
∣∣∣ ≤ α, (7)

for some small value α. In other words, we take C = {c(f(x), x) = ± 1−σ(x)
σ(x) (f(x) − p(x)) :

σ ∈ Σ, p ∈ P}, where σ, p ∈ (0, 1). We define the approximation error by

β1(p) =
√

E(x,y)∼Dso
(p(x) − E(x,y)∼Dso

[y|x])4

and

β2(σ) =

√
E(x,y)∼Dso

(1 − σ(x)
σ(x) − 1 − e(x)

e(x) )4.

Although we do not use the full power of HappyMap, since we have stayed with the
original mapping (f(x) − y), we can nonetheless apply Theorem 3 to obtain:
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▶ Theorem 11. Assume σ(·) ∈ (c1, c2), where 0 < c1 < c2 < 1. Then, we have |c(f(x), x)| ≤
2(1 − c1)/c1 := B. Let β = infσ∈Σ,p∈P

√
2B2β1(p) + 2β2(σ). Suppose we run Algorithm 1

with a suitably chosen η = O(α/B), then the algorithm converges in T = O(2B/α2) iterations,
using the potential function L(f(x), y) = 1/2(f(x) − y)2 and O = [0, 1], which results in∣∣∣E(x,y)∼Dso

[ 1 − e(x)
e(x) (ft(x) − E(x,y)∼Dso

[y|x])(ft(x) − y)]
∣∣∣ ≤ α + β,

for the output ft(·) of Algorithm 1.

The proof of Theorem 11 is deferred to Section D.1.

5.2 Universally Adaptive Conformal Prediction
In this section, we apply HappyMap to achieve universally adaptive conformal prediction,
wherein we train a conformal prediction model on source data while ensuring validity on
unseen target distributions, in the covariate shift setting.

Recall that the goal of standard conformal prediction is to obtain a (1 − δ) prediction
interval for y. In this section, for simplicity of presentation, we consider the one-sided interval
(l(x), ∞) and focus on the case in which the response y is continuous5 Letting Dta denote
the unseen target distribution, our goal is to construct l(·) such that P(x,y)∼Dta

(l(x) ≤ y) is
close to the desired level (1 − δ):

|P(x,y)∼Dta
(l(x) ≤ y) − (1 − δ)| ≤ α.

Note that the above inequality implies P(x,y)∼Dta
(l(x) ≤ y) ≥ 1 − δ − α, which is the

more standard requirement used in the conformal prediction literature. By Assumption 10,
one can rewrite this probability:

P(x,y)∼Dta
(l(x) ≤ y) = E(x,y)∼Dso

(1 − e(x)
e(x) 1{l(x) ≤ y}

)
.

Now, in the same spirit as in the previous section (specifically, Eq. (7)), we seek l(·) such
that∣∣∣ sup

σ∈Σ
E(x,y)∼Dso

[ 1 − σ(x)
σ(x) · (1{l(x) ≤ y} − (1 − δ))]

∣∣∣ ≤ α, (8)

for unseen Dta and for some α > 0. To this end, we apply HappyMap (Algorithm 1) with
C = {c(x) = 1−σ(x)

σ(x) : σ ∈ Σ} and the mapping s(l, y) = 1{l ≤ y} − (1 − δ).

▶ Theorem 12. Suppose that y | x is a continuous random variable, the conditional density
of y given x is upper bounded by Kp, and |E[y]| < C for some universal constant C > 0.
Assume Ex[c2(x)] ≤ B, ∀c ∈ C, and consider the HappyMap meta-algorithm (Algorithm 1)
with s(l, y) = 1{l ≤ y} − (1 − δ). Then for any target distribution whose marginal density
function of x, pta(x), and let β satisfy infc∈C E[(c(x) − pta(x)

pso(x) )2] ≤ β2, there exists a choice
of η = O(α/(KpB)) such that Algorithm 1 terminates in T = O(LB/α2), using the potential
function L(l, y) = (1 − δ) · l − min(l − y, 0). The resulting function lδ satisfies

|P(x,y)∼Dta
(lδ(x) ≤ y) − (1 − δ)| ≤ α + β.

5 As in Section 4, we can handle the two-sided case with two applications of our technique (Corollary 5).
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The proof Theorem 12 follows a combination of the universal adaptivity argument and the
analysis of Theorem 4, and is deferred to Section D.2.

▶ Remark 13. To our knowledge, Tibshirani et al. [37] were the first to consider conformal
prediction under covariate shift. Their method relies on exact knowledge of (1 − e(x))/e(x).
In contrast, we achieve a valid asymptotic coverage guarantee without exact knowledge of
(1 − e(x))/e(x), provided something close to this score is in Σ.

Finally, we note that we can extend our results to universally adaptive equalized coverage
and universal multivalidity if we enrich C. For example, by including in C both {c(x) =
1−σ(x)

σ(x) : σ ∈ Σ} and the sub-population indicator functions, we can achieve equalized coverage
under covariate shift.

5.3 Prediction with Missing Data
s-Happy Multicalibration can also be applied to the study of missing data. Suppose we
consider learning tasks that predict response y ∈ [0, 1] based on features x ∈ X . Let X

denote the complete data matrix, where the i-th row xi is the features of the i-th observation
and the response vector is Y = (y1, ..., yn)⊤. Suppose the data are i.i.d., with (xi, yi)

i.i.d.∼ D.
In the missing data problem, some entries of X are missing, so we define x

(1)
i to be the

components of xi that are observed for observation i, and x
(0)
i the components of xi that are

missing. In addition, we let Ri be the indicator of complete cases, that is, Ri = 1 iff xi is
fully observed (i.e. x

(1)
i = xi).

There are three major missing data mechanisms: missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR). We say a dataset is MCAR
if the distribution of missingness indicators R is independent of X. For MAR, R depends on
X only through its observed components, i.e., Ri ⊥⊥ x

(0)
i |x(1)

i . For MNAR, the distribution
of R could depend on the missing components of X. Our method, described next, applies to
all three mechanisms.

Suppose our goal is to learn a predictor function f such that the test mean squared error
(MSE) E(x,y)∼D[(y − f(x))2] is small. There are two principal methods in the literature:
weighting and imputation. The weighting approach [31] minimizes the following loss function
that is evaluated on the complete data,

arg min
f

n∑
i=1

1{Ri = 1}w(xi)(yi − f(xi))2, (9)

where w(xi) approximates P(xi|Ri=1)
P(xi) .

We will adapt the weighting approach to our framework, and use C as a class
of functions where some c(f(x), x) ∈ C approximates P(x|Ri=1)

P(x) (E[y|x] − f(x)). Since
E(x,y)∼D[(y − f(x))2] can be equivalently written as E(x,y)∼D|R=1[P(x|Ri=1)

P(x) (E[y|x] − f(x)) ·
(y − f(x))]. Instead of minimizing the loss function as in (9), we aim to find an f such that
supc∈C E(x,y)∼D|R=1[c(x)(y − f(x))] ≤ α, where C is a class of functions that approximates
P(x|Ri=1)

P(x) (E[y|x]−f(x)). Applying HappyMap with such a function class C and s(f, y) = f −y,
we obtain the following result.

▶ Theorem 14. Suppose infc∈C

√
E[(c(f(x), x) − P(x|Ri=1)

P(x) (E[y|x] − f(x))]2 ≤ β, and

sup
c∈C

E[c2(f(x), x)] ≤ B.
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Consider the HappyMap meta-algorithm (Algorithm 1) with s(f, y) = f −y. Then there exists
a suitable choice of η = O(α/B) such that Algorithm 1 terminates in T = O(LB/α2), using
the potential function L(f(x), y) = 1/2(f(x) − y)2 and O = [0, 1]. The resulting function lδ
satisfies

E(x,y)∼D[(y − f(x))2] ≤ α + β.

The proof of Theorem 14 is deferred to Section D.3.
▶ Remark 15. The analysis above considered learning a predictor with small mean squared
error in the missing data setting. The same idea can be used to other settings when there
is missing data, including constructing prediction intervals when part of the observed data
are missing, and enforcing multi-group fairness notions (that are studied in Section 4) with
missing data.

6 Discussion and Conclusion

In this paper, we propose s-Happy Multicalibration, a generalization of multi-calibration,
unifying many existing algorithmic fairness notions and target-independent learning ap-
proaches, and yielding a wide range of new applications, including a new fairness notion for
uncertainty quantification, a novel technique for conformal prediction under covariate shift,
and a different approach to analyzing missing data. At a higher level, we advance the field of
macro-learning.

An interesting future direction is to extend s-Happy Multicalibration to (low-dimensional)
representation functions. As argued recently in the deep learning community, pre-training
or representation learning is a powerful tool in improving final prediction accuracy6. The
hope is that a suitable extension of s-Happy Multicalibration for representation learning
will further facilitate target-independent learning by using an extended HappyMap that
post-processes the representation learned through pre-training. In addition, our current
target-independent learning requires the covariate shift assumption (that is, the conditional
distribution y | x is invariant across different environments). An interesting question is to
study how to use s-Happy Multicalibration for target-independent learning when there are
some other types of invariance, e.g., as in invariant risk minimization (IRM) [2, 8].

The power of the “multi-X”/macro-learning framework, including s-Happy Multicalib-
ration, stems from choosing a rich collection C. However, a rich C means a harder task for
the weak agnostic learner, and increased sample complexity. To fully realize the potential of
macro-learning it would be helpful to understand, even from the perspective of heuristics,
the trade-off between the power of C and the computational complexity of the weak learner.
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A Additional Literature Review

Hébert-Johnson et al. introduced the method for obtaining efficient multi-calibrated predictors
in the batch setting [22], multicalibration in the online setting has a long history in statistics
(not with this name, however; see, for example, [16, 34] and the references therein). In parallel
with [22], [25] introduced notions of multi-group fairness, including statistical parity subgroup
fairness and false positive subgroup fairness. [23] extends the notion of multicalibration to
higher moments in the batch setting, and [20] provides an online solution. In particular, taking
s(f(x), y) = f(x)k − yk recovers the raw moment version of moment multicalibration; they
also consider calibrating high-order central moments using a novel and different technique.
Moreover, multicalibration has also been applied in the batch setting to solve several problems
of the same flavor: fair ranking [14]; ommiprediction, which is roughly learning a predictor
that, for a given class of loss functions, can be post-processed to minimize loss for any
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function in the class [18]; and providing an alternative to propensity scoring for the purposes
of generalization to future populations [27]. We summarize those previous concepts in the
following table and show their relationship with our new notion.

Table 1 Summary of the relationship with prevoius concepts.

Relationship between previous concpets and the s-Happy Multicalibration
Concept name choice of c(f(x), x) choice of s(f(x), y)
Multiaccuracy [26] c(x) f(x) − y

Multicalibration [21] c(f(x), x) f(x) − y

Low-degree Multicalibration [19] c̃(x)w(f(x)) for some function c̃ f(x) − y

Minimax Group Fairness [9] 1{x ∈ G} for demographic group G non-negative loss
Omni-predictor [18] (more in Ap-
pendix E.1)

1{f(x) ∈ Iv} and c(x)1{f(x) ∈ Iv} f(x) − y

B Omitted Details for Section 3

B.1 Details for the Sample Version Algorithm
In this section, we will provide the corresponding sample version algorithm for Algorithm 1
and its formal theoretical guarantee. Before that, similarly as in [26], let us introduce an
informal but handy concept. For a dataset D, we use E(x,y)∼D to denote the empirical
expectation over D. Throughout this section, we assume supc∈C ∥c∥∞ ≤ B0 for some universal
constant B0 > 0.

▶ Definition 16 (Dimension of a function class). We use d(C) to denote the dimension
of an agnostically learnable class C, such that if the sample size m ≥ C1

d(C)+log(1/δ)
α2 for

some universal constant C1 > 0, then the random samples Sm from D guarantee uniform
convergence over C with error at most α with failure probability at most δ, that is, for any
fixed f and fixed s with ∥s∥∞ ≤ C2 for some universal constant C2 > 0:

sup
c(f(x),x)∈C

∣∣∣E(x,y)∼D[c(f(x), x)s(f(x), y)] − E(x,y)∼Sm
[c(f(x), x)s(f(x), y)]

∣∣∣ ≤ α.

Examples of such upper bounds for this dimension include metric entropy for C.
Given the above preparations, let us provide the following sample version algorithm.

Algorithm 2 HappyMap.

Input: Step size η > 0, bound T ∈ N+ on number of iterations, initial predictor
f0(·), distribution D, convex set O ⊆ R, mapping s : R × Y → R, T

validation datasets D0, · · · , DT , each one with m samples
Set t = 0
while t < T and ∃ct ∈ C : E(x,y)∼Dt

[c(ft(x), x)s(ft(x), y)] > 3α/4 do
Let ct be an arbitrary element of C satisfying the condition in the while statement
∀x ∈ X , ft+1(x) = ΠO

[
ft(x) − η · c(f(x), x)

]
t = t + 1

end
Output: ft(·)
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▶ Theorem 17. Under our assumptions, if C is symmetric, suppose we run Algorithm 2
with a suitably chosen η = O(α/(κLB)) and m = Ω(T · d(C)+log(1/δ)

α2 ), then with probability
at least 1 − δ, the algorithm converges in T = O((Cu

L − Cl
L)κLB/α2), which results in∣∣∣E(x,y)∼D[c(f(x), x)s(f(x), y)]

∣∣∣ ≤ α

for the final output f of Algorithm 2.

Proof. We can take a suitably chosen m = Ω(T · d(C)+log(1/δ)
α2 ), such that for all t ∈ [T ],∣∣∣E(x,y)∼D[c(ft(x), x)s(ft(x), y)] − E(x,y)∼Dt

[c(ft(x), x)s(ft(x), y)]
∣∣∣ ≤ α/4.

Thus, whenever Algorithm 2 updates, we know

E(x,y)∼D[c(ft(x), x)s(ft(x), y)] ≥ α/2.

Thus, the progress for the underlying potential function is at least α2

8κLB . Following similar
proof of Algorithm 1, as long as T satisfying (CU

L − Cl
L)/ α2

8κLB < T , we know Algorithm 2
provides a solution f such that∣∣∣E(x,y)∼D[c(f(x), x)s(f(x), y)]

∣∣∣ ≤ α. ◀

▶ Remark 18. The sample version results for all the theorems in Section 4,5 can naturally
follow the above theorem. We will not reiterate that in our paper.

C Omitted Details for Section 4

C.1 Proof of Remark 5
Proof. Since 1{y ∈ I(x)} = 1{y ≤ lδ/2(x)}−1{y ≤ l1−δ/2(x)} and (1−δ) = (1−δ/2)−δ/2,
we have

1{y ∈ I(x)} − (1 − δ) = [1{y ≤ lδ/2(x)} − δ/2] − [1{y ≤ l1−δ/2(x)} − (1 − δ/2)].

Therefore, supc∈C E[c(x)(1{y ∈ I(x)} − (1 − δ))] ≤ supc∈C E[c(x)(1{y ≤ lδ/2(x)} − δ/2] +
supc∈C E[c(x)(1{y ≤ l1−δ/2(x)} − (1 − δ/2))] ≤ 2α ◀

D Omitted Details for Section 5

D.1 Proof of Theorem 11
Proof. C = {c(f(x), x) = ± 1−σ(x)

σ(x) (f(x) − p(x)) : σ ∈ Σ, p ∈ P}, where σ, p ∈ (0, 1)
andL(f(x), y) = 1/2(f(x) − y)2 and O = [0, 1]. Then, we directly apply the proof of
Theorem 3, and we can obtain for all σ ∈ Σ and p ∈ P ,∣∣∣E(x,y)∼D[ 1 − σ(x)

σ(x) (ft(x) − p(x))(ft(x) − y)]
∣∣∣ ≤ α.

To obtain the final guarantee, for any f̂ , let us denote δσ,f̂ ,p = ϕ∗
f̂
(x) − ϕσ,f̂ ,p(x), where

ϕ∗
f̂

is the underlying truth 1−e(x)
e(x) (f̂(x) − E(y|x)) and ϕσ,f̂ ,p(x) = 1−σ(x)

σ(x) (f̂(x) − p(x)).
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E(x,y)∼Dta
[
(
f̂(x) − E(y|x)

)2] = E(x,y)∼Dso
[ 1 − e(x)

e(x) (f̂(x) − E(y|x))(f̂(x) − y)]

= E(x,y)∼Dso
(ϕσ,f̂,p(x)(f̂(x) − y)) + Es((ϕ∗

f̂
(x) − ϕσ,f̂,p(x))(f̂(x) − y))

≤ α +
√

E(x,y)∼Dso
(f̂ − y)2E(x,y)∼Dso

δ2
σ,f̂,p

.

We should notice that we can choose suitable σ ∈ Σ, p ∈ P and the above bound can be
written as:

E(x,y)∼Dta
[
(

f̂(x) − E(y|x)
)2

] ≤ α + min
σ∈Σ,p∈P

√
Es(f̂ − y)2E(x,y)∼Dso

δ2
σ,f̂ ,p

Now, the only task is to bound minσ∈Σ,p∈P E(x,y)∼Dso
δ2

σ,f̂ ,p
. Let us denote the bias

βst = min
σ∈Σ

√
E(x,y)∼Dso

(1 − σ(x)
σ(x) − 1 − e(x)

e(x) )4.

Thus, we have

min
σ∈Σ,p∈P

E(x,y)∼Dso
δ2

σ,f̂ ,p
≤ 2βst

√
E(x,y)∼Dso

(f̂ − E(y|x))4+

2 min
p∈P

√
E(x,y)∼Dso

[ 1 − σ̄(x)
σ̄(x) ]4

√
Es[p(x) − E(y|x)]4

where σ̄ is the one reach the min of βst. So, combining with the fact that f, p, y ∈ [0, 1], we
can obtain the final result. ◀

D.2 Proof of Theorem 12
Proof. Following Theorem 3 and proof of Theorem 4 (which shows that the function
s(l, y) = 1{l ≤ y} − (1 − δ) satisfies the conditions (b)-(c) of Theorem 3), we have∣∣∣ sup

c∈C
E(x,y)∼Dso

[c(x) · (1{l(x) ≤ y} − (1 − δ))]
∣∣∣ ≤ α.

Since P(x,y)∼Dta
(l(x) ≤ y) = E(x,y)∼Dso

(
1−e(x)

e(x) 1{l(x) ≤ y}
)

, we then have

|P(x,y)∼Dta (l(x) ≤ y) − (1 − δ)|

≤α + |E(x,y)∼Dso [(c(x) − 1 − e(x)
e(x) ) · (1{l(x) ≤ y} − (1 − δ))]|

≤α +
√

E(x,y)∼Dso [(c(x) − 1 − e(x)
e(x) )2] · E(x,y)∼Dso [(1{l(x) ≤ y} − (1 − δ))2]

≤α + β,

where the last inequality uses the fact that |1{l(x) ≤ y} − (1 − δ)| < 1. ◀

D.3 Proof of Theorem 14
Proof. Following Theorem 3 and the fact that the potential function L(f(x), y) = 1/2(f(x)−
y)2 satisfies the conditions (b)-(c) of Theorem 3), we have∣∣∣ sup

c∈C
E(x,y)∼Dso

[c(x) · (y − f(x))]
∣∣∣ ≤ α.
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Since E(x,y)∼D[(y − f(x))2] can be equivalently written as E(x,y)∼D|R=1[P(x|Ri=1)
P(x) (E[y|x] −

f(x)) · (y − f(x))], we then have

E(x,y)∼D[(y − f(x))2]

≤α + |E(x,y)∼Dso [(c(f(x), x) − P(x | Ri = 1)
P(x) (E[y|x] − f(x))) · (y − f(x))]|

≤α +
√

E(x,y)∼Dso [(c(x) − P(x | Ri = 1)
P(x) (E[y|x] − f(x)))2] · E(x,y)∼Dso [(y − f(x))2]

≤α + β,

where the last inequality uses the fact that after projection to O = [0, 1], |f(x) − y| < 1. ◀

E Relation to the existing literature

E.1 Relation to Omnipredictors
In a recent work, [18] proposed to use a notion of multi-calibration to create an (L, C)
omnipredictor – a predictor that could be used to optimize any loss in a family L, that is,
the output of such a predictor can be post-processed to produce a small loss compared with
any hypothesis from a given function class G.

We first state the definition of multi-calibration in [18].

▶ Definition 19 ([18]). Let D be a distribution on X × {0, 1}. The partition S = {S1, ..., Sm}
of X is α-multicalibrated for G, D if for every i ∈ [m] and c ∈ G, the conditional distribution
Di = D | x ∈ Si satisfies

|CovDi
(c(x), y)| ≤ α. (10)

While this notion is seemingly different from the Definition 2. [18] showed that when
c(x) are Boolean functions, Definition 19 is equivalent to mean-multicalibration [23]. Our
next theorem further extends this relationship to real-valued function c, and shows that our
generalized notion in Equation (2) in fact implies (10).

▶ Theorem 20. Consider a function class G. Denote Λ = {λ, 3λ, 5λ, ..., 1 − λ]}and Iv =
[v − λ, v + λ]. Take IΛ = {Iv}v∈Λ and we let C include 1{f(x) ∈ Iv} and c(x)1{f(x) ∈ Iv}
for c ∈ G. Assuming |c(x)| < L and P(x ∈ Iv) ≥ γ.

If a predictor f satisfies α-multi-calibration with respect to C in Equation (2) with
s(f(x), y) = f(x)−y, then the set partition SΛ defined by this predictor f satisfies ( (L+1)α

γ +λ)-
multi-calibration with respect to G in Equation (10).

Proof. Recall that G include 1{f(x) ∈ Iv} and c(x)1{f(x) ∈ Iv}. Let us define Sv = {x :
f(x) ∈ Iv}. Then (2) implies

|E[1{x ∈ Sv} · (f(x) − y)]| < α,

|E[1{x ∈ Sv}c(x) · (f(x) − y)]| < α.

Then

|E[1{x ∈ Sv}c(x) · (y − E[y | x ∈ Sv])]| ≤ α + |E[1{x ∈ Sv}c(x) · (f(x) − E[y | x ∈ Sv])]|
≤ α + |E[1{x ∈ Sv}c(x) · (E[f(x) − y | x ∈ Sv])]| + |E[1{x ∈ Sv}c(x) · (f(x) − E[f(x) | x ∈ Sv])]|
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For the second term, we have

|E[1{x ∈ Sv}c(x) · (E[f(x) − y | x ∈ Sv])]| ≤ |E[1{x ∈ Sv}|c(x)| · α

P(x ∈ Sv) ]| ≤ αL.

For the third term, since |f(x) − E[f(x) | x ∈ Sv]| < λ for any x ∈ Sv, we have

|E[1{x ∈ Sv}c(x) · (f(x) − E[f(x) | x ∈ Sv])]| ≤ LλP(x ∈ Sv).

Combining all the pieces, we have

|E[1{x ∈ Sv}c(x) · (y − E[y | x ∈ Sv])]| ≤ (L + 1)α + LλP(x ∈ Sv),

implying

|Cov(c(x), y | x ∈ Sv)| =|E[c(x)(y − E[y | x ∈ Sv]) | x ∈ Sv]|

= |E[c(x)(y − E[y | x ∈ Sv]) · 1{x ∈ Sv}]|
P(x ∈ Sv)

≤ (L + 1)α
γ

+ λ. ◀

E.2 Generalized Statistical Parity Subgroup Fairness
Kearns et al. [25] consider multi-parity (also called statistical parity subgroup fairness), in
which, given a pre-specified collection of possibly intersecting demographic subgroups, the
demographics of those assigned a positive outcome are the same as the demographics of the
population as whole. In this section, we show that the constraints of statistical parity and
equality of false positive (and false negative) rates can be expressed by appropriate choice
of mappings in HappyMap. The multi-group versions of these guarantees can be achieved
trivially via a constant function. In this section, in contrast to [25], we do not give guarantees
for our algorithms. We state our observations in anticipation of extensions of HappyMap to
constrained optimization.

Following [25], we aim to find randomized classifiers that satisfy this fairness notion. We
consider binary classification, where Y = {0, 1}. We let U(x) = 1{U < f(x)} for uniform
random variable U ∼ U(0, 1), where f(x) ∈ [0, 1] denotes a fitted probability function such
that U(x) ∼ Bern(f(x)). Suppose there is a collection of demographic group indicator
functions G = {g : X → {0, 1}, where g(x) = 1 indicates that an individual with features x

is in group g. The multi-parity requirement says that, for all g ∈ G ,

|P(g(x) = 1) · (P(U(x) = 1) − P(U(x) = 1 | g(x) = 1))| ≤ α. (11)

This inequality can be rewritten as

|E[(1{g(x) = 1} − P(g(x) = 1)) · 1{U < f(x)}]| ≤ α.

This notion only considers fairness auditors that are indicator functions where the range
of g is {0, 1}. In the following, we generalize multiparity to allow real-valued g’s:

sup
g∈G

∣∣∣E[(g(x) − E[g(x)]) · 1{U < f(x)}]
∣∣∣ ≤ α, (12)

where G ⊂ [0, 1]X denotes a collection of auditors with possibly continuous ranges. As
suggested by [26], this allows the inclusion of more flexible statistical tests.
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By taking c(f(x), x) = g(x) − E[g(x)], and s(f, y) = 1{U < f}, an application of
HappyMap to this setting (with the slight modification that the while condition should
check ∃g ∈ G : EU,(x,y)∼D[(g(x) − E[g(x)]) · (1{ft(x) > U})] > α, where the expectation is
taken over the randomness of both the data and U) yields the following guarantee.

▶ Theorem 21. Suppose that Ex∼DX [c2(x)] ≤ B for all c ∈ C. Taking a suitably chosen
η = O(α/B), then HappyMap (Algorithm 1), when run with T = O(B/α2) and the potential
function L(f(x), y) = (1 − δ) · f(x) − EU [min(f(x) − U, 0)] outputs a function l(·) satisfying

sup
g∈G

E[(g(x) − E[g(x)]) · 1{U < f(x)}] ≤ α.

Proof of Theorem 21. The proof of Theorem 21 directly follows the proof of Theorem 4,
by replacing the y there by U . The same derivation still apply to this case, and we omit the
details here. ◀

▶ Remark 22. We can similarly generalize the false positive subgroup fairness notion considered
in [25], that is, |P(g(x) = 1, y = 0) · (P(U(x) = 1) − P(U(x) = 1 | g(x) = 1))| ≤ α, to the case
where we consider all groups that can be identified by certain classifiers: supg∈G

∣∣∣E[(g(x) −

E[g(x) | y = 0]) · 1{U < f(x)} | y = 0]
∣∣∣ ≤ α. Applying HappyMap to the distribution

D | y = 0 yields a classifier that satisfies this constraint.

E.3 Comparison between marginal coverage and calibrated coverage
In this section, we compare the notion in Eq. (6) and multivalidity, in the setting where
C = {1}. In this special case, we call them marginal coverage and calibrated coverage
respectively. We first introduce some basics and definitions as below.

Suppose y is a continuous random variable. For δ > 0, we aim to construct the (1 − δ)
prediction interval Cn(x) = (l(x), u(x)) based on n i.i.d. samples (xi, yi) ∼ Px,y, the
joint distribution of (x, y). Following the set-up in [20, 3], the prediction interval Cn(x) is
constructed based on a non-conformity score m(x, y), eg. |y−h(x)| for an arbitrary prediction
function h, and a conformity threshold function q(x). Then Cn(x) = {y : m(x, y) < q(x)}.

The marginal coverage guarantee asks that Cn(x) satisfies

P(y ∈ Cn(x)) = 1 − δ, (13)

for all Px,y, where the probability is taken over all training samples and (x, y) ∼ Px,y.
The calibrated coverage guarantee asks that Cn(x) satisfy

P(y ∈ Cn(x) | q(x) = q) = 1 − δ, (14)

for all Px,y and almost all q. We then have the following theorem.

▶ Theorem 23. Suppose that an interval Cn(x) constructed based on n samples has 1 − δ

calibrated coverage in the sense of condition (14). Then for any Px,y, with probability 1,

|Cn(x)| = ∞,

at almost all points q that q(x) = q is non-atom of Pq, where Pq denotes the marginal
distribution of q(x).

Here, a point q is a non-atom for Pq if q is in the support of Pq and if P(B(q, ϵ)) → 0 as
ϵ → 0, where B(q, ϵ) is the Euclidean ball centred at q with radius ϵ.



Z. Deng, C. Dwork, and L. Zhang 41:23

We note that the key part of this Theorem is the “finite-sample” and view Cn(·) as an
interval produced by applying a certain method to the training samples. When a certain
method produces an interval from n samples and needs to satisfy (14) for a large class of
distributions, Theorem 23 suggests such an interval has to have infinite length. In contrast,
the standard conformal prediction methods, such as the split conformal [35], produces a
finite-length interval that satisfies Equation (13) for all Px,y.
▶ Remark 24. In [3], some regularity conditions on Px,y are imposed, making the class of
distributions smaller and therefore Theorem 23 does not apply. This suggests that some
regularity conditions are necessary for calibrated coverage, but not for marginal coverage.
Furthermore, under certain additional regularity conditions, calibrated coverage would
produce short intervals and rule out long ones. For example, let us assume y ∈ [−1, 1].
Taking the nonconformity score m(x, y) = |y|, we have that all intervals that satisfy (14)
must have length less than 2. This is due to the fact that q(x) has to be smaller than 1,
otherwise conditioning on q(x) = q for q ≥ 1 would make the left hand side of (14) equal to
1. In contrast, the intervals that satisfy (13) might have infinite length. For example, taking
Cn(x) = R for (1 − δ) × 100% samples of x, and Cn(x) = 0 otherwise. Such a Cn(x) satisfies
(13), but not the stronger requirement (14).
▶ Remark 25. We would also like to point out that Theorem 23 only holds for all non-atomic
points in Pq. It suggests that discretization of q(x) is necessary to achieve calibrated coverage
(or multivalid) under weak assumptions.

Proof of Theorem 23. The key idea of this proof follows [29] and [17]. Let us prove the
theorem for any given distribution Pq. For ease of presentation, we omit the subscript q and
write the distribution as P . We first fix arbitrary ϵ, B > 0.

For a non-atom point x0, there exists a δ0 > 0 such that PP (q(x) ∈ B(q(x0), δ0) < ϵn

where ϵn = 2{1 − (1 − ϵ2/8)1/n}. We also let B0 = B
2(1−δ) .

We then define a new distribution Q, by letting

PQ(A) = PP (A ∩ Sc) + PU (A ∩ S),

where S = {(x, y) : q(x) ∈ B(q(x0), δ0)} and U is uniform in {(x, y) : q(x) ∈
B(q(x0), δ0), |y| ≤ B0} and has total mass PP (S).

By definition, we can verify TV (P, Q) ≤ ϵn, and therefore TV (P n, Qn) ≤ ϵ.
Since (14) also holds for Q, we then have∫

Cn(x)
dQ(y | q(x)) ≥ 1 − δ,

for all x such that q(x) ∈ B(q(x0), δ0). For such x’s, we have |dQ(y | q(x))| ≤ 1
2B0

, implying
|Cn(x)| ≥ 2B0(1 − δ) = B. Therefore, for such x’s

PQ(|Cn(x)| > B) = 1,

and it follows that

PP (|Cn(x)| > B) ≥ PQ(|Cn(x)| > B) − ϵ = 1 − ϵ.

Since ϵ and B are arbitrary, we complete the proof. ◀
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Abstract
We study the bit complexity of two related fundamental computational problems in linear algebra
and control theory. Our results are: (1) An Õ(nω+3a + n4a2 + nω log(1/ϵ)) time algorithm for
finding an ϵ−approximation to the Jordan Normal form of an integer matrix with a−bit entries,
where ω is the exponent of matrix multiplication. (2) An Õ(n6d6a + n4d4a2 + n3d3 log(1/ϵ)) time
algorithm for ϵ-approximately computing the spectral factorization P (x) = Q∗(x)Q(x) of a given
monic n × n rational matrix polynomial of degree 2d with rational a−bit coefficients having a−bit
common denominators, which satisfies P (x) ⪰ 0 for all real x. The first algorithm is used as a
subroutine in the second one.

Despite its being of central importance, polynomial complexity bounds were not previously
known for spectral factorization, and for Jordan form the best previous best running time was an
unspecified polynomial in n of degree at least twelve [8]. Our algorithms are simple and judiciously
combine techniques from numerical and symbolic computation, yielding significant advantages over
either approach by itself.
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42:2 JNF and Spectral Factorization

1. Jordan Normal Form. Given A ∈ Cn×n, find a similarity V ∈ Cn×n such that
A = V JV −1 where J is a direct sum of Jordan blocks, i.e., matrices of type

Jλ :=


λ 1 0 0 . . .

0 λ 1 0 . . .

0 0 λ 1 . . .
...
0 0 0 . . . λ


for eigenvalues λ ∈ C of A. Here J is unique up to permutations but V is not if there
are eigenspaces of dimension greater than one. The existence of the JNF is taught in
undergraduate linear algebra courses and has myriad applications throughout science and
mathematics.

2. Spectral Factorization. Given an n × n monic matrix polynomial

P (x) = x2dI +
∑

i≤2d−1
xiPi

with Hermitian coefficients Pi ∈ Cn×n satisfying P (x) ⪰ 0 for all x ∈ R, find a monic
matrix polynomial Q(x) = xdI+

∑
i≤d−1 xiQi such that P (x) = Q∗(x)Q(x) and det(Q(x))

has all of its zeros in the closed upper half complex plane (where Q∗(x) = xdI +∑
i≤d−1 xiQ∗

i ). Such a Q(x) is guaranteed to exist and is unique [38, 45]. This fact
has been rediscovered several times and goes under many names (such as matrix Féjer-
Riesz/Wiener-Hopf factorization and matrix polynomial sum of squares) in different fields.
Note that the n = 1 case is the fact that a univariate scalar polynomial nonnegative on R
may be expressed as a sum of squares (which can be obtained by considering the real
and imaginary parts of Q(x)), and the d = 0 case is just the Cholesky factorization if we
allow the leading coefficient of P (x) to be an arbitrary positive semidefinite matrix (not
necessarily I).

Both of the above problems have generated a large literature and several proposed methods
for solving them (see Section 1.1 for a thorough discussion). Roughly speaking, these methods
range on a spectrum between symbolic (relying on algebraic reasoning, performing exact
computations with rational numbers, polynomials, field extensions, etc.) and numerical
(relying on analytic reasoning, semidefinite optimization, homotopy continuation, etc.). With
one exception in the case of problem (1) [8], to the best of our knowledge none of these
methods has been rigorously shown to yield a polynomial time algorithm.

This paper provides the first polynomial time bit complexity bounds for problem (2) and
significantly improves the best known bound for (1), in the case when the input matrices
have integer entries1. The algorithms we study are simple and the algorithmic ingredients
employed are not essentially new; rather, our main contribution is to synthesize ideas from
both the symbolic and numerical approaches to these problems, which have in the past
developed largely separately across different fields over several decades, in a way which
enables good bit complexity estimates. At a technical level, the main task is to find good
bounds on both the bit lengths of rational numbers and on the condition numbers of matrices
appearing during the execution of the algorithms. A key theme of our proofs is that bit
length bounds can be used to obtain condition number bounds and vice versa, and that
carefully passing between the two is more effective than either one alone.

1 Or are rational with a common denominator, see the corollaries following the main theorems.
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Our two main results, advertised in the abstract, appear in Sections 2 and 3 as Theorems
9 and 18. Additional preliminaries for each result are included in its section, and further
history and context for our contributions is discussed in Section 1.1. Two notable common
features of our results are:

Our algorithms have good forward error bounds, i.e., they compute approximations to
the exact solution of the given instance (as opposed to backward error, computing exact
solutions of nearby instances, which is the standard notion in scientific computing). This
notion of error is appropriate for mathematical (as opposed to scientific) applications
where discontinuous quantities in the input (such as the size of a Jordan block) can be
meaningful, but typically comes at the cost of higher running times resulting from the
use of numbers with large bit length.
The running times of our algorithms are bounded solely in terms of the number of bits
used to specify the input. This type of result is easier to use than bounds depending on
difficult to compute condition numbers, especially for such ill-conditioned problems. As
such, the key phenomenon enabling our results is that instances of controlled bit length
cannot be arbitrarily ill-conditioned in an appropriate sense.

We conclude with a discussion and open problems in Section 4.

1.1 Comparison to Related Work

Jordan Normal Form

As far as we are aware, the only known polynomial bit complexity algorthm for approximately
computing the JNF A = V JV −1 of a general square rational matrix A ∈ Qn×n with a−bit
entries is [8], obtaining a runtime of O(poly(n, a)) where the degree of the polynomial is not
specified but is seen to be at least twelve2.

In the symbolic computation community, the works [27, 34, 17, 15, 37, 32] gave polynomial
arithmetic complexity3 bounds for computing the “rational Jordan form” of a matrix over
any field. Roughly speaking, the rational Jordan form involves a symbolic representation of
the matrix J where the eigenvalues are represented in terms of their minimal polynomials
over the field. These results are not adequate for our application to spectral factorization,
which requires inverting submatrices of the similarity V , an operation which becomes difficult
in the symbolic representation. Nonetheless our JNF algorithm is heavily inspired by the
ideas in these works, relying on the same reduction to Frobenius canonical form (expressing
A as a direct sum of companion matrices) used in essentially all of them. The main difference
is that we compute the eigenvalues approximately using numerical techniques [35], and are
able to bound the condition number of V by controlling the minimum gap between distinct
eigenvalues as a function of the bit length of the input matrix.

Methods for computing the JNF must inherently involve a symbolic component since the
Jordan structure can be changed by infinitesimal perturbations. It is worth mentioning that
JNF is still not a solved problem “in practice” as trying to compute the JNF of a 50 × 50
matrix using standard sofware packages reveals.

2 The related paper [1] proposed using JNF as an “uncheatable benchmark” for certifying that a device
has high computational power.

3 The works [34, 17] derived bit complexity bounds for certain special cases of input matrices, but not in
general.
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Spectral Factorization

Polynomial spectral factorization has been rediscovered many times. The earliest references
we are aware of are [38, 24, 45, 39, 9]; the reader may consult any of the excellent surveys
[40, 2, 10, 25] for a detailed discussion of the history. More recently, several constructive
proofs of the spectral factorization theorem have been proposed e.g. [23, 2, 12, 26, 11, 13], [3,
§2] (this list is not meant to be comprehensive). While these may be considered constructive
from a mathematical standpoint, bit complexity bounds are not pursued and are not readily
evident from the techniques used4. Two particularly simple algorithms on this list are [2]
(which requires exactly computing the Schur form of a certain matrix and inverting some of
its submatrices) and [3, §2] (which requires solving a semidefinite program). We remark that
unlike JNF, spectral factorization is actually a problem that is frequently solved in practice,
with several of the papers above including numerical experiments.

The work most relevant for this paper is the important paper [18] (see also [31]), which
reduces spectral factorization to computing the JNF of a block companion matrix (see
Section 3 for a definition), and inverting and multiplying some matrices derived from it. Our
contribution is to analyze the conditioning of this approach and combine it with our JNF
algorithm, yielding concrete bit complexity bounds.

One notable advantage of our algorithm is that it works even when the input is degenerate
– i.e., P (x) is only positive semidefinite rather than positive definite – which frequently occurs
in applications. This is in contrast to almost all of the works mentioned above, which only
consider the strictly positive definite case (or even require all roots of det(P (x)) to be distinct)
and appeal to nonconstructive limiting arguments to handle the degenerate case.

A more stringent variant of the problem is to find a real factorization P (x) = QT (x)Q(x)
in the case when P (x) is real symmetric, possibly allowing Q(x) to be rectangular. The
recent works [6, 22] have obtained optimal bounds on the dimensions of Q(x). In this paper,
we restrict our attention to the Hermitian setting.

1.2 Preliminaries
Asmyptotic Notation. We will use O∗(·) to suppress polylogarithmic factors in the input
parameters n (dimension), a (bit length of input numbers), d (degree), and b (desired bits
of accuracy). Logarithmic factors are not the focus of this paper and can be safely ignored
everywhere because all proofs in this paper invoke this notation at most a constant number
of times (in particular, our algorithms do not contain any loops which could lead to blowups
in the exponents of the logarithms).

Numbers and Arithmetic. We say that x ∈ Z⟨⟨a⟩⟩ if x is an integer with bit length at most a

and x ∈ Z⟨a⟩ if x is an integer with bit length at most O∗(a). We use Q⟨a/c⟩ (resp. Q⟨⟨a/c⟩⟩)
to denote the rationals p/q with p ∈ Z⟨a⟩, q ∈ Z⟨c⟩ (resp. Z⟨⟨a⟩⟩,Z⟨⟨c⟩⟩), and Qdy⟨a/c⟩ to
denote the elements of Q⟨a/c⟩ with denominator equal to a power of two; the latter will
sometimes be useful since adding rationals with dyadic denominators does not increase the
bit length of the denominator. For a rational x, let roundc(x) denote the nearest rational
with denominator 2c, which clearly satisfies

4 This is due in each case to one or more of the following operations: solving a linear system without
bounding its condition number, computing the eigenvalues of a matrix or roots of a univariate polynomial
or system of multivariate polynomials “exactly” (which is impossible), solving a semidefinite program
without controlling the volume of its feasible region, computing a Schur or Jordan form of a matrix
“exactly” (also impossible), using an iterative scheme with no rigorous proof of convergence, and assuming
arithmetic is carried out in infinite precision.
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|x − roundc(x)| ≤ 2−c (1)

and can be computed in time nearly linear in the bit length of x. This notation extends
to complex numbers with rational real and imaginary parts in the natural way. The bit
complexity of arithmetic with rational numbers is nearly linear in the bit length (see e.g. [20]).

Matrices. We use Zn×n⟨⟨a⟩⟩ (resp. Zn×n⟨a⟩) to denote integer matrices with entries of bit
length a (resp. O∗(a)), and Qn×n⟨a/c⟩ (similarly Qn×n

dy ⟨a/c⟩, Cn×n⟨a/c⟩, and Cn×n
dy ⟨a/c⟩)

to denote matrices with entries in Q⟨a/c⟩ having a common denominator. For A ∈ Zn×n,
the notation ⟨⟨A⟩⟩ refers to the maximum bit length of an entry of A.

We record the following easy facts about inverses as well as products and sums of pairs
of matrices5, which follow from the adjugate formula for the inverse and the assumption on
common denominators6:

▶ Fact 1 (Bit Length of Matrix Arithmetic).
1. If A ∈ Zn×n⟨a⟩ then A−1 ∈ Qn×n⟨an/an⟩.
2. If A ∈ Kn×n⟨a/c⟩ then A−1 ∈ Kn×n⟨c + an/an⟩, for K = Q,Qdy,C,Cdy.
3. If A, B ∈ Kn×n⟨a/c⟩ then

A + B ∈ Kn×n⟨a/c⟩ and AB ∈ Kn×n⟨a/c⟩,

for K = Q,Qdy,C,Cdy.

Perturbation Theory. We use ∥ · ∥ to denote the operator norm and ∥ · ∥max to denote
the entrywise ℓ∞ norm of a matrix, noting that ∥M∥max ≤ ∥M∥ ≤ n∥M∥max for an n × n

matrix M . We use κ(M) := ∥M∥∥M−1∥ to denote the condition number of an invertible
matrix. We will frequently use the elementary fact:

∥(M + E)−1 − M−1∥ ≤ ∥E∥∥M−1∥
1 − ∥E∥∥M−1∥

· ∥M−1∥ (2)

provided ∥E∥∥M−1∥ < 1, which follows from a Neumann series argument, as well as its
consequence

κ(M + E) ≤ κ(M)1 + ∥E∥∥M−1∥
1 − ∥E∥∥M−1∥

(3)

whenever ∥E∥∥M−1∥ < 1.

Polynomials. We use mingap(·) to indicate the minimum gap between distinct roots of a
polynomial. We use ∥P (·) − Q(·)∥max to denote the coefficient-wise ∥ · ∥max norm of two
matrix polynomials. We extend the notations ⟨⟨·⟩⟩, ⟨·⟩ to polynomials by applying them to
each scalar or matrix coefficient.

5 We do not rely on matrix arithmetic with a superconstant number of matrices in this paper, for which
the bit length bounds necessarily depend on the number of matrices.

6 Allowing distinct denominators in the entries of A, B could increase the bit lengths of AB and A + B
by a factor of n if the denominators are, say, relatively prime
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42:6 JNF and Spectral Factorization

Bit Length of Inverse and Characteristic Polynomial. We will frequently appeal to the
bounds

∥A−1∥ ≤ n!2an whenever A ∈ Zn×n⟨⟨a⟩⟩ is invertible, (4)

which is easily seen by considering the adjugate formula for the inverse, and

⟨⟨χA(x)⟩⟩ ≤ n!2an for A ∈ Zn×n⟨⟨a⟩⟩, (5)

where χA(x) := det(xI − A) denotes the characteristic polynomial.

2 Jordan Normal Form

The companion matrix of a scalar monic polynomial p(x) = xd +
∑

i<d pix
i is the d × d

matrix:

Cp :=


0 1
0 0 1

...
1

−p0 −p1 −p2 −p3 . . . −pd−1



T

(6)

It is easily seen that det(xI − Cp) = p(x). The high level idea of our algorithm is to use
symbolic techniques to reduce the input matrix to a direct sum of companion matrices, and
then use explicit formulas and root finding algorithms to compute the JNF of the companion
matrices. We will rely on the following tools.

▶ Theorem 2 (Exact Frobenius Canonical Form, [16] Theorems 2.2 & 3.2). There is a
randomized Las Vegas algorithm which given A ∈ Zn×n⟨⟨a⟩⟩, outputs a matrix F ∈ Z⟨an⟩
which is a direct sum of companion matrices and an invertible U ∈ Z⟨an2⟩ satisfying
A = UFU−1, with an expected running time of O∗(n5a + n4a2) bit operations.

▶ Theorem 3 (Approximate Polynomial Roots in the Unit Disk, [35] Corollary 2.1.2). There
is an algorithm which given bitwise access7 to the coefficients of a polynomial p ∈ Q[x] of
degree n with all roots z1, . . . , zn ∈ C satisfying |zi| ≤ 1 and a parameter8b′ ≥ log n, computes
numbers z′

1, . . . , z′
n ∈ Cdy⟨b′⟩ such that |z′

i − zi| ≤ 22−b′ for all i ≤ n, using at most O∗(n2b′)
bit operations.

▶ Theorem 4 (Minimum Gap of Integer Polynomials, [33]). If p ∈ Z[x]⟨⟨a⟩⟩ is monic of degree
n, then

mingap(p) ≥ 2−an−2n lg n.

▶ Corollary 5 (Approximate Roots and Multiplicities of Integer Polynomials). There is an al-
gorithm which given an integer polynomial p ∈ Z[x]⟨⟨a⟩⟩ of degree n ≥ 2 with roots z1, . . . , zn ∈
C and a parameter b′ ≥ an + 4n lg n, computes numbers z′

1, . . . , z′
n ∈ Cdy⟨(a + b′)/b′⟩ such

that |z′
i − zi| < 2−b′ for all i ≤ n, using at most O∗(n2(b′ + a)) bit operations. Each z′

i

appears a number of times exactly equal to the multiplicity of zi in p(x).

7 i.e., the algorithm can query the ith bit of the binary expansion of each coefficient in constant time. This
is slightly different from the access model in this paper where rational numbers are given as numerator
and denominator, but it is easy to see that given a rational in Q⟨⟨a/c⟩⟩, the desired binary expansion
needed to apply Theorem 3 can be produced in O∗(a + c) time.

8 The parameter b′ here corresponds to b/n in [35]
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Proof. The largest root of p(x) has magnitude at most the sum of the absolute values of
its coefficients, which is at most M = n2a. Apply Theorem 3 to the polynomial p(Mx),
which has roots in the unit disk, with error parameter b′ + lg(M) = b′ + lg(n) + a + 1 to
obtain numbers z̃1, . . . , z̃n ∈ Cdy⟨(a + b′)/(a + b′)⟩ = Cdy⟨b′/b′⟩ (since b′ ≥ a) with common
denominator. Then for i = 1, . . . n we have z′

i := z̃iM ∈ C⟨(a + b′)/b′⟩ with common
denominator and |z′

i − zi| ≤ 2−b′ . By Theorem 4 the minimum gap between distinct zi is at
least 2−b′+1 since 2n lg n ≥ 1 so this is sufficient to correctly determine the multiplicity of
each zi and replace all z′

i corresponding to a root with the same value. ◀

We will also use an explicit formula for the JNF of a companion matrix as a confluent
Vandermonde matrix (see e.g. [14, 5] for a discussion) in the roots of the corresponding
polynomial.

▶ Theorem 6 ([7]). If C ∈ Cn×n is a companion matrix with distinct eigenvalues λ1, . . . λk ∈
C of multiplicities m1, . . . , mk, then C = WJW −1 with

J = ⊕j≤kJλj

W = [Wλ1 , Wλ2 , . . . , Wλk
]

where Jλj
an mj × mj Jordan block with eigenvalue λj and Wλj

is the n × mj matrix:

Wλj
:=



1 0 0 . . . 0
λj 1 0 . . . 0
λ2

j 2λj 1 . . . 0
λ3

j 3λ2
j

(3
2
)
λj . . . 0

...
λn−1

j (n − 1)λn−2
j

(
n−1

2
)
λn−3

j . . .
(

n−1
mj

)
λ

n−mj

j


, (7)

so that W is a confluent Vandermonde matrix.

Note that the entries of Wλ in (7) are univariate polynomials of degree n in the λi with
coefficients in Z⟨⟨n⟩⟩. We now present the algorithm.

We begin by fully defining and analyzing Step 3 of JNF.

▶ Lemma 7 (Rounded Approximate Eigenvalue Powers). The approximate powers of the
eigenvalues λ̃p

ij ∈ Cdy⟨b′/b′⟩ required in Step 3 may be computed in O∗(n2b′) bit operations
and satisfy

|λ̃p
ij − λij

p| ≤ 2−b′
· n22n+1∥A∥n2+n ≤ 2−b′+an2+5an

for every i, j.

Proof. Suppose we wish to compute powers λ, λ2, . . . , λr for some nonzero eigenvalue λ = λij

appearing in W . Let λ̃ be the approximate eigenvalue produced in Step 2, satisfying
|λ − λ̃| ≤ 2−b′ . We use the following inductive scheme for p = 2, . . . , r ≤ n:

λ̃p := roundb′(λ̃p−1 · λ̃).

First, observe that from Step 2 we have the error estimate |λ − λ̃| ≤ 2−b′ , which implies
that for every p ≤ n:

|λp − (λ̃)p| ≤ 2−b′
· p · |λp−1| ≤ 2−b′

n∥A∥n ≤ 2−b′
· n22n∥A∥n2+n (9)
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Algorithm 1 Algorithm JNF.

Input: A ∈ Zn×n⟨⟨a⟩⟩, desired bits of accuracy b.
Output: J̃ , Ṽ ∈ Cn×n

dy ⟨an3 + b/(an3 + b)⟩.
Guarantee: ∥J − J̃∥ ≤ 2−b∥J∥, ∥V − Ṽ ∥ ≤ 2−b∥V ∥ for some exact JNF A = V JV −1 and
κ(Ṽ ) ≤ 2O∗(an3).

1. Exactly compute the Frobenius Normal Form A = UFU−1 with F ∈ Zn×n⟨an⟩ and U ∈
Zn×n⟨an2⟩ using Theorem 2. Let F = ⊕i≤ℓCi for companion matrices Ci ∈ Zni×ni⟨an⟩.
Let c := maxi⟨⟨Ci⟩⟩.

2. For i = 1 . . . ℓ, apply Corollary 5 to the characteristic polynomial χCi
(x) ∈ Z[x]⟨an⟩ with

accuracy

b′ := b + (n + 1)⟨⟨U⟩⟩ + cn2 + an2 + 4n2 lg n + 7an + 3 lg n (8)

to obtain approximations λ̃i1, . . . , λ̃iki
∈ Cdy⟨b′/b′⟩ to the distinct eigenvalues λi1, . . . , λiki

of Ci, with error |λij − λ̃ij | ≤ 2−b′ , as well as their multiplicities.
3. For i = 1, . . . , ℓ, compute approximate eigenvalue powers λ̃p

i1, . . . , λ̃p
iki

∈ Cdy⟨b′/b′⟩ using
Lemma 7. Let

J̃i := ⊕j≤ki
J

λ̃ij
∈ Cni×ni

dy ⟨b′/b′⟩ and W̃i := [W
λ̃i1

, . . . , W
λ̃iki

] ∈ Cni×ni

dy ⟨b′/b′⟩

as in (7), i.e., substitute the approximate powers λ̃p
ij into the appropriate polynomials

Jλ, Wλ.
4. Output J̃ and Ṽ = UW̃ .

since |λ| ≤ ∥A∥ and ∥A∥ ≥ 1. Thus, it suffices to show that for each p:

|λ̃p − (λ̃)p| ≤ 2−b′
· n22n∥A∥n2+n. (10)

Notice that |λ| ≥ ∥A∥−n since the product of the nonzero eigenvalues of A is given by
ek(A) ≥ 1, for ek the last nonzero elementary symmetric function of A, and each eigenvalue
of A is at most ∥A∥. Since

2−b′
≤ 2−an−2 lg n−1 ≤ ∥A∥−n/2, (11)

we have |λ̃| ≥ ∥A∥−n/2 and thereby |(λ̃)p| ≥ ∥A∥−n2
/2n for every p = 1, . . . n. It now follows

by induction that:

|roundb′(λ̃p−1 · λ̃) − (λ̃)p)| ≤ 2−b′
p · 2n∥A∥n2

|(λ̃)p|

for every p = 2, . . . , r, i.e., where the inductive hypothesis is that in each step the rounding
incurs a relative error of at most 2−b′2n∥A∥n2 , and we observe that the relative errors simply
add up since they are sufficiently smaller than one. Since we also have the upperbound
|(λ̃)p| ≤ 2n∥A∥n, the desired inequality (10) follows. Combining this with (9) yields the
advertised error bound.

The total bit complexity for one eigenvalue is n times the cost of one step of the induction,
which is O∗(nb′). Since there are n eigenvalues, the total cost is O∗(n2b′). ◀

The key condition number bounds used in proving correctness of JNF are the following,
obtained via the minimum eigenvalue gap of W which is controlled using the maximum bit
length of the Ci. Item (iii) is also used in the analysis of the spectral factorization algorithm
in Section 3.
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▶ Lemma 8 (Condition Numbers from Gaps). If A ∈ Zn×n⟨⟨a⟩⟩ and A = UFU−1 =
(UW )J(UW )−1 = V JV −1 for exact Frobenius and Jordan forms as above, then

(i) κ(U) ≤ n2 · n! · 2n⟨⟨U⟩⟩+⟨⟨U⟩⟩ ≤ 2O∗(an3).

(ii) κ(W ) ≤ 2O∗(an3).

(iii) ∥V ∥ ≤ n2⟨⟨U⟩⟩ · 2n+an+n lg n ≤ 2O∗(an2) and ∥V −1∥ ≤ n · (n!)22n⟨⟨U⟩⟩+cn2+2n2 lg n ≤
2O∗(an3).

Proof. For (i), note that ∥U∥ ≤ n2⟨⟨U⟩⟩ and since U ∈ Zn×n⟨an2⟩, we have

∥U−1∥ ≤ n · n!2n⟨⟨U⟩⟩ ≤ 2O∗(an3).

Consequently ∥U∥∥U−1∥ ≤ 2O∗(an3).
The matrix W is a direct sum of Wi, which are confluent Vandermonde matrices in the

eigenvalues λij , which are roots of the χCi
(x). By Theorem 4 and ⟨⟨χCi

⟩⟩ = ⟨⟨Ci⟩⟩, we have

δ := min
i

[mingap(χCi
)] ≥ 2− maxi⟨⟨χCi

⟩⟩n−2n lg n = 2−cn−2n lg n ≥ 2−O∗(an2),

where the last inequality uses c = O∗(an). Then [5, Theorem 1] implies that

∥W −1∥ ≤ n!(1/δ)n ≤ n!2cn2+2n2 lg n ≤ 2O∗(an3).

On the other hand, the formula (7) reveals that ∥W∥ ≤ n · 2n+an+n lg n since |λij | ≤ n2a.
Multiplying these two bounds yields (ii).

Finally, we have κ(V ) ≤ κ(U)κ(W ) and ∥V −1∥ ≤ ∥W −1∥∥U−1∥, establishing (iii). ◀

▶ Theorem 9. The algorithm JNF satisfies its guarantees and runs in expected O∗(nω+3a +
n4a2 + nωb) bit operations.

Proof.

Bit Length of the Output. The bit length assertions in Steps 1 and 2 are immediate from
Theorem 2 and Corollary 5. The bit length of J̃ , W̃ in Step 3 is guaranteed by Lemma 7.
The bit length of the product in Step 4 is implied by Fact 1.

Error Bounds. Step 1 is exact.
Lemma 7 implies that the matrices J̃i, W̃i in Step 3 satisfy

∥Ji − J̃i∥max ≤ 2−b′
, ∥Wi − W̃i∥max ≤ 2−b′+n+an2+5an (12)

This additive bound is preserved under taking direct sums. To obtain the multiplicative
bound, we observe that ∥W∥ ≥ 1 by (7); if there is a Jordan block of size at least two then
∥J∥ ≥ 1 also, otherwise since A is integral we have∏

nonzeroλij

λ
mult(λij)
ij = ek(A) = ek(J) ≥ 1

for the last nonzero elementary symmetric function ek of A, so one of the eigenvalues λij

must be at least ∥A∥−n and we have crudely ∥J∥ ≥ ∥A∥−n ≥ 2−2an. In either case, we
conclude after passing to the operator norm that

∥J − J̃∥ ≤ 2−b′+2an∥J∥ ≤ 2−b∥J∥ and ∥W − W̃∥ ≤ 2−b′+an2+6an∥W∥.
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To obtain the final error bound on Ṽ in Step 4, we observe that

∥V − Ṽ ∥ = ∥UW − UW̃∥ ≤ ∥U∥n2−b′+n+an2+5an ≤ 2−b′+an2+6an+⟨⟨U⟩⟩+2 lg n (13)

since ∥U∥ ≤ 2⟨⟨U⟩⟩+lg n. Since ∥V ∥ ≥ ∥W∥/∥U−1∥ ≥ 2−n⟨⟨U⟩⟩−n lg n−lg n, we obtain the
conclusion

∥V − Ṽ ∥ ≤ 2−b′+an2+6an+⟨⟨U⟩⟩+3 lg n+n⟨⟨U⟩⟩+n log n∥V ∥ ≤ 2−b∥V ∥ (14)

by our choice of b′, as desired.

Condition of Ṽ . The bound (13) together with Lemma 8(iii) implies

∥V − Ṽ ∥∥V −1∥ ≤ 2−b′+an2+6an+⟨⟨U⟩⟩+2 lg n · n · (n!)22n⟨⟨U⟩⟩+cn2+2n2 lg n ≤ 1/2

by the choice of b′ in Step 2. It follows from (3) that

κ(Ṽ ) ≤ κ(V )1 + 1/2
1 − 1/2 ≤ 3κ(V ) ≤ 2O∗(an3), (15)

as desired.

Complexity. Step 1 takes O∗(n5a + n4a2) bit operations by Theorem 2.
Step 2 takes O∗(n2(an3 + b)) bit operations by Theorem 3.
Step 3 takes O∗(an5 + bn2) bit operations by Lemma 7.
The matrix multiplication in Step 4 O∗(nω(b′ + an2)) time.
The total running time is therefore O∗(nωb′ + n4a2) = O∗(nω+3a + n4a2 + nωb), as

advertised. ◀

▶ Corollary 10 (JNF of Rational Matrices with Common Denominator). The algorithm JNF can
easily be used to compute the JNF of A/q for integer A and q: if J̃ , Ṽ is an approximate JNF
of A with b bits of accuracy, then J̃/q, Ṽ is an approximate JNF of A/q with b − lg(q) bits
of accuracy. This fact will be useful in the spectral factorization algorithm in the following
section.

▶ Remark 11. The proof of Theorem 9 yields an explicit estimate on κ(V ) in terms of the
bit lengths a, c, ⟨⟨U⟩⟩ which may be better than the worst case bound of 2O∗(an3) for specific
instances.

3 Spectral Factorization

We briefly review some aspects of the theory of matrix polynomials (the reader may con-
sult [19] for a comprehensive introduction). Given a monic matrix polynomial L(x) =
xdI +

∑
i≤d−1 xiLi with Li ∈ Cn×n, its adjoint is L∗(x) = xdI +

∑
i≤d−1 xiL∗

i , and its latent
roots are the λ ∈ C such that L(λ) is singular. The block companion matrix9 of L is the
dn × dn matrix:

9 This is a “row” companion matrix as opposed to the “column” companion matrices in Section 2. This is
customary in the theory of matrix polynomials.
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CL :=


0 1
0 0 1

...
1

−L0 −L1 −L2 −L3 . . . −Ld−1

 (16)

The following important theorem states the existence of spectral factorizations of positive
definite monic matrix polynomials, and gives a way of computing them using the block
companion matrix.
▶ Theorem 12 (Theorems 5.1, 5.4 of [18]). Suppose P (x) = P ∗(x) = x2dI +

∑
i≤2d−1 xiPi ∈

Cn×n[x] monic of degree 2d satisfies P (x) ⪰ 0 for all x ∈ R. Then:
1. There is a unique monic Q(x) ∈ Cn×n[x] of degree d such that P (x) = Q∗(x)Q(x) and Q

has all of its latent roots in the closed upper half plane.
2. The complex eigenvalues of CP occur in conjugate pairs, and each Jordan block in the

JNF of CP corresponding to a real eigenvalue has even size.
3. Let CP = V JV −1 be a Jordan Form of the block companion matrix of P with block

decomposition

J =:

J+
J0

J−

 , V =:
[

V+ V0 V−
Z+ Z0 Z−

]
for J± corresponding to eigenvalues in the open upper/lower half plane and J0 corres-
ponding to the real eigenvalues and V±, V0 having dn rows. Then

CQ = V≥0J≥0V −1
≥0 , (17)

where

V≥0 = [V+, V
(1/2)

0 ] ∈ Cdn×dn and J≥0 = J+ ⊕ J
(1/2)
0 ∈ Cdn×dn. (18)

Here, for each Jordan block of size 2s in J0, J
(1/2)
0 contains a Jordan block of size s with

the same eigenvalue, and V
(1/2)

0 contains as columns the first s of the corresponding 2s

columns of V0.
The formula (17) gives a one line algorithm for computing Q given access to the exact Jordan
form of P . The key issue is that in order to use an approximate Jordan form Ṽ J̃ Ṽ −1 in the
formula, we must have a good bound on the condition number of V≥0 in order to control
the error incurred during inversion. Note that while Lemma 8 guarantees a bound on κ(V ),
this does not in general imply a bound on its submatrices; indeed, it is known that there
can be square submatrices of V which are singular. The main technical contribution of this
section is to prove a bound on κ(V≥0) in terms of κ(V ) by exploiting the special structure of
V which arises from the structure of CP . This is encapsulated in the following fact, which
may be found in any reference on matrix polynomials (e.g., [19, §1]).
▶ Fact 13. If CP = V JV −1 is the Jordan normal form of an n×n complex matrix polynomial
P of degree d, then there is a matrix X ∈ Cn×2dn such that:

V =


X

XJ

XJ2

...
XJ2d−1

 . (19)
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We show that the least singular value of a column submatrix of any matrix of type (19) may
be related to the least singular values of certain block submatrices.

▶ Lemma 14 (Condition of Submatrices of Companion JNF). Given any Y ∈ Cn×D and
K ∈ CD×D with ∥K∥ ≥ 1, define for k = 1, 2, . . . the nk × D matrices:

Wk :=


Y

Y K

Y K2

...
Y Kk−1

 .

Then

σD(WD) ≥ σD(Wk)√
k(4∥K∥)D(k−D+1)

for every k ≥ D.

Proof. Suppose x ∈ CD is a unit vector satisfying ∥WDx∥ = σD(WD) =: σ. We will show
that

∥Wkx∥ ≤ σ ·
√

k(2D1/D∥K∥)D(k−D+1), (20)

which yields the Lemma by using D1/D ≤ 2. Let q be the characteristic polynomial of K.
By the Cayley-Hamilton theorem, we have

q(K) = KD +
∑

0≤i≤d−1
ciK

i = 0,

for some complex coefficients ci crudely bounded as

max
i≤D−1

|ci| ≤ 2D∥K∥D := α,

by considering their expansion as elementary symmetric functions in the eigenvalues of K.
Using this expression, we obtain the identity:

Y Kjx = Y Kj−DKDx = −
∑

0≤i≤D−1
ciY Kj−DKix,

for every j ≥ D. By the triangle inequality, this yields:

∥Y Kjx∥ ≤ αD · max
i<j

∥Y Kix∥,

which applied recursively gives:

∥Y Kjx∥ ≤ (αD)j−D+1 · max
i<D

∥Y Kix∥ ≤ (αD)j−D+1σ.

Summing over all j ≤ k, we have:

∥Wkx∥2 ≤ σ2 +
k∑

j=D

(αD)2(j−D+1)σ2 ≤ k(αD)2(k−D+1).

Taking a square root establishes (20) and finishes the proof. ◀
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▶ Remark 15. Lemma 14 is a quantitative version of the main claim of [18, §2.3] showing
that V≥0 is invertible whenever V is invertible, which is central to the theory of matrix
polynomials. The proof above is an arguably simpler proof of this fact, and may be of
independent interest. The original proof of [18] relies on a delicate analysis of a certain
indefinite quadratic form.

Finally, we are able to bound κ(V≥0).

▶ Lemma 16. In the setting of Theorem 12,

∥V −1
≥0 ∥ ≤ ∥V −1∥ ·

√
2dn(4 + 4∥CP ∥)dn(dn+1)

and

κ(V≥0) ≤ κ(V ) ·
√

2dn(4 + 4∥CP ∥)dn(dn+1).

Proof. Letting CP = V JV −1, the similarity V has the form (19) for some X ∈ Cn×2dn.
Let X≥0 be the n × dn submatrix of X with columns corresponding to the columns in V≥0.
Apply Lemma 14 with D = dn, k = 2dn, K = J≥0, Y = X≥0, noting that ∥K∥ ≤ 1 + ∥CP ∥
since all of the diagonal entries of J≥0 are eigenvalues of CP and bounded by its norm. This
yields:

σdn(V≥0) ≥
σdn

([
V≥0
Z≥0

])
√

2dn(4 + 4∥CP ∥)dn(dn+1)
,

where Z≥0 has the obvious meaning, yielding the first claim. But
[

V≥0
Z≥0

]
is a column

submatrix of V so

σdn

([
V≥0
Z≥0

])
≥ σdn(V ) ≥ σ2dn(V ).

Combining this with σ1(V≥0) ≤ σ1(V ), we obtain the second claim. ◀

We now present the algorithm SF which approximately computes the Q(·) guaranteed
by Theorem 12 using an approximate Jordan normal form computation and exact inversion.
We rely on the following tool from symbolic computation.

▶ Theorem 17 (Fast Exact Inversion, [43]). There is a randomized algorithm which given
an invertible matrix A ∈ Zn×n⟨⟨a⟩⟩ exactly computes its inverse A−1 ∈ Qn×n⟨an/an⟩ in time
O∗(n3a + n3 log κ(A)).

▶ Theorem 18. The algorithm SF satisfies its guarantees and runs in O∗((dn)6a + (dn)4a4 +
(dn)3b) bit operations.

Proof. Item (2) of Theorem 12 shows that P (x) ⪰̸ 0 if there is an odd size Jordan block
with real eigenvalue.

Assuming this is not the case, that theorem shows that the exact spectral factor Q is
given by the last row of CQ = V≥0J≥0V −1

≥0 . We now prove that the quantity Ṽ≥0J̃≥0J̃≥0
−1

computed by SF is close to CQ. This is a consequence of the following estimates. Given
Lemma 16, the arguments are essentially identical to those in the proof of Lemma 8 and
Theorem 9 (the key point being that the inverse of a well-conditioned matrix is stable under
small enough perturbations).
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Algorithm 2 Algorithm SF:

Input: Coefficients P0, . . . , P2d−1 ∈ Qn×n⟨⟨a/a⟩⟩ (with a common denominator) of a monic
matrix polynomial P (x), desired bits of accuracy b ∈ N.
Output: Q̃0, . . . , Q̃d−1 ∈ Cn×n

dy ⟨a(dn)3 + b⟩ or or a certificate that P (x) ⪰̸ 0 for some x ∈ R.
Guarantee: If P (x) ⪰ 0 then ∥Q̃(·) − Q(·)∥max ≤ 2−b∥Q(·)∥max for P (x) = Q∗(x)Q(X).
1. Compute an approximate Jordan Normal Form (Ṽ , J̃) = JNF(CP , b′′) of CP using

Corollary 10, with J̃ , Ṽ ∈ Cn×n
dy ⟨b′′/b′′⟩ where b′′ is chosen to be the least integer such

that

f1(b′′) + f2(b′′) ≤ 2−b∥P (·)∥max,

where f1, f2 are defined in (24),(30). Determine its eigenvalues on10, below, and above
the real line. If any Jordan block corresponding to a real eigenvalue has odd size, output
“P (x) ⪰̸ 0”.

2. Let

J̃ =:

J̃+

J̃0

J̃−

 , V =:
[

Ṽ+ Ṽ0 Ṽ−
∗ ∗ ∗

]

be a block decomposition such that J̃+ corresponds to eigenvalues of CP in the open
upper half plane and J̃0 corresponds to real eigenvalues of CP .

3. Output the negative of the last row of

C̃Q := Ṽ≥0J̃≥0Ṽ −1
≥0 , (21)

where

Ṽ≥0 := [Ṽ+, Ṽ0
(1/2)

] ∈ Cdn×dn and J̃≥0 := J̃+ ⊕ J̃0
(1/2)

∈ Cdn×dn (22)

and (·)(1/2) is defined as in Theorem 12. The approximate inverse Ṽ −1
≥0 is computed by

exactly computing (Ṽ≥0)−1 using Theorem 17 and letting Ṽ −1
≥0 = roundb′′((Ṽ≥0)−1).

Let B be the maximum of n2a (which is an upperbound on ∥CP ∥) and the two explicit
upper bounds on ∥V ∥ and ∥V −1∥ in Lemma 8(iii) (noting that the bit size ⟨⟨U⟩⟩ can be read
off from the matrix U produced during the execution of JNF, so B is easily computable). It
follows by Lemma 16 and the guarantees of JNF that:

∥V ∥, ∥J∥, ∥V≥0∥, ∥J≥0∥ ≤ B, ∥Ṽ≥0∥, ∥J̃≥0∥ ≤ 2B, ∥V −1
≥0 ∥ ≤ 22(a+lg n)d2n2

B =: B′. (23)

Applying the triangle inequality thrice, we decompose the output error of SF as:

∥Ṽ≥0J̃≥0Ṽ −1
≥0 − V≥0J≥0V −1

≥0 ∥ ≤ ∥Ṽ≥0J̃≥0Ṽ −1
≥0 − Ṽ≥0J̃≥0V −1

≥0 ∥

+ ∥Ṽ≥0J̃≥0V −1
≥0 − Ṽ≥0J̃≥0V −1

≥0 ∥

+ ∥Ṽ≥0J≥0V −1
≥0 − V≥0J≥0V −1

≥0 ∥

≤ 4B2∥Ṽ −1
≥0 − V −1

≥0 ∥

+ B′ · 2B2∥J̃≥0 − J≥0∥

+ B′ · B2∥Ṽ≥0 − V≥0∥.
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The sum of the last two terms is bounded by

22(a+lg n)d2n2
· 2B2(2−b′′

∥J∥ + 2−b′′
∥V ∥) ≤ 2−b′′+2(a+lg n)d2n2

· 2B3 =: f1(b′′). (24)

For the first term, observe that whenever

2−b′′
≤ B′/2 (25)

we have

4B2∥Ṽ −1
≥0 − V −1

≥0 ∥ = 4B2∥roundb′′((Ṽ≥0)−1) − V −1
≥0 ∥ (26)

≤ 4B2(∥roundb′′((Ṽ≥0)−1) − (Ṽ≥0)−1∥ + ∥(Ṽ≥0)−1 − V −1
≥0 ∥) (27)

≤ 4B2(n2−b′′
+

2−b′′∥V −1
≥0 ∥

1 − 2−b′′∥V −1
≥0 ∥

∥V −1
≥0 ∥) (28)

≤ 4B2(n2−b′′
+ 2−b′′

B′

(1/2) B′) (29)

≤ 4B2(2n2−b′′
(B′)2) =: f2(b′′). (30)

By our choice of b′′ in Line 1, the advertised error bound for the output follows. Note that
B = 2O∗(a(dn)3) in the worst case.

Complexity. The running time of JNF in Step 1 is O∗((dn)ω+3a + (dn)4a2 + (dn)ωb′′).
Step 2 does not involve any computation. The time taken to exactly invert Ṽ≥0 in Step 3
using Theorem 17 (after pulling out the common dyadic denominator to obtain an integer
matrix) is O∗((dn)3 · (b′′ + a(dn)3 + b)) by the estimate κ(Ṽ≥0) = 2O∗(a(dn)3) which follows
from (3) and the bound on the first term above. The time taken to round down the entries
of Ṽ≥0

−1
to b′′ bits is O∗((dn)2b′′). The time taken to multiply together the three matrices

is O∗((dn)ωb′′). Thus, the total number of bit operations is dominated by

O∗((dn)ω+3a + (dn)4a2 + (dn)3b′′) = O∗((dn)6a + (dn)4a2 + (dn)3b),

as advertised. ◀

▶ Corollary 19 (Spectral Factorization of Non-Monic Polynomials). Suppose P (x) = V V ∗x2d +∑2d−1
i=0 xiPi is a positive semidefinite Hermitian matrix polynomial with V, Pi ∈ Qn×n⟨a/a⟩

with a common denominator and V invertible. Then an approximate spectral factorization of
P (x) accurate to b−O∗(a) bits (as in Theorem 18) can be computed in expected O∗((dn)6an+
(dn)4(an)2 + (dn)3b) bit operations.

Proof. The rescaled polynomial P̃ (x) := x2dI +
∑2d−1

i=0 xiV −1PiV
−∗ is also positive semi-

definite, has coefficients in Qn×n⟨an/an⟩, and is monic. Applying Theorem 18 yields an
approximate spectral factor Q̃, for which Q(x) = V Q̃(x)V ∗ is an approximate spectral factor
of P (x) with at most a loss of O∗(a) bits of accuracy. ◀

4 Discussion and Future Work

For historical context, proving bit complexity bounds on fundamental linear algebra compu-
tations (such as inversion, polynomial matrix inversion, Hermite/Smith/Frobenius normal
forms [30, 29, 44, 41, 42, 21, 46, 28]) has been a vibrant topic in theoretical computer science
and symbolic computation since the 70’s, with near-optimal arithmetic and bit complexity
bounds being obtained for several of these problems within the last decade (e.g. [43]).
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However, this program did not reach the same level of completion for problems of a spectral
nature, such as the ones studied in this paper. While the polynomial time bounds obtained
in this paper are modest, we hope they will stimulate further work on these fundamental
problems, as well as the important special case of efficiently diagonalizing a diagonalizable
matrix in the forward error model, which remains unresolved (in that we don’t know the
correct exponent of n; the recent work [4] obtains nearly matrix multiplication time for the
backward error formulation of the problem).

Some concrete questions left open by this work are:
1. Improve the running time for computing the JNF of a general matrix. The best known

running time for computing the eigenvalues of a matrix is roughly O(nω+1a) [36], so this
seems like a reasonable goal to shoot for. The current bottleneck is the bound of 2O∗(an3)

on the condition number of the similarity V , which could conceivably be improved to
2O∗(an2).

2. Improve the running time for computing the JNF of the block companion matrix of a
matrix polynomial by exploiting its special structure, particularly (19). This would yield
faster algorithms for spectral factorization.
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Abstract
In this paper, we address sorting networks that are constructed from comparators of arity k > 2.
I.e., in our setting the arity of the comparators – or, in other words, the number of inputs that can
be sorted at the unit cost – is a parameter. We study its relationship with two other parameters –
n, the number of inputs, and d, the depth.

This model received considerable attention. Partly, its motivation is to better understand
the structure of sorting networks. In particular, sorting networks with large arity are related to
recursive constructions of ordinary sorting networks. Additionally, studies of this model have natural
correspondence with a recent line of work on constructing circuits for majority functions from
majority gates of lower fan-in.

Motivated by these questions, we initiate the studies of lower bounds for constant-depth sorting
networks. More precisely, we consider sorting networks of constant depth d and estimate the minimal
k for which there is such a network with comparators of arity k. We prove tight lower bounds for
d ≤ 4. More precisely, for depths d = 1, 2 we observe that k = n. For d = 3 we show that k = ⌈ n

2 ⌉.
As our main result, we show that for d = 4 the minimal arity becomes sublinear: k = Θ(n2/3). This
contrasts with the case of majority circuits, in which k = O(n2/3) is achievable already for depth
d = 3. To prove these results, we develop a new combinatorial technique based on the notion of
access to cells of a sorting network.
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1 Introduction

A sorting network receives an array of numbers and outputs the same numbers in the
non-decreasing order. It consists of comparators that can swap any two numbers from the
array if they are not in the non-decreasing order. The main parameters of a sorting network
are the size, that is, the number of comparators, and the depth, that is, the number of layers
in the network, where each layer consists of several comparators applied to disjoint pairs of
variables. Sorting networks are a classical model in theoretical computer science with vast
literature devoted to them, see, for example [4, 1, 22, 26, 24, 16, 28, 7], see also the Knuth’s
book [17] and the Baddar’s and Batcher’s book [3]. Despite considerable efforts, still there
are many open problems related to sorting networks.
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43:2 Constant-Depth Sorting Networks

In this paper, our main interest is the depth of sorting networks. There is a folklore
(2 − o(1)) log2 n depth lower bound for networks sorting n numbers. It was improved by
Yao [32] and later by Kahale et al. [16] with the current record about 3.27 log2 n. As for upper
bounds, a construction with O(log n) depth was given in [1] and is usually referred to as the
AKS sorting network. However, this construction is very complicated and impractical due to
a large constant hidden in the O-notation. There are some simplifications and improvements
of this construction [26, 28], but they did not make it practical. On the other hand, there
are several simple and practical constructions of depth Θ(log2 n) [17, 4, 24].

One could also consider sorting networks with comparators that have k > 2 inputs.
We will call them k-sorting networks. They appear in the literature since 70s, the setting
is mentioned already in the Knuth’s book [17, Problem 5.3.4.54], followed by numerous
works [30, 25, 5, 23, 9, 21, 29, 11, 33]. They are usually studied to better understand the
structure of ordinary sorting networks. More specifically, they are closely related to recursive
constructions of sorting networks. Having a good construction of a k-sorting network, one
can apply it to its own comparators, getting a construction with smaller k, until eventually
k becomes 2, and we get an ordinary sorting network.

Any k-sorting network with n inputs must have depth at least logk n because otherwise
outputs cannot be connected to all n inputs. Parker and Parbery [25] constructed a simple
and potentially practical k-sorting network of depth ≤ 4 log2

k n (in case when n is an integral
power of k). At the same time, as Chvátal shows in his lecture notes [8], the AKS sorting
network also generalizes to this setting, giving a construction of depth O(logk n). However,
as with the AKS sorting network itself, this construction is complicated and impractical. So
the search for simple constructions continues.

There is a related setting of computing majority function by monotone Boolean circuits.
Majority function receives as input a sequence of n bits and outputs 1 if and only if more
than a half of the inputs are 1’s. Monotone Boolean circuits consist of AND and OR gates
of fan-in 2. There is a quest of constructing a monotone Boolean circuit for majority which
is simple and practical and has depth O(log n). Note that it can only be easier than an
analogous quest for sorting networks. This is because a sorting network can be transformed
into a monotone Boolean circuit which computes majority and has the same depth. Indeed,
if we restrict inputs to {0, 1}n, then each comparator can be simulated by a pair of AND
and OR gates (AND computes the minimum of two Boolean inputs and OR computes the
maximum). And the majority is just the median bit of the sorted array. In particular, we get
an O(log n)-depth monotone circuit for majority from the AKS sorting network. Yet again,
the resulting circuit has the same disadvantages as the AKS construction. But in contrast to
sorting networks, there is an alternative construction of a monotone depth-O(log n) Boolean
circuit for majority due to Valiant [31]. His construction is simple and has a reasonable
constant hidden in the O-notation, but it is randomized. It was partially derandomized
and made closer to practice by Hoory, Magen and Pitassi [13]. But still all known fully
deterministic constructions that are simple and practical are of depth Θ(log2 n).

Just as with sorting networks, we can consider circuits for majority function that are
constructed from threshold gates of fan-it at most k. A threshold gate is a Boolean function
that first sorts its input bits in the non-decreasing order, and then outputs the ith one from
the beginning, for some fixed 1 ≤ i ≤ k. For k = 2, AND and OR are the only two threshold
functions. In general, there are k threshold functions of fan-in k. By taking one copy of
each, we get a comparator of arity k. Thus, as in the case k = 2, a k-sorting network can
be transformed into a circuit of the same depth which computes majority and consists of
threshold gates of fan-in k. In other words, constructing a k-sorting network can only be
harder than constructing a circuit for majority with threshold gates of fan-in k.
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There is a line of work, initiated by Kulikov and Podolskii [19], which addresses the
following question: given d and n, what is the minimal k for which there exists a circuit
with threshold gates of fan-in k, which has depth d and computes majority on n bits? The
paper [19] shows that, up to a polylogarithmic factor, k ≥ n14/(7d+6). In subsequent works,
special attention was given to the case d = 2. In this case, the lower bound of [19] is
k ≥ n14/20. It was improved to k ≥ n4/5 by Engels et al. [10]. Then a linear lower bound
k ≥ n/2 − o(n) was obtained by Hrubes et al. [14]. An upper bound k ≤ 2n/3 + O(1) was
given in [6, 27]. Let us also mention an upper bound k ≤ n − 2 for circuits that only use
majority gates [18, 2].

Now, for d ≥ 3 the situation is less clear. For d = 3, the paper [19] gave an upper bound
k = O(n2/3). In turn, their lower bound in this case is of order n14/27. We are not aware of
any non-trivial upper bound for d ≥ 4.

It is worth mentioning a paper by Hrubes and Rao [15], where they study a more general
problem of computing Boolean functions by depth-2 circuits, consisting of arbitrary functions
of small fan-in as gates. Recently, Lecomte, Ramakrishnan and Tan [20] obtained tight lower
bounds for majority function in this model.

Our results

We address the question analogous to the question of [19], but in the context of k-sorting
networks. Namely, given d and n, we seek for the smallest k for which there exists a k-sorting
network with n inputs and depth d. Of course, any lower bound for threshold circuits is also
a lower bound for k-sorting networks. However, by exploiting a special structure of sorting
networks, we obtain stronger lower bounds. More specifically, we obtain matching upper and
lower bounds for d up to 4 (while for threshold circuits it is open already for d = 3). For
d = 1, 2 we show that k must be equal to n. For d = 3 we show that the optimal k is equal
to ⌈n/2⌉. Finally, for d = 4 we show that k = Θ(n2/3).

Comparing our results with the previous ones (see Figure 1), we get that constructing
sorting networks is strictly harder than threshold circuits for d = 2, 3. Indeed, for d = 2 a
non-trivial threshold circuit exists, while a non-trivial sorting network does not. For d = 3,
there exists a construction with sub-linear k in the model of threshold circuits, but not in
the model of sorting networks. It seems likely that there is a gap for d = 4 as well. Indeed,
for sorting networks the optimal k is Θ(n2/3), while for threshold circuits we have an upper
bound O(n2/3) already for d = 3.

We also obtain a lower bound k ≥ (n/2)1/⌈ d
2 ⌉ for arbitrary d. It is only slightly better

than the lower bound of [19] (and their lower bound, unlike ours, is for threshold circuits).
For large d, both lower bounds are close to n2/d. On the other hand, our proof is much
simpler.

Let us also discuss our results in the context of recursive constructions of sorting networks.
Assume that for some 0 < γ < 1 and for some constant d, we have a construction of an
nγ-sorting network with n inputs and depth d. We can apply this construction to its own
comparators. Namely, we replace each comparator by a sorting network with nγ inputs
and depth d, whose comparators now are of arity (nγ)γ = nγ2 . As a result, we get an
nγ2-sorting network with n inputs and depth d2. By iterating this, we eventually get an
ordinary 2-sorting network of depth O

(
(log n)θ

)
, where θ = log1/γ d.

We raise the following question: do there exist 0 < γ < 1 and d ∈ N with θ = log1/γ d < 2
such that for all n there exists an nγ-sorting network with n inputs and depth d? Our
motivation is to find out, whether there exists a recursive construction of a 2-sorting network
of depth O

(
(log n)2−ε

)
, for some ε > 0. Our results answer negatively to this question for
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PPPPPPPPArity
Depth

d = 1 d = 2 d = 3 d = 4 arbitrary d

sorting networks k = n k = n k = ⌈n/2⌉ k = Θ(n2/3) k ≥ (n/2)1/⌈ d
2 ⌉

circuits k = n n
2 ≤ k ≤ 2n

3 k = O(n2/3) k = Ω̃(n7/17) k ≥ Ω̃(n
14

7d+6 )

Figure 1 Comparison of our results for sorting networks with previous results for threshold
circuits.

d up to 4. Indeed, for d = 2, 3 our lower bound on k is linear in n, while in our problem γ

has to be smaller than 1. Now, for d = 4 our lower bound is γ ≥ 2/3, while in order for
θ = log1/γ 4 to be smaller than 2, the value of γ has to be smaller than 1/2.

We see no indication, however, that the answer to our question is negative for d = 5,
let alone larger d’s. There is a possibility that at a relatively small depth d (say, about 10)
hides a construction that would give us an ordinary sorting network with nearly logarithmic
depth. Therefore, we believe that extending our results to larger d’s would improve our
understanding of sorting networks.

The rest of the paper is organized as follows. In Section 2 we provide the necessary
preliminary information, introduce the main techniques and use it to obtain the first results –
a bound for arbitrary depth and bounds for depth 1 and 2. In Section 3 we prove the results
on sorting networks of depth 3. In Section 4 we prove the result on sorting networks of
depth 4.

2 The Techniques and Initial Results

We start with some terminology related to sorting networks. A depth-d network with n

inputs consists of d + 1 arrays enumerated from 1 to d + 1, each having n cells. We imagine
these arrays arranged from left to right, see Figure 2 for an example. We denote cells in the
arrays by ca,b for a = 1, . . . , d + 1 and b = 1, . . . , n. Cells c1,b are input cells, each of these
cells can contain an arbitrary integral number. We will refer to cells cd+1,b as output cells of
the network.

Next, between any two consecutive arrays of cells there is a layer of comparators. They
are enumerated from 1 to d, so the ath layer is between the ath array and the (a + 1)st
array. Formally, a layer of comparators is a partition of the set {1, 2, . . . , n} into subsets
called comparators. The maximal size of a comparator over all layers is called the arity of
the network (we usually denote the arity by k).

If I ⊆ {1, 2, . . . , n} is a comparator from the ath layer, then it is applied to the cells
ca,i, i ∈ I (we will refer to these cells as input cells of I). It sorts their values in the
non-decreasing order and writes the results into the cells ca+1,i, i ∈ I (we will refer to them
as output cells of I). In this way, given an assignment of the input cells of the network, one
inductively (from left to right) defines the values of the remaining cells of the network. We
say that a network is sorting if for any input the array with index d + 1 (one with the output
cells) is sorted.
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Figure 2 A sorting network with n = 8, d = 3, k = 4. There are 4 arrays of cells going from left
to right. The arrow shows the ordering of the arrays (it goes from small to large indices). The
comparators of the network are given by the colors of circles over the lines. For example, the second
layer has two comparators – the dark gray one has as inputs the 1st, the 2nd, the 5th, and the 6th
cell of the second array, and the light gray one has as inputs the 3rd, the 4th, the 7th, and the 8th
cell of the second array.

Sometimes, to avoid overusing indices of the arrays, we will refer to cells of the ath array
as cells after the ath layer (of comparators) or before the (a + 1)st layer. For example, input
cells are cells before the first layer and cells of the (d + 1)st array are cells after the last layer.

In our upper bound for d = 3 we will employ the following classical principle.

▶ Lemma 1 (Zero-one principle [17]). A network with n inputs sorts all integer sequences in
the non-decreasing order if and only if it sorts all sequences from {0, 1}n in the non-decreasing
order.

By this principle, when constructing sorting networks, we can assume that each input cell
receives either 0 or 1. In fact, we consider only binary inputs in our lower bounds as well.

In the rest of this section, we discuss our technique. It relies on the notion of access.

▶ Definition 2. Let N be a network, c be one of its cells and x ∈ {0, 1}n be an input to
N . We say that we have access to c on x if the following two conditions hold. First, the
value of c on x is 0. Second, there exists x′ ∈ {0, 1}n, obtained from x by changing some
coordinate with 0 to 1, such that the value of c on x′ is 1.

For example, on any input, before the first layer we have access to all cells that contain 0.
If the network sorts all inputs correctly, then after the last layer we have access to a single
cell with 0 – one with the largest index.

The following lemma establishes access stability.

▶ Lemma 3. Consider an arbitrary network (not necessarily one which sorts all inputs
correctly) and an arbitrary cell c in it. Assume that we have access to c on some input
x ∈ {0, 1}n. Next, consider arbitrary x′ ∈ {0, 1}n, obtained from x by changing some
coordinate with 0 to 1. Then, unless the value of c on x′ is 1, we have access to c on x′.

Essentially, this lemma says the following. Consider an arbitrary network and some input to
it. Assume that we have access to some cell c on this input. Next, imagine that we start
flipping some input bits from 0 to 1. Then the only way we can lose access to c is when c

gets value 1.
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Proof of Lemma 3. We have to show that if the value of c on x′ is 0, then we have access
to c on x′. Since we have access to c on x, there exists y ∈ {0, 1}n, obtained from x by
changing some coordinate with 0 to 1, such that the value of c on y is 1. Assume that x′

is the result of flipping the ith coordinate of x from 0 to 1. Similarly, assume that y is the
result of flipping the jth coordinate of x from 0 to 1. Note that x′ ̸= y because the value
of c is 0 on x′ and 1 on y. Hence, i ̸= j. Let z ∈ {0, 1}n be a vector, obtained from x by
flipping xi and xj from 0 to 1. If we write down x, x′, y, z one below another, they will look
as follows:

. . . i . . . j . . .

x . . . 0 . . . 0 . . .

x′ . . . 1 . . . 0 . . .

y . . . 0 . . . 1 . . .

z . . . 1 . . . 1 . . .

Since the value of c on y is 1, the value of c on z is also 1. This is because z can be obtained
from y by flipping the ith coordinate from 0 to 1. And when we flip one of the inputs to the
network from 0 to 1, none of the cells which had 1 can get 0. Indeed, assume for contradiction
that an output of some comparator becomes 0. Then one of the inputs to this comparator
must also become 0. Going backwards, we conclude that one of the inputs to the network
becomes 0. However, we only changed some input bit from 0 to 1, not the other way around.

To conclude, the value of c on z is 1, and z can be obtained from x′ by flipping the jth
coordinate from 0 to 1. Hence, we have access to c on x′. ◀

Since any output of a sorting network depends on all of its inputs, for any sorting network
we have that k ⩾ n1/d. Otherwise the fan-in is just not enough to connect every input to an
output. We can improve this lower bound almost quadratically using access stability.

▶ Theorem 4. For any sorting network with parameters n, k and d we have k ⩾
(

n
2

) 1
⌈d/2⌉ .

Proof. We define an auxiliary directed graph over our network. Its nodes are cells of the
network. Next, for each comparator C, we draw a directed edge from every input cell of C

to every output cell of C. We say that two cells are connected if there is a directed path
between them in the graph.

Each non-input cell c is connected to at most k cells in the previous array (these are input
cells of the comparator which has c as an output). Observe that the value of c is determined
by the values of these k cells. Each of these k cells is connected to at most k cells in the
array 2 steps to the left of c. More generally, in an array i steps to the left of c, there are at
most ki cells connected to c, and their values determine the value of c. Similarly, if we make
i steps to the right of c, there will be at most ki cells connected to c.

We proceed to the proof of the theorem. Assume for contradiction that k <
(

n
2

)1/⌈d/2⌉.
Then k⌈d/2⌉ < n/2. Fix an arbitrary cell c after the ⌊d/2⌋th layer to which we have access on
(0, 0, . . . , 0) (such c exists because if we change the first input bit from 0 to 1, one of the cells
after the ⌊d/2⌋th layer becomes 1). Starting from (0, 0, . . . , 0), we switch input cells that are
not connected to c from 0 to 1, one by one. There are more than n/2 of them, because c is
connected to at most k⌊d/2⌋ < n/2 input cells. Indeed, k is the arity of our network, and
there are ⌊d/2⌋ layers of comparators between c and the input cells. Thus, we will make
more than n/2 switches.

During this, the last array (one with the output cells) is getting filled with 1’s. It does it
in the descending order, due to the fact that our network is sorting. Namely, the last cell of
the array gets 1 first, then the cell before the last cell, and so on. After the ith switch, the
cell getting 1 is the ith one from the end.
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We claim that the last n/2 cells of the last array are connected to c. This will be a
contradiction, because c can be connected to at most k⌈d/2⌉ < n/2 output cells (there are
d − ⌊d/2⌋ = ⌈d/2⌉ layers between c and the last array).

To prove this, we take any i ≤ n/2 and show that ci (a cell of the last array which is
the ith one from the end) is connected to c. Consider the moment before the ith switch.
Currently, the last i − 1 cells of the last array are filled with 1’s and the rest of the cells there
are filled with 0’s. Since we were switching only those input cells that are not connected
to c, the value of c is still 0. Hence, by Lemma 3, we still have access to c. Therefore, it is
possible to change the value of c from 0 to 1 by flipping one of the input bits. If we do this,
the value of ci must also change from 0 to 1 (the last array must remain sorted). This means
that c and ci are connected. This is because when we flip one of the inputs to the network
from 0 to 1, all cells that change their value are connected. Indeed, every array gets exactly
one more cell with 1. And if we consider two adjacent arrays and two cells in them that
change their value, these two cells must go to the same comparator (one cell as an input,
and the other one as an output). Hence, there must be an edge between these two cells. ◀

For the rest of our results we will use the following method of lower bounding the fan-in.

▶ Definition 5. Let m and n be arbitrary natural numbers. We call a sequence of vectors
x1, x2, . . . , xm ∈ {0, 1}n a growing branch if for every 1 ≤ i < m we have that xi+1 is
obtained from xi by changing some coordinate with 0 to 1.

▶ Lemma 6. Consider any sorting network with n inputs. Assume that there exists a growing
branch x1, x2, . . . , xk−1 ∈ {0, 1}n of length k − 1 such that for every i = 1, . . . , k − 1 there
exist at least 2 cells before the last layer to which we have access on xi. Then the arity of
one of the comparators from the last layer is at least k.

Proof. Consider any growing branch x1, . . . , xk−1 ∈ {0, 1}n satisfying assumptions of the
lemma. Let Si be the set of cells before the last layer to which we have access on xi. By
assumptions of the lemma, |Si| ≥ 2 for every 1 ≤ i ≤ k − 1. Set S = S1 ∪ S2 ∪ . . . ∪ Sk−1.
First, we show that |S| ≥ k. Second, we show that all cells from S go the same comparator
in the last layer. So this comparator must have arity at least k.

As for the first claim, for every i < k − 1 consider a cell before the last layer which
becomes 1 when we switch from xi to xi+1. On one hand, we have access to this cell on xi.
On the other hand, we do not have access to it on xi+1, . . . , xk−1 (simply because this cell
equals 1 on these inputs). Hence, for every i < k − 1, we have |Si \ (Si+1 ∪ . . . ∪ Sk−1)| ≥ 1.
Thus,

|S| ≥ |S1 \ (S2 ∪ . . . ∪ Sk−1)| + . . . + |Sk−2 \ Sk−1| + |Sk−1|
≥ k − 2 + |Sk−1| ≥ k.

As for the second claim, note first that for every 1 ≤ i ≤ k − 1 all cells from Si go to the
same comparator. Indeed, otherwise we have access to 2 different output cells on xi.

To show that actually all cells from S go to the same comparator in the last layer, we
show that Si ∩ Si+1 ̸= ∅ for every 1 ≤ i < k − 1. Indeed, Si contains at least 2 cells. One of
them stays 0 when we switch from xi to xi+1. By Lemma 3, we do not lose access to this
cell after the switch. Hence, this cell is also in Si+1. ◀

As a simple illustration of this method, we show that the arity of any sorting network of
depth d ≤ 2 is maximal possible.

▶ Proposition 7. For any sorting network with parameters n, k and d ≤ 2 we have k = n.
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Proof. For d = 1, in a network with k < n, output cells would be disconnected with some
input cells.

Suppose now there is a network with d = 2 and k < n. Call an input to our sorting
network proper if at least 2 comparators from the first layer receive at least one cell with 0
on this input. Observe that we have access to at least 2 cells before the last (that is, after
the first) layer on any proper input. Indeed, if a comparator from the first layer receives at
least one cell with 0, then we have access to one of the outputs of this comparator. Now, on
a proper input we have this for at least 2 different comparators.

To finish the argument, we construct a growing branch of length n − 1, consisting of
proper inputs. By Lemma 6, this shows that k must be equal to n.

Consider the all-zeros input (0, 0, . . . , 0). It is proper because k < n, which means that
there are at least 2 comparators in the first layer, and all of them receive only 0’s. Fix two
input cells going to different comparators in the first layer. Now we can add 1’s to all other
cells one by one. Clearly, each input in the resulting growing branch is proper.

This way we add 1’s in this manner until their number is n − 2. The resulting growing
branch of proper inputs will have length n − 1. ◀

3 Depth 3

▶ Theorem 8. The minimal k for which there exists a sorting network with parameters n, k

and d = 3 is k = ⌈n/2⌉.

The rest of this section is devoted to the proof of this theorem.

Upper bound

It is enough to obtain the upper bound for even n. Indeed, if n is odd, then just take a
sorting network with parameters n + 1, k = (n + 1)/2 = ⌈n/2⌉, d = 3 and plug-in 1 into the
last input cell. The last cells of all the other arrays will also be 1. So we can just “disconnect”
all these cells from the comparators they go in. The resulting network correctly sorts all
sequences from {0, 1}n, and its arity can only be smaller than in the initial network.

From now on, we assume that n is even. We employ the Batcher’s odd-even mergesort [17].
Unfortunately, it gives us arity n/2 + 1 when n is not divisible by 4. To obtain the optimal
arity, we have to modify it a bit. The idea is to merge even elements with odd elements,
instead of merging even with even and odd with odd.

In more detail, we represent arrays as tables of the form:

a1,1 a2,1 a3,1 . . .

a1,2 a2,2 a3,2 . . .
,

where the ordering of the cells is as follows:

a1,1, a1,2, a2,1, a2,2, a3,1, a3,2, . . . , an/2,1, an/2,2.

In the first layer, we sort both rows. Then we sort the following two sets of cells: T0 =
{ai,j | i + j is even} and T1 = {ai,j | i + j is odd}. For example, T0 and T1 look as follows
for n = 10:

a1,1 ∈ T0 a2,1 ∈ T1 a3,1 ∈ T0 a4,1 ∈ T1 a5,1 ∈ T0

a1,2 ∈ T1 a2,2 ∈ T0 a3,2 ∈ T1 a4,2 ∈ T0 a5,2 ∈ T1
.
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Finally, in the third layer, we sort all columns, that is, a1,1 and a1,2, a2,1 and a2,2, and so on.
Description of the network is finished. We note that the arity of its first two layers is n/2,
while the arity of the last layers is just 2.

We now prove that this network is sorting. First, we show that the number of 0’s in T0
and the number of 0’s in T1 always differ by at most 1 after the first layer. For this consider
two rows separately. Both rows are sorted after the first layer. In the first row, the number
of 0’s in T0 is either equal to the number of 0’s in T1 (if the number of 0’s in the row is even),
or is greater by 1 (if the number of 0’s in the row is odd). For the second row, the number of
0’s in T0 is either equal to the number of 0’s in T1 or is less by 1. In total, the number of 0’s
in T0 and T1 differs by at most 1.

After the second layer, T1 and T0 are sorted. This means that if we go from left to right,
first we see some number of columns with two 0’s. Then there might be a column with 0 and
1, but only if the number of 1’s in T1 and the number of 1’s in T0 differ by 1. After this,
there are only columns with two 1’s. Therefore, our array is already almost sorted. The only
problem is that the column with 0 and 1 might have 1 on the top. But this will be fixed
after the third layer.

Lower bound

For any sorting network of depth 3 we show the following: if all its comparators from the
first and the second layer are of arity less than ⌈n/2⌉, then one of the comparators from the
last layer has arity at least1 ⌊n/2⌋ + 2. Since ⌊n/2⌋ + 2 > ⌈n/2⌉, this establishes our lower
bound.

We use Lemma 6. First, we consider the all-zeroes input. Then we start adding 1’s to
it. This gives a growing branch of inputs. We will do this in such a way that for at least
⌊n/2⌋ + 1 inputs in a row, there will be access to at least 2 cells before the last layer.

To have access to 2 different cells before the last layer (that is, after the second layer),
it is sufficient to have access to 2 cells after the first layer that go to different second-layer
comparators. Indeed, if we have access to some cell c, then we also have access to one of the
outputs of the comparator c goes to (namely, to the last 0-output of this comparator). So we
reduced our task to the following. For at least ⌊n/2⌋ + 1 inputs in a row, we should have
access to 2 cells after the first layer that go to different second-layer comparators.

Take any input. Consider cells after the first layer that get value 0 on this input. In the
argument, we represent these cells as colored cubes that are arranged in vertical stacks (see
Figure 3). Namely, for each first-layer comparator C there is a stack which consists of cubes
corresponding to 0-outputs of C. In each stack, the order in which cubes go from the bottom
to the top is the same as the order of the corresponding cells. In particular, on top of each
stack we have the last 0-output of the comparator in question.

Next, we assign a distinct color to each comparator from the second layer. We do this to
define a coloring of our cubes. Namely, given a cube c, its color is defined as follows. First,
we consider the cell which is identified with c. This cell is an input to some second-layer
comparator. The color of this comparator will be the color of c.

We have access to a cell after the first layer if and only if it is the last 0-output of some
first-layer comparator. Such cells are represented by the top cubes of our stacks. Recall
that we want to have access to 2 cells after the first layer that go to different second-layer
comparators. This means to have 2 top cubes of different colors.

1 This claim is quite tight: we gave a construction in which the arity of the first two layers was ⌈n/2⌉,
while the arity of the third layer was just 2.
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Figure 3 Stacks of cubes. The first stack comes from the dark gray comparator in the first layer.
It has two 0-outputs that both go to dark gray comparator in the second layer. So both cubes in
the first stack are dark gray. The second stack comes from the light gray comparator in the first
layer. One of its 0-outputs (one with the largest index) goes to the light gray comparator in the
second layer. So the top cube in the second stack is light gray.

Now, adding 1’s to our input is equivalent to removing the top cubes one by one in some
order. Indeed, assume we change the value of one of the input cells from 0 to 1. Consider
a first-layer comparator C this cell goes to. The last 0-output of C now gets 1. Values of
other cells after the first layer do not change. This just means that the top cube of the stack
assigned to C gets removed.

Since the arity of any first-layer comparator is less than ⌈n/2⌉, each vertical stack has
less than ⌈n/2⌉ cubes. Similarly, since the arity of any second-layer comparator is less than
⌈n/2⌉, for each color there are less than ⌈n/2⌉ cubes of this color. Thus, our task reduces to
the following Cubes problem.

Cubes problem. There are n cubes, arranged in several vertical stacks. Each cube has a
color. Each stack has less than ⌈n/2⌉ cubes (or equivalently, less than half of the cubes). For
each color, there are less than ⌈n/2⌉ cubes (or equivalently, less than half of the cubes) of
this color.

In one step, we can remove a cube from the top of one of the stacks. Show that there
exists a way of removing cubes such that at least ⌊n/2⌋ + 1 times in a row, not necessarily
right from the start, there exist 2 top cubes of different colors (we stress that at different
moments this might be different cubes).
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Solution of the problem. We call a stack monochromatic if all its cubes are of the same
color. For notation convenience, we set m = ⌈n/2⌉. Our argument can be split into the
following two lemmas.

▶ Lemma 9. There is a way of removing at most ⌊m/2⌋−1 cubes from the initial configuration
of cubes such that as the result we either have that

there exist 2 monochromatic stacks of different colors; (A)

or that
there exist 2 top cubes of different colors,
there are at least 3 stacks,
and at least 2 stacks are non-monochrormatic.

(B)

▶ Lemma 10. Consider any configuration of cubes which satisfies either (A) or (B). There
exists an algorithm of removing cubes from this configuration for which the following holds:
(a) when the algorithm stops, at most ⌊m/2⌋ + 1 cubes are left; (b) throughout the execution
of the algorithm (in particular, when the algorithm stops), there exist 2 top cubes of different
colors.

Let us explain why these two lemmas imply a solution to our problem. First, using
Lemma 9, we remove s ≤ ⌊m/2⌋ − 1 cubes so that now our configuration satisfies either (A)
or (B). There are n − s cubes left. Then we apply the algorithm of Lemma 10. When it
finishes, there are r ≤ ⌊m/2⌋ + 1 cubes left. So t = n − s − r + 1 times in a row we had 2
top cubes of different colors. It remains to show that t ≥ ⌊n/2⌋ + 1. Indeed,

t ≥ n − (⌊m/2⌋ − 1) − (⌊m/2⌋ + 1) + 1
= n + 1 − 2 · ⌊m/2⌋ ≥ n + 1 − m = n + 1 − ⌈n/2⌉
= ⌊n/2⌋ + 1.

Proof of Lemma 9. If the initial configuration already satisfies (A), there is nothing left
to do. Assume from now on that it does not. Then all the monochromatic stacks are of
the same color. This implies that there are at least 2 non-monochromatic stacks. Indeed,
otherwise there is at most one non-monochromatic stack, it has less than half of the cubes,
so the color of the monochromatic stacks occupies more than half of the cubes.

Note, that there are at least 3 different stacks because each stack has less than half of
the cubes

Now, if initially there exist 2 top cubes of different colors, then the initial configuration
already satisfies (B). Assume from now one that initially all top cubes have the same color.
Take any 2 non-monochromatic stacks. Both of them contain a cube whose color differs from
the top cubes. In both stacks, mark the highest cube with this property (so that all cubes
above them have the same color as all the top cubes). Among the two marked cubes select
one which has the least distance to the top (that is, one which has the least number of cubes
above it in its stack). Remove all the cubes above the selected one. Now it is on the top. It
remains to explain two things: why do we remove at most ⌊m/2⌋ − 1 cubes, and why does
the resulting configuration satisfy either (A) or (B).

Why do we remove at most ⌊m/2⌋ − 1 cubes. Consider cubes above the marked ones.
It is sufficient to show that there are at most m − 2 of them (then one of the marked cubes
has at most ⌊(m − 2)/2⌋ = ⌊m/2⌋ − 1 cubes above it). Assume for contradiction that there
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are at least m − 1 of them. As we pointed out, all of them have the same color as all the top
cubes. Besides the two stacks under consideration, there exists at least one more stack, and
its top cube also has the same color. So we already have at least (m − 1) + 1 = ⌈n/2⌉ cubes
of the same color, which is impossible.

Why does the resulting configuration satisfy either (A) or (B). Due to the selected cube,
now we have cubes of different colors on the top. There are still at least 3 non-empty stacks,
because we did not make any of the stacks empty. If there are at least 2 non-monochromatic
stacks, then we have (B). Assume now that there is at most 1 non-monochromatic stack.
Initially, we had at least 2 non-monochromatic stacks. Hence, the stack with the selected
cube became monochromatic (other stacks did not change). There are at least 3 stacks, at
most 1 is non-monochromatic, so besides the stack with the selected cube there is at least
one more monochromatic stack S. The top cube of S was on the top initially, therefore its
color differs from the color of the selected cube. So S and the stack with the selected cube
are two monochromatic stacks of different colors. Hence, we have (A). ◀

Proof of Lemma 10. We call a configuration of cubes terminal if one of the following
conditions holds:

there are at most 2 cubes;
there are exactly 3 non-empty stacks, one with exactly one cube (let the color of this
cube be c), and each of the other 2 stacks is as follows: it has at least 2 cubes, the color
of the top cube is different from c, and all the other cubes of this stack are colored in c.

We show that it is possible to reach a terminal configuration while maintaining a property
that there exist 2 top cubes of different colors. Let us explain why is this sufficient to establish
the lemma. If there are at most 2 cubes, then, since ⌈m/2⌉ + 1 ≥ 2, there is nothing left to
do2. Assume now that the second condition from the definition of a terminal configuration
holds. There are at most m − 1 cubes colored in c. Hence, one of the non-monochromatic
stacks has at most ⌊(m − 2)/2⌋ = ⌊m/2⌋ − 1 cubes colored in c. On the other hand, all its
non-top cubes are colored in c, so its size is at most ⌊m/2⌋. This non-monochromatic stack
and the stack of size 1 provide 2 top cubes of different colors, regardless of what happens
with the third stack. So if remove all cubes from the third stack, we will be left with at most
⌊m/2⌋ + 1 cubes, as required.

Now we show how to reach a terminal configuration. Our algorithm repeatedly does
the following. In any configuration, it first tries to remove a cube in such a way that the
resulting configuration satisfies (A). If this is impossible, the algorithm tries to remove a
cube in such a way that the resulting configuration satisfies (B). If this is impossible as well,
the algorithm “gets stuck”.

The algorithm maintains the OR of (A) and (B). So it also maintains the existence of 2
top cubes of different colors, as both (A) and (B) imply this. We now show that if C is a
configuration after the algorithm got stuck, then C is terminal. We know that C satisfies
either (A) or (B), but no cube can be removed from it in such a way that (A) or (B) still
holds.

If C satisfies (A), then there are at most 2 cubes. Indeed, consider two monochromatic
stacks of different colors. If one of these stacks has at least 2 cubes, then we can take the
top cube from it, and we will still have (A), which is impossible. So both stacks are of size 1.
If there were other stacks, we could take something from them, and we would still have (A).
This shows that there are just 2 cubes.

2 Here we assume that n ≥ 2, but sorting networks for n = 1 do not make much sense.
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Assume now that C satisfies (B) but not (A). We show that C satisfies the second
condition of the definition of a terminal configuration.

Due to (B), there are at least 2 non-monochromatic stacks in C. We claim that there are
exactly 2 non-monochromatic stacks. Indeed, assume for contradiction that there are at least
3 non-monochromatic stacks. It is possible to remove the top cube from one of them so that
on the top we still have 2 different colors. We will also have at least 2 non-monochromatic
stacks and at least 3 stacks in total (one cannot make a non-monochromatic stack empty in
one step). So will still have (B), which is impossible.

So in C there are exactly 2 non-monochromatic stacks. As in C there are at least 3 stacks,
C must have monochromatic stacks. Since C does not satisfy (A), all monochromatic stacks
of C are of the same colors. We claim that there is exactly 1 monochromatic stack, and it has
exactly 1 cube (let c denote its color). Indeed, assume that this is not the case. Then take
something from the monochromatic stacks. There will still be 2 non–monochromatic stacks
and something else. The set of colors on the top will not change because all monochromatic
stacks are of the same color. So our configuration will still satisfy (B), which is impossible.

To summarize, C consists of 1 separate cube of color c and 2 non-monochromatic stacks.
Denote these two stacks by S1 and S2. Since C satisfies (B), on the top we have 2 cubes
of different colors. W.l.o.g., the top cube of S1 is colored not in c. Remove the top cube
of S2. We still have 2 top cubes of different colors. Since the resulting configuration does
not satisfy (B), the stack S2 must have become monochromatic. Moreover, its must be now
colored in c, because otherwise the resulting configuration satisfies (A). In other words, all
the cubes of S2, except the top one, must be colored in c. The top cube of S2 must be
colored differently from c, because S2 is non-monochromatic. So S2 is as in the definition of
a terminal configuration.

Recall that we have shown this for S2 assuming that the color of the top cube of S1 differs
from c. We have established that the color of the top cube of S2 differs from c. Hence, we
can now apply a similar argument to S1 to show that this stack is also as in the definition of
a terminal configuration. ◀

4 Depth 4

▶ Theorem 11. The minimal k for which there exists a sorting network with parameters n,
k and d = 4 is k = Θ(n2/3).

The rest of the section is devoted to the proof of this theorem.

Upper bound

The upper bound is implicit in [22]. Leighton there gives a sorting algorithm called
ColumnSort. It can be converted into a sorting network of depth d = 4 and arity k = Θ(n2/3).
Namely, the input array in ColumnSort is represented as an O(n2/3)×O(n1/3) matrix. There
are 4 steps in the algorithm when it sorts each column of the matrix. Each of these steps
can be seen as a layer of comparators of arity O(n2/3) (this is how many entries are in each
column). Between these 4 steps, ColumnSort performs some permutations of the entries of
the matrices, but these permutations do not depend on the values of the entries. So, these
permutations just define how entries are partitioned between the comparators.
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Lower bound

Suppose there is a depth-4 sorting network such that all its comparators from the first 3
layers have arity at most t = n2/3

100 . We show that one of the comparators from the fourth
layer has arity Ω(n2/3). As in the previous proof, we start with the all-zeros input, and
then we add 1’s to our input one by one. By Lemma 6, it is enough to have access to at
least 2 cells before the last layer (or, equivalently, after the third layer) for at least Ω(n2/3)
consecutive steps. In turn, to have access to at least 2 different cells after the third layer, it
is sufficient to have access to 2 cells after the second layer that go to different third-layer
comparators.

First, it is convenient for us to assume that all first-layer comparators have arity at least
t and at most 3t. We can achieve this by joining some first-layer comparators. Namely, while
there are at least 2 comparators with arity less than t, we join them into one comparator of
arity less than 2t. If there is already just 1 comparator with arity less than t, we can add it
to any comparator of arity less than 2t.

The resulting network still sorts all inputs correctly. Indeed, let N1 denote our initial
network (we know that it is sorting) and let N2 be our network after we joined some first-layer
comparators. Consider any input x ∈ {0, 1}n and let x′ ∈ {0, 1}n be the result of applying
the first layer of comparators of N2 to x. We have to show that the rest of the layers of N2
sort x′. To see this, give x′ as an input to N1. Observe that the first layer of comparators does
not do anything to x′. This is because x′ is already sorted inside the first-layer comparators
of N2, and first-layer comparators of N1 are subsets of those of N2. Hence, x′ will be sorted
by subsequent layers of N1. It remains to notice that N2 coincides with N1 after the first
layer.

The rest of the argument is again presented in terms of cubes, see Figure 4. Fix an
arbitrary input to our network. We will have two sets of cubes assigned to this input. Cubes
from the first set will be identified with cells after the first layer that get value 0 on this
input. As before, we split these cubes into vertical stacks. Each stack corresponds to one of
the comparators of the first layer. More specifically, for each comparator of the first layer, we
stack its 0-outputs upon each other as cubes. The order in which they go from the bottom
to the top coincides with their order in the network, and on the top we have a cell with the
largest index. Additionally, we label these cubes by numbers from 1 to a, where a is the
number of second-layer comparators. Namely, each of these cubes is assigned the index of
the comparator this cube (or rather the corresponding cell) goes to in the second layer.

Now, cubes from the second set will be identified with cells after the second layer that
get value 0 on our input. We arrange them into vertical stacks according to second-layer
comparators, similarly to cubes from the first set. Additionally, cubes from the second set
will be colored. Namely, we first assign a distinct color to each of the comparators from the
third layer. Then every cube from the second set is colored into the color of the comparator
this cube (or rather the corresponding cell) goes to in the third layer.

Observe that the number of cubes from the first set that are labeled by i coincides
with the size of the ith stack from the second set. Indeed, the first number is the number
of 0-inputs to the ith second-layer comparator, and the second number is the number of
0-outputs of this comparator. Additionally, the size of any first-set stack is from t to 3t, and
the size of any second-set stack is at most t, because of the arity of the comparators from
the first two layers. Finally, for any color, there are at most t cubes of this color because any
comparator from the third layer has arity at most t.

As in the previous proof, adding 1’s to an input is equivalent to removing top cubes from
the first set. Now, what happens with cubes from the second set in this process? Assume
that we remove some top cube from the first set. Let its label be i. This means that some
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Figure 4 Second-layer comparators are given by numbers 1 and 2, whereas other comparators are
given by colors. The first set of cubes is on the left. For example, the first stack there comes from
the dark gray first-layer comparator. It has two 0-outputs, one with a smaller index goes to the
1st second-layer comparator, and one with a larger index goes to the 2nd second-layer comparator.
So, the cubes are labeled by 1 and 2. The second set of cubes is on the right. They are colored
according to the same principles as in the case of depth 3, but one layer to the right. Additionally,
next to each stack we write the index of the corresponding second-layer comparator.

cell after the first layer which goes to ith second-layer comparator switches from 0 to 1. As a
result, the last 0-output of the ith second-layer comparator also switches from 0 to 1. This
means that the top cube of the ith second-set stack gets removed.

In other words, if we have a cube from the first set which is on the top and whose label is
i, then we also have access to the top cube of the ith second-set stack. Now, our goal is to
maintain access to 2 second-set cubes of different colors for Ω(n2/3) steps (because having
different colors means going into different third-layer comparators). That is, our task reduces
to the following problem.

The second cubes problem. There are n left cubes and n right3 cubes. Left cubes are
labeled by numbers from {1, 2, . . . , a}. Right cubes are colored. All 2n cubes are arranged in
vertical stacks. We do not mix left and right cubes. That is, there are two types of stacks:
those that consist of left cubes (we call them left stacks) and those that consist of right cubes
(we call them right stacks). There are exactly a right stacks, they are indexed by numbers
from 1 to a.

3 We will use an intuition from Figure 4, where numbered cubes are on the left and colored cubes are on
the right.
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There are the following restrictions. First, for every 1 ≤ i ≤ a, the size of the ith right
stack must be equal to the number of left cubes with label i. Next, define t = n2/3

100 . Each
left stack must have size from t to 3t, and each right stack must have size at most t. Finally,
for each color, there must be at most t right cubes that have this color.

At one step, we can remove the top cube of one of the left stacks. If we remove a cube
with label i ∈ {1, . . . , a}, then we are also obliged to remove the top cube from the ith right
stack (and we cannot remove any other cubes in this step).

If there is a top left cube whose label is i, we say that it gives access to the color of the
top cube of the ith right stack. Show that there is a way of removing cubes such that Ω(n2/3)
times in a row (not necessarily right from the start) we have access to at least 2 different
colors.

Solution of the problem. Let m be the number of left stacks. Since each left stack has from
t to 3t cubes, we have that m = Θ(n/t) = Θ(n1/3). Set l = ⌊n1/3⌋. In each left stack, choose
a random consecutive substack of length l (uniformly and independently for each stack).

▶ Lemma 12. With positive probability, for every i ∈ {1, . . . , a}, there will be less than m/10
substacks with i-labeled cubes.

Proof. Fix i ∈ {1, . . . , a}. Let aj be the number of i-labeled cubes in the jth left stack. Note
that a1 + . . . + am is the size of the ith right stack. Hence, this sum does not exceed t.

Let pj for j = 1, . . . , m be the probability that the jth substack contains an i-labeled
cube. We claim that pj ≤ 2l·aj

t . This is because 2l·aj

t is an upper bound on the expected
number of i-labeled cubes in the jth substack. Indeed, since the size of any left stack is at
least t, the number of l-length substacks in each of them is at least t − l + 1. On the other
hand, each cube is covered by at most l substacks. So, an i-labeled cube from the jth stack
falls into a random l-length substack with probability at most l

t−l+1 . In turn, l
t−l+1 ≤ 2l

t

because l = Θ(n1/3) and t = Θ(n2/3). Multiplying 2l
t by the number of i-labeled cubes in

the jth stack, we obtain an upper bound on the expected number of i-labeled cubes in the
jth substack.

So, the expected number of substacks with i-labeled cubes is p1 + . . . + pm ≤ 2l·a1
t + . . . +

2l·am

t ≤ 2l. By Hoeffding’s inequality [12, Theorem 2], the probability that this number
exceeds 3l is

exp
{

−Ω
(

m · l2

m2

)}
= exp

{
−Ω

(
l2

m

)}
= exp{−Ω(n1/3)}

(recall that m = Θ(n1/3) and l = Θ(n1/3)). Therefore, by the union bound, with positive
probability the number of substacks with i-labeled cubes is at most 3l for every i ∈ {1, . . . , a}.
It remains to notice that 3l is smaller than m/10. This is because there are n left cubes, and
each left stack has at most 3t cubes, so the number of left stacks is m ≥ n/(3t) = 100·n1/3

3 =
100

9 · 3n1/3 =⇒ 3l ≤ 3n1/3 ≤ 9
100 · m < m/10. ◀

We fix any choice of substacks such that there are less than m/10 substacks with i-labeled
cubes, for every i ∈ {1, . . . , a}. First, remove all cubes above these substacks. Then we will
start taking cubes from the substacks. It is prohibited to take the last cube from any of the
substacks. We will call a substack with only 1 cube left exhausted.

Let S denote the set of colors to which we currently have access. Our goal is to have
|S| ≥ 2 for Ω(n2/3) times in a row. We achieve this as follows. If |S| ≥ 3, we take an
arbitrary cube, unless all substacks are exhausted. Note that this can decrease |S| by at
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most 1. Indeed, the cube that we have removed gave access to just one color. Now, if |S| ≤ 2,
consider any |S| left cubes that establish access to S. Let their labels be i and j (if |S| = 1,
we have i = j). If possible, remove any left cube which belongs to a non-exhausted substack
and whose label differs from i and j. Observe that we can only add a new color to S because
we still have access to old colors through the same cube, and nothing was taken from the ith
and from the jth right stacks. In particular, when |S| ≤ 2, the size of S cannot decrease.

Note that unless m/2 substacks are already exhausted, it is still possible to take one more
cube according to the above rules. Indeed, if |S| ≥ 3, then we need just 1 non-exhausted
substack. Now, if |S| ≤ 2, then we can take one more cube unless all top cubes of non-
exhausted substacks have labels i or j. This can happen only if either at least m/4 substacks
have i-labeled cubes or at least m/4 substacks have j-labeled cubes. But this is impossible
due to our choice of substacks.

These considerations show that we get stuck only if we have already taken at least
m/2 · (l − 1) cubes. Another observation is that once the size of S became larger than 1, it
can never become 1 again. So we can have |S| = 1 for some number of steps in the beginning,
and then we will always have |S| ≥ 2. Finally, note that we can have |S| = 1 for at most t

steps. Indeed, throughout the whole period when |S| = 1, we have access to the same color c

(recall that when |S| ≤ 2, colors cannot be removed from S, only a new color can be added).
Each time we make a step, we remove some right cube whose color is c, otherwise we would
have had access to another color. But there are at most t cubes whose color is c.

Thus, we will have |S| ≥ 2 for at least m/2 · (l −1)− t steps. Since m ≥ n/(3t), l = ⌊n1/3⌋
and t = n2/3

100 , the quantity m/2 · (l − 1) − t is Ω(n2/3).
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Abstract
We introduce the notion of rigidity in auction design and use it to analyze some fundamental aspects
of mechanism design. We focus on the setting of a single-item auction where the values of the bidders
are drawn from some (possibly correlated) distribution F . Let f be the allocation function of an
optimal mechanism for F . Informally, S is (linearly) rigid in F if for every mechanism M ′ with an
allocation function f ′ where f and f ′ agree on the allocation of at most x-fraction of the instances
of S, it holds that the expected revenue of M ′ is at most an x fraction of the optimal revenue.

We start with using rigidity to explain the singular success of Cremer and McLean’s auction
assuming interim individual rationality. Recall that the revenue of Cremer and McLean’s auction
is the optimal welfare if the distribution obeys a certain “full rank” conditions, but no analogous
constructions are known if this condition does not hold. We show that the allocation function of the
Cremer and McLean auction has logarithmic (in the size of the support) Kolmogorov complexity,
whereas we use rigidity to show that there exist distributions that do not obey the full rank condition
for which the allocation function of every mechanism that provides a constant approximation is
almost linear.

We further investigate rigidity assuming different notions of individual rationality. Assuming
ex-post individual rationality, if there exists a rigid set then the structure of the optimal mechanism
is relatively simple: the player with the highest value “usually” wins the item and contributes most
of the revenue. In contrast, assuming interim individual rationality, there are distributions with a
rigid set S where the optimal mechanism has no obvious allocation pattern (in the sense that its
Kolmogorov complexity is high). Since the existence of rigid sets essentially implies that the hands
of the designer are tied, our results help explain why we have little hope of developing good, simple
and generic approximation mechanisms in the interim individual rationality world.
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1 Introduction

The Setting

We consider the following standard auction model: there is one item for sale and n bidders.
The value of bidder i for getting the item is vi, and 0 otherwise. vi is the private information
of each bidder i. The values are drawn from some joint distribution F ∈ Rn that is publicly
known. This paper aims to design (deterministic) dominant strategy mechanisms that
maximize the revenue. The literature considers two main notions of individual rationality:

Ex-post individual rationality: the payment of bidder i is at most vi if he wins the item,
and 0 otherwise.
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Interim individual rationality: the expected payment of bidder i with value vi is at most
xi · vi, where xi is the probability that bidder i wins the item given that his value is vi.
Recall that the auction mechanism is deterministic, so the expectation is only over the
distribution F of instances.

When the values of the players are drawn from independent distributions, Myerson [11]
provides a characterization of the optimal auction. In a sharp contrast, when the distribution
of values is correlated, no such crisp characterization is known. Broadly speaking, the
literature takes two approaches: developing approximation mechanisms, and identifying
special cases where the optimal solution takes a simple form. The first approach is dominant
when assuming ex-post individual rationality, whereas the second one is more prominent
when assuming interim individual rationality.

We now give a brief survey of the most related literature. We start with surveying the
state-of-the-art in the design of ex-post IR mechanisms. The jewel in the crown here is
Ronen’s 2001 paper [13] that can be seen as an early precursor to many later trends in
Algorithmic Mechanism Design. In that paper, Ronen presents the lookahead auction: the
revenue-maximizing auction in which the item can be sold only to the bidder with the highest
value.

Remarkably, Ronen proves that this simple, easy-to-describe auction always guarantees
half of the optimal revenue. In contrast, computing the optimal auction is NP-hard [12].
Subsequent work considered a natural extension of the lookahead auction – the k-lookahead
auction. This is the revenue-maximizing auction in which in every instance, the item is sold
to at most one of the k bidders with the highest values, where k is ideally some small constant
[6, 3, 7, 2, 9]. The most relevant result is that the approximation ratio of the k-lookahead
auction approaches e

e+1 [3] and that this is tight [7].
The literature on interim IR mechanisms is also quite rich. The stunning result here is

that of Cremer and McLean [4, 5], which shows that when the joint distribution satisfies
a particular full rank condition, the revenue that the auctioneer can extract equals to all
the expected social welfare. This revenue can be extracted by running a simple second-price
auction and charging the participating bidders appropriate fees. However, Albert, Conitzer,
and Lopomo [1] show that this result cannot be extended to all distributions by showing
that there are distributions for which the ratio between the optimal revenue and the optimal
welfare goes to 0. Feldman and Lavi [8] further show that this gap exists even for distributions
that have “almost full” rank.

We stress that there are no known interim IR mechanisms that play an analogous role
to that of the lookahead auction in the ex-post IR universe: there are no natural, simple
to describe auctions that for every distribution provide a significant fraction of the optimal
revenue. To put it differently, if our goal is revenue maximization, ex-post mechanism
designers can offer us a rich toolbox to work with, whereas interim IR mechanism designers
either offer us a dream solution (but only if our distribution happen to obey the Cremer-
McLean condition), or leave us empty handed (if we want our solution to generically work
for all possible distributions). A primary goal of this paper is to understand whether the set
of tools of interim IR mechanism design can be significantly extended.

Understanding the Success of Cremer-McLean via Kolmogorov
Complexity
Our first set of results (Section 4) attempts to explain the singular success of Cremer-McLean
in the interim IR universe. We would like to show that there are no generic, simple-to-describe
allocation functions that extract a significant fraction of the optimal (interim IR) revenue for
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all distributions. To put some technical sense to this statement, we analyze the Kolmogorov
complexity of the allocation function of good mechanisms. Recall that, informally speaking,
the Kolmogorov complexity (see, e.g., [10]) of a string is the size of the smallest Turing
machine that generates it. We are interested in the Kolmogorov complexity of functions, so
we view an allocation function as a string over the alphabet [n] that its i’th position specifies
which of the n players receives the item in the i’th instance. Our results hold whenever
the indices of the string correspond to instances that are ordered in some “natural” order.
Roughly speaking, an order is natural if it has the almost obvious property that there exists
a small Turing machine that given i, prints the i’th instance.

When the distribution obeys the Cremer-McLean condition, the optimal allocation
function is simple: give the item to a highest-value player. It is not hard to see that this
implies that the Kolmogorov complexity of the optimal mechanism is low (logarithmic in
the size of the support). In contrast, for some distributions for which the Cremer-McLean
condition does not hold, we prove that even if we settle on approximations, the allocation
function has high Kolmogorov complexity.

▶ Theorem. Fix some constant 0 < c < 1. There are distributions for which the Kolmogorov
complexity of the allocation function of every mechanism that guarantees a c-fraction of the
revenue-maximizing interim IR mechanism is polynomial in the size of the support.

Understanding the Limitations of Interim IR Mechanism Design via
Rigidity

We prove the last theorem by introducing and studying the the novel concept of rigidity
(Section 3). Informally, S is rigid in F if for every mechanism M ′ with an allocation function
f ′ where f and f ′ agree on the allocation of at most x-fraction of the instances of S, it holds
that the expected revenue of M ′ is at most an x fraction of the optimal revenue.1

We study rigidity under both notions of individual rationality. First, observe that rigid
sets can be easily constructed: suppose that player 1 always has some very high value and the
other bidders always have very low values. For simplicity assume a uniform distribution on
the instances. The optimal mechanism always sells player 1 the item at high price. Clearly,
any mechanism that allocates that item to player 1 in at most fraction x of the instances
extracts at most x fraction of the optimal solution, hence the set of all instances is rigid with
respect to this distribution.

Assuming ex-post individual rationality, Ronen’s lookahead auction shows that in every
rigid set the highest value player should be allocated the item at least half of the time, simply
because only the player with the highest value can be allocated in the lookahead auction
and because the lookahead auction extracts at least half of the optimal revenue. In contrast,
assuming interim individual rationality, we show that there are distributions with rigid sets in
which the optimal allocation function do not have a simple pattern. For example, the revenue
that the optimal mechanism extracts from players with the i’th highest value almost equals
to the revenue that is extracted from players with the highest value, for all values of i. This
is in fact a corollary of the previous theorem that more precisely shows that the Kolmogorov
complexity of the allocation function is high, even when restricted to the rigid sets.

1 As stated here, there is a linear dependency between x and the approximation ratio, but the definition
and our treatment are more general.
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Since the existence of rigid sets essentially implies that the hands of the designer are tied,
our results help explain why we have little hope of developing generic constructions (a-la
Ronen’s ex-post lookahead auction) in the interim individual rationality world.

Examples for Rigid Sets
We now describe two distributions with complex rigid sets. Both are obtained and analyzed
using our main technical result, which is a generic way of obtaining complex rigid sets
(Section B.1). We give a high-level description of our approach. We start with some set of
instances S and construct “unnatural” allocations on it. We then use this set to define a
probability distribution F over a larger set of instances. The support of the distribution F
includes instances that are not all in S. Consider now an incentive-compatible mechanism
for the distribution F . Define the agreement ratio of the mechanism M with the allocation
on the set of instances S to be the fraction of the instances of S such that the allocation
function of the mechanism M coincides with the unnatural allocation function. Our key
finding is that S is rigid: the revenue of M is at most α + ε of that of the optimal mechanism
for the distribution F , where α is the agreement ratio and ε > 0 is very small.

This paper provides two constructions of complex rigid sets (Section A). We now give an
imprecise description of each construction. The allocation function is deterministic in both
constructions, but the construction process is random. In both constructions, we focus on
making the player that is allocated the item indistinguishable from a large fraction of the
other players.
1. Random High Values (Section A.1). We construct some base set of values, where

about half of the players have values that are distributed uniformly and independently
between 1

2 and 1 and the other players have values very close to 0. From this base set we
generate n

2 instances, where in each such instance, one of the remaining n
2 players (the

“active” player) has some value that is uniformly distributed between 1
2 and 1. All other

values are identical to their value in the base set. The partial allocation function allocates
the item in each of these n

2 instances to the active player. We repeat this process m

times (for some very large m), each time starting with a different base set, so in total, our
partial allocation function is defined on m · n

2 instances. Without taking a “global” view
of the allocation function, it is hard to make sense of it: in every one of the instances, we
expect n

2 + 1 to have values that are distributed between 1
2 and 1, and we allocate the

item to an arbitrary one of them.
2. Geometrically increasing base sets (Section A.2). In this construction method, we

start with some arbitrary base set of values v1, ..., vn, e.g., for each i, vi = 1. From this
base set we generate n instances, where in the i’th instance the i’th player has value ri · vi,
for some ri that is chosen uniformly at random from [2, 4], say. Player i is allocated the
item in that instance. We repeat this process m times, for some large m, each time the
base set is obtained from the previous base set by multiplying each vi by some ri that is
chosen independently and uniformly at random from [2, 4]. Note that after not too many
repetitions, the instances will look “random”, as the value of the player that is allocated
the item is essentially indistinguishable from the values of the rest of the players. All
players are considered active for each base set in this construction method.

We show that each of the partial allocation functions constructed by the above two
methods can be “embedded” into some distribution F and that the approximation ratio of
any mechanism deteriorates in essentially a linear fashion with the agreement ratio of the
allocation function of the mechanism and the partial allocation function that we started
with.
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We note that the two constructions methods are just two concrete applications of a more
general lemma (see the full version). This lemma takes some allocation function on a set of
instances S, embeds the set S in a distribution F , and gives an upper bound on the fraction
of the optimal revenue that can be extracted in terms of the agreement ratio with S and the
structure of S. Most of the technical difficulty in this paper is in proving this general lemma.

2 Preliminaries

We have one seller, one indivisible item and n bidders. Each bidder has a private value
vi ∈ Di for the item and these values are drawn from a joint distribution F over the set of
possible instances D = D1 × . . . Dn.

A (deterministic) mechanism M is a tuple M = (x, p) where x : D → {0, 1}n is the
allocation function and p : D → Rn is the payment function. The allocation function satisfies
the feasibility constraint:

n∑
i=1

xi(v) ≤ 1 for every v ∈ D.

A mechanism M = (x, p) is dominant strategy incentive compatible if for every player
i, every v−i ∈ D−i, and every vi, v′

i ∈ Di it holds that xi(vi, v−i) · vi − pi((vi, v−i) ≥
xi(v′

i, v−i) · vi − pi((v′
i, v−i).

The LHS of the last inequality is the profit of bidder i (w.r.t. M) and is de-
noted πM (vi, v−i). The expected profit of bidder i with value vi (w.r.t. M) is
Ev−i∼F−i|vi=vi

[πM
i (vi, v−i)].

The expected revenue REV (M, F) of a mechanism M in the distribution F is the expected
sum of the payments of the bidders.

▶ Definition 1. A mechanism M = (x, p) is interim individually rational if for every i ∈ [n]
and every vi ∈ Di, the expected profit of bidder i who knows only his own value (and the under-
lying distribution F ) and bids truthfully is non-negative, i.e., Ev−i∼D−i|vi=vi

[πM
i (vi, v−i)] ≥ 0.

A mechanism M = (x, p) is ex-post individually rational if for every i ∈ [n] and every
v ∈ D, the ex-post profit of player i who bids truthfully is non-negative, i.e., πM

i (vi, v−i) ≥ 0.

▶ Definition 2. The approximation ratio of an interim IR, deterministic and dominant
strategy incentive compatible mechanism M with respect to a distribution F is at most β ≤ 1
if:

REV (M, F)
REV (OPT, F) ≤ β

where OPT is an interim IR, deterministic and dominant strategy incentive compatible
mechanism that maximizes the revenue of F .

▶ Definition 3. A partial monotone allocation function is a monotone allocation function
that is defined for a subset of all instances and can be extended to all instances by a monotone
function.

A partial monotone allocation function f can be specified by a partial monotone allocation
set: this is a set whose elements are tuples {(v⃗, i)} such that f(v⃗) = i and if no player is
allocated the in v⃗, we write f(v⃗) = 0.

Throughout this document we refer to Cremer and McLean’s condition for a distribution,
we give a formal definition for it, but before that we need to define the conditional probability
matrix of a bidder.
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▶ Definition 4. The conditional probability matrix of bidder i w.r.t a discrete distribution F
over a domain D is a matrix CPi(F) of dimensions |Di|×|D−i| where for every 1 ≤ k ≤ |Di|
and every 1 ≤ j ≤ |D−i| we have:

[CPi(F)](k,j) = Pr
v∼F

(v−i = vj
−i|vi = vk

i )

▶ Definition 5. A distribution F over the set of of instances satisfies the full rank condition,
or Cremer and McLean’s condition if for every player i, his conditional probability matrix
CPi(F) has full rank.

3 Rigidity

In this section we introduce the notion of Rigidity. Roughly speaking, a distribution F
is rigid with respect to a partial monotone allocation set S if the approximation ratio of
every mechanism M for the distribution F depends on the fraction of instances in which M

allocates the item as in S.
We start this section with definitions and notations for rigidity and some basic properties

of it (Section 3.1), then in Section 3.2, we describe and prove several structural results of
rigid sets.

3.1 Definitions and Basic Properties
We now define the notion of rigidity and study some basic properties of it. First, we require
the following definitions:

▶ Definition 6. The disagreement ratio of a mechanism M with some partial allocation
multi-set S is the fraction of instances in S for which the allocation of M is different than
the allocation of S.

▶ Definition 7. A revenue disagreement function is a function f : [0, 1] → [0, 1] that is
monotone non-increasing.

We are now ready to define rigidity:

▶ Definition 8 (Rigidity). Let F be a distribution over a set of instances D, S a partial
monotone allocation multi-set over D, and f some revenue disagreement function. Then, F
is ex-post (interim) IR f -rigid with respect to S if the approximation ratio of every dominant
strategy incentive compatible, deterministic and ex-post (interim) IR mechanism M with
disagreement ratio of at least x with S is at most f(x).

We sometimes abuse notation and say that a partial monotone allocation set S is ex-post
(interim) IR rigid. By that, we mean that there is a distribution and a revenue disagreement
function f such that F is ex-post (interim) IR f -rigid with respect to S, where f and F are
clear from the context.

In the definition of rigidity, S was allowed to be a multi-set so that different allocations
could affect the disagreement ratio of a mechanism differently. Also, S may have instances
where no player is assigned the item.

Now, we present the main family of revenue disagreement functions that we analyze in
the paper.

▶ Definition 9. Fix ε ∈ (0, 1). A revenue disagreement function is ε-almost linear if for
every x ∈ (ε, 1] it holds that f(x) ≤ 1 − x + ε and for every x ∈ (0, ε] it holds that f(x) < 1.
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Observe an ε-almost linear revenue disagreement function is strictly smaller than 1 for
every value in (0, 1]. Therefore, even a disagreement of one instance implies that the revenue is
smaller than the optimal revenue. Also observe that an ε-almost linear revenue disagreement
function is also ε′-almost linear revenue disagreement function for every ε < ε′ < 1.

3.1.1 Union of Rigid Sets
We now study a basic property of rigid sets. This set of results is not used directly in the
technical parts of the paper, but will be helpful in understanding the concept of rigidity.

▷ Claim 10. Let F be a distribution over set V of instances, f1, f2 revenue disagreement
functions and S1, S2 partial monotone allocation sets over V . Assume F is ex-post (interim) IR
f1-rigid w.r.t S1 and ex-post (interim) IR f2-rigid w.r.t S2. Let x1 := max{x ∈ [0, 1] | f1(x) =
1}, x2 := max{x ∈ [0, 1] | f2(x) = 1}. Define for every x ∈ [0, 1], f(x) = max{f1(x · (1 −
x1)), f2(x · (1 − x2))}.

Then, there exists a partial monotone allocation set S composed only of elements from
S1 and S2 such that F is f -rigid w.r.t S and that at least 1 − x1 and 1 − x2 fractions of the
elements from S1 and S2 respectively are in S.

Observe that the claim is tight in the sense that for some values of S1 and S2, there is
no partial monotone allocation set that contains more than 1 − x1 fraction of the elements
from S1 and at least 1 − x2 fraction of the elements from S2, as the allocations in S1 might
conflict with the allocations in S2. For example, consider the distribution F supported on two
instances of two players: (1, 1) and ( 1

ε , 1), where the first instance has probability 1 − ε and
the second has probability ε. Let S1 = {((1, 1), 2), (( 1

ε , 1), 2)}, S2 = {((1, 1), 1), (( 1
ε , 1), 1)},

i.e., player 2 gets the item in both instances in S1 and player 1 gets the item in both instances
in S2. Then, f1(0) = f1( 1

2 ) = f2(0) = f2( 1
2 ) = 1, f1(1) = f2(1) = 1

2 and x1 = x2 = 1
2 . Now,

consider a set S that is composed of elements from S1 and S2, for every element from S1 in
S another element from S2 cannot be added to S and vice versa. However, we focus on the
family of almost linear revenue disagreement functions (Definition 9) for which x1 = x2 = 0,
i.e., all the elements from S1 and S2 are in S.

Proof of Claim 10. Consider an optimal dominant strategy incentive compatible, deterministic
and ex-post (interim) IR mechanism O for the distribution F . Let S be the set of elements
from S1 ∪S2 that O agrees with their allocation. Note that S is a partial monotone allocation
set as O is a dominant strategy incentive compatible mechanism. Now, by the definition of
rigidity, O has disagreement ratio at most x1 with S1 where x1 = max{x ∈ [0, 1]|f1(x) = 1}
and at most x2 = max{x ∈ [0, 1]|f2(x) = 1} with S2. Then, at most x1 fraction of S1
elements are not in S and at most x2 fraction of S2 elements are not in S. In the next lemma
we prove that the set S we defined is indeed f -rigid which concludes the proof.

▶ Lemma 11. Let M be some dominant strategy incentive compatible, deterministic and IR
mechanism with disagreement ratio x ∈ [0, 1] with S, then M has disagreement ratio at least
x · (1 − x1) with S1 or at least x · (1 − x2) with S2 (or both).

Proof. Let d be the number of allocations in S that M disagrees with, d1, the number of
allocations in S1 that M disagrees with and d2 the number of allocations in S2 that M

disagrees with. Then, d ≤ d1 + d2, x = d
|S| and we want to show that either d

|S| ≤ d1
|S1|·(1−x1)

or d
|S| ≤ d2

|S2|·(1−x2) (or both). Assume to the contrary that:
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d1

|S1| · (1 − x1) <
d

|S|
⇐⇒ d1 · |S| < d · |S1| · (1 − x1) ≤ (d1 + d2) · |S1| · (1 − x1) (1)

d2

|S2| · (1 − x2) <
d

|S|
⇐⇒ d2 · |S| < d · |S2| · (1 − x2) ≤ (d1 + d2) · |S2| · (1 − x2) (2)

Then,

|S| < |S1| · (1 − x1) + |S2| · (1 − x2)

in contradiction to the construction of S such that it contains at least 1 − x1 fraction of the
elements of S1 and at least 1 − x2 fraction of the elements of S2. ◀

◁

We can further strengthen this claim when the functions are ε-almost linear:

▶ Corollary 12. Let F be a distribution that is f-rigid with respect to some set S and an
ε-almost linear revenue disagreement function f . Then, there exists a rigid set Sc, such that
every other rigid set S′ of F with f , belongs to S (i.e., S′ ⊆ Sc).

3.2 On the Structure of Ex-post IR Rigid Sets
In this section, we show that the family of Lookahead auctions restricts the set of ex-post
IR rigid sets. We then study how Cremer and McLean’s result restricts interim IR rigid
sets. We show that for distributions that satisfy Cremer and McLean’s condition, the only
rigid sets are essentially those in which the highest player always gets the item. This section
mostly considers ε-almost linear revenue disagreement functions, and so some of our results
are stated for this class.

▷ Claim 13. Consider a distribution F that is ex-post IR f -rigid w.r.t S. Let x be the
fraction of the allocations in S to players that are not the highest player. Then, f(x) ≥ 1

2 .

Proof. Consider the Lookahead auction [13], this auction can only sell the item to the highest
player and so its disagreement ratio with S is at least x. The Lookahead auction has an
approximation ratio of at least 1

2 when considering dominant strategy incentive compatible
and ex-post IR auctions. Therefore, f(x) ≥ 1

2 . ◁

▶ Corollary 14. Consider a distribution F that is ex-post IR f-rigid w.r.t S, for an ε-
almost linear revenue disagreement function (for some ε ∈ (0, 1

2 )). Then, the fraction of the
allocations in S to players that are not the highest player is at most 1

2 + ε.

We can use analogous claims by considering the 2-lookahead auction:

▷ Claim 15. Consider a distribution F that is ex-post IR f -rigid w.r.t S. Let x be the
fraction of the allocations in S to players that are not the highest or second highest players,
then f(x) ≥

√
e√

e+1 ≈ 0.622.

▷ Corollary 16 (Claim 15). Consider a distribution F that is ex-post IR f -rigid w.r.t S, for an
ε-almost linear revenue disagreement function (for some ε ∈ (0, 0.622)). Then, the fraction
of the allocations in S to players that are not the highest or second highest players is at most
1 −

√
e√

e+1 + ε ≈ 0.377 + ε.
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Proof of Claim 15. The deterministic 2-Lookahead auction is a generalization of the Looka-
head auction and it can only sell the item to one of the 2 highest players. Then, its disagree-
ment ratio with S is at least x. The approximation ratio of the 2-Lookahead was bounded by
3
5 by [6] and later improved to

√
e√

e+1 ≈ 0.622 by [3]. Therefore, f(x) ≥
√

e√
e+1 ≈ 0.622. ◁

We now consider interim IR mechanisms and distributions that satisfy Cremer and
McLean’s full rank condition.

▷ Claim 17. Consider a distribution F that satisfies Cremer and McLean’s full rank
condition and assume there exist some revenue disagreement function f and a partial
monotone allocation set S such that F is interim IR f -rigid w.r.t S. Let x be the fraction of
the allocations in S that are not to the highest player, then f(x) = 1.

Proof of Claim 17. Cremer and McLean [5] show that when the distribution satisfy some
condition (full rank of the conditional probability matrix), the second price auction with
some lotteries has an optimal revenue equal to the social welfare. Then, their auction has a
disagreement ratio of at most x with S and hence f(x) = 1. ◁

▶ Corollary 18. Consider a distribution F that satisfies Cremer and McLean’s full rank
condition. Suppose that there is some ε-almost linear revenue disagreement function f and a
partial monotone allocation set S such that F is interim IR f-rigid w.r.t S. Then, all the
allocations in S are to the highest player.

In Claim 13 and Claim 15 we saw that ex-post IR rigid sets have a certain structure.
The next claim show that the same is not true for interim IR rigid sets.

▷ Claim 19. For every k < n, there exists an interim IR rigid set Sk with an 1
n−k -almost

linear revenue disagreement function, such that no allocation in S is to one of the k-highest
players.

Observe that for ex-post IR rigid set it is not possible. Every ex-post IR rigid set S

with an ε-almost linear (for some ε < 1
2 ) revenue disagreement function has at most 1

2 + ε

allocations to players that are not the highest (Corollary 14). While we show for every ε > 0
an interim IR rigid set Sε with an ε-almost linear revenue disagreement function in which all
allocations are not to the highest player.

Similarly, this also shows that Corollary 16 does not hold for interim IR rigidity. I.e., every
ex-post IR rigid set S with an ε-almost linear (for some ε < 0.622) revenue disagreement
function has at most 0.377 + ε allocations to players that are not the two highest players
(Corollary 14). While we show for every ε > 0 an interim IR rigid set Sε with an ε-almost
linear revenue disagreement function in which all allocations are not to the two highest
player.

The proof of Claim 19 is relegated to the full version

4 Kolmogorov Complexity

In this section we analyze the Kolmogorov complexity of optimal and approximately optimal
allocation functions. We start with defining some needed basic objects (Section 4.1). Then, we
show that for distributions that satisfy the Cremer and McLean’s condition (Definition 5) the
Kolmogorov complexity of the allocation function of an optimal auction is low (Section 4.2).
In Section 4.3 we show the existence of distributions (that do not satisfy Cremer and
McLean’s condition) for which the Kolmogorov complexity of the allocation function of every
mechanism with a constant approximation ratio is high.
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4.1 Natural Orders
We would like to analyze the Kolmogorov complexity of allocation functions. However,
Kolmogorov complexity is defined on strings, not functions. Thus, we represent allocation
functions as strings with alphabet [n]. Index i of the string corresponds to the i’th instance
in the support according to some full order ≺ . We will consider natural orders. We say
that an order is natural if the Kolmogorov complexity of printing all the instances in the
support when they’re sorted by this order is logarithmic in the size of the support. Note
that this is equivalent of having a small Turing machine that gets i as input and prints
the corresponding instance. This seems to be a minimal requirement for “interpreting”
the allocation function (if it is hard to understand what instances some of the positions
corresponds to, the representation is almost useless).

▶ Definition 20. A full order ≺ over a domain D of instances of n players is natural if the
Kolmogorov complexity of the string that equals to the concatenation of all instances in D

sorted by ≺ is O(log |D|).

For example, the lexicographic order is natural in the domain {1, . . . , H}n. To see this,
consider the program that starts with a string 0 . . . 0 and each time increases its value by
one (as if it were a number in base H) and prints it.

We now define a specific order ≺ ′. We will analyze the Kolmogorov complexity of the
strings that correspond to allocations ordered by ≺ ′ and show that it is high. Our result
will then be extended to all natural orders since we will show that transforming every string
ordered by a natural order to a string ordered by ≺ ′ can be done by a small Turing machine.

▶ Definition 21. Let ≺ ′ be the following order over domain D of instances of n players:
instance v ∈ D is before instance v′ ∈ D if arg maxi∈[n]{vi} ≤ arg maxi∈[n]{v′

i}. In case of
equality, we break ties by lexicographic order (i.e., let j be the first index in which v and v′

differ, then vj ≺ v′
j).

The next two claims show that a lower bound on the Kolmogorov complexity of strings
ordered by ≺ ′ implies a lower bound on the Kolmogorov complexity of strings ordered by
some natural order.

▷ Claim 22. Fix some domain D of instances of n players. The encoding of a Turing machine
that gets two instances from D and determines their order according to ≺ ′ is at most c2 · n,
for some constant c2. Specifically, given two instances v1, v2, the Turing machine returns 0 if
v1 ≺ ′v2 and 1 otherwise.

Proof of Claim 22. The operations of copying a string and comparing two numbers can be
implemented using Turing machine with a linear number of states in the size of the input
alphabet (which in our case is n). Consider the following Turing machine: first, the machine
copies the two input strings (v1, v2). For their first copy, we find the maximal value in each
string and save its index. If the index of the first input is smaller (larger) than the index of
the second input then v1 ≺ ′v2 (v1 ≻′ v2) and we print 0 (1). If the two indices are equal
we continue to the next stage. This stage takes at most O(n) states. In the second stage,
we work on the second copy of our input strings and compare the two strings until we find
the first index that they are different on, if the value of v1 in this index is smaller than v2’s
value in this index, we print 0. Otherwise we print 1. This stage takes at most O(n) states
as well. ◁
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▷ Claim 23. Fix a distribution F over a domain of instances D. Let ≺ be some natural order
over the instances in D and ≺ ′ be the order specified in 21. Let f be an allocation function
for the distribution F , and s and s′ be the allocation strings of f with respect to the orders
≺ and ≺ ′ respectively over the instances in D. Suppose that the Kolmogorov complexity of
s′ is at least m. Then, the Kolmogorov complexity of s is at least m − c1 log |D| − c2n − c3
for some constant c3, a constant c1 that depends only on the order ≺ and a constant c2 that
only depends on the order ≺ ′.

Proof of Claim 23. Assume Claim 23 does not hold. Then, there exists a distribution F over
a domain of instances D, f an allocation function for the distribution F , s and s′ that are the
allocation strings of f with respect to the orders ≺ and ≺ ′ respectively over the instances in
D, such that the Kolmogorov complexity of s′ is at least m but the Kolmogorov complexity
of s is less than m − c1 log |D| − c2n − c3.

Let P1 be a Turing machine that prints s with encoding size less than m − c1 log |D| −
c2n − c3. Consider the following program for printing s′. First, generate s. Second, generate
all the instances in D by order ≺ . Then sort all the instances in D according to the order
≺ ′ and at the same time sort the string s by the same swaps that are made for the instances
in D and print the sorted s.

We now explain how to implement this program while maintaining encoding size of less
than m, which will contradict our assumption. For the first step we use the program P1
whose encoding size is less than m − c1 log |D| − c2n − c3. For the second step, since ≺ is a
natural order, there exists a Turing machine P2 whose encoding is at most some c1 · log |D|
and it simulation gives us all instances in D ordered by ≺ . For the third step, we need two
components, the first is a “comparator” function P3 for the order ≺ ′ that gets two instances
and returns their order according to ≺ ′ and has an encoding of size at most some c2 · · · n.
The second component is a sorting algorithm with small encoding, we use, say, Bubble Sort.
The sorting algorithm will simultaneously sort the string s by using same swaps that it made
for the instances in the list. Observe that bubble sort needs a constant number of states and
together with P3 we get an encoding which is linear in n Now, this program has KC of at
most k + c1 log |V | + c2 · n + c3, where c3 is some constant. This contradicts our assumption,
as needed. ◁

Thus, from now on we will analyze the Kolmogorov complexity of the order ≺ ′ and get,
as a corollary, the Kolmogorov complexity of any natural order.

4.2 Low Kolmogorov Complexity of Cremer and McLean’s Distributions
In this section we state and prove the theorem about the low Kolmogorov complexity of
the allocation function of an optimal auction of distributions that satisfy the Cremer and
McLean’s condition (see Definition 5). We consider the Kolmogorov complexity of the
allocation function with respect to the order ≺ ′ (definition 21).

▶ Theorem 24. Let F be a distribution that satisfies the Cremer and McLean’s condition with
support size k. There exists an optimal auction for F for which the Kolmogorov complexity
of the allocation function is O(n log k) with respect to the order ≺ ′.

Proof of Theorem 24. Cremer and McLean showed that the optimal auction for every
distribution that satisfies the full rank condition (Definition 5) is a second price auction with
appropriate fees. Recall that the allocation function of the second price auction simply gives
the item to a maximum-value player. Consider the following program for a distribution F ;
Print 1 some k1 times, then 2 some k2 times and so on, where for each i, ki is the number of
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instances in the support of F in which the i’th player is maximal. Each ki can be represented
by a number of bits that is logarithmic in the size of the support, and so the length of an
encoding of this program is of order O(n · log k). This program indeed returns the correct
string as we use the order ≺ in which v ⪯ v′ if arg maxi∈[n]{vi} ≤ arg maxi∈[n]{v′

i}. ◀

Observe that the Kolmogorov complexity of Myerson’s optimal mechanism for independent
distributions [11] is also logarithmic in the size of the support under natural orders: using
the natural order we can go over all the instances in the support one by one and compute in
each of them the virtual values of each player. The player with the maximal virtual value
gets the item.

4.3 The Kolmogorov Complexity of Approximations

In this section we use rigid sets to analyze the Kolmogorov complexity of the allocation
function of every mechanism that provides a good approximation ratio. The notion of a rigid
set allows us to focus on the allocation of a mechanism in the instances of S, and so, if the
mechanism has a good approximation, its allocation string restricted to the instances of S

has to be relatively close to the allocation string of S.

▶ Theorem 25. Consider distributions F1, . . . , Fk, all with support size of at most r. Suppose
each Fi is f -rigid with respect to Si, where f is some ε-almost linear revenue disagreement
function (for some ε ∈ [0, 1)). Suppose that all the following conditions hold for some
c ∈ (ε, 1), ≺ a full order, and h ∈ N:
1. |S1| = |S2| = · · · = |Sk|, and let g = |S1|.
2. For every Sj , ≺ imposes an order over the instances in Sj . Let sj be the allocation string

for the instances in Sj when they are sorted by this order and their allocations are as
specified in Sj. Then, for every i ̸= j we have si ̸= sj.

3. Let x = 1 − c + ε, then k

(r
g)

> nh ·
(

g
x·g

)
· nx·g.

Then, there exists some distribution Fj , such that the Kolmogorov complexity of the allocation
function of every auction that provides a c approximation for Fj is at least h with respect to
the order ≺ .

Proof of Theorem 25. For every j ∈ [k], consider an allocation string a for the distribution
Fj . a has exactly g indices that correspond to the instances from Sj and a is of size at most
r so there are at most

(
r
g

)
different subsets of g indices that can correspond to the instances

of the set Sj . This is true for every j ∈ k and so at least k

(r
g)

of the distributions F1, . . . , Fk

share the exact same set of indices that correspond to the instances in their respective rigid
sets S1, . . . Sk, we denote the set of these distributions by O and the set of the indices by I.
Observe that by property 2, for every Fi, Fj ∈ O with i ̸= j it holds that si ̸= sj .

▶ Lemma 26. Fix an allocation string b. b corresponds to an allocation function of an
optimal mechanism of at most one of the distributions in O.

Proof of Lemma 26. Since f is an ε-almost linear revenue disagreement function, for every
Fj ∈ F1, . . . , Fk any optimal allocation must agree with all the allocations in SJ . Thus, for
an allocation string b to be an optimal allocation to more than one distribution in O, it
has to agree with at least two different allocations on the same set of indices I, which is a
contradiction. ◀
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Denote by Lh the set of all strings with Kolmogorov Complexity less than h. Let Bh ⊆ O

be the set of distributions in O such that a distribution Fj ∈ O is in Bh if it has a mechanism
with approximation ratio at least c whose allocation string has Kolmogorov complexity less
than h. Observe that the claim follows immediately by showing that Bh is a strict subset
of O:

▶ Lemma 27. Bh is a strict subset of O.

Proof of Lemma 27. By Lemma 26, each string in Lh is an optimal allocation to at most
one of the distributions in O. The size of Lh is at most the number of strings with Kolmogorov
complexity less than h, which is

∑h−1
j=0 nj = nh−1

n−1 < nh, since the left hand side is the number
of different Turing machines over the alphabet [n] with encoding size less than h. Now, for
every string a ∈ Lh we bound the number of distributions Fj in O for which a restricted to
the indices in I (denoted aI) and the allocation string of Sj are different in at most x ·g places.
We bound it by at most

(
g

g·x
)

· ng·x; There are
(

g
g·x

)
different sets of size g · x of locations in

the string aI of size g. The number of possible values in each location is n. Overall there are
at most

(
g

g·x
)

· ng·x such distributions (as each distribution in O has a different allocation in
the indices in I). Therefore, there are at most nh ·

(
g

g·x
)

· ng·x distributions in Bh and at least
k

(r
g)

distributions in O. Now, by Property 3 there are more distributions in O than in Bh. ◀

◀

4.3.1 Distributions with High Kolmogorov Complexity for Every
Approximation

Now that we have the right tools prepared, we can apply a specific construction to prove that
there exist distributions for which the allocation function of every approximation mechanism
has high Kolmogorov complexity for every natural order ≺ (Definition 20). We will rely on
the construction of Section A.1.1 that is given later.

▶ Corollary 28. For every constant 0 < c < 1 and every large enough n, m ∈ N, there exists
a distribution with support linear in m log2 n, for which the Kolmogorov complexity of the
allocation function of every mechanism with approximation ratio c is at least m for every
natural order.

Proof of Corollary 28. We use the construction of Section A.1.1. We show that for every
fixed 0 < ε < c and large enough n, m, Theorem 25 holds with S1, . . . , Sk as the sets in Rn,m

(defined in Section A.1.1), F1, . . . , Fk as the distributions guaranteed by Theorem 45 when
given m-divisible set from Rn,m, f as their ε-almost linear revenue disagreement function
(from Corollary 47), ≺ ′ as the order ≺ , and h = l · m for some constant l to be specified
later.

First, by Claim 33, each m-divisible set S in Rn,m is of size m·log n, satisfies the uniqueness
of thresholds property ( 44) and each of its m subsets has a set of log n active players. Then
g = m log n and by Theorem 45 r ≤ 6m log n + m log2 n. Hence, Property 1 holds. By
Claim 33, the parameter of an m-divisible set S ∈ Rn,m, cS is at most cS ≤ 4n

m·log n + 4
log n

and thus by Corollary 47 f is an ε-almost linear revenue disagreement function when
4n

m·log n + 4
log n ≤ ε < c (which is true for large enough n, m).

In Lemma 29 and Lemma 30 we show that Property 2 and Property 3 hold respectively.

▶ Lemma 29. For every Sj, ≺ ′ imposes an order over the instances in Sj. Let sj be
the allocation string for the instances in Sj when they are sorted by this order and their
allocations are as specified in Sj. Then, for every i ̸= j we have si ̸= sj.
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Proof of Lemma 29. Recall that Sj is an m-divisible set with respect to its subsets S1
j , . . . Sm

j

(Definition 39). By Claim 33, in every instance in Sj , the first player has the maximal value
and his value is the same for all the instances in the same subset Sl

j . Moreover, the values
of the first player in the different m subsets are strictly increasing. Hence, in the support
of the distribution, when considering the order ≺ ′ the instances that belongs to the first
subset S1

j appears first and then the instances from the second subset S2
j and so on until

the instance from Sm
j . Furthermore, every two instances v, v′ in the same subset Sj

j differ
from each other in exactly two places, these places correspond to the players that get the
item in these instances. When player i gets the item in v and player i′ gets the item in v′ we
have vi > v′

i and vi′ < v′
i′ and so the order inside each subset is a decreasing order over the

indices of the players that get the item (i.e., if i gets the item in v ∈ Sl
j and i′ > i gets the

item in v′ ∈ Sl
j then v′ ≺ ′ v), the players in the active set of Sl

j . Lastly, Rn,m (as described
in Section A.1.1) has k = (

(
n

log n

)
)m different allocations, in every two different m-divisible

sets Sj , Sj′ ∈ Rn,m the set of active players in some repetition j ∈ [m] is different and so
sj ̸= sj′ and Property 2 holds. ◀

▶ Lemma 30. Property 3 holds for large enough n, m.

Proof of Lemma 30. We need to show that for large enough values of n, m it holds that
k

(r
g)

> nh ·
(

g
xg

)
· nxg where k =

(
n

log n

)m
, g = m log n, h = l · m and r < 6m log n + m log2 n.

We use known bounds on the binomial coefficient2 and get:

k(
r
g

) =
(

n
log n

)m((m log n)(6+log n)
m log n

) ≥ ( n

e log n(6 + log n) )m log n

nl·m ·
(

g

xg

)
· nxg ≤ nl·m · ( e

x
)xm log n · nxm log n

Therefore it is enough to show that for large enough values of n, m it holds that:

n

e log n(6 + log n) > n
l

log n · ( e

x
)x · nx

Recall that x < 1 and so el+1 · nx ≥ n
l

log n · ( e
x )x · nx.

Finally, for large enough values of n we have (as l is a constant independent of n, m)
n1−x > el+2 log n(6 + log n). ◀

Now, we have that there is a distribution Fj ∈ {F1, . . . Fk} for which the Kolmogorov
complexity of every allocation function of every auction with approximation ratio c is at
least l · m, with respect to the order ≺ ′. By Claim 23 we can get that the Kolmogorov
complexity of every allocation function of every auction with approximation ratio c for
Fj is at least m, with respect to every natural order. We choose l to be large enough so
l · m − c1 · log r − c2 · n − c3 ≥ m, where c1, c2, c3 are constants from Claim 23 that depend
on the specific natural order and a property of ≺ ′, so we choose l large enough to satisfy
this for every natural order and the claim follows. ◀

2 ( n
k )k ≤

(
n
k

)
≤ ( n·e

k )k
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As mentioned, the partial monotone allocation sets that we construct have a certain
structure which we call an m-divisible set. This term is quite technical and so we try to
write the constructions in a way that is clear without the need to fully understand what an
m-divisible set is. For that purpose we explain some notation that is used in the construction
methods.

The partial monotone allocation sets S are constructed in some m ∈ N steps, each step
j ∈ [m] constructs a subset Sj of S such that S =

⋃
j∈[m]

Sj . For each subset Sj , we have a

set of ’active players’, denoted Aj . This is the set of players that are allocated the item in
some instance in Sj . We show that these are monotone allocation sets by proving that each
constructed set S is m-divisible, as m-divisible sets are monotone (see Section B).

The two methods for constructing partial allocation sets that are m-divisible are described
next (Section A.1 and Section A.2). We also describe a construction for a set of partial
allocation sets (Section A.1.1), this construction is based on the first construction method
that constructs a single partial allocation set. This construction of sets of partial allocation
sets is used to prove Corollary 28.

A.1 Construction I: Random High Values
All instances in this construction consist of n

2 + 1 players with values that are uniformly and
independently distributed between 1

2 and 1. The remaining players have low values that are
close to 0. The partial allocation function allocates the item to one of the (approximately)
n
2 players with values in [ 1

2 , 1]. Thus, by considering each instance by itself it is hard to
guess which player the item should go to – a more “global” view of the allocation function is
necessary. Formally:

We start with some arbitrary vector v⃗0 in which the values of all n players are in (0, 1].
1. Each player i is added to the set of active players in the j’th subset Aj with probability

1
2 , independently at random. If the set Aj is empty (which happens with probability 1

2
n),

we resample it.
2. For every active player i ∈ Aj , sample r⃗i ∼ U [2, 4], and let ki be the index of the latest

subset ki < j in which player i was active, if no such index exists, let ki = 0. Then,
player’s i value in v⃗j is set to:

(v⃗j)i = (v⃗ki)i

ri
.

3. For every non active player i ∈ [n] \ Aj , sample a value vi ∼ U [ 1
2 , 1] and set player’s i

value in v⃗j to be equal to the samples value, i.e., (v⃗j)i = vi.

We construct the allocations subset Sj by sampling a threshold (for receiving the item
when v⃗−i = v⃗j−i) for every active player i ∈ Aj in the j’th subset:
4. For every player i ∈ Aj we sample a threshold ui ∼ [ 1

2 , 1].
5. For every player i ∈ Aj , we set the allocation in (ui + ε′, (v⃗j)−i) to be to player i by

adding the tuple ((ui + ε′, (v⃗j)−i), i) to Sj , for some arbitrary small ε′ > 0.3

▷ Claim 31. For every n, m ∈ N, the construction outputs a set S of size at least n·m
4 that

is m-divisible w.r.t. S1, . . . , Sm with with probability at least 1 − e( −n·m
16 ).

3 Note that the role of ε′ is to break ties – otherwise it is not clear who gets the item at the threshold
value.
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▶ Corollary 32. For every small enough ε > 0 there exists nε ∈ N such that for every n ≥ nε

there exists m ∈ N for which the construction method above constructs an m-divisible set
with cS ≤ ε with high probability.

The proof of Claim 31 and the proof of Corollary 32 can be found in the full version.

A.1.1 Construction of a Set of m-divisible Sets
In this section we describe a construction for a set of m-divisible Sets. This construction is
used in Section 4 to prove Corollary 28. However, this construction is very similar to the
Random High Values construction and uses some of its claims, for that reason we describe
this construction here.

For every large enough n, m, we define the set Rn,m of m-divisible sets. Each m-divisible
set S = S1, . . . Sm in Rn,m will have a set of active players of size log n for every j ∈ [m].
Now, we define the set of allocations On,m for m-divisible set that we want to consider and
we’ll make sure that for every allocation in O we have an m-divisible set in Rn,m with this
allocation.

On,m is a set of size (
(

n
log n

)
)m of all possible variations of m active players sets, each set

of size log n and players can be from {2, . . . , n} .
For every allocation o ∈ On,m, we construct an m-divisible set So that will be added to

Rn,m in the following way:
We start with a vector v⃗0 = 1n. For every j ∈ [m], we construct the j’th subset Sj of So

based on Sj−1 and oj .
1. Let Aj = {i | i appears in oj}.
2. For every active player i ∈ Aj , sample r⃗i ∼ U [2, 4], and let ki be the index of the latest

subset ki < j in which player i was active, if no such index exists, let ki = 0. Then,
player’s i value in v⃗j is set to:

(v⃗j)i = (v⃗ki)i

ri
.

3. For every non active player i ∈ [n] \ {Aj ∪ {1}}, sample a value vi ∼ U [ 1
2 , 1) and set

player’s i value in v⃗j to be equal to the samples value, i.e., (v⃗j)i = vi.

We construct the allocations subset Sj by sampling a threshold (for receiving the item
when v⃗−i = v⃗j−i) for every active player i ∈ Aj in the j’th subset:
4. For every player i ∈ Aj we sample a threshold ui ∼ [ 1

2 , 1).
5. Sample player’s 1 value v1 ∼ U [maxi∈Aj

ui, 1] in v⃗j to be the highest value among all
threshold in the j-th iteration.

6. For every player i ∈ Aj , we set the allocation in (ui + ε′, (v⃗j)−i) to be to player i by
adding the tuple ((ui, (v⃗j)−i), i) to Sj , for some arbitrary small ε′ > 0.4

If the object we constructed is not an m-divisible set or if it doesn’t satisfy the uniqueness
of thresholds assumption 44 we repeat the process of construction S0 (the process will stop,
see Claim 33). Otherwise, we add So to Rn,m.

▷ Claim 33. The process of constructing the set Rn,m will stop and the following properties
will hold:

4 Note that the role of ε′ is to break ties – otherwise it is not clear who gets the item at the threshold
value.
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1. Each S ∈ Rn,m satisfy the uniqueness of thresholds assumption 44.
2. For every S ∈ Rn,m, in all its instances the maximal player is player 1.
3. For every S ∈ Rn,m, for every j ∈ [m] the size of the set of active players in iteration j is

exactly log n.
4. For every allocation o ∈ On,m, there exists an m-divisible set So ∈ Rn,m with the

allocation o on its instances.
5. Each m-divisible set S in Rn,m has parameter cS < 4n

m log n + 4
log n

We relegate the proof of Claim 33 to the full version.

A.2 Construction II: Geometrically Increasing Base Sets
We start with the base vector in which all values equal 1 and generate n instances, where
in the i’th instance the i’th player has value ri · vi, for some ri that is chosen uniformly at
random from [2, 4]. Player i is allocated the item in the i’th instance. We repeat this process
m times, for some large m, each time the base set is obtained from the previous base set
by multiplying each vi by some ri that is chosen independently and uniformly at random
from [2, 4]. Note that after not too many iterations, the instances will look “random”, as the
value of the player that is allocated the item is essentially indistinguishable from the values
of the rest of the players. All players are active in each base set in this construction method.
We construct the j’th base vector after the previous j − 1 base vectors:
1. For every player i ∈ [n], sample r⃗i ∼ U [2, 4].
2. Define v⃗j by (v⃗j)i = ( ⃗vj−1)i · ri for every player i ∈ [n].

We construct the allocations subset Sj by sampling for every player i, a threshold for
v⃗−i = v⃗j−i:
3. For every player i we sample a threshold ui ∈ [(v⃗j)i · 2, (v⃗j)i · 4].
4. For every player i, we set the allocation in (ui + ε′, (v⃗j)−i) to be to player i by adding

the tuple ((ui + ε′, (v⃗j)−i), i) to Sj , for some arbitrary small ε′ > 0. (The addition of ε′

is for tie breaking, similarly to the previous construction.)

▷ Claim 34. For every n, m ∈ N, the construction method outputs a set S =
⋃

j∈[m]
Sj of size

n · m that is m-divisible w.r.t. S1, . . . , Sm with with parameter cS ≤ 2n+2m

n·m .

▶ Corollary 35. For every small enough ε > 0 there exists mε, n ∈ N such that for every
m ≥ mε there exist n ∈ N for which the construction method above constructs an m-divisible
set with parameter cS ≤ ε.

The proof of Claim 34 and the proof of Corollary 35 can be found in the full version.

B A General Construction of Interim IR Rigid Sets

In this section, we show how to “embed” a partial allocation function S into a distribution FS

so that the revenue that can be extracted by a mechanism mostly depends on its agreement
ratio and the structure of the allocation function, i,e., we show how to embed a set S into
a distribution FS so that the distribution FS will be rigid with respect to S. In Section
A we present some concrete partial allocation functions for which the revenue that can be
extracted by incentive compatible mechanisms depends on the agreement ratio in a way that
is almost linear (i.e., the revenue disagreement function is ε-almost linear for every small
enough ε). We begin with some definitions.
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▶ Definition 36. A partial monotone allocation function is a monotone allocation function
that is defined for a subset of all instances and can be extended to all instances by a monotone
function.

A partial monotone allocation function f can be specified by a partial monotone allocation
set: this is a set whose elements are tuples {(v⃗, i)} such that f(v⃗) = i.

The construction of a partial monotone allocation function f can be described by repeating
the following process several times: choose a vector v⃗j that specifies the values of the n

players. Then, for every player i, choose a threshold ui,j (it is possible that ui,j = ∞) such
that f gives player i the item in the instance (t, (v⃗j)−i) for every t ≥ ui,j . Each vector v⃗j

that is chosen in some iteration j of the process is called a base vector.
Observe that as described so far, this construction might not yield a feasible allocation

function. Thus, we make two changes. The first change is that in the j’th iteration, we
require each threshold ui,j to be larger than v⃗ji. Otherwise, if there were two players i, i′

with ui,j < v⃗ji and ui′,j < v⃗ji′ , then the allocation set is not feasible since both i and i′ have
to be allocated the item in the instance v⃗j .

The second change is that for every two different base vectors v⃗j , v⃗k and for every player
i, we require that (v⃗j)i ̸= (v⃗k)i. This ensures that the resulting monotone allocation function
is feasible, i.e., that at most one player gets the item in every instance. To see this, consider
an instance v⃗ and suppose that the value of more than one player is higher than its threshold
in this instance (without loss of generality, players 1 and 2). Then, for some iteration j of the
construction, we have that v⃗j−1 = v⃗−1 together with u1,j < v⃗1. Similarly, for some iteration
k of the construction, we have v⃗k−2 = v⃗−2 together with uk,2 < v⃗2. Now, because whenever
j ̸= k we required that (v⃗j)i ̸= (v⃗k)i for every player i, and in particular for player 3 (this
is why we assume n > 2), and we have v⃗j3 = v⃗k3, it must be that j = k. But, this means
that in the same iteration, in the same base vector, we allocated the item to more than one
player, which is not possible.

Based on this construction, we state some definitions.

▶ Definition 37. A base set is a partial monotone allocation set S such that there exists
an instance v⃗S for which every (u⃗, i) ∈ S satisfies vS−i = u−i. The instance vS is called
the base vector of the set. In a base set each player i has at most one instance u⃗ such that
(u⃗, i) ∈ S. In addition, we require monotonicity: for every (u⃗, i) ∈ S it holds that u⃗i > v⃗Si.

Consider some iteration j of the process and observe that it defines a base set with base
vector vj .

▶ Definition 38. A set of base vectors V is sparse if for every two base vectors w⃗, u⃗ ∈ S, w⃗ ̸= u⃗,
and i ∈ [n] it holds that wi ̸= ui.

By the second change, the set of all the base vectors constructed by this process is sparse.

▶ Definition 39. A partial allocation set S is m-divisible with respect to S1, . . . , Sm if
S1, . . . , Sm is a partition of S into m non-empty base sets such that the set of their corres-
ponding base vectors v⃗1, . . . v⃗m is sparse and the instances in S are for n > 2 players.

Observe that the process above also construct an m-divisible set. Each iteration j of
the process yields a base set Sj (Definition 37) with base vector vj and the union of m

iterations is an m-divisible set S with respect to S1, . . . , Sm since the set of v⃗1, . . . , v⃗m is
sparse (Definition 38).

As we saw, partial monotone allocation functions and m-divisible sets are closely related
objects. We later state Theorem 45 and prove it using the terminology of m-divisible sets.
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B.1 The Main Technical Theorem
In this section we state our main technical theorem (Theorem 45). This theorem is a
construction; it gets as input an m-divisible set S (with some parameters) and construct a
distribution DS that is interim IR f -rigid with respect to S (see Definition 8). Where f is
an ε-almost linear revenue disagreement function for ε that depends on the parameters of S.
We first require some notations and definitions.

▶ Definition 40. Let S be an m-divisible set with respect to S1, . . . , Sm. Then, player i is
active in a set Sj if there is an instance u⃗ such that (u⃗, i) ∈ Sj . For every set Sj , we denote
by AS

j its set of active players. Let AS the set of all active players, i.e., AS =
⋃

j∈[m]
AS

j .

Sometimes it will be easier to consider the subsets in which a certain player is active. For
that purpose, let Ai

S = {j ∈ [m] | i ∈ AS
j }.

When considering an m-divisible set S with respect to S1, . . . , Sm we need some notation
for the values of the players in the instances of S. We denote the value of player i in the
base vector v⃗j (of Sj) by vi,j . Similarly, for an active player i in the subset Sj , we denote by
ui,j its value in the instance u⃗ such that (u⃗, i) ∈ Sj .

The next two definitions of the parameters of an m-divisible set S are used to quantify the
bound guaranteed by Theorem 45 on the approximation ratio of any interim IR mechanism
m with agreement ratio of x with S.

▶ Definition 41. Let S be an m-divisible set with respect to S1, . . . , Sm. For every set Sj , let

αS
j =

max
i∈[n]

{vi,j}

min
k∈AS

j

{uk,j − vk,j}

Denote by αS
avg their average, i.e., αS

avg = 1
m

∑
j∈[m]

αS
j .

The parameter αS
j , defined for the subset Sj , measures the ratio between the highest

valuation in the base vector vj and the minimal gap between the threshold ui,j of an active
player i in Sj and this player value in the base set vi,j .

▶ Definition 42. Let S be an m-divisible set with respect to S1, . . . , Sm. For every i ∈ A,
arrange by ascending order the values vi,j for sets Sj that i is active in (i.e., i ∈ Aj) and
denote them by yi,1, . . . yi,ki

. Let

gS
i = 1

1 − max
1≤j≤ki−1

{ yi,j

yi,j+1
}

= 1 + 1
min

1≤j≤ki−1
{ yi,j+1

yi,j
} − 1

Denote by gS
avg the average of (gS

i ) over all active players, i.e., gS
avg = 1

|AS |
∑

i∈AS

(gS
i ).

The parameter gS
i , for an active player i, is related to the growth rate of player i’s values

in the base vectors of S1, . . . , Sm. Formally, this parameter equal to 1 plus 1 over the minimal
growth in the values of player i in the base vectors that corresponds to subsets he is active
in (the growth is measured between the sorted values), minus one.

▶ Definition 43. The agreement ratio of a mechanism M with some partial allocation
function f(·) is the fraction of the allocations that f is defined for which the allocation of M

is identical to the allocation of f .
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To simplify the proof we require that the m-divisible set S satisfy the uniqueness of
thresholds property (Definition 44).

▶ Definition 44 (uniqueness of thresholds). An m-divisible with respects to S1, . . . , Sm has the
uniqueness of thresholds property if for every player i, his thresholds values ui,j (j ∈ Ai) are
distinct and different from his value in the base vectors (i.e., from the values vi,1, . . . , vi,m).

We are now ready to state our main technical theorem:

▶ Theorem 45. Let S be an m-divisible set with respect to S1, . . . , Sm with parameters
|AS |, gS

avg and αS
avg that satisfy the uniqueness of thresholds assumption. There exists a

distribution FS on which the approximation ratio of every dominant strategy incentive
compatible, interim IR, and deterministic mechanism with agreement ratio of at most x with
S is at most:

min{cS + x, 1}

where cS =
|AS | · gS

avg + m · αS
avg

|S|
, and the size of FS’s support is at most 5|S|+m+

∑
j∈[m]

|Aj |2.

In Section A we apply this theorem on sets for which the expression cS is very small.
Thus, the approximation ratio depends mostly on the agreement ratio.

▷ Claim 46. In Theorem 45, every interim IR, dominant strategy incentive compatible and
deterministic mechanism with agreement ratio at most x ∈ [1 − cS , 1) has approximation
ratio less than 1.

The proof of Claim 46 is relegated to the full version.

▶ Corollary 47. Let S be an m-divisible set with parameter cS, then there exists a distribution
FS that is interim IR fS-rigid with respects to S (Definition 8). Where fS is cS-almost
linear revenue disagreement function (Definition 9).
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Abstract
Constructing a shortest path between two network nodes is a fundamental task in distributed
computing. This work develops schemes for the construction of shortest paths in randomized beeping
networks between a predetermined source node and an arbitrary set of destination nodes. Our first
scheme constructs a (single) shortest path to an arbitrary destination in O(D log log n + log3 n)
rounds with high probability. Our second scheme constructs multiple shortest paths, one per each
destination, in O(D log2 n + log3 n) rounds with high probability.

Our schemes are based on a reduction of the above shortest path construction tasks to a
decomposition of hypergraphs into bipartite hypergraphs: We develop a beeping procedure that
partitions the hyperedge set of a hypergraph H = (VH , EH) into k = Θ(log2 n) disjoint subsets
F1 ∪ · · · ∪ Fk = EH such that the (sub-)hypergraph (VH , Fi) is bipartite in the sense that there
exists a vertex subset U ⊆ V such that |U ∩ e| = 1 for every e ∈ Fi. This procedure turns out to be
instrumental in speeding up shortest path constructions under the beeping model.
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1 Introduction

Constructing a shortest path between given source and destination nodes is among the most
fundamental tasks in algorithmic graph theory in general and in the field of distributed
graph algorithms in particular. In this field, the challenge behind the shortest path task is
dominated by the decentralized nature of the underlying communication network, where
in most distributed computational models, the communication network is assumed to be
identified with (or at least derived from) the input graph (see, e.g., [24]). These computational
models differ in various aspects, the most important one is arguably the communication
scheme that determines how information can be exchanged between the graph nodes.

The distributed computational model that takes the most radical approach in terms of
the communication scheme is the beeping model [11, 15] that provides an abstraction for
networks of extremely simple devices. In particular, the communication capabilities of each
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device boil down to two modes of operation: beep, i.e., emit a signal; and listen, i.e., detect if
a signal is emitted in its (graph) vicinity. This limited communication scheme means that
beeping algorithms may be implemented in practice by small, cheap, and energy-efficient
devices that can be employed in various applications. A prominent example is a sensor
network, deployed in an airborne manner over a large terrestrial area, and thus creating an
unstructured network composed of a large number of simple devices.

Despite the extensive literature dedicated to beeping algorithms for various graph theoretic
tasks (see Section 1.2), to the best of our knowledge, the shortest path task has not been
studied yet under the beeping model. The current paper strives to change this situation,
advancing the state-of-the-art of the following tasks: in the simpler case, the goal is to
construct a shortest path from a designated source node to one destination node. In the
more general case, the goal extends to constructing shortest paths between the source and
multiple destination nodes.

Since the structure of the network is unknown and since we do not assume that the
primitive devices have unique IDs, the path construction goal has the following interpretation:1

Each node holds a binary output and the nodes that output 1 form a shortest path p from
the source to the destination. We further require that each node along p knows its distance
from the source.

To be more concrete, consider a network represented as an undirected connected graph
G = (V, E) over n = |V | nodes, where one designated node, denoted by s ∈ V , is called the
source. Each node is a beeping device and edges correspond to pairs of devices that can hear
each other’s beeps. The execution progresses in discrete rounds so that (1) a node that beeps
at a certain round cannot listen in the same round; and (2) a node that listens in a round
can only distinguish the case that none of its neighbors beep from the case that some (at
least one) neighbors beep. The nodes are randomized anonymous machines and we assume
that they know a (polynomial) approximation of n.2

When the execution commences, all nodes are asleep; in this state, nodes do not perform
any computation, nor do they beep. Some destination nodes, whose set is denoted by Y ⊆ V ,
wake up at arbitrary times due to external events (e.g., a triggered sensor). Other nodes (non-
destinations) wake up once at least one of their neighbors beeps. Upon waking up, either due
to an external event or hearing a beep, each node sets its local clock to 0 and starts executing
a predefined algorithm. We emphasize that no global clock is assumed, that is, although all
nodes communicate in synchronous rounds, each node has a local definition of “round 0” (as
explained in the sequel, global synchronization is obtained as part of the algorithm).

In this paper, we develop algorithms for two (families of) tasks related to the construction
of shortest paths from the source s to the destinations in Y . To facilitate the exposition,
assume for the time being that there is a single destination, i.e, Y = {y}, and consider the task
of computing a shortest path p between s and y. Using standard techniques, we can ensure
that all nodes are awake and know their distance from the source. Following that, the natural
approach would be to construct the desired path p step-by-step, from y inwards, until s is
reached. Specifically, once we have already constructed a prefix of p that leads from y to a node
v at distance i from s, the next step would be to identify a neighbor u of v whose distance from
s is i−1; node u is then appointed as the next node along the path p and the process continues.

1 The algorithms considered in this paper are randomized and the nodes know an approximation of the
graph size, so unique IDs can be generated.

2 In fact, it suffices for our algorithms that the source s knows an approximation of n.
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The task of identifying such a neighbor u of v under the beeping model requires some
effort as v may have multiple neighbors u1, . . . , ur at distance i− 1 from s, all of which are
candidates to form the next node u along p. The common method to handle this task is to
run a competition among the set of candidates so that each candidate ui picks a random
bitstring xi ∈ {0, 1}ℓ and beeps in a pattern determined by xi; this allows the candidate ui

with the lexicographically largest bitstring xi to win the competition and identify itself as
the next node along the constructed path p.

A necessary condition for the success of this method is that the length ℓ of the bitstrings,
and hence also the length of the beeping patterns, should be Θ(log n), leading to a total round
complexity of Θ(D log n), where D denotes the diameter of the communication graph G. The
question that guides our research is whether this round complexity bound can be improved.
Specifically, can we “separate” between the linear dependency on D and the (poly)logarithmic
dependency on n? We answer this question in the affirmative as stated in the following
theorem (see Theorem 7 for the exact statement).

▶ Theorem 1 (single path, simplified). Let Y ⊆ V be a set of destinations. There exists an
algorithm that constructs a shortest path from the source s to an arbitrary destination y ∈ Y

in O(D log log n + log3 n) rounds whp.3

Next, we consider the task of constructing a shortest path between the source s and each
destination y ∈ Y . The naive approach would be to perform the construction implied by
Theorem 1 separately (non-simultaneously) for each destination. However, the complexity of
constructing a path node-by-node would then increase by a multiplicative factor of |Y | (at
the very least). This leads to the question of whether the dependency on the number |Y | of
destinations can be avoided. We answer this question affirmatively as well, albeit at the cost
of increasing the dependence on n in the D-term, as stated in the following theorem (see
Theorem 8 for the complete statement).

▶ Theorem 2 (multiple paths,simplified). Let Y ⊆ V be a set of destinations. There exists an
algorithm that constructs a shortest-path tree from the source s to (all destinations in) Y in
O(D log2 n + log3 n) rounds whp.

1.1 Our Techniques
The Hypergraph Bipartite Decomposition Problem. The constructions promised in Theo-
rems 1 and 2 are made possible due to the following combinatorial problem that, on the face
of it, does not seem related to shortest path tasks. We call this problem hypergraph bipartite
decomposition (HBD) and define it as follows.

A hypergraph H = (VH , EH) is said to be bipartite if there exists a vertex subset U ⊆ VH

such that each hyperedge is incident on exactly one vertex of U , that is, |e∩U | = 1 for every
e ∈ EH (see, e.g., [3]). The goal of the HBD problem is to partition the hyperedge set EH of
a given hypergraph H = (VH , EH) into pairwise disjoint clusters F1 ∪ · · · ∪ Fk = EH so that
the sub-hypergraph (VH , Fi) is bipartite for every i ∈ [k] with the objective of minimizing
the number k of clusters.4,5

3 We say that event A occurs with high probability, abbreviated by whp, if P(A) ≥ 1−n−c for an arbitrarily
large constant c > 0.

4 We stick to the convention that [k] = {1, . . . , k}.
5 Note that the HBD notion, as defined in the current paper, is a generalization of the notion of graph

bipartite decomposition, where the hypergraph H = (VH , EH) is an ordinary graph (i.e., the rank of
each hyperedge e ∈ EH is |e| = 2).
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We subsequently encode a solution for the HBD problem on H = (VH , EH) by means of a
function c : EH → [k] that assigns a color c(e) to each hyperedge e ∈ EH and a function cs :
VH → 2[k] that assigns a (possibly empty) color set cs(v) to each vertex v ∈ VH . The functions
c(·) and cs(·) are subject to the constraint that for each hyperedge e ∈ EH , there exists exactly
one incident vertex v ∈ e such that c(e) ∈ cs(v). Using the aforementioned bipartite sub-
hypergraphs terminology, the hyperedges e ∈ EH whose color is c(e) = i form the cluster Fi,
whereas the inclusion of color i in the color set cs(v) of a vertex v ∈ VH indicates that v belongs
to the vertex subset U ⊆ VH that realizes the biparticity of the sub-hypergraph (VH , Fi).

The HBD problem plays a pivotal role in the design of our algorithms for the shortest
path construction tasks of Theorems 1 and 2. To explain this role, let us focus again on
the simplified task of constructing a shortest path p between the source s and a (single)
destination y. Recall the aforementioned process that grows the path p from destination y

to source s step-by-step so that in each step, the path p is extended from a node in Li to
a node in Li−1, where Ld denotes the set of nodes at distance d from s, a.k.a. layer d. As
discussed earlier, assuming that we have already constructed a prefix of p that leads from y

to a node v ∈ Li and taking u1, . . . , ur to be the neighbors of v in Li−1, the bottleneck of
the process is the task of identifying one such neighbor ui, i ∈ [r]. Indeed, the naive method
for this task takes Θ(log n) rounds, which results in Θ(D log n) rounds for the entire process.

This is where the HBD problem comes into play: In a preprocessing phase, we construct
an HBD solution for the (i, i− 1)-layered hypergraph H = (VH , EH) defined by setting VH =
Li−1 and EH = {Nv ∩ Li−1}v∈Li

; that is, we identify the vertices of H with the nodes in
Li−1 and introduce a hyperedge for each node v ∈ Li that includes all neighbors of v in
Li−1. In particular, this HBD solution assigns a color c(v) ∈ [k] to each node v ∈ Li and
a color set cs(u) ∈ 2[k] to each node u ∈ Li−1. The HBD solution for the (i, i− 1)-layered
hypergraph is constructed for each layer 1 ≤ i ≤ dmax, where dmax = max{i ≥ 0 | Li ̸= ∅} is
the source’s eccentricity in G.

The crux of our technique is that once the path growing process reaches node v ∈ Li, it is
sufficient that v beeps a pattern that encodes v’s color c(v) ∈ [k]. Indeed, the definition of the
HBD problem ensures that there is a unique neighbor u of v in Li−1 with c(v) ∈ cs(u); this
neighbor u is selected as the next node along the path p. Our solution for the HBD problem
uses a polylogarithmic palette size k which means that the beep pattern that encodes c(v)
is of length O(log k) = O(log log n), thus providing an exponential improvement over the
naive approach and ultimately leading to a process that grows the entire shortest path p in
O(D log log n) rounds. (In the multiple path task, node v uses a unary encoding of c(v) in
the pattern it beeps, hence the larger dependency on n.) Put differently, the colors assigned
by the HBD solution serve as “succinct locally unique identifiers” that facilitate an efficient
recognition of the next node in the shortest path p. The key ingredient of our algorithms is
cast in the following theorem.

▶ Theorem 3 (HBD procedure, simplified). There exists a beeping procedure that given a
layer 1 ≤ i ≤ dmax, constructs an HBD solution for the (i, i − 1)-layered hypergraph with
palette size k = O(log2 n) in O(log3 n) rounds whp. In fact, the procedure can be invoked
concurrently for all layers 1 ≤ i ≤ dmax, constructing the corresponding dmax HBD solutions
in O(log3 n) rounds whp.

As any hypergraph can be “embedded” as an (i, i− 1)-layered hypergraph of some graph
G, Theorem 3 means that any n-vertex hypergraph can be decomposed into k = O(log2 n).
This turns out to be (combinatorially) tight: In [4], Alon, Bar-Noy, Linial, and Peleg consider
the task of broadcasting a message in radio networks. In this setting, if two neighbors of
some node communicate at the same round, then that node hears nothing. Alon et al. prove
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that there exists a bipartite graph G∗ over poly(n) nodes in which Ω(log2 n) rounds are
required to broadcast a message m, assuming that m is initially known to all nodes on the
the left-hand side of G∗.

The construction of [4] implies an Ω(log2 n) lower bound for the HBD task. Indeed,
define the hypergraph H∗ over the left-hand side nodes of G∗, introducing a hyperedge eu

for each right-hand side node u of G∗ that consists of the left-hand side neighbors of u in
G∗. If H∗ can be decomposed into k bipartite hypergraphs H1, . . . , Hk, then there is a way
to broadcast m in the radio-network G∗ in k rounds: the subset Ui (left-hand nodes) that
realizes the biparticity of Hi transmits in round i. Since each hyperegde eu ∈ Hi intersects
only a single node in Ui, the right-hand node u learns the message m in round i. Therefore,
the HBD problem on H∗ requires a palette of size k = Ω(log2 n).

Theorem 3 and the lower bound of [4] yield the following corollary.6

▶ Corollary 4. Any n-vertex hypergraph can be decomposed into k = O(log2 n) bipartite
hypergraphs and this is existentially tight.

A Framework for the Construction of Shortest Paths. Towards the design of the algorithms
promised in Theorems 1 and 2, we develop a framework that supports solving various different
shortest path related tasks. Our framework is composed of three phases: a wake-up phase; a
preprocessing phase; and a path construction phase. The wake-up and preprocessing phases
are executed “offline” for the purpose of constructing the infrastructure that subsequently
enables running the third (path construction) phase more efficiently. In a bird’s-eye view,
the three phases are as follows (see Section 3 for an extended overview):

(i) The goal of the wake-up phase is to wake-up all nodes and set up the parameters
required to solve the HBD problem. In particular, using relatively standard techniques,
we guarantee that upon completion of the wake-up phase, each node v ∈ V knows
to which layer Li it belongs as well as the source’s eccentricity dmax. This phase
further guarantees that the nodes obtain globally-synchronized clocks (despite their
unsynchronized wake-up). We elaborate on the wake-up phase in Section 7.

(ii) The preprocessing phase is dedicated to the solution of the HBD instances defined over
the (i, i− 1)-layered hypergraphs and constitutes the heart of our algorithm(s). Upon
completion of this phase, each node v ∈ Li holds the c(v) and cs(v) variables that
facilitate expedited shortest path growing processes. To serve different tasks in the path
construction phase, we actually compute two sets of these variables, one that supports
growing shortest paths inwards, from the destinations to the source (corresponding to
the HBD solution for the (i, i− 1)-layered hypergraphs as discussed previously), and
one that supports growing shortest paths outwards, from the source to the destinations
(corresponding to the HBD solution for the (i− 1, i)-layered hypergraphs as discussed
in the sequel). We elaborate on the preprocessing phase in Section 4.

6 We learned about the lower bound [4] and the relation between broadcast in radio networks and the
HBD task after a preliminary version of this work was made available online. In hindsight, a k round
broadcast scheme in a bipartite radio network implies a k-color decomposition of the induced hypergraph.
In particular, the algorithm of Bar-Yehuda, Goldreich, and Itai [6] gives a broadcast scheme for bipartite
radio networks in O(log2 n) rounds. Their scheme takes a decay approach (slightly different from the
decay approach we adopt in Algorithm 2) that guarantees a round with a single transmitter for each
receiving node. If, similar to our coloring method in Algorithm 2, one assigns transmitters with colors
according to their transmission rounds and assigns each receiver a color that matches the first round in
which a message was received, one obtains an HBD decomposition of the hypergraph defined by the
transmitters as nodes and receivers as hyperedges. It is important to point out that the algorithm of [6]
is designed to work under the radio network model and implementing it under the (seemingly harsher)
beeping model would require additional machinery, see Section 4.
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(iii) The path construction phase is responsible for solving specific tasks related to the
construction of shortest paths between the source and the destinations based on
the infrastructure built in the preprocessing phase. In this paper, we focus on the
task of constructing a (single) shortest path to one destination (a generalization of
Theorem 1) and the task of constructing a shortest-path tree to multiple destinations
(a generalization of Theorem 2); we elaborate on those in Sections 5 and 6, respectively.

The infrastructure constructed during the preprocessing phase (based on the wake-up phase)
seems fairly useful and we believe that it may be applicable for efficient solutions of other
shortest path related tasks.

1.2 Additional Related Work
The beeping model, defined by Cornejo and Kuhn [11] (c.f. [15]), has been extensively explored
in the literature. Previous work considered solving various tasks in beeping networks, most
notably local symmetry breaking tasks (i.e., MIS and coloring) [2, 1, 22, 18, 10, 7, 9], global
symmetry breaking tasks (i.e., leader election) [17, 16, 13], and broadcasting of messages [17,
20, 21, 12, 8].

To the best of our knowledge, no prior work in the beeping model dealt with the
fundamental tasks of constructing shortest paths. The works [7, 5] show how to simulate any
CONGEST algorithm over a beeping network by first performing a 2-hop coloring and then
communicating in each neighborhood using a time-division technique (TDMA) based on the
given colors, so that transmissions do not interfere. These simulations, however, blow up
the round complexity by an Ω(∆) factor to support the TDMA; ∆ is the maximal degree
in G. Therefore, even though constructing a shortest path in the CONGEST model takes
Θ(D) rounds, a direct simulation of shortest path construction in the beeping model greatly
surpasses the complexity we obtain in the current paper. We are also not familiar with any
works on the algorithmic aspects of the HBD problem, particularly in distributed settings.

Most of the beeping literature so far has assumed synchronous networks where all nodes
begin their execution in the same “round 0”. Some works (e.g., [1, 17, 20]) constructed schemes
that lift this assumption, allowing some nodes to wake up spontaneously, whereas other
nodes wake up when their neighbors beep. The works [11, 14] considered the harsher setting
where nodes wake up in arbitrary, adversarially-chosen rounds, and do not necessarily wake
up when their neighbors beep. The works [1, 16, 13, 19] allow simulating beeping algorithms
that assume globally-synchronized clocks over beeping networks with unsynchronized wake-
up. Under the assumptions that nodes wake up upon the reception of a beep, one can show
that the local clock of any two neighbors (u, v) ∈ E differ by at most one. Then, each
round of the algorithm that assumes globally-synchronized clocks, can be simulated via three
rounds: the middle round of every such triplet is overlapping with the corresponding triplet
of each neighbor. We shall use this technique in our wake-up phase in Section 7.

2 Preliminaries

Notations. Given a graph G = (V, E) and a node v ∈ V , we let Nv = {u | (u, v) ∈ E} be
the neighborhood of v. For any two nodes u, v ∈ V , we let d(u, v) denote their distance, i.e.,
the length of the shortest path connecting u and v. All logarithms are taken to the base 2
unless otherwise mentioned.

Model and Setting. We assume the standard beeping model [11], where a network of n

devices is abstracted as the connected graph G = (V, E), where each device is identified with
a node v ∈ V . The computation proceeds in synchronous rounds, where in each round each
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v ∈ V can either beep or listen (but not both). If a node v listens in a given round it will
hear a beep only if one of the nodes in its neighborhood Nv beeps in this round; otherwise, v

hears a silence. The node v cannot distinguish the case where multiple of its neighbors beep
from the case where only a single neighbor beeps. If v beeps in a given round, it cannot tell
whether any of its neighboring nodes also beep in that same round.

At the onset, all devices are in a sleeping state. If some node beeps at some round, all
its sleeping neighbors wake up, set their local round-counter to 0, and start executing their
predefined algorithm (e.g., they start to listen or beep in the following round). Note that the
nodes do not possess a global clock and the notion of round number is local. However, for
analysis purposes, we denote by global round the round number according to the first node
that wakes up.

Nodes are assumed to know a bound on n = |V |. We assume that each node has access
to an (independent) random string. We do not assume the nodes have IDs, however, IDs can
be generated using the random string, with high probability. The nodes receive no inputs.
Yet, one distinguished node s ∈ V is the source and all other nodes know that they are not
the source. We refer to the set of nodes at distance i from the source s as (distance) layer i,
denoted by Li = {v ∈ V | d(s, v) = i}.

Beep Waves. Beep waves [17, 12] are a basic communication primitive in the beeping
model, which allows a single node to broadcast a message throughout the network, utilizing
the other nodes as relays. Informally, if some node v starts a beep wave, it beeps in some
round r, which causes its neighbors to beep in round r + 1, its distance-2 neighbors to beep
in round r + 2, and so on, until the beep wave reaches the entire network. Broadcasting
a message m is achieved by initiating |m| consecutive7 beep waves, where the i-th wave
behaves as above if mi = 1 or is silent (no beeps at all) if mi = 0.

Beep waves can also signal events in the network. In this case, all nodes are set to listen,
and v initiates a single beep wave when some event happens. Then, all the nodes learn about
that event when the beep wave propagates to them. Note that once the beep wave has passed
some node u, no further beeps that stem from the same beep wave are heard by u. Hence,
any future beeps will be correctly interpreted by u as the next beep wave. Alternatively, u

can (locally) terminate or transition to a new state once it hears the beep wave that indicates
termination or transitioning into new state. Thus, we obtain a mechanism for synchronizing
the network.

Reverse Beep Waves. Reverse beep waves, unlike normal beep waves, only propagate
inwards to the source (or more generally, some designated root). The primitive assumes
nodes are globally-synchronized, have already computed their distance to the source and
know some bound on the source’s eccentricity, dmax . Nodes separate rounds from 1 to 3dmax
into triplets of (three consecutive) rounds, referred to as rounds 0, 1 and 2 of that triplet.
Consider some node v ∈ Li for some i ∈ [dmax]. Within each triplet r, the node v can initiate
a reverse beep wave due to an external event. Otherwise (in triplet r), v either relays a
reverse beep wave or listens for a reverse beep wave. In the latter case, if v hears a beep (i.e.,
issued by its neighbors in Li+1) it relays the beep in triplet r + 1, which will then be relayed
by Li−1, and so on. Similar to “standard” beep waves, one can initiate several consecutive
reverse beep waves (separated by three triplets at every node, to avoid interference) which
will move separately one layer inwards per triplet without any cross-interference.

7 To avoid interference, a node listens in some round r, relays its beep in round r + 1 and ignores round
r + 2, since its neighbors are relaying the beep then. The node listens again in round r + 3 which belongs
to the following beep wave.
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It remains to describe how nodes relay reverse beep waves. If a node v ∈ Li initiates a
beep wave in triplet r, then v beeps in round i mod 3 of the triplet r and stays idle for the
other two rounds of the triplet. Otherwise, v listens during triplet r, namely, in all three
rounds of the triplet. We say that v “hears” a reverse beep wave if it hears a beep in round
(i + 1) mod 3 of triplet r. Note that only nodes in Li+1, among neighbors of v, beep in round
(i + 1) mod 3 of any triplet, since any neighbor of v must belong in Li−1 ∪ Li ∪ Li+1. To
relay the beep heard in triplet r, the node v ∈ Li beeps in round i mod 3 of the triplet r + 1.

3 Problem Statement and Algorithm Overview

Assume an arbitrary network G = (V, E) in which one node s ∈ V is designated as the source.
At the onset, all nodes are asleep. The nodes in a set Y = {y1, . . . , yt} ⊆ V , referred to as the
destinations, experience external events that wake them up (unless already awake), possibly
at different times. We assume that each node yi ∈ Y knows that it is a destination even if
it wakes up upon hearing a beep (rather than due to an external event). This assumption
prevents the edge-case in which some nodes learn that they are destinations only in late
stages of the computation, e.g., after the construction terminates. We further assume that y1
wakes up first and yt last; this assumption is without loss of generality as the destinations do
not necessarily know whether they are y1, yt, or neither.

In this paper, we focus on two computational tasks related to the construction of shortest
paths between s and Y . Both tasks are specified by means of a distance policy π : 2[n] → 2[n]

that gets the set I = {1 ≤ i ≤ n | Y ∩ Li ̸= ∅} of destination occupied layer indices and
returns a set J = π(I) ⊆ I of target layer indices. For example, the set J can include the
minimum destination occupied layer index or all prime destination occupied layer indices or
all the destinations, etc. Note that we think of the distance policy π as a private information
of the source and the rest of the nodes can be oblivious to it. Let

YJ =
⋃
j∈J

Y ∩ Lj

be the set of all destinations that belong to the target layers.
In the single shortest path construction task, the goal is to construct a shortest path

between the source s and an arbitrary destination in YJ . The output of the single shortest
path construction task is provided by means of a binary variable zv ∈ {0, 1} returned by
each node v ∈ V when the execution terminates. These variables are subject to the following
constraint: there exists a shortest path p between s and an arbitrary destination in YJ such
that zv = 1 if and only if v is included in p.

The second task we solve is the shortest-path tree construction task. Here, we wish to
construct |YJ | shortest paths, one between s and each one of the destinations in YJ , so that
the union of the shortest paths forms a tree, namely, a YJ -spanning shortest-path tree rooted
at s. The output of the shortest-path tree construction task is also provided by means of
a binary variable zv ∈ {0, 1} returned by each node v ∈ V when the execution terminates.
These variables are subject to the following constraint: there exists a YJ -spanning shortest-
path tree T rooted at s such that zv = 1 if and only if v is included in T .

In both the single path and the shortest-path tree construction tasks, the computation
time (complexity) of the construction is defined to be the number of rounds from the time y1
wakes up until all the nodes return their output and terminate.
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3.1 Scheme Overview

As discussed in Section 1, our algorithms are composed of three phases, which we briefly
describe here.

The Wake-Up Phase

The execution commences once y1 wakes up and the objective of the wake-up phase is to
wake up the entire network and compute several parameters required for the next two phases.
Specifically, during the wake-up phase the nodes learn their distance from the source as well
as the source’s eccentricity dmax = max{d(v, s) | v ∈ V }. This is performed in a BFS-like
manner, where the source initiates the BFS by issuing a single beep, which is then relayed
throughout the network. The node v can retrieve its distance from s from the round number
in which the relayed beep wave is received at v. Using this mechanism, the nodes also
synchronize their clocks so that they all agree on the current round number despite their
unsynchronized wake-up (a.k.a. having globally synchronized clocks).

Following that, we invoke a distance gathering scheme that allows all nodes to gather
crucial information regarding the destination set Y . To this end, for each 1 ≤ i ≤ dmax, let

SPi = {v ∈ V | d(s, v) + d(v, y) = i for some y ∈ Y ∩ Li}

be the set of nodes that belong to some shortest path between s and y for some (at least
one) destination y ∈ Y ∩Li. The distance gathering scheme runs for O(D) rounds and when
it terminates, each node v ∈ V knows whether v ∈ SPi for each 1 ≤ i ≤ dmax (recall that the
nodes already know dmax).

To implement the distance gathering scheme, a destination that belongs to layer Li

initiates a reverse beep wave in a specific round chosen as a function of i so that the reverse
beep waves of destinations in consecutive layers travel towards the source in consecutive
rounds (up to an agreed upon spacing that prevents interference). This allows all nodes to
identify whether they belong to SPi for each 1 ≤ i ≤ dmax, thus fulfilling the scheme’s goal.

Since s ∈ SPi if and only if |Y ∩ Li| ̸= ∅, it follows that the distance gathering scheme
allows the source s to learn the set I = {1 ≤ i ≤ n | Y ∩Li ≠ ∅} of destination occupied layer
indices. The source can now apply the distance policy π to I and obtain the set J = π(I) of
target layer indices. The set J is then disseminated throughout the network in O(D) rounds
by a standard broadcast through beep waves.

Following the dissemination of the set J of target layer indices, each node v ∈ V knows
whether it is included in the set

SPJ =
⋃
j∈J

SPj

of nodes that belong to a shortest path to some destination in YJ . The nodes v ∈ V \ SPJ

set their output bit zv to 0 and turn themselves off as they do not participate in the next
two phases of the algorithm. The following theorem is established in Section 7.

▶ Theorem 5. The wake-up phase takes O(D) rounds, after which each node v ∈ V knows
(1) d(v, s); (2) dmax; (3) J ; and (4) whether v ∈ SPJ . Moreover, all nodes complete the
wake-up phase in the same (global) round, thus from that point on, the nodes have globally-
synchronized clocks.
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The Preprocessing Phase

The preprocessing phase is invoked by the nodes in SPJ once the wake-up phase completes.
As discussed in Section 1, the objective of the preprocessing phase is to solve the HBD
instances defined over the pairs of adjacent layers Li and Li+1 for each 0 ≤ i ≤ dmax− 1. For
every pair of adjacent layers, we solve two instances of HBD: one instance with the nodes in
Li playing the role of the vertices and the nodes in Li+1 playing the role of the hyperedges
(the “inwards” direction) and one instance with exchanged roles (the “outwards” direction).

The crucial point is that we can parallelize the invocations of the HBD procedure on
the different layer pairs as long as they are spaced apart so that interference is avoided.
This results in a round complexity which is independent of the network’s diameter D. The
following theorem is established in Section 4.

▶ Theorem 6. The preprocessing phase takes O(log3 n) rounds. Upon completion of this
phase, each node v ∈ SPJ holds the variables cout(v), cin(v) ∈ [k]∪{⊥} and csout(v), csin(v) ∈
2[k], where k = O(log2 n). Assuming that v ∈ Li for 0 ≤ i ≤ dmax, the following conditions
are satisfied whp:
1. cout(v) = ⊥ if and only if SPJ ∩Nv ∩Li+1 = ∅, i.e., v has no SPJ neighbor in layer i + 1;
2. cin(v) = ⊥ if and only if i = 0, i.e., v = s;
3. if cout(v) ∈ [k], then there exists exactly one node u ∈ SPJ ∩Nv∩Li+1 such that cout(v) ∈

csout(u); and
4. if cin(v) ∈ [k], then there exists exactly one node u ∈ SPJ ∩Nv ∩ Li−1 such that cin(v) ∈

csin(u).

The Path Construction Phase

The path construction phase is invoked once the preprocessing phase completes. As its name
implies, this phase is responsible for constructing the actual path(s) and its implementation
depends on the specific task we wish to solve.

Single Path Construction. This task is implemented by growing a path step-by-step from
the source s outwards, through the nodes in SPJ , until a destination is reached. The fact that
SPJ only contains nodes that reside on a shortest path to some destination effectively restricts
the above process to sample a single shortest path from s to an (arbitrary) destination in YJ ,
out of all such shortest paths. Employing the cout(v) and csout(v) variables that each node
v ∈ SPJ holds, the path growing process is executed while spending O(log log n) rounds per
hop. The following theorem is established in Section 5.

▶ Theorem 7. Fix some distance policy π : 2[n] → 2[n] and let Y ⊆ V be a set of destinations.
There exists an algorithm that constructs a shortest path between the source s and an arbitrary
destination y ∈ YJ in O(D log log n + log3 n) rounds whp.

Shortest-path Tree Construction. The naive approach towards implementing this task is
to grow a path from each destination in YJ towards the source. This approach, however, hits
an obstacle if multiple path growing processes interfere with each other (which is inevitable
whenever multiple destinations reside in the same layer). To be more concrete, think of
a scenario where multiple nodes v ∈ Li attempt to beep their colors simultaneously, thus
introducing interference for the nodes u ∈ Li−1 and preventing them from decoding any of
the colors.
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There are several approaches to bypass this hurdle. The first is to use superimposed-
codes [23], which allow nodes at layer i− 1 to correctly obtain the colors of up to t = |Y |
layer i nodes that beep simultaneously. However, beeping a color in this case would require
O(t2 log log n) rounds, which is suitable only when the number t of destinations is relatively
small. In this paper, we do not make any assumptions on t, allowing in particular for t =
O(n) destinations, which makes this solution too expensive, especially if the value of t is not
known to the parties.

Instead, we utilize the fact that our HBD solutions use relatively small color palettes, that
is, k = O(log2 n). Hence, we can unary encode each color, using k rounds, which allows us
to bypass the interference obstacle. Specifically, given that the tree growing process already
reached a node v ∈ SPJ ∩Li, we allocate k (rather than O(log k)) rounds to the (sub)task
of identifying a node u ∈ SPJ ∩Nv ∩ Li−1. Within this window of k rounds, node v beeps
in round cin(v) ∈ [k]. Following that, a node u ∈ SPJ ∩Li−1 identifies itself as part of the
constructed tree if it hears a beep in a round indexed by (at least) one of the colors in its
color set csin(u). (Notice that several paths that reach layer i may merge into a single path
at layer i− 1.) This process continues, spending O(k) rounds per layer, until the source is
reached. The following theorem is established in Section 6.

▶ Theorem 8. Fix some distance policy π : 2[n] → 2[n] and let Y ⊆ V be a set of destinations.
There exists an algorithm that constructs a YJ -spanning shortest-path tree rooted at s in
O(D log2 n + log3 n) rounds whp.

4 Preprocessing Phase

The preprocessing phase is invoked, by all SPJ nodes in synchrony, upon completion of the
wake-up phase. Its guarantees are cast in Theorem 6 stated above. To avoid cumbersome
expressions, the graph theoretic notation used in the scope of the current section takes the
subgraph G(SPJ) induced by G on SPJ as the underlying graph; in particular, we use the
layer notation Li while we actually refer to Li ∩ SPJ .

At the heart of the preprocessing phase, lies an HBD procedure that operates under
the beeping model. This procedure is invoked on an (ordered) layer pair (Li,Li′), where
|i− i′| = 1 (that is, the layers are adjacent), and is implemented (only) by the nodes included
in these two layers; to simplify the presentation, we subsequently denote L = Li and L′ =
Li′ . Taking Mv = Nv ∩ L′ to be the neighborhood in L′ of a node v ∈ L, the goal of the
procedure is to construct an HBD solution on the hypergraph

H =
(
L′, {Mv}v∈L : Mv ̸=∅

)
;

that is, we identify each node v ∈ L with the hyperedge Mv. The HBD procedure assigns a
color c(v) ∈ [k] ∪ {⊥} to each node v ∈ L and a color set cs(u) ∈ 2[k] to each node u ∈ L′.
These assignments are subject to the following two constraints for each node v ∈ L: (1)
c(v) = ⊥ if and only if Mv = ∅; and (2) if Mv ≠ ∅, then there exists exactly one node u ∈Mv

such that c(v) ∈ cs(u). The procedure runs in O(log3 n) rounds and succeeds whp.
Before presenting the implementation of the HBD procedure, let us explain how the

procedure is employed to achieve the objectives of the preprocessing phase as stated in
Theorem 6. First, we invoke the HBD procedure on the layer pair (Li,Li+1) for i =
0, 1, . . . , dmax − 1, assigning cout(v) ← c(v) for each node v ∈ Li and csout(u) ← cs(u) for
each node u ∈ Li+1. Then, we invoke the HBD procedure on the layer pair (Li+1,Li) for
i = 0, 1, . . . , dmax− 1, assigning cin(v)← c(v) for each node v ∈ Li+1 and csin(u)← cs(u) for
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each node u ∈ Li. Recalling that each invocation of the procedure takes O(log3 n) rounds
and succeeds whp, the remaining challenge is to parallelize these invocations so that the
running time of all of them remains O(log3 n).

To this end, we exploit the simple fact that the beeps of nodes belonging to layers i and
j do not interfere as long as |i− j| ≥ 3. This means that if |i− j| ≥ 3, then we can safely
invoke the HBD procedure concurrently on the layer pairs (Li,Li+1) and (Lj ,Lj+1) as well
as on the layer pairs (Li+1,Li) and (Lj+1,Lj).

Algorithm 1 The preprocessing phase.

1: for ℓ ∈ {0, 1, 2} do
2: run concurrently for all 0 ≤ i ≤ dmax − 1 such that i = ℓ mod 3:
3: invoke the HBD procedure on the layer pair (Li,Li+1)
4: for all v ∈ Li do
5: cout(v)← c(v)
6: for all u ∈ Li+1 do
7: csout(u)← cs(u)
8: run concurrently for all 0 ≤ i ≤ dmax − 1 such that i = ℓ mod 3:
9: invoke the HBD procedure on the layer pair (Li+1,Li)

10: for all v ∈ Li+1 do
11: cin(v)← c(v)
12: for all u ∈ Li do
13: csin(u)← cs(u)

Consequently, the preprocessing phase consists of 6 subphases, indexed by δ ∈ {out, in}
and ℓ ∈ {0, 1, 2}. In subphase (out, ℓ) (resp., (in, ℓ)), we invoke the HBD procedure on the
layer pairs (Li,Li+1) (resp., (Li+1,Li)) for all 0 ≤ i ≤ dmax− 1 such that i = ℓ mod 3. Refer
to Algorithm 1 for a pseudocode of the preprocessing phase. Since each subphase takes
O(log3 n) rounds and succeeds whp, it follows that the whole phase takes O(log3 n) rounds
and succeeds whp as promised in Theorem 6.

Implementing the HBD Procedure. We now turn to explain how the HBD procedure
works. To facilitate the exposition, we first present the procedure as an abstract iterative
“exponential backoff” process, irrespective of the computational model in which it operates;
refer to Algorithm 2 for a pseudocode. Following that, we provide an implementation of this
process in the beeping model that runs in O(log3 n) rounds and succeeds whp.

Consider an invocation of the HBD procedure on a layer pair (L,L′). Initially, the
procedure sets c(v)← ⊥ for each node v ∈ L and cs(u)← ∅ for each node u ∈ L′. Following
that, the procedure consists of ⌊log n⌋ + 1 successive epochs, each running for Θ(log n)
iterations, so that iteration 1 ≤ j ≤ Θ(log n) of epoch 0 ≤ i ≤ ⌊log n⌋ is responsible for the
assignment of color (i, j).

During iteration (i, j), each node u ∈ L′ samples a Bernoulli random variable Xu(i, j)
whose success probability is 2−i and adds the color (i, j) to cs(u), assigning cs(u)← cs(u) ∪
{(i, j)}, if Xu(i, j) = 1. Assuming that a node v ∈ L is still uncolored (i.e., c(v) = ⊥) at the
beginning of iteration (i, j), we assign c(v)← (i, j) if there is exactly one node u ∈Mv such
that Xu(i, j) = 1.

▶ Lemma 9. The abstract HBD procedure (Algorithm 2) constructs a feasible HBD solution
whp. The procedure takes O(log2 n) rounds and features a color palette of size k = O(log2 n).
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Algorithm 2 An abstract view of the HBD procedure when invoked on a layer pair (L, L′).

1: for all v ∈ L do
2: c(v)← ⊥
3: for all u ∈ L′ do
4: cs(u)← ∅
5: for i = 0, 1, . . . , ⌊log n⌋ do
6: for j = 1, . . . , Θ(log n) do
7: for all u ∈ L′ do
8: Xu(i, j)← Bernoulli(2−i)
9: if Xu(i, j) = 1 then

10: cs(u)← cs(u) ∪ {(i, j)}
11: for all v ∈ L such that c(v) = ⊥ do
12: if Xu(i, j) = 1 for exactly one node u ∈Mv then
13: c(v)← (i, j)

Proof. Observe first that the process is designed so that if c(v) = (i, j) then there exists
exactly one node u ∈ Mv with (i, j) ∈ cs(u) (this holds with probability 1). To establish
the assertion, it remains to show that upon termination of the procedure, the function c(·)
satisfies c(v) ̸= ⊥ for all nodes v ∈ {w ∈ L |Mw ̸= ∅} whp.

To this end, fix some node v ∈ L with |Mv| = r > 0 and consider epoch i = ⌊log r⌋ of the
procedure. We say that iteration 1 ≤ j ≤ Θ(log n) of epoch i is successful if Xu(i, j) = 1 for
exactly one node u ∈Mv. For each node u ∈Mv, let Au denote the event that Xu(i, j) = 1
and Xu′(i, j) = 0 for all nodes u′ ∈Mv \ {u}. Observe that

P(Au) = 2−⌊log r⌋ ·
(

1− 2−⌊log r⌋
)r−1

≥ 1
r
·
(

1− 2
r

)r−1
;

it is then easy to verify that P(Au) = 1 for r = 1 and P(Au) = 1/4 for r = 2; for r ≥ 3, the
inequality yields P(Au) ≥ Ω(1/r). Since the events Au, u ∈Mv, are disjoint, it follows that
the probability that iteration j is successful is

P

( ∨
u∈Mv

Au

)
=

∑
u∈Mv

P(Au) ≥ r · Ω(1/r) = Ω(1) ,

independently of the other iterations. Therefore, at least one iteration of epoch i is successful
whp which means that if v is not colored during an earlier epoch, then v is colored by the
end of epoch i whp. ◀

For the beeping implementation of the HBD procedure, notice that the only component
of the aforementioned abstract iterative process that cannot be implemented, out of the
box, under the beeping model is the part in which an uncolored node v ∈ L tests whether
Xu(i, j) = 1 for exactly one node u ∈Mv (Line 12 in Algorithm 2). To overcome this obstacle,
we use the following standard technique: Iteration 1 ≤ j ≤ Θ(log n) of epoch 0 ≤ i ≤ ⌊log n⌋
is implemented by means of Θ(log n) sub-iterations, each consisting of two rounds. A node u ∈
L′ that samples Xu(i, j) = 1 beeps once in each sub-iteration ℓ = 1, . . . , Θ(log n), where the
round in which u beeps is picked uniformly at random (and independently of the the other sub-
iterations) among the two rounds of sub-iteration ℓ. An (uncolored) node v ∈ L assigns c(v)←
(i, j) if and only if v hears exactly one beep in each sub-iteration during iteration j of epoch i.
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▶ Lemma 10. A node v ∈ L assigns c(v)← (i, j) if and only if Xu(i, j) = 1 for exactly one
node u ∈Mv whp.

Proof. The if direction clearly holds with probability 1. For the only if direction, notice
that if Xu(i, j) = 1 and Xu′(i, j) = 1 for two distinct nodes u, u′ ∈ Mv, then u and u′

beep in the same round in all sub-iterations of iteration j of epoch i in an exponentially
decreasing probability with the number of sub-iterations. This means that v avoids assigning
c(v)← (i, j) whp. ◀

Combining Lemmas 9 and 10, we conclude that the beeping-model implementation of
the HBD procedure succeeds whp. Theorem 6 follows as this implementation consists of
O(log n) epochs, each consists of O(log n) iterations, each consists of O(log n) sub-iterations,
each consists of O(1) rounds, which sums up to O(log3 n) rounds in total. The palette size
k = O(log2 n) remains as guaranteed by the abstract HBD procedure, Lemma 9.

5 Single Shortest Path Construction

In this section we consider the task of constructing a single path between the source and an
arbitrary destination. We describe the path construction phase which is invoked by all SPJ

nodes in synchrony, upon completion of the preprocessing phase. The pseudo-code of the
path construction phase is provided in Algorithm 3. After the completion of this phase, we
are guaranteed with the statement of Theorem 7, which we now recall.

Algorithm 3 Path construction phase (for node v).

1: Init: statev ← active if v = s; otherwise statev ← non-active

2: for ℓ = 1 to jmax ≜ max J do
3: if statev = active and v /∈ YJ and d(v, s) = ℓ− 1 then
4: beep the value cout(v) ▷ In O(log log n) rounds
5: else if d(v, s) = ℓ then
6: listen for O(log log n) rounds and set ĉ as the value heard
7: if ĉ ∈ csout(v) then statev ← active
8: else
9: stay idle for O(log log n) rounds ▷ Ensures synchronized iterations

10: output 1 if statev = active; otherwise output 0

▶ Theorem 7. Fix some distance policy π : 2[n] → 2[n] and let Y ⊆ V be a set of destinations.
There exists an algorithm that constructs a shortest path between the source s and an arbitrary
destination y ∈ YJ in O(D log log n + log3 n) rounds whp.

Nodes in SPJ construct a shortest path outwards, layer by layer, from the source to an
arbitrary destination in YJ . More precisely, the path is constructed in (up to) jmax = max J

iterations of O(log log n) rounds, such that each iteration extends the path by one layer
outwards. Initially, the source is active. In iteration 1 ≤ ℓ ≤ jmax, the active node vℓ−1,
which is in Lℓ−1, beeps the binary encoding of its color cout(vℓ−1). That is, for 1 ≤ i ≤
O(log log n), node vℓ−1 beeps in the i-th round if and only if the i-th bit of cout(vℓ−1) is
1. Then, every node u ∈ SPJ ∩Lℓ that hears a color that belongs in its color set csout(u)
becomes active. Theorem 6 guarantees that among SPJ ∩Nvℓ−1 ∩ Lℓ, exactly a single node
becomes active. After at most jmax iterations, the path will reach some destination in YJ ;
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this destination will remain silent, preventing the path from extending any further. All the
nodes that have become active during this process output 1 and form the shortest path,
whereas all of the other nodes output 0.

▶ Lemma 11. The path construction phase (Algorithm 3) takes O(D log log n) rounds. Upon
completion, the set of nodes {v ∈ V | zv = 1} forms a shortest path between s and some
destination in YJ .

Proof. Bounding the round complexity is straightforward: The outer loop runs for jmax =
O(D) iterations, where each iteration takes O(log log n) rounds.

Next, we prove by induction on 0 ≤ ℓ ≤ jmax that the active nodes at the end of the ℓ-th
iteration form a shortest path between s and either (a) (an arbitrary node in) SPJ ∩Lℓ, or
(s) some destination y ∈ Yj for j ∈ J ∩ [ℓ]. Since SPjmax consists of destinations only, the
induction statement for ℓ = jmax implies the correctness of the third subphase.

For the base case ℓ = 0 (i.e., the initial state), the only active node is s and since s ∈ SPJ ,
the claim holds trivially. Next, assume that the above holds for some 0 ≤ ℓ < jmax and
consider the next iteration, with ℓ′ = ℓ + 1. By the induction hypothesis, the active nodes at
the end of the ℓ-th iteration form a shortest path between s and either (a) an arbitrary node in
SPJ ∩Lℓ, or (s) some destination y ∈ Yj for j ∈ J∩ [ℓ]. In case (s), the path no longer extends
since the destination y does not beep its color cout(y) (Line 3). Hence, we now consider case
(a). Let (s, v1)(v1, v2) · · · (vℓ−1, vℓ) be the currently-constructed shortest path. Recall that all
these nodes are active at the end of the ℓ-th iteration (and beyond). Note that vℓ ∈ Lℓ. Thus,
during iteration ℓ′ = ℓ + 1, the node vℓ beeps its color cout(vℓ) (Line 4). Theorem 6 ensures
that there exists exactly one node u ∈ SPJ ∩Nvℓ

∩ Lℓ′ that has cout(vℓ) ∈ csout(u). Also note
that no other node in Lℓ is active (by the induction hypothesis), thus u hears the color cout(vℓ)
without any interference and becomes active. This satisfies the induction claim for ℓ′. ◀

The above lemma immediately leads to proving our first main theorem.

Proof of Theorem 7. The round complexity and correctness of the path construction phase
both follow from Theorems 5 and 6, and Lemma 11. ◀

6 Shortest-path Tree Construction

In this section we generalize the task of constructing a single shortest path (described in
Section 5) to the case where we wish to obtain multiple shortest path, one per destination,
that together form a tree rooted at the source. We describe the tree construction phase which
is invoked by all SPJ nodes in synchrony, upon completion of the preprocessing phase. The
pseudo-code of the tree construction phase is depicted in Algorithm 4. After the completion
of this phase, we are guaranteed with the statement of Theorem 8, which we now recall.

▶ Theorem 8. Fix some distance policy π : 2[n] → 2[n] and let Y ⊆ V be a set of destinations.
There exists an algorithm that constructs a YJ -spanning shortest-path tree rooted at s in
O(D log2 n + log3 n) rounds whp.

Towards the above goal, each destination in YJ initiates the construction of a single
path that grows from that destination towards the source. Paths that start at the furthest
destinations in YJ start growing first, one layer per iteration. In each new iteration, new paths
may start growing (if a layer with destinations in YJ is reached) but also multiple shortest
paths may merge together by reaching the same node. This process continues until all shortest
paths merge together at the source, resulting in a YJ -spanning shortest-path tree rooted at s.
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Algorithm 4 Tree construction phase (for node v).

1: Init: statev ← active if v ∈ YJ ; otherwise statev ← non-active

2: for ℓ = 1 to jmax do
3: if statev = active and d(v, s) = jmax − ℓ + 1 then
4: during the next k = O(log2 n) rounds, beep only in the cin(v)-th round
5: else
6: listen for k = O(log2 n) rounds
7: set ĉ = {i | a beep was heard in round i}
8: if ĉ ∩ csin(v) ̸= ∅ then statev ← active
9: output 1 if statev = active; otherwise output 0.

More precisely, the tree is constructed in jmax = max J iterations of O(log2 n) rounds. In
iteration 1 ≤ ℓ ≤ jmax, any active node va in Ljmax−ℓ+1 beeps the unary encoding of its color
cin(va): that is, node va beeps in round cin(va) of the iteration. Then, every node u ∈ Ljmax−ℓ

that hears a color that belongs in its color set csin(u) becomes active. (Note that here, u may
hear multiple such colors.) Theorem 6 guarantees that for any va ∈ Ljmax−ℓ+1, exactly a
single node in SPJ ∩Nva

∩ Ljmax−ℓ becomes active. After jmax iterations, all shortest paths
(where some may have merged together) reach the source. All the nodes that have become
active during this process output 1 and form the YJ -spanning shortest-path tree, whereas all
the other nodes output 0.

▶ Lemma 12. The tree construction phase (Algorithm 4) takes O(D log2 n) rounds. Upon
completion, the set of nodes {v ∈ V | zv = 1} forms a YJ -spanning shortest-path tree rooted
at s.

Proof. Bounding the round complexity is straightforward: The outer loop runs for jmax =
O(D) iterations, where each iteration takes O(log2 n) rounds.

Next, we prove by induction on 0 ≤ ℓ ≤ jmax that at the end of iteration ℓ, the active nodes
in LL – where L = {jmax − ℓ, . . . , jmax} and LL ≜

⋃
j∈L Lj – form (1) a forest, with roots in

Rℓ ⊆ SPJ ∩Ljmax−ℓ, that is also (2) the union of shortest paths from every destination in
YJ ∩LL to (arbitrary nodes in) Rℓ. Importantly, the induction statement for ℓ = jmax implies
that the set of nodes {v ∈ V | zv = 1} forms a YJ -spanning shortest-path tree rooted at s.

For the base case ℓ = 0 (i.e., the initial state), the set of destinations in Ljmax satisfies (1)
and (2) trivially. Next, assume that the above holds for some 0 ≤ ℓ < jmax and consider the
next iteration, with ℓ′ = ℓ + 1. By the induction hypothesis, the active nodes in LL form
(1) a forest Fℓ, with roots Rℓ ⊆ SPJ ∩Ljmax−ℓ, that is also (2) the union of shortest paths
from every destination in YJ ∩ LL to Rℓ. Consider some root va ∈ Rℓ of that forest. Note
that va ∈ Ljmax−ℓ. Hence, va is active at the end of the ℓ-th iteration (and beyond). Thus,
during iteration ℓ′ = ℓ + 1, the node va beeps its color cin(va) (Line 4). Theorem 6 ensures
that there exists a single node u ∈ SPJ ∩Nva

∩ Ljmax−ℓ′ that has cin(va) ∈ csin(u). Note
that although other nodes in Lℓ may be active, beeping the unary encoding of cin(vjmax−ℓ)
ensures that u hears the color cin(vjmax−ℓ) and becomes active.

Let L′ = {jmax − ℓ′, . . . , jmax} and LL′ ≜
⋃

j∈L′ Lj . The set of active nodes in LL′ \ LL

are the new root nodes, denoted by Rℓ′ , and can be separated into (a) the (aforementioned)
nodes which become active by hearing a color, and (s) destinations in Ljmax−ℓ′ \Rℓ′ , which
are active from the start, and do not extend an already-constructed path initiated at some
destination in YJ ∩ LL. Note that all trees in LL are node-disjoint branches of the first set



F. Dufoulon, Y. Emek, and R. Gelles 45:17

(a) of active nodes. Hence, the set of active nodes in LL′ forms a forest, rooted in Rℓ′ that
is also the union of (a) for every destination y ∈ YJ ∩ LL, a shortest path from y to (an
arbitrary node in) Rℓ′ and (s) for every destination y ∈ (YJ ∩ Ljmax−ℓ′) \ Rℓ′ , if there are
any, a 0-length shortest path. This satisfies the induction claim for ℓ′. ◀

The above lemma immediately leads to proving our second main theorem.

Proof of Theorem 8. The round complexity and correctness of the tree construction phase
both follow from Theorems 5 and 6, and Lemma 12. ◀

7 Wake-up Phase

Due to our unsynchronized wake-up assumption, nodes may start the wake-up phase in
different (global) rounds. Moreover, at the onset of the computation, nodes have very little
information about the network’s topology. The wake-up phase takes care of these issues.
That is, upon completion of the phase, we are guaranteed with the statement of Theorem 5,
which we now recall.

▶ Theorem 5. The wake-up phase takes O(D) rounds, after which each node v ∈ V knows
(1) d(v, s); (2) dmax; (3) J ; and (4) whether v ∈ SPJ . Moreover, all nodes complete the
wake-up phase in the same (global) round, thus from that point on, the nodes have globally-
synchronized clocks.

7.1 Detailed Description
The wake-up phase consists of four subphases, which we now describe; see Algorithm 5 for
the complete pseudo-code.

In the first subphase, every node beeps upon waking up, which in turn wakes any non-
awake neighbor of this node. This part guarantees that all nodes wake up within D rounds.
(Note, however, that D is unknown at this point, and nodes do not count on D to move to
the next subphase.) Once the source s wakes up, it initiates one more beep that is relayed
by all the other nodes throughout the network, effectively creating a synchronization beep
wave: each node that hears this second beep relays it and immediately switches to the second
subphase. Therefore, nodes at the same distance to the source start the second subphase at
the same (global) round. (See Section 2 to recall the beep wave primitive description.)

As a corollary of the above, neighboring nodes start the second subphase within at most
one global round of each other. Under this condition, nodes can simulate, in a simple fashion,
any algorithm that assumes nodes have a global clock (Algorithm 5; cf. [16, 13, 19]). Hence, in
the second subphase, nodes simulate a slightly modified version of the EstimateDiameter
procedure presented in [12], and presented in Algorithm 6 for completeness. (For clarity,
each simulated round of EstimateDiameter is called a step.) The simulation of this
(modified) procedure ensures that upon completion, all nodes have learned their distance to
the source d(s, v) and the eccentricity of the source dmax. Furthermore, the simulation of
EstimateDiameter takes exactly the same number of steps for all nodes. After completing
the simulation, each node v waits an additional dmax − d(s, v) rounds before finishing the
second subphase, which compensates for its time difference with respect to the time of the
source and guarantees that all the nodes start the third subphase exactly at the same global
round.
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Algorithm 5 Wake-up phase (for node v).

First subphase:
1: beep in the first round and stay idle for the next round ▷ Upon wake up
2: if v = s then ▷ s starts the synchronization beep wave.
3: beep in round 4 and stay idle in rounds 3, 5 and 6
4: else
5: listen, starting from round 3, until a beep is heard in some round r

6: beep in round r + 1 and stay idle for the next two rounds

Second subphase:
7: for each triplet i ≥ 1 of consecutive rounds ri, ri + 1, ri + 2 do ▷ triplet i simulates

step i of v

8: if v beeps in step i of EstimateDiameter then
9: beep (only) in round ri + 1

10: else ▷ v listens in step i of EstimateDiameter
11: listen in rounds ri, ri + 1, and ri + 2
12: if one beep or more were heard then
13: record a beep for step i in EstimateDiameter simulation
14: if the EstimateDiameter simulation terminate at the end of step i then
15: exit the loop at the end of round ri + 2. ▷ v now knows dmax and d(s, v).
16: stay idle for dmax − d(s, v) rounds

Third subphase:
17: for j = 1 to dmax do
18: spv[j]← 0
19: invoke the reverse beep wave primitive for 3(4dmax − 2) rounds, and
20: for triplet r = 1 to 4dmax − 2 during the reverse beep wave primitive do
21: if v ∈ Y and r = 3(d(v, s)− 1) + 1 then
22: initiate a reverse beep wave in triplet r

23: spv[d(v, s)]← 1
24: else
25: if v relays a beep in triplet r then
26: spv[(r + 2 + d(s, v))/4]← 1

Fourth subphase:
27: if v = s then
28: decide on J ⊆ [dmax] ▷ Via the distance policy π

29: broadcast J using beep waves ▷ O(D) rounds
30: else
31: receive J by listening to the beep waves ▷ O(D) rounds
32: if v ̸∈ SPJ then output 0 and terminate

Note that from the third subphase onwards, nodes start simultaneously. The third
subphase – the distance gathering scheme – computes the sets SPi in parallel for every
i ∈ [dmax]. Recall that SPi is the set of nodes that reside on some shortest path between s

and some destination in Li. More precisely, each node v computes a dmax-size array spv[·]



F. Dufoulon, Y. Emek, and R. Gelles 45:19

such that, for every i ∈ [dmax], spv[i] = 1 if and only if v ∈ SPi. Computing a single set SPi,
for an a priori known i, is simple. A reverse beep wave (described in Section 2) is initiated
by all destinations in Y ∩ Li and relayed by all nodes in SPi. Indeed, one can see that the
paths along which the reverse beep wave propagates, {(y, vi−1), . . . , (v1, s) | ∀y ∈ Y ∩Li, ∀j ∈
[i− 1], vj ∈ Lj}, are exactly the shortest paths between s and some destination in Li.

However, it is more tricky to compute all the sets SPi in parallel. To do so, we pipeline
dmax reverse beep waves. The first reverse beep wave is initiated by all the destinations
in L1 in the first round, the second reverse beep wave by all destinations in L2 three triplets
later (i.e., in round 10), and so on. (By separating consecutive reverse beep waves by three
triplets, reverse beep waves do not interfere with each other.) Intermediate nodes deduce
which reverse beep wave they currently relay from the triplet in which they hear the beep.
In particular, when v relays a beep in triplet r, then r = 3(i− 1) + 1 + i− d(s, v) for some
i ∈ [dmax]; the i-th beep wave starts in triplet 3(i− 1) + 1 and moves one layer towards the
source per subsequent triplet. Hence, whenever v relays a beep in triplet r, it computes
i = (r + 2 + d(s, v))/4 and concludes that v ∈ SPi.

In the fourth and final subphase, the source decides on some set of distances J ⊆ [dmax]
by applying the distance policy, J = π(I) with I = {1 ≤ i ≤ n | Y ∩Li ≠ ∅}. We will assume
that YJ is non-empty; otherwise, no node will execute the following phases and thus no path
will be constructed (recall that YJ =

⋃
j∈J Y ∩Lj). The source then broadcasts J to all nodes

using dmax consecutive beep waves. More precisely, s broadcasts the (indicator function)
string x = x1x2 . . . xdmax , where xi = 1 if and only if i ∈ J , from which J can be extracted
trivially. Finally, nodes which do not belong in SPJ turn themselves off and terminate with
output 0. Consequently, the following phases are executed only by nodes in SPJ =

⋃
j∈J SPj .

Diameter Estimation. For completeness, we give the pseudo-code of the modified version of
EstimateDiameter (from [12]), used in the second subphase, as well as the corresponding
proofs.

▶ Lemma 13. EstimateDiameter assumes that all nodes wake up simultaneously and
takes O(dmax) steps. Upon completion, every node v knows d(v, s) and dmax. Moreover, all
nodes terminate EstimateDiameter in the same step.

Proof. The source s beeps in the first step. By a simple induction (and Line 10 of Algorithm 6),
all nodes at distance 0 ≤ i ≤ dmax (from s) hear their first beep in step i and relay this beep
in step i + 1. Hence, for every node v ∈ V , the output dv is indeed d(v, s) (even for s due to
the initialization).

The above mentioned relay beeps start dmax consecutive “reverse beep waves” (slightly dif-
ferent from those described in Section 2). More precisely, nodes at distance i from s start the
ith reverse beep wave in step i+1 through the relay beeps. To prove this, first consider the fol-
lowing claim: for any node v ̸= s, after its first beep, node v beeps in step r = d(v, s) + 3k + 1
(for some k ≥ 1) if and only if one of its neighbors at distance d(v, s) + 1 from s beeps in step
r−2. To show the claim, it suffices to show that no other neighbor of v may beep in step r−2.
(The rest follows from the algorithm description.) This is clearly true for neighbors at distance
d(v, s) from s (see Line 12 of Algorithm 6). As for the other neighbors of v, they must be at dis-
tance d(v, s)−1 from s and thus they can only beep in steps d(v, s) and d(v, s)+3k (for k ≥ 1).
This proves the claim. Moreover, note that r = d(v, s)+3k+1 = (d(v, s)−1)+3(k+1)−1 (for
any k ≥ 0). Combined with the above claim, it is clear that the relay beeps produce reverse
beep waves which take two steps to propagate one layer. In addition, each new beep wave starts
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Algorithm 6 EstimateDiameter [12] (for node v).

1: dv ← 0, dmax ← 0
2: if v = s then
3: beep in the first step
4: listen until v does not hear a beep in three consecutive steps: r − 3, r − 2 and r − 1
5: dmax ← r/3− 1
6: broadcast dmax using beep waves
7: else
8: listen in all steps, until the first step r′ in which v hears a beep
9: dv ← r′

10: beep in the next step r′ + 1
11: for each triplet of steps r′ + 3k − 1, r′ + 3k, r′ + 3k + 1, where k ≥ 1 do
12: listen in step r′ + 3k − 1 ▷ Listen for a reverse wave
13: stay idle for step r′ + 3k

14: if beep heard (during step r′ + 3k − 1) then
15: beep in step r′ + 3k + 1 ▷ Relay two steps later to avoid interference
16: else
17: stay idle in step r′ + 3k + 1 and exit the for loop
18: receive dmax using beep waves
19: stay idle for dmax − dv steps ▷ For simultaneous termination
20: output (dv, dmax) and terminate

one step later and one layer further from the source. Hence, the source receives a reverse beep
wave every three steps: i.e., in steps 2 + 3k, for 0 ≤ k ≤ dmax − 1. Lines 4–5 of Algorithm 6
ensure that the source correctly computes r = 2 + 3(dmax − 1) + 4 = 3(dmax + 1) and dmax.

Let rs be the step in which the source starts broadcasting dmax. (This is done using dmax

consecutive beep waves – see the beep waves primitive’s description in Section 2.) Note that
in all steps r′′ ≥ rs, all other nodes are executing Line 18 of Algorithm 6: that is, listening
and waiting for the beep wave. Hence, all nodes correctly receive dmax. In fact, each node
v ∈ V terminates the broadcast in step rs + 3(dmax + 1) + d(v, s). (Each node detects a
beep wave is the last when it does not hear a beep in the subsequent three steps.) Since
node v terminates Algorithm 6 exactly dmax − dv = dmax − d(v, s) steps afterward, all nodes
terminate simultaneously. This completes the proof. ◀

7.2 Analysis of the Wake-up Phase
First, we prove Lemmas 14–17 for the subphases’ guarantees. These lemmas lead up to a
proof of Theorem 5.

▶ Lemma 14. The first subphase takes O(D) rounds. Upon completion, all nodes have
woken up. Moreover, for every i ∈ [dmax], every node v ∈ Li complete the first subphase
simultaneously. Hence, every two neighboring nodes u and v complete within one global round
of each other.

Proof. Recall that all nodes beep in their first round (Line 1 of Algorithm 5). As a result,
for any two neighboring nodes u, v ∈ V , the node v wakes up one round after u at the latest
(or vice versa). Hence, all nodes wake up within the first D global rounds.

Denote by r the global round in which the source wakes up. The source starts the
synchronization beep wave in round r + 4 (Line 3 of Algorithm 5). For neighbors of the
source, this beep is the first beep they hear starting from their third local round. Hence,
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they beep in global round r + 5 to propagate the synchronization beep wave (Lines 5–6 of
Algorithm 5). By a simple induction, one can show that nodes at distance i from the source
propagate this second beep wave in global round r + 4 + i, and thus end the first subphase
in global round r + 7 + i (Lines 3 and 6 of Algorithm 5). Note that r + 7 + i = O(D) and
thus every node ends the first subphase within O(D) rounds.

Finally, for any i ∈ [dmax] and any v ∈ Li, its neighboring nodes in Nv belong to Li−1 ∪
Li ∪ Li+1. Hence, v and any of its neighbors end within one global round of each other. ◀

▶ Lemma 15. The second subphase takes O(D) rounds. Upon completion, every node v ∈ V

knows d(v, s) and dmax. Moreover, all nodes complete the second subphase in the same round,
thus from that point on, the nodes have globally-synchronized clocks.

Proof. During the second subphase, nodes simulate a modified version of EstimateDiam-
eter (see the simulation in Lines 7–15 of Algorithm 5 and EstimateDiameter in Algo-
rithm 6). First, we prove the simulation’s correctness via a proof of the following claim: for
each step i, some node v hears a beep if and only if at least one neighboring node of v beeps dur-
ing step i. Recall that each node v simulates a step of EstimateDiameter by using a triplet
of consecutive (local) rounds. Whenever v beeps during step i of EstimateDiameter, v

beeps in the second local round of triplet i (Line 9 of Algorithm 5). Since any neighboring node
of u starts the second subphase within one global round of v (by Lemma 14), this implies that
u hears that beep within one of its three rounds in triplet i (if u listens during step i). On the
other hand, for the same reason, the triplet of rounds v uses to simulate step i does not intersect
with the triplet of rounds any neighboring node uses to simulate any step i′ ̸= i. Hence, if no
neighboring node of v beeps during step i, then v does not hear any beep from other steps i′ ̸= i

during its step i (nor does it hear any beep from step i, clearly). This completes the proof of the
claim and the simulation’s correctness.

By Lemma 13, all nodes learn their distance to the source as well as dmax when the
simulation of EstimateDiameter terminates. Moreover, all nodes terminate the modified
procedure in the same step, denoted by t = O(D). Since each step is simulated using three
rounds, each node simulates the modified procedure for exactly 3t = O(dmax) rounds. After
which, each node v waits dmax − d(s, v) rounds (Line 16 of Algorithm 5), which causes all
the nodes to synchronize their local clocks. Indeed, every node v ∈ V completes the second
subphase in global round r′ = (r + 7 + d(s, v)) + 3t + (dmax − d(s, v)) = r + 7 + 3t + dmax =
O(D). ◀

▶ Lemma 16. The third subphase takes O(D) rounds. Upon completion, for each v ∈ V and
i ∈ [dmax], v knows if it is in SPi, or more precisely, spv[i] = 1 if and only if v ∈ SPi.

Proof. The third subphase takes 4dmax − 2 = O(D) triplets, and each such triplet consists
of three rounds. Consequently, the subphase takes O(D) rounds.

Now, we show the correctness of the third subphase. First, we provide some observations
regarding the reverse beep waves. For every i ∈ [dmax], let the i-th reverse beep wave be
the wave initiated by all destinations in Li (simultaneously) in triplet 3(i− 1) + 1 (Line 21
of Algorithm 5). (Note that by Lemma 15, all destinations know which layer they are in.)
Then, a simple induction on i shows that the i-th reverse beep wave is separated from all
other beep waves (and in particular, the i + 1th beep wave) by three triplets at every node.
Hence, no two waves interfere with each other. From now on, for some i ∈ [dmax], we can
consider the i-th wave independently from all other waves.

Next, we prove that (1) any node v that participates in the i-th reverse beep wave sets
spv[i] to 1, and (2) node v participates in the i-th reverse beep wave if and only if v ∈ SPi.
For (1), the i-th wave is initiated by destinations in Li in triplet 3(i− 1) + 1 and moves one
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layer inwards per triplet. Since the first subphase runs for 4dmax − 2 ≥ 3(i− 1) + 1 + dmax
rounds, the inwards propagation continues until the wave reaches s. Thus, for any j ∈ [i]
and any node v in layer Li−j that relays the wave, v does so in triplet 3(i− 1) + 1 + j. When
that happens, the index computed by v is (3(i− 1) + 1 + i− d(s, v) + 2 + d(s, v))/4 = i and
thus v sets spv[i] to 1 (Line 26 of Algorithm 5). (Note that any destination in Li sets spv[i]
to 1 after initiating the wave – Line 23 of Algorithm 5.)

For (2), consider the paths along which the wave propagates: {(y, vi−1), . . . , (v1, s) |
∀y ∈ Y ∩ Li, ∀j ∈ [i − 1], vj ∈ Lj}. These are exactly the shortest paths between s and
some destination in Li. Indeed, first there cannot be any shorter path between s and some
destination in Li, since d(s, y) = i (by definition of Li). Second, there cannot be a shortest
path p = {(y, vi−1), . . . , (v1, s)}, between s and y and of length i, that does not satisfy ∀j ∈
[i − 1], vj ∈ Lj . Such a path necessarily has two consecutive nodes in the same layer and
hence can be transformed into a path between s and y of length i− 1, which also contradicts
d(s, y) = i. ◀

▶ Lemma 17. The fourth subphase takes O(D) rounds. Upon completion, each node v ∈ V

knows J and whether v ∈ SPJ . Nodes in SPJ continue to the next phase while the rest of the
nodes terminate with output 0.

Proof. After the third subphase, Lemma 16 guarantees that any v knows for every i ∈ [dmax],
whether v ∈ SPi. For v = s, learning s ∈ SPi is equivalent to learning whether SPi is empty,
thus the source learns the set I. The source then computes J = π(I) and broadcasts the
string that represents its indicator function in O(D + dmax) = O(D) rounds. Thus, all nodes
learn the set J . Since each node v ∈ V knows J and knows for every i ∈ [dmax], whether
v ∈ SPi, each node knows whether it belongs to SPJ or not. In the latter case, v turns itself
off giving the output 0 (Line 32 of Algorithm 5). ◀

We can now complete the proof of Theorem 5.

Proof of Theorem 5. The O(D) upper bound on the round complexity directly follows from
Lemmas 14, 15, 16 and 17.

By Lemma 15, every node v ∈ V knows d(v, s) and dmax at the end of the second subphase,
satisfying (1) and (2). Moreover, all nodes complete the second subphase simultaneously.
Since each node runs the third and fourth subphases for the same number of rounds, all
nodes complete the wake-up phase simultaneously. Finally, by Lemma 17, every node v

learns J and whether v ∈ SPJ , satisfying (3) and (4). This concludes the proof. ◀
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Abstract
Much of today’s communication is carried out over large wireless systems with different input-output
behaviors. In this work, we compare the power of central abstractions of wireless communication
through the general notion of boolean symmetric f -channels: In every round of the f -channel, each
of its n parties decides to either broadcast or not, and the channel outputs f(m), where m is the
number of broadcasting parties.

Our first result is that the well studied beeping channel, where f is the threshold-1 function, is
not stronger than any other f -channel. To this end, we design a protocol over the f -channel and
prove that any protocol that simulates it over the beeping channel blows up the round complexity
by a factor of Ω(log n). Our lower bound technique may be of independent interest, as it essentially
generalizes the popular fooling set technique by exploiting a “local” relaxation of combinatorial
rectangles.

Curiously, while this result shows the limitations of a noiseless channel, namely, the beeping
channel, we are able to use it to show the limitations of the noisy version of many other channels.
This includes the extensively studied single-hop radio network model with collisions-as-silence (CAS),
which is equivalent to the f -channel with f(m) = 1 iff m = 1.

In particular, our second and main result, obtained from the first, shows that converting CAS
protocols to noise resilient ones may incur a large performance overhead, i.e., no constant rate
interactive code exists. To this end, we design a CAS protocol and prove that any protocol that
simulates it over the noisy CAS model with correlated stochastic noise, blows up the round complexity
by a factor of Ω(log n). We mention that the Ω(log n) overhead in both our results is tight.
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1 Introduction

As wireless systems have become massively popular, theoretical models for such systems have
become the topic of numerous works. In this paper we study the relative power of central
models abstracting broadcast communication. To this end, we use the notion of symmetric
boolean-valued f -channels.

For a function f : N∪ {0} → {0, 1}, the f -channel is a synchronous channel that, in every
round, allows any number of parties to broadcast a bit. The round ends with all participants
receiving the bit f(wt(x)), where xi is the bit broadcast by party i, and wt(x) is the Hamming
weight of x ∈ {0, 1}∗. It is useful to think of parties with xi = 1 as broadcasting, and of
parties with xi = 0 as silent. The output of the channel is then a function of the number of
broadcasting parties.

© Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITCS.2023.46
https://eccc.weizmann.ac.il/report/2022/174/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Noisy Radio Network LBs via Noiseless Beeping LBs

Given two such channels f and g, we say that the f -channel is at least as strong as (or
stronger than) the g-channel if any protocol over the g-channel can be simulated by a protocol
over the f -channel with only a constant multiplicative blowup in the number of rounds. The
f -channel is strictly stronger than the g-channel if it is stronger, but not vice-versa. The two
channels are equivalent if each is at least as strong as the other. We note that two channels
may be incomparable, meaning that neither is stronger than the other.

Of special interest to us are binary versions of two well-studied channels, the single-hop
radio networks model and the beeping model:

The beeping model

In an n-party protocol over the binary beeping model [13], denoted here beeping, the parties
interact in synchronous rounds. In every round, each party can decide to either beep (emit
a signal) or not to beep (stay silent). If at least one party beeps, all parties hear a beep,
otherwise, all parties hear silence1. The beeping model received a lot of attention in recent
years, largely as it captures the simplest possible communication primitive, a detectable
burst of “energy”, making it very well suited for describing certain wireless networks as well
as signal-driven biological systems2. It is easy to see that the beeping model is essentially
the f -channel for f(m) = 1[m ≥ 1] (the threshold[1] function).

The cas model

In a round of an n-party protocol over the binary collision-as-silence single-hop radio networks
model [10], each party can choose to either broadcasts a bit or stay silent. In rounds where
exactly one party broadcasts, his bit is received by all parties. Otherwise (if all parties were
silent or if at least two parties broadcast), a special ⊥ symbol is received by all3. While the
above description of the channel does not fit our definition of an f -channel, as the channel’s
inputs and output are non-binary, a simple time-sharing argument shows that it is equivalent
to the f -channel for f(m) = 1[m = 1], and we denote this channel cas for short4.

The cas vs. beeping problem

It is easy to see that cas is at least as strong as beeping, as a beeping round can be
simulated by a cas round: Parties broadcast in the cas round if they broadcast in the
beeping round, but there is an additional “dummy” party that broadcasts with them.5
Observe that the output of the cas round is 1 iff the dummy is the only one to broadcast,
which happens iff the value of the beeping round is 0. What about the other direction?

1 In the original definition of beeping by [13], the parties are woken up by an adversary. In this paper
we use a relaxed definition where all parties are woken up at the beginning of the protocol. Since we
show impossibility results, this relaxation of the model only strengthens our results.

2 For example, cells communicating by secreting proteins and other chemical markers that are diffused
and sensed by neighboring cells, or fireflies reacting to flashes of light from nearby fireflies. Also see,
e.g., [1, 33].

3 The collision-as-silence model is, perhaps, the most common single-hop radio networks model in the
literature. Another very popular model is the collision detection model, where collision and silence are
perceived as different symbols. Our results are stated for the collision-as-silence model, but apply to the
collision detection model as well.

4 To see the equivalence, simulate a round of the original non-binary channel with three cas rounds: In
the first cas round, parties broadcast (i.e., their xi is 1) if they broadcast a 0 or a 1 in the original
round. In the second round, parties broadcast only if they broadcast 0 in the original round. In the
third round, parties broadcast only if they broadcast 1 in the original round. A simulation in the other
direction is also possible.

5 Even without an extra dummy party, a beeping round can be simulated by constantly many cas
rounds.
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▶ Problem 1. Is cas strictly stronger than beeping?

The noisy cas problem

So far in our discussion of the cas model, we made the strong assumption that the parties
utilizing the channel receive the correct output bit in every round. We now switch gears and
consider the noisy version of this channel, where this assumption is relaxed. For a function
f and ϵ > 0, the parties utilizing the (correlated) ϵ-noisy f-channel, received the correct
output bit f(wt(x)) with probability 1− ϵ, and with probability ϵ they receive the opposite
bit. It is easy to see that cas is at least as strong as noisy cas. A natural question is again
about the reverse direction:

▶ Problem 2. Is cas strictly stronger than noisy cas?

1.1 Our Results
We settle both of the above problems in the affirmative. While seemingly very different,
we show that Problem 1 and Problem 2 are actually tightly connected, and exploit this
connection.

1.1.1 No f -channel is Weaker than beeping
Theorem 3 (see formal statement in Theorem 5) shows that no non-trivial f -channel is weaker
than beeping.6 A positive answer for Problem 1 is obtained from Theorem 3 as a special
case.

▶ Theorem 3 (Informal). Let f : N ∪ {0} → {0, 1} be a function such that f is not constant
on N. Then, for all n > 0, there exists an n-party protocol Π over the f-channel, such
that any protocol Π′ that computes the same function as Π over the beeping model has
Ω(|Π| log n) communication rounds.

Here, |Π| denotes the worst-case number of rounds of Π. We mention that the Ω(log n)
blowup in the number of rounds suggested by Theorem 3 is tight, as for many f -channels (e.g.,
cas), O(log n) beeping rounds suffice in order to compute f (see Section 1.1.3)7. We also
mention that the condition that f is not constant on N cannot be replaced by the condition
that f is a non-constant function. The reason is that, as remarked before, the beeping
channel is the threshold[1]-channel, but threshold[1] is not a constant function (note
that it is constant on N).

Technique

Proving Theorem 3 requires proving a lower bound in the beeping model. Our lower bound
proof is inspired by the classical fooling set technique for proving deterministic, two-party
communication complexity lower bounds. We mention though that the fooling set technique
completely breaks when applied to the beeping model, as this technique crucially assumes

6 We note that, as the f -channel’s output is only a function of the number of broadcasting parties (and is
oblivious to the number of silent parties), some channels, like the and channel, cannot be represented
as f -channels.

7 There are, however, specific f -channels that require a substantially greater overhead when simulated
by beeping. For example, in [5], it is shown that the parity function, parity(m) = m mod 2, requires
Ω(n1/6) beeping rounds. Clearly, parity requires only 1 round over the parity-channel.
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that, at any point in the execution of the protocol, the set of possible inputs constitutes a
combinatorial rectangle. While this is not the case for the beeping model, we show that
a “local” version of this method can be made to work for this model (and even handle
randomized protocols8), in a sense made precise in Section 2. We believe that our new
technique will find other applications. A detailed overview of our technique can be found in
Section 2.

1.1.2 Noisy cas is Strictly Weaker than cas
While Theorem 3 implies that cas is strictly stronger than beeping, we observe that beeping
is at least as strong as noisy cas (we sketch this argument in Section 1.1.3 and prove it in
Theorem 8). A direct corollary of the above is the following Theorem 4 (see formal statement
in Theorem 7) that shows that cas is strictly stronger than noisy cas, answering Problem 2
(which was the original motivation for this paper) in the positive.

▶ Theorem 4 (Main, Informal). Let ϵ ≥ 0. For all n > 0, there exists an n-party protocol Π
over the cas channel, such that any n-party protocol Π′ that computes the same function
as Π over the ϵ-noisy cas channel has Ω(|Π| log n) rounds.

We mention that understanding whether cas protocols can be converted to noise resilient
ones with small overhead, was the original motivation for this work. As is typically the case
for (classical or interactive) error correcting codes, a cas protocol Π can be made resilient
by simply repeating every round O(log n) times and taking majority (at least as long as Π is
not too long, say, |Π| ≤ poly(n)). This shows that the Ω(log n) round blowup in Theorem 4
is tight.

We mention that our argument showing that beeping is at least as strong as noisy cas9,
generalizes to other noisy f -channels (e.g., to all noisy threshold[k]-channels with k ≥ 2).
For such fs, a separation of the f -channel and the noisy f -channel, analogue to the one in
Theorem 4, is also implied by Theorem 3. We remark however that there may be functions
f that satisfy the condition of Theorem 3 for which the noisy f -channel is strictly stronger
than beeping and the analogue of Theorem 4 may not hold10. Characterizing the set of
functions f for which the analogue of Theorem 4 holds is an intriguing problem.

1.1.3 beeping is At Least As Strong as Noisy cas
We next sketch an easy argument showing that a noisy cas round can be simulated by
constantly many beeping rounds, showing that Theorem 4 can be obtained as a corollary of
Theorem 3: Randomly partition the parties into two roughly equal sets [n] = S1 ∪ S2. For
i ∈ {1, 2}, in the ith beeping round, the only beeping parties are parties in Si that broadcast
in the noisy cas round. Now, if no party broadcasts in the noisy cas round, then no beep
is heard in either of the beeping rounds. If exactly one party broadcasts in the noisy cas
round, then a beep is heard in exactly one of the two beeping rounds. Else, if two or more
parties broadcast in the noisy cas round, then with probability at least 1/2 a beep is heard
in both beeping rounds (as the probability that all broadcasting parties beep in the same
round is at most 1/2).

8 See [32] for another (unrelated) randomized lower bound using the fooling set technique.
9 We mention that cas is equivalent to the threshold[2]-channel (see Theorem 9).
10 A good candidate for such a function is the parity function. Owing to the existence of good linear

error correcting codes, the noisy parity-channel may be as strong as the parity-channel.
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By simply repeating the above simulation, we can simulate an ϵ-noisy cas round using
O(log(1/ϵ)) beeping rounds. Additionally, by repeating the above simulation in a “binary
search”-like manner, we can also simulate one round of noiseless cas (ϵ = 0) using O(log n)
beeping rounds11. This implies that the Ω(log n) blowup in the number of rounds in
Theorem 3 is tight for the cas channel. We mention that similar simulation protocols can
be obtained for channels other than cas (e.g., threshold channels).

1.2 Related Work

1.2.1 Interactive Coding
Interactive error correcting codes encode interactive communication protocols designed to
work over noiseless channels to protocols that also work over noisy channels. The study
of interactive codes was initiated by a seminal paper of Schulman [36] that considered
two-party protocols, and these were also studied by many follow-up works. Interactive codes
for multi-party distributed channels received quite a bit of attention over the last few years.
These include codes for peer-to-peer channels [35, 25, 24, 2, 4, 20, 21] and codes for various
wireless channels [8, 16, 9, 17, 18, 3, 14, 15].

We next compare Theorem 4 to the most relevant prior work on interactive coding over
wireless channels.

1.2.1.1 Relation to [16] (interactive coding over cas)

[16] shows that any “simple” protocol Π over cas can be compiled to a protocol Π′ that
works over ϵ-noisy cas, while only incurring a constant multiplicative overhead in the number
of rounds. Here, “simple” means that the protocol is non-adaptive (a.k.a, oblivious or static).
That is, in every round of Π exactly one party broadcasts and, moreover, the identity of this
party is fixed in advance (thus, it is independent of the received transcript, channel noise,
and inputs)12.

As adaptivity can hugely boost the power of wireless channels and is widely used, in this
paper we revisit the [16] result for general (possibly adaptive) protocols. Theorem 4 proves
that the simulation scheme of [16] cannot be extended to work for general protocols.

We point out that the [16] protocol works for both the correlated noise model, like the
one assumed by this paper, and the independent noise model, where each party gets a noisy
bit with probability ϵ, independently from the others. The correlated and independent noise
models abstract different phenomena – the correlated noise model describes the situation
where there is global interference (e.g., global network problems due to weather, contaminated
environment, etc.), while independent noise is better suited to describe situations where the
noise source is local. We also mention that the interactive coding problems over these two
noise models are incomparable: On the one hand, with correlated noise all parties have the
same received transcript, but on the other hand, if a symbol is corrupted by noise, none of the
parties receive the correct symbol and can warn the others. Whether or not an impossibility
result similar to our Theorem 4 can be proved for independent noise is a great open problem.

11 In more detail, if exactly one of the first two beeping rounds beeps, say, round i ∈ {1, 2}, we wish
to know if at least two of the parties in Si broadcast in the cas round. To do that, we repeat the
simulation with only the parties in Si participating.

12 Note that while Π is assumed to be non-adaptive, the simulation protocol Π′ constructed by [16] is
adaptive. However, Π′ also works in the model where if it is not the case that exactly one party
broadcasts, an adversary is controlling the received symbols.
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1.2.1.2 Relation to [18] (interactive coding over beeping)

[18] studies the beeping channel under correlated noise and shows that an Ω(log n) overhead
is required to convert a protocol to a noise resilient one. In other words, it shows that
Theorem 4 also holds for beeping vs. ϵ-noisy beeping. To this end, [18] shows a lower
bound in the noisy beeping model. In contrast, in this paper we prove a lower bound for
the noiseless beeping model, which is a harder task.

We note however, that our work does not reproduce the main result of [18], as the protocol
that we show is costly over the noiseless beeping channel is not known to be more expensive
over the noisy beeping channel. Rather, we view the result of [18] as complementing ours:
Recall that beeping is the threshold[1]-channel, and that, as mention in Section 1.1.2,
our proof shows that Theorem 4 holds for every threshold[k] channel for k ≥ 2. Thus,
putting these results together, we get an interactive coding impossibility result for all
threshold[k]-channels.

We remark that while cas is at least as strong as beeping, the interactive coding
questions for these models are incomparable. The reason is that the additional power of
cas can be used by both the noisy and noiseless cas channels. More generally, given two
communication models, even if the first is at least as strong as the second, the interactive
coding questions for these models are incomparable.

Finally, we mention the result of [23], that also studies the beeping model under correlated
noise and shows that the Consensus problem can be made noise resilient. Note however, that
in their model, the noise may only corrupt beeps to be received as silence, but not vice-versa.

1.2.1.3 Relation to [17] and [3] (interactive coding over general networks)

[17] and [3] study noisy wireless multi-hop networks (general graph topologies as opposed to
the single-hop clique topology). [17] gives an impossibility result for interactive coding over
cas with independent noise, and [3] (see also [11]) has an impossibility result for interactive
coding over beeping with independent noise (although their main result is an upper bound).
While lower bounds are harder to prove for the single-hop networks than for arbitrary
topology of our choice, our result is incomparable to [17], as the noise model is different.
Characterizing the set of topologies for which Theorem 4 holds is an interesting problem.

Theorem 3 gives a lower bound for the noiseless beeping channel. We next compare it
to the related result of [5]:

1.2.1.4 Relation to [5] (noiseless beeping lower bounds)

[5] uses circuit lower bound techniques to show that protocols over the beeping model
(and other related models) must have at least Ω(nα) rounds, for a constant α > 0, to
compute certain boolean functions (e.g., the parity function). This result is incomparable
to Theorem 3. As cas is the 1[m = 1]-channel and since [5] does not give lower bounds for
the 1[m = 1] function, it cannot be used to derive Theorem 4. Furthermore, the technique
of [5] is not “fine enough” to prove Theorem 3 for cas (recall from Section 1.1.3 that the
Ω(log n) overhead in Theorem 3 is tight for cas).

1.2.2 Broadcast Lower Bounds

Our work is also related to prior work proving lower bounds for (noiseless) broadcast channels.
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1.2.2.1 Lower bounds for noiseless network channels

In this work we consider single-hop topologies (in particular, the topology and the number of
parties is known to everyone). We also allow the parties to have unique ids, and assume that
the parties are always available to carry out the protocol (e.g., no wake-ups or Byzantine
failures). Since this setting is easier from an algorithm design perspective, our (noiseless)
lower bounds carry over to the harder settings for which prior work in distributed computing
showed lower bounds (see, e.g., [12, 34]).

1.2.2.2 Multiple access channels

We mention that our definition of f -channels is a special case of multiple access channels in
information theory (for a great survey see [22]). A general multiple access channel allows
each party i ∈ [n] to communicate a symbol from the input alphabet Ii. The output of the
channel is a symbol from a, possibly different, output alphabet O, that is computed from
the n communicated symbols via a probabilistic function. Our (noiseless) f -channels have
I1 = · · · = In = O = {0, 1} and the function for computing the output is deterministic and
only depends on the number of 1 bits sent by the parties.

We also mention that there are known connections between coding over multiple access
channels and counterfeit coin problems (a.k.a., weighing problems) [7, 37, 19, 28, 29, 30, 27,
6, 31, 26, to cite a few]. In the basic counterfeit coin problem, we are given n coins, some of
which are heavy (defective), while the remaining are light (legal). We know the weight of
both the legal and the defective coins and have access to a spring scale that can be used to
weigh any subset of the coins. It can be shown that any weighing scheme for the counterfeit
coin problem can be converted to a signature coding scheme for the multiple access adder
channel, see, e.g., Section 7.1 in [22].

2 Overview

We now provide a detailed overview of the proof of Theorem 3. For this, we have to
show that the beeping channel is strictly weaker than the f -channel, for any function
f : N ∪ {0} → {0, 1} that is not constant on N. As f is not constant on N, there exist
a < b ∈ N such that f(a) ̸= f(b). Using these, we define the following problem that can be
solved easily over the f -channel and show later that solving it over the beeping channel
takes many more rounds.

The hard function

We divide the n players into k sets of n/k players each. For concreteness, the reader may
assume n = k2 although we shall not heavily rely on this relation and only use the fact that
k is some polynomial in n. Our hard function is the (a, b)-weight problem where each of
the n players has an input bit and the goal is to find out for each group j, whether group j

has exactly a players with input 1 (in which case the output for this group should be 0) or
exactly b players with input 1 (in which case the output for this group should be 1). The
parties can output anything for a group where the number of players with input 1 is different
from a and b.

Note that there exists a k round protocol for the (a, b)-weight problem over the f -channel:
Simply go over all j ∈ [k] and have people in group j broadcast in round j. To finish the
proof, we are going to argue an Ω(k · log(n/k)) lower bound for any protocol solving this
problem over the beeping channel. For the purposes of this overview, we restrict attention
to the case a = 1 and b = 2 as a similar proof works for other values of a and b.
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2.1 Fooling Sets
Consider a deterministic two-party communication protocol. A transcript π of the protocol
is the concatenation of the messages sent by the parties in all rounds of the protocol. We
say that a transcript π is realized on the input (x, y), if, when Alice has the input x and
Bob has the input y, the transcript of the protocol is π. It is well known that the set of
inputs on which π is realized is a combinatorial rectangle: If π is realized on (x, y) and on
(x′, y′), then it is also realized on (x′, y) and (x, y′). If the protocol has a short output, it
can be assumed that its output is a function of its transcript. It follows that if the protocol
correctly computes a function f with a short output, and f(x, y) = f(x′, y′), then either the
transcript realized on input (x, y) is different from that realized on input (x′, y′), or we also
have f(x, y) = f(x′, y) = f(x, y′).

This simple fact can be used to get lower bounds on the length of deterministic com-
munication protocols computing a function as follows: Consider for example a protocol for
computing the equality function f(x, y) = 1[x = y]. By definition, we have f(x, x) = f(x′, x′)
for all x, x′ but f(x, x) ̸= f(x, x′) for all x ̸= x′. Thus, from our conclusion in the previous
paragraph, it must be the case that the transcript realized when the inputs for the parties
are (x, x) is different from that realized when the inputs are (x′, x′) for all x ̸= x′. This
means that there must be many different transcripts, implying the protocol must be long.

The above technique for proving lower bounds on the length of deterministic protocols
computing a function f is called the fooling set technique. It works by proving that f has a
large fooling set, where a fooling set for f is a subset of the inputs with the same f value,
such that for every two different inputs (x, y) and (x′, y′) in the set, at least one of (x′, y)
and (x, y′) has a different f value. In the above example for the equality function, the set of
all inputs of the form (x, x) forms a fooling set.

Even though we presented the technique for two party communication protocols, the
same arguments can also be extended to multi-party protocols with a fixed order of speaking.
In this context, if there are n parties, we get that if a protocol correctly computes a function
f , and f(x1, x2, · · · , xn) = f(x′

1, x′
2, · · · , x′

n), then either the transcript realized when the
inputs to the parties are (x1, · · · , xn) is different from that realized when the inputs are
(x′

1, · · · , x′
n), or we have f(x1, · · · , xn) = f(x′′

1 , · · · , x′′
n) for all i ∈ [n] and x′′

i ∈ {xi, x′
i}. We

shall call such inputs x′′ hybrids.
The reason these arguments work for the above channels is that for all these channels, the

set of inputs that lead to any given transcript is a combinatorial rectangle (like in the case of
the two-party channel). However, for the beeping channel this is not the case. For example,
if we consider a one round protocol where the parties simply beep the first bit of their input,
then the set of inputs that lead to the transcript 0 is a combinatorial rectangle, but the set
of inputs that lead to the transcript 1 is the complement of this rectangle, and may not itself
be a rectangle. Thus, fooling set arguments in general do not work for the beeping channel.

Despite the fact that these fooling set arguments do not hold for the beeping channel,
we shall assume for now that they do (that is, that it suffices to demonstrate a large fooling
set), and present our lower bound under this assumption. We additionally mention that
these arguments, and also the lower bound for the equality function above, hold only for
deterministic protocols. Later, we shall extend them to randomized protocols.

2.2 Lower Bounds Assuming Fooling Sets
In this subsection, we present a proof of our lower bound using fooling sets. Even though
arguments based on fooling sets do not work for the beeping channel, the ideas present will
be instructive and will form an important part of the proof.
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2.2.1 Lower Bound Against Deterministic Protocols
We now present a fooling set for the (1, 2)-weight problem. Assuming the arguments above,
this implies a lower bound on the length of a protocol over the beeping channel that solve
the (1, 2)-weight problem. Our fooling set has all the inputs (x1, · · · , xn) that have exactly
1 player with the input 1 in each of the k groups. To see why any two such inputs must
have a different transcript (equivalently, why these inputs form a fooling set), note that
f(x1, · · · , xn) is the same for all such inputs and also, for any two distinct inputs (x1, · · · , xn)
and (x′

1, · · · , x′
n), there must exist one group (out of the k groups) such that these two inputs,

when restricted to this group, are different.
Without loss of generality, let this group be the first group (the group of players [k]), and,

as the other cases are similar, assume that:

(x1, · · · , xk) = (1, 0, 0, · · · , 0︸ ︷︷ ︸
k−1 times

) (x′
1, · · · , x′

k) = (0, 1, 0, · · · , 0︸ ︷︷ ︸
k−2 times

). (1)

Defining:

(x′′
1 , · · · , x′′

k) = (1, 1, 0, · · · , 0︸ ︷︷ ︸
k−2 times

), (2)

we see that it is a hybrid as described in the previous section but the correct output on the
hybrid input (x′′

1 , · · · , x′′
n) is different from that on (x1, · · · , xn). This finishes the proof that

any two such inputs must have different transcripts. Thus, the number
(

n
k

)k of such inputs
is also a lower bound on the number of distinct transcripts. As these many transcripts need
a protocol of length at least k · log n

k , we are done.

2.2.2 Lower Bound Against Randomized Protocols
We now describe how to extend the lower bound to work against general randomized protocols
while continuing our assumption that fooling sets based arguments work for the beeping
channel. For this, we first use Yao’s minimax theorem to get that it is enough to define a
“hard” distribution D over the inputs for the (1, 2)-weight problem such that any deterministic
protocol for this problem fails on a large fraction of inputs from D.

2.2.2.1 The hard distribution D

We work with the following hard distribution: First, for each group j ∈ [k], we sample a
uniformly and independently random bit to decide whether this group will have one or two
players with input 1. Then, based on the output of this bit, we uniformly and independently
sample a subset of players in this group of size 1 or 2 and give them the input 1. All the
remaining players in the group get the input 0.

2.2.2.2 The proof

Recall that we need to show that any deterministic protocol is incorrect on a set of inputs
that has a high probability according to D. Also recall that, if any two inputs in a fooling
set give rise to the same transcript, then the protocol is incorrect on at least one of the
possible hybrids formed by those inputs. Thus, if we can show that, unless a protocol has
Ω(k · log(n/k)) rounds, the number of inputs in a fooling set (to be specified later) that give
rise to the same transcript is so large that the probability of incorrect hybrids generated by
these inputs is a constant, we will have our randomized lower bound. We show this next in
the following two steps:
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1. Showing that the number of incorrect hybrids is large: Fix a short, correct
protocol and let π be a typical transcript. Define the set Xall to be the set of all inputs
for which the output induced by π is correct, regardless of whether or not they realize π.
Also, define Xtrue ⊆ Xall to be the set of all inputs in Xall that also realize the transcript
π. Observe that all inputs in Xall are equally likely under our hard distribution D.
Next, observe that as π is a typical transcript of a correct protocol that has length
o(k · log(n/k)), Xtrue has at least a

(
n
k

)−o(k) fraction of the inputs in Xall and the output
of π says that at least Ω(k) of the groups have only one player with the input 1. Let
Ones ⊆ [k] be this set of groups. As for all j ∈ Ones, there are at most n

k choices for the
inputs of players in group j in Xall, the above conditions imply that for at least Ω(k) of
the groups in Ones, the number of possible inputs for the players in this group amongst
all the inputs in Xtrue is at least M =

(
n
k

)1−o(1).
For any such input x ∈ Xtrue and any such group, one can take any of the at least M − 1
possible choices of the inputs of the players in this group that are different from x on this
group, and define a hybrid as in Equations (1) and (2),13 that has the same transcript but
for which the output is incorrect. Moreover, as Equation (2) has exactly two players with
input 1, it can be formed in exactly two ways. Conclude that the number of incorrect
hybrids is at least Ω(k ·M · |Xtrue|).

2. Showing that the probability of incorrect hybrids is large: We now use the
lower bound on the number of incorrect hybrids to get a lower bound on the probability
of incorrect hybrids. For this, note from the definition of the distribution D that the
probability of an input x is proportional to

(
O

(
n
k

))|Ones(x)|, where Ones(x) is the set of
groups that have exactly one player with the input 1 in x. As the number of such groups
is one smaller in each hybrid, we get that the probability of incorrect hybrids relative to
the probability of correct inputs is at least Ω

(
kM

n

)
≫ 1 by our choice of k and M . Thus,

the protocol errs with high probability.

2.3 Removing the Fooling Set Assumption
The only problem with the argument above is that the fooling set argument does not work
for the beeping channel, i.e., it is not true that if (x1, · · · , xn) and (x′

1, · · · , x′
n) give rise to

the same transcript, then any hybrid input (x′′
1 , · · · , x′′

n), where x′′
i ∈ {xi, x′

i} for all i ∈ [n]
will also give rise to the same transcript. However, note from the foregoing subsection that
we never actually use the full power of the fooling set argument, restricting attention only
to hybrids that differ in the inputs of exactly one of the n players from one of the original
inputs (Equations (1) and (2)). Specifically, each hybrid only differs on one coordinate from
the input x ∈ Xtrue it was obtained from.

Such a strong condition on the types of hybrids that we use in our argument allow us
to use the following trick to remove the fooling set assumption: Recall that the beeping
channel, in every round, computes and sends the logical OR of the bits sent by the players in
this round. As the hybrids we work with differ in exactly one player, say player i, from one
of the original inputs, the only way this hybrid can lead to a different transcript is if there
exists a round such that player i is the only player beeping (broadcasting a 1) in that round.

13 In the hybrid, the inputs of the players that are not in the chosen group are the same as their inputs in
x. As for players in the chosen group, the player that has a 1 input in x has a 1 input in the hybrid,
but there is an additional player with a 1 input.
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This means that, unless the protocol has more than Ω(k · log(n/k)) rounds, there are at
most O(k · log(n/k)) players i such that changing the input of player i while taking a hybrid
can affect the transcript. Thus, we can simply remove these “bad” players from the O(k ·M)
players we take hybrids over and make the argument work.

Geometrical interpretation

We finish by also explaining this weaker form of the fooling set arguments in terms of
combinatorial rectangles. Recall that the general fooling set argument works when the set of
inputs X that lead to any given transcript is a combinatorial rectangle. An equivalent way to
express the fact that X is a combinatorial rectangle is that for any x = (x1, · · · , xn) ∈ X and
i ∈ [n], the single-dimensional projection of X on to coordinate i is equal to the intersection
of X with the line ∀j ̸= i : Xj = xj .14 What our weaker fooling set argument shows is that
for any x ∈ X, this holds for most of the coordinates i. Precisely, we show that it holds for
all but O(k · log(n/k)) values of i.

Put another way, even if we do not get combinatorial rectangles exactly, we do get a
“local” version of them, that allows us to take hybrids as long as we do not change a lot of
coordinates, and do not change coordinates corresponding to “bad” players. Our fooling set
argument is strong enough to work with this weaker guarantee.

3 Models

Notation

We use 1[E] to denote the indicator random variable for the event E. For a string s, we use
|s| to denote the length of s. For i ∈ [|s|], let si denote the ith coordinate of s and s<i, s≤i

denote the prefix of the first i− 1 and i coordinates of s, respectively. For x ∈ {0, 1}∗, we
denote the Hamming weight of x by wt(x) = |{i ∈ [|x|] : xi = 1}|.

f -channels

The symmetric boolean-valued channel f with noise rate ϵ (ϵ-noisy f-channel, for short) is
specified by a constant ϵ ≥ 0 and a function f : N∪{0} → {0, 1}. Let n ∈ N. A (deterministic)
n-party protocol over the ϵ-noisy f -channel is given by a tuple

Π =
(

T,
{
X i

}
i∈[n],Y,

{
gi

t

}
i∈[n],t∈[T ], out

)
.

Here, T = |Π| is the number of rounds (or the length) of the protocol, X i is the input space
for player i, Y is the output space of the protocol, gi

t : X i×{0, 1}t−1 → {0, 1} is the function
player i uses to determine what message to broadcast in round t, and out : {0, 1}T → Y is
the function used to determine the output from the received transcript. As usual, we define
a randomized protocol to be a distribution over (deterministic) protocols.

14 More precisely, if y =
(

0, · · · , 0︸ ︷︷ ︸
i−1 times

, yi, 0, · · · , 0︸ ︷︷ ︸
n−i times

)
is in the former set,

then y′ = (x1, · · · , xi−1, yi, xi+1, · · · , xn) is in the latter set.
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Execution of a protocol

The protocol Π starts with all players i ∈ [n] having an input xi ∈ X i and proceeds in T

rounds, maintaining the invariant that before round t, for all t ∈ [T ], all players know a
transcript π<t ∈ {0, 1}t−1. In round t, player i broadcasts the bit bi

t = gi
t

(
xi, π<t

)
. Then, in

round t, if bt denotes the string bt = b1
t · · · bn

t , all the players receive the bit πt which equals
f(wt(bt)) with probability 1− ϵt, and equals 1− f(wt(bt)) with probability ϵt, where ϵt ≤ ϵ

is adversarially chosen. All players append πt to π<t to get a transcript π≤t and continue
the execution of the protocol. After T rounds, all players output Π(x) = out(π≤T ) ∈ Y.

Noiseless channels

Let f : N ∪ {0} → {0, 1}. The f -channel is the ϵ-noisy f -channel for ϵ = 0. Let Π be a
deterministic n-party protocol over the f -channel as above. Observe that the transcript π of
the protocol Π is a deterministic function of the input x, and denote it by transΠ(x). Denote
transΠ,t(x) = (transΠ(x))t, transΠ,≤t(x) = (transΠ(x))≤t, and transΠ,<t(x) = (transΠ(x))<t.

Let F : X 1×· · ·×X n → Y be a (partial) function and x ∈ X 1×· · ·×X n. We say that Π
is correct on x with respect to F if Π(x) = F (x). Let π ∈ {0, 1}T be a candidate transcript
for Π. We say that π is correct on x with respect to F if out(π) = F (x). When F is clear
from the context, we sometimes simply say that Π (or π) is correct on x. Finally, for p > 0
we say that Π solves/computes F with success probability p, if for all x such that F (x) is
well defined, it holds that Π(x) = F (x) with probability at least p regardless of the choices
of ϵt made by the adversary (in case Π is over an ϵ-noisy channel).

Special channels

We define the following channels: For ϵ ≥ 0 and k ≥ 0,
1. ϵ-noisy threshold[k] is the ϵ-noisy f -channel for f(m) = 1[m ≥ k]. In addition,

threshold[k] is ϵ-noisy threshold[k] with ϵ = 0.
2. beeping = threshold[1].
3. ϵ-noisy cas is the ϵ-noisy f -channel for f(m) = 1[m = 1]. In addition, cas is ϵ-noisy cas

with ϵ = 0.

For the beeping channel, we will sometimes use special terminology. Let Π be an n-party
protocol over beeping. For t ∈ [|Π|], denote by beepΠ,t(x) = {i ∈ [n] : bi

t = 1} the set of all
players who beep (i.e., broadcast a 1) in round t. Note that transΠ,t(x) = 1 if and only if
beepΠ,t(x) ̸= ∅.

Channel equivalence

Let f, g : N ∪ {0} → {0, 1}. We say that the f -channel can simulate the g-channel if for
every (deterministic) n-party protocol Π over the g-channel, there is a (deterministic) n-party
protocol Π′ over the f -channel with |Π′| = O(|Π|) and a function h, such that for every
input x for Π, h(transΠ′(x)) = transΠ(x). We say that the f -channel and the g-channel are
equivalent if the f -channel can simulate the g-channel and vice-versa.

4 BEEPING Lower Bound

In this section we prove Theorem 3. Fix a function f satisfying the condition of Theorem 3,
and let 0 < a < b ∈ N be such f(a) ̸= f(b). We prove that the following problem is hard for
beeping but easy for the f -channel.
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In the (a, b)-weight problem with n players and k groups, n parties, each holding a private
input bit, are partitioned into k sets of n/k parties each. The goal is for the first party to
output a string v ∈ {0, 1}k such that if exactly a parties in group j ∈ [k] have input 1 then
vj = 0, and if exactly b parties in group i have input 1 then vj = 1.

Observe that the (a, b)-weight problem can be computed by a k-round protocol over the
f -channel, by having parties from group j holding a 1 input broadcasting in round j. Thus,
the following Theorem 5 will suffice in order to prove Theorem 3. The rest of this section is
devoted to proving Theorem 5.

▶ Theorem 5. Let b > a ≥ 1 and k > (100b)(100b)100 be integers. Let n = k(k + a− 1). Then,
every (randomized) protocol over beeping that solves the (a, b)-weight problem with n players
and k groups with success probability greater than 1/n1/300, requires at least Ωa,b(k log(n/k))
rounds.

We will next prove a restricted version of Theorem 5, where a = 1:

▶ Theorem 6. Let b > 1 and k > (100b)(100b)100 be integers. Let n = k2. Then, every
(randomized) protocol over beeping that solves the (1, b)-weight problem with n players and k

groups with success probability greater than 1/n1/250, requires at least Ωb(k log(n/k)) rounds.

We now show that Theorem 6 implies Theorem 5. The proof of Theorem 6 can be found
in the full version.

Proof of Theorem 5. Suppose for contradiction that there existed some protocol Π over the
beeping model which solves the (a, b)-weight problem with k groups and k + a− 1 parties
in each group, with success probability greater than 1/n1/300 running in oa,b(k log(n/k)).

Let c = b − a + 1. We construct a protocol Π′ for the (1, c)-weight problem where
there are k groups with k players in each group (k2 parties in total). We will first add
k · (a− 1) “dummy” parties, a− 1 dummy parties in each group, such that all dummy parties
are assumed to have the input 1. To run Π′, the k2 parties will run Π with player 1 also
simulating all the extra k · (a− 1) dummy parties. Note that player 1 can indeed simulate
all these extra parties: Player 1 can compute the bit that each such dummy party would
have sent (as each player hears the same transcript and player 1 knows the inputs of the
dummy parties), and will compute and send the logical OR of all these bits and the bit that
he himself wishes to send.

If a group has only 1 player with a 1 input before the dummy players were added, the
dummy players ensure that this group now has a players with a 1 input. Likewise, if there
were c players with a 1 input in a group, the dummy players ensure that the group now has
b such players. Thus, if Π outputs the correct answer for the inputs with the dummy players,
then Π′ will output the correct answer.

However, this leads to a contradiction: The protocol Π′ only runs Π, which, by assumption
takes oa,b(k log(n/k)) rounds of communication, and it gets the correct answer for the (1, c)-
weight problem on any input with probability greater than 1/n1/300. This success probability
is greater than 1/(n′)1/250, where n′ = n− k(a− 1) is the number of parties participating in
Π′, contradicting Theorem 6. ◀

5 Hardness of Interactive Coding

In this section, we prove the following Theorem 7, which implies Theorem 4.
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▶ Theorem 7. Let ϵ ≥ 0 and k1, k2 ≥ 2. For all n > 0, there exists a (deterministic)
n-party protocol Π over the threshold[k1] channel, such that any (possibly randomized)
n-party protocol Π′ that computes the same function as Π with success probability greater
than 1/n1/300 over the ϵ-noisy threshold[k2] channel requires Ω(|Π| log n) rounds.

The same holds true if the threshold[k1] channel is replaced by the cas channel, or if
the ϵ-noisy threshold[k2] channel is replaced by the ϵ-noisy cas channel, or both.

To prove Theorem 7, we use the following Theorem 8 that shows that for all k ≥ 2 every
noisy threshold[k] round can be simulated by constantly many rounds of the beeping
channel.

▶ Theorem 8. Let ϵ ≥ 0 and k ≥ 2, n > 0 be integers. There exists an Ok,ϵ(1) length n-party
protocol over beeping such that if patry i ∈ [n] has the input bit xi ∈ {0, 1}, then at the end
of the protocol all the parties output a bit b that equals 1[wt(x) ≥ k] with probability least
1− ϵ.

Proof of Theorem 7. For the case of threshold[k1] channel, define b = k1. Otherwise, for
the cas channel, define b = 2. Assume without loss of generality that that there exists a
k > (100b)(100b)100 such that n = k2, and observe that there exists a deterministic k round
protocol over the channel concerned that solves the (1, b)-weight problem with n players and
k groups. Additionally, we have from Theorem 6 that every (randomized) protocol over the
beeping model that solves this problem with success probability greater than 1/n1/300 has
at least Ωb(k log(n/k)) rounds.

To finish the proof, we argue that if there is such a protocol over the ϵ-noisy threshold[k2]
channel, or over the ϵ-noisy cas channel, then there also exists such a protocol over the
beeping channel, a contradiction. In the case of the ϵ-noisy threshold[k2], this follows
directly by simulating the protocol round by round and using Theorem 8 with k = k2, while
in the case of the ϵ-noisy cas channel, this follows similarly from Theorem 8 using k = 2
and the identity 1[wt(x) = 1] = 1[wt(x) ≥ 1] − 1[wt(x) ≥ 2] for all x ∈ {0, 1}n. Note that
the first term can be computed exactly in one round over the beeping channel. ◀

Proof of Theorem 8. We claim that Algorithm 1 below outputs 0 if wt(x) < k and outputs
1, except with probability at most ϵ, if wt(x) ≥ k.

Let us consider just one iteration of the loop at Algorithm 1. To begin with, note that the
only players who ever broadcast during the algorithm are those with xi = 1, as can be seen
at Algorithm 1. As such, we can restrict our analysis to just those players, as the remaining
players do not influence the execution of the algorithm in any way. Let this group of players
be S.

We can now partition S into k2 sets S1, . . . , Sk2 . In particular, Sj consists of the players
i ∈ [n] such that ni = j. It is clear that this partitions S. We also note that at Algorithm 1,
exactly the players in Sj broadcast. Thus, zj is 1 if and only if Sj is non-empty. Furthermore,
we thus get that

∑
j∈[k2] zj is exactly the number of non-empty Sj sets.

Now, we can consider two cases, depending on if wt(x) ≥ k or if wt(x) < k. Let us
analyze the latter case. It is evident that wt(x) = |S|. Furthermore, as S = S1 ∪ · · · ∪ Sk2

and these sets are disjoint, we get that the number of non-empty Sj is at most the size of
|S|. Thus, the sum at Algorithm 1 will be strictly less than k, so the algorithm will never
return 1. As such, the algorithm returns 0 with probability 1, as desired.
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Algorithm 1 An algorithm computing 1[wt(x) ≥ k] over beeping.

Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs a bit b (supposedly, b = 1 if wt(x) ≥ k and b = 0

otherwise).
1: for 3 log(1/ϵ) times do
2: Each player i ∈ [n] randomly chooses a number ni ∈ [k2].
3: for j ∈ [k2] do
4: Each player sets bi

j = xi ∧ 1[ni = j].
5: In one beeping round: Each player i beeps bi

j . All parties receive the bit zj from
the channel.

6: end for
7: if

∑
j∈[k2] zj ≥ k then

8: return 1
9: end if

10: end for
11: return 0

Now, suppose that wt(x) ≥ k. Thus, |S| ≥ k. Fix k elements of S. We can now analyze
the probability that these k elements each fall into different Sj . Let this event be A.

Pr[A] =
(

k2

k2

)(
k2 − 1

k2

)
· · ·

(
k2 − k + 1

k2

)
≥

(
k2 − k

k2

)k

=
(

1− 1
k

)k

≥ 1
4 .

Thus, with probability at least 1
4 , each of the k elements are in a different Sj , so there are

at least k non-empty Sj . Thus, the sum at Algorithm 1 will be at least k, so the algorithm
will return 1. In other words, the probability that the algorithm doesn’t return 1 during this
iteration of the loop at Algorithm 1 is at most 3

4 . By independence of the iterations, the
probability that the algorithm doesn’t return 1 during any of the iterations of the loop is
thus at most(

3
4

)3 log(1/ϵ)
≤

(
1
2

)log(1/ϵ)
= ϵ.

Thus, the algorithm will return 1, except with probability at most ϵ, as desired. ◀

5.1 CAS is THRESHOLD[2]
In this subsection, we formally show the claim made in Section 1 that the cas channel is
equivalent to the threshold[2] channel.

▶ Theorem 9. The cas channel and the threshold[2]-channel are equivalent.

To show this, we first show a simpler claim about threshold channels, which shall be used
throughout this paper.

▶ Theorem 10. For all integers r1 ≤ r2 ∈ N, for all n > 0, there exists an n-party protocol
over threshold[r2] which solves the function f(x) = 1[wt(x) ≥ r1] with success probability
1 in Or1,r2(1) rounds.

Proof. We can assume 1 ≤ r1 < r2 without loss of generality. We begin by analysing the
algorithm find-zerosr2

ℓ0,ℓ1
, shown in Algorithm 2. We claim that for all ℓ0, ℓ1 ≥ 1, when

find-zerosr2
ℓ0,ℓ1

is run over threshold[r2], it has each player output a tuple (b, S) such
that b ∈ {0, 1}, S ⊆ [n], xi = b for all i ∈ S, and such that |S| = ℓb.
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Algorithm 2 Algorithm find-zerosr2
ℓ0,ℓ1

. This algorithm is used to find a set of players with the
same input.

Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs a pair (b, S).

1: Each player initializes two sets S0 = ∅ and S1 = ∅.
2: for j ∈ [ℓ0 + ℓ1 − 1] do
3: Each player i ∈ [n] sets bi

j according to

bi
j =


xi, i− j = 0
1, i− j ∈ [r2 − 1]
0, otherwise

4: Players broadcast with bi
j to get zj .

5: Szj
← Szj

∪ {j}
6: if S0 ≥ ℓ0 then
7: return (0, S0)
8: end if
9: if S1 ≥ ℓ1 then

10: return (1, S1)
11: end if
12: end for

Note that during an execution of Algorithm 2, each player receives the same zj at
Algorithm 2. As the values of S0 and S1 that each player maintains depend only on the
values of zj that they receive, this means that each player outputs the same result once the
algorithm outputs. As such, we can look at the algorithm from an outside perspective.

We claim that during an execution of Algorithm 2 zj = xj for all j considered during the
loop. For this, note that for exactly r2−1 other players, bi

j = 1. Thus,
∑

i∈[n] bi
j = r2−1+xj .

As such, the threshold[r2] channel sets

zj = 1

 ∑
i∈[n]

bi
j ≥ r2

 = 1[r2 − 1 + xj ≥ r2] = 1[xj ≥ 1] = xj .

Then, at Algorithm 2, each player adds j to the set Szj
= Sxj

. As such, in each iteration,
one of S0 or S1 increases by 1, and ensures that for each j ∈ S0, xj = 0 and for each j ∈ S1,
xj = 1. Furthermore, after ℓ0 + ℓ1−1 repetitions of Algorithm 2, either |S0| ≥ ℓ0 or |S1| ≥ ℓ1.
Thus, at that point, each player outputs either (0, S0) or (1, S1), which ensures that the
output of find-zerosr2

ℓ0,ℓ1
is as desired.

Using this result, we now demonstrate Algorithm 3, which we claim computes 1[wt(x) ≥ r1]
when run over threshold[r2].

The first thing Algorithm 3 does is run find-zerosr2
r2−r1,r1

at Algorithm 3. This takes
O(r2) broadcasts, and returns some pair (b, S). If b = 1, then S is a subset of [n] satisfying
|S| = r1 such that xi′ = 1 for all i′ ∈ S, which implies that

1[wt(x) ≥ r1] ≥ 1

[∑
i∈S

xi ≥ r1

]
= 1[|S| ≥ r1] = 1,

which means that returning 1 at Algorithm 3 actually gives the correct result.
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Algorithm 3 An algorithm for calculating 1[wt(x) ≥ r1] over threshold[r2].

Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ r1.
13: The players run find-zerosr2

r2−r1,r1
on their inputs xi to obtain (b, S).

14: if b = 1 then
15: return 1
16: end if
17: Set bi for players i ∈ [n] according to

bi =


1, xi = 1
1, i ∈ S

0, otherwise

18: Players broadcast with bi to get z.
19: return z

In the alternative case that b = 0, then we know that S is a subset of [n] satisfying
|S| = r2 − r1 such that xi′ = 0 for all i′ ∈ S. Thus, due to Algorithm 3, we know that the bi

values satisfy

1

 ∑
i∈[n]

bi ≥ r2

 = 1

 ∑
i∈[n],xi=1

1 +
∑
i∈S

1 ≥ r2

 = 1[wt(x) + |S| ≥ r2]

= 1[wt(x) + r2 − r1 ≥ r2] = 1[wt(x) ≥ r1].

Thus, the value of z that is returned at the end of Algorithm 3 is exactly the desired value,
concluding the proof. ◀

We also get a direct consequence from this.

▶ Corollary 11. For all integers r1 ≤ r2 ∈ N, if there exists a protocol computing some
function F over threshold[r1] in T rounds, then there exists a protocol computing F over
threshold[r2] in Or1,r2(T ) rounds.

This follows via simulating each round of the original protocol using the above result.
Anyway, we now return to the proof of Theorem 9.

Proof of Theorem 9. To show the desired result, it suffices to show that there exist protocols
solving 1[wt(x) ≥ 2] over cas and solving 1[wt(x) = 1] over threshold[2] in O(1) rounds
of communication (with success probability 1).

First, note that Theorem 10 shows that there exists a O(1) round protocol over
threshold[2] computing 1[wt(x) ≥ 1]. Furthermore, there exists a trivial one-round protocol
over threshold[2] computing 1[wt(x) ≥ 2]. Finally, as

1[wt(x) = 1] = 1[wt(x) ≥ 1]− 1[wt(x) ≥ 2],

we get that there exist an O(1) round protocol computing 1[wt(x) = 1] over threshold[2].
Thus, any protocol over cas can be simulated over threshold[2] with only O(1) blow-up
in the number of rounds.
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Algorithm 4 An algorithm computing 1[wt(x) ≥ 2] over cas.

Input: Each player i ∈ [n] has an input xi ∈ {0, 1}.
Output: Each player i ∈ [n] outputs whether or not wt(x) ≥ 2.
20: Players broadcast with xi ∨ 1[i = 1] to get z1.
21: Players broadcast xi to get z2.
22: return ¬(z1 ∨ z2)

Now, consider Algorithm 4. We claim that this computes 1[wt(x) ≥ 2] over cas in O(1)
rounds, which would complete the proof. To show this, it suffices to consider three possible
cases for wt(x):

If wt(x) = 0: In this case, xi = 0 for all i ∈ [n]. Thus, z1 = 1 and z2 = 0, and the
algorithm will return 0 = 1[wt(x) ≥ 2].
If wt(x) = 1: In this case, z2 = 1[wt(x) = 1] = 1, so the algorithm will return
0 = 1[wt(x) ≥ 2].
If wt(x) ≥ 2: In this case, z1 = z2 = 0, and the algorithm returns 1 = 1[wt(x) ≥ 2].

Thus, this algorithm computes 1[wt(x) ≥ 2], using only 2 broadcasts, which concludes
the proof. ◀
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Abstract
Data dissemination is a fundamental task in distributed computing. This paper studies broadcast
problems in various innovative models where the communication network connecting n processes is
dynamic (e.g., due to mobility or failures) and controlled by an adversary.

In the first model, the processes transitively communicate their ids in synchronous rounds along
a rooted tree given in each round by the adversary whose goal is to maximize the number of rounds
until at least one id is known by all processes. Previous research has shown a ⌈ 3n−1

2 ⌉ − 2 lower
bound and an O(n log log n) upper bound. We show the first linear upper bound for this problem,
namely ⌈(1 +

√
2)n − 1⌉ ≈ 2.4n.

We extend these results to the setting where the adversary gives in each round k-disjoint forests
and their goal is to maximize the number of rounds until there is a set of k ids such that each process
knows of at least one of them. We give a

⌈ 3(n−k)
2

⌉
− 1 lower bound and a π2+6

6 n + 1 ≈ 2.6n upper
bound for this problem.

Finally, we study the setting where the adversary gives in each round a directed graph with k

roots and their goal is to maximize the number of rounds until there exist k ids that are known by
all processes. We give a

⌈ 3(n−3k)
2

⌉
+ 2 lower bound and a ⌈(1 +

√
2)n⌉ + k − 1 ≈ 2.4n + k upper

bound for this problem.
For the two latter problems no upper or lower bounds were previously known.
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assume that the information flow between the processes is controlled by an oblivious message
adversary which may drop an arbitrary set of messages sent by some processes in each round.
This results in a sequence of directed communication graphs, whose edges tell which process
can successfully send a message to which other process in a given round. The oblivious
message adversary model is appealing because it is conceptually simple and still provides a
highly dynamic network model: The set of allowed graphs can be arbitrary, and the nodes
that can communicate with one another can vary greatly from one round to the next. It
is, thus, well-suited for settings where significant transient message loss occurs, such as in
wireless networks subject to interference, jamming, or mobility.

We look into three data dissemination problems in dynamic networks: broadcast, cover
and k-broadcast. These problems come in many flavors and feature intriguing connections to
other classic problems such as leader(s) election, regular and k-set consensus (also known as
k-set agreement), for which our problems’ time complexity is typically a lower bound.

In particular, we assume that each process has a unique id and in every message each
process communicates all the ids it knows of so far. We first study a fundamental model
where communication happens along arbitrary rooted trees, chosen by an adversary who
aims to maximize the broadcast time, which is the number of rounds it takes until there exists
a process that everyone knows of. We then extend our investigations to sparser networks,
considering k-forests (a union of k rooted trees). Here the adversary will maximize the cover
time, which is the number of rounds it takes until there exists k process such that everyone
knows of at least one of them. Moreover, in more highly connected networks, we study
k-rooted dynamic networks (directed graphs with k roots), where the adversary aims at
maximizing the k-broadcast time, which is the number of rounds it takes until there exist
k processes that everyone knows of. Before presenting our results, we introduce our model
more formally.

Model

Let n be the number of processes and let each process have a unique identifier from [n].
Let G be a fixed set of directed networks with n nodes such that each node has a unique
identifier from [n]. There will be a sequence of rounds t = 1, 2, . . . , such that, in each round
t, an adversary chooses a network G̃t from G, which determines the communication links in
round t as follows: Initially every process knows (or has heard) of its own identifier. During
round t process i sends all identifiers it knows of to its out-neighbors in G̃t. The rounds stop
whenever the objective – broadcast, k-broadcast or cover of size k – is attained. The goal of
the adversary is to maximize the number of rounds.

To model the information propagation we use graph products:

▶ Definition 1. If A = ([n], E1) and B = ([n], E2) are two directed networks on n nodes,
then the product graph A ◦ B is the network on n nodes, with edge set E, where (x, y) ∈ E

if and only if there exist a node z such that (x, z) ∈ E1 and (z, y) ∈ E2.

Consider round t and let G(t) be the product graph G(t) = G1 ◦ . . . ◦ Gt, where Gi is
created from G̃i by adding a self-loop to every node. Note that in G(t) the in-neighbors of a
process x are exactly the processes that x knows of after t rounds, and its out-neighbors are
the processes it has sent information to. We added a self-loop to every node in Gi to capture
the fact that no process “forgets” any piece of information in any round. An example is
given in Figure 1.

We will consider three different models, each of which has a different objective, detailed
below. Figure 2 summarizes the 3 models, gives examples and states the results.
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Figure 1 Example of information propagation. Self-loops are omitted, but are present on every
node in every round. x : yz means that y was an in-neighbor of x before the current round (and
still is), whereas z is a new in-neighbor of x. We omit mentioning x in its own in-neighbors as it is
always the case.

Broadcasting on Trees

▶ Definition 2. Let Tn be the set of all rooted trees with a self-loop added at every node.

In this variant, the networks given by the adversary are restricted to trees in Tn and we
analyze the broadcasting time t∗, which is the smallest round t such that there exists a node
in G(t) with an out-edge to every other node. Note that this corresponds to a process such
that every other process has heard of its identifier. We will say that the node has broadcast
(its identifier to everyone) or simply broadcast has happened. Trees being rooted ensure that
broadcast happens in a finite number of rounds1.

▶ Definition 3. The broadcast time t∗(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗(G1, G2, . . .) = min{t ∈ N : ∃x ∈ [n], ∀y ∈ [n], (x, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 4. The broadcast time t∗(G) of an adversary G, is defined as follows:

t∗(G) = max{t∗(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗(Tn). Note that even in the simple case where the
adversary gives the same directed tree in each round, the broadcast time can be as large as
n − 1, namely if the tree is simply a path. Conversely, in each round, it is easy to see that at
least one new edge appears in the product graph2, and thus the broadcast time is at most
n2. This raises the question of how large the broadcast time can be made if in each round a
different directed tree can be used.

This has been an open question for several years. Results from Charron-Bost and Schiper
in 2009 [4] and Charron-Bost, Függer, and Nowak in 2015 [3] imply an n log n upper bound.
In 2019, Zeiner, Schwarz, and Schmid [18] gave a linear upper bound when the adversary is
restricted to trees with either a constant number of leaves or a constant number of inner
nodes. They also gave a

⌈ 3n−1
2
⌉

− 2 lower bound. In 2020, Függer, Nowak, and Winkler [12]
improved the general upper bound to 2n log log n + O(n). So far, it has been an open
conjecture [18] whether the broadcast time is linear for arbitrary sequences of rooted trees.

1 If the adversary can choose a non-rooted graph, it could repeat this graph indefinitely, preventing
broadcast.

2 In each round, the identifier of the root reaches someone new.

ITCS 2023
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Covering on k-forests

▶ Definition 5. We define Fk
n to be the set of all forests over n processes which are the union

of k rooted trees and a self-loop is added at every node.

In this variant, the networks given by the adversary are restricted to networks from Fk
n ,

and we analyze the cover time tc
k, which is the smallest round t such that there exists a set

I ⊂ [n], |I| ≤ k, such that every node x of G(t) has at least one in-neighbor from I. Said
differently, there exists a set of k nodes such that every node knows of at least one of them.

▶ Definition 6. The cover time tc
k(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

tc
k(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n], ∀y ∈ [n], ∃i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 7. The cover time tc
k(G) of an adversary G, is defined as follows:

tc
k(G) = max{tc

k(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on tc
k(Fk

n). To the best of our knowledge, there is
no prior work that gives upper or lower bounds on tc

k(Fk
n).

k-Broadcasting on k-rooted Networks

▶ Definition 8. Let Rk
n be the set of all (directed) networks over n nodes that (1) have k

roots, that is k different processes r1, . . . , rk such that there exists a directed path from any ri

to any process in [n], and (2) have a self-loop at every node.

In this variant, the networks given by the adversary are restricted to networks from Rk
n, and

we analyze the k-broadcasting time t∗
k, which is the smallest round t such that there exist k

nodes in G(t) with an out-edge to every other node. Said differently, there exists a set of k

nodes such that every node knows of all of them.

▶ Definition 9. The k-broadcast time t∗
k(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗
k(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n], ∀i ̸= j, xi ̸= xj

∧ ∀y ∈ [n], ∀i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 10. The k-broadcast time t∗
k(G) of an adversary G, is defined as follows:

t∗
k(G) = max{t∗

k(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗
k(Rk

n). To the best of our knowledge, there is
no prior work that gives upper or lower bounds on t∗

k(Rk
n).

Contribution

We give asymptotically tight bounds for all three settings, see also Figure 2.
(1) First we settle the open problem about time complexity of broadcast in dynamic trees,

by showing that it is linear. Hence, Zeiner et al.’s [18] conjecture is true. In particular, we
present an upper bound of

⌈
(1 +

√
2)n
⌉

≈ 2.4n, which complements their
⌈ 3n−1

2
⌉

− 2 lower
bound.

(2) We further show that covering on k-forests also takes linear time, by giving a
π2+6

6 n + 1 ≈ 2.6n upper bound and a
⌈

3(n−k)
2

⌉
− 1 lower bound.

(3) Finally, we show that k-broadcasting on k-rooted networks is linear as well, by giving
an upper bound of

⌈
(1 +

√
2)n
⌉

+ k − 1 ≈ 2.4n + k, and a lower bound of
⌈

3(n−3k)
2

⌉
+ 2.
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Model: Broadcasting on Trees Covering on k-Forests k-Broadcasting on k-rooted Networks

Adversary:
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2 : 24
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Broadcast Cover of size k k-broadcast of k processes
Example for n = 4 Example for n = 4 and k = 2 Example for n = 4 and k = 2

Lower Bound: [18]:
⌈

3n−1
2

⌉
− 2

⌈ 3(n−k)
2

⌉
− 1

⌈ 3(n−3k)
2

⌉
+ 2

[12]: O(n log log n)

Upper Bound:
⌈
(1 +

√
2)n
⌉

π2+6
6 n + 1

⌈
(1 +

√
2)n
⌉

+ k − 1

Figure 2 Summary of models and results. The adversary chooses a sequence of graphs as stated
in order to delay the objective as much as possible. In the objective examples, x : y means that y is
an in-neighbour of x at the round the objective is attained. Underlines are for emphasis purposes
only.

Organization

The remainder of this paper is organized as follows. Section 2 introduces some basic tools
that will be useful throughout the paper, and presents first insights. In Section 3, we give
the linear upper bound for broadcast time in our model. Section 4 and Section 5 respectively
showcase our results for the cover on k-forests and the k-broadcast on k-rooted networks.
After reviewing related work in Section 6, we conclude and provide some future research
directions in Section 7. All the lower bound results can be found in the full version of the
paper, as well as other basic proofs.

2 Basic Tools

In this section, we define generalizations of the in- and out-neighborhoods in the product
graph, and some basic properties these tools follow. The proofs of these properties being
basic, we defer them to the the full version of the paper.

▶ Definition 11. The in-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by It′

t (x), is defined as follows: If t ≤ t′, It′

t (x) is the in-neighborhood of process x in the
graph Gt ◦ . . . ◦ Gt′ . If t = t′ + 1, set It′

t (x) = {x}. Otherwise, It′

t (x) = ∅.

▶ Definition 12. The out-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by Ot′

t (x), is defined as follows: If t ≤ t′, Ot′

t (x) is the out-neighborhood of process x in the
graph Gt ◦ . . . ◦ Gt′ . If t = t′ + 1, set Ot′

t (x) = {x}. Otherwise, Ot′

t (x) = ∅.

ITCS 2023
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We prove in the full version of the paper that these generalized neighborhoods behave as
expected:

▶ Lemma 13. Let t, t′ ≥ 0, x, y ∈ [n]. Then x ∈ Ot′

t (y) ⇔ y ∈ It′

t (x).

▶ Lemma 14 (Transitivity). Let t, t′, t′′ ≥ 0, and x, y, z ∈ [n]. We have the following
properties:

i. If y ∈ Ot′

t (x) and z ∈ Ot′′

t′+1(y), then z ∈ Ot′′

t (x).
ii. If x ∈ It′

t (y) and z ∈ Ot′′

t′+1(y),then z ∈ Ot′′

t (x).
iii. If x ∈ It′

t (y) and y ∈ It′′

t′+1(z), then z ∈ Ot′′

t (x).
And finally, we show that these neighborhoods only grow over time:

▶ Lemma 15 (Monotonicity). If in each round, all nodes have a self-loop, then for any
t1 ≤ t2 and t3 ≤ t4, for any process x we have:

i. It3
t2

(x) ⊆ It4
t1

(x).
ii. Ot3

t2
(x) ⊆ Ot4

t1
(x).

3 Broadcasting on Trees

In this section, we focus on the fundamental problem of broadcasting on dynamic trees. We
give an upper bound for the problem, before recalling a lower bound.

3.1 The Upper Bound
We will show that the key to understand how information propagate is to consider what the
root knows – or the in-neighbors of the root – before the beginning of every round. We will
show that the root must either have a lot of in-neighbors that were roots in previous rounds,
or many in-neighbors in general. We will then show that any in-neighbor of the root before
a round has at least one more out-neighbor after the round than before it. We will finally
show that any adversary that tries to balance these two facts will fail to prevent broadcast
for a time longer than linear.

▶ Definition 16. Let t be a round. We denote by rt the root of Gt, and call it the root of the
round t.

Harnessing the fact that there always exists a path from a root to any other process in a
network, we give the two following lemmas:

▶ Lemma 17. Let t, t′ be rounds such that t ≤ t′. We have that:
i. If x is a process such that rt /∈ It′

t+1(x), then
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

ii. If x is a process such that rt′ ∈ Ot′−1
t (x), then

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣, unless
∣∣∣Ot′−1

t (x)
∣∣∣ =

n.

Proof. i. We will show that there exists a process y ∈ It′

t+1(x) that has an in-neighbor z in
Gt such that z /∈ It′

t+1(x). Then, by Transitivity (Lemma 14), z ∈ It′

t (x). By Monotonicity
(Lemma 15), we have It′

t+1(x) ⊂ It′

t (x), this will show that
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Let us now find such a z. Consider the path from rt to x in Gt. Since rt /∈ It′

t+1(x), and
trivially x ∈ It′

t+1(x), this path must include an edge (z, y) such that z /∈ It′

t+1(x), y ∈ It′

t+1(x).
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ii. Let us look at the case
∣∣∣Ot′−1

t (x)
∣∣∣ < n. We will show that there exists a process

y ∈ Ot′−1
t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1

t (x). Then, by Transitivity
(Lemma 14), z ∈ Ot′

t (x). By Monotonicity (Lemma 15), we have Ot′−1
t (x) ⊂ Ot′

t (x), this will
show that

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1
t (x)

∣∣∣ < n, there exists a process a such that a /∈ Ot′−1
t (x).

Consider the path from rt′ to a in Gt′ . Since rt′ ∈ Ot′−1
t (x), and a /∈ Ot′−1

t (x), this path
must include an edge (y, z) such that z /∈ Ot′−1

t (x), y ∈ Ot′−1
t (x). ◀

The following lemma will link the number of in-neighbors a node has to the number of
in-neighbors it has among the roots of the preceding rounds:

▶ Lemma 18. Let x be a process, and t1, t2 be rounds such that t1 ≤ t2. Then:∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}
∣∣+ 1 ≤

∣∣It2
t1

(x)
∣∣

This will be proven using Lemma 17.i, since every time rt /∈ It2
t1

(x), It2
t1

(x) gets larger:

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}. Then, in particular, for any t ∈ A, we have
rt /∈ It2

t+1(x). Then, for all t ∈ a, applying Lemma 17.i, we have
∣∣It2

t (x)
∣∣ >

∣∣It2
t+1(x)

∣∣. Let
A = {t1, . . . , tk}, with ti < ti+1 for any 1 ≤ i < k. Then:∣∣It2

t1
(x)
∣∣ ≥

∣∣It2
t1 (x)

∣∣ >
∣∣It2

t1+1(x)
∣∣ ≥

∣∣It2
t2 (x)

∣∣ >
∣∣It2

t2+1(x)
∣∣ ≥ . . . >

∣∣∣It2
tk+1(x)

∣∣∣ ≥ 1

Where the non-strict inequalities derive by Monotonicity(Lemma 15), and the last one
from the fact that tk + 1 ≤ t2 + 1 ⇒ x ∈ It2

tk+1(x). There are k = |A| strict inequalities over
integers, which concludes the proof. ◀

We now define the rounds graph, which will keep track of the information – the in-neighbors
– the root of each round has:

▶ Definition 19. We define the rounds graph as follows:
The graph has 2n +

⌈√
2n
⌉

nodes: one node representing each process, and one node for
each of the first

⌈
(1 +

√
2)n
⌉

rounds.
And it has the directed edges: one edge from a process p to a round t if p ∈ It−1

1 (rt), and
one edge from a round t <

⌈√
2n
⌉

to a round t′ > t if rt ∈ It′−1
1 (rt′).

We will now show that there is at least a node of out-degree n in that graph, which will
translate into a process that has broadcast its piece of information to everyone:

▶ Lemma 20. In the rounds graph, there is at least a node of out-degree n.

Proof. Let us look at round t. If t ≤
⌈√

2n
⌉
, then t has in-degree at least t. Indeed, it has

in-degree:∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1
1 (rt)}

∣∣+
∣∣It−1

1 (x)
∣∣

≥ 1 +
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣ = t

where we used Lemma 18 for the inequality. Similarly, if t >
⌈√

2n
⌉
, then t has in-degree at

least
⌈√

2n
⌉
. Indeed, it has in-degree:
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∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ /∈ It−1
1 (rt)}

∣∣∣
=
⌈√

2n
⌉

where we used Lemma 18 for the first inequality.
Summing the in-degrees over all the rounds, we get that the number of edges |E| is at

least:

|E| ≥
⌈√

2n⌉∑
t=1

t + n ×
⌈√

2n
⌉

=
⌈√

2n
⌉ (⌈√

2n
⌉

+ 1
)

2 + n
⌈√

2n
⌉

>
⌈
(1 +

√
2)n
⌉

n

But only the n nodes representing the processes and the nodes representing the first⌈√
2n
⌉

− 1 rounds have out edges. The pigeonhole principle asserts then that one of those
nodes has an out-degree of at least n. ◀

▶ Theorem 21. t∗(Tn) ≤
⌈
(1 +

√
2)n
⌉

Proof. Assume it is not the case, that is, for every process x ∈ [n], for every round
t ≤

⌈
(1 +

√
2)n
⌉
, |Ot

1(x)| < n. We know that in the rounds graph, there is a node y of degree
at least n. Define z as follows: if y represents a process, let z be that process. If y represents
a round, let z be the root of that round. We will show that z must have broadcast before⌈
(1 +

√
2)n
⌉

rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, this means that

z ∈ Iti−1
1 (rti) ⇔ rti ∈ Oti−1

1 (z) for every i ∈ [n]. By Lemma 17ii, we thus have, for every
i ∈ [n], that

∣∣Oti
1 (z)

∣∣ >
∣∣Oti−1

1 (z)
∣∣. Then, using Monotonicity (Lemma 15) for non-strict

inequalities:∣∣Otn
1 (z)

∣∣ >
∣∣Otn−1

1 (z)
∣∣ ≥

∣∣∣Otn−1
1 (z)

∣∣∣ >
∣∣∣Otn−1−1

1 (z)
∣∣∣ ≥ . . . ≥

∣∣Ot1
1 (z)

∣∣ >
∣∣Ot1−1

1 (z)
∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least
n, which is a contradiction. ◀

3.2 The Lower Bound
A lower bound for this problem has been given by Zeiner, Schwarz, and Schmid [18]:

▶ Theorem 22. t∗(Tn) ≥
⌈ 3n−1

2 − 2
⌉

A figure of that lower bound can be found in the full version of the paper.

4 Covering on k-Forests

In this section, we study an adversary that has to choose a communication network in each
round that is a union of k trees. In this setting, we cannot ensure broadcast, so we look at
the time when there exists a cover of size k: k processes such that any other process has
heard of at least one of them.
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4.1 The Upper Bound
Even though the problem is very similar to broadcasting on trees, the proofs of Section 3 do
not translate in a straightforward way into an upper bound for covering on k-forests. We
thus have a completely different proof for this problem.

The intuition of our approach is as follows: We will start with a cover of size n at some
time t′ = t(n) that is large enough, and then go back in time until we find a process that
can reach two other processes, say, x and y, of that cover. Calling this process pn−1 and
the corresponding time t(n−1), we thus have pn−1 ∈ It(n)

t(n−1)(x) and pn−1 ∈ It(n)

t(n−1)(y). When
repeating the process, we then remove x and y from our set of processes to cover, add pn−1,
and start over, until the cover has size k. We need to be careful to guarantee that rounds do
not overlap.

Indeed, to remove pn−1 from our set of processes to cover, we have to reach it before
round t(n−1), otherwise we will not be guaranteed to reach x or y at time t(n). Thus, we
will store with each process x of the cover the corresponding round t such that x has to be
reached by round t by the process that replaces x in the cover. More specifically, we model
the cover by a series of sets (Au)k≤u≤n, where each Au is a collection of u pairs (p, t), where
p is a process, and t is a round. To compute Au−1 from Au, we have to find a process that
can reach two processes p1, p2 by rounds t1, t2, such that (p1, t1), (p2, t2) ∈ Au and then we
replace these two pairs by a new pair, creating the cover Au−1.

In this section we first state the definitions and results of this section, before giving the
full proof to each of our claims. We first define what it means for a set A of pairs (p, t) to be
a cover.

▶ Definition 23. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is a cover of
a set B of processes for round t ≥ maxs{ts} if for every b ∈ B, there exists an i ∈ [s] such
that b ∈ Ot

ti+1(ai).

We next couple the cover property of set A with strictness, which indicates that we did
not (yet) go back enough in time to find a process that reaches two different processes in A.

▶ Definition 24. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is strict at
round t if there exists no process p ∈ [n] and i, j ∈ [s], i ≠ j such that p ∈ Iti

t (ai) and
p ∈ Itj

t (aj).

As we consider earlier and earlier rounds, the sets Iti
t (ai) will get larger and larger, and

A will lose its strictness. Thus, we then define the following sequence of covers of [n], and
analyze their strictness over time. We carefully choose our set As so that it has cardinality s.
This means that Ak has cardinality k, which is our goal.

▶ Definition 25. Let t′ be a large enough round. For every k ≤ s ≤ n, we define a sequence
of strict sets As and rounds t(s) as follows:

Define An = {(i, t′) : i ∈ [n]}, t(n) = t′.
Define t(s) = maxj∈N{As+1 is not strict at round j}. As As+1 is not strict at round t(s),

there exist i, j ∈ [s + 1] and a process ps such that ps ∈ Iti

t(s)(ai) ∩ Itj

t(s)(aj). If (ps, t(s) − 1) ∈
As+1, we define As = As+1 \ {(ai, ti)}, else we define As = (As+1 \ {(ai, ti), (aj , tj)}) ∪
{(ps, t(s) − 1)}.

Define ∆s = t(s) − t(s−1) for k + 1 ≤ s ≤ n.

Recall that our goal is to upper bound t′, which can be done if we upper bound
∑n

s=k+1 ∆s.
The strictness of a set is a key notion as a strict set has the following very useful property:
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∆1+k
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Figure 3 The strict rounds graph. Vertex u’s weight represents ∆u = t(u) − t(u−1). The weight of
an edge (u, s) represents how much a round t ∈ [t(u−1) + 1, t(u)] contributes at least to Ss. Because
of the strictness of As, the sum of the weights of the in-neighbors (multiplied by the edges’ weight)
of a node s, which is smaller than Ss, should not exceed n.

▶ Lemma 26 (Strict Increments). Let s ≥ k + 1 and let A = {(a1, t1), . . . , (as, ts)} be a strict
set of size s at round t. Let I ⊆ {i ∈ [s] : t ≤ ti + 1}. Then there exists a set of indices
J ⊆ I, |J | ≥ |I| − k, such that for every i ∈ J ,

∣∣Iti
t−1(ai)

∣∣ >
∣∣Iti

t (ai)
∣∣.

Proof. Consider a root r of round t − 1. As A is strict at round t is follows that r ∈ Iti
t (ai)

for at most one ai with i ∈ I. As there are at most k roots in round t−1, it follows that there
are at least |I|−k values i ∈ I such that none of the roots of round t−1 is in Iti

t (ai). Let J be
the set of all such values of i. Let us denote for any p ∈ [n] the root of the tree that contains p

in round t by the value rt(p). It follows that in particular rt−1(ai) /∈ Iti
t (ai). Since t ≤ ti + 1,

we have that ai ∈ Iti
t (ai). Now for each such i the path from rt−1(ai) to ai in Gt−1 must

contain an edge (x, y) such that x /∈ Iti
t (ai), and y ∈ Iti

t (ai). By Transitivity (Lemma 14), it
holds that (Iti

t (ai) ∪ {x}) ⊆ Iti
t−1(ai), which implies that

∣∣Iti
t−1(ai)

∣∣ >
∣∣Iti

t (ai)
∣∣. ◀

It is not hard to show that all ai of As fulfill t(s) ≤ ti + 1. The following lemma helps us find
more sets that satisfy the conditions of the Strict Increments Lemma. This essentially follows
from the fact that, by construction, at least 2s − u elements from Au are shared with As.

▶ Lemma 27. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s − u.

We now define the strict rounds graph, which we use to analyze the values of ∆s as s varies
from n to k. A depiction of that graph can be seen in Figure 3.

▶ Definition 28. The strict rounds graph (V, E) consists of n − k vertices, labeled from k + 1
to n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex
s if s ≤ u ≤ min{2s − k − 1, n}, and its weight is w(u, s) = 2s − k − u.

The next lemma is the crucial lemma: To bound t′ we first bound the following “weighted
volumes”. If we define αs to be the weighted out-degree of a node s, and the volume of s to
be αs multiplied by its own weight, then in the strict rounds graph, the cumulative sum over
the volumes of the first j vertices is at most j · n.

▶ Lemma 29. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u − k) · n.

We briefly sketch the proof of this lemma. We first prove that for every k + 1 ≤
w ≤ u the sum σw :=

∑min{2w−k−1,n}
v=w (2w − k − v) ∆v is at most n as follows. Since

for every k + 1 ≤ w ≤ u the set Aw is strict at all rounds t ≥ t(w−1) + 1, it fol-
lows that Sw :=

∑
(ai,ti)∈Aw

∣∣∣Iti

t(w−1)+1(ai)
∣∣∣ is at most n. We then lower bound Sw by
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∑min{2w−k−1,n}
v=w (2w − k − v) ∆v in two steps: First, Lemma 27 allows us to find a set I of

cardinality larger than 2w − v for each round in the interval [t(v−1) + 1, t(v)] that fits the
Strict Increments Lemma’s conditions. We then use the Strict Increments Lemma to show
that Sw increases by 2w − v − k in each of those rounds, which results in a lower bound of
σw for Sw, and thus the upper bound σw ≤ n. Summing this inequality over all u − k nodes
w with w ≤ u gives

∑
w≤u σw ≤ (u − k) · n.

Next note that σw is the weighted in-degree of node w in the strict rounds graph where
each edge is weighted by the product of its edge weight and the weight of its tail. By
definition, the tail of every (directed) edge has a higher label than its head and, thus, every
outgoing edge of a node s ≤ u is also an incoming edge of a node w ≤ u. This allows us to
argue that

∑
w≤u σw is at least

∑
s≤u ∆sαs, which leads to the final result.

We use Lemma 29 to bound t′ as follows. We first show that any vertex weight distribution
on the strict rounds graph following the volume bound must fulfill the following property.

▶ Lemma 30. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict
rounds graph such that for every u ∈ {k+1, . . . n},

∑
s≤u δsαs ≤ (u−k)·n. Then

∑n
s=k+1 δs ≤

π2+6
6 n.

Lemma 29 and Lemma 30 give the desired bound on
∑n

s=k+1 ∆s, which in turn bounds t′.

▶ Corollary 31.
∑n

s=k+1 ∆s ≤ π2+6
6 n

▶ Theorem 32. tc
k(Fk

n) ≤ π2+6
6 n + 1

The rest of this section is dedicated to proving in detail all of those claims, as well
as introducing all concepts, stating and proving any intermediate lemmata that would be
necessary. First we analyze in detail the sets defined in Definition 25, making sure they have
the desired cardinality and proving that they form a cover of [n] from round 1 to t′. Note
that it directly follows from Definition 25 that the size of As is s and we will in the following
always use (ai, ti) for 1 ≤ i ≤ s to denote the elements of the set As.

▶ Lemma 33. For every s ∈ {k, . . . , n}, |As| = s.

Proof. It is true by reverse induction. Indeed, it is trivially true for s = n. Suppose it is
true for some s ∈ {k + 1, . . . , n} and consider two cases: If (ps−1, t(s−1) − 1) ∈ As, then
|As| − |As−1| = 1, as only (ai, ti) is removed from As. If (ps−1, t(s−1) − 1) ̸∈ As, then both
(ai, ti) and (aj , tj) are removed from As and (ps−1, t(s−1) − 1) is added, which implies that
|As| − |As−1| = 1. Thus, in both cases |As| − |As−1| = 1. As by induction |As| = s, it follows
that |As−1| = s − 1. ◀

In Definition 25, we offset t(s) by one when introducing ps in As, which guarantees that
As is a cover of [n] for round t′, as shown below.

▶ Lemma 34. For every s ∈ {k, . . . , n}, we have that As is a cover of [n] for round t′.

Proof. We show the claim by reverse induction. It holds trivially for s = n. Assume now
that As+1 is a cover of [n] for round t′. We will show that this implies that As is also a cover
of [n] for round t′. By the fact that As+1 is a cover, it follows for each x ∈ [n] that there
exists a h ∈ [s + 1] such that x ∈ Ot′

th+1(ah). If (ah, th) ∈ As, then there is nothing to do. If
however (ah, th) /∈ As, then ps ∈ Ith

t(s)(ah), and by Transitivity (Lemma 14) it follows that
x ∈ Ot′

t(s)(ps). ◀
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Now that we are assured that the cover property will hold throughout, we give the
intuition of what follows. As defined above, we have ∆u = t(u) − t(u−1) for k < u ≤ n.
We will then look at As for some s ∈ {k, . . . , n}. Since As is strict at round t(s−1) + 1,
it follows that

(
Iti

t(s−1)+1(ai)
)

i∈[s]
are pairwise disjoint subsets of [n], which implies that

Ss =
∑

(ai,ti)∈As

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ is at most n. We will find a lower bound for that value that

depends on the values of ∆u.
To do so, we will use the Strict Increments Lemma (Lemma 26). Indeed we will first

prove that for every i ∈ [s], it holds that t(s) ≤ ti + 1. This will allow us to use the Strict
Increments Lemma (Lemma 26) between rounds t(s−1) + 2 and t(s) and so each of those
rounds contributes an additive s − k to the lower bound of Ss. Of course, such a contribution
only happens if t(s−1) + 2 ≤ t(s).

We will further prove that there exist s − 1 elements i ∈ [s] such that t(s+1) ≤ ti + 1. This
will follow from the fact that |As ∩ As+1| ≥ s − 1, and that for every (a, t) ∈ As+1, we have
that t(s+1) ≤ t + 1. This allows us to use the Strict Increments Lemma (Lemma 26) between
rounds t(s) + 1 and t(s+1), so that each of those rounds contributes at least an additive
s − 1 − k to the lower bounds of Ss in addition to the contribution of rounds [t(s−1) + 2, t(s)].

In fact, we will generalize this analysis to all values of u ≥ s with Au ∩ As ≠ ∅, and for
each u every round in [t(u−1) + 1, t(u)] contributes at least 2s − k − u to the lower bound of
Ss, leading to a contribution at at least (2s − k − u)∆u for u.

▶ Lemma 35. As is strict at round t(s) + 1, for any s ∈ {k, . . . , n}.

Proof. Let s ∈ {k, . . . , n}. As+1 is strict at round t(s) + 1. Assume by contradiction that
As is not strict at round t(s) + 1, that is, there exists a x ∈ [n] and i, j ∈ [s] such that
x ∈ Iti

t(s)+1(ai) and x ∈ Itj

t(s)+1(aj). Since It(s)−1
t(s)+1 (ps) = ∅ because t(s) + 1 > (t(s) − 1) + 1,

we have that x /∈ It(s)−1
t(s)+1 (ps). This implies that (ai, ti), (aj , tj) ∈ As+1, which contradicts the

strictness of As+1. This concludes the proof. ◀

▶ Corollary 36. t(s) ≤ t(s+1) ∀s ∈ {k, . . . , n − 1}

▶ Corollary 37. For every s ∈ {k, . . . , n}, we have that for every i ∈ [s], t(s) ≤ ti + 1.

Proof. By reverse induction, it is true for s = n, as for every i ∈ [n], ti = t(n). Assume it
is true for some s + 1 for s ∈ {k, . . . n − 1}, and let us look at As. Then by Corollary 36
and the induction hypothesis, for every i ∈ [s] we have that either (ai, ti) ∈ As+1 and thus
t(s−1) ≤ t(s) ≤ ti + 1, or that (ai, ti) = (ps, t(s) − 1) and trivially the inequality holds. ◀

▶ Lemma 38. Let s, u ∈ {k, . . . , n} such that s ≤ u. Then As ∩ Au ≥ 2s − u.

Proof. By reverse induction, it is trivially true for s = u. Assume we have |As+1 ∩ Au| ≥
2(s + 1) − u for some s such that k ≤ s ≤ u − 1.

We have that, by distribution of the intersection over the union operator:

As+1 ∩ Au = ((As+1 ∩ As) ∪ (As+1 \ As)) ∩ Au = (As+1 ∩ As ∩ Au) ∪ ((As+1 \ As) ∩ Au)

Hence:

|As ∩ Au| ≥ |As+1 ∩ As ∩ Au| ≥ |As+1 ∩ Au|−|(As+1 \ As) ∩ Au| ≥ 2(s+1)−u−2 = 2s−u

Where we used that |(As+1 \ As) ∩ Au| ≤ |As+1 \ As| ≤ 2, because we removed at most two
elements from As+1 to get As. ◀
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t(s−1) + 1 t1 t(s) t2 t3 t4 t5 t6 t7
a1 ■ □ ■ □ ■  # # # # # # # # # # # # # #
a2 ■ ■ ■ □ ■ ■ ■ □  # # # # # # # # # # #
a3 □ ■ □ ■ □ ■ □ □ ■ □  # # # # # # # # #
a4 ■ □ ■ ■ ■ ■ ■ ■ ■ □ ■  # # # # # # # #
a5 □ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ ■ □ □ □  # # # #
a6 ■ ■ ■ ■ ■ □ □ ■ □ ■ ■ □ ■ □ ■ □ □ □  #
a7 ■ ■ □ ■ □ ■ ■ ■ □ ■ □ □ □ ■ □ □ □ □ □  

∆s − 1 ∆s+1 ∆s+2 ∆s+3 ∆s+4 ∆s+5

Figure 4 Illustration of proof of Lemma 39, with s = 7 and k = 2. Each column represents a
round, each row represents an element (ai, ti) of As, ordered according to ti. Remember that every
ti directly precedes a t(u). We add a square if t ≤ ti, and a circle otherwise. The entry is black if∣∣Iti

t (ai)
∣∣ >
∣∣Iti

t+1(ai)
∣∣ and white otherwise. We have one black circle per row. Indeed, we have that∣∣Iti

ti+1(ai)
∣∣ = |{ai}| = 1 > 0 =

∣∣Iti
ti+2(ai)

∣∣. Lemma 27 gives a lower bound on the number of squares
for each column. The Strict Increments Lemma asserts that there are at most k white squares per
column. A lower bound for Ss is thus the number of black entries.

▶ Lemma 27. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s − u.

Proof. It is a direct implication of Corollary 37 and Lemma 38.
Indeed, |I| =

∣∣{(a, t) ∈ As : t(u) ≤ t + 1}
∣∣, and we have {(a, t) ∈ As : t(u) ≤ t + 1} ⊇

{(a, t) ∈ As ∩ Au : t(u) ≤ t + 1} = {(a, t) ∈ As ∩ Au} = As ∩ Au, where the penultimate
equality holds by Corollary 37 applied to u. Lemma 38 states that |As ∩ Au| ≥ 2s − u. ◀

▶ Lemma 39. Let ∆s = t(s) − t(s−1). Then, for every s ∈ {k + 1, . . . , n}:
min{2s−k−1,n}∑

u=s

(2s − k − u) ∆u ≤ n

An illustration of the proof can be found in Figure 4.

Proof. Let s ∈ {k + 1, . . . , n}. If for every u such that s ≤ u ≤ min{2s − k − 1, n}, we have
∆u = 0, then the result is immediate. If not, let x = min{u : s ≤ u ≤ min{2s−k−1, n}∧∆u >

0}. In the rest of the proof, let u be restricted to fulfill x ≤ u ≤ min{2s − k − 1, n} and
let Iu

s = {i ∈ [s] : t(u) ≤ ti + 1}. By Lemma 27, we have that |Iu
s | ≥ 2s − u. To prove the

claim we will give upper and lower bounds for Ss =
∑

i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣. The upper bound

directly follows from the fact that t(s−1) + 1 is the smallest round at which As is strict, which
implies that Ss ≤ n.

We next fix a round t with t(u−1) + 1 ≤ t ≤ t(u). We have that t(s−1) is the largest round
As is not strict at (by Definition 25), so it is strict at t ≥ t(u−1) + 1 > t(s−1). By the Strict
Increments Lemma (Lemma 26), there exists a set Ju

s (t) ⊆ Iu
s with |Ju

s (t)| ≥ |Iu
s | − k ≥

2s − u − k such that for every j ∈ Ju
s (t),

∣∣∣Itj

t−1(aj)
∣∣∣ >

∣∣∣Itj

t (aj)
∣∣∣. As every j ∈ Ju

s (t) belongs
to Iu

s it follows that t ≤ t(u) ≤ tj + 1. Thus, for every (j, t) ∈ [s] × N with t > tj + 1 it holds
that it does not belong to Ju

s (t), or, equivalently, 1(j ∈ Ju
s (t)) = 0.

We can then write:

Ss :=
∑
i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ =

∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

(∣∣Iti
t (ai)

∣∣−
∣∣Iti

t+1(ai)
∣∣)

We first separate the second sum according to which interval [t(u−1) + 1, t(u)] round t

belongs to, and furthermore add a third sum that is equal to 0, since 1(j ∈ Ju
s (t)) = 0 for

every (j, t) ∈ [s] × N such that t > tj + 1. For the consecutive inequality note that by the
definition of Ju

s (t), we have that in the second sum
∣∣Iti

t (ai)
∣∣−
∣∣Iti

t+1(ai)
∣∣ ≥ 1(i ∈ Ju

s (t + 1)).
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Ss ≥
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t + 1 ≤ t(u))
(∣∣Iti

t (ai)
∣∣−
∣∣Iti

t+1(ai)
∣∣)

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


≥
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t + 1 ≤ t(u))1(i ∈ Ju
s (t + 1))

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


=
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti+1∑

t=t(s−1)+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


≥
∑
i∈[s]

(∣∣Iti
ti+1(ai)

∣∣
+

max{ti+1,t(min{2s−k−1,n})}∑
t=t(s−1)+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))

)
=: X1

We next invert the two sum symbols, and delete terms where 1(t(u−1) + 1 ≤ t ≤ t(u)) = 0:

X1 ≥
∑
i∈[s]

1 +
t(x)∑

t=t(x−1)+2

1(i ∈ Jx
s (t)) +

min{2s−k−1,n}∑
u=x+1

t(u)∑
t=t(u−1)+1

1(i ∈ Ju
s (t))


≥ s +

t(x)∑
t=t(x−1)+2

∑
i∈[s]

1(i ∈ Jx
s (t)) +

min{2s−k−1,n}∑
u=x+1

t(u)∑
t=t(u−1)+1

∑
i∈[s]

1(i ∈ Ju
s (t)) =: X2

Using that
∑

i∈[s] 1(i ∈ Ju
s (t)) = |Ju

s (t)| ≥ 2s − k − u and ∆u = t(u) − t(u−1):

X2 ≥ s + (∆x − 1)(2s − k − x) +
min{2s−k−1,n}∑

u=x+1
(2s − k − u)∆u ≥

min{2s−k−1,n}∑
u=s

(2s − k − u)∆u,

where the last inequality follows since x ≥ s which implies that 2s − k − x ≤ 2s − k − s ≤ s

and that ∆u = 0 for u < x.
As
∑

i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ = Ss ≤ n, the claim follows. ◀

We now recall the definition of the strict rounds graph, which is built to harness the
previous result.

▶ Definition 28. The strict rounds graph (V, E) consists of n − k vertices, labeled from k + 1
to n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex
s if s ≤ u ≤ min{2s − k − 1, n}, and its weight is w(u, s) = 2s − k − u.

The graph is represented in Figure 3. Each node s with k +1 ≤ s ≤ (n+k)/2 has s−k +2
incoming edges, namely (s, s), (s+1, s), . . . , (2s−k −1, s), with weights s−k, s−k −1, . . . , 1,
respectively. Each node s with (n + k)/2 < s ≤ n has n + 1 − s incoming edges, namely
(s, s), (s + 1, s), . . . , (n, s), with weights s − k, s − k − 1, . . . , 2s − k − n, respectively.
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Each node s has s + 1 −
⌊

s+k
2
⌋

outgoing edges, namely (s, s), (s, s − 1), . . . , (s,
⌊

s+k
2
⌋

+ 1)
of weight s − k, s − k − 2, . . . , respectively. If s − k is even, all outgoing edges of s have even
weight and the edge (s,

⌊
s+k

2
⌋

+ 1) has weight 2. If s − k is odd, all outgoing edges of s have
odd weight and the edge (s,

⌊
s+k

2
⌋

+ 1) has weight 1.

▶ Lemma 40. Let u ∈ [n], and define Eout
u := {(s, v) ∈ E : s ≤ u}. In the strict rounds

graph, we have that∑
(s,v)∈Eout

u

∆sw(s, v) ≤ (u − k) · n

Proof. We are summing over all the out-edges of all the vertices with a label at most u. Let
Ein

u = {(s, v) ∈ E : v ≤ u}. Every outgoing edge of a node s ≤ u must end at a node v with
v ≤ s ≤ u. Thus, it is contained in the set of incoming edge of all nodes v with v ≤ u. Said
differently, Eout

u ⊆ Ein
u .

Since all the terms are positive, we have:∑
(s,v)∈Eout

u

∆sw(s, v) ≤
∑

(s,v)∈Ein
u

∆sw(s, v) =
∑
v≤u

∑
s:(s,v)∈E

∆sw(s, v)

≤
∑
v≤u

∑
s:(s,v)∈E

∆s(2v − k − s) ≤
∑
v≤u

min{n,2v−s−1}∑
s=v

∆s(2v − k − s)

Applying Lemma 39, the claim follows. ◀

▶ Lemma 41. Let s ≥ k + 1. If s − k is odd, we have
∑

v:(s,v)∈E w(s, v) = ( s−k+1
2 )2. If it is

even, we have
∑

v:(s,v)∈E w(s, v) = ( s−k
2 )2 + s−k

2 .

Basically, as discussed above and seen in Figure 3, if s − k is odd, we have that∑
v:(s,v)∈E w(s, v) = 1+3+5+ · · ·+s−k = ( s−k+1

2 )2, while if it is even,
∑

v:(s,v)∈E w(s, v) =
2 + 4 + 6 + · · · + s − k = ( s−k

2 )2 + s−k
2 . The full proof can be found in the full version of the

paper.

▶ Definition 42. We define the following numbers: β = π2+6
6 , αs = ( s−k+1

2 )2 if s − k is odd,
αs = ( s−k

2 )2 + s−k
2 if s − k is even.

Note that αs is an integer for all values of s ≥ k. By applying this definition to the bounds
of Lemmata 40 and 41 we achieve the following result.

▶ Lemma 29. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u − k) · n.

▶ Lemma 30. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict
rounds graph such that for every u ∈ {k+1, . . . n},

∑
s≤u δsαs ≤ (u−k)·n. Then

∑n
s=k+1 δs ≤

π2+6
6 n.

Proof. We will show that
∑n

s=k+1 δsαs is maximized when δs = α−1
s · n for every s. Let

{δs}k+1≤s≤n be such that
∑n

s=k+1 δsαs if maximized. Assume by contradiction that there
exists a k + 1 ≤ s ≤ n such that δs < α−1

s · n. Let v be the smallest such s and set
ϵ = n − δvαv > 0. We can then build a different solution γ by setting γs = δs for every
s /∈ {v, v + 1}, and setting γv = δv + ϵα−1

v = α−1
v · n > δv and γv+1 = δv+1 − ϵα−1

v+1. Note
that for every u ∈ {k + 1, . . . n},

∑
s≤u γsαs ≤ (u − k) · n as

(1) for u < v it holds that
∑

s≤u γsαs = (u − k) · n,
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(2) for u = v it holds that
∑

s≤u γsαs = (ϵα−1
v )αv + δvαv +

∑
s<u δsαs = (n − δvαv) +

δvαv +
∑

s<u δsαs = n + (u − 1 − k) · n = (u − k) · n, and

(3) for u ≥ v + 1 if holds that
∑

s≤u γsαs =
∑

s≤v−1 δsαs + γvαv + γv+1αv+1 +∑
v+2≤s≤u δsαs =

∑
s≤v−1 δsαs + δvαv + ϵαv+1α−1

v+1 + δuα−1
u − ϵαuα−1

u +
∑

v+2≤s≤u δsαs =∑
s≤u δsαs ≤ (u − k) · n.

Now note that
∑n

s=k+1 γsαs >
∑n

s=k+1 δsαs as the αs values are decreasing in s, which
gives a contradiction to the assumption that δ maximizes

∑n
s=k+1 δsαs. It now follows that

n∑
s=k+1

δs ≤
n∑

s=k+1
α−1

s n ≤
∞∑

s−k=1
α−1

s n ≤ n
∑
ℓ∈N

1
ℓ2 + n

∑
ℓ∈N

1
ℓ2 + ℓ

= βn.

where the last equation follows by the fact that
∑

ℓ∈N
1
ℓ2 = π2/6 and

∑
ℓ∈N

1
ℓ2+ℓ =

∑
ℓ∈N

1
ℓ −

1
ℓ+1 = 1. ◀

▶ Corollary 31.
∑n

s=k+1 ∆s ≤ π2+6
6 n

▶ Theorem 32. tc
k(Fk

n) ≤ π2+6
6 n + 1

Proof. We have
∑n

s=k+1 ∆s =
∑n

s=k+1 t(s) − t(s+1) = t′ − t(k), which is at most π2+6
6 n by

Corollary 31. Setting t(k) = 1, we get that t′ ≤ π2+6
6 n + 1. Lemma 34 ensures that Ak is

a cover of [n] for t′, which means that for every x ∈ [n], there exists a i ∈ [k] such that
x ∈ Ot′

ti+1(ai). Since mini{ti} = t(k) − 1 = 0, this means that every x ∈ [n] belongs to
Ot′

1 (ai), which implies that tc
k(Fk

n) ≤ t′. ◀

4.2 The Lower Bound
We build a lower bound example based on the lower bound for broadcasting on trees. A
figure and analysis of that example can be found in the full version of the paper, which yields
the following result:

▶ Theorem 43. tc
k(T k

n ) ≥
⌈ 3n−3k

2 − 1
⌉

5 k-Broadcasting on k-rooted Networks

In this section, we study the case where the adversary has to choose a communication network
that has k roots at least in each round. This allows us to enforce not only broadcast, but
rather k-broadcast.

The problem is very similar to the one studied in the Section 3, and indeed a slight
modification of the proofs there work for this problem.

5.1 The Upper Bound
By using a technique very similar to Section 3, we will show that whenever we have a set
A ⊂ [n] of size at most k − 1, we can find a process p /∈ A that has broadcast, as long as we
have waited for a large enough number of rounds.

▶ Definition 44. Let t be a round. We denote by Rt the set of the roots of Gt.

Recall that |Rt| ≥ k.
The following two lemmata, very similar to Section 3, can be proven by looking at paths

going from a root to a carefully chosen node.
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▶ Lemma 45. Let t ≤ t′ be rounds, and let x and r be processes such that, r ∈ Rt and
r /∈ It′

t+1(x). Then
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Proof. We will show that there exists a process y ∈ It′

t+1(x) that has an in-neighbor z in
Gt such that z /∈ It′

t+1(x). Then, by Transitivity (Lemma 14), z ∈ It′

t (x). By Monotonicity
(Lemma 15), we have that It′

t+1(x) ⊂ It′

t (x), this will show that
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Let us now find such a z. Consider the path from r to x in Gt. Since r /∈ It′

t+1(x),
and trivially x ∈ It′

t+1(x), this path must include an edge (z, y) such that z /∈ It′

t+1(x),
y ∈ It′

t+1(x). ◀

▶ Lemma 46. Let t ≤ t′ be rounds, and let x and r be processes such that r ∈ Rt′ , and
r ∈ Ot′−1

t (x). Then
∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣, unless
∣∣∣Ot′−1

t (x)
∣∣∣ = n.

Proof. Let us look at the case
∣∣∣Ot′−1

t (x)
∣∣∣ < n. We will show that there exists a process

y ∈ Ot′−1
t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1

t (x). Then, by Transitivity
(Lemma 14), z ∈ Ot′

t (x). By Monotonicity, we obviously have Ot′−1
t (x) ⊂ Ot′

t (x), which
implies that

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1
t (x)

∣∣∣ < n, there exists a process a such that

a /∈ Ot′−1
t (x). Consider the path from r to a in Gt′ . Since r ∈ Ot′−1

t (x), and a /∈ Ot′−1
t (x),

this path must include an edge (y, z) such that z /∈ Ot′−1
t (x), y ∈ Ot′−1

t (x). ◀

We now give a lemma that links the number of in-neighbors of a node to the number of
previous rounds whose root are in-neighbors of said node:

▶ Lemma 47. Let x be a process, let t1 ≤ t2 be rounds, and let rt denote a root of Rt for
every t ∈ {t1, . . . , t2}, then it holds that∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2

t1
(x)}

∣∣+ 1 ≤
∣∣It2

t1
(x)
∣∣

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}. Then, in particular, for any t ∈ A, we have
rt /∈ It2

t+1(x). Then, for all t ∈ a, applying Lemma 45, we have
∣∣It2

t (x)
∣∣ >

∣∣It2
t+1(x)

∣∣. Let
k = |A| and let A = {t(1), . . . , t(k)}, with t(i) < t(i+1) for 1 ≤ i < k. Then by Monotonicity
(Lemma 15) it follows that∣∣It2

t1
(x)
∣∣ ≥

∣∣It2
t(1)(x)

∣∣ >
∣∣∣It2

t(1)+1(x)
∣∣∣ ≥

∣∣It2
t(2)(x)

∣∣ >
∣∣∣It2

t(2)+1(x)
∣∣∣ ≥ . . . >

∣∣∣It2
t(k)+1(x)

∣∣∣ ≥ 1

There are k = |A| inequalities over integers, which concludes the proof. ◀

We now define the rounds graph avoiding some set A, which is the equivalent of the
rounds graph of Section 3, this time being very careful not to choose any process from A

being used as a root for a round.

▶ Definition 48. Let A be an arbitrary set of processes with |A| < k. We define the rounds
graph avoiding set A as follows: It contains 2n +

⌈√
2n
⌉

+ |A| nodes, namely
1. one process node representing each process.
2. one round node for each of the first

⌈
(1 +

√
2)n
⌉

+ |A| rounds.
For each round t, let rt be a vertex of Rt \ A. The graph contains
1. a directed edge to every round node t from each process node p with p ∈ It−1

1 (rt).
2. a directed edge from every round node t <

⌈√
2n
⌉

+ |A| to a round node t′ > t if
rt ∈ It′−1

1 (rt′).
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We now find a node in the rounds graph that has out-degree n, that is not a node from
A. This node will represent a process that has broadcast.

▶ Lemma 49. For any set A of processes with |A| < k, the rounds graph avoiding set A

contains at least one node of out-degree n that is not a node representing a process of A.

Proof. As in the proof of Lemma 20 we apply the pigeonhole principle on the edges, however,
this time we will ignore out-edges from nodes representing processes from A. Let us look at
round t. If t ≤

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least t. Indeed, it has
in-degree:∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣ = t

where we used Lemma 47 for the inequality. Therefore, it has at least t − |A| in-neighbors not
in A. Similarly, if t >

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least
⌈√

2n
⌉

+ |A|.
Indeed, it has in-degree:∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣+ ∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1
1 (rt)}

∣∣
≥ 1 +

∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣
+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ /∈ It−1
1 (rt)}

∣∣∣ =
⌈√

2n
⌉

+ |A|

where we used Lemma 47 for the first inequality. Therefore, it has at least
⌈√

2n
⌉

in-neighbors
not elements of A.

Summing the in-degrees over all the rounds, we get that the number of edges
∣∣EA

∣∣ with
no endpoint in A is at least:

∣∣EA

∣∣ ≥
⌈√

2n⌉+|A|∑
t=|A|

(t−|A|)+n×
⌈√

2n
⌉

=
⌈√

2n
⌉ (⌈√

2n
⌉

+ 1
)

2 +n
⌈√

2n
⌉

>
⌈
(1 +

√
2)n
⌉

n

But only the n − |A| nodes representing the processes and the nodes representing the
first

⌈√
2n
⌉

− 1 + |A| rounds have out-edges among those counted. The pigeonhole principle
asserts then that one of those nodes has an out-degree of at least n. ◀

▶ Lemma 50. For any set A of processes with |A| < k, there exists a process z /∈ A that has
broadcast its identifier to everyone after

⌈
(1 +

√
2)n
⌉

+ |A| rounds.

Proof. Build the rounds graph avoiding A. We know that in that graph, there is a node y

of degree at least n, that is not a process node representing A. Define z as follows: (1) If y

represents a process, let z be that process. It follows that z /∈ A. (2) If y represents a round
t, let z be the root rt, which is not in A by definition of the graph. We will show in either
case that z must have broadcast before

⌈
(1 +

√
2)n
⌉

+ |A| rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, and in both cases (1)

and (2), this means z ∈ Iti−1
1 (rti

) which is equivalent to rti
∈ Oti−1

1 (z) for every i ∈ [n]. By
Lemma 46, we thus have, for every i ∈ [n], that

∣∣Oti
1 (z)

∣∣ >
∣∣Oti−1

1 (z)
∣∣. Then:∣∣Otn

1 (z)
∣∣ >

∣∣Otn−1
1 (z)

∣∣ ≥
∣∣∣Otn−1

1 (z)
∣∣∣ >

∣∣∣Otn−1−1
1 (z)

∣∣∣ ≥ . . . ≥
∣∣Ot1

1 (z)
∣∣ >

∣∣Ot1−1
1 (z)

∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least
n, which implies that z has broadcast. ◀
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This naturally leads to an upper bound for the k-broadcasting on k-rooted networks:

▶ Theorem 51. t∗
k(Rk

n) ≤
⌈
(1 +

√
2)n
⌉

+ k − 1

Proof. By contradiction, assume that the set A of elements that have broadcast after⌈
(1 +

√
2)n
⌉

+ k − 1 rounds is smaller than k and apply Lemma 50 to find a process not
in A that has broadcast in time less than

⌈
(1 +

√
2)n
⌉

+ |A| rounds, contradicting the
assumption. ◀

5.2 The Lower Bound
We build a lower bound example based on the lower bound for broadcasting on trees. A
figure and analysis of that example can be found in the full version of the paper, which yield
the following result:

▶ Theorem 52. t∗
k(Rk

n) ≥
⌈ 3n−9k

2 + 2
⌉

6 Related Work

Broadcasting, gossiping, and other information dissemination problems have been studied
by the distributed computing community for decades already [13]. Most classic literature
on network broadcast considers a static setting, e.g., where in each round each node can
send information to one neighbor [14]. This model has also been explored in the context of
gossiping, e.g., by Fraigniaud and Lazard [11]. Kuhn, Lynch and Oshman [15] explore the
all-to-all data dissemination problem (gossiping) in an undirected dynamic network, where
processes do not know beforehand the total number of processes and must decide on that
number. Ahmadi, Kuhn, Kutten, Molla and Pandurangan [2] study the message complexity
of broadcast in an undirected dynamic setting, where the adversary pays up a cost for
changing the network. Broadcast has also been studied in dynamic communication networks
which evolve randomly, e.g., by Clementi et al. [5], and in the radio network model [10], just
to give a few examples.

A closely related yet different problem to broadcasting is the consensus problem. Our
model builds up on the heard-of model first introduced by Charron-Bost and Schiper [4],
where authors prove results for the solvability of consensus also considering oblivious message
adversaries. Among other results, they give a log n upper bound for nonsplit graphs, which
are graphs for which every pair of nodes has a common in-neighbor. This would result in
an n log n upper bound for rooted trees when combining it with the result of Charron-Bost,
Függer and Nowak [3]. Függer, Nowak, and Winkler [12] prove that the time complexity
of broadcast is a lower bound for consensus time. A general characterization of oblivious
message adversaries on which consensus is solvable, based on broadcastability, has been
presented by Coulouma, Godard and Peters in [6]. A time complexity analysis has further
been studied by Winkler, Rincon Galeana, Paz, Schmid, and Schmid [17]. Another similar
problem is agreement, considered by Santoro and Widmayer [16], where only a k-majority
should agree on a value, as opposed to everyone for consensus. Afek, Gafni, Rajsbaum,
Raynal and Travers [1] studied a generalization to consensus that is k-set consensus, where
each node has to decide on a value such that all the nodes together do not decide on more
than k different values.

In this paper, we have studied the broadcasting problem on directed dynamic networks,
with an adversary that can choose the communication network at each round among rooted
trees. Zeiner, Schwarz, and Schmid [18] give a n log n upper bound to our exact problem by
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using graph-theoretic reasoning. They also give a
⌈ 3n−1

2
⌉

− 2 lower bound by providing an
explicit example. They further show that under an adversary that can only choose rooted
trees with a fixed number of leaves or internal nodes, broadcast time is linear.

There has also been interest in a problem variant which only differs in the pool of networks
the adversary can choose a network from for each communication round. Függer, Nowak,
and Winkler [12] give an O(log log n) upper bound if the adversary can only choose nonsplit
graphs. Combined with the result of Charron-Bost, Függer, and Nowak [3] that states that
one can simulate n − 1 rounds of rooted trees with a round of a nonsplit graph, this gives the
previous O(n log log n) upper bound for broadcasting on trees. Dobrev and Vrto [8, 7] give
specific results when the adversary is restricted to hypercubic and tori graphs with some
missing edges.
Bibliographic note: an announcement of this work has been presented at ACM PODC 2022 [9].

7 Conclusion

In this paper, we considered an innovative version of the classic broadcast problem where
processes communicate across a dynamically changing network, as it often arises in practice
(e.g., due to interference). Like in the static setting, the broadcast problem on dynamic
networks is related to consensus and leader election: broadcast is a prerequisite for consensus,
and hence, the time complexity of broadcast is a lower bound for the consensus and leader
election complexity.

Our main contribution is a proof that the broadcast time is at most linear in this setting,
which is asymptotically optimal. We further presented several natural generalizations of our
model and result.

Our work opens several avenues for future research. In particular, it will be interesting to
study the broadcast time also in non-adversarial environments where graphs evolve according
to a random process (e.g., due to random node movements). It will also be interesting to
further explore the implications of our methods on the closely related consensus problem.
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Abstract
The streaming model of computation is a popular approach for working with large-scale data. In
this setting, there is a stream of items and the goal is to compute the desired quantities (usually
data statistics) while making a single pass through the stream and using as little space as possible.

Motivated by the importance of data privacy, we develop differentially private streaming al-
gorithms under the continual release setting, where the union of outputs of the algorithm at every
timestamp must be differentially private. Specifically, we study the fundamental ℓp (p ∈ [0, +∞))
frequency moment estimation problem under this setting, and give an ε-DP algorithm that
achieves (1 + η)-relative approximation (∀η ∈ (0, 1)) with poly log(T n) additive error and uses
poly log(T n) ·max(1, n1−2/p) space, where T is the length of the stream and n is the size of the
universe of elements. Our space is near optimal up to poly-logarithmic factors even in the non-private
setting.

To obtain our results, we first reduce several primitives under the differentially private continual
release model, such as counting distinct elements, heavy hitters and counting low frequency elements,
to the simpler, counting/summing problems in the same setting. Based on these primitives, we
develop a differentially private continual release level set estimation approach to address the ℓp

frequency moment estimation problem.
We also provide a simple extension of our results to the harder sliding window model, where the

statistics must be maintained over the past W data items.
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1 Introduction

Data privacy is a central concern in the deployment of real-world computational systems.
In the vast literature on privacy in computation [27], the notion of differential privacy
(DP) [18, 22] has remained the de facto standard for more than a decade. The classical
formulation of differential privacy assumes that the data is static [18], and that the data
curator is interested obtaining answers to a predetermined number of queries on the dataset.

© Alessandro Epasto, Jieming Mao, Andres Munoz Medina, Vahab Mirrokni, Sergei Vassilvitskii, and
Peilin Zhong;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 48; pp. 48:1–48:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aepasto@google.com
mailto:maojm@google.com
mailto:ammedina@google.com
mailto:mirrokni@google.com
mailto:sergeiv@google.com
mailto:peilinz@google.com
https://doi.org/10.4230/LIPIcs.ITCS.2023.48
https://arxiv.org/abs/2301.05605
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


48:2 DP Continual Releases of Streaming Frequency Moment

Real world applications, however, often require the analysis of user datasets that are
organically and rapidly growing. This is illustrated by the popular streaming model of
computation [47, 2], where data arrives over time, and at each update, a new solution is
output by the algorithm. In such streaming applications, the continual release model of
differential privacy [19, 28] promises a rigours guarantee of privacy: an observer of all the
outputs of the algorithm is information-theoretically bounded in the ability to learn about
the existence of an individual data point in the stream.

In this paper, we focus on two fundamental challenges in the field of private streaming
algorithms: the insertion only, or streaming, model and the sliding window model. In
the former model, a data curator receives a stream of data a1, a2, . . . and at each time t

releases a statistical query depending on all data received up to that point. In the latter, the
computation depends only on the last W items observed by the data curator.

The sliding window model may be generally more practically relevant compared to the
streaming model as it allows to account for information freshness and in some cases it can
be a legal or privacy requirement as well. For instance, in some situations, data privacy laws
such as the General Data Protection Regulation (GDPR)1 do not allow unlimited retention
of user data.

Our main contribution is to provide private algorithms for a series of foundational
streaming problems under both the streaming and sliding window model.

Motivating example: Privacy Sandbox. We present a concrete practical application of our
results. As part of the Privacy Sandbox initiative, Chrome has developed a series of APIs to
reduce cross site tracking while supporting the digital advertising ecosystem. A key part of
one of the proposals is a k-Anonymity Server.2 The server ensures that each ad creative that
is reported to advertisers has won its respective auction at least k times over a particular
time window. Abstracting the specifics, this problem requires computing the number of
distinct elements over a sliding window. Moreover, to further strengthen privacy protections,
the computation itself should be made differentially private, which is precisely the setting we
consider in this work.

The previous example elucidates a concrete motivation for the study of sliding window
algorithms for counting distinct element problems with differential privacy in the continual
release setting. The rest of the paper proceeds by formalizing this model and our results in
this space.

In particular, we study a more general class of statistics of the input data than the
problem of counting distinct elements: the ℓp frequency moments problem. The ℓp frequency
moment is the sum of the p-th power of the frequencies of the elements. The number of
distinct elements is a special case for p = 0. The ℓp frequency moment problem is one of the
most fundamental problems in the streaming literature. The first non-trivial algorithm for
p = 1 is [40]. Later [25] is the first to study the case for p = 0. [2] initiates the study for
p = 2 and other p ∈ [0,∞). After the developments over several decades, the spaces of the
current best ℓp frequency moment estimation algorithms are near optimal for all p ∈ [0,∞),
i.e. they almost match the proven space lower bounds (see e.g., [26, 34, 35, 24, 37]).

However the landscape of DP streaming ℓp frequency moment is mysterious even in
the non-continual release setting. Most existing work only studied for p = 0, 1, 2 (see more
discussion in Section 1.4). The work of [50] considered general p ∈ (0, 1]. A recent independent

1 https://gdpr-info.eu/art-17-gdpr/
2 https://github.com/WICG/turtledove/blob/main/FLEDGE_k_anonymity_server.md
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work [8] studied all p ∈ [0,∞). But none of [8, 50] considered continual release setting. In
the DP continual release setting, [9] studied the count of distinct elements but not in the low
space streaming setting. In the DP streaming continual release setting, existing work [18, 28]
only studied the case for p = 1. No previous algorithm for p ̸= 1 is known in the DP low
space streaming continual release setting.

For ℓp frequency moment in the sliding window model, there are known techniques [16,
10] which can convert the streaming algorithm into sliding window algorithm using some
additional small space. We show how to extend these techniques to convert our DP streaming
continual release streaming algorithms to DP sliding window continual release algorithms.

1.1 Computational Model
In this paper, we consider a streaming setting with T timestamps. At each timestamp t ∈ [T ],
we get an input at ∈ U ∪ {⊥}, where U represents the universe of all possible input elements,
and ⊥ represents empty. We sometimes also consider an input stream of integers, i.e., at
each timestamp t ∈ [T ], we get an input at ∈ Z. The goal is to compute some function g(·)
based on the inputs. Instead of only computing g at the end of the stream, we consider the
continual release model throughout the paper:

Continual Release Model: At every timestamp t ∈ [T ], we want to output g(·) based
on the data a1, a2, · · · , at.

We consider two different streaming models depending on the range of inputs that g is
based on.

(Insertion-only) Streaming Model: In this model, g depends on all past inputs, i.e.
at timestamp t ∈ [T ], we want to compute g(a1, ..., at). Unless otherwise specified, we
use streaming model to refer to insertion-only streaming model throughout the paper.
Sliding Window Model: In this model, we have a parameter W ∈ Z≥1 for window
size. g depends on the last W inputs, i.e. at timestamp t ∈ [T ], we want to compute
g(amax(t−W +1,1), ..., at).

In this paper, we are particularly interested in algorithms that use space sub-linear in T .
For a (sub-)stream S, we use ∥S∥p

p to denote the ℓp frequency moment of S. In particular, for
p = 0, ∥S∥0 denotes the number of distinct elements. For p = 1, ∥S∥1 denotes the number
of non-empty elements. We refer readers to preliminaries section (Section 2) for detailed
notation and definitions.

1.2 Our Results and Comparison to Prior Work
In this section, we give a brief overview of our results and comparison with prior work.
We use n to denote the size of the universe U . We use (α, γ)-approximation to specify the
approximation guarantee with multiplicative factor α and additive error γ. In all of our
results, we use ε ≥ 0 for the DP parameter, and use η ∈ (0, 0.5) in the relative error.

1.2.1 Differentially Private Streaming Continual Release Algorithms
We developed a series of DP algorithms for solving frequency moments estimation and its
related problems in the streaming continual release model.

ℓp Frequency moment estimation (p ∈ [0, ∞)). Our main result is a general ℓp frequency
moment estimation algorithm which works for all p ∈ [0,∞).

ITCS 2023
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▶ Theorem 1 (ℓp Frequency moment, informal version of Theorem 49). There is an ε-
DP algorithm in the streaming continual release model such that with probability at least

0.9, it always outputs an
(

1 + η,
(

log(T n)
ηε

)O(max(1,p))
)

-approximation to ∥S∥p
p for every

timestamp t, where S denotes the stream up to timestamp t. The algorithm uses space
max(1, n1−2/p) ·

(
log(T n)

ηε

)O(max(1,p))
.

To the best of our knowledge, we are the first to study the general ℓp frequency moment
estimation problem in the differentially private streaming continual release setting. [19] and
[28] studies the summing problem in the same setting, where the summing problem can be
seen as a special case for p = 1. [50] studies the streaming ℓp frequency moment estimation
for p ∈ (0, 1] based on the p-stable distribution, and a concurrent independent work [8]
studies the case for p ∈ (0, 1], but it is not clear how to generalize their techniques to the
continual release model, i.e., their approach only provides the differential privacy guarantee
of the output at the end of the stream. In addition, the approach of [50] does not achieve
ε-DP for an arbitrarily small ε > 0, and they also mention that their technique might not be
easily extended to the case for p > 1.

Our space usage is near optimal up to poly-logarithmic factors even when comparing
with the non-private streaming ℓp frequency moment estimation algorithms: for p ≤ 2, the
space needed for both our algorithm and previous non-private algorithm (see e.g., [35]) is
poly-logarithmic, for p > 2, the space needed for both our algorithm and previous non-private
algorithm [30] is Õ(n1−2/p)3. Note that Ω(n1−2/p) space is a proven lower bound for p > 2
even in the non-private case [42, 5].

Summing (ℓ1 frequency moment estimation). The easiest problem that is related to the
ℓp frequency moment estimation problem would be the summing problem: the goal is to
compute the summation of the input numbers. Note that ℓ1 frequency moment estimation
is a special case of the summing of a binary stream, i.e., we regard ⊥ as 0 and all other
elements as 1.

▶ Theorem 2 (Summing of a non-negative stream, informal version of Theorem 15). There
is an ε-DP algorithm for summing problem in the streaming continual release model. If the
input numbers are guaranteed to be non-negative, with probability at least 0.9, the output is
always a (1 + η, Oε,η(log T ))-approximation to the sum of all input numbers at any timestamp
t ∈ [T ]. The algorithm uses space O(1).

The summing problem was studied by [19, 28] in the differentially private streaming
continual release model. Their approximation has O(log2.5 T ) additive error. In our work,
we show that if we allow (1 + η) relative error and work on the stream with non-negative
numbers only, we can reduce the additive error to O(log T ). This is useful when we cannot
avoid the relative error for some problem (such as the number of distinct elements) in the
streaming model but we still need summing as a subroutine.

Counting distinct elements (ℓ0 frequency moment estimation). Counting distinct ele-
ments if one of the fundamental problems in the streaming literature. The goal is to estimate
the number of distinct elements that appeared in the stream. We provide a DP streaming
continual release algorithm for counting distinct elements.

3 We use Õ(g) to denote g · poly(log(g)).
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▶ Theorem 3 (Number of distinct elements, informal version of Corollary 24). There is an
ε-DP algorithm for the number of distinct elements in the streaming continual release model.
With probability at least 0.9, the output is always a

(
1 + η, Oε,η

(
log2(T )

)
)
)
-approximation

for every timestamp t ∈ [T ]. The algorithm uses poly
(

log(T )
η min(ε,1)

)
space.

In the non-private streaming setting, counting distinct element can be solved via sketching
algorithms of [25] and its variants e.g., [24]. Some recent work [14, 45] extends these sketching
techniques for counting distinct element in a DP streaming setting. However, it is not clear
how to extend these techniques to the continual release setting. Continual release of counts
of distinct elements is studied by [9]. However, [9] is not in the low space streaming setting.

Estimation of frequencies and ℓ2 frequency moments. The goal of ℓ2 frequency moment
estimation is to estimate the sum of square of frequencies of elements. We present a DP
streaming continual release CountSketch [13] algorithm and use it for estimating ℓ2 frequency
moments and the frequency of each element.

▶ Theorem 4 (Frequency and ℓ2 frequency moments, informal version of Theorem 28). There
is an ε-DP algorithm in the streaming continual release model such that with probability at
least 0.9, it always outputs for every timestamp t ∈ [T ]:
1. f̂a for every a ∈ U such that |fa − f̂a| ≤ η∥S∥2 + Õε,η

(
log3.5(Tn)

)
, where S denotes the

stream up to timestamp t and fa denotes the frequency of a in S,
2. F̂2 such that |F̂2 − ∥S∥2

2| ≤ η∥S∥2
2 + Õε,η

(
log7(Tn)

)
The algorithm uses O

(
log(T n)

η2 · log(T )
)

space.

Although DP ℓ2 frequency moment was studied by a line of work (see e.g., [7, 43, 11]), none
of them considers the streaming continual release setting, and it is not clear how to extend
previous techniques to the the continual release setting.

ℓp Heavy hitters. In the ℓp heavy hitters problem, we are given a parameter k, and the
goal is to find elements whose frequency to the p-th power is at least 1/k fraction of the ℓp

frequency moment. By extending our DP streaming continual release CountSketch algorithm,
we obtain a DP streaming continual release ℓp heavy hitters algorithm.

▶ Theorem 5 (ℓp Heavy hitters for all p ∈ [0,∞), informal version of Theorem 34). There is
an ε-DP algorithm in the streaming continual release model such that with probability at least
0.9, it always outputs a set H ⊆ U and a function f̂ : H → R for every timestamp t ∈ [T ]
satisfying
1. ∀a ∈ H, f̂(a) ∈ (1±η) ·fa where fa is the frequency of a in the stream S up to timestamp

t,
2. ∀a ∈ U , if fa ≥ 1

εη · poly
(

log
(

T ·k·n
η

))
and fp

a ≥ ∥S∥p
p/k then a ∈ H,

3. The size of H is at most O (log(Tn) · 2p · k).
The algorithm uses max(1, n1−2/p) · k3

η2 · poly (log (T · k · n)) space.

To the best of our knowledge, though DP streaming continual release ℓ1 heavy hitters problem
is studied by [12], ℓp (for p ≠ 1) heavy hitters problem has not been studied in the DP
streaming continual release setting before. Note that Ω(n1−2/p) for p > 2 is a lower bound of
space needed for ℓp heavy hitters even in the non-private setting [42, 5].
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1.2.2 Differentially Private Sliding Window Continual Release
Algorithms

Smooth histogram [10] is a general algorithmic framework which can convert a relative-
approximate streaming algorithm into a relative-approximate sliding window algorithm if
the objective function that we want to compute has some nice properties.

We generalize the smooth histogram to make it support converting an approximate
streaming algorithm with both relative error and additive error into an approximate sliding
window algorithm with both relative error and additive error if the objective function has
good properties. In addition, we show that if the streaming algorithm is DP in the continual
release setting, then the converted sliding window algorithm is also DP in the continual
release setting.

By applying our generalized smooth histogram approach and paying a poly
(

log T
η

)
more

factor than our DP streaming continual release algorithms in both additive error and space
usage, we show DP sliding window continual release algorithms for
1. ℓp Moment estimation (see Corollary 53),
2. Summing (see Corollary 50),
3. Counting distinct elements (see Corollary 51),
4. ℓ2 Moment estimation (see Corollary 52).

1.3 Our Techniques
In this section, we briefly discuss the high level ideas of our algorithms. We present a set of
techniques to reduce almost all problems that we considered in the DP streaming continual
release setting to the summing problem in the DP streaming continual release setting.

Summing with better additive error via grouping. To illustrate the intuition of using
grouping for differentially private streaming continual release algorithms, we start with the
following simple problem: given a stream of numbers c1, c2, · · · , cT where each ci is at least
10 · ln(10 · T )/ε, the goal is to output a (1± 0.1)-approximation to

∑t
j=1 cj for every prefix t

with probability at least 0.9, and we want the set of all outputs to be ε-DP, i.e., the continual
released results to be ε-DP. A simple way to solve the above problem is that we release a
stream of noisy numbers ĉ1, ĉ2, · · · , ĉT where ∀t ∈ [T ], ĉt = ct + Lap(1/ε), and we report∑t

j=1 ĉj for every prefix t ∈ [T ]. It is easy to see that (ĉ1, ĉ2, · · · , ĉT ) is ε-DP. Since the
reported approximate prefix sums only depend on (ĉ1, ĉ2, · · · , ĉT ), the continual released
results are ε-DP. Furthermore, with probability at least 0.9, ∀t ∈ [T ], |ct − ĉt| ≤ ln(10 · T )/ε.
Since ct is at least 10 ln(10 · N)/ε, we have 0.9ct ≤ ĉt ≤ 1.1ct which implies that every
reported approximate prefix sum is a (1± 0.1)-approximation.

To generalize the above idea, we propose a grouping approach in to group the consecutive
numbers in the stream in a differentially private way such that the total count of each group
is large enough. To implement grouping, we need to apply the sparse vector technique (see
e.g., [22]) iteratively. The similar idea also appeared in [21] which shows a better additive
error guarantee for the summing problem than [19] when the stream is sparse. In contrast,
our additive error guarantee is always better than [19] and [21] while we allow an additional
(1 + ε) relative approximation.

Counting distinct elements. We explain how to reduce counting distinct elements problem
to the summing problem. Suppose the element universe is small, we are able to track the set
of elements that already appeared during the stream. Then, we can create a binary stream
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of {0, 1} where 1 denotes that we see a new element and 0 denotes that the input element
already appeared or it is empty. Therefore, the sum of the binary stream at timestamp t is
exactly the number of distinct elements. Furthermore, if we change an element in the input
stream from a to b, there are only constant number of positions of the binary stream will flip:
consider the change a→⊥→ b. If a is not its first appearance in the input stream, changing
a to ⊥ does not cause any change in the binary stream. If a is its first appearance in the
input stream, changing a to ⊥ will make the corresponding 1 in the binary stream be 0 and
make the 0 corresponding to the original second appearance of a in the input stream to be
1. Thus, it will affect at most 2 entries of the binary stream. Similarly, changing ⊥ to b

will cause the change of at most 2 entries of the binary stream. Thus, the binary stream
has low sensitivity which implies that a DP streaming continual release summing algorithm
gives a good approximation to the number of distinct elements with a small additive error.
Next, we discuss how to handle the large universe. For large universe, we can try different
sampling rate 1/2, 1/4, 1/8 · · · , 1/T . There should be a sampling rate such that (1) if we
hash the sampled elements into hashing buckets, there is no collision with a good probability,
(2) the number of samples is much larger than the additive error caused by the summing
subroutine so we can have a good relative approximation of the number of distinct sampled
elements. Then we can use the number of distinct sampled elements to estimate the number
of distinct elements in the input stream.

CountSketch and ℓp heavy hitters. Let h : U → [k] be a hash function which uniformly
hash elements into k hash buckets. Let g : U → {−1, 1} randomly map each element to −1
or 1 with equal probability. The CountSketch is a tuple of k numbers (z1, z2, · · · , zk) where
zi is the sum of weighted frequencies of elements hashed to the bucket i, and the weight
of the frequency of element a is g(a). Changing a to b in the input stream will change at
most 2 buckets: the bucket i contains a and the bucket j contains b. Since |g(a)| ≤ 1, zi

and zj will be changed by at most 1. We can use DP streaming continual release summing
algorithm of [19, 28] to estimate (z1, z2, · · · , zk) such that each estimation ẑi of zi only has
poly(log T ) additive error, and (ẑ1, ẑ2, · · · , ẑk) is DP under the streaming continual release
model. Suppose the ℓ2 frequency moment is much larger than poly(log T ), then the additive
error becomes the relative error, and we can use ẑ1, ẑ2, · · · , ẑk to obtain a good relative
approximation of the ℓ2 frequency moment. Similarly, if an element has frequency much
larger than poly(log(T )), then poly(log(T )) becomes small relative error of the frequency and
we are able to check whether it is an ℓ2 heavy hitter by the standard analysis of CountSketch.
Thus, we can use this DP streaming continual release CountSketch to estimate ℓ2 frequency
moment with (1 + η)-relative error and poly(log T )-additive error, and we can use such
CountSketch to find all elements which are at least poly(log T ) and are ℓ2 heavy hitters.

Note that for p ≤ 2, if a has the largest frequency and it is an (1/k)-ℓp heavy hitter, then
a must be an (1/k)-ℓ2 heavy hitter. For p > 2, if a is an 1/k-ℓp heavy hitter, than a must be
an 1/(kn1−2/p)-ℓ2 heavy hitter. Therefore, by some hashing technique, we can use ℓ2 heavy
hitters algorithm to construct ℓp heavy hitters algorithm. But since ℓ2 heavy hitters can only
report the elements with frequency larger than poly(log T ), the obtained ℓp heavy hitters
algorithm can only report the elements with frequency larger than poly(log T ) as well.

ℓp Frequency moment estimation. In high level we want to simulate the level set estimation
idea of [30] in the DP streaming continual release setting. In particular, let α = 1 + η, let fa

denote the frequency of a and let Gi = {a | fa ∈ (αi, αi+1]}. Then
∑

i |Gi| · (αi)p is a good
approximation to the ℓp frequency moment. We say Gi is contributing, if |Gi| ·(αi)p is at least
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Ωα(1/ log(T )) fraction of the ℓp moment. Since non-contributing elements only contributes a
small total amount to the ℓp frequency moment, it is easy to see that

∑
contributing Gi

|Gi|·(αi)p

is still a good approximation to the ℓp frequency moment. Thus, we only need to estimate
the size of each contributing Gi. Due to the definition of contributing, it is easy to see that
if Gi is contributing, either αi is large or |Gi| is large. In fact, as observed by [30], for each
contributing level set Gi, there must be a proper sampling probability such that after sampling,
there are at least poly(log T ) elements from Gi sampled and all of the sampled elements
from Gi are at least 1/poly(log T )-ℓp heavy hitters among the set of all sampled elements
from the universe U . Ideally, we can try different sampling rate 1, 1/2, 1/4, 1/8, · · · , 1/T and
use our ℓp heavy hitters algorithm to report the heavy hitters and estimate |Gi| for each i.
However, for i with αi ≪ poly(log T ), our DP streaming continual release ℓp heavy hitters
algorithm does not report any element from Gi. We must find another way to estimate |Gi|
instead of using heavy hitters.

Similar to counting distinct elements, let us start with the case that the universe size is
small so we can track the sets A1, A2, · · · , Ak for some k = poly(log T ), where Ai is the set
of all elements whose frequency is exactly i. We can construct streams S1,S2, · · · ,Sk with
numbers in {−1, 0, 1}. During the stream, when we see an input element a, and if a is in
the set Ai, then we move a to the set Ai+1 due to the increase of the frequency of a. At the
same time, we append −1 to the stream Si, append 1 to the stream Si+1 and append 0 to
Sj for j ̸= i, i + 1. It is easy to check that the sum of Sl is always the same as |Al|, i.e., the
number of elements which have frequency exactly l. Furthermore, similar to the analysis for
counting distinct elements, if we change an element in the input stream, each Sl might be
affected by at most 4 entries. Thus, the total sensitivity of (S1,S2, · · · ,Sk) is at most O(k).
Therefore, we can use the DP continual release summing to estimate the sum of each Sl

with additive error poly(log T ). Thus, we can estimate |Gi| for each i with αi ≪ poly(log T )
with additive error poly(log T ) and will only introduce at most poly(log T ) additive error in
approximating the ℓp frequency moment.

Now let us go back to the case that the size of the universe is large. In this case, we can
use the similar hashing and subsampling technique discussed for counting distinct elements
to estimate |Al| for each l ∈ [k].

1.4 Related Work
[19] and [28] initiated the study of differential privacy in the continual release model, and
proposed the binary tree mechanism for computing summations. [9] and [41] generalized their
results to decayed summations, counting distinct elements without space constraints and
summations with real-valued data. [46, 23] studied graph problems under the differentially
private continual release model. [32, 44, 1] studied differentially private online learning. [31]
gave the first polynomial separation in terms of error between the continual release model
and the batch model under differential privacy. [49] studied heavy hitters in the differentially
private sliding window model.

Differentially private frequency moment estimation for p = 0, 1, 2 (without continual
releases) has been well-studied [38, 20, 7, 43, 14, 45, 11]. [50] studied frequency moment
estimation (without continual releases) for p ∈ (0, 1] with low space complexity. Recent
concurrent independent work [8] studies p ∈ [0,∞) with low space complexity but not in
continual release setting as well. The differentially private ℓ1 heavy hitters problem is studied
by [38, 20] in the low space streaming setting but not in the continual release setting. [12]
studied differentially private ℓ1 heavy hitters problem in the low space continual release
streaming setting. But it is not clear how to extend their techniques to lp case for p ̸= 1.
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ℓp Frequency moment estimation and ℓp heavy hitters are heavily studied in the non-
private streaming literature. For ℓp frequency moment estimation, the problem can be solved
by e.g. [25, 24, 17] for p = 0, [2, 13, 48] for p = 2, [35, 29, 36, 34] for p ∈ (0, 2) and [30, 4, 3]
for p > 2. For ℓp heavy hitters, the problem can be solved by e.g., [15, 39] for p = 1, [13] for
p = 2, [33] for p ∈ (0, 2), and [30, 4] for p > 2.

2 Preliminaries

2.1 Notation
In this paper, for n ≥ 1, we use [n] to denote the set {1, 2, · · · , n}. If there is no ambiguity,
for i ≤ j ∈ Z, we sometimes use [i, j] to denote the set of integers {i, i + 1, · · · , j} instead
of the set of real numbers {a ∈ R | i ≤ a ≤ j}. We use fa(a1, a2, · · · , ak) to denote the
frequency of a in the sequence (a1, a2, · · · , ak), i.e., fa(a1, a2, · · · , ak) = |{i ∈ [k] | ai = a}|.
If the sequence (a1, a2, · · · , ak) is clear in the context, we use fa to denote the frequency of
a for short. We use 1E to denote a indicator, i.e., 1E = 1 if condition E holds and 1E = 0 if
condition E does not hold.

For α ≥ 1, γ ≥ 0, if 1
α · x− γ ≤ y ≤ α · x + γ, then y is an (α, γ)-approximation to x. If y

is a (1, γ)-approximation to x, we say y is an approximation to x with additive error γ. If y

is an (α, 0)-approximation to x, we say y is an α-approximation to x. We use a± b to denote
the real number interval [a− |b|, a + |b|]. For a set S of real numbers, we use S ± b to denote
the set

⋃
a∈S a± b, and use S · c to denote the set

⋃
a∈S a · c. We use Lap(b) to denote the

Laplace distribution with scale b, i.e., Lap(b) has density function given by 1
2b exp(|x|/b)

2.2 Functions to Compute
We study several fundamental functions in the streaming literature. When the inputs are
integers, we consider the summing problem over a (sub-)stream (ai, · · · , aj):

Sum of numbers: Sum(ai, · · · , aj) :=
∑j

k=i ak

When the inputs are from U ∪{⊥}, we consider the functions g(ai, · · · , aj) that are based
on the frequencies of the elements in a (sub-)stream (ai, · · · , aj).

Count of non-empty elements: ∥(ai, ..., aj)∥1 :=
∑

a∈U fa(ai, ..., aj).
The number of distinct elements: ∥(ai, ..., aj)∥0 :=

∑
a∈U 1fa(ai,...,aj)>0.

ℓp-Frequency moment: ∥(ai, ..., aj)∥p
p :=

∑
a∈U fa(ai, ..., aj)p.

ℓp-Heavy hitters: (1/k)-ℓp-HH(ai, ..., aj) := {a ∈ U | fa(ai, · · · , aj)p ≥
∥(ai, · · · , aj)∥p

p/k}.
Note that ∥(ai, ..., aj)∥1 is a special case of Sum(ai, · · · , aj) with binary inputs.

2.3 Differential Privacy
Neighboring streams: Consider two streams S = (a1, a2, · · · , aT ) and S ′ = (a′

1, a′
2, · · · , a′

T ).
If there is at most one timestamp t ∈ [T ] such that (1). |at − a′

t| ≤ 1 (only required when
the inputs are treated as integers) (2). ∀i ̸= t, ai = a′

i, then we say S and S ′ are neighboring
streams.

▶ Definition 6 (Differential Privacy). We say algorithm A is ε-DP, if for any two neighboring
streams S,S ′, and any output set O,

Pr[A(S) ∈ O] ≤ eε · Pr[A(S ′) ∈ O].
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Note that in the continual release model, the output A(S) mentioned in Definition 6 is the
entire output history of the algorithm A over stream S at every timestamp.

▶ Definition 7 (Distance between streams). Consider two streams S and S ′. If d is the
minimum number such that there exists a sequence of streams S0,S1, · · · ,Sd where S0 =
S,Sd = S ′ and ∀i ∈ [d], Si and Si−1 are neighboring streams, then the distance between S
and S ′ is dist(S,S ′) = d.

▶ Definition 8 (Sensitivity of a stream mapping). Let F be a mapping which maps a
given input stream S to a tuple of streams (F1(S),F2(S), · · · ,Fk(S)). The sensitiv-
ity of F is the minimum value s such that for any two neighboring streams S and S ′,∑

i∈[k] dist(Fi(S),Fi(S′)) ≤ s.

▶ Theorem 9 (Composition [22]). Let F be a mapping which maps a given input stream S
to a tuple of streams (F1(S),F2(S), · · · ,Fk(S)). Let A1, A2, · · · , Ak be k ε-DP algorithms.
Let A be an algorithm such that A(S) = M(A1(F1(S)), A2(F2(S)), · · · , Ak(Fk(S))) for some
function M(·). Then the algorithm A is (sε)-DP.

Example usage of Theorem 9: Some example usage of Theorem 9 in our paper are presented
as the following:

Composition of multiple algorithms over the input stream: Suppose each of
A1, A2, · · · , Ak is ε-DP, then for any function M(·), M(A1(S), A2(S), · · · , Ak(S)) is
(kε)-DP.
Composition of algorithms on disjoint sub-streams: For an input stream S =
(a1, a2, · · · , aT ), we partition S into S1 = (a1,1, a1,2, · · · , a1,T ),S2 = (a2,1, a2,2, · · · , a2,T ),
· · · ,Sk = (ak,1, ak,2, · · · , ak,T ), i.e., ∀t ∈ [T ], there is only one i ∈ [k] such that ai,t =
at, and ∀i′ ̸= i, ai,t =⊥ (or 0). It is clear that such partitioning has sensitivity 1.
Thus, if each of A1, A2, · · · , Ak is an ε-DP algorithms, then for any function M(·),
M(A1(S1), A2(S2), · · · , Ak(Sk)) is ε-DP.

2.4 Streaming Continual Release Summing and Counting
For summing problem in the streaming continual release model, the binary tree mechanism
was proposed in [19, 28]. It gets poly-logarithmic additive error and uses logarithmic space.
Furthermore, it can handle negative numbers in the stream.

▶ Theorem 10 ([19, 28]). Let ε ≥ 0, ξ ∈ (0, 0.5), there is an ε-DP algorithm for summing in
the streaming continual release model. With probability 1− ξ, the additive error of the output
for every timestamp t ∈ [T ] is always at most O

(
1
ε log2.5(T ) log

(
1
ξ

))
. The algorithm uses

O(log(T )) space.

2.5 Probability Tools
▶ Lemma 11 ([6]). Let λ ≥ 4 be an even integer. Let X be the sum of n λ-wise independent
random variables which take values in [0, 1]. Let µ = E[X] and A > 0. Then we have

Pr [|X − µ| > A] ≤ 8 ·
(

λµ + λ2

A2

)λ/2

▶ Lemma 12 (Median trick to boost success probability). Suppose X is a random estimator
of value v such that with probability at least 2/3, X is an (α, γ)-approximation to v. Then,
for ξ ∈ (0, 0.5), if we draw k = ⌈50 log(1/ξ)⌉ independent copies X1, X2, · · · , Xk of X, with
probability at least 1− ξ, the median of X1, X2, · · · , Xk is an (α, γ)-approximation to v.



A. Epasto, J. Mao, A. M. Medina, V. Mirrokni, S. Vassilvitskii, and P. Zhong 48:11

Proof. We say Xi is good if Xi is an (α, γ)-approximation to v. If the median is not good, then∑
i∈[k] 1Xi is good < k

2 . By Chernoff bound, Pr[median is not good] ≤ Pr[
∑

i∈[k] 1Xi is good <
k
2 ] ≤ Pr[E[

∑
i∈[k] 1Xi is good]− k

2 > k
6 ] ≤ e−k/48 ≤ ξ. ◀

3 Continual Released Summing with Better Additive Error

In this section, we show that if we allow a relative approximation and the input stream only
contains non-negative numbers, then we can have a continual released summing algorithm
with additive error better than Theorem 10.

Algorithm 1 Grouping Stream of Counts.

Input: A stream of non-negative numbers c1, c2, · · · , cT DP parameter ε > 0,
approximation parameter η ∈ (0, 0.5), and failure probability ξ ∈ (0, 1).

Output: A stream of groups with grouped noisy counts (ĉ1, ĉ2, · · · , ĉT )
Let ε0 ← ε/2.
Initialize a group index i← 1, current group G1 ← ∅, and threshold
τ1 ←

(
1
η + 1

)
· 7

ε0
· ln (3 · T/γ) + Lap(2/ε0). //Gi is used for analysis only.

for t = 1 to T do
Gi ← Gi ∪ {t}.
Let νt ← Lap(4/ε0).
if νt +

∑
j∈Gi

cj ≥ τi then
ĉt ← Lap(1/ε0) +

∑
j∈Gi

cj .
i← i + 1.
τi ←

(
1
η + 1

)
· 7

ε0
· ln (3 · T/γ) + Lap(2/ε0).

Gi ← ∅.
else

ĉt ← 0.
end

end

▶ Lemma 13. The output stream ĉ1, ĉ2, · · · , ĉT of Algorithm 1 is ε-DP.

The proof idea is to iteratively apply sparse vector technique. See full version for the detailed
proof.

▶ Lemma 14. Let ĉ1, ĉ2, · · · , ĉT be the output stream of Algorithm 1. Then with probability
at least 1− ξ, ∀l, r satisfying 1 ≤ l ≤ r ≤ T ,

(1− η)
r∑

j=l

cj −
( 1

η
+ 4

)
· 7

ε0
· ln (3 · T/ξ) ≤

r∑
j=l

ĉj ≤ (1 + η)
r∑

j=l

cj +
( 1

η
+ 4

)
· 7

ε0
· ln (3 · T/ξ) .

See full version for the detailed proof.

▶ Theorem 15 (Summing of a non-negative stream). Let ε ≥ 0, ξ ∈ (0, 0.5), there is an
ε-DP algorithm for summing in the streaming continual release model. If the input numbers
are guaranteed to be non-negative, with probability at least 1 − ξ, the output is always a(

1 + η, O
(

log(T/ξ)
εη

))
-approximation to the summing problem at any timestamp t ∈ [T ]. The

algorithm uses space O(1).
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Proof. According to Lemma 13, the output stream of Algorithm 1 is ε-DP, thus, we only
need to solve non-private summing over (ĉ1, ĉ2, · · · , ĉT ). The approximation guarantee is
given by Lemma 14. Note that we do not need to store Gi, we only need to maintain the
sum of numbers in Gi at any timestamp. Thus, the total space needed is O(1). ◀

4 Continual Released Number of Distinct Elements

In this section, we show how to use ε-DP streaming continual release summing to solve ε-DP
streaming continual release number of distinct elements. In Section 4.1, we show how to
estimate the number of distinct elements if the universe is small. In Section 4.2, we reduce
the number of distinct elements of a large universe to the number of distinct elements of a
small universe via subsampling. Due to the space limit, we put all missing details in the full
version.

4.1 Number of Distinct Elements for Small Universe

Algorithm 2 Number of Distinct Elements for Small Universe.
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥} with guarantee that |U| ≤ m.
Parameters : Relative approximation factor α ≥ 1 and additive approximation factor

γ ≥ 0 depending on the streaming continual release summing algorithm.
//See Theorem 10.

Output: Estimation of the number of distinct elements at every timestamp t.
Initialize an empty stream C.
Let S ← ∅.
for each at in the stream S do

if at ̸∈ S and at ̸=⊥ then
S ← S ∪ {at}.
Append 1 to the end of the stream C.

end
else

Append 0 to the end of the stream C.
end
Output an (α, γ)-approximation to the total counts of C.

end

▶ Lemma 16 (Approximation). At the end of any time t ∈ [T ], the output of Algorithm 2 is
an (α, γ)-approximation to the number of distinct elements.

▶ Lemma 17 (Privacy). If the algorithm to continually release the approximate total counts
of C in Algorithm 2 is ε-DP, Algorithm 2 is 5ε-DP in the continual release model.

▶ Theorem 18 (Distinct elements for small universe). Let ε ≥ 0, ξ ∈ (0, 0.5), suppose there is
an ε-DP streaming continual release summing algorithm (for stream of non-negative numbers)
which uses space J and with probability at least 1− ξ always outputs an (α, γ)-approximation
for every timestamp. There is a (5ε)-DP algorithm for the number of distinct elements
of streams with universe size at most m in the streaming continual release model. With
probability at least 1 − ξ, the algorithm always outputs an (α, γ)-approximation for every
timestamp t ∈ [T ]. The algorithm uses O(m + J) space.

By combining the above theorem with Theorem 10, we obtain the following corollary.
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▶ Corollary 19 (Streaming continual release distinct elements for small universe). There is an
ε-DP algorithm for the number of distinct elements of streams with universe size at most m

in the streaming continual release model. With probability at least 1− ξ, the additive error
of the output is always at most O

(
1
ε log2.5(T ) log

(
1
ξ

))
for every timestamp t ∈ [T ]. The

algorithm uses O(m + log(T )) space.

By combining Theorem 18 with Theorem 15, we obtain the following corollary:

▶ Corollary 20 (Streaming continual release distinct elements for small universe, better additive
error). There is an ε-DP algorithm for the number of distinct elements of streams with
universe size at most m in the streaming continual release model. With probability at least
1− ξ, the additive error of the output is always an

(
1 + η, O

(
log(T/ξ)

εη

))
-approximation to

the number of distinct elements for every timestamp t ∈ [T ]. The algorithm uses O(m) space.

4.2 Number of Distinct Elements for General Universe

Algorithm 3 Number of Distinct Elements via Subsampling.
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, and a error parameter η ∈ (0, 0.5).
Parameters : Relative approximation factor α ≥ 1 and additive approximation factor

γ ≥ 0 depending on the streaming continual release algorithm for number of
distinct elements of streams with small universe of elements. //See
Theorem 18.

Output: Estimation of the number of distinct elements ∥S∥0.
L← ⌈log min(|U|, T )⌉, λ← 2 log(1000L), m← 100L ·

(
16α max

(
γ/η, 32αλ/η2))2.

Let h : U → [m] be a pairwise independent hash function.
//Here we treat [m] as a universe of elements with size m instead of a set of integers.

Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L], Pr[g(a) = i] = 2−i, Pr[g(a) =⊥] = 2−L.

Initialize empty streams S1,S2, · · · ,SL.
for each at in the stream S do

for i ∈ [L] do
if at ̸=⊥ and g(at) = i then

Append h(at) to the end of the stream Si.
end
else

Append ⊥ to the end of the stream Si.
end

end
∀i ∈ [L], compute ŝi which is an (α, γ)-approximation to ∥Si∥0.
Find the largest i ∈ [L] such that ŝi ≥ max

(
γ/η, 32αλ/η2)

, and output ŝi · 2i.
If such i does not exist, output 0.

end

▶ Lemma 21 (Approximation). Consider any timestamp t ∈ [T ]. Let v be the output of
Algorithm 3. With probability at least 0.9, v is a ((1 + O(η))α, O(α2 max(γ/η, α log(L)/η2)))-
approximation to ∥(a1, a2, · · · , at)∥0.

▶ Theorem 22 (Distinct elements). Let ε ≥ 0, ξ, ξ′ ∈ (0, 0.5), η ∈ (0, 0.5), suppose there is an ε-
DP algorithm for the number of distinct elements of streams with element universe size at most
100 log(min(|U|, T )) · (16α max(γ/η, 32α · 2 log(1000 log(min(|U|, T )))/η2))2 in the streaming
continual release model which uses space J and with probability at least 1−ξ always outputs an
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(α, γ)-approximation for every timestamp. There is an (ε′ = ⌈50 log(T/ξ′)⌉ε)-DP algorithm
for the number of distinct elements of streams with element universe U in the streaming
continual release model. With probability at least 1− ξ′ − log(min(|U|, T )) · ⌈50 log(T/ξ′)⌉ · ξ,
the algorithm always outputs an ((1 + O(η))α, O(α2 max(γ/η, α log log(min(|U|, T ))/η2)))-
approximation for every timestamp t ∈ [T ]. The algorithm uses O(J · log(min(|U|, T )) ·
log(T/ξ′)) space.

By plugging Corollary 19 into above theorem with ξ = ξ′/2
log(min(|U|,T ))·⌈50 log(2T/ξ′)⌉ , ε =

ε′

⌈50 log(2T/ξ′)⌉ , α = 1, γ = O( 1
ε log2.5(T ) log(1/ξ)) and J = O(log(T ) + 100 log(min(|U|, T )) ·

(16α max(γ/η, 32α · 2 log(1000 log(min(|U|, T )))/η2))2), we get the following corollary.

▶ Corollary 23 (Streaming continual release distinct elements). For η ∈ (0, 0.5), there is
an ε-DP algorithm for the number of distinct elements of streams with element universe
U in the streaming continual release model. With probability at least 1 − ξ, the output
is always a (1 + η, O

(
max

(
log(T/ξ) log2.5(T ) log(1/ξ) log log(T/ξ)

ηε , log log T
η2

))
)-approximation for

every timestamp t ∈ [T ]. The algorithm uses poly
(

log(T/ξ)
η min(ε,1)

)
space.

By plugging Corollary 20 into Theorem 22 with ξ = ξ′/2
log(min(|U|,T ))·⌈50 log(2T/ξ′)⌉ , ε =

ε′

⌈50 log(2T/ξ′)⌉ , α = 1 + η, γ = O
(

log(T/ξ)
εη

)
and

J = O(100 log(min(|U|, T )) · (16α max(γ/η, 32α · 2 log(1000 log(min(|U|, T )))/η2))2),

we get the following corollary.

▶ Corollary 24 (Streaming continual release distinct elements, better dependence in log(T )).
For η ∈ (0, 0.5), there is an ε-DP algorithm for the number of distinct elements of streams
with element universe U in the streaming continual release model. With probability at least
1− ξ, the output is always a (1 + O(η), O

(
log2(T/ξ)

η2ε

)
)-approximation for every timestamp

t ∈ [T ]. The algorithm uses poly
(

log(T/ξ)
η min(ε,1)

)
space.

5 Continual Released ℓp Heavy Hitters and Frequency Moment
Estimation

In this section, we present ε-DP streaming continual release algorithms for ℓp heavy hitters
and frequency moment estimation. In Section 5.1, we present an algorithm for ε-DP
CountSketch [13] in the streaming continual release model. The CountSketch is used for
ℓ2 heavy hitters and ℓ2 moment estimation. In Section 5.2, we show how to use ℓ2 heavy
hitters to solve ℓp heavy hitters. In Section 5.3, we show how to estimate the number of
elements which have low frequencies. In Section 5.4, we show how to use ℓp heavy hitters
and the estimator of low frequency elements to estimate the ℓp frequency moment. Due to
space limit, we put all missing proofs in the full version.

5.1 Continual Released CountSketch
▶ Lemma 25 (DP guarantee). If the subroutine of continually releasing the approximate total
counts of Si for every i ∈ [k] in Algorithm 4 is ε-DP, Algorithm 4 is 2ε-DP.

▶ Lemma 26 (Good approximation for frequent elements). Consider any a ∈ U and any
timestamp t ∈ [T ]. Let fa be the frequency of a in a1, a2, · · · , at. Let (z1, z2, · · · , zk) be the
output of Algorithm 4 at timestamp t. Then ∀η ∈ (0, 0.5), with probability at least 1−1/(kη2),
|fa − g(a) · zh(a)| ≤ η ·

√∑
b∈U f2

b + γ.
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Algorithm 4 Continual Released CountSketch.
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, a parameter k ∈ Z≥1.
Parameters : Relative approximation factor α ≥ 1 and additive approximation factor

γ ≥ 0 depending on the streaming continual release summing algorithm.
//See Theorem 10.

Output: A tuple (z1, z2, · · · , zk) at every timestamp t.
Let h : U → [k] be a 4-wise independent hash function, s.t., ∀a ∈ U , i ∈ [k], Pr[h(a) = i] = 1

k
.

Let g : U → {−1, 1} be a 4-wise independent hash function, s.t., ∀a ∈ U , Pr[g(a) = 1] = 1
2 .

Initialize empty streams S1,S2, · · · ,Sk.
for each at in the stream S do

if at =⊥ then
Append 0 to the end of every stream S1,S2, · · · ,Sk.

end
else

Append g(at) to the end of the stream Sh(at) and append 0 to the end of every
stream Si for i ̸= h(at).

end
Output a tuple (z1, z2, · · · , zk) where zi is an estimation of the total counts of Si with
additive error at most γ.

end

▶ Lemma 27 (ℓ2 Frequency moment estimation). Consider any timestamp t ∈ [T ]. For
a ∈ U , let fa be the frequency of a in a1, a2, · · · , at. Let (z1, z2, · · · , zk) be the output of
Algorithm 4 at timestamp t. Then ∀η ∈ (0, 0.5), with probability at least 1 − 100/(kη2),
|
∑k

i=1 z2
i −

∑
a∈U f2

a | ≤ η
∑

a∈U f2
a + 4kγ2/η

▶ Theorem 28 (Streaming continual release ℓ2 frequency estimators). Let ε > 0, η ∈ (0, 0.5), ξ ∈
(0, 0.5). There is an ε-DP algorithm in the streaming continual release model such that with
probability at least 1− ξ, it always outputs for every timestamp t ∈ [T ]:
1. f̂a for every a ∈ U such that |fa − f̂a| ≤ η∥S∥2 +

O
(

log(T/ξ)+log(|U|)
ε · log2.5(T ) · log

(
log(T/ξ)+log(|U|)

ξη

))
, where S denotes the stream

(a1, a2, · · · , at) and fa denotes the frequency of a in S,
2. F̂2 such that |F̂2−∥S∥2

2| ≤ η∥S∥2
2+O

(
(log(T/ξ)+log(|U|))2

ε2η3 · log5(T ) · log2
(

log(T/ξ)+log(|U|)
ξη

))
The algorithm uses O

(
log(T/ξ)+log(|U|)

η2 · log(T )
)

space.

5.2 Continual Released ℓp Heavy Hitters
By applying the CountSketch, we are able to develop ℓp heavy hitters.

▶ Lemma 29 (DP guarantee). If ∀i ∈ [m] the subroutine in Algorithm 5 of continually
releasing F̂2,i and f̂a for all a satisfying h(a) = i is ε-DP, Algorithm 5 is 2ε-DP.

▶ Lemma 30 (Approximation of frequencies). At any timestamp t ∈ [T ], ∀a ∈ U , if a ∈ Ĥ,
(1− η)f2

a ≤ f̂2(a) ≤ (1 + η)f2
a where fa is the frequency of a in a1, a2, · · · , at.

▶ Lemma 31 (Output size). At any timestamp t, the output H of Algorithm 5 has size at
most

(
1+η
1−η

)p

· k.

▶ Lemma 32 (Heavy hitters are in Ĥ). At any timestamp t, consider any a ∈ U . Let fa be
the frequency of a in a1, a2, · · · , at. If fa ≥ 4

√
γ1/(ϕk) + 512γ2

2/η2 and fp
a ≥ ∥S∥p

p/k, with
probability at least 0.9, a ∈ Ĥ.

▶ Lemma 33. At any timestamp t, if fp
a ≥ ∥S∥p

p/k and a ∈ Ĥ, then a ∈ H.
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Algorithm 5 Continual Released ℓp Heavy Hitters (p ∈ [0,∞)).

Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, a parameter k ∈ Z≥1, an error
parameter η ∈ (0, 0.5).

Parameters : Additive error parameters γ1, γ2 ≥ 0 depending on the streaming continual
release CountSketch algorithm. //See Theorem 28.

Output: A set H ⊆ U of elements and their estimated frequencies f̂ : H → R≥0 at every
timestamp t.

Let ϕ ≥ max
(
|U|1−2/p, 1

)
. Let m = 10k2.

Let h : U → [m] be a pairwise independent hash function where
∀a ∈ U , i ∈ [m], Pr[h(a) = i] = 1/m.

Initialize empty streams S1,S2, · · · ,Sm. for each at in the stream S do
if at =⊥ then

Append ⊥ to the end of every stream S1,S2, · · · ,Sm.
end
else

Append at to the end of the stream Sh(at) and append ⊥ to the end of every stream
Si for i ̸= h(at).

end
For i ∈ [m], compute F̂2,i which is a (1.1, γ1)-approximation to ∥Si∥2

2.
For a ∈ U , compute f̂a which is a (1, (η/16)/(10

√
ϕk) · ∥Sh(a)∥2 + γ2)-approximation to

fa, the frequency of a in S (or equivalently in Sh(a)).
For a ∈ U , if f̂2

a ≥
F̂2,h(a)+γ1

25ϕk
+ 512γ2

2
η2 , add a into Ĥ.

Let H ⊆ Ĥ only keep the elements a such that f̂a is one the top-
(( 1+η

1−η

)p · k
)

values
among {f̂b | b ∈ Ĥ}. For each a ∈ H, report f̂(a)← f̂a.

end

▶ Theorem 34 (ℓp Heavy hitters for all p ∈ [0,∞)). Let ε > 0, η ∈ (0, 0.5), k ≥ 1, ξ ∈ (0, 0.5).
Let ϕ = max(1, |U|1−2/p). There is an ε-DP algorithm in the streaming continual release
model such that with probability at least 1− ξ, it always outputs a set H ⊆ U and a function
f̂ : H → R for every timestamp t ∈ [T ]: such that
1. ∀a ∈ H, f̂(a) ∈ (1±η)·fa where fa is the frequency of a in the stream S = (a1, a2, · · · , at),
2. ∀a ∈ U , if fa ≥ 1

εη · logC
(

T ·k·|U|
ξη

)
for some sufficiently large constant C > 0 and

fp
a ≥ ∥S∥p

p/k then a ∈ H,

3. The size of H is at most O
(

(log(T/ξ) + log(|U|)) ·
(

1+η
1−η

)p

· k
)

.

The algorithm uses ϕk3

η2 · poly
(

log
(

T ·k·|U|
ξ

))
space.

5.3 Differentially Private Continual Released Counting of Low
Frequency Elements

In this section, we show a differentially private continual released algorithm for counting the
number of elements that have a certain (low) frequency. Similar to our counting distinct
elements algorithm, we first consider the case where the universe of the elements is small.

5.3.1 Number of Low Frequency Elements for Small Universe
▶ Lemma 35 (Approximation). At the end of any time t ∈ [T ], ∀i ∈ [k], the output ŝi of
Algorithm 6 is an (α, γ)-approximation to |{a ∈ U | fa = i}|, the size of the set of elements
of which the frequency is exact i.
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Algorithm 6 Number of Low Frequency Elements for Small Universe.
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥} with gaurantee that |U| ≤ m, and

a target frequency k.
Parameters : Relative approximation factor α ≥ 1 and additive approximation factor

γ ≥ 0 depending on the streaming continual release summing algorithm.
//See Theorem 10.

Output: Estimation of the number of elements with frequency exactly i for each i ∈ [k] at
every timestamp t.

Initialize empty streams C1, C2, · · · , Ck.
For each a ∈ U , initialize frequency f(a)← 0
for each at in the stream S do

If at ̸=⊥, f(at)← f(at) + 1.
for each i ∈ [k] do

if at ̸=⊥ and f(at) = i + 1 then
Append −1 at the end of Ci.

end
else if at ̸=⊥ and f(at) = i then

Append 1 at the end of Ci.
end
else

Append 0 at the end of Ci.
end

end
For each i ∈ [k], output ŝi which is an (α, γ)-approximation to the total counts of Ci.

end

▶ Lemma 36 (Privacy). If the algorithm that continually release the approximate total counts
of Ci for every i ∈ [k] is ε-DP, Algorithm 6 is (8kε)-DP in the continual release model.

▶ Theorem 37 (Streaming continual release count of low frequency elements for small universe).
Let k ≥ 1, ε ≥ 0, ξ ∈ (0, 0.5). Suppose the universe U has size at most m. There is an ε-DP
algorithm in the streaming continual release model such that with probability at least 1− ξ,
it always outputs k numbers ŝ1, ŝ2, · · · , ŝk for every timestamp t, such that ∀i ∈ [k], ŝi is
an approximation to |{a ∈ U | fa = i}| with additive error O

(
k
ε · log2.5(T ) log

(
k
ξ

))
. The

algorithm uses O(m + k log(T )) space.

5.3.2 Number of Low Frequency Elements for General Universe
▶ Lemma 38 (Privacy). If the subroutine of continually releasing d̂ in Algorithm 7 is ε-DP
and the subroutine of continually releasing {ŝi,1, ŝi,2, · · · , ŝi,k} for each i ∈ [k] is also ε-DP,
Algorithm 7 is 3ε-DP.

▶ Lemma 39 (Approximation). Consider an arbitrary timestamp t ∈ [T ]. ∀a ∈ U , let
fa denote the frequency of a in a1, a2, · · · , at. With probability at least 0.9, ∀j ∈ [k], the
output ŝj of Algorithm 7 is an

(
α2,

(
α2η + η2γ2

32λ

)
· ∥S∥0 + 6γ1 + 128λ/η2

)
-approximation to

|{a ∈ U | fa = j}|, where ∥S∥0 is the number of distinct elements in a1, a2, · · · , at.

▶ Theorem 40 (Streaming continual release of count of low frequency elements). Let k ≥ 1, ε ≥
0, ξ ∈ (0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the streaming continual release
model such that with probability at least 1 − ξ, it always outputs k numbers ŝ1, ŝ2, · · · , ŝk
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Algorithm 7 Number of Low Frequency Elements via Subsampling.
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, an error parameter η ∈ (0, 0.5),

and a parameter k ≥ 1.
Parameters : Additive approximation factor γ1 depending on the streaming continual

release number of distinct elements, relative approximation factor α2 ≥ 1
and additive approximation factor γ2 ≥ 0 depending on the streaming
continual release count of low frequency elements for small universe.

//See Corollary 23 and Theorem 37.
Output: Estimation of the number of elements with frequency exactly i for each i ∈ [k] at

every timestamp t.
L← ⌈log min(|U|, T )⌉, λ← 2 log(1000k), m← 100 · (25600λ/η2)2.
Let h : U → [m] be a pairwise independent hash function.
Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L], Pr[g(a) = i] = 2−i, Pr[g(a) =⊥] = 2−L.

Initialize empty streams S1,S2, · · · ,SL.
for each at in the stream S do

for i ∈ L do
if at ̸=⊥ and g(at) = i then

Append h(at) to the end of the stream Si.
end
else

Append ⊥ to the end of the stream Si.
end

end
Compute d̂ which is a (1.1, γ1)-approximation to the number of distinct elements in S.
For i ∈ [L], compute ŝi,1, ŝi,2, · · · , ŝi,k where ŝi,j is an (α2, γ2)-approximation to the
number of elements in Si where each element has frequency exact j.

If d̂ ≤ max(3γ1, 64λ/η2), set ŝ1 = ŝ2 = · · · = ŝk = 0.
Otherwise, find the largest i∗ ∈ [L] such that 2i∗

· (64λ/η2) ≤ d̂, and ∀j ∈ [k], set
ŝj = ŝi∗,j · 2i.

Output ŝ1, ŝ2, · · · , ŝk.
end

for every timestamp t such that ∀i ∈ [k], ŝi is an approximation to |{a ∈ U | fa = i}| with
additive error:(

η + η2 · k

ε
· poly

(
log

(
Tk

ξ

)))
· ∥S∥0 + 1

ε
· poly

(
log

(
T

ξ

))
+ O

(
log k

η2

)
The algorithm uses 1

η4 · poly
(

log(T ·k/ξ)
min(ε,1)

)
space.

5.4 ℓp Moment Estimation
In this section, we show how to use our ℓp heavy hitters and the estimator of number of low
frequency elements to solve ℓp moment estimation problem.

▶ Lemma 41 (Privacy). Consider the subroutines in Algorithm 8. If the algorithm that
continually release ŝ1, ŝ2, · · · , ŝk is ε-DP and for every i ∈ [L] ∪ {0} the algorithm that
continually release (Hi, f̂i) is ε-DP. Algorithm 8 is 4ε-DP in the continual release model.

In the remaining of the section, let us analyze the approximation guarantee of Al-
gorithm 8. Let us consider a timestamp t ∈ [T ] and ∀a ∈ U , let fa denote the frequency
of a in a1, a2, · · · , at. Let S,S0,S1, · · · ,SL denote the streams up to timestamp t. Let
I = {[1, 1], [2, 2], · · · , [k, k], Iq∗

1
, Iq∗

1 +1, · · · , Iq∗
2
}. By our choice of k, q∗

1 , q∗
2 , we have the follow-

ing observation:
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Algorithm 8 ℓp Frequency Moment Estimation.

Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, an error parameter η ∈ (0, 0.5).
Parameters : A threshold parameter τ depending on the heavy hitter algorithm, a relative

approximation factor α and an additive approximation factor γ depending
on the algorithm of estimating count of low frequency elements. //See
Theorem 34 and Theorem 40.

Output: Estimation of the ℓp frequency moment at every timestamp t.
Let β′ be drawn uniformly at random from [1/2, 1] and let β ∈ β′ ± (η/T )C for some
sufficiently large constant C > 0. //Thus β can be represented by Θ(log(T/η)) bits.

Let q∗
1 be the smallest integer that β(1 + η)q∗

1 > τ and let q∗
2 be the smallest integer that

β(1 + η)q∗
2 +1 ≥ T , and for any q ∈ [q∗

1 , q∗
2 ], define the interval Iq = (β(1 + η)q, β(1 + η)q+1].

⌈L← log(|U|)⌉, λ← 2 · log(1000(L + 1) log(4T )/η).
Let k be the largest integer such that k ≤ β(1 + η)q∗

1 . Let
B ←

( log(4T )
η

)
· 100(L + 1) · 32λ

η3 · (1 + η)p.
Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L], Pr[g(a) = i] = 2−i, Pr[g(a) =⊥] = 2−L.

Initialize empty streams S0,S1,S2, · · · ,SL.
for each at in the stream S do

if at ̸=⊥ then
Append at at the end of S0.
For i ∈ [L], if g(at) = i, append at to Si, otherwise append ⊥ to Si.

end
else

For i ∈ [L] ∪ {0}, append ⊥ at the end of Si.
end
For each i ∈ [L] ∪ {0}, compute a set Hi ⊆ U together with a function f̂i : Hi → R≥0

satisfying:
1. ∀a ∈ Hi, (1− η′) · fa ≤ f̂i(a) ≤ (1 + η′) · fa, where fa is the frequency of a in

a1, a2, · · · , at, and η′ satisfies η′ ≤ η
10000(L+1)|Hi| .

2. ∀a ∈ U that appears in Si, if fa ≥ τ and fp
a ≥ ∥Si∥p

p/B, a ∈ Hi.
Compute ŝ1, ŝ2, · · · , ŝk where ∀l ∈ [k], ŝl is an (α, γ)-approximation to
|{a ∈ U | fa = l}|.

for q ∈ [q∗
1 , q∗

2 ] do
Initialize ẑq = 0.
for i ∈ [L] ∪ {0} do

if |{a ∈ Hi | f̂i(a) ∈ Iq}| ≥ 8λ/η2 or i = 0 then
ẑq ← max(ẑq, |{a ∈ Hi | f̂i(a) ∈ Iq}| · 2i).

end
end

end
Output F̂p =

∑
l∈[k] ŝl · lp +

∑
q∈[q∗

1 ,q∗
2 ] ẑq · (β(1 + η)q)p

end

▶ Observation 42.
∑

I∈I
∑

a∈U :fa∈I fp
a = ∥S∥p

p.

▶ Definition 43. For any I ∈ I, if
∑

a∈U :fa∈I fp
a ≥ η∥S∥p

p/(q∗
2 − q∗

1 + 1) or I is {i} for some
i ∈ [k], then interval I is contributing.

5.4.1 Analysis of High Frequency Elements
We show that

∑
q∈[q∗

1 ,q∗
2 ] ẑq · (β(1+η)q)p is a good approximation to

∑
q∈[q∗

1 ,q∗
2 ]

∑
a∈U :fa∈Iq

fp
a

and
∑

q∈[q∗
1 ,q∗

2 ]:Iq is contributing
∑

a∈U :fa∈Iq
fp

a . See full version for more details.
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▶ Lemma 44 (Upper bound of estimation of high frequency moment). With probability at least
0.98,

∑
q∈[q∗

1 ,q∗
2 ] ẑq · (β(1 + η)q)p ≤ (1 + η) ·

∑
q∈[q∗

1 ,q∗
2 ]

∑
a∈U ,fa∈Iq

fp
a

▶ Lemma 45 (Lower bound of estimation of contributing high frequency mo-
ment). With probability at least 0.97,

∑
q∈[q∗

1 ,q∗
2 ] ẑq · (β(1 + η)q)p ≥ (1 − η)p+1 ·∑

q∈[q∗
1 ,q∗

2 ]:Iq is contributing
∑

a∈U ,fa∈Iq
fp

a

5.4.2 Analysis of Low Frequency Elements
In this section, we show that

∑
l∈[k] ŝl · lp is a good approximation to

∑
l∈[k]

∑
a∈U :fa=l fp

a .

▶ Lemma 46 (Approximation of low frequency moments).
∑

l∈[k] ŝl · lp is a (α, γ · (2τ)p+1)-
approximation to

∑
l∈[k]

∑
a∈U :fa=l fp

a .

5.4.3 Putting All Together
▶ Lemma 47.

∑
contributing I∈I

∑
a∈U :fa∈I fp

a ≥ (1− η) · ∥S∥p
p.

▶ Lemma 48. Consider any timestamp t ∈ [T ]. ∀a ∈ U , let fa denote the frequency
of a in a1, a2, · · · , at. With probability at least 0.9, the output F̂p of Algorithm 8 is a(

max
(

α
1−η , (1 + 2η)p+2

)
, γ · (2τ)p+1

)
-approximation to ∥S∥p

p.

▶ Theorem 49 (Streaming continual release ℓp frequency moment estimation). Let p >

0, ε ≥ 0, ξ ∈ (0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the streaming
continual release model such that with probability at least 1 − ξ, it always outputs an(

1 + η,
(

log(T |U|/ξ)
ηε

)O(max(1,p))
)

-approximation to ∥S∥p
p. The algorithm uses space at most

ϕ ·
(

log(T |U|/ξ)
ηε

)O(max(1,p))
, where ϕ = max(1, |U|1−2/p).

6 Extension to Sliding Window Continual Release Algorithms

In this section, we show how to extend our results to the sliding window setting.

▶ Corollary 50 (Sliding window summing of a non-negative numbers). Let η ∈ (0, 0.5), ε ≥
0, ξ ∈ (0, 0.5), there is an ε-DP algorithm for summing in the sliding window continual release
model. If the input numbers are guaranteed to be non-negative, with probability at least 1− ξ,
the output is always a

(
1 + η, O

(
log(T/(ηξ)) log(T )

εη3

))
-approximation to the summing problem

at any timestamp t ∈ [T ]. The algorithm uses space O(log(T )/η).

▶ Corollary 51 (Sliding window continual release distinct elements). For η ∈ (0, 0.5), ε ≥ 0, ξ ∈
(0, 0.5) there is an ε-DP algorithm for the number of distinct elements of streams with element
universe U in the sliding window continual release model. With probability at least 1− ξ, the
output is always a (1 + η, O

(
log2(T/(ηξ)) log(T )

η4ε

)
)-approximation for every timestamp t ∈ [T ].

The algorithm uses poly
(

log(T/ξ)
η min(ε,1)

)
space.

▶ Corollary 52 (Sliding window continual release ℓ2 frequency moments). Let ε > 0, η ∈
(0, 0.5), ξ ∈ (0, 0.5). There is an ε-DP algorithm in the sliding window continual release model
such that with probability at least 1− ξ, it always outputs F̂2 for every timestamp t ∈ [T ] such
that |F̂2−∥S∥2

2| ≤ η∥S∥2
2 + O

(
(log(T/(ξη))+log(|U|))2 log2(T )

ε2η8 · log5(T ) · log2
(

log(T/ξ)+log(|U|)
ξη

))
,

where S denotes the sub-stream corresponding to the latest W elements at timestamp t. The
algorithm uses O

(
log(T/(ξη))+log(|U|)

η4 · log2(T )
)

space.
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▶ Corollary 53 (Sliding window continual release ℓp frequency moments). Let p > 0, ε ≥ 0, ξ ∈
(0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the sliding window continual release model

such that with probability at least 1−ξ, it always outputs an
(

1 + η,
(

log(T |U|/ξ)
ηε

)O(max(1,p))
)

-

approximation to ∥S∥p
p, where S denotes the sub-stream corresponding to the latest W

elements at timestamp t. The algorithm uses space at most ϕ ·
(

log(T |U|/ξ)
ηε

)O(max(1,p))
, where

ϕ = max(1, |U|1−2/p).
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Abstract
We introduce a classical algorithm to approximate the free energy of local, translation-invariant,
one-dimensional quantum systems in the thermodynamic limit of infinite chain size. While the
ground state problem (i.e., the free energy at temperature T = 0) for these systems is expected to
be computationally hard even for quantum computers, our algorithm runs for any fixed temperature
T > 0 in subpolynomial time, i.e., in time O(( 1

ε
)c) for any constant c > 0 where ε is the additive

approximation error. Previously, the best known algorithm had a runtime that is polynomial in 1
ε

where the degree of the polynomial is exponential in the inverse temperature 1/T . Our algorithm
is also particularly simple as it reduces to the computation of the spectral radius of a linear map.
This linear map has an interpretation as a noncommutative transfer matrix and has been studied
previously to prove results on the analyticity of the free energy and the decay of correlations. We
also show that the corresponding eigenvector of this map gives an approximation of the marginal of
the Gibbs state and thereby allows for the computation of various thermodynamic properties of the
quantum system.
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1 Introduction and Main Result

Multipartite quantum systems are described by a Hilbert space, which is a tensor product of
the single-particle d-dimensional spaces. The behaviour of a quantum-many body system is
described by a Hamiltonian which models the interaction between the different particles. Of
particular interest are k-local Hamiltonians that can be written as a sum of terms acting
nontrivially on at most k particles, with k being a constant. At thermal equilibrium, the
system is described by the Gibbs state
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ρ = e−βH/Zβ(H) (1)

where β = 1/T is the inverse temperature, and Zβ(H) = tr
[
e−βH

]
is the partition function.

The free energy of the system at inverse temperature β is defined as

Fβ(H) = − 1
β

log Zβ(H). (2)

At zero temperature, i.e., β = +∞, Fβ(H) becomes λmin(H), the ground energy of H. The
problem of computing the ground energy for a given local Hamiltonian is known to be
QMA-complete [14], and is the central problem in the area of Hamiltonian complexity [10].
This problem remains QMA-complete even if we restrict ourselves to 2-local Hamiltonians
that are translation-invariant on a chain [11, 4], i.e., H =

∑
i hi,i+1 where the operators

hi,i+1 are given by some Hermitian operator h (the same one for every i) acting on particles
i and i + 1.1

In order to understand the physical properties of the system at nonzero temperature, it is
crucial to understand not only the ground energy, but also the free energy function Fβ(H) as
a function of β > 0 [2]. Indeed, computing Fβ(H) and its derivatives with respect to β and
parameters of the Hamiltonian determines phase transitions and gives access to fundamental
physical properties of the system in thermal equilibrium such as the internal energy, specific
heat, or magnetic susceptibility [19].

1.1 Main result

In this paper, we focus on 2-local translation-invariant quantum systems on an infinite chain.
As the free energy scales with the system size, in the thermodynamic limit of infinite systems
we consider the free energy per particle fβ(h). Note that fβ(h) only depends on the finite
matrix h of size d2 × d2. Our objective is to design an algorithm to approximate fβ(h) with
a good scaling in terms of the target error ε and the local dimension d. As argued in recent
works on Hamiltonian complexity in the thermodynamic limit [25, 1], understanding the
dependence of the complexity in terms of the desired precision for infinite systems is often
closer to capturing the fundamental problems in many-body physics than understanding the
dependence in the system size. Our main result is an algorithm that given as input h and
a target error ε outputs an approximation of fβ(h) and of the k-particle marginals of the
Gibbs state.

▶ Theorem 1. There is a deterministic algorithm that takes as input a Hermitian operator
h acting on Cd ⊗ Cd satisfying ∥h∥ ≤ 1 and ε ∈ (0, 1/e) and outputs an approximation
f̃β satisfying |f̃β − fβ(h)| ≤ ε, where fβ(h) is the free energy per particle of the infinite
translation-invariant Hamiltonian on a chain defined by h. For any fixed β > 0, the running
time of the algorithm is exp

(
O

(
log d log(1/ε)

log log(1/ε)

))
. Moreover, this algorithm can also compute

an ε-approximation of the marginal of the Gibbs state on an interval of size k with the same
running time for any fixed k.

Before describing the algorithm and proof method, we make some remarks and discuss
related works.

1 Technically, because of the choice of specification of input in [11], the problem is complete for a scaled
version of QMA called QMAEXP.
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Remarks

We note that the temperature dependence of the running time is hidden in the O(.) nota-
tion as we are interested in the algorithm for fixed temperature. If we want to make
the dependence on the inverse temperature β explicit, the running time takes the form
exp

(
O

(
log d log(1/ε)

log log(1/ε)

)
exp(O(β))

)
, where O(.) only hides universal constants.2 An im-

provement to an exponential dependence in β should not be expected due to the QMAEXP-
hardness of the ground energy problem [11]. The ground energy can be approximated
by the free energy for a large value of β. In particular, by reduction of the ground state
problem to the free energy problem, we establish QMAEXP-hardness of the infinite translation-
invariant free energy problem with the temperature as an additional problem input. This
shows that, unless QMAEXP = EXP, no algorithm can have a running time of the form
exp(polylog(β, 1/ε)).

To appreciate the algorithm we use to prove Theorem 1, it is instructive to consider first
a naive algorithm for this problem sometimes called exact diagonalization. The idea of this
algorithm is to consider the Hamiltonian H[1,n] =

∑n−1
i=1 hi,i+1 restricted to only n particles.

Computing the free energy per particle fβ,n of H[1,n] (for any value of β) can be done in
time polynomial in dn by explicitly writing the dn × dn matrix H[1,n]. The sequence fβ,n

does converge to fβ as n→∞, but the convergence is in general slow with an error decaying
as 1

n due to the missing interaction term at the boundary. As a result, for a desired precision
ε, we obtain a runtime which is exponential in 1/ε. In order to obtain the subpolynomial
dependence on 1/ε in Theorem 1, we need to develop a more refined algorithm.

1.2 Related work
In recent years, there have been multiple works about computing the free energy (or equi-
valently the partition function) at finite inverse temperature for a given Hamiltonian. In
particular, for local Hamiltonians on an arbitrary bounded-degree graph, algorithms have
been developed in [15, 12, 18] with performance guarantees when the inverse temperature β

is below some critical inverse temperature. The runtime of these algorithms is polynomial or
quasi-polynomial in the number of particles and in 1/ε. These works rely on the so called
cluster expansion, which, at its core, is a Taylor expansion of the partition function at β = 0.
Truncating this expansion at a certain order and bounding the remainder terms allows for
the approximation of the free energy for β small enough. Indeed, the sum of remainder terms
no longer converges if β is too large which introduces a critical inverse temperature above
which such algorithms do not have convergence guarantees.

However, a different method was used in [16] to obtain an algorithm for all temperatures
for one-dimensional finite quantum systems. This algorithm combines several results from
the analysis of 1D-systems: quantum belief propagation [13], together with a locality result
about Gibbs states which was only recently proven in general [6]. For a system of n particles
in 1D, the running time of the algorithm is n( 1

ε )O(1), where O(1) is a constant that depends
exponentially on β. This algorithm can readily be applied to the infinite translation-invariant
chain by setting n = 1/ε and this leads to an algorithm that is polynomial in 1/ε. For its
implementation, the algorithm involves several choices of length scales to ensure convergence
and numerical integrations to obtain the operators from the belief propagation.

2 The dependence is worse when computing marginals of the Gibbs state, see full version [8].
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In a different regime, classical algorithms have been designed in [7] to compute the free
energy of dense Hamiltonians based on convex relaxations. These algorithms have a runtime
that is exponential in 1/ε.

Besides this line of work on provably convergent algorithms to which our work shall also
contribute, there are numerous algorithms that effectively address the problem despite having
no convergence results or only in special cases. For the free energy problem this includes most
notably Quantum Monte Carlo methods [24, 23]. These probabilistic algorithms lack rigorous
results on their runtime except for few special cases and are known to fail for Hamiltonians
that have the so-called sign problem. Another example of effective algorithms for the ground
state energy problem (β = +∞) in one dimension are tensor networks and the DMRG
algorithm [26, 20]. The convergence of a related algorithm to the ground state energy has
been proven under the additional assumption that the Hamiltonian is gapped [17].

1.3 Proof technique
Before giving an overview of the algorithm establishing Theorem 1, it is worth mentioning
that the analogous classical problem has a very simple solution. In fact, using the technique
of transfer matrices (see e.g. [9]), for any β the free energy per particle can be obtained from
the eigenvalue of a simple d× d matrix and thus the problem reduces to standard numerical
algorithms applied to some fixed matrix. This implies very efficient algorithms for any β

including β = +∞.
However, the quantum case is significantly more complicated. This is illustrated for

example by the fact that, when β = +∞, the problem is QMA-hard, and also that the
simple Markov property for classical Gibbs states in one-dimension does not hold in the
quantum setting. In his seminal work, Araki [3] proposed a quantum analogue of the transfer
matrix, but it is a linear map between infinite-dimensional spaces. In our algorithm, we use
a finite-dimensional approximation to this map. Our main technical result is to prove that
the spectral radii of these finite-dimensional approximations converge superexponentially fast
to e−βfβ(h). The algorithm (see Algorithm 2) is then simply to choose the finite-dimensional
approximation parameter L for the transfer matrix as a function of the desired precision ε

and then compute the spectral radius of the corresponding linear map.

Algorithm 2 Algorithm for computing the free energy per particle. The constant C is a
number that can be obtained from our proofs.

Parameters: Inverse temperature β, universal constant C

Input: d local dimension, Hamiltonian term h ∈ Cd2×d2 such that ∥h∥ ≤ 1, error ε

Output: f̃β approximation to the free energy fβ(h)
1 L← log(1/ε) exp(C(β + 1))/ log(log(1/ε)); /* parameter for approximation */

/* matrix representation of linear map from CdL−1×dL−1
to itself: */

2 L∗
L(·)← trL

(
e−βH[1,L]/2eβH[2,L]/2(1⊗ ·)eβH[2,L]/2e−βH[1,L]/2)

;
3 rL ← spectral radius of L∗

L ;
4 f̃β ← −(log rL)/β ;

To analyse the algorithm we make extensive use of Araki’s expansionals [3] to show that the
marginal ρL on the first L−1 sites of the infinite Gibbs state, is an approximate eigenvector of
the finite-dimensional map L∗

L, i.e., that ∥L∗
L(ρL)− e−βfβ(h)ρL∥1 decays superexponentially

fast in L. By using variational expressions of the spectral radius of positive maps (so
called Collatz-Wielandt formula), this allows us to show that the spectral radius of L∗

L
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is superexponentially close to e−βfβ(h). We note that standard perturbation bounds for
eigenvalues of non-normal operators have a very bad dependence on dimension, and are thus
not usable here, see e.g., [5, Chapter VIII]. To prove that the corresponding eigenvector of
L∗

L is close to ρL, we establish a quantitative primitivity condition for L∗
L, i.e., we prove

that a sufficiently high power of L∗
L maps nonzero positive semidefinite operators to positive

definite ones. Using tools from the Perron-Frobenius theory of positive operators – more
precisely the Hilbert projective metric – , this allows us to show that ρL is superexponentially
close to the eigenvector of L∗

L associated to its spectral radius.
Let us also mention that the above techniques based on [3] are specific to one dimension.

In particular, the results in there are related to the absence of thermal phase transitions,
which do occur in higher dimensions so an extension of this approach to higher dimension
is not possible, see also [21, 22] for hardness results of the classical partition function on
bounded degree graphs.

1.4 Numerical implementation
We also implement our algorithm and run it on a Hamiltonian for which the free energy
function is known exactly. We observe very small errors (machine precision) already for
moderate choices of L. We also observe that for this example the scaling of the error with
inverse temperature is better than the worst-case estimates derived theoretically.
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Abstract
In this paper we initiate the study of expander decompositions of a graph G = (V, E) in the streaming
model of computation. The goal is to find a partitioning C of vertices V such that the subgraphs of
G induced by the clusters C ∈ C are good expanders, while the number of intercluster edges is small.
Expander decompositions are classically constructed by a recursively applying balanced sparse cuts
to the input graph. In this paper we give the first implementation of such a recursive sparsest cut
process using small space in the dynamic streaming model.

Our main algorithmic tool is a new type of cut sparsifier that we refer to as a power cut sparsifier
– it preserves cuts in any given vertex induced subgraph (or, any cluster in a fixed partition of V )
to within a (δ, ϵ)-multiplicative/additive error with high probability. The power cut sparsifier uses
Õ(n/ϵδ) space and edges, which we show is asymptotically tight up to polylogarithmic factors in n

for constant δ.
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1 Introduction

Expanders are known to have many beneficial properties for algorithmic design. Therefore
a natural divide-and-concur approach leads to breaking a given graph into expanders. An
(ϵ, ϕ)-expander decomposition (introduced by [28, 33]) of an n vertex graph G = (V, E) is a
partition C = {C1, . . . , Ck} of the vertex set V such that the conductance of each induced
graph G{Ci} is at least ϕ, and such that there are at most ϵ · |E| inter-cluster edges. For
every ϵ ∈ (0, 1), one can always construct (ϵ, ϕ)-expander decomposition with ϕ = Ω( ϵ

log n ),
which is also the best possible (see, e.g., [4]). Expander decomposition have been found to be
extremely useful for Laplacian solvers [46, 20], unique games [7, 49, 44], minimum cut [37],
sketching/sparsification [6, 32, 19], max flow algorithms [38, 18], distributed algorithms
[16, 14, 31] and dynamic algorithms [42, 50, 43, 13, 29].

Sequentially, expander decomposition can be constructed in almost linear time [45, 39].
Furthermore, expander decomposition have efficient (poly(ϵ−1) · no(1) rounds) constructions
in distributed CONGEST model, and parallel PRAM and MPC models [27, 15, 16]. From
the other hand, in the dynamic stream model (in fact even in insertions only model) it
remained wide open whether it is possible to construct an expander decomposition using
Õ(n) space (which is the space required to store such a decomposition).
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Graph sketching, introduced by [1] in an influential work on graph connectivity in dynamic
streams, has been a de facto standard approach to constructing algorithms for dynamic
streams, where the algorithm must use a small amount of space to process a stream that
contains both edge insertions and deletions (while the vertex set is fixed). The main idea
of [1] is to represent the input graph by its edge incident matrix, and to apply classical
linear sketching primitives to the columns of this matrix. This approach seamlessly extends
to dynamic streams, as by linearity of the sketch one can simply subtract the updates for
deleted edges from the summary being maintained. A surprising additional benefit is the
fact that such a sketching solution is trivially parallelizable: since the sketch acts on the
columns of the edge incidence matrix, the neighborhood of every vertex in the input graph is
compressed independently.

Sketching solutions have been constructed for many graph problems, including spanning
forest computation [1], spanner construction [2, 36, 22, 24], matching and matching size
approximation [9, 8], sketching the Laplacian [6, 32] and (among many other) most relevant
to our paper, cut and spectral sparsifiers [3, 34, 35].

The main question we ask in this paper is:

What is the space complexity of constructing expander decompositions in the sketching
model?

A classical way of constructing an expander decomposition (e.g., [47]) is to recursively apply
nearly balanced sparsest cuts as long as a cut of sparsity at most ϕ exists. The recursion
terminates in O(log n) depth as long as one does not recurse on large sides of unbalanced
cuts. Indeed, if the graph does not include a sparse cut of balancedness more than 1

4 , say,
it could be shown that the large part induces an Ω(ϕ)-expander. Thus, one cuts O(ϕ log n)
fraction of edges over O(log n) levels of the recursion. Setting ϵ = O(ϕ log n), we get an
(ϵ, Ω( ϵ

log n ))-expander decomposition, which is existentially optimal. The main question that
our paper asks is

Can one design a streaming implementation of a recursive sparsest cut process?

A natural approach to emulating this process in the streaming model of computation
would be to run it on a sparsifier of the input graph. Alas, graph cut sparsifiers do not
preserve cuts in induced subgraphs 1, so other methods are needed. Since we would like
to implement the recursive sparsest cut process in the streaming model, at the very least
we need to be able to know when to stop, i.e. be able to verify that the partition that we
created is already an (ϵ, Ω( ϵ

log n ))-expander decomposition. In particular, we ask

Is it possible to verify, using small space, that a partition given at the end of the stream is
an expander decomposition of the input graph?

Our first contribution in this paper is a construction of what we call a power cut
sparsifier – a random (reweighted) subgraph of the input graph that can be constructed in
small space, and can be used to verify the Ω( ϵ

log n )-expansion property in any fixed partition
(not known before the stream) with high probability. The power cut sparsifier contains
Õ(n/ϵ) edges, which we show is optimal.

One might hope that the construction of an ϵ-power cut sparsifier allows for direct
simulation of the above mentioned recursive sparsest cut algorithm of [47]: one simply uses a
fresh power cut sparsifier for every level of the recursion, taking Õ(n/ϵ) · O(log n) = Õ(n/ϵ)

1 Preserving cuts in subgraphs of arbitrary size, for example, implies preserving them in subgraphs induced
by pairs of nodes – and this requires preserving all the edges.
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space overall. Surprisingly, this does not not work! The issue is subtle: the termination
condition that lets the [47] process not recurse on larger side of an unbalanced cut does
not translate from the sparsifier to the actual graph, as it requires preservation of cuts in
induced subgraphs – see Section 2.2 for a more detailed discussion. However, the more recent
expander decomposition algorithm of Chang and Saranurak [15] works for our purposes. It
also uses the recursive balanced sparse cut framework and the ideas introduced in [50, 42].
The termination condition is cut based, and translates from the sparsifier to the original
graph. Since the depth of the recursion is Õ(1/ϵ), this gives us an (ϵ, Ω( ϵ

log n ))-expander
decomposition using Õ(n/ϵ2) space – our second contribution and the main result. We
now state our results more formally:

▶ Theorem 1. Given a dynamic stream containing a parameter ϵ ∈ (0, 1) and a graph
G = (V, E), there exists an algorithm that outputs a clustering C of V that is a (ϵ, Ω(ϵ/ log n))-
expander decomposition of G with high probability. This algorithms requires Õ( n

ϵ2 ) memory
and takes exponential in n time.

Notice that the decomposition quality in Theorem 1 is asymptotically optimal (see,
e.g., [4]). Unfortunately, this algorithm takes exponential time due to the need to find balanced
sparse cuts exactly. We also show how to make the runtime polynomial at the expense of
slight losses in the quality of the expander decomposition and its space requirements:

▶ Theorem 2. For an integer parameter k ≤ O(log n), given a dynamic stream containing
a parameter ϵ ∈ (0, 1) and a graph G = (V, E), there exists an algorithm that outputs
a clustering C of V that is a (ϵ, ϵ · Ω(log n)−O(k))-expander decomposition of G with high
probability. This algorithms requires

Õ(n) ·
(

ϵ−2 + ϵ
1
k −1 · n

2
k · logO(k) n

)
memory and takes polynomial in n, 1/ϵ, (log n)k time.

1.1 Power cut sparsifier
A natural approach for constructing expander decomposition is to find the sparsest cut (or
an approximation), remove its edges and recurse on both sides. Once the sparsest cut found
has conductance ϕ = Ω( ϵ

log n ), the cluster at hand induces a ϕ-expander and the algorithm
halts. One can show that in this entire process at most an ϵ-fraction of the edges is removed.

A cut sparsifier H of G (introduced by Benczur and Karger [12]) with multiplicative error
1±δ is a graph that preserves the values of all the cuts in G: ∀S ⊆ V ,

∣∣wG(S, S) − wH(S, S)
∣∣ ≤

δ ·wG(S, S), where wG(S, S) is the sum of weights of all the edges crossing the cut S (quantity
in unweighted graphs). In the dynamic stream model one can compute such a cut sparsifier
using Õ( n

δ2 ) space [2, 35].
We introduce a new type of sparsifier dubbed power cut sparsifier. The name comes from

the ambitious goal of sparsifying the entire power set of V . As this is impossible using the
classical definition, we will also allow for an additive error. Denote by Vol(S) =

∑
v∈S deg(v)

the sum of vertex degrees in S. G{S} denotes the graph induced by S with self loops (see
Section 1.4).

▶ Definition 3. Consider a graph G = (V, EG). A graph H = (V, EH , wH) is an (δ, ϵ)-cut
sparsifier of G if for every cut S ⊆ V ,

(1 − δ) · wG(S, S̄) − ϵ · Vol(S) ≤ wH(S, S̄) ≤ (1 + δ) · wG(S, S̄) + ϵ · Vol(S)

ITCS 2023
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A distribution D over weighted subgraphs H is called a (δ, ϵ, p)-power cut sparsifier distribution
for G, if for every partition C of G, with probability at least 1 − p, ∀C ∈ C, H{C} is a
(δ, ϵ)-cut sparsifier of G{C}. A sample H from such a distribution is called a (δ, ϵ, p)-power
cut sparsifier.

We show that power cut sparsifier can be constructed using very simple sampling algorithm:
just add each edge e = {u, v} to the sparsifier with probability O( log2 n

ϵ·δ ) ·
(

1
deg(v) + 1

deg(u)

)
.

Furthermore, we show that such a graph could be sampled in the dynamic stream model:

▶ Theorem 4. For every C > 0, and ϵ, δ ∈ (0, 1), there exists an algorithm that uses Õ(n · C
ϵδ )

space, that, given the edges of an n-vertex graph in a dynamic stream, in polynomial time
produces samples from a (δ, ϵ, n−C)-power cut sparsifier distribution.

Given the simplicity of the sampling algorithm, and the very robust guarantee provided
by power cut sparsifiers, we believe that further application (beyond the construction of
expander decomposition) will be found, and hence think that they are interesting objects of
study in their own right. The dependence on ϵ in Theorem 4 is tight:

▶ Theorem 5. For every δ, ϵ ∈ ( 1
n , 1

4 ) and even n ∈ N, there is an n-vertex graph G = (V, E)
such that every (ϵ, δ, 1

2 )-power cut sparsifier distribution D produces graphs with Ω( n
ϵ ) edges

in expectation.

In our application of Theorem 4 we will use 1
δ = O(log n). Thus for our purpose here,

the power cut sparsifier of Theorem 4 is tight up to polylogarithmic factors. Furthermore, in
the following theorem we show that Theorem 4 is also tight (up to polylogarithmic factors)
for the setting of parameters ϵ = δ. In fact, this proposition holds even if one requires only a
(δ, ϵ)-cut sparsifier, and not a power cut sparsifier, and even if we allow a general cut sketch
(instead of a cut sparsifier).

▶ Theorem 6. For any ϵ, δ ∈ (0, 1
4 ), any (δ, ϵ)-cut sketching scheme sk for unweighted

multigraphs with n vertices at most n2 edges must use at least Ω( n log n
max{ϵ2,δ2} ) bits in the worst

case.

1.2 Application to distance oracles
Given a graph G = (V, E), a t-distance oracle DO is a data structure approximately answering
distance queries, such that for every pair u, v ∈ V one has

dG(u, v) ≤ DO(u, v) ≤ t · dG(u, v) ,

where dG stands for the shortest path metric of G. The parameter t is called the stretch.
For every integer k ≥ 1, every graph G = (V, E) with n vertices admits a (2k − 1)-distance
oracle with O(n1+1/k) space [17], which is optimal assuming the Erdős girth conjecture [21].
A fundamental question is what quality distance oracle one can construct in the dynamic
streaming model (or alternatively using a linear sketch). This problems turned out to be very
challenging, and the best known approximation using Õ(n) space is only a Õ(n 2

3 )-distance
oracle by Filtser, Kapralov, and Nouri [24] (conjectured to be tight [24]). However, if Õ(n1+α)
space is allowed, [24] constructed a Õ(n 2

3 (1−α))-distance oracle. Furthermore, if the graph
has at most m edges (and using Õ(n1+α) space), [24] constructed a Õ(

√
m · n−α)-distance

oracle.
We use our expander decomposition (Theorem 1) to construct the following distance oracle:
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▶ Theorem 7. Let α ∈ (0, 1) be a fixed constant. There is a streaming algorithm using
S = Õ(n1+α) space, that given an n vertex graph with m edges (m not known in advance) in
a dynamic stream fashion, returns a distance oracle with stretch m

S · polylog(n). 2

A caveat of the distance oracle of [24] is that the additional space (beyond Õ(n)) has
very limited contribution. In particular, if the given space Õ(n1+α) is almost equal to m, the
stretch is still a large polynomial. For example, let α = 1

4 , and m = n1+α+ϵ. Then the best
stretch promised by [24] is only Õ(

√
m · n−α) = Õ(n 1+α+ϵ

2 −α) = Õ(n 1−α+ϵ
2 ) = Õ(n 3

8 + ϵ
2 ). In

our Theorem 7 we solve this issue, and obtain a distance oracle where the stretch goes to
polylog(n) as the space S goes to m. In particular, for the example above the stretch will be
Õ(nϵ).

1.3 Related work
We refer the reader to [40, 41] for a survey of streaming algorithms. The idea of linear graph
sketching was introduced in a seminal paper of Ahn, Guha, and McGregror [1]. An extension
of the sketching approach to hypergraphs were presented in [30].

Graph sparsifiers with additive error were previously studied by Bansal, Svensson, and
Trevisan [10]. They studied sparsifiers where all edge weights are equal. As a result, their
additive error dependence also on average degree (rather than only on volume). Another
crucial difference is that our analysis provides sparsification guarantees for cuts for the
majority of subgraphs of G.

The distance oracle construction in [24] is only implicit, and actually they construct a
graph spanner. A subgraph H = (V, E) of a graph G = (V, E) is a t-spanner of G if for
every pair u, v ∈ V one has dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v). Given a spanner H, one can
construct a distance oracle DO by setting DO(u, v) = dH(u, v). The tradeoff between the
stretch and the number of edges for spanners is the same as for distance oracles, where
the celebrated greedy spanner [5, 25] has stretch (2k − 1), and O(n1+1/k) edges. In the
dynamic streaming model, other than [24], all the previous work was concerned with spanner
construction in multiple passes [11, 2, 36, 22, 24].

1.4 Preliminaries
All of the logarithms in the paper are in base 2. We use Õ notation to suppress constants and
poly-logarithmic factors in n, that is Õ(f) = f ·polylog(n) (in particular, Õ(1) = polylog(n)).

Given an weighted graph G = (V, E, wG), the weighted degree degG(v) represents the
sum of weights of all edges incident on v, including self-loops (simply degree for unweighted).
Given a set S ⊆ V , G{S} denotes the graph induced by S with self loops. That is, the vertex
set of G{S} is S, we keep all the edges where both endpoints are in S, and we add self loops
to every vertex such that its degree in G and G{S} is the same. We denote the complement
set of S by S̄ = V \ S.

The volume of a set S is the sum of the weighted degrees of all the vertices in S:
VolG(S) =

∑
v∈S degG(v). By EG(A, B) we represent the set of edges between vertex sets

A and B, and by wG(A, B) =
∑

e∈EG(A,B) wG(e) the sum of their weights (for unweighted
their count). Where the graph G is clear from the context, we might abuse notation and
drop the subscript (e.g. Vol(S) := VolG(S)). We say that a set of vertices S ⊂ V is a cut if
∅ ⊊ S ⊊ V . The value wG(S, S̄) is called the size of the cut S, and the sparsity of a cut S in
graph G is ΦG(S) = wG(S,S̄)

min{VolG(S),VolG(S̄)} . We say that a cut S is ϕ-sparse if ΦG(S) ≤ ϕ.

2 We implicitly assume here that m ≥ S
polylog(n) . Otherwise, one can simply use sparse recovery to recover

the entire graph G, and thus construct a distance oracle with stretch 1.
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▶ Definition 8. For ϕ ∈ [0, 1], a graph G = (V, E, wG) is a ϕ-expander if the sparsity of
every cut is at least ϕ, i.e. min∅⊊S⊊V ΦG(S) ≥ ϕ.

▶ Definition 9. For ϕ, ϵ ∈ [0, 1] and a graph G = (V, E), a partition C of the vertices V is
called an (ϵ, ϕ)-expander decomposition of G if

the number of inter-cluster edges is at most ϵ fraction of all edges:∑
C∈C

w(C, C̄) ≤ ϵ · Vol(V )

for each cluster C ∈ C, G{C} is a ϕ-expander.

Dynamic streams

We say that a graph G is given to us in a dynamic stream if we are given a fixed set V of n

vertices and a sequence of updates on unweighted edges, where each update either adds an
edge between two vertices or removes an existing edge. We define G to be the graph at the
end of the stream.

Additive Chernoff bound

The following concentration bound is used in proof of the power cut sparsifier guarantees.

▶ Lemma 10 (Additive Chernoff Bound). Let X1, . . . , Xn be independent random variables
distributed in [0, a]. Let X =

∑
i∈[n] Xi, µ = E[X]. Then for ϵ ∈ (0, 1) and α ≥ 0

Pr[|X − µ| > ϵµ + α] ≤ 2 exp
(

−ϵα

3a

)
.

2 Technical overview

2.1 Verifying expander decompositions in a dynamic stream
Before explaining our algorithm for the expander decomposition construction, we first consider
a problem of verifying an expander decomposition. That is, given a graph G in a dynamic
stream and after it a clustering C of its vertices and the values ϵ, ϕ, we want to distinguish
between the cases when C is an (ϵ, ϕ)-expander decomposition of G and when the fraction of
intercluster edges is at least O(ϵ) or some cluster contains a O(ϕ)-sparse cut.

Using graph sparsifiers

The core idea that allows us both to solve this problem and construct the expander decom-
position using only limited memory is the use of the graph sparsifiers. According to the
classical definition [26], the δ-cut sparsifier of a graph G = (V, E) is a graph H = (V, E′, w)
such that, for any cut ∅ ⊊ S ⊊ V

(1 − δ) · wG(S, S̄) ≤ wH(S, S̄) ≤ (1 + δ) · wG(S, S̄).

It is well known that one can construct a cut sparsifier in the streaming setting [2] using
Õ(n/δ2) space. Having such a sparisifier, we can already distinguish between the cases when
G is a ϕ-expander and when there is a 1−δ

1+δ ϕ-sparse cut in G just by checking all possible
cuts in H.
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Things become more involved when we try to verify an expander decomposition. Now,
we need to check that for some partitioning of V into clusters C, all G{C}, C ∈ C, are
ϕ-expanders. Here, the classical notion of the cut sparsifier is insufficient, as the approach of
checking every cut in each of the G{C}, C ∈ C would require that we have a cut sparsifier
for each G{C}.

Simple sparsifier for a partition

A natural solution for this is to construct a cut sparsifier H in such a way that for any
fixed partition C, H{C} will be a cut sparsifier of G{C} for all C ∈ C with high prob-
ability. From existing literature, we can already derive how to do that for graphs G

that are themselves ϕ expanders [47]. Consider the following sampling procedure: the
graph Gϕ,δ is obtained by taking each edge e = {u, v} ∈ E with probability at least
pe ≥ min

{
1,

(
1

deg(u) + 1
deg(v)

)
· O

(
log2 n
δ2ϕ2

)}
and weight 1

pe
. By Spielman and Teng [47],

Gϕ,δ is sparsifier w.h.p.:

▶ Lemma 11 ([47]). Let G = (V, E) be a ϕ-expander, then with probability 1 − nΩ(1), Gϕ,δ

is 1 + δ spectral sparsifier, and thus cut sparsifier of G.

A key observation is that if we were to apply this procedure to G{C} for some cluster C,
the sampling probabilities of each non-loop edge would remain the same since the degrees
of vertices are unchanged. Because of that, with some additional work, one can show that
H{C} is a (1 + δ)-cut sparsifier of G{C} for each C ∈ C with high probability.

Intuition behind power cut sparsifiers

But how to adopt this approach to the case where G is not an expander? We observe that
for our purposes we can allow a small additive error in cut size estimation in terms of the
volume of the cut. Namely, suppose that we have a sparsifier H with the following guarantee:
for any partition C of V with high probability for any cut ∅ ⊊ S ⊊ V ,

(1 − δ) · wG{C}(S, S̄) − ϵ · Vol(S) ≤ wH{C}(S, S̄) ≤ (1 + δ) · wG{C}(S, S̄) + ϵ · Vol(S).

See Definition 3. This sparsifier is suitable for checking whether each G{C} is an expander,
since this guarantee implies the following guarantee for expansion of the cut S:

(1 − Θ(δ))ΦG{C}(S) − Θ(ϵ) ≤ ΦH{C} ≤ (1 + Θ(δ))ΦG{C}(S) + Θ(ϵ).

Since we only want to check whether the expansion is bigger than ϕ with constant
precision, it is enough for δ to be a small constant and ϵ = O(ϕ). It turns out that we can
construct such a sparsifier, which we call a power cut sparsifier, by sampling each edge with
probability pe ≥ min

{
1,

(
1

deg(u) + 1
deg(v)

)
· O

(
log2 n

δϵ

)}
. This results in the sparsifier having

size O
(

n log2 n
δϵ

)
, featuring only linear dependance on 1/ϵ. This dependance is optimal, as

we show in Theorem 5.

Showing correctness

Our proof that such a sampling scheme indeed produces a power cut sparsifier is based on
the idea of decomposing cuts into d-projections, introduced by Fung et al. [26]. While [26]
work with sampling probabilities based on edge connectivities, in our case the probabilities
only depend on the degrees of the vertices. We define the d-projection of a cut S to be the
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subset of edges of E(S, S̄) who’s both endpoint have degree at least d, and show that the
overall number of distinct d-projections is polynomially bounded. The rest of the proof is
standard: we show that the value of each d-projection is preserved with high probability by
using an multiplicative-additive version of Chernoff bound, and then take a union bound
over all projections.

2.2 Constructing an expander decomposition
Naive approach

Having seen that we can verify an expander decomposition using a power cut sparsifier, a
question arises: can we construct an expander decomposition provided with only power cut
sparsifiers? A natural approach would be to construct a decomposition of the sparsifier using
one of the existing methods and then to claim that it is also a decomposition of the original
graph. Unfortunately, this plan is flawed, because the resulting decomposition would depend
on the used power cut sparsifier, which violates the implicit assumption that the partition
C is chosen independently from the sparsifier. Hence we cannot claim that the produced
clustering is an expander decomposition. One can attempt to verify that using a fresh copy
of the power cut sparsifier. However, if the verification fails were are back at square one.

Recursive approach

To explain our algorithm let’s first examine the classical recursive approach to expander
decomposition construction [48]. The simplest version is as follows: find a sparse cut S, make
this cut and then recurse on both sides S, V \ S. As we have seen, we cannot run all if those
steps on one sparsifier, so we would use a fresh power cut sparsifier for each level of recursion.

Apriori, one of the sides of the sparse cut might be very small, implying that the recursion
depth of this algorithm might be even of linear size, resulting in a quadratic space requirement
overall. Instead, we employ a classic approach of Spielman and Teng [48]. The idea is to use
a balanced sparse cut procedure to find a balanced sparse cut in the sparsifier, i.e. a cut
that is sparse and both sides of which have approximately the same volume. If we use this
procedure instead of just finding an arbitrary sparse cut, we can guarantee that the recursion
depth is only logarithmic. However, there are a couple caveats that we discuss next.

Balanced sparse cut procedure

A balanced sparse cut procedure typically takes the sparsity ϕ as an input and has three
possible outcomes:

It declares that the graph is a O(ϕ)-expander.
It finds a balanced O(ϕ)-sparse cut. A cut is balanced if both of its sides have approxim-
ately the same size.
It finds an unbalanced O(ϕ)-sparse cut, but gives some kind of guarantee on the largest
side of the cut. For example, it may guarantee that it is a O(ϕ)-expander.

If one uses it in the recursive algorithm outlined above, first outcome means that we can
stop recursing on the graph. The second means that the cut we make is balanced, so we
make the cut and recurse. Finally, in the last outcome because the bigger side of the cut is
O(ϕ)-expander, we can recurse only on the smaller side of the cut. This means that when we
recurse, the volume of the part that we recurse on always decreases by a constant fraction,
so the depth of the recursion is at most logarithmic.
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In our case, we run it on a sparsifier H and are interested in implications for the original
graph G. The first two outcomes translate from a sparsifier to the original graph with only a
small error, as they both concern only the cuts in the graph. The last outcome suffers the
most: it concern the cut structure of some subgraph H{C} of H. But because the choice
of C is dependent on H, we cannot guarantee that H{C} is a sparsifier of G{C}. Hence
the guarantee that H{C} is an expander only translates into the guarantee that G{C} is a
near-expander, which is a much weaker guarantee. This motivates us to consider an expander
decomposition that uses a version of balanced sparse cut procedure with a relatively weak
third guarantee, but one which survives this transition. We opt to adopt the approach of
Chang and Saranurak [15].

Two phase approach

The weak third guarantee makes bounding the depth of the recursion difficult. That is why
the algorithm is split into two phases. The first phase is recursive: given a vertex set C, we
run the most balanced sparse cut procedure on sparsifier H{C}. If it declares that it is an
expander, then the graph G{C} is also an expander and we terminate. If there is a balanced
sparse cut S, we make this cut and recurse on vertex sets S and S̄ with a fresh sparsifier.
Otherwise, if the cut is more than O(ϕ) unbalanced we execute second phase on C.

The idea behind the second phase is that if G{C} doesn’t have a O(ϕ)-balanced sparse
cut for sparsity ϕ, then if we were to successively make cuts of sparsity less than ϕ, we could
not cut more than O(ϕ) fraction of the total volume of C. Because we have a small error
in approximating the cut size and, therefore, the cut sparsity, due to the sparsifier usage,
we decrease the sparsity of the cut that we are looking for by multiplying it by a close to 1
constant c < 1 to mitigate that error. Furthermore, we divide the required cut balancedness
by a constant. We use the balanced sparse cut procedure with sparsity cϕ and continue in
the same manner as in phase one, except that if there is a balanced sparse cut, we split the
smaller side of the cut into singletons and continue with the larger. Finally, when we find an
unbalanced cut, we use the same argument and decrease ϕ and balancedness even further.
Eventually, the balancedness threshold becomes so small that all cuts are trivially balanced,
and thus the algorithm halts and declare the cluster to be an expander.

2.3 Distance Oracle
We construct a distance oracle for G = (V, E) by constructing a t-emulator, which is a graph
H = (V, E, wH) preserving all distances in G up to a t factor. Emulator is a similar notion to
spanner (defined in Section 1.3) but without the requirement of being a subgraph. The key
fact we use is that every ϕ-expander has diameter at most ∆ = O( log n

ϕ ). Each (unweighted)
graph of diameter ∆ admits a 2∆-emulator of linear size (simply take an arbitrary center x,
and add edges from x to all other vertices of weight ∆). Thus, given a graph G = (V, E)
with m edges in a streaming fashion, we can first produce an (ϵ, ϕ)-expander decomposition
C, construct an O( log n

ϕ ) = O( log2 n
ϵ )-emulator HC for each cluster C ∈ C, and use sparse

recovery to recover the set EC of ϵ · m inter cluster edges. The graph H = EC ∪
⋃

C∈C HC

will be an O( log2 n
ϵ )-emulator, while the required space is Õ( n

ϵ2 + ϵm), which might be larger
than our budget S (for every choice of ϵ).

To overcome this issue we construct an expander hierarchy. That is after constructing
the (ϵ, ϕ)-expander decomposition C, we obtain a new graph G2 by “contracting” all the
expanders in C into super nodes, and keeping only the inter cluster edges. A key property
is that given a linear sketch for G, we can transform it into a linear sketch for G2 without
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knowing C in advance. We then create expander decomposition for G2, and continue in this
manner in creating super graphs G3, . . . , Gk. It holds that the number of edges in Gk is
bounded by ϵk−1 · m, while the diameter (w.r.t. G) of each cluster in the k’th expander
decomposition is bounded by O( log2 n

ϵ )k. Picking the right parameters ϵ, k we can recover all
the edges in Gk and obtain the desired emulator.
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and its pseudoinverse. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 2487–2503. SIAM, 2018. doi:10.1137/1.9781611975031.159.

33 Ravi Kannan, Santosh S. Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
J. ACM, 51(3):497–515, 2004. doi:10.1145/990308.990313.

34 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 561–570. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.66.

35 Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri,
Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic
streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1814–1833.
SIAM, 2020. doi:10.1137/1.9781611975994.111.

36 Michael Kapralov and David P. Woodruff. Spanners and sparsifiers in dynamic streams. In
ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July
15-18, 2014, pages 272–281, 2014. doi:10.1145/2611462.2611497.

37 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1–4:50, 2019. doi:10.1145/3274663.

38 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 217–226. SIAM, 2014. doi:10.1137/1.9781611973402.16.

39 Jason Li and Thatchaphol Saranurak. Deterministic weighted expander decomposition in
almost-linear time. CoRR, abs/2106.01567, 2021. arXiv:2106.01567.

40 Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, 2014.
ICALP2004. doi:10.1145/2627692.2627694.

https://doi.org/10.1137/16M1091666
https://doi.org/10.1137/16M1091666
https://doi.org/10.1145/3087801.3087827
https://doi.org/10.1007/s004930050060
https://doi.org/10.1137/1.9781611976465.132
https://doi.org/10.1145/2745754.2745763
https://doi.org/10.1145/3519935.3520026
https://doi.org/10.1137/1.9781611975031.159
https://doi.org/10.1145/990308.990313
https://doi.org/10.1109/FOCS.2014.66
https://doi.org/10.1137/1.9781611975994.111
https://doi.org/10.1145/2611462.2611497
https://doi.org/10.1145/3274663
https://doi.org/10.1137/1.9781611973402.16
http://arxiv.org/abs/2106.01567
https://doi.org/10.1145/2627692.2627694


A. Filtser, M. Kapralov, and M. Makarov 50:13

41 Andrew McGregor. Graph sketching and streaming: New approaches for analyzing massive
graphs. In Pascal Weil, editor, Computer Science - Theory and Applications - 12th Interna-
tional Computer Science Symposium in Russia, CSR 2017, Kazan, Russia, June 8-12, 2017,
Proceedings, volume 10304 of Lecture Notes in Computer Science, pages 20–24. Springer, 2017.
doi:10.1007/978-3-319-58747-9_4.

42 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case
update time: adaptive, las vegas, and o(n1/2 - ϵ)-time. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1122–1129.
ACM, 2017. doi:10.1145/3055399.3055447.

43 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 950–961. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.92.

44 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 755–764.
ACM, 2010. doi:10.1145/1806689.1806792.

45 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 2616–2635. SIAM, 2019. doi:10.1137/1.9781611975482.162.

46 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In László Babai, editor, Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
pages 81–90. ACM, 2004. doi:10.1145/1007352.1007372.

47 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, 2011. doi:10.1137/08074489X.

48 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and
its application to nearly linear time graph partitioning. SIAM J. Comput., 42(1):1–26, 2013.
doi:10.1137/080744888.

49 Luca Trevisan. Approximation algorithms for unique games. Theory Comput., 4(1):111–128,
2008. doi:10.4086/toc.2008.v004a005.

50 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1130–1143. ACM, 2017. doi:10.1145/3055399.3055415.

ITCS 2023

https://doi.org/10.1007/978-3-319-58747-9_4
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1137/1.9781611975482.162
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1137/08074489X
https://doi.org/10.1137/080744888
https://doi.org/10.4086/toc.2008.v004a005
https://doi.org/10.1145/3055399.3055415




On Flipping the Fréchet Distance
Omrit Filtser !

The Open University of Israel, Ra’anana, Israel

Mayank Goswami !

Queens College CUNY, Flushing, NY, USA

Joseph S. B. Mitchell !

Stony Brook University, NY, USA

Valentin Polishchuk !

Linköping University, Sweden

Abstract
The classical and extensively-studied Fréchet distance between two curves is defined as an inf max,
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51:2 On Flipping the Fréchet Distance

1 Introduction

The classical Fréchet distance between two curves P and Q is defined as the minimum length
of a leash required for a person to walk their dog, with the person and the dog traversing
P and Q from start to finish, respectively. Inspired by the challenge of maintaining social
distancing among groups and individuals, we consider the question of developing a notion
opposite to the Fréchet distance, where instead of keeping the agents close (short leash), we
keep them as far apart as possible.

In this paper we propose a new measure, called the Flipped Fréchet measure, to capture
the amount of social distancing possible while traversing two curves. While Fréchet distance
is defined as an inf max, where the infimum is over all traversals of the curves, and the
maximum is over all concurrent positions of the two agents, the flipped Fréchet measure1 is
defined as a sup min – the supremum is over all traversals of the curves, and the minimum is
over all concurrent positions of the two agents. How efficiently can this measure be computed,
for curves in one or two dimensions? What if the two agents are walking on edges of a graph,
which may or may not be embedded in the plane? Such questions have been considered for
Fréchet distance, and in this paper we initiate their study for the flipped Fréchet measure.

We refer to the two agents as “Red” and “Blue” henceforth. Considering the social
distancing problem further, what if Blue is not restricted to move along some given curve;
rather, it can choose its own path? We now start arriving at a class of problems that have no
analogues in the Fréchet version. Of course, if Blue had no restrictions at all, it could just
go to infinity and thus be far from Red (on any path). It therefore makes sense to restrict
the domain for Blue, e.g. to a simple polygon P in which Red is traveling, and measure
separation using geodesic distance in P . We consider questions regarding the complexity
of calculating a strategy for Blue to stay away from Red, when Red is traveling on a given
path, which may or not be a geodesic in P .

An architect designing spaces within a building is faced with choices about the shapes of
these spaces, where one must choose, say, between two polygons P and Q where agents will
move, in hopes to maximize the potential for social distancing. In order to do so, it would
be useful to have a notion of a “social distancing width” of a polygon, that captures the
difficulty or ease with which two agents can move around in a polygon while maintaining
separation. Consider a simple polygon P where the Red agent is on a mission to follow
a path, e.g. to traverse the boundary of P , while the Blue agent moves within P (with a
starting point of Blue’s choice), in order to maximize the minimum Red-Blue distance. We
define the social distance width (SDW for short) of a polygon P to be the minimum Red-Blue
distance that can be maintained throughout the movement, maximized over all possible
movement strategies, and study algorithms to compute the SDW of a polygon.

For all of the above problems, in addition to developing algorithms for the general versions,
we also consider special scenarios which facilitate faster algorithms; for example, while our
algorithm for computing the SDW for general polygons runs in quadratic time, we show that
for skinny polygons (or a tree), one can compute the SDW in linear time.

Although this article mostly considers the above problems in the case of k = 2 agents, in
general one may be given k agents and k associated domains. Each agent is restricted to
move only within its respective domain, and at least one of the agents has some mission,
e.g., to move from a given start point to a given end point, or to traverse a given path inside
the domain. In addition, the domains may be shared or distinct, and different agents may

1 One observes that this measure is not a metric/distance as it does not satisfy the triangle inequality.



O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:3

have different speeds. The goal is to find a movement strategy for all the agents, such that
the minimum pairwise distance between the agents at any time is maximized. Additionally,
one may seek to minimize the time necessary to complete one or more missions.

This new class of problems is different from the usual motion planning problems between
robots, or disjoint disks, in some fundamental aspects. Most, if not all, literature on robot
motion planning assumes robots are cooperating on some task. One then considers optimizing
objectives like makespan, or total distance travelled, etc. However, the kind of movement we
consider is far from cooperative – in fact, some agents may not care about social distancing,
while others do. Some may be “on a mission” while others are just trying to maintain a
safe distance. In addition, different agents may have different starting times and deadlines.
Furthermore, as mentioned above, one also encounters design problems, where one may want
to configure a layout of a building, a floor plan, or designate rules for traffic flow, in order to
facilitate social distancing.

Related Work. The Fréchet distance is an extensively investigated distance measure for
curves, starting with the early work of Alt and Godau [2] in ’95. There is a quadratic-time
algorithm for computing it [12, 2], and it was recently shown [5] that under the Strong
Exponential Time Hypothesis (SETH), no subquadratic algorithm exists, not even in one
dimension [6]. Moreover, under SETH, no subquadratic algorithm exists for approximating
the Fréchet distance within a factor of 3 [7].

The problem of coordinating collision-free motion of two agents traveling on polygonal
curves was considered already in ’89 by O‘Donnell and Lozano-Perez [18], in the context of
robot manipulators. Assuming some additional restrictions on the movements of the agents
(e.g. robots are not allowed to simultaneously traverse segments that are too close), they
give an O(n2 log n) algorithm for minimizing the completion time.

There is an extensive literature on related problems of motion planning in robotics.
Perhaps most closely related to our work is that of coordinated motion planning of 2 or more
disks; see [10], on nearly optimal (in terms of lengths of motions) rearrangements of multiple
unit disks and the related work of [16]. (In our problems, instead of minimizing length of
motion for given radius disks, we seek to maximize the radii.)

The problem of computing safe paths for multiple speed-bounded mobile agents that must
maintain separation standards arises in air traffic management (ATM) and Aircraft/Train
Scheduling applications. [3] studied the problem of computing a large number of “thick paths”
for multiple speed-bounded agents, from a source region to a sink region, where the thickness
of a path models the separation standard between agents, and the objectives are to obey speed
bounds, maintain separation, and maximize throughput. In the Aircraft/Train Scheduling
problem (see [10, 21, 20]), given a set of paths on which the agents travel, and a separation
parameter, the goal is to find a collision-free motion of the agents while minimizing the time
of completion. (In our problems, we are not maximizing a “throughput” or makespan; rather,
we maximize a separation standard, for a given set of agents.)

In the maximum dispersion problem, the goal is to place n (static) points within a domain
P in order to maximize the minimum distance between two points. (Optionally, one may also
seek to keep points away from the boundary of P .) An optimal solution provides maximum
social distancing for a set of static agents, who stand at the points, without moving. Constant
factor approximation algorithms are known [4, 13]. (The problem is also closely related to
geometric packing problems, which is a subfield in itself.) In robotics, the problem of motion
planning in order to achieve well dispersed agents has also been studied: move a swarm of
robots, through “doorways”, into a geometric domain, in order to achieve a set of agents
well dispersed throughout the domain. Such movements can be accomplished [17] using local
strategies that are provably competitive.

ITCS 2023
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In the adversarial setting, in which one or more agents is attempting to move in order to
avoid (evade) a pursuer, there is considerable work on pursuit-evasion in geometric domains
(e.g., the “lion and man” problem); see the survey [8].

Our results. In this paper, we (mostly) consider the case of k = 2, i.e., two agents, “Red”
and “Blue”, that move inside their given domains. Further, in this paper, unless stated
otherwise, we do not consider speed to be a limiting factor; e.g., when Blue moves in order
to maintain distance from Red, we assume that Blue can move at a sufficient speed.

We begin by considering the scenario in which the two domains are polygonal curves R

and B. The agents’ missions are to traverse their respective curves, from the start point to
the end point, in order to maximize the minimum distance between the agents. The Flipped
Fréchet measure between the two curves is the maximum separation that can be maintained.
In Section 2 we consider both the continuous case (agents move continuously along the edges
of their curves), and the discrete case (agents “jump” between consecutive vertices of their
curves). We first show that the Flipped Fréchet measure between two n-vertex curves in
one dimension (1D) can be computed in near-linear time. This is in sharp contrast with
continuous Fréchet distance, which has quadratic conditional (SETH-based) lower bounds
in 1D [7]. We then develop quadratic or near-quadratic time algorithms for computation
of discrete Flipped Fréchet measure in 1D and 2D, and for 2D continuous Flipped Fréchet
measure. We also complement our quadratic-time algorithms with conditional lower bounds
(conditioned on the Orthogonal vectors (OV) problem), even for approximation: we give a
quadratic conditional lower bound on approximating SDW for curves in 2D up to a factor
better than

√
5

2
√

2 , and a quadratic conditional lower bound on approximating discrete SDW
for curves in 1D, with a factor better than 2

3 .
We then restrict the domain for Blue to a simple polygon P , and measure separation

using geodesic distance in P . In Section 3 we consider several versions. In the first, the
Red agent has a mission to walk along a given path inside the polygon. The Blue agent
must stay as far as possible from Red, and the only restriction is to move inside P . This is
related to the motion planning problem in which we are given a set of disjoint bodies (e.g.,
disks), and we seek a motion plan that allows them to remain disjoint while each moves to a
destination. We give a quadratic time algorithm for this problem. We then show that under
the reasonable assumption that Red moves on a geodesic, one can compute a strategy for
Blue in near linear time.

Next, we consider a simple polygon P where the Red agent is on a mission to traverse
the boundary of P , while the Blue agent moves within P (with a starting point of Blue’s
choice), in order to maximize the minimum Red-Blue distance. We define the social distance
width (SDW for short) of a polygon P to be the minimum Red-Blue distance that can be
maintained throughout the movement, maximized over all possible movement strategies. We
develop quadratic time algorithm to compute the SDW of a polygon, but show that when
P is a skinny polygon (a tree), a strategy for Blue can be computed in linear time. Due to
space constraints, we place our results on agents walking on a graph (which may or may
not be embedded in the plane), and on defining and computing the social distance width of
geometric graphs, in the appendix.

2 Flipped Fréchet measure on polygonal curves

In this section the domains of Red and Blue are two polygonal curves R and B, respectively.
We begin by giving some basic definitions; then, we describe tools that were used in classic
algorithms for Fréchet distance and the relation to the social distancing problem for curves.
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A polygonal curve P in Rd is a continuous function P : [1, n] → Rd, such that for any
integer 1 ≤ i ≤ n − 1 the restriction of P to the interval [i, i + 1] forms a line segment.
We call the points P [1], P [2], . . . , P [n] the vertices of P , and say that n is the length of P .
For any real numbers α, β ∈ [1, n], α ≤ β, we denote by P [α, β] the restriction of P to the
interval [α, β]. Then, for any integer 1 ≤ i ≤ n − 1, P [i, i + 1] is an edge of P . A continuous,
non-decreasing, surjective function f : [0, 1] → [1, n] is called a traversal of P .

Let P : [1, n] → Rd and Q : [1, m] → Rd be two polygonal curves. A traversal of P and Q

is a pair τ = (f, g), with f : [0, 1] → [1, n] a traversal of P , g : [0, 1] → [1, m] a traversal of Q.

▶ Definition 1 (Flipped Fréchet Measure). The Flipped Fréchet measure (FF) of P and Q is
FF(P, Q) = sup

τ=(f,g)
min

t∈[0,1]
∥P (f(t)) − Q(g(t))∥.

Note that the well-studied Fréchet distance between P and Q is
infτ=(f,g) maxt∈[0,1] ∥P (f(t)) − Q(g(t))∥, where τ is a traversal of P and Q.

The discrete case. When considering discrete polygonal curves, we simply define a polygonal
curve P as a sequence of n points in Rd. We denote by P [1], . . . , P [n] the vertices of P , and
for any 1 ≤ i ≤ j ≤ n let P [i, j] = (P [i], P [i + 1], . . . , P [j]) be a subcurve of P .

Consider two sequences of points P, Q of length n and m, respectively. A traversal τ of
P and Q is a sequence, (i1, j1), . . . , (it, jt), of pairs of indices such that i1 = j1 = 1, it = n,
jt = m, and for any pair (i, j) it holds that the next pair is (i, j + 1), (i+ 1, j), or (i+ 1, j + 1).

▶ Definition 2 (Discrete Flipped Fréchet Measure). The discrete Flipped Fréchet measure
(dFF) of P and Q is dFF(P, Q) = max

τ
min

(i,j)∈τ
∥P [i] − Q[j]∥.

Notice that unlike in the continuous case, the distances between the agents are only
calculated at the vertices of the polygonal curves.

The discrete Fréchet distance (DFD) between P and Q is minτ max(i,j)∈τ ∥P [i] − Q[j]∥,
and it can be computed in O(nm) time [12] using a simple dynamic programming algorithm.

From now on, we assume for simplicity that both curves R and B have length n; however,
our algorithms and proofs can be easily adapted to the general case of m ̸= n.

We give (Section 2.1) a near-linear algorithm to compute the continuous FF measure in 1D,
demonstrating that “flipping” the objective function makes this setting easier: for continuous
Fréchet there exist conditional quadratic lower bounds [6, 7]. We give quadratic algorithms
and then conditional lower bounds (Sections 2.2 and 2.3) for computing or approximating
other variants (1D discrete, 2D continuous and discrete) of FF measure, specifically:

a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH),
on approximating FF measure for curves in 2D, with approximation factor

√
5

2
√

2 .
a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH),
on approximating dFF measure for 1D curves, with approximation factor 2

3 .

2.1 A near linear time algorithm for FF in 1D
Consider the decision version of (continuous) FF in 1D: Given two paths, R and B, on the
x-axis, each specified by n points, we are to determine if it is possible to find a traversal of
the two paths so that Red and Blue maintain separation larger than δ during their traversals.
We assume, w.l.o.g., that R[1] < B[1]. We can also assume that B[1] − R[1] > δ, as otherwise
we can simply return NO. Notice that it suffices to consider the problem of maintaining
separation at least 0 between R and a shifted (by δ) copy of B; we seek to determine if
FF(B, R) > 0. Let bmax be the rightmost point of B and let rmin be the leftmost point of R.

ITCS 2023
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▶ Lemma 3. If FF(B, R) > 0, then:
(i) All of R must be to the left of bmax, and all of B must be to the right of rmin.
(ii) While Blue is at bmax, any subpath of R can be traversed by Red. While Red is at rmin,

any subpath of B can be traversed by Blue.
(iii) There exists a traversal achieving FF(B, R) > 0 such that at some point Blue is at bmax

and Red is at rmin.

Proof. (i) holds by continuity: if R has a point to the right of bmax, Red must cross Blue
before getting to that point. The claim for B is symmetric. (ii) then follows from (i).

For (iii), consider a traversal τ , and assume that Blue reaches bmax before Red reached
rmin. Let r′ be the location of Red when Blue is at bmax; r′ does not have to be a vertex of
R, but in any case r′ precedes rmin along R. Let b′ ∈ B be Blue’s location at the time Red
reaches rmin (b′ is after bmax). By (ii), while Blue is at bmax, Red can go from r′ to rmin – so
(bmax, rmin) becomes part of the traversal. Again by (ii), while Red is at rmin, Blue can go
from bmax to b′. From (b′, rmin), Blue and Red can follow τ to complete the traversal. ◀

Lemma 3 allows us to assume, w.l.o.g., that bmax and rmin are the first points of B and
R, respectively (i.e., B[1] = bmax, R[1] = rmin): for arbitrary B, R we can separately solve
the problem for the subpaths of Blue from bmax to B[n] and Red from rmin to R[n], and the
problem for the (reversed) subpaths of Blue from bmax to B[1] and Red from rmin to R[1].

Let bmin (resp., rmax) be the leftmost (resp., rightmost) x-coordinate of B (resp., R). If
bmin ≤ R[1], or rmax ≥ B[1], then by Lemma 3 (i) we get FF(B, R) = 0. In addition, if
bmin > rmax, then we see that FF(B, R) > 0, since the x-coordinates of the paths do not
overlap. We are thus left with the case in which R[1] < bmin ≤ rmax < B[1] (see Figure 1).
If B[n] > rmax, then a feasible traversal has Red remain at R[1] while Blue traverses B

from B[1] to B[n], after which Red can traverse R from R[1] to R[n]. Thus, assume that
B[n] ≤ rmax; this is the case shown in the figure.

Let B+ be the last vertex on the Blue path such that B+ > rmax. Notice that such a
vertex always exists because B[1] > rmax. Let R− be the leftmost vertex on the Red path
after it visits rmax for the last time.

R(1) B(1)bmin rmax

R−

B[n]R[n]

B+

time

x

Figure 1 Determining if SDW (B, R) > 0: viewing the traversals of the Red and Blue paths, R

and B, in space-time.

▶ Lemma 4. If FF(R, B) > 0, then there exist a traversal achieving FF(R, B) > 0 such that
at some point Blue is at B+ and Red is at R−.
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Proof. Consider a traversal τ ′ where Blue traverses the path from B[1] to B+ while Red is
at R[1], then Red traverses the path from R[1] to R− while Blue is at B+. Such a traversal
is always possible because B+ is to the right of rmax. Now consider a traversal τ achieving
FF(R, B) > 0. We show how to complete τ ′ to a traversal achieving FF(R, B) > 0.

If in τ Red visits R− before Blue visits B+, then let r1 be the location of Red when Blue
is at B+. Since B+ is to the right of rmax, in τ ′ we can have Red traverse the path from R−

to r1 while Blue is at B+. Then, continue as in τ to complete the traversal.
Else, in τ Blue visits B+ before Red visits R−. Let b1 be the location of Blue when Red

is at R−, and let b2 be the location of Blue when Red is at rmax in the traversal τ . In τ ,
Blue traverses the subpath from b2 to b1 while Red traverses the subpath from rmax to R−.
Now, since R− is the leftmost point on the subpath from rmax to R−, Blue can traverse the
subpath from b2 to b1 while Red is at R−. Notice that b2 either precedes B+, or it is on the
edge incident to B+. Therefore, in τ ′ we can have Blue traverse the subpath from B+ to b1
while Red is at R−. Again we continue as in τ to complete the traversal. ◀

By the above lemma, we can simply use the following traversal: Blue traverses B from
B[1] to B+ while Red is at R[1]. Then Red traverses R from R[1] to R− while Blue is at
B+. The situation now is: Blue is at B+ and the subpath of Blue starting at B+ is entirely
to the left of B+ (because B[n] ≤ rmax); Red is at R− and the subpath of Red starting at
R− is entirely to the right of R−. Also note that R− is not the first vertex of R. We are
thus back to our initial conditions, and can apply the algorithm recursively. More formally,
consider the following recursive algorithm. Given two curves R, B such that R[1] ≤ B[1],
rmin = R[1] is the leftmost point in R and bmax = B[1] is the rightmost point in B:
1. Find bmin and rmax.
2. If bmin ≤ R[1] or rmax ≥ B[1], return NO.
3. If bmin > rmax or B[n] > rmax, return YES.
4. Else, find B+ and R−. Recurse with B+, . . . , B[n] and R−, . . . , R[n].

Running time. We begin with a preprocessing step, where we sort the vertices of R and B.
For the decision algorithm, given a value δ, we merge the sorted lists of R and B − δ in linear
time. Then, we can compute in linear time: (i) The leftmost and rightmost vertices that
follow each vertex of the curve (this can be done in a single scan of the curve). (ii) For each
vertex r of R, the last vertex of B that is located to the right of r. In each recursive step
of the algorithm, we can compute the points bmin, rmax, B+, and R−, in linear time. Thus,
the total running time for the decision procedure is O(n). For the optimization (finding the
maximum δ that allows separation), we note that the maximum separation is achieved when
Red and Blue are on vertices, because otherwise, their distance can increase by having one of
them wait on a vertex. Thus, for finding the maximum possible δ, we can do a binary search
among the O(n2) different distances, using distance selection at each step in O(n log n) time.
The distance selection algorithm stores all O(n2) distances implicitly in a sorted matrix, and
then applies the sorted matrix selection algorithm of [14] in O(n log n) time.

▶ Theorem 5. Given two polygonal curves P, Q of length n in 1D, their social distance width,
FF(P, Q), can be computed in O(n log2 n) time.

2.2 Quadratic time algorithms
In this section we describe algorithms for computing continuous and discrete FF(R, B);
the algorithms are based on similar algorithms for computing the continuous and discrete
Fréchet distances, in times O(n2 log n) and O(n2), respectively. As with Fréchet distance,
our algorithms use the notion of a free-space diagram, appropriately adapted.
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The free space diagram. The δ-free space diagram [2] of two curves P and Q represents
all possible traversals of P and Q with Fréchet distance at most δ. We adapt this notion to
our new setting.

Let Cij = [i, i + 1] × [j, j + 1] be a unit square in the plane, for integers 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ m − 1. Let B = [1, n] × [1, m] be the square in the plane that is the union of the
squares Cij . Given δ > 0, the δ-free space is Fδ = {(p, q) ∈ B | ∥P (p) − Q(q)∥ ≥ δ}. In other
words, it is the set of all red-blue positions for which the distance between the agents is at
least δ. A point (p, q) ∈ Fδ is a free point, and the set of non-free points (or forbidden points)
is then B \ Fδ. Note that for Fréchet distance, these definitions are reversed (“flipped”).
We call the squares Cij the cells of the free space diagram; each cell may contain both free
and forbidden points. An important property of the free space diagram is that the set of
forbidden points inside a cell Cij (i.e., Cij ∩ Fδ) is convex [2].

δ

Cij

Figure 2 Right: a free space cell Cij . For FF, the free space is white, while for Fréchet distance,
the free-space is gray. The gray region within a cell is convex. Left: the free space diagram of two
curves. The black points and dashed lines indicate critical values of type (iii), which are openings in
the free space diagram defined by two red edges and one blue edge.

Notice that a monotone path through the free space Fδ between two free points (p, q)
and (p′, q′) corresponds to a traversal of P [p, p′] and Q[q, q′]. Thus, FF(P, Q) ≥ δ if and
only if there exists a monotone path through the free space Fδ between (0, 0) and (n, n) (i.e.
(n, n) is “reachable” from (0, 0)). The Fréchet distance between P and Q can be computed
in O(n2 log n) time [2] as follows. For a given value of δ, the reachability diagram is defined
to be the set of points in Fδ reachable from (0, 0). As the set of free points in each cell is
convex, the set of “reachable” points on each of the boundary edges of a cell is a line segment.
Thus, one can construct in constant time the reachable boundary points of a cell, given the
reachable boundary points of its bottom and left neighbor cells (see Figure 2). Therefore,
computing the reachability diagram (and hence solving the decision version of the problem)
takes O(n2) time using a dynamic programming algorithm. For the optimization, there are
O(n3) critical values of δ, which are defined by (i) the distances between starting points and
endpoints of the curves, (ii) the distances between vertices of one curve and edges of the
other, and (iii) the common distance of two vertices of one curve to the intersection point of
the bisector with some edge of the other. Then, parametric search, based on sorting, can
be performed in time O((n2 + Tdec) log n), where Tdec is the running time for the decision
algorithm.

In the case of FF, we can again compute the reachability diagram in O(n2) time, as in
each cell the set of forbidden points is convex, and thus the set of “reachable” points on each
of the boundary edges of a cell is at most two line segments. The set of critical values is
similar, except that the third type can occur between three edges (see Figure 2, left). Thus,
by arguments similar to [2], we have a O(n2 log n) time algorithm for computing FF(P, Q).
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▶ Theorem 6. There is an O(dn2 log n) time exact algorithm for computing the Flipped
Fréchet measure of two polygonal n-vertex curves in Rd.

For the discrete version of FF, a simple dynamic programming algorithm (similar to the
one known for discrete Fréchet distance) gives an O(n2) solution. In short, let OPT [i, j]
be the FF of P [1, i] and Q[1, j]; then, by the definition of dFF we have OPT [i, j] =
min{∥P [i] − Q[j]∥, max{OPT [i − 1, j], OPT [i, j − 1], OPT [i − 1, j − 1]}}.

▶ Theorem 7. There exists an O(dn2) time exact algorithm for computing the dFF measure
of two polygonal n-vertex curves in Rd.

2.3 Quadratic lower bounds
Bringmann and Mulzer [6] give a lower bound (conditioned on SETH) for computing the
discrete Fréchet distance between two curves in 1D, using a reduction from the Orthogonal
Vectors (OV) problem. We prove similar results below for FF in 2D and dFF in 1D.

The Orthogonal Vectors problem is defined as follows. Given two sets U = {u1 . . . uN }
and V = {v1 . . . vN }, each consisting of N vectors in {0, 1}D, decide whether there are
ui ∈ U, vj ∈ V orthogonal to each other, i.e., ui(k) · vj(k) = 0 for every k = 1, . . . , D (where
ui(k) denotes the kth coordinate of ui). Bringmann and Mulzer [6] showed that if OV has
an algorithm with running time DO(1) · N2−ε for some ε > 0, then SETH fails.

In the following, by an algorithm with approximation factor α < 1 we mean an algorithm
that outputs a traversal whose maintained separation distance is at least α times the FF,
given by an optimal traversal.

In Theorem 8 we show that for continuous FF, increasing the dimension from 1D (where
we gave a near-linear-time algorithm) to 2D likely rules out subquadratic algorithms. Then,
in Theorem 9 we show a quadratic lower bound for the discrete version in 1D.

▶ Theorem 8 (FF Lower Bound in 2D). There is no algorithm that computes the FF measure
between two polygonal curves of length n in the plane, up to an approximation factor at least√

5
2

√
2 , and runs in time O(n2−δ) time for any δ > 0, unless OV fails.

Proof. Set α =
√

5
2

√
2 ≈ 0.79. Given an instance U = {u1 . . . uN }, V = {v1 . . . vN } of OV, we

show how to construct two curves R and B of length O(N · D) in the plane, such that if
U × V contains an orthogonal pair then FF(R, B) ≥ 1, and if U × V does not contain an
orthogonal pair then FF(R, B) ≤ α. Therefore, if there exists an algorithm with running
time O(n2−ε) for computing FF of two curves of length n in the plane, then FF(R, B) can
be computed in O((DN)2−ε), which means that OV can be decided in DO(1) · N2−ε time,
and SETH fails. Moreover, if FF can be approximated up to a factor of α, then again we get
that OV can be decided in DO(1) · N2−ε time, and SETH fails. As in [6], we assume that D

is even (otherwise add a 0 coordinate to each vector).
The construction of R (resp. B) is such that for each vector ui ∈ U (resp. vj ∈ V ), we

construct a vector gadget curve Ai (resp. Bj), such that if ui and vj are orthogonal then
FF(Ai, Bj) = 1, and otherwise FF(Ai, Bj) ≤ α. Then, we connect the vector gadgets into
curves R and B.

Consider the following set of points (see Figure 3):
Points on the x-axis: x = (−1.5, 0), r = (−0.75, 0), r′ = (−0.5, 0), b = (0.25, 0),
b′ = (0.5, 0)
Points on the y-axis: cu

0 = −cd
0 = (0, 0.75), cu

1 = −cd
1 = (0, 0.25), u = −d = (0, 0.5)

Octagon points: p1 = −p5 = (0.25, 0.5), p2 = −p6 = (0.5, 0.25), p3 = −p7 = (0.5, −0.25),
p4 = −p8 = (0.25, −0.5)
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Other points: s1 = (1, 0.5), t1 = (1, −0.5), s2 = (−0.25, −0.25), t2 = (0.25, 0.25)
Notice that all the points are located on a regular grid with side length 0.25, and that
∥s1−t2∥ = ∥t1−s2∥ = ∥cu

1 −p4∥ = ∥cu
1 −p5∥ = ∥cd

1−p1∥ = ∥cd
1−p8∥ = ∥r−cu

1 ∥ = ∥r−cd
1∥ = α.

s1

t1

x r b
r′ b′

u

d

cu0

cu1

cd1

cd0

t2

s2

p1

p2

p3

p4p5

p6

p7

p8

Figure 3 The curves R and B for the continuous FFlower bound.

For each ui ∈ U , the gadget Ai is constructed as follows:

r′ ⃝k=1,..., D
2

(
p7 ◦ p8 ◦ u ◦ cu

ui(2k−1) ◦ u ◦ p8 ◦ p7 ◦ p6 ◦ p5 ◦ d ◦ cd
ui(2k) ◦ d ◦ p5 ◦ p6

)
◦ r′ .

Similarly, for vj ∈ V , the gadget Bi is constructed as follows:

b′ ⃝k=1,..., D
2

(
p3 ◦ p4 ◦ d ◦ cd

vi(2k−1) ◦ d ◦ p4 ◦ p3 ◦ p2 ◦ p1 ◦ u ◦ cu
vi(2k) ◦ u ◦ p1 ◦ p2

)
◦ b′ .

It is easy to see that if ui, vj are orthogonal then FF(Ai, Bj) = 1, because the traversal
that uses “antipodal” points maintains distance 1 between Red and Blue. For the other
direction, we claim that if FF(Ai, Bj) > α, then ui, vj are orthogonal. Now assume that
ui(1) = 1, so R starts with r′, p7, p8, u, cu

1 . Notice that when Blue traverses the subcurve
b′, p3, p4, d, Red cannot reach cu

1 . If vj(1) = 1, then the next move of Blue is toward cd
1, and

the distance between the agents becomes at most α (if Red in on p8 while Blue is on cd
1 then

their distance is exactly α). This means that ui(1) = vj(1) = 1 is not possible. Therefore,
at least one of ui(1), vj(1) is 0. Notice that Blue will visit d for the first time before Red
visits d for the first time. Similarly, Red will visit u for the first time before Blue visits u for
the first time. Moreover, Red cannot reach r′ before Blue leaves d, and Blue cannot reach
b′ before Red leaves u. Thus, the movement of Red and Blue is synchronized in the sense
that when Red is moving from u towards d, Blue is moving from d towards u, and vice versa.
Hence, by similar (symmetric) arguments, we get that ui(k) = vj(k) = 1 is not possible for
all k = 2, . . . , D as well, and ui, vj are orthogonal.

The gadgets Ai and Bj are connected into R and B as follows:

R = x◦(0, 0)◦s2⃝i=1,...,N (r ◦ Ai)◦r◦t2◦(0, 0)◦x , B = ⃝j=1,...,N (s1 ◦ b ◦ Bj ◦ b ◦ t1) .

If ui ∈ U, vj ∈ V are orthogonal, then Blue traverses ⃝k=1,...,j−1 (s1 ◦ b ◦ Bk ◦ b ◦ t1) while
Red stays at x, then Blue moves to s1. Now Red moves from x to (0, 0), to s2, then traverses
⃝k=1,...,i−1 (r ◦ Ak), and moves to r just before Ai. Now Blue moves to b just before Bj , and
they traverse Ai and Bj in sync, keeping distance ≥ 1. Now Red moves to r while Blue moves
to b, then Blue moves to t1. While Blue is on t1, Red traverses ⃝k=i+1,...,N (r ◦ Ak)◦r′ ◦t2 ◦x.
Finally, Blue traverses ⃝k=j+1,...,N (s1 ◦ b ◦ Bk ◦ b ◦ t1) while Red is on x.
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For the converse, assume that FF(R, B) > α. When Red reaches (0, 0) for the first time,
Blue must be on s1 or t1 (or on the edge between them). If Blue is on t1, then it must move
towards s1 before Red can continue to s2; moreover, when Red reaches s2 Blue can only be
strictly above the x-axis either on the edge (t1, s1) or (s1, b). Thus we can assume that when
Red is on s2, Blue is on s1 immediately before some vector gadget Bj . Now consider the
first time when Red reaches t2. At this time, Blue can be either near t1 (strictly below the
x-axis) or near cd

0. However, if Blue is near cd
0, it is not possible for the agents to continue

their movement: Blue cannot reach d and Red cannot reach (0, 0). Thus we can assume
that when Red reaches t2, Blue is near t1 and strictly below the x axis. We conclude that
between the first time that Red visited s2 and the first time that Red visited t2, Blue had
to traverse the vector gadget Bj in order to get from a point strictly above the x axis to a
point strictly below it. Before Blue starts traversing Bj , it first visits b, but when Blue is on
b, the only possible location of Red is near r (more precisely, on the edge between r and r′,
but not on r′). Notice that Red cannot be near x since it has not visited t2 yet. Now there
are two options: (1) Red is immediately before some vector gadget Ai, and thus by previous
arguments ui and vj are orthogonal, or (2) Red has finished all its vector gadgets, and it
waits on r while Blue traverses Bj . In this case, notice that since ∥r − cu

1 ∥ = ∥r − cd
1∥ = α,

Blue cannot reach any of cu
1 , cd

1 while Red is on r; thus, vj must be a 0-vector, implying ui

and vj are orthogonal. ◀

We now show that the discrete FF likely requires quardratic time, even in 1D.

▶ Theorem 9 (Discrete 1D Lower Bound). There is no O(n2−ε) time α-approximation
algorithm for dFF in 1D, for any ε > 0 and α > 2/3, unless OV fails.

Proof. Given an instance U = {u1 . . . uN }, V = {v1 . . . vN } of OV, we show how to construct
two curves R and B of length O(N · D) on the line, such that if U × V contains an
orthogonal pair then dFF (R, B) ≥ 1, and if U × V does not contain an orthogonal pair then
dFF (R, B) ≤ 2/3. Therefore, if there exists an algorithm with running time O(n2−ε) for
computing dFF of two curves of length n on the real line, then dFF (R, B) can be computed
in O((DN)2−ε), which means that OV can be decided in DO(1) · N2−ε time, and SETH fails.
Moreover, if dFF can be approximated up to a factor of 2/3, then again we get that OV can
be decided in DO(1) · N2−ε time, and SETH fails. Again as in [6] we assume that D is even.

Consider the following set of points on the line (see Figure 4): w1 = −w2 = 5/3,
x2 = −x1 = 1, ae

0 = bo
0 = −ao

0 = −be
0 = 2/3, ae

1 = bo
1 = −a0

1 = −be
1 = 1/3, s = 0.

We first construct vector gadgets. For each ui ∈ U , we create a subsequence Ai of R: for
odd (resp. even) k, the kth point in Ai is ao

ui(k) (resp. ae
ui(k)). Similarly, for vj ∈ V , we

create a subsequence Bj of B, using bs instead of as. It is easy to see that Red and Blue can
traverse Bj and Ai while maintaining distance 1 if and only if ui, vj are orthogonal (they
jump between odd and even points in sync, “opposite” each other, and at least one of them
is at “far” point, indexed with 0). Note that any such vector gadget has length D.

The gadgets Bj are connected into B as follows: B = w1 ◦ B1 ◦ w2 ◦ w1 ◦ B2 ◦ w2 ◦ · · · ◦
w1 ◦ BN ◦ w2. Let W be the sequence of D(N − 1) points that alternate between ao

0 and ae
0

starting with ao
0 (Red can traverse each of N − 1 length-D subpaths of W in sync with Blue

on any Bj). We construct R as follows: R = W ◦ x1 ◦ s ◦ A1 ◦ s ◦ A2 ◦ · · · ◦ s ◦ AN ◦ s ◦ x2 ◦ W .
The proof that OV is a Yes instance if and only if dFF (R, B) ≥ 1 is similar to that

in [6], with an important change: here, we also show that if OV is a No instance, then
dFF (R, B) ≤ 2/3. Indeed, notice that since dFF (R, B) is determined by the distance
between two vertices, one from R and one from B, we get that if dFF (R, B) > 2/3, then
necessarily dFF (R, B) ≥ 1 (as there are no two points in our construction with distance
in the range (2/3, 1)). Therefore, it is enough to show that if OV is a No instance, then
dFF (R, B) < 1.
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sbe0 be1 bo1 bo0
x2x1

ao0 ao1 ae1 ae0

w2 w1

W

W

A1

A2

B1

B2

0 1/3 2/3 1 5/3−1/3−2/3−1−5/3

Figure 4 For a pair of orthogonal vectors, Red and Blue jump in sync between as and bs, with at
least one of them at a “far” point (indexed with 0).

If ui ∈ U, vj ∈ V are orthogonal, then Red traverses D(N − j) points on W while Blue
stays at w1, then Blue traverses B1 . . . Bj−1 in sync with Red traversing the rest of W . Now,
while Blue stays at w1 before Bj , Red goes to x1 and traverses A1 . . . Ai−1, then goes to s

before Ai. Then, Ai, Bj are traversed in sync, Blue stays at w2 while Red completes the
traversal of Ai+1, . . . , AN and goes to x2, and finally Blue can complete the traversal of
Bj+1, . . . , BN in sync with Red traversing the second W gadget. When Blue goes to w2, Red
is able to complete the traversal of W .

For the converse, assume that dFF (R, B) ≥ 1. When Red is on x1, Blue must be to the
right of s, but if Blue is not on w1, then they cannot take the next step – so Blue must be
on w1, right before some vector gadget Bj . Immediately after leaving w1, Blue gets to bo

0 or
bo

1, implying that Red must be at ao
0 or ao

1, i.e., either in some vector gadget Ai or on the
second W (since it already passed x1). However, if it is on W , it must have gone through x2
which is too close to w1, so Red is in Ai. Now while they are on Ai and Bj , Red and Blue
must jump in sync, until one of them reaches the end point of their respective vector gadget.
Therefore, if Red did not start on the first point of Ai, then it will finish Ai and appear at s

before Blue has finished Bj . This means that Ai and Bj were traversed simultaneously, and
since dFF (R, B) ≥ 1, the respective vectors have to be orthogonal. ◀

2.4 More than 2 agents
Our algorithm for continuous FF in 1D generalizes to any number k ≥ 2 of agents, with
a running time of O(kn log n), as follows. Let A1, A2, . . . , Ak be the polygonal paths of k

agents in 1D. Given a distance value δ, our goal is to decide whether the k agents can traverse
their respective paths while maintaining distance δ from one another. Since we are on a line
and agents cannot cross paths, we only need to maintain distances for neighboring (along
the line) agents. Therefore, we can translate each Ai by −(i − 1)δ (for 2 ≤ i ≤ k), and then
our goal is to find non-crossing traversals, or corresponding paths on the space-time graph.
This can be done by fixing a path for A1, then using our algorithm for two agents to align a
corresponding path for A2, then consider the path of A2 as fixed, and align a path for A3
and so on (recall that we can have an agent walk in infinite speed).

The question of whether or not there exists an algorithm in 2D with running time fully
polynomial in k remains open (for the Fréchet distance of a set of curves, the best known
running time is roughly O(nk); see [11]).
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3 Social distancing in a simple polygon

In this section we consider distancing problems in which the given domain (for both Red
and Blue) is a simple polygon. Since the two agents are moving inside the same polygon, it
is natural to consider geodesic distance (i.e., the shortest path inside the polygon) instead of
Euclidean distance to measure separation.

Consider a scenario in which Red and Blue have to traverse two polygonal paths R and
B, both inside a given polygon P , and their goal is to find a movement strategy (a traversal)
that maintains geodesic distance of at least δ between them. For the analogous Fréchet
problem (Red and Blue have to maintain geodesic distance of at most δ), Cook and Wenk [9]
presented an algorithm that runs in O(n2 log N) time, where N is the complexity of P and
n is the complexity of R and B. Their algorithm is based on the fact that the free space in a
cell of the diagram is x-monotone, y-monotone, and connected. Then the geodesic decision
problem can be solved by propagating the reachability information through a cell in constant
time, as for the Euclidean Fréchet distance. Thus, we can apply a similar “flipped” algorithm
for computing the FF(R, B) under geodesic distance in nearly quadratic time.

When both Red and Blue are restricted to traverse a given path, it seems that the
Fréchet-like nature of the problem leads to near-quadratic time algorithms. Thus, in this
section we consider the scenario where Blue has more freedom, and it is not required to
traverse a given path. We first consider the case when Red is walking on an arbitrary path
in the polygon; we show that while the naive solution takes at least cubic time, there exists
a quadratic time algorithm for this problem. We then describe two variants for which we
present linear time algorithms; the first is where Red is walking along a shortest path in the
polygon, and second is where Red is traversing the boundary of a skinny polygon (a tree).

Throughout this section, we will use SDW to denote social distancing width, to differentiate
from the Flipped Fréchet versions where both the Red and Blue curves are given as input.

3.1 Red on an arbitrary path mission
Consider the case when Red moves along some given path R in P , and Blue may wander
around in P , starting from some given point b. The free-space diagram can be adapted to the
case of a path and a polygon, by partitioning the polygon into a linear number of convex cells
(for example, a triangulation). This is a three-dimensional structure, which contains O(n2)
cells (assuming that the complexity of both R and P is O(n)). However, for maintaining
geodesic separation, building the free-space may be cumbersome, because it would involve
building the parametric shortest path map in a triangle as the source moves along a segment,
and such SPM may have Ω(n) combinatorial changes. Instead, we show that Blue may stay
on the boundary, thus reducing the problem to the standard free-space diagram between a
path and a closed curve. We will prove:

▶ Theorem 10. Let P be a polygon with n vertices, b a point in P , and R a path between
two points r and r′ in P . There exists an O(n2 log n)-time algorithm to decide whether there
exists a path B in P starting from b, such that SDW (R, B) > 1 under geodesic distance.

The proof follows from the following observation and lemma, and by using the O(n2 log n)-
time algorithm of [9] for geodesic Fréchet.

▶ Observation 11. Let p be an arbitrary point inside a polygon P , and D be the closed
geodesic disk of any radius centered at p, then D splits both P and ∂P into the same number
of connected components, and there is a natural one-to-one correspondence between them.
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▶ Lemma 12. Assume that the point b is on the boundary. If there exists a path B in P

starting from b, such that SDW (R, B) > 1 under geodesic distance, then there exists such a
path B′ that is entirely on the boundary of P .

Proof. Let r1 be the first point of R, and denote by C1, C2, . . . , Ck the set of connected
components of P \ Dr1 (where Dr1 is the unit geodesic disk around r1 as in Section 3.2).
Assume that b lies in C1. When Red moves along R, some of the connected components may
disappear, split, or merge with other connected components, and some new connected
components may appear. More formally, we can say that a sequence of connected components
of P \Dr (where r is moving continuously in P ) belong to the same “combinatorial” connected
component, if its intersection converges to some non-empty area of P . By Observation 11, as
long as none of the above changes in the combinatorial definition of C1 occur, then Blue can
remain at some point on the boundary of C1, because as Red moves, C1 contains a single
connected piece of ∂P on which Blue can walk. Consider the first time when Red reaches a
point r2 on R such that C1 either disappear, split, or merge. If C1 disappears, then Blue
had no way to escape. If C1 splits, then by Observation 11, Blue can move on the boundary
of C1 to any of the new connected components, right before the split occurs. If C1 merges
with another connected component, say C2, then again by Observation 11, Blue can move to
the boundary of C2 via the boundary of C1. In any of this cases, Blue can move via ∂P to
the connected component in which it was if it would walk along B. ◀

▶ Remark. The above lemma applies only to geodesic distance separation – if Blue is
maintaining separation using Euclidean distance, Blue may need to go inside the polygon
(see the figure below). In this case we build the 3D free-space, but note that its complexity
is quadratic, because the complexity of each free-space cell that corresponds to a triangle of
P and a red edge is constant, and thus the free-space can be searched in quadratic time.

3.2 Red on a shortest path mission
Assume that Red moves along a geodesic path R in P (Red is on a mission and does not care
about social distancing) while Blue may wander around anywhere within P starting from a
given point b. We show that the decision problem, whether Blue can maintain (geodesic)
social distance at least 1 from Red, can be solved in linear time.

▶ Theorem 13. Let P be a polygon with n vertices, b a point in P , and R a geodesic shortest
path between two points r and r′ in P . There exists an O(n)-time algorithm to decide whether
there exists a path B in P starting from b, such that SDW (R, B) > 1 under geodesic distance.

Proof. We use |ab| to denote the geodesic distance between points a, b ∈ P . For a point
t ∈ R let Dt = {p ∈ P : |tp| ≤ 1} be the unit geodesic disk centered on t; let M = ∪t∈RDt

be the set of points within geodesic distance 1 from R (Figure 5, left). Without loss of
generality, assume b /∈ Dr (otherwise separation fails from the start). The disk Dr splits P

into connected components (a component is a maximal connected subset of P \ Dr): Blue
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Figure 5 Left: Dr splits P into connected components. Blue escaping Red as there exists a
safe point. Middle: the boundary between St and Ut is dashed. Blue cannot escape because its
connected component equals M \ Dr. Right: Blue escapes when Red is at t.

can freely move inside a component without intersecting Dr; in particular, if the component
P ′ ∋ b of b is not equal to M \ Dr (i.e., if P ′ \ M ≠ ∅), then Blue can move to a point in
P ′ \ M (a safe point) and maintain the social distance of 1 from Red (existence of a safe
point can be determined by tracing the boundary of M). Next, we show that the existence
of such a safe point is also necessary for Blue to maintain the distance of 1 from the geodesic
shortest path R.

Indeed, as Red follows R, Dt sweeps M ; let St ⊆ M be the points swept (at least once)
by the time Red is at t ∈ R and let Ut = M \ St be the unswept points. Since b /∈ Dr = Sr,
initially Blue is in the unswept region. Assume that there is no safe point (P ′ = M \ Dr)
and yet Blue can escape. Suppose Blue can escape from the unswept to swept when Red is
at t ∈ R (Figure 5, right). Then there exists a point p on the boundary between Ut and St

that is further than 1 from t, say |pt| = 1 + ε for some ε > 0. Since p is on the boundary
of St, at some position t∗ ∈ π before t, we had |t∗p| = 1. Since p is on the boundary of Ut,
there exists an unswept point p′ ∈ Ut within distance less than ε from p: |p′p| < ε. Finally,
since Ut = M \ St is part of M , p′ becomes swept when Red is at some point t′ ∈ π after t:
|t′p′| ≤ 1. We obtain that there are three points t∗, t, t′ along a geodesic path π and a point
p such that |t∗p| ≤ 1 < 1 + ε = |tp| and |t′p| ≤ |t′p′| + |p′p| < 1 + ε = |tp|, contradicting the
fact that the geodesic distance from a point to a geodesic path is a convex function of the
point on the path [19, Lemma 1] (this is the place where we use that R is a geodesic path: if
R is not geodesic, it is not necessary for the Blue to escape from M while Red is at r).

r

r′

R

e
u

Figure 6 SPMs from edges and vertices of π are computed separately in parts of P defined by
perpendiculars to path edges (some shown dashed). Gray and lightblue parts are charged to (the
right side of) the edge e and to vertex u of R resp.

We now show how to implement our solution to the decision problem in O(n) time.
To build the geodesic unit disk Dr we compute the shortest path map (SPM) from r (the
decomposition of P into cells such that for any point p inside a cell the shortest r-p path has
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the same vertex v of P as the last vertex before p) – the SPM can be built in linear time [15];
then in every cell of the SPM we determine the points of Dr: any cell is either fully inside
Dr, or fully outside, or the boundary of the disk in the cell is an arc of the radius-(1 − |rv|)
circle centered on the vertex v of P . The set M can be constructed similarly, using SPM
from R. To build the SPM, we decompose P by drawing perpendiculars to the edges of R at
every vertex of the path (see Figure 6): in any cell of the decomposition, the map can be
built separately because the same feature (a feature is a vertex or a side of an edge) of R

will be closest to points in the cell (the decomposition is essentially the Voronoi diagram of
the features). In every cell, the SPM from the feature can be built in time proportional to
the complexity of the cell (the linear-time funnel algorithm for SPM [15] works to build the
SPM from a segment too: the algorithm actually propagates shortest path information from
segments in the polygon). Since the total complexity of all cells is linear, the SPM is built in
overall linear time. After Dr and M are built, we test whether b ∈ Dr (if yes, the answer is
No) and trace the boundary of M to determine the existence of a safe point (the answer is
Yes iff such a point exists). ◀

3.3 SDW of closed curves and polygons

Consider a scenario in which the polygonal curves R and B are closed curves. Here, the
starting points of Red and Blue are not given as an input, and the goal is to decide whether
they can traverse their respective curves while maintaining distance at least δ. The analogous
Fréchet problem has been investigated by Alt and Godau [2], who presented an O(n2 log2 n)
time algorithm, and later by Schlesinger et. al. [22], who improved the running time to
O(n2 log n). Those algorithms include the construction of dynamic data structures for the
free space diagram, which is again based on the fact that the free space within a cell is
convex. Since, in our “flipped” case, the forbidden space is convex, similar data structures
can be used in order to compute the SDW of two closed curves in near quadratic time.

We can then define the Social Distance Width of two polygons P1, P2 as a special case
in which R is the boundary of P1 and B is the boundary of P2; i.e., SDW (P1, P2) =
SDW (∂P1, ∂P2). Similarly, the Social Distance Width of a (single) polygon P is SDW (P ) =
SDW (∂P, ∂P ). We have

▶ Theorem 14. The social distance width of a polygon P of n vertices can be decided in
O(n2) time.

The notion of SDW of a polygon is possibly related to other characteristics of polygons, such
as fatness. Intuitively, if the polygon P is fat under standard definitions, then the SDW of P

will be large. However, the exact connection is yet unclear (see Figure 7), and we leave open
the question of what exactly is the relation between the two definitions.
We now show that in special cases, the SDW can be computed in linear-time.

3.4 Social distancing in a skinny polygon (or a tree)

In this section we consider the case in which the shared domain of Red and Blue is a tree T ,
and the distance is the shortest-path distance in the tree (the distance between vertices u

and v denoted |uv|). Red moves around T in a depth-first fashion: there is no start and end
point, it keeps moving ad infinitum. In particular, if T is embedded in the plane, the motion
is the limiting case of moving around the boundary of an infinitesimally thin simple polygon,
and the distance is the geodesic distance inside the polygon.
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δ

Figure 7 A δ-fat polygon P , and the free space diagram showing that SDW (P ) ≪ δ.

▶ Theorem 15. Let T be a tree with n vertices, embedded in the plane, and R be a traversal
of T in a depth-first fashion. There exists an O(n)-time algorithm to find a path B in T that
maximizes SDW (R, B) under the geodesic distance.

a

b

cr r

c

ba Ta

Figure 8 Red is at c while Blue moves between a and b. Left: A star. Right: A schematic
representation of a tree.

Proof. If T is a path, then clearly SDW (R, B) = 0 because there is no way for Blue to avoid
meeting Red at the same vertex. Thus we start with the case when T is a star (Figure 8,
left). Let r be the root of the star and let |ra| ≥ |rb| ≥ |rc| be the 3 largest distances from r

to the leaves (i.e., the distance to the root from all other leaves is at most |rc|). Assume that
the leaves a, b, c are encountered in this order as Red moves around T (this assumption is
w.l.o.g., since the other orders are handled similarly); we call r and |rc| the 2-outlier center
and radius of T because allowing 2 outliers, |rc| is the smallest radius to cover T with a disk
centered at a vertex of the tree. Now, on the one hand, Blue can maintain distance |rc| from
Red: when Red is at a, Blue is at c; when Red is at b, Blue moves to a; when Red is at c,
Blue moves to b; the minimum distance of |rc| is achieved when Blue is at c. On the other
hand, the distance must be at least |rc| at some point, since Blue cannot sit at a or at b all
the time, and, while Blue moves from a to b through r, Red must be somewhere else (other
than a or b).

We now consider an arbitrary tree T . Let r ∈ T be a vertex. Removal of r disconnects T

into several trees; for a vertex v ̸= r of T let Tv ∋ v be the subtree of v. Let a be the vertex
of T furthest from r, let b be the vertex of T \ Ta furthest from r, and let c be the vertex of
T \ Ta \ Tb furthest from r (Figure 8, right). Call |rc| the 2-outlier radius of r, and assume
r∗ is the vertex whose 2-outlier radius is the largest. As in a star, Blue can maintain the
distance of |r∗c| from Red by cycling among a, b, c “one step behind” Red. Also as in a star,
a larger distance cannot be maintained because, again, Blue has to pass through r∗ on its
way from a to b, and the best moment to do so is when Red is at c. If instead Blue does
it when Red is, say, at a vertex a′ ∈ Ta, then let l ∈ Ta be the least common ancestor of a

and a′: if |la′| < |r∗c|, then Blue comes within |la′| < |r∗c| from Red; otherwise the 2-outlier
radius of l is larger than that of r∗.
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51:18 On Flipping the Fréchet Distance

To find r∗ in linear time, note that ab is a diameter of T : it is a longest simple path in
T . The diameter of a tree can be computed in linear time via dynamic programming: pick
some arbitrary non-leaf node as the root, and store the depths of subtrees for each node;
the diameter is realized by the summed depth of the two deepest subtrees of a node. All
diameters of a tree intersect because if two diameters uv, u′v′ do not intersect, then there
exist vertices w ∈ uv, w′ ∈ u′v′ that connect the two diameters and the distance from each
of w, w′ to one of the endpoints of its diameter is at least half the diameter, implying that
the distance between these endpoints is strictly larger than the diameter (Figure 9, left).
Moreover, since the tree has no cycles, the intersection of all its diameters is a path π in T .
Note that the distance from a diameter endpoint to the closest point on π can only have
two values (depending on which endpoint of π is closer). We claim for any point r′ not on π,
the point r on π closest to it has a larger 2-outlier radius, and thus r∗ may be found on π.
Indeed, let Tr be the tree that contains r after removing r′, and let v be the farthest point
from r′ not in Tr. Since |r′v| is strictly smaller than the distance between r and the closest
diameter endpoint (see Figure 9, right), we get that the 2-outlier radius of r′ is at most |r′v|.
On the other hand, the 2-outlier radius of r is at least |rv|, and clearly |rv| > |r′v|.

≥ D/2

≥ D/2

u′
v′

vu

w′

w

r1
π

r2

< min{|rr1|+ d1, |rr2|+ d2}

r

r′

d2

d2

d1

d1

v

Figure 9 Left: If |uv| = |u′v′| = D, then |uww′v′| > D. Right: The distance from any diameter
endpoint to the closest endpoint of π (thick) is the d, for otherwise one of the diameters is longer
than another. The 2-outlier radius of r is d, while the 2-outlier radius of r′ cannot exceed d.

We thus compute a diameter ab (linear time) and pick the vertex with the largest 2-outlier
radius on the diameter as r∗ by checking the vertices one by one. As we check consecutive
vertices on ab, the distances |ra| and |rb| are updated trivially, and the subtrees T \ Ta \ Tb

are pairwise-disjoint for different vertices r along the diameter; thus the longest paths in all
the subtrees can be computed in total linear time. ◀

The discussion on this special case of thin polygons, leads us to investigating the more
general case of Social Distance Width of two graphs, which we discuss in Appendix A.
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A Social distancing on graphs

In this section we consider social distancing measures for graphs. We focus on undirected
graphs, but our results readily extend to directed graphs. A geometric graph is a connected
graph with edges that are straight line segments embedded in the plane. We consider
geometric graphs to be automatically weighted, with Euclidean edge weights.

We will call non-geometric graphs simply as abstract graphs, and unless otherwise
mentioned, we give each edge of an abstract graph a length of one. Since we are interested
in formulating meaningful distance measures, we assume that an all-pairs shortest path
preprocessing has been done on G, and pairwise distances are available in O(1) time. Let
G = (V, E), n = |V| and m = |E|. By a path of length k in an abstract graph G = (V, E)
we mean a sequence P of k vertices: P = {p1, p2, · · · , pk} ⊆ V , with edges pipi+1 ∈ E for all
1 ≤ i ≤ k − 1, and we write |P | = k. Note that we allow vertices to be repeated (that is, we
don’t distinguish between a path and a walk).

For abstract graphs, we assume that Red and Blue both move on the same graph, as there
is no ambient metric defining the distance between Red and Blue. For geometric graphs,
however, we will also consider the case when Red and Blue move on different graphs or in
the embedding space, as the distance between them is still well-defined.

A.1 Abstract Graphs
We state our result for Blue staying away from Red on an abstract graph.

▶ Theorem 16 (Blue distancing from Red, abstract). Assume Red travels on a known path R

of length k in an abstract graph G, and Blue can travel anywhere with a speed s ≥ 0 times
that of Red, for some integer s. There exists a decision algorithm for the Blue distancing
from Red-on-a-mission problem that

for s ∈ {0, 1, n − 1}, runs in time O(km),
for arbitrary 1 < s < n − 1, runs in time O(nk min(ds, n)), where d is the maximum
degree of any vertex in G.

Proof. Take k copies Gi of G, for 1 ≤ i ≤ k; let (v, i) be the vertex corresponding to vertex
v in the ith copy Gi. Construct a directed graph G̃ by connecting these copies as follows (it
may be helpful to imagine these copies “stacked” on top of each other):

For every v ∈ V and every 1 ≤ i ≤ k − 1, add a directed edge from (v, i) to (v, i + 1).
If s = 0, add no more edges. If s = 1, add an edge between the vertex (v, i) and vertex
(w, i + 1) for all neighbors w of v in G, for all (v, i), 1 ≤ i ≤ k − 1.
If 1 < s < n − 1, add an edge between between the vertex (v, i) and vertex (w, i + 1) for
all vertices w such that the distance between w and v in G is at most s, for all (v, i),
1 ≤ i ≤ k −1. Note that there are at most ds many such vertices, where d is the maximum
degree of a vertex in G.
if s = n − 1, add an edge from vertex (v, i) to all vertices in Gi+1.

Let R = {r1, r2, · · · , rk} be the path of Red. Once G̃ is constructed, delete the vertex
(ri, i) and all its neighbors from Gi if Blue is looking to stay distance at least one away from
Red. If Blue instead aims to stay δ away, delete the δ neighborhood of these vertices from
each copy. This results in a graph G′. If Blue’s starting position b is given, run BFS/DFS
to see if b can reach any vertex in Gk, and return yes or no accordingly. If blue can start
from any vertex, then check if any vertex in G1 can reach some vertex in Gk, and answer
yes or no accordingly. The runtime depends on the complexity of G̃, which is O(mk) if
s ∈ {0, 1, n − 1}, and O(nk min(ds, n)) otherwise, which completes the proof. ◀
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A.2 Geometric Graphs
Now we consider geometric graphs. Let R : [0, ℓ] → R2 be a polygonal curve in R2, consisting
of ℓ line segments, with the ith line segment Ri = R|[i−1,i] where 1 ≤ i ≤ ℓ. We also assume
that each segment Ri is parameterized naturally by R(i + λ) = (1 − λ)R(i) + λR(i + 1). The
curve R is assumed to be known: this is how Red is traveling. On the other hand, we are
also given a geometric graph G in which Blue is restricted to travel, and the problem is to
determine if there is a path P ∈ G (a path in G is the polygonal curve formed by the edges
between the start and end points of P ), such that SDW (R, P ) ≥ δ, where the SDW between
R and P is defined as in the continuous SDW between polygonal curves in Section 2. Note
that by adopting this definition we are considering the Euclidean distance between Red and
Blue: if one instead considers geodesic distance, Red will also need to be restricted to travel
in G. We remark on this setting later.

▶ Theorem 17 (Blue distancing from Red, geometric). The decision problem, given R (the
path of Red) and G (the graph of Blue), and a distance δ, can be solved in time O(km),
where k is the length of R (number of vertices) and m is the number of edges in G.

Proof. We first define the free space surface for our problem. Consider an edge ei,j =
(vi, vj) ∈ E, and let F i,j

δ denote the δ-free space of ei,j and R (note that ei,j : [0, 1] → R2

is a polygonal curve of length 1). Analogous to [1], we glue the corresponding free-space
diagrams of any two edges in E that share a common vertex, along the boundary of the
diagram that corresponds to this vertex. Doing so for all edges ei,j ∈ E yields the free space
surface S.

As in [1], we get that there exists a path P in G with SDW (R, P ) ≥ δ if and only if there
exists a y-monotone path through the δ-free space in S between a point (0, s) in some F i,j

δ ,
to a point (k, t) in some F i′,j′

δ . Such a path corresponds to a continuous surjective traversal
of R from R(0) to R(k), and some continuous non-surjective traversal P of G that starts on
a point s on the edge ei,j and ends on a point t on ei′,j′ . By similar arguments, such a path
can be found in O(km) time by computing the reachability diagram as in [2]. ◀

SDW of a Graph. We now move to defining the social distance width of a graph that we
briefly mentioned in Section A of the appendix. A curve on a geometric graph corresponding
to a surjective (non-surjective) map will be called a traversal (partial traversal) of the graph.
We note that traversals may need to backtrack, and we allow partial traversals to do so too.

Define, for two geometric graphs H and G, SDW (H, G) = suph,g mint∈[0,1] d(h(t), g(t)),
where h is a traversal of H and g is a partial traversal of G. The setting is that Red is going
about its business on H, and must traverse it completely in some order, while Blue is only
trying to stay away, and is restricted to be on G. Finally, we define for a graph G, its social
distance width, as SDW (G) = SDW (G, G) where again, we are free to choose either the
Euclidean or the geodesic version.

▶ Theorem 18. For two geometric graphs H and G, the Euclidean SDW (H, G) can be
computed in time O(mhmg), where mh (resp. mg) denotes the number of edges in the graph
H (resp. G).

Proof. It is enough to show how to compute SDW (H, G); SDW (G) is then obtained by
putting H = G. To this end, we construct the free space surface in a manner similar to
that of the Red-on-a-mission case described previously. For every edge e = (u, v) ∈ H and
f = (x, y) ∈ G, we construct a free space cell Ce,f , which can be thought of as a subset of
[0, 1]2. For edges e and e′ sharing a vertex v, we glue Ce,f and Ce′,f along their right and
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left edges, respectively, which correspond to Cv,f . In this way we obtain a cell complex in
three dimensions, with faces corresponding to cells Ce,f , edges corresponding to Cu,f (or
Cv,f , Ce,x, or Ce,y), and vertices corresponding to Cu,x, etc. The rest of the proof follows
the lines of [1]. ◀

The above result shows that when d denotes the Euclidean distance, SDW (H, G) can be
computed in time O(mhmg). The following observation shows that even the geodesic case
behaves nicely, as the free space is convex.

▶ Lemma 19. For any L > 0, the free space (defined to be the points for which the geodesic
distance is at least L) inside a cell of the free-space diagram is a convex polygon.

Proof. Consider 2 edges, e = (v1, v2) and f = (u1, u2) in an embedded PSLG (planar straight
line graph), with coordinates x on e such that x(v1) = 0, y on f such that y(u1) = 0.

Let d1, d2, d3 and d4 be the distances between v1u2, v1u1, v2u2 and v2u1, respectively.
Then, the geodesic distance between a point at position x on e and a point at position y on
f is simply

d(x, y) = min(x + d2 + y, x + d1 + |f | − y, |e| − x + d4 + y, |e| − x + d3 + |f | − y),

which is a minimum of four functions that are linear in (x, y). Thus, d(x, y) is concave,
piecewise-linear, and the locus of points (x, y) for which d(x, y) ≥ L is a convex polygon, for
any L. ◀

As a result, we obtain an algorithm with the same running time for geodesic distance.
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Abstract
A celebrated result in classical complexity theory is Savitch’s theorem, which states that non-
deterministic polynomial-space computations (NPSPACE) can be simulated by deterministic poly-
space computations (PSPACE). In this work, we initiate the study of a quantum analogue of
NPSPACE, denoted Streaming-QCMASPACE (SQCMASPACE), in which an exponentially long
classical proof is streamed to a poly-space quantum verifier. We first show that a quantum analogue
of Savitch’s theorem is unlikely to hold, in that SQCMASPACE = NEXP. For completeness, we also
introduce the companion class Streaming-QMASPACE (SQMASPACE) with an exponentially long
streamed quantum proof, and show SQMASPACE = QMAEXP (the quantum analogue of NEXP).
Our primary focus, however, is on the study of exponentially long streaming classical proofs, where
we next show the following two main results.

The first result shows that, in strong contrast to the classical setting, the solution space of
a quantum constraint satisfaction problem (i.e. a local Hamiltonian) is always connected when
exponentially long proofs are permitted. For this, we show how to simulate any Lipschitz continuous
path on the unit hypersphere via a sequence of local unitary gates, at the expense of blowing up the
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1 Introduction

Computational complexity theory studies the resources required to solve a given computational
problem. The resources of time and space, in particular, are very well-studied, revealing
certain interesting discrepancies. For example, while the question of whether non-deterministic
poly-time (NP) equals deterministic poly-time (P) remains a central open problem in the field,
in the context of space, the answer is well-known: In 1970, Savitch [32] gave his celebrated
result that non-deterministic poly-space computations (NPSPACE) could be simulated by
deterministic poly-space computations (PSPACE), yielding PSPACE = NPSPACE.

Motivated by the prospect of a quantum analogue of Savitch’s theorem, in this work, we
initiate the study of a “non-deterministic” quantum analogue of PSPACE, which we call
SQCMASPACE. To define the latter, recall that NPSPACE may be viewed as a PSPACE
machine which receives an exponential length proof y ∈ {0, 1}2n

. Of course, a PSPACE
verifier cannot even write down y given its limited memory, so a natural way to formalize
this idea is to allow y to be streamed, bit by bit. This is the approach we take2 in defining
SQCMASPACE.

▶ Definition 1 (SQCMASPACE (informal; see Definition 20)). A promise problem A =
(Ayes, Ano) is in SQCMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if there
exist thresholds α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a polynomial-space uniform
family of quantum circuits {Qn} such that, for any input x ∈ Σn:

If x ∈ Ayes, ∃ streaming proof y ∈ {0, 1}2p(n)
s.t. Qn accepts (x, y) with probability ≥ α.

If x ∈ Ano, ∀ streaming proofs y ∈ {0, 1}2p(n)
, Qn accepts (x, y) with probability ≤ β.

To avoid cluttering the introduction, we leave our formal definition of streaming proof to
Section 2 (Definition 19 therein), and instead make do with the following intuitive definition:
To “stream” the next bit yi to the verifier, we imagine the prover applies either “proof gate”
I (if yi = 0) or X (if yi = 1), for I and X the single-qubit identity and Pauli X (i.e. NOT)
gates, respectively, to a designated qubit k in the verifier’s memory, which is initialized to
|0⟩k. The verifier then copies3 this bit into its main memory via Controlled-NOT (CNOT),
and the prover subsequently uncomputes bit yi by re-applying I or X to k, respectively. In
other words, there is no separate proof – we view the entire computation as a sequence of
gates on the verifier’s memory, some gates of which (the “proof” gates) are a priori unknown.
For clarity, this is similar to how communication is modelled in quantum interactive proofs,
where prover and verifier take turns acting on a shared “message register” (see e.g. [25]).

In Section 1.3, we survey previous works studying quantum notions of PSPACE. Most
relevant to our discussion at this point, however, is the work of Fefferman and Remscrim [12],
which defines a quantum variant of NPSPACE denoted QMASPACE, and which differs from

2 One can in principle consider alternative definitions of SQCMASPACE. For example, Definition 1
allows only one streaming pass of the proof, but one could consider multiple passes. An even stronger
access model might allow the ability to query arbitrary single bits of the proof. For our results here,
however, a single-pass streaming model suffices, e.g. this definition already captures NEXP, as we show
in Theorem 5.

3 The verifier can also simulate the choice not to copy the bit into memory, if desired. See the discussion
after Definition 19.
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SQCMASPACE in three respects: The first two differences are that QMASPACE has a poly-
length proof which is quantum, whereas SQCMASPACE has an exponential length streamed
proof, which is classical. The third difference is that whereas QMASPACE = PSPACE [12],
here we show SQCMASPACE = NEXP (Theorem 5, stated shortly). To the best of our
knowledge, the current work is the first to formalize and study a quantum analogue of
NPSPACE which allows an exponentially long classical proof.

Broader theme. Beyond initiating the study of SQCMASPACE itself, the broader theme
of this work asks: “What can one say about exponentially long proofs verified by poly-space
quantum verifiers?” For example, can allowing an exp-length proof “trivialize” a problem
which is provably hard for poly-length proofs? Can exponential length proofs be encoded
into poly-size history state4 constructions? Here, we give positive answers to both of these
questions, for which we now set up the background.

Theme 1: Exp- versus poly-length proofs, and the solution space of constraint satisfaction
problems (CSPs). In 2006, Gopalan, Kolaitis, Maneva and Papadimitriou [18] initiated
the study of reconfiguration problems for SAT, which ask: Given two solutions x and y to
a SAT formula ϕ, is there a path in the hypercube from x to y on which all intermediate
vertices z are also solutions? Alternatively, in graph theoretic terms, is the solution space of
ϕ connected? Reference [18] showed that this decision problem is PSPACE-complete, which
in particular implies the problem is not trivial – the solution space can be either connected
or disconnected, and deciding between the two is hard.

In the quantum setting, one can ask analogous questions about the “solution space” of
quantum CSPs, and this has implications for the study of quantum error-correcting codes.
To begin, the quantum generalization of a MAX-k-SAT instance ϕ is a k-local Hamiltonian
H. H is a 2n × 2n Hermitian operator acting on n qubits, but specified succinctly via a
sum of “local clauses” Hi acting on k qubits (analogous to how ϕ is specified locally via an
AND of k-local disjunctions), i.e. H =

∑
iHi. The smallest eigenvalue of H, λmin(H), is

the ground state energy of H (for ϕ, this encodes the maximum number of simultaneously
satisfiable clauses), and the corresponding space of eigenvectors the ground space (for ϕ, this
encodes the space of optimal assignments). In 2002, Kitaev [24] gave his now celebrated
“quantum Cook-Levin theorem”, which showed estimating λmin(H), known as the k-local
Hamiltonian problem (k-LH), is complete5 for Quantum-Merlin Arthur (QMA).

With the definition of local Hamiltonians (i.e. quantum CSPs) in hand, we can now state
the quantum analogue of reconfiguration, defined as follows.

▶ Definition 2 (Ground State Connectivity (GSCON) [17] (informal); see Definition 25). Given
a k-local Hamiltonian H with ground states |ψ⟩ and |ϕ⟩ (represented succinctly via quantum
circuits), and parameters m, l, does there exist a sequence of l-local unitaries U1, . . . , Um s.t.:
1. (|ψ⟩ mapped to |ϕ⟩) Um · · ·U1|ϕ⟩ ≈ |ψ⟩, and
2. (intermediate states have low energy) ∀i ∈ [m], Ui · · ·U1|ψ⟩ has low energy relative to H?
In words, GSCON asks whether there exists a sequence of m l-local unitaries that map |ψ⟩
to |ϕ⟩ such that intermediate states have low energy (i.e. are also approximate “solutions”)
with respect to H. Here, the use of local unitaries Ui is crucial, and generalizes the notion
of following a path on the hypercube for SAT (which would involve flipping one bit of an
assignment per step, or in quantum terms, applying a local X gate). Thus, GSCON asks: Is
the ground space of H “connected”?

4 A history state [24] is the quantum analogue of a tableau in the Cook-Levin theorem [10, 27]).
5 QMA is a quantum analogue of Merlin-Arthur (MA), except with a quantum proof and quantum verifier.
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Recall now that in the classical setting, the solution space of a SAT formula can be either
connected or disconnected [18]. In this work, we ask the analogous fundamental question
about the structure of ground spaces of local Hamiltonians:

▶ Question 3. Can ground spaces of local Hamiltonians also be “disconnected”?

It is known that if only poly-length sequences of local gates are allowed, the answer to
this question is YES – namely, GSCON with a polynomial sequence of 2-local unitaries
(m = poly(n), l = 2) and inverse polynomial spectral gap is6 QCMA-complete [17]. However,
even in the classical case, in the worst case a connecting path in the hypercube might be
exponentially long! (Indeed, this is what makes the PSPACE-completeness result of [18]
possible.) Thus, to answer Question 3, we must allow sequences of exponentially many local
gates, i.e. GSCON with m = exp(n), denoted GSCONexp.

In addition to this fundamental structural motivation, there are two additional reasons
why Question 3 is interesting:

First, from a complexity theory perspective, an instance of GSCONexp is straightforwardly
in SQCMASPACE– roughly, in step i, the prover streams gate Ui to the verifier, who
applies it to map its current state from Ui−1 · · ·U1|ψ⟩ to Ui · · ·U1|ψ⟩. Once the proof is
fully received, the verifier randomly chooses to check one of the two conditions in the
GSCON definition, and accepts if the condition is met. Thus, if a “quantum Savitch’s”
theorem were to hold, i.e. SQCMASPACE = PSPACE, then we would immediately
obtain GSCONexp ∈ SQCMASPACE = PSPACE, resolving an open question of [17].
Second, and perhaps most interesting, is the connection to quantum error-correcting codes.
For example, in a stabilizer code [20], the set of valid codewords is the ground space of a
local Hamiltonian H . In this case, one desires the ground space of H to be “disconnected”
in the following sense. Let |ψ⟩ be a codeword of H . Then, any sufficiently short sequence
of local gates (think of these as local errors “corrupting” |ψ⟩) should ideally take one out
of the ground space, so that measuring the Hamiltonian catches the corrupting process
with non-negligible probability. Indeed, this is precisely what quantum codes typically
achieve. What is much less obvious, however, is what happens with exponential length
corrupting processes – by allowing an exponential-length sequences of local gates, can we
stealthily map from |ψ⟩ to some other codeword |ϕ⟩ while remaining exponentially close
to the ground space? If so, then a single measurement of the Hamiltonian during this
corrupting process is highly unlikely to detect that we are no longer in state |ψ⟩!

Theme 2: Exp-length proofs, poly-size history states, and QMA(2). Our next ques-
tion asks: Can exponential length proofs be encoded into poly-size history state/circuit-
to-Hamiltonian constructions? Here, a circuit-to-Hamiltonian construction is the quan-
tum analogue of the Cook-Levin construction [10, 27], i.e. a map from quantum cir-
cuits V to local Hamiltonians H, such that the ground space of H encodes the action
of V . The basic premise is captured by Kitaev’s 5-local construction, which maps a QMA
verification circuit V = Vm · · ·V1 (for 1- and 2-qubit gates Vi) to a local Hamiltonian
H = Hin +Hprop +Hout +Hstab. Intuitively, each of Hin, Hprop, and Hout plays a role anal-
ogous to its classical cousin in the Cook-Levin construction – Hin ensures V ’s computation is
initialized correctly, Hprop that in time step t the gate Vt is applied, and Hout that rejecting
computations are penalized. Then, the “ideal” quantum assignment perfectly satisfying Hin
and Hprop is the history state

6 Quantum-Classical Merlin-Arthur (QCMA) is a quantum analogue of MA, except with a classical proof
and quantum verifier.
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|ψhist⟩ = 1√
m+ 1

m∑
t=0

Vt · · ·V1|ψproof⟩A|0 · · · 0⟩B |t⟩C (1)

(the quantum analogue of a “tableau”), where in the context of QMA, register A starts with
the quantum proof |ψproof⟩, B is the ancilla space, and C is the clock keeping track of time.

Returning to the question at hand, the naive approach to encoding an exponentially long
proof (given explicitly) into history state |ψhist⟩ would result in an exponential size proof
register A, which is too large for our purposes. However, in our definition of SQCMASPACE,
the proof is not given explicitly, but streamed via application of local gates. While this may
seem a priori more difficult to work with, it has a distinct benefit – since all gates Vt encoding
streamed proof bits (i.e. “proof gates”) are “part of” the verification circuit itself, we can
directly encode them into the history state’s superposition/sum over time steps (requiring
only poly-space), thus obviating the need for a separate proof register, A! Of course, now we
are out of the frying pan into the fire, for there remains a serious problem – the propagation
term Hprop =

∑m
t=1 Ht, which explicitly encodes each gate Vt into its corresponding local

propagation term, Ht, needs to be fully specified in advance. However, by definition of
streaming proof, the gates Vt which are proof gates are not known in advance. Can correct
propagation still somehow be enforced? To put it more “dramatically”, can a history state
be used to encode the future?

In and of itself, this seems paradoxical. Yet, there is a setting in which special cases
of classical proofs can be “compressed” into an exponentially smaller number of qubits –
QMA(2) (Definition 23). Informally, QMA(2) is defined as QMA, except where the verifier
is promised to get a proof in tensor product across some prespecified partition L versus R
of the qubits, i.e. an “unentangled” proof of form |ψ1⟩L ⊗ |ψ2⟩R. In this setting, Blier and
Tapp [4] first showed that the NP-complete problem 3-SAT could be verified using just
log-size “unentangled” proofs, log-space quantum verification, and 1/ poly promise gap, i.e. in
PQMAlog(2). Next, Pereszlényi [31] showed a similar result for verifying the NEXP-complete
language SUCCINCT-3-COLORING via poly-size unentangled proofs and 1/ exp promise
gap, i.e. in PreciseQMA(2) (thus obtaining PreciseQMA(2) = NEXP). (Further related
works in Section 1.3.) However, these constructions are expressly tailored to the problems
being reduced from, and a priori have nothing to do with streaming. Moreover, to-date,
no systematic constructions were known for embedding “long” classical proofs into “small”
unentangled quantum systems. We thus ask:

▶ Question 4. Can unentanglement be exploited to compress streaming proofs into exponen-
tially smaller7 history state constructions?

1.1 Our Results
We divide our results into three parts: SQCMASPACE, ground space traversal, and embed-
ding streaming proofs into unentanglement.

1. The complexity of SQCMASPACE. We first show that a quantum analogue of
Savitch’s theorem for SQCMASPACE is unlikely to hold, even in the setting of constant
promise gap.

7 For clarity, “smaller” refers to the number of qubits in the history state. Thus, if the proof has length
f(n), then the history state should be a O(log(f(n)))-qubit state.
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Figure 1 (Color online) Simplified illustration of the Universal quantum path following lemma
with f in black (smooth), |ψ⟩ = f(0), |ϕ⟩ = f(1), and the path of intermediate states |ψt⟩ in blue
(piece-wise linear). In the actual construction, each linear segment is itself further subdivided and
likewise approximately simulated.

▶ Theorem 5. SQCMASPACE with 2poly(n) proof bits, poly(n) ancilla qubits, completeness
1, and soundness 1/2, equals NEXP, i.e. SQCMASPACE(poly, poly, 1) = NEXP.

For completeness, we also define the analogous class SQMASPACE (see full version [15]),
which takes an exponential length streamed quantum proof, and show its equality to QMAEXP
(quantum analogue of NEXP):

▶ Theorem 6. SQMASPACE with 2poly(n) proof bits, poly(n) ancilla qubits, completeness
2/3, soundness 1/3, equals QMAEXP, i.e. SQMASPACE(poly, poly, 1) = QMAEXP. With
poly(n) proof bits, O(log(n)) ancilla bits, it equals QMA, i.e. SQMASPACE(log, log, 0) =
QMA.

2. Ground space traversal. Our second result reveals that Question 3 has an arguably
surprising resolution – in strong contrast to the classical case, in which the solution space for
a SAT instance can be connected or disconnected, in the quantum setting, ground spaces of
local Hamiltonians are always connected.

At the heart of this result is a new technical lemma showing how to simulate any
Lipschitz continuous path on the hypersphere by an exponentially long sequence of local
quantum gates (i.e. gates on a typical gate-based quantum computer). For this, define a
path between an initial state |ψ⟩ to final state |ϕ⟩ as any Lipschitz continuous function on
the unit hypersphere, i.e. f : [0, 1] 7→ Sd−1, with f(0) = |ψ⟩ and f(1) = |ϕ⟩ (illustration in
Figure 1; formal definitions in Section 3). We show8:

▶ Lemma 7 (Universal quantum path following lemma). Set d := 2n, and let f : [0, 1] → Sd−1

be a K-Lipschitz continuous path. For every ε > 0, there exists a sequence of M ∈ O((n
2d2

ε )2n)
2-local unitaries U = UM · · ·U1 which “ε-approximately simulates” the path f as follows:
For all t ∈ {0, . . . ,M}, it holds that ∥|ψt⟩ − f(t/M)∥2 ≤ ε, where |ψt⟩ = Ut · · ·U1|ψ0⟩ and
|ψ0⟩ := f(0).

With Lemma 7 in hand, we resolve Question 3 by showing that in the quantum setting,
ground spaces of local Hamiltonians are always connected in the following sense.

▶ Theorem 8. Let H ∈ Herm
(
Cd
)
, d = 2n with 0 ≼ H ≼ I, |ψ⟩, |ϕ⟩ ∈ Cd with ⟨ψ|H|ψ⟩ ≤ η

and ⟨ϕ|H|ϕ⟩ ≤ η. For any ∆ ≥ 2− poly(n), there exists a sequence of 2-local unitary gates
U = Um · · ·U1 with m ≤ 2poly(n) such that

8 For simplicity in stating the bound on M in Lemma 7, we assume K ∈ Θ(1), as this suffices for our
applications. However, Lemma 7 also holds for non-constant K with M ∈ O(K( n2d2

ε )2n) if 0 < K ≤ 1
and M ∈ O(2O(n)( K2n2d2

ε )2n) if K > 1.
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(1) ∥U |ψ⟩ − |ϕ⟩∥2 ≤ ∆, and
(2) for all i ∈ [m], ⟨ψi|H|ψi⟩ ≤ η + ∆, where |ψi⟩ := Ui · · ·U1|ψ⟩.

In words, even if we wish to remain exponentially close to the ground space of H
throughout the local evolution from |ψ⟩ to |ϕ⟩, this can be achieved, at the expense of
exponentially blowing up the length of the evolution. Returning to our motivating example of
error correcting codes, we conclude: For any H , if the ground space of H encodes a quantum
error-correcting code, and |ψ⟩ and |ϕ⟩ are any pair of code words, then Theorem 8 says one
can stealthily corrupt |ψ⟩ into |ϕ⟩ via a sequence of 2-qubit gates, so that at any point in the
evolution, we are exponentially close to the code space, and thus the corruption is unlikely to
be caught via measurement of H. The trade-off is that, again, this evolution path “hugging”
the code space is exponentially long.

As an immediate corollary, we are now able to answer an open question of [17].

▶ Corollary 9 (Informal; formally Corollary 31). GSCON with exponentially many gates and
inverse polynomial promise gap is in P.
This follows since by Theorem 8, all GSCON instances in the parameter regime above are
YES instances. Thus, allowing an exponentially long proof trivializes GSCON, which is
otherwise QCMA-complete in the setting of poly-length proofs [17].

As a sanity check, we also strengthen a result of [17] by showing that even an unbounded
number of 1-local gates with constant promise gap do not suffice to trivialize GSCON.

▶ Theorem 10 (Informal; see full version [15] for formal statement). GSCON is PSPACE-
complete for 1-local gates, constant promise gap, and an unbounded number of gates.

The previous PSPACE-hardness result of [17] in the 1-local case required inverse exponential
promise gap and an exponential bound on the number of gates.

We also obtain two additional results regarding GSCON.

▶ Theorem 11. GSCON is PSPACE-hard for 2-local gates, inverse exponential promise gap,
and an exponential number of gates.

▶ Theorem 12. GSCON is NEXP-complete in the same setting as above, but with a sparse
Hamiltonian whose qubits are partitioned into registers L,R, and only unitaries are considered
that act either only on L or only on R.

3. Embedding streaming proofs into unentanglement. We next resolve Question 4 in the
positive, showing that streaming proofs can be systematically compressed into exponentially
smaller history states.

The formalization of this goes via the Sparse Separable Hamiltonian (SSH) problem
(Definition 22), which informally is identical to the k-local Hamiltonian problem, except for
two key differences: (1) H is sparse, rather than local, and (2) proofs are restricted to be in
tensor product form. A bit more formally: Given a sparse Hamiltonian H (Definition 21) on
n qubits and bipartition L versus R of [n], does there exist |ψ1⟩L ⊗ |ψ2⟩R such that

⟨ψ1|L ⊗ ⟨ψ2|RH|ψ1⟩L ⊗ |ψ2⟩R (2)

is “small”, or does it hold that for all |ψ1⟩L ⊗ |ψ2⟩R, ⟨ψ1|L ⊗ ⟨ψ2|RH|ψ1⟩L ⊗ |ψ2⟩R is “large”?
Note that, in general, optimizations over tensor product states |ψ1⟩L ⊗ |ψ2⟩R ∈ Cd2 are
harder than optimizations over all |ψ⟩ ∈ Cd2 , i.e. without the tensor product requirement.
For example, if H in Equation (2) had polynomial dimension, than maximizing Equation (2)
is NP-hard [21], whereas maximizing ⟨ψ|H|ψ⟩ over all |ψ⟩ ∈ Cd2 is an eigenvalue problem,
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and thus efficiently solvable in the dimension of H. In other words, the optimal solution to
a tensor product optimization is not necessarily an eigenvector of H, and this makes the
design and analysis of unentangled proof systems challenging.

We now state our main technical result. A key parameter is the promise gap of the Sparse
Separable Hamiltonian problem. Chailloux and Sattath [6] show SSH is QMA(2)-complete
(Definition 23) for inverse polynomial promise gap. We show:

▶ Lemma 13 ((Informal) Embedding lemma; formally Lemma 32). Let p, q, r,m, α, β : R 7→ R,
where p, q, r are poly-bounded. Let Q be a quantum circuit consisting of m 2-qubit gates,
taking in (1) input x ∈ Σn, (2) a classical streaming proof y ∈ {0, 1}2p

, and (3) q ancilla
qubits initialized to all zeroes. We are promised that either there exists a streaming proof
y causing Q to accept with probability at least α, or all streaming proofs are accepted with
probability at most β, for α− β ≥ 2−r. Then, there exists a poly-time many-one reduction
from (Q, x) to a Separable Sparse Hamiltonian H instance with norm ∥H∥∞ ∈ poly(m, 2r),
and with thresholds α′, β′, such that:
1. H acts on O(q + logm) qubits.
2. The promise gap scales as |α′ − β′| ∈ Ω

( 1
m2r

)
.

In words, any quantum verification Q with q qubits as workspace and taking in a classical
proof of length 2p can be compressed to a Separable Sparse Hamiltonian instance on O(q+ p)
qubits and with promise gap scaling9 as 1/2p. Moreover, the mapping (1) preserves the space
required up to poly overhead, and (2) embeds the proof of length 2p bits into ∼ p qubits. To
the best of our knowledge, this is the first such systematic method for compressing arbitrary
classical proofs via unentanglement.

Applications of the Embedding Lemma. Lemma 32 immediately applies to arbitrary
SQCMASPACE verifiers. Here, however, we focus on the application to MIP:

▶ Corollary 14 ((Informal) Reducing MIP to unentanglement; formally, Corollary 35). There
exists a poly-time many-one reduction from any classical multi-prover interactive protocol
(MIP, Definition 24) with p provers, r rounds, u space, and t bits of communication per
round, to an instance of Separable Sparse Hamiltonian on Õ(u) qubits with promise gap
scaling dominated by scaling 2−tr. (The tilde in Õ hides polylogarithmic factors.)

For context, recall that MIP with two provers, one round and polynomially many bits of
communication equals NEXP [2, 13]. As for NP, it is contained in MIP with 2 provers, 1
round, and logarithmic bits of communication. In words, Corollary 14 says that any MIP
protocol can be reduced to an SSH instance, with the key parameter being the number of
bits t of communication; this is what dictates the promise gap of the SSH instance H we
obtain. Note we also preserve the space used by the MIP protocol (which is important for
Corollary 36 for the case of NP, where the MIP uses log-space).

With Lemma 32 in hand, we next show various QMA(2)-type containments. For this, we
first show that the specific Hamiltonian construction H output by the Embedding Lemma
can be decided in QMA(2) using appropriate parameters:

▶ Lemma 15 (Informal; see Lemma 38). Let H be the Sparse Separable Hamiltonian instance
produced by the Embedding Lemma, acting on n qubits and with promise gap g. Then, H
can be decided by a QMA(2) verifier acting on O(n) qubits and with promise gap O(g).

9 This statement assumes the verification time m, proof length 2p, and promise gap 2r are polynomially
related, which is a reasonable setting.
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As an aside, at present we are curiously unable to show Lemma 38 without exploiting the
specific structure of H from the Embedding Lemma.

Finally, by combining Lemma 32 and Lemma 38, we obtain the following two main
corollaries:

▶ Corollary 16 (Informal; see Corollary 40). SQCMASPACE with proof length 2p, q ancilla
qubits, and promise gap 1/2r is contained in QMA(2) with q + log p proof and ancilla qubits,
and promise gap 1/2p+r.

Above, note that p and r are polynomially bounded, i.e. logarithmic p and r are allowed.

▶ Corollary 17 (Informal; see Corollary 41). MIP with t bits of communication per round,
space u, v random bits, p provers, r rounds, and completeness/soundness c and s, respectively,
is contained in QMA(2) with u+ v + log(tr log(pt)) proof and ancilla qubits, and promise
gap 2−tr log(pt)+log(c−s).

Thus, we obtain the first systematic QMA(2)-type bounds on arbitrary multi-prover inter-
active protocols. Above, the QMA(2) verifier requires the same amount of ancilla space
as the MIP, and the QMA(2) promise gap depends exponentially on the total amount of
communication but only polynomially on the MIP promise gap. As a bonus, we also imme-
diately rederive (Corollary 39) in a unified fashion the results NP = PQMAlog(2) [4] and
NEXP = PreciseQMA(2) [31].

Finally, as a last application of the Embedding Lemma, we return to our study of GSCON
by showing NEXP-completeness for a variant of GSCON:

▶ Theorem 18 (Informal; see full version [15] for formal statement). GSCON is NEXP-complete
with a sparse Hamiltonian, an inverse exponential promise gap, and an exponential number
of 2-local gates which may not act across a given L versus R cut of the qubits (i.e. all
intermediate states are product across the L versus R cut).

1.2 Techniques
The proof of SQCMASPACE = NEXP (Theorem 5) follows easily from the PCP charac-
terization of NEXP [2] by using quantum computation to generate random numbers and
streaming the PCP proof10. As for SQMASPACE = QMAEXP (Theorem 6), the obstacle
is to show that (weak) error reduction holds for SQMASPACE. This is because with only
poly-size ancilla space, the verifier seemingly can only repeat the verification a polynomial
number of times, which is not enough to amplify an exponentially small promise gap. We
overcome this by forcing the streamed proof itself to repeatedly replenish the verifier’s ancilla,
and run a pair of counters to both ensure the prover sends correctly initialized ancilla qubits
all set to zero, along with sufficiently many “good” proofs accepted with high probability.

The main technical contributions of this work, however, are the Universal quantum path
following lemma (Lemma 7) and the Embedding lemma (Lemma 32), which we now discuss.

1. Universal Quantum Path Following Lemma. Recall Lemma 7 shows how to simulate
any Lipschitz continuous path on the unit hypersphere via an exponentially long sequence
of local gates. To show this, we first “discretize” the given path f into a dense enough

10 For clarity, there is nothing specifically “quantum” about this proof. If one defines an analogous notion
of “MASPACE”, meaning a randomized generalization of NPSPACE, an essentially identical proof
would also yield MASPACE = NEXP.
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sequence of points |ψ1⟩, . . . , |ψN ⟩ so that each consecutive pair of points |ψj⟩ and |ψj+1⟩ is
“close”. Thus, if global (i.e. n-local) unitaries were allowed, a “small rotation” (i.e. close to
identity) would suffice to exactly map |ψj⟩ to |ψj+1⟩. However, here we are restricted to
2-local gates, and the typical approach [29] to simulate global rotations using 2-local gates
would yield intermediate states possibly very far from |ψj⟩ and |ψj+1⟩ (and more generally,
from the desired path f). Hence, we devise a general decomposition of global unitaries
close to identity into 2-local gates close to identity. Specifically, we give an approximate
decomposition eitH ≈

∏
j e
itjHj , where

∑
j |tj | is bounded by 2poly(n)|t|1/2n. Basically, we

can decompose a unitary with a short pulse time into many local unitaries with short pulse
times, which allows us to map a quantum state along each segment |ψj⟩ to |ψj+1⟩.

For that, we first write H =
∑
j αjPj in the Pauli basis (i.e. each Pj is a tensor

product of the Pauli matrices and identity) and apply the Suzuki decomposition [33] to
get eiH =

∏
j e
iαjPj + O(t2), where

∑
j |αj | ≤ t. Clinton, Bausch, and Cubitt [9] give an

exact 2-local decomposition for the eiαjPj terms with bounded pulse times. We provide an
alternative construction with a simpler analysis, and which requires a polynomial number of
gates to implement a Hamiltonian interaction (compared to exponential in [9]), at the cost
of a slightly worse pulse time bound compared to [9].

In terms of application, recall GSCON asks whether there exists a sequence of local
unitaries mapping ground state |ψ⟩ of H to orthogonal ground state |ϕ⟩, while remaining
in low energy space. Since we can apply Lemma 7 to arbitrary Lipschitz continuous paths,
we can apply it to path f(t) = cos(tπ/2)|ψ⟩ + sin(tπ/2)|ϕ⟩, where note that for all t, f(t) is
also a ground state11 of H . Thus, Lemma 7 allows us to “follow” this path via 2-qubit gates,
yielding a suitable gate sequence Um · · ·U1 for GSCON. In general, this sequence requires
an exponential number of gates, and in return achieves exponential precision.

2. The Embedding Lemma. Lemma 32 shows how to compress any quantum verification
Q with q qubits as workspace and taking in a streaming classical proof of length 2p into a
Separable Sparse Hamiltonian instance on O(q + p) qubits and promise gap scaling as 1/2p.
So, let Q = Vm · · ·V1 be a quantum verifier taking in streaming proof y. Recall we formalized
“streaming” by partitioning the gates {Vi} into two sets: “Proof gates” indexed by P ⊆ [m],
and “computation gates” indexed by [m] \ P . Our goal is to design a Hamiltonian H so that,
when there exists proof y accepted by Q, then an appropriately defined history state |ψhist⟩
has low energy against H. The problem is that we do not know the proof gates {Vi} with
i ∈ P while computing the reduction – the verifier Q only learns this information in the
future. To overcome this, at a very high level, we instead demand an appropriately defined
unentangled history state of form |ψhist⟩L ⊗ |ψhist⟩R. We then exploit this “unentanglement”
to logically simulate a quadratic Boolean function across the two copies of |ψhist⟩, in turn
allowing the history state to decide “on-the-fly” whether it wishes to stream proof bit 0 or 1
in step t ∈ P .

Formally, we define our Hamiltonian as (details in Section 4) H̃ = ∆inH̃in + ∆propH̃prop +
∆symH̃sym + H̃out for some weights ∆in,∆prop,∆sym ≥ 0. Briefly, H̃in and H̃out ensure that
in any candidate proof |ψ⟩L ⊗ |ϕ⟩R, both |ψ⟩L and |ϕ⟩R are initialized correctly at time
t = 0 and accept at time t = m. H̃sym enforces that a low energy state is symmetric under
exchange with respect to the cut L versus R. The key ingredient, however, is hiding in H̃prop,
and is the FLUX gadget,

(HI
t )L ⊗ (HiX

t )R + (HiX
t )L ⊗ (HI

t )R, (3)

used to encode future streamed proof gates (i.e. for time steps t ∈ P ).

11 Note Theorem 8 also applies when |ψ⟩ and |ϕ⟩ are not ground states, but just low energy states.
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This gadget works as follows. A propagation term HI
t or HiX

t enforces that at time t ∈ P ,
the local proof |ψ⟩ applies proof gate I (to simulate streaming bit 0) or proof gate iX (to
simulate streaming bit 1), respectively. Since we do not know in advance which of these two
gates will be applied, we run a thought experiment – imagine we had two parallel universes,
where universe L streams bit 0, or universe R streams bit 1. This can be simulated via
term (HI

t )L ⊗ (HiX
t )R – namely, since the tensor product is multiplicative, this constraint

is satisfied, i.e.
(
(HI

t )L ⊗ (HiX
t )R

)
|ψ⟩L ⊗ |ϕ⟩R = HI

t |ψ⟩L ⊗ HiX
t |ϕ⟩R = 0, only if either

universe L (i.e. |ψ⟩L) applies gate I or universe R (i.e. |ψ⟩R) applies gate iX, or both.
The keyword here is “or”, in that the tensor product allows us to simulate the Boolean OR
function between universes. Of course, we have not yet achieved anything, since neither
universe has any choice in which bit it streams! This brings us back to the FLUX gadget –
observe that the “+” in Equation (3) acts as a Boolean “AND”. In other words, to satisfy
the gadget, universe L can apply I (this annihilates the first term, (HI

t )L ⊗ (HiX
t )R) and R

can apply I (this annihilates the second term, (HiX
t )L ⊗ (HI

t )R). Similarly, both can instead
choose to apply iX to satisfy the gadget. The conclusion is that both universes can freely
decide which proof bit to stream at time t ∈ P , so long as they stream the same bit! Indeed,
this works because we have exploited unentanglement to simulate the quadratic Boolean
function EQUALS: (x ∨ y) ∧ (x ∨ y) ↔ x = y for x, y ∈ {0, 1}.

The next challenge is to prove soundness of the construction, where recall tensor product
optimizations are difficult to analyze since optimal solutions do not correspond to eigenvectors
(and thus, standard techniques from the study of k-LH cannot be directly employed). Indeed,
this step is rather involved (a step-by-step derivation of the construction is in Section 4.1).
For example, the careful reader might wonder why we chose iX to stream bit 1 rather than
simply X – it turns out use of X breaks soundness of the FLUX gadget. Even when we
use iX, without the symmetry constraint H̃sym, soundness again breaks via simultaneous
cheating across multiple FLUX gadgets.

To overcome these obstacles, very briefly, our analysis first exploits the large weight ∆sym
to enforce any low energy state to look like |ψ⟩L ⊗ |ψ⟩R for some |ψ⟩. To next force |ψ⟩ to
look like an actual history state, two ingredients smoothly fit together. First, since we use
iX instead of X in the FLUX gadget, it turns out that for any choice of assignment |ψ1⟩L
on L, a low energy state |ψ2⟩R on system R must implement at time t ∈ P the operator

U(at, bt) = 1√
a2
t + b2

t

(atiX + btI). (4)

for some at, bt ≥ 0. Now, due to the i in iX, U(at, bt) turns out to be unitary. Thus,
conditioned on any fixed assignment on L, we can “invert” U(at, bt) by applying Kitaev’s
change-of-basis operator [24], thus diagonalizing what we call the “residual propagation term
on R”,

⟨ψ1|HI
t |ψ1⟩(HiX

t )R + ⟨ψ1|HiX
t |ψ1⟩(HI

t )R. (5)

The second ingredient is to show that by setting ∆prop large enough, we can extract a “proper”
propagation Hamiltonian hiding under this “residual operator on R” over all time steps.
This allows us to force any low energy state of H̃ to indeed be of form |ψhist⟩L ⊗ |ψhist⟩R –
which is almost what we want.

The final problem is that for any t ∈ P , |ψhist⟩ is currently forced to apply a unitary of
form U(at, bt) from Equation (4) for some at, bt. What we actually want is for the FLUX
gadget to act like a “switch” – either at = 0 and bt ≫ 0 (streaming proof bit 0) or at ≫ 0
and bt = 0 (streaming proof bit 1). By carefully exploiting the structure of U(at, bt) itself,
we finally show that any low energy |ψhist⟩L ⊗ |ψhist⟩R can be “rounded” to obtain a state
close-by which perfectly satisfies this desired “switch” behavior for all t ∈ P .

ITCS 2023



53:12 Quantum Space, Ground Space Traversal & Embedding MIPs into Unentanglement

1.3 Related Work

GSCON. In the classical setting, Gopalan, Kolaitis, Maneva, and Papadimitriou [18] show
the problem of determining whether two solutions of a Boolean formula are connected through
its solution space is in P or PSPACE-complete, depending on the types of constraints allowed
in the formula. The GSCON problem was introduced by Gharibian and Sikora [17], who
show that GSCON with m = poly(n) (l = 2)-local unitaries is QCMA-complete. For
m = exp(n) and l = 1, it is PSPACE-complete. If the Hamiltonian is given as a succinct
circuit description, GSCON is NEXP-complete. Gosset, Mehta, and Vidick [19] show the
surprising result that QCMA-completeness holds even for commuting local Hamiltonians (an
analogous result for QMA-completeness of k-LH on commuting Hamiltonians remains an
open question). Nagaj, Hangleiter, Eisert, and Schwarz [28] next show QCMA-completeness
for stoquastic Hamiltonians. Watson, Bausch, and Gharibian [36] study GSCON with a
translationally invariant Hamiltonian on a 1D chain of qudits (i.e. there exists a single 2-local
Hamiltonian acting on each pair of neighbors in the chain) and prove QCMAEXP-completeness
(QCMAEXP is QCMA with exponentially large proof and exponential-time quantum verifier).
We remark that the EXP in QCMAEXP arises due to the translation-invariance, which causes
the encoding size of the problem to be exponentially smaller than the size of the chain.

QMA(2). The complexity class QMA(k) (QMA with k unentangled proofs) was first
introduced by Kobayashi, Matsumoto, and Yamakami [26]. Blier and Tapp [4] show that
NP ⊆ QMAlog(2) (QMA(2) but with log-sized proofs and a log-space verifier) with perfect
completeness and 1 − 1/ poly soundness. Aaronson et al. [1] give a QMAlog(Õ(

√
n)) protocol

for 3-SAT with a constant soundness gap (as opposed to 1/ poly in [4]). They further argue
that assuming a weak version of the Additivity Conjecture from quantum information theory,
QMA(k) = QMA(2) for all k ≥ 2 and QMA(2) can be amplified to exponentially small error.
Harrow and Montanaro [22] prove this statement by developing a protocol for a product test
that allows a quantum verifier to check if a state is a product state across n cuts, given
two copies. It also follows that 3-SAT has a QMA(2) protocol with proof size Õ(

√
n). We

remark that it remains an open problem whether QMA(2) is equal to NEXP, though an
oracle separation to coNP exists [26]. Gharibian, Santha, Sikora, Sundaram and Yirka [16]
define quantum generalizations of the Polynomial Hierarchy, QCPH and QPH (using classical
and quantum proofs, respectively, and quantum verifiers in both cases), and show that (1) if
QCPH = QPH, then QMA(2) is in the Counting Hierarchy, and (2) unless QMA(2) = QΣ3
(QΣ3 the third level of QPH), QMA(2) is strictly contained in NEXP.

Chen and Drucker [7] improve upon [1] with a BellQMAlog(Õ(
√
n)) protocol for 3-SAT,

where BellQMA(k) is defined as QMA(k) without entangled measurements. QMA(2) permits
an inverse polynomial gap, however with an exponentially small gap it is equal to NEXP as
shown by Pereszlényi [31]. With a linear number of provers and an exponential soundness
gap, BellQMA equals NEXP as well. Kinoshita [23] proves that QMA(2) with postselection
also equals NEXP. Chiesa and Forbes [8] give a tight soundness analysis of the protocol of
[4], showing a soundness gap Ω(n−1), notably without using a PCP. They further improve
upon [7] by providing a smooth trade-off between the number of provers k and the soundness
gap Ω(k2/n). Chailloux and Sattath [6] show the Separable Sparse Hamiltonian problem
with 1/ poly promise gap is complete for QMA(2). Sparsity is crucial here, as [6] shows the
Separable Local Hamiltonian problem is in QMA.
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Space-bounded quantum computation. Watrous [34, 35] initiates the study of space-
bounded quantum computation and shows BQSPACE(s(n)) ⊆ SPACE(O(s(n)2)), where
BQSPACE is the space-bounded variant of BQP with intermediate measurements. It
follows that BQPSPACE = PSPACE. Fefferman and Lin [11] prove that QMA with an
inverse exponentially small gap, denoted PreciseQMA, is equal to PSPACE, by showing that
BQUSPACE(s(n)) (like BQSPACE but with only unitary gates) equals QMA with a poly-time
verifier, O(s(n)) space and proof size, and 2−O(s(n)) soundness gap. Consequently, the precise
local Hamiltonian problem (inverse exponential precision) is PSPACE-complete. Fefferman
and Remscrim [12] improve upon these results by showing BQUSPACE(s) = BQSPACE(s) =
QUMASPACE(s) = QMASPACE(s). (For clarity, recall QMASPACE receives a poly-sized
quantum proof, whereas in this work SQCMASPACE takes an exponential size classical
proof.) Notably, they are able to eliminate intermediate measurements, which is nontrivial
in the space-bounded setting as deferred measurements require a fresh ancilla for each
measurement.

1.4 Open questions

First, while we have given characterizations for both SQCMASPACE and SQMASPACE,
our focus has primarily been on classical streamed proofs. Discovering further properties of
quantum streamed proofs is thus left as a natural open question.

Next, via the Universal Quantum Path Following Lemma (Lemma 7), we showed that
GSCON with exponentially many gates and inverse poly promise gap is in P (Corollary 31).
However, what remains unclear is the complexity of GSCON with exponentially many gates
and inverse exponential promise gap. Then, depending on the exact size of the gap and
number of unitaries allowed, Lemma 7 does not necessarily apply, and indeed, in Theorem 11
we show that GSCON in this setting is PSPACE-hard. The only progress we are able to
make here is Theorem 12, which requires a sparse (versus local) Hamiltonian and predefined
L versus R cut across which gates may not act (whereas originally GSCON has no such
restriction). Second, whereas the classical analogue of GSCON, S, T -CONN, satisfies a
dichotomy theorem (i.e. is either in P or PSPACE-complete depending on the constraints
allowed) [18], a similar result remains unknown for GSCON.

In terms of unentanglement, the Embedding Lemma (Lemma 32) recovers the result
of [4] for NP with log-size QMA(2) proofs, and in particular, also with an inverse poly
promise gap. Whether this gap can be improved to constant while maintaining a log-size
proof remains open. Next, can an analogue of Lemma 38 be shown without assuming the
structure on H guaranteed by the Embedding Lemma? Recall our proof of Lemma 38
crucially leveraged the latter. Finally, the complexity of QMA(2) remains frustratingly open
– is QMA(2) = NEXP? What other natural complete problems are there for QMA(2) beyond
the (inverse poly-gapped) Separable Sparse Hamiltonian [6]?

1.5 Organization

Section 2 begins with definitions. Section 3 gives our first main result, the Universal Quantum
Path Following Lemma. Section 4 gives our second main result, the Embedding Lemma,
with applications in Section 5. Due to space constraints, we sketch our main results. We
refer the reader to the full version [15] for formal proofs of all results.
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2 Definitions

We begin by defining SQCMASPACE.

▶ Definition 19 (Streaming classical proof). Let U be a quantum circuit acting on an n1-
qubit input register R1, n2-qubit ancilla register R2, and 1-qubit proof register R3, for some
n1, n2 > 0. Registers R2 and R3 are initialized to all zeroes. At a high level, the idea is
to stream a classical proof in register R3 one bit at a time. To do so, we view the entire
execution of U as a sequence of 1- and 2-qubit gates, but where certain 1-qubit gates on R3
are a priori unknown. Formally, there are two main phases in the circuit, which repeat until
the circuit completes. In iteration i:
1. (Computation phase) A sequence of 1- and 2-qubit gates acts on registers R1 and R2.
2. (Proof phase)

a. (Compute) Single-qubit gate Wi ∈ {I,X} is applied to R3, for X the Pauli NOT gate.
b. (Copy) R3 is classically copied into R2 via CNOT gate (controlled from R3 onto R2).
c. (Uncompute) Wi is applied to R3 to return R3 to |0⟩.

Remarks. We view each gate Wi as being applied dynamically by the prover, i.e. each time
the computation phase ends, the prover supplies the next bit. Each computation phase may
have a different gate sequence. Without loss of generality, in Step 2b we assume there is a
fixed qubit in R2, say q, to which the content of R3 is copied each time. If U does not wish
to use the next proof bit, it may set q to |+⟩ just before Step 2b, so that the CNOT gate of
2b acts invariantly.

▶ Definition 20 (Streaming-QCMASPACE (SQCMASPACE(p, q, r))). A promise problem
A = (Ayes, Ano) is in SQCMASPACE(p, q, r) for polynomially-bounded functions p, q, r, if
there exist thresholds α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a poly(n)-time and
q(n)-space uniform family12 of quantum circuits {Qn} with properties as follows. Qn takes
as input a string x ∈ Σn, a classical streaming proof y ∈ {0, 1}2p(n)

, and q(n) ancilla qubits
in state |0⟩⊗q(n). We say Qn accepts (x, y) with probability p if on input (x, y), measuring
Qn’s dedicated output wire in the standard basis yields 1 with probability p. Then:

(Completeness) If x ∈ Ayes, ∃y ∈ {0, 1}2p(n)
s.t. Qn accepts (x, y) with probability ≥ α.

(Soundness) If x ∈ Ano, ∀y ∈ {0, 1}2p(n)
, Qn accepts (x, y) with probability ≤ β.

Finally, let the input, ancilla, and proof registers be denoted R1, R2, R3 respectively. To
enforce that R1 and R3 are not used as ancilla, we require that Qn only acts on R1 and R3
via CNOTs with the control in R1 or R3 and the target in R2.

We next state existing definitions.

▶ Definition 21 (Sparse Hamiltonian (e.g. [6])). A Hermitian operator H ∈ Herm
(
(C2)⊗n)

is row-sparse if each row of H has at most poly(n) non-zero entries, and if there exists an
efficient classical algorithm mapping row index i ∈ [2n] to a sequence of all non-zero entries
Hij of H.

▶ Definition 22 (Separable Sparse Hamiltonian (SSH(g)) [6]). Let g : N 7→ R be an efficiently
computable function. Given as input a sparse Hamiltonian H, a bipartition L versus R of
the n qubits H acts on, and threshold parameters α, β satisfying β − α ≥ 1/g(n), decide:

(YES case) ∃|ψ1⟩L|ψ2⟩R : ⟨ψ1|L⟨ψ2|RH|ψ1⟩L|ψ2⟩R ≤ α.
(NO case) ∀|ψ1⟩L|ψ2⟩R : ⟨ψ1|L⟨ψ2|RH|ψ1⟩L|ψ2⟩R ≥ β.

12 To clarify, there exists a Turing machine that outputs gate i on input (i, 1n) in poly(n)-time and q(n)
space. These bounds match those used in the definition of QUSPACE [11, Def. 4].
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Chailloux and Sattath show that the Separable Sparse Hamiltonian problem with inverse
polynomial gap, SSH(1/ poly), is QMA(2)-complete, for QMA(2) defined next.

▶ Definition 23 (QMA(2, p, q, r) [26]). A promise problem A = (Ayes, Ano) is in QMA(2, p, q,
r) for polynomially bounded functions p, q, r (may also be, e.g., logarithmic) if there exist
thresholds α(n), β(n) satisfying α(n) − β(n) ≥ 2−r(n), and a poly-time uniform family of
quantum circuits {Qn} with properties as follows. Qn takes as input a string x ∈ Σn, a
quantum proof |ψ1⟩L ⊗ |ψ2⟩R ∈ C2p(n) ⊗ C2p(n) , and q(n) ancilla qubits in state |0⟩⊗q(n).
We say Qn accepts (x, y) with probability pacc if on input (x, |ψ1⟩L|ψ2⟩R), measuring Qn’s
dedicated output wire in the standard basis yields 1 with probability pacc. Then:

(Completeness) If x ∈ Ayes, ∃|ψ1⟩L|ψ2⟩R s.t. Qn accepts (x, |ψ1⟩L|ψ2⟩R) w.p. ≥ α.
(Soundness) If x ∈ Ano, ∀|ψ1⟩L|ψ2⟩R, Qn accepts (x, |ψ1⟩L|ψ2⟩R) w.p. ≤ β.

Harrow and Montanaro [22] have shown that error reduction holds for QMA(2), i.e. we may
assume α and β are exponentially close to 1 and 0, respectively.

▶ Definition 24 (MIP(t(n), u(n), v(n), p(n), r(n), c(n), s(n)) (introduced in [3], as stated
in [14])). A promise problem A = (Ayes, Ano) is in MIP(t, p, r, c, s) if there exist polynomial
t and polynomially bounded functions u and v, and a classical verifier V using poly(n) time,
u(n) space, v(n) bits of randomness, and interacting with p non-communicating provers via
r rounds of interaction, where each round consists of t(n) bits of communication between
verifier and provers, and where n = |x| is the size of input x, such that

If x ∈ Ayes, then there exists a strategy for the provers that is accepted by the verifier with
probability ≥ c.
If x ∈ Ano, any strategy of the provers is accepted by the verifier with probability ≤ s.

▶ Definition 25 (GSCON(H, k, η1, η2, η3, η4,∆, l,m, Uψ, Uϕ) [17]).
1. Input:

A k-local Hamiltonian H ∈ Herm (B⊗n), where B := C2.
η1, η2, η3, η4,∆ ∈ R and integer m ≥ 0, such that η2 − η1 ≥ ∆ and η4 − η3 ≥ ∆.
Polynomial size quantum circuits Uϕ, Uψ generating “starting” and “target” states |ϕ⟩
and |ψ⟩ (on input |0n⟩), respectively, satisfying ⟨ψ|H|ψ⟩ ≤ η1 and ⟨ϕ|H|ϕ⟩ ≤ η1.

2. Output:
YES: There exists a sequence of l-local unitaries U1, . . . , Um such that:
(a) (Intermediate states remain in low energy space) For all i ∈ [m] and intermediate

states |ψi⟩ := Ui · · ·U1|ψ⟩, it holds that ⟨ψi|H|ψi⟩ ≤ η1, and
(b) (Final state is close to target state) ∥|ψm⟩ − |ϕ⟩∥2 ≤ η3.

NO: For all l-local sequences of unitaries U1, . . . , Um, either:
(a) (Intermediate state obtains high energy) There exists i ∈ [m] and an intermediate

state |ψi⟩ such that ⟨ψi|H|ψi⟩ ≥ η2, or
(b) (Final state far from target state) ∥|ψm⟩ − |ϕ⟩∥2 ≥ η4.

We assume Uψ and Uϕ to be given as sequences of gates from a universal gate set. The
numeric parameters are specified with rational entries using O(poly(n)) bits of precision.
Note that |ψ⟩ and |ϕ⟩ are not necessarily required to be ground states.

3 Universal Quantum Path Following Lemma

In this section, we give a general construction for simulating any Lipschitz continuous path
f on the unit hypersphere via a sequence of 2-local gates, thereby sketching the proofs of
Lemma 7 and Theorem 8. Full proofs are deferred to the full version [15]. We begin by
formally defining paths.
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▶ Definition 26 (Paths and Lipschitz continuity). For any d ≥ 2, consider the unit hypersphere
Sd−1 :=

{
|ψ⟩ ∈ Cd | ∥|ψ⟩∥2 = 1

}
. A path is any function f : [0, 1] → Sd−1. We say f is

K-Lipschitz continuous if for all a, b ∈ [0, 1], ∥f(a)−f(b)∥2 ≤ K|a−b|. The distance between
two paths is defined by the metric d(f, g) := maxt∈[0,1]∥f(t) − g(t)∥2 (∥·∥2 Euclidean norm).

Suppose we are given such a path f that we wish to approximate with some precision ε0.
First, we decompose f into a sequence of points |ψ1⟩, . . . , |ψN ⟩ with |ψi⟩ := f((i − 1)/N).
Due to Lipschitz continuity, ∥|ψi⟩− |ψi+1⟩∥2 ≤ ε1 for a suitable ε1 with N = O(1/ε1). Hence,
the angle between |ψi⟩ and |ψi+1⟩ is O(ε1) and there exists a (global) unitary rotation from
|ψi⟩ to |ψi+1⟩ of the form eiH with ∥H∥∞ = O(ε1) (∥·∥∞ denotes the spectral norm).

Now we have a sequence of small, but global, rotations, and we wish to simulate each such
rotation by a sequence of 2-local unitaries. The problem is that standard decompositions of
large unitaries (even encoding such small rotations!) into 2-local gates may use 2-local gates
which themselves are large rotations, thus causing us to temporarily deviate significantly
from our desired path f . To get around this, we show the following lemma, which gives
decompositions into 2-local gates, each of which is itself a small rotation (i.e. close to
identity). This lemma enables us to approximate each small rotation with a precision of
O(ε2

1) = O(1/N2). Thus, we can apply this approximation to all N rotations and still achieve
a total precision of O(1/N).

▶ Lemma 27. Let U = eiH for Hermitian H ∈ Herm(Cd), d = 2n with ∥H∥∞ =: ε <
(π/16)2n. There exists an approximate decomposition U = Um · · ·U1 + O

(
d2ε2) into m ≤

2O(n) 2-local unitaries, such that
m∑
j=1

∥I − Uj∥∞ = O
(
n2d2ε1/2n

)
. (6)

Equation (6) bounds the maximum distance an intermediate state may have in the transition
from |ψi⟩ and |ψi+1⟩ (applying the gates U1, . . . , Um one by one), scaling with ε. As argued
above, the map between two close vectors can also be viewed as a small rotation, and so the
lemma below follows.

▶ Lemma 28. Let |ψ⟩, |ϕ⟩ ∈ Cd be unit vectors with d = 2n. Let ∥|ψ⟩−|ϕ⟩∥2 ≤ ε < (π/16)2n.
There exists a sequence of 2-local unitaries U = Um · · ·U1 with m ≤ 2O(n), such that
(1) ∥|ϕ⟩ − U |ψ⟩∥2 = O(d2ε2), and
(2) for all i ∈ [m], ∥|ψ⟩ − Ui · · ·U1|ψ⟩∥2 = O(n2d2ε1/2n).
Hence, choosing ε proportional to ε2n

0 , we can approximate the path f with ε0 precision
by concatenating the approximations from Lemma 28 of each segment |ψi⟩, |ψi+1⟩, yielding
Lemma 7. Next, we sketch the proof of Lemma 27.

3.1 Decomposition of Pauli Interactions
To approximate eiH in Lemma 27 with 2-local unitaries, we can write H =

∑
j αjHj in the

Pauli basis (i.e. each Hj is a tensor product of I,X, Y, Z) with small αj . Applying a result
due to Suzuki [33, Theorem 3], we have eiH =

∏
j e
αjHj +O(ε2), with ε = ∥H∥∞. Next, a

construction of Clinton, Bausch, and Cubitt [9] is used to decompose the eαjHj terms into
2-local gates of the form eitjHj , such that the total evolution time

∑
j |tj | is bounded by

O(|αj |1/n).13 Here, we give an alternative construction of their decomposition with a simpler
analysis of pulse time bounds, and with an exponential improvement in the number of gates
required. The key insight is the lemma below.

13 Decompositions of arbitrary unitaries into 2-local gates are well known (e.g., [30]), but to the best of
our knowledge, they do not provide bounds on the distance from I.



S. Gharibian and D. Rudolph 53:17

▶ Lemma 29 ([9, Lemmas 7 and 9]). Let U = eitH for a Hamiltonian H = 1
2i [h1, h2], where

h1 and h2 anti-commute and square to identity. For 0 ≤ t ≤ π/2, there exist t1, t2 ∈ R with
|t1| + |t2| ≤

√
2t, and U = eit1h1eit2h2eit2h1eit1h2 .

2k−1 ...

eitP1···Pj−1ZPj+1···Pn =

eit1P1···Pj−1X eit2P1···Pj−1X

eit2Y Pj+1···Pn eit1Y Pj+1···Pn

2k−1 ...

Figure 2 Decomposition of Pauli interactions.

Since the Pauli matrices pairwise anti-commute and square to identity, we can apply Lemma 29
to (exactly) decompose eitH for H ∈ {I,X, Y, Z}⊗n as depicted in Figure 2. By applying
this decomposition recursively, we obtain the following result.

▶ Lemma 30. Let H ∈ {I,X, Y, Z}⊗n with n ∈ (2k−1 + 1, 2k + 1], and t ∈ R with
8|t|1/2k ≤ π/2. There exists a decomposition of eitH = Πm

j=1e
itjHj , where the Hj are 2-local

Pauli matrices, m ≤ 4k = O(n2), and
∑m
i=1 |ti| = O(n2|t|1/2k ) = O(n2|t|1/2n).

To prove Lemma 27, we concatenate the gate sequences from Lemma 30 for each eiαjHj .

3.2 Applying Quantum Path Following to GSCONexp

We apply the quantum path following approach to construct unitary sequences for GSCON
instances. Recall, the sequences obtained from Lemma 7 have exponential length. Suppose
we are given a GSCON instance, where l = 2, and for simplicity the starting state |ψ⟩ and
the target state |ϕ⟩ are orthogonal ground states of H (as opposed to just low energy states).
To determine whether we have a YES-instance, we need to check whether there exists a
sequence of 2-local unitaries that maps |ψ⟩ to |ϕ⟩ but keeps the energy of intermediate states
low. Certainly, states in the span of |ψ⟩ and |ϕ⟩ are also ground states. Hence, we can
apply Lemma 7 to the path f(t) := cos(tπ/2)|ψ⟩ + sin(tπ/2)|ϕ⟩ to obtain a suitable unitary
sequence.

To prove Theorem 8, we also have to consider the case where |ψ⟩ and |ϕ⟩ are not
orthonormal ground states. The idea is to first rotate |ψ⟩ onto a ground state |µ⟩ of
H, and then use the same method to rotate |µ⟩ to |ϕ⟩. Intermediate states along this
path have an energy of at most η. Let |λ1⟩, . . . , |λd⟩ be an orthonormal eigenbasis of H
with |µ⟩ = |λ1⟩. We can write |ψ⟩ = cos(θ)|µ⟩ + sin(θ)|ν⟩ for |ν⟩ ∈ Span{|λ2⟩, . . . , |λd⟩}.
Let f(t) := cos((1 − t)θ)|µ⟩ + sin((1 − t)θ)|ν⟩. Then f(t) is Lipschitz continuous and
f(t)†Hf(t) ≤ f(0)†Hf(0) ≤ η. Hence, Lemma 7 gives a suitable sequence for Theorem 8.

▶ Corollary 31. GSCON with m = 2poly(n), l = 2, and subexponential δ does not have
no-instances for sufficiently large n.
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4 Embedding streaming proofs into unentanglement

The main result of this section is the following.

▶ Lemma 32 (Embedding lemma). Let p, q, r,m, α, β : R 7→ R be efficiently computable
functions, where p, q, r are polynomially bounded. Let Qn be a quantum circuit consisting
of m(n) 1-and 2-qubit gates, taking in (1) input x ∈ Σn, (2) a classical streaming proof
y ∈ {0, 1}2p(n)

, and (3) q(n) ancilla qubits in state |0⟩⊗q(n), such that m(n) ≥ 2p(n) and
q(n) ≥ p(n) for all sufficiently large n. Define thresholds α(n), β(n) satisfying α(n) − β(n) ≥
2−r(n). We are promised that either:

(YES) ∃ a streaming proof y ∈ {0, 1}2p(n)
s.t. Qn accepts (x, y) with probability at least α.

(NO) ∀ streaming proofs y ∈ {0, 1}2p(n)
, Qn accepts (x, y) with probability at most β.

There exists a poly(n)-time mapping from (Qn, x) to a sparse Hamiltonian H on O(q(n) +
log(m(n))) qubits, partition (L,R) of the qubits H acts on, and threshold parameters α′(n)
and β′(n) satisfying α(n)′ − β(n)′ ≥ ((m(n) + 1)2r(n))−1 such that:

If (Qn, x) is a YES case, there exists |ψ1⟩L|ψ2⟩R such that ⟨ψ1|L⟨ψ2|RH|ψ1⟩L|ψ2⟩R ≤ α′.

If (Qn, x) is a NO case, then for all |ψ1⟩L|ψ2⟩R, ⟨ψ1|L⟨ψ2|RH|ψ1⟩L|ψ2⟩R ≥ β′.

The norm of H scales as ∥H∥∞ ∈ poly(m(n), 2r(n)).

In the remainder of this section, we give a brief overview of the main ingredients of the
proof of Lemma 32. (See full version [15] for a formal proof.)

4.1 Preliminary ingredients
Let Qn(y) = Vm · · ·V1 be the quantum circuit in Lemma 32 for input size n given streaming
proof y, which recall acts on registers R1 (input of size n), R2 (ancilla of q(n) ∈ poly(n)
qubits), R3 (streaming classical proof, single qubit).

We first slightly adapt the definitions of history state and the Feynman-Kitaev circuit-to-
Hamiltonian construction [24]. We define the history state as

|ψhist(y)⟩ = 1√
m+ 1

m∑
t=0

Vt · · ·V1|0 · · · 0⟩R2 |0⟩R3 |t⟩R4 , (7)

where R4 denotes the clock register. We write |ψhist(y)⟩ to stress the proof y is now embedded
into the circuit Qn. Also, since m(n) ∈ Ω(2p(n)) necessarily (otherwise the circuit does not
have time to see each bit of proof y), the clock register R4 is encoded in binary.

Next, we define the Feynman-Kitaev circuit-to-Hamiltonian construction elements as

Hin := (I − |0 · · · 0⟩⟨0 · · · 0|)R2
⊗ |1⟩⟨1|R3 ⊗ |0⟩⟨0|R4 (8)

Hout := |0⟩⟨0|out ⊗ |m⟩⟨m|R4 (9)

Hprop :=
m∑
t=1

Ht, where Ht is defined as (10)

Ht := −Vt ⊗ |t⟩⟨t− 1|R4 − V †
t ⊗ |t− 1⟩⟨t|R4 + I ⊗ (|t⟩⟨t| + |t− 1⟩⟨t− 1|)R4 , (11)

where in Hout, |0⟩⟨0|out projects onto the dedicated output wire of Qn.
Finally, define for 1- or 2-qubit unitary U the operator HU

t as Ht, but with Vt replaced with
U . Let P ⊆ [m] denote the set of time steps for which Vi = Wi or Vi = W †

i (corresponding
to Steps 2a and 2c of Definition 19, respectively), i.e. in which a proof bit is written or
uncomputed. We shall refer to such Vi as proof gates.
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4.2 Proof sketch
We now sketch the proof of Lemma 32.

Proof. We assume all notation and definitions of Section 4.1. Define H̃ = ∆inH̃in +
∆propH̃prop + ∆symH̃sym + H̃out, where

H̃in := (Hin)L ⊗ IR + IL ⊗ (Hin)R (12)

H̃prop :=
m∑
t=1

H̃t, where H̃t is defined as (13)

H̃t :=
{

(HI
t )L ⊗ (HiX

t )R + (HiX
t )L ⊗ (HI

t )R if t ∈ P

(Ht)L ⊗ IR + IL ⊗ (Ht)R if t ̸∈ P
(14)

H̃out := (Hout)L ⊗ IR + IL ⊗ (Hout)R (15)

H̃sym := I − P sym
LR for P sym

LR := 1
2

(
ILR +

∑
xy

|xy⟩⟨yx|LR

)
, (16)

and ∆in,∆prop,∆sym are set as follows. Set M := (m + 1)2r. Then, define ∆in = M31,
∆prop = 72M31, and ∆sym = M66+2k, where q(n) ∈ O(nk) for some k ∈ O(1). Next, set
α′ = 2 1−α

m+1 and β′ = 2 1−β
m+1 − 1

M , where recall α− β ≥ 2−r by assumption. Observe H̃ acts
on O(q(n) + log(m(n))) qubits (workspace and clock register encoded in binary, respectively).
Importantly, H̃ is sparse (in the sense of Definition 21). For clarity, this means our reduction
does not output the explicit Hamiltonian H̃ , but rather the classical algorithm of Definition 21
which produces entries of H̃ on demand. Finally, the norm of H̃ is ∥H̃∥∞ ∈ poly(m, 2r).

Correctness. Assume (Qn, x) is a YES case. Let Qn = V ′
m · · ·V ′

2V
′

1 . For each t ∈ P with
V ′
t = X (i.e. a proof bit of 1 is streamed at time t), define Vt := iX, and for all t ̸∈ P ,

define Vt := V ′
t . It is straightforward to verify (H̃in + H̃prop + H̃sym)|ψhist⟩ ⊗ |ψhist⟩ = 0, and

⟨ψhist| ⊗ ⟨ψhist|H̃out|ψhist⟩ ⊗ |ψhist⟩ ≤ 2(1−α)
m+1 = α′.

Assume next that (Qn, x) is a NO case. Assume, for sake of contradiction, there exists
|ψ1⟩L|ψ2⟩R such that ⟨ψ1|L⟨ψ2|RH̃|ψ1⟩L|ψ2⟩R ≤ β′. Soundness proceeds in steps:

Step 1. Use the ∆symH̃sym term to show that, up to small additive error, |ψ1⟩ = |ψ2⟩.
Step 2. Use the ∆inH̃in + ∆propH̃prop term to show that |ψ1⟩ ≈ |ψhist⟩. This step is

rather involved, since we must “dynamically” consider a “residual” operator conditioned on
the choice of |ψ1⟩. Formally, for any time t ∈ P , the energy penalty of proof |ψ1⟩|ψ2⟩ against
H̃prop is

⟨ψ1|⟨ψ2|
(
HI
t ⊗HiX

t +HiX
t ⊗HI

t

)
|ψ1⟩|ψ2⟩ =: ⟨ψ2|G (at, bt) |ψ2⟩, (17)

for at := ⟨ψ1|HI
t |ψ1⟩ and bt := ⟨ψ1|HiX

t |ψ1⟩. While the right side of this equation is
minimized by the smallest eigenvalue of G(at, bt), the spectrum of the latter depends on the
assignment |ψ1⟩. We address this via a series of lemmata, which culminate in the following.
For this, define unitary U(at, bt) := 1√

a2+b2 (aiX + bI).

▶ Lemma 33. Assume ⟨ψ1|⟨ψ1|∆propH̃prop|ψ1⟩|ψ1⟩ ≤ 2. Suppose that δ′ ≥ 0 and ∆prop ≥ 1
satisfy ∆prop > max(36

√
2δ′, (8m4)/c). For all t ∈ P , define Ft to be the Feynman-Kitaev

propagation term (Equation (11)) for unitary U(at, bt). Then,

2∆prop
∑
t ̸∈P

Ht +
∑
t∈P

G(at, bt) ⪰ δ′

∑
t̸∈P

Ht +
∑
t∈P

Ft

 . (18)
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This lemma allows us to relate a “residual” operator G(at, bt) to the standard Kitaev
propagation Hamiltonian terms Ft, albeit for unitaries U(at, bt), which are not necessarily
the correct unitary encoding streaming of a proof bit.

Step 3. Thus far, we have that for any t ∈ P , there exist scalars at, bt ≥ 0, such that
|ψ1⟩ ≈ |ψhist⟩ applies unitary U(at, bt) at time t. In the honest case, for all t ∈ P the history
state would choose |ψ1⟩ on system L so that either at = 0 and bt = 1 (corresponding to
streaming proof bit 0 in step t) or at = 1 and bt = 0 (corresponding to streaming proof bit 1
in step t). Step 3 argues that for any low-energy |ψhist⟩, this must approximately hold.

Finally, by combining these steps, one arrives at the desired contradiction. ◀

5 Applications of the Embedding Lemma

In this section, we apply the Embedding Lemma (Lemma 32) to obtain various corollaries.
First, we reduce various complexity classes to the Separable Sparse Hamiltonian (SSH)
problem. Then, we exploit the exact structure of the SSH instances from Lemma 32 to
obtain various upper bounds of form QMA(2, p, q, r) for appropriate p, q, r.

5.1 Reductions to Separable Sparse Hamiltonian (SSH)
The first corollary is immediate, as an SQCMASPACE circuit has m ∈ Θ(2p) without loss
of generality.

▶ Corollary 34. There exists a poly-time many-one reduction from any SQCMASPACE(p, q, r)
instance to an instance of Separable Sparse Hamiltonian on O(q + log p) qubits with promise
gap Ω(2−p−r).

The second follows by applying the standard trick of concatenating the answers of the provers
for all sequences of questions from the verifier V into the streamed proof y of length pt2tr.

▶ Corollary 35. There exists a poly-time many-one reduction from any MIP(t, u, v, p, r, c, s)
protocol to an instance of Separable Sparse Hamiltonian on O(u+ v + log(tr log(pt))) qubits
with promise gap scaling as Ω

([
2tr log(pt)(c− s)

]−1).

The next corollaries follow since NP ⊆ MIP(log, log, 2, 1, 1, 1 − 1/ poly(n)), and NEXP =
MIP(poly, poly, poly 2, 1, 1, 2−r) for any desired polynomial r [2, 13], respectively.

▶ Corollary 36. There exists a poly-time many-one reduction from any NP language to an
SSH instance on O(log(n)) qubits with completeness 1 and soundness 1 − 1/ poly(n).

▶ Corollary 37. There exists a poly-time many-one reduction from any NEXP language to
an SSH instance on O(poly(n)) qubits with completeness 1 and soundness 1 − 1/ exp(n).

5.2 Containment in QMA(2, p, q, r)
Together with the next lemma, the above corollaries show containment of SQCMASPACE,
NP, and NEXP in QMA(2, p, q, r) for various appropriate p, q, r by describing a QMA(2)
verifier to solve the SSH instances from Lemma 32.

▶ Lemma 38. Assume the notation of Lemma 32, and let H̃ be the SSH instance produced
by the latter. Then, H̃ can be decided in QMA(2, q+ logm, q+ logm, r logm), i.e. with proof
and ancilla space scaling as O(q + logm), and promise gap as O(1/(2rm)).
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Proof sketch. We use Kitaev’s original approach for placing the k-local Hamiltonian problem
in QMA [24, Proposition 14.2]: Pick a random “term” (defined shortly) of H̃ and measure
it against the claimed proof |ψ⟩ = |ψ1⟩L|ψ2⟩R. The catch is that the “terms” of H̃ are not
k-local, so a slight bit more work is required to ensure V can implement these measurements.
We define “terms” of H̃ as precisely the set of summands (with appropriate weights) on
Equation (12) (e.g. ∆inHin ⊗ I is a term), Equation (14) (e.g. for any t ∈ P , ∆propH

I
t ⊗HiX

t

and ∆propH
iX
t ⊗HI

t are each terms), and Equation (15) (e.g. I⊗Hout), as well as ∆symH̃sym.
By construction, each term is a projector Πi up to scaling wi. We thus write H̃ =

∑K
i=1 wiΠi

with 0 ≤ wi ≤ poly(m).
Constructing V . Given proof |ψ⟩ = |ψ1⟩L|ψ2⟩R, V now selects index i with probability

pi = wi/W (for W :=
∑K
i=1 wi), applies measurement (Πi, I − Πi), and rejects on outcome 0.

The probability that V accepts |ψ⟩ is 1 − 1
W ⟨ψ|H̃|ψ⟩. Therefore, V accepts with probability

at least 1 − α′/W in the YES case and at most 1 − β′/W in the NO case.
Efficiency of V . It remains to argue that V can be implemented efficiently, i.e. using

O(q + logm) ancilla qubits and poly(n) gates. Efficient sampling from distribution pi can
be implemented by sampling a number in [W ] uniformly at random. Since W ∈ poly(m) ∈
exp(n), we require O(log(m)) ancillas and time.

Regarding the measurement step, we first note the terms corresponding to H̃sym can
be implemented efficiently using the well-known SWAP test [5], which outputs 0 with
probability ⟨ψ1|⟨ψ2|P sym|ψ1⟩|ψ2⟩ = (1 + |⟨ψ1|ψ2⟩|2)/2. For the remaining terms of H̃, we
note that up to a permutation U , which can be implemented efficiently classically, we have
UHtU

† = |0 · · · 0⟩⟨0 · · · 0|A ⊗
(

− 1
2Vt ⊗ |1⟩⟨0|B − 1

2V
†
t ⊗ |0⟩⟨1|B + 1

2I ⊗ (|1⟩⟨1| + |0⟩⟨0|)B
)

=
|0 · · · 0⟩⟨0 · · · 0|A ⊗ H ′

t. This measurement can now be implemented efficiently since H ′
t is

3-local. ◀

With Lemma 38 in hand, we obtain the following corollaries, the first of which recovers
the results of Blier and Tapp [4] for NP and Pereszlényi for NEXP [31]. Below, recall
PQMAlog(2) = QMA(2, log n, log n, log n), i.e. QMA(2) with log-size proof and ancilla and
1/ poly promise gap (technically, PQMAlog(2) also has perfect completeness by definition,
which also matches the result we obtain below).

▶ Corollary 39. NP = PQMAlog(2) (cf. [4]) and NEXP = PreciseQMA(2) (cf. [31]).

▶ Corollary 40. SQCMASPACE(p, q, r) ⊆ QMA(2, q + log p, q + log p, p+ r).

▶ Corollary 41. MIP(t, u, v, p, r, c, s) ⊆ QMA(2, u+v+log(tr log(pt)), u+v+log(tr log(pt)),
tr log(pt) + log(c− s)).
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Abstract
Differential privacy is often applied with a privacy parameter that is larger than the theory suggests
is ideal; various informal justifications for tolerating large privacy parameters have been proposed.
In this work, we consider partial differential privacy (DP), which allows quantifying the privacy
guarantee on a per-attribute basis. We study several basic data analysis and learning tasks in this
framework, and design algorithms whose per-attribute privacy parameter is smaller that the best
possible privacy parameter for the entire record of a person (i.e., all the attributes).
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1 Introduction

Differential Privacy (DP) [35] provides a strict worst-case privacy guarantee – even an
adversary that knows the entire dataset except for one bit of information about one individual
cannot learn that bit, even when the dataset and the bit in question are arbitrary. Since its
inception, researchers have sought to relax the DP definition in order to permit better data
analysis while still providing meaningful privacy guarantees [30].

The only approach to relaxing the definition of DP that has gained widespread use –
albeit not acceptance – is quantitative relaxation. That is, it is common to set the main
privacy parameter (usually denoted by ε) to be larger than the theory allows us to easily
interpret. More precisely, the privacy loss bound ε is used to quantify the tolerable accuracy
with which an adversary can learn the unknown bit. Theory would suggest that ε ≤ 1
provides a good privacy guarantee, and that the guarantee rapidly degrades if we further
increase ε. The setting ε = 10 permits a sensitive bit to be revealed with 99.995% accuracy,
if we are unlucky enough to be in a truly worst-case setting. Nevertheless, it is common to
set ε ≥ 10 [29, 76, 20]. This raises the question: Can one still provide meaningful privacy
guarantees even when the DP parameter ε is large?

Informally, we can justify large DP parameters by arguing that, for “realistic” adversaries,
“natural” data, and “nice” algorithms, the “real” privacy guarantee is better than the worst-
case guarantee summarized by the single parameter ε. (And, of course, we can also hope that
better privacy parameters could be obtained by a more careful analysis of the algorithm.)
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In this paper, we seek to understand the above intuitive justification for tolerating large
DP parameters. This requires us to formalize what constitutes a “nice” algorithm, which we
do with partial DP – a notion based on previous studies in the DP literature that provides
a more granular accounting of the privacy loss parameter. In particular, this permits us
to quantify a “per-attribute ε0” in addition to the usual “per-person ε.” (See Section 2 for
the formal definition, and Section 3 for an overview of the prior work.) Setting ε ≥ 10 may
become more palatable if, e.g., we can simultaneously assert that each (sensitive) attribute
has ε0 ≤ 1. To interpret such a guarantee, we must also discuss what sort of adversaries and
attacks we are and are not protected against.

The focus of our work is on designing and analyzing algorithms that establish a quantitative
separation between the attainable per-person ε and the per-attribute ε0. The key message
is that we demonstrate that, in many circumstances, we can say more about the privacy
properties of an algorithm beyond what can be conveyed by the standard single-parameter
definition of DP.

1.1 Contributions
We investigate a variety of fundamental data analysis and learning tasks through the lens of
per-attribute partial DP. That is, we present several algorithms and analyze their fine-grained
privacy properties. More specifically, under the partial DP notion, we consider three data
analysis tasks and obtain more granular bounds than under standard DP:

(i) We first study algorithms for answering general families of statistical queries (Section 4).
We analyze the projection mechanism and a variant of the multiplicative weights exponential
mechanism under per-attribute partial DP. These results show a separation between the
standard per-person ε and the per-attribute ε0 that scales polynomially with the dimension
(i.e., the number of attributes in each person’s record).

(ii) We next present a new algorithm for computing histograms (a.k.a., heavy hitters) that
gives a per-attribute privacy parameter ε0 that is exponentially smaller than the standard
per-person ε-DP parameter in terms of the number of attributes (Section 5). That is, if each
person’s record is d bits, the error of our algorithm grows as log d

ε0
, while the standard pure

DP algorithm would have error d
ε . We also prove a near-matching lower bound.

Note that histograms are an important case study, as the standard algorithms for this
closely resemble the kind of worst-case algorithms that we wish to rule out. E.g., if we add
Laplace noise to each count in a histogram to achieve ε-DP with ε ≥ 10, then ≥ 99% of
counts would still round back to the exact value. Depending on the sparsity of the histogram,
this would be a weak privacy guarantee in practice. Hence we design a partial DP algorithm
that avoids this worst-case behaviour.

(iii) Finally, we present an algorithm for robustly learning halfspaces under per-attribute
partial DP (Section 5). This has a per-attribute privacy parameter that does not grow with
the dimension, as is the case for the standard per-person privacy parameter.

Our results are summarized in Table 1.

2 Formal Definitions & Basic Properties

We briefly recall the definition of differential privacy (DP) [35, 33].

▶ Definition 1 (DP). A randomized algorithm M : Xn → Y is (ε, δ)-differentially private
((ε, δ)-DP) if, for all x, x′ ∈ Xn differing on a single entry (i.e., ∃i ∈ [n] ∀j ∈ [n]\{i} xj = x′j)
and all measurable S ⊂ Y, we have P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S] + δ.
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Table 1 Summary of sample complexities of our algorithmic results for per-attribute partial DP,
compared to standard DP. See Section 2 for the definition of 1

2 ε2-zCDP and ε0-∇0CDP.

Task Standard ε-DP / 1
2 ε2-zCDP Per-attribute ε0-∇0CDP

k-way marginals on {0, 1}d, mean error α n=O
(

min
{ √

d
εα2 ,

√
|Q|

εα

})
n=O

(
min
{ √

k
ε0α2 ,

√
|Q|·k/d

ε0α

})
k-way marginals on {0, 1}d, max∗ error α n = O

(√
d·k log d

εα2

)
n = O

(
k3/2·log d

ε0α2

)
Heavy Hitters on {0, 1}d, error α n = O

(
d

εα

)
/ n = O

(√
d

εα

)
n = O

( log d
ε0α

)
γ-robust learning halfspaces over {±1}d n=O

(
d log( 1

α
)

αε
+log( 1

α
)

εαγ2 + 1
α2γ2

)
n=O

(
1

ε2
0α2γ4 + log(1/γ)

ε2
0αγ

)

The setting with δ = 0 (abbreviated ε-DP) is called pure DP, while δ > 0 is called approximate
DP. We also work with zero-concentrated DP (zCDP) [18], which is a refinement of the
original definition of concentrated DP [38]. This is formulated via Rényi divergences [72]:

▶ Definition 2. Let P and Q be probability distributions on Ω.For λ ∈ (1,∞), define

Dλ (P∥Q) := 1
λ−1 log E

X←P

[(
P (x)
Q(x)

)λ−1
]
. We define D∗ (P∥Q) := supλ∈(1,∞)

1
λ Dλ (P∥Q) and

D∞ (P∥Q) := supS⊂Ω:P (S)>0 log(P (S)/Q(S)).

▶ Definition 3 (CDP). A randomized algorithm M : Xn → Y is 1
2 ε2-zero-Concentrated DP

( 1
2 ε2-zCDP) if, for all x, x′ ∈ Xn differing on a single entry, D∗ (M(x)∥M(x′)) ≤ 1

2 ε2.

2.1 Partial Differential Privacy
Partial DP is a natural extension of the standard DP definition; we replace the single
parameter ε with a function that measures the dissimilarity of two persons’ records. Similar
definitions have appeared in the literature before (Section 3).

▶ Definition 4 (Partial DP). Let ε : X × X → R be symmetric and non-negative (i.e.,
∀x, x′ ∈ X , ε(x, x′) = ε(x′, x) ≥ 0).1 We say that a randomized algorithm M : Xn → Y is
ε-partially DP (ε-∇DP) if, for all inputs x, x′ ∈ Xn differing only on a single entry and for
all measurable S ⊂ Y, P [M(x) ∈ S] ≤ eε(xi,x′

i) · P [M(x′) ∈ S], where i ∈ [n] is the index of
the entry on which x and x′ differ (i.e., ∀i′ ∈ [n] \ {i} xi′ = x′i′).

▶ Definition 5 (Per-Attribute Partial DP). For x, x′ ∈ X = X1 × · · · × Xd, we denote the
Hamming distance ∥x− x′∥0 := |{j ∈ [d] : xj ̸= x′j}|. For ε0 ≥ 0, we define ε0-per-attribute
partial DP (ε0-∇0DP) (which we also call per-attribute DP or Hamming partial DP) to be
ε-∇DP with ε(x, x′) := ε0 · ∥x− x′∥0.

We also consider a partial DP equivalent of CDP.

▶ Definition 6 (Partial CDP and Per-Attribute Partial CDP). Let ε : X ×X → R be symmetric
and non-negative. We say that a randomized algorithm M : Xn → Y is ε-partially CDP
(ε-∇CDP) if, for all inputs x, x′ ∈ Xn differing only on a single entry, D∗ (M(x)∥M(x′)) ≤
1
2 ε(xi, x′i)2, where i ∈ [n] is the index on which x and x′ differ (i.e., ∀i′ ̸= i xi′ = x′i′).

For ε0 ∈ R, we define ε0-per-attribute partial CDP (ε0-∇0CDP) to be ε-∇CDP with
ε(x, x′) := ε0 · ∥x− x′∥0.

1 By group privacy, we can assume that ε satisfies the triangle inequality ε(x, x′′) ≤ ε(x, x′) + ε(x′, x′′).
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Definition 6 is a relaxation of Definition 4, i.e., ε-∇DP implies ε-∇CDP. CDP has better
composition properties than pure DP, which makes it more useful in practice.2

DP is usually defined in terms of neighboring datasets – i.e., a binary relation, rather
than a metric. We can define partial DP in terms of such a graph of neighboring records:

▶ Lemma 7 (Equivalent Definition of Partial DP). Let G be an undirected non-negatively
weighted graph on X . Let M : Xn → Y be a randomized algorithm. Suppose, for every pair
x, x′ ∈ Xn differing on a single entry i ∈ [n], if {xi, x′i} is an edge in the graph G with weight
ε0, then D∞ (M(x)∥M(x′)) ≤ ε0 (resp., D∗ (M(x)∥M(x′)) ≤ 1

2 ε2
0). Let ε : X × X → R be

the distance metric on the graph G. Then M is ε-∇DP (resp., ε-∇CDP).

In particular, Lemma 7 tells us that per-attribute partial DP is equivalent to changing the
neighboring relation of DP to consider changing only a single attribute of a person, rather
than an entire person record. That is, an equivalent definition of ε0-∇0DP (or ε0-∇0CDP)
is to require that for all pairs x, x′ ∈ (X1 × · · · × Xd)n of datasets differing on a single
attribute of a single person, we have ∀S P [M(x) ∈ S] ≤ eε0 · P [M(x′)] (or, respectively,
D∗ (M(x)∥M(x′)) ≤ 1

2 ε2
0). I.e., the graph in Lemma 7 is the Hamming graph with each edge

having the same weight ε0. We will define such pairs as neighboring.

2.2 Basic Properties of Partial DP
An essential property of partial DP is that it is directly comparable to standard DP:

▶ Proposition 8. If M : Xn → Y satisfies ε0-∇0DP and X = X1 × · · · × Xd consists of d

attributes, then M satisfies (d · ε0)-DP. Similarly, ε0-∇0CDP implies 1
2 d2ε2

0-zCDP, which in
turn implies (ε̃, δ̃)-DP for all ε̃ ≥ 1

2 d2ε2
0 and δ̃ = exp

(
−(ε̃− 1

2 d2ε2
0)2/2d2ε2

0
)
.

More generally, if M : Xn → Y satisfies ε-∇DP, then M satisfies (supx,x′∈X ε(x, x′))-DP.
Conversely, if M satisfies ε-DP, then M satisfies ε-∇DP (where we interpret ε as a constant
function) and ε-∇0DP.

The conversion from per-attribute partial DP to standard DP is an application of the
group privacy property (a.k.a. the triangle inequality for Rényi divergences). That is,
D∞ (P∥Q) ≤ D∞ (P∥R) + D∞ (R∥Q) and D∗ (P∥Q) ≤

(√
D∗ (P∥R) +

√
D∗ (R∥Q)

)2
for

all appropriate probability distributions P , Q, and R. More generally, if we have ε0-∇0DP
and the adversary is interested in only k attributes, then we obtain a privacy guarantee
comparable to (k · ε0)-DP. This conversion may or may not be tight, but it is important that
we can directly relate the partial DP guarantee back to standard DP.

Next we have composition, which is inherited from the standard DP definition.

▶ Lemma 9 (Sequential composition). Let M1 : Xn → Y1 be ε1-∇DP (respectively, ε1-
∇CDP). Let M2 : Xn × Y1 → Y2 be such that the restriction M2(·, y) : Xn → Y2 is ε2-∇DP
(resp., ε2-∇CDP) for all y ∈ Y1. Define M12 : Xn → Y2 by M12(x) = M2(x, M1(x)). Then
M12 is (ε1 + ε2)-∇DP (resp.,

√
ε2

1 + ε2
2-∇CDP).

A simple difference between per-attribute partial DP and standard DP is that if we run
multiple DP algorithms on disjoint sets of attributes, then the privacy parameter does not
grow with the number of attributes. In contrast, under standard DP, the privacy parameter
would grow with the number of attributes following composition.

2 We do not consider approximate DP as a basis for partial DP, as approximate DP has poor group
privacy properties, which are essential for our setting. Another option is Gaussian DP [32], which has
properties very similar to CDP.
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▶ Lemma 10 (Parallel composition, [63]). For j ∈ [d], let Mj : Xn
j → Yj . Let X = X1×· · ·×Xd

and Y = Y1 × · · · × Yd. Define M : Xn → Y by M(x)j = Mj((xi,j)i∈[n]) for all x ∈ Xn and
j ∈ [d], where xi,j ∈ Xj denotes only the jth attribute of the ith record. If Mj is ε-DP (resp.,
1
2 ε2-zCDP) for each j ∈ [d], then M is ε-∇0DP (resp., ε-∇0CDP).

For example, if we release independent statistics about the medical records, browsing histories,
employment, etc. of some people and each individual release is ε-DP, then the overall release
is ε-∇0DP, assuming no overlapping attributes. In particular, this example characterizes the
setting where non-coordinating entities perform DP analysis on data from the same people.

In the rest of this paper, we provide several algorithms in the per-attribute partial DP
framework. We show that, in a variety of settings, there is a separation between partial DP
and standard DP, i.e., we can provide ε0-∇0DP (or ε0-∇0CDP) with a small per-attribute
privacy parameter ε0, but it is not possible to provide ε-DP (or 1

2 ε2-zCDP) with a small
per-person privacy parameter ε. We argue that, in such settings, it is more informative to
give a small per-attribute guarantee ε0, in addition to the large per-person guarantee ε.

3 Related Work

Definitions. There is a vast literature on privacy definitions both before and since the
introduction of DP [35]; Desfontaines and Pejó [30] catalog 225 DP variants that have been
proposed. We only discuss the definitions most closely related to partial DP. We organize
these definitions into three categories: (i) more general than partial DP, (ii) the same as or
similar to per-attribute partial DP, and (iii) special cases of partial DP, but different from
per-attribute partial DP.

(i) Notions more general than partial DP: Chatzikokolakis et al. [24] define a notion of
metric DP or d-privacy, where the indistinguishability guarantee is determined by a metric d

on the space of all input datasets (as opposed to data points in partial DP). An equivalent
definition, dubbed Lipschitz privacy was given by Koufogiannis et al. [59]. Similarly, Pufferfish
privacy [57] and Blowfish privacy [49] define a generalized notion of neighboring datasets
(a.k.a. “secrets”), which yields a generalization of DP by taking the metric to be proportional
to the distance between datasets on the graph of neighboring datasets (cf. Lemma 7). Unlike
these prior works, we restrict the definition of partial DP to consider pairs of datasets that
only differ on the record of a single person, rather than considering pairs of datasets in which
the records of multiple people may change. We consider this restriction to be an important
feature of our definition, as it ensures that partial DP remains comparable to standard DP
(Proposition 8) and thus can still be interpreted as an individual privacy guarantee. Metric
DP or context-aware DP has also been studied in the context of local DP [4, 2]; our focus,
however, is on central DP.

(ii) Notions comparable to per-attribute partial DP: Our notion of per-attribute partial
DP is equivalent to the definition of attribute DP given by Kifer and Machanavajjhala [56];
Kenthapadi et al. [55] and Ahmed et al. [3] also use this definition, but they simply call
it “differential privacy” without qualification. Asi et al. [6] define element-level DP, where
the distance between data points is determined by the number of “elements” on which they
differ; examples of “elements” are whether or not a certain word is included in a person’s
message history, or whether or not a domain is in the browsing history.

(iii) Other special cases of partial DP: Andrés et al. [5] define geo-indistinguishability,
which is a special case of partial DP in which ε(x, x′) = ε0 · ∥x− x′∥2, i.e., inputs are points
in space and the privacy guarantee scales with the Euclidean distance. Another special case
of partial DP is edge DP in graphs [48], where a person corresponds to a vertex that may
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have many incident edges, but privacy is only guaranteed on a per-edge basis. Label DP [25]
is also a special case of partial DP, where ε(x, x′) = ∞ if x and x′ differ on any attribute
other than the label in the training dataset of a supervised machine learning task.

It is common to assume that each person contributes one record to the dataset, but often
a person may contribute multiple records. If we do not account for this, then we have a
relaxed version of DP, which has been dubbed item-level DP or record-level DP [50, 66]. A
recent line of work on “user-level DP” provides algorithms that ensure standard DP even
when each user has multiple records [61, 42, 62, 27].

We remark that most of the related prior work considers definitions based on pure DP,3
which is rarely used in practice due to its inferior composition properties. Our work also
considers concentrated DP; while this extension is straightforward, we believe it is important.

Algorithms. Although many different privacy definitions have been proposed, surprisingly
few algorithms have been studied under these notions. To the best of our knowledge, all of the
comparable prior algorithmic results are variants of adding Laplace or Gaussian noise scaled
to a modified version of sensitivity that fits the definition. Our main technical contribution
is a deeper exploration of the algorithmic aspects of a more granular privacy analysis; we
provide several algorithms for a variety of standard data analysis tasks and give a more
granular privacy analysis for each.

4 Answering Query Workloads

In this section we consider the problem of releasing statistics that depend on overlapping sets
of attributes. In particular, we investigate releasing private answers to an arbitrary family Q
of queries {qj : X → R}m

j=1. E.g., if X = {0, 1}d, then Q could be all k-way parities or k-way
conjunctions. These examples of low-order marginals are some of the best-studied families
of queries in the DP literature; in particular, they are known to be among the “hardest”
families of queries [19]. We design partial DP mechanisms for answering such families of
queries to contrast the partial DP bounds against the standard DP bounds.

4.1 Warmup: Average Error via Noise Addition

Abusing notation, let Q(x) ∈ Rm denote the vector ( 1
n

∑n
i=1 qj(xi))m

j=1 of answers. Let
∆ = sup{∥Q(x)−Q(x′)∥2 : x, x′ ∈ X} be the diameter and let ∆0 = sup{∥Q(x)−Q(x′)∥2 :
x, x′ ∈ X , ∥x− x′∥0 ≤ 1} be the partial diameter of the set of possible answers.

A simple algorithm for answering Q under standard DP with low mean squared error
(MSE), is the projection mechanism [70, 37], which adds Gaussian noise N (·, ·) to the vector
of all query answers and projects this noisy vector back to the set of answer vectors that are
consistent with some valid input. This naturally extends to partial DP.

For σ > 0 and Q : X → Rm, define the projection mechanism M : Xn → Rm as follows.
On input x ∈ Xn, compute Q(x) = 1

n

∑n
i Q(xi), sample Y ← N

(
Q(x), σ2I

)
, and output

Ŷ := arg miny∈conv({Q(x̌):x̌∈X}) ∥y − Y ∥2, where conv(·) is the convex hull.

3 The only exception is element-level DP [6], which is based on Rényi DP [67], a relaxation of CDP.
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▶ Theorem 11. The projection mechanism M simultaneously satisfies 1
2 ε2-zCDP and ε0-

∇0CDP for ε = ∆
σn and ε0 = ∆0

σn . Furthermore, for all x ∈ Xn,

E
[

1
m
∥M(x)−Q(x)∥2

2

]
≤min

{
σ2,

σ ·∆·
√

2 log |X |
m

}
. (1)

Theorem 11 simply states that the partial DP guarantee of the projection mechanism
scales with the partial diameter ∆0 in place of the diameter ∆; the former could be much
smaller, depending on Q, as we show next.

Consider the cases of k-way (unsigned) conjunctions or parities on X = {0, 1}d, which
are families of m =

(
d
k

)
queries each. In both cases, ∆ =

√
m and ∆0 =

√(
d−1
k−1
)

=
√

m · k/d.
From Theorem 11, for a given noise scale σ of the projection mechanism, the ratio of the
per-person and per attribute privacy parameters is ε

ε0
= ∆

∆0
=
√

d
k . The error guarantee

of the projection mechanism under standard DP is near-optimal [19, 14]. Thus we have a
separation – in this setting we can report a smaller per-attribute privacy parameter ε0 than
the attainable per-person privacy parameter ε.

Alternatively, if we fix a ε0-∇0CDP guarantee, the MSE is

E
[

1
m
∥M(x)−Q(x)∥2

2

]
≤min

{
∆2

0
ε2

0n2 ,
∆0 ·∆ ·

√
2 log |X |

ε0nm

}
= min

{
mk

ε2
0n2d

,

√
k · 2 log 2

ε0n

}
.

In contrast, for 1
2 ε2-zCDP the MSE is

E
[

1
m
∥M(x)−Q(x)∥2

2

]
≤min

{
∆2

ε2n2 ,
∆2 ·

√
2 log |X |

εnm

}
= min

{
m

ε2n2 ,

√
d · 2 log 2

εn

}
.

That is to say that the MSE under per-attribute partial DP scales with k (the number of
attributes that each query can depend on) rather than d (the total number of attributes).

The ∆ ·
√

log |X | term in the guarantee of Theorem 11 can, in general, be replaced by
the Gaussian width E

G←N (0,I)

[
supy∈Sx

⟨y, G⟩
]

of the set Sx := {Q(x̌)−Q(x) : x̌ ∈ X}.

4.2 Maximum Error via an Iterative Algorithm
Rather than average error, we can obtain bounds on the maximum error over all queries. In
the standard DP setting, optimal bounds are given by Private Multiplicative Weights (PMW)
[46] and its refinement the Multiplicative Weights Exponential Mechanism (MWEM) [45].
We now look at a per-attribute partial DP version of MWEM, Mℓ : Xn → [0, 1]m, given in
Algorithm 1.

In this section we assume that the domain X = X1 × · · · × Xd of the queries is finite and
the range of the queries is [0, 1]. For x ∈ Xn, let q(x) = 1

n

∑n
i=1 q(xi) and for a distribution

D on X , let q(D) = E
u∼D

[q(u)].
For each q ∈ Q, let attr(q) ⊆ [d] denote the attributes that q depends on, i.e., this satisfies

the property that, for any x, x′ ∈ X , if xi = x′i for all i ∈ attr(q), then q(x) = q(x′).

▶ Theorem 12. Mℓ in Algorithm 1 satisfies ε0-∇0CDP and simultaneously 1
2 (ℓ · ε0)2-zCDP

and, for all inputs x ∈ Xn, we have

E

 max
q1,...,qℓ∈Q

∀i<j attr(qi)∩attr(qj )=∅

1
ℓ

ℓ∑
i=1
|qi(A)− qi(x)|

 ≤√ 2T

n2ε2
0

+ 4 log |X |
T · ℓ

+
√

2T

ε0n
log m. (2)
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Algorithm 1 Partial DP MWEM, Mℓ : Xn → [0, 1]m.

1: Input: Private dataset x ∈ Xn.
2: Parameters: Set Q of m queries defined by functions q : X → [0, 1], privacy parameter ε0 > 0,

iterations T ∈ N, and queries per round ℓ ∈ N.
3: Set εT ← ε0/

√
2T and A1 ← uniform distribution on X .

4: for t = 1, . . . , T : do
5: Select {qt,1, . . . , qt,ℓ} ⊆ Q with attr(qt,i) ∩ attr(qt,j) = ∅ for all 1 ≤ i < j ≤ ℓ in a εT -∇0CDP

manner using the exponential mechanism, i.e.,

P [(qt,1, . . . , qt,ℓ) = (q1, . . . , qℓ)] ∝ exp

(
εT n

ℓ∑
i=1

|qi(At)− qi(x)|

)
.

6: Answer qt,1, . . . , qt,ℓ with εT -∇0CDP by sampling at,i ← N
(

qt,i(x), 1
n2ε2

T

)
for all i ∈ [ℓ].

(But, if at,i > 1, set at,i ← 1 and if at,i < 0, set at,i ← 0.)
7: Define the distribution At+1 on X by

At+1(u) ∝ At(u) · exp

(
1
2 ·

ℓ∑
i=1

qt,i(u) · (at,i − qt,i(At))

)
.

8: A← 1
T

∑T

t=1 At.
9: Output: E

X∼A
[Q(X)].

If T = Θ
(√

log |X |·εn√
ℓ·log m

)
, then the RHS of (2) is O

(√√
log |X |·log m√

ℓ·εn

)
.

Note that the LHS of (2) refers to the maximum average error over an arbitrary set of ℓ

attribute-disjoint queries; while this is a weaker bound than the maximum error over all
individual queries, it is stronger than MSE. We leave it as an open problem to close this gap
and obtain a standard maximum error bound.

The main difference between Algorithm 1 and standard MWEM is that in each iteration
we sample ℓ attribute-disjoint queries in parallel, rather than a single query; setting ℓ = 1
recovers the standard MWEM algorithm and bound. For ℓ > 1, the RHS of (2) gets smaller,
but the LHS also changes.

For the case of k-way conjunctions on X = {0, 1}d, setting ℓ = ⌊d/k⌋ obtains the error
bound of α = O

(
k

3
4

√
log d
ε0n

)
; in contrast, the corresponding bound under standard DP is

α = O
(

k
1
2 d

1
4

√
log d
ε0n

)
. Thus, the partial DP bound is near-independent of d and instead

depends mainly on k.
We remark that both the projection mechanism and the multiplicative weights exponential

mechanism are not polynomial time algorithms in general. This limitation is not specific to
partial DP. Under standard cryptographic assumptions it is known to be computationally
infeasible to generate synthetic data (as Algorithm 1 does) even for 2-way conjunctions
[80]. This computational hardness is also not specific to synthetic data [60]. However, for
the special case of k-way conjunctions or parities it remains an open problem to devise a
polynomial-time algorithm that comes close to matching the guarantees of MWEM, or to
prove an impossibility result. There has been some limited progress on devising efficient
versions of the projection mechanism [36].
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5 Histograms, Heavy Hitters & Applications

We consider the fundamental problem of computing a histogram or, equivalently, of computing
the heavy hitters, which is well-studied in DP in various models and settings [35, 69, 58, 47,
51, 40, 10, 17, 16, 7, 8].

▶ Definition 13 (Histogram Problem). In the histogram problem, the input dataset consists
of x1, . . . , xn ∈ {0, 1}d; the frequency of an element y ∈ {0, 1}n is defined as fy := |{i ∈ [n] :
xi = y}|. An algorithm is said to solve the histogram problem with (normalized ℓ∞) error
ν ∈ (0, 1) if it outputs {f̂y}y∈{0,1}d such that maxy |f̂y − fy| ≤ νn.

Computing histograms is generally an easy task as far as privacy is concerned. (Although
it can be challenging when we combine privacy with computational or communication
constraints in a distributed setting.) The canonical algorithm is to add independent noise
to each count fy and apply parallel composition – each individual only contributes to one
count. To attain pure DP we would add Laplace noise; for CDP, Gaussian noise; and, for
approximate DP, truncated Laplace or Gaussian noise.

However, this canonical algorithm very closely resembles the worst-case algorithm en-
visaged by the DP definition. Suppose an adversary wishes to determine whether or not
xi = y. That is, the adversary seeks to learn one bit about individual i. Often the histogram
is sparse, so no other individual j ∈ [n] \ {i} has xj = y. Thus it suffices for the adversary
to figure out whether fy = 1 or whether fy = 0 . If we add Laplace noise to attain ε-DP
with large ε, then the adversary can easily distinguish between these two cases. Namely, we
would add ξy ← Laplace(1/ε) to fy and P

[
|ξy| ≥ 1

2
]

= e−ε/2. So, with probability 1− e−ε/2,
rounding the private value fy + ξy to the nearest integer returns the non-private value fy. In
particular, if ε = 10, rounding returns the true count with probability > 99%.

Given that histograms are a well-studied problem and the canonical algorithm yields the
kind of worst-case privacy outcomes that we want to avoid, it is natural to ask whether we
can design a per-attribute partial DP algorithm for histograms that avoids this worst-case
behaviour. In terms of our intuitive justification for tolerating large ε, the canonical algorithm
is not “nice” and the question is whether we can devise a “nice” algorithm for histograms.

We restrict our attention to pure DP, both for simplicity and because this highlights the
strength of our results – we are able to obtain these results under the most stringent form of
DP. Naturally, our methods can be extended to CDP.

We provide the following result and a nearly-matching lower bound (Theorem 15).

▶ Theorem 14. Let n ≥ O
( 1

εν · log(d/η) · log(1/ν)
)
. Then, there exists an ε-∇0DP algorithm

that with probability 1− η solves the histogram problem with error ν. Moreover, the algorithm
runs in expected time poly(nd/(ην)).

This sample complexity bound should be compared with the one in the standard ε-DP
setting, which is n = Θ

(
d

εν

)
.4 In other words, there is an exponential separation (in terms

of the dimension) between the standard DP parameter and the per-attribute partial DP
parameter.

4 The standard 1
2 ε2-zCDP sample complexity is n = Θ

(√
d

εν

)
and under (ε, δ)-DP it is n =

Θ
(min{d,log(1/δ)}

εν

)
.
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5.1 Our Algorithm

Algorithm 2 PrivTree-Based Heavy Hitters.
PrivHeavyHitter
1: Inputs: x1, . . . , xn.
2: Parameters: λ, τ, µ > 0.
3: for j ∈ [log d] do
4: L{j} ← {0, 1}.
5: for ℓ ∈ [log d] do
6: τℓ ← τ + (ℓ− 1)µ. {Threshold}
7: for I ∈ Iℓ do
8: LI ← ∅.
9: for s ∈ LIleft ◦ LIright do

10: f̂ I
s ← max{f I

s , τℓ − µ}+ Lap(λ).
11: if f̂ I

s > τℓ then
12: Add s to LI .
13: Output: L[d].

In this section we design a novel algorithm for the histogram problem under per-attribute
partial DP. Our algorithm will in fact output a succinct representation of {f̂y}y∈{0,1}d by
outputting a list L ⊂ {0, 1}d and {f̂y}y∈L, where f̂y = 0 for every y /∈ L (this is needed for
efficiency).

The main component of our algorithm is an ε-∇0DP algorithm for finding heavy hitters –
i.e., a list L that is “not too large” and contains all y with fy ≥ νn. The algorithm builds
a binary tree over attributes, i.e., each node of the tree corresponds to an interval I ⊆ [d]
whose length is a power of two. Each node stores a list LI of heavy hitters among x1, . . . , xn

restricted to the attributes indexed by I. Each leaf stores heavy hitters of a single attribute;
then the next level nodes store heavy hitters among pairs of attributes; and the root has
the final list of heavy hitters. The list LI can be constructed by estimating the substring
frequencies of y1 ◦ y2 for a shortlist of all pairs y1, y2 that appears as heavy hitters of its
children. The key is that each attribute j ∈ [d] only appears in log d intervals – one in each
level of the tree. This means that we only have to divide the privacy budget over log d levels,
resulting in a noise of roughly O(log(d)/ε) per level. (Under standard DP, we would need to
apply composition over all 2d− 1 nodes, yielding noise scale O(d/ε).)

Unfortunately, implementing the binary tree directly requires sample complexity n ≥
Oη,ν((log d)2/ε) because we need to take a union bound over all 2d− 1 nodes to bound the
probability that a heavy hitter is erroneously dropped, which contributes another factor
of log d in addition to the one we get from composition over levels. To get from here to
Oη,ν(log(d)/ε) as claimed in Theorem 14, we employ yet another technique to save on privacy
loss introduced by Zhang et al. [82] for their PrivTree algorithm. The idea is roughly that
when a count is far above the threshold, the privacy loss is actually much smaller than usual.
Therefore, they introduce “biasing” and capping techniques, which can be thought of as
lowering the threshold by a certain amount µ at each level and clipping the count to be at
least the threshold minus µ, respectively. We employ these ideas to shave a log d factor.

To formally describe our algorithm, we assume, without loss of generality, that d is a
power of two and define several additional notations:

For any I := {a, . . . , b}, we let Ileft :=
{

a, . . . , ⌊a+b
2 ⌋
}

and Iright :=
{
⌊a+b

2 ⌋+ 1, . . . , b
}

.
For every I := {a, . . . , b} and s ∈ {0, 1}|I|, we define the frequency of s w.r.t. position I

as f I
s := |{i ∈ [n] | xi|I = s}|.
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For every ℓ ∈ [log d], let Iℓ denote the collection of all sets {2ℓ(t− 1) + 1, . . . , 2ℓt} where
t ∈ [d/2ℓ]. Furthermore, we let I :=

⋃
ℓ∈[log d] Iℓ.

For two sets S1, S2 of strings, let S1 ◦ S2 denote the set of strings resulting from concat-
enating an element of S1 and an element of S2, i.e., S1 ◦ S2 := {s1s2 | s1 ∈ S1, s2 ∈ S2}.

Algorithm 2 contains the complete description. Here, Lap(·) is the Laplace noise. It is worth
noting that we will eventually choose λ = O(1/ε) and µ = O(λ · log(1/ν)) where each big-O
notation hides a sufficiently large constant. We next study the guarantees of this algorithm.

5.2 Analysis
We provide an overview of the privacy and utility analysis of Algorithm 2. The complete
analysis is in the full version.

Privacy. For clarity, below we write the frequencies and lists as functions of the input datasets
x or x′. We first show the following: suppose λ, µ are such that µ > 1 and 2

λ

(
1 + 1

1−e−µ/λ

)
≤

ε, then PrivHeavyHitter is ε-∇0DP. In fact, we will prove that even outputting all the
sets (LI)I∈I is ε-∇0DP, i.e., we show that for any neighboring datasets x, x′ and any values
of (SI)I∈I , it holds that Pr [∀I ∈ I, LI(x) = SI ] ≤ eε · Pr [∀I ∈ I, LI(x′) = SI ] .

To prove this statement, it suffices to consider the case where the differing elements in x

and x′ are 0d and 10d−1 respectively. We let Iℓ := {1, . . . , 2ℓ} and write f̂s and fs to mean
f̂ Iℓ

s and f Iℓ

s , for notational ease. We show that Pr[∀I∈I,LI (x)=SI ]
Pr[∀I∈I,LI (x′)=SI ] is equal to

∏
ℓ∈[log d]

∏
s∈S

Iℓ

s∈{02ℓ ,102ℓ−1 }

Pr[f̂s(x) > τℓ]
Pr[f̂s(x′) > τℓ]

×
∏

ℓ∈[log d]

∏
s∈(S

Iℓ
left

◦S
Iℓ

right
)\S

Iℓ

s∈{02ℓ ,102ℓ−1 }

Pr[f̂s(x) ≤ τℓ]
Pr[f̂s(x′) ≤ τℓ]

,

and bound each of the RHS terms by eε/2. To bound the first term, since f012ℓ−1
(x) <

f012ℓ−1
(x′), we have Pr[f̂012ℓ−1

(x) > τℓ] ≤ Pr[f̂012ℓ−1
(x′) > τℓ]. Therefore, it suffices to bound∏

ℓ∈[log d]

02ℓ ∈SIℓ

ℓ

Pr[f̂02ℓ
(x)>τℓ]

Pr[f̂02ℓ
(x′)>τℓ] . Let L0 be the smallest integer such that f02L0

(x) > τL0 − µ. (i) For

all ℓ < L0 we have min{f̂02ℓ
(x), τℓ − µ} = τℓ − µ = min{f̂02ℓ

(x′), τℓ − µ}, and hence ∀ℓ <

L0,
Pr[f̂02ℓ

(x)>τℓ]

Pr[f̂02ℓ
(x′)>τℓ] = 1. (ii) For ℓ = L0, notice that min{f̂02ℓ

(x), τℓ − µ} −min{f̂02ℓ
(x′), τℓ −

µ} ≤ 1. Hence, by the DP property of the Laplace mechanism,
Pr[f̂0

2L0
(x)>τL0 ]

Pr[f̂0
2L0

(x′)>τL0 ] ≤ e1/λ. (iii)

For ℓ > L0, f02ℓ
(x′) > τℓ + (ℓ− L0)µ− 1. Together,

Pr[f̂02ℓ (x) > τℓ]
Pr[f̂02ℓ (x′) > τℓ]

≤ Pr[(ℓ− L0)µ + Lap(λ) > 0]
Pr[(ℓ− L0)µ− 1 + Lap(λ) > 0] ≤ exp

(
1
λ
· exp

(
1− (ℓ− L0)µ

λ

))
,

where the last step uses [82, Lemma 2.1]. From these inequalities, the bound of eε/2 on the
first term follows from our choice of λ, µ. The bound for the second term follows similarly.

Utility. We need to show that we discover all heavy hitters and that the expected list size is
small; the latter will also imply that the expected running time of the algorithm is small. Let
η, ν ∈ (0, 0.1]. Suppose that τ = 0.5νn, τ ≥ 8µ log d + 8λ log(d/(ην)) and µ ≥ λ log(16/ν).
We show

(i) Heavy hitters discovered: W.p. 1− 0.5η, L[d] contains all s ∈ {0, 1}d such that fs ≥ 2τ .
(ii) Expected list size: E[|L[d]|] ≤ 8/ν.
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(iii) The expected running time of the algorithm is poly(d/ν); this will follow from (ii).

To show (i), we fix any s such that fs ≥ 2τ . We will prove that Pr[s /∈ L] ≤ 0.5ην; since
there are at most 1/ν such s’s, a union bound yields the claimed result. Indeed,

Pr[s /∈ L[d]] = Pr [∃I ∈ I, s|I /∈ LI ] ≤
∑
I∈I

Pr[s|I /∈ LI | s|Ileft ∈ LIleft ∧ s|Iright ∈ LIright ]

≤
∑
I∈I

Pr[2τ + Lap(λ) ≤ τ + µ log d] ≤
∑
I∈I

Pr[0.5τ + Lap(λ) ≤ 0]

≤
∑
I∈I

exp(−0.5τ/λ)/2 ≤ 2d · exp(−0.5τ/λ)/2 ≤ 0.5ην.

We show (ii), by an induction on ℓ that E[|LI |] ≤ 8/ν for all ℓ ∈ {0, . . . , log d} and I ∈ Iℓ.
Consider any ℓ ∈ [log d] and assume that the inductive hypothesis holds for ℓ − 1 and
any I ′ ∈ Iℓ−1. Consider any I ∈ Iℓ and let S := {s ∈ {0, 1}2ℓ | f I

s > 0.5τ}. Note
that |S| < n/(0.5τ) = 4/ν and for any s /∈ S, we have f I

s ≤ τℓ − µ. Hence, for any
s ∈ (SIleft ◦ SIright) \ S, we have Pr[s ∈ LI ] ≤ ν/16. (∗)

E[|LI |] = E[|S ∩ LI |] + E[|LI \ S|] ≤ |S|+
∑

s∈{0,1}2ℓ\S

Pr[s ∈ LI ]

(∗)
≤ 4/ν +

∑
s∈{0,1}2ℓ\S

ν/16 · Pr[s ∈ SIleft ◦ SIright ]

≤ 4/ν + ν/16 · E[|LIleft ◦ LIright |] ≤ 4/ν + ν/16 · (8/ν)(8/ν) = 8/ν,

where the last inequality follows from induction.

5.3 Lower Bound
In this section we show that the log d dependence in Theorem 14 necessary; our lower bound
matches the upper bound up to the dependence on η and log(1/ν):

▶ Theorem 15. Assume that d ≥ 10e1.1ε. If there exists an ε-∇0DP algorithm that with
probability 0.1 solves the histogram problem with error ν, then n ≥ Ω

( 1
εν log d

)
.

The constant 0.1 in Theorem 15 was chosen for concreteness, but a similar statement holds
for any positive constant. To prove Theorem 15, we follow the same packing-based approach
that was used for the standard DP lower bound [47]. The difference is that our packing
consists of only d one-hot vectors (instead of all of {0, 1}d); since the one-hot vectors are at
Hamming distance only 2 apart, the rest of the proof proceeds as before.

5.4 Applications of Histograms
Algorithms for histograms are often used as subroutines for other algorithms. As a concrete
application of Theorem 14, we obtain partial DP algorithms for the problems of PAC learning
point functions and threshold functions, and discrete distribution estimation with ℓ2

2-error.

▶ Theorem 16. For every ε, α > 0, d ∈ N, there exists an ε-∇0DP proper PAC learner
with error at most α and with sample complexity n = Õ

( 1
αε log d

)
for point functions and

threshold functions.

Theorem 16 should be contrasted with the sample complexity of proper PAC learning
of point functions and threshold functions in the standard ε-DP setting, both of which are
n = Θ

(
d

εα

)
[11, 41].
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▶ Theorem 17. For every ε > 0 and n, d ∈ N, there exists an ε-∇0DP algorithm for discrete
distribution learning whose ℓ2

2-error is Õ
(

log d
εn + 1

n

)
with probability at least 0.9.

In contrast, for standard DP, a packing lower bound [47] shows that even getting an
ℓ2

2-error of 0.1 (with constant probability) requires n ≥ Ω(d/ε).

6 Robust Learning of Halfspaces

We next consider the problem of robust learning of halfspaces, under the (normalized)
Hamming distance. A halfspace is a function hw : Rd → {−1, +1} where w ∈ Rd and is defined
as hw(x) = sign(⟨w, x⟩). We consider the class Hhalfspace := {hw | w ∈ Rd} of all halfspaces.
Our input dataset consists of pairs (x1, y1), . . . , (xn, yn) ∈ X = {−1, +1}d × {−1, +1} drawn
i.i.d. from a distribution D and our goal is to output a halfspace hw ∈ Hhalfspace that mislabels
as small fraction of points w.r.t. D as possible – i.e., minimizing P

(x,y)←D
[hw(x) ̸= y]. We are

interested in robust learning. A sample (x, y) is γ-robustly classified if the hypothesis assigns
all points in a γd-radius Hamming ball around x to the label y – i.e., ∀x̌ ∈ {0, 1}d ∥x̌−x∥0 ≤
γd =⇒ hw(x̌) = y. More formally, the γ-robust error is defined as follows:

▶ Definition 18 (Robust Error). For a distribution D on X = {−1, +1}d × {−1, +1} and a
hypothesis h : {−1, +1}d → {−1, +1}, we define its γ-(Hamming-)robust error to be

Rγ(h,D) := P
(x,y)←D

[∃x̌ h(x̌) ̸= y ∧ ∥x̌− x∥0 ≤ dγ].

The goal is to find a halfspace whose γ′-robust error is not much more than the optimal
γ-robust error. Here γ′ < γ represents a relaxation in the margin that we pay for privacy,
along with a relaxation in accuracy. The problem is well understood both in the non-private
setting [31] and in the standard DP setting [43]. We give a partial DP algorithm:

▶ Theorem 19. Let ε, γ, γ′ ∈ (0, 1] such that γ > γ′. There is an ε-∇0DP algorithm
M : Xn → Hhalfspace such that the following holds. Let D be a distribution on X and let
S ← Dn. Then

E [Rγ′(M(S),D)] ≤ inf
h∈Hhalfspace

Rγ(h,D) + O

(
1

ε
√

n(γ − γ′)2 + log(1/(γ − γ′))
ε2n · (γ − γ′)

)
.

Note that our error bound is independent of the number of attributes d, while in the standard
DP setting, the error must grow linearly with d [43].

Our algorithm first privatizes the label y ∈ {−1, +1} via Randomized Response; then, we
can focus on a learner that is private in terms of the features x ∈ {−1, +1}d. Our learner is
in fact an instantiation of the exponential mechanism [65] except we do not apply it directly
with respect to the (empirical) robust error, because for x that is exactly at distance γd

from the decision boundary, changing a single coordinate of x could make it be considered
mislabeled under γ-robust error. Instead, we smoothen the loss based on how far x is from
the decision boundary, similarly to the popular hinge loss, in order to reduce the sensitivity
which gives the desired result. To describe our algorithm, it will be most clear to separate
the privacy of the labels and the privacy of the samples. In this regards, we say that an
algorithm is ε-sample-∇0DP if the DP guarantee is only enforced on changing a single
coordinate of a sample. (There is no privacy guarantee on the labels.)

For γ > γ′ > 0 and α > 0, we also say that a mechanism M is (γ′, γ)-learner with excess
loss α iff E [Rγ′(M(S),D)] ≤ infh∈Hhalfspace Rγ(h,D) + α.

ITCS 2023



54:14 Algorithms with More Granular Differential Privacy Guarantees

6.1 From Sample-Only Privacy to Sample-and-Label Privacy
A first observation is that by using randomized response on the labels, we can immediately
translate an ε-sample-∇0DP algorithm to that of ε-∇0DP.

▶ Lemma 20. Let H be any hypothesis class and ε ∈ (0, 1]. Suppose that there is an
ε-sample-∇0DP (γ, γ′)-robust learner for H with excess loss α. Then there is an ε-∇0DP
(γ, γ′)-robust learner for with excess loss O(α/ε) and the same sample complexity.

The above lemma essentially means that we can focus our attention to sample-∇0DP
learners for the rest of the section.

6.2 Robust Empirical Risk Minimization
For a set S of labeled examples, we write Rγ(h, S) to denote the γ-robust error w.r.t. the
uniform distribution on S (aka the empirical γ-robust error). Below we show that, by
using a “smoothened” version of the loss similar to the hinge loss, we can get the following
sample-∇0DP ERM algorithm:

▶ Lemma 21 (ERM for Robust Error). Let γ′ < γ. For any finite hypothesis class H, there
exists an ε-∇0DP algorithm that outputs a hypothesis hpriv such that

E[Rγ′(hpriv; S)] ≤ inf
h∈H
Rγ(h; S) + O

(
log |H|

ε(γ − γ′)d · |S|

)
.

6.3 Robust Learning of Halfspaces: Reduction to Nets
We now turn our attention back to halfspaces. A first step is to notice that it suffices consider
only halfspaces w where w belongs to some net. For ν > 0, let N(ν) denote any ν-net
N (under ℓ1 metric) of the unit ℓ1-ball and let HN(ν)

halfspace := {hw | w ∈ N}. Our formal
reduction is stated below.

▶ Lemma 22. Suppose that there exists a ε-sample-∇0DP (γ′ + ν, γ′)-robust learner for
HN(ν)

halfspace with excess loss α. Then, there is also an ε-sample-∇0DP (γ′ + 3ν, γ′)-robust
learner for Hhalfspace with excess loss α (where the sample complexity remains the same).

6.3.1 Private Robust Learner for Halfspaces
We start by providing a private learner for HN(ν)

halfspace.

▶ Lemma 23. There is an ε-sample-∇0DP (γ′ + 2ν, γ′)-robust learner for HN(ν)
halfspace with

sample complexity O
(

1
α2ν2 + log(1/ν)

αε·ν

)
.

Combining the above lemma with Lemma 22 with ν = (γ − γ′)/5, we arrive at:

▶ Lemma 24. There is an ε-sample-∇0DP (γ, γ′)-robust learner for halfspaces with excess
error

O

(
1

(γ − γ′)2√n
+ log(1/(γ − γ′))

ε(γ − γ′) · n

)
.

Combining the above lemma with Lemma 20, we get Theorem 19.
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7 Discussion

In this section, we discuss the meaning of partial DP. Ideally, of course, we would provide
a standard DP guarantee with a small privacy loss bound (say, (ε, δ)-DP with ε ≤ 1 and
δ ≤ 10−6). However, in practice, we are seeing large privacy loss bounds (ε ≥ 10) and we
lack a satisfactory way to interpret such guarantees.

Thus the premise of this discussion is that we are in a setting where, in order to
provide reasonable utility, we need a large ε under the standard definition of (ε, δ)-DP.
The fundamental question is: How can we justify (ε, δ)-DP with large ε? And, even more
importantly, when can we not justify this?

Intuitively, large εs can be justified by informally arguing DP is a worst-case definition
and this worst case is not realistic. The goal of partial DP is to provide a framework for
formalizing this intuition for justifying large ε which is precise enough to also fail to justify
large ε when the algorithm at hand does indeed exhibit worst-case behaviour. For example,
if ε(x, x′) is large when the only difference between x and x′ is that the person visited a
given website, then we clearly do not have a meaningful privacy guarantee.

Interpretation. Partial DP provides a language to formalize the intuitive notion of a
“nice algorithm.” Specifically, it allows us to rule out algorithms that act like performing
randomized response on some sensitive feature. For example, if we want to formalize the
constraint that the algorithm does not reveal whether or not a given person has a certain
disease, we would require that ε(x, x′) is small whenever the only difference between x and
x′ is that person’s disease status.

To interpret a partial DP guarantee, we must also discuss what constitutes a “realistic
adversary.” There are many different ways to restrict the adversary (see §7.1). Per-attribute
partial DP naturally corresponds to assuming that the adversary is interested in learning
a function of only a few attributes, whereas standard DP protects an arbitrary function of
all the attributes of a person.5 E.g., if the dataset is employment records, we can assume
that the adversary wishes to learn the target’s salary, but is not particularly interested
in learning their age or whether or not they are an employee. Such assumptions can be
justified in a variety of ways, depending on context. In the prior example, age may already be
public information and the employer may be willing to disclose who is or is not an employee.
In general, the interpretation of partial DP is context-dependent; the effectiveness of the
guarantee depends on what kind of information leakage is concerning.

Limitations. The limitations of (per-attribute) partial DP are the attacks that it does
not give good protection against (beyond the baseline standard DP guarantee that partial
DP implies). This limitation is inherent – if we want a context-independent guarantee
of individual privacy, we cannot do better than the standard DP definition. Membership
inference attacks [73, 39] are an example of a worst-case attack – whether a person is included
in the dataset or excluded is a function of all the attributes and hence partial DP does not
provide a better guarantee than standard DP. Whether membership of the dataset is sensitive
depends on the context. If the data selection process itself reveals sensitive information,
partial DP is not helpful. For example, if the dataset consists of only HIV patients, then
membership inference can reveal that a participant is HIV positive. On the other hand, if

5 The quantitative guarantee will degrade gracefully with the number of attributes the adversary is
interested in.
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the dataset consists of all patients of a given hospital system (or a random sample of those
patients), then that is potentially less sensitive and membership inference is less of a concern;
this is a setting where partial DP may be meaningful.

In any case, providing a partial DP guarantee contains more information than the single
parameter of the standard DP definition. Thus we argue that, even in settings where partial
DP is not particularly appropriate, it is still no worse than simply providing a standard DP
guarantee.

Correlated Attributes. To interpret the guarantee of per-attribute partial DP, we must
also consider whether sensitive information is reflected in many attributes, as, in this case,
the guarantee of per-attribute partial DP would rapidly degrade. For example, suppose
each attribute is the person’s location at a given point in time. We would expect that the
person is at home for extended periods of time, so the home location would be revealed
in many attributes simultaneously. Partial DP would not be particularly useful in such a
scenario. Other bad use cases for partial DP include the setting where each attribute is a
text message or photo and a person can contribute many text messages and photos and
sensitive information may be repeated in many of those messages or photos.

We consider the ideal setting for partial DP to be the case where attributes are hetero-
geneous (as opposed to the settings discussed in the previous paragraph where the attributes
are homogeneous). For example, age, race/ethnicity, gender, home address, income, sexual-
ity, medical status, occupation, criminal history, relationship status, commute length, and
immigration status are heterogeneous attributes. These attributes are not independent,
but the correlations between them are relatively weak. We can thus hope that partial DP
provides meaningful guarantees on a dataset containing these attributes. In particular, it
is unlikely that an adversary is interested in some complex function covering all or most of
these attributes. A realistic adversary is likely only interested in one of these attributes or
maybe a pair of them. While it is possible to, say, guess the income of a person based on
their demographics, this is generally not considered to be a privacy violation [64, 15].

In general, privacy should be thought of in terms of causal relationships, not statistical
correlations [79]. Indeed the definition of DP is precisely a causal property, as it considers
a pair of datasets, which correspond to the real dataset and a hypothetical counterfactual
dataset. The definition of DP does not make any distributional assumptions about the data.

Correlations are present not only between the attributes of a single person, but also
between the data of different people. For example, whether or not a given person has an
infectious disease is highly correlated with whether or not the people around them have that
disease. Thus revealing the fact that there is an outbreak of an infectious disease reveals
information about specific individuals. But this is not a privacy violation. (And if we treated
this as a privacy violation, it would prevent us from revealing useful information about
disease outbreaks.) However, revealing a specific person’s test result is a potential privacy
violation – the key is that there is a direct causal relationship between someone’s data (i.e.,
their test result) and the information being released. By the same token, a person may
have many attributes that are correlated with having a certain disease, but releasing those
correlated attributes is fundamentally different from releasing an actual diagnosis.

Concrete Example: 2020 US Census. The redistricting data from the 2020 US Census
was released in a DP manner. The generally quoted guarantee is (17.14, 10−10)-DP plus
(2.47, 10−10)-DP [1] and applying basic composition to these two releases gives ε = 19.61. To
be precise, the redistricting data satisfies (2.56 + 0.07)-zCDP, which implies (13.8, 10−6)-DP.
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The Census Bureau provide provide a detailed breakdown of the privacy allocation
[1, 21, 20]. This exactly corresponds to a partial CDP guarantee. Their TopDown algorithm
computes multiple histograms across subsets of attributes (which bears some similarity to
our heavy hitters algorithm in Section 5). To determine the ε-∇CDP guarantee, for any
x, x′ ∈ X , determine the set of attributes on which they differ and then we look at which
histograms involve those attributes to determine ε(x, x′). Histograms that only involve
attributes on which x and x′ agree need not be accounted for under partial DP.

To make this partial CDP guarantee concrete, we can relate it to a specific attack. The
Census Bureau conducted a simulated reconstruction and reidentification experiment [28].
The punchline of their simulated attack was learning people’s race and ethnicity from the data
that was publicly released from the 2010 US Census. We can calculate a privacy guarantee
for just these two attributes in the 2020 release. Specifically, if we allow a person’s race and
ethnicity to change, but their other attributes are fixed, then we get a 1.02-zCDP guarantee,
which yields (7.85, 10−6)-DP. That is, in terms of partial DP 1

2 ε(x, x′)2 ≤ 1.02 when x and
x′ differ only on the race and ethnicity fields.

Generality of Partial DP Definition. Our algorithmic results (in Sections 4, 5, & 6) focus
on per-attribute partial DP. For simplicity, we assume each attribute has the same privacy
parameter ε0. But not all attributes are equally sensitive. Thus it is natural to to consider
per-attribute guarantees where each attribute has its own privacy parameters. In the 2020
US Census example, the attributes have different privacy parameters. Our definition of
partial DP is general enough to capture such non-uniform per-attribute privacy guarantees.

As mentioned in Section 3, it is possible to give an even more general definition than
we do, where the ε metric considers a pair of datasets, not just a pair of individual records.
While such added generality may seem like a feature, it makes such a definition harder to
interpret. In particular, it becomes hard to relate such a definition back to standard DP.
Thus we deliberately chose not to define partial DP so generally.

7.1 Assumptions about the Adversary
To give refined privacy guarantees (e.g., partial DP) meaning, we must give a characterization
of what we might consider reasonable restricted adversaries, which we can then use to
interpret our definition. In this section, we discuss different types of restricted adversaries.

The definition of DP does not explicitly mention an adversary; it simply states that the
output distribution of the algorithm does not change much (as measured by ε) if we arbitrarily
change the data of one individual in the input of the algorithm. However, to interpret this
definition and give meaning to the privacy guarantee, we must envisage an adversary who sees
the output of the algorithm, combines this information with their knowledge, and thereby
potentially learns a piece of information about an individual that they should not have been
able to learn. The adversary could be a stranger, a close friend or relative, a government
entity, or a private entity we do business with and each of these potential adversaries will
have different knowledge, resources, and goals.

In effect, standard DP makes minimal assumptions about the adversary – the adversary
can have near-complete knowledge of the dataset and can target an arbitrary piece of
information about an arbitrary individual.

There are four ways in which we could make assumptions that constrain the adversary:

(i) Assumptions about the Adversary’s Knowledge. DP effectively permits the adversary
to know everything about the dataset except for the one bit of private information that they
are seeking to extract. Although the adversary may have access to a lot of information from
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auxiliary data sources, it is unrealistic to assume that this information is so complete and so
accurate. Thus it is natural to assume some uncertainty about the dataset in the eyes of the
adversary; this could be formalized by endowing the dataset with randomness and exploiting
this randomness in the privacy guarantee [12, 9, 13].

However, such assumptions about the adversary’s knowledge are very brittle [74, 75].
In particular, assumptions about the adversary’s knowledge can be invalidated by future
releases of information. That is, we may assume that certain information is unknown to
the adversary, but subsequently an auxiliary dataset is made available that contains this
information; when that happens, it is too late to retract the output of our algorithm. Such
assumptions are also not robust to composition. That is, the output of our algorithm may
itself invalidate these assumptions, so, if we run another algorithm subsequently, we cannot
make the same assumptions again.

It is also difficult to effectively formulate assumptions about the adversary’s knowledge.
For example, it is tempting to assume that the data consists of i.i.d. samples from some nice
distribution. However, this corresponds to assuming an entirely naïve adversary with no
knowledge of the dataset beyond the general characteristics of the population it came from.

(ii) Assumptions about the Target Individual or Dataset. Distributional assumptions
about the data can also encode a different type of privacy guarantee (as opposed to that
distribution representing the uncertainty of the adversary). Intuitively, we can encode the
assumption that the adversary only targets “typical” individuals in “typical” datasets and
the privacy guarantee may fail for individual outliers or abnormal datasets. For example,
a basic DP algorithm is to add noise to some statistic that is scaled to its sensitivity; an
average-case assumption about the target individual and dataset would allow us to replace
the worst-case sensitivity with a notion of average-case sensitivity [44, 78]. However, an
individual deviating significantly from the rest of the dataset will have a correspondingly
weaker privacy guarantee [81].

This approach has two deficiencies: First, providing unequal privacy protection raises
ethical questions. Second, it may be unnecessary to make this compromise. For example,
techniques such as clipping can control the worst-case sensitivity or we can use smooth
sensitivity [71]. We can also test whether the dataset is typical before performing the analysis
and abort if it is not [34]. Thus it is often possible to obtain the benefits of average-case
assumptions on the data while still attaining standard DP.

(iii) Assumptions about the Adversary’s Capabilities. Performing a privacy attack generally
requires effort. Thus we may make assumptions about the adversary’s ability or willingness
to perform the attack [26]. A good example is computational DP [68], where we assume that
the adversary’s computational power is limited and thus they cannot, for example, break a
cryptographic system.

We can also assume that the adversary will only perform certain types of attacks. For
example, k-anonymity and related definitions are tailored to preventing a specific style of
record-linkage attacks. In the same vein, the data curator can simulate an attack on the
output of their algorithm [23, 52, 22]. On one hand, the success of the simulated attack
establishes that the algorithm is not DP – and this can be used to check the privacy analysis
[77]. On the other hand, the failure of the simulated attack establishes a privacy guarantee
that is meaningful as long as the real adversary is similar to the simulated adversary.
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(iv) Assumptions about the Adversary’s Goals. DP protects against an adversary seeking
to learn an arbitrary one-bit function of the target individual’s data. Equivalently (up to a
factor of two in the privacy parameter), it prevents the adversary from learning whether or
not the target individual’s data was included in the dataset. While being included in the
dataset may be sensitive depending on how the dataset was collected [73, 39], this often does
not correspond to a realistic threat.

Thus we can relax the definition to protect only certain pieces of information from attacks.
This corresponds to making an assumption about what function the adversary wants to learn
about the target individual. For example, if the dataset corresponds to employment records,
we can assume that the adversary wishes to learn the target’s salary or their performance
rating, but is not particularly interested in learning their age or whether or not they are an
employee. Such assumptions can be justified in a variety of ways. In the prior example, it
may be the case that age is already public information and that the employer is willing to
disclose who is or is not an employee.

Our partial DP approach corresponds to making assumptions about the adversary’s goals.
Specifically, we provide guarantees for adversaries whose goal is to learn a single attribute
or a function of a few attributes. Whether such an assumption corresponds to a realistic
adversary will depend on the application domain.

7.2 Bayesian & Information-Theoretic Interpretations
Applying Bayes’ law to the standard DP definition gives us a “semantic” interpretation of
the guarantee – regardless of the adversary’s prior beliefs, after seeing the DP output, their
posterior beliefs cannot change much based on a single person’s data [54]. We can give a
similar interpretation for pure partial DP:

▶ Proposition 25. Let X = X1 × · · · × Xd. Let M : Xn → Y satisfy ε-∇0DP. Let P

be a distribution on Xn representing the adversary’s prior beliefs. Assume that for some
s = {j1, · · · , j|s|} ⊂ [d], the distribution P can be decomposed as a product distribution
over the attributes given by s and the remaining d− |s| attributes. Let PX|M(X)=y denote
the conditional distribution of X obtained by drawing X ← P and conditioning on the
event M(X) = y for some fixed y ∈ Y. Similarly, let PX|M(X−i)=y denote the conditional
distribution of X obtained by drawing X ← P and conditioning on the event M(X−i) = y

for some fixed y ∈ Y and i ∈ [n], where X−i denotes X with the ith entry removed or
blanked. Let PXs

denote the marginal distribution on Xj1 × · · · × Xj|s| obtained by sampling
X ← P and only revealing the attributes indexed by s. Define PXs|M(X)=y and PXs|M(X−i)=y

analogously as marginals of the conditional distributions. Then, for all y ∈ Y and all i ∈ [n],

dTV(PXs|M(X)=y, PXs|M(X−i)=y) ≤ e2|s|ε − 1.

The proof of Proposition 25 directly follows that of [54]. The assumptions of the proposition
allow us to essentially ignore all the attributes indexed by [d] \ s and, once we discard those
irrelevant attributes, we have a (|s|ε)-DP algorithm.

We remark that the product distribution assumption may seem strong, as it implies that
there is no connection between the attributes in s and the attributes in [d] \ s. However,
there is one very simple way that this can arise: Suppose the adversary already knows the
value of all of the attributes in [d] \ s. In this case we have a trivial product distribution
where the distribution on the attributes in [d] \ s is a point mass.

We can also give an information-theoretic interpretation: Suppose X1, · · · , Xn ∈ X =
X1×· · ·×Xd are independent random variables. These correspond to the data of n individuals.
The independence assumption is essentially saying that the adversary knows the population,
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but knows neither the individuals nor the relationships between the individuals. If M is
ε-DP or 1

2 ε2-zCDP, then I(Xi; M(X)) ≤ 1
2 ε2 for all i ∈ [n] [18]. Here I(·; ·) denotes the

mutual information in nats. That is to say, DP bounds the amount of information that M

reveals about any given record in the dataset. Such a bound can be meaningful even in the
large ε regime; if the individual’s data is high-entropy, then we cannot reconstruct it, even if
we can learn some of it [13]. We can give a stronger guarantee under partial DP:

▶ Proposition 26. Suppose X1, . . . , Xn ∈ X = X1 × · · · × Xd are independent random
variables. Fix i ∈ [n]. Suppose we can partition [d] = s1∪· · ·∪sk such that Xi,s1 , . . . , Xi,sk

are
independent random variables, where Xi,sj

denotes the attributes indexed by sj of individual
i. Let M : Xn → Y satisfy ε-∇0CDP. Then I(Xi,sj

; M(X)) ≤ 1
2 ε2|sj |2 for all j ∈ [k] and

I(Xi, M(X)) ≤ 1
2 ε2∑k

j=1 |sj |2.

8 Conclusion

We have presented several algorithms and analyzed them under partial DP, which gives
more granular privacy guarantees than standard DP. Our results demonstrate that there are
multiple separations between the achievable per-attribute ε0-∇0DP and the per-person ε-DP
parameters – i.e., settings where the achievable per-person parameter is large (say, ε ≥ 10),
but we can still give more granular guarantees with a smaller parameter (e.g., ε0 ≤ 1). In this
case the partial DP guarantee with a small ε0 may be a meaningful and useful (depending on
the context) supplement to standard DP guarantee with a large ε, as the smaller parameter
can interpreted more easily, albeit on a per-attribute basis.

We note that interpreting the guarantees of partial DP depends on what constitutes a
“realistic” adversary. Per-attribute partial DP naturally corresponds to assuming that the
adversary is interested in learning a function of only a few attributes. On the flip side, partial
DP may not provide better guarantees than standard DP for membership inference attacks
and in cases where sensitive information may be repeated across multiple attributes.

We hope that our work inspires further exploration of more granular privacy guarantees,
and further expansion of the DP algorithmic toolkit.

8.1 Further work
We hope that our work inspires further study of refined privacy guarantees. Our partial DP
framework can and should be explored further, both in terms of developing and applying
algorithms and in terms of further developing the definition. In particular, most of our results
are restricted to per-attribute partial DP. A natural extension is to have a different εi for
each attribute, as some attributes are more sensitive than others.

A specific open question for algorithms development is to improve Theorem 12 so that
we can obtain max error guarantees under per-attribute partial DP (like in the standard DP
setting), rather than needing to average over a set of ℓ queries.

Going beyond partial DP, there is scope for other refined definitions that capture some
limitations on the adversary. We have discussed some possible directions in Section 7.1. To
facilitate such work, we propose the following desiderata for other refined definitions:

The adversary should not be “baked in” to the privacy definition. That is, the definition
should be stated in a way that can be interpreted and verified without knowing the
specifics of the adversary. Our definition, like the original DP definition [35], is frequentist,
rather than Bayesian – i.e., it does not mention the adversary’s beliefs and instead asserts
that the output distributions are indistinguishable; this makes it easier to use.
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The privacy definition should not be overly tailored to a specific algorithm. It is important
to disentangle algorithms from definitions; this is an important conceptual contribution
of the original DP definition. In other words, definitions should be re-usable.
The privacy definition should be formally comparable to the standard definition of DP
(as we show in Proposition 8) or, at least, it should be possible to ensure that algorithms
satisfy both definitions simultaneously. We believe that the goal of such research should
not be to replace the standard DP definition, rather the goal should be to supplement it.
In order for a new privacy definition to be useful, we must demonstrate a quantitative
separation between it and the standard definition of DP, as we have done with our
algorithmic results. A new definition should not be a substitute for designing better
algorithms. For example, when computing the mean of unbounded Gaussian data we
could either devise an average-case privacy definition to avoid dealing with the infinite
global sensitivity of the mean, or we could simply clip the data [53]; we argue that
the second option is vastly preferable. Thus, to justify a new privacy definition, new
algorithmic results should be matched to a lower bound showing that it is impossible to
match the performance under the usual definition of DP.
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Abstract
In this work, we study the task of estimating the numbers of distinct and k-occurring items in a time
window under the constraint of differential privacy (DP). We consider several variants depending
on whether the queries are on general time windows (between times t1 and t2), or are restricted to
being cumulative (between times 1 and t2), and depending on whether the DP neighboring relation
is event-level or the more stringent item-level. We obtain nearly tight upper and lower bounds on
the errors of DP algorithms for these problems. En route, we obtain an event-level DP algorithm for
estimating, at each time step, the number of distinct items seen over the last W updates with error
polylogarithmic in W ; this answers an open question of Bolot et al. (ICDT 2013).
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1 Introduction

Counting distinct elements is a fundamental algorithmic problem with numerous applications
across different areas including data mining [42, 1, 29, 37], computational advertising [32, 13],
computational biology [7, 4], graph analysis [38], network security [3, 23], query optimization
[41, 40]. Another related problem is that of counting k-occurring items in which we wish to
count the number of items that occur at least k times in the data for some given parameter
k. Estimating distinct and k-occurring elements over extended time periods capture natural
use cases, where we wish to study these estimates over particular time windows.

A concrete application stems from advertising where these problems correspond to the
so-called reach and frequency1 estimates of an ad campaign, considered two of the most useful
metrics [32, 13]. These estimates can then be used to train machine learning (ML) models.
For example, it is common for advertisers to seek to optimize the reach and frequency of
their campaigns subject to a fixed ad spend budget; they can train an ML model to forecast
the reach and frequency histogram for any ad spend budget [12]. Constructing the training
dataset for this task in turns entails estimating the reach and frequency for a given ad spend
budget. Doing so runs the risk of leaking sensitive information about user activity on the
publisher sites, which motivates the study of privately estimating reach and frequency [25].

1 Here, reach is the number of individuals (or households) exposed to an ad campaign, whereas the ith
frequency fi denotes the number of individuals exposed to the ad campaign exactly i times [47].
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Increased user awareness and regulatory scrutiny have led to significant research on
privacy-preserving algorithms. Differential privacy (DP) [16, 15] has emerged as a widely
popular method for quantifying the privacy of algorithms. Loosely, DP dictates that the
output of the (randomized) algorithm remains statistically indistinguishable when a dataset
is replaced by a “neighboring” dataset (which differs on the contributions from a single user).

▶ Definition 1 (Differential Privacy (DP) [16, 15]). For ϵ, δ ≥ 0, an algorithm M is said to
be (ϵ, δ)-differentially private (i.e. (ϵ, δ)-DP) if, for any neighboring input datasets D, D′ and
any set O of outputs, we have Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O] + δ.

For δ = 0, the algorithm is said to be pure-DP, for which we abbreviate (ϵ, δ)-DP as just
ϵ-DP. Otherwise, when δ > 0, the algorithm is said to be approximate-DP.

For counting distinct elements, previous work on DP algorithms includes [43, 11, 25],
all of which have focused on the case of static datasets, i.e., those on which the queries are
evaluated once. However, in practice, datasets that are collected over an extended time period
are more prevalent. More precisely, at each time step t, a histogram St of universe elements
(contributed from multiple users) is added to the dataset. This setting – of estimating queries
over a varying dataset and over an extended time period – is the focus of our work.

Our Contributions
We first study the task of counting distinct elements (or “reach”) over an extended time
period. We consider three natural types of queries depending on the underlying time intervals:
time-window queries (spanning time steps i through j for all 1 ≤ i ≤ j ≤ T , where T is a
given fixed time horizon parameter), cumulative queries (with the restriction that i = 1), and
fixed-window queries (with the restriction that j − i = W − 1 for a fixed W ). We moreover
consider the two most natural DP neighboring relations: item-level DP (where two datasets
are neighboring if they differ on a single universe element’s occurrences across all time steps),
and event-level DP (where two datasets are neighboring if they differ on a single universe
element’s occurrence for a single time step). In addition to the count distinct problem,
we also study the closely related task of estimating the number of universe elements that
appear at least k times in the input dataset; we call such an item k-occurring. Finally, we
consider both the singleton setting where a single item arrives at each time step, as well
as the bundle setting where no such restriction is enforced. For each combination of the
previous choices, we prove nearly tight upper and lower bounds on the errors of both pure-
and approximate-DP algorithms; see Table 1.

2 Setting

Let [U ] be a universe of items.2 Let T be the number of time steps (aka, time horizon). Our
input dataset is S = (S1, . . . , ST ) where St is a multiset of items at time step t ∈ [T ], i.e., St

j

denotes the number of occurrences of item j at time step t. Let S[t1,t2] denote St1 + · · · + St2 .

2.1 Utility Definition
All problems considered in this work can be viewed as a set Q of queries, where each query
q ∈ Q maps each dataset S to a real number. The goal of the algorithm is then to output
an estimate q̃S̄ of q(S). Following [6], we say that an algorithm satisfies (α, β)-utility if and
only if for every query q ∈ Q, Pr[|q̃S̄ − q(S̄)| ≤ α] ≥ 1 − β.

2 Throughout, we write [m] for a non-negative integer m as shorthand for {1, . . . , m}.
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For simplicity of exposition, we sometimes only state the bound on α (referred to as
the “error”) for a small constant β (e.g., 0.1). It is simple to see that, in all the cases that
we consider, we can get β to be arbitrarily small at the cost of at most a (log(1/β))O(1)

multiplicative factor in α.

2.2 Cumulative, Time-Window, and Fixed-Window Queries
Given a function g : Z[U ]

≥0 → R, we consider three problem versions. The first is the time-
window version, which requires us to compute estimates ẽg

t1,t2
of eg

t1,t2
:= g(S[t1,t2]) for all

1 ≤ t1 ≤ t2 ≤ T . The second is the cumulative version, which restricts to the case where
t1 = 1. The third is the fixed-window version, which is the restriction of the time-window
version to the case where t2 − t1 = W − 1 for some W ∈ [T ] (given beforehand). We view
each tuple (g, t1, t2) as a query for the utility definition above. Moreover, the algorithm
should be DP when ẽg

t1,t2
’s are published simultaneously, for all t1, t2’s of interest.

For simplicity, we assume that the algorithm gets to see all the data (i.e. S1, . . . , ST )
before answering the queries. Another model (also considered in [6]) is the aforementioned
continual release setting where S1, . . . , ST arrives in order and we have to answer each query
as soon as we have sufficient information to do so (i.e. the algorithm has to answer eg

t1,t2

immediately after receiving St2). As explained below, our algorithms are obtained through
reductions to range query problems; since there are continual release algorithms for the
latter [18, 10, 20], these imply continual release algorithms for the problems considered in
our work too. We omit the full statements and proofs for brevity.

2.3 Neighboring Notions
As we consider DP, we have to specify the neighboring notion under which our algorithm
should be DP. There are two neighboring relations that we consider in this work:

Item-level DP: Two datasets (S1, . . . , ST ) and (S̄1, . . . , S̄T ) are neighbors iff there exists
u ∈ [U ] for which St

u′ = S̄t
u′ for all u′ ̸= u and all t ∈ [T ]. In other words, one results

from adding/removing a single item u ∈ [U ] to/from (possibly multiple) multisets.
Event-level DP: Two datasets (S1, . . . , ST ) and (S̄1, . . . , S̄T ) are neighbors iff

∑
t∈[T ] ∥St−

S̄t∥1 ≤ 1. In other words, one results from adding/removing a single element u ∈ [U ]
to/from a single multiset.

We remark that our item-level DP notion coincides with user-level DP as in, e.g., [19].

2.4 Counting Distinct and k-Occurring Elements
The family of queries we consider is CntOcc≥k(S) := |{u ∈ [U ] | Su ≥ k}|, i.e., the number
of items that appear at least k times in S.

Clearly, CntOcc≥1 is counting the distinct elements. We also note that it is possible
to define k-occurring queries that count the number of items that appear exactly k times
in S. It turns out that the bounds in our definitions above carry over with only constant
multiplicative overheads. We omit the details in this version.

2.5 Singleton vs Bundle Setting
Several previous works in the literature (e.g., [18, 10, 6]) have considered the setting where
∥St∥1 ≤ 1 for all t ∈ [T ]. We refer to this setting as the singleton setting, whereas the setting
where no such restriction is enforced will be referred to as the bundle setting.
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3 Our Contributions

3.1 Highlights of our results

We derive tight utility bounds in all cases up to polylogarithmic factors in T and the
dependence on k. Our results are summarized in Table 1. The highlights of our results are:
1. Polylogarithmic errors for all event-level DP problems. In the event-level DP,

we give algorithms for fixed-window and time-window with errors O(k log1.5 W ) and
O(k log3 T ) respectively. Note that a cumulative algorithm with O(log1.5 T ) error was
already presented in [6] and it works even in the item-level DP setting. On the other
hand, the same work [6] raised as an open question getting an algorithm with error
polylogarithmic in W for the fixed window setting; our aforementioned algorithm answers
this question in the affirmative.

2. Dependence on k. The above upper bound for cumulative does not depend on k whereas
those for fixed/time-window grow with k. We show that this polynomial dependence on
k is necessary.

3. Lower bounds in other settings. We show lower bounds of T Ω(1) and (T/W )Ω(1) for
time-window and fixed-window in the item-level DP setting; we also show matching upper
bounds. These lower bounds give separations between event-level and item-level DP.

Table 1 Summary of our results. We use Õ(f) to hide factors polylogarithmic in f . For simplicity
of the bounds, we assume that ϵ, β ∈ (0, 1] are constants, T > W 2, and W > k2. Note that we also
provide reductions from 1d-range query to cumulative and time-window CntOcc≥k in event-level
DP. However, no concrete bound is shown in the table because, to the best of our knowledge, no
non-trivial bound for 1d-range query is known for the utility notion we use, although an Ω

( log M
ϵ

)
lower bound is known for the stronger ℓ∞ utility notion (see, e.g., [46]).

Cumulative Fixed-Window Time-Window
Bounds Upper Lower Upper Lower Upper Lower

pure Singleton O(k log3 T )
Event DP Bundle O(k log1.5 W ) Ω(

√
k) (Cor. 39) Ω(

√
k + log T )

Level approx. Singleton (Cor. 20) (Lem. 23, Oδ(k log2 T ) (Cor. 41,
DP Bundle Cor. 27) (Cor. 40) Cor. 46)

Singleton Õ(T ) Ω(T )
pure O(log1.5 T ) − Õ(k · T

W
) Ω(

√
k + T

W
) (Cor. 48) (Cor. 55)

DP Bundle (Cor. 15) (Lem. 17) (Cor. 30) (Cor. 27, 36) Õδ(
√

T ) Ω(
√

T )
Item [6] (Cor. 49) (Cor. 56)
Level Singleton O(

√
T ) Ω(

√
T )

approx. Õδ(k ·
√

T
W

) Ω(
√

k +
√

T
W

) (Cor. 51) (Cor. 57)
DP Bundle (Cor. 31) (Cor. 27, 37) Õδ( 3√T ) Ω( 3√T )

(Cor. 52) (Cor. 58)

We next proceed to describe the main ideas in our algorithms and reductions. For ease of
presentation, we group the results together based on proof techniques and only explain the
high-level approaches. All omitted details will be formalized later.

3.2 Algorithmic Overview: Event-Level DP Setting

We start our algorithmic overview with the event-level DP setting, which is our main
contribution. Our results will establish reductions to the range query problem.
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▶ Definition 2 (Range Query). In the d-dimensional range query problem, the input consists of
x1, . . . , xn ∈ {0, . . . , M}d. The goal is to output, for every y1, y2 ∈ {0, . . . , M}d, ry1,y2(x) :=
|{j ∈ [n] | y1 ⪯ xj ⪯ y2}|, where x ⪯ y iff xi ≤ yi for all i ∈ [d].

Here DP is with respect to adding/removing a single xj . DP algorithms for range query
with errors polylogarithmic in M are known (see Section 4.2.) Indeed, DP range query
remain an active area of research (e.g., [28, 33]); by reducing to/from range query, any future
improvements there can be immediately combined with our reductions to yield better bounds
for our problems as well.

To describe the reductions, let us also denote by tu
ℓ the time step that an item u ∈ [U ] is

reached for the ℓth time3. The reductions in each case proceed as follows:

3.2.1 Cumulative
The reduction was already implicit in [6], but we present it in our framework as a warm-up
to the other results. It is simple to see that u should be counted in the (1, t) query (i.e., the
cumulative query ending at time t) if and only if tu

k ≤ t. The reduction is now clear: for each
item u, we create a point tu

k ∈ [T ]. Running the 1d-range query algorithm on these points
then gives us estimates for the cumulative count distinct values.

3.2.2 Time-window
First we focus on the k = 1 case. Observe that u should not be included in the (t1, t2) query
iff for some ℓ, it holds that tu

ℓ < t1, t2 < tu
ℓ+1. This leads to the following reduction to the

2d-range query problem. For each item u ∈ [U ], we create points (tu
ℓ + 1, tu

ℓ+1 − 1) for all ℓ.
To answer a (t1, t2) time-window query, we use a range query to find the number of points
whose4 first coordinate is at most t1 and second coordinate is at least t2, which gives the
number of items not included in the desired time query.

It is important to take the “complement” perspective in the above reduction. Specifically,
if we were to use the fact that u should be included iff t1 ≤ tu

ℓ ≤ t2 for some ℓ, this will lead
to double counting because the condition can be satisfied by multiple values of ℓ. However,
the condition given in the previous paragraph is satisfied by (at most) a single value of ℓ.

For the k > 1 case, we can use a similar approach but change the condition to tu
ℓ <

t1, t2 < tu
ℓ+k (i.e., replacing ℓ + 1 with ℓ + k). However, this leads to double counting because

it is possible that tℓ+k > t2 and tℓ, tℓ+1 are both less than t1. To solve this issue, we create
another instance of 2d-range query with respect to the condition tu

ℓ+1 < t1, t2 < tu
ℓ+k. We

then subtract the answer of the second instance from that of the first instance; it can be
seen that this results in no double counting. Finally, note that a single event change results
in at most O(k) changes to the instances because at most k + 1 conditions tu

ℓ < t1, t2 < tu
ℓ+k

are affected. By group privacy (Fact 6), this means we may apply the (O(ϵ/k), O(δ/k))-DP
2d-range query algorithm and still get (ϵ, δ)-DP in our answer.

3.2.3 Fixed-window
In the fixed-window case, we can do better than time-window by reducing to 1d- rather
than 2d-range query. Again, let us start from the k = 1 case. Recall from the above
that an item u ∈ [U ] should not be included in the fixed-window query (t, t + W − 1) iff

3 Note that in the actual algorithm, we need to handle the case where St
u > 1 and also handle the

boundaries. For a formal treatment of the modification required for handling this, see Section 4.
4 This corresponds to a range query in Definition 2 with y1 = (−∞, t2), y2 = (t1, ∞).
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tu
ℓ < t, t + W − 1 < tu

ℓ+1. This condition can be further simplified as t ∈ (tu
ℓ , tu

ℓ+1 − W ].
Therefore, we may create two instances of the 1d-range query problem: if tu

ℓ+1 − tu
ℓ > W , add

tu
ℓ to the first instance and tu

ℓ+1 − W to the second instance. To count the number of items u

such that t ∈ (tu
ℓ , tu

ℓ+1 − W ], we query for the points of value at most t in each instance and
then subtract the first answer from the second answer. This gives us the number of items
that should not be included, which we subtract from U .

For k > 1, we start from the condition t ∈ (tu
ℓ , tu

ℓ+k − W ]. Naturally, this gives us the
following algorithm: if tu

ℓ+k − tu
ℓ > W , add tu

ℓ to the first instance and tu
ℓ+k −W to the second

instance. (Then, proceed as above.) Unfortunately, this again results in double counting
when tu

ℓ+k ≥ t + W and tu
ℓ , tu

ℓ+1 are both less than t. To resolve this, we change the second
point from tu

ℓ+k − W to min{tℓ+1, tu
ℓ+k − W}.

The above ideas are sufficient for a bound of the form k · logO(1) T . To decrease log T to
log W , we make the following observation: since the window length is fixed to W , we may
run the above algorithm for time steps 1, . . . , 2W , then run it again for W + 1, . . . , 3W , then
for 2W + 1, . . . , 4W and so on. This suffices to answer any fixed-window query of length W .
Furthermore, observe that each event-level change only affects two runs, meaning that we
only need each run to be (ϵ/2, δ/2)-DP. Since each run now has time horizon only 2W , we
have decreased log T to log W as desired.

3.3 Algorithmic Overview: Item-Level DP Setting

We next briefly describe how to extend each result to the item-level DP case. First, we remark
that the above cumulative algorithm actually works also with item-level DP because each
item contributes to at most one point in the 1d-range query instance. As for the time-window
and fixed-window settings, they are solved by reducing to multiple calls of easier problems
and using composition theorems:

3.3.1 Time-window

We run the cumulative algorithm starting at each time step. Via the basic or advanced
composition theorems (Theorems 3 and 4), it suffices for each cumulative algorithm to be
(ϵ/T )-DP and O(ϵ/

√
T log(1/δ))-DP respectively, which yields the nearly tight bounds.

3.3.2 Fixed-window

This case is more subtle. We start by observing that the above event-level DP algorithm for
T = 2W in fact works even in the item-level DP setting: the reason is that the condition
tu
ℓ+k −tu

ℓ > W cannot occur for two different indices ℓ that are at least k apart. (Otherwise, we
would have 2W > 2W , a contradiction.) This means that we can still solve each subinstance
of time horizon 2W with error k · logO(1) W . Since there are O(T/W ) subinstances (in the
reduction described above), we can use the basic/advanced composition over them. This
gives us the final (T/W )O(1) · logO(1) W bounds.

Finally, we remark that we can sometimes obtain improvements in the singleton setting.
We do so via a technique from [30] where the T time steps are partitioned into ⌈T/T ′⌉
grouped time steps, each consisting of ≤ T ′ consecutive time steps. The main observation
is that we may run the bundle algorithm on the ⌈T/T ′⌉ grouped time steps and incur an
additional error of at most T ′ due to the grouping. By picking T ′ appropriately, this yields
the bounds for our time-window algorithms in the singleton setting.
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3.4 Overview of the Lower Bounds
At a high-level, we prove two types of lower bounds. First are the lower bounds from
1d-/2d-range query. These are done by essentially “reversing” our algorithms explained
above. In fact, these reductions show that the cumulative, fixed-window, and time-window
CntOcc≥k are equivalent to 1d-, 1d-, and 2d-range query, respectively, up to a multiplicative
factor of O(k) in the values of ϵ, δ.

The second type of reduction is from (variants of) the 1-way marginal problem. Recall
that in the 1-way marginal problem each user receives xj ∈ {0, 1}d and the goal is to compute
x̄ :=

∑
j∈[n] xj . Lower bounds of dΩ(1) are well-known for this problem [27, 8].

3.4.1 Polynomial in T and T/W Lower Bounds
Let us start with the simpler reductions for lower bounds of the form (T/W )Ω(1) and (T )Ω(1)

for fixed-window and time-window queries in item-level DP. For the ease of presentation,
let us consider the time-window bundle setting with k = 1 as an example. In this case, we
let d = T, U = n, and Sj

i = xj
i for all j ∈ [n], i ∈ [d] (i.e., “copying” each vector xj into the

occurrence pattern of item j). It can be immediately seen that CntOcc≥1(Si) is exactly
equal to x̄i, which translates the lower bounds of dΩ(1) = T Ω(1) from 1-way marginals to
time-window bundle CntOcc≥1.

We remark that our reductions bear similarities to those in [30], although, given that
different problems are studied in that work, the reductions and arguments are not the same.

3.4.2 Polynomial in k Lower Bounds
Lower bounds of the form kΩ(1) are also shown via reductions from (variants of) 1-way
marginals with d = Θ(k). However, these are more challenging than the above as we have to
handle the event-level DP setting. Notice that in the above reduction each user corresponds
to a vector xj ∈ {0, 1}d and changing this vector can cause the change in Sj

i for all i ∈ [T ],
which invalidates its use in the event-level DP setting. For event-level DP reductions, we have
to somehow be able to encode the entire information of the d-dimensional vector xj ∈ {0, 1}d

while ensuring that changing this entire vector only causes a single event change.
The aforementioned challenges led us to the idea of creating multiple items for each

possible value of xj . In other words, we now create an item for each (j, x) ∈ [n] × {0, 1}d.
Each of these items is “dormant”, meaning that it does not contribute to CntOcc≥k queries
at all. However, each item (j, x) can be “turned on” by a single event change, after which it
contributes to the queries in a pattern designated by the vector x. This is done by ensuring
that for each i ∈ [d] there are prespecified ti, t′

i such that S
[ti,t′

i]
(j,x) is equal to k − 1 + xi. The

event-level change to turn on (j, x) is to increase S
(j,x)
t such that t ∈ [ti, t′

i] for all i ∈ [d].
(Note that, since we are aiming for event-level change, we need to use a single t that satisfies
t ∈ [ti, t′

i] simultaneously for all i ∈ [d].) After turning on (j, xj) for all j ∈ [n], we thus have
x̄i = CntOcc≥k(S[ti,t′

i]), allowing us to compute the 1-way marginal. This concludes the
main idea of the reduction.

While the sketch above suffices for the bundle setting, it is not enough for the singleton
case. This is because we created as many as 2d = 2O(k) dormant items, which requires
T > 2d in the singleton case. This is too large to yield any meaningful results. Instead, we
turn to the so-called linear queries problem, which may be viewed as a restriction of 1-way
marginals where each xj belongs to a (predefined) small set of size dO(1). (See Section 4.4
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for a formal definition.) A classic result of [14] showed that, even in this restricted version,
any DP algorithm has to incur an error of dΩ(1). Since we now only have to create dormant
items (j, x) for x that belongs to the set, we can now let T be as small as dO(1).

3.5 Related Work

A closely related line of work is the continual release model of DP, which was first introduced
in the work of Dwork et al. [18], and Chan et al.[10]. For the binary summation task
in this model, they designed the binary tree mechanism, which achieves an additive error
polylogarithmic in T ; Dwork et al. [18] also showed that a logarithmic error is needed.
The binary tree mechanism was extended to the task of estimating weighted sums with
exponentially decaying coefficients [6], and sums of bounded real values [39]. The continuous
release model of DP was later studied on graph data and statistics in [44, 24], and the
aforementioned DP binary tree mechanism was used in the context of DP online learning
[31, 26, 2]. Very recently, Jain et al. [30] show that tasks closely related to summation, namely
requiring the selection of the largest of a set of sums (and previously studied by [9]), have to
incur an error polynomial in T in the continuous release model, and are fundamentally harder
than in the standard setting. We remark that this separation implies a polynomial separation
between cumulative queries and a single query (for their problems) in our terminologies.
This is a different behavior compared to the CountDistinct and CntOcc problem studied in
our work, as there is a polylogarithmic-error algorithm (Lemma 14). In fact, we use Jain et
al.’s [30] technique in our upper bound for the item-level setting. Our lower bound reductions
bear some similarities to theirs, but there are some fundamental differences. For example,
we crucially use the structure of CntOcc when proving kΩ(1) lower bounds.

CountDistinct and CntOcc have also been studied in the more challenging pan-private
model [19, 35], where the DP constraint is applied not only to the output but also to the
internal memory of the algorithm (after any time step); hence, the utility guarantees are much
weaker than the algorithms we present (and those in [6]). Mir et al. [35] prove a strong lower
bound in this model: any pan-private algorithm for CountDistinct must incur an additive
error of at least Ωϵ(

√
U). Due to such a lower bound, [19, 35] design several algorithms for

CountDistinct and CntOcc with guarantees that include both multiplicative and additive
errors. This is in contrast to our algorithms, which do not require any multiplicative errors
and have additive error bounds that are completely independent of U .

We also note that CountDistinct has been studied in the local, and shuffle settings of DP
(see, [5, 11]), although these results focus on the single-query (i.e. T = 1) setting.

4 Preliminaries

In the algorithms below, we will assume that the input is appended at the beginning and
at the end with multisets S0, ST +1 such that S0

u = ST +1
u = k for all u ∈ [U ]. This helps

simplify the notation in the reductions below. For each item u ∈ [U ], it is also convenient
to define the sequence 0 = t1

u ≤ · · · ≤ tmu
u = T + 1 of time steps u is reached; this is the

sequence where each t ∈ {0, 1, . . . , T + 1} appears St
u times. We use S≤t for S1 + · · · + St.

4.1 Tools from Differential Privacy

We list below several tools that we will need from the DP literature. We refer the reader to
the monographs [21, 46] for a thorough overview of DP.



B. Ghazi, R. Kumar, J. Nelson, and P. Manurangsi 55:9

4.1.1 Composition Theorems

We will use the following composition theorems throughout this paper.

▶ Theorem 3 (Basic Composition). For any ϵ, δ > 0, k ∈ N, an algorithm that is a result of
running k mechanisms, each of which is (ϵ/k, δ/k)-DP, is (ϵ, δ)-DP.

▶ Theorem 4 (Advanced Composition [22, 21]). For any ϵ, δ ∈ (0, 1), k ∈ N, an algorithm that

is a result of running k mechanisms, each of which is
(

ϵ

2
√

2k ln(2/δ)
, δ

2k

)
-DP, is (ϵ, δ)-DP.

▶ Theorem 5 (Parallel Composition [34]). Let φ1, . . . , φt be deterministic functions that map
a dataset to another dataset such that, for any neighboring datasets D, D′, there exists j ∈ [t]
for which φi(D) = φi(D′) for all i ̸= j and φj(D), φj(D′) are neighbors. Then, an algorithm
that is a result of running an (ϵ, δ)-DP algorithm on each of φ1(D), . . . , φt(D) is (ϵ, δ)-DP.

4.1.2 Group Privacy

Let ∼ denote any neighboring relationship. For any k ∈ N, let ∼k denote the neighboring
relationship where D ∼k D′ if and only if there exists D = D1, . . . , Dk = D′ such that
Di ∼ Di+1 for all i ∈ [k − 1]. The following so-called group privacy bound is well-known.

▶ Fact 6 (Group Privacy (e.g., [45])). Let ϵ, δ > 0, k ∈ N. Any algorithm M that is (ϵ, δ)-DP
under a neighboring relationship ∼ is

(
kϵ, ekϵ−1

eϵ−1 δ
)

-DP under the relationship ∼k.

4.2 Range Query

Here, we view each ry1,y2 as a query, and the definition of utility is the same as in Section 2.
The following algorithms for range query are known from previous works:

▶ Theorem 7 ([18, 10]). For any ϵ > 0, there is an ϵ-DP algorithm for the 1d-range query
problem with O(log1.5 M · log(1/β)/ϵ, β)-utility.

▶ Theorem 8 ([20]). For any ϵ > 0, there is an ϵ-DP algorithm for the 2d-range query
problem with O(log3 M · log(1/β)/ϵ, β)-utility.

Although the following was not stated explicitly in [20], it is not hard to derive, by simply
replacing Laplace noise by Gaussian noise.

▶ Theorem 9 ([20]). For any ϵ, δ ∈ (0, 1), there is an (ϵ, δ)-DP algorithm for the 2d-range
query problem with O(log2 M ·

√
log(1/δ) log(1/β)/ϵ, β)-utility.

As for the lower bound, we are not aware of any non-trivial lower bound for the 1d case
for the utility notion we use, although lower bounds for ℓ∞-error are known (see e.g. [46]).
The lower bound for the 2d case is stated below.

▶ Theorem 10 ([36]). For any sufficiently small constants ϵ, δ, β > 0, there is no (ϵ, δ)-DP
algorithm with (o(log M), β)-utility for the 2d-range query problem even when the number of
input points n is O(M2).
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4.3 1-Way Marginal
In the 1-way marginal problem, we are given x1, . . . , xn ∈ {0, 1}d, and the goal is to output
an estimate of x̄ = x1 + · · · + xn. Here we view each x̄j as a query, and the definition of
utility is in Section 2.

▶ Theorem 11 ([27]). For any ϵ ∈ (0, 1], there is no ϵ-DP algorithm with
(o(min{n, d/ϵ}), 0.01)-utility for the 1-way marginal problem.

▶ Theorem 12 ([45]). For any ϵ ∈ (0, 1) and δ ∈ (2−Ω(n), 1/n1+Ω(1)), there is no (ϵ, δ)-DP
algorithm with (o(min{n,

√
d log(1/δ)/ϵ}, 0.01)-utility for the 1-way marginal problem.

4.4 Linear Queries
The linear query problem is parameterized by a set of (public) vectors a1, . . . , ad ∈ {0, 1}m.
The input to the algorithm is then a vector x ∈ {0, 1}m and the goal is to estimate ⟨ai, x⟩
for each i ∈ [d]. We view each ai as a query and utility is defined as in Section 2.

The neighboring relation for DP of linear queries is with respect to changing a single
coordinate of x. For convenience, we may also think of the queries as the matrix A ∈ {0, 1}d×m

where ai is the ith row of A. Under this notation, we have (Ax)i = ⟨ai, x⟩. We write
“A-linear query” to signify the matrix A.

The following lower bound was shown in [17] and was an improvement over the classical
lower bound of Dinur and Nissim [14].

▶ Theorem 13 ([17]). For any m ∈ N and any sufficiently small constants ϵ, δ > 0, there
exists a matrix A ∈ {0, 1}d×m with d = O(m) such that there is no (ϵ, δ)-DP algorithm with
(o(

√
m), 0.01)-utility for the A-linear query problem.

4.5 Assumptions on Parameters
Certain settings of parameters can lead to “degenerate” cases, for which there are uninform-
ative algorithms that can get better errors. To avoid such scenarios, we will assume the
following setting of parameters throughout the paper when we prove our lower bounds:

T, W ≥ k log k. This is due to the fact that, in the singleton setting, the algorithm that
outputs zero always gets an error of at most T/k or W/k, which can be smaller than
meaningful algorithms when T, W are not much larger than k.
T ≥ (1 + Ω(1))W . This is due to the fact that there are only T − W + 1 queries in the
fixed-window setting, meaning that even, e.g., the Laplace mechanism would yield an
error of Oϵ(T − W ). This can be small if T − W is very small.

We stress that our upper bounds work for all settings of parameters (even those violating the
above assumptions), but we assume the above for simplicity in the lower bound statements.

For simplicity of utility expressions, we assume throughout that ϵ ∈ (0, 1], δ ∈ [0, 1/2)
(including both in the upper and lower bounds). Our results can be extended to the ϵ ≫ 1
case but the utility expressions are more complicated because, e.g., the advanced composition
theorem [22] has a more complicated expression in this case.

5 Cumulative Queries

We are now ready to prove our results, starting with algorithms and lower bounds for
cumulative CntOcc≥k.
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5.1 Algorithm
As stated earlier, a similar algorithm was already derived in [6] but with less emphasis on
the relationship with 1d-range query. We provide a proof below both for completeness and
for providing a formal relationship with 1d-range query.

▶ Lemma 14. Let k ∈ N be any positive integer. If there exists an (ϵ, δ)-DP algorithm
for 1d-range query with utility (α(M, ϵ, δ, β), β), then there exists an (ϵ, δ)-DP algorithm for
cumulative CntOcc≥k in the item-level DP and bundle setting with utility (α(T +1, ϵ, δ, β), β).

Proof. Let M = T + 1 and n = d. For each item u ∈ [d], we then define xu := tk
u, i.e., the

first time step before which (inclusive) u has appeared k times. It is not hard to see that
the prefix query r1,t is exactly equal to CntOcc≥k(S≤t). Therefore, we can run the (ϵ, δ)-DP
algorithm for 1d-range query, which yields the desired error. Finally, notice that each item
contributes to only one input point to the 1d-range query problem; therefore, the algorithm
remains (ϵ, δ)-DP under the item-level neighboring notion. ◀

Plugging the above into known algorithm for 1d-range query (Theorem 7) yields:

▶ Corollary 15. For any k ∈ N and ϵ > 0, there is an ϵ-DP algorithm for cumulative
CntOcc≥k in the item-level DP and bundle setting with (O(log1.5 T log(1/β)/ϵ, β)-utility.

5.2 Lower Bounds
We now prove a lower bound showing a reverse reduction – from 1d-range query to cumulative
CntOcc≥k – complementing our algorithm in Lemma 14. This shows that the two problems
are equivalent (up to a constant factor in the error). We remark that our lower bounds below
hold even in the more stringent event-level DP setting.

We start with a slightly simpler reduction in the bundle setting:

▶ Lemma 16. Let k be any positive integer and ϵ, δ > 0. If there exists an (ϵ, δ)-DP algorithm
for cumulative CntOcc≥k in the event-level DP and bundle setting with (α(T, β), β)-utility,
then there exists an (ϵ, δ)-DP algorithm for 1d-range query with (2 · α(M, β/2), β)-utility.

Proof. Let T = M and let U be sufficiently large (i.e., larger than the dataset size of
the 1d-range query). Given an input x1, . . . , xn ∈ [M ] to the 1d-range query problem, we
construct an input to the cumulative CntOcc≥k algorithm as follows:

For all u ∈ [U ], let S1
u = k − 1 and S2

u = · · · = ST
u = 0.

For all j ∈ [n], increment Sxj

j by one.
It is simple to see that, for all t ∈ [T ], CntOcc≥k(S≤t) = r0,t(x). Therefore, we may answer
any range query ry1,y2(x) by outputting CntOcc≥k(S≤y2) − CntOcc≥k(S≤y1−1). This is
indeed an (ϵ, δ)-DP algorithm for 1d-range query with (2 · α(M, β/2), β)-utility. ◀

In the singleton setting, we cannot use the above reduction directly since the first step in the
previous reduction contains k − 1 copies of u’s at the same time step. Therefore, we have
to “expand” this set into (k − 1)n sets where n denote the number of input points in the
1d-range query problem. This results in a slight additive blow up of (k − 1)n in the time
horizon. Similarly, the second step in the reduction can increment multiple values at the
same time step; to avoid this, we have to pay another multiplicative blow up of k − 1. These
are formalized below.
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▶ Lemma 17. Let k be any positive integer and ϵ, δ > 0. If there exists an (ϵ, δ)-DP algorithm
for cumulative CntOcc≥k in the event-level DP and singleton setting with (α(T, β), β)-utility,
then there exists an (ϵ, δ)-DP algorithm for 1d-range query on at most n input points with
(2 · α((M + k − 1)n, β/2), β)-utility.

Proof. Let T = (M + k − 1)n and let U = n. Given an input x1, . . . , xn′ ∈ [M ] to the
1d-range query problem where n′ ≤ n, we construct an input to the cumulative CntOcc≥k

algorithm as follows:
For all u ∈ [U ], let S

(k−1)(u−1)+1
u = · · · = S

(k−1)u
u = 1 and St

u = 0 for all t ∈ [T ] \ {(k −
1)(u − 1) + 1, . . . , (k − 1)u}.
For all j ∈ [n], increment S

n(k−1)+n(xj−1)+j
j by one.

It is not hard to see that this is a singleton instance. Similar to before, we can answer any
range query ry1,y2(x) by outputting CntOcc≥k(S≤n(y2+k−1))−CntOcc≥k(S≤n(y1+k−2)). This
gives an (ϵ, δ)-DP algorithm for 1d-range query with (2 · α((M + k − 1)n, β/2), β)-utility. ◀

6 Fixed-Window Queries

We next move on to prove our bounds for fixed-window queries. Since the bounds are different
for the two DP notions, we start with event-level DP and then consider item-level DP.

6.1 Event-Level DP
6.1.1 Time Horizon Reduction: Proof of Lemma 18
We start with a lemma that allows us to reduce the time horizon T to 2W in this setting.
The proof of this lemma follows the overview discussed in Section 3.2.

▶ Lemma 18. For any k ∈ N, if there exists an (ϵ, δ)-DP algorithm for fixed-window
CntOcc≥k with (α(T, ϵ, δ, β), β)-utility with event-level DP, there exists an (ϵ, δ)-DP algorithm
with (α(2W, ϵ/2, δ/2, β), β)-utility in the same setting.

Proof. Let A denote the algorithm for the former and ϵ′ = ϵ/2, δ′ = δ/2. The new algorithm
works as follows:

For all j ∈ [⌈T/W ⌉], run a separate copy of the (ϵ′, δ′)-DP algorithm A on
S(j−1)W +1, . . . , S(j+1)W .
When we would like to answer the query for i, i + W − 1, then use the ⌊i/T + 1⌋th copy
of the algorithm.

We can apply the parallel composition theorem (Theorem 5) on the copies with j = 1, 3, . . .;
this implies that the combined algorithm for such j’s is (ϵ′, δ′)-DP. Similarly, we have that
the combined algorithm for j = 2, . . . is also (ϵ′, δ′)-DP. Then, applying basic composition
ensures that the entire algorithm is indeed (2ϵ′, 2δ′) = (ϵ, δ)-DP.

The claimed accuracy follows immediately from definition. ◀

6.1.2 Algorithm
Given Lemma 18, we will focus only on designing the algorithm for the T = 2W case. Here
we show a reduction to 1d-range query. We remark that the algorithm below works even in
the item-level DP setting; indeed, we will also use it as a subroutine for item-level DP.

▶ Lemma 19. If there is an (ϵ, δ)-DP algorithm for 1d-range query with (α(M, ϵ, δ, β), β)-
utility, then there is an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP
and bundle setting when T = 2W with

(
2 · α

(
T + 1, ϵ

4k , δ
8k , β/2

)
, β
)
-utility for every k ∈ N.
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Proof. Let M = T + 1. We will in fact create two instances of 1d-range query. For clarity,
we will call the first instance x and the second instance x′. The instances are as follows:
1. Recall the definition of mu and t1

u, . . . , tmu
u from Section 4.

For all u ∈ [U ] and ℓ = 1, . . . , mu − k, do the following:
a. If tℓ+k

u − tℓ
u > W , add tℓ

u to x and min{tℓ+1
u , tℓ+k

u − W} to x′.
2. We then run the

(
ϵ

4k , δ
8k

)
1d-range query algorithms on both instances x, x′ to get

estimates r̃y1,y2 of ry1,y2(x) and r̃′
y1,y2

of ry1,y2(x′) for all y1, y2 ∈ [M ].
3. To answer CntOcc≥k(S[i,i+W −1]), we output |U | − r̃1,i + r̃′

1,i.
Next, we claim that an item-level change can result in at most 2k changes to each of x, x′.
To prove this, it suffices to show that any given element u contributes to at most k items
added to each of x, x′. To see that the latter is true, let ℓ′ be the smallest index for which
tℓ′+k
u − tℓ′

u > W . Notice that this means tℓ′+k
u ≥ W + 1. Since the time horizon is T = 2W ,

this means that tℓ+k
u − tℓ

u ≤ W for all ℓ > ℓ′ + k. In other words, the condition in the loop
cannot be satisfied for ℓ /∈ {ℓ′, . . . , ℓ′ + k − 1}. Thus, the number of points added to each of
x, x′ is at most k.

Given the above claim, we may apply group privacy (Fact 6) to conclude that the entire
algorithm is (ϵ, δ)-DP as desired.

To see its correctness, for each u ∈ [U ], let ℓ∗(u, i) denote the last time step it is reached
before i (i.e., the largest ℓ such that tℓ

u < i). Notice that

CntOcc≥k(S[i,i+W −1]) = |U | − |{u | S[i,i+W −1]
u < k}| = |U | −

∑
u∈[U ]

1[tℓ∗(u,i)+k
u > i + W − 1].

Observe that the two elements added in Step (1a) get canceled out for all ℓ ̸= ℓ∗(u, i) in
r1,i(x) − r1,i(x′). For ℓ = ℓ∗(u, i), they are not canceled if and only if tℓ+k

u − W > i. Thus,

r1,i(x) − r1,i(x′) =
∑

u∈[U ]

1[tℓ∗(u,i)+k
u > i + W − 1].

By combining the above two equations, we then have CntOcc≥k(S[i,i+W −1]) = |U | − r1,i(x) +
r1,i(x′). The utility guarantee then follows from that of the 1d-range query algorithm. ◀

Combining Lemma 18, Lemma 19, and Theorem 7 yields the following concrete bound.

▶ Corollary 20. For any k ∈ N and ϵ > 0, there is an ϵ-DP algorithm for fixed-window
CntOcc≥k in the event-level DP and bundle setting with (O(k · log1.5 W log(1/β)/ϵ, β)-utility.

6.1.3 Lower Bounds
We prove two lower bounds for the problem, one based on the 1d-range query and the other
based on linear queries. The latter shows that a polynomial dependence on k is necessary.

6.1.3.1 Range Query-Based Lower Bounds

We start with the former, which is just a reduction back to the cumulative case.

▶ Lemma 21. Let k be any positive integer. If there exists an (ϵ, δ)-DP algorithm for
fixed-window CntOcc≥k in the event-level DP and bundle (resp. singleton) setting with
(α(W, β), β)-utility, then there exists an (ϵ, δ)-DP algorithm for cumulative CntOcc≥k in the
event-level DP and bundle (resp. singleton) setting with (α(T, β), β)-utility
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Proof. Given an input S1, . . . , ST for cumulative CntOcc≥k, we can create an instance
S′1, . . . , S′2T for fixed-window CntOcc≥k by letting W = T, S′1 = · · · = S′T = ∅ and
S′T +t = St for all t ∈ [T ]. It is simple to see that CntOcc≥k(S[1:t]) = CntOcc≥k(S′[t+1:t+W ]).
Therefore, running the fixed-window algorithm on the new instance allows us to answer the
old instance with the same utility. ◀

Plugging the above into Lemma 16 and Lemma 17, we arrive at the following:

▶ Lemma 22. Let k be any positive integer and ϵ, δ > 0. If there exists an (ϵ, δ)-DP algorithm
for fixed-window CntOcc≥k in the event-level DP and bundle setting with (α(W, β), β)-utility,
then there exists an (ϵ, δ)-DP algorithm for 1d-range query with (2 · α(M, β/2), β)-utility.

▶ Lemma 23. Let k be any positive integer and ϵ, δ > 0. If there exists an (ϵ, δ)-DP algorithm
for fixed-window CntOcc≥k in the event-level DP and singleton setting with (α(W, β), β)-
utility, then there exists an (ϵ, δ)-DP algorithm for 1d-range query on at most n input points
with (2 · α((M + k − 1)n, β/2), β)-utility.

6.1.3.2 Linear Query-Based Lower Bounds

Next, we proceed to prove that a polynomial dependence on k is necessary, by a reduction
from linear queries.

▶ Lemma 24. Let W, k be any positive integer and let A be any (d × m) matrix such that
min{W, k} ≥ d + 2. Then, if there exists an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k

in the event-level DP and bundle setting with (α, β)-utility, then there exists an (ϵ, δ)-DP
algorithm for A-linear query with the same utility.

Proof. Assume w.l.o.g. that k = W = d + 2 and T = 2W and let U = m. Given an input
x ∈ {0, 1}m to the A-linear query problem, we construct an input to the fixed-window
CntOcc≥k algorithm as follows:

For all u ∈ [m] and i ∈ [d], let Si
u = Si+W −1

u = Ai,u.
Furthermore, for all u ∈ [m], let SW −1

u = xu + k − 2 −
∑

j∈[d] Aj,u.
(For all remaining pairs (u, t) ∈ [m] × [T ] not mentioned above, St

u = 0.)
Notice that, for all i ∈ [d] and u ∈ [m], we have

S[i,i+W −1]
u =

i+W −1∑
i′=i

Si′

u =
(

d∑
i′=i

Si′

u

)
+ SW −1

u +
(

i+W −2∑
i′=W

Si′

u

)
+ Si+W −1

u

=
(

d∑
i′=i

Ai′,u

)
+

xu + k − 2 −
∑
j∈[d]

Aj,u

+
(

i+W −2∑
i′=W

Ai′−W +1,u

)
+ Ai,u

= Ai,u + xu + k − 2,

which is equal to k if and only if xu = 1 and Ai,u = 1, and is less than k otherwise. Hence,

CntOcc≥k(S[i,i+W −1]) = (Ax)i.

Therefore, we may run the (ϵ, δ)-DP algorithm for CntOcc≥k, and compute Ax with the
same utility guarantee. ◀

Plugging the above into the known lower bound for linear queries (Theorem 13 with d, m =
Θ(min{k, W })), we get a concrete lower bound in terms of k:
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▶ Corollary 25. Let W, k be any positive integer and ϵ, δ > 0 be any sufficiently small
constant. Then, there is no (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the event-level
DP and bundle setting with (o(

√
min{k, W }), 0.01)-utility.

The above reduction also works in the singleton setting where we have to “spread out” the
changes so that each time step involves only a single element.

▶ Lemma 26. Let W, k be any positive integer and let A be any (d × m) matrix such that
k ≥ d + 2 and W ≥ 4dm + 1. Then, if there exists an (ϵ, δ)-DP algorithm for fixed-window
CntOcc≥k in the event-level DP and singleton setting with (α, β)-utility, then there exists an
(ϵ, δ)-DP algorithm for A-linear query with the same utility.

Proof. Assume w.l.o.g. that k = d + 2, W = 4dm + 1 and T = 2W . Let U = m. Given an
input x ∈ {0, 1}m in the A-linear query problem, we construct an input to the cumulative
CntOcc≥k algorithm as follows:

For all u ∈ [m] and i ∈ [d], let Smi+u
u = S

m(i−1)+u+W −1
u = Ai,u.

Furthermore, for all u ∈ [m] and ℓ ∈ [d + 1], let SW −1−mℓ+u
u = 1[ℓ ≤ xu + k − 2 −∑

j∈[d] Aj,u].
(For all remaining t ∈ [T ] not mentioned above, St

u = 0.)
It is not hard to verify that this is indeed a singleton instance. Furthermore, notice that, for
all i ∈ [d] and u ∈ [m], we have

S[mi,mi+W −1]
u = S[mi,mi+4md]

u =
i+4d−1∑

i′=i

Smi′+u
u

=

(
d∑

i′=i

Smi′+u
u

)
+

(
4d∑

i′=d+1

Smi′+u
u

)
+

(
i+4d−2∑

i′=4d

Smi′+u
u

)
+ Sm(i−1)+u+W −1

u

=

(
d∑

i′=i

Ai′,u

)
+

xu + k − 2 −
∑
j∈[d]

Aj,u

+

(
i+4d−2∑

i′=4d

Ai′−4d+1,u

)
+ Ai,u

= Ai,u + xu + k − 2,

which is equal to k if and only if xu = 1 and Ai,u = 1, and is less than k otherwise. Thus,

CntOcc≥k(S[mi,mi+W −1]) = (Ax)i.

Therefore, we may run the (ϵ, δ)-DP algorithm for CntOcc≥k, and compute Ax with the
same utility. ◀

Again, plugging this into the known lower bound for linear queries (Theorem 13 with
d, m = Θ(min{k, W/k})), we get a concrete lower bound in terms of k:

▶ Corollary 27. Let W, k be any positive integer such that W ≥ k and ϵ, δ > 0 be any
sufficiently small constant. Then, there is no (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k

in the event-level DP and singleton setting with (o(
√

min{k, W/k}), 0.01)-utility.

6.2 Item-Level DP
6.2.1 Algorithms
We start with a time-horizon reduction similar to the event-level DP case. However, for item-
level DP, we cannot apply the parallel composition theorem (because item-level change can
affect all the O(T/W ) subinstances) and instead have to apply basic/advanced composition,
resulting in a reduction of (T/W )O(1) privacy budget to each subinstance.
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▶ Lemma 28. Let k, T, W ∈ N be any positive integers. Suppose that there exists an (ϵ, δ)-
DP algorithm for fixed-window CntOcc≥k in the item-level DP and bundle setting with time
horizon 2W with (α(ϵ, δ, β), β)-utility. Then,

There exists an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and
bundle setting with time horizon T with (α(ϵ/(2T/W ), δ/(2T/W ), β), β)-utility.
There exists an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and

bundle setting with time horizon T with
(

α

(
ϵ

2
√

4T/W ·ln(2/δ)
, δ

4T/W , β

)
, β

)
-utility.

Proof. We use exactly the same algorithm as in the proof of Lemma 18, except that this
time we use basic or advanced composition theorems over the ⌈T/W ⌉ ≤ 2T/W runs of the
(ϵ′, δ′)-DP algorithm. This ensures that the entire algorithm is (ϵ, δ)-DP as long as we pick
ϵ′ = ϵ/(2T/W ), δ′ = δ/(2T/W ) or ϵ′ = ϵ

2
√

4T/W ·ln(2/δ)
, δ′ = δ

4T/W . ◀

Combining the above with Lemma 19, we arrive at the following:

▶ Lemma 29. Let k, T, W ∈ N be any positive integers. Suppose that there exists an (ϵ, δ)-DP
algorithm for 1d-range query with (α(M, ϵ, δ, β), β)-utility. Then, there exists an

(ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and bundle set-
ting with time horizon T with (2W + 1, 2 · α(2W + 1, ϵ/(8kT/W ), δ/(16kT/W ), β/2), β)-
utility.
(ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and bundle setting

with time horizon T with
(

2 · α

(
2W + 1, ϵ

8k
√

4T/W ·ln(2/δ)
, δ

16kT/W , β/2
)

, β

)
-utility.

Finally, plugging in the algorithmic bound for 1d-range query (Theorem 7) yields:

▶ Corollary 30. For any T, W, k ∈ N, and ϵ > 0, there is an ϵ-DP algorithm for fixed-window
CntOcc≥k in the item-level DP and bundle setting with (O(k ·(T/W ) · log1.5 W log(1/β)/ϵ, β)-
utility.

▶ Corollary 31. For any k ∈ N and ϵ, δ > 0, there is an (ϵ, δ)-DP algorithm
for fixed-window CntOcc≥k in the item-level DP and bundle setting with (O(k ·√

T/W · log(1/δ) log1.5 W log(1/β)/ϵ, β)-utility.

6.2.2 Lower Bounds
First, we note that the lower bounds based on k from the event-level DP case (Corollary 25
and Corollary 27) immediately translate to this case.

Next, we prove T Ω(1) lower bounds based on reductions from the 1-way marginal problem.
We again start with the simpler bundle setting.

▶ Lemma 32. Let T, W, d be positive integers such that T ≥ W · d. Then, if there exists
an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and bundle setting
with fixed window W and time horizon T with (α, β)-utility, then there exists an (ϵ, δ)-DP
algorithm for the 1-way marginal problem with the same utility.

Proof. Let U = n, Given an instance x1, . . . , xn ∈ {0, 1}d of the 1-way marginal problem,
we construct the instance of fixed-window CntOcc≥k as follows: let

Si
j =

{
k · xj

(i−1)/W +1 if W | (i − 1) and i ≤ W · d,

0 otherwise.

for all i ∈ [T ], j ∈ [n].
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Clearly, changing a single xj leads to a change in only a single item. Furthermore, it
is not hard to verify that x̄ℓ = CntOcc≥k(S[W (ℓ−1)+1,W ℓ]) for all ℓ ∈ [d]. Thus, by running
the (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k on the above instance, we also get an
estimate for the 1-way marginal with the same utility. ◀

Plugging Lemma 32 into the known lower bounds for the 1-way marginal problem (Theorem 11
and Theorem 12) yields:

▶ Corollary 33. Let T ≥ W be any positive integers and ϵ > 0. Then, there is no ϵ-
DP algorithm for time-window CntOcc≥k in the item-level DP and bundle setting with
(o ((T/W )/ϵ) , 0.01)-utility.

▶ Corollary 34. Let T ≥ W be any positive integers and ϵ, δ > 0 be such that δ ∈
(2−Ω(T ), 1/T 1+Ω(1)). Then, there is no (ϵ, δ)-DP algorithm for time-window CntOcc≥k

in the item-level DP and bundle setting with (o(
√

(T/W ) log(1/δ)/ϵ), 0.01)-utility.

In the singleton case, we can use almost the same reduction as before, except that we now
have to “spread out” the contribution across time step. This also means that we require an
additional condition that the window is sufficiently large (i.e., W ≥ kn) in the lemma below.

▶ Lemma 35. Let T, W, d, k, n be positive integers such that T ≥ W · d and W ≥ k · n. Then,
if there exists an (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k in the item-level DP and
singleton setting with fixed window W and time horizon T with (α, β)-utility, then there exists
an (ϵ, δ)-DP algorithm for 1-way marginal with the same utility.

Proof. Let U = n. Given an instance x1, . . . , xn ∈ {0, 1}d of the 1-way marginal problem,
we construct the instance of fixed-window CntOcc≥k as follows: let

Si
j =

{
xj

⌊(i−1)/W ⌋+1 if (i − k(j − 1)) mod W < k and i ≤ W · d,

0 otherwise,

for all i ∈ [T ], j ∈ [n].
It is not hard to verify that ∥Si∥1 ≤ 1 for all i ∈ [T ], i.e., that this is a valid instance

for the singleton case. Furthermore, changing a single xj leads to a change in only a single
item and x̄ℓ = CntOcc≥k(S[W (ℓ−1)+1,W ℓ]) for all ℓ ∈ [d]. Thus, by running the (ϵ, δ)-DP
algorithm for fixed-window CntOcc≥k on the above instance, we also get an estimate for the
1-way marginal with the same utility. ◀

Similarly, plugging Lemma 35 to the known lower bounds for the 1-way marginal problem
(Theorem 11 and Theorem 12 with n = Θ(W/k), d = Θ(T/W )) yields:

▶ Corollary 36. Let T ≥ W ≥ k be any positive integers and ϵ > 0. Then, there is no
ϵ-DP algorithm for fixed-window CntOcc≥k in the item-level DP and singleton setting with
(o (min{W/k, (T/W )/ϵ}) , 0.01)-utility.

▶ Corollary 37. Let T ≥ W ≥ k be any positive integers and ϵ, δ > 0 be such that δ ∈
(2−Ω(W/k), 1/(W/k)1+Ω(1)). Then, there is no (ϵ, δ)-DP algorithm for fixed-window CntOcc≥k

in the item-level DP and bundle setting with
(

o

(
min

{
W/k,

√
(T/W ) log(1/δ)

ϵ

})
, 0.01

)
-

utility.

Again, we remark that achieving W/k error is trivial because in the singleton case, the answer
to any fixed-window query is at most W/k. Therefore, simply answering zero to all queries
result in error at most W/k.
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7 Time-Window Queries

Finally, we will present our algorithms and lower bounds for time-window queries. Again,
this section is divided into two subsections based on the DP notions.

7.1 Event-Level DP
7.1.1 Algorithm
In the time-window setting, we reduce the problem to 2d-range query:

▶ Lemma 38. If there exists an (ϵ, δ)-DP algorithm for 2d-range query with (α (M, ϵ, δ, β) , β)-
utility, then there exists an (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the event-level
DP and bundle setting with

(
2 · α

(
T + 1, ϵ

2(2k+1) , δ
4ϵ(2k+1) , β/2

)
, β
)

-utility for every k ∈ N.

Proof. Let M = T + 1. We will create two instances of 2d-range query. For clarity, we will
call the first instance x and the second instance x′. The instances are created as follows:
1. Recall the definition of mu and t1

u, . . . , tmu
u from Section 4.

For all u ∈ [U ] and ℓ = 1, . . . , mu − k, do the following:
a. Add (tℓ

u + 1, tℓ+k
u − 1) to x.

b. Add (tℓ+1
u + 1, tℓ+k

u − 1) to x′.
2. We then run the

(
ϵ

2(2k+1) , δ
4ϵ(2k+1)

)
2d-range query algorithms on both instances x, x′

to get estimates r̃y1,y2 of ry1,y2(x) and r̃′
y1,y2

of ry1,y2(x′) for all y1, y2 ∈ [M ]2.
3. To answer CntOcc≥k(S[i,j]), we output |U | − r̃(1,j),(i,M) + r̃′

(1,j),(i,M).
To prove DP, consider any two neighboring datasets S = (S1, . . . , ST ) and S where S ∈
(S̄1, . . . , S̄t) results from removing u from St for some u ∈ [U ], t ∈ [T ]. To avoid confusion,
when we refer to mu, t1

u, . . . , tmu
u , we will be explicit about whether they are corresponding to

S or S. Let ℓ′ denote the largest index with t = tℓ′

u (S). Note that we have mu(S) = mn(S)−1
and

tℓ
u(S) =

{
tℓ
u(S) if ℓ < ℓ′,

tℓ+1
u (S) if ℓ ≥ ℓ′,

for all ℓ ∈ [mu(S)].
This implies the following:
For all ℓ ≤ ℓ′ the ℓth loop of the first step remains exactly the same for both S and S.
For all ℓ ≥ ℓ′ + k the ℓth loop of the first step for S is exactly the same as the (ℓ + 1)th
loop for S.

As a result, there can be at most 2k + 1 changes to each of x, x′ between the two datasets
S, S. Thus, group privacy (Fact 6), implies that the algorithm is (ϵ, δ)-DP as desired.

To see its correctness, for each u ∈ [U ], let ℓ∗(u, i) denote the last time step it is reached
before i (i.e., largest ℓ such that tℓ

u < i). Notice that

CntOcc≥k(S[i,j]) = |U | − |{u | S[i,j]
u < k}| = |U | −

∑
u∈[U ]

1[tℓ∗(u,i)+k
u > j].

Now, observe that the elements added gets canceled out for all ℓ ̸= ℓ∗(u, i) in r(1,j),(i,M)(x) −
r(1,j),(i,M)(x′). For ℓ = ℓ∗(u, i), they are not canceled iff tℓ+k > j. To summarize, we have

r(1,j),(i,M)(x) − r(1,j),(i,M)(x′) =
∑

u∈[U ]

1[tℓ∗(u,i)+k
u > j].

By combining the above two equations, we then have CntOcc≥k(S[i,j]) = |U |−r(1,j),(i,M)(x)+
r(1,j),(i,M)(x′). The error guarantee follows from that of the 2d-range query algorithm. ◀
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Plugging the above into Theorems 8 and 9, we arrive at the following bounds.

▶ Corollary 39. For any k ∈ N, ϵ > 0, there is an ϵ-DP algorithm for time-window CntOcc≥k

in the event-level DP and bundle setting with (O(k · log3 T log(1/β)/ϵ), β)-utility.

▶ Corollary 40. For any k ∈ N, ϵ, δ ∈ (0, 1), there is an (ϵ, δ)-DP algorithm
for time-window CntOcc≥k in the event-level DP and bundle setting with (O(k ·
log2 T

√
log(k/(ϵδ)) log(1/β)/ϵ), β)-utility.

7.1.2 Lower Bounds
Once again, there are two lower bounds here, one based on 2d-range query (which is
polylogarithmic in T ) and one based on the 1-way marginal problem. In fact, the latter
follows immediately from the lower bound in the fixed-window case since time-window
includes fixed-window with W = 1 and W = T/2 as special cases. Specifically, the lower
bounds from Corollary 25 and Corollary 27 yields the following:

▶ Corollary 41. Let T, k be any positive integer and ϵ, δ > 0 be any sufficiently small constant.
Then, there is no (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the event-level DP and
bundle setting with (o(

√
min{k, T }), 0.01)-utility.

▶ Corollary 42. Let T, k be any positive integer such that T ≥ 2k and ϵ, δ > 0 be any
sufficiently small constant. Then, there is no (ϵ, δ)-DP algorithm for time-window CntOcc≥k

in the event-level DP and singleton setting with (o(
√

min{k, T/k}), 0.01)-utility.

The lower bound for 2d-range query works by “reverse engineering” the reduction above.
We start by describing this for the case of bundle.

▶ Lemma 43. Let k be any positive integer. If there exists an (ϵ, δ)-DP algorithm for time-
window CntOcc≥k in the event-level DP and bundle setting with (α(T, ϵ, δ, β), β)-utility, then
there exists an (ϵ, δ)-DP algorithm for 2d-range query with (4 · α(2M + 1, ϵ/2, δ/4, β/4), β)-
utility.

Proof. Let T = 2M + 1 and let U be sufficiently large (i.e., larger than the dataset size of
the 1d-range query). Given an input x1, . . . , xn ∈ [M ]2 in the 2d-range query problem, we
construct an input to the time-window (ϵ/2, δ/4)-DP CntOcc≥k algorithm as follows:

For all u ∈ [U ], let SM+1
u = k − 1 and Si

u = 0 for all i ∈ [T ] \ {M + 1}.
For all j ∈ [n], increment each of S

M+1−xj
1

j and S
M+1+xj

2
j by one.

It is not hard to verify that, for all y ∈ [M ]2, CntOcck(S[M+1−y1,M+1+y2]) = n − r(1,1),y(x).
Therefore, we may answer any range query ry1,y2(x) by outputting an estimate to

− CntOcc≥k(S[M+1−y2
1 ,M+1+y2

2 ]) − CntOcc≥k(S[M+2−y1
1 ,M+y1

2 ])

+ CntOcc≥k(S[M+1−y2
1 ,M+y1

2 ]) + CntOcc≥k(S[M+2−y1
1 ,M+1+y2

2 ]),

where the estimate of each term is computed via the time-window (ϵ/2, δ/4)-DP CntOcc≥k

algorithm.
By group DP (Fact 6), this is indeed an (ϵ, δ)-DP algorithm for 2d-range query. Its utility

claim follows trivially by definition. ◀

Plugging the above into Theorem 10 gives the following lower bound in terms of T :

▶ Corollary 44. For any sufficiently small constants ϵ, δ, β > 0, there is no (ϵ, δ)-DP algorithm
for time-window CntOcc≥k in the event-level DP and bundle setting with (o(log T ), β)-utility.
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Again, our standard “spreading out” technique also works with the above reduction with a
usual blow up on the value of T .

▶ Lemma 45. Let T, k, n, M be any positive integers such that T ≥ 2nM + kn. If there
exists an (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the event-level DP and singleton
setting with (α(T, ϵ, δ, β), β)-utility, then there exists an (ϵ, δ)-DP algorithm for 2d-range
query with (4 · α(2M + 1, ϵ/2, δ/4, β/4), β)-utility.

Proof. Let U = n. For convenience, also let Q = nM + 1, R = Q + (k − 1)n. Given an input
x1, . . . , xn ∈ [M ]2 to the 2d-range query problem, we construct an input to the time-window
(ϵ/2, δ/4)-DP CntOcc≥k algorithm as follows:

For all u ∈ [U ], let S
Q+(k−1)(u−1)+1
u = · · · = S

Q+(k−1)u
u = k − 1 and Si

u = 0 for all
i ∈ [T ] \ {Q + (k − 1)(u − 1) + 1, . . . , Q + (k − 1)u}.
For all j ∈ [n], increment each of S

Q−nxj
1+u

j and S
R+nxj

2+u
j by one.

It is not hard to verify that, for all y ∈ [M ]2, CntOcck(S[Q−ny1,R+n(y2+1)−1]) = n−r(1,1),y(x).
Therefore, we may answer any range query ry1,y2(x) by outputting an estimate to

− CntOcc≥k(S[Q−ny2
1 ,R+n(y2

2+1)−1]) − CntOcc≥k(S[Q−n(y1
1−1),R+ny1

2−1])

+ CntOcc≥k(S[Q−ny2
1 ,R+ny1

2−1]) + CntOcc≥k(S[Q−n(y1
1−1),R+n(y2

2+1)−1]),

where the estimate of each term is computed via the time-window (ϵ/2, δ/4)-DP CntOcc≥k

algorithm.
By group DP (Fact 6), this is indeed an (ϵ, δ)-DP algorithm for 2d-range query. Its utility

claim follows trivially by definition. ◀

Plugging the above into Theorem 10 with M = 3
√

T/k, n = Θ(M2) gives the following lower
bound in terms of T/k:

▶ Corollary 46. For any sufficiently small constants ϵ, δ, β > 0, there is no (ϵ, δ)-DP algorithm
for time-window CntOcc≥k in the event-level DP and singleton setting with (o(log(T/k)), β)-
utility.

7.2 Item-Level DP
7.2.1 Algorithms
The algorithm for Item-Level DP is based on a rather simple approach of running the cumu-
lative CntOcc≥k algorithm with different starting times, and then applying the composition
theorems to account for the privacy budget. This is formalized below.

▶ Lemma 47. Let k, T ∈ N be any positive integer. Suppose that there exists an (ϵ, δ)-DP
algorithm for cumulative CntOcc≥k in the item-level DP and bundle setting with time horizon
T with (α(ϵ, δ, β), β)-utility. Then,

There exists an (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the item-level DP and
bundle setting with time horizon T with (α(ϵ/T, δ/T, β), β)-utility.
There exists an (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the item-level DP and

bundle setting with time horizon T with
(

α

(
ϵ

2
√

2T ln(2/δ)
, δ

2T , β

)
, β

)
-utility.

Proof. We simply run the (ϵ′, δ′)-DP algorithm for cumulative CntOcc≥k starting at time
1, . . . , T . Since we run the (ϵ′, δ′)-DP algorithm a total of T times on the input dataset, the
basic and advanced composition theorems respectively ensure that the entire algorithm is
(ϵ, δ)-DP as long as we pick ϵ′ = ϵ/T, δ′ = δ/T and ϵ′ = ϵ

2
√

2T ln(2/δ)
, δ′ = δ

2T , respectively. ◀
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Combining the above lemma with our cumulative algorithm from Corollary 15, we immediately
arrive at the following:

▶ Corollary 48. For any k ∈ N and ϵ > 0, there is an ϵ-DP algorithm for time-window
CntOcc≥k in the item-level DP and bundle setting with (O(T · log1.5 T log(1/β)/ϵ, β)-utility.

▶ Corollary 49. For any k ∈ N and ϵ, δ ∈ (0, 1), there is an (ϵ, δ)-DP algorithm for
time-window CntOcc≥k in the item-level DP and bundle setting with (O(

√
T log(T/δ) ·

log1.5 T log(1/β)/ϵ, β)-utility.

For the singleton setting, we can get an improved bound by “time compression” technique of
[30] as formalized below.

▶ Lemma 50. Let T ′ be any positive integer and ϵ, δ > 0. If there exists an (ϵ, δ)-DP
algorithm for CntOcc≥k with utility (α(T, β), β) in the bundle setting with item-level DP,
then there exists an (ϵ, δ)-DP algorithm for CntOcc≥k with (α(⌈T/T ′⌉, β) + T ′, β)-utility in
the singleton setting (both for item-level DP and event-level DP).

Proof. Let S1, · · · , ST denote the input to the singleton setting. We construct an input to
the bundle setting by, for all i ∈ [⌈T/T ′⌉ letting S̃i := ST ′(i−1) + · · · + Smin{T ′(i+1),T }. When
we want to answer the query for the time from t1 to t2 in the original instance, we instead
use the answer for the query from time ⌈t1/T ′⌉ to ⌈t2/T ′⌉ in the new instance. From the fact
that the original instance has only a single item per time step, it is not hard to see that this
only introduces at most T ′ additional error. The claimed DP guarantee is immediate. ◀

By applying Lemma 50 to the above corollaries (with T ′ =
√

T/ϵ and T ′ = 3
√

T/ϵ2 respect-
ively), we get:

▶ Corollary 51. For any k ∈ N and ϵ > 0, there is an ϵ-DP algorithm for time-window
CntOcc≥k in the item-level DP and singleton setting with (O(

√
T/ϵ · log1.5 T log(1/β), β)-

utility.

▶ Corollary 52. For any k ∈ N and ϵ, δ ∈ (0, 1), there is an (ϵ, δ)-DP algorithm for time-
window CntOcc≥k in the item-level DP and singleton setting with (O( 3

√
T/ϵ2

√
log(T/δ) ·

log1.5 T log(1/β), β)-utility.

7.2.2 Lower Bounds
Since time-window includes fixed-window with W = 1 and W = kn as special cases, the
lower bounds from Lemma 32 and Lemma 35 immediately translate to the following:

▶ Lemma 53. Let T, d be positive integers such that T ≥ d. Then, if there exists an (ϵ, δ)-DP
algorithm for time-window CntOcc≥k in the item-level DP and bundle setting with time
horizon T with (α, β)-utility, then there exists an (ϵ, δ)-DP algorithm for 1-way marginal
with the same utility.

▶ Lemma 54. Let T, d, k, n be positive integers such that T ≥ knd. Then, if there exists an
(ϵ, δ)-DP algorithm for time-window CntOcc≥k in the item-level DP and singleton setting
with time horizon T with (α, β)-utility, then there exists an (ϵ, δ)-DP algorithm for 1-way
marginal with the same utility.

Plugging Lemma 53 into the known lower bounds for the 1-way marginal problem (Theorem 11
and Theorem 12) yields:
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▶ Corollary 55. Let T be any positive integer and ϵ > 0. Then, there is no ϵ-DP algorithm
for time-window CntOcc≥k in the item-level DP and bundle setting with (o(T/ϵ), 0.01)-utility.

▶ Corollary 56. Let T be any positive integer and ϵ, δ > 0 be such that δ ∈ (2−Ω(T ), 1/T 1+Ω(1)).
Then, there is no (ϵ, δ)-DP algorithm for time-window CntOcc≥k in the item-level DP and
bundle setting with (o(

√
T log(1/δ)/ϵ), 0.01)-utility.

Similarly, plugging Lemma 54 to the known lower bounds for 1-way marginal (Theorem 11 with

n = Θ(T/(kϵ), d = Θ(ϵT/k) and Theorem 12 with n = Θ
(

3
√

T log(1/δ)
ϵ2k

)
d =

(
3
√

ϵ2T 2

k2 log(1/δ)

)
)

yields:

▶ Corollary 57. Let T, k be any positive integers and ϵ > 0 such that T ≥ k/ϵ. Then, there
is no ϵ-DP algorithm for time-window CntOcc≥k in the item-level DP and singleton setting
with

(
o
(√

T
ϵk

)
, 0.01

)
-utility.

▶ Corollary 58. Let T be any positive integer and ϵ, δ > 0 be such that δ ∈ (2−Ω(T ), 1/T 1+Ω(1))
and T ≥ k

√
log(1/δ)/ϵ. Then, there is no (ϵ, δ)-DP algorithm for time-window CntOcc≥k in

the item-level DP and bundle setting with
(

o

(
3
√

T log(1/δ)
ϵ2k

)
, 0.01

)
-utility.

All of the lower bounds are tight to within polylogarithmic factors and the dependence on k

compared to the algorithms given in the previous subsection. (Note that the lower bounds
in terms of k still carries over from the event-label DP case above, i.e., Corollary 41 and
Corollary 42.)

8 Conclusions and Open Questions

In this work, we consider several variants of the tasks of counting distinct and k-occurring ele-
ments in time windows, including cumulative/time-window/fixed-window queries, user/item-
level DP, and bundle/singleton settings. In each setting, we determine optimal error bounds
that are tight up to polylogarithmic factors in T or W and the dependence on k. As men-
tioned earlier, our work is closely related to the continual release model [18, 10]. In fact, it is
simple to modify our algorithms to work in the following setting: at time step t, the algorithm
receives St and must immediately answer all queries (t1, t2) such that t2 = t. This can be
done by using the 1d-/2d-range query algorithms that work in the similar setting [18, 10, 20].

An interesting research direction is to close the gaps in our results. For example, can we
get a bound of the form O(k+log1.5 W ) in the fixed-window event-level DP setting or a bound
of the form O(k + log3 T ) in the time-window event-level DP setting? We conjecture that
answering these questions requires “white-box” solutions beyond directly reducing to/from
range query or linear queries.

Finally, we note that in this work, we have not considered memory constraints on the
algorithm. It is an interesting direction for future work to consider the trade-off between
memory, privacy, and utility (e.g., similarly to [43]), which is an important aspect both in
theory and in practice.
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Abstract
Randomized algorithms and protocols assume the availability of a perfect source of randomness. In
real life, however, perfect randomness is rare and is almost never guaranteed. The gap between these
two facts motivated much of the work on randomness and derandomization in theoretical computer
science.

In this work, we define a new type of randomized algorithms (and protocols), that we call
robustly-randomized algorithms (protocols). Such algorithms have access to two separate (read-once)
random strings. The first string is trusted to be perfectly random, but its length is bounded by
some parameter k = k(n) (where n is the length of the input). We think of k as relatively small, say
sub-linear or poly-logarithmic in n. The second string is of unbounded length and is assumed to be
random, but its randomness is not trusted.

The output of the algorithm is either an output in the set of possible outputs of the problem, or
a special symbol, interpreted as do not know and denoted by ⊥. On every input for the algorithm,
the output of the algorithm must satisfy the following two requirements:
1. If the second random string is perfectly random then the algorithm must output the correct

answer with high probability.
2. If the second random string is an arbitrary string, even adversarially chosen after seeing the

input, the algorithm must output with high probability either the correct answer or the special
symbol ⊥.

We discuss relations of this new definition to several previously studied notions in randomness
and derandomization. For example, when considering polynomial-time algorithms, if k is logarithmic
we get the complexity class ZPP, while if k is unbounded we get the complexity class BPP, and for a
general k, the algorithm can be viewed as an interactive proof with a probabilistic polynomial-time
prover and a probabilistic polynomial-time verifier, where the prover is allowed an unlimited number
of random bits and the verifier is limited to at most k random bits.

Every previously-studied class of randomized algorithms or protocols, and more generally, every
previous use of randomness in theoretical computer science, can be revisited and redefined in light
of our new definition, by replacing each random string with a pair of random strings, the first is
trusted to be perfectly random but is relatively short and the second is of unlimited length but
its randomness is not trusted. The main question that we ask is: In which settings and for which
problems is the untrusted random string helpful?

Our main technical observation is that every problem in the class BPL (of problems solvable by
bounded-error randomized logspace algorithms) can be solved by a robustly-randomized logspace
algorithm with k = O(log n), that is with just a logarithmic number of trusted random bits. We also
give query complexity separations that show cases where the untrusted random string is provenly
helpful. Specifically, we show that there are promise problems that can be solved by robustly-
randomized protocols with only one query and just a logarithmic number of trusted random bits,
whereas any randomized protocol requires either a linear number of random bits or an exponential
number of queries, and any zero-error randomized protocol requires a polynomial number of queries.
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1 Introduction

The use of randomness is common in theoretical computer science and is essential for
many applications. Randomized algorithms and protocols assume the existence of a source
of randomness that is trusted to be perfectly random. In real life, however, sources of
randomness are rarely trusted to be perfectly random. Many works on randomness and
derandomization in theoretical computer science originated from the attempt to bridge that
gap. In this work, we ask: Is untrusted randomness helpful?

We define robustly-randomized algorithms as algorithms that have access to two separate
random strings. The first string is trusted to be perfectly random, but is very short. The
second string is of unbounded length and is assumed to be random, but its randomness is not
trusted. If the second random string is perfectly random then the algorithm must output the
correct answer with high probability. If the second random string is an arbitrary string, even
adversarially chosen after seeing the input, the algorithm must output with high probability
either the correct answer or the special symbol ⊥, interpreted as do not know.

For simplicity, we define here robustly-randomized algorithms for total functions f :
{0, 1}n → {0, 1}. Similar definitions can be given for partial functions, search problems,
etcetera. Similar definitions can also be given in essentially all other settings where random
strings are used, for example, query complexity, interactive proofs, etcetera.

▶ Definition 1. Let f = {fn : {0, 1}n → {0, 1}}n∈N be a family of functions. Let k : N→ N
be a monotone computable function. Let A be a randomized algorithm that uses two separate
(read-once) random strings R1, R2. We say that A is a robustly-randomized algorithm for
f , with O(k) trusted random bits, if on every input x of length n, the algorithm A reads at
most O(k(n)) bits from R1 and the output A(x) satisfies the following two requirements:
1.

Pr
R1,R2

[A(x) = fn(x)] ≥ 3
4

(where the probability is over the uniform distribution over R1, R2).
2. For every r (even adversarially chosen after seeing the input x),

Pr
R1

[A(x) ∈ {fn(x),⊥}|R2 = r] ≥ 3
4

(where the probability is over the uniform distribution over R1).

For a language L ⊆ N, we say that A is a robustly-randomized algorithm for L if A is a
robustly-randomized algorithm for the family f that corresponds to L.

Definition 1 is for the bounded-error case, where the algorithm is allowed to err with
probability 1

4 , regardless of the value of fn(x). Similarly, we can define the one-sided-error
case, where we require in addition that if fn(x) = 0 then A(x) is always in {0,⊥} (regardless
of the content of R1, R2).

https://doi.org/10.4230/LIPIcs.ITCS.2023.56
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Many questions could be asked about robustly-randomized algorithms. We focus here on
the following motivating question: In which settings, are robustly-randomized algorithms
that read O(k) trusted random bits (and an unbounded number of untrusted random bits)
stronger than randomized algorithms that read O(k) (trusted) random bits? In other words,
in which settings is the untrusted random string helpful?

1.1 Polynomial-Time Algorithms
We first consider polynomial-time algorithms.

▶ Definition 2. Let k : N→ N be a monotone computable function. The class RPP(k) is the
class of all languages computable by a polynomial-time robustly-randomized algorithm with
O(k) trusted random bits.

1.1.1 BPP and ZPP
Let ZPP be the class of problems solvable by zero-error probabilistic polynomial-time
algorithms, BPP be the class of problems solvable by bounded-error probabilistic polynomial-
time algorithms, and BPP(k) be the class of problems solvable by bounded-error probabilistic
polynomial-time algorithms that are limited to reading O(k) random bits. We observe the
following relations between the class RPP(k) and the classes ZPP, BPP and BPP(k). The
proofs of all propositions below are in Section 4.

▶ Proposition 1.

RPP(log n) = ZPP.

▶ Proposition 2. For every k,

BPP(k) ⊆ RPP(k).

▶ Proposition 3. For every k,

BPP(k)ZPP ⊆ RPP(k).

▶ Proposition 4.⋃
c

RPP(nc) = BPP.

By the hardness-vs-randomness paradigm [16, 4, 19, 12, 9], all these complexity classes
are conjectured to be identical, as they are all conjectured to be identical to P. From that
perspective and in light of Proposition 4, it is an intriguing open problem to prove that
BPP = RPP(k) for small values of k, say, k = o(n), and this can be viewed as an intermediate
goal towards proving BPP = ZPP or even BPP = P. In light of Proposition 2, it is an
intriguing open problem to show examples of natural problems in RPP(k) that are currently
not known to be in BPP(k) ∪ ZPP. We note that there are artificial problems that give
conditional separations:

▶ Proposition 5. For every k, if BPP(k) ̸⊆ ZPP and ZPP ̸⊆ BPP(k), then

BPP(k) ∪ ZPP ̸= RPP(k).

ITCS 2023
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1.1.2 Interactive Proofs for Verifying Randomness

We show that a polynomial-time robustly-randomized algorithm with O(k) trusted random
bits is equivalent to an interactive proof with a probabilistic polynomial-time prover and a
probabilistic polynomial-time verifier, where the prover is allowed an unlimited number of
random bits and the verifier is limited to at most O(k) (public or private) random bits (that
are guaranteed to be perfectly random). That is, unlike standard interactive proofs, the
prover and the verifier here have the same computational power and only differ in the number
of random bits that they are allowed to use. Such an interactive proof can be viewed as a
proof of randomness: The prover sends a random string to the verifier and tries to convince
the verifier that that random string is sufficiently random to perform the computation on a
particular input x (that they both know).

▶ Proposition 6. A language L is in RPP(k) if and only if it is recognizable by an interactive
proof (which outputs 1, 0 or ⊥) with a probabilistic polynomial-time prover and a probabilistic
polynomial-time verifier, where the verifier is limited to at most O(k) random bits.

1.2 Logarithmic-Space Algorithms

Next, we consider logarithmic-space algorithms.

▶ Definition 3. Let k : N → N be a monotone computable function. The class RPL(k) is
the class of all languages computable by a logarithmic-space and polynomial-time robustly-
randomized algorithm with O(k) trusted random bits.

We prove that the entire class BPL (of problems solvable by bounded-error probabilistic
logspace algorithms) collapses to the class RPL(log n). That is, every problem in BPL is
solvable by a robustly-randomized logspace algorithm with just a logarithmic number of
trusted random bits. For comparison, the currently best known pseudorandom generators
for BPL require O(log2 n) truly random bits (and O(log2 n) space to store them) [11, 8, 6].
Saks’ and Zhou’s derandomization result for BPL shows that every problem in BPL is
solvable by a deterministic algorithm with O(log3/2 n) space [15] and this was improved to
O(log3/2 n/

√
log log n) space by Hoza [7].

▶ Proposition 7.

RPL(log n) = BPL.

Moreover, we show that every problem in BPL has a streaming proof between a prob-
abilistic logspace prover and a probabilistic logspace verifier, where the verifier uses only
O(log n) random bits and has a read-once one-way access to the proof that is streamed by
the prover. In other words, the prover provides a polynomial-length proof that is streamed
to the verifier and the verifier can check whether the computation was performed correctly
using only O(log n) random bits.

We also characterize ZPL using robustly-randomized algorithms, thereby providing an
alternate interpretation of the BPL versus ZPL problem.

▶ Proposition 8.

RPL(1) = ZPL.
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1.3 Query-Complexity Separations
Finally, we consider the query-complexity model, where one can fully prove that the untrusted
random string is helpful.

▶ Proposition 9. For any n, k ∈ N, there are two disjoint subsets A, B ⊂ {0, 1, 2}2n+k (where
{0, 1, 2}2n+k is viewed as the set of all functions f : {0, 1}n+k → {0, 1, 2}), such that, given a
black box access to a function f : {0, 1}n+k → {0, 1, 2}, the following three are satisfied:
1. There is a robustly-randomized protocol that uses only k trusted random bits and only one

query to f and distinguishes between the cases f ∈ A and f ∈ B with probability at least
3
4 .

2. For any constant ϵ > 0, any randomized protocol that uses at most (1− ϵ)n random bits
and distinguishes between the cases f ∈ A and f ∈ B with probability at least 3

4 , requires
at least 2Ω(n) queries to f .

3. Any zero-error randomized protocol that distinguishes between the cases f ∈ A and f ∈ B

with probability at least 3
4 (and outputs do not know with probability at most 1

4 ) requires
at least 2Ω(k) queries to f .
Specifically, taking k = log n in Proposition 9, we observe that there are promise prob-

lems that can be solved by robustly-randomized protocols with only one query and just a
logarithmic number of trusted random bits, whereas any randomized protocol requires either
a linear number of random bits or an exponential number of queries, and any zero-error
randomized protocol requires a polynomial number of queries.

1.4 Relations to Other Work
Derandomization and Pseudorandomness

A large body of work on derandomization attempts to reduce the amount of randomness
used by randomized algorithms. For example, a pseudorandom generator attempts to use
a small seed of truly random bits to produce a larger number of pseudorandom bits, that
look random to all randomized algorithms in a certain class of algorithms (see [17] for a
survey). The commonality between these works and our approach is the attempt to reduce
the amount of true (trusted) randomness that is used. Here, we suggest to use, in addition to
a small number of truly (trusted) random bits, an additional source of untrusted random bits.
One could add such a source in essentially all attempts of derandomization. For example,
one could consider pseudorandom generators that use in addition to a small seed of truly
random bits, an unlimited number of untrusted random bits.

Seeded Extractors

Seeded extractors [13] (and many follow-up works) attempt to use a small seed of truly random
bits, together with a weakly-random source, to produce a larger number of almost-random
bits (that in turn can be used as a random source for any randomized algorithm). The main
difference between seeded extractors and our approach is that seeded extractors necessarily
require some assumption on the weakly-random source used, usually requiring that it contains
a sufficient amount of min-entropy, while here we don’t make any assumption about the
source. (An additional difference is that seeded extractors are required to produce an output
that is close to be perfectly random, while here we only try to fool a particular algorithm or
class of algorithms. We note though that there are many other works that consider only a
particular algorithm or class of algorithms).

ITCS 2023
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Certified Quantum Randomness

A large body of recent work suggests the use of a small number of truly random bits, together
with quantum sources of randomness, to produce a large number of random bits that are
guaranteed to be almost perfectly random, by the laws of physics. Such constructions
were suggested based on violating Bell inequalities with multiple devices [14, 18, 10], based
on post-quantum cryptography [5] and based on advantage of quantum computation over
classical computation [1, 3]. While these works do consider a possible adversarial behavior of
the source of randomness, as we do here, they all rely on the use of quantum devices (as well
as on certain assumptions, such as, no communication between different devices, or hardness
assumptions).

2 Preliminaries

Let n ∈ N. We use [n] to denote {1, 2, . . . , n}. Let v ∈ Rn. For i ∈ [n] we use vi to denote the

i-th coordinate of v. Let 1 ≤ k <∞. Let ∥v∥k :=
(∑

i∈[n] |vi|k
)1/k

denote the ℓk-norm of v.

This induces an operator norm on matrices M ∈ Rn×n by ∥M∥k := maxv∈Rn\{0⃗}
∥M(v)∥k

∥v∥k
.

This norm is sub-multiplicative, i.e., ∥M · N∥k ≤ ∥M∥k · ∥N∥k for all M, N ∈ Rn×n. Let
∥v∥∞ = maxi∈[n] |vi| denote the ℓ∞-norm of v and let ∥M∥max := maxi,j∈[n] |Mi,j | (this is
not an induced operator norm). We have the following inequalities for all M ∈ Rn×n, v ∈ Rn

and 1 ≤ k, k′ <∞.

∥M∥max ≤ ∥M∥k ≤ n · ∥M∥max

k ≥ k′ =⇒ ∥v∥k ≤ ∥v∥k′ ≤ n · ∥v∥k

We say that a matrix is stochastic (resp. sub-stochastic) if each entry is in [0, 1] and every
column has entries which sum to 1 (resp. at most 1). A sub-stochastic matrix M satisfies
∥M∥1 ≤ 1. We use M [i, j] to refer to the (i, j)th entry of the matrix M .

2.1 Our Model of Computation
In this work, a deterministic Turing machine consists of a read-only input tape, a work tape
and a write-once output tape. A randomized Turing Machine has an additional infinite
read-once randomness tape consisting of random bits. Let S, T, R : N→ N be any monotone
computable functions. We typically use S to denote the space complexity and T to denote the
time complexity of a Turing Machine. When we say that an event occurs with high probability,
we typically mean that it occurs with probability at least 2/3. An algorithm is said to
have bounded error if the probability of error is at most 1/3. By standard error-reduction
techniques, we could choose this number to be any constant in (0, 1/2).

A deterministic (resp. bounded-error randomized) (S, T ) algorithm refers to a deterministic
(resp. randomized) Turing Machine such that for all x ∈ {0, 1}∗, |x| = n, the machine with x

on its input tape, uses at most S(n) bits of space on its work tape and runs in at most T (n)
time. We say that an algorithm computes a family of functions {fn : {0, 1}n → {0, 1}∗}n∈N
if for all n ∈ N, x ∈ {0, 1}n, the output of the algorithm on input x is fn(x) (with high
probability if the algorithm is bounded-error randomized). These functions may be partial,
i.e., defined on a strict subset of {0, 1}n. The Turing machine is said to use R bits of
randomness if on inputs of size n ∈ N, the machine never reads more than R(n) bits on the
randomness tape.
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Polynomial-Time Computation

A polynomial-time algorithm refers to a (poly(n), poly(n)) algorithm. The (promise) class
BPP refers to all families of single-bit-output functions computable by randomized polynomial-
time algorithms. The (promise) class ZPP refers to families computable by randomized
algorithms whose expected runtime is poly(n) and that have zero error. All these classes are
promise classes for us, so for the rest of the paper, we omit this prefix.

Logspace Computation

A logspace algorithm refers to an (O(log(n)), poly(n)) algorithm. The (promise) class L refers
to all families of single-bit-output functions computable by deterministic logspace algorithms.
The (promise) class BPL refers to all families of single-bit-output functions computable by
randomized logspace algorithms with high probability. The (promise) class ZPL refers to
families computable by randomized algorithms whose space is O(log(n)) and whose expected
runtime is poly(n) and that have zero error. As mentioned before, in our paper, all these
classes are promise classes so we omit this prefix. We use the notation family of functions,
languages and problems interchangeably.

We say that a family F = {fn : {0, 1}n → {0, 1}}n∈N of functions is logspace-reducible to
a family G = {gn : {0, 1}n → {0, 1}}n∈N of functions if there is a polynomial function M(n) =
poly(n) and a deterministic logspace algorithm A which for all n ∈ N, on input x ∈ supp(fn)
outputs A(x) ∈ supp(gm) where m = M(n) such that fn(x) = 1 ⇐⇒ gm(A(x)) = 1. We
say that a problem P is logspace-complete for a class A of algorithms if P ∈ A and for
every Q ∈ A, Q is logspace-reducible to P . We make use of the following logspace-complete
problem for BPL.

▶ Definition 4 (Stochastic Matrix Powering). In the Stochastic Matrix Powering Problem,
the inputs are an n× n stochastic matrix M and a parameter T such that T ≤ poly(n). The
promise on the input is that MT [n, 1] ≥ 4

5 or MT [n, 1] ≤ 1
5 . The goal is to output 1 in the

former case and 0 in the latter case.

▶ Proposition 10. The Stochastic Matrix Powering Problem is logspace-complete for BPL.

The proof of this fact is quite standard and is deferred to the appendix.

2.2 Robustly-Randomized Algorithms
We recall the definition of robustly-randomized algorithms.

▶ Definition 1. Let f = {fn : {0, 1}n → {0, 1}}n∈N be a family of functions. Let k : N→ N
be a monotone computable function. Let A be a randomized algorithm that uses two separate
(read-once) random strings R1, R2. We say that A is a robustly-randomized algorithm for
f , with O(k) trusted random bits, if on every input x of length n, the algorithm A reads at
most O(k(n)) bits from R1 and the output A(x) satisfies the following two requirements:
1.

Pr
R1,R2

[A(x) = fn(x)] ≥ 3
4

(where the probability is over the uniform distribution over R1, R2).
2. For every r (even adversarially chosen after seeing the input x),

Pr
R1

[A(x) ∈ {fn(x),⊥}|R2 = r] ≥ 3
4

(where the probability is over the uniform distribution over R1).

ITCS 2023
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In particular, we will be interested in the classes RPP(k) and RPL(k) defined as follows.

▶ Definition 2. Let k : N→ N be a monotone computable function. The class RPP(k) is
the class of all languages computable by a polynomial-time robustly-randomized algorithm
with O(k) trusted random bits.

▶ Definition 3. Let k : N → N be a monotone computable function. The class RPL(k)
is the class of all languages computable by a logspace polynomial-time robustly-randomized
algorithm with O(k) trusted random bits.

Although the classes RPP and RPL are defined with error parameter 1/4, we could choose
it to be any constant in (0, 1/2). This is because (by standard error-reduction techniques) we
can reduce the error to any desired constant in (0, 1/2) by repeating the algorithm O(1) times
in parallel and taking the majority of the outputs. This step only blows up the amount of
randomness, space and time required by a constant multiplicative factor and doesn’t change
the definition of the classes.

2.3 Streaming Proofs
A streaming proof consists of a pair of randomized Turing machines (a randomized prover and
a randomized verifier) which share a common stream tape. We assume that the verifier is a
logspace machine. The prover doesn’t have a separate output tape, instead, it has write-once
access to the stream tape onto which it writes a proof Π. The verifier has read-once access to
the stream tape from which it can read Π. Both the verifier and the prover have read-many
access to the input x ∈ {0, 1}∗. We allow the prover and verifier to output a special symbol ⊥.
Upon outputting this symbol, the algorithm stops all further processing and we say that the
algorithm aborts.

▶ Definition 5. Let F = {fn : {0, 1}n → {0, 1}}n∈N be a famility of functions. Let
P, S, T : N→ N be monotone computable functions. We say that F has an (S, T )-streaming
proof of length P if there exists a randomized (S, T )-prover P using a random string R2 and
a randomized logspace verifier V using a random string R1 such that on input x ∈ supp(fn),
1. The honest prover P, with at least 3

4 probability over R2, outputs a (randomized) proof
Π ∈ {0, 1}P (n) such that

Pr
R1

[V(x, Π) = fn(x)] ≥ 3
4

(where the probability is over the uniform distribution over R1, R2).
2. For an arbitrary Π ∈ {0, 1}P (n) (even adversarially chosen after seeing the input x),

Pr
R1

[V(x, Π) ∈ {fn(x),⊥}] ≥ 3
4

(where the probability is over the uniform distribution over R1).
Let k : N→ N be a monotone computable function. If the verifier V never reads more than
O(k(n)) random bits from R1, we say that the verifier uses at most O(k(n)) random bits.

We sometimes omit mentioning the length P (n) of the proof and it is understood that it
is always at most T (n).

3 Streaming Proofs for BPL

In this section, we prove Proposition 7. Towards this, we show the following claims.
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▷ Claim 6. A family of functions is in RPL(k) if it has a streaming proof between a logspace
verifier and a logspace prover where the verifier uses O(k) random bits.

Proof of Claim 6. Given a streaming proof between a logspace verifier and a logspace prover
where the verifier uses O(k) random bits, consider a RPL(k) algorithm that simulates the
verifier using trusted randomness. For each bit of the stream that the verifier wants to
read, we have the algorithm simulate the honest prover using untrusted randomness. The
completeness follows as both the verifier and the honest prover simultaneously succeed with
probability at least (3/4)2 ≥ 0.55, furthemore, the probability that the verifier incorrectly
answers given any proof is at most 1/4. As mentioned before, by standard error-reduction
techniques, we can amplify the completeness to be at least 3/4. This completes the proof.

◁

▷ Claim 7. A family of functions is in BPL if and only if it has a streaming proof between a
logspace verifier and a logspace prover where the verifier uses O(log(n)) random bits.

Proof of Proposition 7 from Claim 7 and Claim 6. Firstly, it is easy to see the contain-
ment RPL(log(n)) ⊆ BPL. We consider any RPL(log(n)) algorithm and modify it so that
whenever it is supposed to output ⊥, it outputs 0 instead. This can be viewed as a BPL
algorithm with error at most 1/4 and thus, RPL(log(n)) ⊆ BPL.

The conclusion that BPL ⊆ RPL(log(n)) follows immediately from Claim 6 and Claim 7.
◀

We devote the rest of the section to the proof of Claim 7.

3.1 Proof of Claim 7
We begin by observing that one direction is easy, i.e., given a streaming proof between an
honest randomized logspace prover and verifier, both these algorithms can be simulated by a
randomized logspace algorithm. It suffices to show the other direction.

It suffices to develop a streaming proof for the Stochastic Matrix Powering problem
(which is logspace-complete for BPL). Towards this, we define a notion of a δ-good sequence
of vectors for a stochastic matrix M .

▶ Definition 8. Let M be any n× n stochastic matrix and T ≤ poly(n) be a natural number.
Let vi = M i(e1) for all i ≤ T . Let δ ∈ [0, 1]. A sequence of vectors v′

0, v′
1, . . . , v′

T ∈ Rn is
said to be δ-good for M if for all i ∈ [T ], we have ∥v′

i − vi∥1 ≤ δ and v′
0 = e1.

We make use of the following two claims.

▷ Claim 9. There is a randomized logspace prover which given an n× n stochastic matrix
M and parameters T ≤ poly(n), δ ≥ 1

poly(n) as input, outputs a δ-good sequence of vectors
for M with probability at least 3

4 .

▷ Claim 10. Let 0 < δ ≤ 1
104nT 3 . There is a randomized logspace verifier which given any

n× n stochastic matrix M and parameters T ≤ poly(n), δ ≥ 1
poly(n) as input and read-once

access to a stream of vectors v′
0, . . . , v′

T ∈ Rn (where each vector is specified up to Θ(log(n))
bits of precision), does the following.

If the sequence is δ-good for M , then the probability that the algorithm aborts is at most
1/4.
If ∥v′

T − vT ∥1 ≥
1
4 , then the algorithm aborts with probability at least 3/4.

Furthermore, this algorithm only uses O(log(n)) bits of randomness.
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We now complete the proof of Claim 7 using Claim 9 and Claim 10. Consider the
Stochastic Matrix Powering Problem. Given an n× n stochastic matrix M as input and a
parameter T ≤ poly(n), set δ = 1

104nT 3 . Run the prover’s algorithm from Claim 9 using this
value of δ to produce a stream v′

0, . . . , v′
T . Run the verifier’s algorithm from Claim 10 on

this stream to verify. If it doesn’t abort, we have the verifier return 1 if v′
T (n) ≥ 2/3, return

0 if v′
T (n) ≤ 1/3 and return ⊥ otherwise.

Completeness

Claim 9 implies that an honest prover outputs a δ-good sequence with probability at least 3
4 .

Claim 10 implies that a verifier aborts an honest proof with very small probability. Since
∥v′

T − vT ∥1 ≤ δ ≪ 1/10 by assumption, if vT (n) ≥ 4/5, then v′
T (n) ≥ 2/3 and if vT (n) ≤ 1/5

then v′
T (n) ≤ 1/3. Since MT [n, 1] = vT (n), the verifier will return the correct answer

whenever the sub-routine doesn’t abort.

Soundness

Consider the behavior of this verifier on an arbitrary proof. If the verifier makes a mistake and
returns an incorrect answer, it must be the case that either vT (n) ≥ 4/5 and v′

T (n) ≤ 1/3 or
vT (n) ≤ 1/5 and v′

T (n) ≥ 2/3. In either case, we must have ∥v′
T − vT ∥k ≥ |v

′
T (n)− vT (n)| ≥

1/4. Claim 10 implies that such a proof is aborted with probability at least 3
4 .

This completes the proof of Claim 7. We now proceed to prove Claim 9 and Claim 10.

Algorithm 1 Algorithm for Prover in Claim 9.

Input : An n× n stochastic matrix M and parameters T ≤ poly(n), δ ≥ 1
poly(n) .

Output : A δ-good sequence of vectors v′
0, v′

1, . . . , v′
T ∈ Rn .

begin
Output v0 = e1.;
Round down each entry of the input matrix M to δ

6nT additive error to produce a
sub-stochastic matrix M̃ so that

∥∥∥M − M̃
∥∥∥

1
≤ δ

6T .;
Set C = Θ(n2 log(nT )/δ2).;
for i = 1 to T , j = 1 to n do

for count = 1 to C do
(*) Set estimatei,j = 0.;
Create a register on ⌈log(n)⌉ bits initialized to the state 1.;
for t = 1 to i do

Suppose the current state is k ∈ [n]. Sample a new state k′ ∈ [n] with
probability exactly M̃ [k, k′]. Suppose this sampling process fails (due
to the columns of M̃ summing to less than one), increase count, then
go to step (*) if count ≤ C and go to (**) otherwise.;

end
If the final state is j, update estimatei,j ← estimatei,j + 1. ;

end
(**) Output v′

i(j) = estimatei,j/C. ;
end

end
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Proof of Claim 9. The prover’s algorithm is formally described in Algorithm 1. The informal
description is as follows. The prover first rounds down each entry of the input matrix M

to δ
6nT additive error to produce a sub-stochastic matrix M̃ that is close to M . The prover

maintains a state in [n] and evolves this state (approximately) according to the (nearly)
stochastic matrix M̃ . The prover then uses multiple samples to get an estimate of the entries
of M̃ i(e1).

Time & Space Complexity of this Algorithm. It is clear that all these operations can be
done by a randomized logspace algorithm.

Correctness of this Algorithm. Let ṽi = M̃ i(e1) for i ∈ {0, . . . , T}. Since
∥∥∥M̃ −M

∥∥∥
1
≤ δ

6T ,
we have

for all i ∈ [T ],
∥∥∥M̃ i −M i

∥∥∥
1
≤

(
1 + δ

6T

)i

− 1 ≤ δ

2 .

(1)

Thus,

for all i ∈ [T ], ∥ṽi − vi∥1 ≜
∥∥∥M̃ i(e1)−M i(e1)

∥∥∥
1
≤

∥∥∥M̃ i −M i
∥∥∥

1
≤ δ

2 . (2)

It is not too hard to observe that by evolving the state 1 for i steps according to M̃ (and
aborting when the sampling process fails), the algorithm produces a (probabilistic) state which
is j with probability exactly ṽi(j) for each j ∈ [n] (and ⊥ with the remaining probability).
By repeated sampling and taking the empirical average, the algorithm can estimate each ṽi(j)
up to δ

2n accuracy with probability at least 1−O
( 1

nT

)
using C = Θ

(
n2 log(nT )

δ2

)
samples by

the Chernoff bound. This, along with a union bound over i ∈ [T ], j ∈ [n] implies that the
algorithm with probability at least 7

8 , estimates each ṽi(j) up to δ
2n precision, and hence by

Equation (2) produces v′
i such that ∥v′

i − vi∥1 ≤ δ. ◁

Proof of Claim 10. The verifier’s algorithm is formally described in Algorithm 2. The
informal description is as follows. The verifier will try to check that M̃(v′

i−1) is approximately
equal to v′

i for all i ∈ [T ]. However, to do this in a streaming fashion, the verifier will instead
test that a random linear combination of these approximate equations holds. To reduce the
randomness from T to O(log n), instead of using a truly random combination of the equations
the verifier uses a pseudorandom combination drawn using a 4-wise independent collection of
{−1, 1}-random variables. This is similar to the ℓ2-frequency estimation algorithm in [2].

Time & Space Complexity of this Algorithm. One can sample from a collection of 4-wise
independent {−1, 1}-random variables of size O(nT ) in logspace using only O(log(nT )) bits
of randomness [2]. Note that the quantity ∆ ≜

∑
i∈[T ]
j∈[n]

αi,j ·
(

(M̃(v′
i−1))(j)− v′

i(j)
)

can be

expressed
∑

i∈{0,...,T }
j∈[n]

βi,jv′
i(j) where βi,j are coefficients that depend only on the entries of

M̃ and α, and can be computed in logspace. Thus, a logspace algorithm can read the stream
of v′

i(j) for i = 0, . . . , T and j ∈ [n] once from left to right and compute ∆ ≜
∑

i,j βi,jv′
i(j)

in a streaming fashion. As the entries of the matrices and the vectors are O(log(n)) bits
long, the arithmetic can be done in logspace. The time complexity of this process is hence
poly(n) and the space complexity is O(log(n)).
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Algorithm 2 Algorithm for Verifier in Claim 10.

Input : An n× n stochastic matrix M , parameters
T ≤ poly(n), 1

104nT 3 ≥ δ ≥ 1
poly(n) and read-once access to a stream of

vectors v′
0, . . . , v′

T ∈ Rn.
Output : If the sequence is δ-good for M , then return ⊥ with probability at most 1

4 .
If ∥v′

T − vT ∥1 ≥
1
4 , return ⊥ with probability at least 3

4 .
begin

Round down each entry of the input matrix M to δ
6nT additive error to produce a

sub-stochastic matrix M̃ so that
∥∥∥M − M̃

∥∥∥
1
≤ δ

6T .
Return ⊥ if v′

0 ̸= e1.;
for t = 1 to 11 do

Sample αi,j ∈ {−1, 1} for i ∈ [T ], j ∈ [n] from a collection of 4-wise
independent {−1, 1}-random variables with mean 0.;

Compute ∆ :=
∑

i∈[T ],j∈[n] αi,j · wi,j where for i ∈ [T ], j ∈ [n], we have
wi,j := (M̃(v′

i−1))(j)− v′
i(j).;

Return ⊥ if |∆| > 30Tδ.
end

end

We now move on to the completeness and soundness. Let w ∈ RnT be defined at
i ∈ [T ], j ∈ [n] by wi,j ≜ (M̃(v′

i−1))(j)− v′
i(j) as before. Let ṽ0, . . . , ṽT be defined as before.

Completeness of the Algorithm. Suppose v′
0, . . . , v′

T is a δ-good sequence, then ∥v′
i−vi∥1 ≤

δ for all i ∈ [T ] and v′
0 = e1. Since M is a contraction map with respect to ∥ · ∥1, this along

with Equation (1) implies that for all i ∈ [T ],

∥∥∥M̃(v′
i−1)− v′

i

∥∥∥
1
≤

∥∥∥M̃(v′
i−1)−M(v′

i−1)
∥∥∥

1
+

∥∥M(v′
i−1)−M(vi−1)

∥∥
1

+ ∥M(vi−1)− vi∥1 + ∥vi − v′
i∥1

≤
∥∥∥M̃ −M

∥∥∥
1
· ∥v′

i−1∥1 + ∥vi−1 − v′
i−1∥1 + ∥vi − v′

i∥1

≤ δ
6T · (1 + δ) + δ + δ ≤ 3δ.

Thus, ∥w∥2 ≤ ∥w∥1 ≤ 3Tδ. Consider the quantity ⟨α, w⟩ =
∑

i,j αi,jwi,j that the algorithm
estimates. Note that E [⟨α, w⟩] = 0 and that E

[
⟨α, w⟩2

]
=

∑
i,j w2

i,j . Chebyshev’s Inequality
implies that with probability at least 0.99, we have |⟨α, w⟩| ≤ 30Tδ. This implies that with
probability at least (0.99)11 ≥ 0.8, every iteration of the inner loop in Algorithm 2 does
not reject.

Soundness of the Algorithm. Suppose a dishonest prover produces a stream v′
0, . . . , v′

T

such that ∥v′
T (1)− vT ∥1 ≥

1
4 . The verifier always returns ⊥ if v′

0 ̸= e1, so we may assume
that v′

0 = e1. Let ε = 1
10T . We argue that for some i ∈ [T ], we must have ∥wi∥1 ≥ ε. Assume

by contradiction that
∥∥∥M̃(v′

i−1)− v′
i

∥∥∥
1
≤ ε for all i ∈ [T ]. Hence, by Triangle Inequality and
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Equation (1), (and since ṽ0 = e1) we have

∥ṽT − v′
T ∥1 =

∥∥∥M̃T (v′
0)− v′

T

∥∥∥
1
≤

∑
i

∥∥∥M̃T −(i−1)(v′
i−1)− M̃T −i(v′

i)
∥∥∥

1

≤
∑

i

∥∥∥M̃T −i
∥∥∥

1
·
∥∥∥M̃(v′

i−1)− v′
i

∥∥∥
1

≤
∑

i

ε

≤ Tε.

Equation (2) implies that ∥ṽT − vT ∥1 ≤
δ
2 . This implies that ∥v′

T − vT ∥1 ≤
δ
2 + Tε. We

assumed that ∥vT − v′
T ∥1 ≥

1
4 . Hence, it follows that

1
4 ≤

δ
2 + Tε.

Since we chose ε = 1
10T and δ ≤ 1/10, this is a contradiction. Thus, we must have

∥w∥2 ≥ ∥w∥1
nT ≥ ε

nT . Note that E [⟨α, w⟩] = 0 and E
[
⟨α, w⟩2

]
= ∥w∥2

2. Furthermore,

E
[
⟨α, w⟩4

]
= E

 ∑
i,j,k,l

wiwjwkwlαiαjαkαl

 ≤ 6
∑
i,j

w2
i w2

j ≤ 6∥w∥4
2

Here, we used the fact that the random variables are 4-wise independent. The Payley-
Zygmund Inequality implies that

Pr
[
⟨α, w⟩2 ≥ 1

10 · ∥w∥
2
2

]
≥

(
1− 1

10

)2
·

(
E

[
⟨α, w⟩2

])2

E [⟨α, w⟩4] ≥ 1
8 .

This, along with the fact that ∥w∥2 ≥ ε
nT implies that Pr

[
|⟨α, w⟩| ≥ ε

10nT

]
≥ 1

8 . By repeating
this experiment 11 times, we can ensure that with probability at least 1− (1− 1/8)11 ≥ 3/4,
we find at least one instance so that |⟨α, w⟩| ≥ ε

10nT . Since δ ≤ 1
104nT 3 , we have

ε
10nT = 1

100nT 2 > 30Tδ

Thus, with probability at least 3/4, we have |⟨α, w⟩| > 30Tδ. This implies that the algorithm
returns ⊥ with probability at least 3/4. ◁

▶ Remark. In our algorithm, the verifier essentially checks if a certain random linear combin-
ation of the M̃(v′

i−1) is close to the same linear combination of the v′
i. The verifier could have

instead checked if for every i ∈ [T ], M̃(v′
i−1) was close to v′

i. (This could have been done
by testing for each i ∈ [T ] whether

〈
M̃(v′

i−1), w
〉

was close to ⟨v′
i, w⟩ for a certain random

vector w.) While the latter test is conceptually simpler, the former test has the additional
useful property that the verifier simply computes a linear function in the variables {vi(j)}.

4 Relations with Other Complexity Classes

In this section we restate and prove the rest of the propositions in Section 1.1 and Section 1.2.

▶ Proposition 1.

RPP(log n) = ZPP.
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Proof. Given a language L in ZPP, consider the zero-error randomized algorithm for L

that outputs the correct answer with probability at least 3
4 . This algorithm can be directly

viewed as a robustly-randomized algorithm where all the random bits are untrusted, and
thus ZPP ⊆ RPP(0).

On the other hand, given a language L in RPP(log n), consider its robustly-randomized
algorithm A with O(log n) trusted random bits R1 and (polynomially many) untrusted
random bits R2. We design a zero-error randomized algorithm for L as follows. After
sampling r ∼ R2 and storing r, it iterates through all 2O(log n) possible values of R1. In
each iteration it runs A based on the chosen value of R1 and r, and takes the majority vote
(breaking ties arbitrarily) over all 2O(log n) outputs as the final output.

To see the correctness of the algorithm, first notice that it is zero-error as for every r,
any incorrect answer can be outputted by at most 1

4 fraction of R1 and thus cannot win the
majority vote. Also notice that the correct answer wins the majority vote if it is outputted
for more than half of R1. Since the correct answer is outputted with probability at least 3

4
over R1, R2, it must win the majority vote (and be the final output) with probability at least
1
2 over R2.

Therefore we showed RPP(log n) ⊆ ZPP, and together it holds that RPP(0) = ZPP =
RPP(log n). ◀

▶ Proposition 2. For every k,

BPP(k) ⊆ RPP(k).

Proof. Given a language L in BPP(k), consider the bounded-error randomized algorithm for
L that outputs the correct answer with probability at least 3

4 . This algorithm can be directly
viewed as a robustly-randomized algorithm where all the O(k) random bits are trusted, and
thus BPP(k) ⊆ RPP(k). ◀

▶ Proposition 3. For every k,

BPP(k)ZPP ⊆ RPP(k).

Proof. Consider an algorithm in BPP(k)ZPP with error probability 7
8 . By Proposition 1 and

Proposition 2, we can simulate such an algorithm with a RPP(k) algorithm that uses only
trusted random bits itself, but answers the oracle calls with RPP(0) subroutines which uses
only untrusted random bits. The overall number of trusted random bits is O(k).

Suppose there are m oracle calls. We can assume each RPP(0) subroutine outputs the
correct answer to the oracle call with probability at least 1− 1

8m by repetition. The algorithm
aborts whenever one of the subroutines outputs ⊥, so the overall success probability is at
least 3

4 by union bound. ◀

▶ Proposition 4.⋃
c

RPP(nc) = BPP.

Proof. For every c, given a language L in RPP(nc) and its robustly-randomized algorithm.
We modify it so that whenever it is supposed to output ⊥, it simply outputs 0 instead. Then
the algorithm can be viewed as a randomized algorithm for L with error bounded by 1

4 , and
thus RPP(nc) ⊆ BPP. Combined with Proposition 2 we have

BPP =
⋃
c

BPP(nc) =
⋃
c

RPP(nc). ◀
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▶ Proposition 5. For every k, if BPP(k) ̸⊆ ZPP and ZPP ̸⊆ BPP(k), then

BPP(k) ∪ ZPP ̸= RPP(k).

Proof. Take L1 ∈ BPP(k) \ ZPP, and L2 ∈ ZPP \ BPP(k). We claim that L = L1 ⊕ L2 (the
symmetric difference of L1 and L2) gives the desired separation.

Since L ∈ BPP(k)ZPP, by Proposition 3 we have L ∈ RPP(k). On the other hand,
L /∈ BPP(k) since otherwise so does L2 = L⊕ L1. Similarly L /∈ ZPP. Notice that here we
crucially use the fact that both classes are closed under symmetric difference. Therefore
BPP(k) ∪ ZPP ̸= RPP(k). ◀

Before we restate Proposition 6, we need to formally define the the language recognized
by an interactive proof where the verifer is allowed to abort. This is slightly different from
the usual definition, as it is symmetric in a language L and its complement Lc.

▶ Definition 11. A language L is recognized by an interactive proof protocol (P,V) which
outputs 1, 0 or ⊥, if the following requirements are satisfied:
1. With the honest prover P, (P,V) outputs 1 if x ∈ L and outputs 0 if x /∈ L with probability

at least 3
4 .

2. With any (computationally unbounded) prover P ′, (P,V) outputs 1 or ⊥ if x ∈ L and
outputs 0 or ⊥ if x /∈ L with probability at least 3

4 .

▶ Proposition 6. A language L is in RPP(k) if and only if it is recognizable by an interactive
proof (which outputs 1, 0 or ⊥) with a probabilistic polynomial-time prover and a probabilistic
polynomial-time verifier, where the verifier is limited to at most O(k) random bits.

Proof. Given a robustly-randomized algorithm, we design an interactive proof where the
verifier simulates the algorithm, but with the untrusted random bits provided by the prover
as proof. The verifier also aborts when the length of the proof does not equal to the number
of untrusted random bits it needs. On the other hand, given a interactive proof protocol,
we can simulate the protocol with a robustly-randomized algorithm where the random bits
used by the verifier are trusted and the random bits used by the prover are untrusted. The
equivalence follows from Definition 2 and Definition 11. ◀

▶ Proposition 8.

RPL(1) = ZPL.

Proof. The proof is almost the same as the one for Proposition 1. The proof for ZPL ⊆ RPL(0)
goes in exactly the same way. However, in the proof for the other direction RPL(1) ⊆ ZPL,
there is a caveat: a logarithmic-space algorithm cannot afford to store all the untrusted
random bits. Therefore, instead of sequential iterations over all possible values of the trusted
bits, we do it in parallel, so that the untrusted random bits are still read-once. As there are
O(1) trusted random bits, this only increases the space by an O(1) factor. ◀

5 Query-Complexity Separations

Proof for Proposition 9. We define the subsets A, B ⊂ {0, 1, 2}2n+k as follows. Let R1
and R2 be uniformly distributed over {0, 1}k and {0, 1}n respectively. For every function
f : {0, 1}n+k → {0, 1, 2}, we say that
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f ∈ A if and only if Pr[f(R1, R2) = 0] ≥ 3
4 , and for every r ∈ {0, 1}n,

Pr[f(R1, r) ∈ {0, 2}] ≥ 3
4 .

f ∈ B if and only if Pr[f(R1, R2) = 1] ≥ 3
4 , and for every r ∈ {0, 1}n,

Pr[f(R1, r) ∈ {1, 2}] ≥ 3
4 .

Clearly A and B are disjoint as Pr[f(R1, R2) = 0] + Pr[f(R1, R2) = 1] ≤ 1.

1. A robustly-randomized protocol that distinguishes between f ∈ A and f ∈ B uses k

trusted random bits R1 and n untrusted random bits R2. It makes a single query for
f(R1, R2) and based on the query result being 0, 1 or 2, outputs A, B or ⊥ accordingly.
The correctness of the protocol is guaranteed by Definition 1.

2. For any constant ϵ > 0, consider a randomized protocol using at most (1− ϵ)n random
bits and making at most q queries to f . Fix all the query answers to be 2, and let
Q ⊆ {0, 1}n+k be all the possible positions being queried over all choices of the random
bits. Assuming q ≤ 1

4 · 2
ϵn, we have |Q| ≤ 2(1−ϵ)nq ≤ 1

4 · 2
n.

Now pick f, g : {0, 1}n+k → {0, 1, 2} to be:

f(r) =
{

0 if r /∈ Q

2 if r ∈ Q
g(r) =

{
1 if r /∈ Q

2 if r ∈ Q

It is straightforward to check that f ∈ A and g ∈ B. The protocol behaves exactly the
same on f and g, thus being incorrect with probability at least 1

2 on either one of them.
Therefore, a successful protocol must have q ≥ 2Ω(n).

3. Consider a zero-error randomized protocol making at most q queries to f . Fix f to be
the constant function 0 and clearly f ∈ A. We arbitrarily fix a choice of the random bits
where the protocol outputs f ∈ A, and let Q be the positions queried under the fixing.
Assume that |Q| ≤ q ≤ 1

4 · 2
k.

Now pick g : {0, 1}n+k → {0, 1, 2} to be:

g(r) =
{

1 if r /∈ Q

0 if r ∈ Q

It is straightforward to check that g ∈ B. Under the fixed choice of random bits, the
protocol behaves exactly the same on f and g , and thus incorrectly decides g ∈ A.
Therefore, a successful protocol must have q ≥ 2Ω(k). ◀
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A Appendix

A BPL-complete Problem
We prove Proposition 10 which states that the Stochastic Matrix Powering Problem is
complete for BPL. We already argued that this problem has a streaming proof between
a randomized logspace prover and verifier and hence is in BPL. We now argue that any
problem in BPL is logspace-reducible to this problem. The proof of this is similar to that of
undirected reachability being complete for NL.

Consider any family of functions F = {fn : {0, 1}n → {0, 1}}n∈N in BPL and consider a
randomized logspace Turing Machine that decides F . For any input x ∈ supp(fn), consider
a graph Gx whose vertices consist of all possible configurations of the machine on input x.
Since the machine is logspace, each configuration can be described by O(log n) bits and hence
the number of vertices in this graph is P (n) ≤ poly(n). Let s denote the initial state of the
Turing Machine on input x and let us say it has the label 1. We add an additional vertex t
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with the label P (n) + 1 and we draw two directed edges (with labels 1 and 0) from every
final accepting configuration to the vertex t. There are two self-loops at t (with labels 1 and
0). Every vertex in this graph has two outgoing edges each corresponding to the outcome
of a random coin toss. We denote the random walk matrix of this graph by Mx. Observe
that Mx is a stochastic matrix whose entries are logspace-computable. Our reduction maps
x to Mx.

Let R(n) be the number of random bits read by the Turing Machine. We assume without
loss of generality that the error of the Turing machine is at most 1/5 (by standard error
reduction techniques). We are promised that fn(x) = 1 if at least a 4/5 fraction of random
walks starting at s of length R + 1 reach t and fn(x) = 0 if at most a 1/5 fraction of random
walks starting at s of length R+1 reach t. Thus, we have a (P (n)+1)×(P (n)+1) matrix Mx

such that fn(x) = 1 if M
R(n)+1
x [P (n)+1, 1] ≥ 4/5 and fn(x) = 0 if M

R(n)+1
x [P (n)+1, 1] ≤ 1/5.

This completes the reduction.
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We consider the problem of partitioning a line segment into two subsets, so that n finite measures
all have the same ratio of values for the subsets. Letting α ∈ [0, 1] denote the desired ratio,
this generalises the PPA-complete consensus-halving problem, in which α = 1

2 . Stromquist and
Woodall [30] showed that for any α, there exists a solution using 2n cuts of the segment. They also
showed that if α is irrational, that upper bound is almost optimal. In this work, we elaborate the
bounds for rational values α. For α = ℓ

k
, we show a lower bound of k−1

k
· 2n − O(1) cuts; we also

obtain almost matching upper bounds for a large subset of rational α.
On the computational side, we explore its dependence on the number of cuts available. More

specifically,
1. when using the minimal number of cuts for each instance is required, the problem is NP-hard for

any α;
2. for a large subset of rational α = ℓ

k
, when k−1

k
· 2n cuts are available, the problem is in PPA-k

under Turing reduction;
3. when 2n cuts are allowed, the problem belongs to PPA for any α; more generally, the problem

belong to PPA-p for any prime p if 2(p − 1) · ⌈p/2⌉
⌊p/2⌋ · n cuts are available.
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1 Introduction

The complexity class TFNP (standing for total functions, computable in nondeterministic
polynomial time), refers to problems of computing a solution that is guaranteed to exist,
and once found can be easily checked for correctness. Such problems are of particular
interest when they appear to be computationally hard, due to the fact that they cannot
be NP-hard unless NP = coNP [24]. Due to this point and the fact that TFNP does not
seem to have complete problems, hard problems in TFNP have been classified via certain
syntactic subclasses corresponding to the combinatorial existence principles that guarantee
the existence of solutions, without indicating an efficient algorithm for their construction.
They include the well-known classes PPAD, PPA, and PPP, introduced by Papadimitriou
[25] in 1994. PPAD represents the complexity of Nash equilibrium computation and related
problems, and more recently, PPA has been shown to capture the complexity of certain
problems of consensus division, discussed in more detail below. Papadimitriou [25] also
pointed out a collection of classes PPA-k (where k ≥ 2 is a natural number). PPA-k (Definition
4 below) consists of problems where the existence guarantee of solutions is due to a modulo-k
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counting argument, and these classes turn out to be relevant for the problem we study here.
Note that PPA is the same as PPA-2: PPA stands for “polynomial parity argument”, i.e. a
modulo-2 counting argument.

We study a problem arising from a 1985 result of Stromquist and Woodall [30] saying
roughly, that if we have n valuation measures of an interval A, and we want to divide A

into two shares whose values – with respect to each of the n measures – are in some given
ratio α : 1 − α (for α ∈ (0, 1)), then it’s possible to divide up the interval using at most 2n

cut points, so that the pieces can indeed be allocated to the two shares to get the desired
outcome. This is what we mean by consensus division: if each valuation measure comes from
a separate agent, then the objective is to split up a resource (the interval) in such a way that
all agents agree on the values of the partition. We call this problem imbalanced-consensus-
division. What is the complexity of computing such a partition of the interval? This problem
generalizes consensus-halving (discussed in more detail in Section 1.2), the special case when
α = 1/2. In this case of α = 1/2, just n cuts suffice to find a solution, and the problem of
computing a suitable set of n cuts was recently shown to be PPA-complete [16, 17, 12, 10]
(the latter paper shows PPA-hardness even for additive-constant approximation). That gives
the consensus-halving problem a novel complexity-theoretic status and also indicates that it
is highly unlikely to be solvable in polynomial time.

A closely related problem is Consensus-k-Division, which also generalizes consensus-
halving (k = 2) and has been studied in recent works [19, 18] due to its connection to PPA-k.
Consensus-k-Division is the problem of splitting the interval into k ≥ 2 shares all of the
equal value with respect to all measures. We study the connection between Consensus-
k-Division and our model. In one direction, several results in our paper are based on
existing results of Consensus-k-Division (Theorems 10, 11); in the other direction, we
show a novel complexity result for Consensus-k-Division itself as a by-product of studying
imbalanced-consensus-division (Corollary 15).

We also define imbalanced-necklace-splitting as a generalization of the necklace-splitting
problem [3, 1], which could be taken as a discrete version of consensus-halving. The
equivalence between necklace-splitting and consensus-halving (with inverse-polynomial ap-
proximation) [16] can be generalized to our imbalanced variant (Theorem 3). We focus
on imbalanced-consensus-division in this paper, while all our results can be extended to
imbalanced-necklace-splitting via Theorem 3.

1.1 Our Contribution

On the combinatorial (as opposed to computational) side, we obtain more detailed bounds
on the number of cuts that may be needed in the worst case for rational ratio α. Recall that
Stromquist and Woodall [30] showed a general upper bound of 2n cuts for any ratio, and
proved the tightness of this bound for all irrational α. A series of instances are constructed
in Section 3 which provides the lower bound.

▶ Informal Theorem 1. For any rational ratio α = ℓ/k ∈ (0, 1), roughly 2(k−1)
k · n cuts are

needed in the worst case.

A visualization of the lower bound is in Figure 1. We believe our lower bound for any
rational ratio is tight.

1 Also called the Riemann Function, see https://en.wikipedia.org/wiki/Thomae%27s_function

https://en.wikipedia.org/wiki/Thomae%27s_function
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Figure 1 Lower bounds for all rationals with denominators smaller than 50. Constant terms are
ignored. This plot is identical to turning Thomae’s function upside down1.

In Section 4, we generalize the existence proof of [30] and build a reduction to the
Consensus-k-Division problem for some specific choices of α and k. We, therefore, improve
the previous general upper bound of 2n for any rational α.

▶ Informal Theorem 2. For a large subset Q∗ of rationals α = ℓ/k (formally specified in
Section 4), 2(k−1)

k · n cuts are enough in the worst case; for any other rational ratios, there
is an upper bound strictly smaller than 2n by a gap linear in n.

Notice that the bound for any rationals in set Q∗ is almost tight.
▶ Remark. Stromquist and Woodall [30] also showed a lower bound of 2n − 2 cuts for some
rational α and n. We clarify that their lower bounds for any rational α only work for
constant-size n (depending on α). In our paper, we treat ratio α as a fixed constant and all
the bounds are asymptotic in n. Our upper bound shows that for any rational ratio α, it is
impossible to require 2n − 2 cuts in the worst case for arbitrarily large n.

On the computational side, the reduction to Consensus-k-Division also reveals an
interesting connection with the complexity classes PPA-k. The most commonly studied
setting is that the minimum number of cuts (as a function of n and α) is given to make the
solution always exists, i.e., to make the problem a total problem. We study the complexity
in this setting for rationals in set Q∗, since we know the tight bound for them.

▶ Informal Theorem 3. For a large subset Q∗ of rationals α = ℓ/k, finding a solution using
2(k−1)

k · n cuts lies in PPA-k under Turing reductions. In particular, if k = pr for a prime p,
the problem lies in PPA-p.

When more cuts are allowed, the problem should become easier. Here we show that as
more cuts are allowed, the problem is contained in more and more of the complexity classes
PPA-p.

▶ Informal Theorem 4. For any α ∈ (0, 1) and any prime p, finding an inverse-polynomial
approximate solution using 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts is in PPA-p.

For example, solving consensus-halving (α = 1/2) with 8n cuts is in PPA-3. This fills
the blank of previous results in an intriguing way: on the one side, consensus-halving
(with inverse-polynomial approximation) remains PPA-complete for n + n1−δ cuts for any
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small constant δ [15, 18]; on the other side, Alon and Graur [2] showed that finding an
inverse-polynomial approximate solution with O(n log n) cuts is in P. Also, these are the
first natural2 problems in the intersection of multiple PPA-p classes.

Our results also yield further PPA-p containment for Consensus-k-Division as extra
cuts are allowed.

▶ Informal Theorem 5. For any prime p, solving Consensus-k-Division with 2(k − 1) ·
(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts with inverse-polynomial error lies in PPA-p.

In Section 5, we study the hardest setting, i.e., a solution with a minimal number of cuts
for each instance is required. Notice that this problem may not be a TFNP problem anymore
since there is no easy way to verify whether a solution does use a minimal number of cuts.

▶ Informal Theorem 6. For any α ∈ (0, 1), finding a solution using the minimum number
of cuts is NP-hard.

1.2 Background, Related Work
We have mentioned consensus-halving as an important special case of the problem of interest
in the present paper. Consensus-halving is the computational analog of the Hobby-Rice
theorem [22]. It was shown to be PPA-complete in [16]; this result was subsequently
strengthened to apply to the (two-thief) necklace-splitting problem [17]. (Necklace-splitting
is a discretized version of consensus-halving, and the extension to necklace-splitting required
PPA-hardness for inverse-polynomial additive error in the values of the two shares). This line
of work on PPA-completeness also highlights the close connection of the problem with the
ham-sandwich theorem from topology, as well as the Borsuk-Ulam theorem. Further work
has extended this to showing PPA-completeness even for simple measures (unions of uniform
distributions over just two sub-intervals). But at present, little is known about how much it
helps if we allow ourselves more than n cuts. Consensus-k-Division is another natural
generalization of consensus-halving, consisting of consensus division into k ≥ 2 shares, all of
equal value. Alon [1] identified the number of cuts needed to achieve this (namely (k − 1)n),
in the context of the necklace-splitting problem, and its computational complexity is recently
studied in [19], in which context the classes PPA-k are also important.

Goldberg et al. [20] and Segal-Halev [28] study versions of consensus-division where
the “cake” being partitioned is not a line segment, but an unordered collection of items on
which the agents have diverse valuations. Deligkas, Filos-Ratsikas, and Hollender [13] study
consensus-halving with a constant number of agents and more general valuation functions.
The complexity of computing the exact solution of consensus-halving is considered in Deligkas
et al. [11] and Batziou, Hansen, and Høgh [6].

Most of the literature on cake-cutting is about the search for a fair division into pieces
that get allocated to the agents (such that, for example, no agent values someone else’s pieces
more than his own), as opposed to consensus division, as considered here. In the context
of fair division, there is an “arbitrary proportions” analog to the problem studied in this
paper: Segal-Halevi [27] and Crew et al. [9] have studied an analogous generalization of fair
division in which each agent has a (non-negative fractional) claim on the cake, all claims
summing to 1. In common with consensus division, it is found that in the more general
case of unequal proportions, more cuts may be required than in the special case of equal
proportions. Segal-Halevi shows via a simple construction that 2n − 2 cuts may be required
(when proportions are equal, it is known that n − 1 are sufficient).

2 By natural we mean there is no explicit circuit in the input of the problem.
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There is a similar recent interest in considering unequal (or weighted) sharing, in the
context of indivisible items. Here, envy-freeness is unachievable in general, and instead one
considers envy-freeness subject to being able to remove a small number of items. This work
addresses the performance of standard algorithms such as round-robin picking sequences,
and whether various desiderata can be satisfied [5, 7, 8, 4].

2 Preliminaries

In this section, we give detailed definitions of the problem and complexity classes of interest
here.

The Consensus-Halving problem involves a set of n agents each of whom has a valuation
function on a 1-dimensional line segment A (here we set A to be the unit interval [0, 1]).
Consider the problem of selecting k “cut points” in A that partition A into k + 1 pieces,
then label each piece either “positive” or “negative” in such a way that each agent values
the positive pieces equally to the negative ones. In 2003, Simmons and Su [29] showed that
this can always be done for k = n; their proof applies the Borsuk-Ulam theorem and is a
proof of existence analogous to Nash’s famous existence proof of equilibrium points of games,
proved using Brouwer’s or Kakutani’s fixed point theorem. Significantly, Borsuk-Ulam is
the undirected version of Brouwer, and already from [25] we know that it relates to PPA.
The Consensus-Halving problem was shown to be PPA-complete in [16]. As detailed in
Definition 1, we assume that valuations are presented as step functions using the logarithmic
cost model of numbers.

Consensus-splitting in an arbitrary ratio α : 1 − α is one of the open problems raised
in [29]. Clearly, a single cut suffices for n = 1, and for n = 2 it remains the case that 2 cuts
suffice (to see this, assume by rescaling so that agent 1’s distribution is uniform, and consider
sliding an interval of length α along the unit interval, keeping track of agent 2’s value for the
interval). For n > 2, things get more complicated. For any real number α ∈ [0, 1], we define
the following variant of the Consensus-Halving problem.

▶ Definition 1 (α-Imbalanced-Consensus-Division, α-ICD). Input: ε > 0 and n

continuous probability measures µ1, . . . , µn on [0, 1], representing the valuation function of
each agent. We assume the probability measures are presented as piecewise constant functions
on [0, 1], i.e., step functions (explicitly given in the input).

Output: A partition of the unit interval into two (not necessarily connected) subsets A+
and A−, such that for any i ∈ [n], we have |µi (A+) − α| ≤ ε.

It is easy to see that α-ICD is equivalent to (1 − α)-ICD. Definition 1 is not quite complete,
since we care about the number of cuts needed to make the partition, which in general is
dependent on α. The most commonly studied setting is when the number of cuts allowed,
which is a function of n and α in our case, is minimal to make the problem a total problem,
i.e., the solution always exists. Without further specification, we solve α-ICD in this setting.
We also study the cases where more or fewer cuts are available in this paper, in which the
number of cuts will be specified explicitly.

As noted in [31], piecewise-constant functions have been used in various previous works
on cake-cutting and can approximate natural real-valued functions. Another advantage
of piecewise-constant functions is that by the same argument as Theorem 5.2 of [14], an
exact solution (ε = 0) of α-ICD with rational α could be efficiently calculated from an
approximated solution with inverse-exponential ε. Most of our results could be extended to
additive valuation function under inverse-polynomial approximation.
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In this paper, we describe each piecewise-constant function by a set of value blocks. Each
value block represents an interval on which the valuation function takes a constant value.
Naturally, the total weights of value blocks add up to one for each agent.

If a subinterval of the partition belongs to A+ or A−, we say it has the label “+” or “−”
respectively. We assume the label of each subinterval alternates after each cut without loss
of generality (two consecutive subintervals having the same label can be merged).

We similarly define α-Imbalanced-Necklace-Splitting (α-INS) problem for any
rational α.

▶ Definition 2 (α-Imbalanced-Necklace-Splitting, α-INS). Input: An open necklace
with t beads, each of which has one of n colors. There are ai beads of color i, where
ai, α · ai ∈ N for any i ∈ [n].

Output: A partition of the necklace into two (not necessarily connected) pieces A+ and
A−, such that for any i ∈ [n], piece A+ contains exactly α · ai beads of color i.

▶ Theorem 3 (Essentially from Section 6 of [16]). For any rational α, there is a many-to-one
reduction from α-INS to α-ICD, and vice versa. Moreover, the reductions in both directions
preserve the number of agents/colors and the number of cuts.

The complexity classes PPA-k are defined as follows [25, 23]. For any integer k ≥ 2,
PPA-k is the set of problems reducible in polynomial time to the problem Bipartite-mod-k:

▶ Definition 4 (the problem Bipartite-mod-k). We are given a bipartite graph on the
vertices (0 × {0, 1}n, 1 × {0, 1}n represented concisely via a circuit C, that given as input a
vertex in 0 × {0, 1}n, outputs a set of ≤ k potential neighbours in 1 × {0, 1}n, and vice versa.
An edge (u, v) is present provided that v is one of the potential neighbors of u, and vice versa.
Suppose that the number of neighbours of 0n+1 lies in {1, 2, . . . , k − 1}. A solution consists
of some other vertex having a degree in {1, 2, . . . , k − 1}.

The existence of at least one solution to any instance of Bipartite-mod-k follows from a
modulo-k counting argument. In the case of k = 2 we have complexity class PPA, in which
the corresponding problem is called Leaf, consisting of a concisely-represented undirected
graph of degree ≤ 2, in which the all-zeroes vector is a leaf (a degree-1 vertex), and the
problem is the find another leaf of the graph. PPA-p is closed under Turing reductions for
any prime p, while PPA-k for general k (except for prime or power of prime) is believed to
be not closed under Turing reductions [23, 21].

3 Lower Bound

We assume that all fractions discussed in this paper are written down as rational numbers
ℓ/k, where ℓ, k are coprime and ℓ < k.

▶ Theorem 5 (Lower Bound). For any rational number α = ℓ/k ∈ [0, 1], 2(k−1)
k · n − O(1)

cuts are necessary (in the worst case) for an exact solution of α-ICD with n agents.

▶ Remark. The O(1) term in the lower bound is bounded by k, the denominator of α.
Before introducing the construction of α-ICD instances establishing this lower bound,

Lemmas (6,7) identify two simple properties of fractions. Their proofs are left in Appendix A.
Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two fractions. We say α1 and α2 are adjacent

if ℓ2 · k1 − ℓ1 · k2 = 1.

▶ Lemma 6. Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two adjacent fractions. For any
fraction α := ℓ/k, α ∈ (α1, α2), we have k ≥ k1 + k2.
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▶ Remark. It’s easy to verify that by taking α := (ℓ1 + ℓ2)/(k1 + k2), we have α ∈ (α1, α2),
and α is adjacent to both α1, α2.

▶ Lemma 7. Given a fraction α := ℓ/k, k ≥ 2, let (α1, α2) be the smallest interval satisfying
that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. Then
1. α1 and α2 are adjacent;
2. ℓ = ℓ1 + ℓ2, k = k1 + k2;
3. α is adjacent to both α1, α2.

▶ Corollary 8. Define set Qk := {a/b ∈ [0, 1] : a, b coprime, b ≤ k}, i.e., all the fractions in
[0, 1] with denominator smaller than or equal to k.

When elements in Qk are listed in increasing order, every two consecutive elements are
adjacent.

Now we are ready to introduce the construction of the α-ICD instances matching the
bound.

Proof of Theorem 5. We first fix a rational number α := ℓ/k. Let (α1, α2) be the smallest
interval satisfying that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. (So,
Lemma 7 applies.)

We construct an α-ICD instance with k1 + k2 agents, partitioned into two types:
Type-1 There are k1 type-1 agents. A type-1 agent has k2 value blocks with 1/k2 weight

each;
Type-2 There are k2 type-2 agents. A type-2 agent has k1 value blocks with 1/k1 weight

each.

There are in total 2k1 ·k2 value blocks, half of which belong to type-1 agents and the other
half to type-2 agents. The arrangement of these value blocks is specified by the following
rules, see Figure 2 for a visualization:

all the value blocks are disjoint;
all the value blocks from the i-th type-1 (respectively, type-2) agent are on the left of any
value blocks from the (i + 1)-th type-1 (respectively, type-2) agent;
from left to right, the value blocks from type-1 and type-2 agents occur in turn; the first
block comes from the first type-2 agent.

1/2 1/2 1/2 1/2 1/2 1/2
Type-1:

Type-2:
1/3 1/3 1/3 1/3 1/3 1/3

Figure 2 The arrangement of value blocks in a (2/5)-ICD instance. There are three type-1 agents
and two type-2 agents. Each color corresponds to a different agent. Note that α1 = 1/3 < 2/5 <

1/2 = α2.

To lower-bound the number of cuts needed for this instance, we start with the following
observations, recalling that A+ is supposed to have measure α:

▶ Observation 9.
1. For each type-1 agent, at most ℓ2 − 1 of its value blocks are entirely included in the set

A+. Otherwise, the set A+ will contain at least ℓ2/k2 = α2 fraction of measure for that
agent, which is strictly greater than α.
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2. For each type-2 agent, at least ℓ1 + 1 of its value blocks have positive measure in the set
A+. Otherwise, the set A+ will contain at most ℓ1/k1 = α1 fraction of measure for that
agent, which is strictly smaller than α.

Now assuming in a valid solution, there are t intervals labeled with “+”, denoted by
I1, . . . , It. For each i ∈ [t] define ai to be the number of value blocks from type-2 agents that
are intersected with the i-th interval Ii. Then from our construction, it follows that there are
at least ai − 1 of value blocks from type-1 agents that are entirely included in the interval Ii.

We have the following constraints regarding the observation above:

t∑
i=1

max{ai − 1, 0} ≤ (ℓ2 − 1) · k1; (1)

t∑
i=1

ai ≥ (ℓ1 + 1) · k2, (2)

where the LHS of inequality (1) lower-bounds the total number of value blocks from type-1
agents that are entirely included in the set A+; the LHS of the inequality (2) is the total
number of value blocks from type-2 agents that are intersected with the set A+.

Reformulating inequality (1) as

t∑
i=1

ai ≤
t∑

i=1
max{ai − 1, 0} + t ≤ (ℓ2 − 1) · k1 + t,

and combining it with inequality (2), we know that both inequalities could be satisfied only
when

t ≥ (ℓ1 + 1) · k2 − (ℓ2 − 1) · k1 = k1 + k2 − 1 = k − 1,

where the last two equalities come from Lemma 7. Notice that k − 1 intervals need at least
2(k − 1) − 2 cuts to separate them. Therefore, we prove that this α-ICD instance, which has
k1 + k2 = k agents, needs at least 2(k − 1) − 2 cuts.

We prove the lower bound for arbitrary n by first copying the instance above for c = ⌊n/k⌋
times. The first value block of the next copy is on the right of the last value block of the
previous copy. By a similar argument, this new instance needs at least c · t intervals labeled
with “+”. Thus, 2 · c · t − 2 = 2c · (k − 1) − 2 cuts are needed for these c copies with c · k

agents. Finally, inserting n − c · k dummy agents with non-overlapping value blocks if k is
not a factor of n. Each dummy agent needs at least one cut and the total number of cuts
needed are

2c · (k − 1) − 2 + (n − c · k) ≥ 2(k − 1)
k

· n − k .

This concludes the lower bound for any rational number α. ◀

▶ Remark. The proof suggests that the lower bound also applies to the ε-approximate
version of α-ICD with rational α for a sufficiently small constant ε. Precisely, let (α1, α2)
be the smallest interval satisfying that α ∈ (α1, α2) and k1, k2 < k, where k, k1, k2 are
the denominators of α, α1, α2 respectively. The lower bound still holds as long as ε <

min{α − α1, α2 − α}.
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4 Upper Bound and Implications on Complexity

We generalize the technique from [30] to improve the upper bounds for rational ratios α.
We define the set Q∗ ⊂ [0, 1] by the following generating rules:

1. 0, 1 ∈ Q∗;
2. If ℓ

k ∈ Q∗, then for any prime p that is not a factor of ℓ, we have ℓ
k·p , 1 − ℓ

k·p ∈ Q∗.

Notice that if k is prime, ℓ/k belongs to Q∗ only when ℓ ∈ {1, k − 1}. For other values of
k, there are still usually some fractions ℓ/k missing from Q∗, for example, 4/9.

We show an upper bound for the set of ratios α in Q∗ that differs from the corresponding
lower bound of Theorem 5 by at most k. For any other rational number α, we give an upper
bound that is smaller than 2n by a margin linear in n and thus separate the case of rational
and irrational numbers α.

▶ Theorem 10 (Upper Bound). For getting an exact solution of an α-ICD instance with n

agents,
1. if α is rational and α = ℓ/k ∈ Q∗, 2(k−1)

k · n cuts are always sufficient;
2. if α is rational and α /∈ Q∗, there is a constant cα > 0 such that (2 − cα) · n cuts are

always sufficient;
3. if α is irrational, 2n cuts are always sufficient.

Proof. Since [30] provided a general upper bound of 2n cuts for α-ICD with any ratio
α ∈ [0, 1], it remains to consider the case with rational α.

For technical simplicity, we assume the measure function is defined on the circle S1,
parameterized by [0, 1] where the points 0 and 1 are identified as the same point. Any
solution to the α-ICD defined on S1 is also a valid solution to the corresponding α-ICD
defined on the interval [0, 1]. Thus, any upper bound for the S1 case is also valid for the
interval case.

Case 1: α ∈ Q∗.

We proceed by induction following the generating rule of Q∗.
Base Case: 0 cuts are needed when α = 0 or α = 1.
Induction Step: Assume we already have that for α = ℓ

k ∈ Q∗, 2(k−1)
k · n cuts are enough.

In other words, there is a solution with at most k−1
k · n intervals of “+” label.

For any prime p that is not a factor of ℓ, let α′ = ℓ
k·p . To get a solution for the α′-ICD

instance, we first get a solution for the α-ICD with the same set of measure functions. We
then solve the Consensus-p-Division problem, which uses (p − 1) · n cuts, on the intervals
with “+” labels in the first step.

Now, k−1
k · n intervals of “+” label are divided into ( k−1

k + p − 1) · n intervals with label
+1, . . . , +p. Intervals of each label take α/p = α′ fraction of measure and thus correspond to
a possible solution for the α′-ICD instance. By averaging principle, there must be a label +i

that labels at most (( k−1
k + p − 1) · n)/p intervals. Observing that

((k − 1
k

+ p − 1) · n)/p = (k − 1) + (p − 1) · k

k · p
· n = k · p − 1

k · p
· n,

there is a solution to the α′-ICD instance using at most 2(k·p−1)
k·p · n cuts (two cuts for each

interval with label +i). Finally, (1 − α′)-ICD is equivalent to α′-ICD. This concludes the
proof for any ratio α in the set Q∗.
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Case 2: α /∈ Q∗.

Let α1 = α = ℓ1/k1 /∈ Q∗. We recursively generate a sequence of ratios as follows:
1. take αi = (ki−1 mod ℓi−1)/ki−1; let ℓi and ki be the numerator and the denominator of

αi in the simplest term;
2. if αi ∈ Q∗, take t = i and stop this process.

Since ℓi < ℓi−1, the process above will stop in finite steps. We now prove by induction in
the reverse order of index i.

Base Case: Since αt ∈ Q∗, there is a constant cαt = 2/kt > 0 such that (2 − cαt) · n cuts
are always sufficient for αt-ICD.

Induction Step: Assume we already know that (2 − cαi) · n cuts are always sufficient for
αi-ICD with a constant cαi

> 0. The same constant also holds for (1 − αi)-ICD.
Notice that 1 − αi = (ki − ℓi)/ki = (d · ℓi−1)/ki−1 for some positive integer d. Therefore,

αi−1-ICD could be solved by first finding a solution of the (1 − αi)-ICD instance with the
same set of measure functions, and then solving the Consensus-d-Division problem on the
previous solution set.

We use a similar argument in case 1 to count the number of cuts needed. The intervals
labeled with “+” in the solution of (1 − αi)-ICD is (1 − cαi/2) · n. Solving Consensus-d-
Division incurs (d − 1) · n cuts and divides the previous solution set into (d − cαi

/2) · n

intervals, with labels ranging from +1, . . . , +d. Each label corresponds to a valid solution
for αi−1-ICD, and there must be a label +i that labels at most (1 − cαi

/2d) · n intervals.
Therefore, there is a constant cαi−1 = cαi

/d > 0 such that (2 − cαi−1) · n cuts are always
sufficient for αi−1-ICD. ◀

The proof of Theorem 10 is essentially a reduction from α-ICD to Consensus-k-Division,
and we thus derive several results on the complexity of α-ICD.

▶ Theorem 11. For any α = ℓ/k ∈ Q∗, k ≥ 2, solving exact α-ICD with ⌊ 2(k−1)
k · n⌋ cuts is

in PPA-k under Turing reductions. In particular, if k = pr for a prime p, the problem lies in
PPA-p.

Proof. Let k = pr1
1 pr2

2 . . . prt
t , where each pi is prime and ri ≥ 1. In the proof of Theorem 10,

α-ICD is solved by calling r1 times of Consensus-p1-Division, r2 times of Consensus-p2-
Division, . . . , rt times of Consensus-pt-Division in a specific order.

The exact Consensus-p-Division problem is in the class PPA-p for any prime p [19].
PPA-p is a subset of PPA-q if p is a factor of q [23, 21], so we can deduce that solving exact
α-ICD with ⌊ 2(k−1)

k · n⌋ cuts lies in PPA-k under Turing reductions.
In particular, when k = pr for a prime p, PPA-k is equal to PPA-p and PPA-p is closed

under Turing reductions [23, 21]. ◀

We also consider the complexity of α-ICD when there are more available cuts than
necessary.

▶ Theorem 12. For any prime p and any ratio α ∈ [0, 1], solving α-ICD for inverse-
polynomial approximation error ε with 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts lies in PPA-p.

Fixing a prime p, for any ratio α, our plan is to find a ratio α′ = ℓ′/pm such that
|α − α′| ≤ 1/n, and showing that solving exact α′-ICD is in PPA-p. By definition 1, the
exact solution for an α′-ICD instance is also a (1/n)-approximate solution for the α-ICD
instance with the same set of measure functions. The choice of m will be specified later.
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To this end, we define a sequence of m + 1 sets Q0
p, Q1

p, . . . , Qm
p ⊂ [0, 1] as follows:

1. Q0
p = {0, 1};

2. if α ∈ Qi
p, we have α, ⌈p/2⌉

p · α and 1 − ⌈p/2⌉
p · α in the set Qi+1

p .

We now present two lemmas on the properties of sets Q0
p, Q1

p, . . . , Qm
p .

▶ Lemma 13. For any α ∈ Qt
p, t ∈ [m], an α-ICD instance with n agents can be solved exactly

by calling Consensus-p-Division at most t times, while using at most 2(p − 1) · ⌈p/2⌉
⌊p/2⌋ · n

cuts.

Proof. We prove our claim by an induction argument on t, which is similar to case 1 of
Theorem 10.

Base Case: When α ∈ {0, 1}, α-ICD is trivial.
Induction Step: Now assume α ∈ Qt−1

p and we have an exact solution of α-ICD by calling
at most t − 1 times of Consensus-p-Division and using at most 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts. By
definition, we also have α ∈ Qt

p.
Let α′ = ⌈p/2⌉

p · α. We apply Consensus-p-Division to the intervals with “+” label in
the solution of α-ICD, which results in p labels {+1, . . . , +p}, and each of them corresponds
to a set of intervals that consists of α/p fraction of measure. The total number of intervals
that have one of labels {+1, . . . , +p} are (p − 1) · ⌈p/2⌉

⌊p/2⌋ · n + (p − 1) · n. We can find ⌈p/2⌉
labels (+i1 , . . . , +i⌈p/2⌉) and they correspond to at most(

(p − 1) · ⌈p/2⌉
⌊p/2⌋

· n + (p − 1) · n

)
· ⌈p/2⌉

p
= (p − 1) · ⌈p/2⌉

⌊p/2⌋
· n

intervals. Therefore, we show that α′-ICD can be solved by calling at most t times of
Consensus-p-Division and using at most 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts. The case of (1 − α′)-ICD
also holds by the equivalence. Our claim is now proven. ◀

▶ Lemma 14. Let gi (0 ≤ i ≤ m) to be the size of the largest hole of set Qi
p, formally,

gi = max{d ∈ R : ∃α ∈ [0, 1] s.t. (α − d/2, α + d/2) ∩ Qi
p = ∅} .

Then, there is gi ≤ gi−1 · ⌈p/2⌉
p .

Proof. Since for any α ∈ Qi−1
p , there is ⌈p/2⌉

p · α ∈ Qi
p, the largest hole of Qi

p within interval
[0, ⌈p/2⌉

p ] is at most gi−1 · ⌈p/2⌉
p . On the other hand, α ∈ Qi

p implies 1 − α ∈ Qi
p. Thus, the

largest hole of Qi
p within interval [1 − ⌈p/2⌉

p , 1] is also at most gi−1 · ⌈p/2⌉
p . Combining the

two parts, we prove that gi ≤ gi−1 · ⌈p/2⌉
p . ◀

Proof of Theorem 12. Notice that ⌈p/2⌉
p ≤ 2/3 for any prime p. By taking m = 2 log2 n,

for any ratio α ∈ [0, 1], there exists α′ ∈ Qm
p such that |α − α′| ≤ 1/n by Lemma 14. We

also have |Qm
p | ≤ 2 · 3m ≤ O(n4), which means that we can calculate the whole set Qm

p and
remember how each value in Qm

p is generated. Thus, we can find α′ and know how to reduce
α′-ICD to m times of calling Consensus-p-Division in polynomial time. Again, using the
fact Consensus-p-Division is in the class PPA-p for any prime p [19] and PPA-p is closed
under Turing reductions [23, 21], we get solving exact α′-ICD with 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts
lies in PPA-p.

Finally, the exact solution of α′-ICD is also an inverse-polynomial approximated solution
for α-ICD, which completes our proof. ◀
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▶ Corollary 15. For any prime p, solving Consensus-k-Division for inverse-polynomial ε

with 2(k − 1) · (p − 1) · ⌈p/2⌉
⌊p/2⌋ · n cuts lies in PPA-p.

Proof. Consensus-k-Division can be solved by calling α-ICD k − 1 times such that we
carve out 1/k fraction in each time.

Formally, in the i-th (i ∈ [k − 1]) step,
1. we first rescale every measure function to weight 1;
2. we then solve (1/(k − i + 1))-ICD on these measure functions and mark intervals in the

set A+ (from the solution of (1/(k − i + 1))-ICD) with label i;
3. finally, we set the function value in A+ to be zero for all measure functions.
In the k-th step, we mark all the remaining intervals with the label k. The approximation
error for solving each α-ICD instance will add up linearly. The overall approximation error of
Consensus-k-Division is still inverse-polynomial if the error of solving each α-ICD instance
is also inverse-polynomial. By Theorem 12, we conclude that solving Consensus-k-Division
with 2(k − 1) · (p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts lies in PPA-p. ◀

5 NP-Hardness for the Exact Number of Cuts

The lower bound and upper bound results in Theorems 5 and 10 focus on the worst-case
scenario. In practice, the number of cuts needed for a specific instance could be much fewer
than the bound, and a solution with the minimum number of cuts would be preferred. In
this section, we show that it’s hard to decide the minimum number of cuts needed for a given
α-ICD instance, which also implies finding such a solution is hard.

▶ Theorem 16. For any α ∈ (0, 1), deciding the minimum number of cuts needed for a given
α-ICD instance is NP-hard.

Filos-Ratsikas et al. [15] show that deciding whether a Consensus-Halving instance
with n agents has a solution using n − 1 cuts is NP-complete. Therefore, we only need to
consider the case for α < 1/2.

We reduce the Exactly-1-3Sat problem to α-ICD for any α < 1/2. Exactly-1-3Sat
is a variant of 3SAT where the problem is to determine whether there exists a satisfying
assignment such that exactly one literal in each clause is true, instead of at least one as in
ordinary 3SAT. The NP-completeness of Exactly-1-3Sat is first shown in [26] as a special
case of Schaefer’s Dichotomy Theorem.

Suppose the given Exactly-1-3Sat instance ϕ has N variables x1, . . . , xN and M

clauses c1, . . . , cM . Let k be an integer such that α ∈ [1/(k + 1), 1/k). The α-ICD instance
constructed is based on the construction in Section 3 for the lower bound, but has two more
types of agents representing variables and clauses.

Type-1 agent

There are N type-1 agents and each of them has 2k value blocks with 1/2k weight each.
All the value blocks of type-1 agents are evenly spaced from left to right. Formally, the

j-th block of i-th type-1 agent locates at interval [T1(i, j), T1(i, j) + 1], where

T1(i, j) = (3M + 3) · ((i − 1) · 2k + (j − 1)) .
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Type-2 agent

There are N · k − 1 type-2 agents and each of them has a single value block of weight 1.
The value block of the i-th type-2 agent is placed between the 2i-th and the (2i + 1)-

th blocks among all N · 2k blocks from type-1 agents. More specifically, it locates at
[T2(i), T2(i) + 1], where T2(i) = (3M + 4) + (i − 1) · (6M + 6).

Variable agent

There are N variable agents and each of them has five value blocks. The first four blocks
weigh α/2 each, and the last block weighs 1 − 2α.

The first two blocks of i-th variable agent are located at

[T1(i, 1) + 1, T1(i, 1) + 2], [T1(i, 1) + 3M + 2, T1(i, 1) + 3M + 3]

respectively, both of which are between the first two blocks of the i-th type-1 agent; the next
pair of blocks are placed between the third and the fourth blocks of the i-th type-1 agent,
that are

[T1(i, 3) + 1, T1(i, 3) + 2], [T1(i, 3) + 3M + 2, T1(i, 3) + 3M + 3]

respectively.
The last block is located at [T1(N, 2k) + i, T1(N, 2k) + i + 1], which is on the right of any

blocks of type-1 agents.
Define intervals

Iv
i,0 := [T1(i, 1) + 1, T1(i, 1) + 3M + 3] and Iv

i,1 := [T1(i, 3) + 1, T1(i, 3) + 3M + 3],

where Iv
i,0 covers the first two blocks, and Iv

i,1 covers the next two blocks. By definition,
Iv

i,0, Iv
i,1 are between the first two and the next two blocks of the i-th type-1 agents respectively.

Roughly speaking, only one of Iv
i,0, Iv

i,1 would be labeled with “+”, which corresponds to the
value of variable xi taking 0 or 1.

Clause agent

There are M clause agents and each of them has four value blocks. If α ≥ 1/3, the first three
blocks have weight (1 − α)/2 each and the last block has weight (3α − 1)/2; otherwise, the
first three blocks have weight α each and the last block has weight 1 − 3α.

Assuming the j-th (j ≤ 3) literal of clause ci is xk or ¬xk, let ℓi,j = 1 if it’s xk and
ℓi,j = 0 if it’s ¬xk. The j-th block of the i-th clause agent is then placed at

[Tc(i, j, k, ℓi,j), Tc(i, j, k, ℓi,j) + 1] ∈ Iv
k,ℓi,j

,

where

Tc(i, j, k, ℓ) = T1(k, 1 + 2ℓ) + 2 + (j − 1) · M + i − 1, for ℓ ∈ {0, 1} .

If α ≥ 1/3, the last block of i-th clause agent is located in [T2(2) + i, T2(2) + i + 1],
which is next to the value block of the second type-2 agent; otherwise, it is located in
[T1(N, 2k) + N + i, T1(N, 2k) + N + i + 1], which is on the right of any blocks from type-1
agents.
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Figure 3 An incomplete view of value blocks in an α-ICD instance with α < 1/3. Each color
corresponds to a different agent. The clause agent in dark blue has ¬xi as one of its literals. The
two black dashed lines represent possible locations of cuts that satisfy xi = 0. The scale of each
interval is not preserved.

Analysis

We first ignore all the variable agents and clause agents.

▶ Lemma 17. At least 2 · (N · k − 1) cuts are needed if only type-1 and type-2 agents are
considered. Also, such a solution must satisfy the following conditions,
1. there are exactly (N · k − 1) intervals labeled with “+”, denoted by I+

1 , . . . , I+
N ·k−1 from

left to right. The length of [T2(i), T2(i) + 1] ∩ I+
i is exactly α for any i.

2. the first and the last interval are labeled with “−”;
3. for any i ∈ [N ], at most one of intervals Iv

i,0, Iv
i,1 could possibly have intersection with

“+” labeled intervals.

Proof. Similar to the proof of Theorem 5, notice that each block from type-2 agents is
separated by two blocks of type-1 agents, and the sum of their weight is 1/k > α. Thus, each
“+” labeled interval could only intersect with at most one type-2 agent; also, if a “+” labeled
interval intersects with any type-2 agent, it can not be the first or the last interval in the
solution.

Since each type-2 agent should be intersected with at least one “+” labeled interval,
there are at least (N · k − 1) intervals labeled with “+”, and those intervals need at least
2 · (N · k − 1) cuts. On the other hand, any solution with 2 · (N · k − 1) cuts must satisfy
conditions 1 and 2 by our discussion above.

For the last condition, if both Iv
i,0, Iv

i,1 are intersected by “+” labeled intervals, then
at least two value blocks of i-th type-1 agent are fully covered with “+” label, which is
impossible since 1/k > α. ◀

Next, we show that the Exactly-1-3Sat instance ϕ is satisfiable if and only if 2·(N ·k−1)
cuts are enough for the whole α-ICD instance, including variable and clause agents.

▶ Lemma 18. If the Exactly-1-3Sat instance ϕ is satisfiable, then 2 · (N · k − 1) cuts are
enough for the α-ICD instance.

Proof. Let (y1, . . . , yN ) be a set of satisfying assignments of ϕ. We construct a valid solution
for the α-ICD instance by specifying each “+” labeled intervals I+

1 , . . . , I+
N ·k−1.

for any i ∈ [N ], if yi = 0, interval I+
(i−1)·k+1 is chosen as

[T1(i, 1) + 2k · ((1/k) − α), T2((i − 1) · k + 1) + α],
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otherwise, it’s set as

[T2((i − 1) · k + 1) + (1 − α), T1(i, 4) + 1 − 2k · ((1/k) − α)];

for any j ≠ (i−1)·k+1 for all i ∈ [N ], interval I+
j is set to be [T2(j)+(1−α), T2(j)+M +1].

Now let’s verify that all types of agents are satisfied by the solution above.

Type-1 For any i ∈ [N ], interval I+
(i−1)·k+1 always covers exactly α fraction of the i-th type-1

agent, and any other “+” labeled intervals have no intersection with the i-th type-1 agent.
Type-2 For any j ∈ [N · k − 1], interval I+

j covers exactly α fraction of the j-th type-2 agent,
and any other “+” labeled intervals have no intersection with the j-th type-2 agent.

Variable For any i ∈ [N ], interval I+
(i−1)·k+1 always covers one of the Iv

i,0, Iv
i,1, and has no

intersection with the other one. Thus, exactly two blocks of weight α/2 from the i-th
variable agent are covered with the label “+”. The last block is always not covered.

Clause For any j ∈ [M ], exactly one of the first three blocks of the j-th clause agent is
covered, since (y1, . . . , yN ) is a set of satisfying assignment of ϕ. If α ≥ 1/3, the last
block is covered by I+

2 ; if α < 1/3, the last block is not covered. In both cases, exactly α

fraction of the j-th clause agents are covered by “+” label. ◀

In the reverse direction, we have the following characterization for any valid solution with
2 · (N · k − 1) cuts.

▶ Lemma 19. If there is a valid solution to the α-ICD instance with 2 · (N · k − 1) cuts, then
1. for any i ∈ [N ], exactly one of the Iv

i,0, Iv
i,1 is fully covered with label “+”, while the other

one is fully covered with label “−” ;
2. for any i ∈ [M ], exactly one of the first three value blocks of the clause agent i is fully

covered with the label “+”, while the other two are fully covered with the label “−”.

Proof. By the second condition in Lemma 17, we know that the last block of any variable
agents will not be covered by the “+” label. Then by the third condition in Lemma 17, we
know that the i-th variable agent could be satisfied only when one of the Iv

i,0, Iv
i,1 is fully

covered with the label “+”. This concludes our first statement.
Any one of the first three value blocks of the clause agent i would be either fully covered

with the label “+”, or fully covered with the label “−”. given by the first statement.
When α < 1/3, exactly one of the first three blocks should be fully covered with the label
“+” since the last block will never be covered.
When α ≥ 1/3, at most one of the first three blocks should be fully covered with the
label “+”, since 2 · ((1 − α)/2) > α; also, at least one of the first three blocks should be
fully covered with the label “+”, since the weight of the last block is (3α − 1)/2 < α. ◀

By Lemma 19, we could retrieve a satisfying assignment (y1, . . . , yN ) for the Exactly-1-
3Sat instance ϕ by letting yi = ℓ if interval Iv

i,ℓ is covered with label “+”. Combining with
Lemma 18, we conclude the correctness of our reduction.

6 Future Work

The number of cuts needed for α-ICD

There is still a small gap between our lower bound and upper bound (Theorem 5, 10) for
any rational ratio α that is not in the set Q∗. We believe the lower bound is tight, while the
upper bound could be further improved, e.g., by applying an appropriate Zp variant of the
Borsuk-Ulam theorem.
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Computational complexity

Given the minimal number of cuts that make α-ICD a total problem, we show the connection
of solving α-ICD with the complexity classes PPA-k in Theorem 11 when α is in the set Q∗.
To extend this result to all rational ratios, the same technique which improves the upper
bound may be required. When more cuts than necessary are available, we conjecture that
with 2n cuts, for any ratio α ∈ [0, 1], solving α-ICD will be in the intersection of PPA-p for
all prime p.

Any hardness result for α-ICD would also be of interest. α-ICD seems a promising
candidate to be a natural complete problem of classes PPA-k, while very few natural complete
problems for PPA-k are known [21]. Moreover, α-ICD is closely related to Consensus-k-
Division, as the proof of Theorem 10 builds a reduction from α-ICD to Consensus-k-
Division. The only hardness result currently known for Consensus-k-Division is that
Consensus-3-Division is PPAD-hard, given by [18].
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A Proof of Lemmas 6,7

▶ Lemma 6. Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two adjacent fractions. For any
fraction α := ℓ/k, α ∈ (α1, α2), we have k ≥ k1 + k2.
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Proof.

1
k1 · k2

= ℓ2

k2
− ℓ1

k1
=

( ℓ2

k2
− ℓ

k

)
+

( ℓ

k
− ℓ1

k1

)
≥ 1

k · k2
+ 1

k · k1
= k1 + k2

k · k1 · k2
.

Thus, we have k ≥ k1 + k2. ◀

▶ Lemma 7. Given a fraction α := ℓ/k, k ≥ 2, let (α1, α2) be the smallest interval satisfying
that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. Then
1. α1 and α2 are adjacent;
2. ℓ = ℓ1 + ℓ2, k = k1 + k2;
3. α is adjacent to both α1, α2.

Proof. We first prove the first statement by induction on k.
Base Case k = 2: The numerator ℓ takes value 1 in this case. It’s easy to verify the

correctness as we denote 0, 1 by 0/1, 1/1 respectively.
Now for any k > 2, we prove by contradiction. Assume ℓ2 · k1 − ℓ1 · k2 = t > 1, and

consider the following three cases:
1. k1 < k2: take (α3, α4) as the smallest interval satisfying that α2 ∈ (α3, α4) and α3, α4 have

smaller denominator than that of α2. We know that α3 ≥ α1 since k1, the denominator
of α1, is also smaller than k2. By the induction hypothesis, α2 and α3 are adjacent, while
α1 and α2 are not adjacent, indicating that α3 is strictly larger than α1. Thus, either
(α1, α3) or (α3, α2) contains α, contradicting to the fact that (α1, α2) is the smallest
interval;

2. k1 > k2: this case follows from similar argument as the case of k1 < k2;
3. k1 = k2: since k > 2, we know that k1 > 1 and 0 < ℓ1 < ℓ2 < k1. Take α3 := ℓ1/(k1 − 1),

and it’s easy to verify that α3 ∈ (α1, α2). Thus, either (α1, α3) or (α3, α2) contains α, a
contradiction.

We conclude the first statement by induction. Next, we claim that k = k1 + k2; otherwise,
by the Lemma 6, we must have k > k1 + k2 and either (α1, (ℓ1 + ℓ2)/(k1 + k2)) or ((ℓ1 +
ℓ2)/(k1 + k2), α2) will contain α, which again contradicts to the fact that (α1, α2) is the
smallest interval.

Now, we argue that ℓ = ℓ1 + ℓ2. If ℓ > ℓ1 + ℓ2, then

1
k

≤ ℓ

k
− ℓ1 + ℓ2

k
<

ℓ2

k2
− ℓ1 + ℓ2

k
= 1

k2 · k
,

which is impossible; the case with ℓ < ℓ1 + ℓ2 could be ruled out with same argument.
The third statement follows from statements 1 and 2. ◀
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1 Introduction

Edit distance and Hamming distance are the two most fundamental measures of sequence
similarity. The (unit-cost) edit distance, also known as the Levenshtein distance, of two
strings X and Y is the minimum number of character insertions, deletions, and substitutions
required to convert one string to the other, whereas the Hamming distance allows only
substitutions (requiring |X| = |Y |). From an algorithmic perspective, these two measures
exhibit significantly different time complexity in terms of the input size n = |X|+ |Y |. The
Hamming distance can be computed exactly in linear time O(n), and it admits a randomized
ϵn-additive approximation in time O(ϵ−1), which implies a (1 + ϵ)-approximation in sublinear
time when the distance is not too small. In contrast, assuming the Orthogonal Vectors
Conjecture [32], no O(n2−Ω(1))-time algorithm can compute the edit distance exactly [5].
Recent developments in designing fast approximation algorithms [2, 4, 6, 9, 13, 19, 25]
culminated in an O(1)-approximation in near-linear time [3], but the existence of a truly
subquadratic-time 3-approximation still remains open. Furthermore, despite many efforts [7,
10, 11, 17, 18, 24], the best approximation ratio achievable in sublinear-time ranges from
polylogarithmic to polynomial in n (depending on how large the true edit distance is).

The contrasting complexity landscape between edit and Hamming distance clearly indi-
cates that substitutions are easier to handle than insertions and deletions (abbreviated indels).
Many real-world applications, for instance in computational biology, compare sequences based
on edit distance, but its value is often dominated by the number of substitutions, as indicated
by recent studies [15, 22, 29, 30, 33]. Is it possible to design significantly faster algorithms for
these scenarios with much more substitutions than indels? Such a bridge between Hamming
and edit distances could also provide an explanation for why many heuristics for string
comparison are fast on real-life examples. (For another applied perspective, see [28].)

This motivates our study of a basic variant of the edit distance, denoted EDa, where a
substitution is significantly cheaper than an insertion or a deletion, and its cost is 1

a for a
parameter a ≥ 1. This simple variant bridges unit-cost edit distance (a = 1) and Hamming
distance (a ≥ |X| = |Y |), raising basic algorithmic questions: Does the time complexity
of computing EDa interpolate between Hamming distance (linear time) and edit distance
(quadratic time)? How efficiently can one compute a (1 + ϵ)-approximation of EDa? What
speed-up is feasible as the parameter a grows? We present the first series of results to answer
these questions. As an illustrative example, if an intended application expects about k

indels and k2 substitutions between the two strings, then one should set a = k and use the
(1 + ϵ)-approximation algorithm that we devise, which runs in sublinear time Õ( n

k + poly(k))
for this parameter setting. In contrast, the state-of-the-art sublinear-time algorithm for
unit-cost edit distance [10] only provides an O(polylog k)-factor approximation of the total
number of edits, so it will likely produce an alignment with ω(k2) indels, which blatantly
violates the structure of alignments arising in the considered application.

One can achieve a stricter control on the number of indels and substitutions by imposing
two independent bounds kI and kS on these quantities. Our techniques can be easily adapted
to the underlying problem, which we call the (kI , kS)-alignment problem; in particular, we
obtain a sublinear-time (1, 1 + ϵ)-bicriteria approximation of the combined cost (kI , kS).
For (kI , kS) = (k, k2) as in the example above, the running time of our algorithm is still
Õ( n

k + poly(k)), albeit the poly(k) term is slightly larger.
The weighted edit distance problem and the complementary highest-score alignment

problem are widely used in applications and discussed in multiple textbooks; see e.g. [1, 20, 23].
The simplest version involves two costs (for indels and substitutions, respectively) and, up
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to scaling, is equivalent to EDa. Theoretical analysis usually focuses on the fundamental
unit-cost setting, but many results extend to the setting of constant costs, e.g., they admit
the same conditional lower bound [12] (and these problems are clearly equivalent from the
perspective of logarithmic approximation). We initiate a deeper investigation of how the
costs of edit operations affect the complexity of computing the edit distance (exactly and
approximately); going beyond the regime of a = O(1) reveals the gamut between Levenshtein
distance (a = 1) and Hamming distance (a = n, k < 1), providing a holistic perspective on
these two fundamental metrics.

1.1 Our Contribution
We provide multiple results for both the EDa and (kI , kS)-alignment problems. Even though
these are basic problems that seamlessly bridge the gap between Hamming and edit distances,
surprisingly little is known about them. Throughout, we assume that the algorithms are
given O(1)-time random access to characters of X, Y and know the lengths |X|, |Y |.

Our main results are approximation algorithms, but let us start with exact algorithms
for the two problems. We first observe that a simple adaptation of the approach of Landau
and Vishkin [26, 27] computes EDa(X, Y ) in time O(n + k min(n, ka)), where k ≥ EDa(X, Y ).
In the full version, we then use similar techniques to derive an algorithm for the (kI , kS)-
alignment problem. For convenience, we state these results for decision-only problems; it is
straightforward to accompany every YES answer with a corresponding alignment.

▶ Proposition 1.1. Given two strings X, Y ∈ Σ∗ of total length n, a cost parameter a ∈ Z+,
and a threshold k ∈ R+, one can compute EDa(X, Y ) or report that EDa(X, Y ) > k in
deterministic time O(n + k min(n, ka)).

▶ Proposition 1.2. Given two strings X, Y ∈ Σ∗ of total length n and two integer thresholds
kS , kI > 0, one can decide whether there is a (kI , kS)-alignment or not (report YES or NO)
in deterministic time O(n + kSk2

I ).

The existing n2−Ω(1) lower bounds [5, 12] do not shed light as to whether these running
times are optimal. Interestingly, we strengthen the result of [12] significantly to show that the
bound of Proposition 1.1 is indeed tight for the entire range of parameters a, k ≥ 1, assuming
the Orthogonal Vectors Conjecture [32]. Proving such a lower bound for the bicriteria version
remains open.

Approximation Algorithm for EDa. Our main results are (1 + ϵ)-approximation algorithms
for the EDa and (kI , kS)-alignment problems. Let us first formally state the gap versions
(also known as the promise versions) of these problems.

▶ Problem 1.3 (Approximate Bounded EDa). Given two strings X, Y ∈ Σ∗ of total length n,
a cost parameter a ∈ Z+, a threshold k ∈ R+, and an accuracy parameter ϵ ∈ (0, 1), report
YES if EDa(X, Y ) ≤ k, NO if EDa(X, Y ) > (1 + ϵ)k, and an arbitrary answer otherwise.

▶ Problem 1.4 (Bicriteria Approximation). Given two strings X, Y ∈ Σ∗ of total length n,
two thresholds kI , kS > 0, and two approximation factors α, β ≥ 1, return YES if there
is a (kI , kS)-alignment, NO if there is no (αkI , βkS)-alignment, and an arbitrary answer
otherwise.
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Our aim is to solve the above problems using algorithms whose running time is truly
sublinear for suitable parameter values. This is in stark contrast to unit-cost edit distance,
where state-of-the-art algorithms are far from achieving (1 + ϵ)-approximation in sublinear
time, even for a favorable choice of parameters.1

▶ Theorem 1.5. One can solve Problem 1.3 correctly with high probability within time:
1. Õ( n

ϵ2ak ) if k < 1;
2. Õ( n

ϵ3a + ak3) if 1 ≤ k < n
ϵa ; and

3. O(1) if k ≥ n
ϵa .

Cases 1 and 3 are boundary cases; in the former, there are only substitutions (Hamming
distance), whereas, in the latter, |X| and |Y | must differ significantly when EDa(X, Y ) > k,
which results in a trivial (1 + ϵ)-factor approximation. Our main technical contribution is
Case 2, where we achieve sublinear running time for large enough a and small enough k.2
In the aforementioned applications [15, 22, 29, 30, 33], the indels are few in number and
must be estimated with high accuracy; in this case, a should be set proportionally to the
substitution-to-indel ratio, so that our (1 + ϵ)-approximation computes, in sublinear time, a
highly accurate estimate of both the indels and the substitutions.

It is straightforward to solve Problem 1.4 with α = β = 2 + ϵ, by simply applying
Theorem 1.5 with a = kS

kI
and threshold k = 2kI . However, as shown in the full version, the

techniques we developed for Theorem 1.5 allow for a much stronger guarantee of α = 1 and
β = 1 + ϵ.

▶ Theorem 1.6. One can solve Problem 1.4 with α = 1 and β = 1 + ϵ (for any given
parameter ϵ ∈ (0, 1)) correctly with high probability in Õ( nkI

ϵ3kS
+ kSk3

I ) time.
Again, the running time is sublinear whenever kI ≪ kS and the overall distance is small.

1.2 Notation
A string X ∈ Σ∗ is a finite sequence of characters from an alphabet Σ. The length of X is
denoted by |X| and, for i ∈ [0 .. |X|),3 the ith character of X is denoted by X[i]. A string Y

is a substring of X if Y = X[i]X[i + 1] · · ·X[j − 1] for some 0 ≤ i ≤ j ≤ |X|; this occurrence
of Y is denoted by X[i .. j) or X[i .. j − 1] and called a fragment of X. According to this
convention, the empty string has occurrences X[i .. i) for i ∈ [0 .. |X|]. We use HD to denote
the Hamming distance between two strings and ED to denote the standard edit distance.

A key notion in our work is that of Longest Common Extension (LCE) queries, defined
as follows for indices x ∈ [0 .. |X|] and y ∈ [0 .. |Y |] in strings X, Y ∈ Σ∗:4

LCE(x, y) = max{ℓ : X[x .. x + ℓ) = Y [y .. y + ℓ)}.

After O(|X|+ |Y |)-time preprocessing, LCE queries can be answered in O(1) time [16, 27].
This notion is often generalized to find the maximum length for which the corresponding
substrings still have a small Hamming distance; formally,

LCEd(x, y) = max{ℓ : HD(X[x .. x + ℓ), Y [y .. y + ℓ)) ≤ d}.

1 The smallest approximation ratio known to improve upon the running time O(n + k2) of the exact and
conditionally optimal algorithm [27] stands at 3+o(1) [19]. The approximation ratio currently achievable
in sublinear time is polylogarithmic in k (if k < n1/4−Ω(1)) [10] or polynomial in k (otherwise) [17].

2 For small a, e.g., a = 1, using our exact algorithm would improve upon the bound in Case 2 and, in
particular, reduce the dependency on k from cubic to quadratic.

3 For i, j∈Z, denote [i .. j] = {k ∈ Z : i ≤ k ≤ j}, [i .. j) = {k ∈ Z : i ≤ k < j}, (i .. j] = {k ∈ Z : i < k ≤ j}.
4 Here and throughout, we implicitly assume the range ℓ ∈ [0 .. min(|X| − x, |Y | − y)] needed to guarantee

that X[x .. x + ℓ) and Y [y .. y + ℓ) are well-defined.
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We further define LCEd,ϵ(x, y) as an arbitrary value between LCEd(x, y) and LCE(1+ϵ)d(x, y);
intuitively, this represents LCEd(x, y) up to a (1 + ϵ)-approximation of the value of d.

1.3 Technical Overview

Exact Algorithm for EDa. The algorithm behind Proposition 1.1 is rather straightforward,
but it serves as a foundation for subsequent results. The naive way of computing EDa(X, Y )
is to construct a dynamic-programming (DP) table T [x, y] = EDa(X[0 .. x), Y [0 .. y)). Consid-
ering only entries with |x− y| ≤ k (others clearly exceed k) easily yields an O(n + nk)-time
algorithm. If ak ≤ n, we achieve a better running time of O(n + ak2) by generalizing the
Landau–Vishkin algorithm [26, 27] to allow a > 1. As explained next, this involves answering
O(ak) LCE queries for each of (2k + 1) diagonals (which consist of entries T [x, y] with fixed
y − x). The table T is monotone along the diagonals, and thus one can construct “waves”
of entries with a common value v. This structure is conveniently described as another
table that, for every possible cost v ∈

{
0, 1

a , . . . , k − 1
a , k

}
and every possible shift (diagonal)

s ∈ [−k .. k], contains an entry Dv[s] defined as the furthest row x in T with T [x, x + s] ≤ v,
or equivalently, the maximum index x such that EDa(X[0 .. x), Y [0 .. x + s)) ≤ v. To compute
Dv[s], the algorithm uses three previously computed entries (for costs v′ < v) and then
performs a single LCE query. The running time of this algorithm is dominated by the
construction and usage of a data structure answering LCE queries; see Section 2 for details.

A Naive Sampling Algorithm. A natural way to speed up the previous algorithm at the
expense of accuracy is to use sampling. As a first attempt, let the algorithm sample positions
in X at some rate r ∈ (0, 1) and compare each sampled X[i] with Y [i+s] for every s ∈ [−k .. k].
The algorithm then reports the minimum-cost alignment of the samples (i.e., each sampled
X[i] is associated with exactly one shift s and is matched to Y [i + s]), where shift changes
cost 1 per unit (i.e., changing s to s′ costs |s− s′|) and mismatches cost 1

ar each. At best,
we may hope to set r = Θ( 1

ka ), the minimum needed for an optimal alignment with Θ(ka)
substitutions and no indels.

This approach faces two serious obstacles. First, the query complexity is asymmetric:
the algorithm queries, in expectation, O(nr) positions in X and O(knr) positions in Y . The
query complexity into Y must be improved, ideally to O(nr) as well. Second, the hope for
sampling rate r = Θ( 1

ka ) is not realistic, because, in the case of a = 1 (i.e., the standard edit
distance), this would distinguish between ED(X, Y ) ≤ k and ED(X, Y ) > (1 + ϵ)k using Õ( n

k )
samples, which is far beyond the reach of current techniques for edit distance estimation.

To overcome the first obstacle, we utilize approximate periodicity in our subroutine
for answering approximate LCE queries, described later in this overview. To tackle the
second obstacle, we make sure that every observed edit is charged against approximately 1

r

unobserved mismatches (substitutions), for a judicious choice of r = Õ( 1
ϵa ), as explained next.

Our (1+ϵ)-Approximation Algorithm for EDa. Let us modify our exact algorithm as follows.
Instead of considering all possible values of v, we enumerate only over v ∈ {0, ϵ, 2ϵ, . . . , k},
where ϵ ≥ 1

a (otherwise, the exact algorithm already meets the requirements of Theorem 1.5).
More precisely, for each diagonal s, we seek a value D̃v[s] that approximates Dv[s] up to a
(1 + ϵ)-factor slack in v. In other words, D̃v[s] is between Dv[s] and Dv(1+ϵ)[s];
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Suppose that we have already computed D̃v′ [s] for all v′ < v. Then, we can compute
D̃v[s] using a single LCEϵa,ϵ query. Intuitively, this works well because these queries (1 + ϵ)-
approximate the number of substitutions in the optimal alignment, except for up to ϵa

additional substitutions (of total cost ϵ) per indel (of cost 1) in the optimal alignment; see
Section 3 for details. Thus, the main engine of our algorithm is the following new tool:5

▶ Problem 1.7 (Approximate LCE queries). Given strings X, Y of total length n, a threshold
d ∈ Z+, a parameter ϵ ∈ R+, and a width w ∈ Z+, build a data structure that efficiently
computes LCEd,ϵ(x, y) for any x ∈ [0 .. |X|] and y ∈ [0 .. |Y |] such that |x− y| ≤ w.

Answering LCEd,ϵ Queries. The following theorem captures our key technical innovation.

▶ Theorem 1.8. After Õ( n
ϵ2d )-time randomized preprocessing (successful w.h.p.), the queries

of Problem 1.7 can be answered deterministically (with no further randomness) in Õ(dw) time.

Previous work on edit distance [8, 10, 18, 19, 24] developed data structures for approximate
LCE queries in a weaker version allowing any value between LCE0(x, y) and LCEd(x, y). As
discussed in subsequent paragraphs, these results rely on identifying perfectly periodic
string fragments, whereas, in our case, periodicity is approximate and holds up to O(dw)
mismatches.

In this overview, we focus on a simplified problem that already necessitates the main
novel ideas behind Theorem 1.8. Namely, we consider the task of distinguishing, for any
given s ∈ [0 .. w) = [0 .. |Y |− |X|], whether HD(X, Y [s .. s + |X|)) is ≤ d or > 1.1d. To see that
this is a special case of Problem 1.7, observe that an LCEd,0.1(0, s) query must return |X| if
HD(X, Y [s .. s + |X|)) ≤ d and a value strictly smaller than |X| if HD(X, Y [s .. s + |X|)) > 1.1d.

In this setting, our goal is to answer queries in Õ(dw) time after Õ( n
d )-time preprocessing.

In particular, we want to answer all the w possible queries while probing Õ( n
d + dw2)

characters in total. For comparison, let us consider as a baseline the guarantees achieved
using simple techniques. A very naive approach would be to answer each query independently
by sampling characters of X with rate Õ( 1

d ) and comparing each sampled character X[x]
with the aligned character Y [x + s]; this solution probes Õ( nw

d ) characters in total. Another
idea, employed in [8], could be to sample the characters of X and Y with the same rate
Õ( 1√

d
) and, for each s ∈ [0 .. w), compare X[x] with Y [x + s] whenever both characters have

been sampled simultaneously, which happens with probability Õ( 1
d ); this solution probes

Õ( n√
d
) characters in total. Overall, we conclude that the simple techniques result in an

effective sampling rate much larger than 1
d , while our goal is to achieve the optimal rate

Õ( 1
d ) (necessary already to answer a single query) at the price of a moderate additive cost.
The first step of our solution is to eliminate shifts s ∈ [0 .. w) with very large distance

HD(X, Y [s .. s + |X|)). For this, we use the naive approach to distinguish between Hamming
distances ≤ dw and > 2dw. This step costs Õ( n

dw ) time per query, which is Õ( n
d ) in total. If

our filtering leaves us with at most one candidate shift s̃ ∈ [0 .. w), the answer for this shift
is precomputed naively by sampling.

The interesting case is when at least two shifts s̃1 ≠ s̃2 remain. A key observation is
that the strings X and Y are then almost periodic with period p := |s̃1 − s̃2|; formally,
X[x] = X[x− p] holds for all but O(dw) positions x ∈ [p .. |X|), and similarly for Y . In order
to streamline notation, in this overview, we show how to exploit this structure for p = 1.

5 To be precise, our algorithm makes O(ϵ−1k2) queries of Problem 1.7 with d = Θ(ϵa) and w = k. A single
LCEϵa,ϵ(0, 0) query may already require accessing Ω( n

ϵ3a ) characters, so the best time we could hope for
is Õ( n

ϵ3a + ϵ−1k2). If ϵ = Θ( 1
a ), this cannot improve upon our exact algorithm of Proposition 1.1.
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In this case, most positions x in X have uniform contexts of any fixed length c, i.e.,
X[x .. x + c) = Y [y .. y + c) = Ac holds for some A ∈ Σ and all y = x + s across s ∈ [0 .. w).
Intuitively, our goal is to quickly process uniform regions and spend our additional budget of
Õ(dw) time per query on the O(cdw) positions with non-uniform contexts (each periodicity
violation affects O(c) contexts). Intuitively, uniform regions are much easier to handle due to
the following observation: If we sample two strings U, V ∈ Σm with an appropriate rate r =
Õ( 2

d ), and this sampling reveals only As, then HD(U, V ) ≤ HD(U, Am) + HD(V, Am) ≤ d
2 + d

2 ≤ d

holds with high probability. This argument does not require any synchronization between
samples, so we can reuse the same sample for all shifts.

The remaining challenge is that a rate-Õ( 1
d ) sample cannot perfectly identify uniform

and non-uniform regions. Thus, we need to design a sampling mechanism that provides an
unbiased estimate of HD(X, Y [s .. s + |Y |)) yet allows skipping regions that look uniform from
the perspective of a rate-Õ( 1

d ) sampling. For this, we use two random subsets SX ⊆ [0 .. |X|)
and SY ⊆ [0 .. |Y |), where each index is picked independently with rate r = Õ( 1

d ). Every
mismatch X[x] ̸= Y [y] is given two chances for detection: when x ∈ SX or y ∈ SY . In order
to avoid double counting, the mismatch at position x ∈ SX will be counted if and only if X[x]
has fewer occurrences than Y [y] within the contexts X[x .. x + c) and Y [y .. y + c) of length
c = Õ( 1

r ). In this case, with high probability, the sampling reveals a character other than
X[x] within the contexts, and thus the algorithm classifies x as non-uniform. For positions
x ∈ SX classified as non-uniform, our query algorithm explicitly compares X[x] to Y [y]
(for y = s + x) and, upon detecting a mismatch, reads the entire contexts X[x .. x + c) and
Y [y .. y + c) to verify whether indeed X[x] is less frequent than Y [y] within these contexts.
We can afford both steps because the expected number of positions x ∈ SX with non-uniform
contexts is O(rcdw) = Õ(dw) and the expected number of detected mismatches X[x] ̸= Y [y]
is O(rd).

For a complete proof of Theorem 1.8, without the simplifying assumptions, see Section 4.
The techniques employed to eliminate these assumptions build upon [24], where the simplified
problem involves deciding, for every s ∈ [0 .. w), whether HD(X, Y [s .. s + |X|)) is 0 or > d.
Unlike in our setting, that auxiliary problem allows eliminating a shift s upon discovery of a
single mismatch X[x] ̸= Y [x + s]. This leads to a relatively straightforward Õ( n

d + w)-time
solution [10, 24], which we sketch next to facilitate easy comparison with our new method.
First, exact pattern matching is used to filter out shifts s such that X[0 .. 2w) ̸= Y [s .. s + 2w)
If at most one shift s̃ remains, then a naive Õ( n

d )-time solution can be used to estimate
HD(X, Y [s̃ .. s̃ + |X|)). On the other hand, if there are at least two shifts s̃1 ̸= s̃2 left, then
p := |s̃1−s̃2| is a period of X[0 .. 2w). A naive rate-Õ( 1

d ) sampling is used to check whether this
period extends to the entire X and the relevant portion of Y . If this procedure does not identify
any violation of the period, then all the remaining shifts satisfy HD(X, Y [s .. s + |X|)) ≤ d

with high probability. Otherwise, another call to exact pattern matching (for substrings near
the period violation) eliminates all but at most one of the remaining shifts.

Algorithms for the (kI , kS)-Alignment Problem. Our algorithms computing EDa (exactly
or approximately) can be easily adapted to solve the (kI , kS)-alignment problem. The
only modification required is to add another dimension to the D and D̃ tables so that the
algorithm separately keeps track of the number of indels and substitutions (as opposed to
their total weight). In particular, DvI ,vS

[s] is the maximum index x such that X[0 .. x)
and Y [0 .. x + s) admit a (vI , vS)-alignment, and D̃vI ,vS

[s] approximates DvI ,vS
[s] up to a

small slack in the value vS . The exact algorithm uses O(kSkI) LCE queries for each of the
2kI + 1 main diagonals, whereas the approximation algorithm asks O( kSkI

d ) LCEd,ϵ queries
per diagonal for a carefully chosen parameter d = Θ( ϵkS

kI
); see the full version for details.
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Tight Lower Bound for Exact Computation of EDa. Our lower bound essentially proves
that the O(n+k ·min(n, ak)) running time in Proposition 1.1 is, up to subpolynomial factors,
point-wise optimal as a function of (n, a, k). We formalize this delicate statement as follows:

▶ Theorem 1.9. Consider sequences (an)∞
n=1 and (kn)∞

n=1 with entries an, kn ∈ [1 .. n]
computable in poly(n) time. Unless the Orthogonal Vectors Conjecture fails, there is no
algorithm that, for some fixed ϵ > 0, every n ∈ Z+, and all strings X, Y with |X|+ |Y | ≤ n,
in O((n + kn ·min(n, ankn))1−ϵ) time computes EDan(X, Y ) or reports that EDan(X, Y ) > kn.

We prove our conditional lower bound in two steps. First, we show that, for any a ∈ [1 .. n],
Ω(n2−ϵ) time is necessary to compute EDa(X, Y ) with |X|+ |Y | ≤ n. We then build upon
this construction to prove a lower bound on computing EDa(X, Y ) under a guarantee that
EDa(X, Y ) ≤ k for a given k = o(n). In the first step, we follow the approach of Bringmann
and Künnemann [12], who proved the desired lower bound for a = O(1). Unfortunately,
when translated to larger a, their arguments only exclude O(n2−ϵa−6)-time algorithms. The
tool we adapt from [12] is a generic reduction from the Orthogonal Vectors problem to the
problem of computing an abstract string similarity measure. This framework is formulated
in terms of an alignment gadget that needs to be supplied for the measure in question.
Unlike [12], instead of working directly with EDa(X, Y ), we consider an asymmetric measure
D+(X, Y ) := EDa($|Y | ·X · $|Y |, Y )− |XY |, where $ is a character not present in Y . Even for
a = O(1), this trick greatly simplifies the proof in [12] at the cost of increasing the alphabet
size from 2 to 9. As a result, for each parameter a, every instance of the Orthogonal Vectors
problem produces a pair of strings (X, Y ) and a threshold k such that EDa(X, Y ) ≤ k if
and only if the instance is a YES instance. However, since EDa(X, Y ) = Θ(|X| + |Y |) for
instances obtained through D+(·, ·), this construction alone provides no information on how
the running time depends on k. For this, we express an instance of the Orthogonal Vectors
problem as an OR-composition of smaller instances, and, for each of them, we construct
a pair of strings (Xi, Yi) such that the original instance is a YES-instance if and only if
mini EDa(Xi, Yi) ≤ kmin. An appropriate gadget combines the pairs (Xi, Yi) into a single
pair (X, Y ) with mini EDa(Xi, Yi) ≤ kmin if and only if EDa(X, Y ) ≤ k for some k = Θ( n

a ),
yielding an Ω((nk)1−ϵ)-time lower bound for this case. The lower bound of Ω((ak2)1−ϵ) for
k = O( n

a ) follows because the problem in question does not get easier as we increase n while
preserving a and k; see Section 5 for details.

2 Computing EDa Exactly

▶ Proposition 1.1. Given two strings X, Y ∈ Σ∗ of total length n, a cost parameter a ∈ Z+,
and a threshold k ∈ R+, one can compute EDa(X, Y ) or report that EDa(X, Y ) > k in
deterministic time O(n + k min(n, ka)).

Define a DP table T with T [x, y] = EDa(X[0 .. x), Y [0 .. y)) for x ∈ [0 .. |X|] and y ∈
[0 .. |Y |]. Then, T [0, 0] = 0 and the other entries can be computed according to the following
formula (each argument of min is included only if the corresponding condition holds):

T [x, y] := min


T [x− 1, y] + 1 if x > 0
T [x, y − 1] + 1 if y > 0
T [x− 1, y − 1] + 1

a · 1X[x−1] ̸=Y [y−1] if x > 0 and y > 0

 .

One algorithm runs in time O(n+nk) and follows [31]. It computes all entries T [x, y] that
satisfy T [x, y] ≤ k; this is correct because T [x, y] only depends on entries T [x′, y′] ≤ T [x, y].
As T [x, y] ≥ |x− y|, this algorithm considers O(n + nk) entries, each computed in O(1) time.
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Another algorithm runs in time O(n + ak2) and follows [27], as explained in Section 1.3.
It is implemented as Algorithm 1, where all values Dv[s] are implicitly initialized to −∞.

Algorithm 1 Exact algorithm for EDa.

1 foreach v ∈ {0, 1
a , 2

a , . . . , 1
a⌊ak⌋} do

2 foreach s ∈ [−⌊v⌋ .. ⌊v⌋] do
3 D′

v[s]← min(|X|, |Y | − s, max(Dv−1[s− 1], Dv− 1
a
[s] + 1, Dv−1[s + 1] + 1));

4 if s = 0 then D′
v[s]← max(D′

v[s], 0);
5 Dv[s]← D′

v[s] + LCE(D′
v[s], D′

v[s] + s);
6 if Dv[|Y | − |X|] = |X| then return v;
7 return “> k” ;

The correctness of Algorithm 1 follows from Lemma 2.1 and the running time is propor-
tional to the number of LCE queries, which is O(ak2), plus the O(n) construction time of an
LCE data structure [16, 27].

▶ Lemma 2.1. For every v ∈ {0, 1
a , . . . , 1

a⌊ak⌋}, x ∈ [0 .. |X|], and y ∈ [0 .. |Y |], we have
T [x, y] ≤ v if and only if Dv[y − x] ≥ x.

Proof. Let us first prove, by induction on v, that Dv[y−x] ≥ x if T [x, y] ≤ v. Fix an optimal
EDa-alignment between X[0 .. x) and Y [0 .. y) and consider the longest suffixes X[x′ .. x) =
Y [y′ .. y) aligned without any edit. We shall prove that D′

v[y − x] = D′
v[y′ − x′] ≥ x′ by

considering four cases:
If x′ = y′ = 0, then D′

v[y′ − x′] = D′
v[0] ≥ 0.

If X[x′− 1] is deleted, then v ≥ T [x′, y′] = T [x′− 1, y′] + 1, and the inductive assumption
yields D′

v[y′ − x′] ≥ Dv−1[y′ − x′ + 1] + 1 ≥ x′.
If Y [y′− 1] is inserted, then v ≥ T [x′, y′] = T [x′, y′− 1] + 1, and the inductive assumption
yields D′

v[y′ − x′] ≥ Dv−1[y′ − x′ − 1] ≥ x′.
Otherwise, X[x′− 1] is substituted for Y [y′− 1]; then, v ≥ T [x′, y′] = T [x′− 1, y′− 1] + 1

a ,
and the inductive assumption yields D′

v[y′ − x′] ≥ Dv− 1
a
[y′ − x′] + 1 ≥ x′.

Now, Dv[y − x] ≥ x follows from D′
v[y′ − x′] ≥ x′ due to LCE(x′, y′) ≥ x− x′.

The converse implication is also proved by induction on v. We consider four cases
depending on x′ := D′

v[y − x] and y′ := x′ + (y − x):
If x′ ≤ Dv−1[y′−x′+1]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′]+1 ≤
(v − 1) + 1.
If x′ ≤ Dv−1[y′−x′− 1], then, by the inductive assumption, T [x′, y′] ≤ T [x′, y′− 1] + 1 ≤
(v − 1) + 1.
If x′ ≤ Dv− 1

a
[y′−x′]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′−1]+ 1

a ≤
(v − 1

a ) + 1
a .

In the remaining case, we have x′ = y′ = 0, and thus T [x′, y′] = 0 ≤ v.
In all cases, T [x′, y′] ≤ v implies T [x, y] ≤ v because LCE(x′, y′) ≥ x− x′. ◀

3 Approximating EDa

In this section, we present our solution for Problem 1.3. Recall that the input consists of
strings X, Y , a cost parameter a ∈ Z+, a threshold k ∈ R+, and an accuracy parameter
ϵ ∈ (0, 1), and the task is to distinguish between EDa(X, Y ) ≤ k and EDa(X, Y ) > (1 + ϵ)k.
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Our procedure mimics the behavior of Algorithm 1 with a coarser granularity of the costs.
It is implemented as Algorithm 2, where we assume that all values D̃v[s] are implicitly
initialized to −∞ and that ϵa ∈ Z+ (we will fall back to Algorithm 1 whenever ϵa < 1).

Algorithm 2 Approximation Algorithm.

1 foreach v ∈ {0, ϵ, 2ϵ, . . . , ϵ⌈ϵ−1k⌉} do
2 foreach s ∈ [−⌊v⌋ .. ⌊v⌋] do
3 D̃′

v[s]← min(|X|, |Y | − s, max(D̃v−1[s− 1], D̃v−ϵ[s], D̃v−1[s + 1] + 1));
4 if s = 0 then D̃′

v[s]← max(D̃′
v[s], 0);

5 D̃v[s]← D̃′
v[s] + LCEϵa,ϵ(D̃′

v[s], D̃′
v[s] + s);

6 if D̃v[|Y | − |X|] = |X| then return YES ;
7 return NO

The following lemma, justifying the correctness of Algorithm 2, is proved below through
an appropriate adaptation of the arguments behind Lemma 2.1.

▶ Lemma 3.1. For every v ∈ {0, ϵ, 2ϵ, . . . , ϵ⌈ϵ−1k⌉}, x ∈ [0 .. |X|], and y ∈ [0 .. |Y |], if
T [x, y] ≤ v, then D̃v[y − x] ≥ x, and if D̃v[y − x] ≥ x, then T [x, y] ≤ v(1 + ϵ + ϵ2) + ϵ + ϵ2.

Proof. We start by proving the first implication inductively on v. Let us fix an optimum EDa-
alignment of X[0 .. x) and Y [0 .. y) and consider the longest suffixes X[x′ .. x) and Y [y′ .. y)
aligned with at most ϵa substitutions and no indels. We shall prove that D̃′

v[y − x] =
D̃′

v[y′ − x′] ≥ x′ by considering four cases:
If x′ = y′ = 0, then D̃′

v[y′ − x′] = D̃′
v[0] ≥ 0.

If X[x′− 1] is deleted, then v ≥ T [x′, y′] = T [x′− 1, y′] + 1, and the inductive assumption
yields D̃′

v[y′ − x′] ≥ D̃v−1[y′ − x′ + 1] + 1 ≥ x′.
If Y [y′ − 1] is inserted, then v ≥ T [x, y] = T [x′, y′ − 1] + 1, and the inductive assumption
yields D̃′

v[y′ − x′] ≥ D̃v−1[y′ − x′ − 1] ≥ x′.
Otherwise, there are exactly ϵa substitutions between X[x′ .. x) and Y [y′ .. y) (recall
that ϵa ∈ Z). Thus, v ≥ T [x, y] = T [x′, y′] + ϵ, and the inductive assumption yields
D̃′

v[y′ − x′] ≥ D̃v−ϵ[y′ − x′] ≥ x′.
Now, D̃v[y − x] ≥ x follows from D̃′

v[y′ − x′] ≥ x′ due to LCEϵa(x′, y′) ≥ x− x′.
The second implication is also proved by induction on v. We consider four cases depending

on x′ := D̃′
v[y − x] and y′ := x′ + (y − x):

If x′ ≤ D̃v−1[y′−x′+1]+1, then, by the inductive assumption, T [x′, y′] ≤ T [x′−1, y′]+1 ≤
(v − 1)(1 + ϵ + ϵ2) + ϵ + ϵ2 + 1 = v(1 + ϵ + ϵ2).
If x′ ≤ D̃v−1[y′−x′− 1], then, by the inductive assumption, T [x′, y′] ≤ T [x′, y′− 1] + 1 ≤
(v − 1)(1 + ϵ + ϵ2) + ϵ + ϵ2 + 1 = v(1 + ϵ + ϵ2).
If x′ ≤ D̃v−ϵ[y′ − x′], then, by the inductive assumption, T [x′, y′] ≤ (v − ϵ)(1 + ϵ + ϵ2) +
ϵ + ϵ2 < v(1 + ϵ + ϵ2).
In the remaining case, we have x′ = y′ = 0. Trivially, T [x′, y′] = 0 ≤ v(1 + ϵ + ϵ2).

In all cases, T [x′, y′] ≤ v(1 + ϵ + ϵ2) implies T [x, y] ≤ v(1 + ϵ + ϵ2) + ϵ + ϵ2 because
LCE(1+ϵ)ϵa(x′, y′) ≥ x− x′. ◀

▶ Corollary 3.2. Algorithm 2 returns
YES if EDa(X, Y ) ≤ k, and
NO if EDa(X, Y ) > k(1 + ϵ + ϵ2) + 2ϵ + 2ϵ2 + ϵ3.

Moreover, it can be implemented in Õ( n
ϵ3a + ak3) time if k ≥ 1.
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Proof. If EDa(X, Y ) ≤ k, we apply Lemma 3.1 for v = ϵ⌈ϵ−1k⌉, x = |X|, and y = |Y |.
We conclude that D̃v[|X| − |Y |] ≥ |X|, which means that the algorithm returns YES. On
the other hand, if the algorithm returns YES, then D̃v[|X| − |Y |] ≥ |Y | holds for some
v ∈ {0, ϵ, 2ϵ, . . . , ϵ⌈ϵ−1k⌉}, which satisfies v < k + ϵ. In this case, Lemma 3.1 implies that

ED(X, Y ) ≤ v(1+ ϵ+ ϵ2)+ ϵ+ ϵ2 < (k + ϵ)(1+ ϵ+ ϵ2)+ ϵ+ ϵ2 = k(1+ ϵ+ ϵ2)+2ϵ+2ϵ2 + ϵ3.

As for the running time, we observe that the number of LCEϵa,ϵ(x, y) queries asked is
O((1 + k)(1 + ϵ−1k)) and that each of them satisfies |x− y| ≤ k. Consequently, the claimed
running time follows from Theorem 1.8. ◀

▶ Theorem 1.5. One can solve Problem 1.3 correctly with high probability within time:
1. Õ( n

ϵ2ak ) if k < 1;
2. Õ( n

ϵ3a + ak3) if 1 ≤ k < n
ϵa ; and

3. O(1) if k ≥ n
ϵa .

Proof. First, consider k < 1. If |X| ̸= |Y |, then we can safely return NO due to EDa(X, Y ) ≥∣∣|X| − |Y |∣∣. Otherwise, we output YES if HD(X, Y ) ≤ ak (which implies EDa(X, Y ) ≤ k) and
NO if HD(X, Y ) > (1 + ϵ)ak (which implies EDa(X, Y ) ≥ min(1, (1 + ϵ)k)). Previous work for
Hamming distance (e.g., [21]) lets us distinguish these two possibilities in Õ( n

ϵ2ak ) time.
Next, consider 1 ≤ k < n

ϵa . If ϵ < 7
a , we use the algorithm of Proposition 1.1, which either

computes EDa(X, Y ) or reports that EDa(X, Y ) > k. This is clearly sufficient to distinguish
between EDa(X, Y ) ≤ k and EDa(X, Y ) > (1 + ϵ)k for any ϵ ≥ 0. The running time is
O(n+ak2) = O( n

ϵa +ak2) = Õ( n
ϵ3a +ak3). The most interesting case is when ϵ ≥ 7

a . We then
run Algorithm 2 with the accuracy parameter decreased to ϵ̄ := 1

a⌊
ϵa
7 ⌋; in particular, this

guarantees ϵ̄a ∈ Z+. By Corollary 3.2, the algorithm returns YES if EDa(X, Y ) ≤ k, and, due
to (1 + ϵ)k ≥ (1 + 7ϵ̄)k ≥ (1 + ϵ̄ + ϵ̄2)k + 2ϵ̄ + 2ϵ̄2 + ϵ̄3, it returns NO if EDa(X, Y ) > (1 + ϵ)k.
The running time is Õ( n

ϵ̄3a + ak3) = Õ( n
ϵ3a + ak3) due to ϵ̄ ≥ ϵ

14 .
Finally, consider k ≥ n

ϵa . We return YES if
∣∣|X| − |Y |∣∣ ≤ k and NO otherwise. This is

correct due to
∣∣|X|− |Y |∣∣ ≤ EDa(X, Y ) ≤

∣∣|X|− |Y |∣∣+ 1
a min(|X|, |Y |) ≤

∣∣|X|− |Y |∣∣+ ϵk. ◀

4 Answering LCEd,ϵ Queries

In this section, we explain how to implement LCEd,ϵ queries. We focus on the decision version
of these queries, asking to distinguish whether HD(X[x .. x+ℓ), Y [y .. y+ℓ)) is ≤ d or > (1+ϵ)d.
A naive way of performing such a test would be to count mismatches X[x + s] ̸= Y [y + s] at
positions s ∈ S, where each s ∈ [0 .. ℓ) is sampled into S independently with an appropriate
rate r. The resulting estimator, H := |{s ∈ S : X[x + s] ̸= Y [y + s]}|, follows the binomial
distribution Bin(h, r), where h = HD(X[x .. x + ℓ), Y [y .. y + ℓ)). Thus, we can compare H

against (1 + ϵ
3 )rd to distinguish between h ≤ d and h ≥ (1 + ϵ)d: By the Chernoff bound, if

h ≤ d, then

Pr[H ≥ (1 + ϵ
3 )rd] ≤ exp(− 1

27 ϵ2rd),

whereas if h ≥ (1 + ϵ)d, then

Pr[H < (1 + ϵ
3 )rd] ≤ Pr[H < (1− ϵ

3 )(1 + ϵ)rd] ≤ exp(− 1
18 ϵ2rd).

In particular, if r = Θ(ϵ−2d−1 log n), then w.h.p. the query algorithm is correct and costs
Õ(1 + rℓ) = Õ(1 + ϵ−2d−1ℓ) time.

The same approach can be used in the setting resembling that of Theorem 1.8, where
queries need to be answered deterministically after randomized preprocessing.
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▶ Fact 4.1. There exists a data structure that, after randomized preprocessing of strings
X, Y ∈ Σ∗ and a rate r ∈ (0, 1), given positions x ∈ [0 .. |X|], y ∈ [0 .. |Y |] and a length ℓ ∈
[0 .. min(|X|−x, |Y |− y)], outputs a value distributed as Bin(HD(X[x .. x + ℓ), Y [y .. y + ℓ)), r).
Moreover, the answers are independent for queries with disjoint intervals [x .. x + ℓ). With
high probability, the preprocessing time is Õ(1 + r(|X|+ |Y |)) and the query time is Õ(1 + rℓ).

Proof. At preprocessing time, we draw SX ⊆ [0 .. |X|) with each position sampled indepen-
dently with rate r. At query time, the algorithm counts x′ ∈ SX ∩ [x .. x + ℓ) such that
X[x′] ̸= Y [y − x + x′]. It is easy to see that each mismatch X[x + s] ̸= Y [y + s], with
s ∈ [0 .. ℓ), is included with rate r, and these events are independent across the mismatches.
Moreover, the sets SX ∩ [x .. x + ℓ) across distinct ranges [x .. x + ℓ) are independent, so the
resulting estimators are independent as well. ◀

Our aim, however, is a query time that does not grow with ℓ. As shown in Sections 4.1
and 4.2, Õ(dw) query time can be achieved after preprocessing X[x .. x+ℓ) in Õ(w+rℓ)-time.6
While preprocessing each fragment X[x .. x + ℓ) is too costly, it suffices to focus on fragments
such that [x .. x + ℓ) is a dyadic interval (where log ℓ and x

ℓ are both integers); this is because,
for any intermediate value m ∈ [0 .. ℓ), the problem of estimating HD(X[x .. x+ ℓ), Y [y .. y + ℓ))
naturally reduces to the problems of estimating both HD(X[x .. x + m), Y [y .. y + m)) and
HD(X[x + m .. x + ℓ), Y [y + m .. y + ℓ)). Estimators following binomial distribution are
particularly convenient within such a reduction: if B ∼ Bin(h, r) and B′ ∼ Bin(h′, r) are
independent, then B + B′ ∼ Bin(h + h′, r). Unfortunately, our techniques do not allow
estimating HD(X[x .. x + ℓ), Y [y .. y + ℓ)) when this value is much larger than d. Thus, we
formalize the outcome of our subroutines as capped binomial variables define below.

▶ Definition 4.2. An integer-valued random variable B is a d-capped binomial variable with
parameters h and r, denoted B ∈ Bind(h, r), if it satisfies the following conditions:

If h ≤ d, then B ∼ Bin(h, r), i.e., Pr[B ≥ x] = Pr[Bin(h, r) ≥ x] for all x ∈ Z.
Otherwise, B stochastically dominates Bin(h, r), i.e., Pr[B ≥ x] ≥ Pr[Bin(h, r) ≥ x] for
all x ∈ Z.

Moreover, to allow a small deviation from the desired distribution (e.g., in the unlikely
event the number of sampled positions is much larger than expected), for δ ∈ [0, 1], we write
B ∈ Bind,δ(h, r), if B is at total variation distance at most δ from a variable B′ ∈ Bind(h, r).
The capped binomial variables can be composed just like their uncapped counterparts.

▶ Observation 4.3. If B ∈ Bind,δ(h, r) and B′ ∈ Bind,δ′(h′, r) are independent, then
B + B′ ∈ Bind,δ+δ′(h + h′, r).

As indicated above, the main building block of our solution to Problem 1.7 is a component
for estimating HD(X[x .. x+ℓ), Y [y .. y +ℓ)) for fixed x, ℓ and varying y ∈ [x−w .. x+w]. This
task can be formalized as a problem of estimating text-to-pattern Hamming distances [14],
that is, the distances between a pattern X and length-|X| fragments of a text Y .

▶ Problem 4.4. Preprocess strings X, Y ∈ Σ∗, real numbers δ ∈ (0, 1
|X| ) and r ∈ (0, 1), and

an integer d ≥ r−1 into a data structure that, given a shift s ∈ [0 .. |Y | − |X|], outputs a value
distributed as Bind,δ(HD(X, Y [s .. s + |X|)), r).

In Section 4.1, we study Problem 4.4 in an important special case when X, Y are almost
periodic. The general solution to Problem 4.4 is then presented in Section 4.2, and we derive
Theorem 1.8 in Section 4.3.

6 Recall the assumption in Problem 1.7 that |x − y| ≤ w holds for all queries.



E. Goldenberg, T. Kociumaka, R. Krauthgamer, and B. Saha 58:13

4.1 Text-to-Pattern Hamming Distances for Almost Periodic Strings

In this section, we consider the case when X and Y are almost periodic. Formally, this
means that the data structure is additionally given (at construction time) integers p and m

such that HD(X[0 .. |X| − p), X[p .. |X|)) + HD(Y [0 .. |Y | − p), Y [p .. |Y |)) ≤ m.
The presentation of our data structure comes in four parts. We start with an overview,

where we introduce some notation and provide intuition. This is followed by Algorithm 3,
which gives a precise mathematical definition of the values reported by our data struc-
ture. Then, in Lemma 4.5, we formalize the intuition and prove that the outputs of
Algorithm 3 satisfy the requirements of Problem 4.4, that is, their distributions follow
Bind,δ(HD(X, Y [s .. s + |X|)), r). Finally, in Lemma 4.6, we provide an efficient implementa-
tion of Algorithm 3 and the complexity analysis of the resulting procedure.

The randomness in our data structure comes from two sets SX ⊆ [0 .. |X|) and SY ⊆
[0 .. |Y |) with each element sampled independently with probability r. At a first glance,
it may seem that SX would be sufficient because |{x ∈ SX : X[x] ̸= Y [s + x]}| satisfies
the requirements of Problem 4.4 (as proved in Fact 4.1). However, these values cannot be
computed efficiently. To see this, suppose that X and Y consist only of the character A, except
for a single position y where Y [y] = B. In this case, we would need to return 1 if and only if
y − s ∈ SX ; this requires Ω(|Y |) preprocessing time (to discover y) or Ω(|SX |) query time
(to check if y = s + x for some x ∈ SX). Thus, our strategy is more involved: we partition
the set of mismatches {(x, y) : X[x] ̸= Y [y]} into two disjoint classes, MX and MY , and we
return |{(x, y) ∈MX : x ∈ SX and y− x = s}|+ |{(x, y) ∈MY : y ∈ SY and y− x = s}|. In
other words, depending on its class, a mismatch in X[x] ̸= Y [y] is counted either if x ∈ SX

or if y ∈ SY . Our classification is determined by comparing the frequency of characters X[x]
and Y [y] in proximity to the two underlying positions. Intuitively, this is helpful because a
rare character is unlikely to be discovered unless it happens to be sampled. Formally, for
each position x ∈ [0 .. |X|), we define its context Cx = {x, x + p, x + 2p, . . . , x + (c − 1)p},
where c = Õ(r−1) is sufficiently large, and the context Cy of y ∈ [0 .. |Y |) is defined similarly.
Then, we count the occurrences of X[x] and Y [y] as X[x′] for x′ ∈ Cx and as Y [y′] for
y′ ∈ Cy, denoting the resulting numbers by mx and my, respectively (see Lines 11 and 12 of
Algorithm 3). We place the mismatch in MX if mx ≤ my and in MY otherwise.

Algorithm 3 Answering queries of Problem 4.4 in the almost periodic case.

1 H ← 0;
2 foreach x ∈ [0 .. |X|) do
3 y ← s + x;
4 if x /∈ SX and y /∈ SY then continue;
5 c← ⌈r−1 ln δ−2⌉;
6 Cx ← {x, x + p, . . . , x + (c− 1)p};
7 Cy ← {y, y + p, . . . , y + (c− 1)p};
8 if Cx ⊆ [0 .. |X|) and |{X[x′] : x′ ∈ Cx ∩ SX} ∪ {Y [y′] : y′ ∈ Cy ∩ SY }| = 1 then
9 continue;

10 if X[x] = Y [y] then continue;
11 mx ← |{x′ ∈ Cx ∩ [0 .. |X|) : X[x′] = X[x]}|+ |{y′ ∈ Cy ∩ [0 .. |Y |) : Y [y′] = X[x]}|;
12 my ← |{x′ ∈ Cx ∩ [0 .. |X|) : X[x′] = Y [y]}|+ |{y′ ∈ Cy ∩ [0 .. |Y |) : Y [y′] = Y [y]}|;
13 if (x ∈ SX and mx ≤ my) or (y ∈ SY and my < mx) then H ← H + 1;
14 return H;
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The benefit of this approach is that, if x ∈MX , then the contexts Cx and Cy (of total
size 2c) contain at least c occurrences of characters other than X[x]. In particular, at a small
loss of total variation distance, we may assume that the samples SX and SY have revealed
such a character distinct from X[x], and thus we need to read Y [y] only conditioned on that
event. At the same time, if X and Y are almost periodic and the sought Hamming distance
is small, then the contexts Cx and Cy are typically uniform (meaning that all the 2c positions
are occurrences of the same symbol). Hence, we can afford to investigate each location with
non-uniform contexts and, in case a mismatch X[x] ̸= Y [y] is detected, to explicitly compute
mx and my in order to verify whether this mismatch indeed belongs to MX or MY .

▶ Lemma 4.5 (Correctness). Given s ∈ [0 .. |Y |−|X|], Algorithm 3 outputs a random variable
H at total variation distance at most δ from Bin(h, r), where h = HD(X, Y [s .. s + |X|)).

Proof. We shall first prove that a modification of Algorithm 3 with Lines 8 and 9 removed
outputs H ∼ Bin(h, r). Let P ⊆ [0 .. |X|) be the set of positions for which H was incremented
in Line 13. We claim that P is a subset of M := {x ∈ [0 .. |X|) : X[x] ̸= Y [s + x]} with each
position sampled independently with rate r. Due to Line 10, we have P ⊆ M . For fixed
positions x ∈ M and y = s + x, let us consider the (deterministic) values mx and my as
defined in Lines 11 and 12. Observe that, for every x ∈ M , we have x ∈ P if and only if
(x ∈ SX and mx ≤ my) or (y ∈ SY and mx > my). Moreover, these are probability-r events
independent across x ∈M . Thus, in the modified version of the algorithm, we indeed have
H ∼ Bin(h, r).

Next, we shall prove that, for every x ∈ P , the probability of losing x due to Line 8 does
not exceed δ2. By the union bound, the total variation distance between H and Bin(h, r)
is then at most δ2|X| ≤ δ. Consider a multiset A := {X[x′] : x′ ∈ Cx ∩ [0 .. |X|)} ∪ {Y [y′] :
y′ ∈ Cy ∩ [0 .. |Y |)}. The filtering of Line 8 applies only if |A| = 2c and all the sampled
characters in A match. If mx ≤ my and x ∈ SX , then X[x] is sampled yet none of the at
least c elements of A distinct from X[x] is sampled. Similarly, if my < mx and y ∈ SY ,
then Y [y] is sampled yet none of the at least c elements of A distinct from Y [y] is sampled.
In either case, the probability of losing x ∈ P is bounded by (1− r)c ≤ exp(−rc) ≤ δ2, as
claimed. ◀

▶ Lemma 4.6 (Efficient implementation). Algorithm 3 can be implemented so that, after
Õ(|SX | + |SY |)-time preprocessing, the query time is Õ((m + p + h + r−1) log2 δ−1) with
probability 1−O(δ), where h = HD(X, Y [s .. s + |X|)).

Proof. While preprocessing X, we construct a data structure that, given a position x ∈
[0 .. |X|) and a character a ∈ Σ, in Õ(1) time computes the smallest position x′ ∈ SX∩[x .. |X|)
such that X[x′] ̸= a and x′ ≡ x (mod p) (if any such x′ exists). This preprocessing costs
Õ(|SX |) time (recall that all our model assumes oracle access to characters of the input
strings). The string Y is preprocessed in the same way in Õ(|SY |) time.

In the main loop of Line 2, we process x ∈ [0 .. |X|) grouped by the remainder x mod p,
starting from x ∈ [0 .. p) and y = s + x. For each group, instead of increasing x and y by p

each time, we utilize the precomputed data structure to perform larger jumps. Specifically, if
an iteration terminates due to Line 4, we proceed directly to the subsequent state (x′, y′)
such that x′ ∈ SX or y′ ∈ SY (if any). Moreover, while executing Line 8, we compute
a = X[x] (if x ∈ SX) or a = Y [y] (otherwise) and determine the nearest sampled position
x′ ∈ [x .. |X|) ∩ SX with X[x′] ̸= a and x′ ≡ x (mod p) and the nearest sampled position
y′ ∈ [y .. |Y |) ∩ SY with Y [y′] ̸= a and y′ ≡ y (mod p). Then, the condition of Line 8 is
satisfied if and only if (c− 1)p < min(|X| − x, x′ − x, y′ − y). In that case, we can increase x

and y by p · ⌈ 1
p min(|X| − x, x′ − x, y′ − y)− (c− 1)⌉; the number of such increases can be

bounded by O(p + m) in total across all the remainders modulo p.
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It remains to count positions reaching Lines 10 and 11. The condition Cx ⊆ [0 .. |X|) is
not satisfied for at most pc positions x. The condition |{X[x′] : x′ ∈ Cx ∩ [0 .. |X|)} ∪ {Y [y′] :
y′ ∈ Cy ∩ [0 .. |Y |)}| = 1 is not satisfied for at most (m + h)c positions x. Hence, at most
(m + h + p)c positions may proceed to Line 10. However, due to the filtering of Line 4,
the actual number of positions reaching Line 10 can be bounded by Bin((m + h + p)c, 2r),
which is O((m + h + p) log δ−1) with probability at least 1− δ. Hence, Lines 3–10 can be
implemented in Õ((m + h + p) log δ−1) time with probability at least 1− δ.

Furthermore, X[x] = Y [y] is not satisfied for at most h positions, and, for these positions,
computing mx and my takes O(c) time. Due to the filtering of Line 4, the actual number of
positions reaching Line 11 is at most Bin(h, 2r), which is O( h

r + log δ−1) with probability
at least 1− δ. Hence, Lines 11–13 cost O(h log δ−1 + r−1 log2 δ−1) time with probability at
least 1 − δ. Overall, the running time of any query is Õ((m + p + h + r−1) log2 δ−1) with
probability at least 1−O(δ). ◀

4.2 Text-to-Pattern Hamming Distances for Arbitrary Strings
In this section, we design an efficient solution to Problem 4.4 (in the general case):

▶ Proposition 4.7. Given an instance of Problem 4.4 with w := |Y |− |X|+1 and |X|r ≥ dw,
after Õ(|X|r log δ−1)-time randomized preprocessing, one can deterministically (with no
further randomness) answer the queries of Problem 4.4 in Õ(dw log2 δ−1) time.

Proof. In the preprocessing, for each shift s ∈ [0 .. w), we distinguish, correctly with probabil-
ity at least 1− δ

w , the case of HD(X, Y [s .. s+|X|)) ≤ dw from the case of HD(X, Y [s .. s+|X|)) >

2dw. This is implemented by sampling positions in X at rate Θ( log(wδ−1)
dw ) and comparing the

sampled characters of X against the aligned characters of Y . By the union bound, the tests
return correct values (for all s ∈ [0 .. w)) with probability at least 1− δ. The running time of
this preprocessing step is O(w · log(wδ−1)

dw · (|X|+ |Y |)) = Õ(|X|r log δ−1) with probability at
least 1− δ (if this step takes too much time, we terminate the underlying computation and
declare a preprocessing failure, which effectively means that |X| is returned for all queries).

If the test reports a small value HD(X, Y [s̃ .. s̃ + |X|)) for just one shift s̃ ∈ [0 .. w), then
we memorize this shift and compute a value distributed as Bin(HD(X, Y [s̃ .. s̃ + |X|)), r) by
sampling the characters X[x] and Y [x + s̃] at rate r. This costs O(|X|r log δ−1) time with
probability at least 1− δ (otherwise, we declare a preprocessing failure). At query time, we
report the computed value for s̃. For each of the remaining shifts s ̸= s̃, we are guaranteed
that (with probability at least 1− δ) HD(X, Y [s .. s + |X|)) > dw ≥ d, and thus we can return
|X| as a value distributed according to Bind,δ(HD(X, Y [s .. s + |X|)), r).

The interesting case is when we detect (at least) two shifts s̃1 ̸= s̃2 satisfying HD(X, Y [s ..

s + |X|)) ≤ 2dw. We then conclude that X and Y are approximately periodic with period
p := |s̃1 − s̃2|. Formally, this means that HD(X[0 .. |X| − p), X[p .. |X|)) + HD(Y [0 .. |Y | − p),
Y [p .. |Y |)) ≤ 8dw + w = O(dw) holds with probability at least 1 − δ. In this case, at
preprocessing time, we draw sets SX ⊆ [0 .. |X|), SY ⊆ [0 .. |Y |) with each element sampled
independently with probability r. This costs O(|X|r log δ−1) time with probability at least
1 − δ (otherwise, we declare a preprocessing failure). We apply the query procedure of
Algorithm 3, described in Section 4.1, imposing a hard limit Õ(dw log2 δ−1) on the query
time. If the query algorithm exceeds the limit, we return a naive upper bound H = |X|. If
h ≤ d, the probability of exceeding the limit is O(δ) (this incorporates both X, Y violating
the periodicity assumption and Algorithm 3 taking a long time due to an unlucky choice of
SX , SY ). Hence, imposing the limit increases the total variation distance of H and Bin(h, r)
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by O(δ). Otherwise (if h > d), setting H := |X| in some states of the probability space
may only increase H in these states, and thus the resulting random variable stochastically
dominates the original one. In particular, H is at total variation distance at most δ from
a variable stochastically dominating Bin(h, r). Combining these two cases, we conclude
that, if we shrink δ by an appropriate constant factor, the resulting value H satisfies the
requirements of Problem 4.4 ◀

4.3 Proof of Theorem 1.8

In this section, we derive Theorem 1.8 from Proposition 4.7.

▶ Theorem 1.8. After Õ( n
ϵ2d )-time randomized preprocessing (successful w.h.p.), the queries

of Problem 1.7 can be answered deterministically (with no further randomness) in Õ(dw) time.

Proof. Our solution uses an auxiliary parameter r ∈ [ 1
d , 1] to be chosen later. At preprocess-

ing, we build the data structure of Fact 4.1 and, for each dyadic range [x .. x + ℓ) ⊆ [0 .. |X|)
of length ℓ ≥ dw

r , the component of Proposition 4.7 for X[x .. x + ℓ) and Y [x−w .. x + w + ℓ)
(with the latter fragment trimmed to fit within Y if necessary) and δ = n−c−1 for a sufficiently
large constant c. While doing so, we make sure that all these components use independent
randomness. The construction algorithm takes Õ(ℓr) time for each such dyadic range, which
sums up to Õ(nr) time across all considered ranges.

As a result, for x ∈ [0 .. |X|], y ∈ [0 .. |Y |], and ℓ ∈ [1 .. min(|X| − x, |Y | − y)], if [x .. x + ℓ)
is a dyadic range and |y − x| ≤ w, then we can in Õ(dw) time compute a value H ∈
Bind,n−c−1(h, r), where h = HD(X[x .. x + ℓ), Y [y .. y + ℓ)). For ℓ < dw

r , this follows from
Fact 4.1, whereas for ℓ ≥ dw

r , this is a consequence of Proposition 4.7. For an arbitrary range
[x .. x + ℓ), a value H ∈ Bind,n−c(h, r) can be derived by decomposing [x .. x + ℓ) into O(log n)
dyadic ranges and combining the results of the individual queries using Observation 4.3.

With an appropriate r, we can then use H to distinguish HD(X[x .. x + ℓ), Y [y .. y + ℓ]) ≤ d

and HD(X[x .. x + ℓ), Y [y .. y + ℓ]) ≥ (1 + ϵ)d. To see this, first suppose that H ∈ Bind(h, r). If
h ≤ d, then Pr[H ≥ (1 + ϵ

3 )rd] ≤ exp(− 1
27 ϵ2rd) holds by the multiplicative Chernoff bound.

Moreover, if h ≥ (1+ϵ)d, then Pr[H < (1+ ϵ
3 )rd] ≤ Pr[H < (1− ϵ

3 )(1+ϵ)rd] ≤ exp(− 1
18 ϵ2rd)

holds by the multiplicative Chernoff bound. Hence, by testing whether H < (1+ ϵ
3 )rd, we can

distinguish between h ≤ d and h ≥ (1 + ϵ)d with failure probability at most exp(− 1
27 ϵ2rd).

Setting r = Θ(ϵ−2d−1 log n), the failure probability can be bounded by n−c.
Since we are only guaranteed that H ∈ Bind,n−c(h, r), the failure probability increases to

2n−c. Nevertheless, this yields a data structure that can distinguish in Õ(dw) time between
HD(X[x .. x + ℓ), Y [y .. y + ℓ]) ≤ d and HD(X[x .. x + ℓ), Y [y .. y + ℓ]) ≥ (1 + ϵ)d correctly with
high probability. Since our query algorithm is deterministic, this means that, with high
probability, the randomized construction algorithm yields a data structure that produces
correct answers for all O(n3) possible queries. With binary search over ℓ, we derive a data
structure answering LCEd,(1+ϵ)d(x, y) queries correctly w.h.p. and in Õ(dw) time. ◀

5 Lower Bound for Computing EDa Exactly

The lower bounds provided in this section are conditioned on the Orthogonal Vectors
Conjecture [32], which we state below.
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▶ Conjecture 5.1 (Orthogonal Vectors Conjecture [32]). In the OV problem, the input is a
set V ⊆ {0, 1}d of n vectors, and the goal is to decide if there exist u, v ∈ V with ⟨u, v⟩ = 0.7

The Orthogonal Vectors Conjecture asserts that, for every constant ϵ > 0, there exists a
constant c ≥ 1 such that OV cannot be solved in O(n2−ϵ)-time on instances with d = c log n.

5.1 Unbounded Distance
Here, we use the setting of [12] to prove that the following auxiliary similarity measures are
hard to compute exactly. This immediately yields analogous hardness for EDa.

▶ Definition 5.2. For strings X, Y ∈ Σ∗ and an integer a ∈ Z+, let Da(X, Y ) := EDa(X, Y )+
|Y | − |X|. Moreover, let D+

a (X, Y ) := Da($|Y | ·X · $|Y |, Y ), where $ /∈ Σ.

Intuitively, for an edit-distance alignment between strings X and Y , the measure Da

charges a character Y [y] with cost 0 if it is matched, cost 1
a if it is substituted, and cost 2

if it is inserted; deletions in X are free. The measure D+
a is justified by the following fact,

where alph(Z) ⊆ Σ denotes the set of letters occurring in Z ∈ Σ∗.

▶ Fact 5.3. Let X, Y, L, R ∈ Σ∗. If |L|, |R| ≥ |Y | and alph(Y ) ∩ alph(LR) = ∅, then
D+

a (X, Y ) = Da(LXR, Y ).

Proof. Due to alph(Y ) ∩ alph(LR) = ∅, we may assume without loss of generality that
L = $|L| and R = $|R|. Any edit-distance alignment between LXR and Y deletes at
least |L| − |Y | characters of L and at least |R| − |Y | characters of R, so Da(LXR, Y ) ≥
Da($|Y | ·X ·$|Y |, Y ). On the other hand, we have EDa(LXR, Y ) ≤ EDa(LXR, $|Y | ·X ·$|Y |) +
EDa($|Y | ·X ·$|Y |, Y ) = |L|−|Y |+|R|−|Y |+EDa($|Y | ·X ·$|Y |, Y ) by the triangle inequality, so
Da(LXR) = EDa(LXR, Y )+|Y |−|LXR| ≤ EDa($|Y |·X ·$|Y |, Y )+|LR|−2|Y |+|Y |−|LXR| =
EDa($|Y | ·X · $|Y |, Y ) + |Y | − (|X|+ 2|Y |) = D+

a (X, Y ). ◀

Bringmann and Künnemann [12] developed a generic scheme of reducing the Orthogonal
Vectors problem to the problem of computing a given string similarity measure.8 This
framework requires identifying types in the input space (which is Σ∗ here) and proving that
the similarity measure admits an alignment gadget and coordinate values.

In our construction, the types are of the form [0 .. σ)n for n, σ ∈ Z+ (we assume Σ ⊆ Z≥0).

▶ Lemma 5.4. The similarity measure D+
a admits coordinate values. That is, there exist

strings 0X , 1X (of some type tX) and 0Y , 1Y (of some type tY ) such that D+
a (1X , 1Y ) >

D+
a (0X , 0Y ) = D+

a (0X , 1Y ) = D+
a (1X , 0Y ).

Proof. We set 0X = 01, 1X = 00 (of type [0 .. 2)2), and 0Y = 0, 1Y = 1 (of type [0 .. 2)1). It is
easy to check that 1

a = D+
a (1X , 1Y ) > D+

a (0X , 0Y ) = D+
a (0X , 1Y ) = D+

a (1X , 0Y ) = 0. ◀

An alignment gadget is a pair of functions GAX and GAY parameterized by integers n ≥ m

and types tX , tY . The function GAX , given n strings X1, . . . , Xn of type tX , produces a
string X of some fixed type (that only depends on n, m, tX , tY ), whereas the function GAY ,
given m strings Y1, . . . , Ym of type tY , produces a string Y of some (other) fixed type. Both
functions must admit O((n + m)(ℓX + ℓY ))-time algorithms, where ℓX is the common length
of strings in tX and ℓY is the common length of strings in tY . The main requirement relates

7 Here, ⟨u, v⟩ =
∑d

i=1 ui · vi denotes the scalar product of u and v.
8 The authors wish to thank Marvin Künnemann for clarifying a few points about this framework.
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the value D+
a (X, Y ) to the values D+

a (Xi, Yj) for i ∈ [1 .. n] and j ∈ [1 .. m]. Specifically,
there must be a fixed value C (depending only on n, m, tX , tY ) that satisfies the following
conditions:
1. Each δ ∈ [0 .. n−m] satisfies D+

a (X, Y ) ≤ C +
∑m

j=1 D+
a (Xj+δ, Yj).

2. There is a set A = {(i1, j1), . . . , (ik, jk)} ⊆ [1 .. n] × [1 .. m] such that i1 < · · · < ik,
j1 < · · · < jk, and D+

a (X, Y ) ≥ C +
∑

(i,j)∈A D+
a (Xi, Yj) + (m− |A|) maxi,j D+

a (Xi, Yj).

▶ Construction 5.5. Let n ≥ m be positive integers and tX = [0 .. σX)ℓX , tY = [0 .. σY )ℓY be
input types. Denote A = σY , B = σY + 1, and ℓ = ℓY . We set GAX and GAY so that

GAX(X1, . . . , Xn) := X :=
n⊙

i=1

(
A2ℓ ·Xi · Aℓ · Bℓ

)
, and

GAY (Y1, . . . , Ym) := Y := Bnℓ ·
m⊙

j=1

(
Aℓ · Yj · Bℓ

)
· Bnℓ,

where
⊙

and · denote concatenation.

It is easy to check that both functions can be implemented in O((n + m)(ℓX + ℓY )) time
and the output types are [0 .. max(σX , σY + 2))n(ℓX +4ℓY ) and Y ∈ [0 .. σY + 2)(2n+3m)ℓY ,
respectively. In the next two lemmas, we prove that Construction 5.5 satisfies the two
aforementioned conditions with C = 1

a (n + m)ℓ.

▶ Lemma 5.6. Each δ ∈ [0 .. n−m] satisfies D+
a (X, Y ) ≤ 1

a (n + m)ℓ +
∑m

j=1 D+
a (Xj+δ, Yj).

Proof. Let us construct an edit distance alignment between $|Y | ·X · $|Y | and Y so that the
total cost charged to characters of Y does not exceed the claimed upper bound.

The prefix B(n−δ)ℓ is matched against the prefix $(n−δ)ℓ (at cost 1
a (n− δ)ℓ).

The subsequent δ blocks Bℓ are matched against the Bℓ blocks within the phrases A2ℓ ·
Xi · Aℓ · Bℓ for i ∈ [0 .. δ) (at cost 0).
Each phrase Aℓ · Yj · Bℓ with j ∈ [1 .. m] is matched against the phrase A2ℓ ·Xj+δ · Aℓ · Bℓ

so that:
The leading block Aℓ is matched against the leading block Aℓ (at cost 0).
The string Yj is matched against AℓXj+δAℓ (at cost D+

a (Xj+δ, Yj) by Fact 5.3).
The trailing block Bℓ is matched against the trailing block Bℓ (at cost 0).

The subsequent n−m− δ blocks Bℓ are matched against the Bℓ blocks within the phrases
A2ℓ ·Xi · Aℓ · Bℓ for i ∈ (m + δ .. n] (at cost 0).
The suffix B(m+δ)ℓ is matched against the suffix $(m+δ)ℓ (at cost 1

a (m + δ)ℓ). ◀

▶ Lemma 5.7. There exists a set A = {(i1, j1), . . . , (ik, jk)} ⊆ [1 .. n] × [1 .. m] such that
i1 < · · · < ik, j1 < · · · < jk, and D+

a (X, Y ) ≥ 1
a (n + m)ℓ +

∑m
(i,j)∈A D+

a (Xi, Yj) + (m −
|A|) maxi,j Da(Xi, Yj).

Proof. Let us fix an optimal alignment between $|Y | ·X · $|Y | and Y . We construct a set
A ⊆ [1 .. n]× [1 .. m] consisting of pairs (i, j) jointly satisfying the following conditions:

At least one character of Yj is aligned against a character of Xi.
No character of Yj is aligned against any character of Xi′ for any i′ ̸= i.
No character of Xi is aligned against any character of Yj′ for any j′ < j.

It is easy to see that A forms a non-crossing matching, i.e., ordering its elements by the first
coordinate is equivalent to ordering them by the second coordinate.
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Let us analyze the contribution of each letter of Y to D+
a (X, Y ) with respect to any fixed

optimal alignment between $|Y | ·X · $|Y | and Y . Let cB denote the number of Bs in X that
are not matched with any B in Y . Since the number of Bs in X and Y is nℓ and (2n + m)ℓ,
respectively, the contribution of Bs in Y to the total cost is at least 1

a ((n + m)ℓ + cB).
If (i, j) ∈ A, then Yj is aligned against a subsequence of X obtained by deleting Xi′ for

all i′ ̸= i and (possibly) some further characters (recall that all deletions in X are free). In
this case, the contribution of Yj is at least D+

a (Xi, Yj) by Fact 5.3.
If no character of Yj is aligned against any character of any Xi, then all characters of Yj

are deleted or substituted, meaning that the contribution of Yj is at least 1
a ℓ. If characters

of Yj are aligned against characters of Xi and Xi′ for two distinct i < i′, then all Bs between
Xi and Xi′ contribute to cB; this contribution is at least ℓ, and it cannot be charged to
any Yj′ with j′ ≠ j. Finally, if characters of both Yj′ and Yj (with j′ < j) are aligned to
characters of the same Xi, then the block Aℓ preceding Yj contributes at least 1

a ℓ. Overall,
we conclude that the total cost is at least 1

a ℓ for each j ∈ [1 .. m] with no (i, j) ∈ A (this
contribution is either directly charged to AℓYj or via cB). Hence, the total cost D+

a (X, Y )
is at least 1

a (n + 2m− |A|)ℓ +
∑

(i,j)∈A D+
a (Xi, Yj). Due to D+

a (Xi, Yj) ≤ 1
a |Yj | = 1

a ℓ, this
yields the claimed lower bound. ◀

Consequently, the framework of [12] yields the following result. (An inspection of [12]
reveals that the strings are produced from the coordinate values composed by recursive
application of the alignment gadget. The tree of this recursion is of height 3, so the output
strings are over an alphabet of size 8.)

▶ Corollary 5.8. There is an O(nd)-time algorithm that, given two sets U, V ⊆ {0, 1}d of n

vectors each and an integer a ∈ Z+, constructs strings X, Y ∈ [0 .. 8)∗ and a threshold k such
that D+

a (X, Y ) ≤ k if and only if ⟨u, v⟩ = 0 for some u ∈ U and v ∈ V . Moreover, |X|, |Y |,
and k depend only on n, d, and a.

5.2 Bounded Distance
Our next goal is to derive a counterpart of Corollary 5.8 with k ≪ |X|+ |Y | and EDa instead
of D+

a . The following construction is at the heart of our reduction.

▶ Construction 5.9. Let n, ℓX , ℓY be positive integers and let ℓ = ℓX + ℓY . For a sequence
of n pairs (Xi, Yi) ∈ ΣℓX × ΣℓY , we define strings

X = AℓY ·
n⊙

j=1
(Bℓ ·Xj · Cℓ · AℓY ) and Y = Y1 ·

n⊙
j=2

(Bℓ · DℓX · Cℓ · Yj).

▶ Lemma 5.10. If a ≥ n, then the strings X, Y of Construction 5.9 satisfy

Da(X, Y ) = (n−1)ℓ
a +

n
min
i=1

D+
a (Xi, Yi).

Proof. First, we prove an upper bound on Da(X, Y ). Let us fix i ∈ [1 .. n]. We define an
edit distance alignment between

X =
i−1⊙
j=1

(AℓY · Bℓ ·Xj · Cℓ) · AℓY · Bℓ ·Xi · Cℓ · AℓY ·
n⊙

j=i+1
(Bℓ ·Xj · Cℓ · AℓY )
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and

Y =
i−1⊙
j=1

(Yj · Bℓ · DℓX · Cℓ) · Yi ·
n⊙

j=i+1
(Bℓ · DℓX · Cℓ · Yj)

so that the total cost charged to characters of Y does not exceed (n−1)ℓ
a + D+

a (Xi, Yi).
For j ∈ [1 .. i), the phrase Yj · Bℓ · DℓX · Cℓ is aligned with the phrase AℓY · Bℓ ·Xj · Cℓ using
substitutions only (at cost 1

a (ℓX + ℓY )).
The block Yi is aligned against AℓY ·Bℓ ·Xi · Cℓ · AℓY (at cost D+

a (Xi, Yi) by Fact 5.3).
For j ∈ (i .. n], the phrase (Bℓ · DℓX · Cℓ · Yj) is aligned with the phrase Bℓ ·Xj · Cℓ · AℓY

using substitutions only (at cost 1
a (ℓX + ℓY )).

It remains to prove the lower bound on Da(X, Y ). Let us fix an arbitrary alignment of
X and Y ; we shall prove that its cost is at least as large as the claimed lower bound on
Da(X, Y ). First, suppose that, for some i ≠ j, a character of Xi is aligned against a character
of Yj . Note that Xi = X[(3i− 2)ℓ + ℓY .. (3i− 1)ℓ) and Yj = Y [(3j − 3)ℓ .. (3j − 3)ℓ + ℓY ).
If i < j, then aligning a character of Xi against a character of Yj requires deleting at least
(3j − 3)ℓ− (3i− 1)ℓ = (3j − 3i− 2)ℓ ≥ ℓ characters in the prefix Y [0 .. (3j − 3)ℓ). Similarly,
if i > j, then aligning a character of Xi against a character of Yj requires deleting at least
(|Y |−((3j−3)ℓ+ℓY ))−((|X|−(3i−2)ℓ+ℓY )) = (3(n−j)ℓ−(3n−3i+2)ℓ) = (3i−3j−2)ℓ ≥ ℓ

characters in the suffix of Y [(3j − 3)ℓ + ℓY .. |Y |). In either case, the alignment cost is at
least ℓ ≥ nℓ

a ≥
(n−1)ℓ

a + 1
a ℓY ≥ (n−1)ℓ

a + minn
i=1 D+

a (Xi, Yi).
Thus, we may assume that no character of Yj is aligned against a character of Xi for

i ̸= j. In this case, we bound from below the total cost charged to characters of Y . Note
that the symbols D in Y contribute at least n−1

a ℓX (because there are no Ds in X). If, for
some i ∈ [1 .. n], no character of Yi is aligned against a character of Xi, then Yi is charged
at least 1

a ℓY . Otherwise, Yi is charged at least D+
a (Xi, Yi) by Fact 5.3. However, if i < j

are subsequent indices such that a character of Yi is aligned against a character of Xi and
a character of Yj is aligned against a character Xj then, among the 2ℓ(j − i) characters B
and C between Yi and Yj , at most LCS((BℓCℓ)j−i, (CℓBℓ)j−i) = ℓ(2(j − i)− 1) are matched,
incurring a cost of at least 1

a ℓ > 1
a ℓY for the mismatched characters. Overall, Ds contribute

at least n−1
a ℓX , the smallest i such that a character of Xi is aligned against a character of Yi

(if there is any) contributes at least D+
a (Xi, Yi), each of the remaining i ∈ [1 .. n] contributes

at least 1
a ℓY (either directly or via Bs and Cs), for a total of (n−1)ℓ

a + minn
i=1 D+

a (Xi, Yi). ◀

These properties let us use Construction 5.9 to generalize Corollary 5.8 and finally prove
Theorem 1.9.

▶ Proposition 5.11. There is an O(nmd)-time algorithm that, given two sets U, V ⊆ {0, 1}d

of n vectors each and integers a ∈ Z+, m ∈ [1 .. n], constructs strings X, Y ∈ [0 .. 12)∗ and a
threshold K = O(max( m

a , 1
m )nd) such that EDa(X, Y ) ≤ K if and only if ⟨u, v⟩ = 0 for some

u ∈ U and v ∈ V .

Proof. We cover U and V with subsets U1, . . . , Um ⊆ U and V1, . . . , Vm ⊆ V of size ⌈ n
m⌉.

For any i, j ∈ [1 .. m], we construct an instance (Xi,j , Yi,j , ki,j) using Corollary 5.8 for
Ui, Vj ⊆ {0, 1}d. Note that |Xi,j | = ℓX , |Yi,j | = ℓY , and ki,j depend only on n, m, and d. We
then apply Construction 5.9 to the collection of m2 pairs (Xi,j , Yi,j), resulting in strings X

and Y . The running time of this construction is O(m2(ℓX + ℓY )) = O(m2 · ⌈ n
m⌉d) = O(mnd).

Moreover, we set k = m2−1
a (ℓX + ℓY ) + ki,j (recall that ki,j is the same for all i, j ∈ [1 .. m]);

this value satisfies k ≤ m2

a (ℓX + ℓY ) = O(a−1mnd). If ⟨u, v⟩ = 0 for some u ∈ U and v ∈ V ,
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then Corollary 5.8 implies that D+
a (Xi,j , Yi,j) ≤ ki,j for i, j ∈ [1 .. m] such that u ∈ Ui and

v ∈ Vj . Consequently, Da(X, Y ) ≤ k by Lemma 5.10. Symmetrically, if Da(X, Y ) ≤ k, then,
by Lemma 5.10, D+

a (Xi,j , Yi,j) ≤ ki,j holds for some i, j ∈ [1 .. m] and, by Corollary 5.8,
⟨u, v⟩ = 0 for some u ∈ Ui ⊆ U and v ∈ Vj ⊆ V . The threshold k for Da(X, Y ) translates to
a threshold K = k + |X| − |Y | = k + O(ℓ) = O(max(a−1mnd, nd/m)) for EDa. ◀

▶ Theorem 1.9. Consider sequences (an)∞
n=1 and (kn)∞

n=1 with entries an, kn ∈ [1 .. n]
computable in poly(n) time. Unless the Orthogonal Vectors Conjecture fails, there is no
algorithm that, for some fixed ϵ > 0, every n ∈ Z+, and all strings X, Y with |X|+ |Y | ≤ n,
in O((n + kn ·min(n, ankn))1−ϵ) time computes EDan

(X, Y ) or reports that EDan
(X, Y ) > kn.

Proof. For each n ∈ Z+, let tn = min(n, ankn)kn. Note that Ω(n) time is already needed
to check whether X = Y . Thus, the claim holds trivially if there are infinitely many pairs
(an, kn) with t1−ϵ

n < n. Consequently, we may assume without loss of generality that t1−ϵ
n ≥ n

for each n (any finite prefix of the sequence (an, kn) is irrelevant).
Let us choose a constant c′ so that (an, kn) can be constructed in O(nc′) time, a constant

c of Conjecture 5.1 for ϵ/(2c′), and a constant C so that Proposition 5.11 guarantees
|X|+ |Y | ≤ Cnmd and K ≤ C(max(m/a, 1/m)nd).

Given an instance V ⊆ {0, 1}d of the Orthogonal Vectors problem with d = c log |V |,
we set n := ⌈|V |1/c′⌉ and compute the values an, kn, and tn in O(nc) = O(|V |) time.
Next, we set N := ⌊

√
tn/(Cd)⌋ and cover V with v := ⌈ 1

N |V |⌉ subsets V1, . . . , Vv of size N .
For any i, j ∈ [1 .. v], we construct an instance (Xi,j , Yi,j , Ki,j) using Proposition 5.11 for
Vi, Vj ⊆ {0, 1}d, an, and mn := ⌊

√
min(n/kn, an)⌋.

Note that |Xi,j | + |Yi,j | ≤ CmnNd ≤
√

min(n/kn, an)tn ≤
√

n/kn · nkn ≤ n and
Ki,j ≤ C · max(mn/an, 1/mn)Nd ≤ max(mn/an, 1/mn)

√
tn. If ankn ≤ n, then Ki,j ≤

max(√an/an, 1/
√

an) ·
√

ank2
n = kn. If ankn ≥ n, on the other hand, then Ki,j ≤

max(
√

n/kn/an,
√

kn/n) ·
√

nkn ≤ max(n/an, kn) ≤ kn. Thus, we can test EDa(Xi,j , Yi,j) ≤
Ki,j using an instance (Xi,j , Yi,j , an, kn) of the problem in question. By our hypothesis, this
costs O(n + t1−ϵ

n ) = O(t1−ϵ
n ) time (including construction of Proposition 5.11). Summing

up over i, j ∈ [1 .. v], the running time is O(v2t1−ϵ
n ) = O(|V |2/N2 · t1−ϵ

n ) = O(d2|V |2t−ϵ
n ) =

O(d2|V |2n−ϵ) = O(d2|V |2−ϵ/c′) = O(|V |2−ϵ/(2c′)). Overall, including the construction of
(an, kn) in O(|V |) time, the total time complexity of solving the OV instance is O(|V |2−ϵ/(2c′)),
contradicting Conjecture 5.1. ◀
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Abstract
Interactive proofs of proximity (IPPs) offer ultra-fast approximate verification of assertions regarding
their input, where ultra-fast means that only a small portion of the input is read and approximate
verification is analogous to the notion of approximate decision that underlies property testing.
Specifically, in an IPP, the prover can make the verifier accept each input in the property, but
cannot fool the verifier into accepting an input that is far from the property (except for with small
probability).

The verifier in an IPP system engages in two very different types of activities: interacting with
an untrusted prover, and querying its input. The definition allows for arbitrary coordination between
these two activities, but keeping them separate is both conceptually interesting and necessary for
important applications such as addressing temporal considerations (i.e., at what time is each of
the services available) and facilitating the construction of zero-knowledge schemes. In this work we
embark on a systematic study of IPPs with proof-oblivious queries, where the queries should not
be affected by the interaction with the prover. We assign the query and interaction activities to
separate modules, and consider different limitations on their coordination.

The most strict limitation requires these activities to be totally isolated from one another; they
just feed their views to a separate deciding module. We show that such systems can be efficiently
emulated by standard testers.

Going to the other extreme, we only disallow information to flow from the interacting module to
the querying module, but allow free information flow in the other direction. We show that extremely
efficient one-round (i.e., two-message) systems of such type can be used to verify properties that
are extremely hard to test (without the help of a prover). That is, the complexity of verifying
can be polylogarithmic in the complexity of testing. This stands in contrast the MAPs (viewed as
1/2-round systems) in which proof-oblivious queries are as limited as our isolated model.

Our focus is on an intermediate model that allows shared randomness between the querying and
interacting modules but no information flow between them. In this case we show that 1-round systems
are efficiently emulated by standard testers but 3/2-round systems of extremely low complexity exist
for properties that are extremely hard to test. One additional result about this model is that it can
efficiently emulate any IPP for any property of low-degree polynomials.
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1 Introduction

This paper initiates a systematic study of a natural type of interactive proofs of proximity, a
notion which is a hybrid of interactive proofs and property testing. Specifically, interactive
proofs of proximity (IPPs) combine the paradigm of verifying delegated computation with
the paradigm of ultra-fast computation that refers to an approximate version of the actual
input. Since any proof system is defined in terms of its verification procedure, which in
turn presumes a model of computation, we start from the model of computation underlying
property testing (see, e.g., the textbook [14]).

Loosely speaking, property testing typically refers to sub-linear time probabilistic al-
gorithms for deciding whether a given object has a predetermined property or is far from any
object having this property. Such algorithms, called testers, obtain local views of the object
by making adequate queries; that is, the object is seen as a function and the testers get oracle
access to this function (and thus may be expected to work in time that is sub-linear in the
size of the object). In particular, one often seeks testers of extremely low query complexity
(e.g., query complexity that is polylogarithmic in the size of the object).

Needless to say, such low level of complexity for testing cannot be achieved for all problems
of interest, which leads to the natural question of whether traditional (non-interactive) proofs
or interactive proofs can assist us in such cases. That is, viewing low query complexity as
our base line, we are considering non-interactive and interactive proof systems in which the
verifier makes few queries and reads short proofs (resp., short messages from the prover).
Indeed, we are talking about “NP” and “IP” analogs of property testing (viewed as an
analogue of “P”). Such analogs, termed MA-proofs of proximity (MAPs)2 and interactive
proofs of proximity (IPPs), were introduced and studied in [19] and [21], respectively.3

The seemingly innocuous analogy between the well-known complexity classes MA and
IP and the “property testing versions” termed MAP and IPP ignores the question of
orchestrating the two activities of the verifier (i.e., querying the oracle and interacting with
the prover). The trivial answer is that these two activities are performed by the same
entity concurrently with free information flow from one activity to the other. But is this
concurrency and free information flow essential?

The foregoing question is not merely interesting per se. There may be settings in which
such concurrency is not possible or that a free information flow is not desirable. For example,
it may be that query access to the input is only available at one time, whereas the interaction

2 Note that in a randomized setting, as is inherent for algorithms that read small parts of their input, alleged
(non-interactive) proofs are verified probabilistically. Hence, such verification is actually analogous to
MA rather than to NP.

3 Actually, the work of [21] predated [19], and both were predated by [9], which presents an extremely
general framework that contains both IPPs and PCPPs as a special case.



O. Goldreich, G. N. Rothblum, and T. Skverer 59:3

with the prover is only available afterwards. Alternatively, as outlined at the end of Section 2,
having queries that are oblivious of the prover’s messages seems a first step towards obtaining
a natural notion of zero-knowledge IPPs (cf. [4]). Indeed, our focus is on IPPs that employ
proof-oblivious queries.

We mention that proof-oblivious queries were considered before, both in the context of
MAPs (cf. [19, Def. 2.2]) and in the context of IPPs (cf. [21, Fn. 2] and [18, Sec. 5]). In
particular, it was shown that MAPs with proof-oblivious queries can be efficiently emulated
by a standard tester [19, Thm. 4.2]: If the former use proofs of length p and q queries, then
the tester has query complexity O(p · q). This should be contrasted with the fact that there
are MAPs (with proof-dependent queries) of extremely low complexity for properties that
are extremely hard to test (see [19, Thm. 1.1]). We interpret these facts as saying that
proof-oblivious queries severely limit the power of MAPs. But is it so also for IPPs?

Before answering the foregoing question, we observe that, in the context of IPPs, the
notion of proof-oblivious queries may have several different natural interpretations (which all
coincide in the context of MAPs).4

In fact, we initiate a systematic study of proof-oblivious queries (PO-queries) in the
context of IPPs. Jumping ahead, we telegraphically highlight the following results (which
will be properly reviewed in Section 3):

Under the most strict interpretation of IPPs with proof-oblivious queries (i.e., the “isolated”
model), these systems can be efficiently emulated by a standard tester.
Under the most liberal interpretation of IPPs with proof-oblivious queries (i.e., the
“general” model), there exist such systems of extremely low complexity for properties
that are extremely hard to test. This holds even for 1-round systems (in which a single
message by the verifier followed by a single message by the prover), in contrast to MAPs
(which are 1/2-round IPPs).
Under an intermediate (and natural) interpretation of IPPs with proof-oblivious queries
(i.e., the “pre-coordinated” model), it holds that 1-round systems are efficiently emulated
by testers but 3/2-round systems of extremely low complexity exist for properties that
are extremely hard to test.

We now turn to a more detailed account of the underlying definitions and results.

2 Defining IPPs and Types of IPPs With PO-Queries

An interactive proof of proximity is a two-party protocol for parties called verifier and prover.
The verifier has oracle access to a function f : [n] → Σ, and also gets explicit inputs n and
ϵ > 0, where ϵ is called the proximity parameter. The prover gets f as explicit input, and its
aim is to convince the verifier that f is in some predetermined set Πn, called the property.
In analogy to the definition of interactive proof systems [16], we require that the prover can
convince the verifier to accept any f in Π (w.h.p.), but cannot fool the verifier into accepting
f that is ϵ-far from Πn (except for with low probability). Indeed, the main deviation from the
definition of a (standard) interactive proof system is that the soundness requirement is made
only for inputs that are ϵ-far from Πn, where f is ϵ-far from Πn if for every g ∈ Πn it holds
that |{i∈ [n] : f(i) ̸=g(i)}| > ϵ · n. The actual definition refers to an optimal prover strategy,
denoted P , and focuses on the communication and query complexities of the system.

4 While [18] do not formally define proof-oblivious systems, their claims seem to refer to two different
notions. See Section 6.
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▶ Definition 1. (interactive proofs of proximity systems (IPPs) [21]):5 Let Π =
⋃

n∈N Πn

such that Πn is a set of functions over [n]. A randomized and interactive oracle machine,
denoted V , constitutes a verifier for an interactive proof of proximity for (the property) Π if the
following two conditions hold.
(completeness): On input n, ϵ and oracle access to any f ∈ Πn, after interacting with an

optimal prover P , the verifier accepts with probability at least 2/3.
(soundness): On input n, ϵ and oracle access to any f : [n] → Σ that is ϵ-far from Πn, after

interacting with an optimal prover P , the verifier accepts with probability at most 1/3.
We say that the system has perfect completeness if the verifier accepts each f ∈ Π with
probability 1. The query complexity of V is q : N × [0, 1] → N if, on input n, ϵ and oracle
access to any f : [n] → Σ, the verifier makes at most q(n, ϵ) queries to f . The communication
complexity of the system is c : N × [0, 1] → N if, on input n, ϵ and oracle access to any
f : [n] → Σ, the parties exchange at most c(n, ϵ) bits.

Standard testers can be viewed as a special case in which the communication complexity is
zero; that is, effectively there is no prover. MAPs correspond to the special case in which
the communication is unidirectional, with the prover sending a single message (of length at
most c).

The general notion of proof-oblivious queries merely asserts that the queries made by
the verifier are oblivious of the messages received from the prover. In order to clarify what
this means as well as discuss alternative notions, we decompose the verifier V into three
(randomized) modules: A querying module denoted Q, which is in charge of querying the
oracle, a interacting module denoted I, which is in charge of interacting with the prover,
and a deciding module denoted D, which takes the final decision based on the information
handed to it by the other two modules. Now, the general notion (or model) of proof-oblivious
queries postulates that the interaction from the querying module Q to the other modules is
unidirectional (from Q to I and D). Actually, it suffices to have Q send a single message to
I, which in turn sends a single message to D. (Actually, in this case, we may combine I and
D into a single entity.)

In contrast, the most strict interpretation of proof-oblivious queries means that the
querying and interacting modules are totally uncoordinated; in particular, they do not
communicate with one another nor do they receive any message from the deciding module
(since otherwise D may serve as a subliminal communication channel between Q and I). In
the corresponding model, called the isolated model, the two main modules (i.e., Q and I)
are totally isolated from one another. The only communication between the three modules
amount to Q and I sending their view to the deciding module D; specifically, the querying
module sends the answers that it has obtained from the oracle along with its internal coin
tosses, whereas the interacting module sends the messages that it has obtained from the
prover along with its internal coin tosses. Without loss of generality, each module sends a
single message to D. See illustration on the l.h.s of Figure 1.

Note that in the isolated model the two messages received by D (from Q and I, respectively)
are statistically independent. In particular, Q and I each have their own source of randomness,
and these sources are independent of one another. In contrast, in the pre-coordinated model,
these two parties are fed by the same source of randomness, although they are free to
use disjoint parts of it. See illustration at the center of Figure 1. Hence, although the

5 As discussed in Section 5, we avoid the good convention of specifying a (“honest”) prover strategy for
the completeness condition.
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Figure 1 The isolated, pre-coordinated, and general models of PO-queries.

communication pattern (in the pre-coordinated model) is the same as in the isolated model,
the messages that D receives may be correlated, since Q and I are using the same source of
randomness. In particular, I may send to the prover messages that are related to the queries
that Q made to the oracle, but unlike in the general model (see illustration on the r.h.s of
Figure 1) these messages may not depend on the answers provided by the oracle.

In Section 7 we provide a more formal description of the three models (of IPPs with
PO-queries) that are studied in the paper.

Public-coin IPPs

Recall that public-coin interactive proofs (of proximity) are ones in which each message sent
by the verifier is a predetermined subsequence of the randomness of the verifier. Note that
any public-coin IPP that uses PO-queries is, by definition, in the pre-coordinated model,
because its interacting module is not allowed to use the information it might have received
from the querying module in determining its messages to the prover. On the other hand, any
IPP of the isolated model can be emulated by a public-coin IPP of the isolated model.

Obtaining zero-knowledge IPPs

Loosely speaking, IPPs that use proof-oblivious queries, even in the general sense, may
be easily converted into zero-knowledge IPPs (e.g., as defined in [4]). In case these IPPs
(with PO-queries) are of the public-coin type, we just have the (zero-knowledge) prover
send commitments to its original messages, and prove at the very end (in zero-knowledge
manner) that the original verifier would have accepted the corresponding (de-committed)
information. This does not disrupt the new verifier’s actions, since its queries are proof-
oblivious and its messages to the prover are random. When using general (i.e., private-coin)
IPPs (with PO-queries), one may use secure two-party computation to enable the verifier to
(“blindly”) deliver messages to the prover; these messages are computed based on the verifier’s
randomness and the previously committed messages of the prover, while the prover provides
(in secrecy) the corresponding de-committed values, and the verifier remains ignorant about
its own messages. Alternatively, one may use fully-homomorphic encryptions instead of the
commitment, and have the verifier send encryptions of its own messages.

3 Main Results

As stated upfront, our focus is on interactive proofs of proximity (IPPs) that use proof-
oblivious queries (PO-queries). We initiate a systematic study of such systems, obtaining
various results that distinguish the three models that were presented in Section 2 and relating
them to MAPs and to standard testers.
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When relating the various models, we consider an emulation of one model in a second
model to be efficient if the communication and query complexity in the second model are
polynomial in the complexities in the first model. In contrast, separation results assert at
least a sub-exponential gap between the corresponding complexities. Our first result asserts
that IPPs in the isolated model can be efficiently emulated by standard testers.

▶ Theorem 2 (efficient emulation of the isolated model by testers). Suppose that Π is a
property that can be verified in the isolated model (of IPPs with proof-oblivious queries) using
q queries and c bits of communication. Then, Π has a standard tester of query complexity
O((c + 1) · q).

Theorem 2 significantly extends [19, Thm. 4.2], which establishes an analogous emulation
of MAPs with proof-oblivious queries. Recall that MAPs are 1/2-round IPPs (i.e., the
“interaction” is unidirectional with the prover sending a single message to the verifier), and
in this case all three models of proof-oblivious queries coincide. In contrast, in Theorem 2
the communication between the prover and the verifier is only restricted by the total amount
of bits communicated.

While the isolated model offers limited advantage over a standard tester, we show that
the general model (of IPPs with proof-oblivious queries) is significantly stronger. In fact, not
only is it stronger than standard testers, it is even not efficiently emulated by general MAPs
(i.e., ones that are not restricted to proof-oblivious queries).

▶ Theorem 3 (the general model of PO-queries cannot be efficiently emulated by MAPs). There
exists a property Π that can be verified in the general model (of IPPs with proof-oblivious
queries) using O(1/ϵ) queries and O(ϵ−1 log n) bits of communication, but any MAP for Π
that uses a proof of length p must use at least Ω(n1/2/(p + 1)) queries. Furthermore, the IPP
with proof-oblivious queries uses a single round of communication.

Theorem 3 is proved for the property consisting of all permutations over [n], while using the
lower bound established in [18, Lem. 4.3]. For the upper bound we use a proof system different
than the (1-round) IPP presented in [18, Sec. 4.1], since the latter uses proof-dependent
queries (i.e., it does not satisfy the condition of proof-oblivious queries).

The results regarding the model of pre-coordinated (PO-queries) IPPs bridge the two
extremes captured by Theorems 2 and 3. On the one hand, 1-round IPPs in the pre-
coordinated model can be efficiently emulated by standard testers. On the other hand,
3/2-round IPPs in the pre-coordinated model are significantly stronger than standard testers.
Recall that in 1-round IPP the communication consists of two messages (i.e., the first message
is sent from the verifier to the prover who responds with a single message), whereas in
3/2-round IPP the communication consists of three messages (i.e., the prover sends a single
message, which is followed by a communication round as in a 1-round IPP).

▶ Theorem 4 (the pre-coordinated model of PO-queries – 1 round vs 1.5 rounds). The following
dichotomy holds regarding IPPs (with proof-oblivious queries) in the pre-coordinated model.
1. Any property that can be verified in the pre-coordinated model, using a 1-round IPP

with q queries and c bits of communication, has a standard tester of query complexity
O((c + 1) · q).

2. There exists a property Π that can be verified in the pre-coordinated model using a 3/2-
round IPP with O(1/ϵ) queries and O(ϵ−1 log n) bits of communication, but any tester
for Π uses at least Ω(n1/2) queries.
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Table 1 Can standard testers efficiently emulate IPPs that use PO-queries?

1/2-round 1-round 3/2-round O(1)-round ω(1)-round
isolated Yes [19, Thm 4.2] ←− Yes (Thm 2)
public-coin ←− Yes (Thm 8) No (Thm 5)
pre-coordinated ↓ Yes (Thm 4.1) No (Thm 4.2) −→
general POQ No (Thm 3) −→

Indeed, Part 1 asserts an efficient emulation at a complexity level that matches the bound
in Theorem 2 (which refers to the isolated model), whereas Part 2 provides a separation
analogous to Theorem 3 (which refers to the general model). Note that Part 1 implies
a separation between 1-round IPPs in the general model (of proof-oblivious queries) and
1-round IPPs in the pre-coordinated model. On the other hand, the separation in Part 2
is only with respect to testers (rather than MAPs as in Theorem 3). In order to prove the
hardness of the emulation of the pre-coordinated model by general MAPs, we use more
rounds of the pre-coordinated model.

▶ Theorem 5 (the pre-coordinated model of PO-queries cannot be efficiently emulated by MAPs).
There exists a property Π that can be verified in the pre-coordinated model (of IPPs with
proof-oblivious queries) using poly(ϵ−1 log n) queries and poly(log n) bits of communication,
but any MAP for Π that uses a proof of length p must use at least Ω(n0.999/(p + 1)) quer-
ies. Furthermore, the IPP with proof-oblivious queries uses O(log n) rounds of public-coin
communication.

Theorem 5 is proved by observing that the proof of [19, Thm. 3.28] uses an IPP that can
be implemented in the pre-coordinated model. Specifically, we observe that the celebrated
sum-check protocol of [20] can be implemented in the pre-coordinated model (see Section 4.3
in our tehcnical report [15]). The general picture that emerges from the results reviewed so
far (and the following Theorem 8) is summarized in Table 1.

A focus on the pre-coordinated model

We find the pre-coordinated model especially appealing, since it allows the two main modules
to operate independently of one another (but based on the same randomness, which is
essential in light of Theorem 2). Theorems 4 and 5 frame our study of the pre-coordinated
model, which is aimed at a finer understanding of what these proof systems can achieve. We
loosely state two positive results and one negative result. The first result refers to a natural
class of (general) MAPs.

▶ Theorem 6 (3/2-rounds of IPPs in the pre-coordinated model can efficiently emulate a natural
class of MAPs). Suppose that Π is a property of functions from [n] to [m] that can be verified
by a MAP that uses a proof of length ℓ and makes q non-adaptive and uniformly distributed
queries. Then, Π can be verified in the pre-coordinated model by a 3/2-round IPP that uses
q̃ = Õ(q) queries and total communication O(q̃ · ℓ + q̃2 · log(nm)).

We stress that the hypothesis only requires that each query of the MAP verifier is uniformly
distributed; their joint distribution, which may also depend on the given proof-string, is
arbitrary (beyond this requirement).6

6 Indeed, we are interested in the case that the original MAP uses proof-dependent queries. In this case,
the dependence on the proof-string is manifested in the dependent between the queries.
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One example of a property in the class is the set {uuvv : uv ∈{0, 1}n/2}, which is hard to
test. We comment that the 3/2-round (pre-coordinated model) IPP of Theorem 4 (Part 2) is
essentially obtained as a special case of Theorem 6. On the other hand, the result we actually
obtain (see Theorem 4.7 in our technical report [15]) is much more general than Theorem 6.
The next result refers to a much wider class of IPPs, but restricts the class of properties.

▶ Theorem 7 (IPPs in the pre-coordinated model can efficiently emulate general IPPs for
any property of low-degree polynomials). Let Π be a property (equiv., a subset) of m-variate
polynomials of total degree d over a finite field F , and suppose that Π can be verified by an
r-round public-coin IPP of query complexity q and communication complexity c, and that
d ≤ |F |/O(1+log|F| q). Then, Π can be verified in the pre-coordinated model by a (r+q)-round
IPP that uses O(q + d) queries and total communication O(c) + q · (d + m) · O(log(q + |F|)).
Furthermore, if the original IPP uses non-adaptive queries, then the emulation can be done
in r + 1 rounds.

Recall that general r-round IPPs can be efficiently emulated by O(r)-round public-coin
IPPs (see [21], following [17]); hence the result stated in Theorem 7 extends to the case that
Π can be verified by any IPP, but the resulting round and communication complexities are
increased in a suitable manner (so to account for the public-coin emulation). On the other
hand, the verifier in the resulting IPP (i.e., in the pre-coordinated model) is not public-coin,
and this is inherent because any property (including ones that have an efficient MAP but are
hard to test) can be embedded in a property of polynomials whereas the following Theorem 8
limits the power of public-coin system.7

Indeed, it follows that IPPs of the pre-coordinated model cannot be efficiently emulated
by public-coin IPPs of the pre-coordinated model (cf. Corollary 9).

▶ Theorem 8 (efficient emulation by testers of public-coin O(1)-round IPPs in the pre-coordinated
model). Let Π be a property that can be verified by an r-round public-coin IPP in the pre-
coordinated model using q queries and c bits of communication. Then, Π has a standard
tester of query complexity (poly(r) · c)r · q.

Recall that any public-coin IPP that uses PO-queries is, by definition, in the coordinated
model. The public-coin restriction in Theorem 8 is inherent in light of Theorem 4 (Part 2).
Indeed, combining Theorems 8 and 4, we get.

▶ Corollary 9 (private-coin 3/2-round IPPs in the pre-coordinated model cannot be efficiently
emulated by O(1)-round public-coin IPPs in the pre-coordinated model). There exists a property
Π that can be verified in the pre-coordinated model using a 3/2-round IPP with O(1/ϵ)
queries and O(ϵ−1 log n) bits of communication, but any r-round public-coin IPP in the
pre-coordinated model for Π of query complexity q uses at least Ω((n/q2)1/2r) bits of commu-
nication.

7 For example, starting from [19, Thm. 1.1], we have a property of functions f : [n]→ {0, 1} that has a
MAP that uses a proof of length O(log n) and makes O(1/ϵ) queries, but cannot be tested with n0.999

queries. Associating [n] with Hm such that |H| = log2 n and considering the low-degree extensions of
these functions over a field F of size O(m · |H|), we obtain a property of degree m · |H| polynomials that
has a MAP that uses a proof of length O(log n) and O(m · |H|/ϵ) = O(ϵ−1 log2 n) non-adaptive queries,
and is at least as hard to test as the original property. Note that the domain of the new functions has
size s

def= |Fm| = o(n2); hence, hardness of testing holds for query complexity s0.49.
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Indeed, Corollary 9 provides yet another natural example of the gap between public-coin
and general interactive proof systems.8

Turning back to Theorem 8, we mention that it extends (from public-coin IPPs of
the pre-coordinated model) to IPPs of the pre-coordinated model that use proof-oblivious
messages (i.e., the messages sent by the verifier are oblivious of the prover’s messages):
See Theorem 4.10 in our technical report [15]. On the other hand, the emulation provided
by Theorem 8 is relatively tight, since the proof system of [19, Lem. 3.29] has an r-round
version that yields (via this emulation) a tester with almost optimal query complexity (see
Appendix A.3 in our technical report [15]).

4 Techniques

Theorems 2, 4(1), 6, 7, and 8 are proved by emulating one model on another. In particular,
we indicate the limitation of various types of IPPs that use PO-queries by showing that they
can be efficiently emulated by standard testers. In contrast, we illustrate the power of IPPs
that use PO-queries by showing that they can efficiently emulate general IPPs of certain
types. We now review these two different types of emulations.

4.1 Emulating IPPs That Use PO-Queries by Standard Testers
We indicate the limitation of some types of IPPs (of the isolated and coordinated models) by
showing that they can be efficiently emulated by standard testers. Such emulations are used
in the proof of Theorem 2, Part 1 of Theorem 4, and Theorem 8. These emulations are best
illustrated in the simplest contents of Theorem 2, which refers to the isolated model (of IPPs
with PO-queries).

The starting point is the representation of all possible executions of a standard interactive
proof system by a “game-tree” in which internal vertices represents execution prefixes and
their children represent possible moves of the relevant party (cf. [3, Sec. 4] and [12, Apdx
C.1]). The value of a leaf in the tree is the probability that the verifier accepts conditioned
on the corresponding sequence of messages sent during the execution, where the value is
either 0 or 1 in the special case that the sequence of messages fully determines the verifier’s
randomness (e.g., when the system is of the public-coin type). The value of an internal vertex
associated with the verifier equals the expected value of its children, when the expectation
is according to the (conditional) probability space that determines the next message of the
verifier.9

The value of an internal vertex associated with the prover equals the maximal value
among the values assigned to its children.

Hence, the value of the root of the game-tree represents the probability that the verifier
accepts, which in turn represents the expected value of the leaf reached in a random execution
(with an optimal prover).

We stress that the foregoing description refers to standard interactive proof systems (not
to IPPs). Turning to the isolated model, we observe that the value of a leaf in the tree
may be defined as the probability that the (decision module of the) verifier accepts in a

8 The best-known gaps were demonstrated in the context of zero-knowledge (cf. [13, Thm. 4.5.11] vs [13,
Sec. 4.9.1]) and relatively efficient proving (cf. [22]). Closer to our context are the gaps shown for IPPs
in the distribution testing setting [7, Sec. 6] and in the sample-based setting [11, Sec. 4.2].

9 Note that this selection from a conditional probability space is not necessarily how the real (possibly
private-coin) verifier acts, but this is how we view the effects of its actions in the analysis.
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random execution of the querying module, when (the deciding module is) also fed with the
corresponding output of the interacting module (i.e., the corresponding sequence of messages
sent during the execution of the interacting module). The key observation is this value is a
function of the identity of the specific leaf (corresponding to a specific interaction transcript)
and the outcome of a random process that does not depend on the identity of this leaf. In
other words, the same random process (representing the querying module) is used in all
leaves. Hence, all that we need is (constant additive error) approximations of the values
of all leaves, and all these approximations can be obtained based on the same repeated
invocations of the random process. Thus, it suffices to invoke the random process for a
number of times that is logarithmic (rather than linear) in the number of leaves. Using these
approximated values of all leaves, we can compute the approximate value of the root of the
tree, and Theorem 2 follows (i.e., the tester invokes the querying module O(c) times, where
each invocation makes q queries, where c denotes the communication complexity of the IPPs
and q its query complexity).

Turning to the pre-coordinated model, which is the focus of Theorems 4 and 8, we note
that it is no longer the case that the random execution of the querying module is the same
in all leaves (corresponding to all interaction transcripts). Indeed, the PO-queries condition
implies that these executions do not depend on the prover messages, but they are conditioned
by the choices made by the interacting module, since the querying and interacting modules
use the same source of randomness. In particular, different conditional spaces may lead
to different sequences of queries, and so our goal is to show that it suffices to use much
fewer conditional spaces than the number of leaves. In the case of one-round IPPs (of the
pre-coordinated model) this is achieved by observing that the conditional spaces are oblivious
of the last prover message, and that it suffices to sample a constant number of verifier
messages. This leads to establishing Part 1 of Theorem 4. In the case of public-coin IPPs,
the verifier messages are also oblivious of the prover messages, and so the relevant parameter
is the product of the number of verifier messages used in each round. Proving that it suffices
to sample poly(r) · c verifier messages for each of the r rounds, allows to establish Theorem 8.
In other words, in this case, we prune the game-tree, leaving only poly(r) · c children in each
vertex that corresponds to a verifier move.

4.2 Emulating Some Types of IPPs by IPPs That Use PO-Queries
We illustrate the power of IPPs in the coordinated model by showing that they can efficiently
emulate general IPPs of certain types. Such emulations are used in the proofs of Theorems 6
and 7.

Recall that Theorem 6 refers to any MAP that uses a proof of length ℓ and makes q

non-adaptive and uniformly distributed queries to a function f : [n] → [m], where these
queries may depend on the proof given to the verifier (i.e., the individual queries may
be related in a way that depends on the given proof). The key idea is to query f at a
uniformly distributed point u ∈ [n], and place u as the ith query of a random execution of
the MAP, where i ∈ [q] is selected uniformly at random, then ask the prover to provide the
corresponding execution of the MAP, and accept if and only if the provided transcript is
accepting and matches f(u). That is, our 3/2-round IPP makes the random query u, and
enters an interaction with the prover, who is supposed to send the MAP-proof as its first
message. Denoting this message by π, our verifier selects i ∈ [q] uniformly at random, and
selects a random r such that on randomness r, upon given the MAP-proof π, the ith query of
MAP-verifier equals u. Our verifier sends r (or the corresponding query sequence) to the
prover, who is supposed to respond with the corresponding answers. Letting a = (a1, ..., aq)
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denote the actual prover response, the deciding module accepts the value f(u) provided
by the querying module and the transcript (π, r, a) provided by the interacting module if
and only if ai = f(u) and the MAP-verifier would have accepted the proof π, when using
randomness r and getting the oracle answer-sequence (a1, ..., aq). The error is reduced to a
constant by repeating the foregoing system for O(q) times, in parallel.

Turning to Theorem 7, recall that we are given an r-round public-coin IPP of query
complexity q and communication complexity c for some property of low degree polynomials.
Here, we make a random query per each query of the original prover, and ask our prover for
(the univariate polynomial that describes) the values of the tested polynomial on the line
that connects our random query and the real query. Specifically, the interacting module first
emulates the original public-coin IPP, while relying on the fact that the verifier’s messages
are independent of the verifier’s queries and the answers to these queries, and later it tries to
obtain the answers to these queries as determined by the corresponding univariate (“line”)
polynomials. (Actually, we use low-degree curves rather than lines, and, in addition, we also
check that the tested function is a low-degree polynomial.)10

If our prover provides the wrong univariate polynomial (for a line), then the deciding
module catches it with high probability (since we know the value of a random point on this
line), and otherwise it uses the value (of the corresponding query) as determined by this
univariate polynomial. We comment that the foregoing idea was applied quite extensively in
the study of PCPs, starting with [10, 1], but it seems that its first appearance in the context
of IPPs with proof-oblivious queries is due to [18, Lem. 5.4].

5 Some Comments About Our Conventions

This section contains brief comments about some of our conventions. We first note that
although many results are stated in terms of properties of functions over [n], one should view
n as a generic (or varying) parameter rather than as fixed; formally, the results should be
restated as in Definition 1. Also, whenever we write 0.999 (or 0.99), we actually mean any
constant smaller than 1.

On the computational complexity of the strategies

In this work we focus on the communication and query complexities of IPPs, while ignoring
their computational complexities (both for the verifier and for the prescribed prover). This
makes the negative results, which establish the limited power of certain IPPs (vis-a-vis
testers), stronger. We mention that our positive results, which establish the power of certain
IPPs, are actually obtained using relatively low computational complexity. In particular, with
the exception of Theorem 6, the verifier strategy we present runs in time that is almost-linear
in its query and communication complexities. In the exceptional case, the computational
complexity of the verifier depends on the complexity of “reversed sampling” (i.e., sampling
a random-pad that generates a given query), which is low in natural cases. In general, the
computational complexity of IPPs and property testers is a secondary consideration, which
is left for follow-up studies.

10We cannot rely on the fact that this test is conducted by the original IPPs, since we have to verify
that the tested function is close to a low-degree polynomial in order to establish the soundness of the
emulation.
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Using optimal prover strategies

The foregoing discussion justifies not specifying a prescribed proof-strategy for the complete-
ness conditions, but rather referring to an optimal prover strategy both in the completeness
and soundness condition. As far as the soundness condition is concerned, nothing is lost
by this convention, but not specifying a prover (i.e., a honest prover) strategy for the
completeness condition hinders the desire to have strategies that posses additional features
such as relative efficiency or zero-knowledge. The gain in the convention adopted in the
current work is that it slightly simplifies the definitions and facilitates some of the proofs;
specifically, the accepting probability of a verifier V on any input can be expressed as a
function pV : {0, 1}∗ → [0, 1] that depends solely on V .

Alphabet (or range of the functions)

The properties that we consider are sets of functions over [n]. Typically, these functions are
either Boolean or range over [n], but we also use functions of the form f : Fm → F for some
finite field F . In all cases, the emulations preserve the function, so the type of queries is the
same in both models. Lastly, we mention that one can always represent function of the form
f : [n] → Σ by Boolean functions over [n′] such that n′ = n · O(log |Σ|). In this case one
encodes elements of Σ by codewords (taken from a code with constant relative distance);
this is done in order to preserve relative distances up to a constant factor.

Communication rounds

Our notion of a communication round refers to the exchange of a pair of messages; hence, for
r ∈ N, an r-round IPP refers to the case that each of the two parties sends r messages, and
means that the first message is sent by the verifier. In contrast, an (r − 0.5)-round protocol
starts with the prover sending a message, and the verifier sending only r − 1 messages. In
both cases, the last message is by the prover, who sends a total of r messages.

Non-adaptive queries

When saying that a general IPP uses non-adaptive queries we mean that the queries are
determined based on the verifier’s randomness and on the message it has received from the
prover, but do not depend (directly) on the answers to prior queries. (An indirect dependence
may arise if the verifier leaks information on its queries and the prover’s messages depend on
this information and on the value of the tested function at these queries.) Needless to say,
non-dapative queries in IPPs that use proof-oblivious queries depend only on the randomness
of the querying module.

6 Related Works

As mentioned upfront, proof-oblivious queries were considered before, both in the context of
MAPs (cf. [19, Def. 2.2]) and in the context of IPPs (cf. [21, Fn. 2] and [18, Sec. 5]). However,
the focus of these works was elsewhere. Specifically, the focus of [19] was on introducing
the MAP model (of non-interactive proofs of proximity), which is viewed as an NP (or MA)
version of property testing, and demonstrating its power (see, e.g., [19, Thm. 1.1]). Within
this context, showing that MAPs with proof-oblivious queries can be efficiently emulated by
standard testers [19, Thm. 1.5] was viewed as an indication that proof-dependent queries are
essential to the power of MAPs.
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Likewise, the focus of [21] was on defining IPPs in their full generality and on studying
their power. They mention that in some applications it may be helpful if the verifier’s queries
can be made in advance of interacting with the prover, and note that all protocols in their
work have this “oblivious-queries” feature, but they do not formally define or further study
this feature. The focus of [18] is on separating MAPs (viewed as 1/2-round IPPs) from
one-round IPPs (see [18, Thm. 1.1]). Within this context, showing that one-round IPPs that
use “proof oblivious” queries can be efficiently emulated by standard tester [18, Thm. 1.2]
is viewed as indication that proof-dependent queries are essential for that separation. As
noted in Footnote 4, the notion of “proof oblivious” queries is not formally defined in [18],
but it seems that the proof of [18, Thm. 1.2], which is presented in [18, Sec. 5.1], refers to
the isolated model. We mention that a comment made (in passing) in [18, Sec. 1.1.1], which
asserts that the sum-check protocol uses “proof oblivious” queries, seems to refer to the
pre-coordinated model. The same holds for the contents of [18, Sec. 5.2.2].11

The notion of sample-based IPPs (SIPPs), introduced and studied in [11], considers IPPs
in which the verifier can only obtain the value of the input at a sample of uniformly and
independent distributed locations. These SIPPs can be viewed as a special case of our general
model (of IPPs with PO-queries), whereas public-coin SIPPs can be viewed as a special case
of our pre-coordination model. We mention that [11, Thm. 3.1] asserts that a natural class
of standard non-adaptive testers can be efficiently emulated by SIPPs [11, Thm. 3.1]. The
transformation underlying the proof of [11, Thm. 3.1] is similar to our proof of Theorem 6,
although the results and the context are different.

We briefly mention one other line of work that has considered limits to the coordination
of the verifier’s activities in an interactive proof. We refer to the work of [6], which was
motivated by the study streaming model of interactive proofs [5, 8], studied a model of
two-party unidirectional communication in which the receiver – called Bob – can interact
with a prover. In this model, they make the distinction between protocols in which Bob’s
messages to the prover are independent of the input, protocols in which Bob’s messages to
the prover may depend on its input but not on the (single) message it received from the
other party (called Alice), and general protocols (in this model). Indeed, the restriction
considered in [6] refers to the coordination between the interaction with prover and input-
examination activities, but it is not of the type that we study in this work. We remark that
our pre-coordinated and isolated models do guarantee that the verifier’s interaction with the
prover does not depend on the input (whereas the general PO-query model does not provide
this guarantee).

Despite the fundamental differences between the models considered in our work and the
models considered in [6], there are similarities between some arguments used in our work
and arguments used in [6]. In particular, the proof of Part 1 of Theorem 4 is related to the
proof of [6, Thm. 5.3] in the sense that in both cases a prover is emulated by considering the
effect of each of its possible messages on a sample of invocations of the rest of the system.12

In contrast, a corresponding analogue of [6, Thm. 5.15], which would have stated an
exponential complexity gap between 1/2-round and 1-round IPPs in the precoordinated
model, is false.

11 Hence, the chasm between public and private coins claimed in [18, Sec. 5.2] seems unsubstantiated,
since the limits of the public coin version seem to be proved only for the isolated model, whereas the
protocol for the private coin version is in the pre-coordinated model.

12 Actually, a similar emulation technique can be traced to [2], where a “simultanous model” with private
randomness is emulated by an analogous deterministic model.
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7 Models and Notation

In order to define the various models of proof-oblivious queries (PO-queries) interactive
proofs of proximity (IPP), we decompose the verifier into three modules, called querying,
interacting, and deciding, and denoted Q, I, and D, respectively. The querying module (i.e.,
Q) is the only part that queries the input function, and the interacting module (i.e., I) is the
only part that interacts with the prover. The final decision is made by the deciding module
(i.e., D), which is fed with the outputs of the two other modules. The three models differ by
the restrictions imposed on the coordination between them, where in all models the querying
module gets no information from the other modules.

Recall that in standard interactive proofs, one denotes the output of the verifier by
⟨P, V ⟩(x), where x is a common input. In extensions that allow private inputs (see, e.g., [13,
Def. 4.2.10]), one uses the notation ⟨P (y), V (z)⟩(x), where z and y are corresponding private
inputs.13

Here we have no real common input, so the output of the interacting module I, which
may include its entire view, is denoted ⟨P (y), I(z)⟩. By default (unless stated otherwise), P

will denote the optimal prover strategy, so there is no need to quantify over all strategies.
Note that the prover has free access to the tested function, denoted f .

The most restricted model – “isolated” modules

Here the querying and interacting modules are isolated, and feed their respective outputs
(which equals their entire views of the execution) to the deciding module. Each of these
modules has its own randomness; actually, the deciding module may be deterministic (since
it may use randomness provided to it by one of the other modules). In this case, we write
the random variable that represents the decision of the verifier as

D(Qf (RQ), ⟨P (f), I(RI)⟩), (1)

where RQ and RI are independent random variables representing the randomness of each
module. We refer to systems captured by (1) as belonging to the isolated model.

The intermediate model – “pre-coordinated” modules

Here the main two modules are pre-coordinated by their shared randomness. In this case, we
write the random variable representing the decision as

D(Qf (R), ⟨P (f), I(R)⟩), (2)

where R is a random variable representing the shared randomness of both module. Again,
without loss of generality, the deciding module may be deterministic. We refer to systems
captured by (2) as belonging to the pre-coordinated model.

The least restricted model – general PO-queries

Here, the interacting module gets the outcome of the querying module. Hence, we can write
the random variable representing the decision as D(⟨P (f), I(Qf (R), R)⟩). Actually, we may
omit R from the input to I, since the output of the querying module may include R. Hence,
the random variable representing the decision of the verifier is written as

D(⟨P (f), I(Qf (R))⟩). (3)

13 These extensions are for formulating additional features such as relatively-efficient proving and auxiliary-
input zero-knowledge.
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Indeed, in this case, we can combine the interacting and deciding module, or rather in-
tegrate the deciding module in the interacting module (and write the verifier’s decision
as ⟨P (f), I(Qf (R))⟩). We refer to systems captured by (3) as belonging to the general
(PO-queries) model. An alternative definitional approach to the general PO-queries model is
presented in Appendix A.1 in our technical report [15].
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Abstract
We present a new perspective on loss minimization and the recent notion of Omniprediction
through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class,
omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for
every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a
generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability.
For a set of statistical tests – based on a collection of losses and hypothesis class – a predictor is Loss
OI if it is indistinguishable (according to the tests) from Nature’s true probabilities over outcomes.
By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss
OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions
derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient
constructions of omnipredictors for interesting classes of loss functions, including non-convex losses.

This decomposition highlights the utility of a new multi-group fairness notion that we call
calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that
calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from General-
ized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence
between our computational notion of Loss OI and a geometric notion of indistinguishability, formu-
lated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm
for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy.
In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality
in the omniprediction landscape.
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1 Introduction

Loss minimization is the dominant paradigm in machine learning. Techniques for loss
minimization have played a critical role in the development of the theory and practice of
supervised learning [21, 4, 31, 30, 13]. A clean theoretical formulation of the underlying
problem is via the notion of agnostic PAC learning [30]. We consider real-valued loss functions
ℓ that take two arguments, a label y ∈ {0, 1} and an action t ∈ R. Given a loss ℓ, a base
class of hypotheses C, and approximation parameter ε, the goal is to find a hypothesis h

that achieves near-optimal expected loss (compared to c ∈ C) over a fixed, but unknown
distribution D:1

E
(x,y∗)∼D

[ℓ(y∗, h(x))] ≤ min
c∈C

E
(x,y∗)∼D

[ℓ(y∗, c(x))] + ε.

Researchers have devoted significant effort into developing different choices of loss functions
[25]. Different settings – so the conventional wisdom goes – require the design of different
loss functions (e.g., squared, zero-one, logistic) to better encode the objectives of the task at
hand (regression, classification, calibration). The choice of loss function dictates the updates
during training and hence the resulting loss minimizer. With different loss functions, there
are many different optimal hypotheses, and one needs to learn afresh for each loss.

Recent work pushes back against this conventional wisdom. The work of [10] introduces
a solution concept for agnostic PAC learning, which they call omniprediction. Intuitively, an
omnipredictor p̃ : X → [0, 1] is a predictor that can be used to simultaneously minimize loss
for many different losses. Formally, an omnipredictor is parameterized by a collection of loss
functions L, a class of hypotheses C, and approximation parameter ε. Given any loss ℓ ∈ L,
a decision-maker can treat p̃(x) as if it were the Bayes optimal predictor p∗(x) = E[y|x],
selecting an action t that will minimize E[ℓ(ỹ, t)] where ỹ is drawn according to p̃. Even
though the true labels are drawn according to p∗(x), the resulting decision rule is ε-optimal
for ℓ over c ∈ C. Importantly, the omnipredictor p̃ is a single prediction function, fixed in
advance, but yields optimal decisions for all ℓ ∈ L. The Bayes optimal predictor p∗(x) is
easily seen to be an omnipredictor for all losses, the question is whether they can be learnt
efficiently. The main result in [10] is a sweeping feasibility result: they demonstrate that for
any efficiently learnable hypothesis class C and ε > 0, efficient omnipredictors exist for the
class Lcvx of all Lipschitz, convex loss functions. They prove this by showing a connection to
multicalibration, from the literature on fair prediction [14].

Multicalibration was developed with the goal of promoting fairness across subpopulations
encoded by a class of functions C. In contrast to the loss-minimization paradigm, multic-
alibration does not frame learning as loss minimization. Rather, the goal of learning is to
satisfy a collection of “indistinguishability” constraints. This view on multicalibration was
developed in the recent work of [6], who introduced an alternative paradigm for learning
called outcome indistinguishability (OI). OI considers two alternate worlds on individual-
outcome pairs: in the natural world, outcomes (x, y∗) are generated by Nature’s true joint

1 This version where we do not restrict h to belong to C is sometimes called improper learning.
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distribution; in the other simulated world, outcomes (x, ỹ) are sampled according to the
predictive model ỹ ∼ Ber(p̃(x)). OI requires the learner to produce a predictor p̃ in which
the two worlds are computationally indistinguishable. More formally, OI is parameterized by
a class of distinguisher algorithms A. Each a ∈ A receives an individual x ∈ X , an outcome
y ∈ {0, 1}, and the prediction p̃(x) and outputs a value in the interval [0, 1]. For such a
collection of algorithms A and approximation parameter ε, a predictor p̃ is (A, ε)-outcome
indistinguishable2 if no algorithm a ∈ A can distinguish between the two distributions over
individual-outcome pairs.

E
(x,y∗)∼D

[a(x, y∗, p̃(x))] ≈ε E
x∼D

ỹ∼Ber(p̃(x))

[a(x, ỹ, p̃(x))]

As multicalibration is a special case of OI, by the results of [10], one can view omni-
prediction for convex, Lipschitz losses as a consequence of OI, for an appropriate family
of distinguishers. While rigorous, this argument is rather indirect and in our view, it does
not provide clear intuition for why there should be a link between loss minimization and
indistinguishability. Moreover, the connection to multicalibration established in [10] is rather
constrained in terms of the family of loss functions L. If we want omnipredictors for a more
expressive class such as all Lipschitz functions, not just convex ones (where it is known
that multicalibration is insufficient [10, Lemma 6.7]), or simpler omnipredictors for a more
restricted class of convex loss functions (such as Lp losses), the results of prior work don’t
shed much light on how we might proceed.

1.1 Our Contributions
Motivated by ominprediction, we establish a direct and intuitive connection between loss
minimization and outcome indistinguishability, through a notion which we call Loss OI.
Fundamental to our approach is to use loss functions as tools to construct distinguishers: given
a family L of loss functions and a family of hypotheses C, we devise a family of distinguishers
UL,C = {uℓ,c}ℓ∈L,c∈C such that if p̃(x) is not an omnipredictor, then some distinguisher
from this family can tell apart the labels generated by Nature from those generated by the
predictor’s simulation. We say that any predictor that fools every distinguisher from this
family satisfies loss OI. By construction, loss OI implies omniprediction.

We show that loss OI admits a decomposition into two simpler outcome indistinguishability
requirements which we call hypothesis OI and decision OI. Hypothesis OI compares the
expected loss of the hypothesis c when labels are generated by Nature versus its simulation
by p̃, for each hypothesis in the class c ∈ C. Decision OI tests compares the expected loss
incurred when we take actions based on the optimal post-processing of the predictions of p̃

under the two distributions on labels. We give a characterization of these indistinguishability
conditions in terms of the discrete derivative ∂ℓ : [0, 1] → R of the loss function ℓ, defined
as ∂ℓ(t) = ℓ(1, t) − ℓ(0, t). Via this characterization, decision OI amounts to a weighted
calibration condition derived from ∂ℓ, which is implied by standard notions of calibration.
Hypothesis OI can be expressed as a multiaccuracy condition for the class of functions
∂L ◦ C = {∂ℓ ◦ c : ℓ ∈ L, c ∈ C}. Multiaccuracy [14, 22] for a given hypothesis family C is a
weaker notion than multicalibration for C. Both notions require access to a weak agnostic
learner for C, but multiaccuracy admits simpler and more efficient algorithms in terms of
sample complexity and running time.

2 In fact, [6] introduce a more general hierarchy of OI notions, whose levels are based on the distinguishers’
access to the predictions given by p̃. The variant where we allow distinguishers access to p̃(x) (so-called,
sample-access OI) is known to be computationally equivalent to multicalibration.
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1.1.1 Loss OI for specific families
With this decomposition, we turn our attention to specific collections of loss functions L.
Since decision OI follows from calibration, to achieve hypothesis OI and loss OI, we analyze
the structure of ∂L ◦ C, with the goal of bounding the complexity of such functions.

All losses: We begin with the family Lall of all losses satisfying minimal boundedness
conditions. The losses need not be convex or Lipschitz. We show that loss OI is possible
for Lall and any hypothesis class C, provided we can ensure calibration and multiaccuracy
over functions on the level sets of C. Specifically, we require multiaccuracy over the
collection level(C) = {f ◦ c} for all c ∈ C and all maps f : [−1, 1] → [−1, 1]. We can view
these as the set of all bounded functions over the level sets of c. This has immediate
consequences for Boolean (even discrete) hypothesis classes, since there, the class level(C)
is not much more complex than C itself: C-multiaccuracy plus calibration implies loss
minimization for any loss function.
Lipschitz losses: Under Lipschitzness (but still without convexity), a weaker multiac-
curacy condition suffices. We define Int(C, α) to be the collection of Boolean functions,
which are the indicators of the events that c(x) lies in an interval of width α. We show
that for Lipschitz losses, ∂L ◦ C lies in the linear span of functions in Int(C, α). Hence,
calibration together with Int(C, α)-multiaccuracy guarantees loss OI for all Lipschitz loss
functions.
GLM losses: GLMs are a popular class of convex loss minimization based models, which
include basic learning algorithms such as linear and logistic regression. They can be
viewed as minimizing Bregman divergences for predictors which are derived from linear
combination of C. For the class of GLM losses LGLM, we show that ∂L ◦ C = C. Hence,
calibrated multiaccuracy – that is, calibration together with C-mulitaccuracy – guarantees
loss OI for all GLM losses. We give an equivalence between of predictors that satisfy Loss
OI for LGLM and the set of predictors satisfying a certain Pythagorean Theorem in the
geometry of the corresponding Bregman divergence.
Finally, we exhibit a reverse connection by showing that the optimal solution to any
L1-regularized GLM loss minimization problem is multiaccurate. This leads us to fast
and practical methods for achieving both multiaccuracy and calibrated multiaccuracy.

Our results for Loss OI are incomparable with the result of [10] on omnipredictors.
On one hand, loss OI is stronger than omniprediction. On the other hand, we require
weak agnostic learning for ∂L ◦ C, which might be a much more powerful primitive than
weak learning for C itself (which is sufficient for multicalibration). For the class of convex
Lipschitz losses Lcvx considered in [10], we show that multicalibration does not imply loss
OI, although it implies omniprediction. Our best “upper bound” for (Lcvx, C)-loss OI comes
from Int(C, α)-multiaccuracy, and it applies even when the losses are non-convex. For the
subset LGLM ⊂ Lcvx, we show a stronger guarantee (loss OI versus omniprediction) from
weaker assumptions (calibrated multiaccuracy versus multicalibration).

1.1.2 Calibrated multiaccuracy
A key takeaway from our results is the surprising power of the notion of calibrated mul-
tiaccuracy, where we require predictors to satisfy both multiaccuracy with respect to C
and calibration. It implies loss OI for the class of GLM losses, and for the case when C
is Boolean. As a group fairness notion, it lies in between the notions of multiaccuracy
and multicalibration. We show the running time and sample complexity needed to achieve
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calibrated multiaccuracy are not much higher than that required for multiaccuracy, by giving
a simple algorithm that alternates between ensuring multiaccuracy is achieved (using gradient
descent for squared loss), and recalibrating the output. The key insight is that either of these
steps reduces the squared loss of the predictor. Hence the number of invocations of the weak
learner is not much more in the worst case from that required to achieve multiaccuracy, and
significantly smaller than that required for multicalibration.

1.1.3 Perspective

We see the key contribution of our work as conceptual: we bring the OI lens to the problem
of loss minimization. Reasoning about the simulated labels ỹ turns out to a powerful idea
in this context, which has not been explored before, even in prior work on omniprediction.
Our framework leverages this to give a compiler that translates loss OI for a pair (L, C) into
low-level calibration and multiaccuracy conditions. With this setup, the proofs of our results
are not technically hard. For instance, our result for GLMs uses the well-known fact that
the loss function for any GLM has the form ℓg(y, t) = g(t) − yt. It follows that ∂ℓ(t) = −t,
hence C-multiaccuracy suffices for hypothesis OI (assuming C is closed under negation).

The loss OI perspective establishes a natural and versatile link between loss minimization
and indistinguishability. It broadens our understanding of omniprediction. On one hand, it
shows it can be scaled up beyond convex, Lipschitz losses. But it can also scaled down for
more limited classes of loss functions to give more efficient constructions. It enables a range
of omniprediction guarantees, where the richness of the collection of losses scales with the
expressive power of the class for which we require multiaccuracy.

1.1.4 Structure of this manuscript

This manuscript represents an Extended Abstract of the full paper, which can be found
on the arXiv [9]. The full manuscript is structured as follows. In Section 2, we present a
high-level technical overview of our definitions and results. We discuss related work in 2.4.
In Section 3, we give preliminaries and formal background. In Section 4, we introduce Loss
OI and its relationship to omniprediction and the other notions of indistinguishability. We
then show how Loss OI can be formulated in terms of multiaccuracy and calibration. In
Section 5, we instantiate present our main result on loss OI for Generalized linear models.
We also show an equivalence between our formulation of Loss OI for GLMs and Pythagorean
theorems in the geometry of Bregman divergences. In Section 6, we consider other families of
loss functions including those that are not necessarily convex or Lipschitz. In Section 7, we
present and analyze an efficient algorithm for calibrated multiaccuracy, and establish that
it is more efficient than multicalibration. We report on the results from some preliminary
experiments that aim to establish the efficiency and effectiveness of calibrated multiaccuracy
in Section 8. Proofs are occasionally deferred to Appendix A to streamline the flow.

2 Technical Overview

In this section, we give a more detailed but still high-level explanation of how loss OI gives a
indistinguishability viewpoint on loss minimization and omniprediction. The starting point
for our investigation is understanding why the Bayes optimal predictor is an omnipredictor
for any loss and concept class. We use p∗ : X → [0, 1] to denote the Bayes optimal predictor,
which represents Nature’s true probability of positive outcomes.

ITCS 2023
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p∗(x) = E
(x,y∗)∼D

[y∗|x = x]

We consider loss functions ℓ : {0, 1} × [0, 1] → R+ that take a label and action as arguments
and return a real valued loss. For such a loss ℓ, if the labels are drawn as y ∼ Ber(p), there
exists an optimal action kℓ(p) ∈ [0, 1] defined as

kℓ(p) = arg min
t∈[0,1]

E
y∼Ber(p)

[ℓ(y, t)]

We refer to kℓ as the optimal post-processing for ℓ. Since the Bayes optimal predictor
p∗ governs the conditional distribution over outcomes y∗, by averaging over x ∼ D, we
conclude that kℓ ◦ p∗ satisfies the loss minimization guarantee for any loss, with respect to
any hypothesis class C.

E
(x,y∗)∼D

[ℓ(y∗, kℓ(p∗(x)))] ≤ min
c∈C

E
(x,y∗)∼D

[ℓ(y∗, c(x))] (1)

The challenge of constructing an omnipredictor is, given specific families of losses L and
hypotheses C respectively, to identify properties of p̃ that will allow us to replace p∗ with p̃

in the above statement, as long as ℓ ∈ L and c ∈ C. Formally, we say that a predictor p̃ is an
(L, C, ε)-omnipredictor if for every loss ℓ ∈ L, the post-processed predictor kℓ ◦ p̃ is an ε-loss
minimizer compared to the class C:

E
(x,y∗)∼D

[ℓ(y∗, kℓ(p̃(x)))] ≤ min
c∈C

E
(x,y∗)∼D

[ℓ(y∗, c(x))] + ε. (2)

2.1 Omniprediction from outcome indistinguishability
Omniprediction is a statement about Nature’s distribution. Equation (2) makes no mention
of the simulated predictions ỹ. It is unclear how considering labels ỹ from the predictor’s
simulation might be useful. Indeed, the simulated labels do not play a role in the [10]
derivation of omniprediction from multicalibration.

The key insight is that in the simulated world of labels ỹ, p̃ is the Bayes optimal predictor.
So Equation (2) holds with ε = 0. Indeed, we just apply Equation (1) with y∗ = ỹ and
p∗ = p̃ to get

E
x∼D

ỹ∼Ber(p̃(x))

[ℓ(ỹ, kℓ(p̃(x)))] ≤ min
c∈C

E
x∼D

ỹ∼Ber(p̃(x))

[ℓ(ỹ, c(x))] (3)

If p̃ has the property that the expectations on either side of the Equation don’t change
much when we replace ỹ with y∗, then this will imply our desired omniprediction guarantee
(Equation (2)). But this condition is a form of outcome indistinguishability, tailored to
distinguishers constructed from L and C. Loss OI is a crisp formulation of this notion.

2.1.1 Loss OI
Loss OI is parameterized by a loss class L and a concept class C, which induce the following
collection of distinguishers:

uℓ,c(y, p, x) = ℓ(y, c(x)) − ℓ(y, kℓ(p)) (4)
UL,C = {uℓ,c : ℓ ∈ L, c ∈ C}
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For a given loss ℓ, the distinguisher uℓ,c : Y × [0, 1] × X → R measures the excess loss of
the prediction c(x) compared to the optimal post-processing kℓ applied to the predicted
label distribution p. For a fixed x ∈ X , if we generated labels ỹ ∼ Ber(p̃(x), then kℓ(p̃(x))
is the optimal action, so uℓ,c(ỹ, p̃(x), x) ≥ 0. Hence, the expected value over x ∼ D is also
non-negative. For omniprediction to hold, it would suffice if

E
(x,y∗)∼D

[uℓ,c(y∗, p̃(x), x)] = E
(x,y∗)∼D

[ℓ(y∗, c(x))] − E
(x,y∗)∼D

[ℓ(y∗, kℓ(p̃(x)))] ≥ 0.

Loss OI imposes the stronger condition that the expectation under Nature’s distribution
and the simulation are (approximately) equal. For a loss class L, a concept class C, ε > 0, a
predictor p̃ is (L, C, ε)-loss OI if for all ℓ ∈ L and for all c ∈ C, the following approximate
equality holds.

E
x∼D

ỹ∼Ber(p̃(x))

[uℓ,c(ỹ, p̃(x), x)] ≈ε E
(x,y∗)∼D

[uℓ,c(y∗, p̃(x), x)] (5)

By design, Loss OI guarantees omniprediction. In fact, it is a strictly stronger notion. In
Section 4.1, we show that while C-multicalibration implies omniprediction for Lcvx, it does
not imply loss OI even for the ℓ4 loss.

▶ Proposition 1. If a predictor p̃ is (L, C, ε)-loss OI, then p̃ is an (L, C, ε)-omnipredictor.
The converse does not hold.

The [10] proof of omniprediction was tailored specifically to multicalibration and the
specific class of convex loss functions Lcvx. In contrast, Loss OI is a versatile notion that
may be applied to any class of loss functions. By approaching the question of omniprediction
via loss OI, we arrive at an easy-to-state set of sufficient conditions to obtain omniprediction
for any class of losses L and hypothesis class C.

2.1.2 Characterizing Loss OI via calibration and multiaccuracy
We define loss OI using distinguisher functions {uℓ,c} that depend on both c(x) and p̃(x). It
is known from the work of [6] that when distinguishers receive simultaneous access to c(x)
and p̃(x), outcome indistinguishability can implement (full) multicalibration. However, the
distinguishers uℓ,c have very specific structure, which permits a decomposition of loss OI into
two modular conditions, involving two different distinguishers that each depend on the label
and one out of c(x) and p̃(x) separately. The first set of distinguishers will simply compare
the loss of hypotheses c ∈ C for each loss ℓ ∈ L, a condition we call hypothesis OI.

E[ℓ(ỹ, c(x))] ≈ε E[ℓ(y∗, c(x))] (6)

The second set of distinguishers evaluates the loss achieved by the predictor p̃ under optimal
post-processing for each loss, a condition we call decision OI.

E[ℓ(ỹ, kℓ(p̃(x)))] ≈ε E[ℓ(y∗, kℓ(p̃(x)))] (7)

Subtracting (7) from (6), we obtain (5), albeit with a slightly larger error parameter. In
other words, if p̃ satisfies both hypothesis OI and decision OI, then p̃ satisfies loss OI.

It turns out that decision OI is easy to achieve, we show that it is implied by calibration.
Recall that a predictor is α-calibrated if E[y|p̃(x) = v] ≈α v. Using a more nuanced notion
called weighted calibration from [11], we can get an exact characterization of decision OI
(see Theorem 17).

ITCS 2023
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To present a characterization of hypothesis OI, we need a couple of definitions. For a
class of functions C and approximation α ≥ 0, a predictor p̃ is (C, α)-multiaccurate if for
every c ∈ C, the correlation between c and y∗ − p̃(x) is at most α. Formally, we require

|E[c(x) · (y∗ − p̃(x))]| ≤ α.

For a loss function ℓ, we define the discrete derivative ∂ℓ as ∂ℓ(t) = ℓ(1, t) − ℓ(0, t).
For a loss class L and hypothesis class C, we consider the class of functions ∂L ◦ C =
{∂ℓ ◦ c : ℓ ∈ L, c ∈ C}. We can characterize Hypothesis OI in terms of ∂L ◦ C-multiaccuracy.

▶ Proposition 2 (Decomposition for Loss OI). For loss class L, hypothesis class C, and
ε ≥ 0, predictor p̃ is (L, C, ε)-hypothesis OI iff it is (∂L ◦ C, ε)-multiaccurate. Thus, if p̃

is ε-calibrated and (∂L ◦ C, ε)-multiaccurate, then it is (L, C, O(ε))-loss OI, and hence an
(L, C, O(ε))-omnipredictor.

Thus we have decomposed loss OI into two constraints on our predictors: calibration, and
multiaccuracy for the class ∂L ◦ C. This presents an alternative (and possibly more efficient)
route to obtaining omnipredictors than via multicalibration.

2.1.3 Non-convex losses
Using our decomposition theorem we show that, perhaps surprisingly, loss-OI and omni-
prediction are feasible even for non-convex losses, given a sufficiently powerful learner for
functions derived from C. We require the losses to be bounded: ∥∂ℓ∥∞ ≤ 1. But otherwise,
the losses can be arbitrary, we do not assume Lipschitzness or convexity. Define the set

level(C) = {f ◦ c : f ∈ F , c ∈ C} where F = {f : Im(C) → [−1, 1]}

That is, level(C) consists of all possible bounded post-processings of c ∈ C; in particular the
functions f ∈ F only get to distinguish between the level sets of each c ∈ C. The importance
of level(C) stems from the fact that ∂ℓ ◦ c belongs to this class, hence level(C)-multiaccuracy
suffices for Hypothesis-OI over all loss functions.

▶ Proposition 3. For any class of loss functions L, if p̃ is (level(C), α)-multiaccurate, then
p̃ is (L, C, α)-hypothesis OI. Hence if p̃ is α-calibrated and (level(C), α)-multiaccurate, then
for any loss class L, p̃ is (L, C, O(α))-loss OI.

Thus, omnipredictors for every bounded loss function are computable, with complexity
scaling with the complexity of weak agnostic learning for level(C). While level(C) could in
general be far more expressive than C itself, there are important special cases, including when
C is a family of Boolean functions, where it is not much larger than C. In these settings, we
get loss-OI for arbitrary losses from calibration and C-multiaccuracy. This includes natural
loss functions such as weighted 0-1 loss which are important for classification.

2.1.4 Lipschitz losses
If we are willing to assume that the losses are Lipschitz, then we can obtain hypothesis OI
from a weaker multiaccuracy condition. Intuitively, if the loss ℓ is Lipschitz in t, then so is
∂ℓ, so we only need to consider Lipschitz post-processings. We can achieve this guarantee by
enforcing multiaccuracy over the class of functions Int(C, α) which are the indicators of the
event that c(x) lies in a certain interval I ⊂ [−1, 1] of width α, over all c ∈ C and intervals I.

We show that Int(C, α)-multiaccuracy suffices to give Hypothesis OI for Lipschitz losses.
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▶ Proposition 4. For any class of 1-Lipschitz loss functions L, if p̃ is (Int(C, α), α2)-
multiaccurate then p̃ is (L, C, O(α))-hypothesis OI. If p̃ is also calibrated, then p̃ is a
(L, C, O(α))-omnipredictor.

2.2 Loss OI in GLMs
GLMs are a important class of models from statistics that generalize linear and logistic
regression [26, 1]. On a technical level, GLMs are constructed using the following recipe:
1. We start with an arbitrary monotone increasing transfer function g′ : R → R, so that its

integral g(t) is convex.
2. We define its matching loss ℓg(y, t) = g(t) − yt which is a convex function of t.
3. We look for the model h ∈ H which minimizes E[ℓg(y, h(x))] where the hypothesis class

H is taken to be linear combinations over some base class C. This gives rise to a convex
optimization problem that can be solved efficiently [1, 28].

When we take g′(t) = t, this recipe gives linear regression with the squared loss. When
g′(t) = σ(t) is the sigmoid, we get logistic regression. The class of losses LGLM that arise in
this manner are convex. Thus, by the results of [10], C-multicalibration suffices to obtain
omniprediction for LGLM.

Our first result on GLMs shows that the class ∂LGLM ◦ C = C. This holds for the simple
reason that every loss ℓg ∈ LGLM has the form ℓg(y, t) = g(t) − yt, hence ∂ℓ(t) = −t is linear
in t. This means that C-multiaccuracy – not a derived class – plus calibration suffices for
loss OI for GLMs.

▶ Theorem 5 (Informal). If p̃ is (C, α)-multiaccurate and calibrated, then it is (LGLM, C, O(α))-
Loss OI.

These results highlight the power of calibrated multiaccuracy which gives omniprediction for
all GLM losses. Before this, we only knew how to achieve this using the stronger notion of
multicalibration. Is it really much easier to achieve calibrated multiaccuracy? A key piece of
the answer comes from our next result shows a reverse connection between multiaccuracy
and GLM optimality with ℓ1-regularization. We state the result informally here.

▶ Proposition 6 (Informal). For any GLM loss and α > 0, the optimizer of the ℓ1-regularized
GLM optimization over the class C is (C, α)-multiaccurate.

This result immediately gives a (number of) efficient avenues for computing a C-
multiaccurate predictor: run any ℓ1-regularized GLM learner, like Lasso [33] for linear
regression. It also suggests a template for achieving calibrated multiaccuracy: we can altern-
ate between the GLM learner and a calibration procedure such as isotonic regression until
convergence [34]. We will analyze a simple algorithm based on this template and show that
its complexity is comparable to that of achieving multiaccuracy, and considerably lower than
what is needed to achieve multicalibration.

Finally, we consider the Loss OI conditions for GLM losses. We show that, in this
setting, the computational indistinguishability notion of Loss OI is equivalent to a geometric
indistinguishability condition, formalized by Pythagorean theorems in the associated Bregman
divergence. We state the result fairly formally, deferring background on GLMs and Bregman
divergences to the technical section.

▶ Theorem 7 (Informal). Let g′ be strictly monotonically increasing, let f be the Legendre dual
of g, and let Df be the corresponding Bregman divergence. A predictor p̃ is (ℓg, H, α)-Loss
OI if and only if the following approximate Pythagorean theorem holds approximately.

E[Df (p∗(x), g′(h(x)))] ≈α E[Df (p∗(x), p̃(x))] + E[Df (p̃(x), g′(h(x)))]

ITCS 2023



60:10 Loss Minimization Through the Lens of Outcome Indistinguishability

Intuitively, the Pythagorean theorem says that the “distance” between p∗ and a predictor
derived from the class H can be broken down into “orthogonal” components: the distance
between p∗ and p̃ plus the distance between p̃ and the predictor from H. In other words, if a
predictor p̃ is C-multiaccurate and calibrated, then it is simultaneously a “projection” of the
best GLMs towards the statistically optimal predictor p∗.

2.3 Algorithms for Calibrated Multiaccuracy
For a given hypothesis clas C, we define the following classes of predictors.

Let MA(α) denote the set of predictors that are (C, α)-multiaccurate.
Let calMA(α) denote the set of predictors that are α-calibrated and (C, α)-multiaccurate.
Let MC(α) denote the set of predictors that are (C, α)-multicalibrated.

Then we have MA(α) ⊇ calMA(α) ⊇ MC(α). We compare the complexity of computing a
predictor in each of these classes given access to a (ρ, σ)-weak learner for C [3, 19, 17]. Such
a learner, when given access to a distribution (x, z) where x ∼ DX and z are labels in {±1},
if there exists c ∈ C such that E[c(x)z] ≥ ρ, will return c′ such that E[c′(x)z] ≥ σ. If no such
c exists it returns ⊥. The complexity of learning the predictor in any of the aforementioned
classes is governed by the number of oracle calls to the weak learner.

We present Algorithm 7.2 in [9] for achieving calibrated multiaccuracy that alternates
between ensuring multiaccuracy (using the weak learner), and calibrating the predictor. The
key insight that makes it efficient is that either step can be seen to reduce the same potential
function, which is the squared distance from the Bayes optimal predictor. This results in a
worst-case complexity for calMA that is not too different than just for achieving the weaker
guarantee of MA (since that algorithm is also analyzed using the same potential).

We compare the number of oracle calls needed for computing a predictor in each of MA,
calMA and MC. We emphasize that this is a comparison between the best known upper
bounds. For MA, we use the [14] algorithm as analyzed in Lemma 7.6. For calMA, we use
our analysis of Algorithm 7.2 in Theorem 17. For MC, we use the analysis of the algorithm
from [10, Section 9], which is derived from the boosting by branching programs algorithm
by [24].

For MA(α), the number of calls made by the algorithm of [14] is bounded by O(1/σ2).
For calMA(α), the number of calls made by Algorithm 7.2 bounded by O(1/σ2).
For MC(α), the number of calls made by the algorithm of [10] is bounded by O(1/α2σ4).
The weak learning assumption required is also somewhat stronger, see Section 7 and
Appendix A.5 for a detailed discussion.

The comparison above shows that MA and calMA have similar complexities in terms of
the worst-case number of calls to the weak learner. The number of calls required for MC
is significantly larger. These results suggest that calibrated multiaccuracy is an interesting
multi-group notion in its own right, that lies in between MA and MC. It offers an interesting
tradeoff point between efficiency and generality in the omniprediction landscape. It is an
interesting open problem to ask if it captures any of the desirable fairness properties of MC,
or even of low-degree multicalibration [11].

Finally, we show that calibrated multiaccuracy (and hence omniprediction for GLM losses)
cannot be achieved by any algorithm that outputs a hypothesis which is a Single Index Model
(SIM): these are functions of the form u(

∑
wcc(x)). In particular, this implies that known

algorithms like the Isotron [18, 15] which work in the realizable setting but produce a SIM
as hypothesis cannot give an omnipredictor in the non-realizable setting.
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We present some preliminary experiments which support the efficiency and omniprediction
claims in Section 8. Importantly, the implementation is fewer than 100 lines of python code
using standard regression and calibration libraries in sklearn, whereas multicalibration is
more complex [12]. For a collection of common losses (inclduing some non-GLM losses),
the calibrated MA predictor always competes with and sometimes outdoes the best linear
predictor tailored to the loss.

2.4 Related Work and Discussion
Our work is inspired by and most closely related to the work of [10] which introduced omni-
predictors, and the outcome indistinguishability framework of [6]. The relation of our results
to the former is detailed in depth in Section 1.1. The outcome indistinguishability framework
establishes general connections between multi-group fairness notions and appropriate levels
in OI hierarchy. Here, we use their framework to focus on more fine-grained notions of OI
that are tailored towards loss minimization and omniprediction. The framework of Loss OI
is quite versatile, and has already been extended by [23] to the “performative” prediction
setting, where predictions can influence the distribution over outcomes.

Rothblum and Yona [29] employed the notion of outcome indistinguishability in order to
obtain loss-minimization over a rich family of sub populations. Their notion of loss functions
is more general than ours. But they fix a single loss function in their discussion whereas
we seek to address general families of loss functions. A major distinction is that our work
studies the complexity of loss OI for broad families of loss functions and relates them to
distinguishers that do not depend on the loss function.

The work of [11] on low-degree multicalibration was also motivated by the goal of finding
intermediate notions of multigroup fairness between MA and MC. They propose the hierarchy
{MCd} of degree-d multicalibrated predictors which interpolates between these two notions.
They show that several desirable fairness properties of MC are already achieved at low
levels of the hierarchy, at a computational cost similar to that of MA. Our results on
calibrated multiaccuracy are similar in spirit but incomparable, we show how omniprediction
for some important convex losses can already be obtained at calMA, at a computational cost
comparable to that of MA.

There is a vast body of work on Generalized Linear Models [1, 28]. Classically, the focus
is on the setting where the function f defining the Bregman divergence and hence the link
function f ′ and its inverse g′ are known. The resulting program is convex and can be solved
using the iteratively reweighted least squares algorithm [28, 26]. The set of convex losses
LGLM derived from GLMs are also referred to as matching losses in the literature [2].

The more challenging setting is where the link function is unknown. This is sometimes
called the SIM (single index model) problem in the literature. To our knowledge, all work
with provable guarantees (prior to the work of [10]) hold only for the realizable setting:
the data are generated so that E[y∗|x] = g′(h(x)) for some h ∈ Lin(C), both g′ and h are
unknown. The first algorithm to give guarantees in this scenario was [16], who finds a
hypothesis that is close in squared error to the ground truth g′ ◦ h, and is represented as
branching program. The elegant Isotron algorithm for this problem was introduced and
analyzed in [18, 15], it is a proper learning algorithm where the output is of the form u ◦ h̃,
where h̃ ∈ Lin(C) and u is monotone.

Both our work and the work of [10] depart from these works in that they do not require
the realizability assumption. We give a single predictor p̃, with the guarantee that for any
convex f (with Legendre dual g), Df (p∗, p̃) is comparable to Df (p∗, g′ ◦h) for any h ∈ Lin(C).
Under the realizability assumption, for any strongly convex function f bounding Df implies
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a squared loss bound [15, 20], thus our results imply bounds for the squared loss. In the
agnostic setting, squared loss and bounds on the divergence Df are incomparable. The works
of [32, 8] apply polynomial kernel techniques to the problem of loss minimization when the
inverse link function is sigmoid or the ReLU for families of losses including ℓ1 and the squared
loss. In these settings, a polynomial dependence on the accuracy parameter ε is not possible.

Bregman divergences and Pythagorean theorems for them are studied in information
geometry [27, 5], although the term is broadly used for inequalities arising from projections
onto convex bodies. That a stronger guarantee than omniprediction holds true for the squared
loss was observed in the work of [10, Lemma 8.4]. This guarantee was subsequently shown to
hold even with degree-2 multicalibration [11, Proposition A.1]. Our results generalize this to
all GLM losses, and only assumes calibrated multiaccuracy, while also showing that for such
losses, Pythagorean theorems are equivalent to loss OI.

3 Preliminaries

Let D be a distribution on labelled examples (x, y∗) comprising of points x from a domain
X and binary outcomes3 y∗ ∈ {0, 1}. We let DX denote the marginal distribution over X .
We will occasionally refer to the distribution D as Nature. We assume sample access to
Nature. Ber(p) denotes the Bernoulli distribution on {0, 1} with parameter p. For a real
valued function f : T → R, let ∥f∥∞ = maxT |f(x)|. For a family of such functions F , let
∥F∥∞ = maxf∈F ∥f∥∞.

Predictors. A predictor is a function p̃ : X → [0, 1] be a predictor, where p̃(x) is interpreted
as an estimate of the label being 1, conditioned on x. For a predictor p̃ : X → [0, 1], we
define the distribution (x, ỹ) ∼ D(p̃) on X × {0, 1} where x ∼ DX is sampled according to
Nature’s marginal distribution over inputs and conditioned on x, ỹ ∼ Ber(p̃(x)) so that

p̃(x) = E[ỹ|x = x].

We use p∗(x) ∈ [0, 1] to denote the Bayes optimal prediction for an individual x ∈ X .

p∗(x) = E[y∗|x = x]

In other words, using the optimal predictor D(p∗) = D recovers the true distribution, Nature.

Calibration. Intuitively, a predictor is calibrated if, conditioned on the prediction p̃(x) = v,
the expected outcome is close to v.

E[y∗|p̃(x) = v] ≈ v

Formally, we quantify approximate calibration through expected calibration error.

▶ Definition 1 (ECE and Approximate calibration). We define the expected calibration error
(ECE) of a predictor p̃ as

ECE(p̃) = E
p̃(x)

∣∣∣∣∣ E
y|p̃(x)

[y − p̃(x)]

∣∣∣∣∣ .

For α ≥ 0, a predictor p̃ : X → [0, 1] is α-calibrated if ECE(p̃) ≤ α.

3 All our results can be extended to multi-class setting where there are finitely many distinct classes, but
we work with the binary setting for simplicity.
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A predictor p̃ is perfectly calibrated if α = 0, so that ED[y∗|p̃(x) = v] = v. While the notion
of approximate calibration is well-defined for all predictors, checking for calibration efficiently
requires the predictor to be discretized. When efficiency is a consideration, we will assume
that the supported values of the predictor are multiples of some δ ∈ [0, 1]; such assumptions
are standard in the calibration literature [7, 14]. For such predictors, one can check for
α-calibration given black-box access to p̃ in time poly(1/α, 1/δ), using labeled samples.

Following [11], we will allow for weighted notions of calibration, parametrized by a family
of weight functions W = {w : [0, 1] → R}. Intuitively, we think of a weight function as
highlighting predictions belonging to certain regions of [0, 1].

▶ Definition 2. Let W = {w : [0, 1] → R} be a family of weight functions. For a predictor
p̃ : X → [0, 1] we define

CE(W, p̃) = max
w∈W

∣∣∣E
D

[w(p̃(x))(y∗ − p̃(x))]
∣∣∣ .

We collect some simple properties of weighted calibration in the next lemma, the proof is
in Appendix A.1. The first is that ECE is captured by considering weight functions bounded
in absolute value by 1. The second is that α-calibration implies a bound on CE(W, p̃) for
any family of weights W.

▶ Lemma 3.
1. Let Wf denote the space of all functions w : [0, 1] → [−1, 1]. Then

ECE(p̃) = CE(Wf , α).

2. If p̃ is α-calibrated, then for any family W of weight functions,

CE(W, p̃) ≤ ∥W∥∞ α.

We will sometimes use weaker notions of calibration. An important special case is where
we take W1 to be the set of all 1-Lipschitz weight functions bounded in the range [−1, 1].
We say that a predictor p̃ is α-smoothly calibrated if it CE(W1, p̃) ≤ α.

Loss functions and decision functions. A loss function is a function ℓ : {0, 1} × R → R.
For instance, we define the squared loss by ℓ2(y, t) = ∥y − t∥2

2 and the ℓp loss by ℓp(y, t) =
∥y − t∥p

p. We define bℓ, the Lipschitz constant of ℓ, to be the smallest constant so that
|ℓ(y, t1) − ℓ(y, t2)| ≤ bℓ|t1 − t2|. We let Lipb denote the set of all b-Lipschitz functions. We
say that a loss ℓ is convex, if for each y ∈ {0, 1}, ℓ(y, t) is a convex function of t. In a generic
loss minimization problem, given a loss function ℓ and a class H of hypotheses, one tries to
find the hypothesis h ∈ H which minimizes E[ℓ(y, h(x))]. We extend the definition of ℓ via
linearity so that the first argument can take values in [0, 1]. We define

ℓ(p, t) = E
y∼Ber(p)

[ℓ(y, t)] = p · ℓ(1, t) + (1 − p) · ℓ(0, t).

A decision function is a function k : [0, 1] → R. We think of k as taking predictions
p ∈ [0, 1] from a predictor and mapping them to actions k(p) ∈ R. Decision functions are
used to select a suitable action for a loss function, given a prediction of the distribution of
labels. For a loss ℓ, we define the Bayes-optimal decision function kℓ : [0, 1] → R by

kℓ(p) = arg min
t∈R

ℓ(p, t).

For proper losses like the squared error (y − t)2, kℓ is simply the identity function. For the
ℓ1 loss |y − t|, kℓ1(p) rounds p to the nearest value in {0, 1}.
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Hypotheses. A bounded hypothesis class is a family of functions C ⊆ {c : X → [−1, 1]}. We
will assume that C contains the constant function 1 and is closed under negation. Our results
will typically assume some learnability properties of the class C, such as having bounded
dimension and being weakly learnable. We define the class Lin(C, B) to contain all functions
of the form

h(x) =
∑
c∈C

wcc(x),
∑
c∈C

|wc| ≤ B.

Note that |h(x)| ≤ B for all h ∈ Lin(C, B). We will consider loss minimization problems with
the hypothesis class H = Lin(C, B) (e.g linear or logistic regression). Here B can be viewed
as a regularization parameter.

Multicalibration. Originally introduced as a form of “multi-group” fairness [14], multic-
alibration and related notions have seen application beyond fair prediction in recent years.
Intuitively, multicalibration requires that the predictions of p̃ appear calibrated even when
we restrict our attention to structured subpopulations. [14] formalizes the collection of
subpopulations through a concept class C. Importantly, the multicalibration guarantee holds
simultaneously for every c ∈ C.

First, we define a weaker notion called multiaccuracy [14, 22], which requires that
predictions appear accurate in expectation (unbiased) over each c ∈ C.

▶ Definition 4. Let C = {c : X → [−1, 1]} be a family of hypotheses and α ≥ 0. We say that
the predictor p̃ : X → [0, 1] is (C, α)-multiaccurate if for every c ∈ C it holds that∣∣∣E

D
[c(x)(y∗ − p̃(x))]

∣∣∣ ≤ α

Multicalibration strengthens both calibration and multiaccuracy, requiring approximate
calibration over each c ∈ C. We adapt the definitions in [14, 10] to our notion of approximate
calibration.

▶ Definition 5. Let C = {c : X → [−1, 1]} be a family of hypotheses and α ≥ 0. We say that
the predictor p̃ : X → [0, 1] is (C, α)-multicalibrated if for every c ∈ C it holds that

E
p̃(x)

∣∣∣∣∣ E
y|p̃(x)

[c(x)(y∗ − p̃(x))]

∣∣∣∣∣ ≤ α

By averaging over the predicted values, we can see that (C, α)-multicalibration im-
plies (C, α)-multiaccuracy. Since we assume 1 ∈ C, (C, α)-multicalibration also implies
α-calibration.

In defining multiaccuracy and multicalibration, we assume that the hypotheses are
bounded by 1 in absolute value. For general hypotheses families H, we define the multiaccuracy
error as

MAE(H, p̃) = max
h∈H

[∣∣∣E
D

[h(x)(y∗ − p̃(x))]
∣∣∣] .

We will generally reserve the term (C, α)-multiaccuracy to denote a bounded hypothesis
class C where MAE(C, p̃) ≤ α. The hypotheses classes H most relevant to us are of the form
H = Lin(C, B). For these, we can derive bounds on the multiaccuracy error from bounds for
the base hypotheses in C, that decay linearly with B. The proof is via linearity of expectation.

▶ Lemma 6. If the predictor p̃ is (C, α)-multiaccurate, then for B ≥ 1 and H = Lin(C, B)
we have

MAE(H, p̃) ≤ Bα.
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Omnipredictors. The notion of omniprediction introduced by [10] asks for a single predictor
which can do as well as the best hypothesis in a hypothesis class H for a family L of loss
functions.

▶ Definition 7. We say that the predictor p̃ : X → [0, 1] is an (L, H, δ)-omnipredictor if for
every loss ℓ ∈ L and hypothesis h ∈ H,

E[ℓ(y∗, kℓ(p̃(x)))] ≤ E[ℓ(y∗, h(x))] + δ.

Outcome Indistinguishability. Outcome indistinguishability introduced by [6] provides
an elegant framework for reasoning about the quality predictions made by a predictor
p̃, by measuring their ability to fool statistical tests when nature’s labels y∗ and re-
placed by simulated labels ỹ. The notion is parameterized by a class of algorithms
A ⊆ {a : X × {0, 1} × [0, 1] → [−1, 1]}, whose goal is to “distinguish” Nature’s distribution
and the modeled distribution.

▶ Definition 8 (Outcome Indistinguishability). A predictor p̃ : X → [0, 1] is (A, ε)-outcome
indistinguishable if for every a ∈ A,∣∣∣∣∣ E

(x,y∗)∼D
[a(x, y∗, p̃(x))] − E

(x,̃y)∼D(p̃)
[a(x, ỹ, p̃(x))]

∣∣∣∣∣ ≤ ε.

In fact, [6] consider various levels of OI which are defined by the degree of access to the
predictions made available to the tests. In their language, Definition 8 corresponds to
“sample-access OI” where the distinguisher receives access to x, p̃(x), and outcomes sampled
either from y∗ ∼ Ber(p∗(x)) or ỹ ∼ Ber(p̃(x)).

Also of relevance to us are special cases of this model. The first, so-called “no-access
OI” corresponds to a restriction where the distinguishers do not receive p̃(x), and simply
has access to either (x∗, y∗) ∼ D or (x, ỹ) ∼ D(p̃). Sample-access OI and No-access OI are
in tight correspondence with multicalibration and multiaccuracy, respectively [6]. Another
interesting special case of sample-access OI is when we are given access to p̃(x) but not to
the point x. Here, the goal is to distinguish between (y∗, p̃(x)) ∼ D and ỹ, p̃(x)) ∼ D(p̃).
OI for this model is tightly connected to calibration: for boolean outcomes, it follows that
perfect calibration implies that these distributions are identical.

4 Outcome Indistinguishability for loss functions

We define notions of outcome indistinguishability for a predictor p̃ with regard to distinguishers
that are derived from a loss function ℓ. We allow distinguishers that take on real values, such
a function distinguishes two distributions if its expected values differ significantly between
them.

We define the notion of Loss OI formally. Here we compare the difference (between Nature
and the predictor’s model) in the expected loss suffered when using the hypothesis c ∈ C
compared to when using the Bayes-optimal decision function kℓ based on the predictor p̃.

▶ Definition 9 (Loss OI). Let L be a family of loss functions, C be a family of hypotheses,
and ε > 0. For each ℓ ∈ L, c ∈ C, define the distinguisher uℓ,c : {0, 1} × [0, 1] × X → R by

uℓ,c(y, p̃(x), x) = ℓ(y, c(x)) − ℓ(y, kℓ(p̃(x)). (8)

We say that the predictor p̃ is (L, C, ε)-loss-OI if for every loss ℓ ∈ L and hypothesisc ∈ C,∣∣∣∣∣ED[uℓ,c(y∗, p̃(x), x)] − E
D(p̃)

[uℓ,c(ỹ, p̃(x), x)]

∣∣∣∣∣ ≤ ε.
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We define two additional, simpler notions. First is that of decision OI, which informally
states that applying the Bayes optimal decision functions to the predictions of p̃ and computing
the expected loss cannot distinguish between y∗ and ỹ.

▶ Definition 10 (Decision OI). Let L be a family of loss functions, and ε > 0. We say that
predictor p̃ is (L, ε)-decision-OI if for every ℓ ∈ L it holds that∣∣∣∣∣ED[ℓ(y∗, kℓ(p̃(x))] − E

D(p̃)
[ℓ(ỹ, kℓ(p̃(x))]

∣∣∣∣∣ ≤ ε.

Our next notion is hypothesis OI, which stipulates that no hypothesis from C results in
significantly different expected loss whether the labels come from nature or the simulation.

▶ Definition 11 (Hypothesis OI). Let L be a family of loss functions, C a family of hypotheses
and ε > 0. We say that the predictor p̃ is (L, C, ε)-hypothesis-OI for ε ≥ 0 if for loss ℓ ∈ L
and every hypothesis c ∈ C it holds that

|E[ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))]| ≤ ε.

We show that Loss OI is implied by having both Decision OI and Hypothesis OI simul-
taneously.

▶ Lemma 12 (Decomposition lemma). If the predictor p̃ : X → [0, 1] is (L, ε1)-decision-OI
and (L, C, ε2)-hypothesis-OI, then it is (L, C, ε1 + ε2)-loss-OI.

Proof. For each ℓ ∈ L and c ∈ C we can write

E[uℓ,c(y∗, p̃(x), x)] − E[uℓ,c(ỹ, p̃(x), x)]
= E[ℓ(y∗, c(x)) − ℓ(y∗, kℓ(p̃(x)))] − E[ℓ(ỹ, c(x)) − ℓ(ỹ, kℓ(p̃(x)))]
= E[(ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))] + E[ℓ(ỹ, k(p̃(x)))] − E[ℓ(y∗, kℓ(p̃(x)))]. (9)

Hence by the triangle inequality,

|E[uℓ,c(y∗, p̃(x), x)] − E[uℓ,c(ỹ, p̃(x), x)]| ≤ |E[(ℓ(y∗, c(x))] − E[ℓ(ỹ, c(x))]|
+ |E[ℓ(ỹ, k(p̃(x))))] − E[ℓ(y∗, kℓ(p̃(x)))]|
≤ ε1 + ε2.

where the first term is bounded by hypothesis-OI and the second is bounded by decision-
OI. ◀

4.1 Loss-OI implies Omniprediction
Our interest in the notion of loss-OI stems from the fact that it implies omniprediction.

▶ Proposition 13 (Formal Restatement of Proposition 1). If the predictor p̃ : X → [0, 1] is
(L, C, ε)-loss-OI, then it is an (L, C, ε)-omnipredictor.

Proof. A consequence of loss-OI is that for every ℓ ∈ L and c ∈ C, we have

E[uℓ,c(y∗, p̃(x), x)] ≥ E[uℓ,c(ỹ, p̃(x), x)] − ε. (10)

But for every x ∈ X , by the definition of the Bayes-optimal decision function kℓ we have

E[uℓ,c(ỹ, p̃(x), x)|x = x] = E[ℓ(ỹ, c(x)) − ℓ(ỹ, kℓ(p̃(x))|x = x] ≥ 0
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since kℓ(p̃(x)) is defined to be action that minimizes expected loss for ỹ ∼ Ber(p̃(x)).
Averaging over all x ∼ D gives

E[uℓ,c(ỹ, p̃(x), x)] = E[ℓ(ỹ, c(x))] − E[ℓ(ỹ, kℓ(p̃(x))] ≥ 0.

Plugging this into Equation (10) gives

E[uℓ,c(y∗, p̃(x), x)] = E[ℓ(y∗, c(x)) − ℓ(y∗, kℓ(p̃(x))] ≥ −ε.

Rearranging, we get that for every ℓ ∈ L, c ∈ C,

E[ℓ(y∗, kℓ(p̃(x)))] ≤ E[ℓ(y∗, c(x))] + ε.

hence p̃ is an (L, C, ε)-omnipredictor. ◀

The converse of this statement is not true. We show that omniprediction does not imply
Loss-OI for any class L than includes the ℓ4 loss. We prove an even stronger statement, that
multicalibration does not imply loss-OI. This statement is stronger because of the result of
[10] that multicalibration implies omniprediction for a broad class of convex loss functions.
We define the ℓp loss for all p ≥ 1 as

ℓp(y, z) = 1
p

|y − z|p

where the normalization by p makes it 1-Lipschitz. Let Lp = {ℓp}p≥1. We prove the following
result which separates multicalibration from loss OI.

▶ Theorem 14. There exist a distribution D, a class C and a predictor p̃ such that
p̃ is (C, 0)-multicalibrated, so it is an (Lp, C, 0)-omnipredictor.
p̃ is not ({ℓ4}, C, ε)-loss OI for any ε < 4/9.

The proof which is given in Appendix A.2 uses Fourier analysis on the Boolean cube.

4.2 Loss OI from Calibration and Multiaccuracy
In order to analyze the notions of OI, we need to compare the expected loss under different
distributions on labels for a certain action. The notion of discrete derivative of a loss function
will aid these comparisons.

▶ Definition 15. Given a loss ℓ : {0, 1} × R → R, define the function ∂ℓ : R → R as

∂ℓ(t) = ℓ(1, t) − ℓ(0, t).

The following lemma justifies the analogy to partial derivatives.

▶ Lemma 16. For random variables y, y′ ∈ {0, 1}, and t ∈ R we have

E[ℓ(y, t)] − E[ℓ(y′, t)] = E[(y − y′)∂ℓ(t)]. (11)

Proof. By definition

E[ℓ(y, t)] = E[yℓ(1, t) + (1 − y)ℓ(0, t)] = E[y∂ℓ(t)] + ℓ(0, t)

We write a similar expression for y′ and subtract. ◀

ITCS 2023
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We now present characterizations of decision-OI and hypothesis-OI in terms of weighted
calibration and multiaccuracy errors for suitably defined classes of functions. Combined
with Lemma 12, this gives a decomposition of loss OI as a calibration condition and a
multiaccuracy condition.

▶ Theorem 17. Let L be a family of loss functions and C be a hypothesis class.
1. Define the family of hypotheses ∂L ◦ C = {∂ℓ ◦ c}ℓ∈L,c∈C. The predictor p̃ : X → [0, 1] is

(L, C, ε1)-hypothesis-OI where ε1 = MAE(C′, p̃).
2. Define the family of weight functions W ′ = {∂ℓ ◦ kℓ}ℓ∈L. The predictor p̃ : X → [0, 1] is

(L, ε2)-decision-OI where ε2 = CE(W ′, p̃).

Proof. We first prove Part (1). Conditioned on x = x, by Equation (11) with t = c(x) we
can write

E[ℓ(ỹ, c(x))|x = x] − E[ℓ(y∗, c(x))|x = x] = E[(p̃(x) − y∗)∂ℓ(c(x))|x = x].

Hence taking expectations over x and absolute values,

|E[ℓ(ỹ, c(x))] − E[ℓ(y∗, c(x))]| ≤ max
c∈C

|E[(p̃(x) − y∗)∂ℓ(c(x))]| .

The LHS corresponds to hypothesis OI, while the RHS to C′ multiaccuracy error for C′ =
{∂ℓ ◦ c}.

We now consider Part (2). Conditioned on x = x, by Equation (11) with t = kℓ(p̃(x)),

E[ℓ(ỹ, kℓ(p̃(x)))|x = x] − E[ℓ(y∗, kℓ(p̃(x)))|x = x] = E[(p̃(x) − y∗)∂ℓ(kℓ(p̃(x)))|x = x].

We now take expectations over x, followed by absolute values to get

E[ℓ(ỹ, kℓ(p̃(x)))] − E[ℓ(y∗, kℓ(p̃(x)))] = E[(p̃(x) − y∗)∂ℓ(kℓ(p̃(x)))|x = x].

The LHS corresponds to loss-OI while the RHS measures the weighted calibration error
for W ′ = {∂ℓ ◦ kℓ}ℓ∈L. ◀

It is easy to see that the characterizations above are tight. For instance if MAE(C′, p̃)
is larger than ε′, then there exist a c, ℓ pair that distinguishes between y∗ and ỹ with
advantage ε′.
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Abstract
One of the key components in PCP constructions are agreement tests. In agreement test the tester
is given access to subsets of fixed size of some set, each equipped with an assignment. The tester is
then tasked with testing whether these local assignments agree with some global assignment over
the entire set. One natural generalization of this concept is the case where, instead of a single
assignment to each local view, the tester is given access to l different assignments for every subset.
The tester is then tasked with testing whether there exist l global functions that agree with all of
the assignments of all of the local views. In this work we present sufficient condition for a set system
to exhibit this generalized definition of list agreement expansion. This is, to our knowledge, the first
work to consider this natural generalization of agreement testing.

Despite initially appearing very similar to agreement expansion in definition, proving that a set
system exhibits list agreement expansion seem to require a different set of techniques. This is due to
the fact that the natural extension of agreement testing (i.e. that there exists a pairing of the lists
such that each pair agrees with each other) does not suffice when testing for list agreement as list
agreement crucially relies on a global structure. It follows that if a local assignments satisfy list
agreement they must not only agree locally but also exhibit some additional structure. In order to
test for the existence of this additional structure we use the connection between covering spaces of a
high dimensional complex and its coboundaries. Specifically, we use this connection as a form of
“decoupling”.

Moreover, we show that any set system that exhibits list agreement expansion also supports
direct sum testing. This is the first scheme for direct sum testing that works regardless of the parity
of the sizes of the local sets. Prior to our work the schemes for direct sum testing were based on the
parity of the sizes of the local tests.
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1 Introduction

Agreement testing

Agreement testing is an important tool that is central to many PCP constructions. In
agreement testing one is given access to a set of functions {fs}s∈S that are thought of as
“local views” of some global function F :

⋃
s∈S s → {0, 1}. These are local views in the sense

that every fs is a function fs : s → {0, 1} and for every s: F |s = fs. If a set of local functions
{fs}s∈S meets the above criterion we call that set an agreeing set of functions. An agreement
test is a probabilistic algorithm that picks two sets s1, s2 of size k that intersect each other on
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ξ elements and checks whether fs1 |s1∩s2 = fs2 |s1∩s2 . A structure is said to support agreement
testing (alternatively, a structure is an agreement expander) if the following two properties
hold:
1. The agreement test always accepts agreeing sets of functions.
2. If the agreement test rejects a set with probability ε then there is a global function that

disagrees with at most O
(

1
1− ξ

k

ε
)

of the local functions.
Most works that pertain to agreement testing are interested in the case where the intersection
between sets is small, specifically ξ = k

2 . This is because in those cases the proportion
between k and ξ is constant and any local assignment that is rejected with probability ϵ

has a global assignment which disagrees with O(ϵ) of the local assignments. In this work,
however, we are interested in a slightly different definition of agreement expansion called
1-up agreement expansion. In 1-up agreement the intersection between pairs of sets contain
all but one element from each set (i.e. ξ = k − 1). Also note that many complexes (and even
some sparse complexes [9]) exhibit 1-up agreement expansion (as well complexes such as the
complete complex).

In [9] Dinur and Kaufman proved that some high dimensional expanders support agreement
testing and term these agreement expanders. Since then agreement expanders have proven to
be extremely useful in various contexts: From derandomization for direct product testing [9]
to conversion of local tests to robust tests [8] and others (for more examples see [5, 4]).

List agreement expansion

In this paper we present a new, natural generalization of agreement testing in which, instead
of being given a single function for each set s, we are given a list of l functions and we
want to test whether these functions are local views of l global functions (where l is some
constant). By that we mean that there exist l global functions F1, · · · , Fl :

⋃
s∈S s → {0, 1}

and a permutation πs for every s such that every local view f i
s : s → {0, 1} agrees with the

global function Fπs(i) (i.e. Fπs(i)|s = f i
s). In this paper we ask whether there are structures

that support list agreement tests. We term such structures list agreement expanders.

▶ Definition 1 (List Agreement expansion, informal. For formal see 26). We say that a set
system exhibits list agreement expansion if there exists a tester that, given access to a set of
assignments F = {F s

i }s∈S,i∈[l] such that F s
i : s → {0, 1}, queries Q of the local assignments1

F s1
i1
, · · · ,F sQ

iQ
and accepts or rejects such that the following holds:

1. Always accepts if there exists l functions F1, · · · , Fl :
⋃

s∈S s → {0, 1} and a permutation
πs for every s such that every local view f i

s : s → {0, 1} agrees with the global function
Fπs(i) (i.e. Fπs(i)|s = f i

s).
2. If the tester rejects with probability ϵ then O(ϵ) of the assignment in F can be changed

such that the property stated above will hold.

List agreement testing compared to agreement testing

At first list agreement testing might seem fairly reminiscent of agreement testing and, while the
definitions are similar, list agreement testing seem to require different tools altogether. In the
list agreement testing paradigm one is not only concerned with having agreement between local
assignments, but also that these agreements are structured in the right way. One key example
of agreements that are not well structured is the following: Consider a cycle of odd length

1 The algorithm queries one of the local assignments in one of the lists.
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with the following 2-assignments on every edge: F {u,v} = {[u = 1, v = 0] , [u = 0, v = 1]}.
Note that any two edges that share a vertex agree on the intersection2. That being said, F

is not agreeing (since if it was an agreeing assignment the graph would be bi-partite3).

Conditions under which list agreement testing is possible

As we discussed, list agreement not only requires agreement but also some additional structure.
We will show that this additional structure comes in the form of coboundary expansion -
A topological notion of expansion. Our construction of a list agreement tester will rely on
coboundary expansion as a way to decouple the l instances of agreement testing and then
use agreement expansion in order to achieve local agreement. We found that the global
structure required in order to have l global cochains is, in a sense, equivalent to a coboundary
of a different complex. That complex is induced by the original complex and the agreement
test. We show that that the coboundaries of the induced complex are testable using the fact
that the original complex is both a coboundary expander and a 1-up agreement expander.
Effectively, we use the coboundary expansion in order to derive the global structure (i.e. that
the local assignments can indeed be “glued together” into l global functions) while using the
agreement expansion in order to derive the local structure (i.e. that the local agreements
agree with each other).

As we previously hinted at, list agreement offers a very descriptive language which can,
at times, be considerably richer than regular agreement. This richer structure allows us to,
for example, describe the question of whether a subgraph4 of the complex’s underlying graph
is two sided or not. One such subgraph of particular interest is a cycle as list agreement
allows us to describe the question of whether a cycle is of odd length merely by knowing
which vertices are a part of the cycle. This, in effect, yields a non-constant lower bound on
the number of queries required in order to test list agreement in the general case as testing
whether a cycle is odd cannot be done locally (More details on this can be found in the full
version of this paper).

In order to overcome this limitation we introduce a restriction on list agreement. Namely,
we require that the local assignments given to each set have some small distance separating
them. Using this small distance we show that testing list agreement is possible with a
constant number of queries.

Now that we have an understanding of list agreement expansion we can present our main
theorem:

▶ Theorem 2 (Main Theorem, informal. For formal see 51). Any simplicial complex that
has sufficient expansion properties (namely coboundary expansion and a 1-up agreement
expansion) supports list agreement testing using 3l queries5 (where l is the length of the list)
under small distance assumptions on the local assignments6.

It is important to note that there are simplicial complexes that meet the Theorem’s
criteria. For example, the spherical buildings and the complete complex have sufficient
expanding conditions for Theorem 2 (See [11] and [17]).

2 In the sense that there is a permutation π such that the i-th assignment of one of the faces agrees with
the π(i)-th assignment of the other.

3 One can interpret the local lists as “u and v are on different sides of the graph”.
4 Here a subgraph is determined by picking a subset of the vertices and all the edges that connect them.
5 The test queries all the local assignments of three faces.
6 More specifically we assume that the local assignments differ on at least two vertices. This assumption

cannot be removed in the domain of complexes that we examine. For further details, see the full version.

ITCS 2023



61:4 List Agreement Expansion from Coboundary Expansion

Direct sum testing

Another natural (and extremely useful) construction in hardness amplification is the direct
sum.

▶ Definition 3 (Direct sum). Given a function f : S → {0, 1} (where S is an arbitrary set)
its k-fold direct sum is a function F :

(
S
k

)
→ {0, 1} such that: F (A) =

∑
a∈A f(a).

Direct sums are useful in a variety of contexts, from Yao’s XOR Lemma [22] which states
that if a function is hard to approximate then its direct sum is exponentially harder, to the
hardness of approximation of problems in PNP ∥7 [15].

A unified framework for direct sum testing

It is natural to ask how, given a function, can one make sure that it is indeed a direct sum
in a derandomized fashion. There have been several works on derandomizing direct sum
testing [2, 12] but the tests presented in them for constant values of k were heavily dependent
on the parity of k. In the full version of this work, we show how to use list agreement
expanders in order to provide a new natural test for whether a function F is a direct-sum
(while having stronger assumptions on the expansion of the complex). Our testing framework
is the first that can be applied to any value of k regardless of its parity. In addition, our
framework shaves off an O(k) factor in the query complexity for the case when k is odd
(compared to [12]). This is discussed further in the full version of this paper.

1.1 High Dimensional Expansion Toolset
We will now move on to presenting the main toolset we use in the proof:

Simplicial complexes

Simplicial complexes are generalizations of graphs to higher dimensions. A simplicial complex
is a hyper-graph with closure property, i.e. if σ is a hyper-edge then any subset of σ is also
an hyper-edge in the hyper-graph. We term the hyper-edges of a simplicial complex as its
faces and define the dimension of a face σ to be |σ| − 1. We denote the set of i dimensional
faces by X(i). We also define the dimension of a simplicial complex as the dimension of its
maximal face. For example, any non-empty graph is a 1-dimensional simplicial complex8,
its vertices are the 0-dimensional faces and edges are its 1-dimensional faces. Note that in
connected graphs all of the maximal faces are of the same dimension as every vertex is part
of an edge (otherwise there exists an isolated edge and the graph is not connected), when
this holds we say that complex is pure. We limit our discussion to pure simplicial complexes.
It is often convenient to think of high dimensional faces as geometrical shapes, for example
we think of a 2-dimensional face as a triangle, a 3-dimensional face as a pyramid etc. In
many cases we will be interested in weighted simplicial complexes. In weighted simplicial
complexes a weight function is given to the top dimensioanl faces. This weight function is
positive and sums up to 1. The weight of lower dimensional faces is determined by the weight
of the top dimensional faces in which they are contained. It is important to note that even if
the top dimensioanl faces all have the same weight, the same does not necessarily hold for
faces of a lower dimension.

7 P NP ∥ is the set of problems that can be solved in polynomial time with oracle access to a problem in
NP such that all the queries to the oracle are performed in parallel.

8 We add the empty face to the graph.
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High dimensional expanders

High dimensional expanders are generalizations of one-dimensional expanders (i.e. graph
expanders) to higher dimensions. Unlike the one dimensional case, there are multiple
definitions for the notion of expansion in higher dimensions. Moreover, the connections
between the various generalizations of expansion is unknown. In this work we will use two of
these definitions: coboundary expansion and agreement expansion. We are going to think of
both definitions of expansion as measures of how well certain properties can be tested on the
complex.

Coboundary expansion

Coboundary expansion is a natural generalization of the combinatorial expansion to higher
dimensions. Specifically, one dimensional expansion can be thought of how well the following
test tests whether a cut in the graph is trivial: Pick a random edge and accept iff it does not
cross the cut. Note that this corresponds directly with the graph’s cheeger constant as the
cut can be thought of as a set and the number of edges that cross the cut are exactly the
outgoing edges of the set. Therefore the cheeger constant of the graph determines exactly
how well the test performs. Coboundary expansion is a generalization of the cheeger constant
that includes the second dimension as well. In the second dimension the property being
tested is whether a given subset of edges represents a cut (i.e. whether there is an underlying
cut such that an edge is in the set iff it crosses the cut). The test being measured is the test
that picks a triangle and accepts if the number of edges that are both in the set and the
triangle is even. In a coboundary expander both tests (i.e. the test in the first and second
dimensions) have a large soundness parameter (larger than some constant). This view of
coboundary expansion was first introduced in [16].

Agreement expanders

Agreement expanders are (possibly sparse) simplicial complexes and a distribution D on
the k-dimensional faces such that, for any set of assignments to the k-dimensional faces of
the simplicial complex, if most pairs σ1, σ2 ∼ D agree on their intersection then the local
assignments are close to agreeing with some global assignment (for any k). In this work we
are going to use a strengthening of agreement expansion, namely 1-up agreement expanders,
1-up agreement expanders are agreement expanders where the distribution D matches the
procedure of picking a (k + 1)-dimensional face and then randomly selecting two k-faces that
are contained in it. In [9] Dinur and Kaufman show that there exists a family of bounded
degree 1-up agreement expanders.

Covers

Covers of a simplicial complex X are simplicial complexes Y that, for every vertex v of
X contain l vertices [v, 1], . . . , [v, l], In addition, σ = (v1, . . . , vi) is a face in X iff Y has l
disjoint faces of the form ([v1, j1], . . . , [vi, ji]). For example: a 2-cover of a 1-dimensional
complex (i.e. a graph) has, for every vertex v, two vertices [v, 0], [v, 1]. In addition, for
every edge (v, u) in the graph the cover has two edges, either ([v, 0], [u, 0]) , ([v, 1], [u, 1])
or ([v, 0], [u, 1]) , ([v, 1], [u, 0]). In this work we are going to discuss a special subset of the
covering spaces of a simplicial complex. Specifically we are going to be interested in the
trivial covering spaces, i.e. covering spaces that are comprised of l disjoint copies of the
original complex. We end our discussion of covering spaces by noting that the definition of a
cover applies to general topological spaces and not necessarily to simplicial complexes.
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Near Covers

Near Covers are spaces that are close to being covering spaces of a given simplicial complex.
Near covers are a relaxation of covers where only the first two dimensions are required to
be covered properly. More specifically, every vertex v is covered by l vertices and every
edge {v, u} is covered by l edges. The higher dimensional faces are only covered if the lower
dimensioanl faces are structured in a way that allows them to be covered. For example
consider a simplicial complex comprised of a single two dimensional face {v1, v2, v3}. Consider
the near cover of said complex whose 1-dimensioanl faces are the following cycle of length 6:{

{[v1,0],[v2,0]},{[v2,0],[v3,0]},{[v3,0],[v1,1]},
{[v1,1],[v2,1]},{[v2,1],[v3,1]},{[v3,1],[v1,0]}

}
Note that every vertex and every edge are covered and yet the single 2-dimensional face is
not and thus this is a near cover that is not a cover. It is important to note that every cover
is a near cover and that sometimes genuine cover is used instead of cover to emphasize that
a near cover is indeed a cover.

1.2 Proof Strategy
In this work we are interested in testing whether a set system S exhibits list agreement
expansion. Agreement expansion stems directly from the rapid convergence of random walks
that local spectral expanders exhibit. While we still test for agreement (and therefore require
the same spectral expansion assumptions on our set system) we also recall that list agreement
requires some additional structure over agreement. Specifically, not only does list agreement
require local agreement it also requires the local agreements to exist in such a way that l
different global functions are formed.

Let us now characterize this additional structure further. Consider a set of assignments
F that gives every set s in the set system a set of l assignments F s

1 , · · · ,F s
l . For ease of

presentation, allow us also to assume that for every two sets in the set system s, s′ there
exists a unique permutation πs,s′ such that F s

i |s∩s′ = F s′

πs,s′ (i)|s∩s′ . Consider the following
definition:

▶ Definition 4 (Coboundary structure). Let A ⊆
(

S
2
)

and let G be a group. We say that a
function f : A → G has coboundary structure over A with coefficients in G if there exists
g : S → G such that f(a, b) = g(b) (g(a))−1.

We will show that, regardless of the set A, F exhibits list agreement iff f(s, s′) = πs,s′ has a
coboundary structure with coefficients in Sl (the symmetric group with l elements). Recall
F exhibits list agreement if there exists l global functions F1, · · · ,Fl and, for every set s
there exists a permutation πs such that F s

i = Fπs(i)|s. It is easy to see that in this case
πs,s′ = πs′ (πs)−1. In addition, if f(s, s′) has a coboundary structure then there exists g such
that f(a, b) = g(b) (g(a))−1. In that case, the global functions Fi(v) can be calculated by
picking any set s that contains v and setting Fi(v) = F s

g(s)(i)(v). We are therefore interested
in finding out if the permutations πs,s′ exhibit a coboundary structure.

Alas the fact that two local lists of assignments agree with each other under some per-
mutation does not necessarily mean that the permutation remains the same when correcting
f so that it exhibits coboundary structure (even if there is only one permutation that causes
agreement). It is therefore natural to ask “how far are πs,s′ from exhibiting a coboundary
structure?”. This is exactly what coboundary expansion with coefficients in Sl measures.
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Then, after we have corrected the function f so that it exhibits a coboundary structure,
we might have ruined some of the agreement we started with. We will note, however, that
now we have l independent instances of an agreement problem (One for each

{
F s

g(s)(i)

}
s∈S

,

where g : S → Sl such that f(s, s′) = g(s′) (g(s))−1). We use the agreement expansion to
resolve those.

To conclude, we use spectral expansion in order to derive the agreement and topological
expansion in order to derive this additional structure.

1.3 Proof Layout

We start by assuming that the complex is a 1-up agreement expander and therefore the 1-up
test is a good agreement test. We then model the choices done by the 1-up agreement test
as a simplicial complex which we dub “the representation complex”. The modeling is done in
the following way: The vertices of the new complex will correspond to the k-dimensional
faces of the original complex. The edges of the new complex will correspond to the choices
done by the 1-up agreement test (i.e. if a pair of faces σ1, σ2 are chosen with some probability
then there is an edge between σ1 and σ2). We will construct the higher dimensional faces of
the representation complex so that the weight of the an edge (σ1, σ2) in the representation
complex will correspond with the probability that the pair σ1, σ2 is chosen by the 1-up
agreement tester (see Definition 42 for a formal definition). Note that the edges of the
representation complex can be thought of as the set A from Definition 4. We will therefore be
interested in examining the expansion properties of the second dimension of the representation
complex. Alas, the representation complex is not a coboundary expander but it does have a
structure that facilitates bounding the distance of a cochain from being a coboundary using
a local property (the exact details of which are covered in the full version).

Before we move on we note that the function f from Definition 4 can be thought of as a
description of a near cover of the representation complex in the following way: Every vertex
v is covered by |G| elements - {[v, 1] , · · · , [v, |G|]}. The edges are described by the function
f in the following way: If v and u are connected in the original complex then [v, i] and
[u, f ({v, u}) (i)] are connected in the near cover. In order to simplify the presentation of the
rest of the proof we are going to use the language of near covers. It is important to note
that it is equivalent to the presentation in the proof strategy.

We start by showing how to relate any l-assignment whose local assignments are sufficiently
differing to an l-near-cover of the representation complex. Specifically, every one of the
local assignments to σ in the l-assignment will correspond to a vertex that covers σ and
two vertices in the cover are connected if the assignments they correspond to agree on their
intersection (and, of course, if the edge that they cover exists in the representation complex).
Unlike the assumption in the proof strategy, we cannot assume that every pair of lists agree
with each other. We therefore cover every edge (v1, v2) whose assignments do not agree with
each other using some fixed matching between the vertices that cover σ1 and σ2. Full details
of this construction can be found in Section 5.

Now that we have constructed the near cover we want it to have the additional structure
that we presented in the proof strategy. We note that a near cover exhibits the additional
structure we are interested in iff it corresponds to a coboundary. We also note that the near
cover corresponds to a coboundary iff it is a genuine cover that is comprised of l distinct
copies of the original complex. We use the connection between cochains and near covering
spaces as well as the testability of coboundaries in the representation complex to show that
it is possible to bound the distance of the near cover we constructed from being comprised of
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l distinct copies of the original complex. Consider now a corrected version in the near cover.
While now we have the additional structure we are interested in, we still have not gotten the
agreement we are interested in.

Assume for now that we can query this genuine cover directly (which we cannot as we
only have access to a near cover that is close to it). In the genuine cover, each of the copies of
the original cover has an associated assignment to its k-faces (since every vertex in the cover
is associated with a single local assignment to the face it represents). Consider running the
1-up agreement test on each of the copies of the representation complex with its associated
assignments. The test picks a (k + 1)-face σ and two of its k-sub-faces σ1, σ2, it then queries
the local assignment of these k-faces and accepts iff they agree on their intersection. Another
way of looking at the test is that it samples an edge e in the representation complex and
accepts iff the faces represented by the vertices in the edge agree on their intersection. We
can therefore bound the distance of the set of assignments from agreeing using the agreement
expansion of the original complex.

Alas we cannot query the genuine cover directly. We can, however, bound from above the
probability that the agreement test would reject had we ran it on that genuine cover. Recall
the construction of the near cover and note that if e was covered by edges that represent
agreement in the original near cover and, in addition, the cover of e was not changed then
the assignments to both sides of e agree on their intersection. Therefore the agreement test
would only reject if it picked an edge that had no agreement in the first place or an edge
that was changed when the near cover was corrected. Note that the norm of the edges that
satisfy these properties can be derived locally by querying the lists of assignments - the
former by observing whether there is an agreement and the latter due to the testability of
coboundaries in the representation complex. We use this in order to bound the distance of
any l-assignment from being an agreeing l-assignment.

Before we move on we wish to emphasise how the covering spaces allow us to decouple
dependencies. Consider the near covering space of the representation complex. In an ideal
case, the near cover induced by the l-assignment is a genuine cover that corresponds to a
coboundary. In such cases the cover is comprised of l independent copies of the original
complex and we can run the agreement test l times independently and get the distance
of the l-assignment from agreeing. In most cases, however, the near cover induced by the
l-assignment is not a genuine cover that corresponds to a coboundary. In these cases the
copies of the complex are dependent on each other in the sense that what would have been
copies of the original complex are now connected via various edges. A crucial step in the
test we propose involves “decoupling” these dependencies. We will show that, despite the
fact that the representation complex’s cohomology does not vanish, the coboundaries of the
representation complex are still locally testable. Using this test we can bound the distance of
the l-assignment from inducing independent instances of agreement testing. We believe that
the technique of modeling objects of interest as near covers of a coboundary expander could
be a useful measure of dependency as not only does it bound the distance of the object from
being independent but it is also locally testable.

1.4 Related Work
Agreement testing is an inherit part of most PCP constructions as well as various other
applications and were extensively studied in the past few years (for examples, see [9, 3, 7, 10,
1, 19, 6]). In recent years a connection between high dimensional expanders and agreement
testing was established: In [9] Dinur and Kaufman defined the notion of agreement expanders
described above. Later Kaufman and Mass presented in [17] a new method for constructing
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agreement expanders. In this work we generalize the notion of agreement expanders to the
case where each face has l local assignments. The goal in this new setting is to check whether
there exists l global functions that match all the local assignments (for formal definition
see 23).

In order to provide said generalization we use the connection between cocycles and cover
spaces of simplicial complexes. The connection between cocycles and cover spaces of a
simplicial complex was first introduced in [21]. Then in [11] Dinur and Meshulam defined
the notion of cover stable complexes which are complexes where if a near cover satisfies most
local conditions then it is close to a genuine cover. They then show that a simplicial complex
is cover stable if and only if it is an expanding with respect to non-abelian cohomology. We
use the connection between covers of high dimensional expanders and their cocycles in a new
way: Specifically, we use the structure of covers that correspond with coboundaries in order
to untangle the near cover into disjoint copies of the original complex.

Direct sums are natural construction in hardness of approximation. A function F :
([n]

k

)
→

{0, 1} is a k-direct-sum of f : [n] → {0, 1} if for every σ ∈
([n]

k

)
it holds that F (σ) =

∑
v∈σ v.

Testing direct sums is a problem that was extensively studied in recent years. The first
connections between testing direct sums and high dimensional expanders was presented
in [16] in which Kaufman and Lubotzky presented a test for the case of k = 2. Later in [2]
(and generalized to high dimensional expanders in [9]) a test for constant even values of k
was found. This test, however, could not deal with the case where k is odd due to inherit
limitations. After that, another test was proposed by Gotlib and Kaufman in [12]. Their test
could deal with the case where k is an odd constant, however there seem to be no simple way
of extending their setting to the case where k is even. In this work we use list agreement
expanders in order to present the first test for direct sums for constant values of k regardless
of its parity.

1.5 Paper Organisation
We will start by defining the notions of high dimensional expansion we use throughout the
paper in Section 2. In addition to that Section 2 includes a formal definition of list agreement
expansion and the distance measure we are going to use. Then, in section 3, we present the
representation complex and discuss some of its properties. In section 4 we present properties
of covers that correspond to coboundaries. We then move on to show how assignments to
the original complex imply a near cover for the representation complex in section 5. After
that we show how to use the cover stability of the representation complex in order to show
that the complex is a list agreement expander in section 6.

In the full version of this paper we show how to use list agreement expanders in order
to provide a test for k-direct-sum that is independent of the oddity of k. In addition, we
discuss the 2-differing assumption further and show that without the 2-differing assumption
there are some complexes of interest (for example, the spherical buildings) in which there
are no tests for list agreement that perform a constant number to queries. Finally, we show
a lower bound to the number of queries required for list agreement.

2 Preliminaries

2.1 Simplicial Complexes
As we stated before, the generalization of graphs we will be using are simplicial complexes,
which we will now present more thoroughly:

▶ Definition 5 (Simplicial complex). A simplicial complex X is set of sets such that if σ ∈ X

then every σ′ ⊆ σ is also in X. Each of the sets in X are termed the faces of X.
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▶ Note. The faces of a simplicial complex have an orientation. The orientation must be
consistent in the sense that there is an ordering of the 0-dimensional faces that determines
the orientation of all the faces in higher dimensions. In the vast majority of this paper the
orientation is irrelevant to the arguments and therefore we will ignore it for the most part.
When we are forced to consider the orientation of a face σ = {v0, . . . , vi} we will denote the
face with round brackets (i.e. σ = (v0, . . . , vi)).
Let us also define the dimension of a face and the dimension of the complex

▶ Definition 6 (Dimensions). Let X be a simplicial complex. Define the dimension of a face
σ ∈ X to be dim(σ) = |σ|−1. Also, denote the set of faces of dimension i by X(i) In addition,
define the dimension of the simplicial complex X to be dim(X) = maxσ∈X (dim (σ)).

▶ Definition 7 (Pure simplicial complex). A simplicial complex is called pure if all of its
maximal faces are of the same dimension.

From this point onward we limit our discussion to pure simplicial complexes (and whenever
we refer to a simplicial complex we will actually refer to a pure simplicial complex). A
standard weight function is defined over the various faces of a simplicial complex which we
will present below:

▶ Definition 8 (Weight function). Let X be a d dimensional simplicial complex. Define the
weight of a face σ ∈ X as the fraction of maximal faces in X that contain σ. Formally:

wX (σ) = |{τ ∈ X(d)|σ ⊆ τ}|(
d+1
|σ|

)
|X(d)|

When the complex is clear from context we will omit it from the notation.

Note that this weight function can be thought of as a probability distribution over the faces
of each dimension (and indeed we will think of it as such). Moreover there is a way to sample
a face with the probability distribution defined by the weight. We can also use this weight
function to define the following norm over sets of faces:

▶ Definition 9 (Norm on faces). Let X be a d-dimensional simplicial complex, let −1 ≤ i ≤ d

and also let S ⊆ X(i). Define the norm of S in X to be ∥S∥X =
∑

σ∈S wX (σ). When the
complex is clear from context we will omit it from the notation.

We will now introduce the notions of cochains, cocycles and coboundaries which are natural
spaces of functions over any given simplicial complex:

▶ Definition 10 (Cochains). Let X be a simplicial complex and let G be a group. Define the
set of 0-cochains with coefficients in G to be the set of functions from the vertices of X to G.
In addition, denote the set of 0-cochains with coefficients in G by C0 (X;G). Also, define
the set of 1-cochains with coefficients in G as the following set:

C1 (X;G) =
{
F : X(1) → G

∣∣∣F (v, u) = (F (u, v))−1
}

We also define the following operators:

▶ Definition 11 (Coboundary operators). Define the following three operators
Define the operator d−1 : C−1 (X;G) → C0 (X;G) to be d−1F (v) = F (∅).
Define the operator d0 : C0 (X;G) → C1 (X;G) to be d0F (u, v) = F (u) (F (v))−1.
Define the operator d1 such that for every cochain F ∈ C1 (X;G) and every (u, v, w) ∈
X(2): d1F (u, v, w) = F (u, v)F (v, w)F (w, u).
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These operators define the following spaces over the first three dimensions of the simplicial
complex:

▶ Definition 12 (Cocycles and coboundaries). Let X be a simplicial complex and G a group,
define the following spaces:

For i ∈ {0, 1, 2} define the i dimensional coboundaries to be
Bi (X;G) =

{
di−1F

∣∣F ∈ Ci−1 (X;G)
}

.
For i ∈ {0, 1} define the i dimensional cocycles as Zi (X;G) =

{
F ∈ Ci (X;G)

∣∣diF = 1
}

.
And, as with the cochains, when G = F2 we omit G from the notation.

▶ Note. We only define these spaces in the first two dimensions because we are working
with a general group G rather then an abelian group. If we assume that G is an abelian
group one can generalize the definition of cochains, cocycles and coboundaries as well as the
coboundary operators to higher dimensions.
Consider also the following:

▶ Fact 13. For every simplicial complex X and group G: Bi (X;G) ⊆ Zi (X;G) ⊆ Ci (X;G)

Of particular interest to our case are coboundaries with coefficients in the symmetric group
with l elements that we denote Sl.

We also extend the norm defined in Definition 9 to a norm over the cochains:

▶ Definition 14 (Norm of a cochain). Let X be a simplicial complex. For any F ∈ Ci (X;G),
define the following norm: ∥F∥X = ∥{σ ∈ X(i)|F (σ) ̸= 1}∥. When the complex is clear from
context we will omit it from the notation.

This norm also defines a natural distance function between any two cochains:

▶ Definition 15 (Distance between cochains). Let F1, F2 be two cochains in some simplicial
complex X. Define the distance between F1 and F2 to be dist (F1, F2) =

∥∥∥F1 (F2)−1
∥∥∥.

It is also natural, given a simplicial complex, to describe the simplicial complex that is
constructed using only faces whose dimension is at most some i. This is called the skeleton
of the simplicial complex and is formally defined below:

▶ Definition 16 (Skeleton). Let X be a simplicial complex. Define its i-th skeleton to be the
following simplicial complex: X(i) = {σ ∈ X|σ ≤ i}.

It would also be useful to define local views of faces in a simplicial complex. We call these
local views links and think of them as the faces seen by a certain face.

▶ Definition 17 (Link). Let X be a d-dimensional simplicial complex and let σ ∈ X(i).
Define the link of σ in X as the following (d− i)-dimensional simplicial complex: Xσ =
{τ \ σ|σ ⊆ τ and σ ∈ X}.

Note that the weight function of the faces in the link of a face σ is strongly connected to the
weight of σ and the weight function of the original complex:

▶ Definition 18. Let X be a d-dimensional simplicial complex and let σ be an i-dimensional
face. The weight of a j-dimensional face in the link of σ is wXσ

(τ) = wX (τ∪σ)
(|σ|+|τ|

|τ| ) wX (σ)
=

wX (τ∪σ)
(i+j+2

j+1 ) wX (σ)
.

We finish our presentation of simplicial complexes by defining isomorphic simplicial complexes:

▶ Definition 19 (Isomorphic simplicial complexes). Let X,Y be two simplicial complexes.
We say that X is isomorphic to Y and denote X ∼= Y if there exists an invertible function
f : Y → X such that of every σ, τ ∈ Y it holds that σ ⊆ τ ⇔ f(σ) ⊆ f(τ).
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2.2 On Assignments and l-Assignments
We will now present the notions of assignments and l-assignments we will then move on to
define list agreement expanders.

We will start by defining assignments and agreeing assignments. Assignments are es-
sentially a set of local functions from every k-dimensional face of the complex to {0, 1},
while agreeing assignments can be thought of as “snippets” of some global function. We will
end the discussion of assignments by defining the distance between two assignments as the
number of faces on which they differ.

▶ Definition 20 (Assignment). Define an assignment to the k-faces of a simplicial complex
X to be F = {Fσ}σ∈X(k) such that Fσ : σ → {0, 1}. We also denote the set of assignments
by SSS.

▶ Definition 21 (Agreeing assignment). Define the set of agreeing assignments to the k-faces
to be AAA =

{
F

∣∣∃F ∈ C0 (X) ∀σ ∈ X(k) : F |σ = Fσ
}

. We also say that F agrees with F .

▶ Definition 22 (Distance function for assignments). Define the distance between two k-
assignments as dist (F ,G) = ∥{σ ∈ X(k)|Fσ ̸= Gσ}∥. In addition, given a set of assignments
SSS define the distance of an assignment F from SSS to be dist (F ,SSS) = minS∈SSS {dist (F ,S)}.

We are now ready to define l-assignments and agreeing l-assignments. l-assignments are l
parallel assignments, i.e. every face in the complex has l local functions associated with it.

▶ Definition 23 (l-assignments). Given a simplicial complex X define a k-dimensional l-
assignment to be F = {F σ

i }σ∈X(k),i∈[l] such that F σ
i : σ → {0, 1} i.e. F is an assignment

of l local function to each k-face of X.

We define the distance between two l-assignments as the number of local functions on which
they differ (normalised by the weights of the faces and the length of the list).

▶ Definition 24 (Distance between l-assignments). Define the distance between two k-
dimensional l-assignments as dist (F ,G ) =

∑
σ∈X(k) w (σ) |{i∈[l]|Fσ

i ̸=G σ
i }|

l . In addition,
given a set of l-assignments SSS define the distance of an l-assignment F from SSS to be
dist (F ,SSS ) = minS ∈SSS {dist (F ,S )}.

The notion of agreement in this case is more complicated than in the non-list case. In regular
assignments an agreeing assignment is an assignment that is consistent with some global
function. In the l-assignment agreement case we are interested whether there are l global
functions such that the local assignments of each vertex are a list of “snippets” of the l global
functions.

▶ Definition 25 (Agreeing l-assignment). Define an agreeing k-dimensional l-assignments
to be a k-dimensional l-assignment F such that there are l cochains F1, . . . , Fl ∈ C0 (X)
and for every face σ ∈ X(k) there exists a permutation πσ such that the assignment Fi ={

F σ
πσ(i)

}
σ∈X(k)

agrees with Fi. Denote the set of agreeing assignments as AAA .

We are now ready to define list agreement expansion:

▶ Definition 26 (List agreement expander). Let X be a d-dimensional pure simplical complex.
We say that X is a (β, l)-agreement-expander if there is a probabilistic algorithm A such that for
every dimension k and every k-dimensional l-assignment F it holds that Pr

[
AF rejects

]
≥

β dist (F ,AAA ).
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In this paper we will present a weaker notion of list agreement expander. Specifically we are
going to assume that the l-assignments are 2-locally-different defined below:

▶ Definition 27 (Locally differing l-assignment). Let F be an l-assignment. We say that F

is 2-locally-differing if for every i ̸= j, every σ ∈ X(k) there exists xσ,i,j
1 ̸= xσ,i,j

2 such that
F σ

i (xσ,i,j
1 ) ̸= F σ

j (xσ,i,j
1 ) and F σ

i (xσ,i,j
2 ) ̸= F σ

j (xσ,i,j
2 ).

We note that the 2-differing assumption is inherent for list agreement testing with a constant
number of queries as we show in the full version of this paper. Before we conclude this
section we state the following properties of the distance between an l-assignment and the
agreeing l-assignments which we prove in the full version:

▶ Lemma 28. For every set of permutations {πσ}σ∈X(k) it holds that:

dist (F ,AAA ) ≤ 1
l

l∑
i=1

dist
({

F σ
πσ(i)

}
σ∈X(k)

,AAA
)

▶ Corollary 29. Let F be an l-assignment and let F̃ be an agreeing l-assignment such that
dist (F ,AAA ) = dist (F , F̃ ). In addition let {πσ}σ∈X(k) be a permutation such that for every

i:
{

F̃ σ
πσ(i)

}
σ∈X

is an agreeing assignment then

dist (F ,AAA ) = 1
l

∑l
i=1 dist

({
F σ

πσ(i)

}
σ∈X(k)

,AAA
)

.

2.3 Coboundary Expansion
The first form of high dimensional expansion we will present is coboundary expansion.
Coboundary expansion was first defined by Linial and Meshulam [20] and independently
by Gomov [14]. This form of expansion generalizes the notion of 1-dimensional expansion
naturally. Before we define the coboundary expansion to higher dimensions, we will re-define
the 0-dimensional expansion in the language that will allow for easier generalization. Consider
the standard definition of Cheeger’s constant:

▶ Definition 30 (Cheeger’s constant). Let X = (X,E) be a graph, define the Cheeger constant
of a graph to be minA̸=V,∅

{
|E(A,V \A)|

min |A|,|V \A|

}
In our redefinition, instead of subsets of the vertices we will consider 0-dimensional cochains
with coefficients in F2. We will represent a set of vertices A ⊆ V be the following cochain:

FA(v) =
{

1 v ∈ A

0 v /∈ A

Consider how, in our new setting, we can describe an edge between A and Ā and note that the
set of edges {v, u} that are between A and Ā are exactly the edges for which d0FA(v, u) ̸= 0.
Lastly, consider the following reformulation of the Cheeger’s constant:

min
F ∈C0(X)\B0(X)

{
∥d0F∥

dist (F,B0 (X))

}
Note that B0 (X) contains the cochains that correspond to V and ∅. Now, consider the
following generalization of that reformulation of Cheeger’s constant:
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▶ Definition 31 (i-dimensional expansion). Define the ith dimensional Cheeger constant to be:

hi(X;G) = min
F ∈Ci(X;G)\Bi(X;G)

{
∥diF∥

dist (F,Bi (X;G))

}
If hi(X;G) ≥ ϵ we say that the ith dimension of X ϵ-expands with G-coefficients.

And the following generalization of expansion:

▶ Definition 32 (Coboundary expansion). Let X be a d-dimensional simplicial complex. We
say that X is an ϵ-coboundary expander with coefficients in G if for every face σ ∈ X with
dimension smaller than d− 2 it holds that h0(Xσ;G) ≥ ϵ and h1(Xσ;G) ≥ ϵ.

In [18] Kaufman and Mass showed how to construct coboundary expanders independently of
the underlying group.

2.4 Covers of Simplicial Complexes
We will now move on to formally present the concept of covers of simplicial complexes and
their connection to the cocycles of the simplicial complex:

▶ Definition 33 (Cover space). Let X,Y be two d-dimensional simplicial complexes. We say
that (Y, fY ) l-fold evenly covers X if fY is a surjective map from Y to X such that:

fY is a translation function: for every σ ∈ Y it holds that |σ| = |fY (σ)| and
σ ⊆ τ ⇔ fY (σ) ⊆ fY (τ).
Locally X and Y look the same: for every face σ ∈ Y , fY is an isomorphism between
{τ ∈ Y |σ ⊆ τ} and {τ ∈ X|fY (σ) ⊆ τ}.
Every non-empty face of X is covered by exactly l-faces from Y : ∀σ ∈ X \{∅} :

∣∣f−1
Y (σ)

∣∣ =
l.

We will refer to fY as the covering map from Y to X. In addition we are going to say that Y
is an l-cover of X if there exists a covering map from Y to X. Lastly we would sometimes
refer to a cover as defined here as a genuine cover (as opposed to a near cover, defined below).

▶ Definition 34 (Lift). Let X be a simplicial complex, Y be a cover of X with the covering
map fY . Also let γ = (γ1, · · · , γn) be a path in X. A lift of γ to Y is a path γ′ = (γ′

1, · · · , γ′
n)

in Y such that for all i it holds that fY (γ′
i) = γi.

We also adopt the definition of near covers defined by [11]:

▶ Definition 35 (Near cover). Let X be a simplicial complex and let Y be another simplicial
complex. We say that Y is an l near cover of X if there exists a function fY : Y → X such
that:

For each vertex v ∈ X(0) it holds that f−1
Y can be identified with [l]. We will therefore

use the notation [u, i] to denote the vertex in f−1
Y [u] that corresponds to i.

For every edge (v, u) ∈ X(1) there exists π ∈ Sl such that if fY ([v, i] , [u, j]) = (v, u) then
i = π (j).

Where Sl is the symmetric group of order l.

Note that the difference between near covers and genuine covers is that in near covers the
faces of dimension larger or equal to 2 might not be properly covered. Consider, for example,
a complex that contains a single triangle T = {{v1, v2, v3}} and consider the near cover of T
whose 1-dimensional faces are (where G = F2):

Y (1) =
{

{[v1,0],[v2,0]},{[v2,0],[v3,1]},{[v3,1],[v1,1]},
{[v1,1],[v2,1]},{[v2,1],[v3,0]},{[v3,0],[v1,0]}

}
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Note that it is indeed a near cover since every vertex vi is covered by [v1, 0], [v1, 1] which
can be identified with 0 and 1 respectively. In addition, since F2 is the symmetric group the
second condition holds trivially. Also note that Y is not a cover of T since the second and
third conditions of being a cover fail: The first condition fails for any vertex in the complex
(since every vertex is a member of the triangle therefore {τ ∈ X|fY (σ) ⊆ τ} contains a set of
size 3 while {τ ∈ Y |σ ⊆ τ} contains no such sets9). Let us now note that every 1-dimensional
cochain in X implies a near cover by the following:

▶ Definition 36. Let G be a group acting on the left of a set S and let F ∈ C1 (X;G). Define
the complex YF as the complex whose 0-dimensional faces are
YF (0) = {[v, s]|v ∈ X and s ∈ S} and its higher dimensional faces are:

YF (i) = {{[v0, s0], . . . [vi, si]}|{v0, . . . , vi} ∈ X and ∀i, j : si = F (vi, vj)sj}

Surowski showed in [21, Proposition 3.2] a characterization of when YF is a genuine cover of
X. Specifically:

▶ Lemma 37 (Proposition 3.2 in [21], rephrased). YF is a genuine cover of X with the covering
map fYF

({[v0, s0], . . . [vi, si]}) = {v0, . . . , vi} iff F is a cocycle.

2.5 Agreement Expansion
Another type of high dimensional expansion is agreement expansion. This type of expansion
is concerned with the relation between agreement of local assignments and the distance of
an assignment from agreeing. It was first introduced by Dinur and Kaufman in [9]. In this
subsection we will introduce the concept of agreement testing which is a crucial part of our
construction:

▶ Definition 38 (Agreement expansion in the i-th dimension). Let X be a d-dimensional
simplicial complex and let D be a distribution over pairs of i dimensional faces that intersect
each other on ξ vertices10. Define: ai,ξ(X,D) = minA∈SSS

{
Pr(σ,τ)∼D [Aσ|σ∩τ =Aτ |σ∩τ ]

dist (A,AAA)

}
.

In addition let us define an agreement expander:

▶ Definition 39 (Agreement expander). Let X be a d-dimensional simplicial complex and let
D be a distribution. We say that X is an α-agreement-expander if ∀0 ≤ i ≤ d : ai,ξ(X,D) ≥
α

(
1 − ξ

i

)
.

Note that the dependency on
(

1 − ξ
i

)
stems from the second eigenvalue of the random walk

that walks between two i dimensional faces via a i+ ξ dimensional face.
In this paper we will be interested in a special case of agreement expander, specifically

1-up agreement expander.

▶ Definition 40 (1-up agreement expander). Define the distribution D↑ as the distribution
that, in order to sample two i-dimensional faces, samples an (i+ 1)-dimensional face and
then sample two of its i-dimensional sub-faces. Note that this distribution guarantees an
intersection of size i− 1. We say that a simplicial complex is a 1-up agreement expansion if
it is an agreement expander with the distribution D↑.

9 Y ’s 1-dimensional faces form a cycle of length 6 and therefore no triangle can be formed using the edges
of Y .

10 p may be dependent on i.
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3 The Representation Complex

In this section we are going to present a new complex that represents the agreement test
over the complex we are interested in. We will do that by constructing an edge for each of
the possible choices of the 1-up agreement test. We will add higher dimensional faces so that
the norm of the faces in the representation complex would correspond with the weight of the
faces they represent.

▶ Definition 41 (Representation Function). Define the representation function of a set of
k-faces to be R : P (X(k)) → P (X(0)) to be R(s) =

⋃
s′∈s s

′.

▶ Definition 42 (Representation Complex). Given a simplicial complex X define the
representation complex of X to be R̂k(X) such that:

R̂k(X)(−1) = {∅}
R̂k(X)(0) = {{σ}|σ ∈ X(k)}
∀1 ≤ i ≤ d− k : R̂k(X)(i) =

{
σ ∈

(
X(k)
i+1

)∣∣∣R(σ) ∈ X(i+ k) and
∣∣⋂

v∈σ v
∣∣ = k

}
▶ Note. For clarity of notation we will treat R̂k(X)(0) as if it equals X(k) (i.e. we will consider
{σ} and σ to be equivalent when discussing the representation complex’s 0-dimensional
faces). Moreover, we will sometimes treat R as a function whose origin is the faces in R̂k(X)
(which are subsets of X(k)) and range is the faces of X.

▶ Definition 43. We say that a face σ ∈ X is represented by rσ ∈ R̂k(X) if R(rσ) = σ.
Conversely we say that rσ represents σ.
The full version of this paper includes a through discussion on the exact structure of the
representation complex. In it we prove that the representation complex is indeed a simplicial
complex, and that every face whose dimension is larger then 1 has sunflower-like structure
i.e. there is a core that is a subset of each of the vertices in the face. And, in addition, the
core is the intersection of any two vertices in the face. We therefore define the following:

▶ Definition 44 (Core of a face). Define the core of a face σ ∈ R̂k(X) to be: core (σ) =
⋂

v∈σ v.

The analysis from the full version of the paper yields the following three Lemmas that are
crucial for our result:

▶ Lemma 45. For every face σ ∈ X(k + i) and every representation of the face rσ it holds
that wR̂k(X) (rσ) = 1

|R−1(σ)| wX (σ).

▶ Lemma 46. One can sample from the representation complex according to its norm.

▶ Lemma 47 (The Coboundaries of the Representation Complex are Testable). If X is a
γ-coboundary-expander then there exists a tester T that queries exactly 3 edges11 and a
constant η = η(k, γ) such that: dist

(
F,B1

(
R̂k(X)

))
≤ η · Pr [T rejects F ]

These Lemmas show that the weight function of the representation complex given the correct
weights to the edges, that we can sample a face from the representation complex (meaning
that we can run tests on it) and that the coboundaries of the representation complex are
testable.

11We can claim something even stronger. Specifically that T picks three vertices and queries the edges
between them.
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4 On the Covers That Correspond to Coboundaries

Recall the connection between cocycles and cover spaces of a simplicial complex. Specifically,
recall that YZ is a cover space of X iff Z is a cocycle. In this section we will be interested
in the properties of cover spaces that corresponds with coboundaries. We start by showing
that, if Z is a coboundary then the lift of any cycle C in X is a cycle in YZ :

▶ Lemma 48 (Lifts of cycles are cycles). Let ϕ ∈ B1 (X;G) and let Yϕ be a cover of X with
the simplicial map f : Yϕ → X. Also let C = (v0, . . . , vi, v0) be a vertex-edge cycle in X.
Then every lift of C is a vertex-edge cycle in Yϕ that starts and ends on a lift of v0.

Proof. Consider the lift of the cycle to the cover Yϕ and note that it is comprised of the
following edges (for some s ∈ G):

{[v0, s], [v1, ϕ(v1, v0)s]} , {[v1, ϕ(v1, v0)s], [v2, ϕ(v0, v1)ϕ(v1, v0)s]} ,

. . . ,

[vi,
i−1∏
j=0

ϕ(vj+1, vj)s], [v0, ϕ(v0, vi)
i−1∏
j=0

ϕ(vj+1, vj)s]


Because ϕ is a coboundary there exists a ψ ∈ C0 (X) such that ϕ(σ1, σ2) = ψ(σ1)ψ(σ1)−1

therefore:

ϕ(v0, vi)
i−1∏
j=0

ϕ(vj+1, vj) = ψ(v0)ψ(vi)−1
i−1∏
j=0

ψ(vj+1)ψ(vj)−1 = 1

Therefore the path starts and ends on the same vertex. ◀

We can show something even stronger, namely that the cover is actually comprised of l
distinct instances of the original complex.

▶ Lemma 49 (Cover decomposition). Let ϕ ∈ B1 (X;G) and let Yϕ be a cover of X then
there exists Y1, . . . , Yl such that Yϕ = ·⋃l

i=1Yi and Y1 ∼= · · · ∼= Yl
∼= X.

Proof. Yϕ is a cover of X. ϕ is a coboundary therefore there exists ψ ∈ C0 (X;G) such that
ϕ = d1ψ. We will show that for any dimension i and every face σ ∈ Yϕ(i) is of the form
σ = {[v1, ψ(v1)s], . . . , [vi, ψ(vi)s]} such that {v1, . . . , vi} ∈ X(i). Note that if [v1, ψ(v1)s] ∈ σ

then the rest of the vertices in the face are of the form
[vj , ϕ(vj , v1)ψ(v1)s] = [vj , ψ(vj)ψ(v1)−1ψ(v1)s] = [vj , ψ(vj)s]. Consider the sub-complexes
of Yϕ defined by Yj(i) = {{[v1, ψ(v1)i], . . . , [vi, ψ(vi)i]}|{v1, . . . , vi} ∈ X(i)}. It is easy to see
that these are all simplicial complexes. We will now show that they are distinct, that their
union is Yϕ and that they are indeed isomorphic to X.

Assume that Yj1 ∩ Yj2 ̸= {∅}. Let [v, k] be a vertex in Yj1 ∩ Yj2 (there must be one due
to the closure property of both complexes). Therefore ψ(v)j1 = k = ψ(v)j2 and therefore
j1 = j2 (due to the fact that ψ(v) ∈ G and therefore it has an inverse).

For every dimension i let {[v1, ψ(v1)s], . . . , [vi, ψ(vi)s]} ∈ Yϕ(i). Note that s ∈ S and
{v1, . . . , vi} ∈ X(i) and therefore {[v1, ψ(v1)s], . . . , [vi, ψ(vi)s]} ∈ Yj(i). It is easy to see that
Yj ⊆ Yϕ for every j.

For every Yj consider f : X → Yj to be f({v1, . . . , vi}) = {[v1, ψ(σ)j], . . . , [vi, ψ(σ)j]}.
Notice that this is a bijection (with the inverse function being
f−1({[v1, ψ(σ)j], . . . , [vi, ψ(σ)j]}) = {v1, . . . , vi}). In addition notice that if σ1 ⊆ σ2 then
f(σ1) ⊆ f(σ2). ◀
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5 Local Assignments in the Original Complex Imply a Near Cover in
the Representation Complex

In this section we will show how to derive a near cover for the representation complex from
local assignments in the original complex. More specifically, we will provide an algorithm
that, given some edge, returns the edges that cover it in the near cover. This cover will not
only be helpful in separating the complex to somewhat-consistent components but will also
allow us to bound how close each component is to being fully consistent.
Consider the following algorithm for querying the edges of the near cover:

Algorithm 1 query cover edge ({σ1, σ2}).

1 Query the list functions on σ1: F σ1
1 , . . . ,F σ1

l .
2 Query the list functions on σ2: F σ2

1 , . . . ,F σ2
l .

3 if there exists π such that for every v ∈ σ1 ∩ σ2 and every i it holds that
F σ1

i (v) = F σ2
π(i)(v) then

4 return
{{

F σ1
i ,F σ2

π(i)

}∣∣∣i ∈ [l]
}

5 else
6 return {{F σ1

i ,F σ2
i }|i ∈ [l]}

7 end

Before we move on consider the following intuition to what Algorithm 1 does: Effectively
Algorithm 1 tries to find a matching between the lifts of σ1 and σ2 that could be extended
into a coboundary.

We consider the near cover whose vertices are the assignments associated with each k-face,
its edges are the result of Algorithm 1 and we also complete the cover upwards (i.e. if a
higher dimensional face can be covered it will be).
It will also be useful to have a way to distinguish between edges that satisfy the condition in
step 3 and those that are not.

▶ Definition 50. An adequately covered edge is an edge for which there exists a permutation
π such that for every v ∈ σ1 ∩ σ2 and every i it holds that F σ1

i (v) = F σ2
π(i)(v).

We can also check whether an edge is adequately covered:

Algorithm 2 is adequately covered ({σ1, σ2}).

1 Query the list functions on σ1: F σ1
1 , . . . ,F σ1

l .
2 Query the list functions on σ2: F σ2

1 , . . . ,F σ2
l .

3 return whether there exists π such that for every v ∈ σ1 ∩ σ2 and every i it holds
that F σ1

i (v) = F σ2
π(i)(v)

Now that we have defined the near cover implied by the functions on the k-faces of the
complex it is time to move on to present the test.

6 Presenting a Test for List Agreement

Now we are finally ready to present our test:
▶ Note. We have shown in Lemma 46 that one can indeed sample from the representation
complex.
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Algorithm 3 test for list agreement.

1 pick with probability 0.5
2 Run the test guaranteed by Lemma 47. Whenever the test performs a query run

Algorithm 1 and provide the test with its answer.
3 Sample an edge in the representation complex and check whether it is adequately

covered (using Algorithm 2).

We will spend the rest of this section proving that this algorithm is indeed a test for list
agreement.

▶ Theorem 51 (Main Theorem). Algorithm 3 is a test for list agreement when the l-assignment
is 2-locally-differing over a complex that is a 1-up agreement expander and whose every link
is a coboundary expander over the symmetric group with l elements12.

Before we prove the main theorem let us reiterate the proof’s strategy: We are first going to
use the connection between cochains and near covers in order to claim that the near cover
implied by the functions in the lists of the k-faces is close to a genuine cover that correspond
to a coboundary. Consider the genuine cover that is close to that near cover - this cover
can be thought of as l independent copies of the representation complex. Note that because
our near cover was made using the functions in the lists of the different vertices each one
of the copies in the cover can be thought of as assigning each vertex of the representation
complex with a single local function. Also note that the vertices of the representation complex
corresponds to the k-faces of the original complex. Using this fact one can think of each of
the copies of the representation complex in the cover as an assignment of a singular function
to each of the k-faces of the original complex. We would then proceed to estimate the
distance of each of these assignments of functions from being agreeing assignments. In an
ideal setting we would be able to run the 1-up agreement expander test described in [9] on
each of the copies and measure their rejection probability. Alas we do not have access to
query the genuine cover (and therefore the correct local assignments for each vertices). What
we can do, however, is bound from above the rejection probability of these tests without
running them. We do so by first noting that the random choice done in that test corresponds
to picking an edge in the representation complex. Then consider when the agreement test
rejects an edge in the representation complex, this can happen in one of two cases - Either
the edge is not adequately covered13 or the edge was adequately covered in the near cover
but the near cover and the cover differ on that edge. Using this fact we can bound from
above the probability that the 1-up agreement test rejects when given access to each one of
the copies of the representation complex. Therefore the distance of each copy from having
a global function can be estimated. This is also a bound on the distance of the lists from
having l global functions that agree with them.

▶ Notation. Denote by Y the near cover generated by Algorithm 1 and by Ỹ a genuine
cover that is close to Y and represents a coboundary (Specifically the one guaranteed by
Lemma 47). Also denote by fY : Y → R̂(X) the near covering map implied by Algorithm 1
and by fỸ : Ỹ → R̂(X) the covering map between Ỹ and R̂(X). Lastly denote by Ỹ1, . . . , Ỹl

the l copies 14 of R̂(X) that make up Ỹ and by fỸi
: Ỹi → R̂(X) the restriction of the covering

map to the copy i.

12 This includes the entire complex as it is the link of ∅.
13 Note that if the edge is not adequately covered in the near cover then it is not adequately covered in

the cover.
14 Note that this is indeed the structure of a cover that corresponds to a coboundary due to Lemma 49.
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▶ Definition 52. Let F be a k-dimensional l-assignment of X and let Ỹ be the cover of X
described above. Define F1, . . . ,Fl the sub-assignments of F implied by Y to be assignments
such that: ∀i ∈ [l] : Ỹi(0) = Fi.

▶ Notation. Denote the set of inadequately covered edges of R̂(X) as IR̂k(X).

▶ Notation. Denote by A (stands for adjustment) the set of edges that are covered differently
between Y and Ỹ , formally: A =

{
σ ∈ R̂k(X)(1)

∣∣∣f−1
Y (σ) ̸= f−1

Ỹ
(σ)

}
.

▶ Definition 53. Define Di to be the set of disagreeing edges of Ỹi, formally: Di ={
{r1, r2} ∈ R̂k(X)(1)

∣∣∣Fr1
i |core({r1,r2}) ̸= Fr2

i |core({r1,r2})

}
.

Consider what happens when we run the 1-up agreement test on X with the k-dimensional
assignments of Fi. The 1-up agreement test picks a (k + 1)-dimensional face and then two of
its k-subsets and check whether the local assignment of the sub-faces from Fi agree on their
intersection. Note that this is completely equivalent to picking an edge in the representation
complex (since this is exactly the process of sampling an edge in R̂(X), more details on that
can be found in the full paper) and check whether the functions associated with its vertices
agree on the core of the edge. Therefore, when viewing the 1-up agreement test through the
lens of the representation complex the set of edges that the 1-up agreement test rejects is
exactly Di. The following lemma is a formal proof of this notion:

▶ Lemma 54. For every Ỹi if the 1-up agreement test rejects the edge σ ∈ R̂(X) then either
σ is inadequately covered or σ is covered differently by Ỹ then it is covered by Y , formally:
Di ⊆ A ∪ IR̂k(X).

Proof. Let {σ1, σ2} ∈ Di. Assuming that {σ1, σ2} /∈ A ∪ IR̂k(X) then, because {σ1, σ2} /∈ A

it holds that f−1
Y ({σ1, σ2}) = f−1

Ỹ
({σ1, σ2}). In addition, because {σ1, σ2} /∈ IR̂k(X) then

σ is adequately covered i.e. ∀
{
F σ1

i ,F σ2
j

}
∈ f−1

Y (σ) : F σ1
i |core({σ1,σ2}) = F σ2

j |core({σ1,σ2}).
Therefore ∀

{
F σ1

i ,F σ2
j

}
∈ f−1

Ỹ
(σ) : F σ1

i |core({σ1,σ2}) = F σ2
j |core({σ1,σ2}) which contradicts

the fact that σ ∈ Di. ◀

▶ Lemma 55. Let X be a γ-coboundary-expander and α-agreement-expander. Also let
η = η(k, γ) be the constant from Lemma 47 then for every l-assignment F it holds that:

η

2η + 2
α

k
· dist (F ,AAA ) ≤ Pr [Algorithm 3 rejects]

Proof. First consider:

dist (F ,AAA ) ≤ 1
l

l∑
i=1

dist (Fi,AAA) ≤ 1
l

l∑
i=1

k

α
∥Di∥ ≤ 1

l

l∑
i=1

k

α

∥∥∥A ∪ IR̂k(X)

∥∥∥ ≤ k

α

∥∥∥A ∪ IR̂k(X)

∥∥∥
Note that step 3 of Algorithm 3 picks an edge in R̂k(X) and checks whether it is in A therefore
it holds that

∥∥∥IR̂k(X)

∥∥∥ = Pr [Step 3 of Algorithm 3 rejects]. In addition due to Lemma 47 it
holds that η ∥A∥ ≤ Pr [Step 2 of Algorithm 3 rejects]. If algorithm 3 rejects with probability ϵ
then both Pr [Step 2 of algorithm 3 rejects] ≤ 2ϵ and Pr [Step 3 of algorithm 3 rejects] ≤ 2ϵ
and therefore:∥∥∥A ∪ IR̂k(X)

∥∥∥ ≤ ∥A∥ +
∥∥∥IR̂k(X)

∥∥∥ ≤ 1
η

Pr [Step 2 of algorithm 3 rejects] +

+ Pr [Step 3 of algorithm 3 rejects] ≤ 2
(

1
η

+ 1
)
ϵ

Hence dist (F ,AAA ) ≤ 2 k
α

(
1
η + 1

)
ϵ =

(
2η+2

ηα

)
ϵ. And therefore η

2η+2
α
k dist (F ,AAA ) ≤ ϵ. ◀
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We will now move on to prove that Algorithm 3 accepts with probability 1 any agreeing
2-locally-differing l-assignment. Before we do that, however, let us start by examining the
results of Algorithm 1:

▶ Lemma 56 (π found in Algorithm 1 is singular). Let F be a 2-locally-differing l-assignment.
If Algorithm 1 finds a permutation π in step 3 when given access to F then it is singular.

Proof. We will use the counter positive argument - assume that there exists two permutations
π1 and π2 (π1 ̸= π2) such that for every v ∈ σ1 ∩ σ2 and every i it holds that F σ1

i (v) =
F σ2

π1(i)(v) and F σ1
i (v) = F σ2

π2(i)(v). Let i be an integer such that π1(i) ̸= π2(i) and note
that for every vertex v ∈ σ1 ∩ σ2 it holds that F σ1

i (v) = F σ2
π1(i)(v) = F σ1

π−1
2 (π1(i))(v). Note

that because |σ1 ∩ σ2| = |σ1| − 1 it holds that there exists at most one vertex v′ such that
F σ1

i (v′) ̸= F σ1
π−1

2 (π1(i))(v
′) which contradicts the fact that F is locally differing. ◀

We are now ready to prove the Lemma:

▶ Lemma 57. If F is an agreeing and 2-locally-differing k-dimensional l-assignment then it
passes the test with probability 1.

Proof. In order to show that the l-assignment passes the test with probability 1 we will first
show that every edge is adequately covered and find the nature of the permutation π found
by Algorithm 1. Then we will use this in order to show that the test always accepts.

F is an agreeing assignment therefore there exists F1, · · · ,Fl such that for every face
σ ∈ X(k) there exists a permutation πσ such that for every i it holds that Fi|σ = F σ

πσ(i).
Therefore at step 3 Algorithm 1 finds π = πσ2π

−1
σ1

due to the fact that π is singular and for
every i it holds that ∀v ∈ σ1 ∩ σ2 : F σ1

i (v) = Fπ−1
σ1 (i)(v) = F σ2

πσ2 (π−1
σ1 (i))(v).

This immediately implies that every edge is adequately covered and that the cochain
created by Algorithm 1 is a coboundary. Therefore, if Algorithm 3 checks if an edge
is adequately covered then it accepts since every edge is adequately covered. Otherwise
Algorithm 3 checks whether the cochain generated by Algorithm 1 is a coboundary and
therefore it accepts with probability 1. ◀

We are now finally ready to prove the main theorem:

Proof of Theorem 51. In order to calculate the cover over each edge in the representation
complex all the local assignments of both vertices are queried. The empty triangle test queries
a triangle (either empty or proper) and therefore it queries 3 edges using Algorithm 1. Each
run of Algorithm 1 requires 2l queries. Some vertices, however, are queried by Algorithm 1
twice. Therefore we can reduce the query complexity of this step to 3l. Checking whether an
edge is adequately covered takes 2l queries (using the same argument). Therefore algorithm 3
queries F at most 3l times. We finish the proof by noting that the fact that algorithm 3 is
indeed a test for whether the l-assignment is agreeing stems directly from Lemma 55 and
Lemma 57. ◀

We therefore conclude that Algorithm 3 is a test for list agreement expansion in the 2-differing
case. We note that the test’s distance improves as the complex is a better agreement expander
and coboundary expander as well as when the dimension of the local assignments decrease.

Note that, in fact, we could have proven a more general statement than the main theorem
which we will now present. Before we do that, however, we have to define the test graph of
an agreement tester:
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▶ Definition 58 (Test Graph). Let X be a simplicial complex and let T be an agreement test
on the kth dimensional faces of X. Given a set of local functions {fσ : σ → {0, 1}}σ∈X(d)
the test picks two faces {σ1, σ2} ∼ D and checks whether fσ1 |σ1∩σ2 = fσ2 |σ1∩σ2 . Define the
test graph of the test T to be the weighted graph G = (V,E,wT ) such that:

V = X(k)
E =

{
{σ1, σ2)}

∣∣Pr{τ1,τ2}∼D [τ1 = σ1 and τ2 = σ2] > 0
}

wT ({σ1, σ2)}) = Pr{τ1,τ2}∼D [τ1 = σ1 and τ2 = σ2]

▶ Theorem 59 (Main Theorem, Generalized). Let X be a simplicial complex and let T be
an agreement test on the k-th dimensional faces of X. Then if the test graph of T is a
1-skeleton of a coboundary expander with respect to Sl (denoted X ′) such that wT ({σ1, σ2}) =
wX′ ({σ1, σ2}) and there exists an algorithm that queries the test graph then Algorithm 3 is
a test for l-agreement over X(k).
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Abstract
Multi-party quantum computation (MPQC) allows a set of parties to securely compute a quantum
circuit over private quantum data. Current MPQC protocols rely on the fact that the network is
synchronous, i.e., messages sent are guaranteed to be delivered within a known fixed delay upper
bound, and unfortunately completely break down even when only a single message arrives late.

Motivated by real-world networks, the seminal work of Ben-Or, Canetti and Goldreich (STOC’93)
initiated the study of multi-party computation for classical circuits over asynchronous networks,
where the network delay can be arbitrary. In this work, we begin the study of asynchronous
multi-party quantum computation (AMPQC) protocols, where the circuit to compute is quantum.

Our results completely characterize the optimal achievable corruption threshold: we present
an n-party AMPQC protocol secure up to t < n/4 corruptions, and an impossibility result when
t ≥ n/4 parties are corrupted. Remarkably, this characterization differs from the analogous classical
setting, where the optimal corruption threshold is t < n/3.
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1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function of their
private inputs, in such a way that the parties’ inputs remain as secret as possible, even in
the presence of an adversary corrupting a subset of the parties.

The problem of MPC has been studied mostly in classical setting, where the function to
evaluate as well as the adversary are classical [42, 25, 9, 14, 38]. However, with the recent
advances on quantum computing technology, it has become increasingly relevant to consider
quantum functionalities and quantum adversaries. This motivated an important line of works
on multi-party quantum computation (MPQC) protocols [21, 8, 41, 24, 23, 6, 4].

Current MPQC protocols operate in the so-called synchronous network model, where
parties have access to synchronized clocks and there is an upper bound on the network
communication delay ∆. Although this model is theoretically interesting, it fails to capture
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real-world networks such as the Internet, which is inherently asynchronous. In fact, assuming
a synchronous network is arguably worse in the quantum world, given the difficulties in
maintaining quantum states coherently. This has catastrophic consequences, since the security
of synchronous protocols is often completely compromised as soon as even one message is
delayed by more than ∆ time.

In contrast, protocols in the asynchronous network model do not rely on any timing
assumptions, and messages sent can be arbitrarily (and adversarially) delayed. While
asynchronous MPC protocols in the classical setting have been known since a few decades, no
protocol has been proposed in the quantum setting. An inherent difficulty in such protocols
is that one cannot distinguish between a dishonest party not sending a message, or an honest
party that sent a message that was delayed by the adversary. As a result, parties have to
make progress in the protocol after receiving messages from n− t parties. This also implies
that in this setting it is impossible to consider the inputs of all honest parties – the inputs of
up to t (potentially honest) parties may be ignored. Asynchronous protocols impose even
further restrictions in the quantum setting. In particular, since states cannot be duplicated,
the no-cloning theorem rules out quantum broadcast, which is a crucial tool for enabling
classical asynchronous protocols.

In the classical setting, the foundational works of Ben-Or, Canetti and Goldreich [7] and
Ben-Or, Kelmer and Rabin [10] showed that the optimal achievable corruption tolerance
in the asynchronous model is t < n/3. In this work, we initiate the study of the quantum
counterpart, namely asynchronous multi-party quantum computation (AMPQC) protocols:

Is it possible to achieve AMPQC? If so, what is the optimal achievable corruption
threshold?

We completely resolve this question by providing the first AMPQC protocol secure up to
t < n/4 corruptions, and showing a lower bound that tolerating t ≥ n/4 corruptions is
impossible.

▶ Theorem 1 (AMPQC Feasibility). There exists an information-theoretic asynchronous
multiparty quantum computation protocol for n parties which is secure against up to any
t < n

4 corruptions.

▶ Theorem 2 (AMPQC Impossibility). No asynchronous multiparty quantum computation
protocol exists for n parties which tolerates any corruption threshold t ≥ n

4 .

1.1 Related Work
Classical Asynchronous MPC

The seminal works of Ben-Or, Kelmen, and Rabin [10], and Ben-Or, Canetti, and Goldreich [7]
showed that the optimal achievable corruption tolerance for asynchronous classical MPC is
t < n/3 even with setup, in both the computational and information-theoretic settings, and
t < n/4 when requiring perfect security.

Since then, a huge amount of work has been devoted to improving the communication
complexity. In the information-theoretic setting with optimal resilience, Patra, Choudury,
and Pandu Rangan [35] achieved O(n5κ) bits per multiplication, where κ is the security
parameter, and recently Choudhury [16] further improved this result to O(n4κ) bits per
multiplication. Going to the sub-optimal resilience t < n/4, several works achieve linear
communication [40, 37, 17, 36].

In the cryptographic setting, most protocols make use of some form of homomorphic
encryption. The works by Hirt, Nielsen, and Przydatek [28, 29] make use of additive
homomorphic threshold encryption, with the protocol in [29] communicating O(n2κ) bits per
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multiplication, and the work by Chopard, Hirt, and Liu-Zhang [15] achieves adaptive security
with the same communication. The work by Choudhury and Patra [18] achieves O(nκ) per
multiplication using somewhat-homomorphic encryption, and several other works [20, 31, 12]
make use of fully-homomorphic encryption to achieve communication complexity independent
of the circuit size.

Multi-Party Quantum Computation

All known MPQC protocols assume a synchronous network and have a negligible error
probability. Crépeau, Gottesman, and Smith [21] introduced the first MPQC protocol with
guaranteed output delivery up to t < n/6 corruptions. This was improved by Ben-Or,
Crépeau, Gottesman, Hassidim, and Smith [8], who achieved the optimal resilience t < n/2.
In the dishonest majority setting, where up to n − 1 parties may be corrupted, Dulek,
Grilo, Jeffery, Majenz, and Schaffner [23] gave the first MPQC protocol achieving security
with abort, building upon the work by Dupuis, Nielsen and Salvail that achieved two-party
secure computation. Very recently, in a followup work, Alon, Chung, Chung, Huang, Lee,
and Shen [4] designed a protocol with identifiable abort. Another recent work by Bartusek,
Coladangelo, Khurana, and Ma [6] achieves a constant round MPQC protocol in the dishonest
majority setting.
Our work achieves guaranteed output delivery up to t < n/4 corruptions under an asyn-
chronous network and incurs negligible error. It is left as an open question whether one can
achieve MPQC with perfect security (meaning 0 error probability), even for synchronous
networks.

Post-Quantum Computation

A line of works has focused on the problem of post-quantum computation which considers
classical computation, but an adversary with quantum capabilities.

As noted in [1], many of the results in the classical setting [9, 14, 13, 30] can be proven
post-quantum secure, provided they are instantiated using primitives that are plausibly
quantum secure. Damgård and Lunemann [22] introduced a two-party coin-flipping protocol,
and Lunemann and Nielsen [32] and Hallgren, Smith and Song [26] introduced general two-
party computation protocols secure against quantum adversaries. Bitansky and Shmueli [11]
gave a constant-round two-party coin-flipping protocol, with full simulation of one party.
Finally, very recently, Agarwal, Bartusek, Goyal, Khurana and Malavolta [1] introduced a
constant-round post-quantum multi-party computation protocol in the plain model.

2 Technical Overview

We give an overview of the main techniques used in the paper.

2.1 Feasibility Result
We provide a protocol secure up to t < n/4 corruptions under an asynchronous network. Our
starting point is the work by Ben-Or, Crépeau, Gottesman, Hassidim, and Smith [8], which
achieves optimal resilience up to t < n/2 when the network is synchronous.

Their protocol follows the traditional sharing-based paradigm for multi-party computa-
tion [9]. Parties distribute their private inputs with a so-called verifiable quantum secret
sharing scheme (VQSS). Parties then evaluate the circuit in a gate-by-gate fashion on the
encoded inputs. In the end, parties end up with encodings of the outputs of the circuit,
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which can each be jointly decoded towards the corresponding party. Technically, the main
challenge comes from the design of a VQSS which is in some sense compatible with quantum
operations. For this, the authors elegantly design a VQSS which relies on several building
blocks, including a special quantum authentication scheme and a so-called weak quantum
secret-sharing scheme (WQSS), which is similar to VQSS, except that a dishonest dealer can
choose not to reconstruct the shared secret (i.e. reconstruct ⊥). The design allows to push
the complexity of performing quantum operations over encoded data to performing classical
operations on the authentication keys.

Roughly speaking, the VQSS scheme is composed of three parts: First, the dealer shares
2κ + 2 quantum |0⟩-states among the parties, and each share is then re-distributed using a
WQSS scheme. Second, parties jointly run a checking phase to verify that they indeed hold
a sharing of |0⟩ (except with error negligible in κ). This is accomplished with a so-called
zero-purity test, which can be run using a classical trusted third party (TTP). The zero-purity
test requires each party to do some local computation before measuring 2κ of the shared states
and sending the measurement results to the TTP, which combines them. This consumes
2κ of the shared states. Finally, with the remaining two sharings of |0⟩, the parties jointly
create sharings of an EPR pair. The first half of the EPR pair is decoded to the dealer, who
can then distribute the secret to the parties using quantum teleportation.

Their scheme relies on a synchronous network, where every message sent by an honest
party is delivered within a known delay upper bound, and unfortunately it completely breaks
down as soon as even one message gets delayed. In fact, an honest dealer could appear
corrupted because his messages did not arrive in time. The recipients will then accuse him
during the checking phase, resulting in the sharing protocol being unsuccessful.

Challenges in the Asynchronous Setting

In order to make this work in the asynchronous setting, the main obstacle is to design a
mechanism that allows parties to learn when they jointly have enough information to uniquely
determine the shared secret. When the network is synchronous, this is straightforward, given
that parties proceed synchronously and the secret is guaranteed to be shared after a certain
number of rounds. In asynchrony, some parties might have gotten a lot of messages while
others might still be waiting. Note that if a party Pi didn’t receive a message from another
party Pj , Pi cannot ask for a missing message, since the response can also be delayed.1

In the classical setting, asynchronous VSS is typically solved by reaching agreement on
a core-set of parties of size at least n − t who received correct shares. The reasoning is
that if n − 2t > t, then the core-set contains at least t + 1 honest parties, whose shares
should uniquely define the secret. The parties in the core-set will be the only ones that
contribute their shares in the reconstruction step. One usually also requires a way to tell
during the reconstruction phase whether a received share is correct (this is usually achieved
using authentication tools such as information checking or signatures, see, e.g., [10, 34]),
which allows parties to correctly reconstruct the secret with high resilience. Three challenges
arise when trying to achieve this, which we discuss below.

Using a Classical TTP. First, in order to agree on a core-set, we make use of an asynchronous
trusted third party (TTP) that can perform classical computations. Perhaps surprisingly,
this does not follow from standard classical asynchronous MPC in a black-box way. This is

1 In fact, it is more complicated than that: In many synchronous protocols, if Pi doesn’t receive a message
from Pj , Pj is deemed corrupted and the protocol can for example reveal Pj ’s secret state.
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because asynchronous MPC protocols have a very concrete interaction pattern where the
TTP waits for the values of any n− t parties (which the adversary can choose by scheduling
messages), and outputs a function of these values. However, the interaction that we need
with the TTP is more general: in particular, the TTP can wait for the values of designated
parties to arrive before computing the function. For example, in the broadcast functionality
a designated party sends a message to the TTP, and then the TTP forwards that message to
all other parties.

In order to deal with more general functionalities, we first formalize a generalized secure
function evaluation protocol, which not only takes into account the function f to be evaluated,
but also a monotone predicate Q : P → {0, 1} (i.e., if T ⊆ T ′ and Q(T ) = 1, then Q(T ′) = 1)
that indicates which sets of parties’ inputs may be included into the computation. 2 Using
generalized secure function evaluation protocols, one can realize the classical TTP using
standard techniques, where each evaluated function takes into account the internal state of
the TTP, which is jointly maintained by the parties.

We then show how to modify current existing classical asynchronous protocols for
secure function evaluation to achieve generalized secure function evaluation. Current
information-theoretic protocols for secure function evaluation follow the traditional sharing-
based paradigm, and distribute the inputs as follows: Parties use an asynchronous verifiable
secret sharing (AVSS) scheme. Then, since the network is asynchronous, some sharings
terminate earlier than others, and therefore parties need to agree on when to proceed to
the computation phase. For that, parties run a core-set agreement protocol [10, 7] to agree
on a core-set of parties of size at least n− t whose inputs are taken into the computation
(all other parties’ inputs are ignored). In order to take the inputs into account according
to a predicate Q, one can proceed as follows: run n Byzantine Agreement (BA) protocols
BA1, . . . , BAn, one for each party. Every time the AVSS from party Pj terminates, Pi inputs
1 to BAj . Every time BAj outputs 1, it adds Pj to his local set T i. Party Pi then waits until
the set of parties T i satisfies Q(T i) = 1. If so, Pi inputs 0 to all remaining BAs, and waits
for all BAs to terminate before proceeding to the computation phase. Due to agreement
of BA, all honest parties agree on the same set of parties CoreSet. Moreover, all honest
parties eventually receive all the inputs from parties in CoreSet, due to properties of the
AVSS. Finally, since Q is monotone, it follows that the final set of inputs taken into account
for the computation satisfies Q (as it contains at least the set T i). For more details, see the
full version.

Reconstruction and Corruption Thresholds. Second, in contrast to the classical setting,
a quantum secret sharing scheme cannot have reconstruction threshold t + 1, because the
no-cloning theorem enforces that the reconstruction threshold must always be at least
⌊n/2⌋+ 1 [19]. Due to the asynchronous nature of the network, the reconstructor must be
able to perform the reconstruction process with shares from only n − t parties, since the
protocol must succeed even if the t adversarial parties refuse to participate. However, in order
to uniquely define the secret, ⌊n/2⌋+ 1 of those shares must be from honest parties because
of the reconstruction threshold. Combining these observations with the fact that t of the
provided shares can be from corrupted parties imposes the requirement that n−2t ≥ ⌊n/2⌋+1,
or t ≤ n/4. Note that in the classical setting, setting the reconstruction threshold to ⌊n/3⌋+1
allows t ≤ n/3. We later expand this intuition into a proof of impossibility for t ≥ n/4.

2 In a traditional asynchronous protocol, Q evaluates to 1 for any set of size at least n − t.
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Robust Reconstruction. Finally, even for t < n/4 and assuming a classical TTP, it is not
clear how to robustly reconstruct a secret (even in the strictly weaker setting of WQSS).

To see this, let us say that one follows the classical approach of defining a core-set of n− t

parties who received correct shares and should contribute during the reconstruction phase.
Among these, given that t parties may be corrupted, parties cannot expect to receive all and
must reconstruct already from n−2t shares. However, the n−2t received shares may contain
t corrupted shares. Given that one needs at least ⌊n/2⌋+ 1 shares to reconstruct the secret,
one can only safely reconstruct if t < n

6 . In this case, there are n−2t−|errors| = n−3t > n/2
honest shares, which is enough to uniquely define the secret. However, a higher corruption
threshold might result in the honest shares not uniquely defining the secret, in which case the
corrupted parties might be able to force a different reconstruction value. Therefore achieving
the optimal threshold of t < n

4 requires additional ideas.
In the classical setting, this issue is addressed by letting each share be signed by every

party during the sharing phase. This ensures that during the reconstruction the adversary
cannot send a corrupted share (with correct signatures) corresponding to a different secret.
Unfortunately, there is no easy way to achieve this in the quantum setting (digitally signing
quantum data is even impossible! [5, 3]). To overcome this barrier we introduce a novel
primitive called asynchronous weak quantum secret-sharing scheme (AWQSS) with weak
termination, which does not guarantee that the reconstruction procedure outputs a value
(even when the sharing was successful) in the dishonest-dealer case.3 We then show how this
weaker primitive is enough to achieve AVQSS.

The starting point for the AWQSS with weak termination is the synchronous protocol
from Ben-Or et al. [8]. The dealer verifiably distributes authenticated shares of two |0⟩ states,
where the classical TTP holds the classical authentication key. With the help of the TTP,
the parties test the two sets of shares to ensure they are actually shares of |0⟩ states. Once
assured, the parties entangle the two shared qubits to create a shared EPR pair and send
half to the dealer. Finally, the dealer uses the EPR half it receives to teleport its state. Since
the protocol is required to progress with only n − t active participants, the |0⟩ test must
occur as soon as any n− t parties have provided their test measurements.

Contrary to the synchronous WQSS case, the requirement that progression is necessary
with only n− t parties opens up problems in aligning the cases when the dealer is honest and
when it is corrupt. Specifically, it becomes possible for t honest parties to receive inconsistent
shares (or not receive them at all) without disrupting the sharing protocol. Then, depending
on the behavior of the corrupted parties during reconstruction, the reconstructor may only
receive n− 2t shares. Since the reconstructor cannot tell whether the remaining shares are
simply delayed on the network or withheld by corrupt parties, it must decide whether to
attempt to reconstruct the secret or output ⊥ based only on these n− 2t > ⌊n/2⌋+ 1 shares.
However, even though n− 2t is at least the threshold of ⌊n/2⌋+ 1 for t < n/4, it is never
safe to attempt to reconstruct the secret, even if the received shares are consistent. This is
because if the dealer is corrupt, then they know the authentication keys and so the other
corrupt parties may provide up to t arbitrary shares in the reconstruction process, potentially
changing the reconstructed value. To make matters worse, the same situation can occur with
an honest dealer, but reconstruction must always succeed in this case!

3 In ordinary weak secret-sharing, as is used in prior work, the reconstructor is allowed to output ⊥, but
must terminate at some point. With weak termination, the reconstructor may even fail to output ⊥
when the dealer is dishonest.
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Our insight here is to build a late checking mechanism into the protocol which allows
parties outside of the core-set to contribute. These parties did not participate in the initial
share-checking, but will still hold valid shares in the case of an honest dealer. This is in
contrast to current classical asynchronous protocol techniques, where only parties inside the
core-set contribute their shares in the reconstruction step.

Honest parties who receive their shares after the |0⟩ test has already occurred can send
their portion of the test measurements4 to the TTP and receive back the result of performing
the |0⟩ test on their measurement and n − t − 1 of the original n − t test measurements
used in the main |0⟩ test. This TTP behavior makes use of the expanded classical TTP
functionality discussed above in order to allow a single party to interact with the TTP. With
an honest dealer, the t honest parties who are delayed will have their shares confirmed by
the TTP after the main check has already occurred. This allows n− t shares to be provided
to the reconstructor, which is sufficient to complete reconstruction safely. It is important to
note that late checking does not change the case for a corrupted dealer, since the delayed
honest parties might never receive shares in the first place.

AVQSS avoids the weak termination problem by creating a two-level sharing of |0⟩.
Creating a two-level sharings of |0⟩ intuitively means that the quantum state |0⟩ is shared
using an AWQSS scheme, and each level-1 share is again shared using an AWQSS scheme. The
sharing terminates once at least n−t parties hold correct shares, as checked by another |0⟩ test.
These n− t parties uniquely define the secret. Moreover, during the reconstruction, corrupted
parties cannot send corrupted level-1 shares, since each of these shares are distributed among
all honest parties. They can, however, withhold their shares. But since the n − t parties
contain at least n− 2t ≥ ⌊n/2⌋+ 1 honest parties, these are enough to reconstruct the secret.

2.2 Impossibility Result

As we saw above, we require the corruption threshold to be t < n/4 in our protocol.
Interestingly, we show that this corruption threshold is optimal. This is in contrast to the
classical setting, where the optimal threshold for asynchronous computation is t < n/3 [10].

Formally, we prove that AVQSS is impossible for t ≥ n/4. The ideas in our proof
generalize naturally to a secure function evaluation protocol for all-to-all AVQSS, where all
the parties end up with shares from each of the n− t parties in the core-set. We provide a
high level idea of the proof below for n = 4 and t = 1. By standard arguments, this implies
an impossibility for the general case t ≥ n/4.

Consider the existence of an AVQSS protocol with four parties D, P2, P3, P4, where D

also acts as a recipient, and secure up to t = 1 corruption. We show that this implies
an “approximate” quantum erasure-correcting code (QECC) of length 4 and approximately
correcting 2 erasures, in the sense that the decoded quantum state is close in trace distance to
the true input state. We prove that it is impossible to construct such codes. The idea is that
there can be one corrupted party, and, because the protocol succeeds under an asynchronous
network, it must succeed even when a potentially honest party is locked out of the protocol.
Formally showing this intuition requires carefully designing a scenario-based argument.

A bit more formally, consider a secret x, and further consider without loss of generality
the set {P3, P4} (the argument holds for any set of size 2). We will show that the internal
state of {P3, P4} fully determines x (up to a small error).

4 The test is defined for all parties, although it does not require all of them to participate.
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Consider a first scenario where all parties are honest in the execution of the sharing
phase, but P2’s messages are delayed. Since the protocol is secure even when P2 crashes from
the start, all parties successfully terminate holding a share. In this case, since the dealer is
honest, the reconstructed value is x.

In the second scenario, P2 does not receive any information from a corrupted dealer D in
addition to having its messages delayed. The dealer D otherwise behaves as in an honest
execution with input x with respect to parties {P3, P4} (by internally emulating P2). In this
case, the view of {P3, P4} is exactly the same as in the first scenario. Furthermore, note
that there is an adversarial strategy so that the reconstructed value is x: simply let D also
participate in the reconstruction protocol honestly while delaying all messages from P2, as
this is the same execution as in the first scenario. In turn, this means that the committed
value is x, and, regardless of the adversarial strategy, the reconstructed value must be x.

However, since P2 did not receive any message from D, his internal state cannot provide
any information that is unknown to {P3, P4}. Since AQVSS requires the views of the honest
parties to define the secret, the internal state of {P3, P4} must fully determine the secret x.

This implies the existence of an approximate QECC with length 4 that is resilient to two
erasures, since the secret can be recovered from any two shares.

3 Preliminaries

3.1 Notation
We denote the security parameter by κ and write neg(κ) for any function that is negligible
in κ, i.e., neg(κ) decays faster than κ−c for any constant c > 0 as κ grows. We also write
poly(κ) for a function that grows polynomially with κ. We write k ← K to mean that k is
sampled uniformly at random from the set K. The finite field of order q is denoted by Fq.
The conjugate transpose of a matrix U is denoted by U†.

3.2 Concepts from Quantum Computation
We assume familiarity with basic concepts from quantum computation, such as pure and
mixed states, density matrices, Clifford and Toffoli gates, entanglement, measurements, and
quantum teleportation. We refer the reader to the book of Nielsen and Chuang [33] for an
overview of these concepts. We denote quantum registers and gates by uppercase roman
letters. The distinction will be clear from context. Density matrices are denoted by lowercase
greek letters such as ρ and σ, and we sometimes write ρM for the state associated with
register M . Furthermore, we write UM for a unitary transformation U to denote that U is
applied to the contents of register M .

Trace Distance

We make use of the notion of trace distance between states.

▶ Definition 3 (Trace distance). The trace distance between two mixed states with associated
density matrices ρ and σ, denoted by D(ρ, σ), is given by

D(ρ, σ) = 1
2∥ρ− σ∥1,

where ∥ρ∥1 = Tr[
√

ρ†ρ] is the trace norm.
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The trace distance is a distance and has the following useful interpretation: If D(ρ, σ) ≤ ε,
then any POVM applied to states with density matrices ρ and σ yields classical measurement
outcome distributions, say (p1, . . . , pm) and (q1, . . . , qm), which are ε-close in statistical
distance, i.e., 1

2
∑m

i=1 |pi − qi| ≤ ε.

Generalized Quantum Gates

We work with basis states indexed by elements of a finite field Fp and apply several quantum
operations to such states. We describe them next. We consider the generalized Pauli gates X

and Z over Fp, which act as X |α⟩ = |α + 1⟩, where the sum is over Fp, and Z |α⟩ = ωα
p |α⟩,

where ωp = e2πi/p. Moreover, we will use the controlled SUM gate (generalizing the CNOT
gate) over Fp acting as SUM |α, β⟩ = |α, α + β⟩, and the γ-Fourier gate Fγ over Fp acting as

Fγ |α⟩ = p−1/2
∑

β∈Fp

ωγαβ
p |β⟩ .

When γ = 1 we simply write F = F1.

3.3 Quantum Secret Sharing
Quantum secret sharing [27] allows a dealer to share a secret quantum state so that authorized
subsets can recover the secret, but unauthorized sets cannot gain information about the
secret. In our schemes, we use an extension of Shamir’s secret sharing scheme to the quantum
setting, first described by Cleve, Gottesman, and Lo [19]. Note that the no-cloning theorem
implies that we must always have t > n/2 in a QTSS scheme [19].

3.4 Quantum Authentication Schemes
Quantum authentication schemes were first introduced in [5]. Intuitively, a quantum authen-
tication scheme encodes a quantum state with the help of a classical key so that operations
performed on the authenticated state by an adversary who does not know the key can be
detected.

Polynomial-Based Authentication Scheme

We will be using the efficient polynomial-based authentication scheme from [8] and based on [2].
This scheme has several properties which will be quite useful. First, the authentications keys
(k, x) are classical, which allows them to be managed by the classical TTP. This advantage
is especially important because their scheme allows the application of Clifford gates and
measurements to authenticated states where the keys are held by the TTP and the quantum
registers are held by other parties. In the case of multi-qubit gates, states authenticated
under the same k (but potentially different x) can be operated on jointly. Second, the scheme
remains secure in a setting where the adversary has access to several states authenticated
with the same k but independently sampled x’s. This will later allow parties to authenticate
multiple states which can all be operated on together.

4 Model of Multiparty Computation

We consider a set of n parties P = {P1, . . . , Pn}. We extend the standard classical asynchron-
ous model for multiparty computation to the quantum setting, where parties have quantum
states as inputs and wish to apply a quantum circuit to their states.
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We consider quantum circuits which use only Clifford and Toffoli gates, since these form
a universal quantum gate set [39].

4.1 Communication and Adversarial Models
Parties have access to point-to-point private classical and quantum channels. For simplicity,
we consider a static computationally unbounded adversary who is allowed to corrupt any t

parties at the start of the protocol, who may deviate arbitrarily from the protocol. But we
believe our protocols should also achieve adaptive security.

Our network model is asynchronous. This means that there may be an arbitrary (finite)
delay between the time a message is sent and the time it is delivered. The adversary controls
the scheduling of the messages, subject only to the constraint that every message sent must
eventually be delivered. Since we assume private channels, the adversary has no information
about the contents of each message besides the identity of the sender and receiver.

4.2 Multi-Party Asynchronous Quantum Computation
We adapt the security definition to our setting, following the works on asynchronous classical
MPC by Ben-Or, Canetti, and Goldreich [7] and synchronous MPQC by Dulek, Grilo,
Jeffery, Majenz, and Schaffner [23]. The security definition introduces a real and an ideal
world, and intuitively guarantees that any attack that happens in the real-world can be
efficiently reproduced in the ideal-world. In the real world, the protocol is run between
the honest parties and the adversary. In the ideal world, the adversary interacts with an
ideal functionality which takes in the inputs of every party, then outputs the result of the
computation. During this interaction, it may choose up to t parties to exclude from the
computation. These parties may be honest.

4.3 Classical Trusted Third Party
We make use of a classical trusted third party in our protocol which is stateful and reactive.
Upon receiving any message from any party, it parses the message type and responds according
to the message contents accordingly. For ease of exposition, we present the reactions of
the TTP modularly alongside the corresponding sub-protocols. When the TTP would be
initialized with the same information at multiple steps in a protocol, it should be understood
that it is initialized once with this information and saves it as internal state.

Realizing a classical asynchronous TTP does not follow directly from protocols for secure
function evaluation, since the evaluated function takes into account the inputs of any n− t

parties. In some cases, the interaction with the TTP can include instructions that allow the
TTP to wait for inputs from designated parties. In the full version, we show how to achieve
such a classical asynchronous TTP.

5 Protocols

5.1 Verified Quantum State Authentication
The verified authentication of zeros protocol allows each honest party to receive an au-
thenticated |0⟩ state from some dealer and to be certain that all other honest parties will
eventually receive a |0⟩ state authenticated under the same key. These |0⟩ states can then be
transformed into an arbitrary authenticated state using quantum teleportation. Later, this
will act as a way to allow honest parties to prove to the classical TTP that they provided
measurements of some state received from the dealer.
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At a high level, the dealer prepares and authenticates many |0⟩ states. They send the
classical authentication keys to the TTP, then send each party some of the |0⟩ states. With
the help of the TTP, each party tests the states it received using the zero purity testing
protocol from [8]. If the test passes, the party keeps one of the |0⟩ states and forwards the
rest to the other parties. If it fails, the party waits to receive forwarded states, which it then
tests again.

The following lemma states some important properties of the proposed authentication
protocol. The full construction and proof can be found in the full version of the paper.

▶ Lemma 4. With probability at least 1−neg(κ), the following properties hold in an execution
of the Verified Authentication of Zeros protocol:

Each honest party which outputs holds r states with trace distance neg(κ) to |0⟩ states
authenticated under the keys (k, x⃗) held by the classical TTP.
If any honest party outputs, then all honest parties do so.
If the dealer is honest then all honest parties output.

Moreover, these properties continue to hold even when composed in parallel with another
Authentication of Zeros protocol which shares the same dealer key k (and independent x⃗).

5.2 Asynchronous Weak Quantum Secret Sharing with Weak
Termination

The next building block for asynchronous verifiable quantum secret sharing is asynchron-
ous weak quantum secret sharing (AWQSS), which is described by a pair of protocols
(Share, Reconstruct). In the first protocol, Share, a designated party called the dealer D

distributes a private input s among the set of parties. In the second protocol, Reconstruct,
the parties jointly participate and a designated receiver R obtains the secret. In weak secret
sharing, R is also allowed to output ⊥ when the dealer is dishonest. The protocol we describe
uses a trusted party which performs classical computation.

▶ Definition 5 (Asynchronous Weak Quantum Secret Sharing with Weak Termination). Consider
a pair of protocols (Share, Reconstruct) for n parties, where a designated party D, called the
dealer, has a private input quantum state s for Share, and each honest party that completes
Share subsequently invokes Reconstruct with its local output of Share, and a designated
reconstructor R outputs a quantum state upon terminating. We say that (Share, Reconstruct)
is a (t, ε)-secure asynchronous weak quantum secret sharing scheme if the following holds
with probability at least 1− ε whenever up to t parties are corrupted:

Termination:
If D is honest, then every party eventually terminates Share. Moreover, R outputs a
state at the end of Reconstruct.
If some honest party terminates Share, then all honest parties eventually terminate
Share.

Privacy: If D is honest, the view of the adversary is independent of s.
Correctness: If D is honest, then if R outputs a state at the end of Reconstruct, the state
is s.
Commitment: Even if D is corrupted, if all honest parties terminate Share, their joint
views defines a unique state s′, such that if R outputs a state after Reconstruct, the state
has neg(κ) trace distance to either s′ or ⊥.

Note that if D is corrupted, an honest reconstructor R is not guaranteed to obtain an
output from the protocol Reconstruct. We emphasize that this occurs only at the level of
weak secret sharing and does not propagate to verifiable secret sharing.

We first define a trusted classical party that we use in the protocol AWQSS.
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Initialization step. Let s = poly(κ). The TTP receives keys (k, x⃗) from the dealer D.
It sets S = ∅ and result = ⊥.
Sharing Execution Upon receiving (ShareCheck, m) from Pi, where m is a set of meas-
urements and Pi has not sent a ShareCheck message before, the TTP does the following:

1: Verify the authentication code on m using (k, x⃗). If it fails, discard this message.
Otherwise, continue:

2: if |S| < n− t then
3: S ← S ∪ {i}
4: If |S| = n − t, perform the zero purity test using m and set store the result in

result. Then send (ShareCheck, result) to each Pj for j ∈ S.
5: else
6: Perform the purity test 2s times using m.
7: Send (ShareCheck, acc) to Pi if this test accepts and result = acc. Otherwise send

(ShareCheck, rej) to Pi.
8: end if

Reconstruction Execution The TTP sends (Reconstruct, k, x⃗) to the reconstructor R.

Functionality AWQSS Classical TTP

We now describe the protocol from the point of view of party Pi, then the final sharing
from the point of view of the dealer D.
Initialization step. Let s = poly(κ). The dealer D chooses a random key kD. It
generates 2s + 2 |0⟩ states for s = poly(κ) and shares them using quantum Shamir secret
sharing with threshold ⌊n

2 ⌋+ 1 and n shares. For each encoded |0⟩ state, send the i-th
share to Pi using the key kD and freshly random x in the Verified Authentication protocol.
Let x⃗ be the vector containing each x which is used. D sends the keys (k, x⃗) to the TTP.
Sharing Execution.

1: Let R1, . . . , R2s+2 be the registers containing the (authenticated) shares which Pi

received from D.
2: Perform the zero purity test measurements transversally, storing the results in m.
3: Pi sends (ShareCheck, m) to the TTP. Implicitly, the TTP finishes the zero purity

test.
4: Pi waits to receive (ShareCheck, result) from the TTP.
5: If result is acc, then Pi generates an EPR pair share using the two remaining |0⟩ shares

in R0, R1. Then send the share in R0 to D. Otherwise abort

Teleportation
1: D waits until it receives n

2 correctly authenticated shares from the parties, then uses
them to reconstruct the EPR pair half (this is possible since it knows the keys and
can update them according to the EPR construction, which is deterministic).

2: D uses the reconstructed EPR pair half to teleport the contents of RD, sending the
measurement results to the TTP.

3: The TTP informs all parties that the sharing is over.

Protocol AWQSS
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Reconstruct
1: All parties send their shares to the reconstructor R.
2: R waits to receive the classical keys classical keys (k, x⃗) from the TTP.
3: R checks the authentication on each received share and discards any which do not

authenticate correctly.
4: R waits until n− t correctly authenticated shares are received.
5: R removes the authentication on these shares.
6: these shares all lie on the same polynomial superposition, R reconstructs and outputs

the state using an arbitrary ⌊n
2 ⌋+ 1 of them. Otherwise, R outputs ⊥.

▶ Lemma 6. Protocol AWQSS is a (t, neg(κ))-secure asynchronous weak quantum secret
sharing scheme for all t < n

4 . Furthermore, it maintains these properties even when composed
in parallel with another AWQSS instance using the same keys kD (but independent x⃗D).

Sketch. First consider the case where the dealer D is honest. To see Share termination,
observe that every honest party eventually receives a share of |0⟩ and D will pass the zero
purity test. It can then complete the teleportation. An honest reconstructor R receives the
authentication keys from the TTP, so it will only reconstruct using the original authenticated
shares. Furthermore, every honest party will eventually send an authenticated share to R, so
R will receive enough authenticated shares to reconstruct. Crucially, this includes the honest
parties which received their shares too late to participate in the initial zero purity test.

Now suppose that the dealer D is dishonest. Using the zero purity test, we can show that
the shares held by honest parties uniquely determine a value s′. In particular, this includes
the shares held by honest parties which were unable to participate in the initial zero purity
test. The late checking mechanism allows these parties to check their shares against the
shares used in the initial zero purity test. The n− t authenticated shares used by an honest
reconstructor R will contain at least n− 2t > ⌊n

2 ⌋ honest shares. These uniquely determine
the non-⊥ value which R can reconstruct. Share termination with a dishonest dealer uses
the fact that the TTP notifies the parties when the zero purity test has completed. We can
show that if the TTP does this, then all parties have received a share and will eventually
receive a zero purity test result from the TTP. Then they can terminate.

See the full version of the paper for more details. ◀

5.3 Asynchronous Verifiable Quantum Secret Sharing
An asynchronous verifiable quantum secret sharing (AVQSS) scheme is described by a pair
of protocols (Share, Reconstruct). In the first protocol, Share, a designated party called the
dealer D distributes a private input s among the set of parties. In the second protocol,
Reconstruct, the parties jointly participate and a designated receiver R obtains the secret.

▶ Definition 7 (Asynchronous verifiable quantum secret sharing). Let (Share, Reconstruct)
be a pair of protocols for n parties, where a designated party D, called the dealer, has
a private input quantum state s for Share, and each honest party that completes Share
subsequently invokes Reconstruct with its local output of Share, and a designated receiver R

outputs a quantum state upon terminating. We say that (Share, Reconstruct) is a (t, ε)-secure
asynchronous verifiable quantum secret sharing scheme if the following holds with probability
at least 1− ε whenever up to t parties are corrupted:

Termination:
If D is honest, then every party eventually terminates Share.

ITCS 2023



62:14 Asynchronous Multi-Party Quantum Computation

If some honest party terminates Share, then all honest parties eventually terminate
Share.
If all honest parties terminate Share and start Reconstruct, then (an honest) R eventu-
ally outputs a quantum state.

Privacy: If D is honest, the view of the adversary is independent of s.
Correctness: If D is honest, then if R outputs a state at the end of Reconstruct, the state
is s.
Commitment: Even if D is corrupted, if all honest parties terminate Share, their joint
views defines a unique state s′, such that if R outputs a state after Reconstruct, the state
has neg(κ) trace distance to s′.

The protocol is proceeds in two levels. In the first level, the secret is shared using AWQSS,
and then in the second level each share is shared again with AWQSS. This allows the sharing
scheme to be such that corrupted parties cannot arbitrarily contribute wrong shares during
the reconstruction step; they can only refuse to contribute shares. In contrast to the protocol
for AWQSS, we will define a fixed set of size at least n− t parties that will contribute shares
during the reconstruction. Within this set there are at least n − 2t > n/2 honest parties,
and, because corrupted parties cannot contribute wong shares, the reconstructor R can safely
recover the secret.

Initialization step. The TTP receives keys (k, x⃗) from the dealer D and keys (ki, x⃗i)
from each party Pi. It sets S = ∅, sets counts[i] = 0 for i = 1, . . . , n, and sets Spurity = ∅.
WSS Level-One Execution Upon receiving (WSS1Complete, j) from a player Pi for
the first time, the TTP does the following:

1: if |S| < n− t and j ̸∈ S then
2: counts[j]← counts[j] + 1
3: If counts[j] = t + 1, set S ← S ∪ {j}. Then, if |S| = n− t, send (WSS1, S) to all

parties.
4: end if

Zero Purity Test Upon receiving (AQVSSShareCheck, m) from Pi, where m is a set of
measurements and Pi has not sent a AQVSSShareCheck message before, the TTP does
the following:

1: Verify the authentication codes on m using the classical authentication keys. If it fails,
discard this message. Otherwise, continue:

2: if |Spurity| < n− t then
3: Spurity ← Spurity ∪ {i}
4: If |Spurity| = n− t, perform the zero purity test, storing the result in result. Then

send (AQVSSShareCheck, result) to each Pj for j ∈ S.
5: else
6: Perform the purity test s times in the computational and Fourier bases using m.
7: Send (AQVSSShareCheck, acc) to Pi if this test accepts and if result = acc. Other-

wise send the message (AQVSSShareCheck, rej) to Pi.
8: end if

Functionality AVQSS Classical TTP
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Teleportation and Sharing Termination Upon receiving teleportation measurements
from the dealer D, the TTP does the following:

1: Applies the measurements to complete the teleportation by transforming the classical
authentication keys.

2: Remove the dealer’s level-one AWQSS authentication keys by modifying the level-two
AWQSS authentication keys.

3: Inform all parties that the sharing is over.

Reconstruction The TTP sets Srecon = ∅, then participates in R’s VSS execution to
share half an EPR pair.

Upon receiving (VSSReconstruct, mi) from party Pi, where mi are measurements, the
TTP does the following:

1: Update the keys x⃗i according to the transversally-applied teleportation circuit.
2: Attempt to reconstruct the level-one shares of the teleportation measurements using

mi (which consists of the level-two shares of the teleportation measurements).
3: for Each new successful reconstruction of Pj ’s level-two sharing do
4: Set Srecon ← Srecon ∪ {j}
5: Save the reconstructed level-one share (which Pj shared as its level-two value).
6: end for
7: if |Srecon| ≥ n

2 then
8: Use the reconstructed level-one shares in Srecon to reconstruct the measurement

result of the teleportation circuit.
9: Send the reconstructed teleportation measurement result to R.

10: end if

We describe the protocol from the point of view of party Pi. The dealer D aims to share
the contents of a register RD with the other players.
Initialization step. D chooses a random key kD. It generates 2s + 2 |0⟩ states for
s = poly(κ) and encodes them using quantum Shamir secret sharing with threshold ⌊n

2 ⌋+1
and n shares. For each encoded |0⟩ state, send the i-th share to Pi using the key kD and
freshly random x in the Verified Authentication protocol. Let x⃗ be the vector containing
each x which is used. The dealer D sends the keys (kD, x⃗) to the TTP.
Sharing Execution.

1: Let R1, . . . , R2s+2 be the registers containing the (authenticated) shares which Pi

received from D. Share each state using AWQSS and key ki. Let Ri,j denote the
register containing the j-th share.

2: For each sharing that terminated from party Pj , send (WSS1Complete, j) to the TTP.
3: Upon receiving (WSS1, S) from the TTP, wait until all the sharings in S terminate.
4: Perform the measurements for the zero purity test on the shares from parties in S.

Store the measurements in m.
5: Send (AVQSSShareCheck, m) to the TTP.
6: Wait to receive (AQVSSShareCheck, result) from the TTP.
7: if result is acc then

Protocol AVQSS
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8: Generate an EPR pair share using the two remaining shares. Send the share of
the first half of the EPR pair to the dealer.

9: else
10: Abort
11: end if

Teleportation
1: D waits until it receives ⌊n

2 ⌋+ 1 correctly authenticated shares from the parties, then
uses them to reconstruct the EPR pair half (this is possible since it knows the keys
and can update them according to the EPR construction, which is deterministic).

2: D uses the reconstructed EPR pair half to teleport the contents of RD, sending the
measurement results to the TTP.

3: The TTP informs all parties that the sharing is over.

Reconstruct
1: The reconstructor R shares half of an EPR pair using AVQSS, where the other parties

use the same key as before.
2: Each party Pi transversally teleports the state shared by D to R using R’s shared

EPR pair. They send the (authenticated) measurements to the TTP.
3: R receives the teleportation measurements from the TTP and applies them to finish

the teleportation.

▶ Lemma 8. Protocol AVQSS is a (t, neg(κ))-secure asynchronous verifiable quantum secret
sharing scheme for all t < n

4 . Furthermore, it maintains these properties even when composed
in parallel with another AVQSS instance using the same keys kD and ki for each party Pi

(but independent x⃗D, x⃗i).

Proof. First, note that the AWQSS scheme satisfies termination, privacy, correctness, and
commitment with all but neg(κ) probability by Lemma 6 since t < n

4 . By union bound,
these properties hold for all of the AWQSS instances with all but neg(κ) probability, so in
the following we condition on these properties holding for all instances.

Furthermore, these properties hold even if AWQSS is composed in parallel with another
AWQSS instance using the same dealer key kD, by Lemma 6. A similar statement applies for
the zero purity test and Verified Authentication of Zeros protocol (see Lemma 4). Additionally,
the classical TTP and (ideal) authentication codes compose in parallel with themselves.

We begin by considering the case where the dealer D is honest and show that all honest
parties eventually terminate Share. We first prove that the TTP will eventually send a
level-two AWQSS sharing session identifier (WSS1, S) to all parties, then show that all honest
parties terminate every sharing session in S. This is sufficient to show termination since
every honest party which terminates all sharing sessions in S will participate in the |0⟩ purity
test. This implies that the TTP will receive at least n− t measurements for this test and
will send the results to all parties. At this point, all honest parties terminate.

To see that the TTP will eventually send a level-two sharing session identifier (WSS1, S)
to all parties, first observe that every honest party terminates the initial AWQSS sharing
phase by the properties of AWQSS since D is honest. Then, in the second level of sharing
every honest party terminates the AWQSS sharing phase for each honest level-two dealer (of
which there are n− t, since all completed the level-one sharing). Therefore, the TTP receives
confirmation of termination of the level-two sharings from every honest party (total n− t)
for every honest level-two sharing (total n− t). This is sufficient to trigger the thresholds
for the TTP to decide and send S. Finally, to show honest termination of every session in
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S, note that the TTP receives more confirmations of termination (t + 1) for each session in
S than there are corrupted parties (t). Therefore, for each session in S some honest party
terminated that session, and so by the properties of AWQSS all honest parties eventually
terminate that session.

Privacy with an honest dealer follows naturally from the privacy of the underlying AWQSS.
The honest parties all share the level-one AWQSS shares they receive from the dealer in
their level-two AWQSS. Let Pi be such an honest party, who receives share shi from the
original dealer in the level-one AWQSS. By the privacy guarantee of the level-two AWQSS,
the adversary obtains no information about shi. Hence, the privacy of the overall AVQSS
scheme follows from the privacy of the level-one AWQSS.

Correctness with an honest dealer follows from commitment with a corrupt dealer, which
we prove later, as well as correctness of the underlying AWQSS. Since the honest parties
share the level-one shares as their level-two secrets, the joint view of the honest parties
defines the unique reconstruction value guaranteed by commitment to be the original secret
shared by the honest dealer.

Now consider the case of a corrupt dealer. To show sharing termination, observe that if
some honest party terminates Share, then it received both a zero purity test result and a set
S from the TTP. Both of these are eventually received by all honest parties, since the TTP
sends them to all parties. The only other place an honest party might hang is while waiting
for all level-two AWQSS in S to complete. Since the TTP constructs S to contain level-two
AWQSS sessions which more than t parties have reported termination on, for each session in
S it holds that some honest party must have terminated that session. Therefore, all other
honest parties will terminate each session in S as well.

To show reconstruction termination with a corrupt dealer, first recall that if some honest
party starts Reconstruct, it must have terminated Share, and so all honest parties will
eventually terminate Share. If R is honest, then all honest parties terminate the AVQSS
step in reconstruction where R shares half an EPR pair. All honest parties will perform the
teleportation step, so the TTP will receive enough authenticated measurements to complete
the teleportation.

Finally, we show commitment regardless of whether or not the dealer is corrupted. To
do this, we show that the TTP will successfully reconstruct precisely the teleportation
measurement which would have been made if the teleportation circuit was not evaluated
transversally. By the commitment property of the underlying AWQSS protocol, it holds
that for each level-two sharing by Pi there is a unique reconstruction state s′

i such that the
TTP either reconstructs s′

i or fails to reconstruct Pi’s level-two sharing.5 Furthermore, since
the zero purity test accepted, these values s′

i must be consistent shares of the same secret
teleportation measurement s′

D except with probability neg(κ) (recall that the zero purity
test establishes that these encode a state within small trace distance of |0⟩, which are then
transformed together by transversal operations). The measurement translates the guarantee
of low trace given by the zero purity test into a small failure probability. In this case, there is
a unique measurement s′

D which the TTP can reconstruct. By the correctness of the level-two
AWQSS sharings, the TTP will at a minimum be able to reconstruct all level-two secrets
dealt by honest parties, which corresponds to the level-one AWQSS shares they hold. Since
the collection of level-one AWQSS shares held by honest parties uniquely determines the
dealer’s secret teleportation measurement s′

D, the TTP can therefore successfully reconstruct

5 After performing the teleportation circuit, the teleportation measurement and the shared value are
identical and are classical.
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s′
D using only the reconstructed level-two secrets dealt by honest parties, except with neg(κ)

probability. The low trace distance guarantee again translates into a small failure probability
since the shares are measured. The successful reconstruction by R then follows from the
correctness of the teleportation circuit. ◀

5.4 Asynchronous Toffoli Gate Computation
As discussed in the full version, the secret-sharing and authentication schemes allow for
transversal evaluation of Clifford operations on the secret. In order to allow Toffoli operations,
which form a universal gate set together with Clifford operations, the parties will also share a
set of Toffoli states. Toffoli gates can be performed using Clifford operations and an ancillary
Toffoli state [8, Appendix F]. The shared Toffoli state generation protocol constructs one or
more (for sake of exposition, we describe the single version) Toffoli states which are shared
amongst the parties.

At a high level, the shared Toffoli state generation protocol requires each player to send
a set of Toffoli states. These sets are then tested for polynomial closeness to Toffoli states
using quantum tomography and cut-and-choose techniques. This results in a set of states
which are polynomially close to a set of Toffoli states with respect to trace distance. Finally,
one of the sets which passes the test is further purified to achieve an exponentially good
Toffoli state using techniques from fault-tolerant quantum computation [2]. Details can be
found in the full version of the paper.

▶ Lemma 9. For all t < n
4 , with all but negligible probability every honest party terminates

the Toffoli Sharing protocol and holds a share of a state with neg(κ) trace distance from a
Toffoli State.

5.5 Asynchronous Multiparty Quantum Computation
We combine the previous tools together to construct an asynchronous multiparty quantum
computation (AMQPC) protocol. At a high level, the parties first construct a set of secret-
shared Toffoli states which will later allow Toffoli gates to be performed on secret-shared
states. They provide their inputs via AVQSS and use the classical TTP to aid in deciding a
core-set of inputs. Using the shared Toffoli states, they transversally evaluate the circuit on
the selected inputs. Finally, they reconstruct the states on the output wire(s) for each party.

Initialization step. The TTP receives keys (ki, x⃗i) from each party Pi. It sets S = ∅
and sets counts[i] = 0 for i = 1, . . . , n.
Core-Set Agreement Upon receiving a new message (Core-Set, j) from a player Pi, the
TTP does the following:

1: if |S| < n− t and j ̸∈ S then
2: counts[j]← counts[j] + 1
3: if counts[j] = t + 1 then
4: S ← S ∪ {j}
5: if |S| = n− t then
6: Send (Core-Set, S) to all parties.
7: end if

Functionality AMPQC Classical TTP
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8: end if
9: end if

Output For each participant Pj , participate in the reconstruction of Pj ’s output wire
with Pj as the reconstructor.

Initialization Each party Pi sends its authentication keys (ki, x⃗i) to the TTP.
Execution

1: Pi participates in the generation of shared Toffoli states protocol.
2: Pi shares its input using VSS and simultaneously acts as a receiver in the other VSS

instances. In the other VSS instances, Pi uses the same authentication key ki as it sent
to the TTP. The other part of the authentication key for each instance is according to
x⃗i and is distinct for each VSS instance.

3: For each sharing that terminated from party Pj , send (Core-Set, j) to the TTP.
4: Upon receiving (Core-Set, S) from the TTP, wait until all sharings in S terminate.
5: Evaluate the circuit C transversally on the shares of inputs from S with the help of

the TTP.
6: for Each party Pj do
7: Participate in the reconstruction of Pj ’s output wire, where Pj is the reconstructor.
8: end for
9: Pi outputs the result of reconstructing Pi’s output wire.

Protocol AMPQC

▶ Theorem 10. Protocol AMPQC t-securely computes any circuit C for all t < n
4 .

Sketch. At a high level, the simulator will participate honestly in most of the protocol,
using dummy inputs for the honest parties. It will reconstruct the adversarial inputs using
the honest parties’ shares and send these to the ideal functionality. Finally, during the
reconstruction of output wires step, it will force corrupted parties to reconstruct their
prescribed outputs by using the honest majority to force teleportation of the output state
received from the ideal functionality (note that this state is not on the output wire). See the
full version for more details. ◀
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Abstract
In the unsplittable capacitated vehicle routing problem, we are given a metric space with a vertex
called depot and a set of vertices called terminals. Each terminal is associated with a positive
demand between 0 and 1. The goal is to find a minimum length collection of tours starting and
ending at the depot such that the demand of each terminal is covered by a single tour (i.e., the
demand cannot be split), and the total demand of the terminals in each tour does not exceed the
capacity of 1.

Our main result is a polynomial-time (2 + ϵ)-approximation algorithm for this problem in the
two-dimensional Euclidean plane, i.e., for the special case where the terminals and the depot are
associated with points in the Euclidean plane and their distances are defined accordingly. This
improves on recent work by Blauth, Traub, and Vygen [IPCO’21] and Friggstad, Mousavi, Rahgoshay,
and Salavatipour [IPCO’22].
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1 Introduction

In the unsplittable capacitated vehicle routing problem (unsplittable CVRP), we are given a
metric space with a vertex O called depot and a set of n vertices V called terminals. Each
terminal v ∈ V is associated with a positive demand demand(v) ∈ (0, 1]. A feasible solution
S is a collection of tours starting and ending at the depot O such that the demand of each
terminal v ∈ V is covered by a single tour in S (i.e., the demand of v cannot be split), and,
for each tour t ∈ S, the total demand demand(t) of the terminals covered by t does not
exceed the tour capacity of 1. Our goal is to find a feasible solution S minimizing the total
length of the tours cost(S) :=

∑
t∈S cost(t), where cost(t) denotes the length of t, i.e., the

overall weight of the edges of t. As an application, the reader might think about a set of
identical vehicles, each with the same capacity, located in a depot; These vehicles have to
deliver a set of items at different locations and return to the depot.

Originally introduced by Dantzig and Ramser in 1959 [9], the unsplittable CVRP is
arguably one of the most basic problems in Operations Research, and it generalizes famous
problems in a natural way. For example, if the sum of the demands is at most 1 (hence
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one tour is sufficient), the problem is equivalent to Traveling Salesman Problem (TSP); if
all the terminals are placed at the same location, the problem is equivalent to Bin Packing.
Since Bin Packing is (3/2)-hard to approximate (i.e., a better than 3/2 polynomial-time
approximation algorithm does not exist unless P = NP ) [17], the unsplittable CVRP is also
(3/2)-hard to approximate.

On general metrics, the first constant-factor approximation algorithm (namely a 3.5
approximation) for the unsplittable CVRP is the iterated tour partitioning (ITP) algorithm,
which was proposed and analyzed in the 1980s by Haimovich and Rinnooy Kan [11] and
Altinkemer and Gavish [2]. The approximation ratio for the unsplittable CVRP was only
recently slightly improved by Blauth, Traub, and Vygen [7], and then further improved to
roughly 3.194 by Friggstad, Mousavi, Rahgoshay, and Salavatipour [10].

We study the unsplittable CVRP in the two-dimensional Euclidean plane, called the
unsplittable Euclidean CVRP. Here the depot and terminals correspond to points in the
Euclidean plane, and for any two vertices u, v ∈ V ∪ {O}, the weight of the edges {u, v}
is given by the corresponding Euclidean distance. We remark that the (3/2)-hardness of
approximation mentioned before extends to this case (indeed, even to the one-dimensional
Euclidean case). The approach in [10] directly implies a 2.694 approximation for the
unsplittable Euclidean CVRP, which is also the best known approximation factor for this
problem. More precisely, the algorithm in [10] has approximation ratio strictly below 1.694+α,
where α is the approximation ratio of a TSP algorithm in the considered metric. Since the
Euclidean TSP admits a PTAS [4, 15], the algorithm in [10] leads to a 2.694 approximation.

Our main result is a (2+ϵ)-approximation algorithm for the unsplittable Euclidean CVRP
(Theorem 1). This matches the best known approximation factor for the special case when
all the demands are equal [3].

▶ Theorem 1. Let ϵ > 0. There is a polynomial time (2 + ϵ)-approximation algorithm for
the unsplittable Euclidean capacitated vehicle routing problem.

As a by-product, we design a polynomial time approximation scheme (PTAS) for the case
when all demands are big (Theorem 3). This matches the best known approximation factor
for the special case when all the demands are big and equal [11].

▶ Definition 2. Let ϵ > 0. We say that a terminal is big (w.r.t. ϵ) if its demand is at least
ϵ, and it is small otherwise.

▶ Theorem 3. Let ϵ > 0. Assuming that all terminals are big w.r.t. ϵ, there is a polynomial
time (1+ ϵ)-approximation algorithm for the unsplittable Euclidean capacitated vehicle routing
problem.

Note that the special case with big terminals only remains NP-hard by a reduction from
3-Partition.1 See Table 1 for a comparison of our results with the closely related previous
work.

1 Recall that in the 3-Partition problem, we are given as input positive integers a1, . . . , a3n, b, such that
b/4 < ai < b/2 for all i, and such that

∑3n

i=1 ai = nb. We must decide whether there exists a partition
of {1, . . . , 3n} into n sets Tj such that

∑
i∈Tj

ai = b for all j = 1, . . . , n. The 3-Partition problem is
NP-complete [17].
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Table 1 Approximation ratios for the Euclidean CVRP.

equal demands unequal demands
arbitrary demands 2 + ϵ [3] 2.694 [10]

2 + ϵ [this work: Theorem 1]
(3/2)-hardness [folklore]

big demands 1 + ϵ [11] 2.694 [10]
1 + ϵ [this work: Theorem 3]
NP-hard [folklore]

1.1 Related Work

1.1.1 Equal Demands
The special case when all the demands are equal is called the unit demand version of the
Euclidean CVRP. Let the (equal) demand be 1/k where k is a positive integer. For general k,
the best polynomial-time approximation factor is 2 + ϵ [3]. For small values of k, PTASs are
known. Haimovich and Rinnooy Kan [11] described a PTAS when k is constant. Asano et
al. [5], extending techniques in [11], obtained a PTAS for k = O(log n/ log log n). This was
improved to k ≤ 2logf(ϵ)(n) for some function f(ϵ) depending on ϵ by Adamaszek, Czumaj,
and Lingas [1]. For higher dimensional Euclidean metrics, Khachay and Dubinin [14] gave a
PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)).

1.1.2 Relation with Heuristics in Practice
From a more practical perspective, we note that the standard setting in which the CVRP
arises consists of real-life road networks. Such inputs are related to two theoretical models:
Euclidean metrics (because distances between points are not exactly equal to but related to
Euclidean distances) and planar graph metrics (because the road network is not exactly a
planar graph but is related to planar embedded graphs), thus those are the two theoretical
settings which are most relevant in practice. This paper deals with the Euclidean CVRP; we
leave the complementary planar graph CVRP for future work.

Many algorithms use a 2-phase route-first-cluster-second method, the ITP algorithm being
the best-known one. However, the reverse cluster-first-route-second method is more common
in practice, e.g., used by the famous OR-tools developed by Google [16].2 As described in [8],
“In a cluster-first-route-second method, customers are first grouped into clusters and the
routes are then determined by suitably sequencing customers within each cluster. Different
techniques have been proposed for the clustering phase, while the routing phase amounts to
solving a TSP.”

The cluster-first-route-second method, although widely used in practice, does not have
theoretical guarantees in terms of approximation factor except in special cases. For example,
Blauth, Traub, and Vygen [7] considered the worst-case instances for the ITP algorithm in
metric spaces, and designed a cluster-first-route-second algorithm with a theoretical guarantee
for those worst-case instances. In our work, we design another kind of cluster-first-route-
second algorithm that achieves a theoretical guarantee for general instances in Euclidean
metrics. Indeed, existing heuristics of that method construct clusters of size at most equal

2 See Lines 79–88 of the code: https://github.com/google/or-tools/blob/stable/ortools/
constraint_solver/routing.h.
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to the tour capacity, so their routing creates an intra-cluster route for each cluster. Our
main idea is to construct finer clusters over the small terminals (of total demand roughly
ϵ). We also have an internal routing to connect the terminals within each cluster into an
intra-cluster route. In addition, we have an external routing phase so that each route is
obtained by combining intra-cluster routes and big terminals.

2 Overview of our Techniques

Our approach uses a new way to cluster small terminals. In addition to that, we combine
several ideas from the literature in a non-trivial way, including techniques developed in the
framework of Euclidean TSP and Bin Packing.

2.1 Big Terminals Only (Section 4)
Let us first consider the case of big terminals only (i.e., all the demands are at least some
constant ϵ > 0).

In the related Bin Packing problem, it is not hard to solve the problem exactly when (1)
all items are big, i.e., their sizes are at least some constant ϵ > 0, and (2) there is a constant
number of distinct item sizes. Exploiting the adaptive rounding technique, Karmarkar and
Karp [12] obtained a PTAS in the special case where all items are big (but the number of
distinct sizes is arbitrary).

Our PTAS for the case of big terminals (Theorem 3) is inspired by that approach. We
start by observing that the problem can be solved exactly when (1) all demands are big, (2)
there is a constant number of distinct demands, and in addition, (3) the terminals are placed
at a constant number of distinct locations. Similarly to Bin Packing, up to losing a 1 + ϵ

factor in the approximation, with adaptive rounding we get rid of the assumption (2). To get
rid of the assumption (3), it is natural to partition the instance into subinstances of bounded
distance (Definition 4 and Lemma 5) and then discretize the Euclidean plane, similarly to
the approach from [1]. This leads to Theorem 3.

2.2 General Terminals (Section 5)
Now we consider the general case of big and small terminals together. To show Theorem 1,
we distinguish the following two cases.
Case 1: When the optimum solution OPT has sufficiently many tours (Section 5.1).
As before, we assume bounded distance w.l.o.g. The main novelty of our approach is to
cluster small terminals into groups with total demand roughly ϵ to reduce to the special case
with big terminals only. The clustering process should put together small terminals that
are near one another in the plane: to that end, we use a Voronoi cell decomposition of the
plane, compute a traveling salesman tour on the small terminals in each cell, and then apply
iterated tour partitioning with capacity ϵ to each such tour, with a virtual depot located at
the center of the cell. For the analysis, thanks to the bounded distance and to the degree of
discretization into cells, we prove (Lemma 17) that the cost of clustering small terminals
is at most (1 + ϵ) · opt, where opt is the optimal cost. Besides, thanks to the “Assignment
Lemma” from [6], we prove (Lemma 18) that an optimal solution covering the clustered
terminals and the big terminals has cost at most (1 + ϵ) · opt. Since the clustered terminals
behave the same as the big terminals, we apply our PTAS for big terminals only to obtain a
solution of cost at most (1 + 2ϵ) · opt covering the clustered terminals and the big terminals.
Together with the cost of clustering small terminals, the overall cost of our solution to the
initial instance is at most (2 + O(ϵ)) · opt.
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Case 2: When the optimum solution OPT has a bounded number of tours(Section 5.2).
A 2 + O(ϵ) approximation is obtained by a simple adaptation of the techniques in [4, 5].

This completes the proof of Theorem 1.

2.3 Open Questions
To summarize, for the unsplittable Euclidean CVRP, in this paper we have designed algorithms
that match the best known results for the special case in which all demands are equal. Can
we go beyond that? Looking at Table 1, we see that for the unsplittable Euclidean CVRP,
Theorem 1 is not the end of the story: a gap remains in the approximation factor, between
2 + ϵ and 3/2. A good starting point might be to focus on the special case when all demands
are equal (first column of Table 1). It is an interesting open question whether Algorithm 2,
the algorithm in Theorem 1, would yield a better-than-2 approximation for that case.

Note that the running time of our algorithms is not practical due to the exponential
dependency on 1/ϵ. Improving the running time deserves further investigation.

3 Preliminaries

Whenever needed, we will assume w.l.o.g. that ϵ > 0 is upper bounded by a sufficiently small
constant. For a subset of terminals U ⊆ V , we let demand(U) :=

∑
v∈U demand(v). For any

point p ∈ R2, we let dist(p) denote the p-to-O distance in the Euclidean plane.

▶ Definition 4 (bounded distance). Let C := (1/ϵ)1/ϵ. We say that a set of terminals V has
bounded distance if Dmax

Dmin
≤ C, where Dmax := maxv∈V dist(v) and Dmin := minv∈V dist(v).

▶ Lemma 5 (adaptation from Theorem 3 of [1]). There is a polynomial time algorithm to
partition the set V into disjoint subsets V1, . . . , Vm ⊆ V , for some m ∈ N, such that for
each i ∈ [1, m], Vi has bounded distance, and for any ρ ≥ 1, ρ-approximate solutions to the
instances on Vi’s for all i ∈ [1, m] yield a (ρ + ϵ)-approximate solution to the instance on V .

Proof sketch. We first partition the set of points into subsets, such that each subset has
bounded distance. Then we solve the instance on each subset independently. Finally, we
return the union of the solutions to each instance. ◀

The following Assignment Lemma due to Becker and Paul [6] will be used in Lemma 18
to combine subtours from different tours, while ensuring that the resulting tours violate the
capacity only slightly.

▶ Lemma 6 (Assignment Lemma, Lemma 1 in [6]). Let G = (A ⊎B, E) be a bipartite graph
with E ⊆ A × B, where for each b ∈ B, N(b) ̸= ∅ denotes the set of neighbors of b. Each
edge (a, b) ∈ E has a weight w(a, b) ≥ 0 and each vertex b ∈ B has a weight w(b) satisfying
0 ≤ w(b) ≤

∑
a∈N(b) w(a, b). Then there exists a function f : B → A such that each vertex

b ∈ B is assigned by f to a vertex a ∈ N(b) and, for each vertex a ∈ A, we have∑
b∈B|f(b)=a

w(b)−
∑

b∈B|(a,b)∈E

w(a, b) ≤ max
b∈B

{
w(b)

}
.

The following lemma, which will be used to prove Lemma 18, was initially due to
Altinkemer and Gavish [2] and rephrased by Blauth, Traub, and Vygen [7].
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▶ Lemma 7 ([2, 7]). Given an instance of the unsplittable capacitated vehicle routing problem
with terminals V , depot O, and a traveling salesman tour tTSP on V ∪ {O}, there exists a
feasible solution of cost at most cost(tTSP) +

∑
v∈V 4 · dist(v) · demand(v).

An elementary but critical step in our construction is to partition the plane into a
collection of Voronoi cells as follows.

▶ Definition 8. Let Z denote the set of points in R2 whose polar coordinates (r, Θ) satisfy

r =
(

1 + ϵ2

4 · i
)
·Dmin, where i is an integer such that 0 ≤ i < K1 := 4C

ϵ2

and

Θ = 2π

K2
· j, where j is an integer such that 0 ≤ j < K2 := 8πC

ϵ2 .

The points in Z are called centers. For each z ∈ Z, the cell c(z) of z is the set of points p ∈ R2

such that dist(p) ∈ [Dmin, Dmax] and p is closer to z than to any other center (breaking ties
arbitrarily). The boundary of c(z) is denoted by bd(z).

▶ Fact 9. The number of centers in Z is at most K := 32π·C2

ϵ4 . For any center z ∈ Z and
any point v ∈ c(z), the z-to-v distance is at most ϵ2·Dmin

2 . Furthermore, bd(z) ≤ ϵ2 ·Dmin.

4 Algorithm for Big Terminals Only (Proof of Theorem 3)

Theorem 3 follows directly from Lemma 5 and the following Lemma 10.

▶ Lemma 10. Let ϵ > 0. Algorithm 1 is a polynomial time (1 + ϵ)-approximation algorithm
for the unsplittable Euclidean capacitated vehicle routing problem under the assumption that
all terminals are big and the set of terminals has bounded distance.

Algorithm 1 Algorithm for big terminals only. Let I be the input instance. Let β = ϵ2/(4C).

1: Move each big terminal in I to the closest center
2: for each center z ∈ Z that contains at least 1/β terminals do
3: Let Q(z) denote the set of terminals at z

4: Sort the terminals in Q(z) in non-decreasing order of their demands
5: Partition Q(z) into 1/β groups s.t., each group consists of β · |Q(z)| consecutive

terminals in the above ordering3

6: Round the demand of each terminal v ∈ Q(z) to the maximum demand in the group
of v

7: Let I ′ be the resulting instance of the unsplittable Euclidean CVRP
8: Compute an optimal solution S′ to I ′ ▷ Lemma 12
9: for each tour t′ ∈ S′ and for each terminal v covered by t′ do

10: Let z ∈ Z denote the center where v is located
11: Add to t′ two copies of the edge between z and the corresponding terminal of v in I

12: return the resulting solution S

In the rest of the section, we prove Lemma 10.

3 When β · |Q(z)| is not an integer, each of the first groups has one less element than each of the remaining
groups.
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▶ Lemma 11. Let opt(I ′) denote the cost of an optimal solution to the instance I ′. We have
opt(I ′) ≤ (1 + ϵ) · opt.

Proof. First, we analyze the cost increase due to moving terminals to the closest centers.
Consider any tour t in OPT. Since all terminals are big, t contains at most 1/ϵ terminals.
By Fact 9, the cost increase of moving each terminal to the closest center is at most
ϵ2 ·Dmin. Thus the overall cost of moving the terminals on t to the closest centers is at most
ϵ ·Dmin ≤ ϵ · cost(t)/2. Summing over all tours in OPT, the overall cost increase of moving
terminals to the closest centers is at most (ϵ/2) · opt.

Next, we analyze the extra cost due to the adaptive rounding. The analysis is similar to
the one for adaptive rounding for bin packing (Lemma 3.11 in [17]), except that, for each
center z, each terminal in the group with the largest demands at z is connected to the depot
by adding a separate tour. Consider any center z. If |Q(z)| < 1/β, then there is no extra
cost due to the adaptive rounding; If |Q(z)| ≥ 1/β, the number of terminals at z in the group
with the largest demands is at most ⌈β · |Q(z)|⌉ ≤ β · |Q(z)|+ 1 ≤ 2β · |Q(z)|. So the extra
cost due to the adaptive rounding is at most 2β · |Q(z)| · 2Dmax. Summing over all centers z,
we have the overall extra cost is at most

2β · n · 2Dmax = (ϵ2/(2C)) · n · 2Dmax ≤ (ϵ2/2) · n · 2Dmin ≤ (ϵ/2) · opt,

using the fact that opt ≥ ϵ · n · 2Dmin (since OPT has at least ϵ · n tours of length at least
2Dmin each).

The claim follows by summing the extra costs in both phases. ◀

▶ Lemma 12. The optimal solution S′ for I ′ can be computed in polynomial time.

Proof. There are only Oϵ(1) centers, so there are only Oϵ(1) positions for the terminals in I ′.
Thanks to the adaptive rounding of the demands, each center has Oϵ(1) distinct demands in
I ′. Hence I ′ can be described concisely by Oϵ(1) pairs of “position” and “demand” with an
integer for each pair giving the number of terminals located at that position and with that
demand. Moreover, since the demands are big, at most 1/ϵ terminals are covered by each
tour, hence there are only Oϵ(1) possible distinct types of tours. Thus the instance I ′ can be
solved optimally in polynomial time by exhaustive search. ◀

▶ Lemma 13. cost(S) ≤ (1 + ϵ/2) · cost(S′).

Proof. Consider a given tour t′ ∈ S′, and let t be the corresponding tour in S. Tour t′ covers
at most 1/ϵ terminals, and the increase of the length of t w.r.t. t′ due to each such terminal
v is at most ϵ2 ·Dmin ≤ ϵ2 · cost(t′)/2 by Fact 9. The claim follows. ◀

Lemma 10 follows from Lemmas 11–13.

5 Algorithm for General Terminals (Proof of Theorem 1)

Theorem 1 follows directly from Lemma 5 and the following Theorem 14.

▶ Theorem 14. Let ϵ > 0. Algorithm 2 is a polynomial time (2 + O(ϵ))-approximation
algorithm for the unsplittable Euclidean capacitated vehicle routing problem assuming that
the set of terminals has bounded distance.
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Algorithm 2 Algorithm for general terminals. Here Γ = K · C/ϵ = 32πC3/ϵ5.

1: Y ←
∑

v∈V demand(v)
2: if Y ≥ Γ then
3: S ← solution computed by Algorithm 3
4: else
5: S ← solution computed by Algorithm 4

return S

In the rest of this section we prove Theorem 14.
Define Γ = K ·C/ϵ = 32πC3/ϵ5. We compute the overall demand Y :=

∑
v∈V demand(v).

We assume that Y ≥ 1.4 It is easy to see that Y is a 2-approximation on the number of
tours in OPT, i.e., the number of tours in OPT is in [Y, 2Y ].5 If Y ≥ Γ, then we apply
Algorithm 3 (see Section 5.1), otherwise we apply Algorithm 4 (see Section 5.2).

By Theorem 15 (see Section 5.1), the solution computed by Algorithm 3 has cost at most
(2 + O(ϵ)) · opt when the number of tours in OPT is at least Γ. By Theorem 19 (see Section
5.2), the solution computed by Algorithm 4 has cost at most (2+O(ϵ)) ·opt when the number
of tours in OPT is at most 2 · Γ. Thus the cost of the solution S is at most (2 + O(ϵ)) · opt.

5.1 Case 1: OPT Has Sufficiently Many Tours
In this subsection, we prove the following theorem.

▶ Theorem 15. Let ϵ > 0. Algorithm 3 is a polynomial time (2 + O(ϵ))-approximation
algorithm for the unsplittable Euclidean capacitated vehicle routing problem under the as-
sumptions that the set of terminals has bounded distance and the number of tours in OPT is
at least Γ.

We consider a Voronoi-cell decomposition of the plane with respect to the centers Z,
where c(z) denotes the cell of z (breaking ties arbitrarily). Let Q(z) be the small terminals
contained in c(z). For each cell c(z), we cluster the small terminals Q(z) inside that cell such
that each resulting cluster has total demand roughly ϵ. For each cluster of small terminals,
we replace them by a single clustered terminal at the center z of that cell, whose demand
is the total demand of those small terminals. This results in a new instance I ′ consisting
uniquely of big terminals, which can be solved near-optimally by Lemma 10.

How do we achieve a good clustering of the small terminals in each cell c(z)? We first
compute a traveling salesman tour on the small terminals in that cell, and then greedily
partition that tour into segments of consecutive terminals.

▶ Fact 16. Assume that the number of tours in OPT is at least Γ. We have K ·2Dmax ≤ ϵ·opt.

Proof. K · 2Dmax = Γ·ϵ
C · 2Dmax ≤ Γ · ϵ · 2Dmin ≤ ϵ · opt since OPT uses at least Γ tours of

length at least 2Dmin each. ◀

The following lemma shows that the clustering of small terminals is not too expensive.

▶ Lemma 17. Let W denote the total cost of the segments and their connections to the
centers. Then W ≤ (1 + O(ϵ))opt.

4 This assumption is without loss of generality, since otherwise the problem is equivalent to the Euclidean
TSP and thus admits a PTAS [4, 15].

5 Indeed, if there are two tours in OPT whose total demand is at most 1, we can combine them into a
single tour.
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Algorithm 3 Algorithm when OPT has sufficiently many tours. Let I be the input instance.

1: for each center z ∈ Z do
2: Let Q(z) denote the small terminals in the cell c(z) of z

3: Compute a (1 + ϵ)-approximate traveling salesman tour t(z) on Q(z) ▷ [4, 15]
4: Partition t(z) into segments of consecutive terminals, such that the total demand of

the terminals in each segment is in [ϵ, 2ϵ], except possibly the last segment with smaller
total demand

5: for each segment of t(z) do
6: Let d be the total demand of the segment
7: if d < ϵ then d← ϵ

8: Create a clustered terminal located at z and of demand d

9: Let I ′ be the instance of the unsplittable Euclidean CVRP induced by big and clustered
terminals

10: Compute an optimal solution S′ to I ′ ▷ Lemma 10.
11: for each tour t′ ∈ S′ and for each clustered terminal v covered by t′ do
12: Let z ∈ Z denote the center where v is located
13: Let x denote the segment of t(z) corresponding to v

14: Add to t′ the segment x, plus the edges between the endpoints of x and the center z

15: return the resulting solution S

Proof. Consider a center z ∈ Z. Let t∗(z) denote an optimal traveling salesman tour on
Q(z). Let opt(z) denote the cost of the part of OPT that is inside the cell c(z) of z. Recall
that bd(z) is the boundary of c(z). We have

cost(t∗(z)) ≤ opt(z) + 3
2 · bd(z) ≤ opt(z) + 3

2 · ϵ
2 ·Dmin,

where the first inequality is due to Karp (Theorem 3 in [13]) and the second inequality is
by Fact 9. Since the traveling salesman tour t(z) computed in Algorithm 3 is a (1 + ϵ)-
approximation, we have

cost(t(z)) ≤ (1 + ϵ) · cost(t∗(z)) ≤ (1 + ϵ) ·
(

opt(z) + 3
2 · ϵ

2 ·Dmin

)
.

Next, we analyze the costs of the connections to the center z. Observe that for each
segment of t(z), the total cost to connect the two endpoints of the segment to z is at most
ϵ2 ·Dmin by Fact 9. Since the demand of each segment is at least ϵ excluding possibly one
segment, the number of segments is at most demand(Q(z))

ϵ +1. Thus the cost of the connections
to the center z is at most(

demand(Q(z))
ϵ

+ 1
)
· ϵ2 ·Dmin.

Let W (z) denote the total cost of the segments in c(z) and their connections to z. We
have

W (z) ≤ (1 + ϵ) ·
(

opt(z) + 3
2 · ϵ

2 ·Dmin

)
+

(
demand(Q(z))

ϵ
+ 1

)
· ϵ2 ·Dmin.

Summing over all centers z ∈ Z and since the number of centers is at most K, we have

W =
∑

z

W (z) ≤ (1 + ϵ) · opt + demand(V )
ϵ

· ϵ2 ·Dmin + 3Kϵ2 ·Dmin.
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Observe that opt ≥ demand(V ) · 2Dmin, since OPT must contain at least demand(V ) tours
of length at least 2Dmin each. Then

demand(V )
ϵ

· ϵ2 ·Dmin ≤
ϵ · opt

2 .

By Fact 16,

3Kϵ2 ·Dmin ≤ 3K ·Dmax ≤
3ϵ · opt

2 .

Therefore, W ≤ (1 + 3ϵ) · opt. ◀

▶ Lemma 18. Let opt(I ′) denote the cost of an optimal solution to the instance I ′. We have
opt(I ′) ≤ (1 + O(ϵ)) · opt.

Proof. First, we construct a bi-criteria solution S̃ to the instance I ′ where each tour has
total demand at most 1 + 2ϵ. Then we transform S̃ into a solution S′ to the instance I ′

without capacity violation, and we show that the cost of S′ is at most (1 + O(ϵ)) · opt.
We say that a clustered terminal is good if its corresponding segment has total demand

at least ϵ, and bad otherwise6. We construct the solution S̃ in two phases.
1. Define a bipartite graph G = (A ⊎ B, E) as follows. Let A denote the set of tours in

an optimal solution to the instance I. Let B denote the set of good clustered terminals.
There is an edge in G between a tour a ∈ A and a clustered terminal b ∈ B if and only if a

covers a small terminal in the segment corresponding to b. We define w(b) as the demand
of the segment b. We also define w(a, b) as the part of w(b) which is covered by a. Note
that w(b) =

∑
a∈N(b) w(a, b) and N(b) ̸= ∅ for each b ∈ B. In addition, w(b) ≤ 2ϵ by the

construction of segments in Algorithm 3. We apply the Assignment Lemma (Lemma 6)
to obtain a function f : B → A such that each clustered terminal b ∈ B is assigned to
exactly one tour a ∈ A with (a, b) ∈ E and for each tour a ∈ A, the total demand of the
big terminals on a and the clustered terminals that are assigned to a by f is at most
1 + 2ϵ.

2. For each bad clustered terminal, we connect it to the depot by a separate tour.

Now we analyze the cost of S̃. Consider a tour a ∈ A in the first phase. Recall that each
clustered terminal b ∈ B is good, so has demand at least ϵ. Thus there are at most 1/ϵ

clustered terminals b ∈ B with f(b) = a. For each b ∈ B such that f(b) = a, by definition,
a contains a small terminal v in the segment corresponding to b. The cost to connect b to
a is at most twice the v-to-b distance, which is at most ϵ2 · Dmin by Fact 9. So the cost
to connect b to a over all b ∈ B such that f(b) = a is at most ϵ · Dmin, which is at most
ϵ · cost(a). Summing over all tours a ∈ A, the overall cost of the connection is at most ϵ · opt.
In the second phase, at most one separate tour is created for each cell. Since the number of
cells is at most K, the total connection in this phase has cost at most K · 2Dmax, which is at
most ϵ · opt by Fact 16. Therefore, cost(S̃) ≤ (1 + 2ϵ) · opt.

Next, we construct the solution S′ from the solution S̃. Consider any tour t in S̃. If t

exceeds the capacity, then we remove from t clustered terminals until t is within the capacity.
Let t′ be the resulting tour. We include t′ into S′. Let R be the set of removed clustered
terminals from the tours in S̃. We create additional tours to cover the terminals in R as
follows. First, we connect those terminals to the depot by a traveling salesman tour tTSP

6 We remark that here we do not consider the rounding up to ϵ of the quantity d in the algorithm.
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visiting R, such that the terminals in R located at the same center are visited consecutively
by tTSP. Next, we apply Lemma 7 on tTSP to obtain a set of tours within the tour capacity
and covering the terminals in R. We include those tours into S′.

From the construction and Lemma 7,

cost(S′) ≤ cost(S̃) + cost(tTSP) +
∑
v∈R

4 · dist(v) · demand(v).

Since there are at most K centers, all clustered terminals are located at centers, and using
Fact 16,

cost(tTSP) ≤ K · 2Dmax ≤ ϵ · opt.

At the same time, we have∑
v∈R

4 · dist(v) · demand(v) =
∑
t∈S̃

∑
v∈R and v∈t

4 · dist(v) · demand(v)

≤
∑
t∈S̃

∑
v∈R and v∈t

2 · cost(t) · demand(v) ≤
∑
t∈S̃

4ϵ · 2 · cost(t) = 8ϵ · cost(S̃).

In the first inequality above we used the fact that 2 · dist(v) ≤ cost(t). In the last inequality
above we used the fact that demand(t) ≤ 1 + 2ϵ and demand(t′) > 1 − 2ϵ, where t′ is the
tour obtained from t by removing a minimal subset of clustered terminals (covered by t) in
order to enforce demand(t′) ≤ 1. Thus∑

v∈R and v∈t

demand(v) = demand(t)− demand(t′) ≤ 4ϵ.

Altogether, for ϵ > 0 small enough,

cost(S′) ≤ ϵ · opt + (1 + 8ϵ)cost(S̃) < (1 + 12ϵ) · opt. ◀

The cost of output solution in Algorithm 3 is at most W + (1 + ϵ) · opt(I ′) by Lemma 10.
This is at most (2 + O(ϵ)) · opt by Lemmas 17 and 18. Hence Algorithm 3 has approximation
ratio 2 + O(ϵ).

5.2 Case 2: OPT Has a Bounded Number of Tours
In this subsection, we prove the following theorem.

▶ Theorem 19. Let ϵ > 0. Algorithm 4 is a polynomial time (2 + O(ϵ))-approximation
algorithm for the unsplittable Euclidean capacitated vehicle routing problem under the as-
sumption that the number of tours in OPT is at most 2 · Γ.

▶ Lemma 20. Let ϵ > 0. There is a polynomial time (1 + ϵ)-approximation algorithm for
the unsplittable Euclidean capacitated vehicle routing problem under the assumptions that the
number of tours in OPT is at most 2 · Γ and each demand is an integer multiple of 1

2n .

Proof sketch of Lemma 20. The proof is a straightforward adaptation of the algorithm of
Asano et al. [5] for the unit-demand case (i.e., for the case when all demands are equal) of
the Euclidean CVRP, which in turn is a simple adaptation of Arora’s algorithm [4] for the
Euclidean TSP.
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Algorithm 4 Algorithm when OPT has a bounded number of tours.

1: Round each demand down to the next smaller integer multiple of 1
2n , obtaining an

instance Î.
2: Compute a (1 + ϵ)-approximate solution Ŝ to Î ▷ Lemma 20
3: S ← ∅
4: for each tour t in Ŝ do
5: Make two copies t1 and t2 of t

6: Let v1, . . . , vℓ be the terminals covered by t in non-increasing order of their unrounded
demands

7: Let i be the largest integer in [1, ℓ] such that
∑i

j=1 demand(vj) ≤ 1
8: Let t1 cover the demands of v1, . . . , vi

9: Let t2 cover the demands of vi+1, . . . , vℓ

10: S ← S ∪ {t1, t2}
11: return S

Recall that Arora’s algorithm defines a randomized hierarchical quadtree decomposition,
such that a near-optimal solution intersects the boundary of each square only Oϵ(1) times
and those crossings happen at one of a small set of prespecified points, called portals, and
then uses a polynomial time dynamic program to find the best solution with this structure.

In [5] it was observed that, when the number of tours in OPT is Oϵ(1), there is a
near-optimal solution in which the overall number of subtours passing through each square
(via portals) is Oϵ(1). Furthermore, for all equal demands, one can guess the number of
terminals covered by each such subtour within a polynomial number of options. This leads
to a polynomial number of configurations of subtours inside each square, which ensures the
polynomial running time of a natural dynamic program.

Similarly to [5], when the demands are integer multiples of 1
2n , one can guess the total

demand covered by each subtour in the above sense. The details are left to the reader. ◀

Proof of Theorem 19. From Lemma 20, we obtain in polynomial time a set of tours Ŝ

covering the rounded demands of all terminals such that the total cost of the tours in Ŝ is at
most (1 + ϵ) · opt.

First, we show that the solution S constructed from Ŝ is feasible for the unsplittable
Euclidean CVRP. Consider two tours t1 and t2 in S corresponding to a tour t ∈ Ŝ. Let
v1, . . . , vℓ be the terminals covered by t in non-increasing order of their unrounded demands.
From the construction, t1 is within the tour capacity. It suffices to show that t2 is within
the tour capacity. If

∑ℓ
j=1 demand(vj) ≤ 1, then t2 covers no demand and is trivially within

the tour capacity. Next consider the case when
∑ℓ

j=1 demand(vj) > 1. Since the rounding
creates an extra demand of at most 1

2n at each terminal and the number of terminals ℓ is
at most n, we have

∑ℓ
j=1 demand(vj) ≤ 1 + ℓ

2n ≤
3
2 . To show that t2 is within the tour

capacity, it suffices to show that the overall demand on t1 is at least 1
2 . There are two cases.

Case 1: demand(v1) ≥ 1
2 . Then demand(t1) ≥ demand(v1) ≥ 1

2 .
Case 2: demand(v1) < 1

2 . By the choice of i, we have
∑i+1

j=1 demand(vj) > 1. Since
demand(vi+1) ≤ demand(v1) < 1

2 , we have demand(t1) =
∑i

j=1 demand(vj) > 1
2 .

So both t1 and t2 are within the tour capacity. Thus the solution S is feasible.
For each tour t ∈ Ŝ, each of the two corresponding tours t1 and t2 has cost at most the

cost of t. Thus cost(S) ≤ 2 · cost(Ŝ) ≤ 2(1 + ϵ) · opt.
Hence Algorithm 4 returns a feasible solution to the unsplittable Euclidean CVRP with

cost at most 2(1 + ϵ) · opt. ◀
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Abstract
We show that quantum states with “low stabilizer complexity” can be efficiently distinguished from
Haar-random. Specifically, given an n-qubit pure state |ψ⟩, we give an efficient algorithm that
distinguishes whether |ψ⟩ is (i) Haar-random or (ii) a state with stabilizer fidelity at least 1

k
(i.e.,

has fidelity at least 1
k

with some stabilizer state), promised that one of these is the case. With
black-box access to |ψ⟩, our algorithm uses O

(
k12 log(1/δ)

)
copies of |ψ⟩ and O

(
nk12 log(1/δ)

)
time

to succeed with probability at least 1 − δ, and, with access to a state preparation unitary for |ψ⟩
(and its inverse), O

(
k3 log(1/δ)

)
queries and O

(
nk3 log(1/δ)

)
time suffice.

As a corollary, we prove that ω(log(n)) T -gates are necessary for any Clifford+T circuit to
prepare computationally pseudorandom quantum states, a first-of-its-kind lower bound.
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1 Introduction

The stabilizer formalism [11] plays a central role in quantum information. Stabilizer states are
states that lie in the intersection of the positive eigenspaces of 2n commuting Pauli operators.
Stabilizer states can be generated by Clifford circuits, which are the group of unitary
transformations that normalize the Pauli group. Stabilizer states and the Clifford group have
widespread applications in quantum error correction [28, 8], measurement-based quantum
computation [27], randomized benchmarking [19], and quantum learning algorithms [16].
These applications are largely thanks to the rich algebraic structure afforded by the stabilizer
formalism.

Stabilizer states are also one of the few classes of states that admit efficient learning
algorithms. Montanaro [22] gave an algorithm that takes O(n) copies of an n-qubit stabilizer
state and correctly identifies the state with high probability in time O(n3). Gross, Nezami,
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and Walter [13] gave an algorithm for property testing stabilizer states, which is the task
of distinguishing whether a state is a stabilizer state or is far from any stabilizer state.
Remarkably, this algorithm requires only 6 copes of the state.

Despite finding numerous applications, Clifford circuits are not universal for quantum
computation. Furthermore, in 1998, Gottesman and Knill showed that Clifford circuits
acting on stabilizer states can be efficiently classically simulated [12, 1]. However, with
the additional ability to apply a T -gate (the gate |0⟩⟨0| + eiπ/4 |1⟩⟨1|), the resulting gate set
becomes universal. Therefore, efficient simulation of so-called Clifford+T circuits would
imply BPP = BQP, and a large line of work has been devoted to developing better simulation
algorithms [25, 7, 26, 6].

Currently, the best-performing simulation algorithms are based on modeling the output
state of a quantum circuit as a decomposition of stabilizer states [6]. These decompositions
give rise to simulation algorithms whose runtimes scale polynomially in the complexity of
the decomposition. One such complexity measure is the stabilizer extent. Consider the state
|ψ⟩ =

∑
i ci |ϕi⟩ for ci ∈ C and stabilizer states |ϕi⟩. The stabilizer extent is the minimum

(
∑
i |ci|)2 over all such decompositions of |ψ⟩, and scales exponentially in the number of

T -gates in the circuit producing the state. A closely-related complexity measure is the
stabilizer fidelity, which is the maximum overlap between |ψ⟩ and any stabilizer state. Indeed,
the inverse of stabilizer fidelity lower bounds stabilizer extent [6]. Collectively, we informally
refer to states with either low stabilizer extent or non-negligible stabilizer fidelity as states of
low “stabilizer complexity”.

As a generalization of stabilizer states, it is natural to ask whether states of low stabilizer
complexity are also efficiently learnable, and indeed a similar question has been raised
before [2]. Nevertheless, this problem remains largely open except in some highly restricted
settings [21]. This could be in part because many of the useful properties of stabilizer states
provably fail to generalize to states with low stabilizer complexity. For example, [15] observed
that one can efficiently learn the output distribution of any Clifford circuit, given samples
from this distribution.1 However, this task already becomes intractable for circuits with
a single T -gate (producing a state of constant stabilizer extent), where [15] proved that
learning the output distribution is as hard as the learning parities with noise problem.

Furthermore, it is known that stabilizer states form a t-design for t = 3, meaning that
random stabilizer states duplicate the first 3 moments of the Haar measure [20, 29]. By
contrast, [14] showed that circuits with poly(t) non-Clifford gates are sufficient to generate
approximate t-designs. Thus, for any constant t, states of constant stabilizer extent can form
approximate t-designs. This suggests that states of low stabilizer complexity can give much
stronger information-theoretic approximations to the Haar measure than ordinary stabilizer
states, because stabilizer states fail to form a t-design for any t > 3 [30].

In this work, we investigate whether these properties that differentiate stabilizer states
from low-stabilizer-complexity states can be pushed further, to prove hardness of learning
low-stabilizer-complexity states. One natural approach towards proving that low-stabilizer-
complexity states are hard to learn would be to show that they are pseudorandom. Ji, Liu,
and Song [18] define an ensemble of n-qubit states to be (computationally) pseudorandom if
every poly(n)-time quantum adversary has at most a negligible advantage in distinguishing
copies of a state drawn randomly from the ensemble from copies of a Haar-random n-qubit
state. Note that pseudorandom states are not efficiently learnable, as any algorithm for
learning some set of quantum states gives an algorithm to distinguish those states from the
Haar measure.

1 Indeed, every such distribution is simply an affine subspace of Fn
2 .
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Our main result is an efficient algorithm for distinguishing states of non-negligible stabilizer
fidelity from Haar-random states, showing that such states cannot be pseudorandom. This
type of distinguishing is sometimes known as weak learning in learning theory.

▶ Theorem 1 (Informal version of Theorem 23). Let |ψ⟩ be an unknown n-qubit pure state,
and let k ≤ 4

5 2n/12. There is an efficient algorithm that distinguishes whether |ψ⟩ is Haar-
random or a state with stabilizer fidelity at least 1

k , promised that one of these is the case.
In particular, the algorithm uses O(k12 log(1/δ)) copies of |ψ⟩ and O(nk12 log(1/δ)) time to
succeed with probability at least 1 − δ.

Theorem 1 also generalizes to distinguishing states with low stabilizer extent from Haar-
random. To the best of our knowledge, prior to our work, it was even unknown whether states
of stabilizer extent at most a constant could be efficiently distinguished from Haar-random.
We also emphasize that the contrast between our positive learning result and the hardness
result of [15] stems in part from the differing access models: we assume access to copies of
the quantum state, whereas [15] considers algorithms that only have outcomes of standard
basis measurements of the state.

As a simple corollary, we prove a first-of-its-kind lower bound on the number of T -gates
required to prepare computationally pseudorandom quantum states.

▶ Corollary 2 (Corollary 25). Any family of Clifford+T circuits that produces an ensemble of
n-qubit computationally pseudorandom quantum states must use at least ω(log n) T -gates.

In some sense, Corollary 2 contrasts sharply with the result of [14], where circuits
containing just a few non-Clifford gates are sufficient to produce strong information-theoretic
approximations to the Haar measure (i.e. t-designs). Nevertheless, we emphasize that our
result and [14] are formally incomparable, because computationally pseudorandom states
need not form approximate t-designs for constant t, nor vice-versa.

1.1 Main Ideas
Let x = (p, q) ∈ F2n

2 , where p and q are the first and last n bits of x, respectively. Define
Wx := ip·qXpZq (a Pauli operator without phase), and let |Φ+⟩ := 2−n/2∑

x∈Fn2
|x, x⟩ be a

maximimally entangled state. Then, the set {|Wx⟩ := (Wx ⊗ I) |Φ+⟩ | x ∈ F2n
2 } is the Bell

basis, an orthonormal basis of C2n ⊗ C2n .
Our algorithm uses Bell difference sampling [22, 13], which works as follows (see Section 2.3

for more detail): Given four copies of an n-qubit pure state |ψ⟩, perform a Bell-basis
measurement on |ψ⟩⊗2 to get measurement outcome x ∈ F2n

2 , repeat this on the remaining
two copies to get measurement outcome y ∈ F2n

2 , and return z = x+ y.
We refer to pψ(x) := 2−n|⟨ψ|Wx|ψ⟩|2 as the characteristic distribution of |ψ⟩. To see

that pψ is a distribution, recall that since the Pauli operators form an orthonormal basis
over Hermitian matrices, we can always decompose |ψ⟩⟨ψ| = 1

2n
∑
x∈Fn2

⟨ψ|Wx|ψ⟩ ·Wx. By
assumption, |⟨ψ|ψ⟩|2 = 1, so by Parseval’s identity,

1
2n
∑
x∈Fn2

|⟨ψ|Wx|ψ⟩|2 = 1.

Gross, Nezami, and Walter [13] showed that Bell difference sampling an arbitrary pure state
|ψ⟩ corresponds to sampling a random operator Wx according to the following distribution:

qψ(x) =
∑
y∈F2n

2

pψ(y)pψ(x+ y).

ITCS 2023
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We call qψ the Weyl distribution of |ψ⟩. Note that the Weyl distribution of |ψ⟩ is the scaled
convolution of the characteristic distribution with itself (i.e., qψ = 4n(pψ ∗ pψ), where “∗” is
the convolution operator).

Define the {±1}-outcome measurement Mx :=
{
I±Wx

2
}

(projections onto the ±1-
eigenspaces of Wx). Our algorithm begins by repeating the following process m times:
sample a random Weyl operator Wx (via Bell difference sampling) and perform the measure-
ment M⊗2

x on |ψ⊗2⟩. Then, average all of the measurement outcomes. If the average is at
least 1/poly(k), we decide that |ψ⟩ has stabilizer fidelity at least 1

k . Otherwise, we decide
that |ψ⟩ is Haar-random.

What statistic are we computing in our algorithm? Denote the measurement outcome on
the ith iteration as Xi ∈ {±1}. Observe that for all Xi,

E[Xi] =
∑
x∈F2n

2

qψ(x)|⟨ψ|Wx|ψ⟩|2 = 2n
∑
x∈F2n

2

qψ(x)pψ(x) = 2n E
x∼qψ

[pψ(x)],

where the expectation E[Xi] is taken over sampling x ∼ qψ and the randomness from
performing the measurement M⊗2

x . Hence, for our algorithm to work, Ex∼qψ [pψ(x)] must be
“different enough” when |ψ⟩ either is Haar-random or has low stabilizer complexity. Proving
that this is the case is the main technical ingredient of our work:

▶ Lemma 3 (Informal version of Lemma 15). Let |ψ⟩ be an n-qubit pure state. Suppose the
stabilizer fidelity of |ψ⟩ is at least 1

k . Then,

2n E
x∼qψ

[pψ(x)] ≥ 1
k6 .

In contrast, suppose |ψ⟩ is a Haar-random quantum state. Then, with overwhelming probability
over the Haar measure,

2n E
x∼qψ

[pψ(x)] ≤ 2−n/2.

Our proof uses Fourier analysis of Boolean functions, and some parts of our proof are
reminiscent of the celebrated Blum-Luby-Rubinfield linearity test [3]. Intuitively, qψ is
significantly closer to linear when |ψ⟩ has non-negligible stabilizer fidelity, as opposed to
when |ψ⟩ is a Haar-random state.

With the above lemma, all that remains is “merely” a sample complexity analysis, namely:
what m is sufficient to distinguish whether the average is close to 0 or Ω(1/k6)? In the
simplest case, we show that O(k12 log(1/δ)) samples are sufficient by Hoeffding’s inequality.
However, this complexity can be improved if given access to a unitary that prepares |ψ⟩ (and
its inverse). In this model, we are able to achieve a quartic speedup in both sample and time
complexity, which we explain in Appendix A.

2 Preliminaries

First, we establish some notation used throughout this work. We denote [n] := {1, . . . , n}.
For v ∈ Cn, ∥v∥p := (

∑
i∈[n]|vi|p)1/p is the ℓp-norm. Logarithms are assumed to be in base 2.

For a probability distribution P on a set S, we denote drawing a sample s ∈ S according to
P by s ∼ P . We denote drawing a sample s ∈ S uniformly at random by s ∼ S.
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2.1 Stabilizer States and Stabilizer Complexity Measures
We define the 1-qubit Pauli group to be the collection of matrices {I,X, Y, Z}, where

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The n-qubit Pauli group Pn is the set {±1,±i} × {I,X, Y, Z}⊗n. The Clifford group Cn
is the group of unitary transformations generated by H, S, and CNOT gates, where H is
the Hadamard gate, S := |0⟩⟨0| + i |1⟩⟨1| is the phase gate, and CNOT is the controlled-
not gate. We refer to unitary transformations in the Clifford group as Clifford circuits.
Clifford circuits with the addition of the T -gate are universal, where the T -gate is defined by
T := |0⟩⟨0| + eiπ/4 |1⟩⟨1|.

A unitary transformation U stabilizes a state |ψ⟩ when U |ψ⟩ = |ψ⟩. It is folklore that if an
n-qubit state can be reached from the |0n⟩ state by applying a Clifford circuit, then the state
is stabilized by a group of 2n commuting members of the subset {±1} × {I,X, Y, Z}⊗n ⊂
(Pn \ −I⊗n), called its stabilizer group. Such states are called stabilizer states, and we denote
the set of stabilizer states by Sn. For |ψ⟩ ∈ Sn, we denote its stabilizer group as Stab(|ψ⟩).
For more background on stabilizer states, see, e.g., [23].

We now define some complexity measures that characterize more general states in terms
of stabilizer state decompositions.

▶ Definition 4 (stabilizer extent [6]). Suppose |ψ⟩ is a pure n-qubit state. The stabilizer extent
of |ψ⟩, denoted ξ(|ψ⟩), is the minimum of ∥c∥2

1 over all decompositions |ψ⟩ =
∑
i ci |ϕi⟩,

where |ϕi⟩ ∈ Sn and c is some vector in C|Sn|.

▶ Definition 5 (stabilizer fidelity [6]). Suppose |ψ⟩ is a pure n-qubit state. The stabilizer
fidelity of |ψ⟩, denoted FS , is

FS(|ψ⟩) := max
|ϕ⟩∈Sn

|⟨ϕ|ψ⟩|2 .

Below we give a useful relation between the complexity measures defined above.

▷ Claim 6. Let |ψ⟩ be an n-qubit pure state. Then,

ξ(|ψ⟩) ≥ 1
FS(|ψ⟩) .

Proof. Let |ψ⟩ =
∑

|ϕ⟩∈Sn cϕ |ϕ⟩ be such that
(∑

ϕ|cϕ|
)2

= ξ(|ψ⟩). Suppose towards a
contradiction that FS(|ψ⟩) < 1

ξ(|ψ⟩) and therefore |⟨ϕ|ψ⟩| < 1
ξ(|ψ⟩) for all |ϕ⟩ ∈ Sn. Then,

1 = |⟨ψ|ψ⟩| =

∣∣∣∣∣∣
∑

|ϕ⟩∈Sn

c∗
ϕ ⟨ϕ|ψ⟩

∣∣∣∣∣∣ ≤
∑

|ϕ⟩∈Sn

|cϕ| |⟨ϕ|ψ⟩|

≤ max
i

|⟨ϕi|ψ⟩|
∑

|ϕ⟩∈Sn

|cϕ|

≤
√
FS(|ψ⟩)ξ(|ψ⟩)

< 1,

which is a clear contradiction. ◁
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The claim above also follows as a special case of [6, Theorem 4], though its proof is more
complicated.

To prove lower bounds on the number of T -gates necessary to prepare pseudorandom
quantum states, we need to upper bound the stabilizer extent of a quantum state prepared
by a Clifford+T circuit comprised of t T -gates.

▷ Claim 7. For |ψ⟩ = α |v⟩ + β |w⟩,

ξ(|ψ⟩) ≤
(

|α|
√
ξ(|v⟩) + |β|

√
ξ(|w⟩)

)2
.

Proof. Let |v⟩ =
∑
i ci |ϕi⟩ and |w⟩ =

∑
j dj |φj⟩ be the minimal decompositions in terms of

stabilizer extent (i.e., (
∑
i|ci|)

2 = ξ(|v⟩)). Since |ψ⟩ = α |v⟩+β |w⟩ = α
∑
i c |ϕi⟩+β

∑
j d |φj⟩,

we have a stabilizer decomposition of |ψ⟩. The stabilizer extent of this decomposition is at
most(∑

i

|αci + βdi|

)2

≤

(
|α|
∑
i

|ci| + |β|
∑
i

|di|

)2

=
(

|α|
√
ξ(v) + |β|

√
ξ(w)

)2
. ◁

▶ Lemma 8. Let C be any Clifford+T circuit comprised of t T -gates and |ψ⟩ = C |0n⟩.
Then,

ξ(|ψ⟩) ≤
(

1 + 1√
2

)t
.

Proof. We note that a Clifford+T circuit can be broken into layers of Clifford circuits,
followed by a single T -gate, followed by more layers of Clifford circuits, and so on. Since
Clifford circuits preserve stabilizer extent, we only need to show that the T -gate increases the
stabilizer extent of any state by at most a constant multiplicative factor. Since the SWAP
gate is a Clifford operation, we assume without loss of generality that each T -gate is applied
to the first qubit.

We proceed by induction on the layers of the circuit. In the first layer, when no
T -gates have been applied, the bound is trivially true because the stabilizer extent of
any stabilizer state is 1. Now, assume that, after applying some portion of the circuit
C ′ to |0n⟩ with t − 1 T -gates, we get the state |φ⟩. Observe that the T -gate can be
expressed as cos(π/8)eiπ/8I + sin(π/8)ei13π/8Z. Thus, (T ⊗ I⊗n−1) |φ⟩ = cos(π/8)eiπ/8 |φ⟩ +
sin(π/8)ei13π/8 (Z ⊗ I⊗n−1) |φ⟩. Since Z ⊗ I⊗n−1 is a Clifford operation,

(
Z ⊗ I⊗n−1) |φ⟩

has the same extent as |φ⟩. Therefore, applying Claim 7,

ξ(|ψ⟩) ≤ (cos(π/8) + sin(π/8))2
ξ(|φ⟩) ≤

(
1 + 1√

2

)t
. ◀

2.2 Boolean Fourier Analysis
We review the basics of Fourier analysis over the Boolean hypercube.

▶ Definition 9. Let S ⊆ [n] be an index of bits. Then the parity function on S is defined to
be

χS(x) :=
∏
i∈S

(−1)xi .
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Alternatively, we can define χS(x) = (−1)x·s where si = 1 if and only if i ∈ S. This form
will prove to be more natural for our purposes.

The parity functions are orthonormal under the inner product ⟨f, g⟩ = 1
2n
∑
x∈Fn2

f(x)g(x).
Since there are 2n distinct parity functions, this gives a complete basis. Given a function
f : Fn2 → R, we can then write

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The f̂(S) are real numbers known as the Fourier coefficients (collectively known as the
Fourier spectrum), and are equivalently given by the formula

f̂(S) = ⟨f(x), χS(x)⟩.

As a basis change, we can then rethink inner products to be over the Fourier coefficients as
well.

▶ Fact 10 (Plancherel’s theorem).

⟨f, g⟩ = 1
2n

∑
S⊆[n]

f̂(S)ĝ(S).

Finally, the convolution is an operation that appears frequently in Fourier analysis over
the reals. We can similarly define it over Boolean inputs.

▶ Definition 11. For functions f, g : Fn2 → R, we define the convolution f ∗ g as

(f ∗ g)(x) := 1
2n
∑
t∈Fn2

f(t)g(x+ t).

Much like Fourier transforms over the reals, convolution maps to multiplication in the
Fourier domain.

▶ Fact 12 (Convolution theorem). f̂ ∗ g(S) = f̂(S)ĝ(S)

For proofs of all of these facts, as well as for a comprehensive reference on analysis of
Boolean functions, we recommend [24].

2.3 Weyl Operators and Bell Difference Sampling
For x = (p, q) ∈ F2n

2 , define the Weyl operator as

Wx := ip·q(Xp1Zq1) ⊗ . . .⊗ (XpnZqn) = ip·qXpZq.

Each Weyl operator is a Pauli operator, and every Pauli operator is a Weyl operator (up to a
phase). Note also that WxWy = Wx+y, up to a phase. We use Weyl operators (rather than
Pauli operators) when it is convenient to identify members of the Pauli group with length-2n
bit strings.

A critical subroutine in our work is Bell difference sampling, which was introduced
in [22, 13]. Let |Φ+⟩ := 2−n/2∑

x∈Fn2
|x, x⟩. Then, the set of quantum states {|Wx⟩ :=

(Wx ⊗ I) |Φ+⟩ | x ∈ F2n
2 } forms an orthonormal basis of C2n ⊗ C2n , which we call the

Bell basis. Bell sampling a state |ψ⟩ refers to measuring |ψ⟩⊗2 in the Bell basis, and the
measurement outcome is a length-2n bit string x that corresponds to a Weyl operator Wx.
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Bell difference sampling a state |ψ⟩ refers to Bell sampling twice to get measurement outcomes
x, y ∈ F2n

2 and returning z = x + y, which corresponds to a Weyl operator Wz and uses
four copies of |ψ⟩. Montanaro showed Bell difference sampling can be performed in O(n)
time [22].

Bell difference sampling returns a random Weyl operator, but according to what distribu-
tion? Gross, Nezami, and Walter [13] showed that the underlying distribution depends on
the so-called characteristic distribution of |ψ⟩.

▶ Definition 13 (characteristic distribution). The characteristic distribution of |ψ⟩ is defined as

pψ(x) := 2−n|⟨ψ|Wx|ψ⟩|2.

▶ Lemma 14 ([13, Theorem 3.2]). Let |ψ⟩ be an arbitrary n-qubit pure state. Bell difference
sampling corresponds to drawing a sample from the following distribution:

qψ(x) := 4n(pψ ∗ pψ)(x) =
∑
y∈F2n

2

pψ(y)pψ(x+ y).

Additionally, if |ψ⟩ ∈ Sn is a stabilizer state, then

qψ(x) = pψ(x) = 2−n|⟨ψ|Wx|ψ⟩|2.

We refer to qψ as the Weyl distribution. Using this terminology, the characteristic distribution
and Weyl distribution are equal only when |ψ⟩ is a stabilizer state (i.e., when 4n(pψ∗pψ) = pψ).

3 Certificate of Low Stabilizer Complexity

To efficiently distinguish a state with low stabilizer complexity (meaning, a state with low
stabilizer extent or non-negligible stabilizer fidelity) from a Haar-random one, we require a
property or statistic of the state that distinguishes it from Haar-random. As such, we present
the following technical lemma, which forms the backbone of our algorithm.

▶ Lemma 15. Let |ψ⟩ be an n-qubit pure state. If the stabilizer fidelity of |ψ⟩ is at least 1
k ,

then

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≥ 1
k6 .

In contrast, if |ψ⟩ is Haar-random and n ≥ 33, then, with probability at least 1 −
exp

(
−2n/2−15) over the Haar measure,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≤ 2−n/2.

Our algorithm then amounts to estimating the quantity Ex∼qψ
[
|⟨ψ|Wx|ψ⟩|2

]
via a proce-

dure involving Bell difference sampling.
To prove Lemma 15, as a first step, we relate Ex∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
to the Fourier coeffi-

cients of pψ. Note that this analysis closely resembles the BLR linearity test [3] (see also [24,
Section 1.6]).

▶ Fact 16. Let |ψ⟩ be an n-qubit pure state. Then,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 32n

∑
x∈F2n

2

p̂ψ(x)3.
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Proof.

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 2n E

x∼qψ
[pψ(x)]

= 2n
∑
x∈F2n

2

pψ(x)qψ(x)

= 8n
∑
x∈F2n

2

pψ(x)(pψ ∗ pψ)(x)

= 32n E
x∼F2n

2

[pψ(x)(pψ ∗ pψ)(x)]

= 32n
∑
x∈F2n

2

p̂ψ(x)p̂ψ ∗ pψ(x)) (Fact 10)

= 32n
∑
x∈F2n

2

p̂ψ(x)3. (Fact 12) ◀

For the remainder of this section, we use the following convention: when x = (v, w) ∈ F2n
2 ,

v and w denote the first and last n bits of x, respectively, and, we will sometimes write
pψ(v, w) and qψ(v, w), rather than pψ(x) and qψ(x).

3.1 The Fourier Spectrum of the Characteristic Distribution
By Fact 16, it is clear that understanding the Fourier spectrum of pψ is one avenue to proving
Lemma 15.

▶ Proposition 17. The Fourier coefficients of pψ(v, w) are p̂ψ(v, w) = 1
2n pψ(w, v).

Proof. Define f : F2n
2 −→ [−1, 1] as f(v, w) := ⟨ψ|iv·wXvZw|ψ⟩, where v, w ∈ Fn2 . We begin

by computing the Fourier expansion of f .

f(v, w) = ⟨ψ| iv·wXvZw |ψ⟩

=

∑
x∈Fn2

c∗
x ⟨x|

 iv·wXvZw

∑
x∈Fn2

cx |x⟩


= iv·w

∑
x∈Fn2

c∗
x ⟨x+ v|

∑
x∈Fn2

(−1)x·wcx |x⟩


= iv·w

∑
x∈Fn2

c∗
x+vcx(−1)w·x. (1)

In the second line we are simply writing |ψ⟩ in the computational basis.
Observe now that pψ(v, w) = 1

2n |f(v, w)|2, which we can also treat as a function on
Boolean variables. Hence,

pψ(v, w) = 1
2n

iv·w
∑
x∈Fn2

c∗
x+vcx(−1)w·x

(−i)v·w
∑
x∈Fn2

cx+vc
∗
x(−1)w·x


= 1

2n
∑

x,y∈Fn2

c∗
v+ycycv+x+yc

∗
x+y(−1)w·x,

where the first equality follows by substituting in Equation (1).
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We can now compute the Fourier spectrum of pψ by taking the inner product between
pψ and an arbitrary Fourier character (this is the simplest approach to computing Fourier
coefficients).

p̂ψ(v, w) = 1
4n

∑
s,t∈Fn2

pψ(s, t)(−1)s·v+t·w

= 1
8n

∑
s,t,x,y∈Fn2

c∗
s+ycycs+x+yc

∗
x+y(−1)t·x+v·s+w·t

= 1
8n

∑
s,x,y∈Fn2

c∗
s+ycycs+x+yc

∗
x+y(−1)v·s

∑
t∈Fn2

(−1)t·(x+w)

= 1
4n

∑
s,y∈Fn2

c∗
s+ycycs+w+yc

∗
w+y(−1)v·s

= 1
2n pψ(w, v). ◀

3.2 Low-Stabilizer-Complexity States
We prove the first part of Lemma 15; namely, that

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≥ 1
k6

when |ψ⟩ has low stabilizer complexity.

▷ Claim 18. For an n-qubit pure state |ψ⟩ =
∑
x∈Fn2

cx |x⟩,

32n
∑
x∈F2n

2

p̂ψ(x)3 ≥ |c0|12.

Proof.

32n
∑

v,w∈F2n
2

p̂ψ(v, w)3 = 4n
∑

v,w∈F2n
2

pψ(w, v)3 (Proposition 17.)

≥ 4n
∑
v∈Fn2

pψ(0, v)3 (∀x, y, pψ(x, y) ≥ 0.)

= 1
2n
∑
v∈Fn2

|⟨ψ|Zv|ψ⟩|6

≥ 1
26n

∑
v∈Fn2

⟨ψ|Zv|ψ⟩

6  m∑
i=1

|ai|6 ≥ 1
m5

(
m∑
i=1

|ai|

)6

.


≥ |c0|12.

∑
v∈Fn2

Zv = 2n |0n⟩⟨0n| .

 ◁

Proof of first part of Lemma 15. Let |ψ⟩ be an n-qubit pure state, and suppose that the
stabilizer fidelity of |ψ⟩ is at least 1

k . Then there exists a Clifford circuit C ∈ Cn such that
C |ψ⟩ =

∑
x∈Fn2

cx |x⟩ where |c0|2 ≥ 1
k . Call |ϕ⟩ := C |ψ⟩. By Claim 18,

32n
∑

v,w∈Fn2

p̂ϕ(v, w)3 ≥ |c0|12 ≥ 1
k6 .
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A Clifford circuit C is a permutation of the Pauli group under conjugation (i.e., C†PnC = Pn
for any C ∈ Cn). Hence, for all C ∈ Cn and g : Pn → R,∑

x∈F2n
2

g(Wx) =
∑
x∈F2n

2

g(C†WxC).

Therefore, we conclude that

32n
∑

v,w∈Fn2

p̂ψ(v, w)3 ≥ 1
k6

as well. Combining this bound with Fact 16 completes the proof. ◀

3.3 Haar-Random States
We complete the proof of Lemma 15 by showing that Ex∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
is small when |ψ⟩

is a Haar-random state. We begin by showing that, for a Haar-random state, all of the Weyl
measurements (except Wx = I) are exponentially close to 0 with overwhelming probability.

▶ Lemma 19 (Lévy’s Lemma, see e.g. [10]). Let SN denote the set of all N -dimensional
pure quantum states, and let f : SN → R be L-Lipschitz, meaning that |f(|ψ⟩) − f(|φ⟩)| ≤
L · ∥|ψ⟩ − |φ⟩∥2. Then:

Pr
|ψ⟩∼µHaar

[|f(|ψ⟩) − E[f ]| ≥ ε] ≤ 2 exp
(

− Nε2

9π3L2

)
.

▶ Lemma 20. For any n-qubit Weyl operator Wx, the function fx : S2n → R defined by
fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ is 2-Lipschitz.

Proof. Write Wx = Π+ − Π− where Π+ and Π− are the projectors onto the positive and
negative eigenspaces of Wx, respectively. Then,

|fx(|ψ⟩) − fx(|φ⟩)| = |⟨ψ|Wx |ψ⟩ − ⟨φ|Wx |φ⟩|
= |⟨ψ| Π+ |ψ⟩ − ⟨φ| Π+ |φ⟩ − ⟨ψ| Π− |ψ⟩ + ⟨φ| Π− |φ⟩|
≤ |⟨ψ| Π+ |ψ⟩ − ⟨φ| Π+ |φ⟩| + |⟨ψ| Π− |ψ⟩ + ⟨φ| Π− |φ⟩|
= | ∥Π+ |ψ⟩∥2 − ∥Π+ |φ⟩∥|2 + |∥Π− |ψ⟩∥2 − ∥Π− |φ⟩∥2|
≤ ∥Π+(|ψ⟩ − |φ⟩)∥2 + ∥Π−(|ψ⟩ − |φ⟩)∥2

≤ 2∥|ψ⟩ − |φ⟩∥2,

where the third and fifth lines apply the triangle inequality, and the fourth and sixth lines
use the fact that Π+ and Π− are projectors. ◀

▶ Corollary 21. Let Wx be any n-qubit Weyl operator in which x ̸= 0 (i.e. Wx ̸= I). Then:

Pr
|ψ⟩∼µHaar

[|⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 2 exp
(

− 2nε2

36π3

)
.

Proof. Define fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ as in Lemma 20. By Lemma 20, we know that fx is
2-Lipschitz. Additionally, observe that E[f ] = 0 over the Haar measure because exactly half
of the eigenvalues of Wx are 1 and the other half are −1. Then the corollary follows from
Lemma 19. ◀
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▶ Corollary 22.

Pr
|ψ⟩∼µHaar

[∃x ̸= 0 : |⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 22n+1 exp
(

− 2nε2

36π3

)
.

Proof. This follows from Corollary 21 and a union bound over all 22n possible Weyl operators.
◀

Note that if ε ≥ 1
poly(n) , then the probability bound in Corollary 22 is doubly-exponentially

small.
We have shown that, with high probability, all Weyl measurements (except Wx = I) are

close to 0. We use this to complete the proof of Lemma 15.

Proof of second part of Lemma 15. Suppose |ψ⟩ is a Haar-random state. By Corollary 22,
for all Wx ̸= I, |⟨ψ|Wx|ψ⟩|2 = 2np(x) ≤ ε2 with probability 1−22n+1 exp

(
− 2nε2

36π3

)
. Therefore

by Fact 16 and Proposition 17,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 32n

∑
x,y∈Fn2

p̂(x, y)3

= 4n
∑

w,v∈Fn2

p(v, w)3

= 4n

 1
8n +

∑
w,v∈Fn2
w,v ̸=0

p(v, w)3


≤ 1 + (4n − 1)ε6

2n ,

with probability at least 1 − 22n+1 exp
(

− 2nε2

36π3

)
. By setting ϵ2 = 1

2n/6

(
2n−2n/2

4n−1

)1/3
, we get

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≤ 1

2n/2

with probability at least 1 − 22n+1 exp
(

− 25n/6

36π3

(
2n−2n/2

4n−1

)1/3
)

, which is at least

1 − exp
(
−2n/2−15) for n ≥ 33. ◀

4 Algorithm and Sample Complexity Analysis

We are now ready to state and analyze our algorithm that distinguishes between Haar-random
states and states with low stabilizer complexity. Our algorithm uses the fact that we can
efficiently sample from qψ (via Bell difference sampling) and efficiently estimate |⟨ψ|Wx|ψ⟩|2
for any given x ∈ F2n

2 , using quantum measurements. By combining these subroutines, we
construct an unbiased estimator for Ex∼q

[
|⟨ψ|Wx|ψ⟩|2

]
. Motivated by Lemma 15, if our

estimator exceeds a certain threshold we determine that the input state has low stabilizer
complexity; otherwise, we determine that the state is Haar-random. For the remainder of
this section, η := Ex∼q

[
|⟨ψ|Wx|ψ⟩|2

]
.
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Algorithm 1 Distinguishing Low-Stabilizer-Complexity States from Haar-Random.

Input: Black-box access to copies of |ψ⟩
Promise : |ψ⟩ is Haar-random or has stabilizer fidelity at least 1

k

Output: 1 if |ψ⟩ has stabilizer fidelity at least 1
k and 0 if |ψ⟩ is Haar-random

1 Let m = 60k12 ln(1/δ).
2 repeat m times
3 Perform Bell difference sampling to obtain Wx ∼ qψ.
4 Perform the measurement W⊗2

x on |ψ⟩⊗2. Let Xi ∈ {±1} denote the
measurement outcome.

5 Set η̂ = 1
m

∑
iXi. Return 1 if η̂ ≥ 2

3k6 , and 0 otherwise.

▶ Theorem 23. Let |ψ⟩ be an unknown n-qubit pure state for some n ≥ 33, and let k ≤ 4
5 2n/12.

Algorithm 1 distinguishes whether |ψ⟩ is Haar-random or a state with stabilizer fidelity at
least 1

k , promised that one of these is the case. The algorithm uses O
(
k12 log(1/δ)

)
copies of

|ψ⟩ and O(nk12 log(1/δ)) time, and distinguishes the two cases with success probability at
least 1 − δ.

Proof. Following the notation in Algorithm 1, Xi is the outcome of the measurement on the
ith iteration of the algorithm loop. Observe that for any Xi,

E
x∼qψ,

meas. by W⊗2
x

[Xi] = E
x∼qψ

⟨ψ⊗2|W⊗2
x |ψ⊗2⟩ = E

x∼qψ
|⟨ψ|Wx|ψ⟩|2 = η.

Therefore, η̂ = 1
m

∑
iXi is an unbiased estimator of η (i.e., E[η̂] = η).

Suppose |ψ⟩ has stabilizer fidelity at least 1
k . Then, our algorithm fails when η̂ < 2

3k6 .
Hence,

Pr[Algorithm 1 fails] = Pr
[
η̂ <

2
3k6

]
= Pr

[
η̂ − η <

2
3k6 − η

]
≤ Pr

[
η̂ − η ≤ − 1

3k6

]
,

where the last inequality follows from Lemma 15. By Hoeffding’s inequality,

Pr
[
η̂ − η ≤ − 1

3k6

]
≤ exp

(
− m

18k12

)
.

Therefore, m ≥ 18k12 ln(15) = 49k12 samples suffice for the failure probability to be at most
1

15 .
Now suppose |ψ⟩ is Haar-random. Then, our algorithm fails when η̂ ≥ 2

3k6 . By Lemma 15,
η ≤ 2−n/2 with probability at least 1 − exp

(
−2n/2−15) >= 1 − e−2

√
2 for n ≥ 33. Assuming

that η ≤ 2−n/2,

Pr[Algorithm 1 fails] = Pr
[
η̂ ≥ 2

3k6

]
= Pr

[
η̂ − η ≥ 2

3k6 − η

]
≤ Pr

[
η̂ − η ≥ 1

2k6 − 2−n/2
]
.
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Once again, by Hoeffding’s inequality,

Pr
[
η̂ − η ≥ 1

2k6 − 2−n/2
]

≤ exp
(

−m

2

(
2

3k6 − 2−n/2
)2
)

≤ exp
(

−m

2

(
2

3k6 − 1
3k6

)2
)

≤ exp
(

− m

18k12

)
.

Therefore, m ≥ −18k12 ln
(

1
15 − e−2

√
2
)

≥ 88k12 samples suffice for the failure probability

to be at most 1
15 − e−2

√
2. By the union bound, the failure probability is at most 1

15 , where
the randomness is over both the Haar measure and the quantum measurements.

We have shown that in either case we output the correct answer with probability at
least 14

15 . Using the Chernoff-Hoeffding theorem, the success probability can be boosted
from 14

15 to at least 1 − δ by doing 2
3 ln(1/δ) repetitions of Algorithm 1 and taking the

majority answer. Since each iteration of the algorithm loop uses 6 copies of |ψ⟩, Algorithm 1
consumes O

(
k12 log(1/δ)

)
copies in total. Finally, Bell difference sampling and performing

the measurement W⊗2
x takes O(n) time, so the total runtime is O

(
nk12 log(1/δ)

)
. ◀

All of these results also apply to states with stabilizer extent at most k, since by Claim 6,
such states have stabilizer fidelity at least 1

k .

▶ Corollary 24. Let |ψ⟩ be an unknown n-qubit pure state for n ≥ 33, and let k ≤ 4
52n/12.

Algorithm 1 distinguishes whether |ψ⟩ is Haar-random or a state with stabilizer extent at
most k, promised that one of these is the case. The algorithm uses O

(
k12 log(1/δ)

)
copies of

|ψ⟩ and distinguishes the two cases with success probability at least 1 − δ.

The above result immediately implies that output states of Clifford+T circuits with few
T -gates cannot be computationally pseudorandom.

▶ Corollary 25. Any family of Clifford+T circuits that produces an ensemble of n-qubit
computationally pseudorandom quantum states must use at least ω(log n) T -gates.

Proof. Consider any ensemble of states wherein each state in the ensemble is the output of
some Clifford+T circuit with at most K log n T -gates. By Lemma 8, the stabilizer extent
of any such state |ψ⟩ is at most nαK for α ≤ 0.7716. By Corollary 24, on input copies of
|ψ⟩, Algorithm 1 takes O(n12αK+1) ≤ poly(n) time and outputs 1 with probability at least
2/3. On the other hand, if |ψ⟩ is a Haar-random state then the same algorithm outputs 1
with probability at most 1

3 . As such, the algorithm’s distinguishing advantage between the
ensemble and the Haar measure is non-negligible. This is to say that the ensemble cannot be
pseudorandom under the definition of [18]. ◀

5 Open Problems

An immediate direction for future work is to improve the sample complexity of our algorithm,
or to prove sample complexity lower bounds. One can also endeavour to improve other
features of our algorithm: Is it possible to remove the need for entangled measurements?2

Or, is it possible to show that entangled measurements are in any sense necessary? Are there
quantum measurements that allow us to sample from pψ directly (rather than qψ)?

2 The optimal algorithms for learning and testing stabilizer states use entangled measurements. So, a
first step would be to understand how many separable measurements are required to separate stabilizer
states from Haar-random.
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Beyond that, can Bell difference sampling be used for learning and/or property testing
stabilizer-extent-k states? For stabilizer states (k = 1), a 6-query property testing algorithm
is given by [13] and a Θ(n)-query learning algorithm is given by [22]. Both algorithms rely on
Bell difference sampling and are asymptotically optimal. We ask if there are generalizations
of these algorithms for states with higher stabilizer complexity, similar to the question that
was raised in [2].

▶ Question 26. Is there a poly(k)-query algorithm for property testing stabilizer-extent-k
states? Likewise, is there a poly(n, k)-time algorithm for learning stabilizer-extent-k states?

Our results on stabilizer extent are due to the fact that extent and fidelity are inversely
related. Is it possible to relate stabilizer rank (a closely-related complexity measure, denoted
by χ) and stabilizer fidelity? For instance, proving that, for all states |ψ⟩,

FS(|ψ⟩)−1 ≤ χ(|ψ⟩)c, for any constant c,

would imply that our algorithm can distinguish low-stabilizer-rank states from Haar-random.
However, proving such a relation for even c < αn

logn for α ≤ 0.2284 would imply super-linear
lower bounds on the stabilizer rank of Clifford magic states, a long-standing open problem.

One can also ask if the lower bound on the number of T -gates necessary for computationally
pseudorandom states can be improved.

▶ Question 27. How many T -gates are necessary for a family of Clifford+T circuits to
produce an ensemble of n-qubit computationally pseudorandom states?

We remark that any improvements to our log n lower bound would require techniques
beyond the ones used in our paper. Indeed, in Appendix B we show that one can hope for at
most a quadratic improvement in the relationship between η and stabilizer fidelity. Such
an improvement would only yield constant-factor improvements on the number of T -gates
necessary to prepare computationally pseudorandom states.

On the other hand, we are not aware of any attempts to optimize the T -gate count for
plausible constructions of n-qubit pseudorandom states. The best upper bound we know of is
the essentially trivial bound of O(n), based on constructions of with O(n) general gates. This
is because pseudorandom states can be constructed from pseudorandom functions (PRFs)
with constant overhead [4], and PRFs are believed to be constructible in linear time [17, 9].3
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A Algorithm Improvements via State Preparation Unitary

When given access to a state preparation unitary for |ψ⟩ (and its inverse), denoted by U and
U†, we can improve the sample and time complexities of our algorithm to O

(
k3 log(1/δ)

)
and O

(
nk3 log(1/δ)

)
, respectively, at the cost of O

(
k3 log(1/δ)

)
queries to U and U †.

Access to U and U† allows us to run quantum amplitude estimation (QAE) as a subroutine
in our algorithm. Recall the well-known result of Brassard, Høyer, Mosca, and Tapp:

▶ Theorem 28 (Quantum Amplitude Estimation (Theorem 12 in [5])). Let Π be a projector
and |ψ⟩ be an n-qubit pure state such that ⟨ψ|Π|ψ⟩ = η. Given access to the unitary
transformations RΠ = 2Π − I and Rψ = 2 |ψ⟩⟨ψ| − I, there exists a quantum algorithm that
outputs η̂ such that

|η̂ − η| ≤
2π
√
η(1 − η)
m

+ π2

m2

with probability at least 8
π2 . The algorithm makes m calls to RΠ and Rψ.

▶ Corollary 29. Let Π, |ψ⟩, RΠ, and Rψ be the same as in Theorem 28. There exists a
quantum algorithm that outputs η̂ such that

|η̂ − η| ≤ ε

with probability at least 8
π2 . The algorithm makes no more than

π

√
η(1 − η) + ε

ε

calls to RΠ and Rψ.

Proof. By Theorem 28, this will require m queries, where m is a solution to the following
quadratic equation:

2π
√
η(1 − η)
m

+ π2

m2 ≤ ε ⇒ m ≥ π

√
η(1 − η) + ε

ε
≥ π

√
η(1 − η) +

√
η(1 − η) + ε

2ε . ◀

With that, we are ready to explain the modifications to Algorithm 1 that achieves a
quartic speedup in the dependency on k.
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▶ Theorem 30. Let |ψ⟩ be an unknown n-qubit pure state prepared by a unitary U for
n ≥ 33, and let k ≤ 4

52n/12. There exists a quantum algorithm that distinguishes whether
|ψ⟩ is Haar-random or a state with stabilizer fidelity at least 1

k , promised that one of these
is The case. The algorithm uses O

(
k3 log(1/δ)

)
applications of either U or U † and time

O
(
nk3 log(1/δ)

)
, and distinguishes the two cases with success probability at least 1 − δ.

Proof. We first define the Bell difference sampling projector on x as

Πx :=
∑
y∈F2n

2

|Wy⟩⟨Wy| ⊗ |Wx+y⟩⟨Wx+y| .

Note that this is simply a compact way of writing the Bell difference sampling procedure: the
probability of sampling x is qψ(x) = ∥Πx |ψ⊗4⟩∥.4 We can also perform the projective mea-
surement Pψ,x := Wx |ψ⟩⟨ψ|Wx = WxU |0⟩⟨0|U†Wx, where this measurement is performed
by applying Wx, U†, and then measuring in the computational basis. We can entangle Πx

and Pψ,x to form the following projector:

M =
∑
x∈F2n

2

Πx ⊗ Pψ,x.

Building M involves controlled applications of Wx according to the Bell difference sampling
outcome. Observe that

⟨ψ⊗5|M |ψ⊗5⟩ =
∑
x∈F2n

2

⟨ψ⊗4|Πx|ψ⊗4⟩ · ⟨ψ|Pψ,x|ψ⟩ = E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
.

Hence, we can run QAE with the input projector M and the input state |ψ⊗5⟩, and the
output will be an estimate of η whose accuracy depends on m, the number of total calls to
RΠ and Rψ.

Proving the sample complexity bound will mimic Theorem 23. Suppose |ψ⟩ is a state with
stabilizer fidelity at least 1

k . Define ηmin := 1
k6 , and note that for any state with stabilizer

fidelity at least 1
k , η ≥ ηmin due to Lemma 15. For our algorithm to succeed, recall from the

proof of Theorem 23 that we need

|η̂ − η| ≤ | 2
3k6 − η|.

Therefore, we can run QAE with a fixed value of m (to be specified later) for an estimate of
η whose accuracy is within ±

(
η − 2

3k6

)
. By Corollary 29,

m ≥ π

√
η(1 − η) + η − 2

3k6

η − 2
3k6

(2)

queries suffice. The chosen value of m must work for all η ∈ [ 1
k6 , 1]. Note that Equation (2) is

monotonically decreasing for η ∈ [ 2
3k6 , 1), and is therefore maximized by ηmin for η ∈ [ 1

k6 , 1].
To succeed with probability at least 8

π2 ,

m ≥ 4πk3 ≥ π
√

12k6 − 9 = π

√
ηmin(1 − ηmin) + ηmin − 2

3k6

ηmin − 2
3k6

calls to RΠ and Rψ suffices.

4 Indeed, this is the way Gross, Nezami, and Walter [13] introduce Bell difference sampling.
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Now suppose |ψ⟩ is a Haar-random state. Again, by Lemma 15, we know that η ≤ 2−n/2

with probability 1 − e−2
√

2 for n ≥ 33. Assuming η ≤ 2−n/2 and using Corollary 29, as long
as we have

m ≥
√

6πk3 ≥ π

√
2−n/2(1 − 2−n/2) + 2

3k6 − 2−n/2

2
3k6 − 2−n/2 ≥ π

√
η(1 − η) + 2

3k6 − η

2
3k6 − η

queries to RΠ and Rψ, we obtain the correct answer with probability at least 8
π2 . In the

inequalities above we use similar reasoning to the stabilizer fidelity 1
k case, combined with

the fact that 2−n/2 ≤ 1
3k6 .

Finally, since RΠ and Rψ use a constant number of calls to U and U†, the total number
of calls is O(k3). Chernoff-Hoeffding can be used to bring the success probability from 3/4
to 1 − δ using 6 ln(1/δ) repetitions. The runtime includes an extra factor of O(n), due to
the linear cost of both preparing Wx and the Bell difference sampling projector, giving a
O
(
nk3 log(1/δ)

)
time complexity. ◀

B On the Tightness of Our Analysis

We argue that the first part of Lemma 15 is polynomially-close to optimal. We begin by
computing the stabilizer extent and stabilizer fidelity of Clifford magic states. The two
technical ingredients involved in the computation are due to Bravyi et al. [6].

▶ Fact 31 ([6, Proposition 2]). Let |ψ⟩ be a Clifford magic state. Then, ξ(|ψ⟩) = FS(|ψ⟩)−1.

▶ Fact 32 ([6, Proposition 1]). Let {|ψ1⟩ , |ψ2⟩ , . . . , |ψL⟩} be any set of states such that each
state |ψj⟩ describes a system of at most 3 qubits. Then,

ξ(|ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψL⟩) =
∏
i

ξ(|ψi⟩).

It is well known that the m-fold tensor product of |T ⟩ := 2−1/2(|0⟩+eiπ/4 |0⟩) is a Clifford
magic state. Using the facts above, we can compute the stabilizer extent and stabilizer
fidelity of |T⊗m⟩.

▶ Fact 33.

ξ(|T⊗m⟩) = (cosπ/8)−2m and FSm(|T⊗m⟩) = (cosπ/8)2m
.

Proof. By Fact 32, the stabilizer extent of |T⊗m⟩ is simply the stabilizer extent of |T ⟩ raised
to the power m. By Fact 31, the stabilizer extent is the inverse of the stabilizer fidelity.
Hence, the result follows simply by showing that the stabilizer fidelity of |T ⟩ is cos(π/8)2,
which can be verified by explicit calculation over the 6 different 1-qubit stabilizer states. ◀

Next, we compute η for the state |T⊗m⟩.

▷ Claim 34. Let |ψ⟩ = |T⊗m⟩ and define η := Ex∼qψ [2npψ(x)]. Then, η = (5/8)m.

Proof. We begin by writing out |T ⟩⟨T | as a sum of Pauli matrices. By definition,

|T ⟩⟨T | = 1
2

(
I + 1√

2
X + 1√

2
Y

)
.
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We wish to compute
∑
x∈F2m

2
p̂ψ(x)3. We know that every such Pauli with nonzero p̂ψ(x)

is a tensor product combination of I, X, and Y , so we enumerate over the number of indices
where an X or Y appear.

∑
x∈F2m

2

p̂ψ(x)3 = 1
26m

m∑
k=0

(
m

k

)
1

23k · 2k = 1
64m

m∑
k=0

(
m

k

)
1
4k =

(
5

256

)m
.

Thus, by Fact 16,

η = 32m
∑
x∈F2m

2

p̂ψ(x)3 =
(

5
8

)m
. ◁

Combining Claim 34 with Lemma 15, we have

FS(|ψ⟩) ≤ η1/c =
(

5
8

)m/c
for c = 6 (Lemma 15). But, from Fact 33, we know that FS(|T⊗m⟩) = (cosπ/8)2m.
Combining the two statements gives

(cosπ/8)2m ≤ (5/8)m/c.

c ≈ 2.97 is the minimum c that does not violate this inequality. Hence, one cannot hope for
much more than a quadratic improvement in our bound.
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Abstract
In this paper we study two fully-dynamic multi-dimensional vector load balancing problems with
recourse. The adversary presents a stream of n job insertions and deletions, where each job j is a
vector in Rd

≥0. In the vector scheduling problem, the algorithm must maintain an assignment of the
active jobs to m identical machines to minimize the makespan (maximum load on any dimension on
any machine). In the vector bin packing problem, the algorithm must maintain an assignment of
active jobs into a number of bins of unit capacity in all dimensions, to minimize the number of bins
currently used. In both problems, the goal is to maintain solutions that are competitive against
the optimal solution for the active set of jobs, at every time instant. The algorithm is allowed to
change the assignment from time to time, with the secondary objective of minimizing the amortized
recourse, which is the average cardinality of the change of the assignment per update to the instance.

For the vector scheduling problem, we present two simple algorithms. The first is a randomized
algorithm with an O(1) amortized recourse and an O(log d/ log log d) competitive ratio against
oblivious adversaries. The second algorithm is a deterministic algorithm that is competitive against
adaptive adversaries but with a slightly higher competitive ratio of O(log d) and a per-job recourse
guarantee bounded by Õ(log n+log d log OPT). We also prove a sharper instance-dependent recourse
guarantee for the deterministic algorithm.

For the vector bin packing problem, we make the so-called small jobs assumption that the size
of all jobs in all the coordinates is O(1/ log d) and present a simple O(1)-competitive algorithm with
O(log n) recourse against oblivious adversaries.

For both problems, the main challenge is to determine when and how to migrate jobs to maintain
competitive solutions. Our central idea is that for each job, we make these decisions based only on
the active set of jobs that are “earlier” than this job in some ordering ≺ of the jobs.
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1 Introduction

In this paper, we consider two central problems in dynamic allocation of multi-dimensional
jobs to machines. As a motivation, consider a common scenario in data center scheduling:
there are a set of identical machines each with a specified capacity vector over d different
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resources such as CPU, DRAM, SSD, network bandwidth, etc. A set of jobs arrive to and
depart from the system, with each job being characterized by its resource requirement in each
of the d dimensions. The goal is to dynamically maintain an allocation of jobs to machines
in a load-balanced manner while making as few reassignments as possible. There are two
classical notions of formalizing the goal of balanced assignment: vector scheduling and vector
bin packing.

▶ Problem 1 (OnlineVectorSched). An instance to the problem consists of a collection
M of m identical machines with d resources, and a set of active jobs A(t) at each time t, with
A(0) = ∅. At time t = 1, 2, . . .,n, A(t) is updated by either the insertion of a new job j, or the
removal of an existing job in A(t − 1). Each arriving job j is characterized by a load vector
p(j) ∈ Rd

≥0 indicating its resource requirements. The goal is to maintain an assignment
ft : A(t) → M to minimize the makespan at time t, maxm∈M maxk∈[d]

∑
j∈A(t):f(j)=m pk(j).

The algorithm can reassign jobs from one machine to another, and the total number of times
any job is reassigned is called its recourse.

▶ Problem 2 (OnlineVectorBinPack). An instance to the problem consists of a collection
M of identical machines/bins with d resources each and a capacity of 1 for each resource,
and a set of active jobs A(t) at each time t, with A(0) = ∅. At each time t = 1, 2, . . . , n,
A(t) is updated by either the insertion of a new job j, or the removal of an existing job
in A(t − 1). Each arriving job j is characterized by a load vector p(j) ∈ Rd

≥0 indicating
its different resource requirements. The goal is to maintain an assignment ft : A(t) → M

to minimize the number |ft(A(t))| of machines used,1 while ensuring that each machine is
feasible, i.e., maxm∈M maxk∈[d]

∑
j∈A(t):f(j)=m pk(j) ≤ 1. The algorithm can reassign jobs

from one machine to another, and the total number of times any job is reassigned is called
its recourse.

▶ Definition 3. We say that an online algorithm is (α, β)-competitive for OnlineV-
ectorSched if for all times t, the cost of the algorithm’s schedule ft is at most α times
the cost of the optimal makespan for A(t), and the total recourse over all jobs is at most βt.
Similarly, an online algorithm is (α, β)-competitive for OnlineVectorBinPack if for all
times t, the number of bins used by the algorithm to pack A(t) is at most α times that of the
optimal packing for the jobs A(t), and the total recourse over all jobs is at most βt.

One motivation for competitive vector scheduling against the current optimal comes from
bandwidth sharing [20]. Assume that the machines correspond to m network connections,
and the jobs correspond to video streaming requests. Since the network connections have
limited bandwidth, a common technique to handle multiple streams is to throttle the video
quality, where the quality of all the jobs sharing a network connection is a decreasing function
of the total load of the network connection. It is now quite reasonable to see that competitive
guarantees against peak optimal are unsatisfactory. A motivation for dynamic bin packing
comes from real-time capacity provisioning of data centers where the goal is to aggregate the
active workload on a few servers and power off idle servers to minimize energy cost. In both
settings, migration of jobs causes overheads, and therefore minimizing the recourse is an
important metric. However, beyond these two examples, vector scheduling and packing are
fundamental problems that appear as a motif in many applications and are central objects
of study in theoretical computer science where they have been studied both in offline and
online settings and in scalar and vector variants. Our work is the first that fills an important
gap in this literature – on vector scheduling and packing with both arrivals and departures.

1 Here we use the notation that f(X) is the range | ∪j∈A(t) f(j)| of the function over the input X.
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1.1 Results and Paper Outline
In Section 2 we consider the fully dynamic online vector scheduling problem, and present
a randomized algorithm with O

(
log d

log log d

)
competitive ratio and O(1) amortized recourse

against oblivious adversaries.

▶ Theorem 4. There is an efficient randomized (O(log d/ log log d), O(1))-competitive al-
gorithm for OnlineVectorSched against oblivious adversaries (where the sequence of job
insertions and deletions is independent of the algorithm’s random choices).

We remark that even in the only insertions setting, there is an optimal lower bound of
Ω
(

log d
log log d

)
[16] on the competitive ratio of online algorithms for Vector Scheduling (with no

recourse). Thus, by using a small O(1) amortized recourse, our algorithm matches the same
O
(

log d
log log d

)
factor competitive ratio while being able to handle deletions as well.

Often, however, it is a desirable characteristic to have algorithms competitive against
adaptive adversaries, since the clients/jobs could selfishly try to tailor their job’s load vector
by splitting or aggregating depending on the state of the system. To address this concern,
we obtain a simple deterministic algorithm that is competitive against adaptive adversaries,
albeit with a slightly worse recourse. We present this algorithm in Section 4.

▶ Theorem 5. There is an efficient deterministic O(log d)-competitive algorithm for On-
lineVectorSched against adaptive adversaries where any job j has recourse at most
Õ(log nmax + log d log Optmax

Optmin
). The quantities Optmax and Optmin are the maximum and min-

imum values, respectively, of the optimal makespan during the lifespan of j, and nmax denotes
the maximum size of the active set of jobs during the lifespan of j.

In Section 3, we study the fully dynamic online vector bin packing problem. For the
OnlineVectorBinPack problem with general vectors, even the offline problem has strong
lower bounds of Ω(d1−ϵ) on the approximation ratio in a complexity-theoretic sense due to
connections with graph coloring [8, 9], and in the online setting, an information-theoretic lower
bound of Ω(d1−ϵ) was shown by [4]. Hence, the prior works [3] for OnlineVectorBinPack
designed online algorithms with e + O(ϵ)-competitive ratio for the OnlineVectorBinPack
problem with the small-jobs assumption, where every 0 ≤ pk(j) ≤ Θ( 1

log d ), when there
are arrivals only. We extend this framework to design fully dynamic algorithms with O(1)-
competitive ratio and O(log n) recourse for the OnlineVectorBinPack problem with the
small-jobs assumption.

▶ Theorem 6. There is an efficient randomized (O(1), O(log n))-competitive algorithm for
OnlineVectorBinPack against oblivious adversaries when all the jobs are small.

Key Algorithmic Technique

All our algorithms build on the state-of-the-art online algorithms for the arrival-only versions
of the vector scheduling and vector bin packing problem, and the competitive ratios of all our
algorithms match the known competitive ratios for the arrival-only versions. However, a naive
implementation of the existing algorithms would only give guarantees against the peak value
of the optimal, which is defined by Ôpt(t) := maxt′≤t Opt(t), since they all rely on some form
of guessing-and-doubling ideas baked into the algorithms which need monotonicity of the
optimal value. Moreover, a straightforward generalization of the existing online arrival-only
algorithms to make them competitive against the current optimal Opt(t) of the active set of
jobs potentially leads to a large recourse.
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To overcome these hurdles, our crucial idea is to maintain a total ordering ≺t of all the
jobs currently in the system at time t, and whenever we need to make a recourse decision
for a job j, we only look at the jobs which are “earlier” than job j in this ordering. As an
example, in the randomized algorithm for vector scheduling, the ordering ≺t is simply given
by the arrival order of jobs. To make the recourse decision for a job j we compare the load
on its machine due to jobs j′ ≺t j and an estimate of Opt(t) restricted to this set of jobs. The
monotonic non-increasing property of these two quantities during the lifetime of j allows for
a low recourse and a much more tractable analysis. We believe this could serve as a generic
recipe to convert arrivals-only scheduling algorithms to fully dynamic scheduling algorithms
with bounded recourse, with the choice of the ordering ≺t being problem-dependent.

1.2 Related Work
In the offline setting, for the Vector Scheduling problem, Chekuri and Khanna [8] gave a
O(log2 d) factor approximation algorithm. This has been improved to O

(
log d

log log d

)
by Harris,

Srinivasan [15], and Im, Kell, Kulkarni, Panigrahi [16]. Very recently, almost matching
hardness of Ω

(
(log d)1−ϵ

)
has been obtained by Sandeep [19]. For the Vector Bin Packing

problem, the asymptotic PTAS for 1-Dimensional Bin Packing [12] can be extended to give
a d-factor approximation algorithm, and almost matching hardness has been obtained by
Chekuri, Khanna [8, 9]. When d is a fixed constant, improved algorithms with approximation
ratio log d + O(1) have been obtained [8, 5, 6] and matching hardness (up to constants) has
been proved recently [19].

Online algorithms for Vector Scheduling and Vector Bin Packing with only insertions have
been extensively studied in the literature. For the Vector Scheduling problem, Meyerson,
Roytman and Tagiku [17] gave a O(log d) competitive online algorithm. This has been
improved to O

(
log d

log log d

)
by Im, Kell, Kulkarni, and Panigrahi [16] who also showed a

matching lower bound. For the Vector Bin Packing problem, the simple first-fit algorithm [14]
gives a competitive ratio of O(d) and an almost matching lower bound of Ω

(
d1−ϵ

)
was given

by Azar, Cohen, Kamara, and Shepherd [4]. Algorithms for Vector Scheduling and Bin
Packing have also been studied in other settings such as streaming algorithms [11]. The
study of the fully dynamic model for bin packing was initiated in [10] where the metric
of comparison was the peak optimal. Most recently, [13] proposed a constant competitive
algorithm against the current optimal for the scalar version of fully dynamic bin packing. For
fully dynamic scheduling in the scalar case, Westbrook [20] was the first to give competitive
algorithms with low approximation ratio against the current optimal for both identical and
related machines.

2 Randomized algorithm for Vector Scheduling

In this section, we present a simple randomized algorithm for fully dynamic vector scheduling
against an adversary who does not have access to the randomness of the algorithm (an
oblivious adversary). At a high level, our algorithm builds on that of [16] for online vector
scheduling with only arrival of jobs. We first briefly discuss the algorithm in [16], which
we call Random+Greedy. The algorithm assumes that the maximum load of an optimal
solution is at most 1 (by using a standard guess-and-double trick to guess the value of Opt
and normalizing all coordinates by Opt).

The algorithm maintains two copies of the m machines MR and MS , and places every
incoming job into one of the two copies. Every arriving job chooses a uniformly random
machine r(j) in MR as its tentative choice. If the total load of all jobs scheduled on r(j) is



V. Gupta, R. Krishnaswamy, S. Sandeep, and J. Sundaresan 65:5

at most a fixed threshold of λ in every dimension, then the algorithm freezes this assignment.
On the other hand, if some dimension’s load exceeds λ, then the job is instead inserted to
MS , where it is scheduled in a greedy manner. By definition, all the machines in MR have
load at most λ in every coordinate, and moreover, a simple Chernoff bound shows that,
because Opt ≤ 1, the probability of any job being inserted in MS is at most Θ(1/d) for
λ = Θ(log d/ log log d). Therefore, we get that the total load on any machine in MS in any
coordinate is at most d · Θ(1/d) ≤ Θ(1) since the greedy algorithm is O(d)-competitive for
d-dimensional vector scheduling. By simply combining the copies MR and MS , we get a
schedule with competitive ratio of (λ + O(1)) = Θ(log d/ log log d).

2.1 Hurdles and Resolutions

Our main contribution in this section is what we think is the right generalization of this
algorithm for the fully-dynamic vector scheduling problem when jobs can arrive and depart.
We first discuss the issues we encounter. Indeed, firstly, we can no longer employ the
guess-and-double strategy (and other normalization ideas based on Opt) which the prior
algorithms for insertion do, since the Opt(t) is a non-monotone quantity when there are
deletions at play. Secondly, a priori there is no clear choice of the threshold λ above, and also
which jobs to migrate if a machine in MR incurs a large load due to Opt(t) dropping a lot.

We resolve the first issue by not performing any normalizations and working with the
current estimates of Opt(t) at all times t. To deal with the second issue (of lacking a clear
threshold λ), we instead use a job-dependent threshold λj ≈ λ · Opt(⪯ j) where Opt(⪯ j) is
the optimal makespan when considering only the active jobs which arrived before j. This
helps us maintain low-recourse solutions as jobs arrive and depart since this quantity is
non-increasing during the entire period in which j is active. Indeed, in our algorithm, a job
stays in MR for some amount of its lifetime, and then permanently switches over to the
greedy copy MS when the load criterion on its random machine exceeds the dynamic value
of λj .

While this is sufficient for recourse, we also need to ensure that the probability that a job
ever switches to MS is at most O(1/d), since the greedy algorithm is only O(d)-competitive.
Naively using a threshold of L = Θ(log(dT )), where T is the number of time steps during
which a job is active, will allow us to use a union bound over all these time steps but will
result in a competitive ratio of Θ(log(dT )). To avoid the dependence on T , our idea is to
check if a job needs to migrate only at certain points of time to get a geometric series which
converges to Θ(1/d) for L = Θ

(
log d

log log d

)
. This requires us to control the variance of the

desired random variables, for which we employ a standard idea of partitioning jobs into
classes based on the value of the maximum size in any dimension. Indeed, there are examples
where without this additional step, the competitive ratio would worsen to Ω(d) against the
current optimal cost.

2.2 Algorithm Description

We maintain a total ordering ≺t of the active jobs A(t) at any time step, given by the arrival
times of the jobs. The crucial idea in our algorithm to ensure bounded recourse is that every
job j makes its high-level decisions purely based on the set of jobs {j′ : j′ ⪯t j}, which forms
a monotonically decreasing set during j’s lifespan. We use a parameter λ = 3C log d

log log d for a
suitable constant C.
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Our algorithm partitions the active jobs A(t) into two kinds: regular jobs R(t) and
spillover jobs S(t). We maintain separate scheduling assignments for R(t) and for S(t) using
different algorithms. For convenience, we keep two copies of the m machines, with the first
copy denoted as MR (for random assignments), and the second copy denoted as MS (for
greedy assignments). We drop the t subscript when the context is clear.

Step 1: Rounding and Partitioning into Classes. For a cleaner presentation, we round
up the load values pk(j) for every j and k ∈ [d] to the nearest power of 2. This operation
incurs at most a 2 factor increase in the competitive ratio. We partition the jobs based on
maxk∈[d] pk(j), i.e., we place a job j in class l, i.e., j ∈ Cl if and only if maxk∈[d] pk(j) = 2l.
For any job j, we let cl(j) denote its class. Note that for all jobs j ∈ Cl and all dimensions k,
pk(j) ≤ 2ℓ.

Defining Job-Dependent Migration Thresholds. We formally define some thresholds for
every job, using which we shall decide whether to place a job in R(t) or migrate it to S(t).
To this end, we consider the following dynamic thresholds. In our algorithm, every job will
be assigned a random value σ(j) ∈ [m] (essentially a random machine choice), which does
not change over time. For every job j ∈ A(t) and dimension k ∈ [d], we define the following
parameters.

ExpLoadk(j) =
∑

j′≺tj,cl(j)=cl(j′) pk(j)
m

ActLoadk(j) =
∑

j′≺tj,cl(j)=cl(j′),σ(j)=σ(j′)

pk(j)

The idea is that since σ is a random choice, ActLoadk(j) should be comparable to ExpLoadk(j),
and can exceed λExpLoadk(j) with low probability.

Step 2: Algorithm for Insertion and Deletion of Jobs. We now present our full algorithm
for insertions and deletion of jobs in Algorithm 1 and Algorithm 2.

Algorithm 1 Insert(job j with load vector p(j) ∈ Rd
≥0).

1: Choose a machine σ(j) uniformly at random from [m].
2: Compute cl(j) and the values ExpLoadk(j) and ActLoadk(j) w.r.t A(t) and ⪯t.
3: Set job thresholds to be τk(j) = (ExpLoadk(j) + 2cl(j)) for every dimension k.
4: if ActLoadk(j) ≤ λ · τk(j) for every k ∈ [d] then
5: Assign j to the machine σ(j) and place j ∈ R(t).
6: else
7: Insert j to the Spillover instance S(t).
8: end if

Spillover section algorithm. For the spillover instance, whenever our algorithm inserts a
job j into S(t), we simply flatten the vector into a 1-dimensional load p̄j = 2cl(j), and feed it
as an insertion into the fully-dynamic 1-dimensional load balancing algorithm of Westbrook
[20, Section 2]. Similarly, when our algorithm deletes a job j from S(t), we simply delete
the 1-dimensional job p̄j from the spillover instance using the same algorithm. Internally,
upon every insertion or deletion, this algorithm might perform some recourse, but the overall
amortized recourse is at most O(1) per update. Moreover, this algorithm is O(1)-competitive
w.r.t the current optimal of the spillover instance.
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Algorithm 2 Delete(job j).

1: if j is in the Spillover instance S(t) then
2: Delete j from the Spillover instance which is running the 1d-Alg.
3: else
4: for all active jobs j′ ≻t j which are in R(t) do
5: if for all k, current threshold ExpLoadk(j′) + 2cl(j′) ≥ τk(j′)/2 then
6: Do nothing.
7: else
8: Update job thresholds τk(j′) = (ExpLoadk(j′) + 2cl(j′)) for every dimension k.
9: if ActLoadk(j′) > λ · τk(j′) for some k ∈ [d] then

10: Remove j′ from R(t) and add it to S(t)
11: Remove j′ from current machine σ(j), and insert it to the Spillover instance.
12: end if
13: end if
14: end for
15: end if

2.3 Analysis
2.3.1 Competitive ratio analysis
The first step is to bound the probability that a job ever becomes a spillover job and gets
assigned to S(t). Towards that end, we begin by recalling the following Chernoff-Hoeffding
bound.

▶ Theorem 7 (See e.g., [18]). Let X1, X2, . . . , Xn be independent Bernoulli random variables
and let a1, a2, . . . , an be coefficients in [0, 1]. Let X =

∑
i aiXi, and let µ = E[X]. Then, for

every δ > 0,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

Using Theorem 7, we obtain the following concentration inequality regarding the linear
summation of Bernoulli random variables.

▶ Lemma 8. Fix integers d, n, m ≥ 2. Suppose that X1, X2, . . . , Xn are independent Bernoulli
random variables each taking value 1 with probability equal to 1

m . Let Y := a1X1 + a2X2 +

. . . + anXn be a random variable where ais are positive reals. Let L1 :=
∑n

i=1
ai

m and
L2 := maxi∈[n] ai, and λ = 3C log d

log log d for an absolute constant C. Then,

Pr (Y ≥ λ(L1 + L2)) ≤
(

1
d

)C(L1+L2)
L2

We now prove a key lemma that we use to bound the competitive ratio of the algorithm.

▶ Lemma 9. At any point of time, for any job j, the probability that j is in the Spillover
section is at most 1

d .

Proof. Note that the job j is moved to the Spillover section if at some point in the execution
of the algorithm, for some k, we have ActLoadk(j) > λ · τk(j) = λ(ExpLoadk(j) + 2cl(j)),
either in Algorithm 1 in Algorithm 1, or when some job j ≺ j′ gets deleted in Algorithm 2
in Algorithm 2.
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By using Lemma 8 on the set of jobs {j′ ⪯t j : cl(j′) = cl(j)}, we get that the probability of

this happening is at most
( 1

d

)C
ExpLoadk(j)+2cl(j)

2cl(j) . Here, we are using the fact that the assignments
of machines to the jobs are mutually independent, and since we are operating in the oblivious
adversary setting, the machine assignments remain independent throughout the execution
of the algorithm. Moreover, this is the place where we use the fact that all jobs in class
cl(j) have all load in any dimension bounded by 2cl(j), and this is why the algorithm only
considers jobs of the same class for migration.

Note that the above probability is at most
( 1

d

)C for every value of ExpLoadk(j) and 2cl(j).
Furthermore, suppose that ExpLoadk(j)

2cl(j) = α, then the above probability is equal to
( 1

d

)C(1+α).
Finally, observe that for any dimension, this check occurs only when the threshold τk(j)
halves, hence we get that the 1 + α value has to be halving, eventually ending up at 1. Thus,
for every k, the probability that the event ActLoadk(j) > λ(ExpLoadk(j) + 2cl(j)) happens at
any check point in the execution of the algorithm is at most(

1
d

)C

+
(

1
d

)2C

+
(

1
d

)4C

+ . . . ≤
(

1
d

)C−1

Taking a further union bound over all dimensions k ∈ [d], we get the required claim when we
set C to be large enough. ◀

We are now ready to bound the competitive ratio of the algorithm.

▶ Lemma 10. At any point in time, the expected maximum load of the algorithm is at most
λ + O(1) times the current optimal cost.

Proof. Fix a time t, machine i ∈ [m] and dimension k ∈ [d]. We bound the load on the
Random segment and the Spillover segment separately. Note that if a job j is in the Random
segment, we have

ActLoadk(j) ≤ 2λ(ExpLoadk(j) + 2cl(j))

for every k ∈ [d], because the condition ActLoadk(j) ≤ λ(ExpLoadk(j) + 2cl(j)) is satisfied if
the job chose to remain in R(t) at the last time the check happened either in Algorithm 1
in Algorithm 1, or when some job j ≺ j′ gets deleted in Algorithm 2 in Algorithm 2.
Moreover, subsequently, the threshold has not halved (else we would have run Algorithm 2
in Algorithm 2 with the updated threshold). For an integer l, we let jmax

l be the latest job
that has arrived that is in the partition l: jmax

l := max{j ∈ R(t) : j ∈ Cl}.
We first bound the load (henceforth referred to as loadr) on machine i ∈ [m] at time t in

dimension k in the Random segment.

loadr =
∑

j∈R(t):σ(j)=i

pk(j)

≤
∑

l:Cl ̸=∅

(ActLoadk(jmax
l ) + 2l)

≤
∑

l:Cl ̸=∅

(
2λ(ExpLoadk(jmax

l ) + 2l) + 2l
)

≤ 2λ
∑

l

∑
j∈Cl

pk(j)
m

+ 3λ
∑

l:Cl ̸=∅

2l

≤ 2λ

∑
j∈R(t) pk(j)

m
+ 6λ max

j∈R(t)
max
k∈[d]

pk(j)

≤ O(λ) · Opt(t).
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In the first inequality above, we bound the total load in each class in each dimension by the
active load of the last job (plus its own load). In the second inequality, we use the stability
condition of why a job stays in the set R(t). The third inequality uses the definition of ExpLoad,

and the last one uses the straightforward lower bound on Opt(t) ≥ maxk

∑
j∈A(t)

pk(j)
m and

Opt(t) ≥ maxk maxj∈A(t) pk(j).
We now bound the load (henceforth referred to as loads) on machine i ∈ [m] at time t

in dimension k in the Spillover segment. Note that by the algorithm [20, Section 2], we get
that the maximum load on any machine in the Spillover segment is at most O(1) times the
sum of the average load and maximum load of a machine. Thus, we get

loads ≤ O(1)

 ∑
j∈S(t)

2cl(j)

m
+ max

j∈S(t)
2cl(j)

 ≤ O(1)

 ∑
j∈S(t)

2cl(j)

m
+ Opt(t)


Using Lemma 9, we get

E[loads] ≤ O(1)

 ∑
j∈A(t)

2cl(j)

dm
+ Opt(t)


≤ O(1)

 ∑
j∈A(t)

∑
k∈[d] pk(j)

dm
+ Opt(t)


≤ O(1)

(
maxk∈[d]

∑
j∈A(t) pk(j)

m
+ Opt(t)

)
≤ O(1)Opt(t)

Thus, we get that the expected load on any machine in any dimension is at most O(λ)
times the current optimal maximum load Opt(t). ◀

2.3.2 Recourse analysis

Finally, we analyze the recourse of the algorithm.

▶ Lemma 11. The amortized recourse of this algorithm is O(1) over a sequence of arrivals
and departures. Moreover, reassignments happen only when some job j departs.

Proof. During any insertion, the incoming job is assigned to either R(t) or S(t) and no
job is reassigned to any other machine. If the job j stays in the Random segment, it does
not change its assignment throughout the course of execution of the algorithm. At some
point, it might move to the Spillover segment, where it is treated as an insertion to the
1-dimensional greedy load balancing algorithm of [20, Section 2]. From [20, Section 2], the
amortized number of reassignments for this greedy algorithm is at most 2. Thus, overall, in
expectation, the amortized number of reassignments of our overall algorithm is at most O(1)
per update. ◀
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3 Fully Dynamic Vector Bin Packing

3.1 Algorithm Description
We maintain a total ordering ≺t of the active jobs A(t) given by the arrival times of the jobs.
As in Section 2, the crucial idea is to ensure any job makes its migration decisions purely
based on the set of jobs {j′ :⪯t j}. Since this criterion is not affected by jobs that arrive
subsequently, and only changes monotonically (when jobs arriving earlier are deleted), the
recourse of our algorithm can be bounded favorably.

In more detail, our algorithm partitions the active jobs A(t) into two kinds: regular jobs
R(t) and spillover jobs S(t). We maintain separate bin packing assignments for R(t) and
for S(t) using different algorithms. For convenience, we keep a distinct set of indices (to
represent the ID of the bin) for the two kinds – we use the bins numbered 1, 2, . . . for the
regular jobs, and a different range of indices cover the spillover bins. At times, jobs might
migrate between the two kinds, but we shall bound the total number of migrations. Our
assignment within R(t) will not perform any recourse, while our assignment algorithm within
S(t) will perform O(1)-amortized recourse per update to S(t).

With a slight abuse of notation, let loadk
t (⪯t j) =

∑
j′⪯tj pk(j) denote the total load on

dimension k for jobs occurring before (and including) j in the ordering ≺t. We divide the
bins serving the regular jobs into partitions, with partition Pi containing 2i−1 bins indexed
{2i−1, 2i−1 + 1, . . . , 2i − 1} for i ≥ 1. A crucial component of our algorithm is the following
procedure, SetPart, which determines which partition a job is placed into at all points in
time.

Algorithm 3 SetPart(job j with load vector p(j) ∈ Rd
≥0).

1: Set part(j) to be argmin i ≥ 1 s.t maxk loadk
t (⪯t j) ≤ 2i−2, i.e., smallest i ≥ 1 such that

the total load on every dimension of jobs up to and including j is at most 2i−2

Algorithm 4 Insert(job j with load vector p(j) ∈ Rd
≥0).

1: Run SetPart(j) to compute the partition i := part(j) the job j belongs to
2: Job j chooses a uniformly random bin r(j) ∈ Pi

3: if maxk

∑
j′⪯j:r(j′)=r(j) pk(j′) ≤ 1, i.e., j can feasibly pack in bin r(j) then

4: Set assignment to be f(j) = r(j), and add j to the set of regular jobs R(t)
5: else
6: Add j to spillover jobs S(t) and insert j to the spillover instance
7: end if

Spillover Assignment Algorithm. For the spillover instance, whenever our algorithm inserts
a job j into S(t), we simply flatten the vector into a 1-dimensional load p̄j =

∑
k pk(j),

and feed it as an insertion into any O(1)-competitive O(1)-recourse fully-dynamic algorithm
denoted by 1d-Alg for bin packing, such as [13]. When the job is removed from S(t), either
by an adversarial deletion or by Delete algorithm when some job is being deleted, we treat it
as a delete request to the 1d-Alg.

3.2 Analysis
We first show the competitive ratio analysis and then bound the recourse.
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Algorithm 5 Delete(job j).

1: Remove j from the bin f(j) it belongs to, and from the corresponding set R(t) or S(t)
accordingly

2: for all jobs j′ ≻ j do
3: Let iold := part(j′) denote its current partition
4: Run SetPart(j′) and let inew := part(j′) denote its new partition
5: if iold ̸= inew then
6: Remove j′ from its appropriate set R(t) or S(t), and from its current bin f(j′)
7: Run Insert(j′) ▷ Note that j′ still retains its position in ≺ ordering.
8: end if
9: end for

▷ Claim 12. For any job, the part(j) to which it is assigned is non-increasing over time.

Proof. The proof is straightforward because the part(j) of a job can change only when
SetPart(j) is called. Moreover, the SetPart(j) only considers the total load of all active jobs
which arrived before j to determine the partition. Since this is a non-increasing function of
time, the claim follows. ◁

▶ Lemma 13. At any time step t, if there exists any job j ∈ A(t) with part(j) = i, then
Opt(t) ≥ 2i−3.

Proof. Consider the latest time t′ ≤ t when j’s partition is updated by a call to SetPart(j).
Indeed, by definition of the Delete process, we know that there can be no deletions among
jobs j′ ⪯ j after t′, i.e., {j′ : j′ ⪯t′ j} = {j′ : j′ ⪯t j}. Hence, we know that at time t′ (and
therefore at time t also), there exists some dimension k such that

∑
j′⪯t′ j pk(j′) ≥ 2i−3, i.e.,

the dimension-k load of all active jobs up to j at time t′ exceeds 2i−3. Since none of these
jobs j′ ⪯t′ j are deleted between time steps t′ and t, we get our desired lower bound on
Opt(t). ◀

▶ Lemma 14. For any job j, at all time steps, the probability that it belongs to S(t) is at
most O(1/d).

Proof. Consider the latest time t′ prior to t when Insert(j) is invoked: this function determines
whether j ∈ R(t′) or j ∈ S(t′), and subsequently, this assignment has not changed till time
step t. Now suppose j was placed in the spillover set S(t′), we show this happens with low
probability. To this end, suppose j determined its part(j) to be i. This means that for the
random choice r(j′) ∈ Pi, the total load on some dimension k of other jobs up to j′ ≺t′ j in
Pi which chose the same bin r(j′) is at least 1 − ϵ2/d. However, since part(j) = i, we know
that the total load of all jobs j′ ≺t′ j on any dimension k is at most loadk

t′(≺ j) ≤ 2i−2. Since
each of these jobs j′ in the set Pi ∩ j′′ ≺t′ j chose a uniformly random bin r(j′) from one of
2i−1 many bins in Pi, the expected load in the particular machine r(j) is at most 1/2. Since
every individual job coordinate is at most Θ(1/ log d), a simple Chernoff bound establishes
that the probability of job j being sent to the spillover set S(t) is at most O(1/d). ◀

▶ Lemma 15. At all times t, the expected number of bins used by our algorithm is at most
O(1)Opt(t), where Opt(t) is the minimum number of bins needed to pack the set A(t) of
active jobs.

Proof. The proof is a simple combination of Lemma 13, Lemma 14, along with the fact that
the 1d-Alg is O(1)-competitive for the 1-dimensional bin packing. Indeed, consider time t

and let jt denote the job which belongs to the largest partition, say i. Then the number
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of bins used by the algorithm to serve regular jobs is at most
∑

i′≤i 2i′−1 ≤ 2i. But we
know that Opt(t) ≥ 2i−3 from Lemma 13. Now for the spillover set S(t), the expected total
volume of jobs in S(t) (after flattening) is E[

∑
j∈S(t)

∑
k pk(j)] ≤ O( 1

d )
∑

j∈A(t)
∑

k pk(j)
from Lemma 14. This in turn is at most O(1) maxk

∑
j∈A(t) pk(j) ≤ O(1)Opt(t). To complete

the proof, note that the number of bins used by 1d-Alg is at most O(1) times the total
(flattened) volume of the instance S(t) due to its O(1)-competitiveness guarantees. ◀

▶ Lemma 16. The amortized recourse of the algorithm is at most O(log n) per insert or
delete update.

Proof. Once a job is assigned a partition i, its bin choice r(j) does not change until the
job migrates to a lower partition, which can happen O(log n) times. Moreover, the total
recourse within the 1d-Alg is at most O(1) times the total number of update operations into
the set S(t), which is also O(log n)T (where T is the length of the input sequence) for the
same reason that a job can migrate between R(t) and S(t) only when its partition changes.
This establishes the O(log n) amortized recourse bound. ◀

4 Deterministic Fully-Dynamic Vector Scheduling

In this section, we present a deterministic algorithm for OnlineVectorSched with O(log d)
competitive ratio and O(log n + log d · log(log d · Optmax/Optmin)) recourse per job, where
Optmax and Optmin are the maximum and minimum value of Opt through the existence of
the job, and n is the maximum size of the active set during its existence.

At a high level, our algorithm maintains a potential function Φ whose value depends on
the current assignment of the active jobs A(t). Moreover, each job additionally maintains a
potential Φ(j), which is seen as its contribution to the overall potential. When a new job
is inserted, we simply assign it to the machine which results in minimum potential, and
Φ(j) is precisely the increase in potential. Now, when a job j is deleted from the active set
A(t), then the potential of the other jobs which are inserted after j on the same machine
will decrease. Hence, we run a stabilize routine, which migrates any job from its current
machine (incurring current potential Φ(j)) to the end of any other machine (incurring what
would be its new potential Φ′(j) were it newly inserted into the other machine) if and only if
Φ′(j) < Φ(j)/2. 2 In other words, we change the assignment of a job if there is a significant
benefit for j w.r.t its potential to bound the recourse. In the scalar case, [2] uses similar
techniques of stabilizing when jobs depart.

The potential Φ is adapted from the scheduling algorithm in 1-dimension of [1]. Indeed,
while many online algorithms use the exponential potential in the algorithms, this requires
some normalization (along with the guess-and-double framework), which is not easy when
there are deletions and Opt(t) is non-monotone. We, therefore, use a potential based on
the sum of the Lq

q norm of the load vector on any machine, which avoids these issues. This
potential has previously been used specifically for problems optimizing the Lq norm objective
itself. Naively used, however, we would need q = Θ(log(md)) for the Lq norm to approximate
the load objective maxk∈[d] maxi∈[m] loadk(i). This would in turn only yield a competitive
ratio of Θ(log(md)). However, we can use stronger properties of the load vector (the fact
that these machines are identical) to conclude that the sum of the dimensions’ potentials for
any two different machines is more or less similar (such ideas have also appeared in [17]), to
obtain improved bounds of Θ(log d).

2 To get an improved recourse, we also use the condition Φ(j) is at least q/n times the Lq
q-norm of the

optimal maximum load for a suitable choice of q = Θ(log d).
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4.1 Useful Notation

At any time t, let ft(·) denote the assignment of jobs to machines maintained by the algorithm.
We also maintain a total ordering ≺t of all active jobs at all times (which unlike Section 2
is not based on the arrival order). Let nt denote the size of A(t). For any machine i, let
loadk

t (i) =
∑

j∈A(t):ft(j)=i pk(j) denote the total load on dimension k at time t. Similarly,
with a slight abuse of notation, let loadk

t (≺t j) =
∑

j′≺tj:ft(j′)=ft(j) pk(j) denote the load
on dimension k for jobs occurring earlier than j in the ordering ≺t which are scheduled on
the same machine as j. Similarly let loadk

t (⪯ j) =
∑

j′⪯j:ft(j′)=ft(j) pk(j) denote the same
quantity, but including job j.

Let f∗
t (·) denote an optimal assignment of jobs in A(t) to machines. For any machine i,

let optloadk
t (i) =

∑
j∈A(t):f∗

t (j)=i pk(j) denote the total load on dimension k at time t under
f∗

t . Let Opt(t) = maxi maxk optloadk
t (i) denote the maximum load in the optimal assignment

over all machines and dimensions.

Total Potential and Job Potentials. For a suitable choice of q > 1, we define a potential
function Φt =

∑
i

∑
k loadk

t (i)q, which is the Lq
q-norm of the load vector. We decompose the

potential as individual job potentials Φt(j), where Φt(j) =
∑

k(loadk
t (⪯t j)q − loadk

t (≺t j)q)
is the contribution to the potential due to j. It is easy to see that Φt =

∑
j∈A(t) Φt(j). When

time t is clear from the context, we will omit writing it for better readability. For example,
we shall use f , loadk(i), ≺, etc. to denote the respective terms at the current time step t.

Finally, let L(i)q =
∑

k loadk(i)q denote the Lq
q-norm of the load vectors of the assignment

from the algorithm in machine i. Let L∗(i)q =
∑

k optloadk(i)q denote the Lq
q-norm of the

load vector in the optimal assignment in machine i and let L∗ = maxi L∗(i). For a cleaner
presentation, we are assuming that we can calculate these quantities exactly, but our proofs
carry through with an approximate lower bound also, with a slightly worse recourse. Moreover,
note these quantities are a function of the active set A(t), and we have just omitted the
references to t since it is clear from the context.

4.2 Algorithm Definition

Algorithm 6 Insert(job j with load vector p(j) ∈ Rd
≥0).

1: Set f(j) to be argmini

∑
k

(
(loadk(i) + pk(j))q − loadk(i)q

)
.

2: Update ≺ by adding j as the last job in the ordering.
3: Update Φ and Φ(j) as defined in Section 4.1. Φ(j′) for all j′ ̸= j remain unchanged.

Algorithm 7 Delete(job j).

1: Remove j from the machine f(j), and from the ordering ≺, and update Φ(j) for all j′ s.t
f(j′) = f(j).

2: Update Φ and Φ(j) as defined in Section 4.1. Φ(j′) for all j′ ̸= j remain unchanged.
3: Run Stabilize sub-routine.

In the next two subsections, we bound the competitive ratio and recourse of this algorithm.
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Algorithm 8 Stabilize.

1: while there exists job j, machine i such that Φ(j) > q(L∗)q/n and Φ(j) >

2
∑

k

(
(loadk(i) + pk(j))q − loadk(i)q

)
do

2: Remove j from its current machine iorig = f(j) and place it in machine i, i.e., set
f(j) = i.

3: Update ≺ by removing j from its current position and adding it as the last job in the
ordering.

4: Update Φ(j) and Φ(j′) for all j′ such that f(j′) = iorig.
5: end while

4.3 Analysis

4.3.1 Competitive Ratio
We know the potential for each job is bounded by the terms in Algorithm 8, as otherwise the
job would be reassigned to other machines which might lead to a lower potential. We will
use this to first bound the sum of the potentials of all the jobs, and then compare the loads
of any two machines, to prove they are not too far apart.

▶ Lemma 17. For a suitable choice of q, the algorithm in Section 4.2 maintains an assignment
with the maximum load on any dimension at most O(log d) · Opt(t) at all times, where Opt(t)
is the maximum load of an optimal assignment for the jobs A(t).

Proof. For the proof, let us fix a time t, and omit all references to the time step t unless
necessary.

We first show that it is sufficient to bound the Lq-norm of the loads of the assignment
the algorithm maintains against the Lq-norm of the optimal assignment when q = log d.

▶ Lemma 18. Opt(t) = Θ(L∗) when q = log d.

Proof. Recall L∗ = maxi L∗(i) and let Opt(i) = maxk optloadk(i).

log L∗(i) = 1
q

log(
d∑

k=1
optloadk(i)q)

≤ 1
q

log(d · Opt(i)q) (by definition of Opt(i))

≤ log d

q
+ log Opt(i)

≤ 1 + log Opt(i)

Hence, Opt(i) ≤ L∗(i) ≤ e · Opt(i). As Opt(t) = maxi Opt(i), we are done. ◀

Now we prove that the maximum load is O(log d) · L∗. We need the following lemma to
be used later.

▶ Lemma 19. [1] (l + r)p ≤ clp + (r( p
ln c + 1))p for any value of c, l, p, r > 0.

This next lemma bounds the total potential of all the jobs, using the condition from
Algorithm 8.

▶ Lemma 20.
∑

i

∑d
k=1 loadk(i)q = O(m · qq(L∗)q).
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The previous lemma suffices to get O(log m) competitive ratio by setting q = Θ(log m).
However, we can go further, by actually showing that the sum of potentials on any two
machines i and i′ are comparable. This will help us get the improved Θ(log d) competitive
ratio.

▶ Lemma 21. L(i) ≤ O(qL∗) for all machines i.

We know maxi,k loadk(j) ≤ L(i) is always less than L(i) for the chosen value of i. From
Lemma 21, the proof follows. ◀

4.3.2 Recourse
Now we will bound the number of times a job can be reassigned to another machine. Each
time a job is reassigned, its potential reduces by half. Moreover, it cannot be reassigned after
its potential drops below q(L∗)q/n at any time t.

▶ Lemma 22. Any job j inserted at time t and deleted at time t′ is reassigned to another
machine O(q log( q·L∗

t

L∗
min

) + log nmax) times where L∗
min = minr:t≤r≤t′ L∗

r, L∗ = L∗
t , nmax =

maxr:t≤r≤t′ |A(r)|.

Proof. The maximum value of the potential for the job is bounded by

Φt(j) =
d∑

k=1

(
loadk(⪯ j)q − loadk(≺ j)q

)
≤

d∑
k=1

q · pk(j)(loadk(≺ j) + pk(j))q−1 (by convexity of xq when x > 0 for q > 1)

≤
d∑

k=1
q · pk(j)(cqL∗

t )q−1 (from Lemma 20, for some c)

≤ q(cqL∗
t )q−1 ·

d∑
k=1

pk(j)

≤ q(cqL∗
t )q−1 · dL∗

t

≤ d(cqL∗
t )q

Therefore, the number of times it is reassigned is bounded by O(log
(

cqL∗
t

L∗
min

)q

· dnmax
q ) =

O(log nmax + q · log(qL∗
t /L∗

min)). ◀

5 Conclusions and Future Directions

In this paper, we have proposed the first algorithms for vector versions of the fully-dynamic
scheduling and bin packing variants, but there are many interesting directions that need
investigation. Two immediate open questions are (i) an O(1) amortized recourse deterministic
algorithm for vector scheduling (with O(log d/ log log d) competitive ratio), and (ii) an O(1)
amortized recourse algorithm for fully dynamic vector bin packing under the small job
assumption (with O(1) competitive ratio). Extension of fully-dynamic vector scheduling
beyond identical machines to related or unrelated machines is a natural next step. The
potential function based algorithm of [17] that we build on in Section 4 gives an O(log m+log d)
competitive ratio for unrelated machines in the arrival only model, so we expect similar
guarantees should be possible for the fully-dynamic setting as well. Finally, moving closer to
applications, algorithms for semi-adversarial instances such as random order or models with
predictions (e.g., [7]) would be interesting and impactful as well.
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Abstract
A distribution is k-incompressible, Yao [FOCS ’82], if no efficient compression scheme compresses it
to less than k bits. While being a natural measure, its relation to other computational analogs of
entropy such as pseudoentropy, Hastad, Impagliazzo, Levin, and Luby [SICOMP ’99], and to other
cryptographic hardness assumptions, was unclear.

We advance towards a better understating of this notion, showing that a k-incompressible
distribution has (k − 2) bits of next-block pseudoentropy, a refinement of pseudoentropy introduced
by Haitner, Reingold, and Vadhan [SICOMP ’13]. We deduce that a samplable distribution X that
is (H(X) + 2)-incompressible, implies the existence of one-way functions.
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1 Introduction

Computational analogs of information-theoretic notions have given rise to some of the
most interesting phenomena in the theory of computation. For example, computational
indistinguishability, a computational analogue of statistical indistinguishability introduced
by Goldwasser and Micali [5], enabled the bypassing of Shannon’s impossibility results on
perfectly secure encryption [15], and provided the basis for the computational theory of
pseudorandomness [2, 21]. Pseudoentropy, a computational analogue of entropy introduced
by Hastad, Impagliazzo, Levin, and Luby [10], was the key to their fundamental result that
established the equivalence of pseudorandom generators and one-way functions and has
become a basic concept in complexity theory and cryptography. Next-block pseudoentropy, a
refinement of pseudoentropy introduced by Haitner, Reingold, and Vadhan [8] and Vadhan
and Zheng [19], has led to simpler and more efficient constructions of pseudorandom generators
based on one-way functions. An analogue of entropy for the realm of unforgeability, named
inaccessible entropy, introduced by Haitner, Reingold, Vadhan, and Wee [9, 6], has led to
simpler and more efficient constructions of statistically hiding commitment and universal
one-way hash functions from one-way functions.
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In contrast to the above, incompressibility, a computational analogue of entropy introduced
by Yao [21], was much less explored. Roughly, a random variable X is k-incompressible, if
there exists no efficient (i.e., poly-time) compression scheme that compresses X to less than
k bits. That is, there exists no efficient encoding scheme (Enc, Dec), i.e., Dec(Enc(x)) = x

for every x ∈ Supp(X), with

E[|Enc(X)|] < k .

(Both X and k are functions of a “security parameter” n, which we omit throughout
the introduction). It is immediate that a pseudorandom distribution of k bits is (k −
O(1))-incompressible.1 More generally, Wee [20] proved that a distribution with k-bits of
pseudoentropy, i.e., computationally indistinguishable from a distribution Y of k-bits of (real)
Shannon entropy, is (k −O(log n))-incompressible. In contrast, the converse direction is less
clear. Barak, Shaltiel, and Wigderson [1] showed how to extract k−ω(log n) (close to uniform)
bits from a k-strongly-incompressible source X, i.e., Pr[|Enc(X)| < k − t] ≤ 2−t for every t.2
Other works showed that incompressibility is unlikely to imply pseudoentropy. Wee [20]
showed that proving that incompressibility implies (similar amount of) pseudoentropy cannot
be done using black-box reductions. Hsiao, Lu, and Reyzin [11] proved that under a certain
cryptographic assumption, there exists a distribution whose conditional incompressibility is
much larger than its conditional pseudoentropy, where conditional means that the compression
and pseudoentropy are measures with respect to a randomly generated common reference
string. Still, the most basic questions remained open:

Does k-incompressibility imply having a different, natural, type of “pseudoentropy”?
Does non-trivial incompressibility, i.e., sufficiently larger than the real entropy, imply
the existence of one-way functions?

We give affirmative answers to the above questions, proving that a k-incompressible
source has (k − 2) bits of next-block pseudoentropy, and thus, a samplable source X that is
(H(X) + 2)-incompressible implies the existence of one-way functions. Before stating our
results in more details, we recall the notion of next-block pseudoentropy Haitner et al. [8],
focusing on its single-bit block variant, called next-bit pseudoentropy.

Next-bit pseudoentropy

Next-bit pseudoentropy measures the bit-wise unpredictability of X: how hard is it to
predict Xi from X<i = (X1, . . . , Xi−1), for a uniform i. More formally, a random variable
X = (X1, . . . , Xm) over {0, 1}m has next-bit pseudoentropy k, if there exists a set of random
variables {Yi}i∈[m], jointly distributed with X, such that
1.

∑
i∈[m] H(Yi | X<i) ≥ k, for H being the Shannon entropy function, and

2. (X<i, Xi) is computationally indistinguishable from (X<i, Yi), for every i.
That is, X has next-bit pseudoentropy k if predicting Xi from X<i is not easier than predicting
Yi from X<i, where the bits of Y have k bits of (real) entropy given the past. It follows
from [19] that k-bits of (standard) pseudoentropy implies k-bits of next-bit pseudoentropy,3but

1 The O(1) loss is since even the (true) uniform distribution can be compressed by Θ(1) bits (using non
prefix-free schemes) [17].

2 I.e., not only that one cannot efficiently compress X to less than k bits, but it cannot compress,
non-trivially, even parts of X.

3 Indeed, if X has k-bits of pseudoentropy, X is k − H(X) KL-hard to estimate, and thus XI is
(k − H(X))/m KL-hard to estimate given X<I . The later implies that XI has pseudoentropy k/m
given X<I .
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the converse does not always hold.4 Yet, Haitner et al. [8] showed that an efficiently samplable
source with non-trivial next-bit pseudoentropy, can be used to construct pseudorandom
generators (and thus one-way functions).

1.1 Our Results
In this paper, following [1, 20], we focus on the non-uniform settings – the efficient algorithms
get non-uniform polynomial-size advice per input length – and defer the uniform version
of our results to the future version (see more details in Section 1.2). We state our results
with respect to a weaker notion of incompressibility, where the source is only assumed to be
incompressible by prefix-free schemes: no codeword is a prefix of another.

▶ Lemma 1 (Incompressiblity → next-bit pseudoentropy). A random variable that is k-
incompressible by efficient prefix-free schemes, has next-bit pseudoentropy (at least) k(n)− 2.

That is, incompressibility is a stronger measure of “pseudoentropy” than next-bit pseudoen-
tropy. Since, incompressibility is weaker than pseudoentropy, we now have a rather good
understanding about the computational hardness incompressibility induces. By Haitner et al.
[8], Lemma 1 yields the following characterization.

▶ Theorem 2 (Non-trivial incompressibility implies one-way functions). Assume there exist
an (efficiently) samplable random variable X that is (H(X) + 2 + 1/p(n))-incompressible by
efficient prefix-free schemes, for some p ∈ poly, then one-way functions exist.

That is, if one-way functions do not exist, e.g., we live in “Pessiland” [13], then any samplable
distribution can be compressed to its entropy plus two bits.

Theorem 2 improves upon previous results that require additional structure from the
incompressible distribution. Wee [20] proved that if an m-bit flat X (i.e., uniformly distributed
over its support) is (H(X) + Ω(log m))-incompressible, then one-way functions exist. Where
a simple application of Barak et al. [1], yields the same for (H(X) + ω(log n))-strongly-
incompressible X.

▶ Remark 3 (Incompressibility and one-way functions). The common method for proving that
a certain primitive implies (the existence of) one-way functions, is to show that the primitive
induces a function that if invertible would contradict the security of the primitive ([14]).
Interestingly, such an approach does not seem to work for samplable incompressible distri-
butions; the efficient sampler of an incompressible X might use poly(|X|) > H(X) random
bits. Thus, even if we are able to invert it (assuming that one-way functions don’t exist)
and output the (long) random string used for sampling, this alone does not contradict the
incompressibility of X. Moreover, while the probability of every element in the support of X

can be efficiently estimated (assuming that one-way functions do not exist, [14]), this also
does not suffice for efficient compression.

So while our main result is establishing a connection between incompressibility and next-
bit pseudoentropy, the fact that incompressibility implies one-way functions is an interesting
corollary that to the best of our understanding does not immediately follow any standard
technique.

4 Let g be a pseudorandom generator from n bits to 2n bits. Then Z = (g(Un), Un) does not have
pseudoentropy larger than n (Z is determined by its last n bits), but has 2n bits of next-bit pseudoentropy:
let Y1, . . . , Y2n be uniform and independent bits, and (Y2n+1, . . . , Y3n) = (Z2n+1, . . . , Z3n).
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Applications to sparse languages

A language L is s-sparse if |L ∩ {0, 1}n| ≤ 2s(n). Theorem 2 yields the following characteriz-
ation of sparse languages.

▶ Theorem 4 (Informal). Let L be an s-sparse language and let D be a samplable distribution
over L (i.e., Supp(Dn)∩ {0, 1}n ⊆ L∩ {0, 1}n). If D is (s + 3)-incompressible, then one-way
functions exist.

▶ Remark 5 (The two bits gap). One might wonder whether the annoying two bits gap in
Lemma 1 and Theorems 2 and 4 is unavoidable. We pay these two bits since in the proof of
Lemma 1 we use the arithmetic encoding prefix-free compression scheme, which compresses a
random variable X to H(X)+2 bits. We use arithmetic encoding since it can be implemented
efficiently given oracle access to the accumulated distribution function of X (with respect to
the lexicographic order of elements). Indeed, the 2 bits gap can be reduced given a better
encoding scheme that is efficient in these settings. While there are prefix-free compression
schemes that get closer to H(x), cf., Shannon [16], Fano [3], and Huffman [12], these schemes
might not be efficient for large alphabets (in our case, the alphabet is {0, 1}m). So as far as
we know, there might be a random variable X that is not compressible to less than H(x) + 2
by an efficient prefix-free scheme. Since the existence of such a variable is unlikely to imply
the existence of one-way functions, the 2 bits gap in our results might be unavoidable.

One might do better by asking for incompressibility by arbitrary (no prefix-free) efficient
schemes (which might even compress to strictly less than H(X) bits). But bearing in mind
that compression is used for communicating many samples from the distribution, asking for
prefix-freeness seems like the natural definition for incompressibility.

1.2 Our Technique
We explain here the high-level approach for proving Lemma 1 (incompressibility → next-bit
pseudoentropy). Let X = (X1, . . . , Xm) be a random variable over {0, 1}m, and assume
X does not have next-bit pseudoentropy k − 2. We prove that such X can be (efficiently)
compressed into less than k bits, proving the lemma. Recall that next-bit pseudoentropy
measures the bit-wise unpredictability of X: how hard is it to predict Xi from X<i, for
i ← [m]. So X not having k − 2 bits of next-bit pseudoentropy implies that X is “rather
predictable” in an online fashion: predict X1, then use X1 to predict X2, and so on. We use
this characterization to design a prefix-free bits encoding of X, of average length less than k,
more details below.

Let I ← [m]. Since X does not have k − 2 bits of next-bit pseudoentropy, the random
variable (X<I , XI) is distinguishable from (X<I , YI) for every set of random variable {Yi}i∈[m]
with

∑
i∈[m] H(Yi|X<i) ≥ (k − 2). That is, XI has low entropy given X<I , in the eyes of

poly-time distinguisher. As discussed above, this implies that XI is somewhat predictable
given X<I . Vadhan and Zheng [19] formalized this intuition and proved that for such an X,
there exists a poly-time predictor P that predicts XI from X<I within small KL-divergence.
Specifically,

KL(X<I , XI ||X<I , P(X<I)) < (k − 2)/m−H(XI | X<I) (1)

Let Y = (Y1, . . . , Ym) be the random variable defined inductively by P as follows: Y1 =
P(ϵ), and Yi = P(Y<i). By Equation (1) and the chain-rules of KL-divergence, we deduce
that

KL(X||Y ) < k − 2−H(X) (2)
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The above suggest the following method for compressing X. Use P for designing a good
prefix-free encoding scheme for Y , and then apply Equation (2) to deduce that the scheme
also compresses X well. The scheme we design for Y is the arithmetic encoding scheme. This
scheme is useful for compressing any distribution D for which we know how to compute the
accumulated probability function FD(x) :=

∑
x′≤x PrD[x′]. Since Y is defined according to P,

it is not hard to see that the accumulated function of Y is efficiently computable, implying
that the arithmetic encoding (Enc, ·) of Y can be computed efficiently. Furthermore, since
(Enc, ·) is the arithmetic encoding of Y , it holds that

|Enc(y)| ≤ − log(Pr[Y = y]) + 2 (3)

for every y ∈ Supp(Y ). Using a well-known fact about using “wrong compression”, we deduce
that

E[|Enc(X)|] ≤ H(X) + KL(X||Y ) + 2 (4)

Applying Equation (2), we conclude that E[|Enc(X)|] < k.

▶ Remark 6 (Uniform incompressibility). In the above proof we assumed that the predictor P
is deterministic (which can be assumed without loss of generality in the non-uniform setting).
This assumption was crucial for the arithmetic encoding to work. Otherwise, the encoder
and decoder will not agree on the same accumulated probability function. In the uniform
setting, this obstacle can be overcome by letting the encoder and decoder have access to
shared randomness (independent of the distribution to compress) which they can use as the
random coins of P. We measure the compression of such shared randomness scheme by the
expected encoding length over the shared randomness and the underlying distribution. All
the results stated in this paper extend, with essentially the same parameters, to this uniform
setting.

We note that, when compressing more than one sample from the distribution, the shared
randomness needs to be sampled only once. Thus, the amortized cost of our compressing
scheme is still equal to the entropy of the distribution, even if the decoder sends its randomness
(instead of using shared randomness).

1.3 Related Work
Yao [21] used the term effective entropy to measure by how much a distribution can be
compressed efficiently. So k-incompressiblity is equivalent to having effective entropy at
least k. Yao [21] did not require the compression scheme to be prefix-free, but only required
that for every t ∈ poly, the sequence Enc(x1), . . . , Enc(xt), where x1, . . . , xt are independent
samples from the distribution, are decoded with high probability.

An interesting line of work considered efficient compression of of samplable distributions
with (efficient) membership queries. Goldberg and Sipser [4] showed that any such distribution
can be compressed by log n bits, and Trevisan, Vadhan, and Zuckerman [18] gave better
schemes for flat distributions, and for distribution generated by log-space machines.

Paper Organization
Basic definitions and notations are given in Section 2. The formal definition of incompressib-
ility and our results relating it to next-bit pseudoentropy, including some results that are not
mentioned above, are given in Section 3.
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2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for
the set of all polynomials. Let ppt stand for probabilistic poly-time, and n.u.-poly-time
stand for non-uniform poly-time. An n.u.-poly-time algorithm A is equipped with a (fixed)
poly-size advice string set {zn}n∈N (that we typically omit from the notation), and we let
An stand for A equipped with the advice zn (used for inputs of length n). Let neg stand for
a negligible function. For a set L ⊆ {0, 1}∗, let Ln := L ∩ {0, 1}n. A set S is prefix free, if
for no x1 ̸= x2 ∈ S it holds that x1 is a prefix of x2. Given a vector v ∈ Σn, let vi denote its
ith entry, let v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI
be the ordered sequence (vi)i∈I .

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P , let x← P denote that x was sampled according to P . Similarly, for
a set S, let x← S denote that x is drawn uniformly from S. For random variable ensemble
B = {Bn}n∈N and t : N 7→ N, let Bt =

{
B

t(n)
n

}
n∈N

for B
t(n)
n being t(n) independent copies

of Bn. For m ∈ N, we use Um to denote a uniform random variable over {0, 1}m (that is
independent from other random variables in consideration). We use the following standard
definitions:

▶ Definition 7 (Indistinguishability). Distribution ensembles P = {Pn}n∈N and Q = {Qn}n∈N
are n.u.-poly-time-indistinguishable, if

Prx←Pn
[D(x) = 1]− Prx←Qn

[D(x) = 1] ≤ neg(n)

for any n.u.-poly-time algorithm D.

▶ Definition 8 (Samplablity). A distribution ensemble P = {Pn} is samplable, if there exists
poly-time algorithm (sampler) S and poly-time computable function m ∈ poly, such that for
every n ∈ N, S(1n; Um(n)) is distributed according to Pn.

2.2.1 Entropy and Distance Measures
The Shannon entropy of a distribution P is defined by H(P) =

∑
p∈Supp(P) PrP [p] ·

log 1
PrP [p] . The conditional entropy of a random variable A given B, is defined as H(A|B) =

Eb←B [H(A|B=b)]. We will use the following known facts:

▶ Fact 9 (Chain rule for Shannon entropy). For a random variable A = (A1, . . . , An), it holds
that H(A1, . . . , An) =

∑n
i=1 H(Ai|A<i).

The KL-divergence (also known as, Kullback-Leibler divergence, and relative entropy)
between distributions P and Q is defined by

KL(P||Q) =
∑

a∈Supp(P)

PrP [a] log(PrP [a]
PrQ[a] ).

The KL-divergence also admits a chain rule.
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▶ Fact 10 (Chain rule for KL-divergence). For random variables A = (A1, . . . , An) and
B = (B1, . . . , Bn), it holds that

KL(A||B) =
∑
i∈[n]

Ea1,...,an←A[KL(Ai|A<i=a<i
||Bi|B<i=a<i

)].

Both Entropy and KL-divergence admit data processing inequalities.

▶ Fact 11 (Data processing inequality). For every random variables A, B and function f , it
holds that KL(f(A)||f(B)) ≤ KL(A||B) and H(f(A)) ≤ H(A).

We will use the following observation that bounds the KL-divergence between two
distributions using their maximal ratio over a set.

▶ Proposition 12 (Bounding KL-divergence). Let X and Y be finite distributions, and assume
log PrX [s]

PrY [s] ≥ α for every element s of a set S. Then KL(X||Y) > (α− log e) · PrX [S].

Proposition 12 is proved in the full version of this paper.
We will also use the following simple observation to bound the probability of an event in

terms of Entropy.

▶ Fact 13 (Bounding probability via entropy). Let C be a Boolean random variable. If
H(C) ≥ d then Pr[C = 1] ≥ (d/40)2.

Fact 13 is proved in the full version of this paper.

2.3 Encoding and Compression
We start with the definition of encoding schemes.

▶ Definition 14 (Encoding schemes). A pair of algorithms (Enc, Dec) is an encoding for a
distribution D, if for every x ∈ Supp(D) it holds that Dec(Enc(x)) = x.5 The pair is an
encoding for a distribution ensemble D = {Dn}n∈N, if
(Enc(1n, ·), Dec(1n, ·)) is an encoding scheme for Dn for every n. The encoding is fixed-length,
if |Enc(1n, x)| = ℓ(n) for every n and x ∈ Supp(Dn), for some function ℓ, and is prefix-free
if the set {Enc(1n, x) : x ∈ Supp(Dn)} is prefix-free for every n.

▶ Definition 15 (Compressing a distribution). An encoding scheme (Enc, ·) ℓ-compereses a
distribution ensemble D, if Ex←Dn [|Enc(1n, x)|] ≤ ℓ(n) for every n ∈ N.

We will refer to an encoding scheme that compresses the distribution as a compressing scheme.
When clear from the context, we omit the parameter 1n given to the encoder and the decoder.

Changing distributions

The following well-known observation bounds the price you pay by using the compressing
scheme for the “wrong” distribution.

▶ Proposition 16 (Changing distributions). Let P and Q be finite distributions with
KL(P||Q) < ∞. Let (Enc, Dec) be a compression scheme for Q, such that |Enc(q)| ≤
− log(PrQ[q]) + c for every q ∈ Supp(Q) for some c > 0. Then (Enc, Dec) is a compression
scheme for P with Ep←P [|Enc(p)|] ≤ H(P) + KL(P||Q) + c.

Proposition 16 is proved in the full version of this paper.

5 Our results readily extend to encoding schemes with negligible decoding errors.
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Arithmetic encoding

We use Arithmetic encoding, a well-known prefix-free encoding scheme.

▶ Definition 17 (Arithmetic encoding). Let X be a finite random variable over U and let ≺
be a total order over U . Let F : U → [0, 1] by F (x) = (

∑
a≺x Pr[X = a]) + 1/2 · Pr[X = x].

Define Enc(x) as the first (⌈− log Pr[X = x]⌉+ 1) bits of F (x).

Arithmetic encoding enjoys the following properties:

▶ Fact 18 (Properties of arithmetic encoding, lemma 2.8 in [18] ). For every random variable
X and order ≺, the function Enc defined in Definition 17 is one-to-one and monotone, and
the scheme (Enc, Enc−1) is prefix-free and compresses X to H(X) + 2 bits.

2.4 One-way Functions
▶ Definition 19 (One-way functions). A poly-time computable function
f : {0, 1}n 7→ {0, 1}n is n.u.-one-way, if

Prx←{0,1}n

[
An(f(x)) ∈ f−1(f(x))

]
≤ neg(n)

for any n.u.-poly-time A.

2.5 Pseudoentropy and Next-bit Pseudoentropy
In this section we define pseudoentropy and next-bit pseudoentropy, a special case of next-
block pseudoentropy defined at Haitner et al. [8].

Pseudoentropy

We start with recalling the standard notion of pseudoentropy [10].

▶ Definition 20 (Pseudoentropy). A random variable ensemble B has n.u.-pseudoentropy (at
least) k, if for every p ∈ poly there exists an ensemble C = {Cn}n∈N, such that:
1. H(Cn) ≥ k(n), and
2. B and C are n.u.-poly-time-indistinguishable.

We also use a conditional version of the above definition.

▶ Definition 21 (Conditional pseudoentropy). Let B = {Bn}n∈N be a random variable
ensemble over {0, 1} jointly distributed with X = {Xn}n∈N. We say that B has n.u.-conditional-
pseudoentropy (at least) k given X, if for every p ∈ poly there exists an ensemble C = {Cn}n∈N
over {0, 1}, jointly distributed with (X, B), such that:
1. H(Cn|Xn) ≥ k(n)− 1/p(n), 6 and
2. (X, B) and (X, C) are n.u.-poly-time-indistinguishable.

▶ Remark 22 (Order of quantifiers). The order of quantifiers in ours definition of conditional
pseudoentropy, Definition 21, is different from the ones appearing in Vadhan and Zheng [19].
Their definition requires that for every p ∈ poly there exists an ensemble of random variable
{Cn}n∈N such that:

6 [8] do not have the 1/p(n) term in their definition of conditional pseudoentropy (which is implicit in
their definition of next-bit pseudoentropy). Following [19], we add this term to slightly simplify the text.
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1. H(Cn|Xn) ≥ k(n)− 1/p(n), and
2. (X, B) and (X, C) are 1/p(n)-indistinguishable for circuits of size p(n).
Clearly Definition 21 implies that of [19], but it turns out that the converse also holds (making
the definitions equivalent). Indeed, assuming that the definition of [19] holds, we show that
there exists an ensemble C = {Cn}n∈N such that (X, C) is n.u.-poly-time-indistinguishable
from (X, B) (satisfying our definition of conditional pseudoentropy). For every n, let Cn be a
random variable that fulfills Items 1 and 2 in the definition of [19] with respect to p(n) = nc

for the largest possible value of c ≤ n. It is not hard to see that {Cn}n∈N satisfies Item 2 in
Definition 21, and thus the definitions are indeed equivalent.

A similar difference exist between [19]’s and our definitions of (non conditional) pseudoen-
tropy. Also in this case it can be shown that the two definitions are equivalent.

Next-bit pseudoentropy

We are now ready to define next-bit pseudoentropy. Intuitively, a random variable B over
{0, 1}m has next-bit pseudoentropy k, if for a uniformly chosen i ∈ [m], it holds that Bi has
pseudoentropy k/m given B<i. Formally, this is put using the above notation of conditional
pseudoentropy.

▶ Definition 23 (Next-bit pseudoentropy). The random variables ensemble B = {Bn}n∈N over
{0, 1}m(n) has n.u.-next-bit-pseudoentropy (at least) k if the following holds: let I = {In}n∈N
be an ensemble of uniformly distributed random variables over [m(n)], then {(Bn)In}n∈N has
n.u.-conditional-pseudoentropy k/m given {(Bn)<In

}n∈N.

In their construction of pseudorandom generator, [8] has proved that a generator whose
next-bit pseudoentropy is larger than its input length, can be used to construct pseudorandom
generators and thus one-way functions. The following is the non-uniform variant of their
result.

▶ Theorem 24 (Extending next-bit pseudoentropy implies one-way functions, [8]). Assume
there is a poly-time computable function f : {0, 1}n → {0, 1}m(n) such that {f(Un)}n∈N has
n.u.-next-bit-pseudoentropy n + 1/p(n) for some p ∈ poly. Then there exists a n.u.-one-way
functions.

For our needs, we use the following corollary of the above.

▶ Corollary 25 (Non-trivial next-bit pseudoentropy implies one-way functions). Assume there is
a poly-time computable function f : {0, 1}n → {0, 1}m(n) such that {f(Un)}n∈N has n.u.-next-
bit-pseudoentropy H(f(Un)) + 1/p(n) for some p ∈ poly. Then there exists a n.u.-one-way
functions.

That is, it is enough to show that f has next-bit pseudoentropy larger than its image
real entropy, rather than its input size. A proof sketch for Corollary 25 is given in the full
version of this paper.

It is easy to see that next-bit pseudoentropy behaves nicely under direct product. It turns
out that the converse is also true: if the direct product has kt bits of next-bit pseudoentropy,
then a single copy has next-bit pseudoentropy (at least) k.

▶ Proposition 26 (Direct product of next-bit pseudoentropy). For any random variable
ensemble B and t ∈ poly, if Bt has n.u.-next-bit pseudoentropy (t · k), then B has n.u.-next-
bit pseudoentropy k.

Proposition 26 is proved in the full version of this paper.
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KL-hardness
In their “hashing free” construction of pseudorandom generators from one-way functions,
Vadhan and Zheng [19] introduced the notion of KL-hardness of a distribution. Informally,
it states that it is hard to approximate the distribution within a small KL divergence. This
notion is formally defined using KL-predictors.

▶ Definition 27 (KL-predictors). Let (X, B) be a distribution over {0, 1}m × {0, 1}, and let
P : {0, 1}m×{0, 1} 7→ (0, +∞) be a deterministic function. We say that P is a δ-KL-predictor
of B given X, if

KL(X, B||X, CP) ≤ δ,

for CP being a random variable (jointly distributed with X) with
Pr[CP = b | X = x] = P(x,b)

P(x,0)+P(x,1) .

A distribution is KL-hard if it possesses no efficient KL-predictor.

▶ Definition 28 (KL-hardness). Let (X, B) be a distribution ensemble over {0, 1}m(n) × {0, 1}.
We say that B is δ-n.u.-KL-hard given X, if there exists no n.u.-poly-time P and q ∈ poly
such that Pn is a (δ − 1/q(n))-KL-predictor of B given X , for infinitely many n’s.

We use the following result from [19].

▶ Theorem 29 (KL-hardness imply pseudoentropy, [19] Corollary 3.9).
Let (X, B) = {(Xn, Bn)}n∈N be a random variable ensemble over {0, 1}m(n) × {0, 1}. If
B is δ-n.u.-KL-hard given X, then it has n.u.-conditional-pseudoentropy H(Bn|Xn) + δ(n)
given X.

That is, KL-hard distribution has non-trivial next-bit pseudoentropy.7

3 Incompressibility and Next-bit Pseudoentropy

In this section, we define several notions of incompressibility and relate them to next-
bit pseudoentropy (defined in Section 2.5). As said in the introduction, we focus on the
non-uniform settings.

Incompressibility

We start with the standard notion of incompressibility that we define with respect to prefix-
free compression schemes (it is immediate that a distribution that is incompressible with
respect to arbitrary scheme is incompressible according to our definition).

▶ Definition 30 (Incompressibility). A distribution ensemble B is k-incompressible, if for every
n.u.-poly-time prefix-free compression scheme (Enc, ·) for B, it holds that

Ex←Bn [|Enc(x)|] ≥ k(n),

for all but finitely many n’s.

We will also address the following more fine-grain version of incompressibility.

7 [19] also proved that the converse direction holds.
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▶ Definition 31 (Local incompressibility).
A distribution ensemble B is (α, β)-locally-incompressible, if for every n.u.-poly-time prefix-free
compression scheme (Enc, ·) for B, it holds that

Prx←Bn

[
|Enc(x)| ≥ log 1

PrBn [x] + α(n)
]
≥ β(n),

for all but finitely many n’s.

Local incompressibility gets handy when the gap between next-bit pseudoentropy and the
real entropy is smaller than 2, settings in which our result for (non-local) incompressibility is
not applicable.

We observe the following connections between incompressiblity and local incompressiblity,
both proved in Section 3.6.

▶ Proposition 32 (Incompressiblity→ local incompressiblity). d A k-incompressible distribution
ensemble B over {0, 1}m(n), with m ∈ poly, is (k(n)−H(Bn)−2, 1

3m(n) )-locally-incompressible.

▶ Proposition 33 (local incompressiblity → incompressiblity). An (α, β)-locally incompressible
distribution ensemble B, is H(Bn) + β(n)(α(n)− log e)-incompressible.

Relation to pseudoentropy

We recall the following two facts. The first states that incompressibility is not stronger than
pseudoentropy.

▶ Theorem 34 (Pseudoentropy → incompressibility, [20]). Let B be a distributions ensemble
over {0, 1}m(n) with n.u.-pseudoentropy k, then B is (k − 2 log m)-incompressible.8

While it is unknown if incompressibility is a weaker notion than pseudoentropy, there is
an oracle separation between them, as stated in the next theorem.

▶ Theorem 35 (Incompressibility ̸→ pseudoentropy, oracle separation, [20]). There is an oracle
O and a distribution ensemble B that relative to O, B is (n− ω(log n))-incompressible but
does not have pseudoentropy larger than n/2.

3.1 Our Results
3.1.1 Incompressibility → Next-Bit Pseudoentropy
Our main result states that incompressibility implies next-bit pseudoentropy.

▶ Lemma 36 (Incompressibility → next-bit pseudoentropy). The following holds for every
distribution ensemble B over {0, 1}m(n) with m ∈ poly.
1. B is k-incompressible =⇒ B has n.u.-next-bit pseudoentropy k(n)− 2.
2. B is (α, β)-locally-incompressible =⇒ B has n.u.-next-bit pseudoentropy H(Bn) +

β(n)(α(n)− 2− log e).
Lemma 36 is proved in Section 3.3. Combining its first part with Corollary 25, yields the
following informative theorem.

▶ Theorem 37 (Incompressiblity → one-way functions). Assume there exists a samplable
distribution ensemble B over {0, 1}m(n) that is (H(Bn) + 2 + 1/p(n))-incompressible for some
p ∈ poly, then n.u.-one-way functions exit.

8 This result holds also for non-prefix free compressing schemes.
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Amortization

When amortizing over several instances, Lemma 36 yields the following tighter characteriza-
tion.

▶ Lemma 38 (Incompressiblity → next-bit pseudoentropy, multiples copies). Let B be a
distribution ensemble over {0, 1}m(n) with m ∈ poly, such that Bt for some t ∈ poly, is
(t · k)-incompressible. Then B has n.u.-next-bit pseudoentropy k(n)− 2/t(n).

Proof. Since Bt has t · k-incompressibility, by Lemma 36 it has n.u.-next-bit pseudoentropy
t · k − 2. Hence, Proposition 26 yields that B has n.u.-next-bit pseudoentropy k − 2/t. ◀

3.1.2 Strong-Next-Bit Pseudoentropy
It is easy to see that next-bit pseudoentropy does not imply incompressibility.

▶ Proposition 39 (Next-bit pseudoentropy ̸→ incompressibility). Assuming n.u.-one-way func-
tion exists, then there exists a samplable distribution ensemble with n.u.-next-bit pseudoentropy
2n, that is not (n + 1)-incompressible.

Proof sketch. Let g : {0, 1}n 7→ {0, 1}2n be a pseudorandom generator. The distribution
ensemble B = {(g(Un), Un)}n∈N has 2n n.u.-next-bit pseudoentropy. But B can be trivially
compressed to n bits by Enc(f(x), x) = x. ◀

In contrast, the following variant of next-bit pseudoentropy does imply (and is equivalent to)
incompressibility.

▶ Definition 40 (Strong-next-bit pseudoentropy). A random variable ensemble B has n.u.-
strong-next-bit pseudoentropy k, if for every n.u.-poly-time, fixed-length encoding (Enc, ·), the
ensemble {Enc(B)}n∈N has n.u.-next-bit pseudoentropy k.9

That is, B has strong-next-bit pseudoentropy if every encoding of B has next-bit pseudoen-
tropy. Lemma 36 easily extends to strong-next-bit pseudoentropy.

▶ Lemma 41 (Incompressibility → strong-next-bit pseudoentropy). A k-incompressible distri-
bution ensemble has n.u.-strong-next-bit pseudoentropy k − 2.

Proof. Let B be a k-incompressible distribution ensemble, and let B be a random variable
ensemble distributed according to B. It follows that for every n.u.-poly-time fixed-length
encoding scheme (Enc, ·), it holds that Enc(Bn) is k-incompressible. Otherwise, one can
efficiently compress Bn by first encode it according to Enc, and then compress the output.
Thus, by Lemma 36, Enc(Bn) has n.u.-next-bit pseudoentropy at least k − 2. ◀

More interestingly, strong-next-bit pseudoentropy does imply incompressibility.

▶ Lemma 42 (Strong-next-bit pseudoentropy → incompressibility). Let B be a distribution
ensemble with Supp(Bn) = {0, 1}m(n). If B has n.u.-strong-next-bit pseudoentropy k + 1/p

for some p ∈ poly, then B is k-incompressible.

Without requiring that Supp(Bn) = {0, 1}m(n), we would only get that B is incompressible by
an encoding schemes that is prefix-free over {0, 1}m(n). Interestingly, the proof of Lemma 41
readily yields that this type of incompressibility is sufficient for next-bit pseudoentropy.
Lemma 42 is proved in Section 3.5.

9 Note that in this definition, Enc is not necessarily a compressing encoding.
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3.2 Applications to Sparse Languages
We use the following definition of sparse language. (Recall that for a set L ⊆ {0, 1}∗,
Ln := L ∩ {0, 1}n.)

▶ Definition 43. A language L ∈ {0, 1}∗ is s-sparse if |Ln| ≤ 2s(n) for every n ∈ N.

The results of Section 3 immediately yield that unless one-way functions exist, any
samplable distribution over s-sparse language can be compressed to s + 2 bits.

▶ Theorem 44. For every samplable distribution ensemble B = {Bn}n∈N and s-sparse
language L, such that Supp(Bn) ⊆ Ln for every n ∈ N, if B is (s + 2 + 1/p)-incompressible
for some p ∈ poly, then n.u.-one-way functions exist.

Proof. Since B is over L, s(n) ≥ H(Bn), and thus B is (H(Bn) + 2 + 1/p)-incompressible.
Thus by Theorem 37, n.u.-one-way functions exist. ◀

3.3 Proving Lemma 36 – Incompressibility implies Next-Bit
Pseudoentropy

In this part we prove Lemma 36. We use the following lemma, proved in Section 3.4.

▶ Lemma 45 (Next-bit predictor to compression). There exists a pair of oracle-aided algorithms
(Enc, Dec) such that the following holds: let P : {0, 1}∗ → (0, +∞) be deterministic algorithm,
and for m ∈ N let DP

m be the distribution over {0, 1}m defined by:

PrDP
m

[x] =
∏

i∈[m]

P(x<i, xi)
P(x<i, 0) + P(x<i, 1)

Then (EncP(1m, ·), DecP(1m, ·)) is a prefix-free compressing scheme for DP
m with |Enc(x)| ≤

⌈− log PrDP [x]⌉+ 1 for every x ∈ {0, 1}m. The running-time of EncP(1m, ) and DecP(1m, ·)
is polynomial in m and in the output length of P on inputs of length at most m.

Given Lemma 45, we are ready to prove Lemma 36.

Proof of Lemma 36. Let B be as in Lemma 36, and assume it does not have next-bit
pseudoentropy q (we will chose q later). We start by proving that there exists n.u.-poly-time
algorithm P such that the distribution ensemble

{
DP

m(n)

}
n∈N

is close in KL-divergence to B,
for DP

m being according to Lemma 45.
Let In be a uniform random variable over [m(n)], and let B be an ensemble of random

variables distributed according to B. By assumption and Definition 23, {(Bn)In
}n∈N has

no q/m conditional pseudoentropy given {(Bn)<In
}n∈N. Thus, Theorem 29 implies that

{(Bn)In
}n∈N is not δ(n) :=

(
q/m−H

(
(Bn)In

| (Bn)<In

))
KL-hard given {(Bn)<In

}n∈N.
Namely, (see, Definition 28) there exists an infinite set I ⊆ N, c > 0 and a n.u.-poly-time
algorithm P : {0, 1}∗ → (0, +∞), such that Pn is a (δ − 1/nc)-KL-predictor of {(Bn)In

}n∈N
given {(Bn)<In}n∈N, for every n ∈ I. Fix n ∈ I, and omit n from the notation, and
let DP

m be a random variable distributed according to DP
m. By definition of KL-predictor

(Definition 27), it holds that:

KL(B<I , BI ||B<I , Pn(B<I)) ≤ δ − 1/nc < δ = q/m−H(BI | B<I) (5)
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It follows that

q/m > Ei←I [KL(B<i, Bi||B<i, P(B<i)) + H(Bi | B<i)]

= 1/m ·
∑

i∈[m]

(KL(B<i, Bi||B<i, P(B<i)) + H(Bi | B<i))

= 1/m ·
∑

i∈[m]

(KL(B<i||B<i) + Eb←B [KL(Bi|B<i=b<i
||P(B<i)|B<i=b<i

)] + H(Bi | B<i))

= 1/m ·
∑

i∈[m]

(Eb←B

[
KL(Bi|B<i=b<i

||(DP
m)i|(DP

m)<i=b<i
)
]

+ H(Bi | B<i))

= 1/m · (KL(B||DP
m) + H(B)).

The second equality is due to chain-rule of KL-divergence. The third equality by the definition
of DP

m and since KL(X||X) = 0 for every random variable X. The last equality holds by
chain-rule of KL-divergence and Shannon entropy. We deduce that

KL(B||DP
m) < q −H(B) (6)

Let (Enc, Dec) be the compressing scheme guaranteed by Lemma 45. Lemma 45 implies
that∣∣∣EncP(x)

∣∣∣ ≤ ⌈
− log PrDP

m
[x]

⌉
+ 1 ≤ − log PrDP

m
[x] + 2 (7)

for every x ∈ {0, 1}m. Given the above, we separately prove each part of the lemma.

B is k-incompressible. Let q(n) = k(n)− 2. By Proposition 16 and Equations (6) and (7),

Ex←Bn

[∣∣∣EncP(x)
∣∣∣] < q(n) + 2 = k(n)

We conclude that B is k-compressible, yielding a contradiction.

B is (α, β)-locally-incompressible. By Equation (7),∣∣∣EncP(x)
∣∣∣ ≤ − log PrDP

m
[x] + 2 (8)

Let S =
{

x ∈ {0, 1}m :
∣∣∣EncP(x)

∣∣∣ ≥ − log PrB[x] + α
}

and let η = PrB[S]. Equation (8)
yields that − log PrB[x] + α ≤ − log PrDP

m
[x] + 2 for every x ∈ S, implying that α − 2 ≤

log PrB[x]
PrDP

m
[x] for every x ∈ S. Applying Proposition 12 with respect to S, yields that

KL(B||DP
m) > η · (α− 2− log e)

Applying Equation (6) for q = H(B) + β · (α− 2− log e), yields that

KL(B||DP
m) < β · (α− 2− log e)

We deduce that that β > η = PrB[S], yielding that B is not (α, β)-locally incompressible.
◀
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3.4 Proving Lemma 45 – Next-bit Predictor to Compression
Proof. Let P, m and D = DP

m be according to the lemma statement. Our encoder defined
below, encodes D according to the arithmetic encoding, see Definition 17, with respect to
the lexicographic order. Recall that on input x, the arithmetic encoding should output e(x) :
the first (⌈log 1/PrD[x]⌉+ 1) bits of F (x) := (

∑
y<x PrD[y]) + 1/2 · PrD[x].

▶ Algorithm 46 (Enc).
Oracle: Predictor P.
Input: x ∈ {0, 1}m.
Operation:

1. Let peq = 1 and pless = 0.
2. For every i ∈ [m]:

a. If xi = 1: pless = pless + peq · P(x<i,0)
P(x<i,0)+P(x<i,1) .

b. peq = peq · P(x<i,xi)
P(x<i,0)+P(x<i,1) .

3. Output the first (⌈− log peq⌉+ 1) bits of pless + peq/2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By induction, at the end of the ith iteration of Enc it holds that pless = Pry←D[y≤i < x≤i], and
peq = Pry←D[y≤i = x≤i]. Hence, when Enc reaches Step 3., it holds that pless = Pry←D[y < x],
and peq = PrD[x], stipulating that EncP(x) = e(x). Thus by Fact 18, we deduce that EncP

is a prefix-free compressing scheme for D with |Enc(x)| = ⌈log 1/PrD[x]⌉ + 1, for every
x ∈ {0, 1}m.

Regarding efficiency, since P only outputs positive numbers, the running time of EncP is
polynomial time in m and output size of P on inputs of length at most m. In addition, a
decoding procedure DecP(1m, ·) for EncP(1m, ·) can be implemented with the same efficiently
using a straightforward binary search over {0, 1}m. ◀

3.5 Proving Lemma 42 – Strong-Next-Bit Pseudoentropy implies
Incompressibility

Proof. Assume that B is not k-incompressible and let (Enc, Dec) be the n.u.-poly-time
compressing scheme that k′-compresses B, with k′(n) < k(n) for infinite many n’s. Let q(n)
for q ∈ poly be a bound on the output length of Enc on inputs of length m(n), and let
Enc′(1n, x) = (Enc(x), 0q(n)−|Enc(x)|).

Let B be a random variable ensemble distributed according to B. We claim that
Enc′(1n, Bn) does not have next-bit pseudoentropy k(n) + 1/p(n). Indeed, consider the
following distinguisher D = {Dn}n∈N:

▶ Algorithm 47 (Dn).
Input: y ∈ {0, 1}∗, b ∈ {0, 1}.
Operation:

1. If there is no i ≤ |y| such that Dec(y≤i) ∈ {0, 1}m(n) and Enc(Dec(y≤i)) = y≤i, output 0.
2. Otherwise, output b.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now show that D contradicts the k(n) +1/p(n)-next-bit pseudoentropy of
{

Enc′(Bn)
}

n∈N
(Definition 23). It is easy to see that if (y, b) is a prefix of Enc′(x) for some x ∈ {0, 1}m(n),
then Dn outputs 0. Hence, we conclude the proof by showing that Dn outputs 1 with
noticeable probability over (Enc′(Bn)<In

, Cn), for In ← [q(n)] and any random variable Cn

with
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H(Cn | Enc′(Bn)<In
) ≥ k(n) + 1/p(n)

q(n) − 1
2p(n)q(n) = k(n)

q(n) + 1
2p(n)q(n) .

Indeed, fix n ∈ N with k′(n) < k(n), and let Cn be such random variable and let δ(n) :=
1

2p(n)q(n) ≥ 1/poly(n). Let W be the indicator for the event In > |Enc(Bn)| (that is, W = 1
if In > |Enc(Bn)| and W = 0 otherwise). Compute,

k(n)/q(n) + δ(n)
≤ H(Cn | Enc′(Bn)<In

)
= H(Cn | Enc′(Bn)<In

, W )
= Pr[W = 1] ·H

(
Cn | Enc′(Bn)<In

, W = 1
)

+ Pr[W = 0] ·H
(
Cn | Enc′(Bn)<In , W = 0

)
≤ Pr[W = 1] ·H

(
Cn | Enc′(Bn)<In

, W = 1
)

+ Pr[W = 0]
= Pr[In > |Enc(Bn)|] ·H

(
Cn | Enc′(Bn)<In

, I > |Enc(Bn)|
)

+ Pr[In ≤ |Enc(Bn)|]
≤ Pr[In > |Enc(Bn)|] ·H

(
Cn | Enc′(Bn)<In

, I > |Enc(Bn)|
)

+ k(n)/q(n).

The first equality holds since Enc′(Bn)<In
determines the value of W . The second inequality

holds since H(Cn) ≤ 1. It follows that

Pr[In > |Enc(Bn)|] ·H
(
Cn | Enc′(Bn)<In , I > |Enc(Bn)|

)
≥ δ(n) (9)

In particular,

Pr[In > |Enc(Bn)|] ≥ δ(n) (10)

and

H(Cn | In > |Enc(Bn)|) ≥ H
(
Cn | Enc′(Bn)<In

, In > |Enc(Bn)|
)
≥ δ(n) (11)

Hence, Fact 13 yields that

Pr[Cn = 1 | In > |Enc(Bn)|] ≥ (δ(n)/40)2 (12)

Since Dn outputs 1 when Cn = 1 and In > |Enc(Bn)|, we deduce that

Pr
[
Dn(Enc′(Bn)<In , Cn) = 1 | In > |Enc(Bn)|

]
≥ (δ(n)/40)2 (13)

Combining the above with Equation (10), yields that,

Pr
[
Dn(Enc′(Bn)<In , Cn) = 1

]
= Pr

[
Dn(Enc′(Bn)<In

, Cn) = 1 | In > |Enc(Bn)|
]
· Pr[In > |Enc(Bn)|]

≥ (δ(n)/40)3.

It follows that Dn distinguishes Cn from Enc′(Bn)In
given Enc′(Bn)<In

with probability
(δ(n)/40)3 ≥ 1/poly(n). ◀

3.6 Additional Missing Proofs
Proposition 32

Proof of Proposition 32. Assume toward contradiction that B is not
(α, β)-locally-incompressible, for α(n) = k(n)−H(Bn)− 2 and β = 1/3m(n).
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Let (Enc, ·) be a compression scheme that violates the local-incompressibility of B, and
consider the following encoder Enc′:

Enc′(1n, x) =
{

0, Enc(x) |Enc(x)| ≤ m(n)
1, x o/w.

It follows that
∣∣Enc′(1n, x)

∣∣ ≤ m(n) + 1 for every x ∈ {0, 1}m(n), and by (local) compress-
ibility

Prx←Bn

[∣∣Enc′(1n, x)
∣∣ ≥ log 1

PrBn
[x] + α(n) + 1

]
< β(n) (14)

It follows that,

Ex←Bn

[∣∣Enc′(1n, x)
∣∣] ≤ Ex←Bn

[− log PrBn
[x] + α(n) + 1] + β(n)(m(n) + 1)

≤ H(Bn) + α(n) + 1 + β(n)(m(n) + 1)
= k(n)− 1 + β(n)(m(n) + 1).
< k(n) (15)

The first equation holds by Equation (14), the equality holds by our choice of α and the last
inequality follows by our choice of β. This conclude that proof since by Equation (15), Bn is
not k-incompressible. ◀

Proposition 33

Proof of Proposition 33. Let (Enc, ·) be a prefix-free compression scheme for B, and let D =
{Dn}n∈N be the distribution ensemble over Supp(Bn) ∪ {⊥}, defined by PrDn [x] = 2−|Enc(x)|

for x ∈ Supp(Bn), PrDn
[⊥] = 1−

∑
x∈Supp(Bn) 2−|Enc(x)|.

Since B is locally-incompressible, it holds that Prx←Bn

[
log PrBn [x]

PrDn [x] ≥ α(n)
]
≥ β(n). Thus,

Proposition 12 yields that KL(Bn||Dn) ≥ β(n)(α(n)− log e), and therefore

Ex←Bn [|Enc(x)|] = Ex←Bn [− log PrDn [x]]

= Ex←Bn

[
− log PrBn

[x] + log PrBn
[x]

PrDn
[x]

]
= H(Bn) + KL(Bn||Dn)
≥ H(Bn) + β(n)(α(n)− log e). ◀
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67:2 Downward Self-Reducibility in TFNP

1 Introduction

Perhaps the most surprising thing
about Self-Reducibility is its longevity.

Eric Allender

Self-reducibility (sometimes also referred to as auto-reducibility) asks the question if a
problem instance is easy to solve if one can solve other instances of the problem easily. More
precisely, a computational problem is said to be self-reducible if there exists an efficient
oracle machine that on input an instance of the problem solves it by making queries to
an oracle that solves the same problem, with the significant restriction that it cannout
query the oracle on the given instance. First introduced in the context of computability by
Trakhtenbrot [24] more than five decades ago, self-reducibility has proved to be immensely
useful in computational complexity theory, especially in the study of decision problems.
Various notions of self-reducibility have been studied (for a detailed survey on self-reducibility,
the reader is referred to Balcázar’s systematic study [3], Selke’s comprehensive survey [23]
and Allender’s survey [2]).

Downward self-reducibility, the key notion studied in this paper, refers to the kind of
self-reducibility wherein the oracle machine is allowed to query the oracle only on instances
strictly smaller than the given instance. Satisfiability, the prototype NP-complete problem
as well as several other related NP-complete problems can be easily shown to be downward
self-reducible. This simple observation led to plethora of search-to-decision reductions for
NP-complete problems. All NP-complete problems are self-reducible and many natural
NP-complete problems are also downward self-reducible. Furthermore, it is known that every
downward self-reducible problem is contained in PSPACE (folklore). Another notion of
self-reducibility that is extremely well-studied is random self-reducibility; wherein the oracle
machine (which is randomized in this case) is only allowed to query the oracle on random
instances of the problem, under a natural distribution on the input instance. There are
problems in PSPACE which are known to be both downward self-reducible as well as random
self-reducible, in particular permanent, one of the #P-complete problems. The downward
and random self-reducibility of the permanent and other PSPACE-complete problems led
to efficient interactive proofs for PSPACE.

Almost all the study of downward self-reducibility, to date, has been focused in the
decisional landscape. In this work, we initiate the study of downward self-reducibility for
search problems which are guaranteed to have a solution, that is problems in TFNP. This
is motivated by the oft asked, but yet unresolved, question regarding integer factoring: is
factoring an integer any easier if we know how to factor all smaller integers? Or equivalently,
is factoring downward self-reducible?

1.1 Our results
Our focus will be on the class of search problems for which there is guaranteed to be a
solution, more concisely referred to as TFNP. Within TFNP, there are several sub-classes
of search problems such as PLS, PPAD, PPP, PPA, CLS, for which the totality – the
fact that every instance has an efficiently verifiable solution – arises from some underlying
combinatorial principle. These problems are typically defined in terms of natural complete
problems. For instance, the class PLS, which is a subclass of TFNP, containing problems
where totality is guaranteed by a “local-search” principle, is characterized by its complete
problems ITER and Sink-of-DAG. Our first result shows that several of these natural
complete problems for PLS are in fact downward self-reducible.
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▶ Theorem 1.1. ITER, Sink-of-DAG are downward self-reducible.

This result is similar to the corresponding situation for NP and PSPACE. Most of
the naturally occuring NP-complete and PSPACE-complete problems are downward self-
reducible. It is open if all NP-complete or PSPACE-complete problems are downward
self-reducible. The situation is similar for PLS: it is open if every PLS-complete problem is
downward self-reducible.

Given the above result, one may ask if there are problems outside PLS in TFNP which
are downward self-reducible. Our next result rules this out.

▶ Theorem 1.2. Every downward self-reducible problem in TFNP is in PLS.

That is, just as PSPACE is the ceiling for downward self-reducible problems in the
decisional world, PLS contains all downward self-reducible problems in TFNP. An immediate
corollary of these two results is that a downward self-reducible problem in TFNP is hard iff
a problem in PLS is hard.

We then ask if we can further characterize the downward self-reducible problems in
TFNP: what about search problems which are guaranteed to have an unique solution, more
concisely denoted as TFUP. In this case, we show that the above containment of d.s.r
problems in TFNP in the class PLS can be strengthened if the search problem is guaranteed
to have an unique solution: the problem then collapses to UEOPL, a subclass of CLS (itself
a sub-class of PLS), which is one of the lowest subclasses known in the TFNP hierarchy.

▶ Theorem 1.3. Every downward self-reducible problem in TFUP is in UEOPL.

We now return to the question on downward self-reducibility of integer factoring. Let
Factor denote the problem of finding a non-trivial factor of the given number if the number
is composite or outputting “prime” if the number is prime and AllFactors be the problem
of listing all the non-trivial factors of a given number if it is composite or outputting “prime”
if the number is prime. Clearly, AllFactors is in TFUP. It is not hard to check that
AllFactors is downward self-reducible iff Factor downward self-reducible. Combining this
with the above result, we get that factoring collapses to UEOPL if factoring is downward-self
reducible. This result can be viewed as evidence against the downward self-reducibility of
factoring.

▶ Corollary 1.4. If Factor or AllFactors is downward self-reducible, then Factor and
AllFactors ∈ UEOPL.

1.2 Related work
The class TFNP was introduced by Meggido and Papadmitriou [20]. In 1994, Papadimitriou
initated the study of syntactic subclasses of TFNP, i.e., search problems where totality is
guaranteed by combinatorial principles, including PPAD [22].

In the original 1990 paper, Meggido and Papadimitriou proved that if TFNP contains an
NP-hard problem, then the polynomial hierarchy collapses to first level, i.e. NP = co-NP.
Since this is generally believed not to be true, TFNP has emerged as an important potential
source of “intermediate” problems – that is, problems that are not in P but not NP-complete.
Since our work gives a new characterization of PLS-hardness, it is related to work that shows
PLS-hardness from cryptographic assumptions, such as in [6, 14, 17]. In addition to hardness
from cryptographic assumptions, Bitansky and Gerichter recently showed unconditional
hardness of PLS relative to random oracles, as well as hardness of PLS from incrementally
verifiable computation (though an instantiation of this is given through cryptographic
assumptions) [5].

ITCS 2023
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The connection between factoring and TFNP has been studied by Buresh-Oppenheim [7]
and later by Jerabek [18]. Their work shows that factoring is reducible to PPA ∩ PPP.
It is known that PPAD ⊆ PPA ∩ PPP, but whether factoring is in PPAD is an open
problem. This paper makes progress in the study of factoring and TFNP by showing that if
a downward self-reduction for factoring exists, factoring is not only in PPAD but also in
CLS. CLS was introduced by Daskalakis and Papadimitriou in 2011 [10], and in a recent
breakthrough result, shown to be exactly the intersection PPAD ∩ PLS [12]. Recently,
it was also shown that CLS is hard relative to a random oracle but with the additional
assumption of #SAT hardness [8]. More recently, in concurrent and independent work to
ours, it was shown that UEOPL (and hence CLS) hardness can be based on any downward
self-reducible problem family that additionally satisfied a randomized batching property, and
for which the Fiat-Shamir heuristic protocol is unambiguously sound [4]. This complements
our results in interesting ways; we base hardness of UEOPL on any problem in unique
TFNP that is d.s.r., while theirs is based on any problem that is d.s.r. (not necessarily
total) but requires an additional batching property and an assumption about the Fiat-Shamir
heuristic for interactive protocols for that problem. The reductions in Theorems 1.1 and 1.2
are reminiscent of the reductions in [9] and [11] in their reliance on downward self-reducibility.
The major differences between these works and our work are (i) these results work with
specific d.s.r. problems (viz., sumcheck of low-degree polynomials and iterated squaring)
while we work with any d.s.r. problem in TFNP; and (ii) these results rely on problems
“outside” of NP while we rely on problems in TFNP. This allows us to do away with
non-interactive proofs/arguments that the aforementioned works rely on (since a solution of
a TFNP problem is itself a proof) and generalise/abstract out the assumption (i).

Organization

The rest of this paper is organized as follows. We first begin with some preliminaries in
Section 2 where we recall the definitions of various subclasses of problems in TFNP and
the notion of downward self-reducibility. In Section 3, we show that some of the classical
PLS-complete problems such as ITER, Sink-of-Dag are downward self-reducible, thus
proving Theorem 1.1. Next, in Section 4, we show that every downward self-reducible problem
in TFNP is contained in PLS, thus proving Theorem 1.2. In Section 5, we observe that if
the search problem is in TFUP, then the reduction in Section 4 can be strengthened to show
that the problem is contained in CLS (thus, proving Theorem 1.3). This immediately yields
Corollary 1.4 on the consequence of the downward self-reducibility of factoring. We finally
conclude with some closing thoughts in Section 6.

2 Preliminaries

▶ Notation. Throughout this paper || denotes concatenation of strings. We impose an
ordering on strings in {0, 1}n lexicographically, e.g. for x = 1011 and y = 1001, x > y.
Sometimes we will write [T ] to represent the subset of strings {0, 1}⌈log(T )⌉ that are at most
T as binary numbers.

2.1 Search Problems
We begin by recalling the definitions of search problems, TFNP, and its subclasses.

▶ Definition 2.1 (Search problem). A search problem is a relation R ⊂ {0, 1}∗ × {0, 1}∗. We
will variously write xRy, (x, y) ∈ R and R(x, y) = 1 to mean that (x, y) is in the relation
R, or equivalently that y is a solution to x in the search problem R. A Turing Machine or
algorithm M solves R if for any input x, M(x) halts with a string y on the output tape such
that (x, y) ∈ R.



P. Harsha, D. Mitropolsky, and A. Rosen 67:5

▶ Definition 2.2 (NP search problem). A search problem R is an NP search problem if (1) there
exists a polynomial p(·) such that for every x ∈ {0, 1}∗, the set Yx = {y ∈ {0, 1}∗ : (x, y) ∈
R} ⊆ {0, 1}p(n) and (2) there exists a polynomial time Turing Machine M such that for
all pairs of strings x, y, M(x, y) = 1 ⇐⇒ (x, y) ∈ R. The class of NP search problems is
denoted FNP.

▶ Definition 2.3 (TFNP). A search problem R is total if for every x ∈ {0, 1}∗, there exists
at least one y such that (x, y) ∈ R. The class of total NP search problems is called TFNP.

2.2 Local Search and Continuous Local Search
The study of total complexity is primarily interested in problems where totality – the fact
that for any input there is a solution (that can be efficiently verified) – is the result of
some combinatorial principle. A fundamental subclass of this kind is PLS, which intuitively
captures problems whose totality is guaranteed by a “local search”-like principle (that is,
the principle that if applying some efficient step increases an objective but the objective is
bounded, a local optimum must exist).

▶ Definition 2.4 (Sink-of-DAG). Given a successor circuit S : {0, 1}n → {0, 1}n such
that S(0n) ̸= 0n, and a valuation circuit V : {0, 1}n → [2m − 1] find v ∈ {0, 1}n such that
S(v) ̸= v but S(S(v)) = S(v) (a sink), or V (S(v)) ≤ V (v).

It is not hard to show that Sink-of-DAG ∈ TFNP: since the range of V is finite,
successively applying S must result in a sink of S, or a local maximum of V (note that
exponentially many applications of S may be required to find this solution, so we cannot say
that PLS is solvable in polynomial time). Any problem that is polynomial-time reducible to
Sink-of-DAG would also be in TFNP.

▶ Definition 2.5 (PLS [19]). The class PLS, for polynomial local search, consists of all
search problems in TFNP that are polynomial-time reducible to Sink-of-DAG.

In this paper, we will be interested in several other complete problems in PLS.

▶ Definition 2.6 (ITER [21]). Given a successor circuit S : {0, 1}n → {0, 1}n such that
S(0n) > 0n, find v ∈ {0, 1}n such that S(v) > v, but S(S(v)) ≤ S(v).

▶ Definition 2.7. ITER-with-source: Given a successor circuit S : {0, 1}n → {0, 1}n

and a source s ∈ {0, 1}n such that S(s) > s, find v ∈ {0, 1}n such that S(v) > v, but
S(S(v)) ≤ S(v).

Analogously to ITER versus ITER-with-source, one can define Sink-of-DAG-with-
source, where instead of the guarantee that S(0n) ̸= 0n, we are given an additional input
s ∈ {0, 1}n such that S(s) ̸= s. The following is folklore:

▶ Theorem 2.8. All of ITER, ITER-with-source, Sink-of-DAG, Sink-of-DAG-with-
source are PLS-complete.

Proof.
ITER → Sink-of-DAG: Given an instance S of ITER, let S′ = S and V ′ = S; a
solution v of (S′, V ′) is trivially a solution of S.
Sink-of-DAG → ITER: Given an instance (S, V ) of Sink-of-DAG, let S′ : {0, 1}2n →
{0, 1}2n be the circuit computing S′(V (x)||x)) = V (S(x))||S(x) and S′(y||x) = y||x
if y ̸= V (x), and source s′ = V (0n)||0n. A solution v of S′ must satisfy that either
S(S(v)) = S(v), or V (S(S(v)) ≤ S(v), so either v or S(v) is a solution to S.

ITCS 2023
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X → X-with-source, where X ∈ {ITER, Sink-of-DAG}: to specify the additional
argument s, let s = 0n.
X-with-source → X, where X ∈ {ITER, Sink-of-DAG}: replace the successor
circuit S of either problem with S′ that computes S′(0n) = s and S′(x) = x for x ̸= 0n. ◀

Another fundamental class in the study of total complexity is PPAD, which similar to
PLS is a sink-(or source)-finding problem, but where the existence of sinks is not guaranteed
by a consistently increasing valuation, but rather by the presence of a predecessor circuit. In
both PLS and PPAD, a principle (either the increasing valuation or the predecessor circuit)
ensures that loops are not possible along a path.

▶ Definition 2.9 (End-of-line). In End-of-Line (or EOL) problem, we are given a
successor circuit S : {0, 1}n → {0, 1}n and a predecessor circuit P : {0, 1}n → {0, 1}n such
that S(0n) ̸= 0n and P (0n) = 0n and we need to output either another source node (v s.t.
S(v) ̸= v and P (v) = v) or a sink node (v s.t. P (v) ̸= v but S(v) = v).

▶ Definition 2.10 (PPAD [22]). The class PPAD, for polynomial parity arguments on
directed graphs, consists of all search problems in TFNP that are polynomial-time reducible
to End-of-Line.

In this paper we will be interested in the class CLS, which was originally defined with
respect to a continuous analogue of PLS and PPAD. However, it has recently been shown to
have a much simpler complete problem which is the natural unification of PLS and PPAD:

▶ Definition 2.11 (End-of-Potential-Line [13]). Given a successor circuit S : {0, 1}n →
{0, 1}n and a predecessor circuit P : {0, 1}n → {0, 1}n such that S(0n) ̸= 0n and P (0n) = 0n,
as well as a valuation circuit V : {0, 1}n → [2m − 1], find either

a “PPAD-like solution”: v s.t. S(v) ̸= v = P (v) or P (v) ̸= v = S(v)
a “PLS-like solution”: v s.t. S(v) ̸= v, P (S(v)) = v and V (S(v)) ≤ V (v).

▶ Definition 2.12 (CLS, defined in [10], completeness of End-of-Potential-Line proved
in [15]). The class CLS, for continuous local search, is the class of total search problems
polynomial time reducible to End-Of-Potential-Line.

A recent result surprised the TFNP community:

▶ Theorem 2.13 ([12]). CLS = PLS ∩ PPAD.

We think of End-of-Line and End-of-Potential-Line instances as defining an ordered
“line” consisting of the vertices 0n, S(0n), S2(0n), . . .. If there were exactly one “line” in the
instance, the solution to these problems would be unique. We will be interested in a version
of End-of-Potential-Line that allows an additional kind of solution, namely one which
demonstrates the existence of at least two lines.

▶ Definition 2.14 (UniqueEOPL [13]). Given an instance (S, P, V ) of End-of-Potential-
Line with vertex set {0, 1}n, find a solution to the original problem or two points u ̸= v ∈
{0, 1}n such that x ̸= S(x), y ̸= S(y) and either V (x) = V (y) or V (x) < V (y) < V (S(x)).

Observe that either V (x) = V (y) or V (x) < V (y) < V (S(x)) in the new type of solution
above implies the existence of at least two “lines” in the graph represented by (S, P, V ). This
problem leads to the definition of a natural subclass of CLS:

▶ Definition 2.15 (UEOPL [13]). The class UEOPL is the class of total search problems
polynomial time reducible to UniqueEOPL.

▶ Proposition 2.16 ([13]). UEOPL is a subclass of CLS.
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2.3 Downward-self-reducibility
▶ Definition 2.17. A search problem R is downward self-reducible (d.s.r) if there is a
polynomial time oracle algorithm for R that on input x ∈ {0, 1}n makes queries to an
R-oracle of size strictly less than n = |x|.

In this definition of downward self-reducible, the number of bits of the input must
be smaller in oracle calls. Indeed, both TQBF and SAT are d.s.r. in this sense by the
usual trick of instantiating the first quantified variable x1, and simplifying the resulting
Boolean expression to remove x1 entirely. However, there is a related notion of downward
self-reducibility which can be defined to certain classes of structured problems or languages,
where the number of variables of the instance decreases in oracle calls, even if the number of
bits of the sub-instances does not decrease. A circuit problem is one where inputs are always
circuits C : {0, 1}n → {0, 1}m under some fixed representation of circuits, and solutions are
inputs to the circuit of the form s ∈ {0, 1}n.

▶ Definition 2.18. A circuit problem is circuit-d.s.r. if there is a polynomial time oracle
algorithm for R that on input C : {0, 1}n → {0, 1}m makes queries to an R-oracle on circuits
with ν ≤ n input bits, and µ ≤ m output bits, and ν + µ < n + m (at least one of ν or µ is
smaller than n or m respectively).

Throughout the rest of the paper we will only consider circuit problems where the size of
the input circuit |C| is at least n and at most polynomial in n and m; this way an algorithm’s
complexity is equivalent as a function of the number of inputs and outputs or of the actual
input size (that is, |C|).

▶ Definition 2.19. We say that a circuit problem is circuit-d.s.r. with polynomial-blowup if
it is circuit d.s.r and furthermore on input C with n + m inputs and outputs, it makes oracle
queries on circuits of size at most |C|+ poly(nm).

The reader might immediately ask: what is the relation between these notions of self-
reducibility? It might seem one is a weaker version of the other, but this does not seem to
be the case. In fact, the authors initially believed this was indeed the case, but despite this
intuition, attempts at proving it failed! For circuit problems in TFNP, it would be interesting
if there any connection between these two different notion of downward self-reducibility.

3 Downward self-reducibility of PLS-complete problems

In this section, we initiate the study of downward self-reducibility in TFNP by showing that
of the four (4) canonical PLS-complete problems, three (3) are circuit-d.s.r. and one is both
circuit-d.s.r. and d.s.r. Showing that a circuit problem is d.s.r. is trickier, as it requires not
only reducing the input and output bits but also shrinking the entire circuit representation.

▶ Theorem 3.1. ITER-with-source is d.s.r. and circuit-d.s.r. with polynomial blowup.

The following definition will be useful for the proof of Theorem 3.1:

▶ Definition 3.2. Given an (acyclic) circuit C : {0, 1}n → {0, 1}m, the input restriction of
C on input bit i ∈ [n] to value b ∈ {0, 1}, denoted Ci→b, is the circuit obtained by setting the
input i to b, and then removing input bit i by “propagating” its value through the circuit (the
exact process is given following this definition). Similarly, the output restriction of C formed
by excluding output bit j ∈ [m], denoted C\j, is defined by removing the j-th output bit and
propagating the effect throughout the circuit.

ITCS 2023
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Propagating a restriction is intuitive, but the details are given for completeness. For an
input restriction Ci→b, initially, input bit i is replaced by the constant value b. In polynomial
time the circuit can be partitioned into layers 1, . . . , L such that a gate in later ℓ has inputs
in layers ℓ′ < ℓ and layer 1 are the input bits. For each layer ℓ = 2, . . . , L, we modify every
gate G in layer ℓ that has as at least one input that was replaced by a constant in an earlier
layer:

if G = NOT and its input was replaced with constant β, replace G with constant ¬β;
if G ∈ {AND,OR} and both input bits ι, κ were replaced with constants, replace G with
the value (ι G κ);
if G = AND and only input bit ι was set to constant β, if β = 0 replace G by 0, and if
β = 1 remove G by replacing any outgoing wires from G into layers ℓ′ > ℓ with outgoing
wires from κ;
if G = OR and only input bit ι was set to constant β, if β = 1 replace G by 1, and if
β = 0 remove G by replacing any outgoing wires from G into layers ℓ′ > ℓ with outgoing
wires from κ.

For an output restriction C\j we start by removing output bit j, and then for each layer
ℓ ∈ {L−1, . . . , 1}, remove any gate which feeds only into gates that were removed in previous
layers. Both input and output restrictions can be constructed in polynomial time. Both
kinds of restriction have a smaller circuit representation in any reasonable representation of
circuits1, that is, |Ci→b| < |C| and |C\j | < |C|.

Proof of Theorem 3.1. The key observation is that we can first query a restriction of S to
the first half of inputs (that is, those beginning with a 0) and either obtain a sink, or else a
string whose successor is in the second half of inputs (those beginning with 1). With this
new source, we can reduce the problem to finding a sink in the second half of inputs.

Concretely, given an instance (S, s) such that S : {0, 1}n → {0, 1}n and S(s) > s, define
S0 = (S1→0)\1 and S1 = (S1→1)\1, i.e., the input restriction with the first bit set to 0
or 1 respectively, and the output restriction obtained by excluding the first output bit
1. These restrictions can be constructed efficiently and are necessarily smaller in total
representation than S, and S0(x) = S(0||x)1:n−1, S1(x) = S(1||x)1:n−1 where the subscript
denotes returning that range of bits.

Now, if s > 2n−1, then (S1, s1:n−1) defines a valid smaller instance of ITER-with-
source and given solution w to (S1, s1:n−1), v = 1||w is a solution to (S, s). Otherwise,
assuming s < 2n−1, we query the oracle for (S0, s1:n−1). Any solution w of this sub-instance
for which S(0||w) < 2n−1 − 1 and S(S(O||w)) < 2n−1 − 1 directly yields a solution for S,
namely v = 0||w. Otherwise, there are several possible kinds of “false” solutions. In each case
we will have either a solution to S, or otherwise a vertex σ ∈ {0, 1}n such that σ > 2n−1 such
that S(σ) > σ and in which case we query (S1, σ1:n−1) for solution z, and output v = 1||z.

Again, if w is the solution returned by the downward ITER oracle on (S0, s1:n−1):
1. If S(0||w) ≥ 2n−1, then either S(S(0||w)) < S(0||w) (and then 0||w is a solution for

(S, s)) or we set σ = S(0||w) and continue as above.
2. If S(0||w) < 2n−1 but S(S(0||w)) ≥ 2n−1, then either S(S(S(0||w))) < S(S(0||w)) (in

which case S(0||w) is a solution for (S, s)), or set σ = S(S(0||w)).

1 We note that is possible to come up with a “pathological” circuit representation such that restrictions
with propagation of this kind result in a longer circuit representation, even though the number of nodes
in the DAG encoded by the representation has decreased.
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Note, that in addition to shrinking the circuit size, the oracle sub-instances have one
less input and output bit, so ITER-with-source is also circuit-d.s.r. with sub-constant
blowup. ◀

▶ Theorem 3.3. ITER, Sink-of-DAG and Sink-of-DAG-with-source are circuit-d.s.r.
with polynomial blowup.

For the notion of circuit-d.s.r. to make sense for Sink-of-DAG and Sink-of-DAG-with-
source, which as defined have several input circuits with the same domain, we think of the
inputs to these problems as a single circuit which reuses the same input bits and concatenates
the outputs. This works because although these problems are defined with multiple circuit
inputs, a solution is a single input (that satisfies some relation depending on the circuits).
That is, to be circuit-d.s.r. the oracle sub-instances must decrease the input size for each
circuit, or the output size for any circuit.

Proof.
1. ITER: We follow roughly the same algorithm as in the proof of Theorem 3.1 but with

s = 0n; when we query S0 = (S1→0)\1 we either obtain a solution to the original instance,
or a vertex σ ∈ {0, 1}n such that σ ≥ 2n−1 and S(σ) > σ. The problem is that we
cannot just input-restrict the first bit to 1, since the source of this new circuit must be
0n−1 and S1(0n−1) = S(2n−1) and it may not be that σ = 2n−1; therefore, we modify
S1 = (S1→1)\1 to “redirect” the input 0n−1 to the new source by adding a component
that checks if the input is 0n−1, and if so feeds a hardcoded σ1:n−1 into the rest of the
circuit, and otherwise feeds in the input unchanged. This gadget can be implemented
with O(n) additional gates, so ITER is circuit-d.s.r with polynomial-blowup.

2. Sink-of-DAG-with-source: Let V ′ = V\1 be the output restriction of the first bit; we
query (S, V ′) and obtain solution w. If both V (w) < 2m−1 and V (S(w)) < 2m−1 then
w is a solution to the original instance; otherwise, this gives us a σ ∈ {0, 1}n such that
V (σ) ≥ 2m−1 and S(σ) ̸= σ. For the next subquery, the valuation circuit will again be
V ′, but we also use a modified successor circuit S′: on input x ∈ {0, 1}n it checks whether
V (x) < V (σ) and if so outputs x, and otherwise outputs S(x). We also set s′ = σ. The
modification to S′ ensures no x for which V (x) < V (σ) can be a solution to (S′, V ′, s′).
Since this algorithm only ever decreases the output bits of of the valuation circuit in
oracle calls, it is necessary to check that it can be solved when output bits cannot be
decreased any further, that is when m = 1; indeed, in that case the problem is trivial
can be found by applying S just once. S′ needs to be implemented carefully to ensure
polynomial-blowup: instead of copying V , the output bits of V are moved down into a
non-output layer, and S′ compares these bits to the hardcoded S(σ) (n− 1 of these bits
are also reused directly to compute V ′). This gadget can be implemented with O(m)
additional overhead.

3. Sink-of-DAG: The construction is exactly as above, except S′ has an additional compo-
nent which checks if x = 0n, and if so feeds a harcoded σ into the rest of the circuit for
S′ and V ′. This gadget can be implemented with O(n) additional overhead. ◀

A natural question is whether every PLS-complete problem is d.s.r. (or circuit d.s.r. if it
is a circuit problem). The difficulty with answering this question is that, as evidenced in this
section, downward self-reducibility seems to depend on the details of the input representation
of the problem. This is analogous to the case of downward self-reducibility in decision
problems: SAT, and more generally TQBF, are known to be d.s.r., but the property is
not known to be true for all NP- or PSPACE-complete problems. The same ideas to
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show any NP-complete problem has a search-to-decision self-reduction does not work when
considering downward self-reducibility, either in the decisional landscape or in TFNP. If, say
the reduction from SAT to A squares the input length, it is not clear how to use downward
self-reducibility of SAT to get it for A.

▶ Open Problem 3.4. Is every PLS-complete problem downward self-reducible?

4 Downward self-reducible problems are in PLS

In the previous section we proved that the canonical PLS-complete problems are downward
self-reducible. The natural question is whether the reverse is true. Indeed, we are able to
show the following theorem (restated from the introduction):

▶ Theorem 1.2. Every downward self-reducible problem in TFNP is in PLS.

The “moral” of these results (Theorems 1.2 and 3.1 that some PLS-complete problems
are d.s.r. and d.s.r. problems are in PLS) is the following corollary. An equivalent one exists
in the decisional landscape, namely, that a hard language is d.s.r. iff there is a hard language
in PSPACE.

▶ Corollary 4.1. A problem in PLS is hard if and only if a downward-self reducible problem
in TFNP is hard. Here, “hard” can mean worst-case hard, or average-case hard with respect
to some efficiently sampleable distribution.

Proof. This is essentially restatement of Theorems 1.2 and 3.1 together. On one hand, if a
problem in PLS is hard (either worst-case, or average-case with respect to some sampleable
distribution) then any PLS complete problem is also hard (with the same notion of hardness
carrying over); in particular, ITER ∈ PLS is hard. Conversely if a d.s.r. problem in TFNP
is hard, then by Theorem 1.2 the same problem is in PLS. ◀

Proof of Theorem 1.2. If R is downward self-reducible with algorithm A′, then there exists
the following (inefficient) depth-first recursive algorithm A for R: on input x, simulate A′

and for any oracle call to an instance x′ where |x′| < x, run A(x′) to obtain a solution, and
then continue the simulation of A′. The idea of reducing R to Sink-of-DAG is to represent
its intermediate states of this algorithm as vertices of a DAG. Of course, this graph may
have exponential size.

Intuitively, we will represent the intermediate states of A as a list of the recursive instances
invoked by A up to the current depth of recursion, along with the solutions to already-solved
recursive instances. We can assume without loss of generality that on inputs of length n,
A makes exactly p(n) downward calls (this can be done by “padding” the algorithm with
unused additional calls to some fixed sub-instance) and that solutions have size q(n).

The Sink-of-DAG vertex set will consist of strings s ∈ {0, 1}P (n) where P (n) =
n + q(n) +

∑n−1
i=1 p(n− i + 1)× (n− i + q(n− i)) which we will call states or nodes. Note

P (n) < p(n)q(n)n2 and is hence polynomial size. We interpret a string s ∈ {0, 1}P (n) as a
table s[·, ·] indexed by the depth of recursion i ∈ {0, . . . , n− 1}, and index j of the recursive
call at depth i, with j ∈ [p(n − i + 1)] (except for i = 0 where j can only be 1). Each
s[i, j] ∈ {0, 1}n−i ×Bq(n−i) can contain an instance of R, and possibly a solution. That is,
s[i, j] can be one of: (1) a pair (ξ,⊥) of an R-instance ξ and special symbol ⊥, (2) a pair
(ξ, γ) of an R-instance ξ and purported solution γ, or (3) the pair (⊥,⊥) representing no
instance.
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Algorithm 1 Valid? (Algorithm for whether state s is valid in Theorem 1.2.)

Input:
State s ∈ {0, 1}P (n), s[i, j] ∈ {0, 1}n−i × {0, 1}q(n−1) for i ∈ [n− 1] and
j ∈ [p(n− i + 1)].
Input x to search problem R.

Output: True if state s is valid for input x, else False

Set (ξ, y)← s[0, 1]
if ξ ̸= x then return false;

if y ̸= ⊥ then return “(x, y)
?
∈ R” ;

Set j ← 1
while (xj , yj) := s[1, j] ̸= (⊥,⊥) do

if xj is not the next input queried by A after x1, . . . , xj−1 with solutions
y1, . . . , yj−1 then return False;

if yj ̸= ⊥ and (xj , yj) /∈ R then return False;
Set sxj

∈ {0, 1}P (n−1) as follows: sxj
[0, 1] = s[1, j], and sxj

[ι, κ] = s[ι + 1, κ] for
ι ∈ [n− 1].

if Valid?(sxj
, xj) then break while loop;

else return False;
Set j ← j + 1

for j′ ∈ {j + 1, . . . , p(n)} do
if s[1, j′] ̸= (⊥,⊥) then return False;

return True.

On input x, the starting state s0 is defined by setting s0[0, 1] = (x,⊥) and s[i, j] = (⊥,⊥)
for all other i, j. We say that a state s is valid for input x based on the following recursive
definition: s[0, 1] = (x,⊥), and there exists j ∈ [p(n)] (where n = |x|) such that
1. s[1, j′] = (⊥,⊥) for all j′ > j,
2. for j′ ≤ j, s[1, j′] = (xj′ , yj′) where yj′ is a correct solution for xj′ (except for j′ = j

where yj′ can be ⊥),
3. for each j′ ≤ j, xj′ is the next (n− 1)-size subquery made by A on input x given previous

subqueries x1, . . . , xj′−1 and respective solutions y1, . . . , yj′−1,
4. if yj = ⊥, then letting sxj

∆= s[i′, j′] be the table defined by sxj [0, 1] = (xj ,⊥) and
s[i′, j′] = s[i′ + 1, j′] for i′ ∈ [n− 2] and j′ ∈ p((n− 1)− i′ + 1), syj

is a valid state for
input xj .

See Algorithm 1 for the pseudocode for checking if a state is valid.
Condition 4 says that, letting sxj

be the subtable of s corresponding to the computation
of A to solve the instance xj– that is, (xj ,⊥) in its first cell sxj

[0, 1], and the rest of s[ι, j]
for ι > 2– sxj is valid.

Validity can be checked efficiently by the recursive algorithm implicit to this definition;
its time complexity is T (n) ≤ poly(p(n)) + T (n− 1) = poly(n).

The successor function S is also defined recursively. For invalid states the successor
function returns the state itself; as they cannot be reached this makes them isolated nodes
that cannot be a solution to the Sink-of-Dag instance. For valid states, let (x, y) = s[0, 1].
If y ≠ ⊥ is a solution, then S(s) := s (the node is a sink as it contains a solution to x).
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Algorithm 2 S (Algorithm for the successor circuit S in Theorem 1.2.)

Input:
State s ∈ {0, 1}P (n) where s[i, j] ∈ {0, 1}n−i × {0, 1}q(n−1) for i ∈ [n− 1] and
j ∈ [p(n− i + 1)].
Input x to search problem R, and n := |x|.

Output: Successor state of state x on input x

if valid?(s, x) =False then return s;
Set (x, y)← s[0, 1]
if y ̸= ⊥ then return s;
Let j ∈ [p(n)] such that ∀ j′ > j, s[1, j′] = (⊥,⊥)
Set (xj , yj)← s[1, j]
if j = p(n) and yj ̸= ⊥ then

Simulate A(x) after queries x1, . . . , xj with solutions y1, . . . , yj to obtain y such
that (x, y) ∈ R.

Let s′ ∈ {0, 1}P (n) with s′[0, 1] = (x, y) and (⊥,⊥) elsewhere.
return s′.

else if yj ̸= ⊥ then
Simulate A(x) after queries x1, . . . , xj with solutions y1, . . . , yj to obtain next
query xj+1.

Let s′ := s, but s′[1, j + 1] := (xj+1,⊥).
return s′.

else
Let sxj ⊂ s be the subset of cells of s as indexed by sxj [0, 1] = s[1, j], and
sxj

[ι, κ] = s[ι + 1, κ] for ι ∈ [n− 1].
Let s′

xj
= S(sxj , xj).

Let s′ := s with subrange sxj
replaced by s′

xj
.

return s′.

Otherwise, if y = ⊥ (and s represents an intermediate state of the algorithm A), let j ∈ p[n]
be the index of the last subquery (of size n − 1) encoded by s, exactly as in conditions
(2)-(4) in the algorithm for validity, with corresponding cell (xj , yj) = s[1, j]. If yj ̸= ⊥ and
j < p(n), we simulate A to obtain the next subquery xj+1 of size n− 1 (given the previous
subqueries x1, . . . , xj with solutions y1, . . . , yj) and set the [1, j + 1]-cell to (xj+1,⊥) (that is,
S(s)[1, j + 1] = (xj+1,⊥) and S(s)[i′, j′] = s[i′, j′] for all other (i′, j′) ̸= (1, j + 1)). Note that
this part is non-recursive (since by definition, xj+1 is the very next recursive call made by A)
and requires polynomial time. If yj ̸= ⊥ and j = p(n), we similarly simulate A to obtain the
final solution y to x since all the subqueries made by A on input x have been obtained with
their answers; we set S(s)[1, 0] = (x, y) and set all other cells to (⊥,⊥). Finally if yj = ⊥,
s represents an intermediate state of A currently at a deeper level of recursion. Construct
sxj as in the validity algorithm (sxj is a subset of the cells of s, namely (xj ,⊥) as cell [0, 1],
and the rest of s at levels 2 and beyond); let σxj

= S(sxj
) be the successor of sxj

when
simulating A on sxj

; S(s) returns s, replacing the subset of cells corresponding to sxj
with

σxj
. Observe that the time to compute the successor is at most the time to simulate A

between recursive calls or the time to compute the successor for a smaller sub-instance, that
is Ts(n) ≤ poly(n) + Ts(n− 1) = poly(n). See Algorithm 2 for the pseudocode for checking
if a state is valid.
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Finally, for valid nodes, the potential circuit V will return how far the state is in the depth-
first recursive algorithm. The position π(s) ∈ {0, 1}cn2 of a valid state s in the simulation of
A can be computed as follows. Let ji be the last cell at each level i = 1, . . . , n − 1 that is
not (⊥,⊥) (i.e., ji is the last index such that s[i, ji] contains a subquery). If s is a solution
(sink), π(s) = Π(n), and otherwise π(s) = 1 +

∑n−1
i=1 min{1, ji}+ max{0, ji − 1} ×Π(n− i).

It is clear that the only valid node to not have a valid successor is the one corresponding
to the final configuration of A, with solution y, a solution to the Sink-of-DAG instance
gives a solution to x (by reading (x, y) = s[0, 1]). ◀

In Sections 2.3 and 3 we discussed the related notion of circuit-d.s.r. in which the sub-
instances to the oracle need not be smaller, but the number of input or output bits decreases.
While we do not know the exact connection between these notions, in particular whether
they are equivalent for circuit problems, the following theorem establishes that it is enough
for a TFNP problem to be downward self-reducible in either sense to guarantee membership
in PLS.

▶ Theorem 4.2. Let R be a circuit problem in TFNP that is circuit-d.s.r. with polynomial
blowup. Then R ∈ PLS.

Proof. Let A′ be the algorithm from the definition of circuit-d.s.r. As in d.s.r., A′ can be
used to construct an (inefficient) depth-first recursive algorithm A that solves R: simulate
A′(C), and on oracle calls to a sub-instance C ′, run A(C ′). Critically, A terminates even
though |C ′| may be greater than |C|, because the sum of input and output bits n + m

decreases with each level of recursion.
The reduction to Sink-of-DAG is the same as in the proof of Theorem 1.2: the graph

will represent intermediate states of the depth-first recursive algorithm A. However, the
size of states will be different. Without loss of generality assume R makes exactly p(|C|)
sub-instance calls, and if R is circuit-d.s.r. with polynomial-blowup, we have that each
sub-instance has size at most |C|+ (nm)c for some c > 0. Hence, for a circuit of size |C| we
have P (|C|) = |C|+ n +

∑n+m−1
i=1 p(|C|+ i(nm)c)(|C|+ i(nm)c)n ≤ poly(n, m) bits suffices

to represent intermediate states. ◀

Note that the size of representing intermediate states of A is where it is critical that R

be circuit-d.s.r with polynomial blowup; if instead, for instance, we had the guarantee that
sub-instances have size f(|C|), then at depth-i sub-instances would have size f (i)(|C|) which
even for the modest function f(α) = 2α would give sub-instances of size 2i|C|, which are too
big to represent as Sink-of-DAG nodes.

Finally, we can give a characterization of PLS-hardness analogous to Corollary 4.1:

▶ Corollary 4.3. A problem in PLS is hard if and only if there exists a hard circuit problem
in TFNP that is circuit-d.s.r. with polynomial blowup.

Proof. This is a restatement of Theorems 2.8 and 4.2 together. ◀

5 Unique TFNP and Downward self-reducibility

Several highly structured problems in TFNP have the additional proprety that for every
input, the solution is unique. Most of these problems are algebraic in nature– such as
factoring, and finding the discrete logarithm of an element of a cyclic group for a certain
generator. We find, perhaps surprisingly, that d.s.r. problems with the additional condition
of unique solutions are not only in PLS, but in CLS!
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▶ Definition 5.1 ([16]). TFUP, for “unique” TFNP, is the class of problems in TFNP
where for each input x there is exactly one solution y.

▶ Definition 5.2. Sink-of-Verifiable-Line (SVL): given a successor circuit S : {0, 1}n →
{0, 1}n, source s ∈ {0, 1}n, target index T ∈ [2n] and verifier circuit V : {0, 1}n× [T ]→ {0, 1}
with the guarantee that for (x, i) ∈ {0, 1}n × [T ], V (x, i) = 1 iff x = Si−1(s), find the string
v ∈ {0, 1}n s.t. V (v, T ) = 1.

SVL is a promise problem; in particular, there is no way to efficiently check the guarantee
about the verifier circuit V . A solution is guaranteed to exist if the promise is true, and the
solution must be unique. It is possible to modify the problem (by allowing solutions that
witness an “error” of the verifier circuit) in order to obtain a search problem in TFNP, but
for our purposes SVL is sufficient:

▶ Theorem 5.3 ([13]). SVL is polynomial-time reducible to UEOPL.

Bitansky, Paneth and Rosen [6], building on the results of Abbot, Kane and Valiant [1],
used a reversible pebbling game (also known as the east model) to make the computation of
the successor circuit reversible and show that SVL is polynomial-time reducible to PPAD
(see [1, Section 4.3] and [6, Section 3]). Hubaćek and Yogev [17] then strengthened this
result by showing that the same reduction shows SVL is polynomial-time reducible to CLS.
Finally, in recent work this was strengthened by observing that the same reduction works for
UEOPL [13].

▶ Lemma 5.4. Every d.s.r. problem and every circuit-d.s.r. circuit problem in TFUP reduces
to SVL.

Proof. Given a d.s.r. (or circuit-d.s.r.) problem R, we construct a graph with successor
circuit S exactly as in the proof of Theorem 1.2 or Theorem 1.2. The key observation is that
if R has unique solutions, we can construct a verifier circuit V as in Definition 5.2 for which
the SVL promise holds true.

Let Π(n) denote the total length of the path from the initial state s0 to the unique
sink in the Sink-of-DAG instance from the earlier theorem proofs; we have Π(n) =
p(n) × Π(n − 1) = p(n) × p(n − 1) · · · × p(1). While Π(n) may be exponential it can be
represented with

∑
log(p(n − i)) = O(n2) bits; that is, the distance of each valid node

from s0 in the graph can be represented with cn2 for some constant c. The position
π(s) ∈ {0, 1}cn2 of a valid state s in the simulation of A can be computed as follows. Let
ji be the last cell at each level i = 1, . . . , n − 1 that is not (⊥,⊥) (i.e., ji is the last index
such that s[i, ji] contains a subquery). If s is a solution (sink), π(s) = Π(n), and otherwise
π(s) = 1 +

∑n−1
i=1 min{1, ji}+ max{0, ji − 1} ×Π(n− i). Equivalently this can be computed

recursively; using the sub-table notation from Theorem 1.2, where j is the last cell at level 1
that is not (⊥,⊥), π(s) = 1 + (j−1)Π(n−1) + π(sxj ). Either way, Π and π can be computed
efficiently. Since the sink is the Π(n)-th state, the SVL instance will have target T = Π(n).

Critically, since R ∈ TFUP, for each i ∈ [Π(n)] there is exactly one state s ∈ {0, 1}P (n)

such that π(s) = i: to see this, for every sub-instance x′ invoked by A, there is a unique
solution y′, and given a sequence of previous sub-instances and solutions at a given level of
recursion, the next sub-instance is uniquely determined by A. We define V (s, i) = 1 if s is a
valid state (as in the proof of Theorem 1.2) and π(s) = i. ◀

As a consequence of Theorem 5.3 and the previous lemma, we have the following theorem
(restated from the introduction).
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▶ Theorem 1.3. Every downward self-reducible problem in TFUP is in UEOPL.

This result yields an interesting application to the study of number-theoretic total
problems such as factoring. It is an open problem whether there exists an algorithm for
factoring that uses oracle calls on smaller numbers. The following observations are evidence
that the answer may be no.

▶ Definition 5.5. AllFactors is the problem of, given an integer, listing its non-trivial
factors in increasing order, or “prime” if it is prime. Factor is the problem of returning a
non-trivial factor, or “prime” if it is prime.

AllFactors is in TFUP. AllFactors and Factor are almost the same problem:
Factor is Cook reducible to AllFactors with one oracle call and AllFactors is Cook
reducible to Factor with log(input size) oracle calls. A consequence of Theorem 1.3 is the
following:

▶ Corollary 1.4. If Factor or AllFactors is downward self-reducible, then Factor and
AllFactors ∈ UEOPL.

Proof. If either problem is downward self-reducible, so is the other. Given a downward
self-reduction A of Factor, to solve AllFactors on input n, run A (replacing its downward
oracle calls with those for AllFactors) to obtain factor m, and then run the oracle on n

m .
Given a downward self-reduction B of AllFactors, to solve Factor on input n run B

and return any factor– replace downward oracle calls to AllFactors with ones to Factor
and at most log(log(n)) additional downward queries. Hence if either problem is d.s.r.,
AllFactors ∈ UEOPL, but since Factor ≤p AllFactors, Factor ∈ UEOPL. ◀

Factor ∈ UEOPL, and hence in CLS, would be a surprising consequence to TFNP
community. While it has been shown that Factor can be reduced to the TFNP-subclasses
PPA and PPP, the intersection of which contains PPAD, it has been a long outstanding
question whether Factor

?
∈ PPAD. An algorithm for factoring N which queries numbers at

most N/2 (this is what it means for the input size to shrink by at least one bit, but note that
any number that could contain a non-trivial factor of N is at most N/2) would immediately
place Factor not just in PPAD, but also in PLS (since CLS = PPAD ∩ PLS)!

6 Discussion and Open Problems

In this paper we have initiated the study of downward self-reducibility, and more broadly
self-reducibility, in TFNP. Naturally, a host of questions remain:

What is the relationship between downward self-reducibility and circuit-downward self
reducibility for circuit problems in TFNP?
What other problems in PLS are downward self-reducible? Is it possible every PLS-
complete problem is downward self-reducible? As a first step, it would be helpful to prove
that the suite of PLS-complete local constraint/clause maximization problems (where
a specific neighborhood function is specified as part of the problem, such as Flip or
Kernighan-Lin) are d.s.r.
Another important notion of self-reducibility is that of random self-reducibility (r.s.r.):
a problem R is r.s.r. if it has a worst-to-average case reduction. The details vary but
one definition is R is r.s.r. if it has a randomized Las Vegas algorithm if there exists
an algorithm solving R on 1/poly(n)-fraction of inputs. Some very important algebraic
problems in TFNP, such as the discrete logarithm, and RSA inversion, are r.s.r. These
problems are also in PPP, so a natural starting point is to ask whether all r.s.r. problems
in TFNP are in PPP.
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Abstract

We study the formula complexity of the word problem WordSn,k : {0, 1}kn2
→ {0, 1}: given n-by-n

permutation matrices M1, . . . , Mk, compute the (1, 1)-entry of the matrix product M1 · · · Mk. An
important feature of this function is that it is invariant under action of Sk−1

n given by

(π1, . . . , πk−1)(M1, . . . , Mk) = (M1π−1
1 , π1M2π−1

2 , . . . , πk−2Mk−1π−1
k−1, πk−1Mk).

This symmetry is also exhibited in the smallest known unbounded fan-in {and, or, not}-formulas
for WordSn,k, which have size nO(log k).

In this paper we prove a matching nΩ(log k) lower bound for Sk−1
n -invariant formulas computing

WordSn,k. This result is motivated by the fact that a similar lower bound for unrestricted (non-
invariant) formulas would separate complexity classes NC1 and Logspace.

Our more general main theorem gives a nearly tight nd(k1/d−1) lower bound on the Gk−1-
invariant depth-d {maj, and, or, not}-formula size of WordG,k for any finite simple group G whose
minimum permutation representation has degree n. We also give nearly tight lower bounds on the
Gk−1-invariant depth-d {and, or, not}-formula size in the case where G is an abelian group.
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1 Introduction

1.1 P -invariant complexity

Let P be a permutation group on m elements (i.e., a subgroup of the symmetric group Sm).
There is a natural action of P on the set of Boolean function f : {0, 1}m → {0, 1} given
by (πf)(x1, . . . , xm) = f(xπ(1), . . . , xπ(m)). We say that f is P -invariant if πf = f for all
π ∈ P (i.e., f is symmetric under the action of P ). Many important Boolean functions are
invariant under group actions on coordinates 1, . . . , m: symmetric functions such as Parity
and Majority are fully Sm-invariant, while graph properties such as Connectivity and
3-Colorability are invariant under P = Sn acting on m =

(
n
2
)

edge-indicator variables.
Any permutation group P also acts on combinatorial devices that compute functions on

{0, 1}m, such as m-variable circuits, formulas, branching programs, etc. In this paper, we
focus on formulas in both the AC basis (unbounded fan-in and, or gates) and the TC basis
(unbounded fan-in maj gates) with negations on input literals. Here we view formulas as
rooted trees in which leaves (“inputs”) are labeled by literals x1, x1, . . . , xm, xm or constants
0, 1, and non-leaves (”gates”) are labeled by gate types. We treat the children of a gate as
an unordered multiset, so that two formulas are identical if and only they are isomorphic as
labeled rooted trees.
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68:2 Symmetric Formulas for Products of Permutations

P acts on the set of formulas by relabeling literals xi to xπ(i) and xi to xπ(i). A formula
Φ is said to be P -invariant if πΦ = Φ for all π ∈ P . Every P -invariant formula computes a
P -invariant Boolean function. On the other hand, a P -invariant Boolean function f may be
computed (often more efficiently) by a non-P -invariant formula Φ; in this case, we would say
that Φ is semantically P -invariant, but not syntactically P -invariant.

The action of P on formulas preserves parameters such as depth (the maximum number
of gates on a leaf-to-root branch) and size (the number of leaves labeled by literals). For
general Boolean functions f , we write LACd

(f) and LTCd
(f) for the minimum size of a depth-d

AC (respectively TC) formulas that computes f , and we write LAC(f) and LTC(f) allowing
unrestricted depth. When f is P -invariant, we may consider the corresponding P -invariant
complexity measures (indicated by superscript P ):

LTCd
(f) ≤ LACd

(f)

≤ ≤

LP
TCd

(f) ≤ LP
ACd

(f)

LTC(f) ≤ LAC(f) = LDeMorgan(f)

≤ ≤

LP
TC(f) ≤ LP

AC(f)

Invariant circuit complexity has been previously studied in the context of descriptive
complexity, an area concerned with characterizing complexity classes in terms of definability
in different logics. Here the languages/Boolean functions considered are graph properties
(or in general isomorphism-invariant properties of finite relational structures), and P is the
symmetric group Sn acting on m =

(
n
2
)

edge-indicator variables (or m =
∑t

i=1 nri indicator
variables for properties of structures with relations of arity r1, . . . , rt). Denenberg, Gurevich
and Shelah [12] showed that P -invariant AC circuits of polynomial size and constant depth
(subject to a certain uniformity condition) capture precisely the first-order definable graph
properties. More recently, Anderson and Dawar [3] established a correspondence between
polynomial-size P -invariant TC circuits and definability in fixed-point logic with counting.
For both classes of formulas, exponential gaps are known between the P -invariant complexity
and non-invariant complexity of explicit graph properties.

1.2 The word problem over a finite permutation group
Let G ≤ Sn be a finite permutation group, which we assume to be transitive. Specifically,
we will be interested in the case G = Sn, as well as the case where G is a simple group and
G ≤ Sn is a faithful permutation representation of minimum degree (e.g., G is the alternating
group An, or G is a cyclic group of prime order p and n = p).

We write G for the set of permutation matrices corresponding to elements of G. For
k ∈ N, we view Gk as a subset of Hamming cube {0, 1}kn2 . We write elements of Gk as
k-tuples of matrices (M1, . . . , Mk), and we identify coordinates of {0, 1}kn2 with Boolean
variables Mi,a,b for i ∈ [k] and a, b ∈ [n].

▶ Definition 1. The length-k word problem for G is the Boolean function WordG,k : Gk →
{0, 1} that outputs the (1, 1)-entry of the matrix product M1 · · · Mk.

This is one natural version of the “word problem” for a finite permutation group. This
should not be confused with the word problem for finitely presented groups (see Section 1.6.2).
Note that the problem of determining whether M1 · · · Mk is the identity reduces to n instances
of WordG,k.

We are interested in the invariant formula complexity of WordG,k with respect to the
group Gk−1 acting on Gk by

(g1, . . . , gk−1)(M1, . . . , Mk) = (M1g1
−1, g1M2g2

−1, . . . , gk−2Mk−1gk−1
−1, gk−1Mk)
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where gi denotes the permutation matrix corresponding to gi. Note that the action Gk−1 on
Gk arises from an action on input variables Mi,a,b given by

(g1, . . . , gk−1)Mi,a,b = Mi,gi−1(a),gi(b)

where g0 = gk = 1G. Since this action is faithful, we may view Gk−1 as a subgroup of Skn2 .

1.3 The formula size of WordSn,k

The functions WordSn,k (also known as iterated permutation matrix multiplication) have an
important place in complexity theory, since languages {WordS5,k}k∈N and {WordSn,n}n∈N
are respectively complete for complexity classes NC1 and Logspace [5, 10]. Understanding
the formula complexity of the word problem for Sn could eventually be key to separating
these classes.

The smallest known DeMorgan formulas (and2, or2, not gates) for WordSn,k have size
nO(log k). Allowing unbounded fan-in and∞, or∞, not gates (i.e., AC formulas), we obtain
the same size nO(log k) with depth O(log k) and moreover by formulas that are syntactically
Sk−1

n -invariant. In fact, the smallest known AC formulas of any given depth (via a natural
divide-and-conquer construction that we describe in Corollary 8) happen to be Sk−1

n -invariant:

LSk−1
n

AC (WordSn,k) = nO(log k), LSk−1
n

ACd+1
(WordSn,k) = nO(d(k1/d−1)).

(Note that the size-depth tradeoff on the right implies the lower bound on the left, since
limd→∞ d(k1/d − 1) = ln k.)

A matching lower bound LAC(WordSn,k) = nΩ(log k) for unrestricted (non-invariant)
formulas would separate complexity classes NC1 and Logspace. This motivates the question
of first showing matching lower bounds for Sk−1

n -invariant formulas.

1.4 Our results
Our first theorem shows that the above Sk−1

n -invariant upper bounds are nearly optimal,
even for TC formula which include maj gates.

▶ Theorem 2. For all n, k, d ≥ 1,

LSk−1
n

TC (WordSn,k) ≥ nlog2 k, LSk−1
n

TCd
(WordSn,k) ≥ nd(k1/d−1).

(Note that our the righthand lower bound is off by 1 in depth compared to the upper
bound.)

Note that WordG,k is simply the restriction of the function WordSn,k to the subdomain
Gk ⊆ Sn

k. The Gk−1-invariant complexity of WordG,k is moreover a nondecreasing function
of G in the subgroup lattice of Sn.

Thus, Theorem 2 follows from the main result of this paper (Theorem 3 below), which
lower bounds the Gk−1-invariant TC formula size of WordG,k for certain subgroups G ≤ Sn.
This is because the alternating subgroup An ≤ Sn is simple for n ≥ 5 and has minimum
faithful permutation representation of degree n.

This also motivates the question of strengthening Theorem 2 by finding more proper
subgroups G ⊆ Sn with the same lower bound.

▶ Theorem 3. Let G be a finite simple group and suppose that G ≤ Sn is a faithful
permutation representation of minimum degree. Then

LGk−1

TC (WordG,k) ≥ nlog2 k, LGk−1

TCd
(WordG,k) ≥ nd(k1/d−1).

ITCS 2023
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Our proof of Theorem 3 uses different arguments in the cases where G is nonabelian
(Section 6.1) and where G is cyclic of order p (Section 6.2). However, both cases use the
same framework developed in Section 5.

We remark that the minimum degree requirement is necessary in the nonabelian case,
as the statement would be false for the regular representation G ≤ S|G|. Minimum degree
ensures every proper subgroup H < G has index at least n; this fact plays a role in our lower
bound.

An additional result of this paper gives a lower bound on the Ck−1
q -invariant AC formula

size of the word problem for cyclic groups Cq where q is a prime power. When q is not prime,
we do not know whether the technique of Theorem 3 yields a stronger lower bound for TC
formulas.

▶ Theorem 4. Suppose that q is a prime power and Cq ≤ Sq is cyclic of order q. Then

LCk−1
q

AC (WordCq,k) ≥ qlog2 k, LCk−1
q

ACd
(WordCq,k) ≥ qd(k1/d−1).

▶ Corollary 5. Let G be any finite group. Define

n(G) = max
H≤G:H is simple.

min
π:H→Sm:ker(π)={1G}

m, q(G) = max
Cq≤G: q is a prime power.

q.

Then

LGk−1

TCd
(WordG,k) ≥ nd(k1/d−1), LGk−1

ACd
(WordG,k) ≥ qd(k1/d−1).

Note that Corollary 5 is tight for abelian groups G up to a factor of |G|, since for abelian
G, we can write G = Ct1 × · · · × Ctℓ

for some integers {ti}i∈[ℓ]. This gives a divide and
conquer Gk−1-invariant formula for WordG,k by solving WordCti

,k for each i.
We remark that all of our lower bounds of the form nd(k1/d−1) for P -invariant depth-d

formulas imply lower bounds nk1/d−1/kn2 for P -invariant depth-d circuits, since every (P -
invariant) depth-d circuit of size s unfolds to a (P -invariant) depth-d formula of size at most
sd−1m where m is the number of variables.

The parameters defined in Corollary 5 have been studied before in the setting of all finite
groups. Babai et al. [4] show that for any finite group G, the minimum degree of a faithful
permutation representation of G upper bounds the size of every cyclic subgroup of prime
power order. This shows that when G is a finite simple group, the formula size lower bound
given by Theorem 3 is always stronger than the bound given by Theorem 4.

However, for some groups G the lower bounds on LGk−1

AC (WordG,k) implied by Theorem 3
and Theorem 4 are similar. In the full version of this paper we give examples where the gaps
between the lower bounds may be large, conditional on some number-theoretic conjectures.
Such examples justify the extra work to prove Theorem 3, especially in the case where G is
nonabelian simple.

1.5 The lower bound technique
Let f : {0, 1}m → {0, 1} be a P -invariant partial function, where P ≤ Sm and Ω = Dom(f) is
a P -invariant subset of {0, 1}m. To prove Theorem 3, we introduce a general framework that
lower bounds the P -invariant TCd formula size of f in terms of a function βQ,Ω,d(P ) where
Q is any supergroup P ≤ Q ≤ Sm such that P is the Q-stabilizer of f . Functions βQ,Ω,d

may be viewed as complexity measures on pairs of subgroups of Q, which are interesting in
their own right. These complexity measures correspond to “formulas” that construct P in a
certain manner starting from Q-stabilizers of points 1, . . . , m.
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This lower bound framework is described in Section 5. It is then applied to WordG,k in
for nonabelian simple groups in Section 6.1, and for cyclic group of prime order in Section 6.2.

For a broad outline of our technique see Section 4
Our proof of Theorem 4 (in the full version of this paper) uses a different argument that

generalizes a proof in the special case q = 2 in previous work of the second author [22].

1.6 Related work
1.6.1 TCd and ACd formula lower bounds for WordSn,k

For context, we state below the strongest known lower bounds for WordSn,k with respect
to bounded depth AC formulas (without the restriction of Sk−1

n -invariance). The first three
results all use Switching Lemmas, which limits these lower bounds to depth o(log n + log k).
In contrast, our asymptotically tight lower bounds in the Sk−1

n -invariant setting extend to
arbitrary depth (but stabilize at depth O(log k)).

Rossman [21] gives a lower bound nΩ(log k) on the AC formula size of WordSn,k when
k ≤ log log n, however only up to depth d ≤ log n/(log log n)O(1).
Beame, Impagliazzo and Pitassi [7] prove a size-depth tradeoff nΩ(k1/ exp(d)) for depth-d
AC formulas computing WordSn,k when k ≤ log n and d ≤ log log k.
Chen, Oliveira, Servedio and Tan [9] give an improved tradeoff nΩ(k1/2d/d) when k ≤
n1/5 and d ≤ log k/ log log k, however not for the function WordSn,k (a.k.a. iterated
permutation matrix multiplication) but rather for the more general iterated Boolean
matrix multiplication problem where input matrices M1, . . . , Mk are not guaranteed to
be permutation matrices.
In the case n = 2, where WordS2,k reduces to the Parityk, lower bound of [14, 17, 20]
imply asymptotically tight tradeoffs:

LAC(WordS2,k) = Θ(k2), LACd+1(WordS2,k) = 2Θ(d(k1/d−1)).

Since these bounds are merely polynomial, they fail to separate NC1 from Logspace.
Rossman [22] gives nearly tight bounds on the Sk−1

2 -invariant formula size of WordS2,k:

2d(k1/d−1) ≤ LSk−1
2

ACd+1
(WordS2,k) ≤ k2dk1/d

.

Impagliazzo, Paturi, and Saks [15] prove that a depth-d TC circuit computing WordS2,k

must have size at least k1+1/(1+
√

2)d . By hardness-magnification results of Chen and Tell
[8] expanding on work by Allender and Koucký [2], there exists c > 1 such that improving
the above bound to k1+c−d would imply the separation TC0 ̸= NC1.
Using representation theory, Alexeev, Forbes, Tsimerman [1] prove upper bounds on the
rank of the group tensor (the polynomial version of the word problem), hence proving
upper bounds on arithmetic formula complexity of the word problem. They show that
the depth-d + 1 arithmetic formula size of the word problem polynomial WG,k is at most∑

ρ∈Ĝ
deg(ρ)dk

1
d , where Ĝ is the set of irreducible representations of G. However, for

many groups, their formulas are not Gk−1-invariant due to making choices of cosets of
subgroups.

In this paper we improve on the result of [22] in two ways. First, in the setting of cyclic
groups of prime order, we extend the lower bound from formulas in AC to formulas in TC as
stated in Theorem 3. Second, we generalize the arguments used to cyclic groups of prime
power order for the AC lower bound in Theorem 4.

ITCS 2023
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1.6.2 The word problem for finitely presented groups
An important point to make is the distinction between our version of the word problem on
groups and other more commonly studied versions. In the most commonly studied version of
the word problem, one is given a set of generators for the group and the relations among
the generators. Then the problem is to determine whether a sequence of these generators
multiplies to equal the identity element. Often these problems deal with infinite groups. The
complexity of this version of the word problem has been well-studied [11, 6, 19, 18]. On the
other hand, we only deal with finite groups and do not worry about generators and relations,
but are rather explicitly given the group elements serving as input to our problem.

2 Preliminaries

We fix the following notation throughout. For any k ∈ N, let [k] = {1, . . . , k}.
G shall always be a finite permutation group on n elements (i.e, a subgroup of Sn), which

we assume to be transitive. P and Q shall always be subgroups of Sm, where m = kn2 in
our application.

We write 1G for the identity element in G and Z(G) for the center of G. If H is a
subgroup of G, then we write H ≤ G. If moreover H is a normal subgroup, then we write
H ⊴ G. If G has no nontrivial proper normal subgroup, then G is simple. We denote |G| to
be the order of G.

We will often consider k-fold powers of a group G, denoted Gk. For S ⊆ [k], let
πS : Gk → GS be the projection homomorphism to S. A permutation representation of
G is a homomorphism G → Sn for some positive integer n. We call n the degree of the
representation, and if the homomorphism is injective, then the representation is called faithful.
Define the subgroup Diag(G2) < G2 to be the subgroup {(g, g) : g ∈ G}.

▶ Definition 6. A labeled tree is a finite unordered rooted tree in which each node is associated
with a label.

An m-variable AC formula (respectively, TC formula) is a labeled tree in which each leaf
(“input”) is labeled by a constant symbol or literal in the set {0, 1, x1, x1, . . . , xm, xm} and
each non-input (“gate”) is labeled by and or or (respectively, labeled by maj).

The depth of a formula is the maximum number of gates on a leaf-to-root path. The size
(a.k.a. leaf-size) of formula is the number of leaves that are labeled by literals.

For d ∈ N, we write ACd (resp. TCd) for the set of depth-d AC formulas (resp. TC
formulas) up to isomorphism. That is, we consider two formulas to be the same iff there
exists an isomorphism between them as labeled graphs.

An alternative, concrete inductive definition of sets ACd and TCd is given by:
Let AC0 = TC0 = {0, 1, x1, x1, . . . , xm, xm}.
For d ≥ 1, ACd (resp. TCd) is the set of pairs of form (and, I) or (or, I) (resp. of the form
(maj, I)) where I is a multiset of formulas in AC0 ∪ · · · ∪ ACd−1 (resp. TC0 ∪ · · · ∪ TCd−1).

The symmetric group Sm acts on ACd and TCd by permuting indices on literals. For
P ≤ Sm, we say that a formula Φ is P -invariant if πΦ = Φ for all π ∈ P .

Every formula Φ computes a Boolean function denoted JΦK : {0, 1}m → {0, 1} in the
usual way. For a partial function f : Ω → {0, 1} where Ω ⊆ {0, 1}m, we say that Φ computes
f if JΦK(x) = f(x) for all x ∈ Ω.

Note that P -invariance of Φ implies P -invariance of JΦK, but the converse need not hold
in general. Also note that maj gates can simulate both and and or gates (by padding by an
appropriate number of zeros or ones). Any function computable by AC formulas of a given
size and depth is therefore computable by a TC formula of the same size and depth.



W. He and B. Rossman 68:7

3 Sk−1
n -invariant formulas for WordSn,k

▶ Lemma 7. For all n, k, d ≥ 1 such that k1/d is an integer, the function WordSn,k is
computed by Sk−1

n -invariant Σd+1 and Πd+1 formulas of size knd(k1/d−1).

Proof. For u0, uk ∈ [n], let Word(u0,uk)
Sn,k (M1, . . . , Mk) denote the (u0, uk)-entry of M1 · · · Mk.

Thus, WordSn,k is the function Word(1,1)
Sn,k.

In the base case d = 1, we have Σ2 and Π2 formulas:

Word(u0,uk)
Sn,k (M1, . . . , Mk)

=
∨

u1,u2,...,uk−1∈[n]

(
M1,u0,u1 ∧ M2,u1,u2 ∧ · · · ∧ Mk−1,uk−2,uk−1 ∧ Mk,uk−1,uk

)
,

Word(u0,uk)
Sn,k (M1, . . . , Mk)

=
∧

u1,u2,...,uk−1∈[n]

((
M1,u0,u1 ∧ M2,u1,u2 ∧ · · · ∧ Mk−1,uk−2,uk−1

)
⇒ Mk,uk−1,uk

)
=

∧
u1,u2,...,uk−1∈[n]

( ∨
j∈[k−1]

¬Mj,uj−1,uj ∨ Mk,uk−1,uk

)
.

Both formulas are clearly Sk−1
n -invariant and have size knk−1.

For the induction step, assume d ≥ 2 and let ℓ = k(d−1)/d. Then

Word(u0,uk)
Sn,k (M1, . . . , Mk)

=
∨

uℓ,u2ℓ,...,uk−ℓ∈[n]

∧
j∈[k1/d]

Word(u(j−1)ℓ,ujℓ)
Sn,ℓ (M(j−1)ℓ+1, . . . , Mjℓ).

By induction, each Word(·,·)
Sn,ℓ subformula has an Sℓ−1

n -invariant Πd−1 formulas of size
ℓn(d−1)(ℓ1/(d−1)−1). Substituting these formulas above and collapsing the adjacent layers of
and below the output, we get an Sk−1

n -invariant Σd formula for Word(u0,uk)
Sn,k (M1, . . . , Mk)

of size n(k−ℓ)/ℓk1/d · ℓn(d−1)(ℓ1/(d−1)−1), which equals knd(k1/d−1). We similarly get an Sk−1
n -

invariant Πd formula from the observation that

Word(u0,uk)
Sn,k (M1, . . . , Mk)

=
∧

uℓ,u2ℓ,...,uk−ℓ∈[n]

( ∨
j∈[k1/d−1]

¬Word(u(j−1)ℓ,ujℓ)
Sn,ℓ (M(j−1)ℓ+1, . . . , Mjℓ)

∨ Word(uk−ℓ,uk)
Sn,ℓ (Mk−ℓ+1, . . . , Mk)

)
.

Here we replace each Word(·,·)
Sn,ℓ subformula under a negation with a Πd−1 formula, which

we then convert to Σd−1 formula using DeMorgan’s law. ◀

When k1/d is not necessary an integer, a similar divide-and-conquer construction gives
the following upper bound:

▶ Corollary 8. For all n, k, d ≥ 1, the function WordSn,k is computed by Sk−1
n -invariant

Σd+1 and Πd+1 formulas of size nO(dk1/d). In particular, WordSn,k has Sk−1
n -invariant AC

formulas of size nO(log k) and depth O(log k).

The upper bound of Corollary 8 is the quantitatively strongest known (up to constants
in the exponent), even for TC formulas that may include maj gates.
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4 Overall technique

The structure of the proof of Theorem 3 is quite similar to that of the upper bound. Both
bounds are inductive on formula depth, and deal with dividing the product M1 · · · Mk into
contiguous segments. While the upper bound keeps track of how many subproblems of
permutation multiplication we have, the lower bound keeps track of the amount of symmetry
that the subformulas of the formula must retain. This amount of symmetry is quantified
by the length of the longest contiguous segment of the product (i.e. Mi · · · Mj for some
1 ≤ i ≤ j ≤ k) over which the formula is fully symmetric.

Before giving the proof of Theorem 3, we give a rough overview of our proof using the case
in which G = An, the alternating group on n elements. However, we remark that there is no
significant simplification in the proofs given in Section 6.1 by setting G = An rather than
allowing G to be any nonabelian simple group. We merely focus on An here for concreteness
of the permutation action on [n].

Let Φ be an Ak−1
n -invariant formula computing WordAn,k. As a first step, we let Ak−1

n

act on Φ as a subgroup of a larger group action, given by letting Q = A2k
n act on inputs

(h1, . . . , hk):

(g1, . . . , g2k)(h1, . . . , hk) = (g1h1g−1
2 , . . . , g2k−1hkg−1

2k ).

Now Ak−1
n can be viewed as the subgroup of Q = A2k

n given by the equations g2 =
g3, . . . , g2k−2 = g2k−1, g2k = g1 = 1G.

We will define a complexity measure µ on subgroups of Q. Roughly, if a formula is
stabilized by a subgroup H, then µ(H) provides a good lower bound on the size of that
formula. In this overview, we will not say what exactly this complexity measure is, but we
will say that it quantifies segments of the product M1 · · · Mk over which a formula is fully
symmetric. What is more important here is the following two properties of µ.
1. Let a set of formulas {Φj} have Q-stabilizer H. If {Φj} = O1 ∪ · · · ∪ Ot breaks this

set into its orbits under H, then there is some orbit Oi with Q-stabilizer H ′ such that
µ(H ′) ≥ µ(H).

2. Let Φj , which has Q-stabilizer Hj , lie in the orbit Oi stabilized by H ′. Then µ(Hj) ≥
µ(H′)

1+logn[H′:H′∩Hj ] .
The idea for using these properties to get formula lower bounds is as follows. We can let
Q act on a formula Φ = (maj, {Φj}) and find its stabilizer H = StabQ(Φ). We then break
{Φj} into orbits under the action of H: {Φj} = O1 ∪ · · · ∪ Ot. From the first property we
know that one of the orbits Oi has a high complexity stabilizer H ′.

We examine a representative Φj ∈ Oi of that high complexity orbit. At this point we
have roughly two things that can happen. First, if the Q-stabilizer Hj = StabQ(Φj) of Φj

has [H ′ : H ′ ∩ Hj ] small then it must be that µ(Hj) is large by the second property, and
we apply induction to get a good lower bound on the size of Φj in terms of µ(Hj). Each
subformula in the orbit Oi has the same size as Φj by transitivity, so this gives a good lower
bound on the size of Φ. Otherwise, [H ′ : H ′ ∩ Hj ] is large, and the orbit-stabilizer theorem
tells us that there are many subformulas in Oi, which again provides a good lower bound on
the size of Φ in terms of µ(H).

Finally, we show that µ(Ak−1
n ) is large in order to get a good lower bound on the size of

a formula with Q-stabilizer equal to Ak−1
n . An Ak−1

n -invariant formula computing the word
problem must have Q-stabilizer equal to Ak−1

n , so we have the lower bound we want.
This is an oversimplified overview of our actual analysis, and the real proof of the lower

bound considers pairs of subgroups corresponding to formulas. One subgroup in the pair is
the stabilizer of the formula, and the other is the stabilizer of the function computed by the
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formula. This can be defined in a formal way. More care also needs to be put into the second
property, especially in concerns such as the transition from H ′-stabilizers to Q-stabilizers.
Such considerations complicate the analysis, but the above ideas still lie at the core of the
argument.

5 The lower bound framework

Let Q ≤ Sm, and let Ω be a Q-invariant subset of {0, 1}m. We consider the action of Q on
the set of functions with Ω (and arbitrary codomain).

For an integer-valued function f : Ω → N, let

StabQ(f) = {π ∈ Q : f(x) = f(xπ(1), . . . , xπ(m)) for all x ∈ Ω}.

For a set of formulas {Φi} with each Φi taking inputs in Ω, let

StabQ({Φi}) = {π ∈ Q : {πΦi} = {Φi}}.

To simplify notation, write StabQ(Φ) = StabQ({Φ}) when {Φ} is a set containing just one
formula.

Let BQ,Ω ⊆ NQ,Ω be the following sets of subgroups of Q:

BQ,Ω = {StabQ(f) : f is a Boolean function with domain Ω and codomain {0, 1}},

NQ,Ω = {StabQ(f) : f is a function with domain Ω and codomain N}.

Note NQ,Ω is the closure of BQ,Ω under intersections.
Let χ1, . . . , χm : {0, 1}m → {0, 1} be the coordinate functions χi(x) = xi. For a formula

Φ, we suppress notation and write JΦK|Ω = JΦK when Ω is clear from context.

▶ Definition 9. For d = 0, 1, 2, . . . , we define a function βQ,Ω,d : {(H, K) : H ≤ K ≤ Q, K ∈
BQ,Ω} → N ∪ {∞} inductively. For any H ≤ K ≤ Q with K ∈ BQ,Ω, let

βQ,Ω,0(H, K) =


0 if H = Q,

1 if H < Q and H = StabQ(χi|Ω) for some i ∈ [m],
∞ otherwise.

Then, for d ≥ 1 define

βQ,Ω,d(H, K) = min
(H, K)-good r∈N,

H1,...,Hr≤Q,
U1,...,Ur≤Q,

L1,...,Lr∈NQ,Ω,
V1,...,Vr∈BQ,Ω.

max
i∈[r]

[Hi : Hi ∩ Ui]βQ,Ω,d−1(Ui, Vi),

where (r, (Hi)i∈[r], (Ui)i∈[r], (Li)i∈[r], (Vi)i∈[r]) is (H, K)-good if and only if all of the following
hold.
(a) For all i ∈ [r], Ui ≤ Vi and Hi ≤ Li.
(b) H1 ∩ · · · ∩ Hr = H.
(c) L1 ∩ · · · ∩ Lr ≤ K.
(d) For all i ∈ [r],

⋂
h∈Hi

h−1Uih ≤ Hi.
(e) For all i ∈ [r],

⋂
h∈Hi

h−1Vih ≤ Li.
Let βQ,Ω(H, K) = limd→∞ βQ,Ω,d(H, K).
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Note that in the inductive definition of βQ,Ω,d, the quantity βQ,Ω,d−1(Ui, Vi) is defined
because Vi ∈ BQ,Ω and Item a. Also observe that monotonicity with respect to d is displayed:
βQ,Ω,0(H, K) ≥ βQ,Ω,1(H, K) ≥ βQ,Ω,2(H, K) ≥ . . . . Also, we have that βQ,Ω,d(H, Q) = 0
for all d and H ≤ Q.

Lemma 10 shows that given some Q acting on Ω, βQ,Ω,d(H, K) lower bounds the size of
formulas Φ with StabQ(Φ) = H and StabQ(JΦK) = K. This is helpful because it converts
the problem of lower bounding formula size to a purely group-theoretic problem of lower
bounding the inductively defined function βQ,Ω,d on pairs of subgroups.

Before stating and proving the result, we remark that it is important that we defined
βQ,Ω,d on pairs of subgroups of Q, one of which is in BQ,Ω. This is because the sets BQ,Ω
and NQ,Ω may not contain StabQ(Φ) for a formula Φ. In general, formulas may carry more
information about themselves than just the way they evaluate on inputs in Ω.

However, it is often the case that NQ,Ω is easier to study than the set of all subgroups of
Q, which may contain badly behaved subgroups. Thus, in our applications, our complexity
measures also may take into account StabQ(JΦK), which must lie in BQ,Ω, since JΦK is a
Boolean function on Ω. We then leverage the relationship StabQ(Φ) ≤ StabQ(JΦK) frequently.

▶ Lemma 10. Let Φ be a TCd formula. Then

size(Φ) ≥ βQ,Ω,d(StabQ(Φ), StabQ(JΦK)).

Proof. Let H = StabQ(Φ) and K = StabQ(JΦK). First note that βQ,Ω,d(H, K) is well-defined
because H ≤ K and K is the Q-stabilizer of the Boolean function JΦK on Ω. We prove by
induction on d that size(Φ) ≥ βQ,Ω,d(H, K). The base case d = 0 follows from the definitions
of βQ,Ω,0 and TC0.

Now assume that the result holds for all formulas up to depth d. Let Φ be a TCd+1
formula. Assume that Φ = (maj, I), where I is a multiset of formulas in TC0 ∪ · · · ∪ TCd.
The group H = StabQ(Φ) then acts on I as a permutation group, since Φ is H-invariant.
Break I into its r orbits under the action of H.

For i ∈ [r], let {Ψi,j : j ∈ [ti]} be the ith orbit of I under the action of H. Let
Hi = StabQ({Ψi,j : j ∈ [ti]}). Let Ui = StabQ(Ψi,1) and let Vi = StabQ(JΨi,1K). Finally, let
Li = StabQ(fi), where fi is the integer-valued function fi : Ω → N defines by fi(x) = |{j :
Ψi,j(x) = 1}| for x ∈ Ω. Note that this is the Hamming weight function on the wires from
this orbit of subformulas.

We claim that the tuple (r, (Hi)i∈[r], (Ui)i∈[r], (Li)i∈[r], (Vi)i∈[r]) is (H, K)-good. We
prove that this tuple satisfies each one of the conditions stated in the definition below.

For all i ∈ [r], we have Ui ≤ Vi and Hi ≤ Li because for any formula Ψ, we have
StabQ(Ψ) ≤ StabQ(JΨK), so

Ui = StabQ(Ψi,1) ≤ StabQ(JΨi,1K) = Vi.

Moreover, for each i ∈ [r], we have

Hi = StabQ({Ψi,j : j ∈ [ti]}) ≤ StabQ(fi) = Li.

That Vi is an element of BQ,Ω, and Li is an element of NQ,Ω follows because Vi is the Q-
stabilizer of the Boolean function JΨi,1K on Ω, while Li is the Q-stabilizer of the integer-valued
function fi on Ω. This proves that Item a is satisfied.
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Now we prove that H1 ∩ · · · ∩ Hr = H. First, we have⋂
i∈[r]

Hi =
⋂

i∈[r]

StabQ({Ψi,j : j ∈ [ti]}) ≤ StabQ((maj,
⋃

i∈[r]

{Ψi,j : j ∈ [ti]}))

= StabQ(Φ) = H.

That H ≤ H1 ∩ · · · ∩ Hr follows because orbits of I under the action of H are H-invariant.
This proves that Item b is satisfied.

If q ∈ Q is such that fi(qx) = |{j ∈ [ti] : Ψi,j(qx) = 1}| = |{j ∈ [ti] : Ψi,j(x) = 1}| = fi(x)
for all x ∈ Ω and i ∈ [r], then JΦK(qx) = JΦK(x) for all x ∈ Ω. Therefore, we have⋂

i∈[r]

Li =
⋂

i∈[r]

StabQ(fi) ≤ StabQ(JΦK) = K.

This proves that Item c is satisfied.
The Q-stabilizers of the subformulas Ψi,j in ith orbit are all Hi-conjugates of each other.

To see this, note that for every Ψi,j there exists h ∈ Hi such that Ψh
i,1 = Ψi,j . Then, for any

s ∈ StabQ(Ψi,1) = Ui, we have

Ψh−1sh
i,j = Ψsh

i,1 = Ψh
i,1 = Ψi,j .

This shows that h−1StabQ(Ψi,1)h ≤ StabQ(Ψi,j). The symmetric argument shows the reverse
inclusion. As a result, for each i ∈ [r],⋂

h∈Hi

h−1Uih =
⋂

j∈[ti]

StabQ(Ψi,j) ≤ StabQ({Ψi,j : j ∈ [ti]}) = Hi.

This proves that Item d is satisfied.
Item e follows similarly, since for each Ψi,j in the ith orbit, we have StabQ(JΨi,jK) =

h−1StabQ(JΨi,K)h for some h ∈ Hi. To see this, again note that for every Ψi,j there exists
h ∈ Hi such that Ψh

i,1 = Ψi,j . Then, for any s ∈ StabQ(JΨi,1K) = Vi, we have

JΨi,jKh−1sh = JΨh−1sh
i,j K = JΨsh

i,1K = JΨh
i,1K = JΨi,jK.

This shows that h−1StabQ(JΨi,1K)h ≤ StabQ(JΨi,jK). The symmetric argument shows the
reverse inclusion.

If q ∈ Q is such that JΨi,jK(qx) = JΨi,jK(x) for all x ∈ Ω and i ∈ [r], then fi(qx) = fi(x)
for all x ∈ Ω. As a result, for each i ∈ [r],⋂

h∈Hi

h−1Vih =
⋂

j∈[ti]

StabQ(JΨi,jK) ≤ StabQ(fi) = Li.

We have finished verifying that our tuple of r and subgroups is (H, K)-good.
Recall that {Ψi,j : j ∈ [ti]} is the ith orbit of this group action stabilized by Hi, and

StabQ(Ψi,1) = Ui. Then by the orbit-stabilizer theorem applied to the action of Hi on the
orbit, the size of the orbit is at least [Hi : Hi ∩ Ui]. The size of each subformula in this orbit
is equal to the size of Ψi,1, since for every Ψi,j , there exists h ∈ H such that Ψi,j = Ψh

i,1, and
size(Ψh

i,1) = size(Ψi,1) is clear. Therefore, for some (r, (Hi)i∈[r], (Ui)i∈[r], (Li)i∈[r], (Vi)i∈[r])
that is (H, K)-good, we have

size(Φ) ≥ max
i∈[r]

[Hi : Hi ∩ Ui]size(Ψi,1)

≥ max
i∈[r]

[Hi : Hi ∩ Ui]βQ,Ω,d(Ui, Vi)

≥ βQ,Ω,d+1(H, K).

The second inequality follows by induction and monotonicity of βQ,Ω,d in d. The last
inequality follows from the inductive definition of βQ,Ω,d+1. ◀
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To use the lemma to lower bound the size of P -invariant formulas, we start off with
some P -invariant function f : Ω → {0, 1} where Ω is a P -invariant subset of {0, 1}m.
To apply the lemma, find a supergroup P ≤ Q ≤ Sm such that Ω is Q-invariant and
StabQ(f) = P . Then we get the lower bound size(Φ) ≥ βQ,Ω,d(P, P ) for any Φ ∈ TCd with
StabQ(Φ) = StabQ(JΦK) = P .

Note that choosing Q = P yields nothing, since βP,Ω,d(H, P ) = 0 for all d and H ≤ P .
In our application, G ≤ Sn, m = kn2, P = Gk−1, and Ω = Gk = {(M1, . . . , Mk) ∈

{0, 1}kn2} = {0, 1}m, where the matrices are permutation matrices giving elements of
G ≤ Sn.

Thus, we are left with the problem of lower bounding βQ,Ω,d(P, P ) for some choice of Q.
This is a purely group-theoretic problem, and Lemma 11 provides a framework to solve it.

▶ Lemma 11. Assume c ≥ 1 and that µ : {(H, L) : H ≤ L ≤ Q, L ∈ NQ,Ω} → N is such
that for any H ≤ K ≤ Q with K ∈ BQ,Ω,

(i) Let r ∈ N, H1, . . . , Hr ≤ Q, L1, . . . , Lr ∈ NQ,Ω be such that Hi ≤ Li for all i ∈ [r].
Suppose that H = H1 ∩ · · · ∩ Hr and K ≥ L1 ∩ · · · ∩ Lr. Then there is some i ∈ [r]
such that µ(Hi, Li) ≥ µ(H, K).

(ii) Let U ≤ V ≤ Q with V ∈ BQ,Ω and L ≥ H with L ∈ NQ,Ω. Suppose that⋂
h∈H h−1Uh ≤ H and

⋂
h∈H h−1V h ≤ L. Then we have µ(U, V ) ≥ µ(H ∩ U, V ) ≥

µ(H,L)
1+logc[H:H∩U ] .

(iii) Let H = StabQ(χi|Ω) for some coordinate function χi. Then µ(H, K) ≤ 1.
(iv) µ(Q, Q) = 0.

Then for all H ≤ K ≤ Q with K ∈ BQ,Ω,

βQ,Ω,d(H, K) ≥ cd(µ(H,K)1/d−1) for all d ≥ 1,

βQ,Ω(H, K) ≥ clog2(µ(H,K)).

Proof. We prove by induction on d and actually start at 0, interpreting for d = 0

cd(µ(H,K)1/d−1) =


0 if µ(H, K) = 0,

1 if µ(H, K) = 1,

∞ otherwise.

Note that these interpretations fit into the inductive steps. The base case in which d = 0 is
clear by Item iii, Item iv, and the definition of βQ,Ω,0. Now assume that the result holds for
βQ,Ω,i with i ≤ d.

By definition, for some tuple (r, (Hi)i∈[r], (Ui)i∈[r], (Li)i∈[r], (Vi)i∈[r]) that is (H, K)-good
we have

βQ,Ω,d+1(H, K) ≥ max
i∈[r]

[Hi : Hi ∩ Ui]βQ,Ω,d(Ui, Vi).

Because the tuple is (H, K)-good, by Item a, Item b, and Item c, we have that the hypotheses
of Item i are satisfied by the Hi and Li, so for some i ∈ [r], we have µ(Hi, Li) ≥ µ(H, K).

Let m = 1 + logc[Hi : Hi ∩ Ui]. By Item a, Item b, and Item e the hypotheses of Item ii
are satisfied by Ui, Hi, Vi, and Li, so we have µ(Ui, Vi) ≥ µ(Hi ∩ Ui, Vi) ≥ µ(Hi,Li)

m ≥ µ(H,K)
m .

Therefore,

βQ,Ω,d+1(H, K) ≥ cm−1βQ,Ω,d(Ui, Vi) ≥ cm−1cd(( µ(H,K)
m )1/d−1) ≥ c(d+1)(µ(H,K)1/(d+1)−1).

The last step follows from optimization over m using elementary calculus.
This lower bound approaches cln(µ(H,K)) as d → ∞, but since µ takes integral values,

when d becomes large we actually have a lower bound clog2(µ(H,K)). ◀
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We can informally interpret the results of this section in the following way. Lemma 10
shows that the size of a formula Φ with StabQ(Φ) = H and StabQ(JΦK) = K depends
on a sequence of operations on the subgroup lattice Sub(Q) of Q. We begin with a pair
(H, K) ∈ Sub(Q)2. Then, to get to the pair stabilizing the orbits of subformulas of Φ, we
first “go up” in Sub(Q)2.

That is, in the process of breaking the set of subformulas of Φ into H-orbits, we find
that the syntactic and semantic stabilizers of these orbits are supergroups of H and K that
satisfy the intersection properties given by Item b and Item c stated.

The next step is to find the stabilizer of a single subformula in an orbit. Here we apply the
orbit-stabilizer theorem, and are “going down” in the subgroup lattice. At this point there
is a cost associated to how far down on the subgroup lattice we go by the orbit-stabilizer
theorem.

The point of Lemma 11 is then to define a “lower-bound witness” µ on a subset of Sub(Q)2

that is accurately reflects the cost of these operations. A designer of a small invariant formula
would then want to find sequences of subgroups (under the constraints stated in the definition
of βQ,Ω,d) in the subgroup lattice to get to the low-complexity subgroups (stabilizers of
coordinate functions and Q itself) with as little cost as possible. Cost is accrued in the going
down phase of the process. Lemma 11 states conditions sufficient for the formula designer to
not be able to easily decrease the lower-bound witness µ.

6 Applying the framework

In this section we prove Theorem 3. Section 6.1 takes care of the nonabelian case and
Section 6.2 takes care of the abelian case.

6.1 TC lower bounds for nonabelian simple groups
Throughout this section let G ≤ Sn be a finite nonabelian simple permutation group, where
n is the the minimum degree of a faithful representation of G. We want to use the framework
set up in Section 5 to prove a lower bound on the formula size of Gk−1-invariant TCd formulas
computing the function WordG,k : Gk → {0, 1}.

To do so, we consider a larger group Gk−1 ≤ Q ≤ Skn2 such that Gk is Q-invariant and
StabQ(WordG,k) = Gk−1. We then get the bound LGk−1

TCd
(WordG,k) ≥ βQ,Ω,d(Gk−1, Gk−1)

by Lemma 10, so for our purposes it suffices to lower bound βQ,Ω,d(Gk−1, Gk−1) We do so
by constructing a suitable µ satisfying the hypotheses of Lemma 11 with c = n.

Recall that n is the minimum degree of a faithful permutation representation of G. The
following lemma characterizes this n nicely.

▶ Lemma 12. n = min(
√

|G|, minA<G[G : A]).

Proof. That min(
√

|G|, minA<G[G : A]) = minA<G[G : A] follows from the classification of
finite simple groups [23]. Then, minA<G[G : A] = n follows from [16]. ◀

We first consider the “left-right” action of G2k ≤ Skn2 on Gk

(g1, . . . , g2k)(M1, . . . , Mk) = (g1M1g2
−1, . . . , g2k−1Mkg2k

−1).

Note that odd coordinates in [2k] act on matrices on the left, while even coordinates act on
the right. That is, the elements g2i−1 and g2i act respectively on the left and right of the
matrix Mi.
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The embedding of Gk−1 in G2k (as subgroups of Skn2) is given by the shifted diagonal
action.

(g1, . . . , gk−1) 7→ (1G, g−1
1 , g1, g−1

2 , g2, . . . , g−1
k−1, gk−1, 1G). (1)

However, the G2k-stabilizer of WordG,k is larger than Gk−1, since it contains all elements
of the form (g1, 1G, . . . , 1G) with g1 ∈ StabG(1) and (1G, . . . , 1G, g2k), where g2k ∈ StabG(1).

For this reason, we take Q to be the subgroup of G2k given by Q = {(g1, . . . , g2k) ∈
G2k : g1 = g2k = 1G}. Now we have Gk−1 ≤ Q ≤ Skn2 with StabQ(WordG,k) = Gk−1, as
required.

Observe that the coordinate functions χ1, . . . , χkn2 : {0, 1}kn2 → {0, 1} are given by the
entries of the permutation matrices {M1, . . . , Mk}.

We now define the µ that we will use in conjunction with Lemma 11 to prove a lower
bound on βQ,Ω,d(Gk−1, Gk−1).

▶ Definition 13. For H ≤ Q let

E(H) = {{i, i + 1} : i ∈ [k − 1] such that H↾{2i,2i+1} = Diag(G{2i,2i+1})}.

We can view E(H) as the edge set of an undirected graph with vertex set [k], which we
denote ([k], E(H)). Note that this graph is a spanning subgraph of the path graph with edge
set {{1, 2}, {2, 3}, . . . , {k − 1, k}}.

For H ≤ K ≤ Q with K ∈ NQ,Ω, we define µ(H, K) to be the number of vertices in the
largest connected component of ([k], E(H) ∩ E(K)). Define µ(H, Q) = 0 for any H ≤ Q.

We remark that this definition of µ is highly dependent on both H and L. In fact, if
([k], E(H)) has a large connected component, it still may be possible for µ(H, K) to be small
for some choice of L.

The consequence for our lower bound is the following. Suppose Φ is a formula with
StabQ(Φ) = Gk−1. Then StabQ(Φ) = StabQ(WordG,k). However, we can say nothing about
the size of Φ unless we also have some information about StabQ(JΦK).

If StabQ(JΦK) = Q, for example, then µ(StabQ(Φ), StabQ(JΦK)) = 0 by definition. Then
Lemma 11 gives no meaningful lower bound on βQ,Ω,d(StabQ(Φ), StabQ(JΦK)), and hence we
have no meaningful lower bound on size(Φ).

Such a Φ can be realized in the following way. Let Ψ be such that JΨK = WordG,k

and StabQ(Ψ) = Gk−1. Let Φ = (or, {1, Ψ}). Then JΦK is constant, so StabQ(JΦK) = Q.
However, StabQ(Φ) = StabQ(Ψ) = Gk−1. Thus, even though StabQ(Φ) = Gk−1 is a subgroup
for which we expect nontrivial lower bounds, we have no lower bound on its size. Fortunately,
such a formula Φ does not arise in an optimal construction, due to Q being useless to a
formula designer in the “going up” phase of formula design.

In the rest of this section, we show that once we take into account semantic stabilizers
(as we have done in Definition 13), we do get nontrivial lower bounds.

6.1.1 Structural results
Since Q can be thought of as a 2k − 2-fold power of the group G, it is helpful to understand
the structure of subgroups of direct powers of G. The following lemma of Goursat helps
characterize these subgroups.

▶ Lemma 14 ([13]). Let A and B be groups. Let K be a subgroup of A × B such that the
projections πA : K → A and πB : K → B are surjective. Let M = {a ∈ A : (a, 1) ∈ K} ⊴ A

and N = {b ∈ B : (1, b) ∈ K} ⊴ B. Then there exists an isomorphism θ : A/M → B/N such
that K = {(a, b) ∈ A × B : θ(aM) = bN}.
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This lemma is especially helpful in the special case where A and B are both nonabelian
simple groups, since the possibilities for M and N are then restricted to either being the full
group A or B respectively, or trivial.

▶ Corollary 15. Let Diag(G2) < H ≤ G2. Then H = G2.

Proof. Since H > Diag(G2) there exists (g1, g2) ∈ H such that g1g−1
2 ̸= 1G. Then,

multiplying by (g−1
2 , g−1

2 ) ∈ Diag(G2) < H, we find that (g1g−1
2 , 1G) ∈ H.

Note that by Lemma 14, {1G}{1} < H↾{1} ⊴ π{1}(H) = G{1}. Because G is nonabelian
simple, we must have H↾{1} = G{1}. This also implies that H↾{2} = G{2}. ◀

Another point at which Lemma 14 becomes useful is in our proof that µ satisfies Item ii.
Note that for ℓ ≥ 2, if H ≤ Q is such that E(H) induces a connected component of size
ℓ in ([k], E(H)), then H has some shifted diagonal subgroup isomorphic to Gℓ. Thus, the
following definition is very natural.

▶ Definition 16. For a subgroup H ≤ Gk, define a support for H to be a subset T ⊆ [k]
such that for all i ̸∈ T , H↾{i} = G{i}.

▶ Lemma 17. For any ℓ ∈ N, let N ◁ Gℓ be such such that Gℓ

N
∼= G. Then there is exactly

one j ∈ [ℓ] such that N↾{j} < G{ℓ}.

Proof. For all j ∈ [ℓ] we have that π{j}(N) ⊴ G{j} by normality of N in Gℓ. Therefore, this
projection must be either the full group G{j} or trivial.

There is at most one j such that π{j}(N) = {1G}{j} since otherwise we would have
π{j1,j2}(N) = {1G}{j1,j2}, and

[Gℓ : N ] ≥ [π{j1,j2}(Gℓ) : π{j1,j2}(N)] ≥ |G|2.

The first inequality follows from the elementary group theory fact that for any group
homomorphism φ : A → C, we have [φ(A) : φ(B)] for any B ≤ A.

Assume that there is no j such that π{j}(N) = {1G}{j}. Then there is at least one j ∈ [ℓ]
such that N↾{j} = {1G}{j}, since otherwise we would have N↾{j} = G{j} for all j ∈ [ℓ]. This
follows from Lemma 14 implying that N↾{j} ⊴ π{j}(N) and simplicity of G. This would
imply N = Gℓ, a contradiction. Without loss of generality assume that j = ℓ.

Using Lemma 14, write N = Graph(π{ℓ}(N) ∼= π[ℓ−1](N)
N↾[ℓ−1]

). This shows that there exists

some isomorphism φ : π[ℓ−1](N)
N↾[ℓ−1]

→ G{ℓ} such that we can write N = {(g1, . . . , gℓ−1, gℓ) :
φ(g1, . . . , gℓ−1)N↾[ℓ−1] = gℓ}. But such a subgroup cannot be normal in Gℓ, since for any
pair of non-identity group elements g ∈ G, there exists a ∈ G such that a−1ga ̸= g by G

being nonabelian.
Thus, there is exactly one j such that π{j}(N) = {1G}{j}. Assume without loss of

generality that j = ℓ. Then N = Graph({1G} ∼= π[ℓ−1](N)
N↾[ℓ−1]

). Since π[ℓ−1](N) = G[ℓ−1], it must
also be the case that N↾[ℓ−1] = G[ℓ−1]. Thus, this j is the only such that N↾j < G{ℓ}. ◀

▶ Corollary 18. Let N ◁ H ≤ Gk be such that H
N

∼= G. Let T be a support for H. Then N

has a support of size exactly |T | + 1.

Proof. Without loss of generality assume that T = {k−|T |+1, . . . , k}. We claim that H↾[k−|T |]
N↾[k−|T |]

is isomorphic to a normal subgroup of H
N . To see this, first note that N↾[k−|T |] ⊴ H↾[k−|T |],

since the intersection of a subgroup with a normal subgroup is normal.
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Now let (g1, . . . , gk−|T |)N↾[k−|T |] and (h1, . . . , hk−|T |)N↾[k−|T |] be two distinct elements
of H↾[k−|T |]

N↾[k−|T |]
. We claim that (g1, . . . , gk−|T |, 1|T | times

G )N and (h1, . . . , hk−|T |, 1|T | times
G )N must

be distinct elements of H
N .

Assume otherwise. Then (g1h1, . . . , gk−|T |hk−|T |, 1|T | times
G ) is an element of N . This

implies that (g1h1, . . . , gk−|T |hk−|T |) is an element of N↾[k−|T |]. We have now contradicted
that (g1, . . . , gk−|T |)N↾[k−|T |] and (h1, . . . , hk−|T |)N↾[k−|T |] are distinct.

This gives an injection of H↾[k−|T |]
N↾[k−|T |]

into H
N . Normality of the image of this injection in H

N

is clear by construction.
By simplicity of H

N
∼= G, either H↾[k−|T |]

N↾[k−|T |]
∼= {1G}, in which case we are done immediately,

or H↾[k−|T |]
N↾[k−|T |]

∼= G, in which case we are done by Lemma 17, since H↾[k−|T |] = G[k−|T |]. ◀

▶ Corollary 19. If [Gk : H] < nm, then H has a support of size at most m.

Proof. We prove by induction on k. In the base case, k = 1 and this is true since H has empty
support unless H < G, in which case [G : H] ≥ n by Lemma 12. Now assume that the result
holds for subgroups of Gk. Let H ≤ Gk+1, and use Lemma 14 to write H = Graph( G1

N1
∼= G2

N2
),

where G1 = π[k](H), N1 = H↾[k], G2 = π{k+1}(H), and N2 = H↾{k+1}.
First consider if G2 = G. If N2 = G, then we have H = G1 × G, and there exists a

support T for G1 of size at most logn([Gk : G1]) = logn([Gk+1 : H]) that is also a support
for H.

Otherwise we have N2 = {1G}, since G is simple. Let T be a minimum size support for
G1. Since G1

N1
∼= G2

N2
∼= G, Corollary 18 implies that N1 has a support given by T ∪ {j} for

some j ∈ [k].
Therefore, T ∪ {j} is a support for N1 of size at most

|T ∪ {j}| = |T | + 1 ≤ logn([Gk : G1]) + 1 = logn( |Gk|
|G1|

) + 1 logn( |Gk+1|
|G||H|

) + 1

= logn([Gk+1 : H]) + 1 − logn(|G|) ≤ logn([Gk+1 : H]) − 1.

The first inequality follows by induction. The equality logn( |Gk|
|G1| ) = logn( |Gk+1|

|G||H| ) follows
from |H| = |G1|, since H = Graph( G1

N1
∼= G) and hence |G||N1| = |G1|. The last inequality

uses that n ≤
√

|G|, a fact proved in Lemma 12. Now, we claim that T ∪ {j, k + 1}
serves as a support for H of size at most logn([Gk+1 : H]). Let i ∈ [k] \ (T ∪ {j}). Then
H↾{i} ≥ N1|{i} = G{i}.

Now we consider when G2 < G. In this case, let T be a minimum size support for N1.
Then by induction

|T | ≤ logn([Gk : N1]) = logn( |Gk|
|N1|

)

= logn( |Gk+1||G2|
|G||H|

) = logn([Gk+1 : H]) − logn([G : G2]) ≤ logn([Gk+1 : H]) − 1.

The first inequality follows by induction. The equality |N1| = |H|
|G2| used in the third step

follows because H is the graph of an isomorphism G1
N1

∼= G2
N2

. This implies that each coset
of N2 in G2 yields |N1||N2| group elements of H. There are |G2|

|N2| such cosets, so |H| =
|N1||N2||G2|

|N2| = |N1||G2|. The last inequality follows from the fact that n ≤ minL<G[G : K],
proved in Lemma 12.

Then T ∪{k+1} has size at most logn([Gk+1 : H]). We show that now T ∪{k+1} serves as a
support for H . For any i ∈ [k+1]\(T ∪{k+1}) = [k]\T , we have H↾{i} ≥ N1↾{i} = G{i}. ◀
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6.1.2 The properties of µ

Now we begin proving that µ satisfies the hypotheses of Lemma 11. Item iv is clearly satisfied
by definition of µ. We verify that µ satisfies Item iii.

▶ Lemma 20. Let H = StabQ(χi|Ω) for some i ∈ [kn2]. Then µ(H, K) ≤ 1 for any K ≥ H.

Proof. In this case H is the Q-stabilizer of a function on Gk depending only on Mi∗ for
some i∗ ∈ [k]. Therefore, we have that for any j ∈ {2, . . . , 2k − 1} \ {2i∗ − 1, 2i∗}, we have
H↾{j} = G{j}. As a result, E(H) ∩ E(K) is empty and the largest connected component in
([k], E(H) ∩ E(K)) is a single vertex. ◀

The following lemma proves that µ satisfies Item i.

▶ Lemma 21. Let H ≤ K ≤ Q. Let S ⊆ {{i, i + 1} : i ∈ [k]} be the edge set of a connected
component in ([k], E(H) ∩ E(K)). Let r ∈ N and for each i ∈ [r], fix Hi ≤ Li ≤ Q such that
Li is an element of NQ,Ω. Suppose that H1 ∩ · · · ∩ Hr = H and L1 ∩ · · · ∩ Lr ≤ K. Then
there exists i ∈ [r] such that S is a subset of edges in ([k], E(Hi) ∩ E(Li)).

Proof. Assume without loss of generality that S = {{j, j + 1} : j ∈ [k − 1]}, since in all other
cases S is still a contiguous path on [k] and the proof is the same. Notice that Li ≥ Hi ≥ H

for all i ∈ [r], so Li↾{2i,2i+1} ≥ H↾{2i,2i+1} = Diag(G{2i,2i+1}) for all i ∈ [r].
For any i ∈ [r], assume that there is some j ∈ [k − 1] such that Li↾{2j,2j+1} >

Diag(G{2j,2j+1}). By Corollary 15 we have Li↾{2j+1} = G{2j+1}.
Since Li is an element of NQ,Ω, there exists a function f on Ω for which Li is the Q-

stabilizer. Let g0 ∈ G be any group element. For any tuple of matrices (M1, . . . , Mk) ∈ Gk,

(1G, . . . , 1G, g0, 1G)f(M1, . . . , Mk)
=f(M1, . . . , Mk−1, g0Mk)

=f(M1, . . . , Mk−1g0
−1, Mk) (since L1↾{2k−2,2k−1} ≥ Diag(G{2k−2,2k−1}))

=f(M1, . . . , g1Mk−1, Mk) for some g1 ∈ G

...
=f(M1, . . . , gk−j+1Mj+1, . . . , Mk) for some gk−j+1 ∈ G

=f(M1, . . . , Mk).

The last equality follows from f being Li invariant and Li↾{2j+1} = G{2j+1}. This shows
that (1G, . . . , 1G, g0, 1G) is an element of Li, since Li is the Q-stabilizer of f .

If for all i ∈ [r] there exists j ∈ [k − 1] such that Li↾{2j,2j+1} > Diag(G{2j,2j+1}), then
we have shown that (1G, . . . , 1G, g0, 1G) is an element of L1 ∩ · · · ∩ Lr ≤ K for any g0 ∈ G, a
contradiction, since {k−1, k} ∈ S ⊆ E(K) implies that K↾{2k−2,2k−1} = Diag(G{2k−2,2k−1}).

Therefore, there is some Li such that Li↾{2j,2j+1} = Diag(G{2j,2j+1}) for all j ∈ [k − 1].
Now Hi↾{2j,2j+1} = Diag(G{2j,2j+1}) for all j ∈ [k − 1] because H ≤ Hi ≤ Li implies that
for all j ∈ [k − 1],

Diag(G{2j,2j+1}) = H↾{2j,2j+1} ≤ Hi↾{2j,2j+1} ≤ Li↾{2j,2j+1} = Diag(G{2j,2j+1}).

Thus, S is a subset of edges in ([k], E(Hi) ∩ E(Li)). ◀

It remains to prove that µ satisfies Item ii with c = n. A designer attempting to build a
small formula would want to decrease µ, and hence the size of the largest connected component
in ([k], E(H) ∩ E(K)) quickly, so we would like to characterize the cost of removing edges
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(which is stated using indices of subgroups). Because a group H with ([k], E(H)) having
some connected component with ℓ ≥ 2 vertices has a shifted diagonal subgroup isomorphic
to Gℓ, and the designer gets to deletes edge when the restrictions H↾{2i,2i+1} are no longer
equal to Diag(G{2i,2i+1}) ∼= G, the notion of support (Definition 16) is useful.

We use Corollary 19 to prove that µ satisfies Item ii with c = n.

▶ Lemma 22. Let U ≤ V ≤ Q with V ∈ NQ,Ω. Let H ≤ L ≤ Q with L ∈ NQ,Ω. Suppose
that that

⋂
h∈H h−1Uh ≤ H and

⋂
h∈H h−1V h ≤ L. Let [H : U ] ≤ nm−1. Then

µ(U, V ) ≥ µ(U ∩ H, V ) ≥ µ(H, L)
m

.

Proof. First we prove that µ(U, V ) ≥ µ(U ∩ H, V ). To do this, consider any edge {i, i +
1} ∈ E(U ∩ H) ∩ E(V ). Then (U ∩ H)↾{2i,2i+1} = Diag(G{2i,2i+1}), so that U↾{2i,2i+1} ≥
Diag(G{2i,2i+1}).

Assume for sake of contradiction that U↾{2i,2i+1} > Diag(G{2i,2i+1}), so that U↾{2i,2i+1} =
G{2i,2i+1} by Corollary 15.

In the first case H↾{2i,2i+1} ≤ Diag(G{2i,2i+1}). Then, since (
⋂

h∈H h−1Uh)↾{2i,2i+1} =
G{2i,2i+1} > H↾{2i,2i+1}, we have

⋂
h∈H h−1Uh ̸≤ H . This is a contradiction. Otherwise, we

have H↾{2i,2i+1} = G{2i,2i+1}. Then, (U ∩ H)↾{2i,2i+1} = G{2i,2i+1}, giving a contradiction
with (U ∩ H)↾{2i,2i+1} = Diag(G{2i,2i+1}).

Therefore, it must be that {i, i + 1} ∈ E(U) ∩ E(V ), proving that E(U ∩ H) ∩ E(V ) ⊆
E(U) ∩ E(V ). This implies that µ(U, V ) ≥ µ(U ∩ H, V ).

Now we prove the second statement µ(U ∩ H, V ) ≥ µ(H,K)
m . Let {{i, i + 1} : i ∈ R} be

the edge set of any connected component of the graph ([k], E(H) ∩ E(L)), where R ⊆ [k − 1].
Without loss of generality assume that R = {1, . . . , r}, where r = |R|. First, note that

[H↾⋃
i∈R

{2i,2i+1} : (H ∩ U)↾⋃
i∈R

{2i,2i+1}] ≤ [H : H ∩ U ] ≤ nm−1. (2)

This follows from the standard group theory fact that if A ≤ B and D is any other group,
then [B ∩ D : A ∩ D] ≤ [B : A], and that the restriction ↾ is an intersection with a subgroup
of Q.

Then φ : H↾⋃
i∈R

{2i,2i+1} → Gr is a surjective homomorphism given by

φ(g2, . . . , g2r+1) = (g2, g4, . . . , g2r)

Let T be a support for φ((U ∩ H)↾⋃
i∈R

{2i,2i+1}) such that |T | ≤ m − 1. Existence of such a
T is guaranteed by Corollary 19, surjectivity of φ, and (2).

For any i ∈ R \ T , we have that (U ∩ H)↾{2i,2i+1} = Diag(G{2i,2i+1}). Therefore, for
every i ∈ R \ T , the edge {i, i + 1} is present in E(U ∩ H).

We claim that {i, i+1} is an edge in E(V ) as well. Assume otherwise. Then since V ≥ U ≥
U∩H , we have that V ↾{2i,2i+1} > Diag(G{2i,2i+1}). By Corollary 15, V ↾{2i,2i+1} = G{2i,2i+1}.
But since i is an element of R, we have that {i, i + 1} is an element of E(H) ∩ E(L) ⊆ E(L),
so that L↾{2i,2i+1} = Diag(G{2i,2i+1}). Now it is impossible to have

⋂
h∈H h−1V h ≤ L. We

have our contradiction.
This shows that we obtain the graph ([k], E(U ∩ H) ∩ E(V )) from the graph ([k], E(H) ∩

E(L)) by removing |T | ≤ m − 1 edges. For any connected component in ([k], E(H) ∩ E(L))
with t vertices, it must be that there exists a connected component in ([k], E(U ∩ H) ∩ E(V ))
with at least t

m vertices, since ([k], E(H) ∩ E(L)) is a subgraph of a path graph. ◀

We have now achieved our goal of lower bounding βQ,Ω,d(Gk−1, Gk−1).
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▶ Theorem 23. βQ,Ω,d(Gk−1, Gk−1) ≥ nd(k1/d−1) and βQ,Ω(Gk−1, Gk−1) ≥ nlog2 k.

Proof. By definition of the embedding Gk−1 < Q in (1), we have µ(Gk−1, Gk−1) = k, since
E(Gk−1) = {{i, i + 1} : i ∈ [k − 1]}. This section shows that µ satisfies the hypotheses of
Lemma 11 with c = n, so simply apply that result. ◀

6.2 TC lower bounds for cyclic groups of prime order
In this section we prove Theorem 3 in the case where the group G is abelian using the
framework set up in Section 5. Note that if a finite simple group is abelian, then it must be
a cyclic group of prime order, denoted Cp for some prime p.

We frequently work with Ck
p as the additive group of the vector space Fk

p. We fix the
following notation. Given a vector x = (x1, . . . , xk) ∈ Fk

p, define Supp(x) = {i ∈ [k] : xi ̸= 0},
and define the Hamming weight |x| = |Supp(x)|. For x1, . . . , xℓ ∈ Fk

p, let ⟨x1, . . . , xℓ⟩ be the
subspace generated by x1, . . . , xℓ.

We want to use Lemma 10 to prove a lower bound on the formula size of Ck−1
p -invariant

TCd formulas computing the function WordCp,k. As we did in Section 6.1, we prove a
lower bound on βQ,Ω,d(Ck−1

p , Ck−1
p ) for some choice of Q using Lemma 11 by constructing a

lower-bound witness µ that satisfies the hypotheses of that theorem.
We choose Q = Ck

p , viewed as a supergroup Ck−1
p < Q ≤ Skp2 , which acts on Ω = Cp

k ⊆
{0, 1}kp2 via

(x1, . . . , xk)(M1, . . . , Mk) = (x1M1, . . . , xkMk)

for (x1, . . . , xk) ∈ Ck
p .

The embedding Ck−1
p < Ck

p = Q is given by

(x1, . . . , xk−1) 7→ (x1, x2 . . . , xk−1,
∏

i∈[k−1]

x−1
i ). (3)

Observe that the coordinate functions χ1, . . . , χm : {0, 1}kp2 → {0, 1} are given by the entries
of the permutation matrices {M1, . . . , Mk}.

Another important point to note is that BQ,Ω (and hence also NQ,Ω) consists of all
subgroups of Ck

p , since each H ≤ Ck
p is the Q-stabilizer of the Boolean function on Ω = Cp

k

that evaluates to 1 on (M1, . . . , Mk) if and only if (M1, . . . , Mk) ∈ H, where we view each
Mi as an element of Cp.

We now define the lower-bound witness µ and prove that it satisfies the hypotheses of
Lemma 11 with c = p. We regard subgroups as the additive groups of subspaces of Fk

p.

▶ Definition 24. For H < Fk
p and any K ≥ H, define

µ(H, K) = max
W >V :dim(W )=dim(V )+1

min
v∈V ⊥\W ⊥

|v|.

Define µ(Fk
p,Fk

p) = 0. The value µ(H, K) only depends on H. Thus, we will suppress
notation and write µ(H) to denote µ(H, K) for any K ≤ Fk

p.

6.2.1 The properties of µ

First note that Item iv is satisfied by µ by definition. We check that µ satisfies Item iii.

▶ Lemma 25. Let H = StabQ(χi) for some i ∈ [kp2]. Then µ(H) ≤ 1.
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Proof. Assume that H is the Q-stabilizer of a function f depending on a single Mi∗ for some
i∗ ∈ [k]. Since f only depends on i∗, we have H↾[k]\{i∗} = F[k]\{i∗}

p . Therefore, any x ∈ H⊥

has its support Supp(x) contained in {i∗}. ◀

The following lemmas prove that µ satisfies Item ii with c = p.

▶ Lemma 26. Let U, H ≤ Fk
p be such that

⋂
h∈H h−1Uh ≤ H. Then µ(U) ≥ µ(H ∩ U).

Proof. Since Fk
p is abelian as an additive group, U =

⋂
h∈H h−1Uh ≤ H. Therefore,

U = U ∩ H. ◀

▶ Lemma 27 ([22], Lemma 3.5). Let H < W ≤ Fk
p with dim(W ) = dim(H) + 1. Let U ≤ H.

Then there exists T > U with dim(T ) = dim(U) + 1 and

min
u∈U⊥\T ⊥

|u| ≥ 1
dim(H) − dim(U) + 1 min

h∈H⊥\W ⊥
|h|.

Moreover, H + T = W .

Finally, we prove that µ satisfies Item i.

▶ Lemma 28. Let H ≤ Fk
p and assume that H = H1 ∩ · · · ∩ Hr where each Hi ≤ Fk

p. Then
there is some i ∈ [r] such that µ(Hi) ≥ µ(H).

Proof. We can assume that r = 2, since all other cases follow by induction. Let y ∈ H⊥ be
the vector with |y| = µ(H) and y = arg minx∈H⊥\W ⊥ |x|, where dim(W ) = dim(H) + 1. Let
H = H1 ∩ H2. This means that H⊥ = H1

⊥ + H2
⊥.

There exist y1 ∈ H⊥
1 and y2 ∈ H2

⊥ such that y = y1 + y2. First assume that y1 and y2
are linearly independent. There exists some a1, a2 ∈ Fp such that a1y1 + a2y2 ∈ W ⊥ and
one of the ai is nonzero. Assume otherwise. Then, for any such pair y1, y2 we would have
W ⊥ ∩ ⟨y1, y2⟩ = {0}, and

dim(H⊥) = dim(W ⊥) + dim(⟨y1, y2⟩) − dim(W ⊥ ∩ ⟨y1, y2⟩)
= dim(W ⊥) + 2.

This contradicts that dim(W ) = dim(H) + 1, so assume that a1y1 + a2y2 is an element of
W ⊥. Assume that a1 ̸= 0. The case where a2 ̸= 0 follows similarly. Then y2 cannot be an
element of W ⊥, since otherwise y = y1 + y2 = 1

a1
(a1y1 + a2y2) − ( a2

a1
+ 1)y2, implying that

y ∈ W ⊥. As a result, µ(H) ≥ |y2|. Since |y| is minimal in H⊥ \ W ⊥, we have |y2| ≥ |y|. We
also have |y2| ≤ |y| since otherwise µ(H) ≥ |y2| > |y|.

Now consider the space W + H2. We have that H ≤ W ∩ H2 so dim(W ∩ H2) ≥ dim(H).
Thus,

dim(W + H2) = dim(W ) + dim(H2) − dim(W ∩ H2)
≤ dim(H) + 1 + dim(H2) − dim(H)
= dim(H2) + 1.

If dim(W + H2) = dim(H2), then we would have W = H2. Then y2 would be an element of
W ⊥, a contradiction. Therefore, dim(W + H2) = dim(H2) + 1. Finally, we have that y2 is an
element of H2

⊥\(W +H2)⊥, and we claim that |y2| is minimal among all v ∈ H2
⊥\(W +H2)⊥.

Assume otherwise that there exists another v ∈ H2
⊥ \ (W + H2)⊥ with |v| < |y2|. Since

H2
⊥ ≤ H⊥, v is an element of H⊥. Then it must be that v is an element of W ⊥, since

otherwise we would contradict minimality of |y| in H⊥ \ W ⊥. But now v is an element of
W ⊥ ∩ H2

⊥ = v ∈ (W + H2)⊥, a contradiction. Therefore, y2 = arg minx∈H⊥
2 \(W +H2)⊥ |x|.

We have proved in this case that µ(H2) ≥ |y2| ≥ |y| = µ(H).
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Finally, if y1 and y2 are not linearly independent, then at least one is a nonzero scalar
multiple of y. Assume it is y2. By the same argument, y2 = arg minx∈H⊥

2 \(W +H2)⊥ |x|, and
we have µ(H2) ≥ |y2| = |y| = µ(H). ◀

Having proved that µ satisfies all the hypotheses of Lemma 11, we have the following
result.

▶ Theorem 29. βQ,Ω,d(Ck−1
p , Ck−1

p ) ≥ pd(k1/d−1) and βQ,Ω(Ck−1
p , Ck−1

p ) ≥ plog2 k.

Proof. By the embedding (3), Ck−1
p is regarded as the additive group of the subspace

V = {(x1, . . . , xk) ∈ F
k
p :

∑
i∈[k] xi = 0}. Thus, µ(Ck−1

p , Ck−1
p ) = k as witnessed by

minv∈V ⊥\(Fk
p)⊥ |v| = k. This section shows that µ satisfies the hypotheses of Lemma 11 with

c = p, so we have our result. ◀

6.3 Proof of Theorem 3

Having covered both nonabelian and abelian simple groups, we can now prove our main
theorem, which we restate here.

▶ Theorem 3. Let G be a finite simple group and suppose that G ≤ Sn is a faithful
permutation representation of minimum degree. Then

LGk−1

TC (WordG,k) ≥ nlog2 k, LGk−1

TCd
(WordG,k) ≥ nd(k1/d−1).

Proof. In the first case G is nonabelian. In this case Theorem 23 shows that for the choice
Q = {(g1, . . . , g2k) ∈ G2k : g − 1 = g2k = 1G} with the embedding Gk−1 → Q given by (1),
we have βQ,Ω,d(Gk−1, Gk−1) ≥ nd(k1/d−1) and βQ,Ω(Gk−1, Gk−1) ≥ nlog2 k.

Any Φ ∈ TCd such that JΦK = WordG,k must have StabQ(JΦK) = StabQ(WordG,k) =
Gk−1. If StabQ(Φ) ≥ Gk−1, then we must have StabQ(Φ) = Gk−1, since StabQ(Φ) ≤
StabQ(JΦK). Therefore, size(Φ) ≥ βQ,Ω,d(Gk−1, Gk−1) by Lemma 10. Similarly argue for
unbounded-depth formulas, and we have

LGk−1

TCd
(WordG,k) ≥ βQ,Ω,d(Gk−1, Gk−1) ≥ nd(k1/d−1),

LGk−1

TC (WordG,k) ≥ βQ,Ω(Gk−1, Gk−1) ≥ nlog2(k).

Otherwise, G is abelian, and is therefore Cp for some prime p. Note that then Cp → Sp

is the minimum degree faithful permutation representation. For the choice Q = Ck
p and

embedding Ck−1
p → Ck

p given by (3), βQ,Ω,d(Ck−1
p , Ck−1

p ) ≥ nd(k1/d−1) = pd(k1/d−1) and
βQ,Ω(Ck−1

p , Ck−1
p ) ≥ nlog2 k = plog2(k) by Theorem 29.

Any Φ ∈ TCd such that JΦK = WordCp,k must have StabQ(JΦK) = StabQ(WordCp,k) =
Ck−1

p . If StabQ(Φ) ≥ Ck−1
p , then we must have StabQ(Φ) = Ck−1

p , since StabQ(Φ) ≤
StabQ(JΦK). Therefore, size(Φ) ≥ βQ,Ω,d(Ck−1

p , Ck−1
p ) by Lemma 10. Similarly argue for

unbounded-depth formulas, and we have

LCk−1
p

TCd
(WordCp,k) ≥ βQ,Ω,d(Ck−1

p , Ck−1
p ) ≥ pd(k1/d−1),

LCk−1
p

TC (WordCp,k) ≥ βQ,Ω(Ck−1
p , Ck−1

p ) ≥ plog2(k).

This completes the proof. ◀
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7 Future directions

In this paper we have proved tight bounds on the size of invariant TC formulas for the word
problem on all finite simple groups (Theorem 3). We also prove a tight lower bound on the
size of invariant AC formulas for the word problem of cyclic groups of prime power order
(Theorem 4). One direction for future work would be to improve this AC lower bound to a
TC lower bound.

▶ Question 30. Do we have LCk−1
q

TCd
(WordCq,k) ≥ qd(k1/d−1)?

Another direction for progress is characterizing the invariant TC or AC formula size for all
finite groups. With Corollary 5 we have answered the following question is true for simple
groups and abelian groups.

▶ Question 31. What is LGk−1

ACd
(WordG,k) for a finite group G?

Finally, it is natural to ask whether these invariant formulas are optimal even without
the restriction of invariance. Currently Corollary 8 gives the best known upper bounds on
the formula size for WordSn,k.

▶ Question 32. Do we have LTCd
(WordSn,k) ≥ nΩ(d(k1/d−1))?

An affirmative answer to this question, even for k = log(n), would prove that Logspace ̸= NC1.
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Abstract
Over the last two decades, a significant line of work in theoretical algorithms has made progress in
solving linear systems of the form Lx = b, where L is the Laplacian matrix of a weighted graph
with weights w(i, j) > 0 on the edges. The solution x of the linear system can be interpreted as the
potentials of an electrical flow in which the resistance on edge (i, j) is 1/w(i, j). Kelner, Orrechia,
Sidford, and Zhu [15] give a combinatorial, near-linear time algorithm that maintains the Kirchoff
Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles
(cycle toggling).

In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential
Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all
potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that
this dual algorithm also runs in a near-linear number of iterations.

We show, however, that if we abstract cut toggling as a natural data structure problem,
this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been
conjectured to be difficult for dynamic algorithms [11]. The conjecture implies that the data structure
does not have an O(n1−ϵ) time algorithm for any ϵ > 0, and thus a straightforward implementation
of the cut-toggling algorithm requires essentially linear time per iteration.

To circumvent the lower bound, we batch update steps, and perform them simultaneously instead
of sequentially. An appropriate choice of batching leads to an Õ(m1.5) time cut-toggling algorithm
for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our
algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce
the running time to O(m1+ϵ) for any ϵ > 0. Thus, the dual cut-toggling algorithm can achieve
(almost) the same running time as its primal cycle-toggling counterpart.
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1 Introduction

Over the last two decades, a significant line of work in theoretical algorithms has made
progress in solving linear systems of the form Lx = b, where L is the Laplacian matrix of a
weighted graph with weights w(i, j) > 0 on the edges. Starting with the work of Spielman
and Teng [19], researchers have devised a number of algorithms that run in near-linear time in
the number of edges of the graph (corresponding to the number of non-zeros in the matrix L).
The solution x of the linear system can be interpreted as the potentials of an electrical flow in
which the resistance of each edge is r(i, j) = 1/w(i, j), and the current supplied to each node
i is b(i). There have been many nice algorithmic ideas introduced using this interpretation of
the linear system, as well as many applications of the fast algorithms for solving this system
to other flow problems, such as the maximum flow problem [5, 6, 14, 16, 9].

Since the initial work of Spielman and Teng, a number of different near-linear time
algorithms have been proposed. In this paper, we wish to focus on a particular simple,
combinatorial algorithm by Kelner, Orrechia, Sidford, and Zhu [15], hereafter referred to as
the KOSZ algorithm; this algorithm has been the subject of several implementation studies
[4, 3, 7, 12]. The KOSZ algorithm uses the idea of an electrical flow in solving the linear
system Lx = b. An electrical flow f is one that obeys the flow conservation constraints at
each node i, saying that the net flow out of i is b(i) (sometimes known in this context as
the Kirchoff Current Law, or KCL), and Ohm’s law, which says that there exists a vector
x such that the flow from i to j, f(i, j), equals (x(i)− x(j))/r(i, j). There exists a flow f
that satisfies these two properties, and the corresponding potential vector x solves Lx = b.
Ohm’s Law is known to be equivalent to the Kirchoff Potential Law (KPL), which says that
the flow f satisfies the property that around any directed cycle C,

∑
(i,j)∈C r(i, j)f(i, j) = 0.

Given KPL, potentials satisfying Ohm’s law can be constructed by picking any spanning
tree T rooted at a vertex r, setting x(r) to 0, and x(k) to the sum of f(i, j)r(i, j) on the
path in T from k to r; these potentials are known as tree-induced potentials.

The KOSZ algorithm starts by picking a spanning tree T ; for the running time of the
algorithm, it is important that the tree has low stretch; its definition is otherwise not crucial
to the description of the algorithm.The algorithm starts by constructing a flow f that satisfies
flow conservation using only the edges in T . For a near-linear number of iterations, the
algorithm picks at random a non-tree edge (i, j) and considers the fundamental cycle C

closed by adding (i, j) to T ; it then alters the flow f along C to satisfy KPL (and such that
KCL continues to be satisfied). By picking (i, j) with the appropriate probability, Kelner
et al. show that the energy of the resulting flow decreases by a factor 1− 1

τ in expectation,
where τ is a parameter related to the stretch. The algorithm then returns the tree-induced
potentials x associated with T and the flow f . Kelner et al. [15] show that the resulting
potentials are close to the potentials of the associated electrical flow for the graph. The
KOSZ algorithm has the pleasing properties that it is easy to understand both the algorithm
and the analysis, and it is also close in spirit to known network flow algorithms; in particular,
it resembles the primal network simplex algorithm for the minimum-cost flow problem.

The primal network simplex algorithm for the minimum-cost flow problem has a natural
dual algorithm in the dual network simplex algorithm, in which node potentials are altered
on one side of a fundamental cut of a tree (the cut induced by removing an edge in the tree).
Similarly, polynomial-time cycle-canceling algorithms for minimum-cost flow (e.g. Goldberg
and Tarjan [10]) have natural dual analogs of polynomial-time cut-cancelling algorithms (e.g.
Ervolina and McCormick [8]). We refer to the first type of algorithm as a cycle-toggling
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algorithm, and the dual analog as a cut-toggling algorithm. Thus, the KOSZ algorithm is a
cycle-toggling algorithm for solving Laplacian linear systems. However, no corresponding
cut-toggling algorithm exists in the literature, leading immediately to the following question:

Does there exist a cut-toggling algorithm for solving Laplacian linear systems / computing
near-minimum energy flows, and how efficiently can it be implemented?

1.1 Our Contributions
We propose a dual analog of the KOSZ algorithm which performs cut-toggling rather than
cycle-toggling. We refer to this algorithm as Dual KOSZ, and we show it converges in a
nearly-linear number of cut-toggling steps. Thus, Dual KOSZ would be a nearly-linear time
algorithm if each cut-toggling operation could be implemented to run in polylogarithmic
time.

Our next contribution is to show that the natural data structure abstraction of this
cut-toggling process can be reduced to the online matrix-vector (OMv) problem, which has
been conjectured to be hard [11]. This implies that it is unlikely for there to be a black-box
data structure that implements a single cut-toggling operation in sublinear time, unlike cycle
toggling.

This result initially seems to present an insurmountable difficulty to obtaining a nearly-
linear time algorithm. However, we show that we can exploit the offline nature of the cut
toggles, obtaining an exact data structure for computing a sequence of K cut-toggles in
O(K

√
m) time total, which yields an algorithm that runs in Õ(m1.5) time overall. Inter-

estingly, Boman, Deweese, and Gilbert [3] explored an implementation of KOSZ that also
batched its cycle-toggling updates by looking for collections of edge-disjoint cycles.

We further show that by incorporating sparsification and its associated approximations,
we can reduce the running time to almost-linear, which means the cut toggling algorithm
can still be implemented in almost-linear time.

Our result demonstrates that graph optimization algorithms and dynamic graph data
structures can – and sometimes need to – interact in more intricate fashion than optimization
in the outer loop and black-box data structure in the inner loop.

The remainder of the paper is structured as follows. In Section 1.2, we give a high-level
overview of Dual KOSZ and our implementation ideas to obtain almost linear time. Section
2 describes some notation and concepts we will use. Section 3 gives the Dual KOSZ in detail
and shows that it can be implemented in a near-linear number of cut-toggling iterations, with
each iteration running in linear time. In Section 4, we abstract the problem of toggling a cut
to a data structure problem, and show that given the OMv conjecture of [11], we cannot
implement the operations needed in sublinear time. In Section 5, we show how to overcome
this difficulty by batching the cut-toggle operations, and further speed up the algorithm
through sparsification and recursion. Some proofs are omitted due to space reasons – these
proofs are deferred to the full version of the paper.

1.2 Technical Overview
As the KOSZ algorithm maintains a flow f and implicitly tree-induced potentials x, its
natural dual is to maintain potentials x, which implicitly define a flow f .1 The Dual KOSZ
algorithm starts by choosing a low-stretch spanning tree T . It maintains a set of potentials

1 To make matters somewhat confusing, the Laplacian solver literature treats the space of potentials as
primal due to its origins in numerical analysis.
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x (initially zero), and the corresponding (infeasible) flow f implied by Ohm’s Law. In each
iteration, we sample a fundamental cut S of the tree T and perform a cut-toggling update
so that the net flow leaving S is

∑
i∈S b(i), as required in every feasible flow. Following

arguments dual to those made in Kelner et al. we show that this algorithm also performs a
near-linear number of iterations in order to find a near-optimal set of potentials x and flow f .

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

Here ∥y∥L =
√

y⊤Ly and E(f) is the energy of flow f and τ is the stretch of tree T .
However, unlike Kelner et al., we cannot show that each individual cut-toggling update

can be made to run in polylogarithmic time. If we abstract the desired cut-toggling update
step as a natural data structure problem, we show that such a data structure cannot be
implemented in O(n1−ϵ) time for any ϵ > 0 given a conjecture about the online matrix-vector
multiplication problem (OMv) made by Henzinger, Krinninger, Nanongkai and Saranurak
[11]. They have conjectured that this problem does not have any algorithm that can carry
out an online sequence of n Boolean matrix-vector multiplications in time O(n3−ϵ), and show
that if the conjecture is false, then various long-standing dynamic graph problems will have
faster algorithms. We show that a single Boolean matrix-vector multiply can be carried out
as a sequence of O(n) operations of our desired data structure. Given the conjecture, then,
we cannot implement the data structure operations in O(n1−ϵ) time. Thus there is not a
straightforward near-linear time version of the Dual KOSZ algorithm.2

In a bit more detail, the data structure we define is given as input an undirected graph
with a spanning tree T , edge resistances and a supply b(v) and a potential value(v) at every
vertex v. The data structure supports two operations: 1) additively update the value of
all the vertices in a given subtree of T , and 2) query the value of the flow induced by the
potential values across any given fundamental cut of T . We show that even if the data
structure can only decide whether the value of the flow is non-zero or not, it would refute
the OMV conjecture. Therefore, we obtain a lower bound for this data structure conditional
on the OMv conjecture [11]. This even holds if all edge resistances are 1 and all b(v) are 0.

Nevertheless, we circumvent this data structural lower bound by exploiting the fact that
the sequence of cuts to be updated can be sampled in advance and, thus, the updates can be
batched, circumventing the “online” (or “sequential”) requirement in OMv. This is possible
because both the spanning tree T and the probability distribution over cuts of T are fixed at
the beginning of the algorithm. More precisely, denote the number of iterations of Dual KOSZ
by K (which is Õ(m)). Instead of sampling the fundamental cuts one at a time, consider
sampling the next ℓ cuts that need to be updated for some ℓ≪ K. In each “block” of size
ℓ≪ K, we contract all the edges of T that do not correspond to one of the ℓ fundamental
cuts to be updated. In this way, we work with a contracted tree of size O(ℓ) in each block
(instead of the full tree, which has size O(n)). This makes the updates faster. However, the
price we pay is that at the end of each block, we need to propagate the updates we made
(which were on the contracted tree), back to the entire tree. Overall, we show that each
block takes O(ℓ2 + m) time. Since there are Õ( m

ℓ ) blocks, the total runtime is Õ(mℓ + m2

ℓ ).
Choosing ℓ =

√
m thus gives a Õ(m1.5) time algorithm.

2 In a personal communication, Sherman [18] said he also had worked out a dual version of the KOSZ
algorithm, but was unable to solve the data structure problem for the updates to potentials. Our result
explains why this might be difficult to do.
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By augmenting the batching idea with sparsification and recursion, one can further
improve the running time of Dual KOSZ to Õ(m1+δ) for any δ > 0. To do this, observe
that ℓ cut-toggling updates effectively break the spanning tree into ℓ + 1 components. After
contracting the components to get a graph H with ℓ + 1 vertices, we can show that solving
an appropriate Laplacian system on H gives a single update step that makes at least as
much progress as the sequence of ℓ updates performed by the straightforward unbatched
algorithm. A natural approach is to solve this Laplacian system by recursively calling the
algorithm. However, this by itself does not give an improved running time. Instead, we first
spectrally sparsify H and then call the algorithm recursively to solve the sparsified Laplacian
system. Here we use the original Spielman-Teng spectral sparsification [20] because it does
not require calling Laplacian solvers as a subroutine (e.g. [2]). By carefully analyzing the
error incurred by sparsification, we are able to show that the update step using sparsification
makes about as much progress as the update step without sparsification. The total running
time of the recursive algorithm is then obtained by bounding the time taken at each layer of
the recursion tree.

▶ Theorem 2. For any δ ∈ (0, 1) and ϵ > 0, Dual KOSZ with batching, sparsification, and
recursion finds x with E ∥x∗ − x∥2

L ≤ ϵ ∥x∗∥2
L in O(m1+δ(log n)O( 1

δ )(log 1
ϵ ) 1

δ ) time.

2 Notation and Problem Statement

In this section, we give some notation and define concepts we will use in our algorithm.
We are given as input an undirected graph G = (V, E), with positive resistances r ∈ RE

+.
Although our graph is undirected, it will be helpful for us notationally to direct the edges.
To that end, fix an arbitrary orientation of the edges, and denote the set of directed edges
by E⃗.

In addition to the graph G and the resistances r, we are given a supply vector b ∈ RV .
The Laplacian matrix of G with respect to the resistances r is the matrix L ∈ RV ×V

defined by

L =
∑
ij∈E

1
r(i, j) (ei − ej)(ei − ej)⊤,

where ei is the ith unit basis vector. We note then that x⊤Lx =
∑

(i,j)∈E
1

r(i,j) (x(i)− x(j))2

for any vector x.
Our goal is to solve the system of linear equations Lx = b for x. However, we will not

be able to solve Lx = b exactly, so we will solve it approximately instead. It is usual to
measure the quality of a solution x in terms of the matrix norm induced by L. In other
words, if x is the vector of potentials returned by our algorithm and x∗ is an actual solution
to Lx∗ = b, then the error of our solution x is

∥x∗ − x∥2
L := (x∗ − x) ⊤L (x∗ − x) .

Hence, our objective is to find x ∈ RV that minimizes ∥x∗ − x∥2
L. A precise statement of

this is given below.

Goal: Given ϵ > 0, find potentials x ∈ RV that satisfy ∥x∗ − x∥2
L ≤ ϵ ∥x∗∥2

L.

Of course, the algorithm does not know the actual solution x∗. The place where x∗ appears
is in the analysis.
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Equations of the form Lx = b, where L is the Laplacian matrix of a graph, are called
Laplacian systems, and are found in a wide variety of applications in computer science and
other fields. When interpreted as an optimization problem, solving a Laplacian linear system
has the following nice interpretation: it is the dual of the problem of finding an electrical
flow. The primal problem below is that of finding an electrical flow; here A is the vertex-arc
incidence matrix of (V, E⃗). The optimal solution to the primal is called the electrical flow in
G defined by the resistances r. The dual problem is equivalent to solving Lx = b; this fact
can be seen by setting the gradient of the dual objective to equal 0 since the dual is concave.

(P ) min 1
2

∑
(i,j)∈E⃗

r(i, j)f(i, j)2 (D) max b⊤x− 1
2x⊤Lx

s.t. Af = b s.t. x ∈ RV unconstrained

Let E(f) denote the primal objective and B(x) denote the dual objective. The primal
objective is sometimes referred to as the energy of the electrical flow f . Also, let f∗ denote
the optimal primal solution and let x∗ denote an optimal dual solution. Note that there
are infinitely many dual solutions, because the dual objective is invariant under adding a
constant to every component of x. By strong duality (note that Slater’s condition holds),
E(f∗) = B(x∗). Moreover, the KKT conditions give a primal-dual characterization of
optimality.

▶ Fact 3 (KKT Conditions for Electrical Flow). Consider f ∈ RE⃗ and x ∈ RV . Then f is
optimal for the primal and x is optimal for the dual if and only if the following conditions
hold:
1. f is a feasible b-flow;
2. (Ohm’s Law) f(i, j) = x(i)−x(j)

r(i,j) for all (i, j) ∈ E⃗.
Thus solving Lx = b and finding the electrical b-flow in G are equivalent: Given a solution x
to Lx = b, we can calculate the electrical flow f using f(i, j) = x(i)−x(j)

r(i,j) . On the other hand,
given the electrical flow f , we can recover corresponding potentials x by setting x(v) = 0 for
some arbitrary vertex v, and using the equation f(i, j) = x(i)−x(j)

r(i,j) to solve for the potentials
on every other vertex.

A b-flow satisfies Ohm’s Law if and only if it satisfies the Kirchoff Potential Law (KPL):
KPL states that for every directed cycle C,

∑
(i,j)∈C f(i, j)r(i, j) = 0.

Both the Kelner et al. algorithm and our algorithm use a low-stretch spanning tree T .
Given resistances r, the stretch of a tree is defined as

stT (G) =
∑

(i,j)∈E⃗

stT (i, j) =
∑

(i,j)∈E⃗

1
r(i, j)

∑
(k,ℓ)∈P (i,j)

r(k, ℓ),

where P (i, j) is the unique path from i to j in T . We can find a spanning tree T with total
stretch stT (G) = O(m log n log log n) in O(m log n log log n) time [1].

We use the notation 1 to stand for the vector of all 1s, and 1X to be the characteristic
vector of a set X that has 1s in the entries corresponding to the elements of X and 0s
elsewhere.

3 A Cut-Toggling Algorithm for Solving Laplacian Linear Systems

We present a cut-toggling algorithm for computing an approximate solution to Lx = b, and
also an approximate minimum-energy b-flow. The goal of this section is to show that the
cut-toggling algorithm converges in a near-linear number of iterations, and that each iteration
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Algorithm 1 The KOSZ algorithm for solving Lx = b.

Compute a tree T with low stretch with respect to resistances r
Find flow f0 in T satisfying supplies b
Let x0 be tree-defined potentials for f0 with respect to tree T

for t← 1 to K do
Pick an (i, j) ∈ E − T with probability Pij ; Update f t−1 to satisfy KPL on the
fundamental cycle corresponding to (i, j)

Let f t be resulting flow
Let xt be tree-defined potentials for f t

return fK , xK

runs in linear time. Later in Section 5, we will show how to speed up the algorithm to an
almost-linear total running time. Since our algorithm is dual to the cycle-toggling algorithm
of Kelner et al. [15] (which we call KOSZ in this paper), we will begin by describing the
KOSZ algorithm.

The KOSZ algorithm works by maintaining a feasible b-flow f , and iteratively updates
f along cycles to satisfy Kirchkoff’s Potential Law on the cycle. It starts by choosing a
spanning tree T that has low stretch, and computes a b-flow f0 that uses only edges in
the tree T . Then for a number of iterations K that depends on the stretch of the tree, it
chooses a non-tree edge (i, j) ∈ E − T according to a probability distribution, and for the
fundamental cycle closed by adding edge (i, j) to T , it modifies the flow f so that Kirchoff’s
Potential Law is satisfied on the cycle. The probability Pij that edge (i, j) gets chosen is
proportional to the total resistance around the cycle closed by (i, j) divided by r(i, j). Given
the tree T with root r and the current flow f t in iteration t, there is a standard way to
define a set of potentials xt (called the tree-induced or tree-defined potentials): set x(r) to 0,
and x(k) to the sum of f(i, j)r(i, j) on the path in T from k to r. We summarize KOSZ in
Algorithm 1.

Our algorithm, which we will call Dual KOSZ, works by maintaining a set of potentials
x. It iteratively samples cuts in the graph, updating potentials on one side of the cut to
satisfy flow conservation across that cut. Following KOSZ, we choose a spanning tree T of
low stretch. Then for a number of iterations K that depends on the stretch of tree T , we
repeatedly sample a fundamental cut from the spanning tree (i.e. a cut induced by removing
one of the tree edges). We update all of the potentials on one side of the cut by an amount
∆ so that the amount of flow crossing the cut via Ohm’s Law is what is required by the
supply vector. We summarize Dual KOSZ in Algorithm 2. The main result of this section is
a bound on the iteration complexity of Dual KOSZ.

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

Next we give the algorithm in somewhat more detail. Let R(C) = (
∑

(k,ℓ)∈δ(C)
1

r(k,ℓ) )−1

for C ⊂ V , where δ(C) is the set of edges with exactly one endpoint in C. Note that R(C)
has units of resistance. For every tree edge (i, j), let C(i, j) be the set of vertices on one side
of the fundamental cut defined by (i, j), such that i ∈ C(i, j) and j ̸∈ C(i, j). We set up
a probability distribution Pij on edges (i, j) in the spanning tree T , where Pij ∝ r(i,j)

R(C(i,j)) .
We initialize potentials x0(i) to 0 for all nodes i ∈ V . In each iteration, we sample edge
(i, j) ∈ T according to the probabilities Pij . Let b(C) = b⊤

1C be the total supply of the
nodes in C. Note that b(C) is also the amount of flow that should be flowing out of C in any
feasible b-flow.
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Algorithm 2 Algorithm Dual KOSZ for solving Lx = b.

Compute a spanning tree T with low stretch with respect to resistances r
Set x0(i) = 0 for all i ∈ V

for t← 1 to K do
Pick an edge (i, j) ∈ T with probability Pij ∝ r(i,j)

R(C(i,j) and let C = C(i, j)
∆t ← (b(C)− f t(C)) ·R(C)

xt+1(v)←
{

xt(v) + ∆t, if v ∈ C,
xt(v), if v ̸∈ C.

Let fK be the tree-defined flow with respect to xK and T

return xK , fK

Let f t(C) be the total amount of flow going out of C in the flow induced by xt. That is,

f t(C) =
∑
ij∈E

i∈C, j ̸∈C

xt(i)− xt(j)
r(i, j) .

Note that f t(C) can be positive or negative. In any feasible b-flow, the amount of flow
leaving C should be equal to b⊤

1C = b(C). Hence, we define ∆t = (b(C)− f t(C)) ·R(C).
Observe that ∆t is precisely the quantity by which we need to increase the potentials of every
node in C so that flow conservation is satisfied on δ(C). We then update the potentials, so
that

pt+1(v) =
{

pt(v) + ∆t, if v ∈ C,
pt(v), if v ̸∈ C.

After K iterations, we return the final potentials xK . The last step is to convert xK to a
feasible flow by taking a tree-defined flow with respect to T : fK(i, j) = xK (i)−xK (j)

r(i,j) on all
non-tree edges, and fK routes the unique flow on T to make fK a feasible b-flow.

3.1 Analysis of Dual KOSZ
Recall that E(f) = 1

2
∑

e∈E f(e)2 and B(x) = bT x − 1
2xT Lx. By convex duality, we have

B(x) ≤ E(f) for any x ∈ RV and b-flow f . Moreover, x maximizes B(x) if and only if Lx = b.
(See e.g. [21, Lemma 8.9]). Thus solving the Laplacian system Lx = b is equivalent to finding
a vector of potentials that maximizes the dual objective. In what follows, we present the
lemmas that form the bulk of the analysis. Their proofs are deferred to the full version of
the paper. These lemmas (and their proofs) are similar to their counterparts in Kelner et al.
[15], because everything that appears here is dual to what appears there.

First, we show that each iteration of the algorithm increases B(x).

▶ Lemma 4. Let x ∈ RV be a vector of potentials and let C ⊂ V . Let x′ be the potentials
obtained from x as in the algorithm (that is, by adding ∆ to the potential of every vertex in
C so that flow conservation is satisfied across δ(C)). Then

B(x′)− B(x) = ∆2

2R(C) .

The second ingredient in the analysis is to introduce an upper bound on how large the
potential bound B(x) can become. This will allow us to bound the number of iterations the
algorithm takes.
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▶ Definition 5 (Gap). Let f be a feasible b-flow and let x be any vertex potentials. Define

gap(f , x) := E(f)− B(x) = 1
2

∑
e∈E

r(e)f(e)2 −
(

b⊤x− 1
2x⊤Lx

)
.

This same notion of a gap was introduced in the analysis of the Kelner et al. algorithm,
and was also used to bound the number of iterations of the algorithm.

The electrical flow f∗ minimizes E(f) over all b-flows f , and the corresponding vertex
potentials x∗ maximize B(x∗) over all vertex potentials x. Moreover, E(f∗) = B(x∗).
Therefore, for any feasible flow f , gap(f , x) is an upper bound on optimality:

gap(f , x) ≥ B(x∗)− B(x).

The lemma below gives us another way to write gap(f , x), and will be useful to us later. This
relation is shown in Kelner et al. [15, Lemma 4.4].

▶ Lemma 6. We have gap(f , x) = 1
2

∑
(i,j)∈E⃗ r(i, j)

(
f(i, j)− x(i)−x(j)

r(i,j)

)2
.

The analysis of Kelner et al. [15] relies on measuring progress in terms of the above-defined
duality gap between primal flow energy and dual potential bound. The high-level idea of
the analysis is that one can show that the duality gap decreases by a constant factor each
iteration, which implies a linear convergence rate. In the analysis of their algorithm, they
maintain a feasible b-flow f at each iteration, and measure gap(f , x) against corresponding
tree-defined potentials x.

One difference between their algorithm and ours is that we do not maintain a feasible
b-flow at each iteration. However, for gap(f , x) to be a valid bound on distance to optimality,
we need f to be a feasible b-flow. To this end, we introduce the definition of “tree-defined
flow” below.

▶ Definition 7 (Tree-defined flow). Let T be a spanning tree, x ∈ RV vertex potentials, and
b ∈ RV satisfying 1⊤b = 0 be a supply vector. The tree-defined flow with respect to T , x
and b is the flow fT,x defined by

fT,x(i, j) = x(i)− x(j)
r(i, j) if (i, j) ̸∈ T ,

and for (i, j) ∈ T , fT,x(i, j) is the unique value such that the resulting fT,x is a feasible
b-flow. That is, for (i, j) ∈ T , if C = C(i, j) is the fundamental cut defined by (i, j) and
b(C) = b⊤

1C is the amount of flow that should be flowing out of C in a feasible b-flow, then

fT,x(i, j) = b(C)−
∑

k∈C, ℓ̸∈C
kℓ∈E−ij

fT,x(k, ℓ) = b(C)−
∑

k∈C, ℓ ̸∈C
kℓ∈E−ij

x(k)− x(ℓ)
r(k, ℓ) .

In other words, fT,x is a potential-defined flow outside of the tree T , and routes the unique
flow on T to make it a feasible b-flow.

The below lemma expresses gap(fT,x, x) in a nice way.

▶ Lemma 8. Let T be a spanning tree, x vertex potentials, and b a supply vector. Let fT,x
be the associated tree-defined flow. Then

gap(fT,x, x) = 1
2

∑
(i,j)∈T

r(i, j) · ∆(C(i, j))2

R(C(i, j))2 .
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Suppose we have a probability distribution (Pij : (i, j) ∈ T ) on the edges in T . If the
algorithm samples an edge (i, j) ∈ T from this distribution, then by Lemma 4 the expected
increase in the dual objective is

E[B(x′)]− B(x) = 1
2

∑
(i,j)∈T

Pij ·∆(C(i, j))2/R(C(i, j)).

We want to set the Pij to cancel terms appropriately so that the right-hand side is a multiple
of the gap. Looking at Lemma 8, we see that an appropriate choice is to set

Pij := 1
τ
· r(i, j)

R(C(i, j)) ,

where τ :=
∑

(i,j)∈T
r(i,j)

R(C(i,j)) is the normalizing constant. For this choice of probabilities,

E[B(x′)]− B(x) = 1
2τ

∑
(i,j)∈T

r(i, j) · ∆(C(i, j))2

R(C(i, j))2 = 1
τ

gap(fT,x, x),

where fT,x is the tree-defined flow associated with potentials x. As a consequence, we have:

▶ Lemma 9. If each iteration of the algorithm samples an edge (i, j) ∈ T according to the
probabilities Pij = 1

τ ·
r(i,j)

R(C(i,j)) , then we have

B(x∗)− E[B(xt+1)] ≤
(

1− 1
τ

) (
B(x∗)− B(xt)

)
.

▶ Corollary 10. After K = τ ln( 1
ϵ ) iterations, we have B(x∗)− E[B(xK)] ≤ ϵ · B(x∗).

We now use the previous lemmas to bound the number of iterations Dual KOSZ takes.
Lemma 9 shows that the quantity B(x∗)− B(xt) decreases multiplicatively by (1− 1

τ ) each
iteration. Thus, a smaller value of τ gives faster progress. Moreover, it is not difficult to
show that τ = stT (G, r) (we defer the proof to the full version of the paper), which is why
the algorithm chooses T to be a low-stretch spanning tree.

We also need to argue that rounding xK to fK via a tree-defined flow preserves approximate
optimality. One can show that for any distribution over x such that Ex[B(x)] ≥ (1− ϵ

τ )B(x∗),
we have Ex[E(fT,x)] ≤ (1 + ϵ)E(f∗). Combining everything together, we conclude:

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

We end this section with a naïve bound on the total running time of Dual KOSZ. The
details of how this running bound is obtained are in the full version of the paper – essentially,
it comes from showing that each iteration can be implemented to run in O(n) time.

▶ Lemma 11. Dual KOSZ can be implemented to run in Õ(mn log 1
ϵ ) time.

In Section 4, we argue that given a natural abstraction of the data structure problem we
use in computing f(C) and updating potentials, it appears unlikely that we can implement
each iteration in o(n1−ϵ) time, if each iteration is to be processed one-by-one in an online
fashion. In Section 5, we show how to overcome this data structure lower bound by taking
advantage of the fact that the sequence of updates that we perform can be generated in
advance.
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4 Lower Bound on the Per-Iteration Complexity of the Algorithm

Recall that each single iteration of KOSZ can be implemented in logarithmic time. In this
section we show that assuming the OMv conjecture (see below) each single iteration of
Dual KOSZ cannot be implemented in linear time. This implies that in order to speed
up our algorithm we need to “batch-up” iterations, which is the approach we use in the
next section. We first present a natural data structure, called theTreeFlow data structure,
such that each iteration of the algorithm requires only two operations of the TreeFlow data
structure and then prove that assuming the OMv conjecture [11] it is impossible to implement
the TreeFlow data structure such that each operation of the data structure takes O(n1−ϵ)
time. To simplify the reduction we reduce from a closely related problem called the Online
Vector-Matrix-Vector Multiplication Problem (OuMv).

▶ Definition 12 (Online Vector-Matrix-Vector Multiplication Problem). We are given a positive
integer n, and a Boolean n × n matrix M. At each time step t = 1, . . . , n, we are shown
a pair of Boolean vectors (ut, vt), each of length n. Our task is to output u⊤

t Mvt using
Boolean matrix-vector operations. Specifically, “addition” is replaced by the OR operation, so
that 0 + 0 = 0, and 0 + 1 = 1 + 0 = 1 + 1 = 1. Hence, u⊤

t Mvt is always either 0 or 1.

The OMv conjecture implies that no algorithm for the OuMv problem can do substantially
better than naively multiplying u⊤

t Mvt at time step t. Specifically, it says the following:

▶ Lemma 13 ([11]). Let ϵ > 0 be any constant. Assuming the OMv conjecture, there is no
algorithm for the online vector-matrix-vector multiplication problem that uses preprocessing
time O(n3−ϵ) and takes total time O(n3−ϵ) with error probability at most 1/3 in the word-RAM
model with O(log n) bit words.

Thus we will reduce the OuMv problem to the TreeFlow data structure such that
computing u⊤

t Mvt requires two operations in the TreeFlow data structure. The lower bound
then follows from Lemma 13.

4.1 The TreeFlow Data Structure
The TreeFlow data structure is given as input (1) an undirected graph G = (V, E) with
n = |V |, (2) a spanning tree T of G that is rooted at a fixed vertex x, (3) a value r(u, v)
for each edge (u, v) ∈ E (representing the resistance of (u, v)), and (4) a value b(v) for each
vertex v ∈ V (representing the supply at v). The quantities r(u, v) and b(v) are given at the
beginning and will remain unchanged throughout the operations. For any set C ⊂ V , let
b(C) :=

∑
v∈C b(v).

Furthermore, each vertex v has a non-negative value, denoted value(v), which can be seen
as the “potential” of v. It is initially 0 and can be modified. For any set C ⊂ V we define
the flow out of C to be the quantity

f(C) :=
∑

(u,v)∈E,u∈C,v ̸∈C

(value(u)− value(v)) /r(u, v).

The TreeFlow data structure supports the following operations.
addvalue(vertex v, real x): Add x to the value of every vertex in the subtree of T rooted
at v.
findflow(vertex v): Return b(C)− f(C), where C is the set of vertices in the subtree of
T rooted at v.
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The TreeFlow data structure implements exactly the operations we require for each iteration
of Dual KOSZ: The addvalue operation allows us to update the potentials on a fundamental
cut, and findflow computes b(C)− f(C), thereby allowing us to compute ∆ at each iteration.
Note that if all b(v)-values are zero, the TreeFlow data structure simply returns −f(C),
which gives it its name.

We even show the lower bound for a “relaxed” version defined as follows: In an α-
approximate TreeFlow data structure the operation addvalue remains as above and the
operation findflow(v) returns a value that is within a multiplicative factor α ≥ 1 (that
can be a function of n) of the correct answer, i.e., a value between (b(C) − f(C))/α and
(b(C)−f(C)) ·α. The hardness of approximation is interesting, because it turns out that even
an approximation of this quantity is sufficient to obtain an algorithm for Lx = b. (Albeit
with a convergence rate that deteriorates with the approximation factor.)

▶ Lemma 14. Let ϵ > 0 be any constant and let α ≥ 1 be any value. Assuming the OMv
conjecture, no implementation of the α-approximate TreeFlow data structure exists that uses
preprocessing time O(n3−ϵ) and where the two operations addvalue and findflow both take
O(n1−ϵ) time, such that over a polynomial number of operations the error probability is at
most 1/3 in the word-RAM model with O(log n) bit words. This even holds if all r(u, v)
values are 1 and if all b(v) are 0.

5 Speeding Up Dual KOSZ

We now show how to surmount the OMv lower bound by taking advantage of the fact
that the sequence of updates that Dual KOSZ performs can be generated in advance. In
Section 5.1, we show that batching the updates yields a modification of the algorithm that
runs in Õ(m1.5) time. Then in Section 5.2, we use sparsification and recursion to further
improve the runtime to Õ(m1+α) for any α > 0.

5.1 A Faster Algorithm using Batching
First, we show that it is possible to speed up the running time to Õ(m1.5) time by batching
the updates performed by Dual KOSZ. In Lemma 11, we showed that the algorithm can be
implemented to run in time Õ(mn). (Here the tilde hides a factor of log n log log n log 1

ϵ .)
This running time essentially comes from Õ(m) iterations, and O(n) time per iteration.
Recall that each iteration of Dual KOSZ involves sampling a fundamental cut C of the
low-stretch spanning tree T from a fixed probability distribution P , and then adding a
constant to the potential of every vertex in C so that the resulting potential-defined flow
satisfies flow conservation across C.

The main idea of batching is as follows. Denote the number of iterations by K (which is
Õ(m)). Instead of sampling the fundamental cuts one at a time, consider sampling the next
ℓ cuts that need to be updated for some ℓ≪ K. We can perform this sampling in advance
because both the tree T and the probability distribution over cuts of T are fixed over the
entire course of the algorithm. In each “block” of size ℓ≪ K, we contract all the edges of
T that do not correspond to one of the ℓ fundamental cuts to be updated. In this way, we
work with a contracted tree of size O(ℓ) in each block (instead of the full tree, which has
size O(n)). This makes the updates faster. However, the price we pay is that at the end of
each block, we need to propagate the updates we made (which were on the contracted tree),
back to the entire tree. We will show that by choosing ℓ =

√
m, we can balance this tradeoff

and get an improved running time of Õ(m1.5). Pseudocode for Dual KOSZ with batching is



M. Henzinger, B. Jin, R. Peng, and D. P. Williamson 69:13

given in Algorithm 3. Note that the correctness of this algorithm follows directly from the
correctness of Dual KOSZ: Algorithm 3 samples cuts from exactly the same distribution as
Dual KOSZ, and if we fix the same sequence of cuts to be used by both algorithms, then the
output of the two algorithms is identical.

Algorithm 4 Dual KOSZ with batching.
1: Compute a tree T with low stretch with respect to resistances r.
2: Compute b(C) and R(C) for all fundamental cuts C of T .
3: Set x0(i) = 0 for all i ∈ V . Set f(C) = 0 for all fundamental cuts C of T .
4: for t← 1 to

⌈
K
ℓ

⌉
do

5: Sample ℓ edges (i1, j1), . . . , (iℓ, jℓ) with replacement from T , according to the
distribution P .

6: Contract all edges in T that were not sampled in step 5.
Let G̃ be the resulting graph and T̃ be the resulting tree.

7: For each 1 ≤ k ≤ ℓ, let Ck denote the fundamental cut in T determined by
edge (ik, jk). Let C̃k denote the fundamental cut in T̃ determined by (ik, jk).

8: y(ṽ)← 0 for all ṽ ∈ V (G̃).
9: for k ← 1 to ℓ do

10: Compute ∆k = (b(Ck)− f(Ck)) ·R(Ck). {Requires f(Ck) to be
already computed}

11: y(ṽ)← y(ṽ) + ∆k for all ṽ ∈ C̃k.
12: Update values of f(Cj) for all j ∈ {k + 1, . . . , ℓ}.
13: end for
14: for all i ∈ V do
15: Let ṽ(i) be the vertex in G̃ that i was contracted to.
16: xt(i)← xt−1(i) + y(ṽ(i)).
17: end for
18: Recompute f(C) for all fundamental cuts C of T .
19: end for
20: Let f ⌈K/ℓ⌉ be the tree-defined flow with respect to x⌈K/ℓ⌉ and T .
21: return x⌈K/ℓ⌉, f ⌈K/ℓ⌉

▶ Theorem 15. The running time of Dual KOSZ with batching is O(m1.5 log n log log n log 1
ϵ ).

This is achieved by choosing ℓ =
√

m.

Proof. At the beginning of the algorithm, we compute the values of b(C) (O(n) time via a
dynamic program) and R(C) (O(m log n) time via link-cut trees). The details of how to do
this are deferred to the full version of the paper.

Consider a batch of ℓ updates. Note that the contracted tree T̃ has at most ℓ + 1 vertices.
After contracting, we need to perform ℓ updates. This involves, for each k ∈ {1, 2, . . . , ℓ}:

Computing ∆k := (b(Ck)− f(Ck)) ·R(Ck),
This takes O(1) time assuming f(Ck) has already been computed. (Recall that the
values b(Ck) and R(Ck) are computed at the very beginning of the algorithm.)

Adding ∆k to y(ṽ) for every ṽ ∈ C̃k.
This takes O(ℓ) time, because the contracted tree has size O(ℓ).

Updating the values f(Ck+1), f(Ck+2), . . . , f(Cℓ) so they can be used in the later iterations
of the inner loop.

If each f(Cj) can be updated in O(1) time, this takes O(ℓ) time.

ITCS 2023



69:14 A Combinatorial Cut-Toggling Algorithm for Solving Laplacian Linear Systems

To do this, we precompute (at the beginning of the block) an ℓ × ℓ table with a
row/column for each fundamental cut in T̃ , where the (i, j) entry is the amount by
which the flow out of Ci increases if we add 1 to the potential of every node in Cj . Let
H(Ci, Cj) denote this value. With this table, updating the value of f(Cj) reduces to a
single table lookup, which takes O(1) time. One can construct the H(Ci, Cj) table in
O(ℓ2) time using results from [13]; we defer the details to the full version of the paper.

At the end of each block, we propagate the updates we made on the contracted graph
back to the original graph. This involves

Determining the new potential of each node in G.
This takes O(n) time, because one can simply iterate over all the nodes of G.

Determining the value of f(C) for each fundamental cut determined by T . (By convention,
assume the edges of T are directed toward the root, and that the fundamental cuts we
consider are the vertex sets of the subtrees of T .)

This can be done in O(m) time using a dynamic program that works from the leaves
to the root. First, we compute f(C) at each leaf of the tree. Next, suppose we have
are at a non-leaf node v, and let C be the set of vertices in the subtree rooted at v.
Suppose we have already computed f(D1), f(D2), . . . , f(Dk), where D1, . . . , Dk are
the proper subtrees of v. Then we can compute f(C) as follows:

f(C) =
k∑

i=1
f(Di) +

∑
w:vw∈E

p(v)− p(w)
r(v, w) .

This sum correctly counts the flow leaving C. This is because any edge leaving C is
counted once. On the other hand, if an edge is between Di and Dj , then it is counted
once in the f(Di) term, and once with the opposite sign in the f(Dj) term, so it zeros
out. Similarly, if an edge is between Di and v, it also zeros out.
The running time of this dynamic program is O(m), because the time taken at each
node is proportional to its degree, and the sum of all the node degrees is equal to 2m.

To summarize, there are K iterations, divided into blocks of size ℓ. In each block, we pay
the following.

Start of block: O(m) time to contract the tree, and O(ℓ2) time to compute the H(C, C ′)
table for the cuts that will be updated in the block.
During the block: O(ℓ) time per iteration. Since each block consists of ℓ iterations,
this is O(ℓ2) in total.
End of block: O(m) time to propagate the changes from the contracted tree to the
original tree.

Hence, each block takes O(m + ℓ2) time. Multiplying by the number of blocks, which is K/ℓ,
this gives a running time of O(K( m

ℓ + ℓ)). Choosing ℓ =
√

m to minimize this quantity, we
get O(K

√
m).

The final running time is therefore O(K
√

m) plus the preprocessing time. Preprocessing
consists of finding a a low-stretch spanning tree (O(m log n log log n)), plus computing the
values of R(C) (O(m log n)), and f(C) (O(n)).

Thus, the preprocessing time is dominated by the time it takes to run the iterations. So,
the total running time is now: O(K

√
m) = O(m1.5 log n log log n log 1

ϵ ). ◀

5.2 A Still Faster Algorithm via Batching, Sparsification, and Recursion
We now show that we can further speed up the algorithm using sparsification and re-
cursion. The goal is to show that we can we can obtain a running time of the form
O(A 1

δ m1+δ(log n) B
δ (log 1

ϵ ) 1
δ ) for any δ > 0, where A and B are constants.
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Consider batching the iterations of the algorithm as follows. Pick a positive integer d,
and repeat K times:

Sample the next d updates to be performed by the algorithm. These correspond to d

edges of the spanning tree T .
Let V0, V1, . . . , Vd be the vertex sets that T is partitioned into by the d tree edges.
Add ∆(i) to every vertex in Vi. We will choose the values ∆(0), ∆(1), . . . , ∆(d) to greedily
maximize the increase in the dual bound.

Note that our original algorithm corresponds to the case when d = 1. The lemma below
quantifies the increase of the dual objective after one step of the above update.

▶ Lemma 16. Let (V0, . . . , Vd) be a partition of V . Let x ∈ RV be a vector of potentials, and
let ∆ = (∆(0), . . . , ∆(d)) be any vector in Rd+1. Let x̃ be obtained from x by adding ∆(i) to
the potential of every node in Vi. Then, the increase in the dual bound is given by the formula

B(x̃)− B(x) = bT
H∆− 1

2∆T LH∆,

where
H is the contracted graph with vertices V0, V1, . . . , Vd and resistances r(Vk, Vℓ) =(∑

ij∈δ(Vk,Vℓ)
1

r(i,j)

)−1
,

LH is the Laplacian matrix of H, and
bH(k) = b(Vk)− f(Vk) for k = 0, 1, . . . , d.

In particular, the choice of ∆ that maximizes B(x̃) − B(x) is given by the solution to
LH∆ = bH .

Proof. We write the increase in the dual potential bound. Recall that f(Vk) is the amount
of flow leaving Vk in the flow f(i, j) = x(i)−x(j)

r(i,j) . We let f(Vk, Vℓ) be the amount of flow
going from Vk to Vℓ.

2 (B(x̃) − B(x))

= (2bT x̃ − x̃T Lx̃) − (2bT x − xT Lx)

= 2
∑

k

b(Vk)∆(k) +
∑

(i,j)∈E⃗

1
r(i, j)

[
(x(i) − x(j))2 − (x̃(i) − x̃(j))2]

= 2
∑

k

b(Vk)∆(k) +
∑

(i,j)∈E⃗

1
r(i, j) [(x(i) − x(j) + x̃(i) − x̃(j))(x(i) − x(j) − x̃(i) + x̃(j))]

= 2
∑

k

b(Vk)∆(k) +
∑
k<ℓ

∑
(i,j)∈δ(Vk,Vℓ)

1
r(i, j) [(2x(i) − 2x(j) + ∆(k) − ∆(ℓ))(∆(ℓ) − ∆(k))]

= 2
∑

k

b(Vk)∆(k) + 2
∑
k<ℓ

(∆(ℓ) − ∆(k))
∑

(i,j)∈δ(Vk,Vℓ)

1
r(i, j) (x(i) − x(j))

−
∑
k<ℓ

(∆(k) − ∆(ℓ))2
∑

(i,j)∈δ(Vk,Vℓ)

1
r(i, j)

= 2
∑

k

b(Vk)∆(k) + 2
∑
k<ℓ

(∆(ℓ) − ∆(k))f(Vk, Vℓ) − ∆T LH∆

= 2
∑

k

b(Vk)∆(k) − 2
∑

k

∆(k)f(Vk) − ∆T LH∆

= 2
∑

k

(b(Vk) − f(Vk))∆(k) − ∆T LH∆

= 2bT
H∆ − ∆T LH∆
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Note that this is a concave function of ∆, because LH is positive semidefinite. Therefore,
maximizing this expression is equivalent to setting its gradient to 0. Taking its gradient and
setting to 0 yields LH∆ = bH , as claimed. ◀

▶ Remark 17. Another interpretation of the ∆ that maximizes B(x̃)− B(x) in the Lemma
above is as follows: (∆(0), . . . , ∆(d)) are the values such that if one adds ∆(i) to the potential
of every vertex in Vi, the resulting potential-induced flow satisfies the flow constraints
f(Vk) = b(Vk) for all k = 0, . . . , d.

5.3 The Sparsify and Recurse Algorithm
Next we give the algorithm with sparsification and recursion in more detail. Observe that
d cut-toggling updates effectively break the spanning tree into d + 1 components. After
contracting the components to get a graph H with d + 1 vertices, Lemma 16 shows that
solving the Laplacian system LH∆ = bH gives the update that maximizes the increase in
B(x̃)−B(x) among all updates that increment the potential of all vertices in Vi by the same
amount. In particular, the progress made by this update step is is at least as large as the
progress made by the sequence of d updates performed by the straightforward unbatched
algorithm.

A natural approach is to solve LH∆ = b recursively. However, this by itself does not
give an improved running time. Instead, we will first spectrally sparsify H to get a sparsified
approximation L̃H of LH , satisfying (1 − γ)LH ⪯ L̃H ⪯ (1 + γ)LH for an appropriate
constant γ ∈ (0, 1). Such a matrix L̃H is known as a γ-spectral sparsifier of LH . We then
call the algorithm recursively on H to solve L̃H∆̃ = bH . Thus, a main task of the analysis is
to bound the error incurred by solving the sparsified system instead of the exact one. For
the spectral sparsification, we use the original Spielman-Teng algorithm [20] because it does
not require calling Laplacian solvers as a subroutine (e.g. [2]). A variant of it with better
failure probabilities is given in Theorem 6.1 [17]: one can find a sparsifier with O(n logc n/γ2)
nonzero entries in O(m logc1 n) time, with probability at least 1− 1/n2. Here, c and c1 are
constants, and m, n are the number of edges and vertices, respectively, in the graph before
sparsifying. Pseudocode for Dual KOSZ with batching, sparsification, and recursion is given
in Algorithm 5.

The base case of the recursive algorithm is when |V | ≤ n0, where n0 is a constant that
the algorithm can choose. For the base case, we simply use Gaussian elimination to solve
LGx = b, which takes O(1) time since n0 is a constant. For every t, contracting G down to
Ht and computing the new resistances takes O(m) time.

5.4 Analysis of the Sparsify and Recurse Algorithm
We now analyze Algorithm 5. We first bound the convergence rate, then analyze the running
time. The following fact about spectral approximations will be used; its proof is deferred to
the full version of the paper.

▶ Proposition 18 (Spectral Approximations). Suppose A, B ∈ Sn
+ and (1− γ) A ⪯ B ⪯

(1 + γ) A. Let x, y, z, b ∈ Rn. Then the following hold:
1. (1− γ) ∥x∥2

A ≤ ∥x∥
2
B ≤ (1 + γ) ∥x∥2

A

2. If Ax = b and By = b, then ∥x− y∥2
A ≤ h(γ) ∥x∥2

A, where h(γ) = γ2

(1−γ)2 .

5.4.1 Error Analysis
The lemma below bounds the expected rate of convergence of xt to x∗.
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Algorithm 5 Dual KOSZ with batching, sparsification, and recursion.

1: If |V | ≤ n0, solve LGx = b using Gaussian elimination and return x.
{LG is the Laplacian matrix of G.}

2: Compute a low-stretch spanning tree T of G.
3: Initialize x0 = 0.
4: for all t = 0 to K do
5: Generate the next d updates. These correspond to d tree edges et

1, . . . , et
d ∈ T .

6: Let V t
0 , . . . , V t

d be the vertex sets of the connected components of
T − {et

1, . . . , et
d}.

7: Contract G to Ht with d + 1 vertices: Each V t
i is a vertex in Ht, and

resistances in Ht are

rHt(V t
k , V t

ℓ ) =

 ∑
ij∈δ(Vk,Vℓ)

1
r(i, j)

−1

.

8: Compute L̃Ht , a γ-spectral sparsifier of LHt , where γ ∈ (0, 1) will be
a parameter that we will determine later.

9: Let bt
G = b− LGxt.

10: Let bt
Ht ∈ RV (Ht) be defined as follows:

bt
Ht(V t

i ) =
∑

u∈V t
i

bt
G(u) for all i = 0, 1, . . . , d.

11: Call the algorithm recursively to solve the Laplacian system L̃Ht∆̃t = bt
Ht

for ∆̃t. This will return an approximate solution ∆̃t
ϵ′ that satisfies∥∥∥∆̃t

ϵ′ − ∆̃t
∥∥∥2

L̃Ht

≤ ϵ′
∥∥∥∆̃t

∥∥∥2

L̃Ht

. Here, ϵ′ is the error parameter that we will input
to the recursive call, to be determined later.

12: Update xt using ∆̃t
ϵ′ to get the next iterate xt+1. For every vertex u ∈ V ,

xt+1(u)← xt(u) + ∆̃t
ϵ′(V t

i ),

where V t
i is the set in V t

0 , . . . , V t
d such that u ∈ V t

i . In other words, we update
xt to xt+1 by
adding ∆̃t

ϵ′(V t
i ) to the potential of every vertex in V t

i .
13: If B(xt+1) ≤ B(xt), revert xt+1 ← xt.
14: end for
15: Return xK and the corresponding tree-defined flow fK .

▶ Lemma 19. For all t ≥ 0, we have E ∥x∗ − xt∥2
LG
≤

(
1− β + βe− d

τ

)t

∥x∗∥2
LG

. Here,
τ = O(m log n log log n) is the stretch of the spanning tree,
d is the number of updates in each batch,
β =

(
1− 1

n2
0

) (
1−

(
4ϵ′ · 1+γ

1−γ ·
(

1 + γ2

(1−γ)2

)
+ 2γ2

(1−γ)2

))
.

In particular, if we choose n0 = 10, γ = 1
100 , and ϵ′ = 1

100 , then β ≥ 4
5 , so that

E
∥∥x∗ − xt

∥∥2
LG
≤

(
1
5 + 4

5e− d
τ

)t

∥x∗∥2
LG

.

Proof. Define the random variable Dt := B(x∗)− B(xt). We will show in Lemma 21 that
for every possible realization xt, we have E

[
Dt+1 | xt

]
≤

(
1− β + βe−d/τ

)
E [Dt | xt] . This

implies that E[Dt+1] ≤
(
1− β + βe−d/τ

)
E [Dt] unconditionally.
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It then follows that

E
[
Dt

]
≤

(
1− β + βe−d/τ

)t

E
[
D0]

=
(

1− β + βe−d/τ
)t

B(x∗).

Thus, B(x∗)− E[B(xt)] ≤
(
1− β + βe−d/τ

)t B(x∗). ◀

As in the original analysis of Dual KOSZ, we will study the duality gap and analyze its
decrease at each step of the algorithm. Consider some iteration t of the algorithm. Recall
that xt is the iterate at the start of iteration t. For every possible sequence of et

1, . . . , et
d (the

trees edges chosen in iteration t), define the following:
Let x̂t+1 be the vector obtained from xt by adding ∆t(V t

i ) to every vertex in V t
i , where

∆t := L†
Htbt

Ht .
Let x̄t+1 be obtained from xt by applying the updates for the sequence of tree edges
et

1, . . . , et
d, one by one. (i.e. Exactly as in the original, unbatched version of Dual KOSZ

described in Section 3.)

▶ Lemma 20. Fix any choice of et
1, . . . , et

d, and assume that L̃Ht is a γ-approximate sparsifier
of LHt . Then

B(xt+1)− B(xt) ≥ (1− α)
(
B(x̂t+1)− B(xt)

)
where α = 4ϵ′ · 1+γ

1−γ ·
(

1 + γ2

(1−γ)2

)
+ 2γ2

(1−γ)2 .
If we further assume that γ ∈ (0, 1

2 ), we can simplify to get

B(xt+1)− B(xt) ≥ (1− 12ϵ′ − 8γ2 − 48ϵ′γ2)
(
B(x̂t+1)− B(xt)

)
.

Proof. To simplify notation, in this proof we will use
bH to denote bt

Ht ,
∆̃ϵ′ to denote ∆̃t

ϵ′ ,
∆̃ to denote ∆̃t

∆ to denote ∆t,
H to denote Ht,

Later in this proof, we will show that∥∥∆̃ϵ′ −∆
∥∥2

LH
≤ α ∥∆∥2

LH
, (1)

for a constant α that depends on ϵ′ and γ. Assuming (1) holds, by the definition of the
matrix norm it follows that(

∆̃ϵ′ −∆
)T LH

(
∆̃ϵ′ −∆

)
≤ α∆T LH∆.

Expanding the left-hand side and rearranging, we get

2∆̃T
ϵ′LH∆− ∆̃T

ϵ′LH∆̃ϵ′ ≥ (1− α)∆T LH∆.

Using LH∆ = bH , this becomes

2∆̃T
ϵ′bH − ∆̃T

ϵ′LH∆̃ϵ′ ≥ (1− α)∆T LH∆.

Recall that xt+1 is obtained from xt by adding ∆̃ϵ′(V t
i ) to every vertex in V t

i . Using
Lemma 16 with ∆(i) = ∆̃ϵ′(V t

i ), x = xt, x̃ = xt+1, L̃ = LH , and b̃ = bH it follows that
the left-hand side is equal to B(xt+1) − B(xt). On the other hand, B(x̂t+1) − B(xt) =
2bT

H∆ −∆T LH∆ = ∆T LH∆. (Since LH∆ = bH .) Thus, the right-hand side is equal to
(1− α)

(
B(x̂t+1)− B(xt)

)
. Thus we have
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B(xt+1)− B(xt) ≥ (1− α)
(
B(x̂t+1)− B(xt)

)
,

as claimed.
It remains to prove (1). To prove (1), note that we have

1.
∥∥∆̃ϵ′ − ∆̃

∥∥2
L̃H
≤ ϵ′

∥∥∆̃
∥∥2

L̃H
(This is the error from the recursive solve).

2.
∥∥∆̃−∆

∥∥2
LH
≤ h(γ) ∥∆∥2

LH
(Follows by part 2 of Proposition 18. This is the error from

sparsification).
The first inequality, together with (1− γ)LH ⪯ L̃H ⪯ (1 + γ)LH and part 1 of Proposition
18, implies that∥∥∆̃ϵ′ − ∆̃

∥∥2
LH
≤ 1

1− γ

∥∥∆̃ϵ′ − ∆̃
∥∥2

L̃H
≤ ϵ′

1− γ

∥∥∆̃
∥∥2

L̃H
≤ ϵ′ · 1 + γ

1− γ
·
∥∥∆̃

∥∥2
LH

.

Now, using the inequality ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 (which holds for any norm), we note
that∥∥∆̃

∥∥2
LH
≤ 2 ∥∆∥2

LH
+ 2

∥∥∆̃−∆
∥∥2

LH
≤ 2 ∥∆∥2

LH
+ 2h(γ) ∥∆∥2

LH
.

Hence,∥∥∆̃ϵ′ − ∆̃
∥∥2

LH
≤ 2ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) ∥∆∥2

LH
.

Again using ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, we have∥∥∆̃ϵ′ −∆
∥∥2

LH
≤ 2

(∥∥∆̃ϵ′ − ∆̃
∥∥2

LH
+

∥∥∆̃−∆
∥∥2

LH

)
≤ 2

(
2ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) ∥∆∥2

LH
+ h(γ) ∥∆∥2

LH

)
=

(
4ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) + 2h(γ)

)
∥∆∥2

LH
.

Therefore, (1) holds with α = 4ϵ′ · 1+γ
1−γ · (1 + h(γ)) + 2h(γ). ◀

▶ Lemma 21. For any vector xt, we have

B(x∗)− E[B(xt+1)] ≤
(

1− β + βe−d/τ
) (
B(x∗)− B(xt)

)
,

where β = (1− 1
n2

0
)(1− α).

Here, the expectation is taken over the random choices of et
1, . . . , et

d, and also over the
randomness of the sparsification step. (Recall that the sparsify algorithm is randomized, and
in particular it successfully returns a γ-approximate sparsifier with probability ≥ 1− 1

|V (Ht)|2 .)

Proof. By Lemma 9, we know that

B(x∗)− E[B(x̄t+1)] ≤
(

1− 1
τ

)d (
B(x∗)− B(xt)

)
≤ e− d

τ

(
B(x∗)− B(xt)

)
.

Rearranging, this is equivalent to

E[B(x̄t+1)]− B(xt) ≥
(

1− e− d
τ

) (
B(x∗)− B(xt)

)
.
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Observe that for every realization of et
1, . . . , et

d, we have B(x̂t+1) ≥ B(x̄t+1). This is because
x̂t+1 − xt = ∆t, where ∆t by definition is the vector that maximizes the increase B(x̂t+1)−
B(xt) while subject to being incremented by the same amount on each of the components
V t

0 , . . . , V t
d . On the other hand, the vector x̄t+1−xt is also incremented by the same amount

on each of the components V t
0 , . . . , V t

d by the way our original algorithm works.
Since B(x̂t+1) ≥ B(x̄t+1) holds for every realization of et

1, . . . , et
d, it follows that

E[B(x̂t+1)] ≥ E[B(x̄t+1)], where the expectation is taken over the random choices of et
1, . . . , et

d

made by the algorithm. Hence,

E[B(x̂t+1)]− B(xt) ≥
(

1− e− d
τ

) (
B(x∗)− B(xt)

)
. (2)

To conclude, we will use Lemma 20 to translate the above inequality (which is in terms of
x̂t+1), to an inequality in terms of xt+1. We have

With probability ≥ 1− 1
n2

0
, the sparsifier is successful and by Lemma 20,

E[B(xt+1)]− B(xt) ≥ (1− α)
(
E[B(x̂t+1)]− B(xt)

)
.

With probability ≤ 1
n2

0
, the sparsifier is unsuccessful and E[B(xt+1)]− B(xt) ≥ 0. This is

because in the algorithm, we evaluate B(xt+1) and only update xt to xt+1 if B(xt+1) ≥
B(xt). Otherwise, we make xt+1 = xt.

Note that the above expectations are with respect to the random choices of et
1, . . . , et

d,
conditioned on the sparsifier being successful/unsuccessful. Now, taking another expectation
with respect to the randomness of the sparsifier, we get

E[B(xt+1)]− B(xt) ≥
(

1− 1
n2

0

)
(1− α)

(
E[B(x̂t+1)]− B(xt)

)
≥

(
1− 1

n2
0

)
(1− α)

(
1− e− d

τ

) (
B(x∗)− B(xt)

)
(by (2))

Rearranging the above inequality gives

B(x∗)− E[B(xt+1)] ≤
(

1−
(

1− 1
n2

0

)
(1− α)

(
1− e− d

τ

)) (
B(x∗)− B(xt)

)
,

as claimed. ◀

5.4.2 Running Time Analysis
The following theorem bounds the running time of the algorithm.

▶ Theorem 2. For any δ ∈ (0, 1) and ϵ > 0, Dual KOSZ with batching, sparsification, and
recursion finds x with E ∥x∗ − x∥2

L ≤ ϵ ∥x∗∥2
L in O(m1+δ(log n)O( 1

δ )(log 1
ϵ ) 1

δ ) time.

Proof. By Lemma 19, it suffices to run the algorithm for K iterations, for any K ≥
ln ϵ

ln( 1
5 + 4

5 e−d/τ ) .
Using the inequalities e−x ≤ 1− x

2 and ln(1− x) ≤ −x
2 which hold for x ∈ (0, 1), we see

that it suffices to choose K = 5τ
d ln(1/ϵ).

Recall that τ ≤ c3m log2 n, for some constant c3. Thus, we choose d = c3m̄(log2 n) ·m−δ.

Here, m̄ is the number of edges in the current iteration, while m is the number of edges
in the topmost iteration (i.e. in the original graph G). With this choice of d, we have
K = 5c3mδ ln(1/ϵ). (Note that K is the same at every level of the recursion tree.)
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The work at one iteration consists of
Computing T ,
Doing K times

Contracting and sparsifying to a graph with d vertices and a1d logc n/γ2 edges, for
some constant a1.
Doing a recursive call.

If m is the number of edges in the graph at one level of the recursion tree, then at the next
level, the number of edges is

a1d logc n/γ2 = a1c3m̄(log2 n) ·m−δ logc n/γ2 = a1c3m̄ ·m−δ(log n)2+c/γ2

Therefore, the number of edges in a graph at level ℓ of the recursion tree is

edgesℓ = m1−ℓδ(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ.

The total work required by a node at level ℓ of the recursion tree is dominated by the
sparsifier, which takes time

workℓ = K · a2 · edgesℓ · logc1 n

for some constant a2.
Finally, the total number of recursion tree nodes at level ℓ is equal to Kℓ. This implies

that the total work required by all the nodes at level ℓ of the recursion tree is equal to

total workℓ = workℓ ·Kℓ

= K · a2 · edgesℓ · logc1 n ·Kℓ

= K · a2 ·m1−ℓδ(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ · logc1 n ·Kℓ

= 5ℓ+1cℓ+1
3 m1+δ(ln 1/ϵ)ℓ+1a2(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ · logc1 n

≤ Aℓm1+δ(log n)Bℓ(ln 1/ϵ)ℓ+1

for some constants A, B.
To conclude, we note that the total work summed across all the levels is at most a

constant factor times the total work at the maximum level, which is ℓ = 1
δ . ◀
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A polynomial-stretch pseudorandom generator (PPRG) in NC0 (i.e., constant parallel time) is one of
the most important cryptographic primitives, especially for constructing highly efficient cryptography
and indistinguishability obfuscation. The celebrated work (Applebaum, Ishai, and Kushilevitz, SIAM
Journal on Computing, 2006) on randomized encodings yields the characterization of sublinear-
stretch pseudorandom generators in NC0 by the existence of logspace-computable one-way functions,
but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it is natural to ask
which sort of hardness notion is essential for constructing PPRGs in NC0. Particularly, to the best
of our knowledge, all the previously known candidates for PPRGs in NC0 follow only one framework
based on Goldreich’s one-way function.

In this paper, we present a new learning-theoretic characterization for PPRGs in NC0 and related
classes. Specifically, we consider the average-case hardness of learning for well-studied classes in
parameterized settings, where the number of samples is restricted to fixed-parameter tractable
(FPT), and show that the following are equivalent:

The existence of (a collection of) PPRGs in NC0.
The average-case hardness of learning sparse F2-polynomials on a sparse example distribution
and an NC0-samplable target distribution (i.e., a distribution on target functions).
The average-case hardness of learning Fourier-sparse functions on a sparse example distribution
and an NC0-samplable target distribution.
The average-case hardness of learning constant-depth parity decision trees on a sparse example
distribution and an NC0-samplable target distribution.

Furthermore, we characterize a (single) PPRG in ⊕-NC0 by the average-case hardness of learning
constant-degree F2-polynomials on a uniform example distribution with FPT samples. Based on
our results, we propose new candidates for PPRGs in NC0 and related classes under a hardness
assumption on a natural learning problem. An important property of PPRGs in NC0 constructed in
our framework is that the output bits are computed by various predicates; thus, it seems to resist
an attack that depends on a specific property of one fixed predicate.

Conceptually, the main contribution of this study is to formalize a theory of FPT dualization of
concept classes, which yields a meta-theorem for the first result. For the second result on PPRGs in
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1 Introduction

A dichotomy between learning and cryptography is one of the central topics in theoretical
computer science. An implication from cryptography to hardness of learning has already been
studied in the pioneering work by Valiant [60], who observed that the existence of a secure
cryptographic primitive implies the hardness of learning polynomial-size circuits (P/poly).
Many follow-up studies further showed the hardness of learning more restricted classes such
as AC0 under several cryptographic or deeply related assumptions [39, 40, 3, 11, 23, 24, 18,
59, 25]. The opposite implication from hardness of learning to cryptography is relatively less
understood and first studied by Impagliazzo and Levin [33] and Blum, Furst, Kearns, and
Lipton [14]. Particularly, Blum, Furst, Kearns, and Lipton [14] formulated the average-case
hardness of PAC learning and presented constructions of several cryptographic primitives
based on the average-case hardness of learning. These early studies characterized a central
cryptographic primitive called a one-way function (OWF) by the average-case hardness of
learning P/poly. The dichotomy between learning and cryptography has been further studied
over decades in various settings [47, 50, 55, 44, 45].

In general, the complexity for computing cryptographic primitives is deeply related to
the complexity of a concept class for learning (i.e., a class of target functions learners try to
learn). This observation leads us to study the dichotomy between learning and cryptography
in low complexity classes. One motivation of this is highly efficient cryptography based on
the hardness assumption of learning simple classes, as mentioned by Blum, Furst, Kearns,
and Lipton [14]. This direction is successful in certain fields; e.g., several candidates for a
cryptographic primitive called a weak pseudorandom function were proposed in low complexity
based on the hardness of learning problems for which no efficient algorithm is known at
present [1, 17]. Another motivation is identifying the capability of efficient learning based on
well-established arguments in cryptography. This direction has also been demonstrated for
decades in studies on cryptographic hardness of learning (e.g.,[39, 40, 11, 25]).

In this work, we study a dichotomy between learning and polynomial-stretch pseudoran-
dom generators (PPRGs) computable in constant-depth circuits (i.e., NC0), where a PPRG is
a fundamental cryptographic primitive stretching a given n-bit random seed into an n1+Θ(1)-
bit pseudorandom string that is indistinguishable from a truly random string by efficient
adversaries. This research question is strongly motivated by both sides of constructing highly
efficient cryptography and identifying the capability of efficient learning. Below, we explain
further backgrounds.

From the perspective of cryptography. A PPRG in NC0 is one of the most studied primitives
in parallel cryptography (cf. [22, 9]) because of its remarkable applications, such as highly
efficient cryptography [34] and a recent breakthrough on indistinguishability obfuscation
(iO) based on well-founded assumptions [37, 38]. Despite its importance, to the best of
our knowledge, the only known framework for constructing PPRGs in NC0 is one based
on Goldreich’s OWF [30]. For example, the celebrated work by Applebaum, Ishai, and
Kushilevitz [5] on randomized encodings only yields the characterization of sublinear-stretch
PRGs in NC0, but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it
is natural to inquire into a new candidate for PPRGs in NC0 and a characterization result
through the lens of the dichotomy between learning and cryptography.

Strictly speaking, we mainly discuss a generator defined as a collection of PPRGs, where
the generator has a public index randomly and efficiently (but not in NC0) selected in the
preprocessing (cf. [29, Section 2.4.2]). This relaxed setting is standard, especially when
we discuss a PPRG in NC0 (cf. [9, Remark 1.1]), and such relaxation does not affect the
applications mentioned above.
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From the perspective of computational learning theory. An ultimate goal in computational
learning theory is to identify the simplest concept class that is not efficiently learnable under
a plausible hardness assumption. Many hardness results of learning in the current frontline
are related to PPRGs in NC0. Applebaum, Barak, and Wigderson [10] proved the hardness
of learning O(log n)-junta functions under the existence of PPRGs in NC0 with an additional
assumption on input-output connections. Applebaum and Raykov [11] and Daniely and
Vardi [25] proved the hardness of learning for central classes such as depth-3 AC0 circuits and
ω(1)-term DNF formulas under assumptions related to polynomial-stretch Goldreich’s PRG,
which is a special case where the output bits are computed by one fixed predicate. Oliveira,
Santhanam, and Tell [51] proved that a security of polynomial-stretch Goldreich’s PRG
implies the impossibility of improving parameters of natural properties for simple classes such
as DNF-XOR circuits under a plausible assumptions on the existence of suitable expanders,
where a natural property is a notion deeply related to learning [18, 19].

Since the equivalence between pseudorandomness and unpredictability follows from the
well-known result by Yao [61], a reader might expect a correspondence between PPRG in NC0

and hardness of learning NC0. However, this intuition seems incorrect because while a PPRG
in NC0 is conjectured to exist, learning NC0 (i.e., functions with constant locality) is trivially
feasible by applying Occam’s razor [15]. In this sense, there seems to exist a gap between
pseudorandomness and hardness of learning when we consider considerably low complexity
classes such as NC0. Nevertheless, can we obtain some learning-theoretic characterization for
a collection of PPRG in NC0? In this work, we provide an affirmative answer to this question.

1.1 Our Learning Model
We introduce the learning model mainly discussed in this work, which is a natural variant of
the PAC learning model. For the formal definition, see the full paper.

We consider a distribution-specific average-case learning model, introduced by Blum,
Furst, Kearns, and Lipton [14]. In this model, an unknown Boolean-valued target function
f (contained in some concept class C ) is selected according to a known target distribution,
and a learner is given samples of the form (x, f(x)), where x is called an example and
selected identically and independently according to a known example distribution. After
learning with the samples, the learner tries to guess a value of f(x) for an additionally given
input x (called a challenge) selected according to the same example distribution with good
probability; specifically, with probability at least 1/2 + γ (we refer to γ as an advantage)
over the choices of randomness for the learner, samples, and a target function. We define
the sample complexity as the number of samples the learner requires. We say that a class
C is not learnable with respect to some class (e.g., polynomial-time samplable) of example
distributions and target distributions in this distribution-specific model if there exist an
example distribution and a target distribution in the class such that C is not learnable under
these example and target distributions.

A new perspective in this paper is to consider parameterized complexity of learning
for a parameterized concept class and parameterized classes of example distributions and
target distributions. We remark that parameterized learnability has been discussed in
certain previous studies (e.g. [12]). The main difference from the previous formulation is the
separate consideration of time complexity and sample complexity. In this paper, we only
consider fixed-parameter tractability on sample complexity, and the time complexity can be
arbitrary polynomial depending on parameters (or sub-exponential functions). Specifically,
for parameters k1, . . . , kc on a concept class C and classes of example distributions and target
distributions, we say that C is learnable with (k1, . . . , kc)-FPT samples if C is learnable
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with f(k1, . . . , kc) · nΘ(1) samples, where f is some computable function. Our learning model
captures a (natural) situation in which collecting labeled data is more expensive than using
computational resources. This formulation also provides a new perspective on parameterized
complexity of learning; e.g., PAC learning k-junta (i.e., functions depending on only k

coordinates of the input) is known to be W[2]-hard [12], but feasible with FPT samples
(with k2k · nΘ(1) samples and in O(nk) time) by Occam’s razor [15]. By contrast, it can be
shown that learning degree-d F2-polynomials is infeasible even in this setting based on the
VC theory (cf. [58]).1

We define the sparsity of a distribution as the maximum Hamming weight of samples.

▶ Definition 1. For c ∈ N, we say that a family D = {Dn}n∈N of distributions on {0, 1}∗ is
c-sparse if Prx←Dn [wt(x) ≤ c] ≥ 1 − negl(n), where wt(x) represents the Hamming weight of
x, and negl(n) represents some negligible function, i.e., for any polynomial p(n), it holds that
negl(n) < 1/p(n) for any sufficiently large n ∈ N.

1.2 Our Results
As a main result, we show that a collection of PPRGs in NC0 is characterized by the
learnability of various central classes with FPT samples with respect to a sparse example
distribution and an NC0-samplable target distribution.

▶ Theorem 2 (informal). The following are equivalent:
1. There exists a collection of (infinitely-often secure2) PPRGs in NC0.
2. c-sparse F2-polynomials are not polynomial-time learnable on average with respect to a

target distribution samplable by a depth-d NC0 circuit and a samplable distribution on
c′-sparse example distributions with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with respect to
a target distribution samplable by a depth-d NC0 circuit and a samplable distribution on
c′-sparse example distributions with (c, c′, d)-FPT samples.

4. For any f ∈ {OR}∪{MODm : m ∈ N\{1}}, degree-d f -decision trees are not polynomial-
time learnable on average with respect to a target distribution samplable by a depth-d′ NC0

circuit and a samplable distribution on c-sparse example distributions with (d, c, d′)-FPT
samples.

Informally, Theorem 2 yields a new dichotomy between highly efficient pseudorandom
generators and sample-efficient heuristics for learning with sparse data. Below we argue that
the learning settings of Theorem 2 are natural.

Concept classes. For the formal descriptions of each parameterized concept class, see the
full paper. Here, we remark that the sparsity of F2-polynomials and Fourier representations
is one of the most important complexities of Boolean functions (cf. [48]). The fourth item
above concerns the extensions of decision trees, containing the well-studied class of parity

1 In the full paper, we show that learning degree-d F2-polynomials with FPT samples is infeasible even in
the average-case setting over uniformly random degree-d F2-polynomials.

2 In this paper, we mainly discuss the relationships between learnability for all example sizes and PPRGs
with infinitely often security (i.e., the security holds for infinitely many seed lengths). Note that the
same results hold for generators with sufficiently large security (i.e., the security holds for any sufficiently
large seed length) by considering the learnability on infinitely many example sizes.
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decision trees3(e.g. [41]). Although OR decision trees have received relatively less research
attention compared with the other concepts, learning OR decision trees with sparse data
seems to be a natural setting where the decision is made by a few queries about whether
some unusual features are observed. Interestingly, our result shows that the average-case
learnability for these various concepts becomes equivalent when data are sparse through the
existence of a collection of PPRGs in NC0.

Example distributions. We remark two points. First, we consider a distribution of example
distributions (i.e., average cases on example distributions), where the example distribution is
selected at the initialization step (see the full paper for the formal description). Note that
this captures more general settings of learning than the previous distribution-specific setting
in [14]; e.g., our framework captures a distribution determined by some hidden random
parameter. From the perspective of cryptography, the hardness assumption on a distribution
of example distributions is weaker than ones in distribution-specific settings. Second, we
consider learning on sparse example distributions. Such a learning framework naturally
captures learning on data with rarely observed features, such as symptoms of patients.

Target distributions. We consider NC0-samplable distributions as target distributions, and
this is a natural assumption in average-case complexity theory in learning; e.g., the uniform
distribution over functions in C is often regarded as a projection of random strings onto
the binary representations for functions in C (e.g., random DNFs), and almost all target
distributions considered in previous studies on average-case learning are NC0-samplable [36,
56, 57, 35, 2].

We also remark that Theorem 2 holds even in super-polynomial regimes; e.g., sub-
exponential-time average-case hardness of learning with FPT samples corresponds to a
collection of PPRGs secure against sub-exponential-time adversaries (where the loss of security
is only polynomial). Note that super-polynomial security is applied for the construction
of iO based on well-founded assumptions [37, 38]. Particularly, Jain, Lin, and Sahai [37]
assumed (i) the hardness of learning problems LWE and LPN, (ii) the existence of a collection
of PPRGs in NC0, and (iii) the Diffie-Hellman-style assumption (i.e., SXDH). Our result
characterizes assumption (ii) based on the hardness of learning and, along with their work,
opens an interesting research direction: Is the well-founded hardness assumption of learning
sufficient for constructing iO (i.e., Obfustopia)?

Next, we present several related results on the hardness of learning and PPRGs in relaxed
complexity classes, which are obtained by relaxing some conditions in Theorem 2.

On removing sparsity conditions. Although Theorem 2 shows one characterization of
a collection of PPRGs in NC0 by learnability with sparse data, the sparsity is somewhat
restrictive, and there exist a large amount of non-sparse data in the real world. As a second
result, we show that learnability with non-sparse data for the classes in Theorem 2 still
characterizes a collection of PPRGs in superclasses of NC0.

3 In fact, the equivalence between constant-depth parity decision trees and constant-Fourier-sparse
functions follows from the work by Kushilevitz and Mansour [41]. However, it is unclear whether these
learning settings are equivalent when we restrict the target distributions to NC0-samplable because the
transformation between these representations may be infeasible in NC0.
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▶ Theorem 3 (informal). The following hold:
1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-

polynomials are not polynomial-time learnable on average with respect to a target distri-
bution samplable by a c′-sparse F2-polynomial and a samplable distribution on example
distributions with (c, c′)-FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse
functions are not polynomial-time learnable on average with respect to a target distribution
samplable by a c′-Fourier sparse functions and a samplable distribution on example
distributions with (c, c′)-FPT samples.

The generators above still have good parallelism in the sense that each output bit is
computable by a constant number of parallel and simple computations (i.e., logical AND or
logical XOR).

On obtaining a single PPRG. The theorems above hold only in the case of a collection
of PPRGs, and the learning-theoretic characterization of a single PPRG is currently open.
Although a collection of PPRGs is standard in parallel cryptography, a single parallel PPRG
is still a natural and desirable primitive because it does not require the additional public
random strings.

As a third result, we show that if we allow NC0 circuits to have one top-most XOR-
gate with unbounded fan-in, where the other types of gates (i.e., NOT, OR, and AND)
have bounded fan-in (we denote this class4 by ⊕-NC0), then a single PPRG in ⊕-NC0 is
characterized by the hardness of learning constant-degree F2-polynomials on the uniform
example distribution.

▶ Theorem 4 (informal). For any polynomial r(n), the following are equivalent:
1. There exists a PPRG in ⊕-NC0.
2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to

a uniform example distribution and a target distribution samplable by a degree-d′ F2-
polynomial using r(n)-bit random seeds with (d, d′)-FPT samples.

We remark several points. First, in the theorem above, the length of the seeds for selecting
a target function is also fixed to some polynomial r(n) independent of the parameters
(i.e., degree of F2-polynomials). This restriction is essential for the result because if we
remove this restriction, then unlearnability with FPT samples holds unconditionally even
for time-unbounded learners (the formal proof can be found in the full version). Second,
the average-case hardness of learning on the uniform example distribution is equivalent to
weak pseudorandom functions (WPRFs), where a WPRF is an efficiently samplable family
of functions indistinguishable from a random function on inputs passively selected uniformly
at random [46]. Thus, Theorem 4 can also be regarded as the equivalence between PPRG
and WPRF within the class ⊕-NC0.

Finally, we show that if we consider a general case of samplable distributions of example
distributions (instead of the uniform example distribution), then the dichotomy in Theorem 4
is extended to a collection of PPRGs in ⊕-NC0. In other words, we can characterize the
difference between a single PPRG and a collection of PPRGs in ⊕-NC0 by the difference in
the generality of example distributions on the hardness of learning.

4 It is not hard to verify that ⊕-NC0 is indeed equivalent to NC0[⊕] (i.e., a class of NC0 circuits with
XOR-gates with unbounded fan-in) and a class of constant-degree F2-polynomials.
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▶ Theorem 5 (informal). For any polynomial r(n), the following are equivalent:
1. There exists a collection of PPRGs in ⊕-NC0.
2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a

target distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds
and a samplable distribution on example distributions with (d, d′)-FPT samples.

Note that Theorems 3–5 also hold in super-polynomial regimes with polynomial security
loss.

Theorems 2–5 indicate that by selecting a parameterized example distribution and a
parameterized target distribution arbitrarily and by assuming the hardness of learning with
FPT samples, we can construct a secure parallel PPRG. Conversely, if we believe in PPRGs
in the correspondence class, then such a hard-to-learn parameterized setting must exist.
However, we remark that Theorems 2–5 are general results on the dichotomy between the
hardness of learning and parallelly computable PPRGs, and they do not explicitly specify
the distributions with respect to which learning is hard on average with FPT samples.

Here, we propose a natural learning task, learning random parity decision trees, whose
hardness does not contradict our current knowledge.

▶ Definition 6 (Learning random parity decision trees). Let D = {Dn}n∈N be an arbitrary
example distribution, where Dn is a distribution on {0, 1}n for each n ∈ N. For any d ∈ N and
m : N → N, we define a problem of learning random depth-d parity decision trees (d-LRPDT)
on D with m(n) samples as follows:

Input: samples {(x(i), T (x(i)))}i∈{1,...,m(n)} and a challenge xc, where
x(1), . . . , x(m(n)), xc ∈ {0, 1}n are selected according to Dn, and T is a ran-
dom parity decision tree of depth d and size 2d in which each query at internal nodes
is ⊕i∈Sxi for a uniformly random subset S ⊆ {1, . . . , n} (selected independently for
each node) and each leaf is labeled by a uniformly random value in {0, 1} (selected
independently for each leaf).
Output: T (xc)

For any polynomial m(n) and p(n), we say that d-LRPDT is (m(n), 1/p(n))-hard on D if
no randomized polynomial-time algorithm solves d-LRPDT on D with m(n) samples with
probability at least 1/2 + 1/p(n), i.e., for any randomized polynomial-time algorithm A and
sufficiently large n ∈ N,

Pr
A,Dn,T

[
A
(

(x(1), T (x(1))), . . . , (x(m(n)), T (x(m(n)))), xc

)
= T (xc)

]
<

1
2 + 1

p(n) .

By Theorem 2, if d-LRPDT is hard with FPT samples on some parametrized sparse
example distribution, then a collection of PPRGs exists in NC0. By inspecting our proof,
we show that the sample complexity can be made as small as n1+ϵ for an arbitrarily small
constant ϵ > 0.

▶ Corollary 7. Let ϵ ∈ (0, 1) be an arbitrary constant. Suppose that there exist d ∈ N and an
example distribution D such that d-LRPDT is hard on D with n1+ϵ samples5. Then, we can
construct parallel PPRGs according to the complexity of D as follows:

If D is O(1)-sparse and samplable, then a collection of PPRGs in NC0 exists.
If D is the uniform distribution, then a PPRG in ⊕-NC0 exists.
If D is samplable, then a collection of PPRGs in ⊕-NC0 exists.

The first and third items hold even for samplable distributions on example distributions.

5 For the requirement for the advantage of learning, see the full version.
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For instance, as a natural candidate for O(1)-sparse example distributions, we propose the
uniform distribution over binary strings of Hamming weight c ∈ N.

▶ Corollary 8. If there exist c, d ∈ N and ϵ ∈ (0, 1) such that d-LRPDT is hard on the
uniform example distribution over binary strings of Hamming weight c with n1+ϵ samples,
then a collection of PPRGs in NC0 exists.

We remark that it is consistent with our knowledge that d-LRPDT cannot be solved. Depth-d
parity decision trees are exactly learnable by the Goldreich–Levin algorithm when additional
query access to the target function (i.e., membership query) is available [32, 41]. However, it
is a central open question whether the membership query is necessary, and d-LRPDT is a
natural test case for this question. An efficient learner for random log-depth decision trees
was developed by Jackson and Servedio [36], but it is unclear whether this algorithm can be
extended to the case of random parity decision trees. From Corollary 7, we propose further
learning-theoretic and cryptographic analysis of the hardness of learning parity decision trees
as a future research direction. Particularly, one important property of the PPRGs constructed
in Corollary 7 is that the output bits are computed by various predicates. Therefore, they
seem to resist an attack that depends on a specific property of one fixed predicate, even in
the setting in Corollary 8.

1.3 Related Work
Applebaum, Barak, and Wigderson [10] proved the hardness of learning O(log n)-junta
functions under the existence of PRGs in NC0 with an additional assumption that (roughly
speaking) a small subset of output bits can be embedded indistinguishably with good local
expansion. Applebaum and Raykov [11] proved the hardness of learning depth-3 AC0 circuits
under the assumption related to polynomial-stretch Goldreich’s PRGs, which matches the
unconditional upper bound presented in [42]. We remark that their assumption is reducible
to a more reliable assumption on Goldreich’s OWFs due to the search-to-decision reduction
developed in [9, 11], where they essentially use the structures of Goldreich’s OWFs. Daniely
and Vardi [25] showed the hardness of learning ω(1)-term DNF formulas and related classes
on a product example distribution by assuming Goldreich’s PRG for arbitrary polynomial
stretch. We remark that our results are incomparable with these previous studies. We assume
the existence of the more general cryptographic primitive (i.e., a collection of PPRGs in
NC0) to show the hardness of learning other simple and central classes. This generalization
weakens the hardness result to a more general class of example distributions instead of
product distributions compared with [25], while we can also obtain the opposite direction
from the hardness of learning to cryptography. The result of [51] on natural properties
also differs in the learning setting, particularly natural properties essentially correspond to
learning with membership queries on the uniform example distribution [18].

Blum, Furst, Kearns, and Lipton [14] constructed OWFs, PRGs, and private-key encryp-
tion schemes based on the average-case hardness of learning. To construct PPRGs by using
their technique, we need to assume a stronger hardness assumption on learning with member-
ship queries. The use of membership queries was removed by Naor and Reingold [46], and we
apply the same technique to show one direction in Theorem 4. Note that the complexity of
these PPRGs depends on the complexity of evaluating concept classes. Thus, this approach
does not seem to yield a PPRG in NC0 because if a concept class has the evaluation performed
in NC0, then such a class is trivially learnable. The followup studies [47, 50, 55, 44, 45]
discussed relationships between cryptography and hardness of learning in P and P/poly.
Other studies (e.g. [53]) developed various cryptographic schemes based on the hardness of
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learning linear functions with noise, but it is not clear whether PPRGs in NC0 are obtained
as a consequence of these studies. LRPDT is regarded as a related problem in which we
learn parity with noise determined by a constant number of other parities, and it is indeed
reducible to learning parity with noise in the case of a uniform example distribution [26].

With regard to parallel cryptography, the constructions of PRGs in NC0 were presented
by Applebaum, Ishai, and Kushilevitz [5] (sublinear-stretch) and Applebaum, Ishai, and
Kushilevitz [6] (linear-stretch). Recently, Ren and Santhanam [54] and Liu and Pass [43]
characterized the existence of OWF in NC0 based on the average-case meta-complexity notion,
which only yields sublinear-stretch PRGs in NC0, and PPRGs in NC0 seem out of reach at
present. Some candidates for a collection of PPRGs in NC0 were studied by Cook, Etesami,
Miller, and Trevisan [20], Bogdanov and Qiao [16], Applebaum, Bogdanov, and Rosen [4],
Applebaum [9], O’Donnell and Witmer [49], Applebaum and Lovett [8], and Couteau, Dupin,
Méaux, Rossi, and Rotella[21] based on the framework of Goldreich’s OWF [30]. This type of
generator is natural but somewhat restrictive in the sense that all output bits are computed
by the same predicate fixed in advance. One advantage of the previous framework is that
the security of the generator can be based on a hardness notion of one-wayness, which is
more reliable than pseudorandomness [9].6 By contrast, an advantage of the framework
proposed in this study is that the output bits of the resulting generator are computed by
various predicates; thus, it seems to resist an attack that depends on a specific property of
one fixed predicate.

We will introduce a key notion of FPT dualization with the junta-sparse condition
in Section 2, and it seems conceptually related to the analysis of Boolean functions on
Hamming balls and slices (i.e., substrings of fixed Hamming weight). Particularly, Filmus
and Ihringer [28] and Filmus [27] proved that every constant-degree polynomial on a slice
is also O(1)-junta on the same slice. By contrast, our result can also be rephrased as that
every sparse polynomial on a Hamming ball is a dual of O(1)-junta.

2 Techniques

In this section, we present an overview of key notions and proof sketches of the main results.

2.1 Proof Techniques for Theorems 2 and 3
The key notion to show Theorems 2 and 3 is the dualization of concept classes, which
was explicitly discussed independently by Applebaum, Barak, and Wigderson [10] and
Vadhan [59] and applied (implicitly or explicitly) in recent studies on the hardness of
learning [24, 23, 44, 45, 25]. Informally, the dualization of a concept class C consists of two
mappings from examples to target functions in C and from target functions in C to examples
satisfying the following condition. If an example x (resp. a target function f ∈ C ) is mapped
to a target function x∗ ∈ C (resp. an example f∗) by these mappings, then the value of
x∗(f∗) is equal to f(x). We refer to this x∗ (resp. f∗) as a dual of x (resp. f) and use the
superscript ∗ to represent duals.

First, we observe that the dualization of a concept class C provides a relationship between
a collection of PRGs and learnability for C . On the one hand, if there exists a collection G

of PRGs in C , then we can construct a sample set of size m from the pseudorandom string

6 In terms of learning, the difference between one-wayness and pseudorandomness is similar to the
difference between proper learning and improper learning. In general, proper learning is often harder
than improper learning (cf. [52]).
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y = G(x) of length m (where x is a random seed) as {(G∗i , yi)}i∈[m], where Gi ∈ C represents
the function computing the i-th bit of G, and G∗i is its dual. Notice that x∗(G∗i ) = Gi(x) = yi

for each i ∈ [m]. Therefore, if we consider this x∗ as a target function for learning C and
the uniform distribution over the samples as the example distribution, any feasible learner
cannot distinguish these labels from random labels unless the learner looks at almost all
samples in the set. On the other hand, we can obtain a collection of PRGs from the
problem of learning C by translating a sample set {(x(i), f(x(i)))}i∈[m] (where f is a target
function) into a generator G(f∗) = (x(1))∗(f∗)◦· · ·◦ (x(m))∗(f∗). By the equivalence between
pseudorandomness and unpredictability [61], if learning C is hard even with non-negligible
advantage, then the value of G(f∗) = f(x(1)) ◦ · · · ◦ f(x(m)) must be pseudorandom. If we
assume that the target distribution is samplable in a complexity class C ′ and regard the seed
to the sampler as a random seed to G, then we can implement this G in C ◦ C ′.

At a high level, we will use the argument above to show Theorems 2 and 3. However,
there are the obstacles. First, the argument from PRG to the hardness of learning only
yields hardness of learning with a fixed sample complexity depending on the stretch of the
PRG. Second, more importantly, NC0 cannot be dualized. Intuitively, for an NC0-computable
f : {0, 1}n → {0, 1} (i.e., f depends on only O(1) coordinates) and input x ∈ {0, 1}n, the
value of f(x) depends on Ω(log n)-bit information of f , such as relevant coordinates. Thus, we
cannot regard f(x) as a function depending on only O(1)-bit information in a representation
of f . In the full paper, we formally show the impossibility of the dualization of NC0 based on
the lower bound on communication complexity. Below we present how we deal with these
two obstacles.

FPT Dualization

We deal with the first obstacle by assuming polynomial-stretch PRGs. The merit of a
PPRG is that we can amplify the stretch of a PRG to an arbitrary polynomial within NC0

by applying the original generator constant times based on the GGM construction [31].
After applying the original generator computable by a depth-d circuit c times, the depth
of the generator increases up to cd, whereas c affects the exponent of the stretch of the
PRG. Intuitively, this observation leads to the hardness of learning with FPT samples for a
parameter involved in the depth.

To apply the dualization technique above in the parameterized setting, we extend the
notion of dualization to the parameterized setting as follows. For any parameterized concept
class C , we use a subscript and superscript to refer to an input size and a parameter,
respectively.

▶ Definition 9 (FPT dualizable). Let C k be a parameterized concept class. We say that
C is fixed-parameter tractably (FPT) dualizable if there exist a polynomial pdual : N → N,
computable functions f1, f2 : N → N, and polynomial-time computable mappings g : N ×
{0, 1}∗ → C and h : N × C → {0, 1}∗ such that for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k

n ,
the following hold: (i) g(k, x) ∈ C

f2(k)
f1(k)·pdual(n), (ii) h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii)

(g(k, x))(h(k, f)) = f(x).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above; e.g., the third condition above can be written as x∗(f∗) = f(x) for each f

and x.
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Junta-Sparse Condition
At a high level, the idea to overcome the second obstacle is applying the dualization of
superclasses of NC0 and focusing on its substructure, i.e., the correspondence between NC0

and a subset of strings, particularly in our case, sparse strings. To formalize this idea, we
introduce a key condition of FPT dualization named the junta-sparse condition, which serves
as dualization of NC0 partially in the actual dualization of the superclass. Intuitively, the
junta-sparse condition claims that (i) any O(1)-junta function (i.e., a function that depends
on only O(1) coordinates) is contained in the concept class, and (ii) O(1)-junta functions
and strings of constant Hamming weight get interchanged by the FPT dualization. The
condition is formally stated as follows:

▶ Definition 10 (junta-sparse condition). Let C k be an FPT dualizable class. We say that C

satisfies the junta-sparse condition if the following hold:
1. There exist computable functions g, h : N → N such that for any k ∈ N and any k-junta f ,

it holds that f ∈ C g(k) and wt(f∗) ≤ h(k).
2. There exists a computable function g : N × N → N such that for any c, k ∈ N and any

x ∈ {0, 1}∗ with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

For instance, we show a class of c-sparse F2-polynomials is FPT dualizable and satisfies
the junta-sparse condition. Fix n, c ∈ N with c ≤ 2n arbitrarily. Let f : {0, 1}n → {0, 1} be an
F2-polynomial of sparsity c, i.e., f is written as f(x) = M1(x)+ . . .+Mc(x) (under operations
of F2), where M1, . . . , Ms are monomials. Then, we define the dual of f (i.e., h(c, f) in
Definition 9) as the following c(n + 1)-bit string f∗ indexed by {0, 1, . . . , n} × {1, . . . , c}:

f∗(i,j) =
{

1l(xi ∈ Mj) if i ̸= 0
1l(Mj ≡ 1) if i = 0

For each input x ∈ {0, 1}n, we also define the dual of x (i.e., g(c, x) in Definition 9) as the
following function x∗ : Fc(n+1)

2 → F2:

x∗(f∗) =
∑

j∈{1,...,c}

∏
i:xi=1

f∗(i,j) +
∑

j∈{1,...,c}

f∗(0,j).

Then, we can verify the correctness of the FPT dualization as follows:

x∗(f∗) =
∑

j∈{1,...,c}

∏
i:xi=1

f∗(i,j) +
∑

j∈{1,...,c}

f∗(0,j)

=
∑

j∈{1,...,c}

( ∏
i:xi=1

1l(xi ∈ Mj) + 1l(Mj ≡ 1)
)

=
∑

j∈{1,...,c}

Mj(x)

= f(x).

In addition, we can easily verify the junta-sparse condition as follows. Any k-junta function
f is represented as an F2-polynomial of degree k and sparsity 2k. By the construction of
f∗, the Hamming weight of the dual of any F2-polynomial of degree k and sparsity 2k is at
most 2k · k. In addition, for any input x ∈ {0, 1}n to a c-sparse F2-polynomial, the dual of x

depends on only c · wt(x) + c coordinates by the construction of x∗.
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Meta-Theorem

The proof of Theorem 2 consists of the following two parts. As the first step, we prove
meta-theorem which shows that if a parameterized concept class C is FPT dualizable by
mappings computable in NC0 and it satisfies the junta-sparse condition, then the existence
of a collection of PPRGs in NC0 corresponds to the average-case hardness of learning C with
FPT samples with respect to (a samplable distribution of) sparse example distributions and
an NC0-samplable target distribution7. Note that verifying the condition in the meta-theorem
(i.e., dualization with the junta-sparse condition) is purely a puzzle-like problem involved
in representation for Boolean functions and directly related to neither learning theory nor
cryptography, as seen in the case of c-sparse F2-polynomials. Namely, if you can solve the
puzzle for some concept class C , then it automatically implies the equivalence between the
existence of a collection of PPRGs in NC0 and the average-case hardness of learning C with
sparse data based on our meta-theorem. As the second step to show Theorem 2, we solve
this puzzle, i.e., demonstrate that concept classes in Theorem 2 (i.e., c-sparse F2-polynomials,
c-Fourier-sparse functions, and depth-d {OR,Modm}-decision trees) are FPT dualizable by
NC0-computable mappings and satisfy the junta-sparse condition.

We show the outline of the proof of the meta-theorem based on the argument mentioned
at the beginning of this subsection.

A collection of PPRGs in NC0 ⇒ hardness of learning: Suppose that there exists a
collection G of PPRGs. For contradiction, we assume that there exists an efficient learner
L for C that requires only FPT samples. We amplify the stretch of G by the GGM
construction [31] within NC0, let G′ be the amplified generator, and construct the sample
set S from the duals of G′ and a pseudorandom string y = G′(x). Since G′ is computable
in NC0, each function computing each bit of G′ is O(1)-junta. Thus, by the junta-sparse
condition, the Hamming weight of each example is bounded above by a constant (depending
on the depth of G′). In addition, since the mappings in FPT dualization are computable
in NC0, the target distribution of the dual of the random seed x is NC0-samplable. Thus,
the learning problem on the uniform distribution over the samples in S is a valid setting for
L. Let c be the number of applications of G to construct G′. Then, the sample complexity
of L increases in the sense of FPT for c, whereas c affects the exponent of the stretch of
G′. Therefore, for a sufficiently large c ∈ N, the learner L cannot read a large fraction of S.
Thus, L can predict some bit in G′(x) from other bits, and this contradicts that G is PRG.

Hardness of learning ⇒ a collection of PPRGs in NC0: Suppose that learning C is hard
on average with FPT samples. Since the target distribution is NC0-samplable, each bit of
the representation of C depends on only constant bits of a random seed. By the technical
assumption (in footnote 7) on the FPT upper bound on the length of the representation
of C , we can assume that the length of the seed for the target distribution is bounded
above by some FPT function. Using the hardness assumption for a sample complexity
m(n) polynomially larger than the upper bound on the length of the seed, we construct
the collection G of PRGs by taking duals of examples. Remember that the input size of
G is the length of the seed for the target distribution, and the output size is m(n). Thus,
G has polynomial-stretch. In addition, the Hamming weight of the examples is constant
except with negligible probability by the hardness assumption. Thus, by the sparse-junta
condition, each bit of G is O(1)-junta, and G is implemented in NC0. Technically, when we

7 Strictly speaking, we also need a technical assumption that the length of the binary representation for
C is bounded above by some FPT function.
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consider the advantage in learning, this argument only yields a collection of PPRGs with a
fixed indistinguishable parameter. We can convert such a collection of weak PPRGs into a
collection of standard PPRGs (with a negligible indistinguishable parameter) by applying
the technique by Applebaum and Kachlon [7].

Theorem 3 is shown based on the following observation: If a concept class C is FPT
dualizable and closed under the composition (where the junta-sparse condition is no longer
needed), the above argument yields the equivalence between a collection of PPRGs in C and
the average-case hardness of learning C with FPT samples.

2.2 Proof Techniques for Theorem 4
Theorem 4 shows the equivalence between the existence of a (single) PPRG in ⊕-NC0 and
the average-case hardness of learning constant-degree F2-polynomials with FPT samples
with respect to a uniform example distribution and a target distribution samplable by a
constant-degree F2-polynomial. In fact, ⊕-NC0 is equivalent to the class of constant-degree
F2-polynomials because (i) any constant-degree F2-polynomial is implemented by a ⊕-NC0

circuit that first computes monomials in parallel and takes the summation of them by
the top-most XOR gate, and (ii) any ⊕-NC0 circuit is implemented by a constant-degree
F2-polynomial by expressing each sub-circuit connected to the top-most XOR-gate as a
constant-degree F2-polynomial (note that the top-most XOR-gate does not increase the
degree of the resulting F2-polynomial). Therefore, we only need to establish the relationship
between a PPRG and learnability within the class of constant-degree F2-polynomials.

Before presenting the idea, we briefly explain why we cannot apply the dualization tech-
niques in Section 2.1 directly to show Theorem 4. In fact, the class of degree-d F2-polynomials
is simply dualizable as follows: for any degree-d F2-polynomial f(x) =

∑
S:|S|≤d fS

∏
i∈S xi,

where fS represents the coefficient of f on
∏

i∈S xi, we regard the coefficients of f as the
input and the value of

∏
i∈S xi as a coefficient on the monomial fS for each subset S, i.e.,

the dual of x is a degree-1 F2-polynomial taking the coefficients of f as the input. An issue
is that this dualization is no longer FPT in the sense that each n-input degree-d polynomial
is converted into a string of length

∑d
i=1
(

n
i

)
= Θ(nd). If we apply this dualization in the

argument in Section 2.1, then a parameter affects the exponent of the sample complexity of
learners, and this causes several problems: e.g., in the direction from PPRG to the hardness
of learning, we cannot prepare a sufficient number of samples using the GGM construction so
that the learner cannot read the entire sample set. In addition, the argument in Section 2.1
yields only a collection of PPRGs.

An alternative to show the direction from a PPRG to hardness of learning is to construct
an F2-polynomial pseudorandomly. As a preliminary observation, if we select a polynomial f

uniformly at random from all n-input F2-polynomials of degree d, then for m = 1
2
∑d

i=1
(

n
i

)
inputs x(1), . . . , x(m) ∈ {0, 1}n selected uniformly at random, we can show that the distri-
bution of f(x(1)), . . . , f(x(m)) is statistically close to an m-tuple of random bits even when
x(1), . . . , x(m) are given. In the formal proof, we verify this by applying the results obtained
by Ben-Eliezer, Hod, and Lovett [13]. For now, we assume this. Then, we observe that even
if we select a degree-d F2-polynomial f by a pseudorandom string generated by a PPRG,
the labels of the sample set {(x(i), f(x(i)))} must be computationally indistinguishable from
random labels. By the equivalence of pseudorandomness and unpredictability [61], such a
pseudorandom F2-polynomial f must be unpredictable.

Based on the argument above, we can create a hard learning problem with FPT samples
based on a PPRG G, as follows. For contradiction, we assume that there exists an efficient
learner L that requires only FPT samples. Then, we use the GGM construction to amplify
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the stretch of G, let G′ denote the amplified PRG, and select a pseudorandom F2-polynomial
using G′. Remember that the number c of applications of G affects the exponent of the
stretch of G′. Thus, for each d ∈ N, we can select a sufficiently large c such that a degree-d
pseudorandom F2-polynomial can be selected by G′. Note that G′ is still computable by
an F2-polynomial of degree dc. We regard this G′ as a sampling algorithm for selecting a
target function in degree-d F2-polynomials. For the degree-d pseudorandom F2-polynomial,
we can retrieve 1

2
∑d

i=1
(

n
i

)
= Θ(nd) samples that are hard to predict. By contrast, each

d determines c and the degree of the sampling algorithm for the target distribution; thus,
d affects the required number of samples only in the FPT sense. Therefore, by taking a
sufficiently large d, we can prepare a sufficient number of samples for L, and L yields an
efficient adversary for G′ and G. This is a contradiction.

To show the opposite direction from the average-case hardness of learning to a PPRG, we
apply the idea presented by Naor and Reingold [46]. First, we observe that for each constant-
degree F2-polynomial f and input x, the value of f(x) is evaluated by a constant-degree
F2-polynomial taking x and the binary representation of f as the input (where we naturally
assume that each f is represented by the coefficients of f). Then, the construction of a
PPRG G is outlined as follows. We use the hardness assumption for a sample complexity
m(n) sufficiently larger than (n + r(n))2, where r(n) is the upper bound on the seed
length for the target distribution in Theorem 4. Let R = n + r(n). Then, G selects
R2 examples x(1), . . . , x(R2) and R2 target functions f (1), . . . , f (R2) according to the hard
example distribution and target distribution by using its own random seed. Then, G

outputs R4 bits f (i)(x(j)) for each i, j ∈ {1, . . . , R2} as a pseudorandom string. We can
prove the pseudorandomness of G using the hybrid argument and the equivalence between
unpredictability and pseudorandomness [61]. Since G requires only a R2(n+r(n))-bit random
seed to select the examples and the target functions, G stretches an R3-bit random seed
into an R4-bit pseudorandom string. Thus, G has polynomial-stretch. Note that we apply
the standard padding technique to obtain a PPRG defined on all input lengths. Since the
sampling algorithm for the target distribution and the evaluation algorithm are computable
by constant-degree F2-polynomials, this generator is implemented by a constant-degree
F2-polynomial by taking composition. Thus, we obtain a PPRG computable by a constant-
degree F2-polynomial. Note that the construction in the formal proof is more complicated
because we apply the XOR lemma to amplify the success probability of the adversary to the
desired advantage of a learner.

2.3 Proof Ideas for Theorem 5
Theorem 5 shows the equivalence of a collection of PPRGs in ⊕-NC0 and the average-case
hardness of learning constant-degree F2-polynomials with FPT samples with respect to (a
samplable distribution of) example distributions and a target distribution samplable by a
constant-degree F2-polynomial. One direction from the average-case hardness of learning to
a collection of PPRGs is shown in the same way as in Section 2.2 except that the sampling
algorithm for the example distributions is simulated during preprocessing, where the examples
are hardwired in the generator.

We present a rough idea to show the other direction from a collection of PPRGs to
the hardness of learning. Note that we cannot apply the technique in Section 2.2 because
the sampler of generators cannot be implemented in constant-degree F2-polynomials in
general, and the sampling algorithm for selecting a pseudorandom F2-polynomial is not
always implemented in constant-degree F2-polynomials. Thus, we take the strategy based on
FPT dualization again. As discussed in Section 2.2, it is unclear whether FPT dualization of
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constant-degree F2-polynomials is feasible. However, to show the direction from a PPRG to
hardness of learning based on the argument in Section 2.1, the type of functions we need
to dualize is restrictive, i.e., composite functions of the original pseudorandom generator G

(in the GGM construction). We apply this observation to avoid the obstacle involved in the
dualization of general constant-degree F2-polynomials.

The outline follows the argument in Section 2.1. Let G′ be the collection of PPRGs
obtained by applying G c times to amplify the stretch. We create the sample set from G′

and a pseudorandom string y = G′(x), where each example corresponds to the dual of the
function computing each bit of G′. Intuitively, for each position i, we define the dual of
the i-th bit of G′ as c concatenated descriptions of G that are relevant for computing the
i-th bit of G′. Then, we consider a target function as a constant-degree F2-polynomial that
computes the description of G′ by taking the composition of the given descriptions of G

and then applies the random seed x, where we regard this x to be hardwired by another
constant-degree F2-polynomial given x as the input. We regard the latter F2-polynomial
as the sampling algorithm for the target distribution. Consequently, we can prevent the
dependence of c and the degree d of G′ on the exponent of the input size and the sample
complexity in learning. By contrast, c affects the exponent of the stretch of G′. Thus, based
on the similar argument as in Section 2.1, we can show the average-case hardness of learning
by selecting sufficiently large c.

In the full version, we present the formal proofs based on the ideas above.
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Abstract
We present a new algorithmic framework for distributed network optimization in the presence of
eavesdropper adversaries, also known as passive wiretappers. In this setting, the adversary is listening
to the traffic exchanged over a fixed set of edges in the graph, trying to extract information on
the private input and output of the vertices. A distributed algorithm is denoted as f -secure, if it
guarantees that the adversary learns nothing on the input and output for the vertices, provided that
it controls at most f graph edges.

Recent work has presented general simulation results for f -secure algorithms, with a round
overhead of DΘ(f), where D is the diameter of the graph. In this paper, we present a completely
different white-box, and yet quite general, approach for obtaining f -secure algorithms for fundamental
network optimization tasks. Specifically, for n-vertex D-diameter graphs with (unweighted) edge-
connectivity Ω(f), there are f -secure congest algorithms for computing MST, partwise aggregation,
and (1 + ϵ) (weighted) minimum cut approximation, within Õ(D + f

√
n) congest rounds, hence

nearly tight for f = Õ(1).
Our algorithms are based on designing a secure algorithmic-toolkit that leverages the special

structure of congest algorithms for global optimization graph problems. One of these tools is a
general secure compiler that simulates light-weight distributed algorithms in a congestion-sensitive
manner. We believe that these tools set the ground for designing additional secure solutions in the
congest model and beyond.
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1 Introduction

Modern large-scale graph processing and network analysis involve exchanging sensitive
information between network participants. This computation is commonly employed by
distributed message-passing systems (such as Google’s Pregel, Apache’s Giraph) in which
processors send small messages to their neighbors in the network. Such a collaboration-based
communication approach usually forces the vertices to sacrifice their privacy for the greater
good, e.g., solving a global network optimization task. In this paper, we study secure
distributed algorithms that, on the one hand, perform almost as well as their non-secure
counterparts (in terms of running time and quality of the output solution) and, at the same
time, do not compromise on the privacy of the network’s individuals.
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We focus on the adversarial setting of eavesdropping (also known as passive wiretapping)
where the adversary overhears the entire communication exchanged over a fixed set of edges
in the graph, F ∗ ⊆ E. The identity of these adversarial edges is unknown to the network
participants. The adversary is assumed to know the graph topology but has no information
about the edge weights, which are considered as part of the private input of the vertices. A
distributed algorithm is said to be f -secure if it is guaranteed that an adversary, controlling
any subset of f edges, learns nothing new, in the information-theoretic sense, about the
individual inputs of the vertices from the communication it tapped into.

While there are standard techniques to provide security under cryptographic assumptions
(e.g., public-key encryption), in this paper, we strive for information-theoretic solutions
that make no computational assumptions on the adversary’s power. Such security notion is
the holy-grail objective in secure multi-party computation in which the underlying network
topology is the complete graph [12]. We also note that information-theoretic fits the
perspective of the congest model. The latter assumes that the vertices are computationally
unbounded, and therefore it makes sense to assume that the adversary is unbounded as well.

Our goal is to provide information-theoretic secure distributed graph algorithms in the
congest model of distributed computing [31]. In the secure setting addressed in this paper,
the edge weights of the graph are considered to be private information that should be hidden
from the adversary, while the unweighted version of the graph is considered to be public (see
also [34, 3]). These secure computations have various applications. For example, in road
networks whose unweighted topology is public, but the edge weights which correspond to the
amount of traffic in each road segment are private information as they are based on GPS
locations of vehicles or mobile data [3]. The edge weights also play a role in social graphs in
which they are associated with sensitive information, e.g., the price of commercial trade [25].

Within this setting, we focus on the family of global optimization graph problems, arguably
among the most studied distributed graph problems these days. This family includes the
fundamental graph problems of minimum-spanning-tree (MST), minimum cut, subgraph
connectivity, shortest paths, etc. Several critical milestones mark the three-decade-old quest
for round-efficient congest algorithms for this class of problems: Starting with the influential
paper of Garay, Kutten, and Peleg [7] on existential vs. universal optimal bounds, the
powerful lower bound technique of Das Sarma et al. [33], and fast-forwarding to the very
recent breakthrough results on universal optimal solutions by Haeupler, Wajc, and Zuzic
[16, 13]. This extensive body of work provides us with an almost complete characterization
of the inherent complexity of this graph family. It is known that most of the classical
optimization problems have worst-case (near) optimal round complexity of Õ(D +

√
n)

rounds, where D is the graph’s diameter and n is the number of vertices. Our main objective
is to provide f -secure algorithms for this class of problems that (nearly) match the round
complexity of the non-secure counterparts.

To illustrate our ideas, we mainly focus on MST computation which is arguably the
most canonical graph problem, which initiates the study of distributed optimization [7]. In
the standard distributed setting, it is required for each vertex to learn its incident edges in
the MST. In our secure setting, all vertices are required to learn this local output, while
the adversary must learn nothing about the edge weights of the graph, in the information-
theoretic sense. Our secure MST algorithm can be naturally adapted to the wide class of
global network optimization problems, for which a unified algorithmic approach has been
provided by Ghaffari and Haeupler [9] and Haeupler, Wajc and Zuzic [16].
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Quick History on Secure Distributed Algorithms against Eavesdroppers. In an earlier
work of Dolev, Dwork, Waarts and Yung [4], a secure unicast algorithm was provided for
general graph topologies. In this setting, a given vertex pair s, t is required to exchange a
secret message m∗. Their secure solution was based on exchanging messages along multiple
s-t edge-disjoint paths. A recent result of Hitron and Parter [17] shows that there are
D-diameter graphs for which the maximal length in a collection of f edge-disjoint paths
might be (D/f)Ω(f). This state of affairs is quite unfortunate: handling f = Ω(log n) faults
requires polynomial time when sending information along f edge-disjoint paths.

Considerably improved solutions for the secure unicast problem are known when using the
framework of secure network coding, introduced by Cai and Yeung [2]. For example, Jain [20]
designed a network coding based algorithm that can be implemented in O(D) congest rounds,
as noted recently by [18]. Round-efficient algorithms are currently only known for restricted
multicast tasks and under the assumption that the network is a DAG [6].

A very recent work of Hitron, Parter and Yogev [18] overcomes the above mentioned
(D/f)Ω(f) barrier for the secure broadcast task1. Specifically, they presented an f -secure
broadcast algorithm against eavesdroppers that runs in Õ(D +

√
fn) rounds, for every

n-vertex D-diameter graph, with edge-connectivity Θ(f). While the work of [18] serves as
a basic starting point of our work, we note that there is a fundamental difference between
broadcast and the class of network optimization tasks, considered in this paper. In the secure
broadcast setting, it is required to hide from the adversary only one secret, namely the
O(log n)-bit broadcast message, m∗; while the communication graph itself is not hidden from
the adversary. Consequently, the computation of a convenient communication backbone (for
the secure transmission of m∗) can be done in a non-secure manner. In contrast, we consider
graph problems (rather than information dissemination problems), where it is required to
hide from the adversary the edge weights of the graph, as the latter determine the output
solution (e.g., MST, minimum weighted cut). This brings along challenges of a different
flavor than those encountered in [18]. In particular, in comparison to [18] we also need to
make sure that the communication pattern of the algorithm would not leak information on
the input weighted graph. Indeed, in most distributed (non-secure) algorithms for these
problems, an adversary gains information merely by viewing the edges on which messages
are exchanged (without knowing the content of these messages).

1.1 Our Contribution

Secure Network Optimization. We provide a unified framework for the secure computation
of network optimization graph problems in the congest model of distributed computing.
This includes f -secure algorithms for MST, minimum cut approximation, and partwise
aggregation. Our algorithms are nearly existentially optimal for f = Õ(1). In contrast to the
approach taken in many recent works, our secure algorithms are not obtained by a black-box
compilation of the non-secure solutions. Instead, we zoom into a particular framework for
non-secure network optimization tasks, and compile algorithms in this framework to be
secure. An informal statement of our key result is as follows:

1 In this task, all vertices learn a secret message m∗ while the adversary should learn nothing on m∗.
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▶ Theorem 1 (Informal). For every n-vertex weighted D-diameter graph G = (V, E, W )
with unweighted edge-connectivity (2f + 3)(1 + o(1)), there are f-secure randomized
congest algorithms for computing MST, (1+ϵ)-Minimum (Weighted) Cuts and Partwise
Aggregation that run in Õ(D + f

√
n) rounds.

The output of these algorithms is given in the distributed secure format: each vertex
v knows its output (e.g., its incident edges in the output MST, a (1 + ϵ) approximation
on the minimum cut, etc). It is guaranteed that w.h.p., an adversary listening on any
subset of f edges in the graph learns nothing (in a statistical sense) about any of
these input and output values.

Note that for f = Õ(1), the f -secure solutions nearly match the non-secure complexity
of these problems, which is also known to be existentially tight by Das-Sarma et al. [33].
In contrast, all prior algorithms provided by the general compilers of [17] yield f -secure
algorithms with DO(f) rounds, hence super-linear for f = Ω(log n).

New Tool: Congestion-Sensitive Compilers. Our secure algorithms are based on a col-
lection of secure subroutines. One of the most notable tools, which we believe to be of
independent interest, is a general congestion-sensitive compiler whose performances are
optimized for distributed algorithms with low congestion. The congestion of a distributed
algorithm is measured by the maximum number of (log n)-bit messages that the algorithm
sends over a given edge in the graph, throughout its entire execution. This measure is im-
portant in many distributed contexts, e.g., scheduling, as observed by [24, 8]. An algorithm
is then said to be light-weight if its congestion is at most poly-logarithmic in the number of
vertices. While network optimization problems (provably) admit round-efficient solutions
with large congestion (as large as

√
n), they are nevertheless based on critical light-weight

subroutines. This is the point where we take advantage of our optimized compiler.
It is noteworthy that the prior distributed compilers in the adversarial setting (e.g.,

[29, 28, 27, 17]) have an inherent round complexity overhead. That is, given an r-round
non-secure algorithm A, these compilers securely simulate A in a round-by-round manner,
resulting in a secure algorithm A′ with round complexity of r · T (n), where T (n) is the time
it takes to securely simulate a single round of A. Our compilers deviate from this recipe,
and consequently, for light-weight algorithms, the round complexity depends only additively
in r (neglecting logarithmic factors), we get the following:

▶ Theorem 2 (Congestion-Sensitive Compilers). For every (2f + 3)(1 + o(1)) edge-
connected D-diameter n-vertex graph G, any r-round cong-congestion algorithm A
for G can be compiled into an equivalent f -secure algorithm A′ that runs in Õ(r + D +
f · √cong · n + f · cong) rounds. The security of A′ holds w.h.p.

Recent work [19, 1] noted that most of the classical network optimization problems (MST,
minimum cut, etc.) can be solved by using O(log n) applications of the following two building
blocks: (i) partwise aggregation2 and (ii) one-round neighborhood communication (i.e., a
single congest round). Altogether, our work provides the secure implementation of these

2 The computation of aggregate function in a collection of vertex-disjoint connected subgraphs
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building blocks: Namely, Theorem 1 provides f -secure algorithms for partwise aggregation;
and using our secure compiler of Theorem 2, we can securely simulate O(log n) congest
rounds within Õ(D + f

√
n) rounds. While we present a complete description of f -secure

algorithms for MST, partwise and approximate minimum cut3, our approach should be
applicable for the wide class of graph problems captured in [9, 19].

1.2 Preliminaries
Throughout, we are given an n-vertex weighted graph G = (V, E, W ), with unweighted
diameter of D. The neighbors of a vertex v ∈ V are denoted by N(v). For a subset of items
X and a probability p ∈ [0, 1], let X[p] denote the random sample obtained by sampling each
item of X independently with probability of p. For a subgraph G′ ⊆ G, let D(G′) denote
the diameter of G′. We use the following useful subroutine from [30].

▷ Claim 3 ([30]). Convergecast of an associative and commutative function g over a rooted
tree T with diameter D(T ) can be performed in O(D(T )) many rounds, while sending only
one message on each tree edge. In addition, the convergecast of k functions g1, . . . , gk can be
done in O(D(T ) + k) rounds, sending at most k message along each tree edge.

The Adversarial Congest Model. The communication model used throughout is the classical
congest model [31]. In this model, the network is abstracted as an n-vertex graph G = (V, E),
where each vertex has a unique identifier of O(log n) bits. Initially, the vertices only know
the identifiers (and possibly also the edge weights) of their incident edges. The algorithm
works in synchronous rounds, where neighbors can exchange O(log n) bits of information in
each round.

In our adversarial setting, an eavesdropper adversary controls a fixed set of edges F ∗ in
the graph. The edges of F ∗ are denoted as adversarial, and the remaining edges E \ F ∗ are
reliable. The vertices do not know the identity of F ∗, but they do know the bound f on the
cardinality of F ∗. The adversary is assumed to be computationally unbounded, is allowed to
know the topology of the graph G (but not the edge weights) and the algorithm description
run by the vertices. The adversary, however, is oblivious to the randomness of the vertices.
The security guarantees are formally defined as follows.

Security against Eavesdroppers. For a given randomized algorithm A running on an
n-vertex graph G = (V, E), denote the n-length input vector of the algorithm A by X (an
input for each vertex). Let Re(X) ∈ {0, 1}∗ be the random variable specifying all messages
sent through the edge e over the execution of A, for every edge e ∈ E. For a subset of edges
F = {e1, . . . , ef} ⊆ E, let RF (X) = (Re1(X), . . . , Ref

(X)).
For a given parameter δ ∈ (0, 1) and integer f , an algorithm A is said to be (f, δ)-secure

against an eavesdropper if for every n-vertex graph G any subset F ⊆ E of size at most f ,
and any two input vectors X1, X2, the following two distributions are δ-close in statistical
distance: {RF (X1)} and {RF (X2)}.

3 In a very recent work, Ghaffari and Zuzic [11] used the partwise framework to provide exact, rather than
(1+ϵ) approximate, minimum cut computation. Since their framework is based on partwise computation,
it is very plausible that our tools can be used to provide f -secure exact min-cut computation. This
claim should be taken with a grain of salt until all the details are verified.
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An algorithm running on n-vertex graphs is said to be f -secure w.h.p. if it is (f, δ)-secure,
for δ = 1/nc for any given constant c ≥ 1. Note that in contrast to prior work, and more
specifically in comparison to the recent work of [18], the f -security guarantees of our network
optimization algorithms are statistical.

Our algorithms encrypt messages by XORing them with random keys, this is known as
one-time pad encryption [21].

▶ Definition 4 (One-Time-Pad Encryption). Let x ∈ {0, 1}b be a b-bit message. In the
one-time pad encryption x is encrypted using a uniform random key K ∈ {0, 1}b, by setting
x̂ = x⊕K. To decrypt x̂ using K, simply let x = x̂⊕K.

Useful Secure Procedures from [18]. Our algorithms use the secure algorithms for the
broadcast and unicast tasks, presented in the recent work of [18].

▶ Theorem 5 (f -Secure Broadcast [18]). For every (2f + 3)(1 + o(1)) edge-connected graph
G = (V, E), there exists a randomized f-secure broadcast algorithm for sending a b-bit
message m∗ that runs in Õ(D +

√
f · b · n + b) rounds. The edge congestion of the algorithm

is bounded by Õ(
√

f · b · n + b).

Indeed our secure network optimization algorithms also require (unweighted) edge-
connectivity of (2f + 3)(1 + o(1)). The source of this requirement is that it applies as
a subroutine the secure broadcast algorithm of Theorem 5.

▶ Theorem 6 (Secure Unicast [20, 18]). Given is a D–diameter graph G, with a collection of
k pairs {(si, ti)} (known to all vertices), where each si holds a b-bit message mi to be sent to
ti. There exists a randomized Õ(D + k · b)-round algorithm SecureSimUnicast that exchange
the mi’s from si to ti. The security holds provided that every si,ti are connected in G \ F ∗.

Secure Distributed Guarantees. Throughout our algorithms (and internal subroutines),
we maintain the guarantee that the input and output to the problems at hand are given in a
secure distributed manner, in the following sense. At the beginning of the algorithm, each
vertex knows its relevant input while the adversary knows nothing on the values of these
inputs. At the end of the execution, each vertex knows its own part in the solution, and we
are guaranteed (sometimes w.h.p.), that the adversary learns nothing about these output
values, as well. Note that since we assume that the adversary knows the graph topology (but
not the edge-weights), our framework addresses problems whose output either depends on
the edge weights (e.g., MST), or on the inputs of the vertices (e.g., partwise aggregation).
This is precisely the set of problems addressed by Haeupler, Wajc, and Zuzic in [16] who
considered the supported congest model in which vertices know the graph topology. We note,
however, that in this work only the adversary knows the topology, while the vertices do not.

Roadmap. In Section 2, we provide a high-level exposition of our techniques. In Section 3,
we provide a full description of our congestion-sensitive compiler, and establish Theorem 2.
In Section 4, we describe our f -secure MST algorithm. In the full version we show that this
algorithm can also be extended to provide f -secure partwise aggregation and approximate
minimum (weighted) cuts.
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2 Key Techniques

2.1 Congestion-Sensitive Compilers
We give a high-level overview of how our secure compiler works and how it exploits the
small congestion of a given algorithm A with congestion cong and round complexity r. Our
compiler is randomized which is necessary for getting the security, and the correctness of the
resulting algorithm holds only with high probability. The basis for the compiler is to provide
the vertices with a sufficient number of random keys K that are unknown to the adversary,
using the secure broadcast algorithm of [18] (see Theorem 5). A vertex u can then send a
secret message m to its neighbor v by simply sending the cipher message, m ⊕K; v can
decrypt the cipher using the key K.

This immediately leads to a costly but straightforward solution: use the secure broadcast
algorithm of [18] to share a secret K for every edge (u, v) ∈ E and for every round of the
protocol of A (notice that we cannot re-use the same key between rounds as it would leak
information to the adversary). The number of keys required to share by this approach might
be roughly n2 · r, which is clearly too much. Our final compiler uses only Õ(f · cong) keys.
We explain this bound in steps, first reducing the number of keys to Õ(f2 · r), then to Õ(f · r)
keys, and finally to Õ(f · cong) keys. Recall that the adversary listens to only f edges, and
notice that it is safe for two neighboring pairs (u1, v1) and (u2, v2) to use the same key K,
as long as the adversary is not listening to both edges. Since we do not know which edges
are tapped by the adversary, one can let the vertices pick keys at random from a small set
of available keys (per round), hoping that no two pairs of edges in F ∗ choose the same key.
From the birthday paradox, we get that the number of keys we need per round is f2 4,
leading to Õ(f2 · r) keys.

Beating the Birthday Paradox by Subset Keys. To improve the quadratic dependency in f ,
we must overcome the curse of birthdays. Instead of picking a single key to compile a single
round, we let each vertex pick5 a small subset of ℓ keys (where ℓ ≈ log n), Ki1 , . . . , Kiℓ

from
a collection of f · log n shared keys. Then, they use the XORed key K∗ = Ki1 ⊕ · · · ⊕Kiℓ

as the key for the one-time pad. The advantage of this approach is that it escapes the
birthday paradox, and lets us get a much higher success probability. The probability that
two messages are encrypted using the same subset of keys is very small (i.e., n−O(log f)).
However note that we still need to rule out other events in addition to a collision, e.g., the
event where one chooses a subset that is contained in the union of all the other subsets. In
such a case, security might not hold. We show that, with high probability, each encryption
will use at least one fresh key (that has not been used in the encryption of other message)
which allows us to provide the security guarantees. This gets us to a solution with Õ(f · r)
keys.

Sensitivity to Congestion rather than to Round Complexity. So far, we have not yet
enjoyed the fact that the (non-secure) algorithm A is light-weight. Our starting observation is
that the secure algorithm A′ must exchange messages on each of its edges, and in each round.
This is despite the fact that the (non-secure) algorithm at hand has bounded congestion.
The reason is that if the secure algorithm does not exchange a message through a given

4 For a constant success probability, which could be amplified.
5 This is done w.r.t. each of its neighbors.
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edge (u, v), it already leaks information to the adversary (e.g., on the weight of that edge).
This leads to the following classification of messages: dummy messages which correspond
to empty messages exchanged by the non-secure algorithm, and meaningful messages that
correspond to non-empty messages exchanged in the original algorithm A. The congestion
bound implies that the secure algorithm A should send cong meaningful messages through
each given edge.

A. Encrypting Dummy Messages. As we wish to have only Õ(f · cong) random keys, we
do not want to spend this precious pool of keys to encrypt dummy messages. Instead, we
will be encrypting these messages using independent random strings, locally generated by
their sending vertices u (which the other endpoints v do not know). To allow the receiver
vertex v to distinguish between dummy messages and meaningful messages, we always pad
the original (meaningful) messages with a prefix of Θ(log n) consecutive 0’s and encrypt them
with the pool of Õ(f · cong) random keys (as explained in the next paragraph). The receiver
vertex v upon receiving the message attempts to decrypt it using the pool of Õ(f ·cong) keys
that it knows. For the dummy messages, it would hold, w.h.p., that none of these attempts
would result in a valid message with a 0’s prefix, and those messages will be dropped.

B. Encrypting Meaningful Messages. To encrypt the meaningful messages of Alg. A, a
natural (but flawed) approach is to have cong different independent pools of keys. When a
vertex u sends its i-th message, it will use the i-th pool. The main issue with this approach
is that there is no synchrony when different vertices send their i-th message6 . This lack of
synchrony leads to a problematic scenarios where an adversary listening to f edges accumulate
many messages (much more than f) encrypted using the i-th pool over many rounds. It then
gains information about the keys in that pool and, consequently, on the messages that got
encrypted with this set. This was not an issue when we used a pool for each round.

Instead, our compiler works by setting a single pool of keys for all vertices for all rounds.
As the vertices use this pool only for the meaningful messages of A, the size of the pool needs
to suffice for encrypting Õ(f · cong) different messages, at unknown times and order. This
bound nearly matches the total number of meaningful messages exchanged over the edges of
F ∗ during A, i.e., as |F ∗| ≤ f and the congestion bound is cong. The pool of Õ(f · cong)
keys are shared securely at an initialization phase, which is then used to securely simulate all
the rounds of A. Note that our encryption approach makes it impossible for the adversary
to distinguish between encrypted dummy vs. meaningful messages, and therefore it cannot
gain any information on the original communication pattern of the non-secure algorithm.

For modularity purposes, we introduce a notion we call a “few-time pad”, where similarly
to a one-time pad that allows to (information-theoretically) encrypt a single message, a
few-time pad allows to encrypt a small number of messages, see Section 3.1 for details. The
logic of having a pool of keys and encrypting with a random subset of keys (as described
above) is encapsulated in the interface of this few-time pad machinery. We next demonstrate
the compiler’s usefulness in the context of secure distributed optimization.

6 I.e., some vertices send their i-th message in round r′ and others send their i-th message on round
r′′ > r′. This stands in a strike contrast to having a pool per round, where vertices are fully synced,
using the i-th pool in the i-th round.
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2.2 Secure Network Optimization
To illustrate our algorithmic framework, we focus on the secure computation of MST. Our
starting observation is that the congestion of any MST congest algorithm might be Ω(

√
n)

in the worst case, as demonstrated by the work of Peleg and Rubinovich [32] and Das-Sarma
et al. [33]. Hence, a naïve and black-box implementation of our congestion-sensitive compiler
asks for exchanging Ω(

√
n) secrets, leading to a round complexity of Ω(n3/4), even for

f = O(1) (see Lemma 2). Providing a near-optimal solution (with only Õ(D +
√

n) rounds)
asks for a white-box secure simulation of a particular (non-secure) MST algorithm, designed
in a way that facilitates its secure simulation.

As many other distributed MST algorithms, our algorithm, as well, is based on the
well-known Borůvka algorithm [26]. This (meta) algorithm works in O(log n) phases, where
in each phase, from each growable component an outgoing edge is selected. All these outgoing
edges are added to the forest, while ignoring cycles. Each such phase reduces the number of
growable components by a constant factor, thus within O(log n) phases, a maximal forest
is computed. Our non-secure MST algorithm is then identified by two main phases: a
light-weight phase and a global phase. The light-weight phase grows MST-fragments in a
controlled manner, by applying the merging iterations of the Borůvka’s algorithm, until each
fragment becomes of size Ω(

√
n) and with diameter of Õ(

√
n). These fragments are hereafter

denoted as basic-fragments. We call this phase light-weight as it can be simulated (in the
non-secure setting) with Õ(1) congestion (i.e., sending Õ(1) messages across every edge).

The global phase completes the MST computation by taking a more global approach:
We pick a global leader g∗ and sample a collection of Θ(

√
n log n) vertices L ⊂ V , that we

denote as landmarks. By Chernoff, we have that w.h.p. each basic-fragment contains at least
one landmark. Now, the computation of the remaining O(

√
n) MST edges is completed by

alternating between two types of computations:
(biderectional) communication between the landmarks L and a global leader g∗, and
internal light-weight computation inside each basic-fragment.

Let us focus on the implementation of the first merging iteration of the Borůvka’s algorithm
given the collection of basic-fragments. Each basic-fragment computes its minimum-weight-
outgoing-edge (MWOE). Then, each landmark sends the information on this MWOE to the
leader g∗ (along with fragment-ID information). This allows g∗ to locally simulate this one
iteration of Borůvka, and merge the basic-fragments along the proposed MWOEs. The output
of this merging step can then be sent back to the landmarks, where each landmark can be
acknowledged with the new component-ID of its basic fragment, along with the information
on the added MST edge. This completes the high-level description of the non-secure MST
algorithm. It is also easy to see that it runs in Õ(D +

√
n) rounds, and admits no benefit in

the standard congest model.
Our f -secure MST algorithm follows this high-level structure and operates as follows.

The light-weight phase is implemented by applying our congestion-sensitive compiler. Using
Theorem 2, this is done in Õ(D + f

√
n) rounds. The distributed secure output of this phase

is as follows: each vertex v knows the basic-fragment ID of every u ∈ N(v) ∪ {v}, and its set
of incident edges in its basic-fragment.

In the second global part, we use secure unicast procedures from [20, 18] that allow the
collection of landmarks to exchange information with the global leader g∗, in a bidirectional
manner. We show that each landmark is required to exchange Õ(1) messages with the leader
g∗. Note that since the landmark set is a random sample of vertices, their identities do not
leak information on the edge weights of the graph. The internal light-weight computation
inside each basic-fragment is implemented in a secure manner by applying our congestion-
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sensitive compiler. This part as well is implemented in Õ(D + f
√

n) rounds. In the security
arguments, we show that the combination of several secure subroutines can be implemented in
a way that leaks no information to the adversary. Due to the neat guarantees of information
theoretic security, the composition of several secure subroutines can be easily shown to be
secure as well, in our context. We mainly need to make sure that the duration of each
subroutine is set to be a function of only the number of vertices and the graph diameter, so
that the adversary cannot deduce any information merely from the duration of a given step.
This completes the high-level description of our secure-MST algorithm.

Discussion and Open Problems. We provide f -secure algorithms for a collection of network
optimization tasks, nearly matching the existential optimal bounds of the non-secure solutions,
for f = Õ(1). The prior algorithms obtained by the general compilers of e.g., [17] have
a super-linear round complexity for f = Ω(log n). In a sequence of influential works, it
has been shown that the (non-secure) complexity of these distributed graph problem is
tightly related to the graph theoretic object of low-congestion shortcuts [9]. In particular,
the quality of these structures fully characterizes the round complexity of these problems
(even from a universal optimal perspective) [16]. While for general graph topologies the
worst-case existential bounds on the shortcut quality is Θ(D +

√
n), special graph families

admit improved bounds [9, 14, 10, 23, 15, 22]. It will be very interesting to provide f -secure
solutions whose complexities depend on the quality of the (optimal) graph shortcuts. Finally,
while the current work optimizes the round complexity, it will be interesting to improve upon
the message complexity (e.g., by employing ideas from Elkin [5]).

3 Congestion-Sensitive Compilers

In this section, we present our new broadcast-based compilation scheme and establish
Theorem 2. We define a new type of encryption scheme that we call a “few-time pad”. We
stress that this is an information-theoretic encryption scheme that is based on hiding a b-bit
message m by XORing it with a random b-bit key K to get a “cipher” c = m⊕K that hides
all information about m (i.e., one-time pad). No computational assumptions are required.
Unlike a one-time pad, our generalization allows encrypting a small number of messages while
maintaining a relatively small key. We believe that this encryption scheme is of independent
interest. Then, we show how to use the few-time pad to describe our general transformation
(the compiler). We first describe the compiler and then analyze its correctness and security.

3.1 Few-Time Pad Encryption
For the purposes of this section, we will use a variant of the “one-time pad” encryption,
which lets us encrypt a small number of messages. It is important to remark that it is easy
to implement a few-time pad by having many keys, one for each message, and using the
corresponding key for each encryption. However, this implementation requires the encryption
algorithms to be stateful and remember which keys have already been used, so it can ensure
that it never uses the same key twice (which will compromise security). Crucially for the
use of the general transformation, we need the encryption algorithm to be stateless, that is,
when we encrypt a message with a key K, we do not know how many message where already
encrypted using the same key K (this key K will be used by many different vertices in the
graph throughout many rounds).

Below, we give a definition and construction of our few-time pad. The scheme will be
parameterized by the following: k is the number of messages we wish to encrypt, B is the
number of bits each message consists of, and λ is the security parameter.
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▶ Definition 7 (Few-time Pad). A few-time pad encryption scheme, for parameters k, B, λ ∈ N,
is a symmetric key information-theoretic encryption scheme that consists of three algorithms
(Gen, Enc, Dec):

K ← Gen(k, B, λ). A probabilistic polynomial-time key-generation algorithm Gen that
takes as input a security parameter λ, number of messages k and message size B, and
output a secret key K.
c← Enc(K, m). A probabilistic polynomial-time encryption algorithm Enc takes as input
a key K and a message m ∈ {0, 1}B, and outputs a ciphertext c (possibly of different
length).
m← Dec(K, c). A deterministic polynomial-time decryption algorithm Dec that takes as
input a key K and a ciphertext c, and outputs a plaintext m.

We require the encryption scheme to satisfy the following security and completeness properties.
Correctness: The scheme is correct, if for all k, B, λ and all messages m ∈ {0, 1}B, it
holds that:

Pr[m = Dec(K, c) : K ← Gen(k, B, λ), c← Enc(K, m)] = 1 .

We formally define the security of a multi-message symmetric key encryption scheme using an
unbounded distinguisher that tries to distinguish between encryption of two vector messages.
Formally, we define:

Security: For every choice of vectors (m1
0, . . . , mk

0) and (m1
1, . . . , mk

1) where mi
b ∈ {0, 1}B

for all b ∈ {0, 1}, i ∈ [k], for any unbounded distinguisher D the following holds:

|Pr[D(Enc(K, m1
0), . . . , Enc(K, mk

0)) = 1 : K ← Gen(k, B, λ)]−
Pr[D(Enc(K, m1

1), . . . , Enc(K, mk
1)) = 1 : K ← Gen(k, B, λ)]| ≤ 2−λ .

In the full version, we show that it is possible to implement such an information-theoretic
encryption scheme with a relatively small key.

▶ Theorem 8. For any k, B, λ ∈ N, there is a few-time pad with parameters k, B, λ where
the size of the generated key K ← Gen(k, B, λ) satisfies |K| = 2 · |B| · k · (λ + log k), and the
size of chipertexts are O(B + (λ + log k)2).

Our transformation will rely on two additional properties of our few-time pad that immediately
follow from the construction. First, we observe that the encryption has the property that
ciphertexts are distributed as random strings, as long as security holds. We also observe that
a random ciphertext decrypts to a random message.

▶ Observation 9. With probability 1 − 2−λ, the distribution Enc(K, m1
0), . . . , Enc(K, mk

1),
where K ← Gen(k, B, λ) is exactly distributed as u1, . . . , uk, where ui is uniformly sampled
from {0, 1}B.

▶ Observation 10. For any K, a decryption of a random string c is a random message
m← Dec(K, c).

3.2 Our General Transformation
Throughout, consider an r = poly(n)-round (non-secure) algorithm A with total edge
congestion of cong and a bound of B = O(log n) per message. For simplicity, assume that
A is deterministic7.

7 This assumption can be easily removed by fixing the random coins used by the vertices when simulating A.
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Initialization Phase: Exchanging a Few-Time Key K. Our transformation begins with
an initialization phase where the vertices in the graph exchange a key K for a few-time
encryption scheme (Gen, Enc, Dec), that remains hidden from the adversary. We set the
following parameters for the few-time pad: the message length is B′ = B + 3 log(nr) where r

is the number of rounds, the number of messages k = f · cong, and the security parameter
λ = O(log n) (for a sufficiently large hidden constant such that the error is sufficiently small
1/ poly(n)). An arbitrary vertex s runs K ← Gen(B′, k, λ) to compute the key K. According
to Theorem 8 the key is of size

|K| = O(|B′| · k · (λ + log k)) = Õ(f · cong) .

Then, we apply the secure broadcast algorithm of Theorem 5 with K as the message. This
phase can then be implemented in Õ(D + f · √cong · n + f · cong) rounds. Consequently,
all vertices learn K, while the adversary learns nothing.

Main Phase: Secure Simulation of A. The simulation is done round-by-round and is
proved using induction. We assume all vertices receive the same messages as in A up to
round τ , and consider round τ + 1. We show how to securely send all messages for round
τ + 1 of the algorithm A. For any edge (u, v) ∈ E, let Mu→v be the message that u needs
to send to v in round τ + 1 (according to the algorithm A), while Mu→v might be empty.
Observe that we cannot let the adversary know whether Mu→v is empty or not. We let
every vertex u act differently according to whether Mu→v is empty, but in a way that is
indistinguishable to the adversary. If Mu→v is not empty, then u pads the message Mu→v

with 0’s of length B′, M ′ = Mu→v ◦ 0B′−B , uses the key K to encrypt M ′, c← Enc(K, M ′),
and sends it to v. Otherwise, if Mu→v is empty, then u simply sends a uniformly random
string length B′.

The adversary will not be able to distinguish between real messages and random messages.
However, the receiver v will indeed be able to distinguish between the two. The vertex v use
the key K to decrypt c to get M ′ ← Dec(K, c). If M ′ ends with B′ −B 0’s, then v knows
that the message was not empty, and thus sets the message M to be the first B bits of M ′.
Otherwise, v knows that a random string was sent, and thus sets M to be an empty message.
The summary of this protocol is given below.

Secure simulation of A:
Initialization.

1. Let an arbitrary vertex s compute K ← Gen(B′, k, λ).
2. All vertices participate in a secure broadcast algorithm to share the (secret)

message K.
Sending round τ Let Mu→v be the message the u needs to send to v in round τ .

1. If Mu→v is not empty set c← Enc(K, Mu→v ◦ 0B′−B).
2. Otherwise, set c to be a uniformly random message of length B′.
3. u sends c to v.

Receiving round τ Let c be the message received by v from u.
1. Compute M ′ ← Dec(K, c).
2. If M ′ does not end with B′ −B 0’s, then drop the message (i.e., no message from

u has been received).
3. Otherwise, set M to be the first B bits of M ′.
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This completes the description of our simulation. Observe that the simulation of a single
round consists of a single round where each vertex sends a message c. By Theorem 8, the
ciphertext c is of size O(B + (λ + log k)2) = O(log2 n). However, we can send this message
over O(log n) rounds by splitting it to blocks of size O(log n). This incurs a log n factor in
the number of rounds.

Proof of Theorem 2. We next turn to analyze the correctness of the construction.

▶ Lemma 11 (Correctness of Simulation). With high probability, for every rounds τ ∈ [r] and
every pair of vertices (u, v) ∈ E, it holds that:

If Mu→v is not empty then v will obtain the correct message Mu→v.
If Mu→v is empty then v drops the received message.

Proof. Fix a round τ and a pair (u, v). If Mu→v is not empty, then u sends c ←
Enc(K, Mu→v ◦ 0B′−B). The vertex v gets c and from the perfect correctness of the few-time
pad, we have that it will decrypt M ′ ← Dec(K, c) such that M ′ = Mu→v ◦ 0B′−B . Thus, M ′

ends with B′ −B 0’s, and thus v will extract the message Mu→v.
If Mu→v is empty, then u sends a random string c. By Observation 10, when v decrypts,

it will get a uniformly random message M ′. Recall that B′ = B + 3 log(nr) and thus
B′ −B = 3 log(nr). Thus, M ′ will end with (B′ −B) bits of 0, with probability 2−(B′−B) =
(nr)−3. There are r rounds, and in each round at most n2 messages are sent. Thus, taking
a union bound over all r · n2 messages we get that the error probability is bounded by
r · n2 · (nr)−3 ≤ n−1 as required. (Note that it is easy to set the error probability to be n−a

for any constant a by setting B′ = B + (a + 2) log(nr).) ◀

▶ Lemma 12 (Security of Simulation). W.h.p., the adversary controlling f edges F ∗ learns
nothing about the messages exchanged throughout the simulation of A. That is, Alg. A′ is
f -secure.

Proof. Fix a round τ and a pair (u, v) ∈ F ∗. The security of our protocol stems from the
security of the few-time pad. Recall that we set the few-time pad to be secure for k messages.
All messages in our protocol are encrypted. This means that security follows as long as the
adversary did not see more than k encryptions. Moreover, for the other messages, we send
random strings. From Observation 9 we know that these are indistinguishable from real
encryptions.

Formally, the adversary sees all messages sent over the f edges of F ∗ during the r rounds
of the protocol. For i ∈ [f ] and τ ∈ [r], let ci,τ be the message sent on the i-th edge in F ∗

in round τ . We know that on each edge, only cong messages are not empty. Thus, the set
{ci,j}i∈[f ],τ∈[r] contains at most f · cong encryptions. Notice that we have set our message
bound k to be exactly k = f · cong. Thus, by Observation 9, we can replace all of these
messages by uniformly random stings, except with error probability n−c from the encryption
scheme. Since all other messages are by themselves random strings, we get that w.h.p., the
set of messages {ci,j}i∈[f ],τ∈[r] observed by the adversary is identically distributed as a set of
uniformly random strings for which security follows immediately. ◀

The proof of Theorem 2 follows now directly. The number of rounds of the simulated
algorithm is

Õ(D + f · √cong · n + fcong + r · log n) = Õ(r + D + f · √cong · n + f · cong),

as desired. The correctness and security follow directly from Lemmas 11 and 12, respectively.
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4 Secure MST

In this section we present our f -secure MST algorithm for weighted graphs with (unweighted)
edge-connectivity at least (2f + 3)(1 + o(1)). Recall that the eavesdropper is allowed to
know the graph topology, but has no information on any of the edge weights. Our secure
MST computation guarantees that the adversary learns nothing on the output MST (and in
particular, gains no information on the edge weights). At the end of the computation, each
vertex knows its incident edges in the MST. We show:

▶ Theorem 13 (Secure MST). For every λ edge-connected D-diameter weighted graph G =
(V, E, W ), there is an f -secure randomized MST algorithm, provided that λ ≥ (2f+3)(1+o(1)).
The round complexity is Õ(D + f

√
n), and the security guarantee holds w.h.p.

We start by stating the following basic secure primitives that follow immediately by the
congestion-sensitive compiler of Theorem 2.

Basic Tool: Secure Parallel Aggregation. We provide the secure analogue of Claim 3, by
combining Claim 3 and Theorem 2, we immediately have:

▷ Claim 14 (Secure Parallel Aggregation). Given is a (2f + 3)(1 + o(1)) edge-connected graph
G = (V, E), and a collection of vertex-disjoint rooted subtrees T1, . . . , Tk ⊆ G known in a
secure distributed manner. Each vertex v knows its parent and children in each Ti, a function
g and an input value xv. Additionally, all vertices hold an upper bound D̂ on maxi D(Ti).
There exists an f -secure algorithm SecureParallelAggregate where each vertex v ∈ Ti obtains
g(V (Ti)). The round complexity of the algorithm is Õ(D + f ·

√
n + D̂), and the security

holds w.h.p.

In addition, by applying the compiler of Theorem 2 to securely simulate a single (non-secure)
round, we have:

▷ Claim 15 (Secure Single-Round Simulation). A single simulation of a (non-secure) round
can be implemented in an f -secure manner, w.h.p., using Õ(D + f ·

√
n) rounds.

Throughout, we assume, w.l.o.g., that the edge weights are unique and thus the MST is
unique. An MST-fragment is a subtree of the MST. A fragment is denoted as small if it has
O(
√

n) vertices, otherwise, it is large. We are now ready to describe Alg. SecureMST. The
algorithm consists of two parts, each implemented in a fixed number of K = Θ(D + f ·

√
n)

rounds. Note that K is a function of parameters that are known to the adversary (as it
knows the unweighted topology of G), and more specifically, it is independent of the edge
weights of the graph (the information that we wish to protect). Part 1 implements the
sub-routine SecureSmallMST, which grows (small) MST fragments until all fragments become
large (and with bounded diameter). Part 2 completes the MST computation by applying
Alg. SecureLargeMST.

Part 1: Merging Small MST-Fragments. Alg. SecureSmallMST applies fragment merging
steps in a Borůvka-like manner, as long as there exist fragments of size O(

√
n). The algorithm

is based on a secure compilation of the following light-weight (non-secure) algorithm SmallMST.
The output of this algorithm is a forest F of MST-fragments, where every tree Ti ∈ F is of
size Ω(

√
n), and depth O(

√
n log n).

▶ Lemma 16. There exists an Õ(
√

n)-round randomized (non-secure) algorithm SmallMST(G)
that given a weighted graph G = (V, E, W ), computes a forest of rooted MST-fragments
F = {T1, . . . , Tℓ} such that |Ti| = Ω(

√
n) and D(Ti) = O(

√
n log n), for every Ti ∈ F . In
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the distributed output format, each vertex v ∈ Ti holds a unique identifier ID(Ti) and can
identify its children and parent in the tree Ti, as well as the fragment-IDs of all its other
neighbors. The congestion is Õ(1), hence it is light-weight.

By using the compilers of Theorem 2, we immediately obtain:

▶ Corollary 17. Alg. SmallMST can be compiled into an equivalent f-secure algorithm
SecureSmallMST with a round complexity of Õ(D + f ·

√
n).

Part 2: Merging Large MST-Fragments. We next present Alg. SecureLargeMSTPhase
that completes the computation of the MST by merging large MST-fragments. The input
to this algorithm is the output of Alg. SecureSmallMST(G) which consists of a forest
F = {T1, . . . Tk} of MST-fragments, where every tree Ti ∈ F is of size Ω(

√
n) and depth

O(
√

n log n). Each vertex v ∈ Ti knows ID(Ti), and its parent and children in Ti. From that
point on, we refer to the MST-fragments in F as basic-fragments. Alg. SecureLargeMSTPhase
also implements O(log n) forest growing iterations, but in a somewhat distinct manner than
the usual (non-secure) implementation8.

Step 0: Selecting Global Leader and Landmarks. The algorithm starts by defining a
random sample of landmarks L, by letting each vertex v ∈ V joining L independently with
probability p = Θ(log n/

√
n). Note that w.h.p. |L| = O(

√
n log n), and in addition, each

basic-fragment Tj ∈ F contains at least one landmark vertex, i.e., V (Tj)∩L ̸= ∅. The IDs of
the sampled vertices L are broadcast over a BFS tree to all the vertices. Note that this can be
done in a non-secure manner as these are simply a random sample of the vertices (which does
not relate to the edge-weights of the graph). We also select an (arbitrary) global leader g∗

(in a non-secure manner), this can be done e.g., by [30]. We let each landmark u ∈ L send its
basic-fragment ID to the leader g∗ in a secure manner. That is, for every u, letting T (u) ∈ F
be the fragment containing u, we apply Alg. SecureSimUnicast({u, g∗, ID(T (u))}u∈L) of
Theorem 6. Note that the basic-fragments IDs may leak information to the eavesdropper,
and therefore it is essential that they are sent securely9. From this point on, the algorithm
implements Q = O(log n) iterations of fragment merging. Throughout this process, the
basic-fragments of F are merged into larger components (of possibly large diameter). To
control the round complexity of the algorithm, we restrict the communication to be one of two
types: (A) secure-aggregation inside all basic-fragments (in parallel), and (B) secure unicasts
for pairs in {g∗}×L. Since the depth of each basic-fragment is O(

√
n log n), type (A) will be

implemented in Õ(D + f
√

n) rounds using Claim 14, with diameter bound D̂ = Θ(
√

n log n).
Since, w.h.p., we have |L| = Õ(

√
n) landmarks, type (B) will be implemented in Õ(D +

√
n)

rounds, by Theorem 6. The duration of each of the Q iterations is set to be a fixed bound
K ′ = Õ(D +

√
n).

The input for iteration i ∈ {1, . . . , Q} is a forest Si = {Si,1, . . . , Si,ki
} of MST-fragments

that respects10 the initial partitioning into basic-fragments F . For a vertex v, let Si(v) be
the (unique) MST-fragment in Si containing v. At the beginning of every iteration i, the
following invariant holds w.r.t the input forest Si:

8 E.g., it is not restricted to star-shaped merges, and it is employed in a more global, centralized manner.
9 For example, if two neighboring landmarks have the same fragment ID, the eavesdropper can deduce

that the weight of the edge between them is relatively small.
10 In the sense that for each Tj ∈ F there exists a unique Si,ℓ ∈ Si that fully contains Tj .
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(Ia) Every fragment Si,j is a union of basic-fragments from F .
(Ib) Each v knows the identifier ID(Si(u)) for every u ∈ {v} ∪N(v).
(Ic) The endpoints of each MST-edge in the fragment Si,j know that this edge is in the

MST, for every Si,j ∈ Si.
(Id) The global leader g∗ holds the identifier of Si(u) ∈ Si for every u ∈ L (hence, in

particular w.h.p., it knows all identifiers of the fragments Si.
The initial forest is given by S1 = F . By Lemma 16 and Step 0, one can see that the invariant
is satisfied w.r.t S1 (i.e., the beginning of iteration 1). We next describe the i-th iteration of
the algorithm for i ∈ {1, . . . , Q}, in which given a forest Si that satisfies the i-th invariant,
outputs a forest Si+1 that satisfies the (i + 1)-th invariant.

Iteration i of SecureLargeMSTPhase. Given the i-th forest Si = {Si,1, . . . , Si,ki
}, an edge

(u, v) is called i-outgoing if u and v belong to distinct components in Si. For a basic-fragment
Tj ∈ F , its i-MWOE is the edge of minimum weight among all i-outgoing edges that have
an endpoint in V (Tj), if such exists. The iteration consists of the following steps.

Step 1: Computing i-MWOEs of Basic-Fragments. In this step, the landmarks learn
the i-MWOEs of their basic-fragments (in a secure-manner). By the invariant (Ib) for Si,
each vertex v can locally compute its minimum weight i-outgoing edge, ei(v) = (v, w), if
exists. If such an edge exists, let xv = ⟨W (ei(v)), ei(v), ID(Si(w))⟩ be the tuple containing
the information on that edge: weight, ID and the ID of the i-fragment to which the second
endpoint belongs. If ei(v) does not exist, let xv = ⟨N, (v, v), ID(Si(v))⟩ for some very large
number N ∈ poly(n, W ), where W is the maximum edge-weight in G (those tuples will
be ignored due to their large weights). By Employing Alg. SecureParallelAggregate on all
basic-fragments in F with the function g = min and diameter bound D̂ = Θ(

√
n log n), the

vertices in each Tj learn the tuple of the i-MWOEs of Tj . Hence, each landmark u ∈ L

knows the tuple of the i-MWOE of its basic-fragment (if exists), denoted hereafter11, by
M↑(u) = ⟨W (e), e = (x, y), ID(Si(y))⟩ where y /∈ Si(u).

Step 2: Secure Unicasts and Local Merging. Apply Alg. SecureSimUnicast of Theorem 6
to allow each landmark u ∈ L to send M↑(u) to the global leader g∗. These |L| secure-unicast
procedures can be implemented in Õ(D + |L|) rounds. We are guaranteed that the adversary
learns nothing on these messages. Equipped with the collection of the {M↑(u), u ∈ L} tuples,
the global leader g∗ simulates the merging of the fragments in Si along their i-MWOEs.
Specifically, g∗ locally computes a maximal spanning forest Fi in a contracted graph obtained
from G by contracting each fragment in Si into a super-vertex. Note that each edge of Fi

corresponds to a G-edge. To avoid cumbersome notation, we refer to Fi as the collection
of these G-edges, note that this set corresponds to the MST edges added in that iteration.
The output of this local computation provides the partitioning Si+1 = {Si+1,1, . . . , Si+1,ki+1}
where specifically, each Si+1,j is identified by the global leader g∗ by the set of landmarks
that this fragment contains. The global leader g∗ then determines a unique ID to each Si+1,j

(e.g., maximum ID of the landmark that it contains). Consequently, g∗ knows the fragment
ID of Si+1(u) ∈ Si+1 for each landmark u ∈ L (as required by (Ic)).

This step terminates by letting the global leader g∗ send the landmarks the information
on the output fragment collection Si+1. This information can be compressed by sending
each landmark only O(log n) bits, in the following manner. The leader g∗ considers the MSF

11We use the notation M↑ to denote messages from landmarks to the global leader, and M↓ to denote
messages from the global leader to the landmarks.
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Fi obtained over the fragments of Si. Note that each connected component in that MSF
corresponds to a merged fragment in Si+1, and the edges in such connected components
correspond to the newly added edges to the MST. The leader g∗ orients all the edges in Fi

towards an arbitrary root, and for every fragment Si,j , let e∗
i,j be the G-edge connecting Si,j

to its parent in Fi. For a landmark u ∈ L belonging to Si,j , the leader g∗ defines a message
M↓(u) = ⟨ID(Si+1(u)), e∗

i,j⟩, consisting of the fragment-ID of u in Si+1, along with the added
MST-edge e∗

i,j . (For the landmarks u of basic-fragments of the root fragment in Fi, it set
M↓(u) = ⟨ID(Si+1(u)), 0̄⟩, where 0̄ is the all-zero message.) The messages {M↓(u), u ∈ L}
are sent from g∗ to the corresponding vertices u ∈ L, by applying Alg SecureSimUnicast.
Note that for landmarks u, u′ with Si(u) = Si(u′), it holds that M↓(u) = M↓(u′).

Step 3: Global Merging. By the end of Step 2, each landmark u obtains its new fragment-
ID in Si+1 and the identity of one newly added MST-edge e = (x, y) for y /∈ Si+1(u) (if
exists). The received message M↓(u) is broadcast over the basic-fragment of u using Alg.
SecureParallelAggregate. Since the landmarks u of each basic-fragment of Si,j have the same
message M↓(u) for every Si,j ∈ Si, it holds that the entire fragment Si,j receives the same
information (and in a secure manner).

At this point, each vertex v learns its fragment ID in Si+1, i.e., ID(Si+1(v)). In addition,
for each newly added MST-edge e∗

i,j ∈ Fi, there is exactly one endpoint of that edge
that learns that this edge is in the output MST. We next apply the secure single-round
simulation of Claim 15 which simulates the following (non-secure) round: each vertex v sends
ID(Si+1(v)) to its neighbors, and acknowledges its neighbors on its current incident edges in
the MST. This completes the description of iteration i, see Fig. 1 for an illustration.

Correctness. By Lemma 16, the forest constructed in the Part 1 by Alg. SecureSmallMST
is contained in the MST of G. We next show that the (i + 1)-th invariant is satisfied at the
end of the i-th iteration. By Step 0, the invariant holds for S1. We next focus on iteration
i. Invariant (Ia) follows by the merging process, and noting that the partitioning of Si+1
respects the partitioning of Si. By Step 2, the global leader g∗ obtains ID(Si+1(u)) for every
u ∈ L, and by Step 3, this information arrives to the entire basic-fragment of u. Since, w.h.p.
(by Chernoff), each basic-fragment contains a landmark, we get that all vertices v learn the
identifier ID(Si+1(v)). By the end of Step 3, each vertex also learns the (i+1)-fragment ID of
its neighbors, satisfying (Ib). In addition, the endpoints of the newly added MST-edges, i.e.,
the edges of Fi hold this information, thus satisfying (Ic). Finally (Id) follows immediately
by Step 2 as the global leader g∗ determines these identifiers locally.

We next show that, w.h.p., in each iteration i the global leader g∗ obtains the i-MWOE of
every fragment Si,j ∈ Si. By property (Ia) of the invariant, each component Si,j is composed
of a union of basic-fragments in F . Therefore, the i-MWOE of Si,j is taken as the edge
of minimum weight among all i-MWOEs of the basic-fragments Tk ⊆ Si,j . Note that the
global leader can safely ignore any received tuple M↑(u) for u ∈ L that contains edge-weight
of N ∈ poly(n, W ). Since w.h.p. each basic-fragment contains a landmark, we get that
the global leader obtains the i-MWOEs of all basic-fragments. Since it also knows the i-th
fragment-ID of each landmark u, it can compute the i-MWOEs of each fragment in Si.
Therefore, the forest Fi consists of MST edges, as desired.

We are left to show that, with high probability, by the end of all Q = O(log n) iterations
of the second part, the final output SQ contains a single MST-fragment, and therefore the
algorithm outputs an MST of the graph G. In each iteration i, the leader g∗ merges the
fragments in Si along their i-MWOEs. Since each fragment Si is merged along its i-MWOEs,
the size of Si+1 decreases by a factor of at least 1/2 (i.e., |Si+1| ≤ 1/2 · |Si|). Thus, after
Q = O(log n) iteration, the output consists of a single MST-fragment: the MST of G.
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Round Complexity. The round complexity of Part 1 is Õ(D + f
√

n) by Cor. 17. We next
bound the round complexity of SecureLargeMST. Since |L| = O(

√
n log n), w.h.p., Step 0 is

implemented in Õ(D +
√

n) rounds. We next focus on iteration i ∈ {1, . . . , Q}, and show
that it can be implemented in Õ(D + f

√
n) rounds. By Claim 14, Step 1 is implemented

in Õ(D + f ·
√

n) rounds, since the depth of each basic-fragment is Õ(
√

n). By Theorem 6,
Step 2 is implemented in Õ(D +

√
n) rounds as |L| = O(

√
n log n). Finally, by Claim 15 and

Claim 14, Step 3 is implemented in Õ(D + f
√

n) rounds, as well.

Security. The security of Part 1 follows by Cor. 17. Consider Alg. SecureLargeMSTPhase.
During the algorithm, the entire communication is performed using three subroutines: (1)
secure-aggregation inside the basic-fragments, using Alg. SecureParallelAggregate of Claim
14; (2) secure unicasts for pairs in {r} × L using Alg. SecureSimUnicast of Theorem 6, and
(3) secure single-round implemented using the secure single-round simulation of Claim 15.

In the high level, each of the subroutines is f -secure, in the sense that the eavesdropper
gains no information from the messages exchanged throughout that execution due to The-
orem 6, Claim 14, and Claim 15. Additionally, the subroutines used in each step (and their
ordering) are fixed and do not depend on the input (i.e., the edge-weights) or output (i.e.,
the constructed MST) of the algorithm. Moreover, the duration of all subroutines used are
independent of the input and output, revealing no additional information to the adversary.

𝒮𝒊
𝑆𝑖,1

𝑆𝑖,2

𝑆𝑖,3

𝑆𝑖,4

𝑆𝑖,5

𝒮𝒊+𝟏

𝑆𝑖+1,1 𝑆𝑖+1,2

Figure 1 An illustration of iteration i. Left: The fragments in Si are illustrated by the yellow
circles, where the blue triangles are the basic-fragments, computed in the first part. The dashed and
green directed edges are the i-MWOEs of the basic-fragments, where the tails of the edges are the
proposing fragments. Note that each basic-fragment in a given fragment in Si can propose a distinct
outgoing edge. The green edges are those selected by the global leader g∗. Right: The output of
the i-th iteration Si+1, obtained by merging the fragments in Si over the selected green edges.
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Abstract
In many learning theory problems, a central role is played by a hypothesis class: we might assume
that the data is labeled according to a hypothesis in the class (usually referred to as the realizable
setting), or we might evaluate the learned model by comparing it with the best hypothesis in the
class (the agnostic setting). Taking a step beyond these classic setups that involve only a single
hypothesis class, we study a variety of problems that involve two hypothesis classes simultaneously.

We introduce comparative learning as a combination of the realizable and agnostic settings in
PAC learning: given two binary hypothesis classes S and B, we assume that the data is labeled
according to a hypothesis in the source class S and require the learned model to achieve an accuracy
comparable to the best hypothesis in the benchmark class B. Even when both S and B have infinite
VC dimensions, comparative learning can still have a small sample complexity. We show that the
sample complexity of comparative learning is characterized by the mutual VC dimension VC(S, B)
which we define to be the maximum size of a subset shattered by both S and B. We also show a
similar result in the online setting, where we give a regret characterization in terms of the analogous
mutual Littlestone dimension Ldim(S, B). These results also hold for partial hypotheses.

We additionally show that the insights necessary to characterize the sample complexity of
comparative learning can be applied to other tasks involving two hypothesis classes. In particular,
we characterize the sample complexity of realizable multiaccuracy and multicalibration using the
mutual fat-shattering dimension, an analogue of the mutual VC dimension for real-valued hypotheses.
This not only solves an open problem proposed by Hu, Peale, Reingold (2022), but also leads to
independently interesting results extending classic ones about regression, boosting, and covering
number to our two-hypothesis-class setting.
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1 Introduction

The seminal theoretical framework of PAC learning [75] provides a formalization of machine
learning that allows for rigorous theoretical analysis. In PAC learning, a learning algorithm
(learner) receives individual/label pairs (x, y) ∈ X × {−1, 1} as input data, drawn i.i.d. from
an unknown distribution µ. The learner’s goal is to output a model f : X → {−1, 1} that
assigns each individual in X a binary label. The performance of the model f is measured by
its classification error,
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error(f) := Pr(x,y)∼µ[f(x) ̸= y].

Because the classification error is evaluated over the entire distribution µ, a good learner
must go beyond simply memorizing the individuals and labels seen in the input data and be
able to correctly predict the labels of unseen individuals as well. This can be a difficult task,
and to make it possible to achieve a meaningfully small error given a limited amount of input
data, additional assumptions or relaxations are needed. This leads to two standard settings
of PAC learning: realizable and agnostic learning. In realizable learning, we assume that all
data points are labeled according to an unknown hypothesis h : X → {−1, 1}, i.e., y = h(x)
for every data point (x, y) drawn from µ, and we assume that h belongs to a hypothesis
class H known to the learner. Under this assumption, realizable learning requires the output
model f to achieve a low classification error (error(f) ≤ ε) with large probability. In agnostic
learning there is also a hypothesis class H known to the learner, but it does not impose
any assumption on the data. Instead, we aim for a relaxed goal specified by H: achieving
error(f) ≤ infh∈H error(h) + ε with large probability.

At a high level, both realizable and agnostic learning involve the introduction of a
hypothesis class H , but H plays a very different role in each setting. In realizable learning, H

constrains the potential source hypotheses that might determine the ground-truth labeling of
the data. In contrast, agnostic learning places no assumptions on the ground-truth labeling,
but instead uses H as a benchmark class and only requires the learner to perform well
compared to the best benchmark hypothesis in H. Thus, realizable and agnostic learning
highlight two natural ways to simplify a learning task: constrain the potential hypotheses
that the ground-truth labeling is generated from, or constrain the set of hypotheses that the
output model is compared against.

Our work originates from the observation that these two ways of simplifying a learning
task need not be mutually exclusive. Instead, they can be treated as two “knobs” that can
be simultaneously adjusted to create new hybrid learning tasks. For any two hypothesis
classes S and B, we can define a learning task by letting them play the two roles of H in the
realizable and agnostic settings, respectively. That is, we assume that there exists a source
hypothesis s ∈ S such that y = s(x) for every data point (x, y) drawn from µ, and we aim
for achieving, with large probability, an error comparable to the best benchmark hypothesis
b ∈ B: error(f) ≤ minb∈B error(b) + ε. We term this hybrid notion comparative learning.

Our research reveals that the notion of comparative learning is far more insightful than
just a thought experiment: it serves as an unexplored playground for the study of sample
complexity, and the new connections we establish to characterize the sample complexity of
comparative learning can be fruitfully applied to open questions about existing learning
tasks. Here, “sample complexity” refers to one of the key characteristics of every learning
task: the minimum number of data points needed by a learner to solve the task. VC theory
provides a thorough understanding of the sample complexity of classic PAC learning in both
the realizable and agnostic settings: in both cases it is characterized by the VC dimension of
the hypothesis class H, defined as the maximum size of a subset of X on which all possible
labelings of the individuals can be realized by some hypothesis in H (we say a set is shattered
by H when this condition holds; see Section 2 for the exact definition) [76, 17, 63]. Since then,
understanding the sample complexity of a wide variety of new and existing learning tasks
has remained an exciting area of research. These tasks include online learning [64, 13, 1, 26],
reliable and useful learning [69, 60, 59, 61], statistical query learning [53, 15], learning real-
valued hypotheses [56, 2, 11], multiclass learning [12, 19], learning partial hypotheses [66, 3],
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active learning [7, 8, 52, 43, 44, 42], property testing [30, 55, 14], differentially private learning
[4, 20, 27, 73, 50, 31], bounded-memory learning [32], and online learning in the smoothed
analysis model [38, 39]. A commonality of these learning tasks is that each of them only
explicitly involves a single hypothesis class, and thus the sample complexity is studied in
terms of complexity measures of single hypothesis classes, such as the VC dimension, the
Littlestone dimension, the statistical query dimension, the fat-shattering dimension, and
the DS dimension. To tightly characterize the sample complexity of comparative learning
where a pair of hypothesis classes S and B are involved, it is not sufficient to apply existing
complexity measures to S and B separately (see Section 1.1 for a more detailed discussion).
Instead, we must create new notions that measure the complexity of the interaction between
the two classes. We show that the correct way to measure the complexity of this interaction
in comparative learning is to look at the subsets of X that S and B both shatter, and we
define the mutual VC dimension, VC(S, B), to be the maximum size of such subsets. We
show that the mutual VC dimension gives both upper and lower bounds on the sample
complexity of comparative learning. Similarly, in an online analogue of comparative learning,
we define the mutual Littlestone dimension and prove upper and lower regret bounds.

Our sample complexity characterization for comparative learning turns out to be a
powerful tool for studying the sample complexity of other tasks involving two hypothesis
classes. In fact, our interest in comparative learning is derived in part from open questions
related to the sample complexity of realizable multiaccuracy (MA) and multicalibration
(MC) [41, 57, 48]. In these tasks, the hypothesis class H plays the same role as in realizable
learning, while the classification error error(f) is replaced with an alternative error measure
MA-errorD(f) or MC-errorD(f) specified by an additional hypothesis class D that is sometimes
called the distinguisher class.1 For example, the multiaccuracy error MA-errorD(f) is defined
as follows:

MA-errorD(f) := supd∈D|E(x,y)∼µ[(f(x) − y)d(x)]|,

where the supremum is over all the distingushers d : X → [−1, 1] in the distinguisher class
D. As demonstrated by Hu, Peale and Reingold [48], the freedom in choosing the class D

allows the error to adapt to different goals that may arise in practice.
The introduction of the distinguisher class D makes sample complexity characterization

challenging because the characterization needs to depend on both the class H in realizable
learning and the additional distinguisher class D. Hu, Peale and Reingold [48] give a sample
complexity characterization for realizable multiaccuracy using a particular metric entropy
defined for every pair (H, D) (see Section 1.2 for more details), but their characterization is
in the distribution-specific setting where the marginal distribution µ|X of x in a pair (x, y)
generated from the data distribution µ is fixed and known to the learner. In contrast, the
VC dimension characterization for PAC learning is in the distribution-free setting where the
learner has no explicit knowledge about µ|X and must perform well for every µ|X . The sample
complexity characterization for realizable multiaccuracy in the distribution-free setting is left
as an open question by Hu et al. [48].

1 The name “distinguisher class” comes from the observation that the no-access outcome indistinguishability
task studied in [48] can be equivalently framed as multiaccuracy (see Section 2.1.2 in [48]). In addition
to the difference in the error from realizable learning, realizable multiaccuracy and multicalibration
also allow the hypothesis class H and the model f to be real-valued (see Section 1.2 and Section 5).
It is also possible to replace the error in agnostic learning with MA-error and MC-error to get agnostic
multiaccuracy and agnostic multicalibration, but Hu et al. [48] show that the sample complexity of
agnostic multiaccuracy exhibits a non-monotone dependence on the complexity of the distinguisher
class D. We focus on defining multiaccuracy and multicalibration in the realizable setting throughout
the paper.
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In this work, we answer this open question by characterizing the sample complexity
of realizable multiaccuracy and multicalibration in the distribution-free setting using the
mutual fat-shattering dimension, which we define similarly to the mutual VC dimension
but for two real-valued hypothesis classes. Our results on comparative learning turn out
to be especially useful for obtaining this characterization because there is an intimate
relationship between achieving the comparative learning goal error(f) ≤ minb∈B error(b) + ε

and achieving a low multiaccuracy (or multicalibration) error: MA-errorB(f) ≤ ε. Here, the
benchmark class B in comparative learning plays the role of the distinguisher class D in
multiaccuracy and multicalibration. This relationship has been observed in [41] and [34]
in a single-hypothesis-class setting, i.e., without the assumption that the labels from the
data distribution are generated according to a hypothesis in a pre-specified source class. We
generalize this relationship to our two-hypothesis-class setting by showing a reduction from
realizable multiaccuracy and multicalibration to comparative learning while preserving the
interaction between the source and distinguisher/benchmark classes. This reduction leads to
a number of new learning tasks that also involve a pair of hypothesis classes. Specifically, the
reduction is accomplished via an intermediate task which we call correlation maximization,
and we show that with some adaptation the reduction also allows us to efficiently boost a weak
comparative learner to a strong one. Once we achieve multiaccuracy and multicalibration,
we apply the omnipredictor result of Gopalan et al. [34] to solve comparative regression, an
analogue of comparative learning but with real-valued hypotheses and general convex and
Lipschitz loss functions. We believe that there is a rich collection of learning tasks where
two or more hypothesis classes may interact in interesting ways, and our work is just a small
step towards a better understanding of a tiny fraction of these tasks.

1.1 Sample Complexity of Comparative Learning
As mentioned earlier, VC theory has provided a thorough understanding of the sample
complexities of both realizable and agnostic learning.

For any binary hypothesis class H, VC theory characterizes the sample complexity of
realizable and agnostic learning using the VC dimension VC(H) of the hypothesis class
H, a combinatorial quantity with a simple definition: the maximum size of a subset of X

shattered by H (see Section 2 for exact definition) [76, 17, 63]. Moreover, the optimal sample
complexity in both the realizable and agnostic settings can be achieved by a simple algorithm:
the empirical risk minimization algorithm (ERM), which outputs the hypothesis in H with
the minimum empirical error on the input data points.

Because our notion of comparative learning combines these two settings, it would seem
natural to use techniques from VC theory to understand its sample complexity as well.
Compared to realizable learning for S, comparative learning for (S, B) has a relaxed goal
(specified by the benchmark class B), and thus any learner solving realizable learning for S

also solves comparative learning for (S, B). This gives us a sample complexity upper bound
in terms of VC(S) for comparative learning. Similarly, any learner solving agnostic learning
for B also solves comparative learning for (S, B) because comparative learning only makes
additional assumptions on data (specified by the source class S), so we get another sample
complexity upper bound in terms of VC(B).

However, perhaps surprisingly, these sample complexity upper bounds provided by the
classic VC theory are not optimal. Even when VC(S) and VC(B) are both infinite, comparative
learning may still have a finite sample complexity. Imagine that the domain X of individuals
is partitioned into two large subsets X1 and X2. Suppose the source class S consists of all
binary hypotheses s : X → {−1, 1} satisfying s(x) = 1 for every x ∈ X1, and the benchmark
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Figure 1 An example where comparative learning requires no data points when VC(S) and VC(B)
are both infinite. The left two images show examples of hypotheses in S and B, both of which are
very complex, but on disjoint portions of the domain. In this case, a learner that always outputs
the model f in the rightmost image solves comparative learning because f always achieves smaller
or equal error compared to any benchmark hypothesis b ∈ B when the ground-truth labelling is
generated by a source hypothesis s ∈ S. See in-text description for more details.
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Figure 2 Empirical risk minimization (ERM) may fail to give us optimal sample complexity in
the same setting as Figure 1, where S and B are both very complex, but on disjoint domains. When
the source hypothesis s ∈ S is the constant function shown in the left image, the right two images
show examples of output models of ERM when run on S and B. Neither model is guaranteed to
achieve the low error required by comparative learning. See in-text description for more details.

class B consists of all binary hypotheses b : X → {−1, 1} satisfying b(x) = 1 for every x ∈ X2.
Both VC(S) and VC(B) can be large and even infinite, but comparative learning in this case
requires no data points: the learner can simply output the model f that maps every x ∈ X

to 1 because no benchmark hypothesis in B can achieve a smaller error than f when the
data points (x, y) ∼ µ satisfy y = s(x) for a source hypothesis s ∈ S (see Figure 1). Beyond
demonstrating that comparative learning may require far fewer samples than what our initial
naïve upper bound might suggest, this example also shows that the standard empirical risk
minimization (ERM) algorithm used for PAC learning does not give us the optimal sample
complexity for comparative learning. Assume that the source hypothesis s ∈ S maps every
x ∈ X to 1 and µ is the uniform distribution over X × {1}. In this case minb∈B error(b) = 0
and thus comparative learning requires a low classification error error(f) ≤ ε with large
probability. We have shown that this requirement can be achieved without any input data
points, but the ERM algorithm cannot achieve this requirement in general unless there
are many input data points: there can be many hypotheses in S and B that achieve zero
empirical error on the input data points, but when the data points are few, most of such
hypotheses do not achieve low classification error over the entire distribution µ (see Figure 2).

The example above shows that the VC dimensions VC(S) and VC(B) alone are not
informative enough to characterize the sample complexity of comparative learning. These VC
dimensions only tell us the complexity of S and B separately, but we also need to know the
complexity of their interaction. We measure the complexity of this interaction by defining
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the mutual VC dimension VC(S, B) to be the maximum size of a subset of X shattered by
both S and B, and we give a tight characterization for the sample complexity of comparative
learning in terms of VC(S, B).

As discussed earlier, new ideas are needed to prove this sample complexity characterization.
In particular, we need to design a learner that is different from the ERM algorithm. Our
technique is based on an interesting connection to learning partial binary hypotheses, a
learning task considered first in [9, 66] and studied more systematically in a recent work
by Alon, Hanneke, Holzman and Moran [3]. A partial binary hypothesis is a function
h : X → {−1, 1, ∗} that may assign some individuals x ∈ X the undefined label h(x) = ∗.
The notion of partial hypotheses is motivated in previous work either as an intermediate
step towards understanding real-valued hypotheses or as a way to describe data-dependent
assumptions that could not be captured by the standard PAC learning model. In this
work, we show that partial hypotheses have yet another application and can be used to
express the interaction between a source hypothesis s ∈ S and a benchmark hypothesis
b ∈ B in comparative learning: we construct an agreement hypothesis as,b which is a partial
hypothesis assigning the undefined label ∗ to an individual x whenever s(x) is different
from b(x), and giving the same label to x as s and b if s(x) equals b(x). We show that
comparative learning for (S, B) can be reduced to agnostically learning the class AS,B which
consists of all the partial hypotheses as,b for s ∈ S and b ∈ B, and conversely, we show
that realizable learning for AS,B reduces to comparative learning for (S, B). Our sample
complexity characterization for comparative learning then follows immediately from the
results by Alon et al. [3] for learning partial hypotheses. Moreover, our characterization
holds even when the source hypotheses and benchmark hypotheses themselves are partial.
We also show that this connection between comparative learning and learning the agreement
hypotheses as,b extends to the online setting, allowing us to show a regret characterization
for comparative online learning.

Our definition of the mutual VC dimension is clearly symmetric: VC(S, B) = VC(B, S),
and thus our sample complexity characterization for comparative learning reveals an intriguing
phenomenon which we call sample complexity duality: comparative learning for (S, B) and
comparative learning for (B, S) always have similar sample complexities. In other words,
swapping the roles of the source class and the benchmark class does not change the sample
complexity by much. Previously in [48], Hu et al. showed that this phenomenon holds for
realizable multiaccuracy in the distribution-specific setting, drawing an insightful connection
to a long-standing open question in convex geometry: the metric entropy duality conjecture
[68, 18, 6, 5, 67]. Our sample complexity characterizations imply that sample complexity
duality also holds in the distribution-free setting for realizable multiaccuracy as well as
multicalibration. We also show that sample complexity duality does not hold for many learning
tasks that we consider, including distribution-specific comparative learning, distribution-
specific realizable multicalibration, correlation maximization, and comparative regression.
In Table 1 we list whether sample complexity duality holds in general for every two-class
learning task we consider in this paper in both the distribution-specific and distribution-free
settings.

1.2 Multiaccuracy and Multicalibration
A direct motivation of our work is a recent paper by Hu, Peale, and Reingold [48] that studies
a learning task called multiaccuracy, which was introduced in [41] and [57] originally as a
notion of multi-group fairness. In multiaccuracy, the learned model (presumably making
predictions about people) is required to be accurate in expectation when conditioned on
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Table 1 Duality (yes) VS non-duality (no). *The sample complexity duality result in [48] for
distribution-specific multiaccuracy assumes that all hypotheses are total.

Distribution-specific Distribution-free
Comparative learning no yes
Correlation maximization no no
Realizable multiaccuracy yes* [48] yes
Realizable multicalibration no yes
Comparative regression no no

each sub-community in a rich class (possibly defined based on demographic groups and their
intersections). This ensures that the predictions made by the model are not systematically
biased in any of the sub-communities.

Taking a broad perspective beyond fairness, Hu et al. [48] view multiaccuracy as providing
a general, meaningful, and flexible performance measure for prediction models, and study
PAC learning with the usual classification error replaced by this new performance measure
from multiaccuracy. To be specific, let us consider a real-valued source hypothesis class S

consisting of source hypotheses s : X → [−1, 1]. We use S to replace the binary hypothesis
class H in realizable learning and assume that every input data point (x, y) ∈ X × [−1, 1] is
generated i.i.d. from a distribution µ satisfying E(x,y)∼µ[y|x] = s(x) for an unknown s ∈ S.
Suppose a learner which tries to learn s given the input data points produces an output
model f : X → [−1, 1]. This is a more general setting than binary classification because we
allow f(x) and s(x) to take any value in the interval [−1, 1], and accordingly, let us use the
ℓ1 error ℓ1-error(f) := Ex∼µ|X

[|f(x) − s(x)|] as a generalization of the classification error (as
in, e.g., [11]). The multiaccuracy error of f is defined to be

MA-errorµ,B(f) := supb∈B |E(x,y)∼µ[(f(x) − y)b(x)]|, (1)

where B is a distinguisher class consisting of distinguishers b : X → [−1, 1]. Here we use B

(rather than D) to denote the distinguisher class because a key idea we use in our work is to
relate the distinguisher class to the benchmark class in comparative learning. Due to our
assumption E(x,y)∼µ[y|x] = s(x), the multiaccuracy error can be written equivalently as

MA-errorµ,B(f) = supb∈B |Ex∼µ|X
[(f(x) − s(x))b(x)]|.

The multiaccuracy error is a generalization and relaxation of the ℓ1 error in that if we
choose the distinguisher class B to contain all distinguishers b : X → [−1, 1], then the two
errors are equal: MA-errorB(f) = ℓ1-error(f). The multiaccuracy error can become a more
suitable performance measure than the ℓ1 error if we customize B to reflect the goal we
want to achieve: we can choose B to consist of indicator functions of demographic groups to
achieve a fairness goal, and we can also choose B to specifically catch serious errors that we
want to avoid (see [48] for more discussions).

The sample complexity of achieving a small ℓ1-error(f) has been studied in [56], [2]
and [11], who give a characterization in the distribution-free setting using the fat-shattering
dimension of the source class S, defined as the maximum size of a subset of X fat-shattered
by S (see Section 2.1 for a precise definition). Their results are further improved in [9, 10]
and [62]. For a general distinguisher class B, the sample complexity of achieving a small
MA-errorB(f) depends on both classes S and B, and thus it becomes more challenging
to characterize. In the distribution-specific setting where µ|X is fixed and known to the
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learner, Hu et al. [48] characterize the sample complexity of achieving MA-errorB(f) ≤ ε

using log Nµ|X ,B(S, Θ(ε)): the metric entropy of S w.r.t. the dual Minkowski norm defined
based on B and µ|X . They also give an equivalent characterization using log Nµ|X ,S(B, Θ(ε))
with the roles of S and B swapped. In the distribution-free setting where µ|X is not known
to the learner, they only give a sample complexity characterization when S contains all
functions s : X → [−1, 1] using the fat-shattering dimension of B, and they leave the case of
a general source class S as an open question. In this work, we answer this open question by
giving a sample complexity characterization for arbitrary S and B in the distribution-free
setting using the mutual fat-shattering dimension of (S, B), which we define to be the largest
size of a subset of X fat-shattered by both S and B.

To prove this sample complexity characterization for distribution-free realizable multiac-
curacy, we need a lower and an upper bound on the sample complexity. While we prove the
lower bound using relatively standard techniques, the upper bound is much more challenging
to prove. We prove the upper bound by reducing multiaccuracy for (S, B) to comparative
learning for multiple pairs of binary hypothesis classes (S′, B′) with VC(S′, B′) bounded
in terms of the mutual fat-shattering dimension of (S, B). We implement this reduction
via an intermediate task which we call correlation maximization, and the main challenge
here is that our learner L solving comparative learning for (S′, B′) is limited by the source
class S′ and can only handle data points realizable by a binary hypothesis in S′. Therefore,
we must carefully transform the data points from multiaccuracy to ones acceptable by the
comparative learner L. We implement this transformation by combining a rejection sampling
technique with a non-uniform covering type of technique used in a recent work by Hopkins,
Kane, Lovett, and Mahajan [45]. The difference between the real-valued class B and the
binary class B′ also poses a challenge, which we solve by taking multiple choices of B′ and
show that, roughly speaking, the convex hull of the chosen B′ approximately includes B.

Our characterization using the mutual fat-shattering dimension holds not only for mul-
tiaccuracy, but also for a related task called multicalibration [41]. Here, we replace MA-error
by the multicalibration error:

MC-errorµ,B(f) := sup
b∈B

∑
v∈V

|E(x,y)∼µ[(f(x) − y)b(x)1(f(x) = v)]|

= sup
b∈B

∑
v∈V

|Ex∼µ|X
[(f(x) − s(x))b(x)1(f(x) = v)]|, (2)

where V is the range of f which we require to be countable. Multicalibration provides a
strong guarantee: Gopalan et al. [34] show that it implies a notion called omnipredictors,
allowing us to use our multicalibration results to show a sample complexity upper bound for
comparative regression.

Our results imply that multiaccuracy and multicalibration share the same sample com-
plexity characterization in the distribution-free realizable setting. In comparison, we show
that this is not the case in the distribution-specific setting where there is a strong sample
complexity separation between them (see details in full paper). This strong separation only
appears in our two-hypothesis-class setting: if the source class S contains all hypotheses
s : X → [−1, 1], then realizable multiaccuracy and multicalibration share the same sample
complexity characterization (the metric entropy of B in the distribution-specific setting, and
the fat-shattering dimension of B in the distribution-free setting).

1.3 Our Contributions
Below we summarize the main contributions of our paper.
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1.3.1 Comparative Learning
We introduce the task of comparative learning (Definition 3) by combining realizable learning
and agnostic learning. Specifically, we define comparative learning for any pair of hypothesis
classes S and B each consisting of partial binary hypotheses h : X → {−1, 1, ∗} (denoted by
S, B ⊆ {−1, 1, ∗}X). As in realizable learning, we assume the learner receives data points
(x, y) ∈ X × {−1, 1} generated i.i.d. from a distribution µ satisfying Pr(x,y)∼µ[s(x) = y] = 1
for a source hypothesis s ∈ S (in particular, Pr(x,y)∼µ[s(x) = ∗] = 0). As in agnostic learning,
we require the learner to output a model f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε (3)

with probability at least 1 − δ.
We characterize the sample complexity of comparative learning, which we denote by

#CompL(S, B, ε, δ), using the mutual VC dimension VC(S, B) which we define as the largest
size of a subset X ′ ⊆ X shattered by both S and B (see Section 2.1 for the formal definition
of shattering). In Theorem 4, assuming ε, δ ∈ (0, 1/4) and VC(S, B) ≥ 2, we show a sample
complexity upper bound of

#CompL(S, B, ε, δ) ≤ O

(
VC(S, B)

ε2 log2
(

VC(S, B)
ε

)
+ 1

ε2 log
(

1
δ

))
, (4)

and a lower bound of

#CompL(S, B, ε, δ) ≥ Ω
(

VC(S, B)
ε

+ 1
ε

log
(

1
δ

))
. (5)

These bounds imply that the sample complexity of comparative learning is finite if and
only if the mutual VC dimension VC(S, B) is finite. We show a similar sample complexity
characterization for a learning task involving an arbitrary number of hypothesis classes in
the full version of the paper.

1.3.2 Correlation Maximization
As an intermediate step towards characterizing the sample complexity of realizable mul-
tiaccuracy and multicalbration, we extend comparative learning to real-valued hypothesis
classes by introducing correlation maximization (Definition 10). Here, the hypothesis classes
S and B can contain any partial real-valued hypotheses h : X → [−1, 1] ∪ {∗} (denoted by
S, B ⊆ ([−1, 1] ∪ {∗})X), and every data point (x, y) ∈ X × [−1, 1] can have a label y taking
any value in [−1, 1]. We assume that the data points are drawn i.i.d. from a distribution µ

over X × [−1, 1] satisfying E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S, and we require
the output model f : X → {−1, 1} to satisfy

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε

with probability at least 1 − δ. Here, we define the generalized product u1 ♢ u2 for u1 ∈ R
and u2 ∈ [−1, 1] ∪ {∗} such that u1 ♢ u2 = u1u2 if u2 ∈ [−1, 1], and u1 ♢ u2 = −|u1| if
u2 = ∗. The requirement that the output model f : X → {−1, 1} produces binary values
f(x) ∈ {−1, 1} rather than real values f(x) ∈ [−1, 1] is naturally satisfied by our learners for
correlation maximization, but it is not essential to any of our results related to correlation
maximization. In the special case where S and B are both binary, correlation maximization
and comparative learning become equivalent for values of ε differing by exactly a factor of 2,
i.e., the goal (3) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BPr(x,y)∼µ[y ♢ b(x)] − 2ε.

ITCS 2023



72:10 Comparative Learning: A Sample Complexity Theory for Two Hypothesis Classes

We give an upper bound on the sample complexity of correlation maximization using the
mutual fat-shattering dimension fatη(S, B) which we define as the largest size of a subset
X ′ ⊆ X that is η-fat shattered by both S and B (see Section 2.1 for the definition of fat
shattering). In Theorem 12, assuming ε, δ ∈ (0, 1/2), we show that the sample complexity of
correlation maximization is upper bounded by

O

( fatε/5(S, B)
ε4 log2

( fatε/5(S, B)
ε

)
log
(

1
ε

)
+ 1

ε4 log
(

1
ε

)
log
(

1
δ

))
.

We also consider a deterministic-label setting in the full version of the paper, which is a special
case of correlation maximization where the data distribution µ satisfies Pr(x,y)∼µ[y = s(x)] = 1
for a source class s ∈ S. In this case, we prove the following improved sample complexity
upper bound:

O

( fatε/5(S, B)
ε2 log2

( fatε/5(S, B)
ε

)
+ 1

ε2 log
(

1
εδ

))
.

We also show that the mutual fat-shattering dimension does not in general give a lower bound
for the sample complexity of correlation maximization. This is because sample complexity
duality does not hold for correlation maximization (see full paper for examples where duality
does not hold). In Theorem 12 we state a refined sample complexity upper bound for
correlation maximization and we leave it as an open question to determine whether there is
a matching lower bound.

1.3.3 Realizable Multiaccuracy and Multicalibration
We study multiaccuracy and multicalibration in the same setting as in [48] with a focus on the
distribution-free realizable setting (Definitions 13 and 14). As in correlation maximization,
the classes S, B ⊆ ([−1, 1] ∪ {∗})X can contain any partial real-valued hypotheses h : X →
[−1, 1] ∪ {∗}, and we assume that the data distribution µ satisfies E(x,y)∼µ[y|x] = s(x)
for a source hypothesis s ∈ S. The goal is to output a model f : X → [−1, 1] such that
MA-errorµ,B(f) ≤ ε (in multiaccuracy) or MC-errorµ,B(f) ≤ ε (in multicalibration) with
probability at least 1 − δ, where we generalize the definitions of MA-errorµ,B and MC-errorµ,B

to partial hypothesis classes B. In Theorems 15 and 17, assuming ε, δ ∈ (0, 1/2), we show
the following lower and upper bounds on the sample complexity of realizable multiaccuracy
and multicalibration (denoted by #MA(S, B, ε, δ) and #MC(S, B, ε, δ), respectively):

Ω
(
fat√

3ε(S, B)
)

− 1
≤ #MA(S, B, ε, δ)
≤ #MC(S, B, ε, δ)

≤ O

( fatε/7(S, B)
ε6 log2

( fatε/7(S, B)
ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
εδ

))
. (6)

This implies that the sample complexity of realizable multiaccuracy and multicalibration
is finite for every ε > 0 if and only if fatη(S, B) is finite for every η > 0. Also, the sample
complexity is polynomial in 1/ε if and only if fatη(S, B) is polynomial in 1/η. This answers
an open question in [48]. We also show an improved sample complexity upper bound in
Theorem 16 for the special case where S is binary.

Our sample complexity upper and lower bounds stated in Theorems 15 and 17 are actually
stronger, and they use a finer definition of the mutual fat-shattering dimension. Specifically,
if we define fatη1,η2(S, B) to be the largest size of a subset X ′ ⊆ X that is η1-fat shattered
by S and η2-fat shattered by B, then #MA(S, B, ε, δ) and #MC(S, B, ε, δ) are both finite
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if fatη1,η2(S, B) is finite for some η1, η2 satisfying 2η1 + 4η2 < ε, and #MA(S, B, ε, δ) and
#MC(S, B, ε, δ) are both infinite if fatη1,η2(S, B) is infinite for some η1, η2 satisfying η1η2 > 2ε.
An open question is whether this gap can be closed to provide an exact characterization of
the finiteness of #MA(S, B, ε, δ) and #MC(S, B, ε, δ) for every choice of (S, B, ε, δ).

1.3.4 Covering Number Bound
The sample complexity characterization for distribution-specific realizable multiaccuracy
in [48] is in terms of a covering number defined for every pair of total hypothesis classes (S, B).
A consequence of our sample complexity characterization for distribution-free realizable
multiaccuracy and multicalibration is an upper bound on this covering number in terms of
the mutual fat-shattering dimension of (S, B). This can be viewed as a generalization of a
classic upper bound on the covering number of a binary hypothesis class H in terms of its
VC dimension. Interestingly, our covering number upper bounds in the two-hypothesis-class
setting hold despite the fact that a corresponding uniform convergence bound does not hold.
See the full paper for more details.

1.3.5 Boosting
Analogous to the weak agnostic learning task considered in [51] and [25], we introduce weak
comparative learning, where the goal (3) of comparative learning is relaxed to

Pr(x,y)∼µ[f(x) ̸= y] ≤ 1/2 − γ,

under the additional assumption that

infb∈BPr(x,y)∼µ[b(x) ̸= y] ≤ 1/2 − α.

Here, α, γ ∈ (0, 1/2) are parameters of the weak comparative learning task. Extending results
in [25], we show an efficient boosting algorithm that solves (strong) comparative learning
given oracle access to a learner solving weak comparative learning. This result also applies
to correlation maximization for real-valued S and B in the deterministic-label setting. Due
to space constraints, formal results and discussion of boosting appear only in the full version
of this paper.

1.3.6 Comparative Regression
We define comparative regression by allowing the classes S and B in comparative learning to
be real-valued and replacing the classification error Pr(x,y)∼µ[f(x) ̸= y] with the expected
loss E(x,y)∼µ[ℓ(y, f(x))] for a general loss function ℓ. Specifically, we take a partial hypothesis
class S ⊆ ([−1, 1] ∪ {∗})X as the source class, and for simplicity, we take a total hypothesis
class B ⊆ [−1, 1]X as the benchmark class. Given a loss function ℓ : [−1, 1] × [−1, 1] → R,
we define the comparative regression task as follows. We assume that the data distribution µ

over X × [−1, 1] satisfies E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S, and the goal is
to output a model f : X → [−1, 1] such that the following holds with probability at least
1 − δ:

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µ[ℓ(y, b(x))] + ε.

As an application of our sample complexity characterization for realizable multicalibration
and the omnipredictors result by Gopalan et al. [34], in Theorem 19, we give a sample
complexity upper bound in terms of fatη(S, B) for a special case of comparative regression
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(Definition 18) where we assume that the label y in each data point is binary and the
loss function ℓ is convex and Lipschitz. We leave the study of other interesting settings of
comparative regression to future work.

1.3.7 Comparative Online Learning
We extend our notion of comparative learning to the online setting, where we assume that
the data points (x, y) are given sequentially, and the learner is required to predict the label
of the individual x in each data point before its true label y is shown. For binary hypothesis
classes S, B ⊆ {−1, 1, ∗}X , we introduce comparative online learning (Definition 23) where
we assume that every data point (x, y) satisfies y = s(x) for some source hypothesis s ∈ S and
we measure the performance of the learner by its regret, defined as the number of mistakes it
makes minus the minimum number of mistakes made by a benchmark hypothesis b ∈ B. The
goal of comparative online learning is to ensure that the expected regret does not exceed εn,
where n is the total number of data points given to the learner. In Section 7, we introduce the
mutual Littlestone dimension m := Ldim(S, B) and show that it characterizes the smallest ε

achievable in comparative online learning, denoted by ε∗ (Theorem 25):

min
{

1
2 ,

m

2n

}
≤ ε∗ ≤ O

(√
m

n
log 2m + n

m

)
.

To match the form of our other sample complexity bounds, we can fix ε ∈ (0, 1/2) and bound
the smallest n (denoted by n∗) for which we can ensure that the expected regret does not
exceed εn:

m

2ε
≤ n∗ ≤ O

(
m

ε2 log 1
ε

)
.

1.3.8 Sample Complexity Duality
Learning tasks involving two hypothesis classes can potentially satisfy sample complexity
duality, meaning that the sample complexity of the task changes minimally when we swap
the roles of the two hypothesis classes. Hu et al. [48] show that sample complexity duality
holds for distribution-specific realizable multiaccuracy, assuming that the source class S and
the distinguisher class B are both total. Specifically, for S, B ⊆ [−1, 1]X , ε, δ ∈ (0, 1/2) and
a distribution µX over X, defining m := #MA(µX )(S, B, ε/8, δ) to be the sample complexity
of realizable multiaccuracy with source class S and distinguisher class B in the distribution-
specific setting where the data distribution µ satisfies µ|X = µX , Hu et al. [48] show that

#MA(µX )(B, S, ε, δ) ≤ O
(

ε−2(m + log(1/δ))
)

.

Results in our work imply that sample complexity duality also holds for comparative learning
and realizable multiaccuracy/multicalibration in the distribution-free setting. Specifically, if
we define m := #CompL(S, B, ε, δ) + 1 for ε, δ ∈ (0, 1/4) and any partial binary hypothesis
classes S, B ⊆ {−1, 1, ∗}X , then the following holds by (4) and (5):

#CompL(B, S, ε, δ) ≤ O

(
m log2 m

ε
+ 1

ε2 log
(

1
δ

))
.

Similarly, if we define m := #MA(S, B, ε2/147, δ) + 1 for ε, δ ∈ (0, 1/2) and any partial
real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X , then the following holds because
of (6):
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#MA(B, S, ε, δ) ≤ O

(
m

ε6 log2
(m

ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
δ

))
,

and the same inequality holds after replacing #MA with #MC. In the full version of this
paper, we show that sample complexity duality does not hold for other learning tasks we
consider in this paper, completing Table 1.

1.4 Related Work
Motivated by multi-group/sub-group fairness, many recent papers also study learning tasks
involving two (or more) hypothesis classes. Multi-group agnostic learning, introduced in [16]
and [71], involves a subgroup class G and a benchmark class B, where each subgroup g ∈ G

is a subset of the individual set X. The goal in multi-group agnostic learning is to learn a
model such that the loss experienced by each subgroup g ∈ G is not much larger than the
minimum loss for that group achievable by a benchmark b ∈ B. Tosh and Hsu [74] show
sample complexity upper bounds for multi-group agnostic learning in terms of the individual
complexities of G and B. Thus, the upper bound does not depend on the interaction
of the two classes. In contrast, the individual complexities of the source and benchmark
(resp. distinguisher) classes are not sufficient for our sample complexity characterizations
for comparative learning (resp. realizable multiaccuracy and multicalibration). In [29], the
authors propose algorithms that can improve the loss on subgroups in the spirit of multi-group
agnostic learning based on suggestions from auditors. A constrained loss minimization task
introduced in [54] also involves a subgroup class and a benchmark class, but the subgroup
class is used to impose (fairness) constraints on the learned model and the loss/error is
evaluated over the entire population (not on each subgroup). The results in [54] assume
that the complexities of both classes are bounded, whereas our sample complexity upper
bounds (for different tasks) in this paper can be finite even when the complexities of both
classes are infinite. Motivated by the goal of learning proxies for sensitive features that can
be used to achieve fairness in downstream learning tasks, Diana et al. [22] consider a learning
task involving three hypothesis classes: a source class, a proxy class, and a downstream class.
Again, the sample complexity upper bounds in [22] are in terms of the individual complexities
of these classes. Two other recent works [72, 70] show uniform convergence bounds for
multicalibration in a two-hypothesis-class setting, but their bounds are yet again in terms of
the individual complexities of the two classes and are finite only when the complexities of
both classes are finite.

The notions of multiaccuracy and multicalibration can be viewed in the framework of
outcome indistinguishability [23, 24]. Multicalibrated predictors have been applied to solve
loss minimization for rich families of loss functions and/or under a variety of constraints,
leading to the notion of omnipredictors [34, 46, 28]. Recently, Gopalan et al. [33] show that
certain omnipredictors can be obtained from the weaker condition of calibrated multiaccuracy.
Multicalibrated predictors can also be used for statistical inference on rich families of target
distributions [58]. The notion of multicalibration has been extended to various settings in
[49, 77, 36, 35].

Many of our results in this paper are based on sample complexity characterizations of
learning partial hypotheses by Alon et al. [3]. Some of the key techniques used in [3] include
the 1-inclusion graph algorithm [40], sample compression schemes [65], sample compression
generalization bounds [37], and a reduction from agnostic learning to realizable learning [21].
▶ Note. Due to space constraints, this is an abridged version of our work. Readers are
directed to the full version of the paper for detailed proofs of all results and some extensions
of the main theorems.
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2 Preliminaries

Throughout the paper, we use X to denote a non-empty set and we refer to the elements in X

as individuals. We use the term hypothesis to refer to an arbitrary function h : X → R ∪ {∗}
assigning a label h(x) to each individual x ∈ X.

The label h(x) can be a real number or the undefined label ∗. We say a hypothesis h is
total if h(x) ̸= ∗ for every x ∈ X. When we do not require a hypothesis h to be total, we
often say h is partial to emphasize that h may or may not be total. We say a hypothesis h is
binary if h(x) ∈ {−1, 1, ∗} for every x ∈ X, and we say h is real-valued if h may or may not
be binary.

A hypothesis class H is a set consisting of hypotheses h : X → R∪{∗}, i.e., H ⊆ (R∪{∗})X

where we use BA to denote the set of all functions f : A → B for any two sets A and B. A
total hypothesis class is a set H ⊆ RX , and a binary hypothesis class is a set H ⊆ {−1, 1, ∗}X .
We say a hypothesis class H is partial if it may or may not be total, and we say H is
real-valued if it may or may not be binary.

To avoid measurability issues, all probability distributions in this paper are assumed to
be discrete, i.e., to have a countable support. For any distribution µ over X × R, we use µ|X
to denote the marginal distribution of x with (x, y) drawn from µ.

2.1 VC and Fat-shattering Dimensions for Partial Hypothesis Classes
The VC dimension was introduced in [76] for any total binary hypothesis class. As in [9]
and [3], we consider a natural generalization of the VC dimension to all partial binary
hypothesis classes H ⊆ {−1, 1, ∗}X as follows. We say a subset X ′ ⊆ X is shattered by H if
for every total binary function ξ : X ′ → {−1, 1} there exists h ∈ H such that h(x) = ξ(x)
for every x ∈ X ′. The VC dimension of H is defined to be

VC(H) := sup{|X ′| : X ′ ⊆ X, X ′ is shattered by H}.

An analogous notion of the VC dimension for real-valued hypothesis classes is the fat-
shattering dimension introduced in [56]. The fat-shattering dimension was originally defined
for total hypothesis classes, but it is natural to generalize it to all partial hypothesis classes
in a similar fashion to the generalization of the VC dimension to partial binary classes: given
a hypothesis class H ⊆ (R ∪ {∗})X and a margin η ≥ 0, we say a subset X ′ ⊆ X is η-fat
shattered by H w.r.t. a reference function r : X ′ → R if for every total binary function
ξ : X ′ → {−1, 1}, there exists h ∈ H such that for every x ∈ X ′,

h(x) ̸= ∗ and ξ(x)(h(x) − r(x)) > η.

We sometimes omit the mention of r and say X ′ is η-fat shattered by H if such a function r

exists. The η-fat-shattering dimension of H is defined to be

fatη(H) := sup{|X ′| : X ′ ⊆ X, X ′ is η-fat shattered by H}.

2.2 An Abstract Learning Task
We study a variety of learning tasks throughout the paper, and to help define each task
concisely, we first define an abstract learning task Learn, of which each specific task we
consider is a special case.
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Let Z and F be two non-empty sets. In the abstract learning task Learn, an algorithm
(learner) takes data points in Z as input and it outputs a model in F . We choose a distribution
class P consisting of distributions µ over Z, and for each distribution µ ∈ P , we choose a
subset Fµ ⊆ F to be the admissible set. When the input data points are drawn i.i.d. from
a distribution µ ∈ P , we require the learner to output a model f in the admissible set Fµ

with large probability. Formally, for n ∈ Z≥0 and δ ∈ R≥0, we say a (possibly inefficient and
randomized) learner L solves the learning task Learnn(Z, F, P, (Fµ)µ∈P , δ) if
1. L takes n data points z1, . . . , zn ∈ Z as input;
2. L outputs a model f ∈ F ;
3. For any distribution µ ∈ P , if the data points z1, . . . , zn are drawn i.i.d. from µ, then

with probability at least 1 − δ, the output model f belongs to Fµ. The probability is over
the randomness in the data points z1, . . . , zn and the internal randomness in learner L.

By a slight abuse of notation, we also use Learnn(Z, F, P, (Fµ)µ∈P , δ) to denote the set of
all learners L that solve the learning task. Clearly, the learner set Learnn(Z, F, P, (Fµ)µ∈P , δ)
is monotone w.r.t. n: for any nonnegative integers n and n′ satisfying n ≤ n′, we have

Learnn(Z, F, P, (Fµ)µ∈P , δ) ⊆ Learnn′(Z, F, P, (Fµ)µ∈P , δ)

because when given n′ data points, a learner can choose to ignore n′ − n data points and only
use the remaining n data points. We define the sample complexity #Learn(Z, F, P, (Fµ)µ∈P , δ)
to be the smallest n for which there exists a learner in Learnn(Z, F, P, (Fµ)µ∈P , δ):

#Learn(Z, F, P, (Fµ)µ∈P , δ) := inf{n ∈ Z≥0 : Learnn(Z, F, P, (Fµ)µ∈P , δ) ̸= ∅}. (7)

2.3 Learning Partial Binary Hypotheses
We define realizable learning and agnostic learning for any partial binary hypothesis class H

as special cases of the abstract learning task Learn in Section 2.2. These learning tasks have
been studied in [9, 66, 3], and the results in these previous works are important for many of
our results throughout the paper.

▶ Definition 1 (Realizable learning (ReaL)). Given a partial binary hypothesis class H ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define ReaLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1} satisfying Pr(x,y)∼µ[h(x) =
y] = 1 for some h ∈ H, and Fµ consists of all models f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ ε.

A key assumption in realizable learning is that any data distribution µ ∈ P is consistent
with some hypothesis h ∈ H, i.e., Pr(x,y)∼µ[h(x) = y] = 1. In particular, this implies that
Pr(x,y)∼µ[h(x) = ∗] = 0 because y ∈ {−1, 1} cannot be the undefined label ∗. In agnostic
learning, we remove such assumptions on the data distribution:

▶ Definition 2 (Agnostic learning (AgnL)). Given a partial binary hypothesis class H ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define AgnLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1}, and Fµ consists of all
models f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infh∈H Pr[h(x) ̸= y] + ε. (8)
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There is no assumption on the data distributions µ ∈ P in agnostic learning: µ can be any
distribution over X × {−1, 1}. The hypothesis class H is used to relax the objective in
agnostic learning: instead of requiring the error Pr(x,y)∼µ[f(x) ̸= y] of the model f to be
at most ε, we compare the error of f with the smallest error of a hypothesis h ∈ H as in
(8). Note that for (x, y) ∈ X × {−1, 1} and h : X → {−1, 1, ∗}, we have h(x) ̸= y whenever
h(x) = ∗.

For every learning task we define throughout the paper, we also implicitly define the
corresponding sample complexity as in (7). For example, the sample complexity of realizable
learning is

#ReaL(H, ε, δ) := inf{n ∈ Z≥0 : ReaLn(H, ε, δ) ̸= ∅}.

We omit the sample complexity definitions for all other learning tasks.

2.4 Other Notation
For a statement P , we define its indicator 1(P ) such that 1(P ) = 1 if P is true, and 1(P ) = 0
if P is false. We define sign : R → {−1, 1} such that for every u ∈ R, sign(u) = 1 if u ≥ 0, and
sign(u) = −1 if u < 0. For functions f1 : U1 → U2 and f2 : U2 → U3, we use f2 ◦f1 : U1 → U3
to denote their composition, i.e., (f2 ◦ f1)(u) = f2(f1(u)) for every u ∈ U1. We use log(·) to
denote the base-2 logarithm. For u ∈ R, we define log+(u) := log(max{2, u}). For u ∈ [−1, 1],
we use Ber∗(u) to denote the distribution over {−1, 1} with mean u (by analogy with the
Bernoulli distribution over {0, 1}).

3 Sample Complexity of Comparative Learning

Given a source class S ⊆ {−1, 1, ∗}X and a benchmark class B ⊆ {−1, 1, ∗}X , we formally
define the task of comparative learning below by combining the distribution assumption in
realizable learning and the relaxed objective in agnostic learning:

▶ Definition 3 (Comparative learning (CompL)). Given two binary hypothesis classes S, B ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer
n, we define CompLn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1} such that Pr(x,y)∼µ[s(x) =
y] = 1 for some s ∈ S, and Fµ consists of all models f : X → {−1, 1} such that

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε. (9)

The data distribution µ ∈ P in comparative learning is constrained to be consistent with a
source hypothesis s ∈ S, i.e., Pr(x,y)∼µ[s(x) = y] = 1, and the error of the output model f is
compared with the smallest error of a benchmark hypothesis b ∈ B as in (9).

In this section, we characterize the sample complexity of comparative learning for every
source class S ⊆ {−1, 1, ∗}X and every benchmark class B ⊆ {−1, 1, ∗}X according to
Theorem 4 below. Our characterization is based on the mutual VC dimension VC(S, B),
which we define as follows:

VC(S, B) := {|X ′| : X ′ ⊆ X, X ′ is shattered by both S and B}. (10)
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▶ Theorem 4. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ (0, 1/4),
the sample complexity of comparative learning satisfies the following upper bound:

#CompL(S, B, ε, δ) = O

(
VC(S, B)

ε2 log2
+

(
VC(S, B)

ε

)
+ 1

ε2 log
(

1
δ

))
. (11)

When VC(S, B) ≥ 2, we have the following lower bound:

#CompL(S, B, ε, δ) = Ω
(

VC(S, B)
ε

+ 1
ε

log
(

1
δ

))
. (12)

Our proof of Theorem 4 is based on results by Alon et al. [3] that characterize the sample
complexity of realizable and agnostic learning for a partial hypothesis class H ⊆ {−1, 1, ∗}X :

▶ Theorem 5 ([3]). Let H ⊆ {−1, 1, ∗}X be a binary hypothesis class. For any ε, δ ∈ (0, 1/4),
the sample complexity of agnostic learning satisfies

#AgnL(H, ε, δ) = O

(
VC(H)

ε2 log2
+

(
VC(H)

ε

)
+ 1

ε2 log
(

1
δ

))
. (13)

When VC(H) ≥ 2, the sample complexity of realizable learning satisfies

#ReaL(H, ε, δ) = Ω
(

VC(H)
ε

+ 1
ε

log
(

1
δ

))
. (14)

We prove the sample complexity upper bound (11) by reducing comparative learning for
a pair of binary hypothesis classes (S, B) to agnostic learning for a single partial hypothesis
class AS,B we define below.

For every pair of hypotheses s, b : X → {−1, 1, ∗}, we define an agreement hypothesis
as,b : X → {−1, 1, ∗} by

as,b(x) =


0, if s(x) = b(x) = 0;
1, if s(x) = b(x) = 1;
∗, otherwise.

For every pair of hypothesis classes S, B ⊆ {−1, 1, ∗}X , we define the agreement hypothesis
class AS,B to be {as,b : s ∈ S, b ∈ B} ⊆ {−1, 1, ∗}X .

The following claim follows immediately from the definition of as,b:

▷ Claim 6. For every (x, y) ∈ X ×{−1, 1} and every pair of hypotheses s, b : X → {−1, 1, ∗},
we have as,b(x) = y if and only if s(x) = b(x) = y.

The following claim shows that the mutual VC dimension of (S, B) is equal to the VC
dimension of AS,B :

▷ Claim 7. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. Then VC(AS,B) = VC(S, B).

Proof. A subset X ′ ⊆ X is shattered by both S and B if and only if for every ξ : X ′ → {−1, 1},
there exists s ∈ S and b ∈ B such that

s(x) = b(x) = ξ(x) for every x ∈ X ′. (15)

Similarly, by the definition of AS,B , a subset X ′ ⊆ X is shattered by AS,B if and only if for
every ξ : X ′ → {−1, 1}, there exists s ∈ S and b ∈ B such that

as,b(x) = ξ(x) for every x ∈ X ′. (16)

By Claim 6, the conditions (15) and (16) are equivalent. ◁
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We are now ready to state and prove the reduction that allows us to prove (11):

▶ Lemma 8. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and
n ∈ Z≥0, we have AgnLn(AS,B , ε, δ) ⊆ CompLn(S, B, ε, δ). In other words, any learner
solving agnostic learning for AS,B also solves comparative learning for (S, B) with the same
parameters ε and δ.

Proof. Let L be a learner in AgnLn(AS,B , ε, δ). For s ∈ S, let µ be a distribution over
X × {−1, 1} satisfying Pr(x,y)∼µ[s(x) = y] = 1. By the guarantee of L ∈ AgnLn(AS,B , ε, δ),
given n data points (x1, y1), . . . , (xn, yn) drawn i.i.d. from µ, with probability at least 1 − δ,
L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
h∈AS,B

Pr(x,y)∼µ[h(x) ̸= y] + ε

= inf
s′∈S,b∈B

Pr(x,y)∼µ[as′,b(x) ̸= y] + ε (by definition of AS,B)

≤ inf
b∈B

Pr(x,y)∼µ[as,b(x) ̸= y] + ε

= inf
b∈B

Pr(x,y)∼µ[s(x) ̸= y or b(x) ̸= y] + ε (by Claim 6)

= inf
b∈B

Pr(x,y)∼µ[b(x) ̸= y] + ε. (by Pr(x,y)∼µ[s(x) = y] = 1)

This proves that L ∈ CompLn(S, B, ε, δ), as desired. ◀

Our upper bound (11) follows immediately from Claim 7, Lemma 8, and (13). We defer the
detailed proof to the end of the section. To prove the lower bound (12), we reduce realizable
learning for AS,B to comparative learning for (S, B):

▶ Lemma 9. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and
n ∈ Z≥0, we have CompLn(S, B, ε, δ) ⊆ ReaLn(AS,B , ε, δ). In other words, any learner
solving comparative learning for (S, B) also solves realizable learning for AS,B with the same
parameters ε and δ.

Proof. Let L be a learner in CompLn(S, B, ε, δ). Let µ be a distribution over X × {−1, 1}
satisfying

Pr(x,y)∼µ[h(x) = y] = 1 for some h ∈ AS,B . (17)

By the definition of AS,B , our assumption (17) implies that Pr(x,y)∼µ[as,b(x) = y] = 1 for
some s ∈ S and b ∈ B. By Claim 6, we have Pr(x,y)∼µ[s(x) = y] = Pr(x,y)∼µ[b(x) = y] = 1.

By the guarantee of L ∈ CompLn(S, B, ε, δ), given n data points (x1, y1), . . . , (xn, yn)
drawn i.i.d. from µ, with probability at least 1 − δ, L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
b′∈B

Pr(x,y)∼µ[b′(x) ̸= y] + ε = ε,

where the last equation holds because Pr(x,y)∼µ[b(x) = y] = 1. The inequality above implies
L ∈ ReaLn(AS,B , ε, δ), as desired. ◀

Proof of Theorem 4. Define m := VC(S, B). By Claim 7, we have m = VC(AS,B). Our
upper bound (11) holds because

#CompL(S, B, ε, δ) ≤ #AgnL(AS,B , ε, δ) (by Lemma 8)

≤ O

(
m

ε2 log2
+

(m

ε

)
+ 1

ε2 log
(

1
δ

))
. (by (13))
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Our lower bound (12) holds because

#CompL(S, B, ε, δ) ≥ #ReaL(AS,B , ε, δ) (by Lemma 9)

≥ Ω
(

m

ε
+ 1

ε
log
(

1
δ

))
. (by (14))

◀

4 Sample Complexity of Correlation Maximization

As we define in Section 3, the comparative learning task CompL requires the hypothesis
classes S and B to be binary. Here we introduce a natural generalization of CompL to
real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X which we call correlation maximization.

We first generalize the product u1u2 of two real numbers u1, u2 ∈ R to the case where u2
may be the undefined label ∗. Specifically, for u1 ∈ R and u2 ∈ [−1, 1] ∪ {∗}, we define their
generalized product u1 ♢ u2 to be

u1 ♢ u2 :=
{

u1u2, if u2 ∈ [−1, 1],
−|u1|, if u2 = ∗.

The idea behind the definition is that when u2 = ∗, we treat u2 as being an unknown number
u′ in [−1, 1] and define the product u1 ♢ u2 to be the smallest possible value of u1u′, i.e.,
u1 ♢ u2 = infu′∈[−1,1] u1u′ = −|u1|.

This generalized product allows us to rewrite the goal (9) of comparative learning. For
any y ∈ {−1, 1} and u ∈ {−1, 1, ∗}, it is easy to verify that

1(y ̸= u) = 1
2(1 − y ♢ u). (18)

Therefore, the goal (9) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − 2ε.

This reformulation is meaningful even when we relax B to be a real-valued hypothesis
class B ⊆ ([−1, 1] ∪ {∗})X . If we also relax the source class S, we obtain the definition of
correlation maximization:

▶ Definition 10 (Correlation maximization (CorM)). Given two real-valued hypothesis classes
S, B ⊆ ([−1, 1] ∪ {∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and
a nonnegative integer n, we define CorMn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with
Z, F, P, Fµ chosen as follows. We choose Z = X×[−1, 1] and F = {−1, 1}X . The distribution
class P consists of all distributions µ over X × [−1, 1] satisfying the following property:

there exists s ∈ S such that Prx∼µ|X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y|x] = s(x). (19)

The admissible set Fµ consists of all models f : X → {−1, 1} satisfying

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε.

The name “correlation maximization” comes from viewing E(x,y)∼µ[yf(x)] as the (uncentered)
correlation between random variables y and f(x). In correlation maximization, any data
distribution µ ∈ P needs to satisfy E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S. This
restricts the conditional expectation of y given x, but we allow the conditional distribution of
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y given x to be otherwise unrestricted. That is, when conditioned on x ∈ X being fixed, the
label y ∈ [−1, 1] could be deterministically equal to s(x), but y could be also be random as
long as it has conditional expectation s(x).

In this section, we show a sample complexity upper bound for correlation maximization
for any source class S ⊆ ([−1, 1] ∪ {∗})X and benchmark class B ⊆ ([−1, 1] ∪ {∗})X . Since
S and B may no longer be binary, we cannot apply the mutual VC dimension as a way to
characterize their complexity. Instead, we turn to a classic generalization of the VC dimension
for real-valued hypotheses, the fat-shattering dimension (see Section 2.1 for definition). Our
upper bound is in terms of the mutual fat-shattering dimension defined as follows, which
generalizes the mutual VC dimension to real-valued hypothesis classes.

Given a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X and a margin
η ∈ R≥0, we define the mutual fat-shattering dimension fatη(S, B) as follows:

fatη(S, B) := sup{|X ′| : X ′ ⊆ X, X ′ is η-fat shattered by both S and B}. (20)

In other words, fatη(S, B) is the largest size of a subset X ′ ⊆ X such that X ′ is η-fat
shattered by S w.r.t. a function r1 : X ′ → R and X ′ is η-fat shattered by B w.r.t. a function
r2 : X ′ → R (recall the definition of fat shattering in Section 2.1).

Another equivalent way to define the mutual fat-shattering dimension for real-valued
hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X is by transforming them into binary classes and
using the mutual VC dimension after the transformation. These transformations are also
crucial in our proof of the sample complexity upper bound for correlation maximization
in this section. Given a real-valued hypothesis h : X → [−1, 1] ∪ {∗}, a reference function
r : X → R, and a margin η ∈ R≥0, we define a binary hypothesis h

(r)
η : X → {−1, 1, ∗} such

that

h(r)
η (x) =


1, if h(x) ̸= ∗ and h(x) > r(x) + η;
−1, if h(x) ̸= ∗ and h(x) < r(x) − η;
∗, otherwise.

Given a real-valued hypothesis class H ⊆ ([−1, 1] ∪ {∗})X , we define the binary hypothesis
class H

(r)
η ⊆ {−1, 1, ∗}X as

H(r)
η = {h(r)

η : h ∈ H}.

We can now transform any real-valued hypothesis class H ⊆ ([−1, 1] ∪ {∗})X into a binary
hypothesis class H

(r)
η for every choice of η ∈ R≥0 and r : X → R. This allows us to measure

the complexity of a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X using
the mutual VC dimensions VC(S(r1)

η1 , B
(r2)
η2 ) of the binary hypothesis classes S

(r1)
η1 , B

(r2)
η2 for

various choices of η1, η2, r1, r2. The following claim shows that the mutual fat-shattering
dimension fatη(S, B) can be defined equivalently in this way.

▷ Claim 11. Let S, B ⊆ ([−1, 1] ∪ {∗})X be real-valued hypothesis classes. For every
η ∈ R≥0, fatη(S, B) = supr1,r2

VC(S(r1)
η , B

(r2)
η ), where the supremum is over all function

pairs r1, r2 : X → R.

The claim follows from the fact that a subset X ′ ⊆ X is η-fat shattered by S if and only if
X ′ is shattered by the binary hypothesis class S

(r)
η for some r : X → R, and the same holds

with S replaced by B.
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Before we state our sample complexity upper bound for correlation maximization in
Theorem 12, we make some additional definitions to simplify the statement. Let h : X →
[−1, 1]∪{∗} be a real-valued hypothesis and H ⊆ ([−1, 1]∪{∗})X be a real-valued hypothesis
class. For every real number θ ∈ R, we use h

(θ)
η and H

(θ)
η to denote h

(r)
η and H

(r)
η with the

reference function r : X → R being the constant function satisfying r(x) = θ for every x ∈ X.

▶ Theorem 12. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For η1, η2, β, δ ∈
(0, 1/2), defining m := supθ∈R VC(S(0)

η1 , B
(θ)
η2 ), we have

#CorM(S, B, β + 2η1 + 2η2, δ)

≤ O

(
m

β4 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β4 log
(

1
η1

)
log
(

1
δ

)
+ 1

β2 log
(

1
η2

))
.

Moreover, for every ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/5, we have m ≤ fatε/5(S, B) and

#CorM(S, B, ε, δ) ≤ O

(
m

ε4 log2
+

(m

ε

)
log
(

1
ε

)
+ 1

ε4 log
(

1
ε

)
log
(

1
δ

))
.

It remains an open question whether there is a sample complexity lower bound that matches
Theorem 12, although our sample complexity characterization for multiaccuracy and mul-
ticalibration in Section 5 does not rely on such a lower bound. Qualitatively, Theorem 12
implies that #CorM(S, B, β + 2η1 + 2η2, δ) is finite if supθ∈R VC(S(0)

η1 , B
(θ)
η2 ) is finite. We thus

propose the following question about a qualitative lower bound: let S, B ⊆ ([−1, 1] ∪ {∗})X

be real-valued hypothesis classes. Suppose VC(S(0)
η1 , B

(θ)
η2 ) is infinite for some η1, η2 > 0 and

θ ∈ R. Does this imply that #CorM(S, B, ε, δ) is infinite for some ε, δ > 0?

5 Sample Complexity of Realizable Multiaccuracy and Multicalibration

In this section, we give a sample complexity characterization for realizable multiaccuracy
and multicalibration in the distribution-free setting. These tasks have been studied in [48]
for total hypothesis classes. Here we generalize their definitions to partial hypothesis classes.

Given a distribution µ over X × [−1, 1] and a model f : X → [−1, 1], we first generalize
the definition of MA-errorµ,B(f) and MC-errorµ,B(f) in (1) and (2) to partial hypothesis
classes B ⊆ [−1, 1] ∪ {∗}. It is not enough to directly use the generalized product ♢ as in
Section 4. For example, suppose we define MA-errorµ,B(f) to be

supb∈B |E(x,y)∼µ[(f(x) − y) ♢ b(x)]|.

Then MA-errorµ,B(f) is equal to the ℓ1 error E(x,y)∼µ[|f(x)−y|] even when B only contains a
single hypothesis b which assigns every individual x ∈ X the undefined label b(x) = ∗, making
it challenging to achieve a low MA-error even when B has fat-shattering dimension zero.
To avoid this issue, we note that for any u ∈ R, the absolute value |u| can be equivalently
written as supσ∈{−1,1} uσ, leading us to the following definitions:

MA-errorµ,B(f) := sup
b∈B

sup
σ∈{−1,1}

E
[(

(f(x) − y)σ
)

♢ b(x)
]
, and (21)

MC-errorµ,B(f) := sup
b∈B

∑
v∈V

sup
σ∈{−1,1}

E
[(

(f(x) − y)1(f(x) = v)σ
)

♢ b(x)
]
. (22)

In the definition of MC-error, we use V to denote the range of f which we assume to be
countable. The supremum over σ ∈ {−1, 1} is inside the sum over v ∈ V , so σ is allowed to
depend on v.
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We can now define realizable multiaccuracy and multicalibration for partial hypothesis
classes:

▶ Definition 13 (Realizable Multiaccuracy (MA)). Given two hypothesis classes S, B ⊆
([−1, 1] ∪ {∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define MAn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × [−1, 1],
F = [−1, 1]X , P consists of all distributions µ over X × [−1, 1] satisfying (19), and Fµ

consists of all models f : X → [−1, 1] such that

MA-errorµ,B(f) ≤ ε. (23)

▶ Definition 14 (Realizable Multicalibration (MC)). We define MCn(S, B, ε, δ) in the same
way as we define MAn(S, B, ε, δ) in Definition 13 except that we replace (23) with

MC-errorµ,B(f) ≤ ε.

We prove the following upper bound (Theorems 15 and 16) and lower bound (Theorem 17)
on the sample complexity of realizable multiaccuracy and multicalibration in the full version
of this paper.

▶ Theorem 15. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For β, η1, η2, δ ∈
(0, 1/2), defining m := supr:X→R supθ∈R VC(S(r)

η1 , B
(θ)
η2 ), we have

#MA(S, B, β + 2η1 + 4η2, δ)
≤ #MC(S, B, β + 2η1 + 4η2, δ)

≤ O

(
m

β6 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β6 log
(

1
η1

)
log
(

1
βδ

)
+ 1

β4 log
(

1
η2

))
.

For ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/7, we have m ≤ fatε/7(S, B) and

#MA(S, B, ε, δ) ≤ #MC(S, B, ε, δ) ≤ O

(
m

ε6 log2
+

(m

ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
εδ

))
.

▶ Theorem 16. In the setting of Theorem 15, assume in addition that S is binary, i.e.,
S ⊆ {−1, 1, ∗}X and define m := supθ∈R VC(S, B

(θ)
η2 ). Then,

#MA(S, B, β + 4η2, δ) ≤ O

(
m

β4 log2
+

(
m

β

)
+ 1

β4 log
(

1
η2βδ

))
,

#MC(S, B, β + 4η2, δ) ≤ O

(
m

β4 log2
+

(
m

β

)
+ 1

β4 log
(

1
η2βδ

)
+ 1

β5

)
.

▶ Theorem 17. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For η1, η2 ∈ R>0
and δ ∈ (0, 1), defining m := supr1,r2:X→R VC(S(r1)

η1 , B
(r2)
η2 ), we have

#MC(S, B, η1η2/3, δ) ≥ #MA(S, B, η1η2/3, δ) ≥ log(1 − δ) + Ω(m).

For any ε ∈ (0, 1/2), choosing η1 = η2 =
√

3ε, we have m = fat√
3ε(S, B) and

#MC(S, B, ε, δ) ≥ #MA(S, B, ε, δ) ≥ log(1 − δ) + Ω(m).

Moreover, the constant 3 in the theorem can be replaced by any absolute constant c > 2.
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6 Comparative Regression via Omnipredictors

We formally define the comparative regression task where the learning objective is to minimize
a general loss function.

▶ Definition 18 (Comparative Regression (CompR)). Given a partial hypothesis class S ⊆
([−1, 1]∪{∗})X , a total hypothesis class B ⊆ [−1, 1]X , a loss function ℓ : {−1, 1}×[−1, 1] → R,
an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer n,
we define CompRn(S, B, ℓ, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with Z, F, P, Fµ chosen as
follows. We choose Z = X × {−1, 1} and F = [−1, 1]X . The distribution class P consists of
all distributions µ over X × {−1, 1} satisfying the following property:

there exists s ∈ S such that Prx∼µ|X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y|x] = s(x). (24)

The admissible set Fµ consists of all models f : X → [−1, 1] such that

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µE[ℓ(y, b(x))] + ε. (25)

In the definition above, we assume that the benchmark class B is total so that we do not
need to define ℓ(y, b(x)) when b(x) = ∗. We assume that the ranges of the model f and any
benchmark b ∈ B are bounded between −1 and 1, but any bounded range can be reduced
to this setting by a scaling. We also assume that the label y in a data point (x, y) ∼ µ is
binary: y ∈ {−1, 1}, and thus (24) implies that the conditional distribution of y given x

is Ber∗(s(x)). We focus on this binary-label setting because it is the main setting of the
omnipredictor result in [34], which our results are based on. There are certainly other natural
and interesting settings of comparative regression (e.g. the deterministic-label setting where
y ∈ [−1, 1] and Pr(x,y)∼µ[s(x) = y] = 1 for some s ∈ S). We leave further study of these
settings for future work.

We prove the following sample complexity upper bound for comparative regression in
terms of the mutual fat-shattering dimension:

▶ Theorem 19. Let S ⊆ ([−1, 1] ∪ {∗})X be a partial hypothesis class and B ⊆ [−1, 1]X
be a total hypothesis class. Let ℓ : {−1, 1} × [−1, 1] → R be a loss function such that
ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ {−1, 1}. For β, η1, η2, δ ∈ (0, 1/2), defining
m := supr:X→R supθ∈R VC(S(r)

η1 , B
(θ)
η2 ),

#CompR(S, B, ℓ, κ(β + 2η1 + 4η2), δ)

≤ O

(
m

β6 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β6 log
(

1
η1

)
log
(

1
βδ

)
+ 1

β4 log
(

1
η2

))
.

We prove Theorem 19 using the omnipredictor result of Gopalan et al. [34], which shows
that any model with a low MC-error w.r.t. B and a low overall calibration error can be easily
transformed to a model that achieves a low loss compared to the best benchmark in B. Here,
the overall calibration error of a model f is defined as follows:

C-errorµ(f) :=
∑
v∈V

|E(x,y)∼µ[(y − f(x))1(f(x) = v)]|, (26)

where V is the range of f which we require to be countable. The name “overall calibration
error” comes from the fact that C-errorµ(f) = MC-errorµ,B(f) when B only contains a single
hypothesis b such that b(x) = 1 for every x ∈ X.
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▶ Theorem 20 (Omnipredictor [34]). Let ℓ : {−1, 1} × [−1, 1] → R be a loss function such
that ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ {−1, 1}. Define τ : [−1, 1] → [−1, 1] such
that

τ(u) ∈ arg minq∈[−1,1]Ey∼Ber∗(u)[ℓ(y, q)].

Let µ be a distribution over X × {−1, 1} and B ⊆ [−1, 1]X be a total hypothesis class. Let
f : X → [−1, 1] be a model satisfying MC-errorµ,B(f) ≤ α and C-errorµ(f) ≤ ε. Then,

E(x,y)∼µ[ℓ(y, τ(f(x)))] ≤ inf
b∈B

E(x,y)∼µ[ℓ(y, b(x))] + (α + 3ε)κ.

The authors of [34] only proved Theorem 20 in the special case where ε = 0. Since
achieving C-errorµ(f) = 0 is in general impossible with finitely many data points, it is
important to prove Theorem 20 for a general ε > 0. We include a proof of Theorem 20 in
the full version of this paper.

We prove Theorem 19 by combining Theorem 20 with our sample complexity upper
bound for realizable multicalibration in Section 5. A challenge here is that in addition to
achieving MC-errorµ,B(f) ≤ α, Theorem 20 also requires us to achieve C-errorµ(f) ≤ ε. This
is similar to the situation in boosting (Section 1.3) where we need to simultaneously achieve
a low MA-error and a low sign-C-error. We include a more detailed proof of Theorem 19 in
the full paper.

7 Comparative Online Learning

In this section, we study comparative learning in the online setting. We show that the con-
nections we make in Section 3 between comparative learning and learning partial hypotheses
can be extended to the online setting, allowing us to show regret bounds for comparative
online learning in Theorem 25.

Specifically, in the online setting, the data points (x, y) ∈ X × {−1, 1} are not given
to the learner all at once. Instead, they come one-by-one and the learner sequentially
makes predictions about the label of every individual x before the true label y is revealed.
Additionally, the data points are not assumed to be drawn i.i.d. from some distribution.
Formally, a (possibly inefficient and randomized) online learner L does the following on a
stream of data points (x1, y1), . . . , (xn, yn): for every i = 1, . . . , n, given i − 1 labeled data
points (x1, y1), . . . , (xi−1, yi−1) ∈ X × {−1, 1} and an extra unlabeled data point xi ∈ X, the
learner outputs a prediction ŷi ∈ {−1, 1}. The performance of the learner L is measured by

mistake(L; (xi, yi)n
i=1) := 1

n

n∑
i=1

Pr[ŷi ̸= yi],

where the probability is over the internal randomness in A. We also measure the performance
of a hypothesis h : X → {−1, 1, ∗} by

mistake(h; (xi, yi)n
i=1) := 1

n

n∑
i=1

1(h(xi) ̸= yi).

Researchers have studied online learning for partial binary hypothesis classes H ⊆
{−1, 1, ∗}X in the realizable and agnostic settings:
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▶ Definition 21 (Realizable online learning). Given a hypothesis class H ⊆ {−1, 1, ∗}X ,
a regret bound ε ≥ 0, and a positive integer n, we use ReaOLn(H, ε) to denote the set
of all online learners L such that for every h ∈ H and every sequence of data points
(x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} satisfying yi = h(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)n
i=1) ≤ ε.

▶ Definition 22 (Agnostic online learning). Given a hypothesis class H ⊆ {−1, 1, ∗}X , a regret
bound ε ≥ 0, and a positive integer n, we use AgnOLn(H, ε) to denote the set of all online
learners L such that for any sequence of data points (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}, it
holds that

mistake(L; (xi, yi)n
i=1) ≤ inf

h∈H
mistake(h; (xi, yi)n

i=1) + ε.

We combine the realizable and agnostic settings to define comparative online learning:

▶ Definition 23 (Comparative online learning). Given hypothesis classes S, B ⊆ {−1, 1, ∗}X ,
a regret bound ε ≥ 0, and a positive integer n, we use CompOLn(S, B, ε) to denote the
set of all online learners L such that for every s ∈ S and every sequence of data points
(x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} satisfying yi = s(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)n
i=1) ≤ inf

b∈B
mistake(b; (xi, yi)n

i=1) + ε.

Analogous to the question of sample complexity, a basic question in online learning is
to understand the optimal regret, i.e., the minimum ε for which there exists a learner that
solves the tasks above given a sequence of n data points. Given a total binary hypothesis
class H, the optimal regret in realizable and agnostic online learning has been characterized
in [64] and [13] using the Littlestone dimension, and this characterization has been extended
to partial hypothesis classes in [3]. The Littlestone dimension of a partial hypothesis class
H ⊆ {−1, 1, ∗}X is defined as follows. Given m ∈ Z≥0, suppose we associate an individual
xζ ∈ X to every binary string ζ ∈ ∪m−1

i=0 {−1, 1}i. There are 2m − 1 such strings ζ in
total, so (xζ)ζ∈∪m−1

i=0 {−1,1}i ∈ X2m−1. We say (xζ)ζ∈∪m−1
i=0 {−1,1}i is shattered by H if for every

ξ = (ξ1, . . . , ξm) ∈ {−1, 1}m, there exists h ∈ H such that h(xξ<i) = ξi for every i = 1, . . . , m,
where ξ<i ∈ {−1, 1}i−1 is the prefix of ξ of length i − 1. The Littlestone dimension of H is
defined to be

Ldim(H) := sup{m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1
i=0 {−1,1}i ∈ X2m−1 shattered by H}.

To give a regret characterization for comparative online learning, we define the mutual
Littlestone dimension for a pair of hypothesis classes S and B to be

Ldim(S, B) :=
sup{m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1

i=0 {−1,1}i ∈ X2m−1 shattered by both S and B}.

Similarly to Claim 7 for the mutual VC dimension, the mutual Littlestone dimension of
(S, B) is equal to the Littlestone dimension of the agreement hypothesis class AS,B (defined
in Section 3):

▷ Claim 24. Let S, B ⊆ {−1, 1, ∗}X be partial binary hypothesis classes. We have
Ldim(S, B) = Ldim(AS,B).
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We omit the proof of the claim because the proof of Claim 7 can be applied here with only
minor changes. Our main result in this section is the following regret characterization for
comparative online learning.

▶ Theorem 25. For every S, B ⊆ {−1, 1, ∗}X and n ∈ Z>0, define m := Ldim(S, B) and

ε∗ := inf{ε ∈ R≥0 : CompOLn(S, B, ε) ̸= ∅}.

Then

min
{

1
2 ,

m

2n

}
≤ ε∗ ≤ O

(√
m

n
log 2m + n

m

)
.

Our proof of Theorem 25 uses the same strategy as in our proof of Theorem 4. Relying
on the sample complexity characterizations proved in [3] for AgnOL and ReaOL, we reduce
CompOL for (S, B) to AgnOL for AS,B , and conversely reduce ReaOL for AS,B to CompOL
for (S, B).
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Abstract
A line of work has looked at the problem of recovering an input from distance queries. In this
setting, there is an unknown sequence s ∈ {0, 1}≤n, and one chooses a set of queries y ∈ {0, 1}O(n)

and receives d(s, y) for a distance function d. The goal is to make as few queries as possible to
recover s. Although this problem is well-studied for decomposable distances, i.e., distances of the
form d(s, y) =

∑n

i=1 f(si, yi) for some function f , which includes the important cases of Hamming
distance, ℓp-norms, and M -estimators, to the best of our knowledge this problem has not been
studied for non-decomposable distances, for which there are important special cases such as edit
distance, dynamic time warping (DTW), Fréchet distance, earth mover’s distance, and so on. We
initiate the study and develop a general framework for such distances. Interestingly, for some
distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and
so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then
becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. We
also study the role of adaptivity for a number of different distance functions. One motivation for
understanding non-adaptivity is that the query sequence can be fixed and the distances of the
input to the queries provide a non-linear embedding of the input, which can be used in downstream
applications involving, e.g., neural networks for natural language processing.
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1 Introduction

We study the problem of exact recovery of a sequence from queries to a distance oracle.
Suppose there is an unknown input sequence s with length at most n, defined on a binary
alphabet {0, 1}. Assume we have a distance oracle which returns the distance d(s, q) between
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a query sequence q and the unknown sequence s, where the query sequence q is chosen either
adaptively or non-adaptively. The problem is to determine the sequence s with a minimal
number of queries to the distance oracle. To the best of our knowledge, this problem has
not been studied for non-decomposable distances, where the distance function cannot be
decomposed into a sum of functions of each entry. Among all non-decomposable distances,
we are particularly interested in the edit distance, (p)-Dynamic Time Warping (p-DTW),
and Fréchet distances. The edit distance measures the minimum number of edit operations
(i.e., insertions, deletions, and substitutions) for transforming one sequence to another. The
p-DTW distance (1 ≤ p < ∞) between two sequences x, y is defined to be the minimum ℓp

distance between two equal-length expansions of x, y, where the expansion of a sequence
means you can duplicate each character of each sequence an arbitrary number of times.
When p = 1, the p-DTW distance is called the DTW distance. If we consider the ℓ∞ norm
instead of the ℓp norm, we obtain the Fréchet distance.

The problem of exact recovery for decomposable distances is well-studied in the literature,
and is related to the coin-weighing problem [34, 10] and the group testing problems [21, 4, 19].
The coin-weighing problem is to identify the weight of each coin from a collection of n

coins, each being of weight either w0 or w1 (w0 and w1 are distinct). In this problem, our
only access to the coins is via weighing a subset of the coins on a spring scale. The group
testing problem has also been shown to be equivalent to the coin-weighing problem in some
settings [37]. This line of research has been extensively studied with interesting applications.
For example, the coin-weighing problem can be used in the detection problem [35], in the
problem of determining a collection [13], and in the distinguishing family problem [31].

The query complexity of the adaptive version of the problem is also related to the original
Mastermind game [26]. The Mastermind problem can be phrased as guessing an input
sequence based on Hamming distance queries. The non-adaptive version of the problem can
be shown to be equivalent to the well-studied coin-weighing problem [10]. One can then
consider other variants of the Mastermind game where the input sequence is guessed based on
other distance metrics, such as permutation-based distances [2], ℓp distances [22] and graph
distances [32, 24]. However, general distance metrics that do not decompose into coordinate
sums are less understood. In this paper, we initiate the study of this exact recovery problem
on non-decomposable distances.

One motivation of our exact recovery problem is its application to adversarially robust
learning on discrete domains. It is well-known that deep neural networks are vulnerable to
adversarial examples: test inputs that have been modified slightly in the ℓp space can lead
to problematic machine predictions. Though there exist various techniques such as Pixel-
DP [29] and randomized smoothing [18] that achieve certified robustness against ℓp-norm
perturbations in continuous domains, in many tasks such as natural language processing,
the ℓp norm is not well-defined for discrete perturbations. To resolve this issue, inputs from
a discrete domain are usually mapped to vectors in the ℓp space before being passed to a
classifier; this is also known as a word embedding. We require two properties of such a
mapping: 1) zero information loss; 2) Lipschitzness with respect to the distance metric in
the input space. We show that the exact recovery problem yields a direct construction of
such mappings: suppose the set of query sequences is {q1, . . . , qm} and s is the unknown
input sequence; the mapping for s: ϕ(s) = [d(s, q1), . . . , d(s, qm)] has Lipschitz constant at
most

√
m (in the ℓ2 norm) and maintains complete information about s. Similar to edit

distance, which can be used for describing the adversarial capability in changing sequences,
the DTW and Fréchet distances have received significant attention for their flexibility in
handling temporal sequences. The special instance of our problem on DTW and Fréchet
distances may be useful for analyzing the robustness of DTW neural networks [12].
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A distance embedding further inspires theoretical applications in functional analysis [36].
While the space of input sequences s is a metric space, it may not be a Hilbert space with a
definition of norm and inner product. Our result provides us with a tool to define a mapping
from a metric space to a Hilbert space without loss of information about the input sequences.
One can then use the norm or inner product to analyze input sequences, e.g., when two input
sequences are orthogonal and how to normalize an input sequence to have norm 1.

1.1 Our Results
Assumptions. Throughout the paper, we assume the alphabet of the unknown input
sequence s is {0,1}. We note that under this assumption, our results for DTW described
below will apply to p-DTW. To recover the sequence s, we submit adaptive or non-adaptive
query sequences to a distance oracle. As we will show in Section 1.1.1, for some distance
metrics, there exist input sequences that any sequence on a binary alphabet cannot distinguish.
Therefore, our query sequences may be allowed to utilize alphabets outside {0,1}with O(1)
extra characters to exactly recover the input sequence. We assume the maximum length of s

is n, while the exact length of s is unknown.

Extension to non-binary alphabets. Our results are presented for the binary alphabet
{0, 1}. We note that these results can be extended to any non-binary alphabet Σ by encoding
the non-binary alphabet in a binary domain. This will increase the query complexity by a
factor of |Σ| if using a one-hot encoding, or a factor of log(|Σ|) if using a binary encoding, for
example. This extension works for the results for all distance metrics shown in this paper.

We begin with a general coordinate descent framework that can help recover sequences
from a large class of distance oracles, including but not limited to earth mover’s distance
(EMD), cascaded norms (ℓp of ℓq), and A norms (a.k.a. Mahalanobis distance). We then
present improved results on three specific distance metrics: edit distance, DTW distance,
and Fréchet distance. We first provide several observations on the sequence recovery problem,
showing the existence of indistinguishable input sequences despite the fact that we can query
their DTW and Fréchet distances with all possible binary query sequences. We also prove
lower bounds on the query complexity in our distance recovery problem with respect to
DTW, edit, and Fréchet distances. Then we present our main results on recovering sequences
from edit, DTW, and Fréchet distance oracles, with adaptive and non-adaptive strategies.

1.1.1 Existence of Indistinguishable Sequences
We observe that, for some distances, there exist sequences that cannot be distinguished
by any query sequence over a binary alphabet. This can be proved by showing concrete
examples, i.e., a pair of sequences that cannot be distinguished, which we show is true for
the DTW and the Fréchet distances, as stated in the following theorem.

▶ Theorem 1 (Informal, existence of indistinguishable sequences). There exists a pair of
sequences (s, s′) such that s and s′ cannot be distinguished by any query sequence on a binary
alphabet, for the DTW distance and the Fréchet distance.

The formal proof of this theorem for the DTW distance is deferred to Theorem 24. The
analogous discussion for the Fréchet distance can be found in Section 6. Due to the existence
of indistinguishable sequences, we define the concept of an equivalence class of sequences,
which is a set of input sequences which are indistinguishable from all queries by a given
distance oracle.

ITCS 2023



73:4 Recovery from Non-Decomposable Distance Oracles

This observation suggests the scope of the distance recovery problem we study. We further
categorize the recovery guarantee into the following three levels, from strong to weak: 1)
recover the exact input sequence; 2) recover any sequence in the same equivalence class
of the input sequence, where the equivalence class is defined to be a set for which any
two input sequences in the equivalence class cannot be distinguished by calling the distance
oracle on all query sequences; 3) recover any sequence which has zero distance to the
input sequence. While the third level is the weakest one, in certain cases it can be reduced
to the first two levels – for norm-induced distance functions, the recovered sequence is exactly
the input sequence; for semi-norm-induced distance functions, the recovered sequence is in
the same equivalence class. We will show that our general coordinate descent framework can
recover sequences with the third-level guarantee.

1.1.2 General Coordinate Descent Framework for Adaptively Querying
Distance Oracles

We develop a general framework for recovering an input sequence from adaptive queries, which
models the problem as a zero-th order optimization problem and utilizes a coordinate-descent-
based algorithm to give a solution. The coordinate descent framework defines the distance
between the input sequence and the query sequence as the loss function. The objective of
the optimization is to reduce the loss function to 0, which guarantees what we call the third
level of recovery. We define a step operation to modify the query sequence. For example, in
the context of edit distance, a step operation is defined as adding/removing/substituting
a character of the query sequence. To perform coordinate descent, our algorithm performs
one step operation each time and queries the oracle to find a direction for which the loss
decreases by 1. By iteratively performing this method, the loss can be reduced to 0 and we
show that the overall complexity of this method is poly(n), given that the maximum length
of the sequence is n. For a large class of non-decomposable distance functions, such as the
earth mover’s distance (EMD), the cascaded norm (ℓp of ℓq), and the A norm, we can use
this framework to yield a solution, as stated in the following theorem.

▶ Theorem 2 (Informal, Coordinate Descent for Adaptive Distance Queries). For an arbitrary
distance oracle, a binary alphabet {0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n,
using coordinate descent can reduce the distance to the input sequence s to 0, by adaptively
querying the distance oracle between s and a set of query sequences with query complexity at
most poly(n).

Sufficient conditions for using this framework and details can be found in Theorem 15.

1.1.3 Lower Bounds on the Recovery Problem
If we study the problem of exact recovery (the first level of recovery), we can obtain an
information-theoretic lower bound of Ω̃(n) for various distance oracles, given by the following
theorem. Here f(n) = Ω̃(g(n)) if f(n) = Ω(g(n)/polylog(n)).

▶ Theorem 3 (Informal, Lower Bounds for Exact Recovery). For any input sequence s ∈ {0, 1}i

where 0 ≤ i ≤ n, if for any input sequence and query the distance oracle has poly(n) possible
output values, any algorithm which exactly recovers s by querying the distance oracle between
s and a set of query sequences requires query complexity at least Ω̃(n).

The idea behind this bound is that, there are exponentially many possible input sequences
with length at most n, while the output of each query is a distance between two sequences
which only has poly(n) possibilities. Hence, we need at least Ω̃(n) = logpoly(n)(2n+1) queries.
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We also show the same lower bound holds for any adaptive randomized query algorithm,
by a reduction to a one-way communication game called INDEX [28]. We instantiate this
theorem for the edit distance and DTW distance in Theorem 19 and Theorem 32.

We note for the DTW distance and Fréchet distance, there exist indistinguishable
sequences which lead to the recovery problem for an equivalence class. Since the total number
of equivalence classes is smaller than the number of input sequences, the previous lower
bound no longer holds. So we need a different argument, as we give in the following theorem:

▶ Theorem 4 (Informal, Lower Bounds for Equivalence Class Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, any algorithm which recovers the
sequence in the same equivalence class as s, by querying the DTW or Fréchet distance oracle
between s and a set of query sequences, requires query complexity at least Ω(n).

The formal proof is given in Theorem 31 and Theorem 40.

1.1.4 Adaptively Querying Distance Oracles, Optimally
We first answer the distance recovery problem with adaptive query strategies. Our solutions
are summarized in the theorem below.

▶ Theorem 5 (Informal, Upper Bounds for Adaptive Exact Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which
can exactly recover the input sequence s, by adaptively querying the distance oracle (for the
edit and DTW distances) between s and a set of query sequences with query complexity at
most O(n).

All results in Theorem 5 match our lower bounds on the query complexity. Without
extra character(s), using the DTW distance oracle we can only recover a sequence in the
same equivalence class. Our result in Theorem 5 for the DTW distance is achieved with the
assistance of 1 extra character outside the alphabet {0, 1}, and the proof and algorithm can
be found in Theorem 18.

For the edit distance, we have two different adaptive algorithms that can achieve the
O(n) bound. The first algorithm makes use of the property that, for two sequences, the
edit distance is equal to the difference in their lengths, if and only if one sequence is a
subsequence of the other. We construct an O(n) adaptive query set and a binary search
algorithm utilizing this property to recover the input sequence. Our second algorithm instead
queries the length of the input sequence by an empty sequence and then finds a set of O(n)
bases as the query set, from which we can reconstruct the input sequence. These are further
detailed in Theorem 16.

For the Fréchet distance, adaptive and non-adaptive strategies are essentially the same,
because we prove that 2n−1 queries are necessary and sufficient for recovering from a Fréchet
distance oracle. However, we can only recover a sequence in the equivalence class in this
setting. This result is described as a non-adaptive query strategy in Theorem 42.

1.1.5 Non-adaptively Querying Distance Oracles, Optimally
Next we describe our non-adaptive query strategies for the distance recovery problem.
Theorem 6 shows upper bounds for exact sequence recovery, while Theorem 7 summarizes
our results on the recovery problem of finding a sequence in the same equivalence class as
the input sequence.
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Table 1 Summary of our results for recovering arbitrary input sequences of length n under the
constraint that the query length is O(n). LB: Lower Bound. #EC: Number of Extra Characters.

Oracle Query Complexity LB Adaptive? #EC Level of Recovery Positions

Edit O(n) Ω̃(n) Adaptive 0 Exact sequence Theorem 16
Edit n + 1 Ω̃(n) Non-adaptive 1 Exact sequence Theorem 21
Edit n2 Ω̃(n) Non-adaptive 0 Exact sequence Theorem 23

(p-)DTW n + 1 Ω̃(n) Adaptive 1 Exact sequence Theorem 18
(p-)DTW n Ω(n) Non-adaptive 0 Equivalent class Theorem 27
(p-)DTW n2 + n Ω̃(n) Non-adaptive 1 Exact sequence Theorem 33
(p-)DTW n + 2 Ω̃(n) Non-adaptive 2* Exact sequence Theorem 34
Fréchet 2n − 1 2n − 1 N/A† 0** Equivalent class Theorem 42

Any distance poly(n) - Adaptive 0 Zero distance to input Theorem 15

† For both adaptively and non-adaptively querying the Fréchet distance oracle, the optimal bound on the
query complexity is 2n − 1.
* Increasing #EC to a larger constant cannot improve the query complexity to be better than Õ(n).
** Involving extra characters not only cannot improve the level of recovery from “equivalence class” to
“exact sequence”, but also cannot improve the query complexity (see Theorem 41).

▶ Theorem 6 (Informal, Upper Bounds for Non-adaptive Exact Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which
can exactly recover the input sequence s by querying the distance oracle (for the edit and
DTW distances) between s and a non-adaptive set of query sequences with query complexity
at most O(n), with the assistance of O(1) extra characters in the query sequences.

With 1 extra character, we show the construction of a set of non-adaptive queries that
can exactly recover sequences from the edit distance (Theorem 21), while with 2 extra
characters, we can exactly recover input sequences from the DTW distance (Theorem 34).
Both results match our lower bound on the query complexity, while we complement our
results with an O(n2) query complexity algorithm for the DTW distance with 1 extra
character (Theorem 33). We note that non-adaptive strategies have limited power compared
to adaptive strategies. Hence, we need to use more extra characters to construct the query
set to solve the problem. For the edit distance, introducing more than 1 extra character
cannot encode more information in the query results, because the cost between 0 (or 1) and
any other additional character is always the same.

▶ Theorem 7 (Informal, Upper Bounds for Non-adaptive Equivalence Class Recovery). For
a binary alphabet {0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists
an algorithm which can recover the sequence in the same equivalence class as the input
sequence s, by querying the distance oracle (for the DTW and Fréchet distances) between s

and a non-adaptive set of query sequences with query complexity at most O(n), without extra
characters in the query sequence.

By Theorem 7, if we are not allowed to use extra characters, we can only recover the
sequence in the same equivalence class as the input sequence for the DTW distance. Our
query construction and proof are shown in Theorem 27. We also remark that for Fréchet
distance, using extra characters cannot help to improve the results of Theorem 42, as shown
in Theorem 41.

Summary. The main technical results of this paper are summarized in Table 1.
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2 Preliminaries

We briefly introduce the definitions and notations of the distance metrics we consider, namely,
the edit distance, DTW distance, and Fréchet distance.

▶ Definition 8 (Edit Distance, Levenshtein Distance). Given two sequences x and y, the edit
distance dL(x, y) equals the minimal number of edit operations required for a sequence x to
be transformed to sequence y. Specifically, we consider the Levenshtein distance [30] which
captures the addition, deletion, and substitution of single symbols.

▶ Definition 9 (Runs and Expansion, [9]). The runs of a sequence x are the maximal substrings
consisting of a single repeated character. Any sequence obtained from x by extending x’s runs
is an expansion of x. We denote the number of runs of a sequence x by runs(x).

▶ Definition 10 (Condensed Expression). We say y is a condensed expression of x if (i) y

has the same number of runs as x, (ii) each run of y only has 1 character.

▶ Definition 11 (Subsequence and Substring). Given a sequence y, its subsequence x is derived
by deleting zero or more characters from y without changing the order of the remaining
characters. The substring x′ is a contiguous subsequence of y. We use x[a] to denote the
a-th character of the sequence x, and x[a, b] to denote a substring of x which starts from the
a-th character and ends at the b-th character.

▶ Definition 12 (DTW Distance, [9]). Consider two sequences x, y of length m1 (and m2,
respectively). A correspondence (x, y) between x and y is a pair of equal-length expansions of
x and y. The cost of a correspondence is calculated as the ℓ1 distance between x, y: ∥x − y∥1.
A correspondence between x and y is said to be optimal if it has the minimum attainable
cost, and the resulting cost is called the dynamic time warping distance dDT W (x, y), that
is dDT W (x, y) = min(x,y)∈Wx,y

∥x − y∥1, where Wx,y denotes the set of all correspondences
(x, y).

▶ Definition 13 (p-DTW Distance, [11]). By replacing the ℓ1 norm in Definition 12 with the
ℓp norm (1 ≤ p < ∞), we obtain the definition for the p-DTW distance.

▶ Definition 14 (Fréchet Distance). By replacing the ℓ1 norm in Definition 12 with the ℓ∞
norm, we obtain the definition of the Fréchet distance.

Note. The Fréchet distance in our paper is equivalent to the discrete Fréchet distance in
the prior works of [3, 7].

3 Recovery Using Adaptive Queries

3.1 General Framework of Coordinate Descent
▶ Theorem 15 (Coordinate Descent). There exists an adaptive algorithm which returns a
sequence s′ such that its distance to the input sequence s satisfies dist(s′, s) = 0 using poly(n)
queries, given that the following two conditions are true:

∀q, q′(q′ ̸= q), we can find q′′ in poly(n) queries such that dist(q, q′) > dist(q, q′′);
∀q, q′, dist(q, q′) ≤ poly(n).

Proof sketch. The two above conditions naturally imply a local search algorithm. To
recover the sequence q, we perform the following steps: 1) randomly initialize q′. 2) find
q′′ such that dist(q, q′) > dist(q, q′′). 3) set q′ to q′′ and repeat 2) to 3). The algorithm
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terminates if dist(q, q′) = 0. Since we reduce dist(q, q′) by least 1 in each iteration, and
dist(q, q′) ≤ poly(n), the algorithm terminates in at most poly(n) iterations. Therefore, the
total number of queries is O(poly(n)). Notice that the above local search algorithm can be
applied to all aforementioned distances. Specifically, the complexity for the edit distance,
DTW distance and Fréchet distance is O(n2), O(n2) and O(n), respectively. A detailed
instantiation of the algorithm on these distances can be found in Appendix A. ◀

3.2 Edit Distance
We show that a binary input sequence with maximum length n can be adaptively recovered
using at most O(n) queries to the edit distance oracle, by the following theorem.

▶ Theorem 16 (Adaptive Strategy for Edit Distance). For a binary alphabet {0, 1}, and
any input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm to
recover the input sequence s using at most n + 2 queries Q of length ≤ n and the exact
Levenshtein distance of s to each query sequence qi ∈ Q, where the query sequences use no
extra characters.

Proof. The adaptive query strategy is the following. We first use an empty sequence to
query the length ℓ ∈ [n] = {1, 2, . . . , n} of the input sequence. Then we use ℓ + 1 ≤ n + 1
queries: an e0 = 0ℓ query and a set of ei = 0i−110ℓ−i, i ∈ [ℓ] queries (all with length ℓ).

▷ Claim 17. s[i] =
{

0, if dL(s, e0) − dL(s, ei) ≤ 0;
1, if dL(s, e0) − dL(s, ei) = 1.

Proof of claim. If s[i] = 1, dL(s, e0)−dL(s, ei) = (#1’s in s) − (#1’s in s−1) = 1. If s[i] = 0,
dL(s, e0) = (#1’s in s). We show that dL(s, ei) ≥ (#1’s in s). First, dL(s, ei) ≥ (#1’s in s)
− (#1’s in ei) = #1’s in s − 1. Consider the series of transformations from s to ei: 1) If we
only perform substitutions on s, we need at least #1’s in s + 1 operations. 2) Otherwise we
show that we have at least one insertion. If we perform at least one deletion operation(s) on
s, since s and ei are of the same length, we would need at least one insertion(s) on s. Note
that insertions on s cannot reduce the difference of the number of 1’s between s and ei. Thus,
we need at least (#1’s in s −1) extra operations to reduce the difference to 0 and we have
dL(s, ei) ≥ (#1’s in s −1) +1 = #1’s in s. Combining these cases, we obtain dL(s, ei) ≥
(#1’s in s). ◁

By claim 17, we can recover the sequence s character by character. ◀

▶ Remark. We remark that we have two meaningful strategies for edit distance, for details
please refer to the full version of this paper.

3.3 DTW Distance
▶ Theorem 18 (Adaptive Strategy for DTW Distance). For a binary alphabet {0, 1}, and any
input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm to recover the
input sequence s using at most n + 1 queries Q of length ≤ n and the exact DTW distance
of s to each query sequence qi ∈ Q, where the query sequences use 1 extra character.

Proof. Using an adaptive method, for a binary alphabet {0, 1}, an input sequence s ∈ {0, 1}i

where 0 ≤ i ≤ n can be exactly recovered with at most n + 1 queries to the DTW distance
oracle. We need 1 additional character, which is the fractional character 1

2 , to construct the
set of query sequences. The details are presented as follows. Here we use q(i) to denote the
i-th query, sj to denote the j-th character in s and q

(i)
j to denote the j-th character in q(i).
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First, with a single-character query sequence q(1) = 1
2 , we can obtain the length of the

input sequence s, which is ℓ = 2dDT W (s, q(1)). We show how to recover the whole sequence
by induction.
Base case: To recover s1, we consider the query q(2) = 0 ( 1

2 )ℓ−1. Note that each 1
2 in the

q(2) corresponds to at least 1
2 cost in the query result, and we have dDT W (s, q(2)) ≥ ℓ−1

2 . If
s1 = 0, then s1 and q

(2)
1 are perfectly matched, so dDT W (s, q(2)) = ℓ−1

2 . Otherwise, the first
character 0 in q(2) would correspond to cost > 0 in the query result, so dDT W (s, q(2)) > ℓ−1

2 .
Induction step: Suppose we have recovered s1, s2, . . . , sk. We show that we can recover
sk+1 with the query sequence q(k+2) = s1s2 · · · s2

k( 1
2 )ℓ−k−1. Noting that each 1

2 in q(k+2)

corresponds to at least a 1
2 cost in the query result, we have dDT W (s, q(k+2)) ≥ ℓ−k−1

2 .
If sk+1 = sk, then s1, s2, . . . , sk, sk+1 and q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k , q

(k+2)
k+1 can be perfectly

matched, so dDT W (s, q(k+2)) = ℓ−k−1
2 . Otherwise, we claim that dDT W (s, q(k+2)) > ℓ−k−1

2 .
If the cost corresponding to q

(k+2)
k+1 > 0, we would already have dDT W (s, q(k+2)) > ℓ−k−1

2 ,
so we can assume that the cost corresponding to q

(k+2)
k+1 is 0. Since q

(k+2)
k+1 = sk ≠ sk+1, we

know that q
(k+2)
k+1 cannot be matched with sk+1. Suppose q

(k+2)
k+1 is matched with substring

su, su+1, . . . , su+t in the optimal DTW matching, where t ≥ 0 and su = su+1 = · · · =
su+t = q

(k+2)
k+1 = sk. Since k + 1 /∈ [u, u + t], we either have k + 1 > u + t or k + 1 < u. If

k + 1 > u + t, since ∀u + t < j ≤ ℓ we have sj matched to a 1
2 , the total cost would be

at least ℓ−(u+t)
2 > ℓ−k−1

2 . Otherwise if k + 1 < u, note that s1, s2, . . . , su are matched to
q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 in the optimal DTW matching. Since sk+1 ̸= sk, the number of

runs in s1, s2, . . . , sk+1 would be greater than the number of runs in q
(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1

by 1. Thus, the number of runs in s1, s2, . . . , su would be greater than the number of runs in
q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 by at least 1, and they cannot be perfectly matched. Therefore, the

cost corresponding to q
(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 would be greater than 0, yielding a total cost

of greater than ℓ−k−1
2 . Therefore, we can recover the input sequence of maximum length n

with n + 1 queries. ◀

4 Recovery Using a Non-Adaptive Edit Distance Oracle

We begin with a lower bound for edit distance.

▶ Theorem 19. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n by querying the Levenshtein distance to a set of
sequences of length O(n) requires a query complexity of Ω( n

log n ).

Proof. We start with a lower bound for deterministic algorithms. For each query, the result
is an integer d = O(n), yielding O(n) possibilities. For 0 ≤ k ≤ n, the number of different
sequences of length k is 2k, and the total number of sequences of length no greater than n

would be
∑n

k=0 2k = 2n+1 − 1. Thus, to distinguish all possible sequences, one would need
at least logO(n)(2n+1) = Ω( n

log n ) queries.
Next we give a proof if one is allowed to use a randomized algorithm. To show this, we

introduce a one-way two-party communication game called INDEX.

▶ Definition 20 (INDEX Game [28]). Consider two players Alice and Bob. Alice and Bob
have access to a common public coin and their computation can depend on this. Alice
holds an n-bit string x ∈ {0, 1}n and is allowed to send a single message M to Bob (i.e.,
this is a one-way protocol). Bob has an index i ∈ [n] and his goal is to learn x[i], i.e.,
Prr[Out(M) = x[i]] ≥ 2

3 ).
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It is shown in [28] that the above problem requires |M | = Ω(n). To reduce our recovery
problem from the INDEX game, let R be an adaptive randomized recovery algorithm which
works as follows. First, Alice randomly selects a query q1 based on the first part r1 of the
shared public coin, and computes d(q1, x). Alice then adaptively selects a set of queries
qi, where each qi is chosen based on disjoint parts r1, . . . , ri of the public coin, as well as
the responses d(q1, x), . . . , d(qi−1, x) to previous queries. Alice then sends all query results
d(qi, x) to Bob as the message M .

We now show that, if the algorithm R is correct w.p. 2/3, then M contains Ω( n
log n ) query

results. Given the success probability 2/3 of R, from message M , Bob can reconstruct the
string x w.p. at least 2/3, so Bob can learn each bit of x w.p. at least 2/3. According to [28],
|M | = Ω(n) bits. Since each distance query result contains at most O(log n) bits, it follows
that Ω( n

log n ) queries are required. ◀

4.1 Exact Recovery with Extra Character(s)
We now move on to the analysis of our upper bound for edit distance with the assistance of
extra character(s).

▶ Theorem 21. For a binary alphabet {0, 1} and an input sequence s ∈ {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n) query
sequences Q of length ≤ n and the exact Levenshtein distance of s to each query sequence
qi ∈ Q, where an extra character 2 is allowed in the query sequences.

Proof. To prove Theorem 21, the following Lemma 22 gives a useful result.

▶ Lemma 22. Consider a sequence defined on a binary alphabet {0, 1} with maximum length
n, which is defined as s = [prefix]0[suffix] where the length of sequence a is ∥s∥ = n′ ≤ n and
the length of the prefix is ∥[prefix]∥ = j. Consider another sequence s′ = 1j+12n−j−1, where
2 denotes a random character not in the binary alphabet {0, 1}. Let k denote the number of
1’s in the prefix [prefix] of the sequence s. The claim is that the edit distance between s and
s′ is greater than or equal to n − k.

Due to space constraints, the proof of Lemma 22 is deferred to the full version. The
construction of the query sequences is an extension of the query sequence we present in
Lemma 22. We describe how this can be generalized to distinguish all the different input
sequence pairs by constructing a set of n + 1 query sequences. We show that using this set of
queries, any two possible input sequences s ≠ s′ can be distinguished by n + 1 non-adaptive
query results.

Query Sequence Construction. We assume the query sequences can include a character
that is not in the alphabet. The n + 1 query sequences are constructed as follows. We use
an empty sequence together with n sequences of the form 1j2n−j for j = 1, . . . , n where 2
denotes a “not-in-the-alphabet” character. We will show that any two input sequences s ̸= s′

are distinguished by this construction of query sequences.
First, it is clear that the empty sequence can distinguish two sequences with different

length, i.e., |s| ̸= |s′|. Next we need to show that, for two input sequences s ̸= s′ with the
same length n′ ≤ n, the remaining query sequences can distinguish them. Without loss of
generality, we suppose s and s′ have the same prefix with length j and first disagree on the
(j + 1)th character. That is, s = [prefix]1[ssuffix] and s′ = [prefix]0[s′

suffix] where ssuffix and
s′

suffix are not necessarily equal. Consider a query sequence qi = 1j+12n−j−1. We use the
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results from Lemma 22 and obtain dist(s′, qi) ≥ n − k where k denotes the number of 1’s in
the prefix of sequence s′. Since we also know that d(s, qi) ≤ n − k − 1, this query sequence
qi can distinguish s and s′. This finishes the proof. ◀

▶ Remark. The proof for Theorem 21 implicitly implies an exact recovery algorithm that
takes the edit distance query results as input and outputs the target sequence. We defer the
algorithm to the full version of the paper.

4.2 Exact Recovery without Extra Characters
▶ Theorem 23. For a binary alphabet {0, 1} and an input sequence s ∈ {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n2) query
sequences Q of length ≤ n and the exact Levenshtein distance of s to each query sequence
qi ∈ Q, without extra characters.

Proof. The construction can be obtained by naturally extending the query set in the proof
of Theorem 16 to all lengths ℓ ∈ [n]. This gives us

∑n
1 n = O(n2) queries. ◀

5 Recovery Using a Non-Adaptive DTW Distance Oracle

5.1 Hardness Result without Extra Characters
▶ Theorem 24. There exists a pair of input sequences s and s′ such that for any query
sequence q, dDT W (s, q) = dDT W (s′, q). That is, s and s′ cannot be distinguished by DTW
Distance Oracle queries without extra characters.

Consider the following counterexample: s = 010110 and s′ = 011010. We can argue that
this pair of input sequences cannot be distinguished by any binary sequence query q. Due
to space constraints, the proof can be found in the full version of the paper. This hardness
result shows that sequences cannot be exactly recovered using DTW queries.

5.2 Recovery without Extra Characters w.r.t. Equivalence Classes
For ease of presentation, we say that any two different input sequences s and s′ are distin-
guishable if s and s′ can be distinguished by DTW Distance Oracle queries. We categorize
mutually indistinguishable sequences into equivalence classes. In this context, using binary
queries, the best solution we can provide in this setting is to recover those input sequences
up to their equivalence class. First, we would like to characterize the set of indistinguishable
binary sequences, given a parameterized sequence length n. The equivalence class is not so
simple to describe, as can be seen from Observation 4 of [33]. However, we can propose an
optimal query strategy in this setting to distinguish all distinguishable sequences and prove
optimality by making use of the reduction between the calculation of DTW distance and the
min 1-separated sum problem [1, 33]. We introduce the necessary results from [33] below
and interpret them in our setting.

MSS Problem. The min 1-separated sum (MSS) problem takes as input a sequence seq of
m positive integers and an integer r ≥ 0. The problem is to select r integers from seq and
minimize their sum, under the constraint that any two adjacent integers cannot be selected
simultaneously. We say (seq, r) is an MSS instance.
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▶ Theorem 25 (DTW-to-MSS Reduction, [33], Theorem 2). Let x ∈ {0, 1}m and y ∈
{0, 1}n be two binary strings such that x[1] = y[1], x[m] = y[n], and |x̃| ≥ |ỹ|. Then,
the DTW distance between x and y, i.e., dDT W (x, y), equals the sum of a solution for
MSS

(
(
∣∣x(2)

∣∣ , . . . ,
∣∣x(|x̃|−1)

∣∣), (|x̃| − |ỹ|)/2
)
.

For ease of presentation, we will use MSS(x, (|x̃|−|ỹ|)/2) to represent the same MSS instance.

▶ Theorem 26 ([33], Observation 4). Let x ∈ {0, 1}m, y ∈ {0, 1}n with m′ := |x̃| ≥ n′ := |ỹ|.
Further, let a :=

∣∣x(1)
∣∣ , a′ :=

∣∣∣x(m′)
∣∣∣ , b :=

∣∣y(1)
∣∣, and b′ :=

∣∣∣y(n′)
∣∣∣. The following holds:

If x[1] ̸= y[1], then:

dDT W (x, y) =


max(a, b), m′ = n′ = 1;
a + dDT W (x[a + 1, m], y), m′ > n′ = 1;
min (a + dDT W (x[a + 1, m], y), b + dDT W (x, y[b + 1, n])) , n′ > 1.

If x[1] = y[1] and x[m] ̸= y[n], then:

dDT W (x, y) =
{

a′ + dDT W (x [1, m − a′] , y) , n′ = 1;
min (a′ + dDT W (x [1, m − a′] , y) , b′ + dDT W (x, y [1, n − b′])) , n′ > 1.

In Theorem 26, we call a, b, a′ and b′ (which are the length of first/last blocks of x or y)
offsets. Theorem 26 actually states that, for two sequences x, y with different starting and
ending characters, by removing the first/last run of x or y, calculating dDT W (x, y) can be
reduced to calculating the offset and solving a DTW sub-problem where the sub-sequences
start and end with the same character.

With these useful results at hand, now we prove the following results for recovering
sequences using the DTW distance oracle with only binary queries.

▶ Theorem 27. There exists a set Q of O(n) queries, each of which has O(n) length, such
that for any two different input sequences s and s′, s and s′ are distinguishable ⇐⇒ s and
s′ can be distinguished by Q.

Proof. First (⇐), for any given query set Q and two different input sequences s and s′, if s

and s′ can be distinguished by Q then s and s′ are distinguishable. Then we need to prove
the opposite side (⇒). To see this, we construct the following query set Q and prove the
contrapositive: if s and s′ cannot be distinguished by Q, then s and s′ are not distinguishable.

Let zi =


0n, i = 1;
0n1(01)m−10n, i = 2m + 1;
0n(10)m−11n, i = 2m,

and oi =


1n, i = 1;
1n0(10)m−11n, i = 2m + 1;
1n(01)m−10n, i = 2m,

where 1 ≤ i ≤ n and m is a positive integer. It is clear that oi’s and zi’s are of O(n)
length. Let Q = {oi|1 ≤ i ≤ n}

⋃
{zi|1 ≤ i ≤ n}. We show that given any two different

input sequences s and s′, if s and s′ cannot be distinguished by Q then s and s′ are not
distinguishable.

▷ Claim 28. Given two different input sequences s and s′, if the condensed expressions of s

and s′ are different, then s and s′ can be distinguished by Q.

Suppose s and s′ cannot be distinguished by Q. By Claim 28, we know that the condensed
expression of s and s′ are the same. Suppose the number of runs in s and s′ is k, the length
of the i-th run in s is αi, and the length of the i-th run in s′ is α′

i. We denote the length of
a sequence by len(·).
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▷ Claim 29. If s and s′ cannot be distinguished by Q, then k ≥ 3.

▷ Claim 30. If s and s′ cannot be distinguished by Q, then α1 = α′
1 and αk = α′

k.

We defer the proof of the claims 28, 29, and 30 to the full paper. We next show that s and s′

cannot be distinguished by any binary query r. Suppose the number of runs in r is l, and the
length of the i-th run in r is βi. Given s and r, we can calculate dDT W (s, r) with Theorem
26 and Theorem 25. Note that in Theorem 26, we may remove the first/last blocks of s (and
s′) or r to reduce to the case of Theorem 25. By Claim 30 we have α1 = α′

1 and αk = α′
k,

while β1 and βl are only related to r but not s and s′. Therefore, the offsets while reducing
to the case of Theorem 25 are the same. To prove that dDT W (s, r) = dDT W (s′, r), we only
need to prove that for each possible reduction, the corresponding reduced MSS instances
have the same sum of solutions.

Suppose after applying Theorem 26, s and r are reduced to sub-sequences s∗ and r∗

(where s∗ and r∗ have the same beginning and ending characters), while s′ and r are reduced
to s′∗ and r∗. Now we calculate dDT W (s∗, r∗) and dDT W (s′∗, r∗) according to Theorem 25.
Suppose s∗ and s′∗ have k∗ runs and r∗ have l∗ runs.
Case 1. If k∗ = l∗, then dDT W (s∗, r∗) = dDT W (s′∗, r∗) = 0.
Case 2. If k∗ < l∗, by Theorem 25 the generated MSS instance only depends on r∗ and k∗.

Thus, dDT W (s∗, r∗) = dDT W (s′∗, r∗).
Case 3. If k∗ > l∗, we have the MSS instances MSS(s∗, k∗−l∗

2 ) and MSS(s′∗, k∗−l∗

2 ). Note
that, we can always find a query q ∈ Q which has l∗ runs and has the same starting and
ending characters as s∗ and s′∗. Consider dDT W (s, q) and dDT W (s′, q). Note that the
first and last runs of q are both of length n and removing them would yield cost at least
n - the only possible reduction would be dDT W (s∗, q) and dDT W (s′∗, q). Since q cannot
distinguish s and s′, we have dDT W (s, q) = dDT W (s′, q), so dDT W (s∗, q) = dDT W (s′∗, q),
implying that MSS(q∗, k∗−l∗

2 ) and MSS(q′∗, k∗−l∗

2 ) have the same sum of solutions.
Therefore, dDT W (s∗, r∗) = dDT W (s′∗, r∗).

Combining the 3 cases above, we always have dDT W (s∗, r∗) = dDT W (s′∗, r∗), so dDT W (s, r) =
dDT W (s′, r), implying that s and s′ cannot be distinguished by r. This finishes the proof for
Theorem 27. ◀

We complete the study of equivalence class recovery with a lower bound on the query
complexity using binary queries.

▶ Theorem 31. For binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ, where 0 ≤ ℓ ≤ n, up to equivalence class, by querying the DTW distance
to a set of sequences, requires a query complexity of Ω(n).

Proof sketch. Note that in the query construction of Theorem 27, our constructed query set
Q∗ contains queries of all numbers of runs. The intuition for the proof of Theorem 31 is that,
for each given constant-length interval of number of runs, we can construct a certain pair of
input sequences which can only be distinguished by queries with a number of runs within
this interval. E.g., it can be proved that s1 = 013013031303130 and s2 = 0130213021303130
can only be distinguished with queries with a number of runs within [4, 10]. Thus, an Ω(n)
number of such constructed pairs of input sequences can correspond to Ω(n) disjoint intervals,
yielding an Ω(n) lower bound for this problem.

We now construct a class of pairs of input sequences (s, s′) such that s and s′ can only
be distinguished by queries q with a number of runs within [#runs(s)+c1, #runs(s)+c2]
for two constants c1 < c2. According to Theorem 25, as long as the constructed pair
of input sequences (s, s′) have the same number of runs, for a query q with more than
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#runs(s) number of runs, dDT W (q, s) and dDT W (q, s′) are only determined by the query
q and #runs(s), and thus q cannot distinguish s and s′. For a query q with fewer than
#runs(s) number of runs, dDT W (q, s) and dDT W (q, s′) are reduced to two MSS instances.
Note that for different queries q, the sequences (i.e., the first parameter) of MSS instances
remain the same, while #runs(q) determines the number of elements selected in the sequences
of MSS instances (i.e., #runs(s)−#runs(q)

2 ). We hope to construct a pair of sequences seq

and seq′ such that MSS(seq, 1) ̸= MSS(seq′, 1) and MSS(seq, x) = MSS(seq′, x) for all
x > 1: let seq and seq′ be the sequences corresponding to MSS instances of s and s′; in this
way, s and s′ would still be distinguishable because MSS(seq, x) ̸= MSS(seq′, x) for x = 1,
but any query q with fewer than #runs(s) − 4 runs cannot distinguish s and s′ because
MSS(seq, x) = MSS(seq′, x) for all x ≥ 2, where x = #runs(s)−#runs(q)

2 . ◀

5.3 Exact Recovery with Extra Character(s)
▶ Theorem 32. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ, where 0 ≤ ℓ ≤ n, by querying the DTW distance to a set of sequences
of length O(n) requires a query complexity of Ω( n

log n ).

Theorem 32 shows a lower bound on the exact recovery problem for DTW queries, which
is given by an information-theoretic argument, referring back to the proof of Theorem 19.

Before diving into the exact recovery problem, we first introduce the concept of matching
for the DTW distance. Given input sequence s and query sequence q, if we regard the
characters in s and q as two sets of vertices, a matching M between s and q is a bipartite
graph where each vertex has degree ≥ 1 and there do not exist “crossing” edges, i.e., ∄i < k

and j > l such that the edges (s[i], q[j]) and (s[k], q[l]) both exist. Fig (a) and Fig (b) in
Fig 1 are two examples of matchings. The weight of an edge (s[i], q[j]) in the matching is
∥s[i] − q[j]∥, and the cost of a matching is defined to be the sum of the weights of all edges
in the matching. The DTW distance between sequences corresponds to the smallest cost
of a matching between them. For the formal definitions of Monotonic Sequence, Matching,
DTW Matching, and Isomorphic Matching, please refer to the full version of our paper.

We show that, if we augment the ability of our oracles by introducing extra characters,
we can solve the DTW distance oracle recovery problem with optimal query complexity up
to polylogarithmic factors.

5.3.1 With O(1) Extra Characters
▶ Theorem 33. For a binary alphabet {0, 1} and an input sequence s := {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n2) query
sequences Q and the values dDT W (s, q) to each query sequence q ∈ Q, where the query
sequences are allowed to use only one extra character.

For the proof of Theorem 33, please refer to the full version of the paper.

▶ Theorem 34. For a binary alphabet {0, 1} and an input sequence s := {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n) query
sequences Q of length ≤ n and the values dDT W (s, q) to each query sequence q ∈ Q, where
the query sequences are allowed to use only O(1) extra characters.

Proof sketch. We would like to construct a query set of size O(n) that can recover the input
sequence using a DTW distance oracle. A natural idea is to retrieve information about the
input sequence by differentiating (i.e., computing the difference between) the query results
of neighbouring queries (i.e., queries only differing by 1 character). To achieve this, we
construct a query set satisfying the following three properties:
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Figure 1 (a) Illustration of input-uniqueness and 0/1-uniqueness; (b) Illustration of isomorphism
and differentiation, compared to Fig (a); (c) Illustration of shifting operation.

1) Isomorphism: The matchings corresponding to neighboring queries should be isomorphic.
Fig (a) and (b) in Fig 1 is an example of an isomorphism, where only one character of the
input sequence is changed, while the structure of both optimal matchings remains identical.
With this property, we know that the difference between the query results of neighboring
queries only reflects the effects of the different characters in neighboring queries. This
property is the essence of guaranteeing the correctness of differentiation.

2) Input-uniqueness: Each character in the query sequence should be matched to exactly
1 character in the input sequence. With this property, we can use differentiation to get
the information of a single character in the input sequence with a pair of neighboring
queries. Note that if the differing character in the neighboring queries is matched to multiple
characters in the input sequence, the difference in the query results can only reflect the
sum of the costs over these characters, which makes exact recovery hard. Take Fig (a)
and Fig (b) in Fig 1 as an example. Input-uniqueness is satisfied for both Fig (a) and Fig
(b), since all characters in the query sequences of both figures have degree 1. Since Fig
(a) has cost 3(1 − a) + 2a + b while Fig (b) has cost 2(1 − a) + 2a + (1 − b) + b, we know
that Cost(Fig(a)) − Cost(Fig(b)) = b − a. By differentiation, we can infer that s[4] = 1;
otherwise, if s[4] = 0, we would have Cost(Fig(a)) − Cost(Fig(b)) = (a − 0) − (b − 0) = a − b.

Combining properties 1) and 2), we note that each character in the input sequence can
match to 1 or more characters in the query sequence, so we can obtain an expansion of
the input sequence. Based on the example, Fig (a) and Fig (b) in Fig 1, we can obtain an
expansion, 110010, of the input sequence. We can then infer that the input sequence is of
the form 1x0y10, where x, y ∈ [1, 2]. To recover the exact input sequence, we require more
information given by the following third property.

3) 0/1-uniqueness: In an optimal matching w.r.t. our constructed queries, either all 0’s
or all 1’s in the input sequence have degree 1. Using this property, we can locate the exact
position of either all 0’s or all 1’s in the input sequence, and exactly recover the input
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sequence by combining the two cases. In example Fig 1, 1-uniqueness is satisfied in Fig (a)
and Fig (b), while 0-uniqueness is not, since s[3] in both figures has degree 2. According to
1-uniqueness, we can reduce the form of the input sequence from 1x0y10 to 110y10. Similarly,
we can construct another set of queries that satisfies 0-uniqueness to locate the positions of
0’s in the input sequence, which determines y in this example.

Sequence Monotonicity → Input-uniqueness. We observe that property 2) can be obtained
from a monotonic design of the query sequences.

▶ Lemma 35. Given a monotonic sequence r = r1r2...rn where

min
i∈[n]

max{|ri − 0|, |ri − 1|} > max
i,j∈[n]

|ri − rj |, (1)

for any input sequence s with length ℓ ≤ n, given a DTW matching M for (r, s), we have
deg(ri) = 1 for all elements ri in r.

While we defer the formal proof to the full version of this work, the intuition for Lemma 35
is that, with the monotonic property and equation (1) guaranteed in our query construction,
we can ensure that there do not exist characters s[i] ∈ s and r[j] ∈ r where deg(s[i]) > 1
and deg(r[j]) > 1 are satisfied at the same time. Otherwise, for such a pair of s[i] and r[j],
we can always construct a matching with lower cost where one of their degrees is decreased
to 1. Therefore, either all characters in s or all characters in r would have degree 1. Since
len(r) = n ≥ len(s), we know that deg(ri) = 1 for all characters ri in r. Fig (a) and Fig (b)
in Fig 1 satisfy sequence monotonicity since the query sequences in both figures are monotonic
sequences of length n and mini∈[n] max{|qi − 0|, |qi − 1|} = 3

5 > ( 2
5 − 1

3 ) = maxi,j∈[n] |qi − qj |.

Sequence 0/1-preference → 0/1-uniqueness. We observe that property 3) can be guaran-
teed by the 0/1-preferred design of the query sequences. If all characters in the query sequence
are less than (or greater than) 1

2 , then we can guarantee 1-uniqueness (or 0-uniqueness) of the
input sequence. Intuitively, this would hold because, if all characters in the query sequence
are less than (or greater than) 1

2 , matching them to 0’s (or 1’s) in the input sequence yields
lower cost than matching to 1’s (or 0’s). Fig (a) and Fig (b) in Fig 1 satisfies 0-preference,
since all characters in query sequences (either a = 1

3 or b = 2
5 ) are less than 1

2 .

Query Construction. We now propose the following design of the query sequence. We
first need a single 0 query and a single 1 query to obtain the number of 1’s and 0’s in the
input sequence. Let a, b be two fractional characters that satisfy 0 < b − a < a < b < 1

2
and the denominators of a, b are co-prime. Without loss of generality, we can assume a = 1

3
and b = 2

5 . We will use a, b as the extra characters to construct the query sequences. In
particular, the rest of the query sequences (other than the 0 query and the 1 query) consist of
queries Q in the form of q(i) = an−ibi, where i = 1, . . . , n. This query construction satisfies
sequence monotonicity and sequence 0/1-preference properties. Now we need to prove it also
satisfies isomorphism.

Notation clarification. For the rest of the proof, we will use q(i) to denote the i-th query in
the query set Q and q

(i)
j the j-th character in q(i).

▶ Lemma 36. For any input sequence s, there exists an isomorphic set of matchings M,
where Mi ∈ M is optimal for query q(i) ∈ Q.
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Lemma 36 guarantees the isomorphism property of the constructed query set Q. Here we
construct an isomorphic set of matchings Mi ∈ M such that only the first 0 in the input
sequence has degree greater than 1, while all other characters in the matching are of degree 1.
Fig (a) and Fig (b) in Fig 1 are instances of M1 and M2, where the matchings in both figures
are isomorphic to each other. Note that in this construction, the structure of the matchings
is only determined by the position of the first 0 in the input sequence and the length of
both sequences. Since all query sequences in Q have the same length, an isomorphism of
constructed matchings is naturally guaranteed.

To prove the optimality of the Mi, we introduce the notion of a “shifting” operation.
Consider two 0’s in the input sequence. If any character between them has degree 1 and the
first 0 has degree greater than 1, by running the shifting operation we decrease the degree of
the first 0 by 1 and increase the degree of the last 0 by 1, while preserving the degree of all
other characters. Fig (c) in Fig 1 illustrates an example of the shifting operation.

▷ Claim 37. For our constructed query set Q, a shifting operation would not reduce the
total cost of the matching.

▷ Claim 38. Given input sequence s, query q(i) ∈ Q and any optimal matching M∗
i between

s and q(i), we can obtain M∗
i by applying a series of shifting operations to Mi.

Combining the above two claims, we can show that the Mi are always optimal, which
proves Lemma 36. So far, the constructed query set satisfies three properties – isomorphism,
input-uniqueness, and 0/1-uniqueness. Further details of our algorithm to recover the input
sequence are given in the full version. For an algorithmic sketch, see Algorithm 1. ◀

6 Recovery Using Fréchet Distance Oracle

Consider two sequences x and y (x ̸= y) defined on the binary alphabet {0, 1}. It is not
possible to distinguish any x and y under Fréchet distance, because the Fréchet distance
between x and y can be 0. To make the problem non-trivial for Fréchet distance, we first
define the concept of equivalent sequences under Fréchet distance.

▶ Definition 39 (Equivalent Sequences under Fréchet Distance). Given two sequences x and
y, we say x and y are equivalent if y is obtained by taking any bit in x and copying this bit
contiguously any number of times. For any pair of equivalent sequences, the Fréchet distance
between them is 0.

▶ Theorem 40. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}i, where 0 ≤ i ≤ n, by querying its Fréchet distance to a non-adaptive set
of sequences, requires a query complexity of Ω(n).

Proof. For each length 1 ≤ i ≤ n, there exists two non-equivalent sequences under Fréchet
distance, which are 010101 . . . and 101010 . . ., yielding 2n mutually non-equivalent sequences.
As the Fréchet distance oracle returns 0 when the input sequence and the query sequence
are equivalent and 1 otherwise, we would need at least 2n − 1 queries to exactly recover the
input sequence. If the number of queries is less than 2n − 1, we can always select 2 sequences
from the 2n mutually non-equivalent sequences which are not covered by the queries, and
these two sequences cannot be distinguished by the query sequences. This yields an Ω(n)
lower bound on the query complexity. ◀

▶ Theorem 41 (Extra Characters Are Not Helpful). Given two sequences s and s′, if dF (s, s′) =
0, then any query q with extra characters cannot distinguish s and s′.
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Algorithm 1 Exact Recovery via Non-adaptive DTW Queries (with O(1) Extra Chars).

Input: Non-adaptive query sequences Q = {q(1), q(2), . . . , q(n+2)}, where q(n+1) = 0,
q(n+2) = 1 and the rest of the queries follow our construction; The DTW
query results R = {d1, d2, . . . , dn+2}.

Output: The sequence s to be recovered.
1 Function RecoveryDTW(Q, R):
2 if dn+1 = 0 then
3 return s := 0dn+2

4 if dn+2 = 0 then
5 return s := 1dn+1

6 positions:= [], coef_1 := 0
7 for i ∈ [1, n] do ▷ Corresponding queries q(i) = an−ibi

8 coef := di ∗ 15 ∗ 2 mod 5
9 if (coef - coef_1 + 5) mod 5 = 2 then

10 positions.append(0)
11 else if (coef - coef_1 + 5) mod 5 = 3 then
12 positions.append(1)
13 coef_1 := coef
14 positions.reverse()
15 sequence := [], i := 0
16 n_0 := dn+2, n_1 := dn+1
17 while positions[i] = 1 do
18 sequence.append(1)
19 i += 1
20 i += n − n_0 − n_1
21 while i < n do
22 sequence.append(positions[i])
23 i += 1
24 return s := sequence

Proof. We show that, given an optimal matching between s and any query q, we can construct
a matching between s′ and q with the same cost, and vice versa. In this way, we know that
dF (s, q) ≥ dF (s′, q) and dF (s′, q) ≥ dF (s, q), so dF (s, q) = dF (s′, q) and q cannot distinguish
s and s′. Since dF (s, s′) = 0, s and s′ have the same condensed expression. Suppose s and s′

have k runs. Let qsi denote the substring in q which is matched to the i-th run of s, where
i ∈ [k]. We can always match all qsi’s to the i-th run of s′ instead, and obtain a matching
between s′ and q with a cost of dF (s, q). This finishes the proof of Theorem 41. ◀

▶ Theorem 42. For a binary alphabet {0, 1} and two input sequences s, s′ ∈ {0, 1}i where
0 ≤ i ≤ n and s and s′ are non-equivalent sequences under Fréchet distance, there exists an
algorithm to distinguish the input sequences s and s′, given O(n) query sequences Q and the
Fréchet distance of s and s′ to each query sequence q ∈ Q.

Proof. We first show that for each length 0 ≤ i ≤ n, there are only two non-equivalent
sequences under Fréchet distance, which are 010101... and 101010... sequences, viz., we can
identify two non-equivalent sequences by specifying the sequence length i and the starting bit.
Therefore, for a maximum length n, there are only 2n mutually non-equivalent sequences.



Z. Hu, X. Li, D. P. Woodruff, H. Zhang, and S. Zhang 73:19

Given any two different sequences from this 2n-sized collection of non-equivalent sequences
under Fréchet distance, we can use O(n) query sequences to distinguish them. That is,
we can utilize the exact set of 2n non-equivalent sequences as the query sequences. If the
query sequence p is exactly the input sequence q, the Fréchet distance between p and q is
dF (p, q) = 0. If the query sequence p is not equivalent to the input sequence q, then the
Fréchet distance between p and q is dF (p, q) = 1 because it is impossible to skip over a bit
without paying cost 1. Therefore, 2n query sequences suffice to distinguish any two sequences
from the non-equivalent sequence set and this finishes the proof. ◀

This theorem shows that, if an input is in the collection of non-equivalent sequences
under Fréchet distance, we can use O(n) queries to exactly recover this sequence given the
query results under the Fréchet distance.

7 Related Work

A distance embedding [20] embeds sequences from the original distance metric space to other
distance measures (usually lp norms), such that the distance measurements in the original
space can be preserved up to a factor of D, namely the distortion rate. The sequence distance
embedding problem is related to our problem in the sense that, in our problem, we intend to
recover the input sequence from a list of query results that are in the lp space, which can be
regarded as finding a special distance embedding. Existing works on the sequence distance
embedding problem mainly focus on constructing such an embedding which can have a close
approximation (viz., low distortion rate) and reduce the computational complexity (i.e.,
cost) on the new distance space. [5] shows a lower bound of 3/2 on the distortion rate of
embedding edit distance into ℓp norm spaces. An improvement of (log n) 1

2 −o(1) on this lower
bound [25] has been further simplified and improved into Ω(log n) by [27].

Distance embeddings can be used to estimate the distance on the complex metric space
because the evaluation and computations on the new (simpler metric) space can be significantly
faster [20]. Under the asymmetric query model (when estimating the edit distance between
x and y, the algorithm has unrestricted power accessing x but limited power accessing y), [6]
proposes a (log n)O(1/ϵ) approximation algorithm that runs in n1+ϵ time. [15] considers the
alignment problem when estimating the edit distance (finding the sequence of edits between
the estimated sequences) and presents an alignment with (log n)O(1/ϵ2) approximation in
time Õ(n1+ϵ). The sequence distance embedding problem has been investigated on other
distance metrics as well, for example, the block edit distance [20] and the Ulam distance
[16]. Existing work also shows embeddings from edit distance to the Hamming space [8, 14].
However, to the best of our knowledge, there is no prior work considering the embedding
problem of the DTW distance and the exact recovery problem based on distance queries.

8 Open Problems and Research Directions

We initiate the study of an exact recovery problem of sequences using queries to a non-
decomposable distance oracle. We show recovery algorithms for edit distance, DTW distance,
and Fréchet distance, as well as a general adaptive algorithm for a wide class of distance
oracles. We envision the following directions for future work.

First, for the edit distance, there is still a quadratic gap between the non-adaptive query
complexity upper and lower bounds without extra characters. Closing this gap may require
a deeper understanding about the properties of edit distance.
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Second, for the DTW distance, it remains unclear whether 1 extra character suffices for
an O(n) non-adaptive upper bound, or we can have an Ω(n2) non-adaptive lower bound with
1 extra character (our proof uses 2 extra characters).

Lastly, it would be interesting to consider the exact sequence recovery problem using the
properties of specific distance metrics. For example, the Edit distance with Real Penalty
(ERP) distance [17] which supports local time shifting in time series by the marriage of the
ℓ1 norm and edit distance, would be of interest. One can also consider other variants of our
problem in terms of adaptive queries or approximate recovery in the presence of noise.
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A Coordinate Descent Algorithm Instantiation

Now we briefly discuss how we apply our Coordinate Descent algorithm to all three distances
we consider in this paper by justifying the two conditions hold.

Edit distance. For condition 2, we know that ∀q, q′, dist(q, q′) ≤ n since the maximum
length of q and q′ is n. For condition 1, in each iteration, we consider a set Q that contains all
sequences that can be transformed from q′ by inserting, deleting or substituting one character
in q′ (edit operations). Note that |Q| cannot exceed (n + 1) + n + n = 3n + 1. We claim that
there exists a q′′ in Q such that dist(q, q′) > dist(q, q′′). Let dist(q′, q) = d. By the definition
of edit distance, there exists a chain of edit operations of length d that transforms q′ to q,
resulting in a list of intermediate sequences q1, . . . , qd−1. Note that dist(q′, q) > dist(q1, q),
otherwise dist(q1, q) ≥ d. However, the chain implies we can transform q1 to q in d − 1
edit operations, which leads to a contradiction. Since q1 ∈ Q, we can find q1 satisfying the
condition in 3n + 1 searches. Therefore, the algorithm is guaranteed to recover the input in
O(n2) steps.

DTW distance. For DTW distance, condition 2 holds since ∀q, q′, dist(q, q′) ≤ n. For
condition 1, consider the #runs(x) in q′ and q. If #runs(x) of q′ < q, then either adding
an (arbitrary length) run to the start or the end of q′ will decrease the DTW distance from q.
On the other hand, if #runs(x) of q′ > q, then either deleting a run from the start or the
end of q′ will decrease the DTW distance from q. If #runs(x) of q′ = q and dist(q′, q) ̸= 0,
we can still decrease the distance from q by either adding/deleting a run to the start/end of
the sequence. Therefore, the algorithm is guaranteed to recover the input in O(n) steps.

Fréchet distance. Condition 2 holds since ∀q, q′, dist(q, q′) ≤ 1. For condition 1, enumerat-
ing 2n non-equivalent sequences, (i.e., 010101... and 101010...) guarantees finding q′′ such
that dist(q, q′) > dist(q, q′′) = 0. Therefore, the algorithm terminates in O(n) steps.
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1 Introduction

In this paper we apply for the first time methods from communication complexity to the
study of hazard-free complexity, which we see as a step towards bridging the gap between
Boolean complexity and monotone complexity.

The study of the three-valued strong logic of indeterminacy dates back to Kleene ([31,
p. 153], [32, §64]). It found numerous applications, for example in logic (see e.g. [33, 22]), in
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Figure 1 Different De Morgan formulas for MUX1.

logic is the same and many questions and results can be readily transferred between areas.
We will use the language of hazards in circuits in this paper. The use of three-valued logic to
study hazards in Boolean circuits dates all the way back to Goto [20], who used 0 and 1 to
denote the Boolean values and used the symbol 1

2 to denote the third value, which stands for
any undefined, oscillating, unstable, or otherwise somehow flawed state. In this paper we use
the symbol u := 1

2 to denote this third state. Goto modeled the Boolean operations ∧ (and)
and ∨ (or) as min and max, respectively, and the ¬ (not) operation as 1−x, which defines the
behaviour of the three types of gates on inputs from {0, u, 1}. Hence a Boolean circuit C on
n inputs1 computes a function {0, u, 1}n → {0, u, 1} by induction over the circuit structure.
The design of the gate behaviour as min, max, and 1 − x is the result of a more general
construction principle that is called the hazard-free extension2 f̃ : {0, u, 1}n → {0, u, 1} of a
Boolean function f : {0, 1}n → {0, 1}. It is defined as follows.

A binary string a ∈ {0, 1}n is called a resolution of a ternary string α ∈ {0, u, 1}n if for
all 1 ≤ i ≤ n with αi ≠ u we have αi = ai, i.e., all entries u are replaced by 0s and 1s. Note
that the set of all resolutions a of α forms a subcube of {0, 1}n. For a Boolean function
f : {0, 1}n → {0, 1} and for an input α ∈ {0, u, 1}n we define the evaluation of the function
f̃ : {0, u, 1}n → {0, u, 1} at α via

f̃(α) :=


1 if for all resolutions a of α we have f(a) = 1
0 if for all resolutions a of α we have f(a) = 0
u otherwise.

(1)

A Boolean circuit C that computes a Boolean function f : {0, 1}n → {0, 1} is called hazard-free
if for all α ∈ {0, u, 1}n we have C(α) = f̃(α). An α where these two functions differ is called a
hazard. For example, consider the circuit in Part (a) of Figure 1 that computes the multiplexer
function C(s, x0, x1) = MUX(s, x0, x1) = xs for all (s, x0, x1) ∈ {0, 1}3. We observe that C

has a hazard at (u, 1, 1), because C(u, 1, 1) = u ∨ u = u, whereas C(0, 1, 1) = C(1, 1, 1) = 1.
The circuit can be made hazard-free at the expense of using more gates, see Part (b) of
Figure 1 (this construction can be found for example in [16, Fig. 6a] and [27, Fig. 1b]).

1 All circuits in our paper have a single output.
2 The function f̃ is called the hazard-free extension of f (see [27]), or alternatively the ternary extension

(see [44]) or the metastable closure (see [16]).
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Designing small hazard-free circuits for computing Boolean functions is a fundamental
goal in electronic circuit design. Huffman [26] proved that all Boolean functions can be
implemented by hazard-free circuits and he already noted the large growth of the number of
gates in his examples. Eichelberger proved the first lower bound on hazard-free complexity in
the restricted model of DNF formulas, which is given by the number of prime implicants of the
function that is computed. The very recent paper [27] formally defines the notion of hazard-
free complexity and shows that for monotone functions the hazard-free complexity and the
monotone complexity coincide. Fortunately, good lower bounds are known on the monotone
complexity of monotone Boolean functions (see [55, 56, 2, 1, 57, 64, 21, 29, 54, 53, 23, 19, 49]).
A direct consequence of [27] is that the exponential gap between Boolean circuit complexity
and monotone circuit complexity transfers directly into an exponential gap between Boolean
circuit complexity and the hazard-free circuit complexity. [28] proves that every Boolean
circuit that computes a monotone function and that is optimal with respect to hazard-free
complexity must automatically be a monotone circuit. Hence the study of hazard-free
complexity does not yield any new insights into monotone functions, but it is a natural
generalization of monotone complexity to the domain of all Boolean functions. This suggests
that the study of hazard-free complexity, in particular of non-monotone functions, should
be of independent interest (apart from its applicability in practice). As a first step in this
direction, [27] prove lower bounds for non-monotone functions by using monotone circuit
lower bounds for the hazard-derivative of the function, because the monotone complexity of
the hazard-derivative of f is a lower bound on the hazard-free complexity of f . All existing
lower bounds known for hazard-free computation [27, 28] are derived from this wealth of
known monotone complexity lower bounds.

However, the hazard-derivative method cannot always prove optimal lower bounds,
because some functions with high hazard-free complexity have hazard-derivatives of only
low monotone complexity (compare Proposition 1 with Theorem 23). We call this problem
the monotone barrier. In this paper we take a radically different approach than all previous
papers and translate notions from communication complexity to the hazard-free setting. The
result is a new type of the Karchmer-Wigderson game that exactly describes the hazard-free
De Morgan formula size and depth. Our new game is at the same time a hazard-free analog
of the classical Boolean Karchmer-Wigderson game (Remark 6) and a generalization of the
monotone Karchmer-Wigderson game to the set of all Boolean functions: it coincides with
the monotone Karchmer-Wigderson game when played on monotone functions (Theorem 11).
In other words, the difference between the monotone Karchmer-Wigderson game and the
Boolean Karchmer-Wigderson game is precisely the presence of hazards in the Boolean game.
We use this new definition to precisely determine the hazard-free formula size (Theorems 19
and 23) and the depth of hazard-free formulas of alternation depth3 2 (Theorem 31) of
the multiplexer function MUXn : {0, 1}n+2n → {0, 1}, which is a (non-monotone) Boolean
function on n + 2n input bits, defined via

MUXn(s1, . . . , sn, x0, x1, . . . , x2n−1) = xbin(s1,...,sn),

where bin(s1, . . . , sn) is the natural number represented by the binary number s1s2 · · · sn.

3 Alternation depth is one plus the maximum number of changes in the type of the gate in root-to-leaf
paths.

ITCS 2023
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Our result breaks the monotone barrier, i.e., the hazard-derivatives of the multiplexer
have lower complexity than the bound we prove. To obtain matching upper and lower bounds
on complexity we use the Karchmer-Wigderson game interpretation to give two new efficient
hazard-free implementations of the multiplexer function: One is optimal for the formula size
and one is optimal for the depth of hazard-free formulas of alternation depth 2.

In contrast to monotone complexity, which is mainly a theoretical concept, hazard-free
complexity has applications in practice, not only in cybersecurity ([66], [25], [4]), but also
for designing real-world circuits, for example when a distributed system of agents with
unsynchronized clock domains performs a parallel computation, see [17, 16, 63, 35, 7, 8, 9].
The hazard-free circuit depth (which is equal to the hazard-free formula depth) is a main
parameter in this research area, directly correlated to a circuit’s execution time.

An interesting incremental approach towards proving super-polynomial formula size lower
bounds for explicit functions, is to make progress by proving good lower bounds for formulas
with more and more NOT gates [15, 62, 3]. In Section 8, we show that instead of considering
all implicants and implicates, we can choose any subset of implicants and implicates to obtain
upper and lower bounds on limited hazard-free formulas, formulas that are guaranteed to
be hazard-free on some inputs but not others. That is, we can parameterize our game by
the number of undefined inputs so that it interpolates between the hazard-free game and
the general Boolean game. This gives us a natural way to make progress towards proving
super-polynomial Boolean formula size lower bounds by proving super-polynomial lower
bounds for more and more limited hazard-free formulas, until we prove a lower bound on
formulas that may have hazards on any input. Limited hazard-free formulas are also of
interest in practice, for example when it is known that the unstable bit can only appear in
the position where two adjacent Gray code numbers differ [17, 35, 7, 8, 9]. We are not aware
of any applications of limited negation circuits for designing real-world circuits.

The multiplexer function is also significant from the perspective of proving super-
polynomial formula size lower bounds. Informally, it suffices to prove a lower bound for a
composition of the multiplexer function with itself. For a formal statement, see [12, 43].

1.1 Exact Bounds

In Section 5 we determine the exact hazard-free formula complexity of the multiplexer
function. We achieve this by using a combination of an improvement in the upper bound
(Huffman’s [26] construction gives only sizeu(MUXn) ≤ 4n + 2n3n−1) and an analysis of the
hazard-free Karchmer-Wigderson game for the lower bound: sizeu(MUXn) = 2 · 3n − 1.

It is known that there are De Morgan formulas (with hazards) of size 2n+1(1 + o(1))
computing MUXn [37], i.e., size(MUXn) ≤ 2n+1

(
1 + 1

2n + O( 1
n log n )

)
. Our upper bound

construction is a recursive application of the improved implementation of MUX1 in Figure 1(c).
To prove the lower bound we reduce the Karchmer-Wigderson game for MUXn from a
communication game for the subcube intersection problem. Its communication matrix is
highly structured, so that its rank can be determined and be used to find the lower bound.
The subcube intersection problem is the hazard-free generalization of the classical equality
problem from communication complexity and could be of independent interest, especially for
proving other hazard-free formula lower bounds.

Since all derivatives of MUXn have monotone formulas of size at most (n + 1)2n (Propos-
ition 1), the separation that we achieve breaks the monotone barrier. Therefore, our lower
bound is the first to separate the Boolean complexity and the hazard-free complexity of a
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function while breaking the monotone barrier4. We consider this an important step forward
towards establishing hazard-free computation as a new theoretical device that can serve as a
true generalization of monotone circuit complexity.

Considering the depth (which is the same for circuits and formulas), we immediately obtain
depthu(MUXn) ≥ log2(3)n ≥ 1.58n. This lower bound separates the hazard-free circuit depth
complexity and Boolean circuit depth complexity of MUXn, because depth(MUXn) ≤ n + 3
[65, 38]. (In fact, depth(MUXn) = n + 2 for all n ≥ 20 [38].) Analogously to formula size,
since all derivatives of MUXn have monotone circuits of depth at most n + log2(n) + 1
(Proposition 1), our separation breaks the monotone barrier.

In Section 7 we focus on the depth of hazard-free formulas of alternation depth 2 for
MUXn. These formulas are interesting in practice because certain programmable logic arrays
produce implementations that have alternation depth 2. We prove the exact complexity of
the multiplexer function in this restricted model to be 2n + 2. For the proof we exploit an
old result by Huffman: the fact that in this restricted model Alice must communicate her
prime implicant to Bob before Bob starts communicating. Therefore small-depth formulas
can exist if and only if there are short prefix codes that allow Alice to communicate her
prime implicant efficiently to Bob. Then using Kraft’s inequality from information theory
we show that there are prefix codes that achieve a depth upper bound of 2n + 2, but they
cannot achieve 2n + 1. One key idea is a distinction of cases between prime implicants of
logarithmic size and prime implicants of super-logarithmic size.

For general hazard-free formula depth the upper bound of 2n + 2 is not optimal for
MUXn, because we show in Theorem 25 that the depth is at most 2n + 1. Note that this is
significantly lower than the depth 3n achieved by the formula of optimal size in Theorem 19,
and strictly lower than the depth that can be achieved by any formula of alternation depth 2.
This gives a size-depth trade-off: the size of this formula is only a factor of 9

8 more than the
optimal size. This construction is done recursively using the hazard-free Karchmer-Wigderson
game. It is crucial in this recursion that the induction hypothesis is not the monochromatic
partitioning of the communication matrix of MUXn−1, but of an enlarged matrix that can
be partitioned monochromatically using the same depth.

All upper bounds and lower bounds are proved using the framework of hazard-free
Karchmer-Wigderson games. The lower bound proofs rely heavily on this framework. The
game also played a crucial role in deriving the upper bounds given in Theorems 25 and
31. The upper bound in Theorem 19 can also be be proved without using the game (see
Remark 18).

1.2 Universal Upper Bounds
One of the most fundamental and oldest questions in electronic circuit design is finding an
upper bound on the size of circuits or formulas that holds for all Boolean functions [60].
For Boolean circuits and formulas, this question has been very satisfactorily answered. It is
known that any n-bit Boolean function has circuits of size (1 + o(1))2n/n [39, 36] and almost

4 Note that breaking the monotone barrier can also be achieved using Khrapchenko’s method for the
parity function [30], which was interpreted as a Karchmer-Wigderson game in [29], but for the parity
function the hazard-free complexity and the Boolean complexity coincide (every implementation of
parity is automatically hazard-free): Parity requires Θ(n2) formula size, but the derivatives of parity
are all equal to the OR function, which requires Θ(n) formula size. For the parity function the Boolean
Karchmer-Wigderson game coincides with our hazard-free Karchmer-Wigderson game, so we obtain the
same bounds.

ITCS 2023
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all Boolean functions require circuits of size (1 + o(1))2n/n [41]. For Boolean formulas, the
lower bound is (1 − o(1))2n/ log(n) [59], almost matched by the upper bound (1 + o(1)) 2n

log n

[40, 36].
For hazard-free circuits, the situation is very similar to that of Boolean circuits: any

n-bit Boolean function has a hazard-free circuit of size O(2n/n) (see, e.g., [28, Section 7]),
thus matching Lupanov’s upper bound [39] up to constants. Since hazard-free circuits are
also Boolean circuits, the lower bound of (1 + o(1))2n/n for almost all functions continues to
hold for hazard-free circuits.

For hazard-free formulas, this question is still open. Huffman [26] gives hazard-free
implementations for any function by representing it as a DNF where the set of terms is the
set of all prime implicants of the function. Since a function on n variables may have as many
as Ω(3n/

√
n) prime implicants [11] and each prime implicant may contain as many as n

literals, this translates into a worst-case bound of O(
√

n · 3n) on the hazard-free formula
complexity.

We make progress on this question by studying the multiplexer function. In electronic
circuit design, the multiplexer is often used as a programmable logic device. Indeed, given
any Boolean function f : {0, 1}n 7→ {0, 1}, we can implement it as: f(x1, . . . , xn) =
MUXn(x1, . . . , xn, f(0, 0, . . . , 0), . . . , f(1, 1, . . . , 1)). This implementation of f is hazard-free
if the implementation of MUXn is hazard-free. Therefore, any hazard-free formula upper
bound for MUXn gives an upper bound for the hazard-free formula complexity of all n-bit
Boolean functions. Theorem 19 gives such an improved upper bound of 2 · 3n − 1 for the
multiplexer function and hence our construction gives a new best worst-case hazard-free
formula size implementation of size 2 · 3n − 1, which was O(

√
n · 3n) before.

Observe that in the world of Boolean circuits, Boolean formulas, and hazard-free circuits,
the multiplexer upper bound is only a polynomial (in n) multiplicative factor away from the
optimal bound. We show in Theorem 23 that our new bound is optimal for the multiplexer
function. This means that we cannot improve the universal upper bound further by directly
using the multiplexer function. However, the best known lower bound for hazard-free formulas
for n-bit functions is still the 2n/ log(n) given by a counting argument. This creates an
interesting situation that is different from the other three settings described in this section.

If there are n-bit functions such that the hazard-free formula size is asymptotically more
than 2n/ log(n), then a tight lower bound can be proved by only using some argument
that exploits the semantic property of hazard-freeness, such as the hazard-free Karchmer-
Wigderson game we introduce in this paper. This is in contrast to the other settings
where tight lower bounds can be obtained using a counting argument that only exploits
the structure (or syntax) of the model.
Otherwise, all n-bit functions have hazard-free formulas that are smaller than the op-
timal hazard-free formula for the multiplexer function by a multiplicative factor that is
exponential in n. This is also in stark contrast to the situation in the other three settings.

2 Preliminaries

Formulas

A Boolean formula is a Boolean circuit whose graph is a tree. That is, it is a formula over
the De Morgan basis {∨, ∧, ¬}. The ∨ and ∧ gates have fan-in two and ¬ gates have fan-in
one. Using De Morgan’s laws (which also work over the three-valued logic) the negations
can be moved to the leaves: all internal nodes are labeled with ∨ or ∧ and all leaves are
labeled with literals xi or ¬xi. This is called a De Morgan formula. The size of a De Morgan
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formula F , denoted size(F ), is defined to be the number of leaves in it5. The depth of a
formula F , denoted depth(F ), is defined to be the length of the longest root-to-leaf path
in F . For a Boolean function f : {0, 1}n → {0, 1}, we denote the minimal size of a De
Morgan formula computing f by size(f) and the minimal depth of a formula computing f by
depth(f). Similarly, in the hazard-free setting, let sizeu(f) and depthu(f) denote the minimal
size and minimal depth of a hazard-free De Morgan formula computing f , respectively. For a
monotone function f let size+(f) and depth+(f) denote the minimal size and minimal depth
of a monotone formula computing f , respectively. The alternation depth of a formula is
one plus maximum number of changes to the type of the gate in the sequence of gates in a
root-to-leaf path. For example, the alternation depth of the formula in Figure 1(b) is 2 and
that of the formula in Figure 1(c) is 3. We denote the minimal size and depth of hazard-free
formulas of alternation depth d using sizeu

d(f) and depthu
d(f), respectively.

Implicants and Implicates

For a Boolean function f : {0, 1}n → {0, 1} the preimage of a value c ∈ {0, 1} is denoted by
f−1(c). For the hazard-free extension f̃ : {0, u, 1}n → {0, u, 1} the preimage of γ ∈ {0, u, 1}
is denoted by f̃−1(γ). Elements α ∈ f̃−1(1) are called implicants of f . A prime implicant
is an implicant in which no value from {0, 1} can be replaced by a u such that it is still
an implicant, i.e., a prime implicant is an implicant that is minimal with respect to the
instability partial order, the partial order on {0, 1, u} defined by u ≤ 0 and u ≤ 1. Elements
α ∈ f̃−1(0) are called implicates of f . A prime implicate is an implicate in which no value
from {0, 1} can be replaced by a u such that it is still an implicate, i.e., a prime implicate is
an implicate that is minimal with respect to the instability partial order. We occasionally
identify an implicant α with the Boolean function that is 1 exactly on the hypercube of
resolutions of α, and an implicate β with the Boolean function that is 0 exactly on the
hypercube of resolutions of β.

Communication

We assume familiarity with the basic definitions of communication complexity (see, e.g., [34,
52]). Let K : A × B → 2O be a function that maps tuples to nonempty subsets of a set O.
For the purposes of this paper we will only be interested in deterministic communication
complexity where Alice gets α ∈ A, Bob gets β ∈ B and their goal is to determine some
value in K(α, β) while minimizing the communication (number of bits exchanged). Let Π
be a deterministic communication protocol solving K. Then the communication cost of Π,
denoted CC(Π), is defined to be the maximum number of bits exchanged on any pair of inputs
(α, β) when following Π. Let CC(K) denote the minimum cost over all protocols solving K.
Recall that the leaves of a protocol induce a partition of A × B into combinatorial rectangles.
We denote the number of such combinatorial rectangles in a protocol Π by monorect(Π) and
the minimum number of leaves in a protocol solving K by monorect(K).

We will often work with the communication matrix MK of dimensions |A|×|B| associated
with a function K. The rows and columns of MK are indexed by the elements of A and B,
respectively. The (α, β)-th entry of MK is defined to be K(α, β). The leaves of a protocol Π
solving K partitions the communication matrix MK into monorect(Π) many monochromatic

5 If all ∧ and ∨ gates have fan-in two, then the number of leaves is always exactly one more than the
number of gates (not counting negation gates) in F , which is a measure often used to describe circuit
size.
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combinatorial rectangles, where a combinatorial rectangle A′ × B′ (A′ ⊆ A, B′ ⊆ B) is called
monochromatic if there exists o ∈ O with ∀(α, β) ∈ A′ × B′ : o ∈ K(α, β). We will often use
K and MK interchangeably.

3 Hazard-Derivatives and the Monotone Barrier

For x, y ∈ {0, 1}n, we define x ⊕ u · y to be the string α ∈ {0, u, 1}n such that for all i ∈ [n],
αi = xi if yi = 0, and otherwise αi = u. Let f be a Boolean function on n variables. Its
hazard derivative is a Boolean function on 2n variables denoted df(x; y) that evaluates to 1
if and only if f̃(x ⊕ u · y) = u, i.e., there are two resolutions of x ⊕ u · y, say a and b, such
that f(a) = 0 and f(b) = 1. In other words, df(x; y) = 1 if and only if the function f is not
constant on the subcube of all resolutions of x ⊕ u · y. For example consider the multiplexer
function MUXn(s, x) which is defined as: MUXn(s1, . . . , sn, x0, x1, . . . , x2n−1) = xbin(s1,...,sn),
where bin(s1, . . . , sn) is the natural number represented by the binary number s1s2 · · · sn.
Its hazard derivative dMUXn(s, x; t, y) = 1 if and only if the string x ⊕ u · y restricted to the
positions given by the subcube of all resolutions of s ⊕ u · t is neither the all zeroes nor the
all ones string. Equivalently, we can say that either x restricted to the positions given by
the subcube of all resolutions of s ⊕ u · t is not all zeroes or all ones, or y restricted to the
positions given by the subcube of all resolutions of s ⊕ u · t is not all zeroes.

Notice that for a fixed value a ∈ {0, 1}n, the function df(a; y) : {0, 1}n → {0, 1}, is a
monotone function, see [27, Lemma 4.6]. The key observation that connects hazard-free
circuits to monotone circuits is that given a hazard-free circuit C for f and any Boolean
string a, we can construct a monotone circuit for df(a; y) that is no larger in size than C, see
[27, Thm. 4.9]. Therefore, in order to prove lower-bounds for hazard-free circuits for f , one
only needs to identify a Boolean string a such that df(a; y) is a hard function for monotone
circuits, i.e., has high monotone circuit complexity. This allows us to transfer a wealth of
known monotone circuit lower bounds to the hazard-free world. This works analogously for
hazard-free De Morgan formulas (in this case the hazard-derivative can be constructed as a
monotone De Morgan formula instead of a monotone circuit).

The best known construction for hazard-free De Morgan formulas for MUXn has size
2 · 3n − 1 (See Theorem 19). Can we use derivatives to prove that this is optimal? No.
We show that all derivatives of MUXn have monotone De Morgan formulas of size at most
(n + 1)2n. This is an instance of the monotone barrier.

▶ Proposition 1. Fix any (s, x) ∈ {0, 1}n+2n . The function dMUXn(s, x; t, y) : {0, 1}n+2n →
{0, 1} has monotone De Morgan formulas of size at most (n + 1)2n.

Proof. Fix (s, x) ∈ {0, 1}n+2n . Recall dMUXn(s, x; t, y) = 1 if and only if x restricted to the
positions given by the subcube of all resolutions of s ⊕ u · t is not all zeroes or all ones, or y

restricted to the positions given by the subcube of all resolutions of s ⊕ u · t is not all zeroes.
For the sake of clarity we first give a monotone implementation of dMUXn when (s, x)

is fixed to the all zeroes input. When (s, x) = (0, 0) (i.e., the all zeroes string), then x

restricted to the positions given by the subcube of all resolutions of s ⊕ u · t is all zeroes.
Therefore, dMUXn(0, 0; t, y) = 1 if and only if y restricted to the positions given by the
subcube of all resolutions of s ⊕ u · t is not the all zeroes string. Furthermore, since s = 0,
the subcube of all resolutions of s ⊕ u · t is the set of points b ∈ {0, 1}n such that b ≤ t. Thus,
dMUXn(0, 0; t, y) =

∨
b∈{0,1}n ybin(b) ∧ (

∧
i:bi=1 ti).

For the general case when (s, x) ∈ {0, 1}n+2n is arbitrary (but fixed), we need to also verify
whether x restricted to the positions given by the subcube of all resolutions of s⊕u·t is neither
all zeroes nor all ones. Equivalently, for b ∈ {0, 1}n, when xbin(b) ̸= MUXn(s, x) = xbin(s), we
need not check if ybin(b) = 1. Thus we have the following monotone implementation
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dMUXn(s, x; t, y) =
(∨

b∈{0,1}n :
xbin(b)=xbin(s)

ybin(b) ∧
(∧

i : bi ̸=si
ti

))
∨

(∨
b∈{0,1}n :

xbin(b) ̸=xbin(s)

∧
i : bi ̸=si

ti

)
.

The size bound easily follows. ◀

The above proposition shows that the derivative method cannot yield a lower bound
bigger than (n + 1)2n for hazard-free De Morgan formulas for MUXn. We now proceed to
develop a framework that will allow us to prove that 2 · 3n − 1 is the optimal size for MUXn.
This is the first result that proves a hazard-free circuit lower bound without relying on an
existing monotone circuit lower bound, i.e., that breaks the monotone barrier.

4 A Karchmer-Wigderson Game for Hazard-free Computation

In this section we give a natural generalization of the classical Karchmer-Wigderson game,
which captures the complexity of hazard-free computation. We begin with recalling the
framework of Karchmer-Wigderson games [29].

▶ Definition 2 ([29]). Let f : {0, 1}n → {0, 1} be a Boolean function. The Karchmer-
Wigderson game of f , denoted KWf , is the following communication problem: Alice gets
a ∈ {0, 1}n with f(a) = 1, Bob gets b ∈ {0, 1}n with f(b) = 0 and their goal is to determine
a coordinate i ∈ [n] such that ai ̸= bi.

They also gave the following monotone version of the game.

▶ Definition 3 ([29]). Let f : {0, 1}n → {0, 1} be a monotone Boolean function. The
monotone Karchmer-Wigderson game of f , denoted KW+

f , is the following communication
problem: Alice gets a ∈ {0, 1}n with f(a) = 1, Bob gets b ∈ {0, 1}n with f(b) = 0 and their
goal is to determine a coordinate i ∈ [n] such that 1 = ai ̸= bi = 0.

The seminal work of Karchmer and Wigderson [29] showed that the communication complexity
of the KWf game (resp., KW+

f game) characterizes the size and depth complexity of De
Morgan formulas (resp., monotone formulas).

▶ Theorem 4 ([29]). Let f : {0, 1}n → {0, 1} be a Boolean function. Then, depth(f) =
CC(KWf ) and size(f) = monorect(KWf ). Let f : {0, 1}n → {0, 1} be a monotone Boolean
function. Then, depth+(f) = CC(KW+

f ) and size+(f) = monorect(KW+
f ).

We now extend the Karchmer-Wigderson games to the hazard-free setting. For a Boolean
function f : {0, 1}n → {0, 1}, recall from (1) that f̃ : {0, u, 1}n → {0, u, 1} is the hazard-free
extension of f .

▶ Definition 5 (Hazard-free Karchmer-Wigderson game). Let f : {0, 1}n → {0, 1} be a Boolean
function. The hazard-free Karchmer-Wigderson game of f , denoted KWu

f , is the following
communication problem: Alice gets α ∈ {0, u, 1}n with f̃(α) = 1, Bob gets β ∈ {0, u, 1}n

with f̃(β) = 0 and their goal is to determine a coordinate i ∈ [n] such that αi ̸= βi and
furthermore αi ̸= u and βi ̸= u.

▶ Remark 6. Note that the wordy condition “αi ̸= βi and αi ̸= u and βi ̸= u” is equivalent
to the simple αi ⊕ βi = 1, which is in complete analogy to ai ⊕ bi = 1 in the classical
Karchmer-Wigderson game, see Def. 2, whereas we will show in Theorem 11 that our game
is actually a generalization of the monotone Karchmer-Wigderson game to the domain of all
Boolean functions.
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Now using this generalized game KWu
f we characterize the complexity of hazard-free De

Morgan formulas for Boolean functions.

▶ Theorem 7. Let f : {0, 1}n → {0, 1} be a Boolean function. Then, depthu(f) = CC(KWu
f )

and sizeu(f) = monorect(KWu
f ).

The proof is a natural generalization of the proof of Theorem 4 and is provided in Section 6.

▶ Remark 8. We remark that a variant of the game KWu
f has been considered in prior works

[24, 14]. In this variant, the inputs to Alice and Bob remains the same but the goal is
different. More formally, Alice gets α ∈ f̃−1(1), Bob gets β ∈ f̃−1(0) and their goal is to
determine a coordinate i ∈ [n] such that αi ̸= βi. That is, now a coordinate where one of
them has u and the other has 0 or 1 is a valid answer. This is the subtle but crucial difference
with respect to our game (Definition 5), where we forbid such answers by requiring that
αi ̸= u and βi ̸= u.

▶ Remark 9. Building on [58] and [51], [61] generalizes the Karchmer-Wigderson result from
formulas to De Morgan circuits (i.e., Boolean circuits with negations only at the inputs). The
corresponding communication games are played on directed acyclic graphs. We remark that
their proofs also work for hazard-free complexity, so we get a tight correspondence between
hazard-free De Morgan circuit size and the correspoding hazard-free KW-game.

4.1 Restriction to prime implicants and prime implicates
We now prove that we can restrict our attention to small (in some cases significantly smaller)
submatrices of the communication matrix. We will use this restricted version of the game to
show that for monotone functions the hazard-free Karchmer-Wigderson game is equivalent
to the monotone Karchmer-Wigderson game, see Theorem 11.

▶ Theorem 10. For any function f , the complexity (works for size and also for depth) of
the game KWu

f remains unchanged even if we restrict Alice’s input to prime implicants and
Bob’s input to prime implicates.

Proof. The complexity of the restricted game is obviously at most the complexity of the
original game, since the game is now being played on a submatrix of the original matrix. For
the other direction, observe that given an arbitrary implicant α and an arbitrary implicate
β, Alice can choose a prime implicant α′ that is obtained by flipping some stable bits in α to
u and Bob can choose a prime implicate β′ that is obtained by flipping some stable bits in β

to u, and play the restricted game on the input (α′, β′). Any valid answer in the restricted
game is also a valid answer in the original game, since we are only flipping stable bits to
u. This proves that the complexity of the original game is at most the complexity of the
restricted game. Therefore, both games have the same complexity. ◀

We will use this equivalent reduced form of the hazard-free Karchmer-Wigderson game in
the rest of the paper.

There is a natural counterpart to Theorem 10 in the monotone world: in Definition 3,
we can assume without loss of generality that Alice’s input has minimal number of ones
and Bob’s input has maximal number of ones. We show that we can view the hazard-free
Karchmer-Wigderson game as a generalization of the monotone Karchmer-Wigderson game.

▶ Theorem 11. Let f : {0, 1}n → {0, 1} be a monotone function. Then, the games KWu
f

and KW+
f are equivalent.
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Proof. First, we show that the complexity of KWu
f is at most that of KW+

f . Using Theorem 10,
we can assume that Alice’s input is a prime implicant and Bob’s input is a prime implicate.
Since f is monotone, any prime implicant of f contains only 1s and u’s. Similarly, any prime
implicate of f contains only 0s and u’s. Now, Alice can flip every u in her input to 0 and
Bob can flip every u in his input to 1 and play the game KW+

f . Notice that by Definition 3,
the output of this game will be a position where Alice’s and Bob’s input had different stable
values originally.

For the other direction, Alice can flip every 0 in her input to u and Bob can flip every 1
in his input to u. Since f is monotone, Alice still has an input in f̃−1(1) and Bob still has
an input in f̃−1(0). Now, the output of the game KWu

f on these new inputs will also be a
valid output for the game KW+

f since all stable bits in Alice’s input are 1 and all stable bits
in Bob’s input are 0. ◀

▶ Remark 12. We note another perspective on hazard-free KW-game through the lens
of monotone KW-game. For this purpose we need to associate sets with implicants and
implicates. For an implicant α ∈ f̃−1(1) we define the set Sα of literals as follows: if αi = 1,
then xi ∈ Sα and if αi = 0, then ¬xi ∈ Sα. In particular, if αi = u then neither xi nor ¬xi

belongs to Sα. Furthermore, α is said to be a prime implicant if Sα is minimal with respect
to set inclusion. That is, no strict subset of Sα is also an implicant. Analogously, for an
implicate β ∈ f̃−1(0) we define the set Tβ of literals as follows: if βi = 1, then ¬xi ∈ Tβ and
if βi = 0, then xi ∈ Tβ . Furthermore, β is said to be a prime implicate if Tβ is minimal with
respect to set inclusion.

By using Theorem 10 and its counterpart in the monotone world, we observe that both the
monotone KW-game and the hazard-free KW-game has the exact same definition: Alice gets
a set of literals corresponding to a prime implicant and Bob gets a set of literals corresponding
to a prime implicate. Their goal is to find a literal in the intersection of the two sets.

This means that playing (this reduced version of) the hazard-free KW-game is the same
as playing the monotone KW-game on a function that is not necessarily monotone.
▶ Remark 13. It is instructive to gain yet another perspective on hazard-free KW-games
via an application of a well-known result in communication complexity that informally
says, for every communication total search problem S (in particular also for the hazard-free
KW-game) there exists a partial monotone function g such that the monotone KW-game for g

is equivalent to the communication problem S. For a formal statement see [18, Lemma 2.3] or
[50, Proposition 2.10] (and references therein). In our setting the partial monotone function
g : {0, 1}2n → {0, 1, ∗} is defined as follows: an input (y1, . . . , yn, z1, . . . , zn) is said to be
admissible if for all i ∈ [n] we have yi · zi = 0, otherwise we call the input inadmissible. On
an inadmissible input g is undefined, which is denoted by ∗. Given an admissible input (y, z),
let us define α ∈ {0, u, 1}n such that for all i ∈ [n], αi = yi if yi ⊕ zi = 1, and otherwise
αi = u. Then, g(y, z) = Ψ(f̃(α)), where Ψ(0) = 0, Ψ(1) = 1, and Ψ(u) = ∗.

Now it can be shown (see, e.g., [50, Proposition 2.10]) that the hazard-free KW-game
for the Boolean function f is equivalent to the monotone KW-game for the partial function
g. Thus the monotone KW-games on partial functions are expressive enough to capture
hazard-free KW-games. Note that g has twice as many inputs as f .

5 Hazard-Free Formulas for the Multiplexer Function

We now use the hazard-free Karchmer-Wigderson game to give improved constructions of
hazard-free formulas as well as proofs of their optimality. Our starting point is the observation
that the commonly used hazard-free formula for MUX1 in Figure 1(b) is not optimal w.r.t.
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size. We find an optimal formula for it (Figure 1c) which in turn leads to an optimal formula
of size 2 · 3n − 1 for MUXn. Following the discussion in Subsection 1.2, this upper bound
also applies to all n-bit Boolean functions and improves upon Huffman’s construction [26].
However, a gap between the upper and lower bound still remains. We begin with some
necessary basics on the multiplexer function.

5.1 The Multiplexer Function and its Communication Matrix
Recall, the multiplexer function MUXn : {0, 1}n+2n → {0, 1} is a Boolean function on n + 2n

variables defined as

MUXn(s1, . . . , sn, x0, x1, . . . , x2n−1) = xbin(s1,...,sn), (2)

where bin(s1, . . . , sn) is the natural number represented by the binary number s1s2 · · · sn.
We will be studying the communication matrix MKWu

MUXn
of the hazard-free game KWu

MUXn
.

Following Theorem 10, we will restrict our attention to the submatrix given by prime
implicants and implicates of MUXn. The following proposition gives the structure of the
prime implicants and prime implicates.

▶ Proposition 14. For any n ≥ 1 and any string α ∈ {0, u, 1}n, there exist unique strings
α′ ∈ {u, 1}2n and β′ ∈ {0, u}2n such that αα′ ∈ {0, u, 1}n+2n is a prime implicant of MUXn

and αβ′ ∈ {0, u, 1}n+2n is a prime implicate of MUXn.

Proof. For α ∈ {0, u, 1}n, consider the string α′ ∈ {u, 1}2n that has 1s at positions indexed
by the resolutions of α and that has u’s elsewhere. We have M̃UXn(αα′) = 1 showing that
αα′ is an implicant. We now show it is a prime implicant. If any 1s in α′ are made a u, then
the output becomes a u, because a resolution of α now indexes into a u. If any Boolean value
in α is made a u, then at least one resolution of the selector bits is a position in the data bits
that is a u. Therefore this implicant is minimal. This is also that only prime implicant that
can be obtained by extending α because the α′ part is minimal and all 1s in it are necessary.
The argument for prime implicates is symmetric. ◀

The following proposition states the inductive structure of communication matrices of
MUXn.

▶ Proposition 15. The communication matrix of KWu
MUXn

, when restricted to prime implic-
ants and prime implicates, has the following inductive structure:

For n = 1,

MKWu
MUX1

=


00u u00 1u0

01u x0 x0 s

u11 x0 x0, x1 x1
1u1 s x1 x1

.

For n ≥ 2,

MKWu
MUXn

=


0 u 1

0 M0 M0 s1
u M0 M0 ∪ M1 M1
1 s1 M1 M1

,

where the row (resp., column) labeled γ ∈ {0, u, 1} represents the set of prime implicants
(resp., prime implicates) with s1 = γ. We define the formulas
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F0 = MUXn−1(s2 . . . , sn−1, x0, . . . , x2n−1−1) = MUXn(0, s2, . . . , sn, x0, x1, . . . , x2n−1),
F1 = MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1) = MUXn(1, s2, . . . , sn, x0, x1, . . . , x2n−1),

and matrices M0 := MKWu
F0

, M1 := MKWu
F1

, s1 stands for a block matrix of all entries
s1, and M0 ∪ M1 is obtained by taking entry-wise union of M0 and M1. In other words,
M0 ∪ M1 represents the matrix where the (i, j) entry equals (M0)i,j ∪ (M1)i,j.

Note that in the communication matrix we have changed the entries from indices of
variables to their labels, as in instead of 1, 2, 3 we write the more intuitive symbols
s1, . . . , sn, x0, x1, . . . , x2n−1 for better readability.

Proof. For n = 1 the proof follows by inspection and when n ≥ 2 it follows from the following
recursive decomposition: MUXn = MUX1(s1, F0, F1). ◀

We also need the following well-known general technique used in communication complexity
that allows us to exploit repeated submatrices within a communication matrix.

▶ Proposition 16. Let M be a communication matrix such that M =
(

A A

A A

)
or M =(

A A
)
. Then, CC(M) = CC(A) and monorect(M) = monorect(A).

5.2 Size optimal hazard-free formula
We now give the size optimal hazard-free formula for the multiplexer function. As a simple
application of Theorem 7, we begin with finding optimal formulas for MUX1.

▶ Proposition 17. The optimal (size and depth) hazard-free De Morgan formula for
MUX1(s, x0, x1) has size 5 and depth 3.

Proof. Consider the communication matrix of KWu
MUX1

shown below,


00u u00 1u0

01u x0 x0 s

u11 x0 x0, x1 x1
1u1 s x1 x1

.

We find the following protocol for KWu
MUX1

by inspection:


00u u00 1u0

01u x0 x0 s

u11 x0 x0 x1
1u1 s x1 x1

. (3)

Using Lemma 30 with the above protocol, we obtain the hazard-free formula for MUX1 shown
in Figure 1c. The optimality of depth follows from the optimality of size. We defer the proof
of the optimality of size to Theorem 23, the general case of MUXn. ◀

▶ Remark 18. To demystify the construction in Figure 1c we note that it is simply the
hazard-free DNF of MUX1, the formula (s ∧ x1) ∨ (¬s ∧ x0) ∨ (x0 ∧ x1), with an application
of distributivity of ∧ over ∨ to reduce the size.

Now, using the recursive decomposition of MUXn we obtain the following upper bound.
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∨

∧

F0 ∨

F1 ¬s1

∧

F1 s1

Figure 2 F : a size-optimal hazard-free formula for MUXn.

▶ Theorem 19. The multiplexer function MUXn has hazard-free formulas of size 2 · 3n − 1
and depth 3n for all n ≥ 1.

Proof. We construct the formula inductively. The construction for MUX1 is given by
Proposition 17. Recall that we can write MUXn(s1, . . . , sn, x0, . . . , x2n−1) recursively as the
formula F = MUX1(s1, F0, F1), where

F0 = MUXn−1(s2, . . . , sn, x0, . . . , x2n−1−1) and F1 = MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1).

By the induction hypothesis, both F0 and F1 have hazard-free formulas of size 2 ·3n−1 −1 and
depth 3(n − 1). Using the hazard-free formula for MUX1, given in Figure 1c, to implement
F yields a formula of size 2 · 3n − 1 and depth 3n for MUXn.

It remains to prove that the constructed formula F is hazard-free. Using Lemma 29, it
suffices to show that the protocol using F correctly solves the hazard-free KW-game KWu

MUXn
.

In other words, the communication matrix of KWu
MUXn

is partitioned into monochromatic
rectangles by the protocol given by F . We will prove it by induction on n. The base case,
n = 1, is given by Proposition 17. Now consider the inductive formula F for MUXn shown
in Figure 2. Following Lemma 29, when Alice and Bob reach the colored nodes in F (see
Figure 2), then we obtain the following partition of MKWu

MUXn
as a block matrix, where

Mi := MKWu
Fi

for i ∈ {0, 1}, and s1 stands for a block matrix of all entries s1:


0 u 1

0 M0 M0 s1
u M0 M0 M1
1 s1 M1 M1

,

where the row (resp., column) labeled γ ∈ {0, u, 1} represents the set of prime implicants
(resp., implicates) with s1 = γ. Now from the monochromatic partition of Mi using Fi,
i ∈ {0, 1}, and Proposition 16, we get a monochromatic partition of the communication
matrix of KWu

MUXn
. ◀

▶ Remark 20. We remark that the construction in Theorem 19 can be made into an alternating
formula: the communication matrix is symmetric and hence the monochromatic partition can
be transposed so that Bob starts the communication. We now use this transposed partition
on the blue F1 node in Figure 2.

We now prove that the above construction for MUXn is optimal with respect to size.
For this purpose, we study the communication problem associated with the following
subcube intersection function: subcube-intersectn : {0, u, 1}n × {0, u, 1}n → {0, 1}, where
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subcube-intersectn(α, β) = 1 if and only if the subcubes defined by α and β in {0, 1}n in-
tersect, i.e., if α and β have a common resolution. We note that the subcube intersection
function is the same as the equality function when restricting its domain of definition to
Boolean values only. The equality function is widely used in classical communication com-
plexity for proving lower bounds. We also note that the subcube intersection function cannot
be implemented by any circuit over {0, u, 1} (and hence in particular is not the hazard-free
extension of any Boolean function), even for n = 1, because subcube-intersect1(u, u) = 1,
but subcube-intersect1(0, 1) = 0 6. Let us see how the subcube intersection problem helps in
capturing the complexity of the hazard-free game KWu

MUXn
.

▶ Lemma 21. The subcube-intersectn communication problem reduces to the communication
problem KWu

MUXn
with no extra cost.

Proof. Given inputs α, β ∈ {0, u, 1}n to the subcube-intersectn problem, Alice and Bob
modify their inputs as follows without communication.

Alice constructs α′ ∈ {u, 1}2n such that α′ has ones only at the positions indexed by the
subcube of resolutions of α.
Bob constructs β′ ∈ {u, 0}2n such that β′ has zeroes only at the positions indexed by the
subcube of resolutions of β.

Now they can solve the game KWu
MUXn

on inputs αα′ and ββ′. Observe that if the subcubes
α and β intersect then answers to KWu

MUXn
lie in the set of data variables {x0, . . . , x2n−1},

otherwise they lie in the set of selector variables {s1, . . . , sn}. Therefore, from the answers
to the KWu

MUXn
game they can deduce whether the subcubes intersect or not, again without

communication. ◀

Using the rank lower bound technique of [42] (See also [34, Lemma 1.28] and the discussion
following the lemma.), we know that

monorect(subcube-intersectn) ≥ 2 · rank(Msubcube-intersectn) − 1, (4)

where Msubcube-intersectn is interpreted as a matrix over R with 0s and 1s as entries. We prove
the following tight bound on the rank of Msubcube-intersectn

:

▶ Lemma 22. The communication matrix of subcube-intersectn is of full rank. That is, the
rank of Msubcube-intersectn

equals 3n for all n ≥ 1.

This immediately implies our size lower bound:

▶ Theorem 23. Any hazard-free formula for MUXn requires 2 · 3n − 1 leaves for all n ≥ 1.

Proof. Using Theorem 7, it is sufficient to show that the communication matrix of KWu
MUXn

requires 2 · 3n − 1 monochromatic rectangles, i.e., monorect(KWu
MUXn

) ≥ 2 · 3n − 1. This is
readily checked:

monorect(KWu
MUXn

)
Lem. 21

≥ monorect(subcube-intersectn)
(4)
≥ 2 · rank(Msubcube-intersectn) − 1 Lem. 22= 2 · 3n − 1. ◀

6 In any circuit implementation, if C(α) = 1, then for all resolutions a of α we also have C(a) = 1, which
is easily seen by induction. Alternatively, this can be seen by the fact that all gates (and hence the whole
circuit) are monotone with respect to the partial order of stability (u ⊑ 0, u ⊑ 1, 0 and 1 incomparable),
so switching unstable inputs to stable inputs can only keep an output u or switch an output from u to a
stable value, but not change a stable output.
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It now remains to prove Lemma 22.

Proof of Lemma 22. We prove it by induction on n. For the base case, n = 1 and the
communication matrix Msubcube-intersect1 is as follows:


0 u 1

0 1 1 0
u 1 1 1
1 0 1 1

.

Clearly rank(Msubcube-intersect1) = 3. Now consider the communication matrix of
Msubcube-intersectn . We claim that it looks as follows:


0 u 1

0 Msubcube-intersectn−1 Msubcube-intersectn−1 0
u Msubcube-intersectn−1 Msubcube-intersectn−1 Msubcube-intersectn−1

1 0 Msubcube-intersectn−1 Msubcube-intersectn−1

,

where the row labeled γ ∈ {0, u, 1} represents the set of rows labeled with α ∈ {0, u, 1}n such
that α1 = γ and similarly for the columns. The validity of the claim follows from inspection
that on fixing the first variables we either know the answer or have self-reduced it to a smaller
instance. Therefore, we obtain:

Msubcube-intersectn
=

 1 1 0
1 1 1
0 1 1

⊗ Msubcube-intersectn−1 ,

where ⊗ is the Kronecker product of matrices. Hence, using the fact that rank is multiplicative
with respect to Kronecker product, we have

rank(Msubcube-intersectn
) = rank(Msubcube-intersect1) · rank(Msubcube-intersectn−1).

Now using the induction hypothesis completes the proof. ◀

Translating the size lower bound to depth gives the following corollary.

▶ Corollary 24. For all n ≥ 1, depthu(MUXn) ≥ ⌈log2(2 · 3n − 1)⌉.

5.3 Formulas of improved depth
The lower bound from Corollary 24 on hazard-free formula depth is at least 1 + (log2 3) · n

for large n. However, our construction in Theorem 19 gives an upper bound of 3n. We now
give an improved construction (Theorem 25) with respect to depth while increasing the size
by a factor of 9

8 . In contrast, the depth-optimal version of Huffman’s construction is larger
than the optimal size hazard-free formula by a multiplicative factor that is exponential in n.

▶ Theorem 25. The multiplexer function MUXn has hazard-free formulas of depth 2n + 1
and size at most 2.25 · 3n − n

2 − 1.25 for all n ≥ 1.

From Theorem 7 we know it is sufficient to give a protocol Π solving the hazard-free Karchmer-
Wigderson game of MUXn such that CC(Π) ≤ 2n + 1 and monorect(Π) ≤ 2.25 · 3n − n

2 − 1.25.
We consider a monochromatic extension of KWu

MUXn
. We extend the communication matrix

of KWu
MUXn

as follows to define the extended version e-KWu
MUXn

:
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prime implicates

prime implicants MKWu
MUXn

0

. (5)

In other words, the communication matrix of the extended version e-KWu
MUXn

is obtained by
adding a rectangular block with all 0s to either the set of rows of KWu

MUXn
(as shown above)

or the set of columns. We note that the added block could have any number of rows in the
former case or any number of columns in the latter. Further we will always require that
the extended part be filled with a number that does not appear in KWu

MUXn
. Observe that

0 doesn’t appear in the communication matrix of KWu
MUXn

. However we could have used
any other number that doesn’t appear in KWu

MUXn
. We will denote all such extensions by

e-KWu
MUXn

.
Clearly the following proposition holds.

▶ Proposition 26. A protocol Π for e-KWu
MUXn

gives a protocol Π′ for KWu
MUXn

such that
CC(Π′) ≤ CC(Π) and monorect(Π′) ≤ monorect(Π).

Proof. Follows from the definition (5) of e-KWu
MUXn

. ◀

Therefore, to prove the depth bound in Theorem 25 we will give a protocol for e-KWu
MUXn

with communication cost at most 2n + 1.

▶ Lemma 27. There is a protocol solving e-KWu
MUXn

such that its communication cost is at
most 2n + 1.

Proof. From Proposition 15 we know that the communication matrix of KWu
MUXn

looks as
follows


0 u 1

0 M0 M0 s1
u M0 M0 ∪ M1 M1
1 s1 M1 M1

,

where we define the formulas:

F0 = MUXn−1(s2, . . . , sn, x0, . . . , x2n−1−1)
F1 = MUXn−1(s2, . . . , sn, x2n−1 , . . . , x2n−1)

and matrices Mi := MKWu
Fi

for i ∈ {0, 1}. Therefore, the matrix of extended version
e-KWu

MUXn
looks as follows


0 u 1

0 M0 M0 s1
u M0 M0 ∪ M1 M1
1 s1 M1 M1

0 0 0

.

We now give a protocol to partition this matrix into monochromatic rectangles. This will be
done inductively.
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Base case: n = 1. The matrix of e-KWu
MUX1

can be monochromatically partitioned as
follows



00u u00 1u0
01u x0 x0 s

u11 x0 x0, x1 x1

1u1 s x1 x1

0 0 0

 .

This is obtained from the protocol where Alice sends the first bit indicating whether her
input lies in the top or bottom part of red line. Then Bob sends a bit indicating whether his
input lies in the left part or the right part of the blue line(s). Finally Alice sends one last bit
to indicate whether her input lies in the top or bottom part of the orange line(s). Clearly
the communication cost is 3.

Induction step: n ≥ 2. Now Alice and Bob send one bit of communication each to reduce
e-KWu

MUXn
to the following partition


0 u 1

0 M0 M0 s1
u M0 M0 ∪ M1 M1

1 s1 M1 M1
0 0 0

.

Observe that the top-right block
(

s1
M1

)
is the matrix of an e-KWu

MUXn−1
. The bottom-right

block
(

M1 M1
0 0

)
can be solved, using Proposition 16, at the cost of solving

(
M1
0

)
which

is a block of e-KWu
MUXn−1

. Similarly, the top-left block
(

M0 M0
M0 M0 ∪ M1

)
can be solved,

using Proposition 16, at the cost of solving M0 which is a block of KWu
MUXn−1

. Therefore,
by Proposition 26 it has less complexity (size and depth) than e-KWu

MUXn−1
. Finally, note

that the bottom-left block
(

s1
0

)
just needs one bit of communication to monochromatically

partition it. Therefore, we have

CC(e-KWu
MUXn

) ≤ 2 + max
{

CC(e-KWu
MUXn−1

), 1
}

≤ 2 + CC(e-KWu
MUXn−1

),

≤ 2n + 1,

where the second inequality follows because n ≥ 2 and the third follows from the induction
hypothesis. ◀

We are now ready to prove Theorem 25.

Proof of Theorem 25. As mentioned in the beginning we will give a protocol to partition
the communication matrix of KWu

MUXn
into monochromatic rectangles such that the commu-

nication cost of this protocol is at most 2n + 1 and the number of monochromatic rectangles
is at most 2.25 · 3n − n

2 − 1.25 for all n ≥ 1. Our protocol is the same as the one given in the
proof of Lemma 27. Thus the upper bound on depth follows readily. To bound the size we
count the number of monochromatic rectangles in the partition given by the protocol.
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Define T (n) to be the number of monochromatic rectangles in the partition of the
communication matrix of e-KWu

MUXn
given by the protocol. Further define S(n) to be the

number of monochromatic rectangles covering only the entries of KWu
MUXn

in the partition of
the communication matrix of e-KWu

MUXn
. In particular, S(n) < T (n). Note that S(n) gives

the bound on the size we are interested in. We now write recurrences for S(n) and T (n)
using the partition given by the induction step and the base case in Lemma 27. Recall the
partition in the induction step looks as shown below:


0 u 1

0 M0 M0 s1
u M0 M0 ∪ M1 M1

1 s1 M1 M1
0 0 0

.

It follows that S(n) and T (n) satisfies the following recurrences for n ≥ 2:

S(n) = 2 · S(n − 1) + T (n − 1) + 1, and (6)
T (n) = S(n − 1) + 2 · T (n − 1) + 2, (7)

where S(1) = 5 and T (1) = 7. For solving these recurrences it is helpful to first solve the
two auxiliary recurrences S(n) + T (n) and S(n) − T (n). One ultimately obtains S(n) =
2.25 · 3n − n

2 − 1.25. ◀

▶ Remark 28. We note that in the induction step we are reducing to an instance of e-KWu
MUX,

in particular the top-right part of the matrix in the proof of Theorem 25. Therefore, we need
to strengthen our induction hypothesis and begin with an instance of e-KWu

MUXn
.

6 Proofs for the hazard-free Karchmer-Wigderson game

In this section we prove Theorem 7. We split the proof into two lemmas.

▶ Lemma 29. Let f : {0, 1}n → {0, 1} be a Boolean function and F be a hazard-free De
Morgan formula computing it. Then,

CC(KWu
f ) ≤ depth(F ), and monorect(KWu

f ) ≤ size(F ).

▶ Lemma 30. Let f : {0, 1}n → {0, 1} be a Boolean function and Π be a protocol for the
hazard-free KW-game KWu

f . Then,

depthu(f) ≤ CC(Π), and sizeu(f) ≤ monorect(Π).

The proofs of Lemmas 29 and 30 are natural generalizations of their corresponding
counterparts in the original setting of the KW-game. See the full version for the proofs.

7 Alternation Depth Two and Two-round Protocols

The following theorem determines the exact depth of hazard-free formulas for MUXn of
alternation depth two.

▶ Theorem 31. For n ≥ 2, we have depthu
2(MUXn) = 2n + 2.
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Theorem 31 is proved by analyzing two-round communication protocols of the form: Alice
sends some string, Bob replies with some string, and they settle on an answer. We then
connect the existence of low-depth, hazard-free formulas of alternation depth two to the
existence of short, prefix codes. We then apply the well-known Kraft’s inequality that gives
a necessary and sufficient condition for the existence of prefix codes to obtain a lower bound
on the hazard-free formula depth. This is the only depth lower bound in this paper that does
not follow directly from a size lower bound. See the full version for details.

8 Limited hazard-freeness

Avoiding all hazards can be very expensive (see [27, 28]) and sometimes is not needed,
because we might have additional information about the input, for example when composing
circuits. Under the (physically realistic in that setting) assumption that the input contains
at most one u, the counter in [17] outputs the number of 1s in the input, encoded in binary
Gray code with a single u, such that both resolutions of the output correspond to numbers
whose difference is 1. Note that if Gray codes are not used, then in the usual binary bit
representation one has to flip 4 bits to go from 7 = 01112 to 8 = 10002, hence any hazard-free
counter would have to output uuuu on input 1111111u. When composing circuits, this
additional information about the position of the u can be useful, which is shown for the
task of sorting Gray code numbers in [35, 7, 8, 9]. Another interesting class of hazards that
should be avoided are the inputs where the number of u’s is bounded from above. This is
the setting of k-bit hazard-freeness from [27].

Theorem 7 as stated is not directly applicable in these settings, as it only characterizes
hazard-free formulas, i.e., formulas that are hazard-free with respect to all inputs. However,
we can also treat formulas that avoid only certain hazards.

▶ Proposition 32. Given sets A and B with f−1(1) ⊆ A ⊆ f̃−1(1) and f−1(0) ⊆ B ⊆
f̃−1(0). The hazard-free KW-game where Alice gets input from A and Bob gets input from
B characterizes formulas that is hazard-free on inputs in A ⊎ B.

The proof is a straightforward generalization of the proof of Theorem 7 (and in particular of
Lemmas 29 and 30).

▶ Example 33. Consider the function MUX2(s1, s2, x00, x01, x10, x11). We proved in The-
orem 23 that any hazard-free formula for MUX2 requires 17 leaves. Suppose we only want
to be hazard-free on inputs where at least one selector bit is stable. Note that every other
possible hazard is covered by the eight prime implicants and eight prime implicates of MUX2
labeling the rows and columns of the following matrix. Therefore, we can obtain an improved
upper bound for this task by showing that the following game has a protocol of size smaller
than 17.



000uuu 0u00uu 01u0uu u00u0u u1u0u0 10uu0u 1uuu00 11uuu0
001uuu x00 x00 s2 x00 s2 s1 s1 s1, s2
0u11uu x00 x00, x01 x01 x00 x01 s1 s1 s1
01u1uu s2 x01 x01 s2 x01 s1, s2 s1 s1
u01u1u x00 x00 s2 x00, x10 s2 x10 x10 s2
u1u1u1 s2 x01 x01 s2 x01, x11 s2 x11 x11
10uu1u s1 s1 s1, s2 x10 s2 x10 x10 s2
1uuu11 s1 s1 s1 x10 x11 x10 x10, x11 x11
11uuu1 s1, s2 s1 s1 s2 x11 s2 x11 x11
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Indeed, the above colouring yields a protocol of size 16. We can also show that we cannot
do better. Substitute s1 = s2 =

(
1 0
0 0
)

and x00 = x01 = x10 = x11 =
(

0 0
0 1
)
. This yields the

following 16 × 16 (block) matrix. Note that if the original communication matrix had a
protocol that yields fewer than 16 combinatorial rectangles, then this block matrix must
have rank less than 16 since all substituted matrices are rank one. However, the block matrix
is full-rank, showing that 16 leaves are required.



0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1
1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1


For a natural number k, a Boolean circuit C is said to have a k-bit hazard if there exists

α ∈ {0, u, 1}n such that C has hazard at α and the number of u’s in α is at most k. We can
also obtain a k-bit hazard-free construction similar to [27, Theorem 5.3] using Proposition 32.

▶ Theorem 34. For any Boolean function f : {0, 1}n → {0, 1}, there exists a k-bit hazard-free
formula of depth at most 2 log

(∑k
i=0
(

n
i

))
+ 2k + depth(f) and size at most

(∑k
i=0
(

n
i

))2
·

4k · size(f).

Proof. Following Proposition 32 it suffices to give a protocol for the hazard-free KW-game
where Alice gets an implicant α with at most k u’s and Bob gets an implicate β with at most
k u’s. The protocol is as follows:
1. Alice sends the set A ⊆ [n] of positions of the u’s in α.
2. Bob then sends the set B ⊆ [n] of positions of the u’s in β and the bits in β at all positions

from A \ B.
3. Alice then sends the bits in α for the positions in B \ A.
4. For the positions in A ∩ B, they decide beforehand to set them to a fixed constant, say 0.

Thus no communication is required. They now have an instance of the classical game
KWf , which they solve optimally.

The correctness of the protocol follows easily. The total number of bits exchanged to reduce
to KWf is at most 2 log

(∑k
i=0
(

n
i

))
+ 2k. Alice and Bob decide beforehand that the bits for

positions in A \ B and B \ A are sent in sorted (say, increasing) order of positions. Thus
they need to exchange at most 2k bits to send the bits across. ◀
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Abstract
This paper proves the tight sample complexity of Second-Price Auction with Anonymous Reserve,
up to a logarithmic factor, for each of all the value distribution families studied in the literature:
[0, 1]-bounded, [1, H]-bounded, regular, and monotone hazard rate (MHR). Remarkably, the setting-
specific tight sample complexity poly(ε−1) depends on the precision ε ∈ (0, 1), but not on the number
of bidders n ≥ 1. Further, in the two bounded-support settings, our learning algorithm allows
correlated value distributions.

In contrast, the tight sample complexity Θ̃(n) · poly(ε−1) of Myerson Auction proved by Guo,
Huang and Zhang (STOC 2019) has a nearly-linear dependence on n ≥ 1, and holds only for
independent value distributions in every setting.

We follow a similar framework as the Guo-Huang-Zhang work, but replace their information
theoretical arguments with a direct proof.
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1 Introduction

Bayesian auction theory assumes that the seller knows the prior value information of
bidders and would design auctions/mechanisms by leveraging that information. In real-life
applications, the priors are learned from historical data. How much data is needed to learn
good auctions? This question motivates the research interest in the sample complexity for
auction design, initiated by Cole and Roughgarden [24].1 Concretely, it focuses on how many
samples are needed, regarding the precision ε ∈ (0, 1) and the bidder population n ∈ N≥1, to

1 A very related topic, the sample complexity of optimal pricing for a single bidder, dates back to [28].
Also, some regret-minimization variants date earlier to [8, 12, 11].
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Table 1 For Myerson Auction, the nearly-tight bounds in all settings are obtained by [35]. For
Anonymous Reserve, the upper bounds in all settings follow from our Theorem 4, and the matching
lower bounds are proved by [39, 35]. (In the MHR setting, the above lower bounds hold for discrete
MHR distributions, but the best-known lower bounds for continuous MHR distributions are just
Ω̃(n · ε−3/2) and Ω̃(ε−3/2) [39, 35].)

Myerson Auction Anonymous Reserve

[0, 1]-additive Θ̃(n · ε−2)

[35]

Θ̃(ε−2)

[1, H] Θ̃(n · H · ε−2) Θ̃(H · ε−2) [39]
Thm 4

regular Θ̃(n · ε−3) Θ̃(ε−3)

MHR Θ̃(n · ε−2) Θ̃(ε−2) [35]

learn an (1− ε)-approximate optimal auction. A long line of work had improved the sample
complexity [24, 46, 27, 32, 52, 39]. The recent breakthrough result by Guo et al. [35] derived
the tight sample complexity, up to poly-logarithmic factors, for all the value distribution
families considered in the literature.

The above results all target the revenue-optimal single-item auction, namely the canonical
Myerson Auction [48]. Nonetheless, Myerson Auction is fairly complicated and rarely used
in real life [3]. In contrast, the AGT community has placed “simplicity” as a primary goal
for auction design [37, 18, 1, 43, 42, 40]. In practice, one of the most popular auctions is
Second-Price Auction with Anonymous Reserve (i.e., setting the same reserve price for every
bidder), e.g., the auctions in eBay, AdX, and Adsense. We emphasize that such an auction
has straightforward instructions:

Based on the bidders’ value distributions, the seller carefully selects a reserve r ∈ R≥0
for the item. If all the bids are below r, then the seller retains the item. If only the
highest bid reaches r, then the highest bidder wins the item by paying this reserve
price. Otherwise (i.e., two or more bids reach r), the highest bidder wins the item by
paying a price of the second-highest bid.

The significance and practicality of Anonymous Reserve naturally motivate a rich literature to
study its approximability against Myerson Auction in terms of revenues [37, 36, 1, 43, 42, 41]
and learnability [17, 46, 45, 51, 44].

The first “approximability” result was attained in Myerson’s original paper [48]: When
the value distributions are i.i.d. and satisfy the standard regularity assumption (see Section 2.1
for its definition), Myerson Auction reduces to Anonymous Reserve. Even if the distributional
assumptions are greatly relaxed, as we quote from [37]: “In quite general settings, simple
auctions like Anonymous Reserve provably approximates the optimal expected revenue, to
within a small constant factor.” Moreover, its learnability has been tackled in various contexts.
For example, Cesa-Bianchi et al. [17] assumed i.i.d. and [0, 1]-bounded value distributions
and got a nearly optimal sample complexity of Θ̃(ε−2).2

2 Precisely, Cesa-Bianchi et al. studied the slightly different problem of regret minimization over a time
horizon t ∈ T (in terms of the cumulative revenue loss against the optimal Anonymous Reserve). While
imposing a strong distributional assumption, the seller is assumed to know just the allocations and
payments in the past rounds. Cesa-Bianchi et al. obtained a nearly optimal Θ̃(

√
T)-regret algorithm.

This regret bound easily indicates the Θ̃(ε−2) sample complexity bound.
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Despite the above discussions, how many samples do we need to learn an (1 − ε)-
approximate optimal reserve price when the bidders have (possibly) distinct value distribu-
tions? This problem is essential to understand Anonymous Reserve but remains unsettled.
Because we only need to learn a good reserve price, conceivably, the task should be much
easier than learning Myerson Auction (which requires a complete understanding of all bidders’
distributions). Our work shows that this is precisely the case: As Table 1 illustrates, An-
onymous Reserve in comparison has dramatically smaller sample complexity. Remarkably, it
depends only on the precision ε ∈ (0, 1) but not on the population n ∈ N≥1.

Our learning algorithm for Anonymous Reserve is clear and intuitive and thus may be
more attractive in practice. First, we slightly “shrink” (in the sense of stochastic dominance)
the empirical distributions determined by the samples, resulting in the dominated empirical
distributions. Then, we compute the optimal reserve price for these dominated empirical
distributions (or, when there are multiple optimal reserve prices, any of them).3 Employing
this reserve price turns out to generate an (1− ε)-fraction as much revenue as the optimal
Anonymous Reserve.

This framework was proposed by [35], and the analysis has two parts: revenue monotonicity
and revenue smoothness. The revenue monotonicity of a specific auction means if a distribution
instance F stochastically dominates another F ′, then the two revenues satisfy that Rev(F) ≥
Rev(F ′). Since Myerson Auction and Anonymous Reserve both have this feature, for the
analysis of revenue monotonicity, we can apply arguments à la [35]. Moreover, revenue
smoothness means if two distribution instances are stochastically close (in some metric), then
their revenues must also be close. Guo et al. establish the revenue smoothness of Myerson
Auction via an elegant information theoretical argument. However, this proof scheme is
inapplicable here, and instead, we will present a more direct proof.

Before elaborating on the new argument, let us briefly explain why Anonymous Reserve
needs much fewer samples. The outcome of such an auction (i.e., the allocation and
the payment) relies on the highest and second-highest bids, whose distributions suffice
to determine the optimal reserve price. (In contrast, we must know the distributions of
all bidders to implement Myerson Auction.) Since only two distributions rather than n

distributions are involved, we can eliminate the dependence of the sample complexity on the
population.

Nonetheless, the restriction on the highest and second-highest bids incurs another issue.
In the model, we assume the bids to be mutually independent. This assumption is critical
for the information theoretical arguments by Guo et al. and the optimality of Myerson
Auction. Conversely, the highest two bids, in general, are correlated. It is highly non-
trivial whether we can extend the information theoretical arguments to accommodate the
correlated distributions.4 Thus, we prove the revenue smoothness by working directly with
Anonymous Reserve revenue. The techniques derived here may find more applications in
the future. (For example, they complement the extreme value theorems by [24, 14, 46].)
We believe that a similar approach, associated with the tools by [42], can circumvent the
information theoretical arguments by [35] and refine the poly-logarithmic factors in their
sample complexity of Myerson Auction.

3 This reserve price must be bounded since the (dominated) empirical distributions determined by the
samples are bounded almost surely (even in the unbounded regular/MHR settings).

4 The information theoretical arguments by [35] crucially rely on a particular form of Pinsker’s inequality,
which holds only for independent distributions. For Anonymous Reserve, in contrast, we need to deal
with the generally correlated highest and second-highest distributions. So, we must abandon the proof
scheme by Guo et al. and directly reason about Anonymous Reserve revenues.
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Correlation. Another benefit of the direct arguments is that even if the bids are arbitrarily
correlated (but capped with a specific high value), learning Anonymous Reserve needs the
same amount of samples. This generalized model is arguably much more realistic. In this
direction, an intriguing open problem is to study, given the correlated distributions, the
sample complexity of the optimal mechanisms [29, 49] or the optima in certain families of
robust mechanisms [50, 22, 10].

Data Compression. If we care about the space complexity of the learning algorithms, the
improvement on Anonymous Reserve against Myerson Auction is even more significant. To
learn Myerson Auction, we need Õ(n2) · poly(1/ε) space both to implement the algorithm
and to store the output auction. (Note that each sample is an n-dimensional value vector.)
Namely, we cannot predict the future bids and must record all details of the learned “virtual
value functions”. However, for Anonymous Reserve, since only the highest and second-highest
bids are involved, we only need poly(1/ε) space to implement the algorithm and O(1) space
to store the learned reserve price. This property is crucial to large markets, where historical
data cannot be stored entirely in the memory, and we wish to handle it in very few passes
(in the sense of streaming algorithms).

1.1 Comparison with Previous Approaches
To understand the sample complexity of Anonymous Reserve, an immediate attempt is to
readopt the algorithm of [17], under minor modification to accommodate non-identical and
even correlated value distributions (rather than just the i.i.d. ones). However, that algorithm
crucially relies on a particular property of i.i.d. value distributions: we can infer F1 point-wise
from F2 and vice versa, where Fi denotes the CDF of the i-th highest bid. Without the i.i.d.
assumption, the correlation between F1 and F2 is much more complex, which makes this
attempt fail to work for our purpose.

Also, one may attempt the empirical revenue maximization scheme, which gives the nearly
tight sample complexity for the similar task “optimal pricing pj

def= argmaxp p · (1−Fj(p)) for
a single bidder Fj”. However, in the regular and the MHR settings, the proof of either sample
complexity crucially relies on the underlying distributional assumption [28, 39]. For example,
given a regular/MHR distribution Fj , either the optimal price pj is unique, or all the
optimal prices pj form a connected interval. In contrast, given n ∈ N≥1 regular/MHR value
distributions, F1 and F2 can have Ω(n) disconnected optimal prices pi

def= argmaxp p·(1−Fi(p))
(see [43, Example 2]). Accordingly, F1 and F2 themselves cannot be regular/MHR, which
rejects this attempt as well.

Another approach in the literature is to construct an ε-net of all candidate reserve prices,
namely a poly(1/ε)-size hypothesis set H, and figure out the best one in H through the
samples (see [27, 51, 32], which use this method to learn Myerson Auction). In fact, for the
[0, 1]-bounded and [1, H]-bounded settings, it is a folklore that ε-net type algorithms can
attain the (nearly) tight sample complexity. However, the regular and MHR settings are
less understood due to the lack of suitable tools, such as some particular extreme value
theorems. Here we address this question; given the developed techniques, we can present
such sample-optimal ε-net type algorithms in both settings.

However, we prefer the “shrink-then-optimize” framework of [35] for two reasons. First,
ε-net type algorithms choose distinct hypothesis sets H for different value distribution
families, i.e., the distributional assumption somehow is part of the “input”. By contrast,
the new framework gives a unified and robust learning algorithm. In particular, different
distributional assumptions induce different sample complexities but do not affect the algorithm
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implementation. Second, our paper demonstrates that the new framework works not only
for the input value distributions as in [35] but also for some “sketched” distributions, i.e.,
order statistics, for our purpose. It would be interesting to see further extensions of this
framework.

1.2 Other Related Work

As mentioned, after the pioneering work of [24], the sample complexity of Myerson Auction
had been improved in a sequence of papers [46, 27, 51, 32, 52] and was finally answered
by [35]. En route, many techniques have been developed and may be helpful to mechanism
design, learning theory, and information theory. For an outline of these techniques, the reader
can turn to [35, Section 1].

Another related topic is the sample complexity of single-bidder revenue maximization.
Now, the optimal mechanism is to post the monopoly price p def= argmax

{
v ·

(
1 − F(v)

)
:

v ∈ R≥0
}

and then let the bidder make a take-it-or-leave-it decision. Again, the problem is
self-contained only under one of the four assumptions in Table 1. Up to a poly-logarithmic
factor, the optimal sample complexity is Θ̃(ε−2) in the [0, 1]-bounded additive-error setting
[5, 39], Θ̃(H · ε−2) in the [1, H]-bounded setting [5, 39], Θ̃(ε−3) in the continuous regular
setting [28, 39], and Θ̃(ε−2) in the MHR setting [35].

One can easily see that,5 in each of the four settings, the sample complexity of Anonymous
Reserve must be lower bounded by the single-bidder sample complexity. Since each mentioned
single-bidder lower bound matches with the claimed sample complexity of Anonymous Reserve
in Table 1 (up to a logarithmic factor), it remains to establish the upper bounds in the bulk
of this work.

To learn good posted prices for a single buyer, a complementary direction is to investigate
how much expected revenue is achievable using exactly one sample. When the distribution is
regular, [28] showed that using the sampled value as the price guarantees half of the optimal
revenue. Indeed, this ratio is the best possible (in the sense of worst-case analysis) when
the seller must post a deterministic price. However, better ratios are possible under certain
adjustments to the model. First, if the seller can access the second sample, he can improve
the ratio to 0.509 [4].6 Second, if a randomized price is allowed, the seller can get a better
revenue guarantee by constructing a particular price distribution from the single sample [30].
Recently, [2] improved this ratio to 0.501, and proved that no randomized pricing scheme
could achieve a 0.511-approximation. Moreover, if the buyer’s distribution satisfies the
stronger MHR condition, [39] gave a deterministic 0.589-approximation one-sample pricing
scheme. Afterward, [2] improved this ratio to 0.644, and obtained a 0.648 impossibility result
for any deterministic/randomized pricing scheme.

Another motivation of the “mechanism design via sampling” program is the recent research
interest in multi-item mechanism design, where Myerson Auction or its naive generalizations
are no longer optimal. The optimal multi-item mechanisms are often computationally/-
conceptually hard [25, 19, 20, 21]. Instead, a rich literature proves that simple multi-item
mechanisms are learnable from polynomial samples and constantly approximate the optimal
revenues [46, 6, 26, 47, 15, 52, 7, 33, 34].

5 E.g., imagine there is a dominant bidder in revenue maximization, and the other (n − 1) bidders are
negligible.

6 Concretely, [4] employs the empirical revenue maximization pricing scheme. That is, let s1 ≥ s2 be the
two samples, then choose s1 as the posted price when s1 ≥ 2 · s2 and choose s2 otherwise.
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Organization. Notation and preliminaries are given below. In Section 3, we show our
learning algorithm (see Algorithm 1) and present the analysis of revenue monotonicity. In
Section 4, we present the analysis of revenue smoothness, hence the sample complexity
promised in Table 1. In Section 5, we conclude this paper with a discussion on future research
directions.

2 Notation and Preliminaries

Notation. Denote by R≥0 (resp. N≥1) the set of all non-negative real numbers (resp. positive
integers). For any pair of integers b ≥ a ≥ 0, denote by [a] the set {1, 2, · · · , a}, and by [a : b]
the set {a, a+1, · · · , b}. Denote by 1(·) the indicator function. The function (·)+ maps a real
number z ∈ R to max{0, z}. For convenience, we interchange bid/value and bidder/buyer.

2.1 Probability
We use the calligraphic letter F to denote an input instance (i.e., an n-dimensional joint
distribution), from which the buyers j ∈ [n] draw a value vector s = (sj)j∈[n] ∈ Rn

≥0.
Particularly, if the value sj ’s are independent random variables (drawn from a product
distribution F), we further write F = {Fj}j∈[n], where each Fj presents the marginal value
distribution of the individual buyer j ∈ [n]. Regarding the Anonymous Reserve auctions
(to be elaborated in Section 2.2), the highest and second-highest values ŝ1 and ŝ2 are of
particular interest. We respectively denote by F1 and F2 the distributions of ŝ1 and ŝ2.

As usual in the literature, we use the notations F and Fi (for i ∈ {1, 2}) and Fj (for j ∈ [n])
also to denote the corresponding CDF’s. However, we assume that a single-dimensional CDF
Fi or Fj is left-continuous,7 in the sense that if a buyer has a random value s ∼ F for a
price-p item, then his unwilling-to-purchase probability is Pr[s < p] rather than Pr[s ≤ p].
Further, we say a distribution F stochastically dominates another distribution F ′ (or simply
F ⪰ F ′) when their CDF’s satisfy F (v) ≤ F ′(v) for any v ∈ R≥0.

We investigate the input instance F in four canonical settings. The first and second
settings, where the support supp(F) is bounded within the n-dimensional hypercube [0, 1]n
or [1, H]n (for a given real number H ≥ 1), are clear.

In the third setting, the input instance is a product distribution F = {Fj}j∈[n], where
each Fj is a continuous regular distribution.8 Denote by fj the corresponding PDF. According
to [48], the regularity means the virtual value function

φj(v) def= v − 1−Fj(v)
fj(v)

is monotone non-decreasing on the support supp(Fj).
In the last setting, the input instance F = {Fj}j∈[n] is also a product distribution, but

each Fj now may be a discrete or continuous (or even mixture) distribution that has a
monotone hazard rate (MHR). Let us specify the MHR condition [9] in the next paragraph.

MHR Distribution. A discrete MHR instance F = {Fj}j∈[n] must be supported on a
discrete set {k∆ : k ∈ N≥1} (as Figure 1a demonstrates), where ∆ > 0 is a given step-size.
For each j ∈ [n], consider the step function Gj(v) def= ln

(
1− Fj(v)

)
(marked in blue) as well

as the piece-wise linear function Lj (marked in gray) determined by the origin (0, 0) and the

7 For the n-dimensional input distribution F , we never work with its CDF directly.
8 More precisely, Fj can have a unique probability mass at its support supremum.
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y

v0

Gj(v) = ln
(
1 − Fj(v)

)
(a) Discrete MHR distribution

y

v0

Gj(v) = ln
(
1 − Fj(v)

)
(b) Continuous MHR distribution

Figure 1 Demonstration for discrete and continuous MHR distributions.

“⌝”-type points
(
k ·∆, Gj(k ·∆)

)
’s (marked in green). The MHR condition holds iff each

Lj is a concave function. Moreover, for a continuous MHR instance F = {Fj}j∈[n], each
individual Fj is supported on a possibly distinct interval. The MHR condition holds iff each
Gj(v) def= ln

(
1− Fj(v)

)
is a concave function on its own support, as Figure 1b illustrates.

2.2 Anonymous Reserve
In a Second-Price Auction with Anonymous Reserve, the seller posts an a priori reserve r ∈ R≥0
to the item. There are three possible outcomes: (i) when no buyer has a value of at least
the reserve r, the auction would abort; (ii) when there is exactly one such buyer, he would
pay the reserve r for winning the item; (iii) when there are two or more such buyers, the
highest-value buyer (with arbitrary tie-breaking rule) would pay the second-highest value
(i.e., a price of at least the reserve r) for winning the item.

We now formulate the expected revenue from the above mechanism [17, Fact 1]. Sample
a random value vector s = (sj)j∈[n] ∼ F and then denote by (ŝ1, ŝ2) the highest and
second-highest values. By simulating the mechanism, we have

(outcome revenue) = r · 1(ŝ1 ≥ r > ŝ2) + ŝ2 · 1(ŝ2 ≥ r)
= r · 1(ŝ1 ≥ r) + (ŝ2 − r)+

⇒ (expected revenue) = r ·Pr[ŝ1 ≥ r] + E[(ŝ2 − r)+].

In order to comprehend the expected revenue (denoted by AR(r, F) for brevity), we need to
know nothing (e.g. the correlation between ŝ1 and ŝ2) but the marginal CDF’s F1 and F2.
So, we may write F = F1 ⊎F2, namely the “union” of the highest and second-highest CDF’s.
Equipped with the new notations, let us formulate the expected revenue more explicitly.

▶ Proposition 1 (Revenue Formula [17]). Under any reserve r ∈ R≥0, the corresponding
Anonymous Reserve auction extracts an expected revenue of

AR(r, F) = r ·
(
1−F1(r)

)
+

∫ ∞
r

(
1−F2(x)

)
· dx.

When the reserve r ∈ R≥0 is selected optimally, namely rF
def= argmax{AR(r, F) : r ∈

R≥0} (which might be infinity), we simply write AR(F) = AR(rF , F). Based on the revenue
formula in Proposition 1, one can easily check the next Proposition 2 via elementary algebra.

▶ Proposition 2. The following holds for any pair of instances F = F1⊎F2 and F ′ = F ′
1⊎F ′

2
that admits the stochastic dominance F1 ⪰ F ′

1 and F2 ⪰ F ′
2:

1. AR(r, F) ≥ AR(r, F ′) for any reserve r ∈ R≥0.
2. AR(F) ≥ AR(F ′).
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For ease of presentation, we also need the extra notations below, and the next Proposition 3
(see the full version for its proof) will often be invoked in our later proof.

The parameter β
def= ln(8m/δ)

m , in which m ∈ N≥1 represents the sample complexity and
δ ∈ (0, 1) denotes the failing probability of a learning algorithm.
The empirical instance E = E1 ⊎ E2 is given by a number of m ∈ N≥1 samples. Consider
the i-th highest entry of every sample, then the i-th highest empirical distribution Ei is
exactly the uniform distribution supported on these i-th highest entries. Equivalently, Ei

is the uniform distribution induced by m samples from the i-th highest distribution Fi.
The shaded instance F̃ = F̃1 ⊎ F̃2: every i-th highest shaded CDF F̃i is defined as
F̃i(v) def= SF (Fi(v)) for all value v ∈ R≥0, where the function

SF (x) def= min
{

1, x +
√

8β · x · (1− x) + 7β
}

, ∀x ∈ [0, 1].
The shaded empirical instance Ẽ = Ẽ1 ⊎ Ẽ2: every i-th highest shaded empirical CDF Ẽi

is defined as Ẽi(v) def= SE(Ei(v)) for all value v ∈ R≥0, where the function
SE(x) def= min

{
1, x +

√
2β · x · (1− x) + 4β

}
, ∀x ∈ [0, 1].

▶ Proposition 3. Both of SF (x) and SE(x) are non-decreasing functions on interval x ∈ [0, 1].

Regarding Proposition 3, all the above instances are well defined. Without ambiguity, we
may write F̃i

def= SF (Fi) and Ẽi
def= SE(Ei). In the next section, we will show certain properties

of/among them and the input instance F = F1 ⊎ F2.

3 Empirical Algorithm

In this section, we first present our learning algorithm and formalize our main results
(given respectively in Algorithm 1 and Theorem 4). Afterwards, we probe into the learned
Anonymous Reserve auction via the revenue monotonicity (cf. Proposition 2). As a result,
the learning problem will be converted into proving a certain property (parameterized by
β = ln(8m/δ)

m , where m is the sample complexity) of the concerning instance F = F1 ⊎ F2.

Algorithm 1 Empirical Algorithm.
Input: sample matrix S = (st, j)m×n, where each row (st, j)j∈[n] is a sample drawn from F
Output: an (1− ε)-approximately optimal Anonymous Reserve auction for instance F

1: for all i ∈ {1, 2} do
2: Let ŝi = (ŝt, i)t∈[m] be the row-wise i-th highest entries of the sample matrix S

// Namely, reorder rows (st, j)j∈[n] so that st, (1) ≥ · · · ≥ st, (n), then ŝt, i
def= st, (i)

3: Let Ei be the i-th highest empirical CDF induced by the i-th highest sample ŝi

4: Let Ẽi
def= SE(Ei) be the shaded counterpart of the i-th highest empirical CDF Ei

5: end for
6: return the optimal reserve rẼ for Ẽ = Ẽ1 ⊎ Ẽ2 (under any tie-breaking rule)

▶ Theorem 4. With (1− δ) confidence, the reserve rẼ ∈ R≥0 output by Algorithm 1 gives a
nearly optimal Anonymous Reserve revenue AR(rẼ , F) ≥ AR(F)− ε, conditioned on
1. m = O

(
ε−2 · (ln ε−1 + ln δ−1)

)
and the instance F is supported on [0, 1]n.

Alternatively, AR(rẼ , F) ≥ (1− ε) · AR(F), conditioned on
2. m = O

(
ε−2 ·H · (ln ε−1 + ln H + ln δ−1)

)
and the instance F is supported on [1, H]n.

3. m = O
(
ε−3 · (ln ε−1 + ln δ−1)

)
and the instance F is regular.

4. m = O
(
ε−2 · (ln ε−1 + ln δ−1)

)
and the instance F is MHR.
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Analysis via Revenue Monotonicity. The following Lemma 5 (see the full version for its
proof) suggests that (with high confidence) the empirical instance E = E1 ⊎ E2 is close to the
original instance F = F1 ⊎ F2 in the Kolmogorov distance.

▶ Lemma 5. With (1− δ) confidence, for both i ∈ {1, 2}, the following holds for the i-th
highest CDF Fi and its empirical counterpart Ei: for any value v ∈ R≥0,∣∣Ei(v)−Fi(v)

∣∣ ≤√
2β · Fi(v) ·

(
1−Fi(v)

)
+ β.

By construction (Ẽi
def= SE(Ei) for both i ∈ {1, 2}), the shaded empirical instance

Ẽ = Ẽ1 ⊎ Ẽ2 must be dominated by the empirical instance E = E1 ⊎ E2, thus likely being
dominated by the original instance F = F1 ⊎ F2 as well (in view of Lemma 5).

Instead, let us consider the shaded instance F̃ = F̃1⊎F̃2 derived directly from the original
instance F via the other function SF (·), i.e., F̃i

def= SF (Fi) for both i ∈ {1, 2}. Compared to
the earlier function SE(·), the current function SF (·) distorts the input x ∈ [0, 1] to a greater
extent:

SF (x) = min
{

1, x +
√

8β · x · (1− x) + 7β
}

≥ min
{

1, x +
√

2β · x · (1− x) + 4β
}

= SE(x),

where the inequality is strict when SF (x) < 1. Given these and in view of Lemma 5 (that
the empirical instance E is close to the original instance F), the two shaded instances Ẽ and
F̃ are likely to admit the dominance Ẽi ⪰ F̃i for both i ∈ {1, 2}.

These two propositions are formalized as Lemma 6 (see the full version for its proof):

▶ Lemma 6. In the case of Lemma 5, which happens with (1 − δ) confidence, for both
i ∈ {1, 2}, the following holds for the empirical i-th highest CDF Ẽi:
1. Ẽi(v) ≥ Fi(v) for any v ∈ R≥0, i.e., Ẽi is dominated by the given i-th highest CDF Fi.
2. Ẽi(v) ≤ F̃i(v) for any v ∈ R≥0, i.e., Ẽi dominates the shaded i-th highest CDF F̃i.

Using the reserve rẼ output by Algorithm 1, the corresponding Anonymous Reserve auction
extracts an expected revenue of AR(rẼ , F) from the original instance F = F1 ⊎ F2. Below,
we give a lower bound of this revenue, which is more convenient for later analysis.

▶ Lemma 7. In the case of Lemma 5, which happens with (1−δ) confidence, from the original
instance F = F1 ⊎F2, the Anonymous Reserve with a reserve of rẼ generates a revenue better
than the optimal Anonymous Reserve revenue from the shaded instance F̃ = F̃1 ⊎ F̃2:

AR(rẼ , F) ≥ AR(rF̃ , F̃) = AR(F̃).

Proof. Due to Lemma 6 and Proposition 2 (i.e., the revenue monotonicity with respect to
Anonymous Reserve):

AR(rẼ , F) ≥ AR(rẼ , Ẽ) (Part 1 of Lemma 6: dominance Fi ⪰ Ẽi)

≥ AR(rF̃ , Ẽ) (rẼ is optimal to Ẽ but rF̃ may not be)

≥ AR(rF̃ , F̃) = AR(F̃). (Part 2 of Lemma 6: dominance Ẽi ⪰ F̃i)

This completes the proof of Lemma 7. ◀
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Remarkably, the lower-bound revenue AR(F̃) is irrelevant to Algorithm 1, since we directly
construct the shaded instance F̃ = F̃1 ⊎ F̃2 from the original instance F via the function
SF (·) (parameterized by β = ln(8m/δ)

m , where m is the promised sample complexity). Based
on the above discussions, Theorem 4 immediately follows if we have

AR(F̃) ≥ AR(F)− ε (the [0, 1]-bounded setting)

AR(F̃) ≥ (1− ε) · AR(F) (the other three settings)

These two inequalities will be justified in Section 4.

4 Revenue Smoothness

In this section, we will bound the additive or multiplicative revenue gap between the shaded
instance F̃ = F̃1 ⊎ F̃2 and the original instance F = F1 ⊎ F2. First of all, one can easily
check the next Claim 8 via elementary algebra.

▷ Claim 8. The following holds for the parameter β
def= ln(8m/δ)

m :
1. β ≤ ε2

12 when m ≥ 36ε−2 · (ln ε−1 + ln δ−1 + 3). ([0, 1]-bounded setting)
2. β ≤ ε2·H−1

48 when m = 144ε−2 ·H · (ln ε−1 + ln H + ln δ−1 + 4). ([1, H]-bounded setting)
3. β ≤ ε3

2880 when m ≥ 11520ε−3 · (ln ε−1 + ln δ−1 + 4). (continuous regular setting)
4. β ≤ ε2

1870 when m ≥ 5610ε−2 · (ln ε−1 + ln δ−1 + 5). (MHR setting)

4.1 [0, 1]-Bounded Setting

Given the sample complexity m = O
(
ε−2 · (ln ε−1 +ln δ−1)

)
promised in Part 1 of Theorem 4,

we safely assume m ≥ 36ε−2 · (ln ε−1 + ln δ−1 + 3). Consider the function SF (·): for x ∈ [0, 1],

SF (x) = min
{

1, x +
√

8β · x · (1− x) + 7β
}

≤ x +
√

8β · x · (1− x) + 7β

≤ x +
√

2β + 7β (as x · (1− x) ≤ 1
4 )

≤ x + 1√
6 · ε + 7

12 · ε
2 (Part 1 of Claim 8: β ≤ ε2

12 )

≤ x + ε, (as 1√
6 + 7

12 ≈ 0.9916 < 1)

which means that F̃i(v) ≤ Fi(v)+ε for all value v ∈ [0, 1] and both i ∈ {1, 2}. Let rF ∈ [0, 1]
denote the optimal reserve for the original instance F = F1 ⊎ F2. Thus,9

AR(F)− AR(F̃) ≤ AR(rF , F)− AR(rF , F̃) (rF may not be optimal for F̃)

= rF ·
(
F̃1(rF )−F1(rF )

)
+

∫ 1
rF

(
F̃2(x)−F2(x)

)
· dx

≤ rF · ε +
∫ 1

rF
ε · dx = ε.

This concludes the proof in the setting with [0, 1]-bounded support.

9 Note that the interval of integration can be safely truncated to the support supremum of su = 1.
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4.2 [1, H]-Bounded Setting
Given the sample complexity m = O

(
ε−2 ·H · (ln ε−1 + ln H + ln δ−1)

)
promised in Part 2

of Theorem 4, we safely assume m ≥ 144ε−2 ·H · (ln ε−1 + ln H + ln δ−1 + 4). To see this
amount of samples is sufficient to learn a nearly optimal Anonymous Reserve, the next two
facts will be useful.

▷ Claim 9. From the original instance F = F1 ⊎F2, the optimal Anonymous Reserve revenue
AR(F) is at least the support infimum of sl = 1.

Proof. Obvious, e.g. the item always gets sold out under a reserve of 1. ◁

▷ Claim 10. For the original instance F = F1 ⊎ F2, there is an optimal Anonymous Reserve
auction having a reserve of rF ∈

[
1, F−1

1 ( H−1
H )

]
⊆ [1, H].

Proof. When there are multiple alternative optimal reserves rF ’s, we would select the smallest
one. Clearly, the bound F−1

1 ( H−1
H ) is at least the support infimum of sl = 1 ≤ F−1

1 (0).
Actually, employing the reserve of 1 guarantees as much revenue as employing another reserve
r ∈

(
F−1

1 ( H−1
H ), H

]
: recall the Anonymous Reserve revenue formula,

AR(1, F)− AR(r, F) = 1 ·
(
1−F1(1)

)
− r ·

(
1−F1(r)

)
+

∫ r

1
(
1−F2(x)

)
· dx

≥ 1 ·
(
1−F1(1)

)
− r ·

(
1−F1(r)

)
(r > F−1

1 ( H−1
H ) ≥ 1)

≥ 1 ·
(
1−F1(1)

)
−H · (1− H−1

H ) (r ≤ H & F1(r) > H−1
H )

= 1− 1 = 0. (as F1(1) = 0)

That is, under our tie-breaking rule, any reserve r ∈
(
F−1

1 ( H−1
H ), H

]
cannot be optimal,

which completes the proof of Claim 9. ◁

Define a parameter B def= F2
−1( H−1

H ) ∈ [1, H]. As shown in the former [0, 1]-bounded
setting, the function SF (x) ≤ x +

√
8β · x · (1− x) + 7β for x ∈ [0, 1]. We deduce that10

AR(F)− AR(F̃) ≤ AR(rF , F)− AR(rF , F̃) (rF may not be optimal to F̃)

= rF ·
(
F̃1(rF )−F1(rF )

)
+

∫ H

rF

(
F̃2(x)−F2(x)

)
· dx

≤ (First Term) + (Second Term) + (Third Term) + 7β ·H, (1)

where

(First Term) def= rF ·
√

8β · F1(rF ) ·
(
1−F1(rF )

)
.

(Second Term) def=
∫ max{rF , B}

rF

√
8β · F2(x) ·

(
1−F2(x)

)
· dx.

(Third Term) def=
∫ H

max{rF , B}

√
8β · F2(x) ·

(
1−F2(x)

)
· dx.

We measure these terms in the next two lemmas.

▶ Lemma 11. (First Term) + (Second Term) ≤
√

8β ·H · AR(rF , F) =
√

8β ·H · AR(F).

Proof. Recall Claim 10 that rF ≤ F−1
1 ( H−1

H ), which implies F1(rF ) ≤ H−1
H and thus

F1(rF )
1−F1(rF ) ≤ H − 1 ≤ H. Consequently,

(First Term) =
√

8β · F1(rF )
1−F1(rF ) · rF ·

(
1−F1(rF )

)
10 Note that the interval of integration can be safely truncated to the support supremum of su = H.
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≤
√

8β ·H · rF ·
(
1−F1(rF )

)
.

Similarly,
√
F2(v) ·

(
1−F2(v)

)
≤
√

H ·
(
1−F2(v)

)
whenever v ≤ B = F2

−1( H−1
H ). Hence,11

(Second Term) =
∫ max{rF , B}

rF

√
8β · F2(x) ·

(
1−F2(x)

)
· dx

≤
√

8β ·H ·
∫ max{rF , B}

rF

(
1−F2(x)

)
· dx

≤
√

8β ·H ·
∫ H

rF

(
1−F2(x)

)
· dx.

Combining the above two inequalities together completes the proof of Lemma 11. ◀

▶ Lemma 12. (Third Term) ≤
√

8β ·H.

Proof. Clearly, the second-highest CDF F2(v) ≤ 1 for any value v ∈ R≥0. For any value
v ≥ B = F2

−1( H−1
H ) ∈ [1, H], we have 1−F2(v) ≤ 1

H . Accordingly,

(Third Term) =
∫ H

max{rF , B}

√
8β · F2(x) ·

(
1−F2(x)

)
· dx

≤
∫ H

max{rF , B}

√
8β/H · dx ≤ H ·

√
8β/H =

√
8β ·H.

This completes the proof of Lemma 12. ◀

Applying Lemmas 11 and 12 to inequality (1), we conclude that AR(F̃) ≥ (1− ε) · AR(F):

AR(F)− AR(F̃) ≤
√

8β ·H · AR(F) +
√

8β ·H + 7β ·H
≤ (2 ·

√
8β ·H + 7β ·H) · AR(F) (Claim 9: AR(F) ≥ 1)

≤ (
√

6
3 · ε + 7

48 · ε
2) · AR(F) (Claim 8, Part 2: β ≥ ε2·H−1

48 )

≤ ε · AR(F). (as
√

6
3 + 7

48 ≈ 0.9623 < 1)

This completes the proof in the [1, H]-bounded setting.

4.3 Continuous Regular Setting

Throughout this subsection, we assume that each buyer j ∈ [n] independently draws his
value (for the item) from a continuous regular distribution Fj . Different from the former two
settings, a regular distribution may have an unbounded support, which incurs extra technical
challenges in proving the desired sample complexity of Algorithm 1.

To address this issue, we carefully truncate the given instance F , such that (1) the
resulting instance F∗ is still close to F , under the measurement of the optimal Anonymous
Reserve revenue; (2) F∗ has a small enough support supremum, which allows us to bound
the revenue gap between it and its shaded counterpart F̃∗ (à la the proofs in the former two
settings). Indeed, (3) F̃∗ is dominated by the shaded instance F̃ (derived directly from F),
thus AR(F̃∗) ≤ AR(F). Combining everything together completes the proof in this setting.

11 Particularly, even if rF ≥ B, we still have (Second Term) = 0 ≤
√

8β · H ·
∫ H

rF

(
1 − F2(x)

)
· dx.
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Auxiliary Lemmas. To elaborate the truncation scheme, let us introduce several useful
facts. Below, Lemma 13 might be known in the literature, yet we include a short proof for
completeness. Notably, it only requires the distributions F = {Fj}j∈[n] to be independent.

▶ Lemma 13 (Order Statistics). For any product instance F = {Fj}j∈[n], the highest CDF F1

and the second-highest CDF F2 satisfy that 1−F2(v) ≤
(
1−F1(v)

)2 for any value v ∈ R≥0.

Proof. After elementary algebra (see [43, Section 4]), one can easily check that the highest
CDF F1(v) =

∏
j∈[n] Fj(v) and the second-highest CDF

F2(v) =
∑

i∈[n] Pr
[
si ≥ v ∧ (sj < v, ∀j ̸= i)

]
+ Pr[sj < v, ∀j ∈ [n]] (draw {sj}n

j=1 from {Fj}i∈[n])

= F1(v) ·
[
1 +

∑
j∈[n]

(
1/Fj(v)− 1

)]
≥ F1(v) ·

[
1 +

∑
j∈[n] ln

(
1/Fj(v)

)]
(as z ≥ ln(1 + z) when z ∈ R≥0)

= F1(v) ·
(
1− lnF1(v)

)
(as F1(v) =

∏
j∈[n] Fj(v))

≥ F1(v) ·
(
2−F1(v)

)
. (as ln(1− z) ≤ −z when z ∈ [0, 1])

We thus conclude the proof of Lemma 13 by rearranging the above inequality. ◀

We safely scale the original instance F = {Fj}j∈[n] so that maxv∈R≥0

{
v ·

(
1−F1(v)

)}
= 1.

Together with Lemma 13, this normalization leads to the following observations.

▷ Claim 14. AR(F) = maxr∈R≥0

{
r ·

(
1−F1(r)

)
+

∫ ∞
r

(
1−F2(x)

)
· dx

}
≥ 1.

▷ Claim 15. The highest CDF F1 is stochastically dominated by the equal-revenue CDF
Φ1, namely F1(v) ≥ Φ1(v) def= (1− 1

v )+ for any value v ∈ R≥0.

▷ Claim 16. The second-highest CDF F2 is stochastically dominated by the CDF Φ2(v) def=
(1− 1

v2 )+, namely F2(v) ≥ Φ2(v) for any value v ∈ R≥0.

Truncation Scheme. Based on the original instance F = F1⊎F2, we construct the truncated
instance F∗ = F∗

1 ⊎ F∗
2 as follows: for both i ∈ {1, 2} and any value v ∈ R≥0,

F∗
i (v) def=

{
Fi(v) when Fi(v) ≤ 1− (ε/4)i

1 when Fi(v) > 1− (ε/4)i
. (Truncation)

We immediately get two useful facts about the truncated instance F∗ = F∗
1 ⊎ F∗

2 .

▷ Claim 17. For i ∈ {1, 2}, the truncated i-th highest CDF F∗
i is dominated by the

original i-th highest CDF Fi. Thus, the shaded counterpart F̃∗
i = SF (F∗

i ) is dominated by
F̃i = SF (Fi).

Proof. The first dominance F∗
i ⪯ Fi is obvious (by construction). The second dominance

F̃∗
i ⪯ F̃i also holds, because SF (·) is a non-decreasing function (see Proposition 3). ◁

▷ Claim 18. The truncated instance F∗ = F∗
1 ⊎ F∗

2 has a support supremum of su ≤ 4/ε.

Proof. As we certified in Lemma 13, for any value v ∈ R≥0, the highest and second-highest
CDF’s satisfy that 1−F2(v) ≤

(
1−F1(v)

)2. From this one can derive that

F2
−1(1− ε2/16) ≤ F1

−1(1− ε/4).
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For each i-th highest CDF Fi, we indeed truncate the particular ( ε
4 )i-fraction of quantiles

that correspond to the largest possible values. In view of the above inequality, the truncated
second-highest CDF F∗

2 must have a smaller support supremum than the truncated highest
CDF F∗

1 . Due to Claim 15, we further have Φ1(su) ≤ F1(su) = F∗
1 (su) ≤ 1− ε/4. That is,

1− 1/su ≤ 1− ε/4 and thus su ≤ 4/ε. This completes the proof of Claim 18. ◁

Revenue Loss. Below, Lemma 19 shows that (Truncation) only incurs a small revenue loss.

▶ Lemma 19 (Revenue Loss). The truncated instance F∗ = F∗
1 ⊎ F∗

2 satisfies that

AR(F∗) ≥ (1− 3
4 · ε) · AR(F).

Proof. We adopt a hybrid argument. For brevity, let AR(r, F1 ⊎ F∗
2 ) be the resulting

Anonymous Reserve revenue (under any reserve r ∈ R≥0) when only the second-highest CDF
is truncated, and let r be the optimal reserve for the hybrid instance F1 ⊎ F∗

2 . The lemma
comes from these two inequalities:

AR(F∗) ≥ (1− ε/4) · AR(F1 ⊎ F∗
2 ) (2)

≥ (1− ε/4) · (1− ε/2) · AR(F). (3)

In the remainder of the proof, we verify these two inequalities one by one.

Inequality (2). Under replacing the original highest CDF F1 with F∗
1 , we claim that

∃(r ≤ r) : r ·
(
1−F∗

1 (r)
)
≥ (1− ε/4) · r ·

(
1−F1(r)

)
. (⋆)

The new reserve r ∈ [0, r] may not be optimal for the truncated instance F∗ = F∗
1 ⊎ F∗

2 .
Based on the revenue formula and assuming inequality (⋆), we can infer inequality (2):

AR(F∗) ≥ AR(r, F∗) = r ·
(
1−F∗

1 (r)
)

+
∫ ∞

r

(
1−F∗

2 (x)
)
· dx

≥ r ·
(
1−F∗

1 (r)
)

+ (1− ε/4) ·
∫ ∞

r

(
1−F∗

2 (x)
)
· dx (as r ≤ r)

≥ (1− ε/4) · AR(r, F1 ⊎ F∗
2 ) (inequality (⋆))

= (1− ε/4) · AR(F1 ⊎ F∗
2 ). (r is optimal for F1 ⊎ F∗

2 )

It remains to verify inequality (⋆). If F1(r) < 1−ε/4, by construction we have F∗
1 (v) = F1(v)

for any value v ≤ r. Clearly, inequality (⋆) holds by employing the same reserve r ← r.
From now on, we safely assume F1(r) =

∏
j∈[n] Fj(r) ≥ 1− ε/4. Inequality (⋆) is enabled

by the next Claim 20, which can be summarized from [1, Section 2].

▷ Claim 20. For any continuous regular distribution Fj and any value r ∈ R≥0, define the
parameter aj

def= r ·
(
1/Fj(r) − 1

)
. Then, Fj(v) ≤ v

v+aj
for any value v ∈ [0, r], with the

equality holds when v = r.

Consider another auxiliary highest CDF G∗
1 (v) def=

∏
j∈[n]

v
v+aj

. In view of Claim 20, it suffices
to show the following instead of inequality (⋆):

∃(r ≤ r) : r ·
(
1− G∗

1 (r)
)
≥ (1− ε/4) · r ·

(
1−F1(r)

)
, (⋄)

We choose r ← G∗−1
1 (1 − ε/4). Since G∗

1 (r) = F1(r) ≥ 1 − ε/4 (by Claim 20 and our
assumption) and G∗

1 is an increasing function, we do have r ≤ r. Let us bound the new
reserve r from below:

1− ε/4 = G∗
1 (r) =

∏
j∈[n]

r
r+aj

≤ r

r+
∑

j∈[n]
aj

⇒ r ≥ (4/ε− 1) ·
∑

j∈[n] aj .
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Given this, we can accomplish inequality (⋄) as follows:

LHS of (⋄) = r · (ε/4) ≥ (1− ε/4) ·
∑

j∈[n] aj

= (1− ε/4) · r ·
∑

j∈[n]
(
1/Fj(r)− 1

)
(by definition of aj)

≥ (1− ε/4) · r ·
∑

j∈[n]
(
1− Fj(r)

)
(as CDF Fj(r) ∈ [0, 1])

≥ (1− ε/4) · r ·
(
1−

∏
j∈[n] Fj(r)

)
= RHS of (⋄),

where the last inequality is because
∑

zi ≥ 1−
∏

(1− zi) when zi’s are between [0, 1].

Inequality (3). Since the reserve rF is optimal for the original instance F = F1 ⊎ F2 but
may not for the hybrid instance F1 ⊎ F∗

2 , we deduce from the revenue formula that

AR(F)− AR(F1 ⊎ F∗
2 ) ≤ AR(rF , F1 ⊎ F2)− AR(rF , F1 ⊎ F∗

2 )
=

∫ ∞
rF

(
F∗

2 (x)−F2(x)
)
· dx.

By construction, 0 ≤ F∗
2 (v) − F2(v) ≤ ( ε

4 )2 for any value v ∈ R≥0. Also, it follows from
Claim 16 that F2(v) + 1

v2 ≥ 1 ≥ F∗
2 (v). Apply both facts to the RHS of the above inequality:

AR(F)− AR(F1 ⊎ F∗
2 ) ≤

∫ ∞
0

(
F∗

2 (x)−F2(x)
)
· dx (lengthen the interval)

≤
∫ ∞

0 min
{

( ε
4 )2, 1

x2

}
· dx

= ε/2 ≤ (ε/2) · AR(F), (Claim 14: AR(F) ≥ 1)

which gives inequality (3) after rearranging. This completes the proof of Lemma 19. ◀

We now prove that, when the sample complexity m ≥ 11520ε−3 · (ln ε−1 + ln δ−1 + 4),
the optimal Anonymous Reserve revenue from the shaded truncated instance F̃∗ = F̃∗

1 ⊎ F̃∗
2

is indeed close enough to that from the truncated instance F∗ = F∗
1 ⊎ F∗

2 .

▶ Lemma 21. The following holds for the shaded truncated instance F̃∗ = F̃∗
1 ⊎ F̃∗

2 :

AR(F̃∗) ≥ AR(F∗)− ε/4.

Proof. Denote by r∗ the optimal reserve for the truncated instance F∗ = F∗
1 ⊎ F∗

2 . Clearly,
r∗ is at most the support supremum of su ≤ 4/ε (see Claim 18), and may not be optimal for
the shaded truncated instance F̃∗ = F̃∗

1 ⊎ F̃∗
2 . As illustrated in the former two settings, the

function SF (x) ≤ x +
√

8β · x · (1− x) + 7β for any x ∈ [0, 1]. Given these,12

AR(F∗)− AR(F̃∗) ≤ AR(r∗, F∗)− AR(r∗, F̃∗) (r∗ may not be optimal to F̃∗)

= r∗ ·
(
SF (F∗

1 (r∗))−F∗
1 (r∗)

)
+

∫ 4/ε

r∗

(
SF (F∗

2 (x))−F∗
2 (x)

)
· dx

≤ (First Term) + (Second Term) + 28β · ε−1, (4)

where

(First Term) def= r∗ ·
√

8β · F1(r∗) ·
(
1−F1(r∗)

)
.

(Second Term) def=
∫ 4/ε

r∗

√
8β · F∗

2 (x) ·
(
1−F∗

2 (x)
)
· dx.

In the reminder of the proof, we quantify these two terms one by one.

12 Note that the interval of integration can be safely truncated to the support supremum of su ≤ 4/ε.
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First Term. We infer from Claims 15 and 17 that the truncated highest CDF F∗
1 (v) ≥ 1− 1

v

for any value v ∈ R≥0. Additionally, of course F∗
1 (v) ≤ 1. We thus have

(First Term) ≤ r∗ ·
√

8β · 1 ·
[
1− (1− 1/r∗)

]
=
√

8β · r∗ ≤
√

32β · ε−1. (as r∗ ≤ su ≤ 4/ε)

Second Term. Based on Claims 16 and 17, for any value v ∈ R≥0, the truncated second-
highest CDF F∗

2 (v) ≥ (1− 1
v2 )+. Also, of course F∗

2 (v) ≤ 1. For these reasons,

(Second Term) ≤
∫ 4/ε

0

√
8β ·

(
1−F∗

2 (x)
)
· dx (as F∗

2 (x) ≤ 1)

≤
∫ 1

0
√

8β · dx +
∫ 4/ε

1

√
8β · 1

x2 · dx (as F∗
2 (x) ≥ (1− 1

x2 )+)

=
√

8β +
√

8β · ln(4/ε) =
√

8β · ln(4e/ε)

Plug the above two inequalities into inequality (4):

AR(F∗)− AR(F̃∗) ≤
√

32β
ε +

√
8β · ln( 4e

ε ) + 28β
ε

≤ ε√
90 + ε3/2·ln(4e/ε)√

360 + 7ε2

720 (Part 3 of Claim 8: β ≤ ε3

2880 )

≤ ε√
90 + ln(4e)·ε√

360 + 7ε2

720 (
√

ε · ln( 4e
ε ) ≤ ln(4e) for 0 < ε < 1)

≤ ε/4 ( 1√
90 + ln(4e)√

360 + 7
720 ≈ 0.2409 < 1

4 )

This completes the proof of Lemma 21. ◀

The next Corollary 22 accomplishes the proof in the continuous regular setting.

▶ Corollary 22. When the sample complexity m ≥ 11520ε−3 · (ln ε−1 + ln δ−1 + 4):

AR(F̃) ≥ AR(F̃∗) (Claim 17: dominance F̃i ⪰ F̃∗
i )

≥ AR(F∗)− ε/4 (Lemma 21: AR(F̃∗) ≥ AR(F∗)− ε/4)

≥ AR(F∗)− (ε/4) · AR(F) (Claim 14: AR(F) ≥ 1)

≥ (1− ε) · AR(F). (Lemma 19: AR(F∗) ≥ (1− 3
4 · ε) · AR(F))

4.4 MHR Setting

In this subsection, we also assume that the original distributions F = {Fj}j∈[n] are in-
dependent, and scale the instance such that maxv∈R≥0

{
v ·

(
1 − F1(v)

)}
= 1. Therefore,

Lemma 13 and Claims 14–16 still holds. Nevertheless, the lower-bound formulas in Claims 15
and 16 (for the highest and second-highest CDF’s) actually have too heavy tails. Namely,
sharper formulas are required to prove the desired revenue gap between the original in-
stance F and its shaded counterpart F̃ , given the more demanding sample complexity of
m = O

(
ε−2 · (ln ε−1 + ln δ−1)

)
.

Based on the particular structures of the MHR distributions, we will first obtain workable
lower-bound formulas, and then quantify the revenue loss between AR(F̃) and AR(F). To
this end, we safely assume m ≥ 5610ε−2 · (ln ε−1 + ln δ−1 + 5).
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y

v0

Gj(v) = ln
(
1 − Fj(v)

)

u

(a) Discrete MHR distribution

y

v0

Gj(v) = ln
(
1 − Fj(v)

)

u

(b) Continuous MHR distribution

Figure 2 Demonstration for the reduction in the proof of Lemma 23.

Lower-Bound CDF Formulas. Below, Lemma 23 shows that the highest and second-highest
CDF’s of any MHR instance decay exponentially fast.

▶ Lemma 23. The following holds for any continuous or discrete MHR instance F =
{Fj}j∈[n]:
1. The highest CDF F1(v) ≥ 1− 3

2 · e
−v/6 for any value v ≥ e.

2. The second-highest CDF F2(v) ≥ 1− 9
4 · e

−v/3 for any value v ≥ e.
3. The shaded instance F̃ = F̃1 ⊎ F̃2 has a support supremum of su ≤ 12 ln( 21

ε ).

Proof. To see Item 1, we fix a parameter u > 1 (to be determined) and present a reduction
(from the original MHR distributions F = {Fj}j∈[n] to certain continuous exponential
distributions) such that, for any value v ≥ u, the highest CDF decreases point-wise.

We first handle the discrete MHR instances. As Figure 2a illustrates and by definition
(see Section 2.1), such an instance F = {Fj}j∈[n] has a discrete support of {k ·∆ : k ∈ N≥1},
where the step-size ∆ > 0 is fixed. We must have ∆ ≤ 1, because the instance is scaled so
that maxv∈R≥0

{
v ·

(
1−F1(v)

)}
= 1 and ∆ is exactly the support infimum (i.e., F1(∆) = 0).

For any j ∈ [n], let us consider the step function Gj(v) def= ln
(
1 − Fj(v)

)
(marked in

blue in Figure 2a) and the piece-wise linear function Lj (marked in gray) induced by the
origin (0, 0) and the “⌝”-type points

(
k ·∆, Gj(k ·∆)

)
’s (marked in green). Apparently,

Gj(v) ≤ Lj(v) for any value v ∈ R≥0.
The MHR condition holds iff Lj is a concave function (see Section 2.1). Choose u← k ·∆

(for some k ∈ N≥1 to be determined) and let aj
def= − 1

u ·Gj(u) > 0, we infer from Figure 2a:

−aj · v ≥ Lj(v) ≥ Gj(v) = ln
(
1− Fj(v)

)
⇒ Fj(v) ≥ 1− e−aj ·v, (5)

for any value v ≥ u, with all the equalities holding when v = u. Given these, we also have

−aj · u = ln
(
1− Fj(u)

)
≤ ln

(
1−

∏
j∈[n] Fj(u)

)
= ln

(
1−F1(u)

)
, (6)

for each j ∈ [n]. Put everything together: for any value v ≥ u,

lnF1(v) =
∑

j∈[n] ln Fj(v) (as F1(v) =
∏

j∈[n] Fj(v))
(5)
≥

∑
j∈[n] ln(1− e−aj ·v)

= −
∑

j∈[n]
∑∞

p=1
1
p · e

−p·aj ·u · e−p·aj ·u·(v/u−1) (Taylor series)
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(6)
≥ −eln(1−F1(u))·(v/u−1) ·

∑
j∈[n]

∑∞
p=1

1
p · e

−p·aj ·u (p ≥ 1 and v/u− 1 ≥ 0)

=
(
1−F1(u)

)v/u−1 · ln
∏

j∈[n](1− e−aj ·u) (Taylor series)

(5)=
(
1−F1(u)

)v/u−1 · lnF1(u), (equality condition)

from which we deduce that F1(v) ≥
(
F1(u)

)(1−F1(u))v/u−1

for any value v ≥ u = k ·∆. It can
be seen that this lower-bound formula is an increasing function in the term F1(u) ∈ [0, 1].

We would like to choose k ← ⌊e/∆⌋. Because the step-size ∆ ≤ 1, we do have k ∈ N≥1
and u = k ·∆ ∈ [e− 1, e]. Then, it follows from Claim 15 that F1(u) ≥ F1(e− 1) ≥ 1− 1

e−1 .
Replace the term F1(u) in the above lower-bound formula with this bound:

F1(v) ≥
(

e−2
e−1

)(e−1)1−v/u

= e− ln( e−1
e−2 )·(e−1)1−v/u

≥ 1− ln( e−1
e−2 ) · (e− 1)1−v/u (as e−z ≥ 1− z)

≥ 1− ln( e−1
e−2 ) · (e− 1)1−v/e (as u ≤ e)

= 1− (e− 1) · ln( e−1
e−2 ) · e− ln(e−1)

e ·v

≥ 1− 3
2 · e

−v/6, (elementary algebra)

for any value v ∈ [u, ∞). Clearly, this inequality holds in the shorter range of v ∈ [e, ∞).
When F = {Fj}j∈[n] is a continuous MHR instance, by definition (see Section 2.1) each

function Gj(v) = ln
(
1− Fj(v)

)
itself is a concave function (as Figure 2b illustrates). That

is, we can simply choose u← e and apply the same arguments as the above. Actually, we
can get a better lower-bound formula that F1(v) ≥ 1− 5

4 · e
−v/e for any value v ≥ e.

Clearly, Item 2 is an implication of Item 1 and Lemma 13. Now, we turn to attesting
Item 3. By definition, the function SF (x) = min

{
1, x +

√
8β · x · (1− x) + 7β

}
= 1 when

x ≥ 1− 7β. Hence, the shaded instance F̃ = F̃1 ⊎ F̃2 has a support supremum of

su ≤ max{F1
−1(1− 7β), F2

−1(1− 7β)} (dominance F1 ⪰ F2)

= F1
−1(1− 7β) ≤ 6 ln( 3

14 · β
−1) (Part 1 of Lemma 23)

≤ 6 ln( 2805
7ε2 ) ≤ 12 ln(21/ε). (Part 4 of Claim 8: β ≤ ε2

1870 )

This completes the proof of Lemma 23. ◀

Revenue Loss. Conceivably, the original instance F = F1 ⊎F2 should have a small optimal
reserve rF , since F1 and F2 both have light tails. This proposition is formalized as the next
Lemma 24, which will be useful in our later proof.

▶ Lemma 24. For the original MHR instance F = F1 ⊎F2, there is an optimal Anonymous
Reserve auction having a reserve of rF ≤ C∗, where the constant C∗ ≈ 20.5782 is the larger
one between the two roots of the transcendental equation 3

2 · z · e
−z/6 = 1.

Proof. The proof here is similar in spirit to that of Claim 10. When there are multiple
alternative optimal reserves rF ’s, we would select the smallest one. To see the lemma, we
need the math fact 3

2 · z · e
−z/6 < 1 when z > C∗ ≈ 20.5782. Then, it follows from Part 1 of

Lemma 23 that

r ·
(
1−F1(r)

)
≤ 3

2 · r · e
−r/6 < 1, (7)
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for any reserve r > C∗. Particularly, limr→∞ r ·
(
1−F1(r)

)
= 0. By contrast, we have scaled

the instance such that maxv∈R≥0

{
v ·

(
1−F1(v)

)}
= 1, which means r ·

(
1−F1(r)

)
= 1 for

some other reserve r ∈ [0, C∗]. Recall the Anonymous Reserve revenue formula:

AR(r, F)− AR(r, F) = 1− r ·
(
1−F1(r)

)
+

∫ r

r

(
1−F2(x)

)
· dx

≥ 1− r ·
(
1−F1(r)

) (7)
≥ 0. (as r ≤ C∗ < r)

That is, under our tie-breaking rule, any reserve r > C∗ cannot be revenue-optimal. Appar-
ently, this observation indicates Lemma 24. ◀

Finally, Lemma 25 establishes the desired revenue gap between the original instance
F = F1 ⊎ F2 and its shaded counterpart F̃ = F̃1 ⊎ F̃2, thus settling the MHR case.

▶ Lemma 25. When the sample complexity m ≥ 5610ε−2 · (ln ε−1 + ln δ−1 + 5):

AR(F̃) ≥ (1− ε) · AR(F).

Proof. Recall that the function SF (x) ≤ x+
√

8β · x · (1− x)+ 7β when x ∈ [0, 1]. Based on
the support supremum su ≤ 12 ln( 21

ε ) established in Part 3 of Lemma 23 and the Anonymous
Reserve revenue formula, we deduce that13

AR(F)− AR(F̃) ≤ AR(rF , F)− AR(rF , F̃) (rF may not be optimal to F̃)

= rF ·
(
F̃1(rF )−F1(rF )

)
+

∫ 12 ln(21/ε)
rF

(
F̃2(x)−F2(x)

)
· dx

+
∫ ∞

12 ln(21/ε)
(
1−F2(x)

)
· dx

≤ (First Term) + (Second Term) + (Third Term) + 84β · ln(21/ε), (8)

where

(First Term) def= rF ·
√

8β · F1(rF ) ·
(
1−F1(rF )

)
.

(Second Term) def=
∫ 12 ln(21/ε)

rF

√
8β · F2(x) ·

(
1−F2(x)

)
· dx.

(Third Term) def=
∫ ∞

12 ln(21/ε)
(
1−F2(x)

)
· dx.

In the reminder of the proof, we quantify these three terms one by one.

[First Term]. Recall Claim 15 that the highest CDF F1(v) ≥ 1− 1
v for any value v ∈ R≥0.

Further, of course F1(v) ≤ 1. Given these and because rF ≤ C∗ ≈ 20.5782 (see Lemma 24),

(First Term) ≤ rF ·
√

8β · 1 ·
[
1− (1− 1/rF )

]
=
√

8β · rF ≤
√

165β.

[Second Term]. Clearly, F2(v) ∈ [0, 1] for all value v ∈ R≥0. Additionally, we infer from
Part 2 of Lemma 23 that

√
1−F2(v) ≤ 3

2 · e
−v/6 when v ≥ e. For these reasons,

(Second Term) ≤
∫ ∞

0

√
8β · F2(x) ·

(
1−F2(x)

)
· dx

≤
∫ e

0
√

8β · dx +
∫ ∞

e

√
8β · 3

2 · e
−x/6 · dx

=
√

8β · (e + 9e−e/6) ≤
√

570β (elementary algebra)

13 Note that the interval of integration can be safely truncated to the support supremum of su ≤ 12 ln( 21
ε ).
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[Third Term]. Also, we deduce from Part 2 of Lemma 23 that

(Third Term) =
∫ ∞

12 ln(21/ε)
(
1−F2(x)

)
· dx ≤

∫ ∞
12 ln(21/ε)

9
4 · e

−x/3 · dx = ε4

28812 ≤
ε

28812 .

Plug the above three inequalities into inequality (8):

AR(F)− AR(F̃)
≤
√

165β +
√

570β + ε
28812 + 84β · ln(21/ε)

≤
√

3
34 ε +

√
57

187 ε + ε
28812 + 42ε2·ln(21/ε)

935 (Claim 8, Part 4: β ≤ ε2

1870 )

≤
√

3
34 ε +

√
57

187 ε + ε
28812 + 42 ln 21

935 ε (ε · ln( 21
ε ) ≤ ln 21 for 0 < ε < 1)

≤ ε ≤ ε · AR(F) (elementary algebra)

where the last inequality is due to Claim 14. This completes the proof of Lemma 25. ◀

4.5 Continuous λ-Regular Setting
In the literature, there is another distribution family that receives much attention [16, 24, 23, 2]
– the continuous λ-regular distributions. When the built-in parameter λ ranges from 0 to 1,
this family smoothly expands from the MHR family to the regular family.

À la the MHR case, the sample complexity upper bound is still O
(
ε−2 · (ln ε−1 + ln δ−1)

)
,

despite that the O(·) notation now hides some absolute constant Cλ depending on λ ∈ (0, 1).
Since the proof of this bound is very similar to the MHR case, we just show in the full
version a counterpart extreme value theorem (cf. Lemma 23), but omit the other parts about
the revenue smoothness analysis.

It is noteworthy that the Õ
(
ε−2)

upper bound may not be optimal. Namely, in both of
the continuous λ-regular setting and the continuous MHR setting, the best known lower
bounds are Ω(ε−3/2) [39]. It would be interesting to pin down the exact sample complexity
in both settings, for which the tools developed here and by [14, 39, 35] might be useful.

5 Conclusion and Further Discussion

In this work, we proved the nearly tight sample complexity of the Anonymous Reserve auction,
for each of the [0, 1]n-bounded, [1, H]n-bounded, regular and MHR distribution families.
In the literature on “mechanism design via sampling”, a notion complementary to sample
complexity is regret minimization (e.g., see [8, 12, 11] and the follow-up papers). Regarding
the Anonymous Reserve auction, this means the seller must select a careful reserve price
rt ∈ R≥0 in each round t over a time horizon T ∈ N≥1, in order to maximize the cumulative
revenue, i.e., minimize the cumulative revenue loss against a certain benchmark.

Indeed, if the seller can access the highest and second-highest bids in all of the past (t−1)
rounds, our results imply the nearly optimal regret bounds. Consider the [0, 1]-additive
setting for example. Because O(ε−2 · ln ε−1) samples suffice to reduce the revenue loss
to ε ∈ (0, 1), the regret in each round t ∈ [T] is at most O(

√
(ln t)/t). As a result, the

cumulative regret is at most
∑T

t=1O(
√

(ln t)/t) = O(
√

T · ln T). Similarly, the Ω(ε−2) lower
bound on the sample complexity implies an Ω(

√
T) lower bound on the regret.

[17] considered the same problem under weaker data access, where the seller can only
observe the allocations and the payments in the past (t − 1) rounds. This models some
particular markets, where the seller is not the auctioneer and can acquire a least amount of
information. Assuming the bids are i.i.d. and supported on [0, 1], Cesa-Bianchi et al. proved
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a matching regret of Θ̃(
√

T).14 But, what if the seller still has the weak data access yet the
distributions are distinct and even correlated? The regret of the Anonymous Reserve auction
and other mechanisms in this model is an interesting problem.

Additionally, another natural and meaningful adjusted model is to assume that the bidders
would strategically report their samples, or further, that the bidders themselves are learners
as well. At the time of our paper, this research direction is very nascent yet has already
received much attention. For an overview of this, the reader can turn to [13, 44, 38, 31] and
the references therein.
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Abstract
We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon
general-sum stochastic games. We focus on the problem of computing NE in such stochastic games
when each player is restricted to choosing a stationary policy and rewards are discounted. First, we
prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we
consider turn-based specializations of such games where at each state there is at most a single player
that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we
show that under further structural assumptions on the rewards computing NE in such turn-based
games is possible in polynomial time. Towards achieving these results we establish structural facts
about stochastic games of broader utility, including monotonicity of utilities under single-state
single-action changes and reductions to settings where each player controls a single state.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases complexity, stochastic games, general-sum games, Nash equilibrium

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.76

Related Version Full Version: https://arxiv.org/abs/2204.04186

Funding Researchers are supported in part by an Adobe Data Science Research Award, a Danzig-
Lieberman Graduate Fellowship, a Google Research Colabs Award, a Microsoft Research Faculty
Fellowship, NSF CAREER Award CCF-1844855, NSF Grant CCF-1955039, NSF Grant IIS-2212182,
a PayPal research award, a Sloan Research Fellowship and a Stanford Graduate Fellowship.

Acknowledgements The authors thank Constantinos Daskalakis, Noah Golowich, and Kaiqing
Zhang for kindly coordinating on uploads to arXiv. The authors also thank Aviad Rubinstein and
anonymous reviewers for helpful feedback. Part of this work was conducted while the authors were
visiting the Simons Institute for the Theory of Computing.

1 Introduction

Stochastic games [24, 4] are a fundamental mathematical model for dynamic, non-cooperative
interaction between multiple players. Multi-player dynamic interaction arises naturally in a
diverse set of contexts including natural resource competition [42], monetary interaction in
markets [38], packet routing [1], and computer games [64, 63]. Such games have also been of
increased study in reinforcement learning (RL); there have been a number of successes in
transferring results from single-player RL to multiplayer RL under zero-sum and cooperative
interaction, but comparatively less success for general-sum interaction (see e.g. [72] for a
survey).
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We consider the broad class of general-sum, simultaneous, tabular, n-player stochastic
games [61, 27, 67], which we henceforth refer to as SimSGs.1 SimSGs are parameterized by
a (finite) state space S and disjoint (finite) action sets Ai,s for each player i and state s.
The players choose a joint strategy π, consisting of distributions πt

i,s over the actions Ai,s

for each player i ∈ [n] at each state s ∈ S at time-step t ≥ 0. The game then proceeds in
time-steps, where in each time-step t ≥ 0, the game is at a state st ∈ S and each player
i ∈ [n] samples independently from Ai,st according to πt

i,st . The set of actions at chosen
at time-step t then yields an immediate reward ri,s,at to each player i, and causes the next
state st+1 to be sampled from a distribution ps,at . Each player i aims to maximize her
own long-term value as a function of the rewards they receive, i.e. ri,s,at . For any fixed
strategy the states in a SimSG evolve as a Markov chain2 and the single-player specialization
of SimSGs, i.e. when n = 1, is a Markov decision processes (MDP) [5, 57].

Our focus in this paper is on computing (approximate) Nash equilibrium in the multiplayer
general-sum setting of SimSGs. The term general-sum emphasizes that we do not impose
any shared structure on the immediate reward functions across players (in contrast to the
special case of zero-sum games where n = 2 and r2 = −r1). A Nash equilibrium (NE) [51] is
defined as a joint strategy π such that no player can gain in reward by deviating (keeping
the other players’ strategies fixed). NE is a solution concept of fundamental interest and
importance in both static [50] and dynamic games [24, 4]. While NE are known to always
exist in SimSG [61, 27, 67], they are challenging to compute efficiently; current provably
efficient algorithms from computing (approximate) NE for SimSGs make strong assumptions
on the rewards [33, 43].

One setting for which the complexity of computing general-sum NE is relatively well-
understood is the finite-horizon model, where all players play up to a horizon of finite and
known length H and wish to optimize their total reward. Even with just two players, and a
single state (or multiple states but a horizon length H = 1), the problem of NE computation
in SimSG is PPAD-hard as it generalizes computing NE for a two-player normal-form game
which is known to be PPAD-complete [9, 16]. On the other hand, by leveraging stochastic
dynamic programming techniques [24], one can show that the complexity of NE computation
in finite-horizon SimSG and normal-form games is polynomial-time equivalent: in particular,
NE-computation remains PPAD-complete. This dynamic programming technique is also
broadly applicable to solution concepts that are comparatively tractable, such as correlated
equilibrium (CE) [54]. Exploiting this property, recent work [34, 65, 46] has shown that
simple decentralized RL algorithms can provably learn and converge to the set of CE’s in a
finite-horizon SimSG.

The central goal of this work is to broaden our understanding of the complexity of SimSGs.
We ask, “how brittle is the property of PPAD-completeness of finite-horizon SimSGs?”,
specifically to:

Infinite time horizon: what if players optimize rewards over an infinite time horizon?
Turn-based games: what if each state is controlled only by a single player?
Localized rewards: what if rewards are only received for a player at states they control?

1 See Section 2 for the more formal definition and description of our notational conventions.
2 This Markov structure is commonly assumed across the stochastic games literature, particularly when

stationary strategies are considered [61, 24, 12] and some recent literature [3, 34, 65] refers to SimSGs as
Markov games. There are studied generalizations of SimSGs that allow non-stationary or non-Markovian
dynamics [4], but are outside the scope of this paper.
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In this paper we systematically address these questions and provide theoretical foundations
for understanding the complexity of infinite-horizon stochastic games. Our key results include
complexity-class characterizations, algorithms, equivalences and structural results regarding
such games. For a brief summary of our main complexity characterizations, see Table 1.

Infinite time horizon. First, we consider infinite-horizon SimSGs in which each player seeks
to maximize rewards over an infinite time horizon while following a stationary strategy. A
stationary strategy is one in which action distributions are independent of the time-step
(i.e. πt1

i,s = πt2
i,s for all i ∈ [n], s ∈ S, and t1, t2 ≥ 0). We focus on the discounted-reward

model, and defer discussion of the alternative average-reward model to Appendix C in full
version. (The single-player version of such games is known as a discounted Markov decision
process (DMDP) and has been the subject of extensive study in optimization [70], operations
research [57], and machine learning [66].) Stationary strategies are especially attractive to
study owing to their succinctness in representation compared to non-stationary strategies
and the fact that stationary policies (the 1-player analog of strategies) can attain the optimal
value in single-player DMDPs [5, 57].

Despite the fact that stationary NE are always known to exist in infinite-horizon
SimSGs [27, 67], existence does not appear to directly follow from the straightforward
proof of existence in finite-horizon SimSG. In particular, the dynamic programming technique
for finite-horizon SimSGs breaks down for infinite-horizon SimSGs [73] and does not directly
imply membership in PPAD. Nevertheless, as described in Section 3.2, we show that the
stationary NE-computation problem for SimSG remains in PPAD. To prove this result we
establish a number of key properties of discounted SimSGs (and, thereby, an alternative
NE existence proof) that are crucial for several of the results in this paper and may be
independently useful for future SimSG algorithm design (see Section 3.1).

Turn-based games. We then consider turn-based variants of SimSGs, which we henceforth
refer to as TBSG. Formally, TBSGs are the specialization of SimSGs where for each state
there is at most one-player that has a non-trivial set of distinct actions to choose from.
TBSGs are common in the literature and encompass the popular instantiations of game-play
for which large-scale RL has yielded empirical success [64, 63]. Additionally, they have been
extensively studied in the case of two players and zero-sum rewards [61, 12, 23, 31, 62].

Whereas it was natural to suspect that discounted SimSGs would be PPAD-complete, the
computational complexity of computing NE for TBSGs seems less clear. The trivial proof of
PPAD-hardness for SimSGs breaks down even for the case of multiplayer TBSG – specializing
to a single-state game reduces the problem to trivial independent reward maximization
by each player, rather than a simultaneous normal-form game. More generally, TBSGs
seem to have more special structure than SimSGs owing to the restriction of a single player
controlling each state. As a quick illustration of this structure, note that non-stationary
NE for general-sum, finite-horizon TBSGs can be computed in polynomial time by a careful
application of the multi-agent dynamic programming technique. Further, in Section 7.1 of
full version, we extend this technique to show that non-stationary NE for TBSGs can be
computed in polynomial time for a polynomially bounded discount factor.

Despite this seemingly special structure of TBSGs, one of the main contributions of our
work (described in Section 3.3) is to show that computing a multiplayer stationary NE for
TBSG is PPAD-hard even for a constant discount factor γ ∈ (0, 1). This shows a surprising
and non-standard divergence between the non-stationary and stationary solution concepts
in infinite-horizon stochastic games. Moreover, it even implies the hardness of stationary
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coarse-correlated equilibrium (CCE) computation in SimSGs (owing to a stationary NE in
TBSGs being a special case), which is a relaxed notation of equilibrium that allows for more
computationally-efficient methods in two-player normal-form games (in contrast to SimSGs).
Our hardness results hold even for TBSGs for which each player controls a different state,
and each player receives a non-zero reward (allowed to be either positive or negative) at at
most 4 states, including her own.

Localized rewards. Finally, with the hardness of discounted general-sum SimSGs and TBSGs
established, we ask “under what further conditions on reward functions are there polynomial-
time algorithms for TBSGs?” As described in Section 3.4, we show that further localizing
the reward structure such that each player receives a reward of the same sign only at a single
state which she controls changes the complexity picture and leads to a polynomial-time
algorithm. We show that for these specially structured TBSGs, a pure NE always exists
and is polynomial-time computable via approximate best-response dynamics (also called
strategy iteration in the stochastic games literature [31]). These results are derived via a
connection to potential games [49] modulo a monotonic transformation of the utilities. While
the connection to potential game theory yields approximate NE, we also design a more
combinatorial, graph-theoretic algorithm that computes exact NE in polynomial-time if,
additionally, the transitions in TBSG are deterministic.

Summary and additional implications. In summary, we show that (a) stationary NE
computation for infinite-horizon SimSG′s is in PPAD, (b) stationary NE computation for
infinite-horizon TBSGs is PPAD-hard, and (c) stationary pure NE computation for infinite-
horizon TBSGs when each player receives a consistently-signed reward at one controlled state
is polynomial-time solvable.

Beyond shedding light on the complexity of infinite horizon general-sum stochastic games,
our work yields several insights and implications of additional interest. On the one hand, our
hardness result for stationary NE in infinite-horizon TBSG implies the hardness of slightly
more complex solution concepts such as stationary coarse-correlated equilibrium (CCE)
in SimSG (as the former is a special case of the latter). On the other hand, our PPAD
membership result for SimSG (which includes TBSG as a special case) is interesting as in
SimSGs the utility that a player receives is a non-convex function of her actions, and general-
sum non-convex games lie in a complexity class suspected to be harder than PPAD [60];
indeed, even the zero-sum case is PPAD-hard [18]. Further, many of the results in this paper
crucially utilize special structure that we prove (in Lemma 1 of full version) of a monotonic
change with upper and lower-bounded slope (which we refer to as pseudo-linear) on each
player’s value function when she changes her policy at only one state. This observation has
powerful consequences for many of our results and allows us to leverage several algorithmic
techniques that are normally applied only to linear and piecewise-linear utilities. As one
example, it yields a particularly simple existence proof of stationary NE in SimSG compared
to past literature [27, 67]. We hope these results facilitate the further study of infinite-horizon
stochastic games.

Paper Organization. We cover notation and fundamental definitions in Section 2, an
overview of our results and techniques in Section 3, and related work in Section 4. Main
results and technical details are provided in more detail in the full version.
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Table 1 Summary of SimSG complexity characterization. Characterizations are for computing
non-stationary NE in the finite-horizon case, and for computing stationary NE in the infinite-horizon
case.

Setting SimSG TBSG TBSG (localized rewards)

Finite-horizon PPAD Polynomial Polynomial
Infinite-horizon PPAD PPAD Polynomial

2 Preliminaries

Here we introduce notation and basic concepts for SimSGs and TBSGs we use throughout
the paper.

Simultaneous stochastic games (SimSGs). This paper focuses on computing NE of multi-
agent general-sum simultaneous stochastic games (SimSGs) in infinite-horizon settings. Unless
stated otherwise, we consider discounted infinite-horizon SimSGs and denote an instance
by tuple G = (n, S, A, p, r, γ). n denotes the number of players (agents), S denotes a finite
state space, and A denotes the finite set of actions available to the players where for player
i ∈ [n] and s ∈ S the possible actions of player i at states s are Ai,s. We say player i ∈ [n]
controls state s ∈ S if Ai,s ̸= ∅. We use Is = {i ∈ [n]|Ai,s ̸= ∅} ⊆ [n] to denote the players
controlling state s, and As to denote the joint action space of all players controlling state s,
i.e. for any as ∈ As, as = (ai,s)i∈Is

where ai,s ∈ Ai,s. We denote the action space size for
player i by Atot,i :=

∑
s∈S |Ai,s| and the joint action space size by Atot :=

∑
i∈[n] Atot,i. We

let p denote the transition probabilities, where ps,as ∈ ∆S := {x ∈ RS
≥0|
∑

s∈S xs = 1} is
a distribution over states for all s ∈ S and as ∈ As. r denotes the instantaneous rewards,
where ri,s,as with |ri,s,as | ≤ 1 is the reward of player i at state s if the players controlling it
play as ∈ As. γ ∈ (0, 1) denotes a discount factor.

SimSG notation and simplifications. Recall that we use Is = {i ∈ [n]|Ai,s ̸= ∅} ⊆ [n] to
denote the players controlling state s. Additionally, we use Si = {s ∈ S|Ai,s ̸= ∅} ⊆ S to
denote states that are controlled by player i. Without loss of generality, we assume that
for each player i there exists at least one state s ∈ S where Ai,s ̸= ∅ (i.e. |Si| ≥ 1), since
otherwise we can remove the corresponding player i from the game. Also, we assume for
each state s ∈ S there is at least a player i such that Ai,s ̸= ∅ (i.e. |Is| ≥ 1). This is because
for any s ∈ S, if Ai,s = ∅ for all i ∈ [n] and the transition from the state is ps ∈ ∆S , this is
equivalent to setting A1,s = {as} and ps,as

= ps.

SimSG model and objectives. A SimSG proceeds as follows. It starts from time step t = 0
and initial state s0 ∈ S drawn from initial distribution q. In each turn t ≥ 0 the game is
at a state st. At state st, each player i ∈ Ist plays an action at

i ∈ Ai,st . The joint action
at = (at

i)i∈Ist ∈ Ast then yields reward ri,st,at for each player i ∈ [n].The next state st+1 is
then sampled (independently) by pst,at ∈ ∆S . The goal of each player i ∈ [n] is to maximize
their expected infinite-horizon discounted reward, or known as value of the game for player
i, defined as vi = E[

∑
t≥0 γtri,st,at ].

SimSG policies and strategies. Unless stated otherwise, for each player i ∈ [n] we restrict
to considering randomized stationary policies, i.e. πi = (πi,s)s∈Si

where πi,s ∈ ∆Ai,s , and
use πi,s(a) to denote the probability of player i playing action a ∈ Ai,s at state s. We call a
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collection of policies for all players, i.e. π = (πi)i∈[n], a strategy. For a strategy π we use π−i

to denote the collection of policies of all players other than player i, i.e. π−i := (πj)j∈[n]\{i};
we do not distinguish between orders of πi,s in the set π when clear from context (e.g. see
definition of NE in (4)). Further, we use Pπ ∈ RS×S and rπ to denote the probability
transition kernel and instantaneous reward, respectively, under strategy π, where

Pπ(s, ·) :=
∑

as∈As

(∏
i∈Is

πi,s(ai,s)
)

ps,as ∈ ∆S and rπ
i (s) :=

∑
as∈As

(∏
i∈Is

πi,s(ai,s)
)

ri,s,as .

(1)

Under strategy π, we define the value function of each player i ∈ [n] at state s ∈ S to be

V π
i (s) := E

∑
t≥0

γtri,st,at |s0 = s, at
j,st ∼ πj,st for all j, t

 = e⊤
s (I − γPπ)−1rπ . (2)

The value of a strategy to player i starting at initial distribution q ∈ ∆S is defined as

vπ,q
i := Eπ

q

∑
t≥0

γtri,st,at

 = E

∑
t≥0

γtri,st,at |s0 ∼ q, at
j,st ∼ πj,st for all j, t

 = ⟨q, Vπ
i ⟩.

(3)

Nash equilibrium (NE) in SimSGs. Given any ϵ ≥ 0, we call a strategy π an ϵ-approximate
Nash Equilibrium (NE) (ϵ-NE) if for each player i ∈ [n]

ui(πi, π−i) ≥ ui(π′
i, π−i) − ϵ, for any π′

i,s ∈ ∆Ai,s . (4)

where ui(π) for all i ∈ [n] is a real value (as a function of π) referred to as utility of
player i under strategy π. For general SimSGs, unless specified otherwise, we let ui(π) :=
ui(πi, π−i) = ⟨q, Vπ

i ⟩, i.e. the value function with initial distribution q = 1
|S| eS . Further,

we call any 0-approximate NE an exact NE and when we refer to a NE we typically mean an
ϵ-NE for inverse-polynomially small ϵ. We use the term approximate NE to refer to an ϵ-NE
for constant ϵ.

Turn-based stochastic games (TBSGs). TBSGs are the class of SimSGs where each state is
controlled by at most one player (i.e. |Is| ≤ 1), or equivalently, the states controlled by each
of the players are disjoint (i.e Si ∩ Sj = ∅ for any i ̸= j, i, j ∈ [n]). Equivalently (by earlier
assumptions), a TBSG is a SimSG with |Is| = 1 for all s ∈ S; accordingly, we use Is = {is} to
denote the single player that is controlling state s in a TBSG. Since S = ∪i∈[n]Si in a TBSG
we denote an instance by G = (n, S = ∪i∈[n]Si, A, p, r, γ). Following SimSG notation, we
have A = (Ai,s)i∈[n],s∈Si

and As = Ai,s if and only if s ∈ Si as well as p = (ps,a)s∈S,as∈As

and r = (ri,s,as
)i∈[n],s∈S,as∈As

. When clear from context, we also use πs := πis,s for all
s ∈ S. Using this notation, the probability transition kernel Pπ ∈ RS×S and instantaneous
reward rπ ∈ RS under strategy π are

Pπ(s, ·) =
∑

as∈As

πis,s(as)ps,as ∈ ∆S and rπ
i (s) =

∑
as∈As

πis,s(as)ri,s,as . (5)
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Game variations. Here we briefly discuss variants of discounted SimSGs we consider.

Number of players: We focus on n-player games and our hardness results use that n

can scale with the problem size. Establishing the complexity of computing general-sum
NE for TBSGs with a constant number of players, e.g. n = 2, remains open.
Number of states each player controls: We use O-SimSG (and O-TBSG) to denote
the class of SimSGs (and TBSGs) where each player only controls one state |Si| = 1 (note
that it is possible that |Is| > 1, for some s ∈ S in an O-SimSG). For simplicity, in O-TBSG
instances we denote the state space by Si = {si} for each i ∈ [n] and thus S = ∪i∈[n]{si}
and let Ai := Asi

= Ai,si
. For O-SimSGs and O-TBSGs, we use υi(π) := V π

i (si) to
denote the value of player i under strategy π with initial distribution esi

. Unless specified
otherwise, we use υ(·) as the utility function in the definition of NE for O-SimSGs and
O-TBSGs; in Appendix B of full version we prove that these two notions of approximate
NE are equivalent up to polynomial factors.
Different types of strategies (and policies). We focus on stationary strategies in
the majority of this paper, but at times we consider non-stationary strategies where the
distribution over actions chosen at each time-step is allowed to depend on t. Further,
we call a policy πi a pure (or deterministic) policy if it maps a state to a single action
for that player, i.e. if πi,s = eai,s

for some ai,s ∈ Ai,s for each s ∈ Si and call a strategy
π = (πi)i∈[n] a pure strategy if all policies πi are pure. Some of the results in paper
restrict to consider pure strategies and we extend the definitions of NE to these cases by
restricting to such strategies in (4).

3 Overview of results and techniques

Here we provide an overview of our main results and techniques for establishing the complexity
of computing stationary NEs in discounted infinite-horizon general-sum SimSGs. First, in
Section 3.1 we cover foundational structural results regarding such SimSGs that we use
throughout the paper. In Section 3.2 we discuss how we show that the problem of computing
stationary NE in such SimSGs is in PPAD. We then consider the TBSG specialization of
this problem and discuss how we show that computing stationary NE in such TBSGs is
PPAD-hard (Section 3.3), but polynomial-time solvable under additional assumptions on
rewards (Section 3.4).

Although we focus on discounted SimSGs and TBSGs in the body of the paper, in Appendix
C of full version we extend our results to the average-reward model where the rewards are
not discounted, but instead amortized over time. We show that results analogous to our
main results hold for under the assumption of bounded mixing times. These extensions are
achieved by building upon tools established in [35] for related discounted and average-reward
MDPs.

3.1 Foundational properties
Here we introduce two types of foundational structure we demonstrate for infinite-horizon
SimSGs, which both our positive and negative complexity characterizations crucially rely on.
These structures use the fact that when fixing the strategies of all but one of the players in a
SimSG, the problem reduces to a single-agent DMDP.

The first property we observe is that when changing the action of a player at any single
state in a SimSG from one distribution to another, the utility for that player changes in a
monotonic manner, with slope that is both upper and lower-bounded. We refer to this type
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of change as pseudo-linear. This property is equivalent to showing the following theorem
that the utilities are pseudo-linear in the special class of SimSGs where each player controls
only one state, i.e. O-SimSGs.

▶ Theorem 1 (Pseudo-linear utilities in O-SimSGs, restating Corollary 1 in full version). Consider
any O-SimSG instance G = (n, S, A, P, R, γ) any initial distribution q, and some player
i ∈ [n]. Her utility function ui(πi, π−i) = vπ,q

i , when fixing other players’ strategy π−i, is
pseudo-linear in πi, i.e. for any πi, π′

i ∈ ∆Ai ordered such that ui(πi, π−i) ≤ ui(π′
i, π−i)

and any θ ∈ [0, 1], we have

(1−γ)θ(ui(π′
i, π−i)−ui(π)) ≤ ui(θπ′

i+(1−θ)πi, π−i)−ui(π) ≤ 1
1 − γ

θ(ui(π′
i, π−i)−ui(π)).

(6)

First, to see why O-SimSGs have pseudo-linear utilities, we note that when we consider a
linear combination of policies π′

i and πi for player i and fix the other players’ strategy π−i,
it is equivalent to considering a DMDP in which a single player linearly changes her policy
on a single state s between two actions a and a′. In this case, the difference in transition
matrices is of rank-1 and we can use the Sherman-Morrison formula to exactly characterize
the change in utility as

ui(θπ′
i + (1 − θ)πi, π−i) = ui(πi, π−i) + θ

q⊤Qes ·
[
(rs,a′ − rs,a) + γ(ps,a′ − ps,a)⊤Qrπ

]
1 − γθ(ps,a′ − ps,a)⊤Qes

(7)

where Q :=
(
I − γP(πi,π−i))−1. We then bound the difference in utilities arising from

changing the transitions; we show that (ps,a′ − ps,a)⊤Qes ∈ [−1/(1 − γ), 1] by utilizing
a specific Markov chain interpretation of the utilities. This implies the more fine-grained
property in (6) that the utility function is pseudo-linear with bounded slope.

Theorem 1 describes powerful structure on the utility functions of each player that we
leverage for our membership and hardness results. Although utilities for SimSGs may be
non-linear and non-convex (in fact, even under a single-state policy change, (7) may be either
convex or concave in θ depending on the sign of D and [ui(π′

i, π−i) − ui(π)]) with complex
global correlations, for any fixed player Theorem 1 shows that utilities are not too far from
linear.

This pseudo-linear structure is key to many of our subsequent proofs. For example, the
pseudo-linear property in (6) implies a distinct proof of existence of NE for O-SimSG that
is considerably simpler than the classic existence proofs for SimSGs [27, 67]. We describe
how pseudo-linearity is used in each of our proofs of membership of SimSG (Section 3.2),
hardness of TBSG (Section 3.3) and polynomial-time algorithms for pure NE in special cases
(Section 3.4).

While pseudo-linearity is useful for several of our results, it appears to tie closely with NE
in O-SimSGs3. To leverage the pseudo-linearity property more broadly for SimSGs, we make
the following important structural observation of SimSGs, which implied that computing
an approximate NE of general SimSG (TBSG) instances is polynomial-time reducible to
computing an approximate NE of some corresponding O-SimSG (O-TBSG) instances.

3 Monotonicity structure in stochastic games has been studied previously, and [45] claimed that a version
of this structure holds for all TBSGs, including ones in which one player can control multiple states.
However, it appears that the restriction to O-SimSG or (equivalently) considering the change in actions
only at a single state is key and we prove in Appendix A of full version that without this, monotonicity
may not hold.
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▶ Theorem 2 (Approximate-NE equivalences for SimSGs and O-SimSGs, restating Theorem 6
in full version). There exists a linear-time-computable mapping between the original SimSG
and a linear-time-computable corresponding O-SimSG instance, such that for any ϵ ≥ 0 a
strategy π is an ϵ-approximate mixed NE of the original SimSG if its induced policy π′ is
a ((1 − γ)ϵ/|S|)-approximate mixed NE in the corresponding O-SimSG (Definition 2 in full
version).

To prove Theorem 2, we leverage a key property of the induced single-player MDP for
player i when the other players’ policies π−i are fixed: the policy improvement property of
coordinate-wise (i.e. asynchronous) policy iteration [5, 57]. In general, Theorem 2 implies
that an algorithm applicable to all O-SimSG instances can also be adapted to solve SimSG
instances. This allows us to transfer the benefits of pseudo-linearity in the more specialized
O-SimSG classes to all infinite-horizon SimSGs, despite the absence of monotonicity structure
in the latter.

3.2 Complexity of NE in SimSGs
Here we describe how we leverage our structural results on infinite horizons SimSGs to
show that computing NE of SimSGs is in PPAD and thereby obtain a full complexity
characterization of such games (they are PPAD-complete). Our main complexity result for
SimSGs is Theorem 3.

▶ Theorem 3 (Complexity of NE in SimSG, restating Theorem 7 in full version). The problem
of computing an ϵ-approximate NE for infinite-horizon SimSG class is PPAD-complete for a
polynomially-bounded discount factor 1

1−γ = poly(Atot) and accuracy ϵ = Ω(1/poly(Atot)).

Showing hardness in Theorem 7 is relatively trivial: it follows immediately by considering
γ → 0 and noting that choosing the optimal stationary policy for one step involves computing
a NE for an arbitrary multiplayer normal-form game, which is known to be PPAD-hard [16].

The more interesting component of the proof of Theorem 7 is the proof of PPAD mem-
bership. This proof is provided in Section 6.1 of full paper and leverages the foundational
structure of SimSG discussed in Section 3.1 and additional properties of DMDPs. In particu-
lar, making use of the Brouwer fixed point argument (see, e.g. [14]) that shows the existence
of NE, we construct two different types of Brouwer functions on strategies as below:

fvalue : π → y

such that yi,a(π) = πi(a) + max(ui(ea, π−i) − ui(π), 0)
1 +

∑
a′∈Ai,s

max(ui(ea′ , π−i) − ui(π), 0) for O-SimSG, (8)

fos−Bellman : π → y

such that yi,s,a(π) =
πi,s(a) + max([ri,s,a + γp⊤

s,aVπ
i ] − V π

i (s), 0)
1 +

∑
a′∈Ai,s

max([ri,s,a + γp⊤
s,aVπ

i ] − V π
i (s), 0) for SimSG .

Both of these functions satisfy the property that f(π) = π if and only if π is a NE, and are
reminiscent of the Brouwer functions used in original PPAD-membership arguments that are
tailored to linear utilities [16]. Each function leads to a different PPAD-membership proof
and we include both due to the interesting distinct properties of SimSGs that they utilize.

Our proof based on fvalue uses both the linear-time equivalence between O-SimSG and
SimSG provided in Theorem 2, and the pseudo-linear structure of O-SimSG utilities in The-
orem 1. The most non-trivial step involves showing that approximate Brouwer fixed points
correspond to approximate NE (Lemma 5 of full paper), for which we critically use our
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established property of pseudo-linearity. This proof has two key technical steps: showing the
Brouwer function is L-Lipschitz-continuous utilizing properties of single-player DMDPs [37],
and showing that the approximate fixed points of the Brouwer function f(·) correspond to ap-
proximate NE. We also show that this proof strategy generalizes to show PPAD-membership
of any n-player-k-action game with pseudo-linear utilities (see Theorem 8 in full paper, under
other mild conditions), which we think may be of independent interest.

Our alternative proof based on fos−Bellman builds upon the structural fact that small
Bellman errors suffice to argue about approximation of NE in Equation (18) of Appendix B in
full version. Here the crucial observation is that fixing all other players’ policies, the Bellman
errors are linear in policy-space for a single player. As a consequence we can apply the more
standard analysis [16] to argue that when π is an approximate fixed point of fos−Bellman, the
Bellman update error max([ri,s,a + γps,aV π

i ] − V π
i (s) is close to 0. This in turn maps back

to an approximate NE using the sufficient conditions on Bellman-error for NE (Appendix B
in full paper).

Clarification and contextualization with recent prior work [20]: After initial drafting of
this manuscript, we were pointed to the recent work of [20], which claims to have already
shown the PPAD-membership of general SimSGs. However, we were unable to verify their
proof; in particular, we do not know how to derive the 6-th line from the 5-th line in proving
Case 2 of Lemma 4 in [20] (analogous to our Lemma 5 in the full version of our paper). Like
us, the authors of [20] also use the Brouwer function fvalue (more commonly known as Nash’s
Brouwer function and originally designed for linear utilities); however, unlike us, they do not
establish or use any special pseudo-linear structure on the value functions. In our proof of
Lemma 5 in full paper, this structure is key to establishing PPAD-membership and used for
the most non-trivial part of the proof – that the approximate fixed points of the Brouwer
function fvalue are equivalent to approximate NE.

3.3 Complexity of NE in TBSGs

Here we consider the specialization of infinite-horizon SimSGs to TBSGs. Recall that in a
TBSG, each state is controlled by only one player and, thus, players take turns in controlling
the Markov process. We ask the fundamental question, how hard is it to compute stationary
NE in TBSGs?

Unlike their non-turn-based counterparts, it is no longer clear that this problem is PPAD-
hard: the aforementioned direct encoding of NE of arbitrary two-player normal-form games
no longer applies when |S| = 1 or γ → 0. Moreover, in Sections 7.1 and 7.2 of full paper we
show that approximate NE computation for TBSG is in polynomial-time if: (a) non-stationary
NE are allowed, or (b) the number of states |S| is held to a constant; note that equilibrium
computation for SimSGs remains PPAD-hard even under these simplifications.

Though prior work on general-sum TBSGs is limited, the special case of 2-player zero-sum
TBSGs has been well studied [12, 61, 31, 62] and are known to possess additional structure
beyond SimSGs. For example, [61] showed that a pure NE always exists for zero-sum TBSGs
and [31] showed that NE is computable in strongly polynomial time when the discount
factor is constant. However, this structure does not carry over to the general-sum case and
[73] shows that there are TBSGs with only mixed NE (which hints at possible hardness).
In Section 7.3 of full paper, we prove the following theorem and establish PPAD-hardness of
computing NEs of TBSGs.
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Table 2 Instantaneous rewards of player aux, out, informal: Constant γ is the given problem
discount factor, γL ≤ ϵ2 is tiny.

sin, a1
in sin, a2

in saux, a1
aux

aux 1/2 0 0
out −1/4 −1/4 0

▶ Theorem 4 (Complexity of TBSG NEs, restating Theorem 9 in full version, informal).
Approximate NE-computation in infinite-horizon γ-discounted TBSGs with any γ ∈ [1/2, 1)
is PPAD-complete.

We prove Theorem 9 by reducing the problem of generalized approximate circuit satisfiability
(ϵ-GCircuit, formally defined in Definition 7 in full version) to O-TBSGs; ϵ-GCircuit is known to
be PPAD-hard for even sufficiently small constant ϵ > 0 [59]. This reduction is, at a high-level,
the approach taken in the first proofs of PPAD-hardness of normal-form games [9, 16] as well
as more recent literature (e.g. hardness for public goods games [52]); though it has been
predominantly applied to games with linear or piecewise linear utilities. The key ingredients
of our reduction are the implementation of certain circuit gates, i.e. G= (equal), Gα (set to
constant α), G× (multiply), G+ (sum), G− (subtraction), G> (comparison), G∧ (logic AND),
G∨ (logic OR), G¬ (logic NOT), through O-TBSG game gadgets which carefully encode these
gates in an O-TBSG.

As an illustration, here we show how to implement an approximate equal gate G= between
input and output players (corresponding to input and output states), i.e. pout ∈ [pin −ϵ, pin +ϵ]
at any approximate NE. This gadget includes 3 players (states): in (sin), out (sout) and aux
(saux). Figure 1 illustrates the transitions in the TBSG instance and Table 2 partially specifies
the instantaneous rewards. Here, the reader should think of pin as the probability of player in
choosing action a1

in and pout as the probability of player out choosing action a1
out. Our game

gadgets are crucially multiplayer in that they allow flexible choice of instant rewards for
different players (e.g. in, aux and out).

We consider the case of exact NE as a warmup; in particular, we hope to show that exact
NE necessitates πin(a1

in) = πout(a1
out). Just as in the typically implemented graphical game

gadgets [16, 9], our hope is to enforce this equality constraint through a proof-by-contradiction
argument that goes through two steps. As an illustration of the contradiction argument,
suppose that πin(a1

in) > πout(a1
out). Our optimistic hope would be to choose the rewards and

transitions so that the value function of player aux at his own state under choice of πout, πin
satisfies

V
(ea1

aux
,πin,πout)

aux = γπin(a1
in) and V

(ea2
aux

,πin,πout)
aux = γπout(a1

out). (9)

If (9) were satisfied, aux player would have to take pure strategy a1
aux at exact NE, which

would transit to state sin. As reflected in the reward table (Table 2) this would be a bad
event for player out due to the negative reward she accrues at state sin. Consequently, she
would prefer to take action a1

out as much as possible, i.e. πout(a1
out) ≈ 1, which would lead to

the desired contradiction. (A symmetric contradictory argument would work for the case
πin(a1

in) < πout(a1
out), ensuring that the system balances and necessitates πin = πout at an

exact NE.)
However, creating an equal gadget through O-TBSG is much more intricate than a

corresponding graphical game gadget due to the twin challenges of nonlinearity and common
structure in players’ utilities. For one, the pseudo-linear structure described in Section 3.1 only
ensures approximate linearity up to multiplicative constants; the more fine-grained equality
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Path of length = O( 1
1 − γ

log(1/ϵ))

Cycle of length = 

O( 1
1 − γ

log(1/ϵ))

Figure 1 Illustration of states and transitions for “equal gadget” to implement G=. The transitions
in red encode a cycle or path of length L, where L = ⌈ 4

1−γ
log(1/ϵ)⌉ for constants γ, ϵ.

required in (9) is far more difficult to achieve (and unclear whether possible). Moreover,
unlike the definitional local structure between players in graphical games [40], TBSGs have
significant global structure between players (as players represent states that transit to one
another). In other words the players’ utility functions depend on all of the other players
and not just their immediate neighbors. As a consequence of this global structure, a naive
combination of individual gadgets could sizably change the value functions and break the
local circuit operations.

We work around these two issues by creating long cycles and paths with “dummy states”
for the actions the out player takes such that the only non-zero rewards are collected
outside these dummy states. We show that this elongation of paths simultaneously induces
approximate linearity and localization to neighbors in the O-TBSG instance. When the path
has length L = O( 1

1−γ log( 1
ϵ )), we satisfy (9) in an approximate sense up to tiny poly(ϵ)

errors. Further, this almost-linear structure turns out to be robust to transitions that are
“further away” from sout. This ensures that the out player can then be used as an input for
subsequent gadgets connected in series, and enables a successful combination of the gadgets
without changing the NE conditions at each state.

It remains to translate these ideas from an exact-NE argument to an approximate-NE
argument. For this, the pseudo-linearity property that we established in Section 5.1 of full
version proves to be especially useful. In particular, when πin(a1

in) > πout(a1
out) + ϵ, we can

adapt the bounded “slope” argument in (6) and observe that

V
(e

a1
aux

,πin,πout)
aux − V

(θe
a1

aux
+(1−θ)e

a2
aux

,πin,πout)
aux ≥ (1 − θ)(1 − γ)

[
V

(e
a1

aux
,πin,πout)

aux − V
(e

a2
aux

,πin,πout)
aux

]
≥ (1 − θ)γ(1 − γ)ϵ,

which ensures that θ, i.e. the probability that player aux takes action a1
aux, must be close

enough to 1 at any approximate NE. We use this pseudo-linearity multiple times to formally
relax the exact NE argument under approximation, in order to implement G= gate for
ϵ-GCircuit.

Ultimately, our proof of this theorem sheds further light on the problem’s structure and
shows that hardness is fairly resilient in general-sum stochastic games. Even in the special
case where each player controls a single state and receives non-zero reward at at most 4 states
(or alternatively, all players have non-negative but dense reward structure), the problem is
still PPAD-hard.
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Contextualization with independent concurrent work. In independent and concurrent
work, the authors of [17] were additionally able to prove that the computation of NE of even
2-player TBSGs is PPAD-hard. We note that beyond claims of hardness in TBSGs, each of
[17] and this work contain disjoint results of independent interest. For instance, [17] provides
a polynomial-time algorithm for finding non-stationary Markov CCEs for SimSGs. On the
other hand, this work focuses exclusively on stationary equilibrium concepts. In addition
to hardness of TBSGs, we show the PPAD-membership of general games with pseudo-linear
utilities including SimSGs (see Section 3.2) and provide polynomial-time algorithms for finding
stationary NEs for TBSGs under extra assumptions on the reward structure (see Section 3.4).

3.4 Efficient algorithms for TBSGs under localized rewards
As shown above, the problem of finding an approximate NE for infinite-horizon TBSGs is
PPAD-complete even under a variety of additional structural assumptions. For example we
show that even when each player only controls one state, all transitions are deterministic,
and all players receive non-negative rewards (possibly in many states) computing a NE in a
TBSG is PPAD-hard.

Towards characterizing what features are critical to the hardness of the problem, we
specialize further and ask what happens if we further restrict each player to receive reward
only at the single state that they control. We call this class of games LocReward and consider
the class of fixed-sign LocReward O-TBSG, i.e. ri,si,· ≥ 0 (or ri,si,· ≤ 0) for all i ∈ [n] and
ri,s′,· = 0 for any s′ ̸= si.

The intuitive reason for why this special structure is helpful is that it creates a qualitative
symmetry in the players’ incentives: all of them wish to either reach (in the case of non-
negative rewards) or avoid (in the case of negative rewards) their own controlling state.
Mathematically, we observe that given a strategy π, the utility function has the following
structure

ui(π) = V π
i = e⊤

si
(I − γPπ)−1rπ = Ei(π−i)

det(π) rπi
i (si) where det(π) := det (I − γPπ) > 0

(10)

and Ei(π−i) is the determinant of the (i, i)th minor of the matrix I − γPπ. The last equality
for ui(π) in (10) used the matrix inversion formula and the fact that r

πj

i (sj) = 0 for any
j ̸= i. Consequently, the numerator of ui(π) is separable in πi and π−i and the denominator
is common to all players i ∈ [n]. This implies that, following a logarithmic transformation,
a fixed-sign LocReward O-TBSG game is equivalent to a potential game [49], with potential
function Φ(π) := log(det(π)−1∏

i∈[n] rπi
i (si)). That is, for any i ∈ [n] and πi, π′

i we have
Φ(π′

i, π−i) − Φ(π) = log V
(π′

i.π−i)
i − log V

(πi,π−i)
i .

The potential game structure of LocReward O-TBSG automatically implies the existence of
a pure NE for all fixed-sign LocReward games. Further, it follows [49] that (approximate) best
response dynamics (also known as strategy iteration in the stochastic games literature [31])
provably decrease this potential by a polynomial factor, until it achieves a pure-strategy
approximate NE. This yields a polynomial-time algorithm for computing approximate NE as
stated below.

▶ Theorem 5 (Restating Lemmas 11 and 12 and Propositions 3 and 4 in full version). Consider
a LocReward O-TBSG instance G = (n, S = ∪i∈[n]{si}, A, p, r, γ) where all rewards are
non-negative (or non-positive). Then the game has a pure NE, and given some accuracy ϵ,
approximate best-response dynamics find an ϵ-approximate pure NE in time poly(Atot,

1
1−γ , 1

ϵ ).
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Table 3 Summary of complexity characterization for O-TBSG under various reward assumptions.

Setting (O-TBSG) Localized rewards (LocReward) General rewards

Fixed-sign rewards Polynomial (pure NE) PPAD-complete
Mixed-sign rewards NP-hard (pure NE), open problem (mixed NE) PPAD-complete

We also show that under further assumptions it is possible to compute an exact NE
through a different set of algorithms inspired by graph problems. Specifically, we consider a
special sub-class of fixed-sign LocReward O-TBSG where we impose two additional structural
assumptions: (a) all transitions are deterministic, and (b) all rewards on each player’s own
state are independent of actions. Under these refinements, all players in an non-negative
LocReward instance are incentivized to go through a shortest-cycle to maximize its utility,
while all players in an non-positive LocReward instance are incentivized to go through a cycle
that is as long as possible (or, most ideally follow a path to a cycle that doesn’t return to
the player’s controlled state). Accordingly, we design graph algorithms (Algorithm 5 and
Algorithm 7 in full version) that locally, iteratively find the cycle and path structure that
corresponds to an exact NE. Our results show that best-response dynamics (i.e. strategy
iteration) and graph-based algorithms can work in general-sum TBSGs beyond zero-sum
setting [31].

Finally, note that our positive results really require both of the assumptions of (a)
reward only at a single state (b) rewards of the same sign (see Table 3 for a summary).
From Section 3.3 we already know when relaxing the first condition, finding an approximate
mixed NE is PPAD-hard. The second condition is also important, as relaxing it (i.e. allowing
both positive and negative rewards in the LocReward O-TBSG model) may preclude even the
existence of pure NE [73]. In fact, we show in Section 8.2 of full version that even determining
whether or not a pure NE exists is NP-hard via a reduction to the Hamiltonian path problem
(but whether mixed NE are polynomial-time computable under this modification remains
open). Ultimately, this gives a more complete picture of what transformations change the
problem from being PPAD-complete to being polynomial time solvable.

4 Related work

Here we highlight prior work that is most closely related to our results.

General-sum stochastic game theory. Central questions in stochastic game theory research
involve (a) the existence of equilibria and (b) the convergence and complexity of algorithms
that compute these equilibria. Existence of equilibria is known in significantly more general
formulations of stochastic games than the tabular SimSGs that are studied in our paper
(see, e.g. the classic textbooks [24, 4]). Relevant to our study, the first existence proofs of
general-sum tabular stochastic games appeared in [27, 67]. They are based on Kakutani’s fixed
point theorem, and so non-constructive in that they do not immediately yield an algorithm.
This is a departure from the zero-sum case, where Shapley’s proof of existence [61] is
constructive and directly leverages the convergence of infinite-horizon dynamic-programming.

Indeed, the recent survey paper on multi-agent RL [72] mentions the search for computa-
tionally tractable and provably convergent (to NE) algorithms for SimSG as an open problem.
Algorithms that are known to converge to NE in SimSG require strong assumptions on the
heterogeneous rewards – such as requiring the one-step equilibrium to be unique at each
iteration [33, 29], or requiring the players to satisfy a “friend-or-foe” relationship [43].
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An important negative result in the literature was the shown failure of convergence
of infinite-horizon dynamic-programming algorithms for general-sum SimSGs [73]. More
generally, they uncover a fundamental identifiability issue by showing that more than
one equilibrium value (and, thereby, more than one NE) can realize identical action-value
functions. This identifiability issue suggests that any iterative algorithm that uses action-value
functions in its update (including policy-based methods like policy iteration and two-timescale
actor-critic [41]) will fail to converge for similar reasons.

Since then, alternative algorithms that successfully asymptotically converge to NE have
been developed for general-sum SimSGs based on two-timescale approaches [56] and homotopy
methods [7, 32]. However, these algorithms are intricately coupled across players and states in
a more intricate way and, at the very least, suffer a high complexity per iteration. Finite-time
guarantees for these algorithms do not exist in the literature. A distinct approach that uses
linear programming is also proposed [21], but this algorithm also suffers from exponential
iteration complexity. Algorithms that are used for general-sum SimSG in practice are largely
heuristic and directly minimize the Bellman error of the strategy [55] (which we defined
in Appendix B of full version).

Interestingly, this picture does not significantly change for TBSGs despite their significant
structure over and above SimSGs. The counterexamples of [73] are in fact 2-player, 2-
state, and 2-action-per-state TBSGs. Our PPAD-hardness results for TBSG resolve an open
question that was posed by [73], who asked whether alternative methods (using Q-values
and equilibrium-value functions) could be used to derive stationary NE in TBSG instead.
In particular, we show that the stationary NE is not only difficult to approach via popular
dynamics, but is fundamentally hard.

Very recently, a number of positive results for finite-horizon non-stationary CCE in
SimSGs were provided [65, 34, 46]. These results even allow for independent learning by
players. A natural question is whether an infinite-horizon stationary CCE could be extracted
from these results. Since TBSG NE is a special case of SimSG CCE, our PPAD-hardness
result answers this question in the negative. In general, tools that are designed for computing
and approaching non-stationary equilibria cannot be easily leveraged to compute or approach
stationary equilibria due to the induced nonconvexity in utilities and the failure of infinite-
horizon dynamic programming. Our paper fills this gap and provides a comprehensive
characterization of complexity of computing stationary NE for infinite-horizon multi-player
SimSGs and TBSGs.

A trivial observation is that the problem of exact computation for general-sum stochastic
games is only harder than approximation; in general, exact computation for NE of stochastic
games is outside the scope of this paper and we refer readers to [26] for recent hardness result
following that thread.

The zero-sum case. There is a substantial literature on equilibrium computation, sample
complexity and learning dynamics in the case of zero-sum SimSG and TBSG. For a detailed
overview of advances in learning in zero-sum stochastic games, see the survey paper [72]. In
contrast, our results address the general-sum case. Positive results for zero-sum TBSG, such
as the property of strongly-polynomial-time computation of an exact NE with a constant
discount factor [31], leverage special structure that does not carry over to the general-sum
case. In particular, a pure NE always exists for a zero-sum TBSG owing to the convergence
of Shapley’s value iteration [61]. [73] showed that a pure NE need not exist for general-sum
TBSGs. We further show in Section 8 of full version that pure NE are NP-hard to compute
(at least in part due to their possible lack of existence). On the more positive side, we also
characterize specializations of general-sum TBSGs for which pure NE always exist and are
polynomial-time computable.
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It is crucial to note that our results only address the equilibrium computation problem
of general-sum SimSGs and TBSGs with a constant discount factor. When the rewards are
zero-sum this is known to be polynomial-time [61] and additionally strongly polynomial-time
in the case of TBSG [31]. Whether it is possible to compute an (exact or approximate) NE in
even zero-sum TBSGs with an increasing discount factor remains open [2]. This open problem
has important connections to simple stochastic games [12, 23], mean-payoff games [30, 74],
and parity games [22, 69, 36].

Algorithmic game theory for normal-form and market equilibria. The PPAD complexity
class was introduced by [53] to capture the complexity of all total search problems (i.e.
problems for which a solution is known) [47] that are polynomial-time reducible to the
problem of finding at least one unbalanced vertex on a directed graph. [16] first showed that
NE computation for n-player k-action normal-form games lies in PPAD. By definition, the
utilities of normal-form games are always linear in the mixed strategies. This is not the case
for SimSG or TBSG, whose utilities are not even convex in their argument. The membership
of nonconvex general-sum games in PPAD is not obvious. For example, [18] recently showed
PPAD-hardness of even zero-sum constrained nonconvex-nonconcave games. Moreover, the
complexity of all general-sum games satisfying a succinct representation and the property of
polynomial-time evaluation of expected utility (which includes SimSG) is believed to lie in a
strictly harder complexity class than PPAD [60]. General-sum nonlinear game classes that
are known to be in PPAD primarily involve market equilibrium [8, 68, 11, 28] and Bayes-NE
of auctions [25] and make distinct assumptions of either a) separable concave and piecewise
linear (SPLC) assumptions on the utilities or b) constant-elasticity-of-substitution (CES)
utilities [11]. They also utilize in part linearity in sufficient conditions for NE (e.g. Walras’s
law for market equilibrium). These structures, while interesting in their own right, are also
not satisfied by SimSGs or TBSGs. The pseudo-linear property of SimSGs that we uncover
in Section 5.1 of full version is key to showing PPAD-membership. Our subsequent proof
in Section 6.1 in full version is a useful generalization of the traditional proof for linear
utilities [16] to pseudo-linear utilities.

In addition to being in PPAD, general-sum normal-form games were established to be
PPAD-hard by [9, 16]. Since then, PPAD-hardness has been shown for several structured
classes of normal-form games [48, 44, 10, 19, 52] as well as for weaker objectives in normal-
form games such as constant-additive approximation [15, 58, 59] and smoothed-analysis [6].
Our approach to prove PPAD-hardness for TBSG takes inspiration from the approach to prove
PPAD-hardness for n-player graphical games [39, 40] (which was subsequently used to prove
PPAD-hardness for constant-player normal-form games by [16]). In particular we construct
game gadgets to implement real-valued arithmetic circuit operations through TBSG NE. As
summarized in Section 3.3, the details of our TBSG game gadgets are significantly more
intricate than the corresponding graphical game gadgets due to the additional challenges of
global shared structure across players and the nonlinearity of the utilities. These challenges
do not manifest in graphical games as, by definition, they only possess local structure and
satisfy linearity in utilities. Whether TBSGs are directly reducible to graphical games or
bimatrix games remains an intriguing open question.

Relation of TBSG to other game-theoretic paradigms. We conclude our overview of
related work with a brief summarization of solution concepts and paradigms that are partially
related to TBSG’s. First, the class of sequential or extensive-form games is known to lie in
PPAD [71] and is trivially PPAD-hard due to normal-form games being a special case. We
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note that computation of non-stationary equilibria in the finite-horizon SimSG and TBSG
are special cases of these. Second, the solution concept of (coarse) correlated equilibrium
(CCE) is polynomial-time computable, in contrast with NE, even for multiplayer games
with linear utilities [54]. Since TBSG involves a non-trivial action set for only one player at
each state, the solution concepts of NE and CCE all become equivalent for both stationary
and non-stationary equilibria. On the positive side, this may imply the convergence of
recently designed finite-horizon learning dynamics [65, 34, 46] to TBSG NE. On the negative
side, our PPAD-hardness of approximation of stationary NE in TBSG (Section 7.3 of full
version) implies hardness of stationary CCE equilibria in SimSGs. Finally, we contextualize
our NP-hardness results on certain decision problems (i.e. does there exist an equilibrium
with certain properties?) in Section 8.2 of full version. In normal-form games, such decision
problems are known to be NP-hard [13].
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Abstract
We study random constraint satisfaction problems (CSPs) at large clause density. We relate the
structure of near-optimal solutions for any Boolean Max-CSP to that for an associated spin glass on
the hypercube, using the Guerra-Toninelli interpolation from statistical physics. The noise stability
polynomial of the CSP’s predicate is, up to a constant, the mixture polynomial of the associated
spin glass. We show two main consequences:
1. We prove that the maximum fraction of constraints that can be satisfied in a random Max-CSP

at large clause density is determined by the ground state energy density of the corresponding
spin glass. Since the latter value can be computed with the Parisi formula [50, 58, 9], we provide
numerical values for some popular CSPs.

2. We prove that a Max-CSP at large clause density possesses generalized versions of the overlap
gap property if and only if the same holds for the corresponding spin glass. We transfer results
from [38] to obstruct algorithms with overlap concentration on a large class of Max-CSPs. This
immediately includes local classical and local quantum algorithms [19].
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We thank the anonymous reviewers for many suggestions to improve the text, for pointing out an
error in a proof, and for the reference [11].

1 Introduction

In this work, we formalize a general and deep connection between two intensely studied classes
of optimization problems: constraint satisfaction problems (CSPs), studied in computer
science, and spin glass models, studied in statistical physics. We demonstrate that as the
clause density of the random CSP increases, the geometric properties of the set of nearly-
optimal solutions converge to those of a corresponding spin glass model. In these spin glass
models, the very same geometric properties imply bounds on the average-case approximability
achieved by broad classes of algorithms [6, 31, 30]; these bounds are conjectured to be the
best possible among all polynomial-time algorithms [29, 38]. The correspondence we establish
here implies that the same lower bounds apply to average-case CSPs.

CSPs are paradigmatic computational tasks. Their study has led to foundational results
in computational hardness, approximability, and optimization [51]. In recent years, we have
learned more about CSPs through methods inspired by statistical physics, especially when
the clauses of the CSP are chosen randomly [24, 23, 22, 55, 25]. By identifying the solution
quality of a variable assignment with the energy of a configuration of particles, we can
investigate “physical” properties of the CSP, such as phase transitions or solution clustering
at different temperatures. Surprisingly, these physical properties can have computational
consequences.

We study random CSP instances with Boolean variables, random literal signs, and
number of constraints which is a large constant times the number of variables, such that
each constraint acts on a constant number of variables. If n is the number of variables, then
m = αn is the number of constraints for some constant α. For large enough α, the CSP is
unsatisfiable with probability 1 − on(1). Therefore the goal is to find a variable assignment
that maximizes the number of satisfied constraints, and we think of these as Max-CSPs.

Given a random Max-CSP, how many constraints can be satisfied? How are the best
assignments distributed around the hypercube? Can we find these assignments with efficient
algorithms? Statistical physicists use questions like these to investigate the solution geometry
of a problem. Our main result connects the solution geometry of a Max-CSP (with large
enough α) to that of a spin glass. As a consequence, much of our mathematical and
algorithmic understanding of spin glasses transfers to CSPs at large clause density.

A spin glass (more properly a mixed mean-field spin glass) is a random system of n

particles (variables) specified by a mixture polynomial ξ(s) =
∑

p≥1 c2
psp. In this model,

the interaction strength between every p-tuple of particles is an independent Gaussian
with variance c2

pn1−p; this can be thought of as a randomly-weighted CSP on the complete
p-uniform hypergraph. We show that as the clause density of any random CSP increases
(α → ∞), the solution space starts to resemble that of a spin glass. This is inspired by the
fact that Max-Cut on random graphs with large constant average degree qualitatively looks
like the Sherrington-Kirkpatrick model, where c2 = 1, {ci}i̸=2 = 0 [56, 22].

1.1 Main results
Formally, we relate the free energy density of a random Max-CSP instance to that of a
particular spin glass. The associated spin glass is determined only by the Fourier weights of
the CSP. In fact, the mixture polynomial of the spin glass is, up to a constant, the noise
stability polynomial of the CSP:
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▶ Theorem 1.1 (Free energy density). Generate a random CSP instance I (with cost function
HI) consisting of α ·n independent and uniform constraints of a predicate f : {±1}k → {0, 1}
with randomly signed literals. Define the polynomial

ξ(s) = Stabs(f) − f̂(∅)2 =
k∑

j=1
∥f=j∥2sj , (1)

where Stabs(f) is the noise stability polynomial of f , and ∥f=j∥2 is the Fourier weight of f

at degree j. Generate a random spin glass instance Hξ with mixture polynomial ξ.
Define ZI(β) =

∑
σ∈{±1}n HI(σ) and ZSGξ

(β) =
∑

σ∈{±1}n Hξ(σ) as the respective
partition functions. Then for all constants β > 0, w.h.p. as n → ∞,

p-lim
n→∞

1
βn

log ZI(β) = f̂(∅) + p-lim
n→∞

1
βn

log ZSGξ
(β)

√
α

+ O
(

β2

α2

)
. (2)

Prior work relates the free energy density of Max-kXOR [22, 55] and Max-kSAT [48] to
that of a spin glass. Theorem 1.1 generalizes this connection to any random Max-CSP with
randomly signed literals.

The asymptotic equivalence of the free energy density implies the equivalence of several
properties of the solution geometry for large enough α. We show two specific implications of
Theorem 1.1. The first is that the optimal value of a random Max-CSP in the large clause
density limit can be found with a spin glass calculation.

▶ Corollary 1.2. (Optimal value equivalence). Generate a random CSP instance I consisting
of α · n independent and uniform constraints of a predicate f : {±1}k → {0, 1} with randomly
signed literals. Let vI be the maximum fraction of constraints of I that can be satisfied. Let
ξ be defined as in Equation (1), and GSED(SGξ) as the ground state energy density of a
random instance of the associated spin glass. Then, w.h.p. as n → ∞ and β = o(α3/4),

vI = f̂(∅) + p-lim
n→∞

GSED(SGξ)√
α

+ o

(
1√
α

)
. (3)

Computing the minimum value, or ground state energy, of a spin glass can famously
be done using the Parisi formula. In Section 4, we use the Parisi formula to compute
GSED(SGξ) for several common CSPs (our code is available online).

The second implication relates to algorithmic hardness.1 Intuitively, when global minima
are located in clusters, some algorithms cannot efficiently find them. Inspired by this, a
recent body of work (starting with [33]) study the presence of an overlap gap property (OGP)
in optimization problems, and show how this property obstructs some algorithms from
(1 − ε)-approximating average-case instances. We show that a generic version of the OGP,
called the branching OGP [38], exists on a spin glass exactly when it exists on the associated
Max-CSP at large enough clause density. As a result, the techniques that obstruct algorithms
on certain spin glasses also work on the corresponding Max-CSPs.

The class of algorithms we obstruct is as follows. Consider two correlated instances with
correlation parameter t ∈ [0, 1]. An algorithm is overlap-concentrated if for every t, with
high probability the distribution of overlaps of output assignments on the two correlated
instances falls within a narrow interval. Many commonly-used algorithms have this property,

1 For this implication, we need to boost Theorem 1.1 to interpolate the free energy density restricted to
any given overlap and correlation structure.
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including approximately Lipschitz algorithms [38] on spin glasses and local classical and local
quantum algorithms [19] on random Max-CSPs. Additionally, survey propagation with a
constant number of message-passing rounds likely has this property [16, 29, 17].

▶ Corollary 1.3 (Branching OGP equivalence, informal). Take any Max-CSP at sufficiently
large α. Consider the associated spin glass SGξ, where ξ is defined as in Equation (1). Then
SGξ has a branching OGP at value v if and only if the Max-CSP has a branching OGP at
value f̂(∅) + v√

α
+ o

(
1√
α

)
.

▶ Theorem 1.4 (Branching OGP obstructs algorithms with overlap concentration, informal).
Consider an algorithm with overlap concentration. Then it cannot output arbitrarily good
approximate solutions on almost all instances of Max-CSPs which have a branching OGP.

Our proof of Theorem 1.4 follows the framework of Huang and Sellke [38], who prove
the same result on spin glasses. Only a few changes are needed to transfer their result to
Max-CSPs.

It is known that an OGP (and the stronger branching OGP) exists on spin glasses with
even mixture polynomials without quadratic terms [38]. Combining this with the results
that we have stated, we conclude the following:

▶ Corollary 1.5 (informal). Consider a random Max-CSP with a predicate f such that the
only nonzero Fourier coefficients of f have even degree j ≥ 4. On almost all instances of
the Max-CSP, no algorithm with overlap concentration (e.g., local algorithms) can output
(1 − ε)-approximately maximal solutions for all ε > 0.

Corollary 1.5 partially resolves [19, Conjecture 9.1, arXiv version]. We remark that a
full characterization of spin glasses, and thereby CSPs, with an OGP is not yet known
(although spherical spin glasses have been classified [57, Proposition 1]). For example, the
Sherrington-Kirkpatrick model is strongly suspected to have no OGP, but this is not fully
proven [10].

We cannot help but mention that these topological properties of the solution space (i.e.
the solution geometry) may precisely characterize the algorithmic approximability of spin
glasses and random CSPs [1]. For spin glasses, the following is known:

▶ Theorem 1.6. For all spin glasses SGξ, there is a value ALG (given by an extended Parisi
formula) such that:
1. [43, 6, 54] Assume that the minimizer of the extended Parisi functional for SGξ exists.

Then for all ε > 0, there is an efficient algorithm that outputs a solution with value
ALG − ε on almost all instances.

2. [38] Assume the mixture polynomial ξ is even. For all ε > 0, the spin glass exhibits
a branching OGP with value ALG + ε, which therefore obstructs overlap-concentrated
algorithms from achieving this value on almost all instances.

It is likely the case that the same holds for CSPs with sufficiently large α. In this paper
we prove that the lower bound transfers (Part 2). The upper bound (Part 1) is known for
Max-Cut by [5], and can likely be generalized to an arbitrary CSP (in a similar way that [6]
generalizes [43] for spin glasses).

The paper is organized as follows. We provide formal definitions and additional moti-
vation in Section 2. In Section 3, we give the main interpolation between every Max-CSP
and a related spin glass. In Section 4, we show how this implies equivalence of optimal
value (Corollary 1.2), and list numerical approximations to optimal values of several common
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Max-CSPs. In Section 5, we prove that the main interpolation implies the equivalence
of OGPs (Corollary 1.3). In the full version2, we prove that an OGP obstructs overlap-
concentrated algorithms on Max-CSPs (Theorem 1.4) and conclude Corollary 1.5. We close
with a discussion in Section 6. Some technical proofs are deferred to appendices of the full
version.

1.2 Related work

Spin glasses

Spin glasses as a state of matter have been studied since the early 20th century. They were
first considered as metallic alloys with many ground states, in which the magnetic spins of the
individual particles in the alloy are frustrated (i.e. many nearby spins are mismatched). In
the language of CSPs, spin glasses have exponentially many near-optimal solutions, in which
many constraints are unsatisfied. In this work, we reserve the term “spin glass” for mean-field
spin glass models, where “mean-field” means that all pairwise (or higher arity) interactions
between particles are present. The spins (i.e. the possible values for each variable) are
Boolean (also called Ising) for all spin glasses that we consider, although in other physical
and mathematical settings they may be [q]-valued or vector-valued.

The Sherrington-Kirkpatrick model is an early mathematical model of a spin glass [56].
It was solved (by deriving an explicit formula for the free energy density) by Parisi [50],
but the solution relied on non-mathematically rigorous physical arguments. A later series
of works [35, 58, 46] proved that the formula is correct for all mixed spin glass models. Its
numerical value was carefully approximated for the Sherrington-Kirkpatrick model [21] and
more recently for other mixed spin glasses [4, 41]. An introduction to the Parisi formula is
given by Panchenko [46].

Random CSPs through the lens of statistical physics

Statistical physicists have studied random instances of combinatorial optimization problems
since at least the 1980s [28, 42]. A “dictionary” converting between the language of computer
science and physics is provided in [19, Table 1].

Several modern works use the Guerra-Toninelli interpolation [36] in a similar technical way
as our work; the interpolation method is by now a standard tool in spin glass theory. Dembo,
Montanari, and Sen [22] applied the interpolation to prove that the size of the Max-Cut and
Max-Bisection in a random d-regular or Erdős-Rényi graph is related to the Sherrington-
Kirkpatrick model in the same way as Corollary 1.2. The interpolation was later used
(with different spin glass models) to determine the optimal value of random Max-kSAT [48],
Max-kXOR and Max q-cut [55] instances in the highly unsatisfiable regime. Compared to
these works, our Theorem 1.1 generalizes the CSP predicate to arbitrary mixtures of Boolean
functions, but they must have random signs on the literals (e.g. Max-2XOR instead of
Max-Cut); this assumption simplifies a technical part of the proof (Equation (62)). We also
extend the Guerra-Toninelli interpolation (in Theorem 3.5) to transfer more properties of
the solution geometry than just the optimal value; this is exactly what allows us to compare
results on algorithmic hardness.

2 https://arxiv.org/abs/2210.03006
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In this paper, we study the highly unsatisfiable regime, where the number of clauses of the
CSP is αn for some large constant α. When the clause density α is smaller, for example near
the satisfiability threshold of the CSP, the exact connection with spin glasses breaks down,
and existing results are less unified. Nonetheless, methods inspired by statistical physics
continue to give powerful insight into the solution structure of these CSPs [2, 3, 49, 24, 23, 25].

Overlap gaps

When near-optimal solutions are clustered, it becomes impossible for many algorithms to
find them. From a geometric perspective, we can’t “move” from one cluster to others
without passing through a lower-value assignment. This general phenomenon was named
the overlap gap property (OGP) and it was shown to obstruct local algorithms [33]. Further
generalizations of overlaps [18, 38] show stronger obstructions on wider classes of algorithms.
The OGP and its generalizations have been used to obstruct algorithms from finding near-
optimal solutions of various quantities in mixed spin glasses [31, 30, 38, 54], CSPs [18, 17, 19],
sparse random graphs [33, 53], and matrices [32, 8]. See [29] for a survey of overlaps and
solution geometry.

Optimizing spin glasses and random Max-CSPs

Recently, [6, 54] showed that a type of approximate message-passing algorithm finds the
ground state energy of spin glasses without overlap gaps. Under the same assumption, a
version of this algorithm was also shown to be optimal on Max-Cut for sparse random graphs
with constant (but sufficiently large) degree [5]. Both the Sherrington-Kirkpatrick model
and Max-Cut on sparse random graphs are strongly suspected to have no overlap gaps [10].

There has been some study of a near-term quantum algorithm (the QAOA [26]) optimizing
spin glasses, with recently-proven rigorous performance bounds [20, 27]. In fact, for large
enough clause density, the performance of the QAOA is identical on a random instance of
Max-kXOR and on its corresponding spin glass [15, 12, 13].

2 Preliminaries

2.1 Random constraint satisfaction problems (CSPs)
A CSP instance, denoted I, consists of n variables and a set of constraints, denoted E(I). In
a random CSP instance, the constraints E(I) are drawn from a distribution Λ on functions
f : Σk → R.

▶ Definition 2.1 (Instance of a random CSP). Let Λ be a distribution on functions f : Σk → R
with alphabet Σ = {±1}. Fix a constant α > 0. Then, a random CSP over n variables
{σi}n

i=1 and m = αn clauses is generated by: for each i = 1, . . . , m, draw i1, . . . , ik uniformly
i.i.d from [n], draw f ∼ Λ, draw k random signs εi uniformly i.i.d from {±1}, and add the
constraint e to E(I), describing the clause fe(σe) := f(ε1σi1 , . . . , εkσik

).

▶ Remark 2.2. The canonical case is to take Λ which is supported on a single predicate
f : Σk → {0, 1}. For example, the OR predicate corresponds to kSAT. Our proofs apply
to the more general setting of Definition 2.1, but it does not apply to |Σ| > 2 or instances
without random signs.

We denote this random model as CSPΛ(α). We study the highly unsatisfiable regime; for
example, one can think of α ≫ exp(k).
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In this work, we use the language of Hamiltonians. In other settings this quantity may
be called the objective function, the value, or the score of the assignment.

▶ Definition 2.3 (CSP Hamiltonian). Consider a CSPΛ(α) instance I on [n]. For any input
σ ∈ {±1}n let

Hα(σ) = 1
α

∑
e∈E(I)

fe(σe) . (4)

▶ Remark 2.4. We divide by α so that, regardless of the value of α, the value of the
Hamiltonian is in the same interval [(min f) · n, (max f) · n].

▶ Definition 2.5 (Optimal value of a CSP instance). Define the maximum or optimal value
of a CSPΛ(α) instance I by:

vI = 1
n

max
σ∈{±1}n

Hα(σ) . (5)

When the predicates in the CSP are 0/1-valued, the maximum value of a CSP instance I is
the maximum possible fraction of constraints that can be satisfied.
▶ Remark 2.6. By a union bound, with high probability all assignments to a random CSP
with predicate f satisfy f̂(∅) + O( 1√

α
) fraction of constraints. The purpose of our work is to

precisely study the behavior of the 1√
α

term.

2.2 Mean-field spin glasses
Let n denote the number of particles or variables in the system. We introduce the mathe-
matical objects describing a spin glass:

▶ Definition 2.7 (Mixture polynomial). A mixture polynomial is ξ(s) =
∑k

p≥1 c2
psp for some

nonnegative coefficients c2
p.

▶ Definition 2.8 (Gaussian disorder). The disorder coefficients J (p) are an order-p tensor
where each axis has length n. When J (p) is a Gaussian tensor, we say that there is Gaussian
disorder. Specifically, for each (i1, . . . , ip) ∈ [n]p, we have J (p)[i1, . . . , ip] ∼ N (0, 1) i.i.d.3

We now have enough to define our spin glasses. The mixture polynomial specifies the
random model, and the disorder coefficients determine the instance of the model. For example,
ξ(s) = s2 (or ξ(s) = s2/2 in some works) specifies the well-studied Sherrington-Kirkpatrick
spin glass model.

▶ Definition 2.9 (Finite mixed spin glass). Fix a mixture polynomial ξ. A spin glass is a random
Hamiltonian Hξ : {±1}n → R given by sampling Gaussian disorder J := (J (p) : p = 1, 2, . . . ),
where the J (p) are independent, then

Hξ(σ) =
k∑

p=1

cp

n(p−1)/2

〈
J (p), σ⊗p

〉
=

k∑
p=1

cp

n(p−1)/2

∑
(i1,...,ip)∈[n]p

J (p)[i1, . . . , ip]σi1 . . . σip
.

(6)

We say that Hξ is an instance of the random model SGξ.4

3 We follow the definition in [46, Chapter 2]. Some definitions of Gaussian disorder use a symmetric
Gaussian tensor, which is equivalent up to scaling of the ck and on(1) change in the free energy density.
This is because the models only differ on tensor entries [i1, . . . , ip] such that i1, . . . , ip are not all distinct,
which only make up on(1) fraction of all entries of the tensor.

4 The p = 1 term is a Gaussian external field. Some spin glass models are instead defined with a fixed
external field.

ITCS 2023
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SGξ is also known as the mixed p-spin model (in contrast to the pure p-spin model, in
which the mixture polynomial is sp, i.e. all interactions have the same size p).

An early motivator of spin glass theory was the conjecture (and eventual proof) of the
following representation for the ground state energy of the model:

▶ Theorem 2.10 (Parisi formula [50, 35, 58, 47, 9]). Fix any spin glass model SGξ. Sample
a sequence of independent instances {Hξ

n=1, Hξ
n=2, ...} from SGξ for increasing values of n.

Then the limit

GSED(SGξ) := lim
n→∞

max
σ∈{±1}n

1
n

Hξ
n(σ) , (7)

almost surely exists. Furthermore,

GSED(SGξ) a.s.= min
ζ∈U

Pξ
∞(ζ) , (8)

where Pξ
∞ is the Parisi functional at zero temperature with mixture polynomial ξ. The Parisi

functional at zero temperature and the set U are defined in Definition 4.2.

We state one other fact about spin glasses. One way to characterize a spin glass is as a
Gaussian process on the state space {±1}n with covariance structure given by the mixture
polynomial ξ. The covariance of the Gaussians Hξ(σ1), Hξ(σ2) is a function of the normalized
inner product, or overlap, of σ1 and σ2.

▶ Fact 2.11 (Gaussian characterization of a spin glass). Let {Hξ(σ)}σ∈{±1}n be a spin glass
instance of the random model SGξ. Then these variables are jointly Gaussian, with mean
zero and covariance

E
[
Hξ(σ1)Hξ(σ2)

]
= n · ξ

(
⟨σ1, σ2⟩

n

)
, (9)

where ⟨· , ·⟩ is the standard inner product.

2.3 Solution geometry of optimization problems
Solution geometry refers to the distribution of the optimal and near-optimal solutions on
the Boolean hypercube. Given a Hamiltonian H : {±1}n → R, what do we mean by “near-
optimal solutions”? We consider two notions. The first, used when considering computational
tasks, is the set of σ such that H(σ) ≥ v for some value v. The second, a “smoother” notion
from statistical physics, is that near-optimal solutions are samples from a low-temperature
Gibbs distribution.

▶ Definition 2.12 (Gibbs distribution). Given a Hamiltonian H : {±1}n → R and an inverse
temperature parameter β ≥ 0, the Gibbs distribution is the distribution on {±1}n with
probability proportional to eβH(·).

▶ Definition 2.13 (Partition function). The partition function of H is the normalizing
constant of the Gibbs distribution, i.e. the exponentially-weighted sum

ZH(β) =
∑

σ∈{±1}n

eβH(σ) . (10)

The most important geometric notion is the overlap of two assignments, which is exactly
the normalized inner product and is linearly proportional to the Hamming distance between
the assignments:
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▶ Definition 2.14 (Overlap). The overlap between two assignments (configurations) σ1, σ2 ∈
{±1}n is the normalized inner product,

R(σ1, σ2) = ⟨σ1, σ2⟩
n

. (11)

Note that the overlap is always in [−1, 1]. We study distributions of R(σ1, σ2) when σ1, σ2
are independently sampled near-optimal solutions. Roughly speaking, gaps in the support of
these distributions (i.e. overlap gaps) imply obstructions for some types of algorithms.

We also study pairwise overlaps between more than two samples. An example is the
distribution of the 3-tuple of overlaps in a “triangle” of independent near-optimal solutions
σ1, σ2, σ3. Topological gaps in this distribution will also obstruct algorithms. The generaliza-
tion of overlap used in this paper is the I-overlap; given a set σ of |σ| = ℓ assignments, each
in {±1}n, we define an overlap value for every subset of σ.

▶ Definition 2.15 (I-overlap). Consider any σ := (σ1, . . . , σℓ) ∈ ({±1}n)ℓ and any I ⊆ [ℓ].
Define the I-overlap of σ as

RI(σ) = 1
n

n∑
j=1

∏
i∈I

(σi)j . (12)

The I-overlap recovers the definition of overlap when I has two elements.
We define an overlap vector to associate a set of ℓ assignments with all of its possible

I-overlaps:

▶ Definition 2.16 (Overlap vector). Consider any σ := (σ1, . . . , σℓ) ∈ ({±1}n)ℓ. Then its
overlap vector Q(σ) ∈ [−1, 1]2[ℓ] lists all possible I-overlaps; that is, Q(σ)I = RI(σ) for
every I ∈ 2[ℓ].

▶ Definition 2.17 (Overlap polytope). Consider the set of all possible overlap vectors Q(σ)
for any positive n ∈ N and sets of vectors σ ∈ ({±1}n)ℓ. Then R(ℓ) ⊆ [−1, 1]2[ℓ] is the
closure of this set. Formally,

R(ℓ) = {Q(σ) : n ∈ N , σ ∈ ({±1}n)ℓ} . (13)

▶ Remark 2.18. Since R∅(σ) = 0 for all σ, we can ignore this coordinate, and then R(ℓ) is a
non-degenerate convex polytope in R2ℓ−1. For example, R(2) is a regular tetrahedron in R3.

▶ Definition 2.19 (Preimage of overlap vectors). For any open subset S ⊆ R(ℓ) (in the
Euclidean subset topology of R(ℓ)), let U

(ℓ)
n (S) ⊆ ({±1}n)ℓ be the preimage of S in dimension

n; i.e. the set of σ ∈ ({±1}n)ℓ such that Q(σ) ∈ S. We drop the superscript when ℓ is in
context.

We are interested in the distribution on R(ℓ) of the overlap vector Q(σ1, . . . , σℓ) when
σ1, . . . , σℓ are independently sampled near-optimal solutions.5 Our main result shows that
the support of this distribution for a Max-CSP in the n → ∞ then α → ∞ limit equals that
of a corresponding spin glass. Hence, overlap gaps (formally defined in Section 5) transfer
between the two models.

The proof uses the concept of free energy, defined as the logarithm of the partition
function.

5 It is likely that the distribution converges in some sense as n → ∞, and then converges again as β → ∞,
but our proof does not show this nor use this.
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▶ Definition 2.20 (Free energy). The free energy of H is log ZH(β).

The free energy at low temperature (β → ∞) matches the optimal value of the Hamiltonian.
This is a commonly-used fact (for example, [46, Equation 1.7]); we include the short proof.

▶ Fact 2.21. The maximum value of a Hamiltonian H : Ω → R on a finite domain Ω is
related to its free energy by

max
σ∈Ω

H(σ) ≤ 1
β

log ZH(β) ≤ max
σ∈Ω

H(σ) + log |Ω|
β

. (14)

Proof. We have
1
β

log
∑
σ∈Ω

exp (βH(σ)) ≥ max
σ∈Ω

1
β

log exp (βH(σ)) = max
σ∈Ω

H(σ) , (15)

and
1
β

log
∑
σ∈Ω

exp (βH(σ)) ≤ max
σ∈Ω

1
β

log |Ω| exp (βH(σ)) = max
σ∈Ω

H(σ) + log |Ω|
β

. (16)

◀

2.3.1 Extended remark on multi-overlaps
The I-overlap for |I| > 2 is a type of multi-overlap, i.e. a higher-order version of the standard
overlap. In fact, the structures we will use to obstruct algorithms only constrain the pairwise
overlaps with |I| = 2. Multi-overlaps may be useful when studying CSPs at small α; see
Section 6.

The I-overlap is general enough to capture any property of the solution geometry which
is permutation-invariant under the action of Sn permuting the bits of {±1}n. Formally, we
have the following:

▶ Definition 2.22 (Permutation-invariant function). Let a permutation π ∈ Sn act on σ ∈
{±1}n as σπ

i = σπ(i) and on a function f : {±1}n → R (extended coordinate-wise to
f : ({±1}n)ℓ → R) as fπ(σ) = f(σπ). Then f is permutation-invariant if it is fixed by all π.

▶ Fact 2.23. Any permutation-invariant function f : ({±1}n)ℓ → R can be expressed as a
function on R(ℓ),

f(σ1, . . . , σℓ) = f(Q(σ1, . . . , σℓ)) . (17)

If f(σ1, . . . , σℓ) is additionally invariant under the action of Sℓ which permutes the
inputs then f is determined by the overlaps R{1}, R{1,2}, R{1,2,3}, . . . , R{1,2,3,...,ℓ}. The
corresponding overlap polytope ([−1, +1]ℓ) is significantly smaller and simpler. These
overlaps are a more common definition of multi-overlap than Definition 2.15 [11].

2.4 Fourier analysis on the hypercube
Fourier analysis is commonly used to study Boolean functions [44]. For example, the Fourier
basis provides a convenient way to understand the action of linear operators on a Boolean
function.

We consider the space of Boolean functions f : {±1}k → R with the expectation
inner product, over the uniform distribution on {±1}n. These functions have a canonical
decomposition.
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▶ Definition 2.24 (Fourier spectrum of a Boolean function). Every function f : {±1}k → R
permits a unique decomposition as a linear combination of parity functions. Specifically,

f(σ) =
∑

S⊆[k]

f̂(S)
∏
i∈S

σi , (18)

where f̂(S) are called the Fourier coefficients.

One can verify that the monomials
{∏

i∈S σi

}
S⊆[k] form an orthonormal basis, often called

the Fourier basis.
Recall that the average value of f is exactly the Fourier coefficient of the empty set:

▶ Fact 2.25. Eσ∈{±1}n [f(σ)] = f̂(∅).

We also consider the noise stability of a Boolean function, which describes how resistant
the function is to independent noise on its input bits.

▶ Definition 2.26 (ρ-correlated). Fix σ ∈ {±1}k and ρ ∈ [−1, +1]. Then a random sample τ

of the distribution Nρ(σ) chooses each spin τi independently as

τi =
{

σi with probability 1+ρ
2 ,

−σi with probability 1−ρ
2 .

(19)

Since Eτ∼Nρ(σ)[τiσi] = ρ, we say that τ is ρ-correlated with σ.

▶ Definition 2.27 (Noise stability of a Boolean function around a point). For ρ ∈ [−1, +1],
define the noise stability of the Boolean function f : {±1}k → R around point σ ∈ {±1}n as

Stabρ[f ](σ) = E
τ∼Nρ(σ)

[
f(σ)f(τ)

]
. (20)

▶ Definition 2.28 (Noise stability of a Boolean function, [44, Theorem 2.49]). The noise
stability of a Boolean function f : {±1}k → R is defined as

Stabρ[f ] = E
σ∼{±1}k

[
E

τ∼Nρ(σ)
[f(σ)f(τ)]

]
= E

σ∼{±1}k
[Stabρ[f ](σ)] =

∑
S⊆[k]

ρ|S|f̂(S)2 . (21)

An equivalent way of writing Stabρ[f ] in the Fourier basis partitions the levels of the
hypercube; that is,

Stabρ[f ] =
∑

S⊆[k]

ρ|S|f̂(S)2 =
k∑

j=0
ρj∥f=j∥2 , (22)

where,

∥f=j∥2 =
∑

T ⊆[k],|T |=j

f̂(T )2 , (23)

is the Fourier weight of the jth Fourier level of f .
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2.5 Concentration inequalities
In the probabilistic combinatorics literature, “with high probability” means with probability
1 − on(1).

▶ Definition 2.29 (Convergence in probability). A sequence of random variables Xn converges
in probability to L ∈ R, written Xn

p→ L or limn→∞ Xn
p= L, if for every fixed ε > 0,

Pr [|Xn − L| > ε] = on(1) . (24)

▶ Fact 2.30. Suppose Xn is a sequence of random variables such that:
1. the limit of the expectation exists: L = limn→∞ EXn, and
2. Xn is concentrated: for every ε > 0 fixed, Pr[|Xn − EXn| > ε] = on(1).

Then Xn
p→ L.

All of the quantities that we consider are exponentially concentrated. Therefore, we
will work with their expectations and use the previous lemma to conclude convergence in
probability.

The Parisi formula (Theorem 2.10) gives a stronger form of convergence.

▶ Definition 2.31 (Almost-sure convergence). A sequence of random variables Xn almost
surely converges to L ∈ R, written limn→∞ Xn

a.s.= L, if

Pr
[

lim
n→∞

Xn exists and equals L
]

= 1 . (25)

We define the convergence limn→∞ Xn
p= limn→∞ Yn or limn→∞ Xn

a.s.= limn→∞ Yn as
Xn − Yn converging to 0.

In the remainder of this section, we state concentration inequalities for the Gibbs measures
we consider.

▶ Lemma 2.32 (Concentration under spin glass Gibbs distribution, [46, Theorem 1.2]). Let
β > 0 and f : {±1}n → R be arbitrary. Let {H(σ)}σ∈{±1}n be a Gaussian process such that
EH(σ)2 ≤ a for all σ ∈ {±1}n. Let X = log

∑
σ∈{±1}n exp(βH(σ))f(σ). Then for all x ≥ 0,

Pr
[∣∣X − EX

∣∣ ≥ x
]

≤ 2 exp
(

−x2

4aβ2

)
. (26)

Note that for any spin glass instance Hξ, the value X has mean Θ(n). By Fact 2.11,
EHξ(σ)2 = n · ξ(1) = O(n), so X typically fluctuates by at most O(

√
n).

We use a similar concentration inequality for the CSP setting.

▶ Lemma 2.33 (Concentration under CSP Gibbs distribution, [19, Lemma 7.6]). Let β > 0
and f : {±1}n → R be arbitrary. Let {H(σ)}σ∈{±1}n be a sample from CSPΛ(α). Let
X = log

∑
σ∈{±1}n exp(βH(σ))f(σ). Then for all δ > 0,

Pr
[∣∣X − EX

∣∣ ≥ δn
]

≤ 2 exp (−Ωδ(n)) (27)

where Ωδ(·) denotes that the constants may depend on δ.

The above statement can be proved via [19, Lemma 7.6 (arXiv version)] with the
observation that the free energy is also Lipschitz in the number of hyperedges.
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3 Sparse and dense models have the same free energy

In this section we prove Theorem 1.1. We first define a coupled model for both CSPΛ(α) and
SGξ. We connect the free energy of the coupled models via the Guerra-Toninelli interpolation
as in several prior works [45, 18, 39, 19]; our proof is especially inspired by [48].

▶ Definition 3.1 ((A, b)-coupled models). Let A ∈ {0, 1}ℓ×ℓ′ be a 0-1 matrix and b ∈ Rℓ′

≥0 a
nonnegative vector satisfying (Ab)i = 1 for all i ∈ [ℓ].

An (A, b)-coupled model of SGξ is a collection of random Hamiltonians G1, . . . , Gℓ related
by  G1

...
Gℓ

 = A

 G′
1
...

G′
ℓ′

 , (28)

where each G′
i′ is the Hamiltonian for an independent instance of SG

s→
√

bi′ ξ(s). The grand

Hamiltonian is G : ({±1}n)ℓ → R defined by G(x) =
∑ℓ

i=1 Gi(xi).
An (A, b)-coupled model of CSPΛ(α) is a collection of random Hamiltonians H1, . . . , Hℓ

related by H1
...

Hℓ

 = A

 H′
1

...
H′

ℓ′

 , (29)

where each H′
i′ is the Hamiltonian for an independent instance of CSPΛ(bi′α). The grand

Hamiltonian is H : ({±1}n)ℓ → R defined by H(x) =
∑ℓ

i=1 Hi(xi).

In this section we use G for a grand Hamiltonian of a spin glass and H for that of a CSP.
Expectations are over the randomness of the Hamiltonians.

Notice that A is {0, 1}-valued. One can think of this matrix as choosing which of the ℓ′

independent “hidden” instances are connected to each of the ℓ “observed” instances. The
vector b gives the variances of the hidden instances, and the scaling is set so that the variance
of each observed instance is the same as a single instance.

We study the free energy of our models, restricted to sets of assignments with particular
overlap vectors.

▶ Definition 3.2 (Free energy of states with given overlap). Let S ⊆ R(ℓ) be an open set. Let
H : ({±1}n)ℓ → R be a grand Hamiltonian. Define ZH,S(β) as the partition function of H
when the configuration tuples are restricted to those having overlap vector in S; that is,

ZH,S(β) =
∑

x∈U
(ℓ)
n (S)

eβ H(x) . (30)

Define the free energy density of H as

ϕH,S(β) = 1
βℓn

log ZH,S(β) . (31)

▶ Remark 3.3. We ignore the edge case U
(ℓ)
n (S) = ∅.

In order to use the Guerra-Toninelli interpolation, we modify the CSP model so that
the number of constraints is m ∼ Pois(αn) rather than m = αn fixed. Because Pois(αn)
concentrates around its mean as n → ∞, the free energy density is asymptotically the same:
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▶ Lemma 3.4. Let ϕ
(Pois)
H,S and ϕ

(exact)
H,S denote the free energy density of a CSP instance with

m ∼ Pois(αn) and m = αn clauses, respectively. Then∣∣∣Eϕ
(Pois)
H,S − Eϕ

(exact)
H,S

∣∣∣ = on(1) . (32)

Proof. Let m be the number of edges in the Poisson model and αn in the exact model.
Couple the two models so that the first αn edges of the Poisson model equal the exact model.
Comparing the Hamiltonians of the two instances, we find

1
α

∑
e∈E(I(exact))

fe(σe) − |f |
α

· |m − αn| ≤ 1
α

∑
e∈E(I(P ois))

fe(σe)

≤ 1
α

∑
e∈E(I(exact))

fe(σe) + |f |
α

|m − αn| , (33)

where |f | = maxx∈{±1}k f(x). This gives a corresponding bound on the difference in free
energy density:∣∣∣ϕ(Pois)

H,S − ϕ
(exact)
H,S

∣∣∣ ≤ |f | · |m − αn|
αn

. (34)

Taking the expectation,∣∣∣Eϕ
(Pois)
H,S − Eϕ

(exact)
H,S

∣∣∣ ≤ E
∣∣∣ϕ(Pois)

H,S − ϕ
(exact)
H,S

∣∣∣ (Jensen’s inequality) (35)

≤
|f | · Em∼Pois(αn) |m − αn|

αn
(Equation (34)) (36)

≤
|f | ·

(
Em∼Pois(αn)(m − αn)2)1/2

αn
(Jensen’s inequality) (37)

= |f | ·
√

αn

αn
= on(1) . (38)

◀

Now we can state our main interpolation.

▶ Theorem 3.5 (Interpolation of random Max-CSPs and spin glasses; generalized version of
Theorem 1.1). Choose two positive integers ℓ and ℓ′. Consider any set S ⊆ R(ℓ). Let G and
H be grand Hamiltonians for (A, b)-coupled models of SGξ and CSPΛ(α), respectively, where
ξ is related to Λ as in Equation (1).

For every sufficiently large n, the following holds w.h.p. whenever β
α → 0:

EϕH,S(β) = E
f∼Λ

[f ] + 1√
α
EϕG,S(β) + O

(
β2

α2

)
. (39)

As a result, for all β = o(α3/4) we have:

lim
α→∞

√
α

(
EϕH,S(β) − E

f∼Λ
[f ]

)
− EϕG,S(β) = 0 . (40)

Furthermore, by the concentration arguments in Section 2.5, we may replace the expectations
by convergence in probability as n → ∞ (after taking the limit as α → ∞), and for the case
S = R(ℓ), almost-sure convergence.
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3.1 Proof of Theorem 3.5
For notational convenience, we assume in this proof that Λ is supported on a single predicate
f . The general case is handled by converting f̂(∅) back to Ef∼Λ[f ].

Fix positive integers ℓ, ℓ′. We define an interpolated Hamiltonian

K(t, x) = Hα(1−t)n(x) − (1 − t)ℓnf̂(∅) +
√

t

α
G(x) , (41)

where Hα(1−t)n is the grand Hamiltonian of an (A, b)-coupled model of CSPΛ(α(1 − t)). The
parameter t controls the interpolation from the Max-CSP (when t = 0) to the spin glass
(when t = 1).

We let β > 0 be a parameter independent of n. We will later choose β such that
1 ≪ β ≪ α as α → ∞.

Fix an open subset S ⊆ R(ℓ). We write the average free energy density of K, at inverse
temperature β, among states that produce overlap vectors in S:

ϕβ(t) := E
H,G

ϕK(t,·),S(β) (42)

= 1
ℓn

1
β

E
H,G

log
∑

x∈Un(S)

exp (βK(t, x)) . (43)

In this proof, we upper-bound the derivative d
dt ϕβ(t), and thereby the difference between

ϕβ(0) and ϕβ(1), showing that the free energy densities of G and H are close.

3.1.1 Taking the derivative of ϕβ(t)
Let’s calculate d

dt ϕβ(t). First, we generalize K and ϕβ so the t-dependence of G and H are
controlled by independent parameters:

K̃(ρ, γ, x) := Hρ(x) − ρℓ

α
f̂(∅) + γ√

α
G(x) , (44)

ϕ̃β(ρ, γ) := 1
βℓn

E
Hρ,G

log
∑

x∈Un(S)

exp
(

βK̃(ρ, γ, x)
)

. (45)

When ρ = (1 − t)αn and γ =
√

t, we recover the original expressions:

K(t, x) = K̃((1 − t)αn,
√

t, x) (46)

ϕβ(t) = ϕ̃β((1 − t)αn,
√

t) (47)

We then take a derivative using the chain rule:

d
dt

ϕβ(t) =
(

∂

∂ρ
ϕ̃β(ρ, γ)

)
dρ

dt
+

(
∂

∂γ
ϕ̃β(ρ, γ)

)
dγ

dt
(48)

= −αn

(
∂

∂ρ
ϕ̃β(ρ, γ)

)
+ 1

2
√

t

(
∂

∂γ
ϕ̃β(ρ, γ)

)
(49)

We also introduce a Gibbs expectation operator to use when computing the partial
derivatives. Given a function p(x), the average of p with respect to the Gibbs distribution of
K̃(ρ, γ, x) is

⟨p⟩x :=

∑
x∈Un(S) p(x) · exp

(
βK̃(ρ, γ, x)

)
∑

x∈Un(S) exp
(

βK̃(ρ, γ, x)
) . (50)
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3.1.2 The Poisson derivative
To calculate ∂

∂ρ ϕ̃β(ρ, γ), we introduce ℓ′ new variables ρ1, . . . , ρℓ′ to parameterize the inde-
pendent Poisson instances used to construct Hρ. We introduce intermediate functions

K̃(ρ1, . . . , ρℓ′ , γ, x) =
∑
i∈[ℓ]

[(
A

 H′ρ1
1
...

H′ρℓ′
ℓ′

 )
i

(xi) −
(

A

 ρ1
...

ρℓ′

 )
i

f̂(∅)
α

+ γ√
α

Gi(xi)
]

,

(51)

ϕ̃β(ρ1, . . . , ρℓ′ , γ) = 1
βℓn

E
H′ρ1

1 ,...,H
′ρ

ℓ′
ℓ′

E
G

[
log

∑
x∈U

(ℓ)
n (S)

exp
(

βK̃(ρ1, . . . , ρℓ′ , γ, x)
) ]

. (52)

When ρi′ = bi′ρ for all i′ ∈ [ℓ′], we recover the original functions K̃ and ϕ̃β . In this case,
through another application of the chain rule,

∂

∂ρ
ϕ̃β(ρ, γ) =

∑
i′∈[ℓ′]

(
∂

∂ρi′
ϕ̃β(ρ1, . . . , ρℓ′ , γ)

)
∂ρi′

∂ρ
=

∑
i∈[ℓ′]

bi′
∂

∂ρi′
ϕ̃β(ρ1, . . . , ρℓ′ , γ) . (53)

We use the explicit derivative of a Poisson variable:

▶ Fact 3.6 (Derivative of a Poisson variable).

∂

∂λ
E

X∼Pois(λ)

[
f(X)

]
= E

X∼Pois(λ)

[
f(X + 1) − f(X)

]
(54)

Because of Fact 3.6,
∂

∂ρi′
ϕ̃β(ρ1, . . . , ρℓ′ , γ) = ϕ̃β(ρ1, . . . , ρi′ + 1, . . . , ρℓ′ , γ) − ϕ̃β(ρ1, . . . , ρi′ , . . . , ρℓ′ , γ) (55)

= 1
βℓn

E
H′ρ1

1 ,...,H
′ρ

ℓ′
ℓ′

E
G

log
〈

exp
(

βK̃(ρ1, . . . , ρi′ + 1, . . . , ρℓ′ , γ, x) − βK̃(ρ1, . . . , ρi′ , . . . , ρℓ′ , γ, x)
)〉

x

(56)

= 1
βℓn

E
H′ρ1

1 ,...,H
′ρ

ℓ′
ℓ′

log
〈

exp
(

β
∑
j∈[ℓ]

Aji′
(
(H′ρi′ +1

i′ − H′ρi′
i′ )(xj) − f̂(∅)

))〉
x

. (57)

The difference of H′ρi′ +1
i′ and H′ρi′

i′ is a single extra clause (normalized by α), applied to k

random indices of the input with random signs. Let f∗ be the extra clause. Then

= 1
βℓn

E
f∗

log
〈

exp

β

α

∑
j∈[ℓ]

Aji′
(
f∗(xj) − f̂(∅)

)〉
x

. (58)

When β
α is small, this term can be Taylor-expanded as log z = log (1 − (1 − z)) =

−
∑

p≥1
(1−z)p

p :

= −1
βℓn

E
f∗

∑
p≥1

1
p

(
1 −

〈
exp

β

α

∑
j∈[ℓ]

Aji′
(
f∗(xj) − f̂(∅)

)〉
x

)p

. (59)

We introduce additional “replicas” x(s) of x. Precisely, each x(s) is an i.i.d. copy of x. For any
function w and any set of replicas y0, y1, . . . , we have the identity ⟨w(y0)⟩p =

〈∏
s∈[p] w(ys)

〉
.
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As a result,

= −1
βℓn

E
f∗

〈∑
p≥1

1
p

p∏
s=1

(
1 − exp

β

α

∑
j∈[ℓ]

Aji′
(
f∗(x(s)j

) − f̂(∅)
) )〉

x(1),x(2),...

. (60)

We Taylor-expand this expression in β
α . The first line comes from the p = 1 term and the

second line comes from the p = 2 term:

= −1
βℓn

E
f∗

〈
− β

α

∑
j∈[ℓ]

Aji′
(
f∗(xj) − f̂(∅)

)
− β2

2α2

( ∑
j∈[ℓ]

Aji′
(
f∗(xj) − f̂(∅)

))2

+ β2

2α2

( ∑
j∈[ℓ]

Aji′
(
f∗(xj) − f̂(∅)

))( ∑
j∈[ℓ]

Aji′
(
f∗(yj) − f̂(∅)

))
+ O

(
β3

α3

) 〉
x,y

.

(61)

Notice that because the clause applies random signs to its input,

E
f∗

[〈
f∗(xj)

〉
xj

]
= f̂(∅) . (62)

As a result, the only terms that remain are

= −β

2α2ℓn
E
f∗

〈 ∑
i,j∈[ℓ]

Aii′Aji′
(

− f∗(xi)f∗(xj) + f∗(xi)f∗(yj)
)〉

x,y
+ 1

ℓn
O

(
β2

α3

)
. (63)

From here, we rewrite the correlation of f∗ as a function of the noise stability of f .
Specifically, let ua = εa(xi)da

and va = εa(yj)da
for some uniformly chosen ε ∈R {±1}k

and d ∈R [ℓ]k. Then u, v are marginally uniform points in the hypercube that are R(xi, yj)-
correlated.

Write f∗(σ) = f(ε1σd1 , . . . , εkσdk
). Then

⟨f∗(xi)f∗(yj)⟩xi,yj
= ⟨f(u)f(v)⟩xi,yj

=
〈

StabR(xi,yj)[f ]
〉

xi,yj
(64)

where StabR(xi,yj)[f ] is defined as in Definition 2.28. Using this, we get

= −β

2α2ℓn

∑
i,j∈[ℓ]

Aii′Aji′
〈

− StabR(xi,xj)[f ] + StabR(xi,yj)[f ]
〉

x,y + 1
ℓn

O
(

β2

α3

)
(65)

= β

2α2ℓn

∑
i,j∈[ℓ]

Aii′Aji′
〈
ξ(R(xi, xj)) − ξ(R(xi, yj))

〉
x,y + 1

ℓn
O

(
β2

α3

)
. (66)

We can now write the ρ-derivative of ϕ̃β :

∂

∂ρ
ϕ̃β = β

2α2ℓn

∑
i′∈[ℓ′]

∑
i,j∈[ℓ]

bi′Aii′Aji′
〈
ξ(R(xi, xj)) − ξ(R(xi, yj))

〉
x,y + 1

ℓn
O

(
β2

α3

)
(67)

3.1.3 The Gaussian derivative
We compute the derivative of ϕ̃β(ρ, γ) with respect to γ. Since the variance of each Gi is
independent of γ, the derivative pulls into the expectation operator:

∂

∂γ
ϕ̃β(ρ, γ) = 1

βℓn
E

Hρ,G

∂

∂γ
log

[ ∑
x∈Un(S)

exp
(

βK̃(ρ, γ, x)
) ]

(68)
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By the chain rule, the γ-derivative of the partition function is proportional to the Gibbs
average of the γ-derivative of the Hamiltonian K̃:

= 1
ℓn

E
Hρ,G

[〈
∂

∂γ

(
K̃(ρ, γ, x)

)〉
x

]
(69)

Notice that the expectation is a correlation between a Gaussian process and a Gibbs
measure, so we can use the following formula:

▶ Lemma 3.7 (Stein’s lemma with Gibbs average [46, Lemma 1.1]). Consider two jointly
Gaussian processes {Y (σ)}σ and {Z(σ)}σ. For any w, let ⟨·⟩σ1,...,σw be the w-product Gibbs
measure with respect to the process {Z(σ)}σ. Then

E
Y,Z

[⟨Y (σ)⟩σ] = E
Z

[〈
E
Y

[
Y (σ)Z(σ)

]〉
σ

−
〈
E
Y

[
Y (σ)Z(σ′)

]〉
σ,σ′

]
. (70)

Consider the following Gaussian processes:

SHρ,G : (x) → ∂

∂γ

(
K̃(ρ, γ, x)

)
(71)

THρ,G : (x) → βK̃(ρ, γ, x) (72)

Applying Lemma 3.7 then yields

= 1
ℓn

E
H′ρ,G

[ 〈
E

H′ρ,G

[
SHρ,G(x)THρ,G(x)

]〉
x

−
〈

E
H′ρ,G

[
SHρ,G(x)THρ,G(y)

]〉
x,y

]
. (73)

The derivative only acts on the Gaussian components of the Hamiltonian K̃:

= 1√
αℓn

E
Hρ,G

[〈
E
G

[
G(x)THρ,G(x)

]〉
x

−
〈
E
G

[
G(x)THρ,G(y)

]〉
x,y

]
(74)

= β√
αℓn

E
Hρ,G

[ 〈
E
G

[
G(x)

(
Hρ(x) − ρℓ

α
f̂(∅) + γ√

α
G(x)

)]〉
x

−〈
E
G

[
G(x)

(
Hρ(y) − ρℓ

α
f̂(∅) + γ√

α
G(y)

)]〉
x,y

]
(75)

The constant terms (proportional to f̂(∅)) cancel. Furthermore, G is centered and is
independent of H: For each independent instance G′

i, E[G′
iHρ] = 0, and by linearity of

expectation, E[GHρ] = 0. All that remains is

= βγ

αℓn
E
G

[〈
E
G

[
G(x)G(x)

]〉
x

−
〈
E
G

[
G(x)G(y)

]〉
x,y

]
. (76)

Using the definition of an (A, b)-coupled model, this is

= βγ

αℓn
E
G

[〈 ∑
i,j∈[ℓ]

∑
i′,j′∈[ℓ′]

Aii′Aji′
√

bi′bj′ E
G

[G′
i′(xi)G′

j′(xj)]
〉

x
−

〈 ∑
i,j∈[ℓ]

∑
i′,j′∈[ℓ′]

Aii′Aji′
√

bi′bj′ E
G

[G′
i′(xi)G′

j′(yj)]
〉

x,y

]
. (77)

By Fact 2.11, we can write the covariance as a function of ξ:

E
G

[G′
i′(xi)G′

j′(yj)] =
{

nξ(R(xi, yj)) i′ = j′

0 otherwise
(78)
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Thus, we have

= βγ

αℓ
E
G

[〈 ∑
i,j∈[ℓ]

∑
i′∈[ℓ′]

Aii′Aji′bi′
(
ξ(R(xi, xj)) − ξ(R(xi, yj))

)〉
x,y

]
. (79)

3.1.4 Putting it all together
Now we can calculate the total derivative of ϕβ(t):

d
dt

ϕβ(t) = −αn

(
∂

∂ρ
ϕ̃β(ρ, γ)

)
+ 1

2
√

t

(
∂

∂γ
ϕ̃β(ρ, γ)

)
(80)

=
( −β

2αℓ
+ βγ

2αℓ
√

t

) ∑
i′∈[ℓ′]

∑
i,j∈[ℓ]

bi′ Aii′ Aji′
〈
ξ(R(xi, xj)) − ξ(R(xi, yj))

〉
x,y

− 1
ℓ

O
(

β2

α2

)
(81)

= O
(

β2

α2

)
, (82)

since γ =
√

t and ℓ is a constant. So

|ϕβ(1) − ϕβ(0)| ≤ max
t∈[0,1]

d
dt

ϕβ(t) = O
(

β2

α2

)
. (83)

This proves Theorem 3.5.

4 Optimal value of a random Max-CSP

As a corollary of Theorem 3.5, we prove that in the large α limit, the optimal value of a
coupled Max-CSP among solutions with given overlap structure is determined by that of a
spin glass.

▶ Corollary 4.1. Given n sufficiently large, the following holds w.h.p. for all ℓ, ℓ′ and
(A, b)-coupled models G of SGξ and H of CSPΛ(α), and all open sets S ⊆ R(ℓ),

E max
x∈U

(ℓ)
n (S)

1
ℓn

H(x) = E
f∼Λ

[f ] + E max
x∈U

(ℓ)
n (S)

1√
α

1
ℓn

G(x) + O(α−2/3) . (84)

By the concentration arguments in Section 2.5, we may replace the expectations by convergence
in probability in the limit as n → ∞, and for the case S = R(ℓ), almost-sure convergence.

Proof. Using Theorem 3.5, we have

EϕH,S(β) = E
f∼Λ

[f ] + 1√
α
EϕG,S(β) + O

(
β2

α2

)
. (85)

Recall that there are at most 2ℓn choices of x. Applying Fact 2.21 for G and for H, we get∣∣∣∣ϕG,S(β) − max
x∈Un(S)

1
ℓn

G(x)
∣∣∣∣ ≤ log |Un(S)|

βℓn
= O

(
1
β

)
, (86)∣∣∣∣ϕH,S(β) − max

x∈Un(S)

1
ℓn

H(x)
∣∣∣∣ = O

(
1
β

)
. (87)

By Jensen’s inequality, the same holds when using expectations. Plugging in these bounds
and choosing β = α2/3 proves the claim. ◀

In the special case ℓ = ℓ′ = 1, (A, b) = (I, (1)), and S = R(ℓ) = [−1, 1], we conclude
Corollary 1.2.
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4.1 Numerical calculations
We compute the value of the Parisi formula for the spin glasses associated with popular CSPs
in Table 1. This code can be run for any choice of spin glass and is available online6. Our
code uses the zero-temperature representation of the Parisi functional from [9], which we
restate below:

▶ Definition 4.2 (Parisi functional at zero temperature [50, 9]). Given a function ζ in

U =
{

ζ : [0, 1) → R≥0 : ζ is right-continuous, non-decreasing,
∫ 1

0
ζ(t)dt < ∞

}
, (88)

the Parisi functional Pξ
∞(ζ) is

Pξ
∞(ζ) = Φζ(0, 0) − 1

2

∫ 1

0
sξ′′(s)ζ(s)ds , (89)

where the function Φζ(x; t) : R × [0, 1] → R is the solution of the Hamilton-Jacobi-Bellman
equation

∂tΦζ(x; t) + ξ′′(t)
2

(
∂xxΦζ(x; t) + ζ(t) (∂xΦζ(x; t))2

)
= 0 , (90)

with initial condition Φζ(x; 1) = |x|.

Table 1 Optimal value of a random k-CSP with n variables and αn clauses, as n → ∞. The
calculation uses the zero-temperature Parisi functional in Definition 4.2. All values are rounded to
two decimal places. The values for kXOR match those in [41]. We expect the values to be accurate
to two significant figures, based on consistency with independently calculated values for 2XOR and
3XOR [6].

k Max 1-in-k SAT Max k NAESAT Max k SAT Max k XOR
2 1

2 + 0.54√
α

1
2 + 0.54√

α
3
4 + 0.40√

α
1
2 + 0.54√

α

3 3
8 + 0.54√

α
3
4 + 0.47√

α
7
8 + 0.33√

α
1
2 + 0.58√

α

4 1
4 + 0.48√

α
7
8 + 0.37√

α
15
16 + 0.26√

α
1
2 + 0.58√

α

5 5
32 + 0.41√

α
15
16 + 0.28√

α
31
32 + 0.20√

α
1
2 + 0.59√

α

5 Overlap gaps in a random Max-CSP

Theorem 3.5 implies that many quantities are equivalent for CSPΛ(α) at large α and its
associated spin glass model. For example:
1. Free energy of a single instance (proving Theorem 1.1).

(ℓ = 1, ℓ′ = 1, A = [[1]], b = [1], S = R)
2. Free energy of a single instance, restricting the Hamming weight to W ⊆ [−1, 1] (related

to [39]).
(ℓ = 1, ℓ′ = 1, A = [[1]], b = [1], S = {r ∈ R : r{1} ∈ W})

3. Existence (or non-existence) of an overlap gap property in the overlap range (s, t).
(ℓ = 2, ℓ′ = 1, A = [[1], [1]], b = [1], S = {r ∈ R : s < r{1,2} < t})

6 https://github.com/marwahaha/csp-parisi/

https://github.com/marwahaha/csp-parisi/
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4. Existence (or non-existence) of an η-coupled overlap gap property in the overlap range
(s, t) [18].
(ℓ = 2, ℓ′ = 3, A = [[1, 1, 0], [1, 0, 1]], b = [η, 1 − η, 1 − η], S = {r ∈ R : s < r{1,2} < t})

5. Existence (or non-existence) of the branching overlap gap property in [38].
(Choice of parameters in Section 5.1)

We use Theorem 3.5 to show how CSPΛ(α) inherits the overlap gap property from a spin
glass. This proof is a generalization of [18, Proof of Theorem 5] and [19, Lemma 8.14] to hold
for arbitrary (A, b)-coupled instances. We use the same argument to transfer the branching
OGP of [38], a hierarchical style of OGP described by a rooted tree.

▶ Definition 5.1 (OGP [29]). A Hamiltonian H : {±1}n → R exhibits the overlap gap
property (OGP) at value v if there are −1 ≤ s < t ≤ 1 such that for all σ1, σ2 with
H(σ1) ≥ v, H(σ2) ≥ v, we have

R(σ1, σ2) ̸∈ (s, t) . (91)

▶ Definition 5.2 (Average-OGP, nonstandard definition). A Hamiltonian H exhibits the
average-OGP at value v if the same holds whenever 1

2 (H(σ1) + H(σ2)) ≥ v.

▶ Remark 5.3. The average-OGP implies the OGP. On the other hand, the OGP implies the
average-OGP with a weakened (larger) value. The interpolation in this work transfers the
average-OGP.

▶ Proposition 5.4. If SGξ exhibits the average-OGP at value v with high probability, then
for all ε > 0, for all sufficiently large α, CSPΛ(α) exhibits the average-OGP at value
Ef∼Λ[f ] + v+ε√

α
with high probability, when ξ is related to Λ as in Equation (1).

Proof. Let ℓ = 2, and let S = (a, b) be the overlap gap for the spin glass model SGξ. Using
Corollary 4.1, for sufficiently large α, we have

E max
x∈U

(ℓ)
n (S)

1
ℓn

H(x) ≤ E
f∼Λ

[f ] +
Emaxx∈U

(ℓ)
n (S)

1
ℓn G(x) + ε

√
α

. (92)

The overlap gap property (plus concentration inequality Lemma 2.32) implies that

max
x∈U

(ℓ)
n (S)

1
ℓn

G(x) ≤ v + on(1) . (93)

Hence (using concentration inequality Lemma 2.33), with high probability we also have

max
x∈U

(ℓ)
n (S)

1
ℓn

H(x) ≤ E
f∼Λ

[f ] + v + 2ε√
α

. (94)

◀

Analogously, we can transfer a generic version of the OGP on (A, b)-coupled models.

▶ Definition 5.5 (Generic OGP). For a relatively open subset S ⊆ R(ℓ), random Hamiltonians
H1, . . . , Hℓ : {±1}n → R exhibit an S-OGP at value v if

max
(σ1,...,σℓ)∈U

(ℓ)
n (S)

1
ℓn

(H1(σ1) + · · · + Hℓ(σℓ)) ≤ v . (95)

The size of the OGP is ℓ.

▶ Proposition 5.6. If an (A, b)-coupled model of SGξ exhibits an S-OGP at value v with
high probability, then for all ε > 0, for all sufficiently large α, the (A, b)-coupled model of
CSPΛ(α) exhibits an S-OGP at value Ef∼Λ[f ] + v+ε√

α
with high probability, when ξ is related

to Λ as in Equation (1).
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5.1 The branching OGP
The branching OGP gives tight algorithmic bounds for a class of spin glass models, matching
the performance of certain approximate message passing algorithms [38]. We present the
somewhat involved definition and show that it is captured by our framework.

▶ Definition 5.7 (Tree-coupled ensemble). A tree-coupled ensemble of Hamiltonians is defined
by:
1. A rooted tree of height D defined by the vector k⃗ ∈ ZD

+ , so that every node at depth d has
kd+1 children. We describe the nodes of the tree as T(k⃗) and the leaves of the tree as
L(k⃗).

2. A coupling vector p⃗ ∈ ZD+1
+ , so that

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1 . (96)

Given these parameters, we generate a family of Hamiltonians (H(u))u∈L(k⃗) as follows.
Generate independent instances of the Hamiltonian H̃(v) for every non-root v ∈ T(k⃗), and
scale7 each by a factor of pd − pd−1 where d is the depth of v in the tree. Use these to
construct the Hamiltonians H(u) for each u ∈ L(k⃗) defined by

H(u) =
D−1∑
d=0

H̃(a(u,d)) , (97)

where a(u, d) is the dth ancestor of u. The size of the ensemble is
∣∣∣L(k⃗)

∣∣∣ =
∏D

i=1 k⃗i.

▶ Definition 5.8 (Branching OGP). A tree-coupled ensemble of Hamiltonians exhibits a
branching OGP with gap η at value v if:

there is q⃗ ∈ ZD+1
+ with 0 ≤ q0 < q1 < · · · < qD = 1,

define Q ∈ RL(k⃗)×L(k⃗) by Qu,v = qlca(u,v), where lca(u, v) is the depth of the least common
ancestor of u and v,
define

Q(η) =
{

σ⃗ ∈ ({±1}n)L(k⃗) : ∀u, v ∈ L(k⃗).
∣∣∣R(σ(u), σ(v)) − Qu,v

∣∣∣ ≤ η
}

it holds that for all (σ(u))u∈L(k⃗) ∈ Q(η), the average value over u ∈ L(k⃗) of H(u)(σ(u)) is
at most v.

The size of the OGP is
∣∣∣L(k⃗)

∣∣∣ =
∏D

i=1 k⃗i.

▶ Remark 5.9. Our definition is slightly simplified from [38]. We always fix (using their
notation) m = 0. We show in an appendix of the full version that it suffices to obstruct
algorithms which have mean zero.

A tree-coupled ensemble is an instance of an (A, b)-coupled model, Definition 3.1, using
the following choice of parameters:

ℓ = |L(k⃗)|.
ℓ′ = |T(k⃗)|.
Au,v = 1 if u = v, or v ∈ T(k⃗) is a non-root ancestor of u ∈ L(k⃗); otherwise Au,v = 0.
bv = pd − pd−1 for every v ∈ T(k⃗) at the dth level of the tree.

7 For the spin glass, scale the variance of each Gaussian by pd − pd−1; for the CSP, scale the number of
clauses by pd − pd−1.
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The presence of the branching OGP is determined by the set

S = {r ∈ R : ∀u, v ∈ L(k⃗) .
∣∣r{u,v} − Qu,v

∣∣ < η} . (98)

Therefore, by Proposition 5.6, the branching OGP transfers from the spin glass to the CSP.

6 Discussion

We establish a formal average-case link between spin glasses and Max-CSPs of certain
minimum clause densities. This link shows an equivalence of optimal value, overlap gaps,
and hardness for a large class of algorithms. Curiously, every Max-CSP with the same noise
stability polynomial is linked to the same spin glass.

As part of this work, we extend the list of Max-CSPs known to have an OGP. It is an
open question to completely classify which spin glasses (and thus which Max-CSPs) have an
OGP. In the spherical spin glass setting [57, Proposition 1], the weight of the quadratic terms
exactly determine the presence of an OGP; the same may be true on the hypercube. There
is a technical hurdle to proving the existence of OGPs on spin glasses when the mixture
polynomial is not even. For example, the associated spin glass to Max-3XOR is not proven
to have an OGP, although it is expected to have one [6].

It is also possible that the onset of the branching OGP of [38] marks the hardness threshold
for all efficient algorithms for spin glasses and Max-CSPs, and not just overlap-concentrated
algorithms. Furthermore, it is possible that a single algorithm (namely, suitably-applied
message-passing) is the optimal algorithm. This is remarkably similar to the situation for
worst-case analysis vis-à-vis the Unique Games Conjecture (UGC) [40]. The UGC implies that
the standard SDP is the optimal approximation algorithm for any CSP [52]. It is interesting
to investigate whether other algorithms, such as Sum-of-Squares algorithms, can be designed
in a way that has equivalent performance to approximate message-passing, although there
are existing certification lower bounds for a variety of models [14, 34]. Our curiosity is
heightened by the observation that the Parisi formula, and algorithms for spin glasses (and
hence average-case CSPs), only use the “degree-2” part of the overlap distribution on R(ℓ),
analogous to how the basic SDP is also a “degree-2” algorithm.

How general is overlap concentration? [38] show that Langevin dynamics and certain
families of approximate message-passing algorithms are overlap-concentrated on spin glasses,
and therefore obstructed in the presence of a branching OGP to a constant given by the
extended Parisi formula. Algorithms representable as low-degree polynomials are known to
be stable on spin glasses, and obstructed for some spin glasses [31] and CSPs [17]. However, it
remains a technical challenge to show that low-degree polynomials are overlap-concentrated:

▶ Conjecture 6.1 (Low-degree polynomials are overlap-concentrated on CSPs and spin glasses).
Any low-degree polynomial algorithm that solves a typical instance of CSPΛ(α) or SGξ as
defined in [31, Definition 2.3] is overlap-concentrated.

There may be other forms of equivalence between spin glasses and Max-CSPs. We
conjecture that the two models have the same distribution of overlap vectors:

▶ Conjecture 6.2 (Equivalence of distribution of overlap vector, informal). Take any Max-CSP
and consider the associated spin glass SGξ, where ξ is defined as in Equation (1). For any
coupled ensemble of the models, the distribution of Q(σ1, . . . , σℓ) for random near-optimal
solutions converges in some sense as n → ∞. Furthermore, for α → ∞ the distribution for
the CSP converges to the distribution for the spin glass.
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It is also likely that algorithms beyond the QAOA have identical average-case performance
on a random instance of Max-CSP and that of the corresponding spin glass. In fact, we
suspect that every Max-CSP has an optimal algorithm related to message-passing that obeys
this equivalence.

Spin glasses may also be related to more classes of CSPs, such as those with non-Boolean
inputs and those without random literal signs. Also of interest is the problem of refuting the
CSP when it is unsatisfiable, which typically requires α superconstant. It is not known how
to use statistical physics methods to study refutation [7, 37]. Another open problem is to
determine the optimal average-case value to higher-order terms in α.
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Abstract
Local to global machinery plays an important role in the study of simplicial complexes, since the
seminal work of Garland [11] to our days. In this work we develop a local to global machinery for
general posets. We show that the high dimensional expansion notions and many recent expansion
results have a generalization to posets. Examples are fast convergence of high dimensional random
walks generalizing [2,14], an equivalence with a global random walk definition, generalizing [6] and a
trickling down theorem, generalizing [20].

In particular, we show that some posets, such as the Grassmannian poset, exhibit qualitatively
stronger trickling down effect than simplicial complexes.

Using these methods, and the novel idea of posetification to Ramanujan complexes [18, 19], we
construct a constant degree expanding Grassmannian poset, and analyze its expansion. This it the
first construction of such object, whose existence was conjectured in [6].
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1 Introduction

High dimensional expanders are at the focus of an intensive recent study. What is a
high dimensional expansion phenomenon? We argue that the high dimensional expansion
phenomenon is the situation when certain global properties of a high dimensional object, such
as fast convergence of random walks, are determined by certain properties of its marginals,
i.e., by local properties of its “links”, which are “small” substructures that compose it and
correspond to local neighborhoods of the global object.

This philosophy, that the global behaviour of a simplicial complex is determined by
the behaviour of its local links, was present in many recent researches in mathematics
and computer science [2, 7, 10–14, 20]. This yoga was initiated in the pioneering work of
Garland [11], who used, in the language of this paper, expansion of links in simplicial
complexes to deduce vanishing of cohomologies, and since then had found many applications.
This local to global philosophy for simplicial complexes is by now well studied. Developing
such a theory beyond simplicial complexes and exploiting its consequences to the study of
high dimensional expansion of more general objects is the first main goal of this work.
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A more general framework in which one can study high dimensional expansion is the
framework of general posets as was suggested by [6,17] etc. The most notable example of
an expanding poset, which is not a simplicial complex, is the Grassmannian Poset. It was
recently studied in relation to proving the 2-to-1 games conjecture [8, 9, 16, 17] . However, in
this more general setting what does it mean for the object to be a high dimensional expander?
Can we still adopt the yoga of local to global behaviour in the general case?

The work of [6] defined high dimensional expansion as a global property which roughly
occurs when two certain related random walks defined on the poset (the up-down walk and
the down-up walk) are “close” to each other with respect to a natural norm. [6] show, under
some assumptions, that this global definition coincides with an earlier (two-sided) local
definition in the case of simplicial complexes.

The focus of our work is to define high dimensional expansion for general posets as a
local to global property. Namely, we say that a general poset is a high dimensional expander,
iff all its links, which are posets of lower dimensions, possess certain expansion properties.
We further show that in such a case there is a way to deduce global properties of the poset,
such as fast convergence of random walks on the poset, by local expansion properties of its
links. This is the philosophy we advocate in this work: For this we need to explain what do
we mean by general posets; we should then define their links; and then we have to show that
expanding links imply that many global properties of the poset are dictated by the local
properties of its links.

A central challenge is to find the correct axioms a poset should satisfy in order to have a
certain property of interest. We do it in three levels of generality: structural axioms (see
below in this section) and axioms on weights which generalize the former axioms.We show
that with the correct axiomatizations the main expansion theorems of [2, 6, 14, 20] generalize.
These results can serve as a tool box for future works on the subject.

Among these generalizations, notable is the generalization of Oppenheim’s Trickling
down [20]. In this generalization different posets exhibit qualitatively different behaviours.
For some posets, such as the Grassmannian poset, the expansion improves while going down
the links.

Finally, we use the tools we develop in this work to construct a family of expanding
high dimensional bounded degree posets that are not simplicial complexes. This is the first
construction of such an object, whose existence was previously conjectured in [6]. This
construction is achieved by sparsifying the Grassmannian poset using a high dimensional
expander.

1.1 Posets; Links, Random Walk operators and regularity properties

We start by briefly recalling what are posets, and their basic properties (see also Section 2).

1.1.1 Posets and Graded Posets

A poset (P, <) is a set P, together with a binary order relation < . We say b covers a if a < b

and there is no intermediate c with a < c < b. A subposet is a subset of a poset, endowed
with the restriction of the binary relation ≤ .

Two useful examples of posets are simplicial complexes and Grassmannian poset.

The simplicial complex Poset. For a given set S, all its subsets form a poset with respect
to the containment order ⊆ . Any subposet of such a poset, for an arbitrary underlying set
S, is called a simplicial complex.
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The Grassmannian Poset. Let V be a space over a field F, the collection of its subspaces
forms a poset, again with respect to containment. The poset is finite when F is finite and
dimF(V ) < ∞. A Grassmannian poset is any subposet of this poset, for an arbitrary V.

A graded poset is a triple (P, <, ρ) such that (P, <) is a poset, together with a rank
function (See Section 2.2). For simplicial complexes the rank of a set A can be taken to
be ρ(A) = |A| − 1. For the Grassmannian poset, we can also define a rank by putting
ρ(U) = dimF(U) − 1.

We put P (i) = ρ−1(i), and Ci = RP (i), the space of real functions on P (i). We write
1 ∈ Ci for the constant function 1. The rank of P is the maximal d for which P (d) ̸= ∅. A
graded poset is said to be pure if there exists d such that for every element x ∈ P there exists
y ∈ P (d), x ≤ y. In this case P (d) is the set of maximal elements. Throughout this work all
graded posets we consider, unless specified differently, are assumed to be finite and pure.

1.1.2 Weighted Posets and Weighted Random Walks
A weighted graded poset is a triple (P, <, ρ, m, p) where (P, <, ρ) is a graded poset, together
with a weight function m : P → R+, and transition probabilities p : P × P → R≥0
which satisfy some relations (for the exact definition, and for other definitions in this
subsection, see Subsection 2.3). A weight scheme in which the transition probabilities
px→y = 1

#{z|z covered by x} is called standard, and a graded poset with such a weight scheme
is called standard graded (weighted) poset. The weight function endows Ci with a natural
inner-product ⟨·, ·⟩. The associated norm is denoted ∥ · ∥ . The “standard” transitions px→y

are only for y covered by x, other transitions are zero.

1.1.2.1 The Up, Down Operators and the associated Random walks

The data of weights and transition probabilities allows defining the Up and Down operators.
The Up operator Uk maps Ck → Ck+1, while the down operator Dk maps Ck to Ck−1. Both
mappings are defined using the structure constants of the weighted poset.

Combining these two operators we obtain two random walks which are defined on the
weighted posets: The up-down random walk operator, M+

k = Dk+1Uk corresponds to the
random walk on P (k) defined as follows: given a x ∈ P (k), choose randomly (according to
the parameters of the weighted poset) y ∈ P (k + 1) such that y covers x and then choose
randomly (according to the parameters of the weighted poset again) z ∈ P (k), that is covered
by y.

The down-up random walk operator, M−
k = Uk−1Dk is similarly defined, only that now

starting from x ∈ P (k), we first choose randomly z ∈ P (k − 1) that is covered by x, and
then choose randomly y ∈ P (k) such that y covers z.

We also define the lth Adjacency operator Al : Cl → Cl, which is a non lazy version of
the up-down walk. We write A = A0, for the zeroth adjacency operator (also called the
adjacency operator). We normalize these operators so that the largest eigenvalue is 1.

1.1.3 Links and induced weight functions
Let P be a poset, and x ∈ P. The subposet Px made of x and all elements y > x, is called
the link of x. If P is graded, then so is Px, and the induced rank function ρx is given by

ρx(y) = ρ(y) − ρ(x) − 1.
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If P is in addition weighted, then we can also induce the weight function and transition
probabilities (for exact definitions see Section 2.4). We write Ci

x for the space of real functions
on Px, and write ⟨−, −⟩x, ∥ − ∥x for the induced inner products and norms, we can also
define the operator Dx,i, Ux,i as above, only with mx, px instead of m, p. The localization is
the linear map from Ci to C

i−ρ(x)−1
x which maps f to fx, defined by fx(y) = f(y) for y ∈ Px.

1.1.3.1 Basic Localization

The starting point of what is now known as Garland’s technique, is the observation [11] that
the global inner products ⟨f, g⟩, ⟨Df, Dg⟩, ⟨Uf, Ug⟩, in the case of simplicial complexes,
can be written as sums of local inner products over links. In this work we investigate to
which extent these results can be generalized to more general posets.

▶ Proposition 1.1 (Basic Localization Property). Let P be a graded weighted poset of rank d.

Let −1 ≤ k < l ≤ d, and f, g ∈ Cl. Then
1. ⟨f, g⟩ =

∑
x∈P (k) m(x)⟨fx, gx⟩x.

2. ⟨Dlf, Dlg⟩ =
∑

x∈P (k) m(x)⟨Dx,l−k−1fx, Dx,l−k−1gx⟩x.

1.1.4 Regularity properties of posets
Instead of providing the rather technical assumptions on the weights and transition prob-
abilities of the weighted posets which give rise to the different localizations, we describe
regularity properties of the structure of posets which are important special cases of those
localization assumptions, and are the motivation for them. For more details on the regularity
properties, see Subsection 2.5. In the body of the article we shall describe the more general
assumptions, and verify that they indeed generalize these structural properties.

1.1.4.1 Lower regularity

A graded poset P is said to be lower regular at level i for i > −1, if there exists a constant
N−

i , such that every x ∈ P (i), covers exactly N−
i elements of P (i − 1). The poset is lower

regular if it is lower regular at level i, for every i > −1.

1.1.4.2 Middle regularity

A graded poset P is said to be middle regular at level i, i > −1, if there exists a constant
Nmid

i , such that for any x > z with x ∈ P (i + 1), z ∈ P (i − 1) there are precisely Nmid
i

elements y ∈ P (i) which cover z and are covered by x. P is middle regular if it is middle
regular at level i for each i > −1.

1.1.4.3 ∧ → ∨ regularity

P is ∧ → ∨ regular at level i, i > −1, if there is a constant N∧→∨
i , such that for any

y1, y2 ∈ P (i) which are covered by an element x ∈ P (i + 1) there are precisely N∧→∨
i

elements z ∈ P (i − 1) covered by both. P is ∧ → ∨ regular if it has this property at each at
level i > −1.

regularity. P is regular if there exists a constant R = R (P ) such that for each
u ∈ P (2), y1 ̸= y2 ∈ P (0), with u > y1, y2, there are exactly R elements z ∈ P (1) satisfying
y1, y2 ◁ z ◁ u.
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A poset is regular if it is lower, middle and ∧ → ∨ regular. A poset P is 2−skeleton
regular if it is lower regular at levels 1, 2, middle regular at level 1, and regular.

One can also consider local regularity properties, which means that the links are also
required to be regular, and in a uniform way (which may depend on the rank). For example
P is locally 2−skeleton regular if for all s ∈ P (≤ d − 3), Ps is 2−skeleton regular with
regularity structure constants which depend only on the level of s.

1.1.4.4 Regularity of the simplicial complex poset and the Grassmannian poset

A simplicial complex is regular and 2−skeleton regular. The regularity constants are
N−

i = i + 1, Nmid
i = 2, N∧→∨ = 1, R = 1. Also a Grassmannian poset over Fq is regular

and 2−skeleton regular, with constants N−
i = [i + 1]q, Nmid

i = q + 1, N∧→∨ = 1, R = 1.

1.1.5 Definitions of expanding posets
We will study different notions of expanding posets. A poset is connected if M+

0 induces an
irreducible Markov chain.

The following global definition of an expanding poset was given in [6].

▶ Definition 1 (Eposet - Global expanding poset). A poset P of rank d is a λ-global eposet if
for all 1 ≤ j ≤ d − 1 there exist constants rj , δj such that

∥ Dj+1Uj − δjUj−1Dj − rjIdCj ∥≤ λ.

In this work we suggest an alternative, local to global definition of an expanding poset,
generalizing the local to global definition that was studied for simplicial complexes.

▶ Definition 2 (One sided local spectral expander). Let P be a standard, weighted, graded
poset of rank d. Then P is called one-sided λ-local spectral expanding poset if P and any link
Px, for x ∈ P (i), i ≤ d − 2, are connected, and the non trivial eigenvalues of the adjacency
matrix of the link Px, for every x ∈ P (i), i ≤ d − 2, are upper bounded by λ.

▶ Definition 3 (Two sided local spectral expander). Let P be a standard, weighted, graded
poset of rank d. Then P is called two-sided [ν, λ]-local spectral expanding poset if P and
any link Px, for x ∈ P (i), i ≤ d − 2 are connected, and the non trivial eigenvalues of the
adjacency matrix of the link Px, for every x ∈ P (i), i ≤ d − 2, lie in [ν, λ] .

1.1.5.1 Local spectral expansion in the non standard setting

The current definition of local spectral expansion in posets assumes that the adjacency matrix
is diagonalizable with real eigenvalues. Moreover, for most applications we need assume that
this matrix is self adjoint. This happens automatically in the standard setting, but it does
not need to happen more generally. An alternative way to define the local spectral expansion
of posets can be by using the spectral gap of M+

x,0, x ∈ P (≤ d − 2), which is always self
adjoint with respect to the natural inner product induced from the weights, and is positive
semi definite. Such a definition does not assume a standard weight scheme. It should be
noted that analyzing the spectrum of M+ is not equivalent to analyzing the spectrum of the
adjacency matrix. It is equivalent when P is standard and locally lower regular at level 1.

Then the spectra of M+ and of the adjacency matrix differ by some scaling and shifting. In
this work we chose to define local spectral expansion according to the spectra of the link
adjacency matrices, but many of the tools we have developed apply also for the alternative
choice.
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1.2 Local to global theorems for general posets

For the simplicial complex poset the following three theorems form a cornerstone in the
study of local to global properties, and have led to several recent breakthroughs in computer
science, such as counting bases of matroids [4] and optimal mixing in Glauber dynamics [3,5].

Random walks convergence from one-sided expanding links: One sided local expansion in
all links imply fast convergence of all high dimensional random walks [2, 14].
Trickling-down Theorem: If all top most links expand, and the complex and its links are
connected, then the global underlying graph of the complex expands [20].
Equivalence between global random walk convergence and two-sided expanding links: All
links are two-sided expanders iff at each degree the Up-Down walk operator is almost
identical to Down-Up walk operator [6].

In what follows we generalize the above theorems for general posets which satisfy the
previously mentioned localization assumptions (or in particular the previously defined
regularity properties) and whose links are sufficiently expanding. Not only do we obtain
generalizations of the above local to global theorems for general posets, but we also observe
that different posets behave qualitatively different under these generalization. The different
behaviour might have desired effects. One notable example is the Trickling Down theorem.
This theorem for simplicial complexes, that was known prior to our work, bounds the
expansion of the global complex by the expansion of its links, but in general the global
expansion tends to be inferior to the expansion of the links. We show that for general posets
with certain regularity conditions, that occur e.g, in the Grassmannian poset, the expansion
of the global poset is superior to that of the links. This plays an important role in our
construction of bounded degree expanding posets that are not simplicial.

1.2.1 Fast Random walk convergence from one sided local expansion for
posets

Our first main theorem is that we get fast mixing of random walks on general posets from
local one-sided spectral expansion in links. This is the first result of mixing of random walks
for general posets that relies only on one-sided local expansion in links. Previous works that
discussed expanding posets defined them to be expanding using global properties of their
random walks [1, 6]. In particular these previous works relied on two sided global expansion
bounds.

For simplicity we state the theorem for standard regular posets, although it holds for any
poset (not even standard) satisfying the more general Up Localization property.

▶ Theorem 1.2. Let P be a standard regular poset which is one sided λ local spectral expander
with λ small enough then:

∥ ⟨M+
k f, f⟩ ∥≤ (max

j≤k
{ak,j} + λ(max

j≤k

Nmid
j − 1
Nmid

j

)
k∑

i=0
bk,i) ∥ f ∥2,

with the constants

al,r = 1 − N−
r

N−
l+1

l∏
j=r

Nmid
j − 1
N∧→∨

j

, bl,r = N−
r Nmid

r

N−
l+1N∧→∨

r

l∏
j=r+1

Nmid
j − 1
N∧→∨

j

.
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1.2.1.1 Implications for Random walks in simplicial complexes and in the
Grassmannian poset

For one-sided λ−local expanding simplicial complexes we recover a result of [14]: In particular
for any f ∈ Ck, f ⊥ 1

⟨M+
k f, f⟩ ≤ (k + 1

k + 2 + k + 1
2 λ) ∥ f ∥,

so that the largest eigenvalue of M+
k |Ck

0
is at most k+1

k+2 + k+1
2 λ, which is [14, Theorem 5.4].

For one-sided λ−local expanding Grassmannian posets we get for any f ∈ Ck, f ⊥ 1

⟨M+
k f, f⟩ ≤ ( [k + 1]q

[k + 2]q
+ S(k, q)λ) ∥ f ∥ .

where S(k, q) =
∑k

i=0
qk−i+1[i+1]q

[k+2]q
. Note that as q grows, S(k, q) = k + 1 + O( 1

q ), and
[k+1]q

[k+2]q
→ 1

q .

1.2.1.2 Random walks from sequence of spectral gaps on links

We generalize the recent result of [2], which bounds the second eigenvalue of M+
k by the

sequence of bounds µi on the second eigenvalues of the adjacency matrices of level i links, to
general posets. Again, for the clarity of the introduction we state the result in the special
case of standard regular posets.

▶ Theorem 1.3. Let P be a standard regular poset. Suppose that for all i, the second
eigenvalue of any adjacency matrix of a level i link is bounded from above by µi. Then

λ2(M+
k ) ≤ 1 −

k−1∏
j=−1

N−
j+2 − 1
N−

j+2

k−1∏
j=−1

(1 − µj).

1.2.2 Equivalence between global RW convergence and two-sided
expanding links

Our next main theorem is a generalization of theorem of [6] showing that for simplicial
complexes global random walks expansion is equivalent to two-sided local spectral expansion
in links.

The equivalence between two-sided local spectral expanders and eposets proven in [6] was
for simplicial complexes and decomposable posets. Now, that we have defined local spectral
expanding posets, and developed general local to global machinery we can generalize the
equivalence between two-sided spectral expanders and eposets to a more general setting. We
are following similar ideology to the one studied by [6] and applies it to our more general
setting.

▶ Theorem 1.4. Suppose P is standard and regular poset then P is two-sided λ-local-spectral
expander iff it is O(λ)-eposet.

1.2.3 Trickling Down theorem from local expansion for posets
We generalize the notable Trickling-Down theorem of Oppenheim [20]. Finding the correct
axiomatization that allows this generalization is more tricky than in the previous situations.
But it results with higher gain. We show that different posets behave qualitatively different
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under the trickling down process, and we learn a surprising fact: Unlike the simplicial complex
case, where the bound for expansion deteriorates as we go down the links, for posets with
large local lower regularity, such as the Grassmanian poset, the global expansion is improving
over the links.

Again we state the theorem in this section under simplifying assumptions, we also write
only the “one-step” version of the theorem, leaving the full theorem with the repetitive
application to the full version of this paper [15].

▶ Theorem 1.5. Let P be a standard graded weighted poset. Suppose that P is 2−skeleton
regular, with constants N−

1 , N−
2 , Nmid

1 and R . Assume in addition that P and any link Px,

for x ∈ P (0), are connected, and that the non trivial eigenvalues of the adjacency matrix of
the link Px lie in [ν, µ]. Then

ν
N−

1 −1 − (N−
2 N−

1 −Nmid
1 )R (R −1)

(Nmid
1 −1)(Nmid

1 )2(N−
1 −1)2

1 − ν
≤ λ ≤

µ

N−
1 −1 − (N−

2 N−
1 −Nmid

1 )R (R −1)
(Nmid

1 −1)(Nmid
1 )2(N−

1 −1)2

1 − µ
.

1.2.3.1 Implications for Trickling down for simplicial complexes and for
Grassmannian poset

When P is a simplicial complex we obtain the following upper and lower bound on the non
trivial eigenvalues of the adjacency matrix: ν

1−ν ≤ λ ≤ µ
1−µ , reproducing the result of [20].

Moving to the Grassmannian poset, we obtain the following upper and lower bound on the
non trivial eigenvalues of the adjacency matrix: ν

q(1−ν) ≤ λ ≤ µ
q(1−µ) .

The map x 7→ x
q(1−x) , for q > 1, has two fixed points, 0 and q−1

q . The former is attractive
and the latter is repulsive. Thus, if we have a rank d locally connected Grassmannian poset,
whose d − 2 links have all their nontrivial eigenvalues in [ν, µ], then if µ < q−1

q , the non
trivial eigenvalues become smaller in absolute value as we consider links of elements of lower
and lower ranks. For simplicial complexes such phenomenon existed only for the negative
eigenvalues. These ideas, and q−1

q being a critical value for the trickling process, will play a
role in the analysis of Section 3 below.

1.3 A construction of non simplicial bounded degree expanding posets
Recall that the Ramanujan complexes [18, 19] are bounded degree expanding simplicial
complexes. They can be seen as a sparsification of the complete simplex. It was asked by [6]
whether a similar sparsification exists for the Grassmannian poset, and can the expansion
parameter be arbitrary small. Namely, whether it is possible to construct a subposet of the
Grassmannian that is expanding and is of bounded degree.

In Section 3 we provide an explicit sparsification of the complete Grassmannian, via a
process which we call posetification. We prove, using the tools developed in this work, that it
is indeed expanding, with expansion parameters of magnitude q−1

q , partially answering the
question of [6]. To the best of our knowledge, this is the first proof of existence, and the first
known construction, of a bounded degree expanding subposet of the complete Grassmannian.

The posetification process which we describe below uses the sparsification for simplicial
complexes obtained by a Ramanujan complex, to sparsify the the complete Grassmannian.
The analysis of expansion relies heavily on the general trickling down we develop, and on the
fact it amplifies expansion when one goes down the links, as opposed to the simplicial case.
We then use the other tools we developed to bound the spectra of random walk operators
on it.
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▶ Theorem 1.6 (Informal, For formal see Corollary 3.2). Let q be a prime power and d a
natural number. Let X be a d−dimensional Ramanujan complex of thickness1 Q, where Q

is large enough as a function of q, d. Then the posetification VX is a bounded degree global
expanding, and a two-sided local spectral expanding Grassmannian poset. The second largest
eigenvalue of each link is at most q−1

q + o(1), while the lowest eigenvalue is at least − 1
q .

1.4 Plan of the paper
Section 2 provides basic definitions for graded weighted posets, including those of links,
localizations and regularity properties, and proves basic localization results a-la-Garland [11].
In Section 3 we construct a bounded degree expanding Grassmannian poset. Due to space
limitations the Random Walk theorems , The Tricking down theorem and the equivalence
theorem between local to global expansion definitions for posets are excluded from this short
conference version.

2 Weighted graded posets: definitions, regularity properties and the
basic decomposition

We begin by reviewing the standard definition of partially ordered set (poset), and the
slightly less standard notions of graded poset, and weighted graded posets. We then describe
some additional properties that many posets share, and will play a role in our study.

2.1 Posets
A poset (P, ≤) is a set P together with a binary relation ≤ which satisfies
1. Reflexivity ∀a ∈ P, a ≤ a.

2. Antisymmetry If a ≤ b and b ≤ a then a = b.

3. Transitivity If a ≤ b and b ≤ c then a ≤ c.

We write a < b (a is strictly less that b) if a ≤ b and a ≠ b. a is covered by b (equivalently, b

covers a) if a < b but there is no intermediate c with a < c < b. In this case we write a ◁ b.

We can similarly define the relations ≥, >,▷. For z ∈ P we write N−(z) for the number of
elements covered by z. A minimal element for a set of elements {aα}α is an element b in the
set, which is smaller or equal all other elements in the set. A minimal element is a minimal
element for all the elements in the poset. Maximal elements are similarly defined.

The poset is finite if the underlying set is. A subposet is a subset of a poset, endowed
with the restriction of the binary relation ≤ .

A chain from y to x is a tuple c = (c1, . . . , cm) where each ci ∈ P, c1 = x, cm = y and
ci < ci+1 for all i. A chain is maximal if for all i, ci ◁ ci+1. Cy→x denotes the collection of
chains from y to x.

▶ Example 2.1. Examples of posets are the N,Z,R together with the standard orders. The
former has a unique minimal element 1. The others do not have. Neither have a maximal
element.

For a given set S, all its subsets form a poset with respect to the containment order ⊆ .

This poset is finite precisely when |S| < ∞. The unique minimal element here is ∅, and the
unique maximal is S. Any subposet of such a poset, for an arbitrary underlying set S is called

1 the thickness of the Ramanujan complex is the number of top cells a given codimension 1 cell touches,
minus 1
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a simplicial complex. The subposet obtained by restricting to subsets of size at most k has
the sets of size k as maximal elements. We are thinking of subposets as downword closed
with regard to the original poset.

Let M be a matroid, then its independent sets form a poset with respect to inclusion.
This poset has the empty set as the unique minimal element, maximal elements are the bases,
but usually there is no unique maximal element. This poset can naturally be considered as a
simplicial complex whose underlying set is (the self independent) elements of M, and whose
simplices correspond to independent sets.

Let V be a space over a field F, the collection of its subspaces forms a poset, again with
respect to containment. The poset is finite when F is finite and dimF(V ) < ∞. The unique
minimal element here is the 0 vector space, and the unique maximal is V. A Grassmannian
poset is any subposet of this poset, for an arbitrary V. The subposet obtained by restricting to
sub vector spaces of dimension at most k has the vector subspaces of dimension k as maximal
elements.

2.2 Graded posets

A graded poset is a triple (P, ≤, ρ) such that (P, ≤) is a poset, together with a rank function
ρ : P → Z≥−1 which is an order preserving map. We further impose that
1. If a ◁ b then ρ(b) = ρ(a) + 1.

2. There is a single element ⋆ ∈ ρ−1(−1).
We put P (i) = ρ−1(i), and Ci = RP (i), the space of real functions on P (i). We write 1 ∈ Ci

for the constant function 1. The rank of P is the maximal d for which P (d) ̸= ∅. A graded
poset is pure if there exists d such that for every element x ∈ P there exists y ∈ P (d), x ≤ y.

In this case P (d) is the set of maximal elements. The ith skeleton, denoted P (≤ i), is the
subposet ρ−1([−1, i]). Throughout this work, all graded posets we consider are finite and
pure.

▶ Example 2.2. Returning to Example 2.1, for a given set S define a rank function ρ : 2S →
Z≥−1 by putting ρ(A) = |A| − 1. If S is a matroid, we may use the same rank function,
restricted to independent sets. For the vector spaces example we can define a rank by putting
ρ(U) = dimF(U) − 1.

2.3 Weighted graded posets

We now turn to consider weighted posets, following [6]. A weighted poset is a triple (P, ≤, m, p)
where (P, ≤) is a poset, together with a weight function m : P → R+, and transition
probabilities p : P × P → R≥0 which satisfy
1. py→x > 0 if and only if y ▷ x.

2. ∀y,
∑

x◁y py→x = 1.

3. For any x ∈ P which is not maximal,

m(x) =
∑
y▷x

py→xm(y). (1)

Thus, m is determined by its values on maximal elements and the transition probabilities. In
particular, any choice of weights m for maximal elements of P, can be extended to a weight
function m satisfying
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m(x) =
∑
y▷x

m(y)
N−(y) ,

i.e. all transition probabilities from y equal 1
N−(y) . We call such a weight scheme a standard

weight scheme, and the weighted poset is called a standard weighted poset.
We define U : RP → RP to be the Markovian transition operator,

∀g ∈ RP , y ∈ P, (Ug)(y) =
∑
x◁y

py→xg(x).

We similarly define D : RP → RP

∀f ∈ RP , x ∈ P, (Df)(x) =
∑
y▷x

py→xm(y)
m(x) f(y).

For a maximal chain c = (c1, . . . , cm) from y to x we set

p(c) =
m−1∏
i=1

pci+1→ci
.

A weighted graded (pure) poset (called measured poset in [6]) of rank d is a weighted and
graded poset P such that m(⋆) = 1. We write

mi = m|P (i), Di = D|Ci : Ci → Ci−1, Ui = U |Ci : Ci → Ci+1.

▶ Observation 2.3. Let P be a (finite, pure) graded weighted poset of rank d. Then for any
k ≤ l ≤ d, and x ∈ P (k),

m(x) =
∑

y∈P (l)

∑
c∈C(y→x)

p(c)m(y).

Consequently, each mi is a probability distribution. In addition, for all y ∈ P (l),∑
x∈P (k)

∑
c∈C(y→x)

p(c) = 1. (2)

The weight function m induces a non degenerate inner product on Ci given by

∀f, g ∈ Ci, ⟨f, g⟩ =
∑
x∈Pi

m(x)f(x)g(x).

We write ∥ − ∥ for the induced norm.

▶ Lemma 4. Under the above assumptions, Ui is dual to Di+1.

Proof.

⟨f, Uig⟩ =
∑

x∈P (i+1)

m(x)f(x)(Uig)(x) =

=
∑

x∈P (i+1)

m(x)f(x)
∑
y◁x

px→yg(y) =

=
∑

y∈P (i)

m(y)
(∑

x▷y

m(x)px→y

m(y) f(x)
)

g(y) = ⟨Di+1f, g⟩. ◀
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▶ Lemma 5. Whenever defined, Dl1 = Ul1 = 1. In addition, for every f ∈ C0

D0(f) = ⟨f, 1⟩.

Proof. By the definition of the transition probabilities,

(Ul1)(x) =
∑
y◁x

px→y = 1,

and by (1)

(Dl1)(x) =
∑
y▷x

m(y)py→x

m(x) = 1.

When ⋆ is the unique minimal element, for every y ∈ P (0), py→⋆ = 1 and m(⋆) = 1. Thus,

∀f ∈ C0, D0f(⋆) =
∑
y▷⋆

m(y)f(y) = ⟨f, 1⟩. ◀

2.3.1 The upper and lower walks
Using the operators (Di, Ui)i we can define natural random walks on P (i). The i−th lower
walk is the random walk on Ci, i ≥ 0 induced by M−

i = Ui−1Di, the i−th upper walk is the
random walk on Ci, for i less than the rank of P, is random walk induced by M+

i = Di+1Ui.

▶ Lemma 6. Consider f ∈ Ci. The upper and lower walks can be described as follows.

(M+
i (f))(y) =

(∑
z▷y

m(z)p2
z→y

m(y)

)
f(y) +

∑
x∈P (i), x ̸=y

( ∑
z▷x,y

m(z)pz→xpz→y

m(y)

)
f(x). (3)

(M−
i (f))(y) =

∑
x∈P (i)

( ∑
z◁x,y

px→zpy→z

m(z)

)
m(x)f(x). (4)

Proof.

(Di+1Ui(f))(y) =
∑
z▷y

m(z)pz→y

m(y) (Ui(f))(z) =

=
∑
z▷y

m(z)pz→y

m(y)
∑
x◁z

pz→xf(x) =
∑

x∈P (i)

( ∑
z▷x,y

m(z)pz→xpz→y

m(y)

)
f(x).

The last equality is obtained by changing the order of summation. (3) is obtained from the
last expression by separating into the cases x = y and x ̸= y. Similarly,

(Ui−1Di(f))(y) =
∑
z◁y

py→z(Dif)(z) =

=
∑
z◁y

py→z

∑
x▷z

(
m(x)px→z

m(z)

)
f(x) =

∑
x∈P (i)

(
m(x)

∑
z◁x,y

px→zpy→z

m(z)

)
f(x). ◀

▶ Observation 2.4. M+
k , M−

k+1 have the same non-zero eigenvalues, including multiplicities.
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Indeed, this is always the case for two operators of the form AA∗, A∗A, and

M+
k = Dk+1Uk, M−

k+1 = UkDk+1, Dk+1 = U∗
k .

The multiplicity of the zero eigenvalue can be different.

▶ Example 2.5. In case P is a standard weighted graded poset, a single step of the lower
random walk from y is obtained by choosing a uniformly random z covered by y, and then
choosing x which covers z, according to the transition probabilities m(x)

N−(x)m(z) . A single step
of the upper random walk from y is obtained by choosing a random z which covers y, with
probability m(z)

N−(z)m(y) , and then choosing uniformly a random element x ◁ z.

An immediate corollary of Lemma 5 is

▶ Corollary 2.6. If P has a unique minimum ⋆ ∈ P (−1) then

M+
0 M−

0 = M−
0 .

▶ Definition 7. We define the l-th adjacency matrix of P by its action on f ∈ Cl :

(Al(f))(y) =
∑
x ̸=y

( ∑
z▷x,y

m(z)pz→xpz→y

(1 − pz→y)m(y)

)
f(x). (5)

2 The zeroth adjacency matrix is sometimes referred as the adjacency matrix, and we
sometimes write only A.

1 ∈ Cl is always a eigenvector for eigenvalue 1 of the adjacency matrix. The eigenvalues of
eigenvectors which are not constant are called non trivial eigenvalues. If the weight scheme
is standard the adjacency operator is self-adjoint. If, in addition, each z ∈ P (l + 1) covers
the same number of elements N−(z) = N−

l+1 (this property will be called ’lower regular’ in
what follows), then Al is related to M+

l by

Al =
N−

l+1 − 1
N−

l+1
M+

l + 1
N−

l+1
IdCl . (6)

2.4 Links and localization
Let P be a poset, and x ∈ P. We will call the subposet made of all elements y ≥ x the link of
x and we shall denote it by Px. If P is graded, then also Px, and the induced rank function
ρx is given by

ρx(y) = ρ(y) − ρ(x) − 1.

If P is graded, weighted (finite and pure), then we can also induce the weight function and
transition probabilities by putting

mx(y) = m(y)
m(x)

∑
c∈C(y→x)

p(c), (7)

2 In what follows, whenever we work with the l−th adjacency matrix we shall implicitly assume that
any z ∈ P (l + 1), for covers at least two elements, otherwise the adjacency matrix is ill defined. This
assumption is valid in almost all interesting applications.
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(px)z→y =
pz→y

∑
c∈C(y→x) p(c)∑

c∈C(z→x) p(c) . (8)

We need to verify that the properties of transition probabilities and weights hold for the
induced weights and probabilities. We will verify Property (1), the other properties are
straight forward:

∑
z▷y

mx(z)(px)z→y =
∑
z▷y

m(z)
m(x)

∑
c∈C(z→x)

p(c)
pz→y

∑
c∈C(y→x) p(c)∑

c∈C(z→x) p(c)

=
∑
z▷y

m(z)pz→y

m(x)
∑

c∈C(y→x)

p(c)

= m(y)
m(x)

∑
c∈C(y→x)

p(c) = mx(y),

the one before last passage used (1) for m, and the last passage is just the definition of mx.

It is also straightforward to observe that the localization of a standard graded weighted
poset is “standard in rank 1” in the sense that-

▶ Observation 2.7. If P is a standard weighted graded poset of rank d, then for any
x ∈ P (≤ d − 2), and any z ∈ Px(1), for any y ∈ Px(0), with y ◁ z

(px)z→y = 1
|{w ∈ Px(0)|w ◁ z}|

.

We write Ci
x = Ci(Px) for the space of real functions on Px, and write ⟨−, −⟩x, ∥ − ∥x for

the induced inner products and norms, we can also define the operator Dx,i, Ux,i as above,
only with mx, px instead of m, p. The localization is the linear map from Ci to C

i−ρ(x)−1
x

which maps f to fx, defined by fx(y) = f(y) for y ∈ Px.

A poset P is connected if the 0−th upper walk is irreducible, i.e. for any y, z ∈ P (0),
there exists a power j > 0 such that the z entry of (M+

0 )jey is non zero, where ey is the
vector whose w component is δyw. P is locally connected if P and all of its proper links, for
any x of rank at most d − 2, are connected.

The following simple but powerful proposition generalized a classic result by Garland [11]
to our setting. It provides a decomposition of inner products and of inner products of the
operator D to sum of local terms.

▶ Proposition 2.8. Let P be a graded weighted poset of rank d. Let −1 ≤ k < l ≤ d, and
f, g ∈ Cl. Then
1.

⟨f, g⟩ =
∑

x∈P (k)

m(x)⟨fx, gx⟩x. (9)

2.

⟨Dlf, Dlg⟩ =
∑

x∈P (k)

m(x)⟨Dx,l−k−1fx, Dx,l−k−1gx⟩x. (10)
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Proof. For (9),∑
x∈P (k)

m(x)⟨fx, gx⟩x =
∑

x∈P (k)

m(x)
∑

y∈Px(l−k−1)

mx(y)fx(y)gx(y)

=
∑

x∈P (k)

m(x)
∑

y∈Px(l−k−1)

m(y)
m(x)

∑
c∈C(y→x)

p(c)

 f(y)g(y)

=
∑

x∈P (k)

∑
y∈Px(l−k−1)

m(y)
∑

c∈C(y→x)

p(c)

 f(y)g(y)

=
∑

y∈P (l)

m(y)f(y)g(y)

 ∑
x∈P (k)

∑
c∈C(y→x)

p(c)


=
∑

y∈P (l)

m(y)f(y)g(y) = ⟨f, g⟩,

the first three equalities and the last one follow from the definitions, the fourth one from
changing order of summation and the fifth one from (2).

For (2),∑
z∈P (k)

m(z)⟨Dz,l−k−1fz, Dz,l−k−1gz⟩z

=
∑

z∈P (k)

m(z)
∑

x∈Pz(l−k−2)

mz(x)
∑

y1,y2▷x

mz(y1)(pz)y1→x

mz(x) fz(y1)mz(y2)(pz)y2→x

mz(x) gz(y2)

=
∑

y1,y2∈P (l)

f(y1)g(y2)
∑

x∈P (l−1), x◁y1,y2

∑
z∈Pk, z<x

m(z)mz(y1)(pz)y1→xmz(y2)(pz)y2→x

mz(x)

=
∑

y1,y2∈P (l)

f(y1)g(y2)
∑

x∈P (l−1),
x◁y1,y2

∑
z∈Pk, z<x

m(z) m(z)
m(x)

∑
c∈C(x→z) p(c)

·

· m(y1)
m(z)

∑
c∈C(y1→z)

p(c)
py1→x

∑
c∈C(x→z) p(c)∑

c∈C(y1→z) p(c)
m(y2)
m(z)

∑
c∈C(y2→z)

p(c)
py2→x

∑
c∈C(x→z) p(c)∑

c∈C(y2→z) p(c)

=
∑

y1,y2∈P (l)

m(y1)f(y1)m(y2)g(y2)
∑

x∈P (l−1), x◁y1,y2

1
m(x)py1→xpy2→x

∑
z∈Pk, z<x

∑
c∈C(x→z)

p(c)

=
∑

y1,y2∈P (l)

m(y1)f(y1)m(y2)g(y2)
∑

x∈P (l−1), x◁y1,y2

1
m(x)py1→xpy2→x

=
∑

x∈P (l−1)

m(x)
∑
y1▷x

m(y1)py1→x

m(x) f(y1)
∑
y2▷x

m(y2)py2→x

m(x) g(y2) = ⟨Dlf, Dlg⟩.

the third equality uses the definitions of the localizations of the weights and transition
probabilities, the second before last uses (2). ◀

2.5 Regularity properties and their basic consequences
In practice, many posets which appear in the literature and in applications have more
structure. In Subsection 1.1.4 we described several structural regularity properties possessed
by many posets of interest. We now study the most basic properties of such posets. We will
see throughout this article that these additional structural properties allow generalizing many
non trivial results from the class of simplicial complexes to more general graded weighted
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posets. More precisely, in later sections we will generalize these structural properties to
properties of weighted graded posets. We will show that the more general properties yield
strong spectral consequences. Then we will see that standard weighted graded posets which
possess some of the structural regularity, also possess corresponding more general properties
of the weight schemes, hence their consequences.

Recall the regularity properties of Subsection 1.1.4. When P is lower regular, middle and
∧ → ∨ regular, the corresponding structure constants are not independent. Indeed, for a
given z ∈ P (l + 1), the number of triples (x, y, s) with x ̸= y, z ▷ x, y, and x, y ▷ s is, on the
one hand N−

l+1(N−
l+1 − 1)N∧→∨

l , if we first count x, y and then s. But if we first count x,

then s and then y we obtain N−
l+1N−

l (Nmid
l − 1). Thus

N−
l (Nmid

l − 1)
(N−

l+1 − 1)N∧→∨
l

= 1. (11)

▶ Example 2.9. If P is a simplicial complex then it is lower regular with N−
i = i + 1,

it is middle regular with Nmid
i = 2 and it is ∧ → ∨ regular with N∧→∨ = 1. If P is a

Grassmannian poset, where the ground field Fq has q elements, then it is lower regular with
N−

i = [i+1]q, it is middle regular with Nmid
i = q +1 and it is ∧ → ∨ regular with N∧→∨ = 1.

Note that for a poset P which is lower regular at levels 1, 2 and middle regular at level 1,

for every u ∈ P (2),

|{x ∈ P (0)|x < u}| = N−
2 N−

1
Nmid

1
. (12)

Indeed, there are N−
2 N−

1 chains of length 2 descending from u, and by the definition of
middle regularity, they are grouped into groups of size Nmid

1 of chains having the same
endpoints. Thus, the number of different descendants of u is N−

2 N−
1

Nmid
1

.

If P is 2−skeleton regular then

R = Nmid
1 (N−

1 − 1)
N−

2 N−
1

Nmid
1

− 1
. (13)

Indeed, given P (2) ∋ u > y ∈ P (0) we count pairs of the form

{(x, z) ∈ P (0) × P (1)|x ̸= y, u ▷ z ▷ x, y}.

On the one hand, if we first count x, and then z, we obtain, by (12) N−
2 N−

1
Nmid

1
− 1 choices for

x, and then, by definition R choices of z. All together this number is ( N−
2 N−

1
Nmid

1
− 1)R . On

the other hand, we can first choose z, there are Nmid
1 ways to do that. Then, there are

N−
1 − 1 choices for an element x ̸= y covered by z. The total number is then Nmid

1 (N−
1 − 1).

Comparing the expressions, (13) follows.
For any poset property Q, e.g. regularity, lower regularity at level 1, etc., we say that P

is locally Q if P, and all its links on which it is possible to verify property Q possess property
Q, and if Q depends on parameters, e.g. N−

i , then the parameters of Q at the link depend
only on ρ(s). For example, being middle regular is equivalent to being locally level 1 lower
regular.

Another example is that a graded poset P of rank d is locally regular if there exist
constants Ri , −1 ≤ i ≤ d − 3, such P and all its links Ps, s ∈ P (≤ d − 3) are regular,
and moreover, the constants depend only on the level, in the sense that R (Ps) = Rρ(s).
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A graded poset P is 2−skeleton regular if it is lower regular at levels 1, 2, middle regular
at level 1, and regular. Similarly it is locally 2−skeleton regular if for all s ∈ P (≤ d − 3),
Ps is 2−skeleton regular with uniform structure constants. The lower, middle and ∧ → ∨
regularity constants at a link of level i will be denoted N−

i,1, N−
i,2, Nmid

i,1 , respectively.

▶ Example 2.10. Simplicial complexes and Grassmannian posets are locally regular with
Ri = 1 for all i. They are also locally 2−skeleton regular, where for both types of posets

N−
i,1 = N−

1 , N−
i,2 = N−

2 , Nmid
i,1 = Nmid

1 , ∀i.

2.6 Expansion notions for posets
For a diagonalizable n × n matrix M with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, we write
λ(M) = max{λ2, |λn|}.

We shall now provide local and global definitions of expansion in posets.

We first define local expansion notions.

▶ Definition 8. Let P be a standard3, weighted, graded poset of rank d. P is called one-sided
λ-local spectral expander if P and any link Px, for x ∈ P (≤ d − 2) are connected, and the
non trivial eigenvalues of the adjacency matrix of the link Px, for every x ∈ P (≤ d − 2), are
bounded by λ.

▶ Definition 9. Let P be a standard, weighted, graded poset of rank d. P is called a two-sided
[ν, λ]-local spectral expander if P and any link Px, for x ∈ P (≤ d − 2) are connected, and
the non trivial eigenvalues of the adjacency matrix of the link Px, for every x ∈ P (≤ d − 2)
lie in [ν, λ].

In [6] the following definition of expansion was given, and they termed posets which
satisfy this definition eposet. We shall call these posets global eposets, to distinguish them
from the local ones defined above, and because the definition is via a global criterion.4

▶ Definition 10. A weighted graded poset P of rank d is a λ-global eposet if for all
1 ≤ j ≤ d − 1 there exist constants rj , δj such that

∥ Dj+1Uj − δjUj−1Dj − rjIdCj ∥≤ λ.

3 Posetification and constructions of sparse expanding posets

Let S be a set, and X a set of subsets of S, which includes the empty set, and is closed under
taking subsets. Such sets X are in natural bijection with simplicial complexes on the vertex
set S, and the poset structure on X is the containment order. Suppose we are given a poset
P and an order preserving association I 7→ PI ∈ P, I ∈ X. Write PX for the posetification
of X which is the subposet of P defined by

PX = {y ∈ P |∃I ∈ X s.t. y ≤ PI}.

3 In this definition and the next one we require P to be standard so that the adjacency matrices will be
self adjoint, and will thus be diagonalizable with real eigenvalues.

4 Note that this definition does not assume that the adjacency matrix of the links have real eigenvalues
hence it applies also to non standard posets.
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When X is endowed with a standard weight scheme the posetification is also naturally endowed
by a standard scheme, defined by putting m(VI) = m(I), for any maximal simplex I.

It turns out that when the simplicial complex X is an expander, then PX inherits
expansion properties which depend on the expansion properties of X and of P .

We illustrate this idea in the following theorem, which, to the best of our knowledge, is
the first example of a sparse expanding Grassmannian poset.

▶ Theorem 3.1. Let X be a local spectral expander of dimension d, on the vertex set [n].
Suppose that X is locally connected5, and the links of all its d − 2-dimensional cells are
regular bipartite expanders, with a second eigenvalue bounded by ϵ. Let V be a vector space
over Fq with basis e1, . . . , en, and to each I ⊆ [n] associate the vector space

VI = span{vi|i ∈ I} ⊆ V.

Then the posetification VX is a Grassmannian poset which satisfies:
1. It is a subposet of the Grassmannian poset on V.

2. Suppose that each cell of X of dimension k, for any k ≥ 0, is contained in at most Q cells
of dimension k + 1. Then for every element of VX of rank k ≥ 0, the number of elements
of rank k + 1 which cover it is upper bounded by a function of q, Q and d (independent of
n).

3. The second largest eigenvalue of each link is at most q−1
q + f(ϵ, d, q), where f is a function

which tends to 0 as ϵ → 0, while the lowest eigenvalue is at least − 1
q .

Proof. The first two items are clear. For the third, we first prove that for any x ∈ (VX)d−2,

all non trivial eigenvalues of the link adjacency matrix Ax lie in the interval [− 1
q , q−1+ϵ

q ].
There are three cases. The first is when x is not contained in any VI with |I| = d, hence

it is contained in a single VI for |I| = d + 1. The second is that x ⊂ VI for I ⊆ [n], |I| = d,
but x ̸= VJ for any J ⊂ [n] with |J | = d − 1. The last case is that x = VI for some subset
I ⊆ [n], |I| = d − 1.

The first case is the easiest. In this case the link of x is equivalent to the Grassmannian
poset of F2

q, meaning the ((VX)x)(0) are the q + 1 lines in a vector space isomorphic to
F2

q. The corresponding adjacency matrix is the normalized adjacency matrix of Kq+1, the
complete graph on q + 1 elements, and its eigenvalues are 1, with multiplicity 1, and − 1

q

with multiplicity q.

Turning to the second case, suppose x is contained in precisely p d + 1-spaces VI1 , . . . , VIp

with
⋂

h Ih = I. The link of x is equivalent to the subposet of Fq{e0, . . . , ep}, where
{e0, . . . , ep} are independent generators, with

((VX)x)1 = {span(e0, e1), span(e0, e2), . . . , span(e0, ep)},

and ((VX)x)(0) are all the lines contained in these 2−spaces.
The adjacency matrix is the normalized adjacency matrix of a bouquet of p Kq+1. This

is a (pq + 1) × (pq + 1) matrix with 0 diagonal, all non diagonal entries in the last row are
1

pq , while all non diagonal entries in the last column are 1
q . For any different 0 ≤ i, j < pq,

the (i, j) entry is 0 if ⌊ i
q ⌋ ̸= ⌊ j

q ⌋, and otherwise it is 1
q . This matrix has the constant vector

as the eigenvector of 1.

5 we remind the reader that ’locally connected’ means that each link Px for x ∈ P (≤ d − 2), including
P = P⋆, is connected.
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It has two other families of eigenvectors: va,b, a = 0, . . . , p − 1, b ∈ [q − 1], all of whose
entries are 0, except the aq entry which is 1 and the aq + b entry which is −1. These are
eigenvectors for − 1

q . The other family vi, i ∈ [p − 1] is a family of eigenvectors for q−1
q . All

entries of vi are 0, except the first q which are 1 and the entries iq, iq + 1, . . . , iq + q − 1 which
are −1. By considering the support of the vectors in each family it is straight forward to
verify that they are linearly independent. These families span two orthogonal spaces, which
are also orthogonal to the constant vectors. Thus, these families, and the eigenvector of 1
amount to pq independent eigenvalues. Their sum is

1 + p(q − 1)−1
q

+ (p − 1)q − 1
q

= 1
q

.

Trace considerations show that the remaining eigenvalue is also − 1
q .

We now turn to the last case. Now x is a vector space of dimension d−1. It corresponds to
a d − 2 cell of X. Let G = (V, E) be the link of this cell, which is a graph. By assumptions it
is bipartite, connected, and the second eigenvalue is at most ϵ. Similarly to the previous cases,
the adjacency matrix of the link of x is the normalized adjacency matrix of the graph G′

obtained from G as follows The vertex set of G′ is V ∪ (E × [q − 1]). There is an edge between
v, u ∈ V if they were connected in G, there is an edge between and (e, i), (e, j), i, j ∈ [q − 1],
and there is an edge between v, (e, i) if e is an edge of v in G. G′ is a connected graph on
m + (q − 1)|E| vertices, where m = |V |. We now write three families of eigenfunctions for
the normalized adjacency matrix of G′.

1. H1(G,Z), the first homology of G, is of rank |E|−m+1, and is generated by simple cycles
of even length in G, by bipartiteness. Let C1, . . . , C|E|−m+1 be simple cycles representing
such generators. Simple induction on the construction of the cycles allows assuming that
each Ci contains an edge ei such that ei /∈ Cj for j < i. For each Ci order its edges
starting from ei in any way which agrees with one of its two cyclic orders. Let ci to be
the vector whose (e, j) entries are 1, if e is an edge at an even place in Ci, according to
this order, they are −1 if e is located in an odd place, and all other entries are 0. These
vectors are eigenfunctions for q−2

q .

2. For every e ∈ E, i ∈ [q −2] set fe,i to be the vector all of whose entries are 0, but the (e, i)
and (e, q − 1) which are 1, −1 respectively. These (q − 2)|E| vectors are eigenfunctions
for −1

q .

3. Let g1, . . . , gm be the eigenfunctions of G, ordered according to the order 1 = λ1 > λ2 ≥
. . . > λm = −1, of the corresponding eigenvalues. Define ga

m ∈ RV ∪(E×[q−1]) by

ga
k |V = g, ga

k(e, i) = a(gk(v) + gk(u)), for e = {u, v}.

Applying the adjacency operator of G′ to ga
k we obtain

(AG′ga
k)(v) = (λk

q
+ a

q
(q − 1)(1 + λk))ga

k(v),

(AG′ga
k)(e, i) = (1

q
+ a(q − 2)

q
)(gk(v) + gk(u)), for e = {u, v}.

Note that gm assigns opposite values to neighboring vertices, hence ga
m is independent

of a and it is easy to see that its eigenvalue is −1
q . We write g−

m for ga
m. In order for

ga
k , k ̸= m, to be an eigenfunction we must have

(λk

q
+ a

q
(q − 1)(1 + λk))a = 1

q
+ a(q − 2)

q
, (14)
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and in this case the eigenvalue will be λk

q + a
q (q − 1)(1 + λk). (14) is equivalent to

a2(q − 1)(1 + λk) + a(λk − q + 2) − 1 = 0.

This quadratic equation has two different solutions, a = 1
1+λk

, and a = − 1
q−1 . We denote

by g+
k the eigenfunction for the former solution, and by g−

k the eigenfunction for the
latter. The eigenvalue of g+

k is λ+
k = q−1+λk

q , while the eigenvalue of g−
k is λ−

k = − 1
q .

Altogether we wrote 2m − 1 + |E| − m + 1 + |E|(q − 2) = (q − 1)|E| + m. We claim that
these vectors are a complete set of eigenfunctions. Since they are of the correct cardinality,
it is enough to prove linear independence. In addition, it is enough to prove the linear
independence inside the sets of eigenfunctions for the same eigenvalue.

Regarding the eigenvalue − 1
q , the vectors g−

1 , . . . , g−
m are linearly independent, as can be

seen from their restriction to the V −entries, and using the independence of g1, . . . , gm. They
are orthogonal to the elements fe,i, e ∈ E, i ∈ [q − 2], hence independent of them as well.
The latter vectors are also easily seen to be independent.

Regarding the eigenvalue q−2
q , the elements ci are linearly independent. Indeed, assume

towards contradiction that
∑

aici = 0, for some scalars ai, not all are 0. Let i∗ be the
maximal index with a non zero coefficient. When evaluating on (ei∗ , 1) we obtain, on
the one hand (

∑
aici)(ei∗ , 1) = 0. On the other hand, by the choice of the edges ei,

(
∑

aici)(ei∗ , 1) = ai∗ci∗(ei∗ , 1) = ±ai∗ , which is a contradiction. Since no λk = −1, for
k ̸= m, no λ±

k = q−2
q , so there are no more q−2

q eigenfunctions.
We are left only with g+

k , k ∈ [m − 1]. These have eigenvalues different from the previous
ones we considered, and again they can be seen to be linearly independent by restricting to
V and using the independence of g1, . . . , gm−1.

Note that for any w ∈ [− 1
q , 0], the map w 7→ Tw = w

q(1−w) satisfies Tw ∈ [w, 0]. Similarly,
T maps [0, q−1

q ] onto itself. For w > q−1
q , Tw > w, but, since q−1

q is a fixed point of T, one
has

T d−2(q − 1 + ϵ

q
) = q − 1

q
+ f(ϵ, d, q),

where, for fixed d, q, f → 0 as ϵ → 0, by the continuity of T.

Thus, by applying the Tricking down theorem with the parameters of the Grassmannian,all
non trivial eigenvalues of the adjacency matrix of each link are seen to be at most q−1

q +
f(ϵ, d, q). ◀

The Ramanujan complexes constructed in [18,19] are d−dimensional simplicial complexes
which are obtained as arithmetic quotients of Bruhat-Tits buildings of dimension d. They are
locally connected, their d − 2−dimensional links are bipartite graphs and, and all non trivial
eigenvalues of the adjacency matrices of the links are bounded from above by O( 1√

Q
), where

Q, the thickness of the Ramanujan complex is the number of top cells touched by a given
codimension 1 cell, minus 1. For any Q0 and given d there exist d dimensional Ramanujan
complexes with Q ≥ Q0.

▶ Corollary 3.2. Let q be a prime power, and let X be a d−dimensional Ramanujan complex
of thickness Q, large enough as a function of q, d. Then the posetification VX is a two sided
bounded degree expanding Grassmannian poset. The second largest eigenvalue of each link is
at most q−1

q + o(1), while the lowest eigenvalue is at least − 1
q .

In [6] it was conjectured that there exist high dimensional bounded degree expanding
Grassmannian posets for any bound µ > 0. This corollary proves this conjecture for µ =
q−1

q + o(1).
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The question for general µ still awaits for an answer. Based on the trickling down for
Grassmannians, if one can find a bounded degree Grassmannian complex of high enough
dimension such that the second eigenvalue of the top links is bounded from above by
λ < q−1

q − c, for some positive c, lower skeletons will be µ−local spectral Grassmannian
expanders, for arbitrary small µ (there is a trade off between c, µ, the dimension and how
low one should go).

Regarding how large must Q be, observe that the derivative of the transformation x 7→ Tx,

from the end of the previous proof, at (q − 1)/q is q. Thus, for ϵ small enough, as a function
of q, d,

T d−2(q − 1 + ϵ

q
) = q − 1

q
+ qd−2ϵ + o(ϵ).

Since for Ramanujan complexes ϵ = O( 1√
Q

) in order to obtain expansion we need Q ≫ q2d−4.
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Abstract
Decision-makers often act in response to data-driven predictions, with the goal of achieving favorable
outcomes. In such settings, predictions don’t passively forecast the future; instead, predictions
actively shape the distribution of outcomes they are meant to predict. This performative prediction
setting [28] raises new challenges for learning “optimal” decision rules. In particular, existing solution
concepts do not address the apparent tension between the goals of forecasting outcomes accurately
and steering individuals to achieve desirable outcomes.

To contend with this concern, we introduce a new optimality concept – performative omni-
prediction – adapted from the supervised (non-performative) learning setting [9]. A performative
omnipredictor is a single predictor that simultaneously encodes the optimal decision rule with respect
to many possibly-competing objectives. Our main result demonstrates that efficient performative
omnipredictors exist, under a natural restriction of performative prediction, which we call outcome
performativity. On a technical level, our results follow by carefully generalizing the notion of
outcome indistinguishability [5] to the outcome performative setting. From an appropriate notion of
Performative OI, we recover many consequences known to hold in the supervised setting, such as
omniprediction and universal adaptability [19].
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1 Introduction

Data-driven predictions inform policy decisions that directly impact individuals. Proponents
argue that by understanding patterns from the past, decisions can be optimized to improve
future outcomes, to the benefit of individuals and institutions [22]. In the US educational
system, for instance, early warning systems (EWS) have become a key tool used by states to
combat low graduation rates [1, 30]. The rationale for using such systems is clear. Given
a predictor that, for each student, estimates the likelihood of graduation, school districts
can identify high-risk students at a young age, directing resources to improve individuals’
outcomes, and in turn, the districts’ graduation rates. Despite compelling arguments, reliably
predicting life outcomes remains a largely-unsolved problem in machine learning.

A key challenge in utilizing predictions to inform decisions is that, often, predictions
influence the outcomes they’re meant to forecast. In the education example above, districts
consider predictions of graduation with the intention of effecting graduation outcomes. In this

© Michael P. Kim and Juan C. Perdomo;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 79; pp. 79:1–79:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mpkim@berkeley.edu
mailto:jcperdomo@berkeley.edu
https://doi.org/10.4230/LIPIcs.ITCS.2023.79
https://arxiv.org/abs/2210.01745
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


79:2 Making Decisions Under Outcome Performativity

situation – where predictions determine interventions, which influence outcomes – accuracy
can be a paradoxical notion. If a predictor correctly identifies high risk individuals as
likely to suffer negative outcomes, after successful interventions, the individuals’ outcomes
will be positive and the initial predictions will appear inaccurate. To apply data-driven
tools effectively, decision-makers must resolve an apparent tension between the objectives of
forecasting individuals’ outcomes reliably and steering individuals to achieve better outcomes.

Recent work of [28] introduced performative prediction to contend with the fact that
predictions not only forecast, but also shape the world. Informally, a prediction problem
is performative if the act of prediction influences the distribution on individual-outcome
pairs. From early warning systems, to online content recommendations, to public health
advisories: across many contexts, individuals respond to predictions in a manner that changes
the likelihood of possible outcomes (successful graduation, increased click rate, or decreased
disease caseload).

In their original work on the subject, [28] frame the goal of performative prediction
through loss minimization. In this framing, the ultimate goal is to learn a performatively
optimal decision rule. A decision rule hpo is performatively optimal if it achieves the minimal
expected loss (within some class of decision rules H) over the distribution that it induces,

hpo ∈ arg min
h∈H

E(x,y)∼D(h)[ℓ(x, h(x), y)]. (1)

Here, D(h) is the distribution over (x, y) pairs observed as response to deploying h.
For generality’s sake, performative prediction makes minimal restrictions on how the

distribution may respond to a chosen decision rule. In particular, the choice to deploy
a hypothesis h, may change the joint distribution (x, y) ∼ D(h) over individual-outcome
pairs, essentially arbitrarily.1 This generality enables us to write a broad range of prediction
problems – including supervised learning [29], strategic classification [11], and causal inference
[25] – as special cases of performative prediction. In all, [28] establishes a powerful framework
for reasoning about settings where the distribution of examples responds to the predictions.

While powerful, the framework has two noticeable limitations. First, achieving perform-
ative optimality is hard. Without any assumptions on the distributional response D(·),
achieving performative optimality requires exhaustive search over the hypothesis class H.
Furthermore, even under strong structural assumptions on the distributional response and
choice of loss ℓ, it is known that convex optimization does not suffice to achieve optimality
[28, 26]. Stated another way: the generality of performative prediction does not come for
free. To date, all existing methods for performative optimality require strong specification
assumptions on the outcome distribution and distributional response.

The second limitation arises due to formulating performative prediction as a loss minimiz-
ation problem: the loss ℓ is fixed, once and for all. In performative prediction, different losses
can encode drastically different objectives: losses are used not only to promote accuracy of
predictions, but also to encourage favorable outcome distributions. Consider a loss designed
for accurate forecasting, e.g., the squared error (ŷ − y)2. In this case, the optimal decision
rule will prioritize accuracy without regard for the “quality” of the outcome distribution. On
the other hand, consider a loss designed to steer towards positive outcomes, 1 − y. Here,
there is no notion of accuracy (the loss ignores the prediction ŷ), but instead, the objective
is to nudge the distribution of outcomes towards y = 1.

1 [28] assume only a Lipschitzness condition, where similar hypotheses h and h′ give rise to similar
distributions D(h) and D(h′), measured in Wasserstein (earth mover’s) distance.
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Encoding the decision-making objective through a single loss function forces the learner
to choose the “correct” objective at train time. Downstream decision-makers, however, may
reasonably want to explore different objectives according to their own sense of “optimality”.
In the existing formulations for performative prediction, exploring different losses requires
re-training from scratch. In this work, we investigate an alternative formulation that enables
decision-makers to efficiently explore optimal decision rules under many different objectives.

1.1 Decision-Making under Outcome Performativity
To begin, we introduce a refinement of the performative prediction setting, which we call
outcome performativity. Outcome performativity focuses on the effects of local decisions
on individuals’ outcomes, rather than the effect of broader policy on the distribution of
individuals. For instance, our example of graduation prediction is modeled well by outcome
performativity. For a given a student, the EWS prediction they receive affects their future
graduation outcome, but does not influence their demographic features or historical test
scores. In other words, we narrow our attention to the performative effects of decisions h(x)
on the conditional distribution over outcomes y, rather than the effects of the decision rule h

on the distribution as a whole D(h). This reframing of performativity still captures many
important decision-making problems, but gives us additional structure to address some of
the limitations in the original formulation.

On a technical level, outcome performativity imagines a data generating process over
triples (x, ŷ, y∗) where x ∼ D is sampled from a static distribution over inputs, then a
prediction or decision ŷ ∈ Ŷ is selected (possibly as a function of x), and finally the true
outcome y∗ ∈ Y is sampled conditioned on x and ŷ. We focus on binary outcomes Y = {0, 1}.2
In this setting, the outcome performativity assumption posits the existence of an underlying
probability function,

p∗ : X × Ŷ → [0, 1],

where for a given individual x ∈ X and decision ŷ ∈ Ŷ , the true outcome y∗ is sampled as a
Bernoulli with parameter p∗(x, ŷ). We refer to the true outcome distribution p∗ as Nature.

By asserting a fixed “ground truth” probability function, the outcome performativity
framework does not allow for arbitrary distributional responses and limits the generality of
the approach. For instance, outcome performativity does not capture strategic classification.
But importantly, by refining the model of performativity, there is hope that we may sidestep
the hardness results for learning optimal performative predictors.

1.1.1 Performative Omniprediction
We begin by observing that under outcome performativity, the true probability function p∗

suggests an optimal decision rule f∗
ℓ : X → Ŷ for any loss ℓ. In our setting, p∗ governs the

outcome distribution, so given an input x ∈ X , the optimal decision f∗
ℓ (x) is determined by

a simple, univariate optimization procedure over a discrete set Ŷ:

f∗
ℓ (x) ∈ arg min

ŷ∈Ŷ
Ey∗∼p∗(x,ŷ)[ℓ(x, ŷ, y∗)]. (2)

2 In general, outcome performativity could be defined for larger outcome domains. Handling such domains
is possible, but technical. We restrict our attention to binary outcomes to focus on the novel conceptual
issues.
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x

ŷ

y∗

Figure 1 Causal graphical representation of the outcome performativity data generating process.

Note that the decision rule f∗
ℓ (x) minimizes the loss pointwise for x ∈ X . Consequently,

averaging over any static, feature distribution D, the decision rule f∗
ℓ is performative optimal

for any hypothesis class H, loss ℓ, and marginal distribution D:

E x∼D
y∗∼p∗(x,f∗

ℓ (x))
[ℓ(x, f∗

ℓ (x), y∗)] ⩽ min
h∈H

E x∼D
y∗∼p∗(x,h(x))

[ℓ(x, h(x), y∗)].

While the existence of p∗ implies the existence of optimal decision rules under outcome
performativity, we make no assumptions about the learnability of p∗. In general, the function
p∗ may be arbitrarily complex, so learning (or even representing!) p∗ may be infeasible, both
computationally and statistically.

Still, the above analysis reveals the power of modeling the probability function p∗ :
X × Ŷ → [0, 1]. The optimal probability function p∗ encodes the optimal decision rule f∗

ℓ

for every loss function ℓ. This perspective raises a concrete technical question: short of
learning p∗, can we learn a probability function p̃ : X × Ŷ → [0, 1] that suggests an optimal
decision rule, via simple post-processing, for many different objectives? Recent work of [9]
studied the analogous question in the context of supervised learning (without performativity),
formalizing a solution concept which they call omniprediction. Intuitively, an omnipredictor
is a single probability function p̃ that suggests an optimal decision rule for many different
loss functions L.

In this work, we generalize omniprediction to the outcome performative setting. As a
solution concept, performative omniprediction directly addresses the limiting assumption
in performative prediction that the loss ℓ is known and fixed. Given a performative omni-
predictor, a decision-maker can explore the consequences of optimizing for different losses,
balancing the desire for forecasting and steering, as they see fit. Technically, given a predictor
p̃, we define f̃ℓ : X → Ŷ to be the optimal decision rule, that acts as if outcomes are governed
by p̃.

f̃ℓ(x) ∈ arg min
ŷ∈Ŷ

Eỹ∼p̃(x,ŷ)[ℓ(x, ŷ, ỹ)]

We emphasize that, for any loss ℓ, the decision rule f̃ℓ(x) is an efficient post-processing
of the predictions given by p̃(x, ŷ) for ŷ ∈ Ŷ. A performative omnipredictor is a model of
nature p̃ : X × Ŷ → [0, 1] that induces a corresponding decision rule f̃ℓ that is performatively
optimal over a collection of losses ℓ ∈ L.

▶ Definition 1 (Performative Omnipredictor). For a collection of loss functions L, hypothesis
class H, and ε ⩾ 0, a predictor p̃ : X × Ŷ → [0, 1] is an (L, H, ε)-performative omnipredictor
for an input distribution D if for every ℓ ∈ L, the decision rule f̃ℓ is ε-performative optimal
over H.

E x∼D
y∗∼p∗(x,f̃ℓ(x)))

[ℓ(x, f̃ℓ(x)), y∗)] ⩽ arg min
h∈H

E x∼D
y∗∼p∗(x,h(x))

[ℓ(x, h(x), y∗)] + ε (3)
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While an intriguing prospect, omniprediction is particularly ambitious in the performative
world. Whereas most supervised learning losses have roughly the same goal (to accurately
forecast the outcome), losses in the performative world can encode entirely contradictory
objectives. For instance, we can define a pair of losses ℓ0 and ℓ1 that reward decisions that
steer outcomes to be 0 and 1, respectively. A performative omnipredictor must contend with
these contradictions, providing optimal decision rules under performative effects.

Concretely, under outcome performativity, there is a certain circularity in naively determ-
ining the optimal decision f̃(x) from a prediction p̃(x, ŷ). Choosing an “optimal” decision
f̃(x) causes a shift in the distribution on the outcome y∗ ∼ p∗(x, f̃(x)), which may imply a
different “optimal” decision, which seems to lead to a continuing cycle of dependency. In
this way, any performative omnipredictor p̃ must encode the optimal decision rule f̃ℓ for
each ℓ ∈ L, anticipating the shift induced by the choice of f̃ℓ. In this work, we ask whether
– despite this key challenge – efficient performative omnipredictors exist, and if so, can we
learn them?

1.2 Our Contributions

Our first contributions are conceptual, introducing the outcome performativity setting and
the notion of performative omnipredictors. As an abstraction, outcome performativity
strikes a balance with enough generality to model many real-world phenomena paired with
enough structure to give effective solutions. For settings where the distributional response
occurs predominantly as outcome performativity, the framework is well-scoped to contend
with the challenges of performative prediction. In particular, performative omnipredictors
provide an effective solution concept to address the tension between different objectives under
performativity. With these conceptual contributions in place, we turn to the feasibility of
omniprediction under outcome performativity.

1.2.1 Efficient Performative Omnipredictors Exist

Our first technical contribution demonstrates existence of efficient performative omnipre-
dictors. We prove that for any class of losses L and any hypothesis class H, there exists a
performative omnipredictor p̃ of complexity that scales polynomially with the complexity of
computing the losses and hypotheses.

▶ Theorem 2. Suppose D is a fixed distribution over X . Let L ⊆ {ℓ : X × Ŷ × Y → [0, 1]}
be a set of bounded loss functions, and let H ⊆ {h : X → Ŷ} be a hypothesis class of decision
rules. If the functions in L and H can be computed by circuits of size s, then there exists a
(L, H, ε)-performative omnipredictor of circuit complexity poly(s, |Ŷ|)/ε2.

Importantly, this result holds for any class of bounded losses. The collection L may include
losses for forecasting and steering, or may include losses that steer towards different outcomes.
Still, the predictor p̃ will encode a performative optimal decision rule for each such loss ℓ ∈ L.
Furthermore, the complexity of this predictor scales gracefully with the complexity of the
losses and hypotheses and the available decisions, independent of the complexity of Nature
p∗. Even if the true probability function p∗ is intractably-complex, there exists a simple
function p̃ that mimics the omniprediction behavior, provided the losses and hypotheses are
sufficiently simple.
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1.2.2 Learning Performative Omnipredictors Reduces to Supervised
Learning

In fact, the proof of existence is constructive. We establish the feasibility of performative
omnipredictions by devising a boosting-style learning algorithm, inspired by the original
algorithm for learning (non-performative) omnipredictors [12, 5, 9]. As in the supervised
case, we show that learning omnipredictors reduces to an auditing task. Despite the fact
that in performative prediction, different decision rules induce different distributions, we
show that – given appropriately randomized data – this auditing task can be solved using
only supervised learning primitives implementable in finite samples. That is, under outcome
performativity, there is a surprising reduction from the task of learning optimal performative
predictors to the task of non-performative supervised learning.

Formally, we assume that the learner has access to a collection of data triples (x, ŷ, y) ∼
Drct where inputs are sampled from the data distribution x ∼ D, decisions ŷ are assigned
uniformly at random, and the outcome y∗ ∼ p∗(x, ŷ) is sampled from Nature, for the
given individual and randomly-assigned decision. Given an efficiently bounded number of
samples access from this distribution, we show how to learn performative omnipredictors
assuming access to a supervised learner for the hypothesis class H. We formalize this learning
assumption in terms of cost-sensitive classification [7].

▶ Theorem 3 (Informal). Assume sample access to Drct and suppose that A is a cost-sensitive
learning algorithm for the hypothesis class H. There is a polynomial-time algorithm, that,
for any set of bounded losses L, returns a (L, H, ε)-performative omnipredictor using at most
poly(1/ε, |Ŷ|, log |H|, log |L|) many samples from Drct while also making |L| · poly(1/ε, |Ŷ|)
oracle calls to A.

The guarantees of this algorithm represent a significant point of departure from previous
work on performative prediction. Specifically, previous algorithms for learning performatively
optimal models (for a single loss) hinged on the condition that predictions had very mild,
and highly-structured (e.g. linear) impact on the induced data distributions as in [26, 15].
Conversely, within the outcome performativity restriction, we make no assumptions on the
way predictions influence outcomes. Further, the omnipredictor output in the guarantee
of Theorem 3 has complexity scaling as stated in Theorem 2. In other words, our learning
algorithm makes no “realizability” assumptions and outputs an efficient predictor, regardless
of the complexity of Nature.

1.2.3 Universally-Adaptable Omnipredictors
Outcome performativity focuses attention on performative shifts in the outcome distribution
as a function of the chosen decision ŷ ∈ Ŷ. In particular, it excludes performative effects
in the distribution over individuals X . Despite this limitation, our final result shows that
we can learn performative omnipredictors that are robust to exogenous (non-performative)
shifts in the distribution over individuals.

Adapting the notion of universal adaptability, introduced in the context of statistical
estimation by [19], we show how to learn univerally-adaptable performative omnipredictors.
Whereas performative omnipredictors guarantee optimality on a fixed marginal distribution
D over individuals, universally-adaptable omnipredictors give the same optimality guarantee,
simultaneously, over a rich class of input distribution shifts DW . Each distribution in
Dω ∈ DW corresponds to the reweighting of probabilities in D by some importance weight
function ω in some pre-specified class W.
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▶ Theorem 4 (Informal). Let L be a set of bounded loss functions, H a hypothesis class of
decision rules, and let W ⊆ {ω : X → [0, ωmax]}. If the functions in L, H, and W can be
computed by circuits of size s, then there exists a predictor p̃, computable by a circuit of
size at most poly(s, |Ŷ|) · ω2

max/ε2, that is a (L, H, ε)-performative omnipredictor for every
distribution over individuals Dω ∈ DW .

The result follows by augmenting the class of loss functions LW to account for shifts under W ,
and again, applying the constructive learning algorithm from Theorem 3. We emphasize that
the learner only needs to account for the class of shifts at training time. At evaluation time,
the decision-maker need not know anything about the underlying distribution over individuals.
Indeed, the decision-maker can simply use p̃ as before, post-processing to decisions f̃ℓ(x) for
any ℓ ∈ L on an input-by-input basis.

1.3 Our Techniques: Performative Outcome Indistinguishability
We begin our technical overview with a simple motivating example. Consider the following
performative prediction problem.

▶ Example 5. Let individuals and decisions be encoded as signed booleans X = {±1} and
Ŷ = {±1}, assuming D is uniform over X . Suppose that Nature’s outcome distribution over
Y = {0, 1} is governed by the conditional probability function

p∗(x, ŷ) = 1/2 + βxŷ

for any 0 < β < 1/2. Consider the goal of learning an (L, H)-performative omnipredictor for
the following collection of losses and hypotheses:

L = {ℓ0, ℓ1} contains two opposing steering losses, which steer outcomes towards 0 and 1,
respectively.

ℓ1(x, ŷ, y∗) = 1 − y∗ ℓ0(x, ŷ, y∗) = y∗

H = {h+, h−} contains two decision rules over X that either returns x or its negation.

h+(x) = x h−(x) = −x

We begin by considering some naive attempts to achieve the goal of performative omnipre-
diction. Note that H actually contains an optimal decision rule for each loss in L. In particular,
for losses that steer to 0 versus 1, the optimal decisions minimize (or maximize) the probability
that y∗ = 1. The decision rule h+ maximizes the probability p∗(x, h+(x)) = 1/2 + β for all x,
whereas h− minimizes the probability p∗(x, h−(x)) = 1/2 − β. To obtain the omniprediction
guarantee, then, we must learn a probability function that encodes the best decision under
ℓ0 and ℓ1.

As such, a natural approach would be to fit a function p : X ×Ŷ → [0, 1] that approximates
the underlying probability p∗, which we can then post-process for a loss ℓ as in Equation 2.
To fit p, we can simply do supervised learning directly over triples (x, ŷ, y∗), where ŷ is
chosen uniformly at random. We argue that without specification (realizability) assumptions,
this approach also fails. Consider, for instance, fitting p using logistic regression

p(x, ŷ) = 1
1 + exp(−(ax + bŷ + c)) ,
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where a, b, c are parameters of the model. In our example, when we select ŷ at random,
the outcome y∗ is uncorrelated with each of x and ŷ on their own. Thus, the optimal
setting of these parameters is a = b = c = 0.3 Consequently, the logistic model is a
constant: p(x, ŷ) = 1/2 for all x ∈ X and ŷ ∈ Ŷ. Such constant predictions are completely
uninformative. Clearly, they cannot suggest the optimal decision rule for any loss, let alone
every loss in our collection. The negative result here, follows because the model class for p

was misspecified to fit p∗. In this example, of course, we simply need to run regression with
quadratic terms to be well-specified. However, without any assumptions about the complexity
of p∗, we cannot rely on approaches that require specifying Nature’s model exactly, which
might have unbounded complexity.

1.3.1 Performative Outcome Indistinguishability
Recently, [5] introduced the notion of Outcome Indistinguishability (OI) as a new solution
concept for supervised learning. In contrast to the traditional framing of learning through
loss minimization, OI defines the goal of learning through the lens of indistinguishability. In
this view, a predictive model should provide outcomes that cannot be distinguished from
true outcomes from Nature. In the world of supervised learning, OI and the closely-related
notion of multicalibration [12] have seen broad application, including in deriving supervised
omnipredictors [9].

Towards our goal of performative omniprediction, we adapt the paradigm of learning via
outcome indistinguishability to the outcome performative setting. In particular, we adapt
the loss outcome indistinguishability approach from a recent work of [8]. Intuitively, we
say a predictor p̃ : X × Ŷ → [0, 1] is performative outcome indistinguishable if outcomes
drawn according to the model ỹ ∼ p̃(x, h(x)) are indistinguishable from Nature’s outcomes
y∗ ∼ p∗(x, h(x)) under the distribution induced by a decision rule h. To make this notion
precise, we need to specify what we mean by indistinguishability and pin down the decision
rules we care to reason about.

In particular, to encode omniprediction through performative OI, our goal will be to
devise a set of tests of a predictor p̃ that – if passed – guarantee for every loss ℓ ∈ L, the
decision rule f̃ℓ is as good as any h ∈ H. Formally, we start by building a class of tests from
a collection of losses L and a hypothesis class H.4

▶ Definition 6 (Performative OI). For an input distribution D, collection of losses L, hypo-
thesis class H, and ε ⩾ 0, a predictor p̃ : X × Ŷ → [0, 1] is (L, H, ε)-performative outcome
indistinguishable (POI) over D if for all ℓ ∈ L and all h ∈ H,

E x∼D
y∗∼p∗(x,h(x))

[ℓ(x, h(x), y∗)] ≈ε E x∼D
ỹ∼p̃(x,h(x))

[ℓ(x, h(x), ỹ)].

We emphasize how this performative OI condition is a natural notion of outcome indistin-
guishability. In particular, we note where the predictor p̃ occurs in the POI conditions: it is
only used to sample outcomes according to p̃ in the modeled world. Importantly, the decisions
h(x) are used in the sampling of ỹ ∼ p̃(x, h(x)). Using h(x) as the decision associated with
x to sample each outcome y (under Nature and the model) ensures that p̃ encodes a reliable
estimate of the loss ℓ if the decision rule h is deployed. Performative OI ensures that p̃

“knows” these values for each loss in the collection ℓ ∈ L and each hypothesis in our class
h ∈ H.

3 More concretely, since E[xŷ] = E[xy∗] = 0, one can check that a = b = c = 0 solves the first-order
optimality conditions for the logistic regression objective Ex,ŷ,y∗ − [y log σ(ax + bŷ + c) + (1 − y) log(1 −
σ(ax + bŷ + c))] for σ(z) = 1/(1 + exp(−z)).

4 Throughout, we use the notational shorthand A ≈ε B to denote that A ∈ [B − ε, B + ε].
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While this OI condition ensures that p̃ captures the behavior of the hypotheses in H, it
says nothing about the losses under its own decision rules f̃ℓ. Reasoning about these decision
rules is essential for performative omniprediction. As such, we introduce an additional OI
condition, which we call performative decision OI, to ensure OI under the decision rules
suggested by p̃.

▶ Definition 7 (Performative Decision OI). For an input distribution D, collection of loss
functions L, and ε ⩾ 0, a predictor p̃ : X × Ŷ → [0, 1] is (L, ε)-performative decision outcome
indistinguishable (DOI) over D if for all ℓ ∈ L,

E x∼D
y∗∼p∗(x,f̃ℓ(x))

[ℓ(x, f̃ℓ(x), y∗)] ≈ε E x∼D
ỹ∼p̃(x,f̃ℓ(x))

[ℓ(x, f̃ℓ(x), ỹ)].

Here, p̃ is still used to sample outcomes ỹ, but is also used to determine the decision rule
f̃ℓ, for each ℓ ∈ L. Syntactically, changing from h ∈ H to f̃ℓ is a small change, but it has
significant impacts on the nature of the performative DOI condition – both in terms of its
costs and the strength of its guarantees. Critically, for a given loss ℓ, the decision rule f̃ℓ is (by
definition) optimal for outcomes sampled from ỹ ∼ p̃(x, f̃ℓ(x)). As such, indistinguishability
is a powerful tool here: if the losses are indistinguishable on modeled outcomes (where f̃ℓ is
optimal) and on Nature’s outcomes, then f̃ℓ should be optimal for Nature.

We formalize this intuition, demonstrating that performative OI and decision OI suffice to
establish omniprediction. Consider the loss ℓ ∈ L obtained by any h ∈ H on true outcomes.
We show that the loss of f̃ℓ is upper bounded by that of h.

▶ Proposition 8 (Informal). If a predictor p̃ is (L, H)-POI and L-DOI, then p̃ is an (L, H)-
performative omnipredictor.

Proof sketch. Once the appropriate OI conditions are written down, deriving performative
omniprediction is almost immediate.

E x∼D
y∗∼p∗(x,f̃ℓ(x))

[ℓ(x, f̃ℓ(x), y∗)] ≈ E x∼D
ỹ∼p̃(x,f̃ℓ(x))

[ℓ(x, f̃ℓ(x), ỹ)]

⩽ E x∼D
ỹ∼p̃(x,h(x))

[ℓ(x, h(x), ỹ)] ≈ E x∼D
y∗∼p∗(x,h(x))

[ℓ(x, h(x), y∗)]

The first equality follows by L-DOI, the second equality follows by (L, H)-POI, and the
middle inequality follows by the fact that f̃ℓ is optimal over modeled outcomes. ◀

In other words, we have managed to reduce the task of learning performative omnipre-
dictors to learning models satisfying performative OI conditions. Clearly, Nature’s model p∗

is “indistinguishable” from Nature (similarly, it is clear that p∗ is a performative omnipre-
dictor), but the question remains whether there exist efficient predictors p̃ that satisfy the
performative OI conditions. Thus, we turn our attention to learning OI predictors under
outcome performativity.

1.3.2 Learning Outcome Performative Predictors
Despite essential differences in the notions of OI in the supervised and performative settings,
we show that many of the algorithmic techniques that have become standard in the literature
on multicalibration and OI can be adapted to work in the outcome performative setting. In
particular, we demonstrate that, quite generically, learning performative OI models reduces
to auditing for distinguishability. Concretely, if there exists a loss ℓ ∈ L and hypothesis
h ∈ H ∪ {f̃ℓ}, such that the performative OI conditions are violated for a predictor p̃, we can

ITCS 2023



79:10 Making Decisions Under Outcome Performativity

use these “distinguishers” to update the model to address the violation. This observation
immediately suggests using a boosting algorithm, in the vein of [12], to learn performative
OI predictors. Provided that updating based on an ε-violation makes significant “progress”
towards satisfying performative OI, then the number of auditing steps T ⩽ O(1/ε2) will be
bounded.

While this learning paradigm of “audit, then update” is intuitive, there are nontrivial
challenges in maintaining the efficiency of the learned predictors. Consider, for instance, the
performative decision OI constraint. As highlighted above, the DOI constraints require that
we reason about the optimal decision rule according to p̃. In particular, to update based
on a violation of DOI on loss ℓ, we need to incorporate a copy of the function f̃ℓ(·). This
decision rule, however, is a function of p̃(·, ŷ) for every ŷ ∈ Ŷ (as it requires computing the
argmin over Ŷ). Naively, then, it would seem that in every iteration where we update the
model based on some f̃ℓ, we need to make |Ŷ| recursive oracle calls to the existing model.
Without careful consideration, the [12]-style learning algorithm will build a performative OI
predictor p̃ whose complexity s scales exponentially in the number of iterations, s ⩾ |Ŷ|T .

To avoid this blow-up, we need to choose a more effective representation of the probability
function p̃(·, ·). We observe that, in general, the updates required for the algorithm are
sparse in Ŷ . As a result of this sparsity, we can save on overall computation by implementing
p̃ : X × Ŷ → [0, 1] as a map from individuals to vectors of probabilities q̃ : X → [0, 1]Ŷ .
Mathematically, there is a bijection between such functions; computationally, however, the
representations behave very differently. By increasing the amount of work per update by
a factor of |Ŷ|, we avoid making |Ŷ| recursive calls. This strategy is reminiscent of an
approach [6] used to learn (supervised) OI predictors for outcomes living in a large domain.
With this representation in place, an appropriate analysis reveals that the resulting predictors
can be implemented in complexity that scales only polynomially in the number of iterations
and decisions.

After addressing representation issues, we study sufficient conditions to implement the
auditing task efficiently, from a polynomially bounded number of samples. Achieving
performative optimality, in general, requires exploration of the consequence of using different
decision rules h ∈ H, as these decision rules effect the distribution on outcomes. Nevertheless,
we show that it suffices for this exploration to be done “offline” via randomized assignment of
decisions ŷ ∈ Ŷ . In particular, if we collect triples {(x, ŷ, y∗)} through a randomized control
trial, assigning ŷ uniformly at random for each x ∈ X , and observing y∗ ∼ p∗(x, ŷ), we avoid
the need to deploy each h ∈ H.

Given access to such RCT data, we give a reduction from the task of auditing for
performative OI to the task of supervised learning for the hypothesis class H. This reduction
from auditing to learning is familiar in the OI framework [12, 5], but critically, we go from a
performative prediction task to a non-performative task. In all, our reductions show that if
we can learn the best decision rule from H in a supervised learning setting, then we can learn
performative omnipredictors with respect to H, assuming access to appropriately sampled
data.

1.3.3 Universal Adaptability under Outcome Performativity
The OI viewpoint enables a similarly straightforward analysis of distributional robustness,
via universal adaptability. Universal adaptability is a notion introduced by [19] in the context
of statistical estimation. In the original context, a predictor is universally adaptable if it
provides an efficient way to estimate statistics across many underlying input distributions.
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We translate the notion of universal adaptability to the outcome performative prediction
setting. In our context, we parameterize universal adaptability by a class of importance weight
functions W ⊆ {X → R⩾0}. For a base input distribution D, we define a corresponding
collection of shifted distributions DW to be the set of distributions reachable after reweighting
by some ω ∈ W .

DW = {Dω : ω ∈ W , supp(Dω) ⊆ supp(D)} and ∀x ∈ supp(Dω) : Dω(x) = ω(x) · D(x)

The key observation is that for any hypothesis h, loss function ℓ, and importance weight
function ω, the expected loss over Dω is equal to an expected loss over D, for a loss defined
in terms of ℓ and ω.

E x∼Dω

ỹ∼p̃(x,h(x))
[ℓ(x, h(x), ỹ)] = E x∼D

ỹ∼p̃(x,h(x))
[ℓ(x, h(x), ỹ) · ω(x)]

Importantly, this equality relies on the fact that the outcome probability functions p∗ and
p̃ are defined conditional on x and ŷ, and thus are invariant across shifts in the input
distribution.

Using the result that indistinguishability implies omniprediction, by simply enforcing
that p̃ satisfy the POI and DOI conditions relative to p∗ under this enriched class of loss
functions ℓ · ω, we can neatly ensure that p̃ is again POI and DOI, not just over D, but over
every marginal distribution Dω. Consequently, p̃ must a be an omnipredictor under all of
these Dω. The simplicity of this analysis attests to the versatility of the OI perspective and
the value it provides in domains beyond supervised learning.

1.4 Related Work and Discussion
Our work lies at the intersection of several areas including performative prediction, the
outcome indistinguishability and multicalibration literature, as well as other fields studying
algorithmic decision-making such as contextual bandits. We briefly discuss how our results
relate to previous work within these areas and conclude with some speculation regarding
broader implications of our conclusions.

1.4.1 Performative Prediction
The performative prediction framework was introduced by [28] who defined the main solution
concepts and analyzed the convergence of repeated risk minimization to performatively stable
points. A decision rule hps is performatively stable if it is a fixed point of risk minimization,

hps ∈ arg min
h∈H

E(x,y∗)∼D(hps)[ℓ(x, h(x), y∗)].

Subsequent work by [24, 4, 2, 3] studied stochastic optimization algorithms for finding stable
points in a variety of settings. However, these stable solutions need not be performatively
optimal as per the definition outlined in Equation 1. In fact, [26] proved that performatively
stable models can achieve arbitrarily worse loss than performative optimal points. This
observation motivated the design of algorithms for findings performatively optimal decision
rules for a fixed loss ℓ[26, 13, 14, 27, 15]. These algorithms work in the general performative
prediction setup where the model h can affect the joint distribution over pairs (x, y), but
make make very strong specification assumptions on how each h influences the distribution,
and restrict to loss functions satisfying smoothness and strong convexity.
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In contrast, our results rely only on the outcome performativity assumption and mild
boundedness assumptions. The recent work of [23] has also considered the outcome per-
formativity setting, aiming to understand when performative effects are identifiable from
observational data. Short of identifiability, it remains an interesting direction for future
research to give learning algorithms for performative omnipredictors from observational data.

Beyond these optimization results, previous work in performative prediction has acknow-
ledged the tension in performative prediction between accurate forecasting and steering.
Concretely, [26] discuss how the choice of loss function in performative prediction should
balance predictive accuracy with any externalities that arise from the impacts of prediction
on the observed distribution. In a different direction, [10] uses performativity as a lens with
which to study notions of market power in economics. As part of their analysis, they provide
a decomposition of the performative risk of a classifier into terms that represent forecasting
and steering. While we consider how the choice of loss function determines the high-level
objective, [10] considers how, even for a fixed loss function, the performative risk can be
decomposed into terms associated with forecasting and steering.

1.4.2 Reinforcement Learning and Contextual Bandits

As discussed in [28], performative prediction, and in particular outcome performativity,
can be cast as reinforcement learning (RL) or contextual bandits problems. Individuals
x correspond to the contexts, decisions ŷ correspond to actions, and the loss ℓ(x, ŷ, y∗) is
captured by the reward r(x, ŷ). Due to the breadth of their definitions, most ML problems
can be written as RL problems.

Still, important issues that arise in outcome performativity – like the tension between
forecasting and steering and the desire for omnipredictors – are best seen by focusing on
the specific interactions between predictions ŷ and outcomes y. The variety of losses that
can exist for a given outcome are obscured by encapsulating all feedback within an abstract
reward function r(x, ŷ). Moreover, on a technical level, performativity has a richer feedback
structure that can be used to design more efficient algorithms as illustrated by [15].

1.4.3 Multicalibration and Outcome Indistinguishability

Originally developed by [12] as a notion of fairness in prediction, multicalibration has seen
considerable interest and application in the broader context of supervised learning. At a
high-level, multicalibration requires predictions to be calibrated, not just overall, but even
when restricting our attention to structured subpopulations. The goal of multicalibration
and other related notions of “multi-group” fairness [17, 21, 18, 16] is to ensure that learning
occurs within important subpopulations that might otherwise be ignored.

Intuitively, the requirements of multicalibration represent a kind of indistinguishability:
calibration requires that the predicted probabilities “look like” real probabilities. [5] formalizes
this intuition, introducing the notion of Outcome Indistinguishability, which generalizes
multicalibration. They show tight computational equivalences between multi-group fairness
notions and variants of OI. Subsequently, OI and multicalibration have been applied in diverse
contexts beyond fairness, such as distributional robustness through universal adaptability [19]
and omniprediction [9].
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1.4.4 Omniprediction
Our work draws inspiration from the work on (supervised) omnipredictors. Even in the
supervised learning setting, the existence of efficient omnipredictors is not at all obvious.
The main result of [9] demonstrates the feasibility of omnipredictors over any hypothesis
class H, for the class Lcvx of all convex and Lipschitz loss functions. This sweeping result
follows by showing that a H-multicalibrated predictor is a (Lcvx, H)-omnipredictor.

On a technical level, our analysis is most closely related to concurrent work by [8] that
studies omniprediction in supervised learning through the lens of outcome indistinguishability.
By the equivalence of OI with multicalibration, it has been clear since the work of [9] that
OI captures loss minimization and omniprediction in the context of supervised learning,
albeit indirectly. [8] revisits the question of omnipredictors, directly through the lens of OI,
studying a refined notion, which they call loss outcome indistinguishability. Indeed, our proof
that Performative OI and Performative Decision OI imply Performative Omniprediction
follows a strategy laid out to obtain supervised omnipredictors from loss OI.

While syntactically similar to prior formulations of OI, our notion of performative OI is
the first to consider outcome indistinguishability for non-supervised learning distributions.
Our objective, in this work, was to derive a notion of performative OI sufficient to imply
performative omniprediction. No doubt, further generalizations of the original OI hierarchy [5]
to the (outcome) performative setting – and beyond – may prove useful.

1.5 Overview of Full Manuscript
To read the complete set of results and proofs, please see the full version of the paper [20].

We limit ourselves to providing a brief overview of the remaining sections. In Section 2
of the full version we set up outcome performativity formally and establish notation used
throughout the manuscript. In Section 3, we define performative omniprediction and
performative outcome indistinguishability. There, we show how appropriate performative
OI conditions suffice to obtain omniprediction. In Section 4, we establish the universal
adaptability properties of performative omnipredictors. In Section 5, we give a generic
learning algorithm for performative omnipredictors, demonstrating concrete instantiations of
the algorithm using randomized control trial data. Finally, in Section 6, we discuss notions of
multicalibration in the context of performative prediction. We speculate that some notions
translate to the performative setting naturally, yielding efficient approaches to performative
OI, while other notions seem to resist efficient translation.
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Abstract
We study boolean constraint satisfaction problems (CSPs) Max-CSPf

n for all predicates f : {0, 1}k →
{0, 1}. In these problems, given an integer v and a list of constraints over n boolean variables, each
obtained by applying f to a sequence of literals, we wish to decide if there is an assignment to the
variables that satisfies at least v constraints. We consider these problems in the streaming model,
where the algorithm makes a small number of passes over the list of constraints.

Our first and main result is the following complete characterization: For every predicate f , the
streaming space complexity of the Max-CSPf

n problem is Θ̃(ndeg(f)), where deg(f) is the degree of f

when viewed as a multilinear polynomial. While the upper bound is obtained by a (very simple)
one-pass streaming algorithm, our lower bound shows that a better space complexity is impossible
even with constant-pass streaming algorithms.

Building on our techniques, we are also able to get an optimal Ω(n2) lower bound on the
space complexity of constant-pass streaming algorithms for the well studied Max-CUT problem,
even though it is not technically a Max-CSPf

n problem as, e.g., negations of variables and repeated
constraints are not allowed.
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1 Introduction

Constraint satisfaction problems (CSPs) are used extensively in mathematics as they give a
unified framework that allows the expression of a wide variety of computational optimization
problems. An instance of a (boolean) CSP is a list of constraints (or clauses) Ψ = (C1, . . . , Cm)
over n boolean variables x1, . . . , xn. Here, each constraint Ci is obtained by applying a
boolean function to a sequence of variables. The value of Ψ is the maximum number of
constraints that can be satisfied by an assignment to the variables.

CSPs received a lot of attention in the computational setting, where the holy grail is
to classify all CSPs according to their hardness. A surprising classical result from the
1970’s, known as the dichotomy theorem, shows that the problem of deciding if all the
constraints of a given CSP can be satisfied is either in P or is NP-complete [31, 16, 10, 36].
Another very successful line of research studies the hardness of approximating the value of
a CSP instance (or, equivalently, solving the corresponding gap problems), culminating in
a complete characterization of “approximation-resistant” CSPs, at least under the unique
games conjecture [29] (also see [27, 5, 6] and the survey of [24]).
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The space complexity required to solve general CSPs was only recently studied in the
context of streaming algorithms [18, 14, 13, 12, 9, 32]. Streaming algorithms are a restricted
set of algorithms where the input is assumed to be given as a stream of objects that is only
scanned once or a few times by the algorithm. In the framework of streaming CSPs, the
objects in the stream are constraints (with repeated constraints allowed).

Recently, [13] showed that CSPs are never very easy in the streaming setting. In particular,
they give a simple argument showing an Ω(n) lower bound on the space complexity of any
streaming algorithm that solves Max-CSPf

n, for any non-constant f . Here, Max-CSPf
n is the

problem where on input (Ψ, v), we need to decide whether or not the value of Ψ is at least v,
where v ∈ N and Ψ is a CSP instance over n variables with constraints that are applications
of the predicate f : {0, 1}k → {0, 1} to a sequence of literals (variables and negations of
variables) and constants12.

Are there Max-CSP problems that require substantially more than linear space? We
mention that for other streaming problems where the size of the input is potentially much
larger than n, e.g., graph streaming problems, linear or almost linear space algorithms are
often considered efficient (“semi-streaming”), and Ω(n2) lower bounds are desired3.

This paper

In this paper we give a characterization of the space complexity of multi-pass streaming
algorithms that solve Max-CSPf

n, for arbitrary f . For the rest of this section, assume that
the length of the stream is at most polynomial in n. It is easy to see that for every f , the
Max-CSPf

n problem can be solved by a one-pass streaming algorithm with at most Õ(nk)
space: Observe that the number of different constraints is only O(nk).4 By counting the
number of appearances of each clause in the stream, which only requires storing O(nk)
counters, we essentially store the entire input and can even compute the exact value of the
instance.

Is Ω(nk) space always required? Clearly no, as f may not even depend on all k of its
variables. So, what exactly determines the space complexity of Max-CSPf

n?

1.1 Our Results
We start by observing that, in fact, the Max-CSPf

n problem admits an Õ(nd)-space, one-pass
streaming algorithm, where d = deg(f) ≤ k is the degree of f when written as a multilinear
polynomial over the reals5. This follows because, for any instance Ψ with n variables, there
exists a degree d polynomial P over the same variables such that the values of Ψ and P on
any assignment x ∈ {0, 1}n are the same. Moreover, this polynomial can easily be maintained
using an Õ(nd)-space streaming algorithm, as it has at most O(nd) coefficients and is just
the sum of the multilinear polynomials corresponding to each individual clause6. Thus, an
algorithm that maintains this polynomial using Õ(nd)-space and outputs its largest value
(over all x) also solves Max-CSPf

n.
However, is there yet another, better, streaming algorithm for Max-CSPf

n, for any f?

1 E.g., the constraint Ci can be f(1, x̄5, x̄8, x2).
2 We mention that the setting of [13] is more general: it does not allow the constraints to use negation of

variables, but does allow them to apply any predicate out of a set of predicates F .
3 For instance, an Ω(n) multi-pass lower bound for directed reachability and related graph problems is

simple, and recent work focused on improving the bound to Ω(n2−ϵ) [17, 3, 11].
4 A constraint corresponds to an element of X k, where X = {x1, x̄1, . . . , xn, x̄n, 0, 1}k, and |X | = 2n + 2.
5 For instance, if f(y1, y2, y3) = y1 ∧ y2 ∧ ȳ3, then the corresponding polynomial is y1y2(1 − y3).
6 For instance, if f(y1, y2, y3) = y1y2(1 − y3) = y1y2 − y1y2y3 and Ci = f(x̄5, 1, x2), then multilinear

polynomial corresponding to Ci is (1 − x5) · 1 · (1 − x2) = 1 − x2 − x5 − x2x5.
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1.1.1 Lower Bounds for Max-CSP
Our main result answers this question in the negative, showing that the above algorithm is
essentially optimal, even if constantly many passes are allowed. This means that the degree
of a predicate fully characterizes the streaming space complexity of the associated Max-CSP
problem.

▶ Theorem 1 (cf. Theorem 7). Let k ∈ N be a constant and let f : {0, 1}k → {0, 1}. For
n, p ∈ N, the p-pass streaming space complexity of Max-CSPf

n is at least Ω
(
ndeg(f)/p

)
.

We mention that with 2n passes, the space complexity of Max-CSPf
n drops down

to Õ(log n), for every f . The reason is that, in each pass, the algorithm can count the
number of constraints satisfied by a certain assignment. We also mention that the formal
version (see Theorem 7) of Theorem 1 shows a lower bound on the communication complex-
ity of Max-CSPf

n, and is therefore stronger. The same holds for the stronger version (see
Theorem 10) of Theorem 2 below.

The proof of Theorem 1 consists of two key results. The first result, given in Theorem 4,
shows that any instance of Max-CSPANDd

n , where ANDd is the d-bit conjunction function,
can be expressed as a Max-CSPf

n instance for any f that has deg(f) = d.7 Therefore, to
prove Theorem 1, it suffices to show an Ω(nd) lower bound on the streaming complexity
of Max-CSPANDd

n , which is done by our second key result, Lemma 8. Lemma 8, in turn, is
proved using a novel communication complexity reduction from set disjointness. We mention
that our proofs are generally quite simple.

Theorem 4 may be of independent interest, as it gives a general way of converting lower
bounds for Max-CSPANDd

n to lower bounds for Max-CSPf
n. Indeed, in Appendix A, we show

that it can also be used to obtain a lower bound on the space complexity of multi-pass
streaming algorithms that approximate Max-CSP problems arbitrarily well. We mention that
the space complexity of streaming and sketching algorithms that approximate, within any
constant factor, the value of a given CSP instance was the main interest of [13] (also see [12]),
and that they prove beautiful dichotomy (or partial dichotomy) results.8 See [33] for a recent
and great survey.

1.1.2 Lower Bound for Max-CUT
One of the most studied CSPs in the streaming literature is the Max-CUT problem, cor-
responding to the XOR predicate [25, 21, 22, 8, 23, 2, 4]. Note that Max-CUTn is not a
proper Max-CSPf

n problem, as constraints cannot be repeated nor use constants or negations
of variables. Nevertheless, our techniques can be used to prove an Ω(n2) lower bound on
the space complexity of multi-pass Max-CUTn streaming algorithms for unweighted graphs.
Observe that, indeed, deg(XOR) = 2.

7 Reductions of this form were used in the study of CSPs in the computational setting. For instance,
the XOR of two bits can be expressed using a set of f -clauses, for many different functions f , see e.g.
Lemma 5.36 in [15]. However, such reductions do not preserve the degree (reducing it to 2), and would
not give us better than quadratic bounds. Indeed, our proofs are very different from theirs and preserve
the degree of f .

8 We note that the space regime in their dichotomies is different than the one we consider in Theorem 7: As
the value of any CSP instance can be approximated within any constant factor by a one-pass Õ(n)-space
streaming algorithm, an “easy” CSP for [13] admits an O(poly log n)-space one-pass streaming algorithm,
and a “hard” CSP requires Ω(nα) space (α ≤ 1), also see [12]. In the exact version, however, an Ω(n)
lower bound is known [13] and so, our main result (Theorem 7) concerns super-linear space complexities.

ITCS 2023
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▶ Theorem 2 (cf. Theorem 10). For n, p ∈ N, the p-pass streaming space complexity of
Max-CUTn is at least Ω(n2/p).

Prior to our work, an Ω(n2) lower bound was only known for one-pass streaming algorithms
that solve Max-CUTn [35] and for weighted graphs [7]9. Multi-pass streaming lower bounds
were recently shown for the much more general case of approximation algorithms, but these
only obtained sub-linear lower bounds on the space [2, 4]. Quadratic multi-pass lower bounds
for other graph problems are shown in [1].

2 Models and Preliminaries

2.1 Notation

We use N = {1, 2, 3, . . .} to denote the set of natural numbers (note that 0 /∈ N). We denote
vectors in bold letters (e.g., x and C). Let ℓ ≥ 1 and let x be a vector with ℓ coordinates. For
i ∈ [ℓ], we use the notation xi to address coordinate i of x. Let S ⊆ [ℓ], we use the notation
xS to address the vector with |S| coordinates obtained by deleting from x coordinates that
are not in S. We often use the notation (·, ·) to denote vector concatenation, e.g., if each
of x and y is either a vector or an element, then (x, y) denotes the vector obtained by
concatenating y to x.

Let ℓ ≥ 0. We use 0ℓ and 1ℓ to denote the all-0s and all-1s vectors (respectively) of ℓ

coordinates. For a vector x ∈ {0, 1}ℓ, we denote the Hamming weight of x by ∥x∥. That is,
∥x∥ =

∑
i∈[ℓ] xi.

2.2 Constraint Satisfaction Problems

CSPs

Let k ∈ N be a natural number and f : {0, 1}k → {0, 1} be a boolean function. Let n ∈ N
and consider n boolean variables x1, . . . , xn. Let Xn = {0, 1, x1, x̄1, . . . , xn, x̄n} be the set
of all literals and constants. An instance of the Max-CSPf

n problem is defined as a list of
clauses Ψ = (C1, . . . , Cm), for some m ∈ N, where Ci ∈ X k

n for all i ∈ [m].
Observe that if C ∈ X k

n , then an assignment x ∈ {0, 1}n, fixes the value of f(Ci). We
define the value of Ψ on an assignment x ∈ {0, 1}n to be the number of clauses that it
satisfies:

Ψ(x) =
m∑

i=1
f(Ci).

The value of Ψ is defined as the maximum number of clauses that are satisfied by a single
assignment:

Max-CSPf
n(Ψ) = max

x∈{0,1}n
Ψ(x). (1)

The problem of Max-CSPf
n is a decision problem that on input (Ψ, v), where Ψ is as above

and v ∈ N, outputs 1 if Max-CSPf
n(Ψ) ≥ v and 0 otherwise.

9 We thank the anonymous reviewer for telling us that this theorem follows from [7].
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Approximate CSPs

We will also be interested in the approximation version of Max-CSPf
n. For ϵ ≥ 0, the problem

of Max-CSPf
n,ϵ on instance Ψ is to output a value v that satisfies

(1 − ϵ) · Max-CSPf
n(Ψ) ≤ v ≤ Max-CSPf

n(Ψ). (2)

Positive CSPs

It will be useful to consider CSPs with a restricted set of possible clauses, where variables
are only used positively (meaning that the negations of variables cannot be used). Formally,
as before, we define an instance of the Max-Pos-CSPf

n problem as a list of clauses Ψ =
(C1, . . . , Cm). However, now each Ci is in the set {0, 1, x1, . . . , xn}k.10

Predicate degree

Let k ∈ N and f : {0, 1}k → {0, 1} be a boolean function. We define the degree of f , denoted
deg(f), to be the minimum degree of a (multilinear) polynomial g : Rk → R that satisfies
∀x ∈ {0, 1}k : f(x) = g(x). We mention that it can be assumed, without loss of generality,
that the coefficients of g are integers. Indeed, if not, fixing the smallest degree term with a
non-integer coefficient and setting all the variables in this term to 1 and all other variables
to 0 results in a non-integral value.

Max-AND

Let k ∈ N. We denote ANDk(x1, . . . , xk) =
∧

i∈[k] xi. We use Max-ANDk
n to denote the

Max-CSPANDk
n problem.

Max-CUT

Let n ∈ N and consider a simple, undirected graph G on n vertices. We define Max-CUTn(G)
to be the maximum size of a cut (partitioning of the vertices) in G. Here, the size of a cut is
the number of edges in G that cross the cut. Let v ∈ N. We define Max-CUTn(G, v) = 1 if
Max-CUTn(G) ≥ v, and otherwise Max-CUTn(G, v) = 0.

2.3 Communication Complexity
For a two-party communication task T (x, y), we use CC(T ) to denote the randomized
communication complexity of T with success probability at least 2/3.

Max-CSP as a communication task

We denote by CC(Max-CSPf
n) the communication complexity of solving Max-CSPf

n instances
where the clauses are partitioned between two parties. Formally, the input to the communic-
ation task is (Ψ, v) =

((
ΨA, ΨB

)
, v
)
, where Alice gets as input ΨA and Bob gets as input

ΨB , and v is known to both parties. We will assume throughout that ΨA and ΨB are of the
same size. This technical assumption will be useful for us as it implies that both Alice and
Bob know the total number of clauses. We define CC(Max-Pos-CSPf

n) similarly.

10We note that we do want to allow constants: consider, for example, the case where f(x1, x2, x3) =
x1 ⊕ x2 ⊕ x3. When not allowing constants, any instance of Max-Pos-CSPf

n is trivially maximized by
the all-1s vector.

ITCS 2023



80:6 Streaming Exact Solutions for Boolean CSPs

Max-CUT as a communication task

We denote by CC(Max-CUTn) the communication complexity of solving Max-CUTn instances
where the edges of the graph are partitioned between two parties. Formally, there is a set V

of n vertices and both Alice and Bob are given disjoint sets of edges EA and EB over the
vertices in V . Both of them also know a value v and need to determine whether or not the
maximum cut in the graph G = (V, EA ∪ EB) is at least v.

Set disjointness

We will use a lower bound on the communication complexity of the following version of the set
disjointness problem: For u, m ∈ N with u ≥ m, an instance of the DISJu,m problem is a pair
(y, z), where y, z ∈ {0, 1}u with ∥y∥ = ∥z∥ = m. The problem is to compute whether or not
the sets indicated by y and z intersect or not, i.e., DISJu,m(y, z) = 1(∀i ∈ [u] : yi · zi = 0).

▶ Lemma 3 ([30]). Let m ∈ N. We have that CC(DISJ4m+1,m) ≥ Ω(m).

2.4 Streaming Algorithms
We say that p-pass streaming algorithm solves a streaming task if it scans the input p

times and outputs a correct solution with probability at least 2/3. The problems Max-CSP,
Max-CUT have a natural streaming task associated with where the list of clauses/edges are
given in a stream and the target value v is hard-coded in the algorithm.

3 Reducing Max-AND to Max-CSP

The goal of this section is to show the following theorem:

▶ Theorem 4. Let k ≥ d ∈ N. Let f : {0, 1}k → {0, 1} be such that deg(f) = d. There exist
non-negative rational numbers {αC}C∈X k

d
and α, such that for every x ∈ {0, 1}d it holds that

ANDd(x) =
∑

C∈X k
d

αCf(C) − α.

Proof. To start, note that the non-negativity of α is without loss of generality (given the
other claims), as can be seen by setting x = 0d. We use the following notation: Given
a function j : {0, 1}ℓ → {0, 1}, we write it as the polynomial j(x) =

∑
S⊆[ℓ] jSTS , where

TS =
∏

i∈S xi.
Let S ⊆ [k] be a set of size d with fS ̸= 0. We assume without loss of generality that

S = [d]. We define the function h : {0, 1}d → {0, 1} by h(x) = f(x, 0k−d) if f[d] > 0, and by
f(x̄1, x2, . . . , xd, 0k−d) if f[d] < 0. Observe that h[d] = |f[d]| > 0.

If h is of the form h(x) = h[d] · T[d] + h∅, we are done, as this implies T[d] = ANDd(x) =
1

h[d]
(h(x) − h∅) and as h[d] > 0 (also recall that, for every S ⊆ [d], the coefficient hS can be

assumed to be an integer). Otherwise, let 0 < d∗ < d be the maximum size of a set S such
that hS ̸= 0, and assume without loss of generality that h[d∗] ̸= 0.

Let h′, g : {0, 1}d → {0, 1} be given by h′(x) = h(x̄1, x2, . . . , xd∗ , 0d−d∗
) and g(x) =

h(x) + h′(x). We next prove the following three properties about the coefficients of g:
1. g[d] = h[d] > 0.
2. g[d∗] = 0.
3. Let S be the set of subsets S ⊊ [d] with |S| ≥ d∗ and hS = 0. Then, for every S ∈ S, it

holds that gS = 0.
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Before proving the above three properties, we show that they suffice in order to prove the
theorem. We use the following observation that is implied by the second and third properties:
Recall that d∗ is the maximum size of a set S ⊊ [d] with hS ̸= 0, and let t be the number of
sets S ⊊ [d] of size d∗ with hS ̸= 0. Then, either the maximum size of a set S ⊊ [d] with
gS ̸= 0 is strictly smaller than d∗, or the maximum size of such set is d∗ but there are strictly
less than t sets S of size d∗ with gS ̸= 0.

The theorem follows from the observation by repeatedly “zeroing out” a leading coefficient.
In more detail, consider the sequence of functions h1, h2, . . . , where h1 = h and hi+1 =
hi + (hi)′,11 and where the sequence ends after the function hm if and only if it is of the
form hm(x) = hm

[d] · T[d] + hm
∅ . By the observation, the sequence indeed ends. Let hm be

the last function in the sequence. Observe that hm is of the form
∑

C∈X k
d

α′
Cf(C) with the

coefficients α′
C being non-negative integers, and that, by the first property, hm

[d] > 0. This
concludes the proof as we have T[d] = ANDd(x) = 1

hm
[d]

(hm(x) − hm
∅ ).

It remains to prove the three above properties. We first calculate the coefficients of h′:

h′(x) = h(x̄1, x2, . . . , xd∗ , 0d−d∗
) =

∑
S⊆{2,...,d∗}

hSTS + hS∪{1}(1 − x1)TS

=
∑

S⊆[d∗]: 1/∈S

(hS + hS∪{1})TS −
∑

S⊆[d∗]: 1∈S

hSTS .

Therefore, for S ⊆ [d∗], if 1 ∈ S then h′
S = −hS , and if 1 /∈ S, then h′

S = hS +hS∪{1}. Observe
that if S is not a subset of [d∗], it holds that h′

S = 0, and therefore gS = hS +h′
S = hS +0 = hS .

Since d∗ < d, this implies g[d] = h[d], proving the first property.
To prove the second property, note that for any set S ⊆ [d∗] with 1 ∈ S, we have

gS = hS + h′
S = hS − h′

S = 0. This implies g[d∗] = 0.
To prove the third property, let S ∈ S. Recall hS = 0, and thus S ̸= [d∗]. Also recall

that |S| ≥ d∗, and since S ̸= [d∗], this means that S is not contained in [d∗]. By the above,
gS = hS = 0. ◀

Our proofs use the following corollaries of Theorem 4 to communication complexity and
streaming space complexity.

▶ Corollary 5. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have:

CC
(

Max-ANDdeg(f)
n

)
≤ CC

(
Max-CSPf

n

)
.

Proof. Let d = deg(f). We prove the theorem by reduction. Given an input (Ψ, v) =((
ΨA, ΨB

)
, v
)

for the Max-ANDd
n communication problem over variables x = (x1, . . . , xn),

we construct an input Φ =
(
(ΦA, ΦB), u

)
for Max-CSPf

n over the same variables. To this end,
we generate a set of f -clauses for every AND clause using Theorem 4.

In more detail, Alice goes over all the clauses in ΨA. Suppose that clause i is C ∈ X d
n .

Alice generates the f -clauses corresponding to this clause as follows: View C as the vector of
formal variables (X1, . . . , Xd) and let X ′

d = {0, 1, X1, X̄1, . . . , Xd, X̄d} be the corresponding
set of formal literals and constants. By Theorem 4, there exist wC′ ∈ N ∪ {0} for every
C′ ∈ (X ′

d)k, an integer w, and w′ ∈ N, such that

w′ · ANDd(C) =
∑

C′∈(X ′
d)k

wC′f(C′) − w.

11 The function (hi)′ is obtained from hi by negating one of the variables. However, for a general i, the
negated variable may not be x1.
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For every C′ ∈ (X ′
d)k, Alice adds wC′ copies of the clause C′ to ΦA. Here, we view C′ as an

element in X k
n , as each of its coordinates X ′

i, i ∈ [k], is either a bit or is of the form Xj or X̄j

for some j ∈ [d], and Xj itself is either a bit or of the form xℓ or x̄ℓ for some ℓ ∈ [n] (e.g., if
X ′

i = X̄j and Xj = x̄ℓ, then we identify X ′
i with X ′

i = X̄j = (x̄ℓ) = xℓ). Bob constructs ΦB

similarly.
Observe that both Alice and Bob generate the same number of f -clauses for every AND

clause in Ψ. Since we assume that ΨA and ΨB has the same number of clauses, ΦA and ΦB

have the same number of clauses. Let m be the number of clauses in Ψ, i.e., m is the sum
of the lengths of ΨA and ΨB. Observe that since Alice and Bob have the same number of
clauses, they both know m. Also observe that

w′ · Max-ANDdeg(f)
n (Ψ) = Max-CSPf

n(Φ) − w · m.

Now, set u = w′ · v + w · m, and note that both Alice and Bob can compute u. To finish the
proof we observe that Max-CSPf

n(Φ) ≥ u if and only if Max-ANDdeg(f)
n (Ψ) ≥ v. ◀

▶ Corollary 6. Let k ∈ N and f : {0, 1}k → {0, 1}. For all ϵ′ ≥ 0, there exists ϵ ≥ 0 such that
for all p, n ∈ N, any p-pass streaming algorithm for Max-CSPf

n,ϵ′ implies a p-pass streaming
algorithm for Max-ANDdeg(f)

n,ϵ with the same space complexity, up to constant factors.

Proof. Let d = deg(f). Given an instance Ψ of Max-ANDd
n over variables x = (x1, . . . , xn),

presented as a stream of clauses, we can use the same construction as in the proof of
Corollary 5 to generate an instance Φ of Max-CSPf

n over the same variables. Note that this
construction can be implemented in a streaming manner.

Let wC′ ∈ N∪ {0} for every C′ ∈ (X ′
d)k, w ∈ N∪ {0}, and w′ ∈ N be such as in the proof

of Corollary 5, let α = w
w′ be as in Theorem 4, and let m be the number of clauses in Ψ.

Note that as before,

w′ · Max-ANDd
n(Ψ) = Max-CSPf

n(Φ) − w · m.

Now, let ϵ = 2k+1(α + 1)ϵ′, and suppose that there existed a p-pass streaming algorithm
A′ which, given an instance Φ of Max-CSPf

n,ϵ′ returned a value v′ such that (1 − ϵ′) ·
Max-CSPf

n(Φ) ≤ v′ ≤ (1 + ϵ′) · Max-CSPf
n(Φ) with probability at least 2/3. Then we

could create a p-pass streaming algorithm A for Max-ANDf
n,ϵ which turns an instance Ψ of

Max-ANDd
n into an instance Φ of Max-CSPf

n as above, runs A′ on the resulting stream Φ to
obtain some v′ as above, and then outputs 1

w′ (v′ − (1 − ϵ′) · w · m).

Upper bounding the space complexity of A. A requires only O(log m) additional bits
over A′ in order to compute m. However, without loss of generality, we may assume that
every clause of Ψ is satisfied by some assignment of variables, by simply ignoring all clauses
which are not satisfied by any assignment of variables. By a probabilistic argument, this
then ensures that Max-ANDd

n(Ψ) ≥ m/2k, so log m = O(log v′). As A′ has to output v′, it
requires at least log v′ bits of memory, implying that the space required by A and A′ are
within a constant factor.

Proving the correctness of A. Consider v = 1
w′ (v′ − (1 − ϵ′) · w · m), the value returned

by the algorithm. With probability 2/3, it holds that (1 − ϵ′) · Max-CSPf
n(Φ) ≤ v′ ≤

(1 + ϵ′) · Max-CSPf
n(Φ). As such, suppose that this happens.

We claim that v ≥ (1 − ϵ) · Max-ANDd
n(Ψ). This follows directly as ϵ ≥ ϵ′, v′ ≥

(1 − ϵ′) · Max-CSPf
n(Φ), and w′ · Max-ANDd

n(Ψ) = Max-CSPf
n(Φ) − w · m.
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Next, we claim that v ≤ (1 + ϵ) · Max-ANDd
n(Ψ) using the fact that v′ ≤ (1 + ϵ′) ·

Max-CSPf
n(Φ). Recalling our assumption that each clause in Ψ is satisfied by some assignment

of variables, we get that Max-ANDd
n(Ψ) ≥ m/2k. Thus,

v = 1
w′ (v′ − (1 − ϵ′) · w · m)

≤ 1
w′

(
(1 + ϵ′) · Max-CSPf

n(Φ) − (1 − ϵ′) · w · m
)

= (1 + ϵ′) · Max-ANDd
n(Ψ) + 2ϵ′ · wm

w′

≤ (1 + ϵ′) · Max-ANDd
n(Ψ) + 2ϵ′ · α2k · Max-ANDd

n(Ψ)

=
(
1 +

(
1 + α2k+1)ϵ′) · Max-ANDd

n(Ψ)

≤ (1 + ϵ) · Max-ANDd
n(Ψ).

Thus, (1 − ϵ) ·Max-ANDd
n(Ψ) ≤ v ≤ (1 + ϵ) ·Max-ANDd

n(Ψ) with probability at least 2/3. ◀

4 Communication Lower Bound for Max-CSP

In this section we prove Theorem 1. By standard argument, Theorem 1 is implied by the
following communication lower bound:

▶ Theorem 7. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have

CC(Max-CSPf
n) ≥ Ω

(
ndeg(f)

)
.

In turn, Theorem 7 follows directly from Lemma 8 below and Corollary 5:

▶ Lemma 8. Let k ∈ N. For all n ∈ N, we have

CC
(

Max-ANDk
n

)
≥ Ω

(
nk
)
.

Observe that Lemma 8 follows from an Ω
(
nk
)

lower bound on CC(Max-CSPgk
n ) for any

function gk : {0, 1}k → {0, 1}. The reason is that any gk can be written in DNF form,
by looking at its truth table and writing it as an OR of a set of AND clauses, such that
any satisfying assignment satisfies exactly one of the AND clauses (and a non-satisfying
assignment satisfies none). Now, given an instance of Max-CSPgk

n , we convert it to an
instance of Max-ANDk

n by replacing each constraint with the corresponding set of AND
clauses. Observe that the values of the two instances are the same and therefore, a lower
bound for Max-CSPgk

n implies a lower bound for Max-ANDk
n. Thus, the following lemma

implies Lemma 8:

▶ Lemma 9. Let k ∈ N and let gk(x1, . . . , xk) = xk ⊕
(∨

i∈[k−1] xi

)
. For all n ∈ N, we have:

CC(Max-Pos-CSPgk
n ) ≥ Ω

(
nk
)
.

As mentioned above, a weaker version of Lemma 9, that shows a lower bound on the
communication complexity of Max-CSPgk

n (instead of that of Max-Pos-CSPgk
n ) suffices to

prove Lemma 8. Nevertheless, we chose to prove the stronger version as it can be shown
to also imply Theorem 2 for weighted graphs, as g2(x1, x2) = XOR(x1, x2), and that this is
also part of the reason for selecting these specific gk functions. In Section 5, we give an
alternative proof that also works for unweighted graphs. The rest of this section is devoted
to proving Lemma 9.
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4.1 Proof of Lemma 9

In this section we prove Lemma 9. Fix n, k ∈ N. Let U be the set of all subsets of [n] of
size exactly k and let u = |U | =

(
n
k

)
. When we take a set S ∈ U , we denote its elements

by s1 < s2 < . . . < sk and use the notation S−k to denote the set S \ {sk} (the set of all
elements but the largest).

We prove the assertion by reducing DISJu,m to Max-Pos-CSPgk
n , for m =

⌊
u
4
⌋

− 1. Note
that by Lemma 3, since 4m + 1 ≤ u it holds that CC(DISJu,m) ≥ CC(DISJ4m+1,m) ≥ Ω(m) =
Ω
(
nk
)
. Therefore, such a reduction indeed gives the claimed CC(Max-Pos-CSPgk

n ) ≥ Ω
(
nk
)
.

4.1.1 The Reduction

Let (y, z) be an instance of DISJu,m. Recall that ∥y∥ = ∥z∥ = m. We view y and z as
elements in {0, 1}U , vectors indexed by elements of U (for S ∈ U , we write, e.g., yS , to mean
coordinate S of y). We construct an instance (Ψ, C) = ((Ψy, Ψz), C) for Max-Pos-CSPgk

n over
the variables x = (x1, . . . , xn) as follows. Let C = 4u − 4m + k. For every S ∈ U , if yS = 0,
Alice adds to Ψy the following three clauses: xS ,

(
xS−k

, 0
)
, and

(
0k−1, xsk

)
. Intuitively,

these clauses allow us to embed an OR clause, as can be seen in the following equality: Let
w ∈ {0, 1}k and let b =

∨
i∈[k−1] wi. Then,

gk(w) + gk(w1, . . . , wk−1, 0) + gk

(
0k−1, wk

)
=

(b ⊕ wk) + b + wk = 2(b ∨ wk) = 2 ·
( ∨

i∈[k]

wi

)
. (3)

Likewise, Bob constructs an analogous set of clauses Ψz, using z in place of y.
Additionally, Alice adds the following clauses to Ψy: For i ∈ {1, . . . , n/2}, the clause(

1k−1, xi

)
. Bob adds the following clauses to Ψz: For i ∈ {n/2 + 1, . . . , n}, the clause(

1k−1, xi

)
(we assume that n is even here). Observe that since ∥y∥ = ∥z∥, we get that Ψy

and Ψz have the same number of clauses.

4.1.2 Analysis

We next prove that the reduction works. Let (y, z) be an instance of DISJu,m and let
(Ψ, C) = ((Ψy, Ψz), C) be the instance of Max-Pos-CSPgk

n resulting from the reduction. We
next show that Max-Pos-CSPgk

n (Ψ) < C if and only if DISJu,m(y, z) = 1.
Let x ∈ {0, 1}n be an assignment. We denote U0(x) =

{
S ∈ U :

∨
i∈S xi = 0

}
. Now, let

us calculate Ψ(x) using Equation (3) (observe that yS = 0 means 1 − yS = 1):

Ψ(x) =
∑
S∈U

(2 − yS − zS)
(
gk(xS) + gk

(
xS−k

, 0
)

+ gk

(
0k−1, xsk

))
+
∑
i∈[n]

gk

(
1k−1, xi

)
= 2

∑
S∈U

(2 − yS − zS)
(∨

i∈S

xi

)
+
∑
i∈[n]

(1 − xi)

= 4u − 2∥y∥ − 2∥z∥ − 2
∑

S∈U0(x)

(2 − yS − zS) + n − ∥x∥

= 4u − 4m − 2
∑

S∈U0(x)

(2 − yS − zS) + n − ∥x∥. (4)
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4.1.2.1 y and z intersect

First, suppose that DISJu,m(y, z) = 0 and let S∗ ∈ U be such that yS∗ = zS∗ = 1. Consider
the assignment x ∈ {0, 1}n with xi = 0 if and only if i ∈ S∗. We will show that Ψ(x) = C.
To this end, observe that U0(x) = {S∗}, that 2 − yS∗ − zS∗ = 0, and that ∥x∥ = n − k. By
Equation (4), Ψ(x) = 4u − 4m − 0 + k = C.

4.1.2.2 y and z are disjoint

Now suppose that DISJu,m(y, z) = 1. Thus, for every S ∈ U , yS = 0 or zS = 0, implying
2 − yS − zS ≥ 1. We will show that Max-Pos-CSPgk

n (Ψ) < C.
Let x ∈ {0, 1}n be an assignment. We consider two cases. The first is the case where

U0(x) ̸= ∅. Note that in this case, ∥x∥ ≤ n − k and also |U0(x)| =
(

n−∥x∥
k

)
. Also note that

since k ≥ 1, for all ℓ ≥ k, it holds that
(

ℓ
k

)
≥ ℓ − k. Thus, by Equation (4), we have

Ψ(x) ≤ 4u − 4m − 2|U0(x)| + (n − ∥x∥)

= 4u − 4m − 2
(

n − ∥x∥
k

)
+ (n − ∥x∥)

< 4u − 4m −
(

n − ∥x∥
k

)
+ (n − ∥x∥)

≤ 4u − 4m + k

= C.

Now consider the case where U0(x) = ∅. Note that this implies that ∥x∥ ≥ n − k + 1. By
Equation (4), we get Ψ(x) ≤ 4u − 4m + (k − 1) < C.

5 Communication Lower Bound for Max-CUT

In this section, we prove Theorem 2. By a standard argument, Theorem 2 is implied by the
following communication lower bound:

▶ Theorem 10. CC(Max-CUTn) ≥ Ω(n2).

Theorem 10 is proved in two steps. We first show a lower bound on the related problem
3IND-SET, and then show how to convert this lower bound to a communication lower bound
for Max-CUT.

5.1 Lower Bound for 3IND-SET
In this section, we prove a lower bound on the communication complexity necessary to solve
the independent set problem 3IND-SETn. In this problem, both Alice and Bob are given
(disjoint) sets of edges over the same set of n vertices and their goal is to output whether or
not the graph formed by the union of their sets has an independent set of size 3.

▶ Theorem 11 (see [28]12). CC(3IND-SETn) ≥ Ω(n2).

Proof. We prove this result by a reduction. Let m = n2−1
4 . Recall by Lemma 3 that

CC
(
DISJn2,m

)
≥ Ω

(
n2). Given an instance x, y of DISJn2,m, where Alice’s and Bob’s inputs

are viewed as vectors x, y ∈ {0, 1}[n]×[n] respectively, Alice and Bob create an instance of
3IND-SET3n as follows: They view the 3n vertices as 3 disjoint sets V0, VA, and VB of n

vertices each and construct the following edges:

12 We thank the anonymous reviewer for telling us that this theorem follows from [28].
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1. The vertices in the set V0 are all connected to each other to form a clique. The same for
the sets VA and VB. Finally, for all j ̸= j′ ∈ [n], vertex j in VA is connected to vertex j′

in VB. Note that these edges are known to both Alice and Bob as they are independent
of their input.

2. For all (j, j′) ∈ [n] × [n], Alice (respectively, Bob) adds an edge between vertex j in V0
and vertex j′ in VA (respectively, VB) if and only if x(j,j′) = 0 (resp. y(j,j′) = 0). These
edges are functions of the input and are only known to one of the parties. Moreover,
Alice’s and Bob’s edges are disjoint.

We claim that the above graph has an independent set of size 3 if and only if Alice’s
and Bob’s inputs for disjointness are intersecting. Indeed, as Item 1 implies that the sets
V0, VA, VB all form cliques, any independent set of size 3 must have exactly one vertex from
each of these sets. Moreover, due to edges between VA and VB defined above, we get that an
independent set of size 3 exists if and only if there exists (j, j′) ∈ [n] × [n] such that vertex
j in V0, vertex j′ in VA, and vertex j′ in VB form an independent set. Due to the edges in
Item 2, this happens if and only if there exists (j, j′) ∈ [n] × [n] such that x(j,j′) = y(j,j′) = 1,
as desired. ◀

5.2 Lower Bound for Max-CUT
We now reduce 3IND-SET to Max-CUT and prove Theorem 10.

Proof of Theorem 10. We prove this result by a reduction from 3IND-SETn. Given an
instance G = (V, E = EA ∪ EB) of 3IND-SETn, where Alice has edges EA and Bob has
edges EB, Alice and Bob create an instance G′ of Max-CUT21n as follows: They view the
21n vertices as 3 disjoint sets VG, V0, and V1 of n, 10n, and 10n vertices respectively and
construct the following edges:
1. The set V0 and V1 are made to form a complete bipartite graph by connecting every

vertex in V0 with every vertex in V1. Also, for all j ∈ [n], we connect vertex j in VG
to vertex j in V1. Note that these edges are known to both Alice and Bob as they are
independent of their input.

2. For each edge (j, j′) ∈ EA, Alice creates the corresponding edge in VG and also connects
vertex j in VG to vertex j′ in V0 and connects vertex j′ in VG to vertex j in V0. We call
these three edges the “frame” of (j, j′) and note that these edges are functions of Alice’s
input and are only known to her. We construct Bob’s edges analogously. Observe that
Alice’s and Bob’s edges are disjoint (as they were disjoint in the 3IND-SET instance).

We now claim that the constructed instance has a maximum cut size of at least C =
(10n)2 + 2|E| + 3 if and only if G has a 3-independent set13. To see the “if” direction, let
{i, j, k} be an independent set of size 3 in G and consider the cut formed by putting V0 and
vertices i, j, k of VG on one side and every other vertex on the other. This cut has (10n)2 + 3
edges of Item 1 above ((10n)2 between V0 and V1 and 3 edges between VG and V1) and also
has 2|E| of Item 2 above (as {i, j, k} is an independent set, 2 out of 3 edges in all the frames
are in the cut). Thus, there exists a cut of size at least C, as desired.

It remains to show the “only if” direction. Suppose that G has no independent set of
size 3 and suppose for the sake of contradiction that the largest (breaking ties arbitrarily) cut
(S, S) in the instance G′ has size at least C. As there are only 3|E| + n ≤ 3

2 · n2 other edges

13 Note that both the parties can compute C by computing |E| which requires only O(log n) bits of
communication. This communication can be ignored as we are proving an Ω(n2) lower bound.
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in the graph, the cut (S, S) must have at least C − 3
2 · n2 > 90n2 of the edges between V0

and V1 in Item 1. Observe that this is possible only if at least 9n of the vertices in V0 are
on one side of the cut and at least 9n of the vertices in V1 are on the other side of the cut.
Without loss of generality, we assume that S has at least 9n of the vertices in V0 (and at
most n of the vertices in V1).

We claim that, in fact, S has all the vertices in V0 and none of the vertices in V1. Indeed,
suppose that there is a vertex in V0 \ S and consider the cut obtained by moving this vertex
to S. As 9n of the vertices in V1 are in S, we have by Items 1 and 2 that moving this vertex
to S cuts at least 9n new edges and “uncuts” at most 6n edges, thereby increasing the size
of the cut, and contradicting the fact that (S, S) was the largest cut. A similar argument
applies if there is a vertex in V1 ∩ S and we are done.

Defining T = S \ V0 and using the above claim, we get that T ⊆ VG and (S, S) =
((T ∪ V0), ((VG \ T ) ∪ V1)). Letting ET be the set of edges with both endpoints in T and
using a calculation similar to that in the “if” direction above, we get that the size of
the cut (S, S) is at most (10n)2 + |T | + 2 · (|E| − |ET |). Now, we claim (proved later) that
|ET | ≥ |T |2

4 − |T |
2 , implying that the size of the cut (S, S) is at most (10n)2+2·|T |+2·|E|− |T |2

2 .
Setting z = |T | in the identity (z−2)2 = z2 −4z+4 ≥ 0, this is at most (10n)2 +2+2·|E| < C,
a contradiction.

It remains to prove the claim. As T ⊆ VG, we can identify T with a subset of the vertices
in G. With this identification, ET is just the subgraph of G induced by those vertices, and
does not have an independent set of size 3. It follows that the complement of this subgraph
does not have a triangle and therefore, has at most |T |2

4 edges by Turán’s Theorem [26, 34].
As the maximum number of edges is

(|T |
2
)
, we get that:

ET ≥ |T | · (|T | − 1)
2 − |T |2

4 = |T |2

4 − |T |
2 . ◀
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A Streaming Lower Bound for Approximate Max-CSP

In this section, we will show a multi-pass lower bound for arbitrarily good approximations of
Max-CSP.

▶ Theorem 12. Let k, n ∈ N and f : {0, 1}k → {0, 1} with deg(f) > 1. Then, for
all ϵ > 0, p ∈ N, any p-pass streaming algorithm for Max-CSPf

n,ϵ has space complexity
Ω
(

n1−O(ϵp2)
)

.

Theorem 12 is tight in two respects: First, recall from Section 1 that the space lower
bound cannot be improved beyond O(n), as there is an O(n)-space upper bound for any
function f . Additionally, for the case where deg(f) ≤ 1, there is in fact an Oϵ(log n)-space,
one-pass streaming algorithm for Max-CSPf

n,ϵ. The reason is that the only way deg(f) ≤ 1
is if f is constant (in which case an algorithm is trivial), or there exists i ∈ [n] such that
f(x) = xi or f(x) = xi, in which case Max-CSPf

n,ϵ is the same as approximating an ℓ1-norm,
algorithms for which can be found in, e.g., [19, 20].

Proof of Theorem 12. Proof by contradiction. Suppose that there exists a p-pass streaming
algorithm A for Max-CSPf

n,ϵ with a better space complexity. As deg(f) > 1, we have by
Corollary 6 that there exists ϵ′ > 0 and a streaming algorithm A′ for Max-AND2

n,ϵ′ with the
same space complexity, up to constant factors.

We now claim that there exists ϵ′′ > 0 and a streaming algorithm A′′ for Max-CSPXOR2
n,ϵ′′

with the same space complexity. Indeed, we can expand any XOR constraint a ⊕ b as the
sequence of two constraints a ∧ b̄ and ā ∧ b and observe that at most one of these two
constraints can be satisfied by any assignment and is satisfied if and only if the assignment
satisfies the constraint a ⊕ b. The algorithm A′′ is obtained by running A′ on the expanded
constraints. Finally, as the problem Max-CSPXOR2

n,ϵ′′ subsumes Max-CUTn,ϵ′′ , this contradicts
Result 2 in [4]. ◀
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Our main result has a short proof based on a natural information-theoretic framework. A key
ingredient of the framework is the equivalence between the sign of the “interaction information”
and a super/sub-additive property of the value of people’s information. This provides an intuitive
interpretation and an interesting application of the interaction information, which measures the
amount of information shared by three random variables.

We illustrate the power of this information-theoretic framework by reproving two additional
results within it: 1) that agents quickly agree when announcing (summaries of) beliefs in round-robin
fashion [Aaronson 2005], and 2) results from [Chen et al 2010] on when prediction market agents
should release information to maximize their payment. We also interpret the information-theoretic
framework and the above results in prediction markets by proving that the expected reward of
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1 Introduction
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▶ Definition 1 (Agreement Protocol [1]). Alice and Bob share a common prior over the three
random variables W , XA, and XB. Here W denotes the event to be predicted. Variables
XA = xA and XB = xB are Alice’s and Bob’s private information respectively, which can be
from a large set and intricately correlated with each other and W .

The agents alternate announcing their beliefs of W ’s realization.
In round 1, Alice declares her rational belief p1

A = Pr[W |XA = xA]. 1 Then Bob updates
and declares his belief p1

B = Pr[W |XB = xB ,p1
A] rationally conditioning on his private

information and what he can infer from Alice’s declaration.
Similarly, at round i, Alice announces her updated belief

piA = Pr[W |XA = xA,p1
A,p1

B , . . . ,pi−1
A ,pi−1

B ];

and subsequently, Bob updates and announces his belief

piB = Pr[W |XB = xB ,p1
A,p1

B , . . . ,pi−1
A ,pi−1

B ,piA].

This continues indefinitely.

Two fundamental questions arise from this scenario:
1. Will Alice and Bob ever agree or at least approximately agree, and if so will they

(approximately) agree in a reasonable amount of time?
2. If they (approximately) agree, will their agreement (approximately) aggregate their

information? That is, will they (approximately) agree on the posterior belief conditioning
on Alice and Bob’s private information.

Aumann [5] famously showed that rational Alice and Bob will have the same posterior
belief given that they share the same prior and their posteriors are a common knowledge. In
particular, if the agents in the agreement protocol ever stop updating their beliefs, they must
agree. While this may seem counter-intuitive, a quick explanation is that it is not rational
for Alice and Bob to both persistently believe they know more than the the other person.
This result does not fully answer the first question because the common knowledge requires
a certain amount of time to be achieved.

Both Aaronson [1] and Geanakoplos and Polemarchakis [19] answer the first question in
the affirmative. Geanakoplos and Polemarchakis [19] show that the agreement protocol will
terminate after a finite number of messages. Aaronson [1] shows that without unbounded
precision requirement, even when Alice and Bob only exchange a summary of their beliefs,
rational Alice and Bob will take at most O( 1

δϵ2 ) rounds to have (ϵ, δ)-close beliefs,2 regardless
of how much they disagree with each other initially.

Alas, it is known the second question cannot always be answered in the affirmative, and
thus agreement may not fully aggregate information.

▶ Example 2 (False consensus). Say Alice and Bob each privately and independently flip a
fair coin, and the outcome is the XOR of their results. Alice and Bob immediately agree,
both initially proclaiming the probability 0.5. However, this agreement does not aggregate
their information; pooling their information, they could determine the outcome.

1 Here and elsewhere we use the notation Pr[W ] to denote a vector whose w ∈ W th coordinate indicates
Pr[W = w].

2 Pr[|Alice’s expectation − Bob’s expectation| > ϵ] < δ
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Nonetheless, we answer the second question affirmatively for a large class of structures in
a generalized context with more than two agents that we call the Round Robin Protocol.
Notice that in the above false consensus example, Alice’s and Bob’s private information are
independent but once we condition on the outcome they are dependent. Chen et al. [8] call
this independent structure “complements” for reasons that will become clear. They also
propose another independent structure, “substitutes” where both Alice and Bob’s private
information are independent conditioning on the outcome. Chen and Waggoner [10] further
develop these concepts.

We will show that in the “substitutes” setting, i.e., when Alice and Bob’s information are
conditionally independent, (approximate) agreement implies (approximate) aggregation. We
prove the results in the n agents setting which is a natural extension of the Alice and Bob
case. Our proof is direct and short based on information-theoretic tools.

High Level Proof

First, we denote the value of an agent’s information as the mutual information between their
private information and the outcome conditioning on the public information.

The main lemma shows that the “substitute” structure implies the sub-additivity of the
values of people’s private information.

When people approximately agree with each other conditioning on the history, the
remaining marginal value of each individual’s private information is small ≤ ϵ. Under the
“substitutes” structure, the sub-additive property of the main lemma implies the total value
of information that has not been aggregated is most nϵ where n is the number of agents
(n = 2 in the Alice and Bob case). Therefore, (approximate) agreement implies (approximate)
aggregation.

To show the main lemma, a key ingredient is the equivalence between the sign of
the interaction information and the super/sub-additive property of the value of people’s
information. Interaction information is a generalized mutual information which measures
the amount of information shared by three random variables. Unlike mutual information,
interaction information can be positive or negative and thus is difficult to interpret and does
not yet have a broad applications. Our framework provides an intuitive interpretation and
an interesting application of the interaction information.

We additionally illustrate the power of this information theoretic framework by reproving
two additional results within it: 1) that agents quickly agree when announcing beliefs in a
round robin fashion [1]; and 2) results from Chen et al. [8] that to maximize their payment
in a prediction market, when signals are substitutes, agents should reveal them as soon as
possible, and when signals are complements, agents should reveal them as late as possible.
We also interpret our information theoretic framework, our main result, and our quick
convergence reproof in the context of prediction markets by proving that the expected reward
of revealing information is the conditional mutual information of the information revealed.

The reproof that agents quickly agree uses the aggregated information as a potential
function and observes that each round in which their is ϵ disagreement, the aggregated
information must increase by ϵ (or a function of ϵ in the setting when agents only announce a
summary of their beliefs). The result of when agents should reveal information in a prediction
market follows from the sub/super-additivity of mutual information in each of these cases,
which can be established using the sign of the interaction information.

ITCS 2023
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1.1 Related Work

Protocols for consensus are well-studied in many different contexts with both Bayesian and
non-Bayesian agents. Many of these are in a growing field of social learning [20].

In some sense, the Bayesian update rule, also studied in this paper, is the most canonical
and natural update rule. The social learning literature concerning Bayesian agents typically
asks questions about how Bayesian agents, each endowed with some private information,
can aggregate their information using by public declarations. When agents can only take
binary (or a small number of) actions – often conceptualized as which of two products
the agents is adopting – which depend on their beliefs, it is often discovered that agents
can herd whereupon agents collectively have enough information to take more beneficial
actions, but fail to do so [7, 6, 32]. Our setting is different, because agents can act more then
once. However, herding is essentially a false consensus concerning a beneficial action. In our
setting, we ask a similar question about when the protocol can get stuck before aggregating
the information of the agents. Other models in this literature look at agents embedded on
networks [3, 27, 16] , that only generally announce binary information. We do not consider a
network structure as is often done in these works.

As already mentioned, prediction markets have also been analyzed in the context of
Bayesian agents [8, 25, 4]. We reprove one of the results of Chen et al. [8]. Like the result
we reprove, these works study the optimal strategies for agents. Kong and Schoenebeck [25]
show that sometimes even one bit of information can behave both like complements and
substitutes: the agent would like to release part of it immediately, but part of it last.

There is also a plethora of work studying non-Bayesian update rules and when consensus
occurs or fails to occur – especially in the context of networks. In this context it is sometimes
not clear, whether agents are “learning” or just trying to arrive at a consensus (e.g. through
imitation). Typically, we think of agents as learning when there is a ground truth to which
they are attempting to converge. However, because the agents are non-Bayesian, the dynamics
typically do not depend on the existence of a ground truth, and this part of the model is
often not explicitly specified.

In these models, often the agents have a discrete state [30, 28, 18]. In such a case, to
interpret the state as a belief, one has to rule out the granular beliefs of Bayesian reasoning.
When these models have continuous states, especially when the states are the [0, 1] interval,
it is easy to interpret the state as a belief. However, the updates are based on some heuristic
instead of being Bayesian. For example, in the popular Degroot model [12], agents update
their state as a weighted average of their and their neighbors’ signals in the previous round,
and thus imitate their neighbors as opposed to the more delicate Bayesian reasoning. In
particular, this update rule implies correlation neglect [14] – agents do not reason about
how the information of their neighbors is linked. Other models introduce edge weights that
update[13, 18], stubborn agents [34, 17], and other modifications to more realistically model
certain settings both intuitively and empirically [24]. As models become more attuned to
predicting real agents, they also become more ad hoc and less canonical as the proliferation of
models illustrates. Instead, our paper operates in the most canonical model, understanding
that this an imperfect model of human behavior, but nonetheless, can shed light on what
does happen by aiding our understanding in this idealized model.
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Independent Work

Frongillo et al. [15] independently prove that agreement implies aggregation of agents’
information under similar special information structures. However, the analyses are very
different. Frongillo et al. [15] employ a very delicate analysis that allows the results to be
extended to general divergence measures. Our information-theoretic framework’s analysis
provides a direct, short, and intuitive proof.

2 Preliminaries

2.1 Complements and Substitutes
Following [8] we will be interested in two main types of signals.

▶ Definition 3 (Substitutes and Complements [8]). W denotes the event to be predicted.
Substitutes Agents’ private information X1, X2, · · · , Xn are independent conditioning on W .
Complements Agents’ private information X1, X2, · · · , Xn are independent.

2.2 Information Theory Background
This section introduces multiple concepts in information theory that we will use to analyze
the consensus protocol and, later, prediction markets.

▶ Definition 4 (Entropy [31]). We define the entropy of a random variable X as

H(X) := −
∑
x

Pr[X = x] log(Pr[X = x]).

Moreover, we define the conditional entropy of X conditioning on an additional random
variable Z = z as

H(X|Z = z) := −
∑
x

Pr[X = x|Z = z] log(Pr[X = x|Z = z])

We also define the conditional entropy of X conditioning on Z as

H(X|Z) := EZ [H(X|Z = z)].

The entropy measures the amount of uncertainty in a random variable. A useful fact is
that when we condition on an additional random variable, the entropy can only decrease.
This follows immediately from the concavity of log.

▶ Definition 5 (Mutual information [31]). We define the mutual information between two
random variables X and Y as

I(X;Y ) :=
∑
x,y

Pr[X = x, Y = y] log
(

Pr[X = x, Y = y]
Pr[X = x] Pr[Y = y]

)
Moreover, we define the conditional mutual information between random variables X and Y
conditioning on an additional random variable Z = z as

I(X;Y |Z = z) :=
∑
x,y

Pr[X = x, Y = y|Z = z] log
(

Pr[X = x, Y = y|Z = z]
Pr[X = x|Z = z] Pr[Y = y|Z = z]

)
We also define the conditional mutual information between X and Y conditioning on Z as

I(X;Y |Z) := EZI(X;Y |Z = z).

ITCS 2023
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Figure 1 Venn diagram.

▶ Fact 6 (Facts about mutual information [11]).
Symmetry: I(X;Y ) = I(Y ;X)
Relation to entropy: H(X) −H(X|Y ) = I(X;Y ), H(X|Z) −H(X|Y,Z) = I(X;Y |Z)
Non-negativity: I(X;Y ) ≥ 0
Chain rule: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)
Monotonicity: when X and Z are independent conditioning on Y , I(X,Z) ≤ I(X;Y ).

The first two facts follows immediately from the formula. The third follows from the
second, and the fact that conditioning can only decreases entropy. The first three allow one
to understand mutual information as the amount of uncertainly of one random variable that
is eliminated once knowing the other (or vice versa). The chain rule follows from the second
because I(X,Y ;Z) = H(Z) − H(Z|X,Y ) = H(Z) − H(Z|Y ) + H(Z|Y ) − H(Z|X,Y ) =
I(X;Z) + I(Y ;Z|X). The last property follows from the fact that I(X;Y,Z) = I(X;Y )
which can be proved by algebraic calculations and the chain rule which says I(X;Y, Z) =
I(X;Z) + I(X;Y |Z).

The interaction information, sometimes called co-information, is a generalization of the
mutual information for three random variables.

▶ Definition 7 (Interaction information [33]). For three random variables X, Y and Z, we
define the interaction information among them as

I(X;Y ;Z) := I(X;Y ) − I(X;Y |Z)

▶ Fact 8 (Symmetry [33]). I(X;Y ;Z) = I(Y ;X;Z) = I(X;Z;Y )

This can be verified through algebraic manipulations.

Venn Diagram

As shown in figure 1, random variables X,Y, Z can be visualized as sets H(X), H(Y ), H(Z)
where the set’s area represents the uncertainly of the random variable, and:
Mutual Information: operation “;” corresponds to intersection “∩” and is symmetric;
Joint Distribution: operation “,” corresponds to union “∪” and is symmetric;
Conditioning: operation “|” corresponds to difference “|”;
Disjoint Union: operation “+” corresponds to the disjoint untion “⊔”;
For example, H(X,Y ) = H(X) +H(Y |X) because the LHS is H(X) ∪H(Y ). Note that the
interaction information corresponds to the center of the Venn diagram in figure 1. However,
despite the intuition that area is positive, the interaction information is not always positive.



Y. Kong and G. Schoenebeck 81:7

3 Information-theoretic Consensus

We will analyze the Round Robin Protocol, a multi-agent generalization of the Agreement
Protocol, and use the information-theoretic framework to show that 1) consensus is quickly
achieved; and 2) the sub-additivity of “substitutes” guarantees that approximate consensus
implies approximate aggregation. We first introduce the general communication protocol
where agents make declarations in a round robin fashion.

▶ Definition 9 (Round Robin Protocol). Agents A = {1 . . . , n} share a common prior over
the n+ 1 random variables W , X1, X2, ..., Xn. Let W denote the event to be predicted, and
for i ∈ A, let Xi = xi denote agent i’s private message and its realization.

In each round, the agents take turns sequentially announcing additional information. In
round t, agent 1 announces ht1 and then in sequence, for i ∈ {2, . . . , n}, agent i announces
hti. The first round is round 1 and then rounds proceed indefinitely.

Let Ht
i denote the history of declarations before agent i announces hti in round t. Thus

Ht
1 = h1

1, h
1
2, . . . , h

t−1
n and for i = 2 to n, Ht

i = h1
1, h

1
2, . . . , h

t
i−1. Also, it will be convenient

to let Ht = h1
1, h

1
2, . . . , h

1
n, . . . , h

t
1, h

t
2, . . . , h

t
n denote the history of the first t rounds, and to

interpret Ht
n+1 as Ht+1

1 . Note that Ht = Ht+1
1 = Ht

n+1.
Let pti = Pr[W |Xi = xi, H

t
i ] denote the belief of agent i as she announces hti in round t.

Let qti = Pr[W |Ht
i ] denote the belief of an outside observer (who knows the common prior

but does not have any private message) as agent i announces hti in round t.
It is required that hti be well defined based on Xi and Ht

i , that is, it should be defined on
the filtration of information released up to that time.

We state an information-theoretic definition for approximate consensus. With this
definition the analysis of consensus time and false consensus becomes intuitive.

▶ Definition 10 (ϵ-MI consensus). Round t achieves ϵ-MI consensus if for all i,

I(Xi;W |Ht) ≤ ϵ.

We define the amount of information aggregated regarding W at any time as the mutual
information between W and the historical declarations, I(H ;W ). The following lemma shows
two intuitive properties: 1) the amount of information aggregated is non-decreasing and 2)
the growth rate depends on the marginal value of the agent’s declaration.

▶ Lemma 11 (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,
Non-decreasing Historical Information any agent’s declaration does not decrease the amount

of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.

Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event condi-
tioning on the history, i.e.,

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

These two properties directly follow from the properties of mutual information. We defer
the detailed proof to Appendix A.
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Figure 2 Standard Consensus Protocol.

3.1 Two Consensus Protocols
We first introduce the natural Standard Consensus Protocol, which is the Agreement Protocol
when there are two agents. We then introduce a discretized version of the protocol.

▶ Definition 12 (Standard Consensus Protocol). The Standard Consensus Protocol is just the
Round Robin Protocol where hti = pti. That is, each agent announces her belief.

In the above protocol, agents announce their beliefs. However, the number of bits required
for belief announcement may be unbounded. Here we follow Aaronson [1] and both focus on
predicting binary events (occurs: 1; does no occur: 0) and discretize the protocol as follows:
each agent announces a summary of her current belief by comparing it to the belief of a
hypothetical outsider who shares the same prior as the agents, sees all announcements, but
does not possess any private information. The agent announces “high”, if her belief that the
probability the event will happen is far above the outsider’s current belief; “low”, if her belief
is far below the outsider’s current belief; and “medium” otherwise. Note that all the agents
have enough information to compute the outsider belief.

▶ Definition 13 ( ϵ-Discretized Consensus Protocol). Fix ϵ > 0. Let DKL(p, q) = p log p
q +

(1−p) log 1−p
1−q be the KL divergence between a Bernoulli distribution (1−p, p) and a Bernoulli

distribution (1 − q, q). We use pti to denote agent i’s belief for W = 1 as she announces at
round t and qti to denote the hypothetical outsider’s belief for W = 1 at that time. We define
qti > qti so that DKL(qti , qti) = ϵ

4 , and qti < qti so that DKL(qti , qti) = ϵ
4 . Then agent i will

announce a summary of her belief

hti =


high pti > qti

low pti < qti

medium otherwise.

Note that each agent’s output can be mapped to R by mapping high, medium, and low to 1,
0, and -1 respectively.
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Round t

Discretized Consensus Protocol

1Outsider

3

24

h  =mediumt3

t2h  =high

My prediction p   for “D wins” is much higher 
than the outsider’s current prediction q   : p      q>

h  =lowt4

th  =high1
t1

t1 t1 t1

My prediction p   for “D wins” is similar to the 
outsider’s current prediction q   : q      p      q

q     q     q

q  =Pr[W=1|Ht-1]=10%1

t3
t1 t t t1 1 1

Outsider’s belief

Low threshold High threshold

t1

t t t1 1 1

Figure 3 Discretized Consensus Protocol.

This definition has the same conceptual idea as Aaronson [1], while the qti and qti are
carefully designed so that informative private messages lead to informative declarations. We
will state this property formally in the next section.

3.2 Quick Consensus
In this section we show that both the Standard Consensus Protocol and the Discretized
Consensus Protocol quickly reach ϵ-MI consensus. This result will not hold for general
Round-Robin protocols. For example, agents might not announce any useful information.3

Lemma 11 shows that the amount of aggregated information increases and the growth
rate is the marginal value of the agent’s declaration. Disagreement implies a ≥ ϵ marginal
value of the agent’s private information. We will state Lemma 14 which shows that, in a case
like this, where some agent has valuable private information, in the two defined protocols,
this agent makes an informative declaration that will substantially increase the amount of
aggregated information. This almost immediately leads to the quick consensus result because
the total amount of aggregated information is bounded.

▶ Lemma 14 (Informative Declaration). For all i and t and all possible histories Ht
i , when

agent i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ϵ, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ;

Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥ 1

64ϵ
3 1

log 1
E−1( ϵ

2 )

where E−1(ϵ) ≤ 0.5 and is the solution of x log x+ (1 − x) log(1 − x) = −ϵ.

3 The reader has likely experienced a meeting like this.
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The above result in the Discretized Consensus Protocol requires delicate analysis (found
in Appendix A) and is mainly based on the fact that the mutual information is the expected
KL divergence.

▶ Theorem 15 (Convergence rate). The Standard Consensus Protocol achieves ϵ-MI consensus
in at most 2

ϵ rounds. The Discretized Consensus Protocol achieves ϵ-MI consensus in at most
512
ϵ3 log 1

E−1( 1
4 ϵ)

rounds.

Proof of Theorem 15. Because mutual information is monotone, the amount of information
aggregated I(Ht;W ) is a non-decreasing function with respect to t. Moreover, we will show
that when a round does not achieve ϵ-MI consensus, I(Ht;W ) will have a non-trivial growth
rate.

Formally, when a round t does not achieve ϵ-MI consensus, there exists an agent i such that
I(Xi;W |Ht) > ϵ. At round t+ 1, the expected amount of aggregated information increases
at least the marginal value of the historical declarations Ht+1

i before agent i announces at
round t+ 1, plus the marginal value of agent i’s declarations ht+1

i . This intuitively follows
from monotonicity and the chain rule, and can be derived formally as follows:

I(Ht+1;W ) − I(Ht;W ) ≥I(Ht+1
i+1 ;W ) − I(Ht;W ) (Ht+1 contains Ht+1

i+1 )
=I(ht+1

i , Ht+1
i ;W ) − I(Ht;W ) (Ht+1

i+1 = (Ht+1
i , ht+1

i ))
=I(ht+1

i , Ht+1
i ;W |Ht)

(Based on Chain Rule and the fact that Ht+1
i contains Ht)

=I(Ht+1
i ;W |Ht) + I(ht+1

i ;W |Ht+1
i )

(Again, Based on Chain Rule and the fact that Ht+1
i contains Ht)

Thus, to analyze the growth rate, we need to show that when agent i’s private information is
informative, I(Xi;W |Ht) > ϵ, either agent i’s declaration ht+1

i is informative, or the historical
declarations Ht+1

i before agent i announces at round t+ 1 is informative, conditioning the
historical declarations Ht before round t+ 1.

When I(Xi;W |Ht) > ϵ, we have I(Xi, H
t+1
i ;W |Ht) > ϵ as well. Moreover, because

I(Xi, H
t+1
i ;W |Ht) = I(Ht+1

i ;W |Ht) + I(Xi;W |Ht+1
i )

(Chain Rule), either 1) I(Ht+1
i ;W |Ht) > ϵ

2 or 2) I(Xi;W |Ht+1
i ) > ϵ

2 .
In case 1), the historical declarations Ht+1

i is informative conditioning on Ht and we
have the growth rate I(Ht+1;W ) − I(Ht;W ) ≥ I(Ht

i ;W |Ht) > ϵ
2 .

In case 2), for the Standard Consensus Protocol Lemma 14 shows that I(ht+1
i ;W |Ht+1

i ) =
I(Xi;W |Ht+1

i ) > ϵ
2 because agent i declares her Bayesian posterior as ht+1

i . This again
guarantees a > ϵ

2 growth rate. For the Discretized Consensus Protocol, Lemma 14 shows
that I(ψ(Xi);W |Ht+1

i ) ≥ 1
512ϵ

3 1
log 1

E−1( ϵ
4 )

.

Finally, for all t, I(Ht;W ) ≤ I(X1, X2, ..., Xn;W ) ≤ H(W ) ≤ log2 2 = 1. Therefore, with
at most 1

ϵ rounds, the Standard Consensus Protocol achieves ϵ-MI consensus, and with at
most 512

ϵ3 log 1
E−1( 1

4 ϵ)
rounds, the Discretized Consensus Protocol achieves ϵ-MI consensus. ◀

3.3 No False Consensus with Substitutes
We present our main result in this section: when agents’ information is substitutes, there is
no false consensus. A key ingredient is a subadditivity property for substitutes. This result
applies to general Round Robin protocols, and, in particular, is not restricted to the two
specified consensus protocols.
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In the ideal case, if we are given all agents’ private information explicitly, the amount
of information we obtain regarding W is I(X1, X2, · · · , Xn;W ). When agents follow the
protocol for t rounds, the amount of information we obtain regarding W is I(Ht;W ). We
care about the “loss”, I(X1, X2, · · · , Xn;W ) − I(Ht;W ).

In the Standard Consensus Protocol under substitutes structure complete agreement
is obtained after one round. The reason is that in such a situation, the information of
each agent can be fully integrated after previous agents all precisely report their beliefs
(see Appendix B). The following theorem shows a much more general results: under the
substitutes structure every protocol has the no false consensus property.

▶ Theorem 16 (Convergence ⇒ Aggregation). For all priors where agents’ private information
is substitutes, if agents achieve ϵ-MI consensus after t rounds, then the amount of information
that has not been aggregated I(X1, X2, · · · , Xn;W ) − I(Ht;W ) is bounded by nϵ.

We will use the following Lemma in the proof:

▶ Lemma 17 (Subadditivity for substitutes). When X and Y are independent conditioning
on Z:
Nonnegative Interaction Information I(X;Y ;Z) ≥ 0;
Conditioning Reduces Mutual Information I(Y ;Z|X) ≤ I(Y ;Z);
Subadditivity of Mutual Information I(X,Y ;Z) ≤ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≤
n∑
i=1

I(Xi;W ).

Proof of Lemma 17. Note that I(X;Y |Z) = 0 because X and Y are independent after
conditioning on Z.

Nonnegative Interaction Information follows because I(X;Y ;Z) = I(X;Y )−I(X;Y |Z) =
I(X;Y ) ≥ 0.

Next I(Y ;Z|X) ≥ I(Y ;Z) follows after adding I(Y ;Z|X) to each item in the following
derivation: 0 ≤ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z) − I(Y ;Z|X) where the inequality is by
nonnegative interaction information, the first equality is from the symmetry of interaction
information, and the second equality is from the definition of interactive information.

Next, subadditivity immediately follows because: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥
I(X;Z) + I(Y ;Z) where the equality is from the chain rule and the inequality is because
conditioning reduces mutual information.

The moreover follows by using induction and subadditivity. ◀

We require an additional observation that no history will disrupt the special information
structure.

▶ Observation 18. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn

are substitutes (complements), they are still substitutes (complements) conditioning on any
history.

We defer the proof to Appendix A. Aided by the above information-theoretic properties,
we are ready to show our direct and short proof.

Proof for Theorem 16. If after t rounds the Round Robin Protocol achieves ϵ-MI consensus,
then, by definition, for all i,

I(Xi;W |Ht) ≤ ϵ.
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After t rounds, the amount of information we have aggregated is I(Ht;W ). We can aggregate
at most I(X1, X2, ..., Xn;W ) information when all agents’ private information is revealed
explicitly. Thus, the amount of information that has not been aggregated is

I(X1, X2, ..., Xn;W ) − I(Ht;W )
=I(X1, X2, ..., Xn, H

t;W ) − I(Ht;W ) (The history Ht is a function of X1, . . . , Xn)
=I(X1, X2, ..., Xn;W |Ht) (Chain rule)

≤
∑
i

I(Xi;W |Ht) ≤ nϵ (Sub-additivity)

The inequality is from subadditivity: note that by Observation 18 because X1, . . . , Xn

are independent after conditioning on W , X1, . . . , Xn are still independent after conditioning
on H. ◀

4 Illuminating Prediction Markets with Information Theory

4.1 Prediction Market Overview
A prediction market is a place to trade information. For example, a market maker can open
a prediction market for the next presidential election with two kinds of shares, D-shares
and R-shares. If Democrats wins, each D-share pays out one dollar but R-shares are worth
nothing. If Republicans win, each R-share is worth one dollar and D-shares are worth
nothing. People reveal their information by trading those shares. For example, if an agent
believes Democrats will win with probability 0.7, he should buy D-shares as long as its price
is strictly lower than $ 0.7. If people on balance believe that the current price is less than
the probability with which the event will occur, the demand for shares (at that price) will
outstrip the supply, driving up the price. Similarly if the price is too high they will buy the
opposite share as the prices should sum to 1 since exactly one of the two will payout 1.

Hanson [22, 23] proposes a model of prediction markets that is theoretically equivalent to
the above which we describe below. Instead of buying/selling shares to change the price, the
agents simply change the market price directly. We define this formally below.

4.2 Preliminaries for Prediction Markets
We introduce prediction markets formally and relate them to the Standard Consensus
Protocol. We focus on prediction markets which measure the accuracy of a prediction using
the logarithmic scoring rule.

▶ Definition 19 (Logarithmic scoring rule [21]). Fix an outcome space Σ for a signal σ. Let
q ∈ ∆Σ be a reported distribution.

The Logarithmic Scoring Rule maps a signal and reported distribution to a payoff as
follows:

L(σ,q) = log(q(σ)).

▶ Definition 20 (Market scoring rule [22, 23, 9]). We build a market for random variable W
as follows: the market sets an initial belief p0 for W . A sequence of agents is fixed. Activity
precedes in rounds. In the ith round, the corresponding agent can change the market price
from pi to pi+1, and will be compensated L(W,pi+1) − L(W,pi) after W is revealed.
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Let the signal σ be drawn from some random process with distribution p ∈ ∆Σ.
Then the expected payoff of the Logarithmic Scoring Rule is:

Eσ←p[L(σ,q)] =
∑
σ

p(σ) log q(σ) = L(p,q) (1)

It is well known (and easily verified) that this value will be uniquely maximized if and
only if q = p. Because of this, the logarithmic scoring rule is called a strictly proper scoring
rule.

Agent Strategies

We would like to require agents to commit to rational strategies. In such a case, while agents
may hide information, they will not try to maliciously trick other agents by misreporting
their beliefs. Formally, we assume that each agent i plays a strategy of the following form:
they change the market price to Pr[W = w|Sh(Xi), H = h] where H is the history and Sh
is a possibly random function of Xi that is allowed to depend on the history. That is, she
declares the rational belief conditioning on the realization of Sh(Xi) and what she can infer
from the history.

A natural question is whether we should expect fully strategic agents to behave maliciously
rather than just hiding information. Previous work [4] studies a restricted setting and shows
that misreporting or tricking other agents does not happen in equilibrium even when agents
are allowed to.

Two additional observations: 1) the agent’s strategy might not actually reveal Sh(Xi)
because it could be that Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′i), H = h] for xi ̸= x′i.
2) If the agents’ always use Sh(Xi) = Xi, and update the market price based on their entire
message, then this essentially reduces to the Standard Consensus Protocol. In this case, the
agents are playing myopically and optimizing their payment at each step.

4.3 Expected Payment = Conditional Mutual Information
Amazingly, we show that the expected payment to an agent, is just a function of the
conditional mutual information of the random variables that he reveals. This connects the
expected payment in prediction markets and amount of information.

▶ Lemma 21 (Expected payment = conditional mutual information). In a prediction market
with the log scoring rule, the agent who changes the belief from Pr[W |H ] to Pr[W |X = x,H ]
for all x will be paid I(X;W |H) in expectation.

Proof of Lemma 21. Fix any history H:

EX,W |HL(W,Pr[W |H,X]) − L(W,Pr[W |H])

=
∑
W,X

Pr[W,X|H] log
(

Pr[W |H,X]
Pr[W |H]

)
= I(X;W |H) ◀

Interpretation of Previous Results

When agents participate in the market one by one and update the market price to Pr[W =
w|Sh(Xi), H = h] , the list of market prices can be interpreted as running a Standard
Consensus Protocol. The connection between the expected payment and conditional mutual
information leads to the following interpretations.

ITCS 2023



81:14 False Consensus, Information Theory, and Prediction Markets

ϵ-MI Consensus If round t achieves ϵ-MI consensus, the expected payment of any particular
agent obtained by changing the market price to her Bayesian posterior is at most ϵ.

Quick Consensus For any round t that does not achieve ϵ-MI consensus, in round t+ 1 at
least one agent will obtain at least an ϵ payment in expectation. However, Lemma 21
also implies that the total expected payment in the prediction market is bounded by
the entropy of W . Thus, at most H(W )

ϵ rounds are needed for ϵ-MI consensus in the
prediction market.

No False Consensus with Substitutes Even when the market price has noise and agents
only reveal a summary of their beliefs by participating in the markets, if round t achieves
ϵ-MI consensus, no agent has information with value greater than ϵ. Then subadditivity
implies that currently, the expected payment of all agents’ private information together
is bounded by nϵ, thus is not valuable.

4.4 Strategic Revelation
This section will use the above information-theoretic properties to provide an alternative
proof for the results proved in Chen et al. [8].

▶ Definition 22 (Alice-Bob-Alice (ABA)). Alice and Bob hold private information XA, XB

related to event W respectively. There are three stages. Alice can change the market belief at
stage 1 and stage 3. Bob can change the market belief at stage 2.

We assume that the strategic players can hide their information but not behave maliciously.
A strategy profile is a profile of the players’ strategies. Moreover, like the original paper, we
assume that an agent not only reports their belief Pr[W = w|Sh(Xi), H = h] but also reveals
their information Sh(Xi). 4

▶ Proposition 23 (ABA & Information structures [8]). In prediction market based on logar-
ithmic scoring rule,
Substitutes when Alice and Bob’s private information are substitutes, the strategy profile

where Alice reveals XA at stage 1 and Bob reveals XB at stage 2 is an equilibrium;
Complements when Alice and Bob’s private information are complements, the strategy profile

where Bob reveals XB at stage 2 and Alice reveals XA at stage 3 is an equilibrium.

We will use the following lemma, which is a direct analogue of Lemma 17

▶ Lemma 24 (Superadditivity for complements). When X and Y are independent:
Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;
Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);
Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

The proof is directly analogous to that of Lemma 17 and we defer it to Section A.

4 This addresses knife-edge situations where Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′
i), H = h] for

Sh(xi) ̸= Sh(x′
i). That is, in the XOR case, if Bob reveals his full signal, then he will not only report

the belief as 1
2 but also announce his full signal.
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Proof of Proposition 23. First, for Bob, to maximize his expected payment, it’s always
optimal to reveal XB in stage 2 because Bob is paid for his conditional mutual information
which is maximized by full revelation. It’s left to analyze Alice’s optimal strategy given that
Bob reveals XB in stage 2.

If Alice reveals all her information either at the first stage or at the third stage, we only need
to compare I(XA;W ) and I(XA;W |XB). But I(XA;W ) − I(XA;W |XB) = I(XA;XB ;W ).
Thus, the results immediately follow from the fact that the sign of the interaction information
is nonnegative/nonpositive when the information are substitutes/complements.

It’s left to consider the general strategy where Alice reveals part of her information at
stage 1, say S1(XA), and part of her information at stage 3, say S3(XA). In this case, she
will be paid I(S1(XA);W ) + I(S3(XA);W |XB , S1(XA)) according to Lemma 21.

First, it is optimal for Alice to reveal all her remaining information at the last stage
since I(S3(XA);W |XB , S1(XA)) ≤ I(XA;W |XB , S1(XA)) due to monotonicity of mutual
information. Thus, Alice will reveal S3(XA) = XA.

Under the substitutes structure, Alice’s expected payment in stage 3 is

I(XA;W |XB , S1(XA)) ≤ I(XA;W |S1(XA))

because 1) fixing any S1(XA), XB and XA are still independent conditioning on W thus are
substitutes (Observation 18) and 2) conditioning decreases mutual information for substitutes.
Therefore,

I(S1(XA);W ) + I(XA;W |XB , S1(XA))
≤I(S1(XA);W ) + I(XA;W |S1(XA)) (conditioning decreases mutual information)
=I(XA, S1(XA);W ) = I(XA;W ). (chain rule)

Thus I(XA;W ) upper bounds Alice’s total payment, but this is what she receives if she
reveals all her information in the first round.

Under complements structure, Alice’s expected payment in stage 1 is

I(S1(XA);W ) ≤ I(S1(XA);W |XB)

because 1) S1(XA) and XB are independent thus are complements and 2) conditioning
decreases mutual information for complements. Therefore,

I(S1(XA);W ) + I(XA;W |XB , S1(XA))
≤I(S1(XA);W |XB) + I(XA;W |XB , S1(XA))

(conditioning increases mutual information)
=I(XA, S1(XA);W |XB) = I(XA;W |XB) (chain rule)

Thus I(XA;W |XB) upper bounds Alice’s total payment, but this is what she receives if
she reveals all her information in the second round. ◀

5 Conclusion and Discussion

We have developed an information theoretic framework to analyze the aggregation of informa-
tion both in the Round Robin protocol and prediction markets. We showed that when agents’
private information about an event is independent conditioning on the event’s outcome, then,
when the agents are in near consensus in any Round Robin Protocol, their information is
nearly aggregated. We additionally reproved 1) the Standard/Discretized Consensus Protocol
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quickly converges [Aaronson 2005] in the information-theoretic framework; and 2) results
from Chen et al. [8] on when prediction market agents should release information to maximize
their payment.

Our analysis of the Alice Bob Alice prediction market straightforwardly extends to any
sequence of an arbitrary number of agents. By applying the same argument, it is easily
shown that: 1) every agent revealing all their information immediately is an equilibrium in
the substitutes case; and 2) every agent revealing all their information as late as possible is
an equilibrium in the complements case.

One possible extension is to study similar protocols when the agents are on networks.
This was already pioneered by Parikh and Krasucki [29] and also examined by Aaronson [1]
who used a spanning tree structure to show that a particular agreement protocol converges
quickly. Perhaps using the tools of this paper, one could analyze more general protocols.

Another possible extension is to look at generalizations of Shannon mutual information.
For example, starting with any strictly proper scoring rule one can develop a Bregman
mutual information [26] and ask whether our proofs will go through using this new mutual
information definition. When using the logarithmic scoring rule, one arrives at the standard
Shannon mutual information used in this paper. However, different scoring rules are possible
as well. All such mutual informations will still obey the chain rule and non-negativity. As
such, generalized versions of Lemma 11 will hold. However they may not be symmetric (and
similarly their interactive information may not be symmetric). Thus, our techniques cannot
be straightforwardly adjusted to reprove Theorem 16 or Proposition 23 in this manner. So
while this generalizes our framework, finding a good application remains future work.

We hope that our framework can analyze additional settings of agents aggregating
information. One example would be more inclusive classes of agent signals than in the
settings of this paper. However, perhaps our framework could also be applied to analyze
broader settings such as social learning [20] or rewards for improvements in machine learning
outcomes [2], where either individually developed machine learning predictors are eventually
combined in ensembles or the training data is augmented by individually procured training
data.
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A Additional Proofs

▶ Lemma 11 (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,
Non-decreasing Historical Information any agent’s declaration does not decrease the amount

of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.

Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event condi-
tioning on the history, i.e.,

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

Proof of Lemma 11. Because the (conditional) mutual information is always non-negative,
once we have established the second property of the growth rate equaling the marginal value
the first property of non-decreasing information follows immediately. Thus, we start by
proving the second property, the growth rate equals the marginal value.

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(Ht
i+1;W |Ht

i ) = I(hti;W |Ht
i ). (2)

The first equality holds due to chain rule and the fact that Ht
i+1 contains Ht

i . The second
equality holds due to the fact that Ht

i+1 = (Ht
i , h

t
i). ◀

▶ Lemma 14 (Informative Declaration). For all i and t and all possible histories Ht
i , when

agent i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ϵ, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ;

Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥ 1

64ϵ
3 1

log 1
E−1( ϵ

2 )

where E−1(ϵ) ≤ 0.5 and is the solution of x log x+ (1 − x) log(1 − x) = −ϵ.
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Proof of Lemma 14. In the Standard Consensus protocol, I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ

because agent i declares her Bayesian posterior as hti = pti = Pr[W |Xi = x,Ht
i = h].

Discretized Consensus Protocol Proof Summary: We will first obvserve that if the average
over all possible histories I(Xi;W |Ht

i ) ≥ ϵ, then there must be a set of histories with non-
trivial weights such that I(Xi;W |Ht

i = h) > ϵ
2 . Fixing a history h, the summary function

maps the agent’s private information to three signals: high, low, and medium. This classifies
the expectations conditioning on the private information x into three categories: the high
set, the low set, and the medium set. We will first show that when the private information
is informative, because the medium set’s expectations are close to the outsider’s current
expectations, the medium set’s contribution to I(Xi;W |Ht

i = h) will not be significant. Thus
either the high set or the low set contributes a lot. We then prove that after compression,
the high set and the low set will still preserve a non-trivial amount of information. We will
repeatedly use the fact that the mutual information is the expected KL divergence in the
analysis.

We first show that if I(Xi;W |Ht
i ) ≥ ϵ then, Prh[I(Xi;W |Ht

i = h) > ϵ/2] ≥ ϵ/2. This
follows from Markov’s Inequality applied to 1−I(Xi;W |Ht

i = h) which is always non-negative
because I(Xi;W |Ht

i = h) ≤ H(W ) ≤ 1. Formally,

Pr
h

[I(Xi;W |Ht
i = h) ≤ ϵ/2] = Pr

h
[1 − I(Xi;W |Ht

i = h) ≥ 1 − ϵ/2]

≤1 − I(Xi;W |Ht
i )

1 − ϵ/2 (Markov’s Inequality)

≤ 1 − ϵ

1 − ϵ/2 ≤ 1 − ϵ/2

We now fix any history h where I(Xi;W |Ht
i = h) ≥ ϵ/2. We would like to show that

I(hti;W |Ht
i = h) ≥ ϵ2

32
1

− log2 E
−1( 1

2ϵ)
(3)

because then

I(hti;W |Ht
i )

≥
∑

I(Xi;W |Ht
i
=h)≥ ϵ

2

I(hti;W |Ht
i = h) · Pr[Ht

i = h]

≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) · Pr

h

[
I(Xi;W |Ht

i = h) ≥ ϵ

2

]
≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) · ϵ2

= 1
64ϵ

3 1
− log2 E

−1( ϵ2 )

and this proves the lemma.
Before showing Equation 3, for notational clarity, we define

ψ(Xi) = hti =


high pti > qti

low pti < qti

medium otherwise.

Notice that once we fix a history, ψ(Xi) = hti is a function of Xi. Recall that we have defined
qti > qti so that DKL(qti , qti) = ϵ

4 , and qti < qti so that DKL(qti , qti) = ϵ
4 .
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Additionally, let q be a shorthand for qti = Pr[W = 1|Ht
i = h]. Let px = Pr[W = 1|Ht

i =
h,Xi = x] be the Bayesian posterior for W = 1 conditioning on that agent i receives Xi = x.
Let wx = Pr[Xi = x|Ht

i = h] be the prior probability that agent receives Xi = x. Let
phi = Pr[W = 1|Ht

i = h, ψ(Xi) = high] be the Bayesian posterior for W = 1 conditioning
on that the agent i announces “high”. Let whi = Pr[ψ(Xi) = high|Ht

i = h] be the prior
probability that agent i announces “high”. Analogously, we define plo, wlo (low), pme, and
wme (medium).

Our goal in Equation 3 can then be restated as

I(ψ(Xi);W |Ht
i = h) ≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) .

Notice that:

I(Xi;W |Ht
i = h) (4)

=
∑
x

Pr[Xi = x|Ht
i = h]

∑
w

Pr[W = w|Xi = x,Ht
i = h] log2

Pr[W = w|Xi = x,Ht
i = h]

Pr[W = w|Ht
i = h]

=
∑
x

Pr[Xi = x|Ht
i = h]DKL(px, q)

=
∑
x

wxDKL(px, q) (5)

We can partition all x into three categories, ψ(x) = high, low,medium. Because when
ψ(x) = medium, DKL(px, q) ≤ ϵ

4 , when I(X;W |Ht
i = h) ≥ ϵ

2 , we have∑
ψ(x)=high,low

wxDKL(px, q) ≥ ϵ

4 .

Thus either the low set or the high set contributes ≥ ϵ
8 . Without loss of generality, we assume∑

ψ(x)=high wxDKL(px, q) ≥ ϵ
8 .

Recall our goal is to show that given Equation 5 was greater than ϵ/2 then the following
is large:

I(ψ(Xi);W |Ht
i = h) =

∑
ψ(Xi)∈{lo,me,hi}

wψ(Xi) ·DKL(pψ(Xi), q) ≥ whi ·DKL(phi, q). (6)

We can show this is large by lower-bounding both whi and DKL(phi, q).
First, we will lower bound whi by upper bounding DKL(px, q). Note that

DKL(p, q) ≤ max{log 1
q
, log 1

1 − q
} = max{− log q,− log 1 − q}

by recalling the formula DKL(p, q) = p log p
q + (1 − p) 1−p

1−q . To upper bound this, we must
show that q is not too close to 0 or 1. Because q log2

1
q + (1 − q) log2

1
1−q = I(W ;W |Ht

i =
h) ≥ I(X;W |Ht

i = h) ≥ 1
2ϵ, we have E−1( ϵ2 ) ≤ q ≤ 1 − E−1( ϵ2 ). This gives us that

DKL(px, q) ≤ − log2 E
−1( ϵ2 ).

We assumed that
∑
ψ(x)=high wx ·DKL(px, q) ≥ 1

8ϵ, so we have:

whi =
∑

ψ(x)=high

wx ≥ ϵ

8
1

− log2 E
−1( ϵ2 ) .
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Next, we lower bound DKL(phi, q). DKL(phi, q) ≥ ϵ
4 because for any x where ψ(x) =

high, we have that px ≥ q and q was defined so that DKL(q, q) = ϵ
4 and for any q′ > q,

DKL(q′, q) > ϵ
4 .

Combining with Equation 6 we are now done because

I(ψ(Xi);W |Ht
i = h) ≥ whi ·DKL(phi, q) ≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) . ◀

▶ Lemma 24 (Superadditivity for complements). When X and Y are independent:
Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;
Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);
Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

Proof of Lemma 24. The proof is directly analogous to that of Lemma 17
First, I(X;Y ) = 0 because X and Y are independent.
Nonpositive Interaction Information follows because I(X;Y ;Z) = I(X;Y )−I(X;Y |Z) =

−I(X;Y |Z) ≤ 0.
Next I(Y ;Z|X) ≥ I(Y ;Z) because 0 ≥ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z) − I(Y ;Z|X)

where the inequality is by nonpostive interaction information, the first equality is from
the symmetry of interaction information, and the second equality is from the definition of
interactive information.

Third, superadditivity immediately follows because: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥
I(X;Z) + I(Y ;Z) where the equality is from the chain rule and the inequality is because
conditioning increases mutual information.

The moreover follows by using induction and superadditivity. ◀

▶ Observation 18. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn

are substitutes (complements), they are still substitutes (complements) conditioning on any
history.

Proof of Observation 18. Let D be some distribution over Σn where X1, X2, · · · , Xn are
all independent. We first observe that after any “independent” restrictions on the realizations
of X1, X2, · · · , Xn, they are still independent. That is, fix Σ1, . . . ,Σn where Σi ⊆ Σ for
all i ∈ {1, . . . , n} and let ξ ⊂ Σn be the event where xi ∈ Σi for all i ∈ {1, . . . , n}. Then
conditioning on ξ, X1, X2, · · · , Xn are independent as well.

For all (x1, x2, · · · , xn) ∈ Σ1 × Σ2 × · · · Σn,

Pr
D

[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = PrD[X1 = x1, X2 = x2, · · · , Xn = xn]
PrD[ξ]

= Πi PrD[Xi = xi]
Πi PrD[Xi ∈ Σi]

= Πi Pr
D

[Xi = xi|Xi ∈ Σi]

ITCS 2023



81:22 False Consensus, Information Theory, and Prediction Markets

Moreover, PrD[Xi = xi|Xi ∈ Σi] = PrD[Xi = xi|ξ] because

Pr
D

[Xi = xi|ξ]

= PrD[Xi = xi, ξ]
PrD[ξ]

= PrD[Xi = xi, ∀j ̸= i,Xj ∈ Σi]
PrD[∀j,Xj ∈ Σj ]

= PrD[Xi = xi]Πj ̸=i PrD[Xj ∈ Σj ]
PrD[Xi ∈ Σi]Πj ̸=i PrD[Xj ∈ Σj ]

= PrD[Xi = xi]
PrD[Xi ∈ Σi]

Πj ̸=i
PrD[Xj ∈ Σj ]
PrD[Xj ∈ Σj ]

= PrD[Xi = xi]
PrD[Xi ∈ Σi]

= Pr
D

[Xi = xi|Xi ∈ Σi]

Therefore, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = Πi Pr[Xi = xi|ξ]. For all
(x1, x2, · · · , xn) /∈ Σ1 × Σ2 × · · · Σn, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = 0 =
Πi Pr[Xi = xi|ξ]. Thus conditioning on ξ, X1, X2, · · · , Xn are independent as well.

In the Round Robin Protocol, after the first agent makes her declaration h1
1 which is a

function of the prior and X1, we have a restriction for X1. The second agent’s declaration
h1

2 is a function of the prior, h1
1 and X2. For fixed h1

1, we have an independent restrictions
for X2, and so forth. Thus, for any fixed history, we will have independent restrictions for
X1, X2, ..., and Xn. Therefore, when X1, X2, ..., and Xn are independent, they are still
independent given any fixed history as well.

The same analysis shows that when X1, X2, ..., and Xn are independent conditioning any
W = w, they are still independent conditioning on both W = w and any fixed history. ◀

B Complete Agreement

▶ Observation 25. For all priors where agents’ private information are substitutes, in the
standard consensus protocol, after one round, every agent’s belief becomes Pr[W = 1|X1 =
x1, X2 = x2, · · · , Xn = xn].

The above observation shows that when agents’ private information are substitutes,
complete agreement is obtained after one round in the standard consensus protocol.

Proof. We use p0 to denote the prior Pr[W = 1]. We use ℓ0 to denote the prior likelihood
ℓ0 = Pr[W=1]

Pr[W=0]
The key observation is that there is a bijection ℓ0 = p0

1−p0
between the probability and

likelihood space. To see it is a bijection, note that p0 = ℓ
1+ℓ .

In the standard consensus protocol, at round 1, agent 1 reports p1
1 = Pr[W = 1|X1 = x1].

But, because there is a bijection between the probability and likelihood space, they might
just report the likelihood:

ℓ1
1 = Pr[W = 1|X1 = x1]

Pr[W = 0|X1 = x1] = l0 · Pr[X1 = x1|W = 1]
Pr[X1 = x1|W = 0]

The second equality follows from applying Bayes rule to the numerator and denominator.
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Similarly, because the signals are conditionally independent:

ℓ2
1 =Pr[W = 1|X1 = x1, X2 = x2]

Pr[W = 0|X1 = x1, X2 = x2]

=Pr[W = 1, X1 = x1, X2 = x2]
Pr[W = 0, X1 = x1, X2 = x2]

=Pr[W = 1] Pr[X1 = x1|W = 1] Pr[X2 = x2|W = 1]
Pr[W = 0] Pr[X1 = x1|W = 0] Pr[X2 = x2|W = 0] (Conditional independence)

=Pr[W = 1|X1 = x1] Pr[X2 = x2|W = 1]
Pr[W = 0|X1 = x1] Pr[X2 = x2|W = 0]

=ℓ1
1 · Pr[X2 = x2|W = 1]

Pr[X2 = x2|W = 0] .

Analogously, for i ≥ 3, each agent i simply updates the likelihood by multiplying by
Pr[Xi=xi|W=1]
Pr[Xi=xi|W=0] . While the are actually reporting a probability, because of the bijection, it is
equilivlent that they report a likelihood.

Notice, that the likelihood at the end of one round, captures all the agent’s information. ◀
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Abstract
With the power of quantum information, we can achieve exciting and classically impossible crypto-
graphic primitives. However, almost all quantum cryptography faces extreme difficulties with the
near-term intermediate-scale quantum technology (NISQ technology); namely, the short lifespan of
quantum states and limited sequential computation. At the same time, considering only limited
quantum adversaries may still enable us to achieve never-before-possible tasks.

In this work, we consider quantum cryptographic primitives against limited quantum adversaries
– depth-bounded adversaries. We introduce a model for (depth-bounded) NISQ computers, which
are classical circuits interleaved with shallow quantum circuits. Then, we show one-time memory
can be achieved against any depth-bounded quantum adversaries introduced in the work, with their
depth being any pre-fixed polynomial. Therefore we obtain applications like one-time programs and
one-time proofs. Finally, we show our one-time memory has correctness even against constant-rate
errors.
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1 Introduction

Quantum information paves the way for many classically impossible cryptographic applica-
tions. Wiesner initiated the study and proposed the first application: quantum money [47]
– banknotes that can not be copied. Recently, we have seen more exciting applications,
including unclonable banknotes that can be publicly verified [2, 49, . . . ] and copy-protection
of programs [1, 3, . . . ]. Despite the great success in the theoretical study of these protocols,
almost all applications face extreme difficulties with state-of-the-art quantum technology.
There are several barriers to implementing these exciting applications, most notably, quantum
error-correction and thus the ability to

(i) maintain a quantum state for a long time and
(ii) coherently compute over a system for a large depth.

To illustrate, we can think of quantum money. For now, we focus on the quantum money
schemes based on subspace states [2, 49], it consists of two major building blocks: (1) a
quantum state treated as a banknote and (2) a quantum procedure for verifying the validity
of money. The banknote needs to be persistent, as no one wants their wealth to evaporate
overnight. The quantum money scheme will also become utterly useless if a verification
procedure is so complicated that no quantum computers can finish the evaluation with little
error and make no disturbance to the banknote. Similarly, requirements (i) and (ii) are
required for almost all quantum cryptography protocols.
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The current quantum technology fails to satisfy either (i) or (ii), meaning all the ground-
breaking applications are still far from achievable in practice. The experiments that do
show quantum advantages, for example, [33, 5], only need noisy quantum computers with
short depth (i.e., bounded steps of sequential computation). While waiting for the arrival
of full-scale, fully fault-tolerant quantum computers, Preskill [39] proposed the notion of
Noisy Intermediate-Scale Quantum (NISQ) technology and discussed the impact of NISQ
computers on the world, like quantum simulation and quantum annealing. In this worse case,
just like quantum skeptics may argue [35], a good-quality quantum error-correction code
might never exist and invalidate either requirements (i) or (ii). Suddenly, all efforts devoted
to full-scaled quantum computers and their applications vanish. Therefore, it is intriguing to
ask the following question:

Can we take advantage of the imperfect form of quantum computers and build
cryptographic protocols that one can not achieve in a classical world, and yet are
achievable and secure for NISQ computers?

Cryptography is always about utilizing asymmetry between honest parties and malicious
adversaries. More precisely, the above question wants to exploit quantum computers’
limitations to restrict adversaries but keep the quantum operation for honest parties as
simple as possible. Any answer to the above question demonstrates a win-win situation for
the current quantum cryptography research. If perfect quantum computers never exist and
there is a depth bound for maximal sequential computation, we can still base cryptography on
the limitations of quantum computers and achieve classically impossible primitive; otherwise,
we enter the new era of quantum cryptography with applications like quantum money.

In this work, we answer the question affirmatively. We formally define “imperfect quantum
computers” as classical circuits with access to depth-bounded quantum circuits (hybrid circuit
models, inspired by [20]) and show powerful applications like one-time memory and one-time
programs [31].

1.1 Result 1: Defining Depth-Bounded Quantum Adversaries
Our first result is to give a model that captures quantum computers with all the limitations
we discussed above.

To capture NISQ computers, a reasonable model should reflect both the short lifespan
of quantum states and shallow sequential quantum computation. The first thought is to
consider d-depth bounded quantum circuits for a fixed polynomial d, where d takes the size
of the whole system as a parameter, denoted by QNCd. Although this definition captures
“shallow sequential quantum computation”, it fails to represent the ability of large sequential
classical computation and the resettability of quantum computers.

Chia, Chung, and Lai [20] give two formal definitions of hybrid classical-quantum circuits,
corresponding to two different computational models. The first one is called d-CQ circuits: a
hybrid circuit is modeled as a QNCd circuit with oracle access to a polynomial-time classical
machine in BPP. It captures the ability to arbitrarily pause a quantum machine at any stage
of its computation, post-processing based on partial results of the quantum computer and
resuming the quantum computation. This model describes “shallow depth” but not “short
lifespan of quantum states”. Because there is no particular time limit on the running time
of classical computation, the quantum computer in this model should perfectly preserve its
internal state for an arbitrarily (polynomially) long time, which is in contrast to the intuition
behind NISQ.
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We found their second model is more natural to our setting: d-QC circuits. This model
describes a hybrid circuit as a BPP machine for classical input-output behavior with oracle
access to QNCd. To put it another way, a quantum computer in this model is mostly a
classical machine, except when needed, it initiates and runs an instance of a shallow quantum
machine. We propose the following model, which is similar to the d-QC circuits with one
difference: in our model, a hybrid circuit computes quantum input-output functionality. See
Figure 1 for more details.

ρ C Π A C Π A C Π A C· · ·

Figure 1 d-depth bounded quantum algorithms. C denotes quantum circuits, Π denotes measure-
ments whereas A denotes classical post-processing. Dashed lines denote classical bits and solid lines
denote qubits. There are polynomially many such blocks, but each C is at most of depth d.

In our model, shallow quantum circuits are interleaved with full measurements1 and
classical processing. Note that in our model, full measurements are crucial: first, if only a
partial measurement is applied, the quantum depth of an algorithm will get at least doubled;
second, the algorithm has a pure classical state at some point of its computation is essential
to establish the technical proof later in the work.

Our model inherently assumes that at some stage of NISQ era, there exist two parameters
d≫ d′ such that

Computation over quantum states and communication can be done with no error (or
some constant-rate error) for depth d′ and time d′;
d′ is the transmission time2 of quantum information from one party to another plus the
number/time of sequential computation for honest execution of protocols. In our work,
we set d′ as a constant.
It is impossible to compute over a quantum system for d units of time.
In this work, we will set d as any pre-fixed polynomial.

We believe our model captures the nature of NISQ computers, for the two fundamental
limitations we care about: the short lifespan of quantum states and shallow sequential
quantum computation. In the rest of the work, we will work with these definitions and build
cryptographic primitives against d-depth bounded quantum algorithms for any pre-fixed
polynomial d.

1.2 Result 2: Constructing One-Time Memory and One-Time Programs
Next, we show our second result: constructions of one-time memory against depth-bounded
quantum computers.

The study of one-time memory (OTM) and one-time programs was initiated by Goldwasser,
Kalai and Rothblum [31]. One-time memory is a powerful building block and can be viewed
as a central hub of cryptographic protocols. A one-time memory is a piece of hardware

1 A full measurement measures every single qubit of the system and leaves the internal state purely
classical.

2 We only consider earth-to-earth transmission, which takes much less than one sec and can be treated as
a constant. For applications involved earth-to-space quantum information transmission, assuming d
being relatively small may not be ideal.
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that stores two values m0 and m1; honest clients can read out any of the values from the
one-time memory, while any read operation will destroy the memory and make it impossible
to read the other value. With one-time memory, Goldwasser et al. showed how to build
one-time programs, which is a one-time version of virtual black-box obfuscation (VBB)3[6].
A client can use a one-time program of any function f to compute f(x) on any x of its choice
without the ability to see either the actual computation or f(y) on other y ̸= x. Since VBB
obfuscation is the “holy grail” of cryptography, many classically complicated or impossible
functionality can be constructed with OTMs in a generic way, such as one-time programs
and one-time zero-knowledge proofs [31].

Despite the power of one-time memory, one-time memory itself is clearly impossible in
the classical setting without making any hardware assumptions . If a piece of classical bits
encodes a one-time memory, an adversary can always read one value, rewind it to the original
state and read the other value. Due to the gentle measurement lemma [4], such rewinding
can also be done in the quantum world; one-time memory can not purely base its security on
quantum information and computational assumption. Therefore, some hardware assumptions
are still needed – in other words, certain limitations on adversaries are necessary to achieve
one-time memory.

Broadbent, Gharibian, and Zhou [15] started the study on quantum OTMs with classical
hardware called stateless tokens (later improved by [8]). A stateless token encodes a classical
functionality in a black-box manner; i.e., one can only learn the classical input-output
behavior of the functionality but nothing else, just like a virtual black-box obfuscation. Even
more, since it is a piece of hardware, they further assume an adversary does not have enough
energy to coherently compute over a macroscopic object (the token) and thus can only
classically interact with the token. Chung, Georgiou, Lai, and Zikas [23] also followed the
same idea and used classical tokens to implement OTMs and other applications. However,
the assumption on VBB obfuscation and the ability to only classical evaluation over the
obfuscation is less satisfying, mainly due to two reasons: (1) general-purpose VBB obfuscation
is widely known to be impossible [6], and all heuristic obfuscation is more or less defective and
far away from VBB; (2) an attacker can learn some bits of information about the hardware
and may perform quantum computation based on the piece of information, which is not
captured by “classical interaction”.

In this work, we provide provable OTMs against depth-bounded quantum adversaries. In
some sense, our constructions are still under some hardware assumptions: “depth-bounded”
limits how a quantum computer can be built; but the assumption is rather mild for NISQ
computers.

▶ Theorem 1 (OTM, informal). There exist secure OTMs with un-entangled quantum states,
against d-depth-bounded quantum adversaries for any fixed polynomial d(·), in the quantum
random oracle model.

Let us elaborate more on the theorem. Our construction is a prepare-and-measure protocol,
meaning all quantum computation for honest senders and receivers is to prepare un-entangled
quantum states and measure under computational or Hadamard bases. The theorem provides
a strong security: honest evaluation is a constant-depth quantum algorithm that only queries
a random oracle classically; however security holds even if an adversary is d-depth bounded

3 A virtual black-box obfuscation is a program compiler that takes a classical circuit and outputs an
obfuscated version of that circuit; any algorithm can only interact with the obfuscation by observing its
input-output behavior, but nothing else. This primitive is impossible in both the classical and quantum
world.
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and each superposition query to the random oracle is treated as a single quantum gate. By
appropriately replacing the random oracle with a practical hash function, like SHA-3, we
get a heuristic instantiation of this protocol. As discussed in the last section, we believe
bounded depth characterizes two critical limitations of near-term quantum computers and is
mild compared to stateless tokens (classically accessible VBB).

Applications

We can also leverage our one-time memory to one-time programs and one-time proofs in
a generic way, following the ideas in [31]. A one-time program compiler takes a classical
circuit C and outputs a (quantum) token. Any user with the token can compute C on any
input x but only once. With one-time memory, one-time programs can be constructed in
a generic way from Yao’s garbled circuits [48]. Yao’s garbling procedure takes a circuit
C and outputs a list of input labels inpi,b for i ∈ [n], b ∈ {0, 1}; with any combination
of inp1,x1 , inp2,x2 , · · · , inpn,xn

, one can compute C(x) but learn nothing except C(x). To
construct one-time programs, we can use our one-time memories to store each pair of inpj,0
and inpj,1. Since a user can only read out exactly one of each pair of input labels, both
completeness and security hold. The resulting one-time program compiler is a prepare-and-
measure protocol with un-entangled quantum states, with honest execution taking O(1)
quantum depth.

1.3 Result 3: Dealing with Constant Errors
In the above discussion, we must assume honest execution and transmission have no error.
This may be an unrealistic assumption for NISQ techniques; for example, the experiment
demonstrated in [5] has constant-rate (< 1%) errors. Therefore, we model errors as depolar-
izing quantum channels that operate independently on each qubit, and preserve each qubit
with probability 1− ε and replace the qubit with a maximally mixed state with probability ε

for some constant ε > 0. We prove that our scheme still has completeness under this noise
model while achieving security even against errorless depth-bounded quantum adversaries.
To achieve this, we apply certain classical error-correcting codes (like expander codes [41, 19]
or Justesen codes [34]) on quantum states. The resulting quantum state is still un-entangled
and satisfies all the properties we want. We elaborate in the next section.

1.4 Technical Overview
The starting point is the famous Wiesner states [47] (or BB84 states [11]). A Wiesner state
encodes a bit of classical information x under a special basis θ ∈ {0, 1}, denoted by |xθ⟩.

|xθ⟩ =


|0⟩ and x = 0, θ = 0,

|1⟩ and x = 1, θ = 0,

|+⟩ and x = 0, θ = 1,

|−⟩ and x = 1, θ = 1,

When θ is 0, x is encoded by the set of computational basis states |0⟩ or |1⟩; when θ = 1,
the set of encoding is the Hadamard basis |+⟩ or |−⟩. For x and θ being n-bit classical
strings, we use |xθ⟩ to denote the concatenation of Wiesner states: |xθ⟩ := |xθ1

1 ⟩ |x
θ2
2 ⟩ · · · |xθn

n ⟩.
In this work, we will mostly focus on the case where θ has hamming weight n/2 (assuming n

is even). In this case, a Wiesner state encodes two classical n/2-bit strings on each basis.
We call them xc in the computational basis and xh in the Hadamard basis. For example,
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when x = 0101 and θ = 0110, xc will be 01, corresponding to the bits in x whose matching
coordinates in θ are 0; and xr is 10. Here we ignore the subscript or superscript θ on xc, xr

for convenience.
Wiesner states enjoy three important properties.

1. The first one is “unpredictability”. No (even unbounded) algorithm given |xθ⟩ but no
θ, can output either xc or xh. It says a Wiesner state can be viewed as symmetric-key
quantum encryption of classical bits, which completely hides a random message x.

2. The second property is called “direct-product hardness”, which says without giving
θ, (even unbounded) one can not produce two strings such that one contains xc in the
corresponding coordinates and the other contains xh. Unlike unpredictability, outputting
a string that consists of xc or xh is easy. One can simply measure the quantum state |xθ⟩
in either the computational or Hadamard basis; but outputting exact xc or xh is hard
because it does not know which n/2 coordinates to pick. The “direct-product hardness”
says that while obtaining a classical string with xc or xh as a substring at the right
coordinates is easy, it is impossible to produce two strings with both xc and xh at the
correct positions, respectively.

3. The last property is “unclonability”. The security guarantee says no (even unbounded)
splitting attacker Alice can produce two (potentially entangled) quantum states given
|xθ⟩, later two non-communicating parties recover xc and xh respectively, both with the
basis information θ. Coladangelo, Liu, Liu and Zhandry [24] proposed a conjecture on
this property4 on coset state (a generalization of Wiesner states) and it is later proved by
Culf and Vidick [26] for both Wiesner states and coset states.

The construction by Broadbent et al. [15] is, roughly speaking, based on Wiesner states’
direct-product hardness. In their construction, a classical token computes the following
functionality: if the input consists of xc at the correct coordinates, it outputs m0; if the
input consists of xh at the right coordinates, it outputs m1; otherwise, it outputs a junk
symbol ⊥. Here m0 and m1 are messages they want to put in a one-time memory. The proof
roughly says, if an algorithm can produce m0, then it must query the classical token on a
classical message with xc at the correct coordinates; similarly for m1 and xh. Therefore,
having the ability to recover both m0 and m1 implies an attack on direct-product hardness.
Their proof crucially relies on the token being classical, i.e., a quantum algorithm can only
interact with it classically and cannot compute coherently over it, which forces measurement
over the quantum state.

Unlike the construction by Broadbent et al., which bases on direct-product hardness, our
construction relies on unpredictability and unclonability, as well as a cryptographic primitive
called weak time-lock puzzles [40, 12]. For convenience, we use “time-lock puzzles” to denote
“weak time-lock puzzles” in the rest of the work. Time-lock puzzles (alternatively called
time-released encryption) are encryption that completely hides the message before some
time limit t for any polynomial-parallel machines, and decryption takes roughly T ≈ t time.
The encryption requires circuits of size T and depth log(T ). In the work by Bitansky et
al. [12], they showed that classical time-lock puzzles exist assuming one-way functions and
non-parallelizing languages. The reduction works in the same way for quantum. Therefore,
post-quantum time-lock puzzles exist, assuming post-quantum weak one-way functions and
quantum non-parallelizing languages whose existence is supported by the evidence in [22].

4 They call it “strong monogamy-of-entanglement”.



Q. Liu 82:7

Our construction is conceptually intuitive. Let us focus on the single-bit case: a one-time
memory stores two single bits. We first generate a Wiesner state |xθ⟩ with f(xc) equals to the
first message m0 and f(xh) equals to the second message m1, here f is a cryptographic hash
function with single-bit outputs and will be treated as a random oracle in the proof. A time-
lock puzzle Z on the secret basis information θ is also generated, along with the quantum
state. The one-time memory is then (|xθ⟩ , Z) (see Figure 2)5. Clearly, the generation
procedure only takes O(1) quantum depth as it only needs to apply O(n) parallel Hadamard
gates to prepare |xθ⟩ and the preparation of Z can be done in a classical circuit, before
preparing |xθ⟩. By the definition of bounded-depth hybrid circuits in Figure 1, it can be
computed in O(1)-depth hybrid circuits.

Token.Genf (m0, m1):
Sample a uniformly random θ ← {0, 1}n with hamming weight n/2.
Sample x← {0, 1}n such that f(xc) = m0 and f(xh) = m1.
Let Z ← Puzzle.Gen(d, θ) be a post-quantum time-lock puzzle with solution
θ.
Output |tk⟩ = (|xθ⟩ , Z).

Figure 2 One-Time Memory Construction for Single-Bit, Simplified.

To read mb, one first measures the quantum state |xθ⟩ under the computational basis or
the Hadamard basis depending on b. Then classical post-processing reveals θ for picking the
right coordinates. It can also be done by an O(1)-depth hybrid circuit.

The security follows the intuition below. Before a hybrid circuit goes deeper than d, the
basis information θ should be completely hidden from an adversary, and the adversary has
no way to interpret |xθ⟩ in any meaningful way (unpredictability of Wiesner states). After
depth d, the quantum state collapses and leaves only one out of two messages on both bases
(unclonability of Wiesner states). Thus, no adversary with a depth smaller than d can read
out both m0 and m1 simultaneously.

To formally prove it, we need to tweak the construction and prove the security in the
quantum random oracle model. Ignoring many details here, the key idea is as follows. We
show that if a d-depth bounded adversary can read out two values, we can turn it into an
adversary for the unclonability of Wiesner states. Recall Figure 1, when the first quantum
circuit C of depth d finishes, a measurement is applied, leaving the internal state of the
algorithm purely classical. At this point, we can copy the adversary into two identical ones,
and both recover m0, m1. With two identical adversaries, we use one for xc and the other
for extracting xh, violating the unclonability. The random oracle is used to remove the
dependence on θ of the first quantum circuit and extractions of xc and xh. We leave all the
missing details in the formal proofs in Section 4.

Finally, when there is a constant-rate error, honest execution can no longer produce xc

or xh as a constant fraction of all qubits gets corrupted. Our solution is to have ECC(xc)
and ECC(xh) encoded under Wiesner states, instead of the original xc and xh; here ECC is
some classical error-correcting code. Not all error-correcting codes work in our setting as
their rate and alphabet size affect the “unpredictability” and “unclonability” of the resulting

5 The construction is similar to revocable time-release encryption by Unruh [45] but the goal and proof
techniques are quite different. We will mention it at the end of this section.
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quantum states. To establish all the properties, we need a classical error-correcting code
with a constant rate, constant relative distance, and constant alphabet size. It turns out
expander codes satisfy all three properties. We name the new quantum state as Wiesner
states on expander codes (WSECs) and prove all the properties in the full version.

1.5 Other Related Work
Depth-Bounded Cryptography

Cryptography against bounded-depth adversaries in the classical setting has already been
studied by [32, 29, 30, 27, 25, 28, . . . ]. Degwekar, Vaikuntanathan and Vasudevan [27]
introduced the notion of fine-grained cryptography, which is cryptography against low-depth
adversaries (or adversaries with bounded resources in general). They considered adversaries
being either AC0 or NC1. The limitation of adversaries enables cryptographers to weaken or
even remove unproven assumptions. Our new notion can be viewed as generalizing depth-
bounded cryptography in the quantum world. Whereas classical depth-bounded cryptography
is important to theory, we find our quantum analog captures a broad class of adversaries and
has more motivation for practical purposes.

Revocable Time-Released Quantum Encryption [45]

Unruh also discussed combining time-lock puzzles and Wiesner states to achieve classically
impossible primitives, called revocable time-released encryption. It is an encryption scheme
that encodes a classical message m into a quantum state ρm. It takes an honest client time t

to recover the message m from ρm. Before time t, the server (who sends out the encryption)
can ask the client to send the encryption back to it. If the server verifies the encryption is
sent back appropriately, the client has no way to learn any information about m.

Unruh used a Wiesner state to encode a message m and a time-lock puzzle to store basis
information for the Wiesner state. Time-lock puzzles enforce the basis information is only
learned by the client after time t. Some (weaker) form of unclonability of Wiesner states
is used for revocability. Although our construction is similar to Unruh’s and both achieve
classically impossible primitives, there are many differences between these two works:

The goals are fundamentally different. Their goal is to have revocability before time t,
while ours is to have one-time memory against depth-bounded adversaries.
The honest execution in their work takes quantum depth t (as defined in Figure 1) whereas
ours takes constant quantum depth.
Theirs relies on a weaker form of unclonability, while ours relies on the so-called “strong
monogamy-of-entanglement”.
The proofs rely on different techniques.

The similarities shared in the two works (as well as Broadbent et al. [15]) are not surprising.
Because Wiesner states are the most simple yet fundamental unclonable quantum information
and lead to many applications; like unclonable encryption by Broadbent and Lord [17], certi-
fiable deletion by Broadbent and Islam [16] and most recently by Bartusek and Khurana [7]
and many more.

Verification of Quantum Depth [21]

A recent work by Chia and Hung gives two protocols for verifying quantum depth by classical
verifiers. Our protocol can also be viewed as an alternative verification of quantum depth: if
an adversary can recover both m0, m1, it must have a large depth. However, if we turn our
protocol into a verification protocol of quantum depth, the verifier is not purely classical; it
needs minimal quantum ability to prepare Wiesner states.
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1.6 Paper Organization
In the next section, we will touch on the bases of the quantum random oracle model,
Wiesner states, time-lock puzzles, and other useful lemmas. In Section 3, we introduce
the computational model: bounded depth quantum adversaries. We then formally define
one-time memory through a simulator-based definition and prove its security in Section 4.
We give a noise-tolerant version of our scheme in the full version.

2 Preliminaries

In this work, when we talk about non-uniform security, non-uniform quantum adversaries
are modeled by a collection of quantum circuits {Cλ}λ∈N+ with auxiliary quantum inputs
{σλ}λ∈N+ . When Cλ is unbounded, we ignore σλ for convenience, as it can be prepared
by Cλ.

For n ∈ N+, [n] = {1, 2, · · · , n} and [0, n] = {0, 1, · · · , n − 1, n}. For a binary vector
θ ∈ {0, 1}n, its hamming weight is denoted by |θ|1. When a random variable is drawn
uniformly at random from a set S, we denote by v ← S.

We assume that readers are familiar with the background of quantum information. Please
refer to [38] for more details. For two mixed states ρ, σ, we denote their trace distance by
T (ρ, σ).

2.1 Quantum Random Oracle Model
An oracle-aided quantum algorithm can perform two types of computation: quantum
computation and quantum oracle access to an oracle. Let f be an oracle that a quantum
algorithm has access to. Quantum oracle access to f is a unitary on input and output
registers XY: Of : |x, y⟩XY → |x, y + f(x)⟩XY.

In practice, we usually model a hash function as a uniformly random function f : [M ]→
[N ], instead of a fixed function that looks “random”. This is so called random oracle model,
introduced by Bellare and Rogaway [9]. The quantum analog, called quantum random oracle
model, was first proposed by Boneh et al. [14]. In this model, f is chosen at the very
beginning. An oracle-aided quantum algorithm with oracle access to f has three registers
XYZ and performs the following operations:

Oracle access: a unitary on XY such that Of : |x, y⟩XY → |x, y + f(x)⟩XY.
Local operation: a unitary on XYZ.

A T -query quantum algorithm starts with its internal memory being |0⟩ or an auxiliary
input |ϕ0⟩, and the computation is then modeled as UTOf · · · Of U1Of U0 followed by a
measurement. We denote an oracle-aided quantum algorithm with oracle acess to f by A|f⟩,
where |f⟩ specifies its ability to make quantum queries.

We will need the following lemma for extraction queries from an oracle-aided quantum
algorithm.

▶ Theorem 2 ([10]). Let A be an adversary with oracle access to f with domain [M ] that
makes at most T queries. Let |ϕi⟩ be the overall state after A makes the i-th query, and Wi,y

as the sum of squared amplitudes in |ϕi⟩ of terms in which A queries f on input y. Let ϵ > 0
and let F ⊆ [0, T − 1]× [M ] be a set of time-input pairs such that

∑
(i,y)∈F Wi,y ≤ ϵ2/T .

Let f ′ be an oracle obtained by reprogramming f on inputs (i, y) ∈ F to arbitrary outputs,
i.e., the i-th oracle query to f on input y will be reprogrammed. Define |ϕ′i⟩ as above for f ′.
Then,

T (|ϕT ⟩ , |ϕ′T ⟩) ≤ ϵ.
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▶ Remark 3. In the above theorem, A is interacting with an oracle f . f is consistent, meaning
that on the same inputs, it will always output the same value. In most of the cases, we will
use this theorem for consistent f . However, we can also consider a case where the oracle
access is different for every query. For example, A gets oracle access to fi for the i-th query.
The same theorem still holds as we can image an unified function f∗ such that on input (i, x)
it outputs fi(x). This compelling property of inconsistent oracles will be used in our proof.

▶ Lemma 4 (Extraction Lemma). Let A be an adversary with oracle access to f with domain
[M ] that makes at most T queries. Let f ′ be an oracle obtained by reprogramming f on
inputs y ∈ I to arbitrary outputs. Let |ϕT ⟩ and |ϕ′T ⟩ be the states of A after making all the
queries to f and f ′ respectively. If

T (|ϕT ⟩ , |ϕ′T ⟩) > µ,

then there exists a T query quantum algorithm B|f⟩ that outputs y ∈ I with probability at
least µ2/T 2.

Since f and f ′ is symmetric, there exists a T query quantum algorithm B|f ′⟩ that outputs
y ∈ I with probability at least µ2/T 2.

Moreover, B is simply running A and measuring one random quantum query of A.

Proof. This easily follows from Theorem 2. Let F = {(i, y), i ∈ {0, 1, · · · , T − 1}, y ∈ I}.
Since T (|ϕT ⟩ , |ϕ′T ⟩) > µ, we have that

∑
(i,y)∈F Wi,y > µ2/T .

B runs A as a subroutine and measures a random quantum query to f . Therefore,

Pr
[
B|f⟩ ∈ I

]
> µ2/T 2.

We conclude the proof. ◀

2.2 Wiesner States and Unclonability
For every n, every x, θ ∈ {0, 1}n, the notion |xθ⟩ denotes the quantum state

|xθ⟩ := Hθ1 |x1⟩ ⊗Hθ2 |x2⟩ · · · ⊗Hθn |xn⟩ .

Wiesner introduced the collection of states in [47] for the purpose of private key quantum
money. We call states of the form |xθ⟩ Wiesner states. For a fixed θ, the set of states
{|xθ⟩}x∈{0,1}n form a basis.

In the rest of the work, we will assume n is an even number and only focus on a subset
of all Wiesner states, namely, all Wiesner states |xθ⟩ with |θ|1 = n/2. For x, θ ∈ {0, 1}n with
|θ|1 = n/2, we denote xθ

c be a n/2-bit substring of x on indices Icomp = {i ∈ [n], θi = 0} and
xθ

h be a n/2-bit substring of x on indices IHadamard = {i ∈ [n], θi = 1}.
We recall the following two useful properties of Wiesner states. The first one is unpre-

dictability of Wiesner states.

▶ Lemma 5 (Unpredictability of Wiesner States). For any even n ∈ N+, any (unbounded)
quantum adversary A,

Pr
x,θ←{0,1}n

|θ|1=n/2

[
A(|xθ⟩ ⟨xθ|) ∈ {xθ

c , xθ
h}
]

= 1/2n/2−1.

Note that in the above lemma, the quantum algorithm is not given the basis information θ.
Otherwise, this task becomes trivial.
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Proof. Since A has no information about θ, the view of A remains unchanged if the input is
replaced with a maximally mixed state I/2n = 1

2n

∑
y∈{0,1}n |y⟩ ⟨y| = 1

2n

∑
x∈{0,1} |xθ⟩ ⟨xθ|.

The probability in Lemma 5 is the same as

Pr
x,θ←{0,1}n

|θ|1=n/2

[
A(I/2n) ∈ {xθ

c , xθ
h}
]

,

which is at most 2/2n/2. ◀

The second one is unclonability. The weaker version is first proved by Broadbent and
Lord in [17], based on a previous result on monogamy-of-entanglement of Wiesner states by
Tomamichel et al. [43]. We will prove the following lemma based on stronger monogamy-of-
entanglement of Wiesner states by Culf and Vidick [26].

▶ Lemma 6 (Unclonability of Wiesner States). For any even n ∈ N+, any (unbounded)
quantum adversaries (A,B, C),

Pr[CloneGameA,B,C(n) = 1] ≤ 0.924n < 2−0.11n,

where CloneGameA,B,C(n) is defined as:
1. A challenger samples x, θ ← {0, 1}n conditioned on |θ|1 = n/2 and sends |xθ⟩ to A.
2. A applies a quantum channel on |xθ⟩ and obtains ρBC over registers BC, which are then

sent to B and C respectively.
3. B and C receives ρB and ρC from A respectively, together with θ from the challenger.
4. The game outputs 1 if and only if B outputs xB = xθ

c and C outputs xC = xθ
h.

Proof. This is a corollary of stronger monogamy-of-entanglement of Wiesner states by Culf
and Vidick [26]. ◀

2.3 Time-Lock Puzzles
We recall the definition of time-lock puzzles. We will review the definition and construction
by Bitansky et al. [12]. At the end of this section, we will generalize their definitions and
constructions to the post-quantum setting.

Puzzles

A puzzle is parameterized by λ and t, where λ is the security parameter and t denotes the
difficulty to solve a puzzle. The following two definitions are almost taken verbatim from [12].
Here we only focus on their definitions on “weakly efficient puzzles” and “weak time-lock
puzzles” since it is sufficient for our work. Here “weak” says that the circuit for preparation
of a puzzle is polynomial in t instead of log t, but the depth is required to be polynomial in
log t.

▶ Definition 7 (Puzzles). A puzzle is a pair of classical algorithms (Puzzle.Gen, Puzzle.Sol)
satisfying the following requirements.

Syntax:
Z ← Puzzle.Gen(t, s) is a probabilistic algorithm that takes as input a difficulty para-
meter t and a solution s ∈ {0, 1}λ, where λ is a security parameter, and outputs a
puzzle Z.
s ← Puzzle.Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s.
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Completeness: For every security parameter λ, difficulty parameter t, solution s ∈ {0, 1}λ

and puzzle Z in the support of Puzzle.Gen(t, s), Puzzle.Sol(Z) outputs s with probability 1.
Weak Efficiency:

Puzzle.Gen(t, s) can be computed by a uniform circuit of size poly(t, λ) and depth
poly(log t, λ).
Puzzle.Sol(Z) can be computed in time t · poly(λ).

The following “time-lock” property guarantees that no circuit of small depth can extract
any meaningful information from the puzzle.

▶ Definition 8 (Weak Time-Lock Puzzles). A puzzle (Puzzle.Gen, Puzzle.Sol) is a weak time-
lock puzzle with gap ε < 1 if there exists a polynomial t(·) such that for every polynomial
t(·) ≥ t(·) and every polysize classical circuit A = {Aλ}λ∈N+ of depth dep(A) ≤ tϵ(λ),
there exists a negligible function µ, such that for every λ ∈ N+ and every pair of solutions
s0, s1 ∈ {0, 1}λ:

Pr
[
b← Aλ(s0, s1, Z) : b← {0, 1},

Z ← Puzzle.Gen(t(λ), sb)

]
≤ 1

2 + µ(λ).

The following shows that weak time-lock puzzles exist assuming a non-parallelizing
language and one-way functions (Theorem 3.10 in [12]).

▶ Theorem 9 (Weak Time-Lock Puzzles, [12]). Let ϵ < 1. Assume that, for every polynomially
bounded function t(·), there exists a non-parallelizing language L ∈ DTime(t(·)) with gap ϵ.
Assume one-way functions exist. Then for any ϵ < ϵ, there exists a weak time-lock puzzle
with gap ϵ.

In this work, we naturally ask a puzzle to have post-quantum time-lock property, defined
as follows.

▶ Definition 10 (Post-Quantum Weak Time-Lock Puzzles). The definition is the same as
Definition 8, except A = {Aλ}λ∈N+ is modeled as a collection of polysize quantum circuits
of depth dep(A) ≤ tϵ(λ).

Similar to Theorem 9, we can show the existence of post-quantum weak time-lock puzzles
assuming a quantum non-parallelizing language and post-quantum one-way functions.

▶ Definition 11 (Quantum Non-Parallelizing Language). A language L ∈ DTime(t(·)) is
quantum non-parallelizing with gap ϵ < 1 if every family of non-uniform polysize quantum
circuits B = {Bλ}λ∈N+ where dep(Bλ) ≤ tϵ(λ) and every large enough λ, Bλ fails to decide
L ∪ {0, 1}λ.

The existence of quantum non-parallelizing with any gap ϵ < 1 is shown to exist relative to
a random oracle by Chung, Fehr, Huang, Liao ([22], Theorem 5.25) and Blocki, Lee, Zhou
([13], Theorem 3). The problem is iterated evaluation of H t times, on which we will not
elaborate.

▶ Theorem 12 (Quantum Non-Parallelizing Language in the QROM, [22, 13]). There exists
quantum non-parallelizing languages with any gap ϵ < 1 relative to a quantum random oracle.

▶ Theorem 13 (Post-Quantum Weak Time-Lock Puzzles). Let ϵ < 1. Assume that, for
every polynomially bounded function t(·), there exists a quantum non-parallelizing language
L ∈ DTime(t(·)) with gap ϵ. Assume post-quantum one-way functions exist. Then for any
ϵ < ϵ, there exists a post-quantum weak time-lock puzzle with gap ϵ.

Proof. The proof is identical to that of Theorem 3.10 in [12], except the underlying one-way
function is post-quantum and the language L is quantum non-parallelizing. ◀
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3 Bounded Depth Quantum Adversaries

In this section, we formally introduce the notion of bounded depth quantum adversaries. We
model a quantum adversary as a sequence of bounded depth quantum circuits, each followed
by a complete measurement on computational basis, interleaved with any polynomial-time
classical algorithms. We start by defining quantum circuit families with depth d, similarly
defined by [37, 42, 20]. The following definition is adapted from the definition of QNCd

in [20].

▶ Definition 14 (d-Depth Quantum Circuit). A quantum circuit C is of depth d if C consists
of d layers of one- and two-qubit gates.

Let f be a classical function. C|f⟩ is of depth d if C consists of d layers of one-, two-qubit
gates and oracle gates Of .

We can now formally define a d-depth bounded quantum adversary. It takes as input a
quantum state and outputs a quantum state.

▶ Definition 15 (d-Depth Quantum Algorithm/Adversary). Let d be a function N+ → N+.
A d-depth bounded quantum algorithm/adversary on input λ qubits is parameterized by
polynomials ℓ(·), p(·) and a collection of non-uniform quantum circuits of the form{

Cλ,ℓ(λ)+1 ◦ Aλ,ℓ(λ) ◦Π ◦ Cλ,ℓ(λ) ◦ · · · ◦ Aλ,1 ◦Π ◦ Cλ,1, σλ

}
λ∈N+ ,

where
Each Cλ,j is a d(λ)-depth polysize quantum circuit that operates on λ + p(λ) qubits.
Each Aλ,j is a polynomial-time randomized classical algorithm that takes input λ + p(λ)
bits and outputs λ + p(λ) bits.
Cλ,1 operates on λ input qubits and p(λ) ancilla qubits σλ.
Π is a standard-basis measurement on λ + p(λ) qubits, follows every Cλ,j except the last
one.

ρ

σλ

Cλ,1 Π Aλ,1 Cλ,2 Π Aλ,2 Cλ,ℓ Π Aλ,ℓ Cλ,ℓ+1· · ·

Figure 3 d-depth bounded quantum algorithm. Dashed lines denote classical bits and solid lines
denote qubits. Each Cλ,j is a d-depth quantum circuit and Aλ,j is a polynomial-time randomized
classical algorithm.

Note that since it takes quantum inputs, it is crucially to have the first circuit being
quantum circuit. We can similarly define a d-depth quantum algorithm with oracle access to
f : each Cλ,j and Aλ,j has oracle access to f .

4 One-Time Memory against Bounded Depth Quantum Adversaries

4.1 Definitions
A one-time memory scheme consists of two procedures: one for generating a quantum token
and the other one for retrieving information from the token. It is parameterized by a security
parameter λ and a message length n, described as follows:

ITCS 2023
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▶ Definition 16 (Memory Token). Let f be a random oracle with domain [2λ] and sufficiently
large range (at least max{22λ, 2n}). A memory token scheme in the QROM is a pair of
quantum algorithms Token.Genf and Token.Evalf satisfying the following requirements:

Syntax:
Both quantum algorithms only classically query f .
|tk⟩ ← Token.Genf (1λ, m0, m1) is a quantum algorithm that takes as input a security
parameter and two messages m0, m1 ∈ {0, 1}n, and outputs a quantum state |tk⟩.
m← TokenEvalf (|tk⟩, b) is a quantum algorithm that takes as input a quantum state
and a bit b ∈ {0, 1}, and outputs a message m.

Completeness: For every security parameter parameter λ, every message length n, every
pair of messages m0, m1 ∈ {0, 1}n and every bit b ∈ {0, 1},

Pr
f

[
Token.Evalf (|tk⟩, b) = mb, |tk⟩ ← Token.Genf (1λ, m0, m1)

]
= 1,

where f is a uniformly random function.
Efficiency: Both Token.Gen and Token.Eval can be computed by a d-depth quantum al-
gorithm for d = O(1).

Next, we formally define “one-timeness”. It says that, for any small depth quantum
adversary, it can either learn m0 or m1 but not both.

▶ Definition 17 (One-Time Memory agaisnt Depth Bounded Adversary). A memory token
scheme (Token.Gen, Token.Eval) in the QROM is a one-time memory against d-depth quantum
adversaries satisfies the followings. For every message length n, every d-depth quantum
adversary A, every inverse polynomial γ(·), there exists an efficient quantum simulator
Sim, for every pair of messages m0, m1 ∈ {0, 1}n, Sim makes at most one classical query to
gm0,m1 : b→ mb such that the following two distributions have statistical distance at most
γ(λ):

A|f⟩
(

Token.Genf (1λ, m0, m1)
)
≈γ(λ) Simgm0,m1 (1λ),

here f is a uniformly random function.

In the above definition, Sim is not necessary to be d-depth bounded. We believe this
is a natural definition, as it captures the limitation of depth bounded adversary, by the
behavior of some efficient quantum adversary interacting classically once with the oracle
gm0,m1 , without any depth constraint.
▶ Remark 18. Simulation-based security is very subtle, because of the presence of program-
mable random oracles [46, 36, . . . ]. A stronger version than Definition 17 can be formulated
either (1) by replacing the indistinguishability by that when a distinguisher additionally
gets oracle access to a random oracle or a simulated oracle provided by a simulator or (2)
under the quantum UC framework [18, 44]. These definitions will help establish sequential or
general composability of our protocol. We leave stronger definitions as an interesting open
direction. For the applications considered in this work, composability is straightforward.

We show the parallel composability of our protocol, which is useful in constructing
one-time programs (following the ideas in [31], with Yao’s garbled circuits [48]).

▶ Definition 19 (Parallel Composability). A memory token scheme (Token.Gen, Token.Eval)
in the QROM with parallel composability against d-depth quantum adversaries satisfies the
followings. For every message length n, every polynomial I, every d-depth quantum adversary
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A, every inverse polynomial γ(·), there exists an efficient quantum simulator Sim, for every
I := I(λ) pairs of messages m

(i)
0 , m

(i)
1 ∈ {0, 1}n (1 ≤ i ≤ I), Sim makes at most one

classical query to each of gm
(i)
0 ,m

(i)
1 : b→ m

(i)
b for each 1 ≤ i ≤ I such that the following two

distributions have statistical distance at most γ(λ):

A|f⟩
(

I⊗
i=1

Token.Genf (1λ, m
(i)
0 , m

(i)
1 )
)
≈γ(λ) Simg

m
(1)
0 ,m

(1)
1 ,··· ,gm

(I)
0 ,m

(I)
1 (1λ),

here f is a uniformly random function.

4.2 Construction
In this section, we give our construction of one-time memory in the QROM against d-depth
bounded adversary. It is based on a post-quantum weak time-lock puzzle with gap ϵ and
Wiesner states.

Token.Genf (1λ, m0, m1):
Sample r ← {0, 1}λ. Sample a uniformly random θ ← {0, 1}2λ with
hamming weight |θ|1 = λ using the random coins f(r) (we denote this
sampling procedure by θ ← f(r)).
Sample x← {0, 1}2λ. Let y0 ← f(xθ

c) and y1 ← f(xθ
h) be two strings with

length n.
Let Z ← Puzzle.Gen((10d log λ)1/ϵ, r) be a post-quantum time-lock puzzle
with solution r.
Output |tk⟩ = (|xθ⟩ , m0 ⊕ y0, m1 ⊕ y1, Z).

Token.Evalf (|tk⟩, b):
Parse and measure |tk⟩ to obtain quantum ρ and classical c0, c1, Z ′.
Measure ρ on standard basis if b = 0; otherwise, measure it on Hadamard
basis. Let the result be x′.
Let r′ ← Puzzle.Solve(Z ′). Compute θ′ using the random coins f(r′).
If b = 0: compute x′c from x′ and θ′; let y′0 ← f(x′c) and output c0 ⊕ y′0.
If b = 1: compute x′h from x′ and θ′; let y′1 ← f(x′h) and output c1 ⊕ y′1.

Figure 4 One-Time Memory Construction.

Notations

In the above construction (Figure 4), we will appropriately truncate the output of f : (1)
when sampling θ with hamming weight λ, Token.Gen only uses the first log2

(2λ
λ

)
bits; (2)

when sampling y0 and y1, it uses the first n bits. For convenience, the notations θ ← f(x)
and yb ← f(x) denote truncating the output of f to the appropriate length. In the proof,
the notations f(x) = θ and f(x) = yb denote reprogramming f on input x with output θ (or
yb) and padding the rest of the output with random coins.

▶ Proposition 20. The above construction satisfies completeness and efficiency.

Proof. Completeness follows from the symmetry of the construction. Since the only quantum
operation is to prepare |xθ⟩ and measure under standard/Hadamard basis, both Token.Gen
and Token.Eval can be computed by a O(1)-depth quantum algorithm. ◀

ITCS 2023
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4.3 Security Proof
▶ Theorem 21. The above construction is a one-time memory against d-depth bounded
adversaries.

We will refer readers to the full version for the proof.
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Abstract
An important open question in the area of vertex sparsification is whether (1 + ε)-approximate
cut-preserving vertex sparsifiers with size close to the number of terminals exist. The work [7] (SODA
2021) introduced a relaxation called connectivity-c mimicking networks, which asks to construct a
vertex sparsifier which preserves connectivity among k terminals exactly up to the value of c, and
showed applications to dynamic connectivity data structures and survivable network design. We
show that connectivity-c mimicking networks with Õ(kc3) edges exist and can be constructed in
polynomial time in n and c, improving over the results of [7] for any c ≥ log n, whose runtimes
depended exponentially on c.
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1 Introduction

Sparsification is the fundamental concept of reducing the size of a large graph G while still
maintaining essential properties of the graph. Important examples include spanners [11],
which approximately preserve distances up to a multiplicative factor, or cut and spectral
sparsifiers [6,40], which preserve the cuts and Laplacian spectrum of the graph up to a (1 + ε)
factor. These edge sparsifiers allow one to reduce problems on dense graphs to sparse graphs
at the cost of an approximation factor resulting from the sparsification. On the other hand,
several methods such as elimination-based Laplacian solvers [27], require vertex sparsification,
that is, reducing the number of vertices in the graph.

In this work, the notion of vertex sparsification that we consider is cut sparsification,
introduced by [17, 29, 34]. In this problem, we are given a graph G and a set of terminals
T ⊆ V (G). Our goal is to construct a smaller graph G′ that approximates the value of all
cuts in G between terminals up to a multiplicative factor q, called the quality of the sparsifier.
Precisely, we wish to construct a graph G′ also containing the terminals T among its vertices,
such that for any subset S ⊆ T , the minimum cut in G (respectively G′) between S and its
complement T \S differ by at most the multiplicative approximation q.

Desirable properties of an algorithm for producing vertex sparsifiers include achieving
quality q close to 1, while still maintaining that the graph G′ constructed has few vertices,
hopefully nearly linear in the number of terminals, which we denote as k = |T |. Additionally,
for applications we also want for the runtime of the vertex sparsification algorithm to be
polynomial or even linear in the size of the original graph G. Previous results achieve various
subsets of these properties. In the setting where the sparsifier G′ has vertex set exactly T ,
and upper bound quality q = O(log k/ log log k) was achieved [8,15,29,34], and a polynomial
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runtime was achieved by [32]. In the setting where the quality q = 1, upper bounds of
22k [17,22] and lower bounds of 2Ω(k) [26] were achieved. Additionally, [25] achieved a bound
of size O(Z3) for quality q = 1 in polynomial time for graphs with integer capacities, where
Z is the total degree of all terminals. Despite this, it is still not known whether quality
q = 1 + ε sparsifiers with Õ(poly(k/ε)) vertices exist except in special cases [1, 2].

In this paper we provide a vertex sparsification algorithm for c-edge connectivity, a
thresholded version of cut sparsification, which maintains all cuts of size at most c exactly,
has size linear in the number of terminals and polynomial in c, and runs in polynomial
time for all c (Theorem 1). This notion, which we call a connectivity-c mimicking network,
was introduced in [7] to study dynamic connectivity problems and parametrized complexity,
and has resulted in the first fully dynamic online algorithm for c-connectivities with almost
constant update time for constant c [19]. Precisely, we say that graph G′ is a connectivity-c
mimicking network for G with terminals T if all cuts between terminals in G with at most c
edges are maintained exactly in G′.

The previous algorithm of [7] which builds a connectivity-c mimicking network with
O(kc4) edges does not run in polynomial time because it uses the idea of a well-linked
decomposition from [13], which requires an exact solution to a restricted version of the
sparsest cut problem. As a result, the algorithm’s runtime depended exponentially on c.

Our main contribution is to open up the matroid-based cut covering lemmas of [25], and
combine these with a much weaker notion of a well-linked decomposition. Precisely, we
avoid doing a full well-linked decomposition, and instead just partition the graph G into
pieces whose “expansion” with respect to terminals is not too small, similar to an expander
decomposition. Our key lemma (Lemma 16), which applies matroid theory and representative
sets following [25], directly gives a bound on the size of a connectivity-c mimicking network
for these expander-like pieces in terms of the expansion. We then combine the connectivity-c
mimicking networks on the pieces to get a connectivity-c mimicking network for the original
graph. In this way, we can afford to use approximate sparsest cut algorithms (Theorem 14 [4]),
which run in polynomial time. Unfortunately, we do not achieve a O(mpoly(c)) runtime due
to requiring expensive linear algebra to find independent sets in matroids. However, we are
optimistic that a O(mpoly(c)) runtime is achievable and that it has further applications to
improved data structures for connectivity and flows, which we detail in Section 1.3.

1.1 Our Results
Our main result is that given a graph G with k terminals T , we can build a connectivity-c
mimicking network with Õ(kc3) edges in polynomial time.

▶ Theorem 1. Given any edge-capacitated graph G with n vertices along with a set T
of k terminals, there is an algorithm that with high probability constructs a connectivity-c
mimicking network H of G with O(kc3 log3/2 n log log n) edges in time nO(1).

There is a natural greedy algorithm for finding a connectivity-c mimicking network H , which
checks each edge e ∈ E(G) and decides whether contracting it maintains a connectivity-c
mimicking network. However, the authors do not know how to check whether an edge e can
be contracted in polynomial time, and conjecture that there is some reduction to popular
hardness assumptions.

Without needing a polynomial time algorithm, we can slightly improve the size. We
remark that the mimicking networks we construct are all minors of G, hence Theorem 1.1
in [7] and the comment afterwards show that these mimicking networks can be constructed
in O(m(c log n)O(c)) time, which is super-polynomial for c ≥ log n.
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▶ Theorem 2. Given any edge-capacitated graph G with n vertices along with a set T of k
terminals, there is a connectivity-c mimicking network H of G with O(kc3) edges.

These results improve over Theorem 1.1 in [7] for any c ≥ log n, as the runtime there depended
on cO(c), which is super-polynomial for c ≥ log n. This gives an improvement for the runtime
for survivable network design on low treewidth graphs, following Theorem 6.3 of [7], and
we refer the readers to Section 6.2 of [7] for details. Formally, the Subset c-EC asks given a
graph G = (V,E) with costs on edges, and a terminal set, to find the cheapest subgraph H

in which every pair of terminals is c-edge-connected.

▶ Corollary 3. There is an algorithm that exactly solves Subset c-EC on an input graph G
with n vertices in time n exp

(
O(c3tw(G) log(tw(G)c)

)
, where tw(G) denotes the treewidth

of G.

1.2 Related work

Our result brings together ideas from several areas, including work on cut sparsification and
mimicking networks, matroid theory and polynomial kernelization, and sparsest cut and
expander decompositions.

Cut sparsification and mimicking networks

Without additional vertices, the best known upper and lower bounds are O(log k/ log log k)
[8, 32] and Ω(

√
log k/ log log k) [32]. [13] provides an algorithm constructing O(1)-quality

sparsifier with O(Z3) edges in time poly(n) ·2Z , and [25] showed a polynomial time algorithm
for a quality-1 sparsifier with O(Z3) edges using matroid theory. It is open in general whether
(1 + ε)-quality cut sparsifiers with at most Õ(poly(k/ε)) edges exist. Since this result was
initially released, [18] has extended the result to work in hypergraphs.

Other papers have studied mimicking networks, i.e. quality-1 cut sparsifiers, with size
depending only on the number of terminals k. Here, upper bounds of 22k [17, 23] and lower
bounds of 2Ω(k) [22] are known. On planar graphs, an upper bound of O(k222k) [26] and
lower bound of 2Ω(k) [20] are known, with improved bounds when all terminals lie on the
same face [16]. Additionally, [9] provides a O(k · 22tw(G)) upper bound in bounded treewidth
graphs, as well as several sharper results when the number of terminals is small.

Sparsest cut and expansion

The conductance of a graph is a fundamental quantity that has been extensively studied.
Cheeger’s inequality [10] relates the conductance to the spectrum of the graph, and since
then there has been significant interest in efficiently approximating the conductance and
the related sparsest cut problem. A O(log n) approximation was given by [30], and later
approximation ratios of O(

√
log n) for the uniform case [5] and O(

√
log n log log n) for the

nonuniform case [4]. Additionally, there was later work towards making these algorithms
more efficient [3, 39].

Related to the sparsest cut problem is the concept of expander decomposition, that is,
how to partition a graph so that all pieces are expanders? There has been significant work
towards achieving linear time algorithms for expander decompositions [14,35,36,38,40,42],
with many works based on the cut-matching game [24]. Both the cut-matching game [37]
and expander decompositions [7, 12,21,28] have seen significant use in graph algorithms.
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Polynomial kernelization and parametrization

The concept of kernelization in parameterized algorithms is, given a parameter k for a
problem, to efficiently reduce the problem size to a function of k, while preserving necessary
quantities. For example, if k is the number of terminals in a graph G, one can ask whether the
size of G can be reduced to size polynomial in k to maintain all terminals cuts exactly. [25],
using tools from matroid theory and representative sets [31,33], shows polynomial kernels for
several problems. Recently, [41] has built an improved size for kernelization of multiway-cut
using a combination of graph partitioning and representative sets, somewhat similar to the
algorithm of this work.

1.3 Future directions

There are several promising directions to pursue.

Improved algorithm runtime

Further improving the algorithm to construct connectivity-c mimicking networks of size
Õ(kc3) in Õ(m · poly(c)) time would result in several potential applications. In particular,
it may be possible to use such an algorithm to develop algorithms for fully dynamic online
c-connectivity following work of [19] that have update time Õ(poly(c)) per iteration. On
the other hand, the per query time of [19] depends exponentially on c (at least (c log n)c).
Additionally, there may be further extensions towards fully dynamic (1 + ε)-approximate
maxflow algorithms in unweighted graphs.

One potential route to achieve a nearly linear construction runtime Õ(m · poly(c)) is to
reinterpret the concepts of representative sets on the direct sum matroids constructed in the
proof of Lemma 16 combinatorially, in terms of matching, flows, and cuts. In this way, it
may be possible to construct the representative set by running a maximum flow routine on
the correct graph, instead of doing linear algebra over matroid representations.

Optimal c dependence in sparsifier size

It would be interesting to get an optimal dependence on c in the size of the connectivity-c
mimicking network. The best lower bound we can show is 2kc for minors. There seem to be
two main places where we lose a factor of c. We lose one factor by reducing to the case where
all terminals have degree one. In this case, we are able to show a lower bound of Ω(|T |c),
while we only show a bound of O(|T |c2) in Section 3. This seems to come from Lemma 16
being loose by a factor of c.

Application towards (1 + ε)-quality cut sparsification

It would be exciting to apply the ideas of this work towards constructing (1 + ε)-quality cut
sparsifiers with at most Õ(k/poly(ε)) edges. A natural approach would be to pick a slightly
super-constant c = C log n/ε2, find a set of edges F which covers all cuts of size at most c
between terminals, and apply a uniform sampling procedure [1, 6] to the remaining edges.
Naïvely, this approach seems to not work due to the existence of several potential minimum
cuts between a fixed terminal partition.
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2 Preliminaries

2.1 Terminals and connectivity
Throughout, we assume that we work with unweighted multigraphs. We may assume
this by replacing an edge with weight w with w copies of edges with weight 1. We work
with multigraphs because our algorithms involve edge contractions, which naturally creates
multigraphs. Given a graph G and disjoint sets A,B ⊆ V (G) define the minimum cut
between A,B in G as

mincutG(A,B) def= min {|EG(S, V (G)\S)| : A ⊆ S,B ⊆ V (G)\S} .

Given this, we can formally define connectivity-c mimicking networks.

▶ Definition 4 ((T , c)-equivalence). Given graphs G,H, both containing terminals T , we say
that G,H are (T , c)-equivalent if for all S ⊆ T we have that

min (mincutG(S, T \S), c) = min (mincutH(S, T \S), c) .

If G and H are (T , c)-equivalent, we can say that H is a connectivity-c mimicking network
for G.

We would like to note that contracting edges cannot decrease any minimum cuts between
subsets A,B ⊆ V (G).

We will construct connectivity-c mimicking networks for graphs G by finding a subset
F ⊆ E(G) that covers all cuts of size at most c in G between terminals.

▶ Definition 5 (Cut covering). Let G be a graph with terminals T . We say that a set of
edges F ⊆ E(G) covers all c-cuts if for all subsets S ⊆ T with mincutG(S, T \S) ≤ c, there
exists a subset of edges FS ⊆ F such that FS is a cut with mincutG(S, T \S) edges between
S and T \S in G.

It is clear that if F covers all c-cuts, then contracting G onto F gives a connectivity-c
mimicking network.

We may reduce to the situation where all terminals have degree 1 by increasing the
number of terminals by a factor of c. Given a graph G with terminals T , we construct a new
graph Gnew with terminals T new as follows. To construct Gnew, for each vertex t ∈ T add c

new vertices to G and connect them to t, and let T new be the set of |T |c new vertices added.
We can see that if a set of edges covers all c-cuts in Gnew for terminals T new, then it also
does so for G with terminals T .

Given this reduction, we can show that if we partition the vertex set of G and add
terminals corresponding to the boundary edges of the partition, then it suffices to compute
a set of edges covering all c-cuts on the partition pieces. Here, for a subset X ⊆ V , we
define the boundary edges ∂(X) def= EG(X,V (G)\X), and V [∂(X)] to denote turning each
boundary edge in ∂(X) into a vertex of degree 1, with the other endpoint lying in X. Here
⊔ throughout denotes disjoint union.

▶ Lemma 6 (Partition of G). Let G = (V,E) be a graph with terminals T , all of degree 1,
and let X = V \T . Let X = X1 ⊔X2 ⊔ · · · ⊔Xp be a partition of X. For 1 ≤ i ≤ p define
graph Gi to have vertex set Vi

def= Xi ∪ V [∂(Xi)], terminals Ti
def= V [∂(Xi)], and edge set

Ei
def= E(Xi) ∪ ∂(Xi). Let Fi cover all c-cuts in Gi. Then

⋃
i Fi covers all c-cuts in G.

ITCS 2023



83:6 Vertex Sparsification for Edge Connectivity in Polynomial Time

Proof. For a subset T ⊆ T , consider a minimum cut (S, V \S) which separates T and T \T
in G and is minimal. Say that this cut induces the terminal cut (Ti, Ti\Ti) on Xi. Note
that this cut on Xi clearly has at most c edges, so Fi covers this terminal cut. Because all
terminals in all the Xi (and X) correspond to boundary edges, we can combine the induced
cuts on each Xi to get a cut on X, as desired. ◀

2.2 Matroids and representative sets
Our algorithm requires several concepts from matroid theory and representative sets [25].
We denote matroids M = (S, I), where the ground set is S with independent sets I.

This work only considers representable matroids.

▶ Definition 7 (Representable matroid). We say that a matroid M = (S, I) is representable
if there is a field F and vectors v1, v2, . . . , v|S| ∈ F|S| such that a set X ∈ I if and only if the
vectors (vx)x∈X are independent over F.

The rank of a matroid is the maximum size of any independent set. Given matroids
M1 = (S1, I1),M2 = (S2, I2), the direct sum M =M1 ⊕M2 is defined to have ground set
S1 ⊔S2 and independent sets X1 ⊔X2 for X1 ∈ I1, X2 ∈ I2. The direct sum of representable
matroids is representable.

Transversal matroids and gammoids are examples of representable matroids.

▶ Definition 8 (Transversal matroid). Given a bipartite graph G = (A,B), a transversal
matroid M = (B, I) is defined so that a set X ⊆ B is independent if and only if there is a
matching in G that covers X.

Gammoids are the dual of transversal matroids.

▶ Definition 9 (Gammoids). For a directed graph G = (V,E) and vertex subset T ⊆ V , a
gammoid M = (V, I) is defined so that a set X ⊆ V is independent if and only if there are
|X| vertex disjoint paths from T to X.

Combining Proposition 3.6 and 3.11 of [33] shows that a representation of a gammoid can be
constructed in randomized polynomial time with failure probability exponentially small in n.

▶ Theorem 10 ([33]). For a directed graph G = (V,E) with n vertices and vertex subset
T ⊆ V , the gammoid defined in Definition 9 is a matroid, and a representation can be found
in polynomial time with probability at least 1− 2−n.

We can view undirected graphs as directed graphs by turning each undirected edge into two
directed edges in opposite directions.

We require a specific version of a fundamental lemma about finding small representative
sets due to Lovász [31] and Marx [33].

▶ Definition 11 (Representative sets). Given a representable matroid M = (S, I) and a
collection J of subsets of S, we say that J ∗ ⊆ J is a representative for J if the following
holds: for every set Y ⊆ S, if there is a set X ∈ J disjoint from Y such that X ∪ Y ∈ I,
then there is a set X∗ ∈ J ∗ disjoint from Y such that X∗ ∪ Y ∈ I.

▶ Lemma 12 ([31, 33]). Let Mi = (Si, Ii) be representable matroids over a field F for
1 ≤ i ≤ p, and let M =M1 ⊕M2 ⊕ · · · ⊕Mp be their direct sum. Define

S1 × S2 × · · · × Sp = {{x1, x2, . . . , xp} : xi ∈ Si} ,
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that is, the collection of subsets of S that have exactly one element from each Si. Then every
subset J ⊆ (S1 × S2 × · · · × Sp) has a representative set J ∗ of size at most

∏p
i=1 rank(Mi),

and J ∗ is computable in time |J |O(1).

For completeness, we provide a proof in Appendix A.1.

2.3 Sparsest cut and conductance
We will require polynomial time algorithms for the nonuniform sparsest cut problem. The
best known approximation ratio is O(

√
log n log log n).

▶ Definition 13 (Nonuniform sparsest cut). Given graphs G,H on the same vertex set V ,
define the sparsest cut of G with respect to H as

sc(G,H) def= min
S⊆V

|EG(S, V \S)|
|EH(S, V \S)| .

We will let scn denote the approximation ratio of the best known polynomial time approxima-
tion algorithm for nonuniform sparsest cut. Given the result below, scn = O(

√
log n log log n).

▶ Theorem 14 (Sparsest cut approximation ([4] Theorem 1.2)). Given graphs G,H on the
same vertex set V , there is a polynomial time algorithm which produces a set S satisfying

|EG(S, V \S)|
|EH(S, V \S)| ≤ O(

√
log n log log n)sc(G,H).

The sparsest cut problem (up to constants) captures concepts such as expansion and
conductance. A useful notion we will use is expansion among terminals in a graph G.

▶ Definition 15 (Terminal expansion). Given a graph G with terminals T , we say that G is
a ϕ-terminal expander if

|EG(S, V \S)|
min(|S ∩ T |, |(V \S) ∩ T |) ≥ ϕ for all S ⊆ V.

Indeed, if we take H = KT , i.e. the complete graph over terminals T (with additional
isolated vertices added so that V (H) = V (G)) the terminal expansion is within a factor of 2
of |T |sc(G,H).

3 Polynomial Time Vertex Sparsification

In this section we will show Theorems 1 and 2. We first give a high-level overview of the
proof, and then describe the details.

3.1 Overview of proof
Let us recall the proof of [7], which used the ideas of well-linkedness [13] and results of [25].
For a graph G = (V,E) with terminals T , [7] computed a well-linked partition of the graph,
i.e. partitioned the set X = V \T into X = X1 ⊔X2 ⊔ · · · ⊔Xp so that each Xi either had at
most O(c) boundary edges (corresponding to terminals), or were connectivity-c well-linked.
Here, connectivity-c well-linked (which we refer to as simply “well-linked” going forwards)
was defined to mean that every cut in Xi separating terminals had at least as many edges as
the number of terminals of the smaller side. This guarantees that if Xi is further partitioned
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along a cut that isn’t well-linked, the number of terminals on both sides decreases. To
finish, [7] showed that every well-linked set can be contracted to a single vertex, and for the
remaining pieces Xi with at most O(c) boundary edges, directly cited the result of [25] to
construct a connectivity-c mimicking network of size O(c3) on each piece.

This approach does not lead to an algorithm which runs in time polynomial in c, as
deciding whether a partition piece Xi is well-linked is an instance of nonuniform sparsest cut
(Definition 13). Therefore, even if there is ever a piece Xi that is not well-linked, finding
a cut which certifies that Xi isn’t well-linked (and thus makes progress) may require time
exponential in c. However, if we use Theorem 14 to find an approximate sparse cut to
partition and recurse along, the number of edges in the cut may be larger than the number of
terminals on the smaller side, and thus after partitioning, the number of terminals increases
in the recursive subproblem, preventing progress.

To get around this issue, our key observation is that we can open up the matroid and
representative set tools from [25] to prove in Lemma 16 a significantly improved bound on
the size of a connectivity-c mimicking network for any graph that is a ϕ-terminal expander,
i.e. the small side of any terminal cut of size at most c has at most cϕ−1 edges. In this way,
if we choose ϕ = 1

C log2 n
for a sufficiently large constant C, we can certify that partition

piece Xi is a ϕ-terminal expander or find a cut to make significant recursive progress.

3.2 Proof of Theorems 1 and 2
We show our key lemma that if we have a bound on number of terminals in the smaller
side of every cut with at most c edges, then we immediately get a bound on the size of a
connectivity-c mimicking network.

▶ Lemma 16. Let G = (V,E) be a graph with k terminals T , each with degree 1. Let
d ≥ c be a parameter such that for every subset S ⊆ V with |EG(S, V \S)| ≤ c, we have
min(|S ∩ T |, |(V \S) ∩ T |) ≤ d. Then there is a set F of at most O(kcd) edges which covers
all c-cuts in G with terminals T which is computable in nO(1) time.

To show this, we first reduce to the setting of vertex cuts by turning each edge in G into
a vertex, as gammoids are defined in terms of vertex cuts. Call the new graph Gsplit. In
the setting of vertex cuts, we say that a vertex v is essential if there exists a partition of
the terminals T = A ⊔B such that v is in all minimum vertex cuts between A,B in G. If
there is some nonessential vertex v, then the edge corresponding to v in the original graph G
may be contracted without affecting any minimum cuts. We formalize these definitions and
observations in the following claims.

▶ Definition 17 (Vertex cuts). Given a directed graph G and disjoint sets A,B ⊆ V , the size
of the minimum vertex cut between A and B is the smallest size of a set C ⊆ V such that
there are no paths between A and B in G\C. In particular, C may intersect A ∪B.

By Menger’s Theorem, the minimum vertex cut between A and B is the maximum number
of vertex disjoint flow paths between A and B in G.

▶ Definition 18 (Essential vertices). Given a directed graph G, terminals T , and a connectivity
parameter c, we say that a vertex v is essential if there exists a partition T = A ⊔B such
that the minimum vertex cut between A and B has size at most c and v is involved in all
minimum vertex cuts between A and B in G.
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▶ Lemma 19. Consider a directed graph G, terminals T , connectivity parameter c, partition
T = A ⊔B, and a vertex v ∈ V . Let v′ be a sink-only copy of v, i.e., v′ has in-edges from
all in-neighbors of v, and let v′′ be a source-only copy of v, i.e., v′′ has out-edges edges to all
out-neighbors of v. If v is essential to the cut (A,B), then there exists a minimum vertex cut
C ⊆ V with at most c vertices and v ∈ C such that there are |C|+ 1 vertex disjoint paths
from A to C ∪ v′ and |C|+ 1 vertex disjoint paths from C ∪ v′′ to B.

Proof. Assume for contradiction that there are less than |C|+ 1 vertex disjoint paths from
A to C ∪ v′. Then there is a minimal set C ′ with |C ′| = |C| such that A is separated from
C ∪ v′ in V (G)\C ′. If v′ ∈ C ′, then clearly C ′\v′ separates A from C, contradicting that the
minimum cut between A and C is size |C|. So we may assume that v′ /∈ C ′. If v /∈ C ′, C ′

separates A from C and v /∈ C ′, so v is not essential. So we may assume that v′ /∈ C ′ and
v ∈ C ′.

We claim that there is a path from A to v in G\(C ′\v). Indeed, (C ′\v) cannot separate
A from C as there are |C| vertex disjoint paths from A to C, but C ′ does separate A from
C. Hence, there must be a path from A to v in G\(C ′\v). As v′ is a sink-only copy of v,
there must be a path from A to v′ in G\C ′, as desired. The symmetric argument applies to
B and C ∪ v′′. ◀

To bound the number of essential vertices, we apply Lemma 12 to carefully constructed
matroidsM1,M2,M3. This suffices, as we can pick any single nonessential vertex to contract
in the original graph, and then repeat the argument on the contracted graph with one fewer
edge.

Proof of Lemma 16. We first explain a reduction to vertex cuts.

Reduction to vertex cuts. To do this, turn each edge in G into a vertex by putting a
vertex in the middle of the edge. We call these split vertices. For each non-terminal vertex
v ∈ V (G), replace it with a complete graph with 2c vertices, and connect each of these 2c
vertices to the corresponding split vertices of the neighboring edges. Call this new graph
Gsplit. We leave the terminals untouched. Now, for a terminal partition T = A ⊔ B, note
that a vertex cut of size at most c between A and B in Gsplit will not involve any vertices
in the complete graphs of size 2c, as there is no reason to contain one of these vertices and
not the rest. In particular, it is impossible to remove a proper subset of a clique of size
2c and disconnect any pair of neighbors, because all vertices in the clique have the same
neighborhood. Additionally, vertex cuts that involve terminal vertices in Gsplit correspond
to picking the edges adjacent to terminals in G, as each terminal in T has degree 1. In this
way, there is a bijection between edge cuts with at most c edges between terminals in G and
vertex cuts with at most c vertices between terminals in Gsplit.

Additionally, note that if some split vertex v is nonessential in Gsplit for terminals T and
connectivity c, then we may contract its corresponding edge in G and maintain all terminal
cuts with size at most c in G. In this way, it suffices to upper bound the number of essential
vertices in Gsplit. We do this by using representative sets.

Building the direct sum matroid. As in Lemma 19, create a graph G′
split which is a copy

of G with additional sink-only copies v′ for each non-terminal vertex v ∈ V (Gsplit), and
G′′

split with source-only copies v′′. Define matroids M1 = (V,
(

V
≤c

)
) with ground set V , and

independent sets are all sets of size at most c. Define M2 to be the gammoid with vertex
subset T on G′

split, and let M3 be the gammoid with vertex subset T on G′′
split, except

restrict all independent sets down to size c+ d. Define M =M1 ⊕M2 ⊕M3. As M1 is
trivially representable, and M2,M3 are representable by Theorem 10, we have that M is
representable.
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Bounding essential vertices via representative sets. In the setting of Lemma 12, define
J = {(v, v′, v′′) : v ∈ V }, where v′ and v′′ are the sink-only and source-only copies of v. Let
J ∗ be a representative set for J . We show that any essential vertex v must correspond
to a set in J ∗. Indeed, consider an essential vertex v involved in a minimum vertex cut C
between A and B, where T = A⊔B. We may assume that |B| ≤ d by the problem condition.
Consider the independent set Y = (C\v,A∪C,B ∪C) inM, where A∪C is independent in
M2 because there are |C| vertex disjoint flow paths from B to C by the maxflow-mincut
theorem, and similarly for B ∪C inM3, as |B ∪C| ≤ c+ d. By Lemma 19, we have that for
X = (v, v′, v′′) that X ⊔ Y is independent. Thus, there exists a set X∗ = (u, u′, u′′) ∈ J ∗

such that X∗ ⊔ Y is independent. Note that if A ∪ C ∪ u′ is independent, there must be
|C|+ 1 paths from B to C ∪u′, hence u must be on the same side of the cut as B in Gsplit\C.
If B ∪ C ∪ u′′ is independent, then u must be on the same side as A, hence u ∈ C. But u
must also be disjoint from C\v, hence u = v. So all essential vertices v must correspond to
triples in J ∗.

Size and runtime bound. As |J ∗| ≤ rank(M1)rank(M2)rank(M3) ≤ ck(c+ d) ≤ O(kcd),
there are at most O(kcd) essential vertices v. At the end, all uncontracted split edges
of the original graph G cover all c-cuts by construction. The runtime is polynomial as
all representations of M1,M2,M3,M can be computed in polynomial time, and J ∗ is
computable in polynomial time by Lemma 12. ◀

We can now prove Theorem 2, using Algorithm 1. The algorithm maintains a partition
X = X1 ⊔ · · · ⊔ Xp, and refines the partition until a stopping condition. For every piece
Xi = (Vi, Ei), we define its vertex, edge, and terminal set Ti as in Lemma 6. Precisely, its
terminal set consists of the boundary edges in ∂(Xi) and the edges are those in E(Xi) plus
boundary edges.

Algorithm 1 Given a graph G = (V, E) with all k terminals T with degree 1, returns a
set F of O(kc2) edges which covers all c-cuts in G with terminals T .

1 procedure Existence(G, T )
2 Initialize X ← V \T , and maintain a partition X = X1 ⊔ · · · ⊔Xp′ at all times. ▷

Notationally, let Xi have vertex set Vi, edges Ei, and terminals Ti.
3 while There is i ∈ [p′] and S ⊆ Vi such that |EXi(S, Vi\S)| ≤ c and

min(|S ∩ Ti|, |(Vi\S) ∩ Ti|) ≥ 3c do
4 Replace Xi in the partition with Xi ∩ S and Xi ∩ (Vi\S).
5 For 1 ≤ i ≤ p apply Lemma 16 to find a set Fi of edges which covers all c-cuts in

Xi with terminals Ti.
6 return F

def=
⋃p

i=1 Fi.

Proof of Theorem 2. Given a graph G with all k terminals T with degree 1, we show that
Algorithm 1 returns a set F of O(kc2) edges which covers all c-cuts in G with terminals
T , which we can contract onto to get a connectivity-c mimicking network. This shows
Theorem 2, as recall that in Section 2 we showed that we can reduce to the case where all
terminals have degree 1 by increasing the number of terminals by a factor of c.

The correctness of the algorithm follows from Lemma 6, specifically that it suffices to
compute a partition of X and then take a union of the edges Fi which cover all c-cuts on
each Xi. It remains to bound the size of F .
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We first bound the number of pieces p by setting up a potential function over the partition
ψ(X1, X2, . . . , Xp′) def=

∑p′

i=1(|Ti|− 3c). Note that at the beginning ψ(X) = k− 3c. Note that
when Xi is split into A = Xi∩S and B = Xi∩(Vi\S), A now has |S∩Ti|+|EXi

(S, Vi\S)| ≥ 3c
terminals, and B has |(V \S) ∩ Ti|+ |EXi(S, Vi\S)| ≥ 3c terminals by the cutting condition
in the while statement of Algorithm 1. Hence ψ ≥ 0 always. Additionally, note that when
Xi is split into A and B, ψ decreases by

(|Ti| − 3c)− (|S ∩ Ti|+ |EXi
(S, Vi\S)| − 3c)− (|(V \S) ∩ Ti|+ |EXi

(S, Vi\S)| − 3c)
= 3c− 2|EXi

(S, Vi\S)| ≥ c.

Hence there can at most ψ(X)/c splits, so p ≤ k/c. By this computation, each split increases
the number of terminals by at most 2c, hence at the end we have

∑p
i=1 |Ti| ≤ k + pc ≤ 3k.

To finish, note that by Lemma 16 for d = 3c we get that

|F | ≤
p∑

i=1
|Fi| ≤

p∑
i=1

O(|Ti|cd) = O(kc2)

as desired. ◀

We can change the cutting condition in the above proof and apply a sparsest cut
approximation algorithm to show Theorem 1.

Algorithm 2 Given a graph G = (V, E) with all k terminals T with degree 1, returns a
set F of O(kc2scn log n) edges which covers all c-cuts in G with terminals T in polynomial
time.

1 procedure PolyTimeNetwork(G, T )
2 Initialize X ← V \T , and maintain a partition X = X1 ⊔ · · · ⊔Xp′ at all times. ▷

Notationally, we let Xi has vertex set Vi, edges Ei, and terminals Ti.
3 ϕ← 1

10scn log n . ▷ Expansion parameter.
4 while There is i ∈ [p′] such that Xi is not a ϕ-terminal expander do
5 Compute S ⊆ Vi such that |EXi

(S,Vi\S)|
min(|S∩Ti|,|(Vi\S)∩Ti|) ≤ scnϕ using Theorem 14.

6 Replace Xi in the partition with Xi ∩ S and Xi ∩ (Vi\S).
7 For 1 ≤ i ≤ p apply Lemma 16 to find a set Fi of edges which covers all c-cuts in

Xi with terminals Ti.
8 return F

def=
⋃p

i=1 Fi.

Proof of Theorem 1. Given a graph G with all k terminals T with degree 1, we show that
Algorithm 2 returns a set F of O(kc2scn log n) edges which covers all c-cuts in G with
terminals T , which we can contract onto to get a connectivity-c mimicking network. This
shows Theorem 1, as recall that in Section 2 we showed that we can reduce to the case where
all terminals have degree 1 by increasing the number of terminals by a factor of c.

Correctness follows from Lemma 6 along with Theorem 14, specifically that there is a
polynomial time algorithm to compute the set S desired in line 5 of Algorithm 2 assuming
that Xi is not a ϕ-terminal expander. As both line 5 and line 7 run in polynomial time, the
whole algorithm runs in polynomial time.

We now bound the size of F , by first bounding
∑p

i=1 |Ti| = O(|T |). To show this, we use
a standard argument in bounding the number of edges cut in an expander decomposition.
Consider a piece X ′ with terminals T ′ in a partition of X, and consider how it gets partitioned
further. Imagine running the partitioning procedure in Algorithm 2 on X ′ until each piece
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has at most 2|T ′|/3 terminals. Let t1, t2, . . . , tj denote the number of terminals on the
smaller side in each step of the partition. Note that the number of terminals in the larger
piece decreases by at least 4ti/5 during step i, as 1

5 log n ti ≤ ti/5. Thus, we know that∑
i ti ≤ 5|T ′|/4. During the partition, the number of new terminals added is at most∑j
i=1 2ϕscnti ≤ 1

5 log n · 5|T
′|/4 = 1

4 log n |T
′| by the cutting condition. Therefore, at the

bottom level, the total number of terminals is at most
(

1 + 1
4 log n

)log3/2 n

|T | = O(|T |).
Because each Xi at the end is a ϕ-terminal expander, we may take d = ϕ−1c in Lemma 16,

so we get a final bound of

|F | ≤
p∑

i=1
O(|Ti|cd) = O(kc2ϕ−1) = O(kc2scn log n). ◀
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A Missing Proofs

A.1 Proof of Lemma 12
Proof. Let ri = rank(Mi), and let vi

x ∈ Fri for x ∈ Si be a representation for Mi over Fri .
Define the tensor product vector space K = Fr1 ⊗ Fr2 ⊗ · · · ⊗ Frp . For a set {x1, . . . , xp} =
X ∈ J , define w(X) = v1

x1
⊗v2

x2
⊗· · ·⊗vp

xp
∈ K. Now, let J ∗ be sets X that form a maximal

independent set of {w(X)}X∈J . Therefore, |J ∗| ≤ dim(K) =
∏p

i=1 ri =
∏p

i=1 rank(Mi).
It suffices to argue that J ∗ is a representative set for J , containing sets X1, X2, . . . , X|J ∗|.

Consider the tensor product exterior algebra∧
def=

∧
(Fr1)⊗

∧
(Fr2)⊗ · · · ⊗

∧
(Frp),

where the bilinear wedge product is defined component wise. Now, for an independent set
{Y1, . . . , Yp} = Y ∈ I, where each Yi ∈ Ii, define

w(Y ) def= (∧y∈Y1v
1
y)⊗ · · · ⊗ (∧y∈Yp

vp
y).

Given this, note that X⊔Y ∈ I if and only if w(X)∧w(Y ) ̸= 0. Because J ∗ forms a maximal
independent set, there are constants ci ∈ F such that w(X) =

∑|J ∗|
i=1 ciw(Xi). Therefore,

w(X) ∧ w(Y ) =
∑|J ∗|

i=1 ci(w(Xi) ∧ w(Y )), so there exists an i such that w(Xi) ∧ w(Y ) ̸= 0,
as desired.

To analyze the runtime, we may assume that |J | ≥
∏p

i=1 ri = dim(K), or we are done.
The only step is to perform linear algebra over K, which costs (dim(K) + |J |)O(1) = |J |O(1)

time, by the condition on |J |. ◀
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Abstract
A folklore conjecture in quantum computing is that the acceptance probability of a quantum
query algorithm can be approximated by a classical decision tree, with only a polynomial increase
in the number of queries. Motivated by this conjecture, Aaronson and Ambainis (Theory of
Computing, 2014) conjectured that this should hold more generally for any bounded function
computed by a low degree polynomial.

In this work we prove two new results towards establishing this conjecture: first, that any such
polynomial has a small fractional certificate complexity; and second, that many inputs have a small
sensitive block. We show that these would imply the Aaronson and Ambainis conjecture, assuming
a conjectured extension of Talagrand’s concentration inequality.

On the technical side, many classical techniques used in the analysis of Boolean functions seem
to fail when applied to bounded functions. Here, we develop a new technique, based on a mix of
combinatorics, analysis and geometry, and which in part extends a recent technique of Knop et al.
(STOC 2021) to bounded functions.
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1 Introduction

Aaronson and Ambainis [2] popularized the conjecture that quantum query algorithms can be
approximated by classical query algorithms, on most inputs, with only a polynomial increase
in the number of queries. This captures the informal belief that quantum algorithms can only
achieve exponential speedup on highly structured inputs. Moreover, since the acceptance
probability of quantum query algorithms can be computed by low degree polynomials, they
conjectured that this holds more generally for any bounded function computed by a low
degree polynomial.

A bit more formally, let f : {0, 1}n → [0, 1] be a function which computes for each input
x the acceptance probability of a quantum query algorithm. If the quantum algorithm makes
at most q queries, then Beals et al. [7] showed that f is computed by a real polynomial
of degree at most d = 2q. Aaronson and Ambainis conjectured that any such f can be
approximated by a shallow decision tree.

▶ Conjecture 1 (Aaronson-Ambainis (AA) conjecture [2]). Let f : {0, 1}n → [0, 1] be computed
by a degree d polynomial, and let ε > 0. Then there exists a decision tree T of depth
poly(d, 1/ε), such that

Ex∈{0,1}n [|f(x) − T (x)|] ≤ ε.
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The AA conjecture is known to be true for Boolean functions. Specificially, the seminal
work of Nisan and Szegedy [17] showed that for every Boolean function f : {0, 1}n → {0, 1},
its decision tree complexity and its polynomial degree are equivalent, up to polynomial
factors. However, their proof technique does not extend to bounded functions. In fact, many
techniques used to study Boolean functions seem to fail when attempting to extend them to
bounded functions.

We prove two new results in this paper, which we view as stepping stones towards a
better understanding of bounded low degree polynomials:
1. In a bounded low degree polynomial, all inputs have a small fractional certificate com-

plexity.
2. In a bounded low degree polynomial of large variance, many inputs have a small sensitive

block.
We note that the first result holds for all inputs, whereas the AA conjecture only claims that
f(x) ≈ T (x) for most inputs, and as such the two are incomparable; and that the second
result is a direct corollary of the AA conjecture, as it trivially holds for decision trees. We
show that it also follows from bounding the fractional certificate complexity.

1.1 Our results
We start with defining the above notions more precisely. Let f : {0, 1}n → [0, 1] be a bounded
function, let x ∈ {0, 1}n be an input, and ε > 0 be a tolerance parameter. The ε-certificate
complexity of f at x is the minimal size of a set I ⊂ [n], such that any input y which agrees
with x on I satisfies |f(y) − f(x)| ≤ ε. The ε-fractional certificate complexity1 is its linear
relaxation, where we replace a set I with a distribution π over [n], and require that any y

that is close to x under π satisfies |f(y) − f(x)| ≤ ε (see Section 2 for formal definitions).
It is known that for Boolean functions, certificate complexity and fractional certificate

complexity are equivalent, up to polynomial factors [1, 19, 3]. However, for bounded functions
they are not. Consider for example the linear function f(x) = (x1 + . . . + xn)/n. For any
constant ε, its ε-certificate complexity is Ω(n). In contrast, its ε-fractional certificate
complexity is O(1).

Motivated by this example, we explore the connections between fractional certificate
complexity (which as we will see, is equivalent to fractional block sensitivity) and polynomial
degree for bounded functions. Our first result is a bound on the ε-fractional certificate
complexity that is polynomial in the degree d, tolerance parameter ε and logarithmic in the
number of variables n.

▶ Theorem 2 (Informal version of Theorem 13). Let f : {0, 1}n → [0, 1] be computed by a
degree d polynomial, and let ε > 0. The ε-fractional certificate complexity of f is at most
poly(d, 1/ε, log n).

Next, we show that bounded functions with a small fractional certificate complexity and
large variance have an interesting property - many inputs have small sensitive blocks.

▶ Theorem 3 (Informal version of Theorem 27). Let f : {0, 1}n → [0, 1], ε > 0 and assume
Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block B ⊂ [n]
of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε,

where r is polynomial in the ε-fractional certificate complexity of f and in log(1/ε).

1 A similar notion called randomized certificate complexity was introduced by Aaronson [1].
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The proof of Theorem 3 follows from a new connection between fractional certificate com-
plexity, convex geometry and concentration of measure (specifically, Talagrand’s concentration
inequality [20]).

Combining Theorem 2 and Theorem 3 gives the following corollary, that shows that for
low degree bounded polynomials with large variance, many points have a small sensitive
block.

▶ Corollary 4. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, let ε > 0, and
assume Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block
B ⊂ [n] of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε,

where r = poly(d, 1/ε, log n).

Finally, we give a new conjecture that would imply the AA conjecture given our results.
Talagrand’s concentration inequality [20] states that if X, Y ⊂ {0, 1}n are large sets, then
most points in X are close in L2 norm to the convex hull of Y . We examine what happens if
we replace the L2 norm with the L∞ norm, and make the following conjecture: if X, Y do
not have influential variables, then most points in X are close to the convex hull of Y also in
the L∞ norm. We show that this conjecture, if true, when combined with Theorem 2 implies
the AA conjecture. For details see Section 5.

1.2 Related works
The notions of block sensitivity and certificate complexity are extensively used in Boolean
function analysis, namely, when the output of the function f takes Boolean values. Motivated
by the study of quantum query algorithms, which is naturally captured by a bounded
function, Aaronson [1] introduced the notion of randomized certificate complexity, which is
very close to fractional certificate complexity. Tal [19] introduced the notions of fractional
block-sensitivity and fractional certificate complexity (which are LP duals). Fractional
block-sensitivity has been used to show a tight connection between the zero-error randomized
decision tree complexity and two-sided bounded error randomized decision tree complexity [13].
Subsequent works [10, 3, 4, 12] studied fractional certificate complexity and fractional block-
sensitivity, motivated by various applications in Boolean function analysis and communication
complexity.

However, to the best of our knowledge, all these works focused only on Boolean functions.
In particular, they showed that fractional certificate complexity and certificate complexity
are polynomially related for Boolean functions. As we already discussed, this property is
false for bounded functions. Motivated by studying quantum query algorithms, e.g., the AA
conjecture, we study the fractional certificate complexity for bounded functions.

Previous works on Aaronson-Ambainis conjecture

Besides its importance in quantum computing, the AA conjecture is also a very intriguing
problem in the area of Boolean function analysis. This conjecture is known to be true for
Boolean functions [15, 18]. For bounded functions, a weaker bound with an exponential
dependence on the degree instead of polynomial, can be proved using hyper-contractive
inequalities [8]. Montanaro [16] proved a special case of the conjecture for block-multilinear
forms where all the coefficients have the same magnitude. Recently, Bansal, Sinha and de
Wolf [6] confirmed this conjecture in the case of functions with completely bounded degree-d
block-multilinear form.
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Paper organization

We define complexity measures for bounded functions in Section 2. We prove Theorem 2
in Section 3 and Theorem 3 in Section 4. Section 5 is devoted to a conjecture extending
Talagrand’s inequality to the L∞ norm.

2 Complexity measures of bounded functions

We introduce classic complexity measures of Boolean functions, as well as their linear
relaxations, generalized to bounded functions.

Let f : {0, 1}n → [0, 1] be a bounded function, x ∈ {0, 1}n an input, and let ε > 0 be a
tolerance parameter. Given a block B we denote by x ⊕ B the input obtained by flipping the
bits in x corresponding to B. A block B is called ε-sensitive for x if |f(x ⊕ B) − f(x)| ≥ ε.
The family of ε-sensitive blocks for x is defined as

Sε(f, x) = {B ⊂ [n] : |f(x ⊕ B) − f(x)| ≥ ε} .

▶ Definition 5 (ε-block sensitivity). The ε-block sensitivity of f at x, denoted BSε(f, x), is
the maximal number of pairwise disjoint blocks B1, . . . , Bk ∈ Sε(f, x).

▶ Definition 6 (ε-certificate complexity). The ε-certificate complexity of f at x, denoted
Cε(f, x), is the minimal size of a set I ⊂ [n] that intersects all blocks B ∈ Sε(f, x). Equival-
ently:

∀y ∈ {0, 1}n : yI = xI ⇒ |f(y) − f(x)| < ε.

We next define the linear relaxations of block sensitivity and certificate complexity, called
fractional block sensitivity and fractional certificate complexity. These notion were introduced
by Tal [19] in the context of Boolean functions. A similar notion to fractional certificate
complexity, called randomized certificate, was introduced earlier by Aaronson [1].

▶ Definition 7 (ε-fractional block sensitivity). The ε-fractional block sensitivity of f at x,
denoted FBSε(f, x), is the maximal k such that there exists a distribution ν over Sε(f, x)
that satisfies

∀i ∈ [n] : Pr
B∼ν

[i ∈ B] ≤ 1/k.

▶ Definition 8 (ε-fractional certificate complexity). The ε-fractional certificate complexity of
f at x, denoted FCε(f, x), is the minimal k such that there exists a distribution π over [n]
that satisfies:

∀B ∈ Sε(f, x) : Pr
i∼π

[i ∈ B] ≥ 1/k.

In other words:

∀y ∈ {0, 1}n :
(

Pr
i∼π

[yi ̸= xi] < 1/k
)

⇒ |f(y) − f(x)| ≤ ε.

▶ Example 9. Let f(x) = (x1 + · · · + xn)/n. Fix an input x ∈ {0, 1}n and ε > 0. Let
y ∈ {0, 1}n such that |f(x) − f(y)| ≥ ε. This implies that the Hamming distance between
x, y is at least εn, and hence Pri∼π[xi ≠ yi] ≥ ε, where π is the uniform distribution over [n].
This implies that FCε(f, x) ≤ 1/ε, which in particular is independent of n.
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The following lemma is the classic connection between matchings, covers and their linear
relaxations, when specialized to our setting. See [19] for a proof in the special case of block
sensitivity, certificate complexity and their fractional relaxations (the proof in [19] is for
Boolean functions, but it works equally well in our context).

▶ Lemma 10. BSε(f, x) ≤ FBSε(f, x) = FCε(f, x) ≤ Cε(f, x).

We need one more definition of block sensitivity where we do not specify the tolerance ε.

▶ Definition 11 (Block sensitivity). The block sensitivity of f at x, denoted BS(f, x), is
defined as

BS(f, x) = max
B1,...,Bk

k∑
i=1

|f(x) − f(x ⊕ Bi)|,

where the maximum is over all collections of pairwise disjoint blocks.

▷ Claim 12. BS(f, x) ≥ ε · BSε(f, x) for any ε > 0.

For any complexity measure C (such as Cε,BSε, etc), we define C(f) = maxx C(f, x).

2.1 Our results
With the definitions out of the way, we can now formally state our first theorem.

▶ Theorem 13. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then for any
ε > 0,

FBSε(f) = FCε(f) ≤ O

(
d8 log16 n

ε4

)
.

It is known that bounded low degree polynomials have bounded block sensitivity. This
was first shown by Backurs and Bavarian [5] and then sharpened by Filmus, Hatami, Keller,
and Lifshitz [9].

▶ Lemma 14 ([9]). Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then
BS(f) = O(d2).

Theorem 13 follows by combining Lemma 14 with the following theorem, which is our
main technical contribution in this context. It upper bounds the integrality gap of block
sensitivity for any bounded function (not necessarily computed by a low degree polynomial).
A similar result for total Boolean functions is known [1, 19, 3], but their techniques do
not seem to migrate well to the setting of bounded functions. Instead, we take a different
approach, adapting ideas from [12] to the setting of bounded functions.

▶ Theorem 15 (Upper bounding the integrality gap for block sensitivity). Let f : {0, 1}n → [0, 1]
and set B = max(BS(f), 1). Then for every ε > 0,

FBSε(f) ≤ O

(
B4 log16 n

ε4

)
.

We note that we did not attempt to optimize the exponents appearing in Theorem 13
and Theorem 15.
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3 Upper bounding the integrality gap of block sensitivity

We prove Theorem 15 in this section. Before doing so, it would be convenient to recast the
definitions of fractional block sensitivity and fractional certificates in a more systematic way.

3.1 Smoothness and fractional cover
▶ Definition 16 (Smooth distribution). Let p ∈ (0, 1). A distribution D over {0, 1}n is
p-smooth if it satisfies Prx∼D[xi = 1] ≤ p for all i ∈ [n].

▶ Definition 17 (Smooth probability). Let S ⊂ {0, 1}n. We denote by psmooth(S) the minimal
p, such that there exists a p-smooth distribution D supported on S.

▶ Definition 18 (Cover probability). Let S ⊂ {0, 1}n. We denote by pcover(S) the maximal p,
such that there exists a distribution π over [n] satisfying Pri∼π[xi = 1] ≥ p for all x ∈ S.

Recall the definition of Sε(f, x) = {B ⊂ [n] : |f(x ⊕ B) − f(x)| ≥ ε}. We can recast the
definitions of fractional block sensitivity and fractional certificates as

FBSε(f, x) = 1/psmooth(Sε(f, x)), FCε(f, x) = pcover(Sε(f, x)).

We next prove a number of useful claims about psmooth and pcover.

▷ Claim 19. psmooth(S) = pcover(S) for any S ⊂ {0, 1}n.

Proof. This is the classic LP duality between fractional matching and fractional covers in
hypergraphs (see for example [14]). ◁

Let p(S) := psmooth(S) = pcover(S). Note that if 0n ∈ S then p(S) = 0.

▷ Claim 20. Let S ⊂ {0, 1}n \ {0}n. Then p(S) ≥ 1/n.

Proof. Let π be the uniform distribution over [n]. As 0n /∈ S we have Pr[xi = 1] ≥ 1/n for
all x ∈ S. Thus p(S) = pcover(S) ≥ 1/n. ◁

▷ Claim 21. Let S ⊂ {0, 1}n with p(S) = p. Let D be a q-smooth distribution over {0, 1}n

where q < p. Then

Pr
x∼D

[x ∈ S] ≤ q/p.

Proof. Let α = Prx∼D[x ∈ S]. Let D′ be the distribution of x ∼ D conditioned on x ∈ S,
namely D′(x) = 0 if x /∈ S, and D′(x) = D(x)/α if x ∈ S. Note that D′ is (q/α)-smooth and
supported on S, and hence q/α ≥ p. ◁

We identify {0, 1}n with subsets of [n]. In particular, given x, y ∈ {0, 1}n we identify
x ∪ y, x ∩ y and x \ y with the usual definition for sets (union, intersection, set difference).

▷ Claim 22. Let D be a p-smooth distribution over {0, 1}n. For k ≥ 1, define a distribution
D′ by the following sampling process: sample y1, . . . , yk ∼ D independently and output

z =
⋃
i̸=j

yi ∩ yj .

Then D′ is (pk)2-smooth

Proof. This follows from the definition of smoothness. For any coordinate ℓ ∈ [n] we have

Pr
z∼D′

[zℓ = 1] ≤
∑
i̸=j

Pr
yi∼D

[(yi)ℓ = 1] Pr
yj∼D

[(yj)ℓ = 1] ≤ (pk)2. ◁
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3.2 Bounding the integrality gap
We now turn to prove Theorem 15. It will be convenient to allow to mildly change ε.
The following is our main technical lemma in this section. To simplify notations, we set
Bε(f) = max(BSε(f), 1) throughout the section.

▶ Lemma 23. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1). Then there exists 1 ≤ t ≤ log4 n such
that

FBSε(f) ≤ FBSε/t(f) ≤ O
(
Bε/t(f)4)

.

Combining Lemma 23 with the bound BSδ(f) ≤ BS(f)/δ given by Claim 12 implies
Theorem 15. We prove Lemma 23 in the remainder of this subsection. The following lemma
is an adaptation of [12, Lemma 3.2] to bounded functions.

▶ Lemma 24. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1/3). Then

FBS3ε(f)√
FBSε(f)

≤ O (Bε(f)) .

Proof. Let FBS3ε(f) = 1/p and FBSε(f) = 1/q. Note that 0 ≤ q ≤ p ≤ 1. We may assume
that q ≥ 4p2, otherwise the claim is trivial. Let x ∈ {0, 1}n so that FBS3ε(f) = FBS3ε(f, x).
Let S = S3ε(f, x), and let D be a p-smooth distribution supported on S. Let k to be
determined later, and sample y1, . . . , yk ∼ D independently. Define

e =
⋃
i̸=j

(yi ∩ yj) .

Finally, let zi = yi \ e. Observe that z1, . . . , zk are pairwise disjoint.
Observe that Claim 22 implies that e is (pk)2-smooth and set δ = (pk)2/q. Let S0 =

Sε(f, x) and note that by assumption p(S0) ≥ q. Claim 21 implies that Pr[e ∈ S0] ≤ δ, or in
other words

Pr[|f(x) − f(x ⊕ e)| ≥ ε] ≤ δ. (1)

Next, fix i ∈ [k] and also fix yi for a moment. Define

ei =
⋃

j ̸=j′,j,j′ ̸=i

(yj ∩ yj′) \ yi.

Applying Claim 22 again we get that ei is also (pk)2-smooth. Let Si = Sε(f, x ⊕ yi), which
again satisfies p(Si) ≥ q. Applying Claim 21 again gives

Pr
{yj}j ̸=i

[|f(x ⊕ yi) − f(x ⊕ yi ⊕ ei)| ≥ ε] ≤ δ.

Note that yi ⊕ ei = yi ∨ ei = yi ∨ e = zi ⊕ e. Averaging also over yi gives

Pr[|f(x ⊕ yi) − f(x ⊕ zi ⊕ e)| ≥ ε] ≤ δ. (2)

Next, since each yi ∼ D is supported on S3ε(f, x), we have |f(x) − f(x ⊕ yi)| ≥ 3ε with
probability one. Combining this with Equations (1) and (2), and setting w = x ⊕ e, gives

Pr[|f(w) − f(w ⊕ zi)| ≥ ε] ≥ 1 − 2δ. (3)

Recall that δ = (pk)2/q. We choose k = Ω(√q/p) so that δ ≤ 1/4. Let I = {i ∈ [k] :
|f(w) − f(w ⊕ zi)| ≥ 2ε}. We have E[|I|] ≥ (1 − 2δ)k ≥ k/2. By averaging, there exists a
choice of y1, . . . , yk so that |I| ≥ k/2. Fix such a choice, and note that it gives

BSε(f) ≥ BSε(f, w) ≥ k/2. ◀
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▷ Claim 25. Fix ε ∈ (0, 1/3) and assume FBSε(f) ≥ 2. Then there exists 1 ≤ t ≤ log4 n so
that

FBSε/t(f) ≤
(
FBS3ε/t(f)

)4/3
.

Proof. Shorthand h(i) = FBSε/3i(f) for i ≥ 0. Let m ≥ 0 be maximal so that for every
i ∈ [m] it holds that h(i) ≥ (h(i − 1))4/3. This implies that h(m) ≥ 2(4/3)m . On the
other hand, Claim 20 implies FBSδ(f) ≤ n for any δ > 0, and hence h(m) ≤ n. Thus
(4/3)m ≤ log n and hence 3m ≤ (log n)log4/3(3) ≤ log4 n. The claim holds for t = 3m. ◁

We now prove Lemma 23.

Proof of Lemma 23. If FBSε(f) ≤ 2 we are done. Otherwise, apply Claim 25 to get
1 ≤ t ≤ log4 n so that FBSε/t(f) ≤

(
FBS3ε/t(f)

)4/3. Set ε′ = ε/t, where rearranging the
terms gives

FBS3ε′(f)√
FBSε′(f)

≥ FBSε′(f)1/4.

Applying Lemma 24 for ε′ gives

FBS3ε′(f)√
FBSε′(f)

≤ O (Bε′(f)) .

To conclude the proof note that FBSε(f) ≤ FBSε′(f) since ε′ ≤ ε. ◀

4 Small block sensitivity

A corollary of the AA conjecture is that for low degree bounded functions with a large
variance, many inputs have a small sensitive block (as this holds for decision trees). We show
that this also follows from having small fractional certificate complexity.

▶ Definition 26 (Small block sensitivity). Let f : {0, 1}n → [0, 1]. A point x ∈ {0, 1}n is
called (r, ε)-sensitive if there exists a block B of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε.

If no such block exists, we say that x is (r, ε)-insensitive.

▶ Theorem 27. Let f : {0, 1}n → [0, 1] and ε > 0, and assume Var[f ] ≥ Ω(ε). Then at least
an ε-fraction of the points x ∈ {0, 1}n are (r, ε)-sensitive for r = O

(
FCε(f)2 · log(1/ε)

)
.

The first step towards the proof of Theorem 27 is to connect fractional certificate
complexity to convex geometry. Let x ∈ {0, 1}n, Y ⊂ {0, 1}n. We denote by conv(Y ) the
convex hull of Y in [0, 1]n. Given a set K ⊂ [0, 1]n and x ∈ {0, 1}n, define their Lp distance as

dp(x, K) = min
y∈K

∥x − y∥p.

We will restrict our attention to two norms: L2 and L∞. We first connect the L∞ norm to
fractional certificate complexity.

▶ Lemma 28. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, ε > 0 and Y = {y ∈ {0, 1}n :
|f(x) − f(y)| ≥ ε}. Then

d∞(x, conv(Y )) ≥ 1
FCε(f, x) .
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Proof. Assume FCε(f, x) = k. This means there is a distribution π over [n], such that for
all y ∈ Y ,

Pr
i∼π

[xi ̸= yi] ≥ 1/k.

Let si = (−1)xi . We can rewrite this condition as

Ei∼π[si(yi − xi)] ≥ 1/k.

Let y∗ ∈ conv(Y ) be the point closest to x in L∞. Then by linearity of expectation we have
that

Ei∼π[si(y∗
i − xi)] ≥ 1/k.

Let p = ∥x − y∗∥∞ = d∞(x, conv(Y )), so that |y∗
i − xi| ≤ p for all i. Then we must have

p ≥ 1/k. ◀

We next connect the L2 norm and the L∞ norm via small block sensitivity.

▶ Lemma 29. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, t ≥ f(x) and ε > 0. Define

Y = {y ∈ {0, 1}n : f(y) ≥ t + ε}

and

Z = {z ∈ {0, 1}n : f(z) ≥ t + 2ε and z is (r, ε)-insensitive}.

Then

d2(x, conv(Z)) ≥ d∞(x, conv(Y )) ·
√

r.

Proof. Let p = d∞(x, conv(Y )). Let Br(Z) denote the Hamming ball of radius r around Z:

Br(Z) = {z ⊕ B : z ∈ Z, B ⊂ [n], |B| ≤ r}.

Observe first that Br(Z) ⊂ Y . To see that, take z ∈ Z and |B| ≤ r. We need to show that
z ⊕ B ∈ Y . Since by assumption z is (r, ε)-insensitive, we have f(z ⊕ B) ≥ f(z) − ε ≥ t + ε

and hence z ⊕ B ∈ Y .
For each 0 ≤ ℓ ≤ r let z(ℓ) ∈ conv(Bℓ(Z)) be the closest point to x in L2. The proof will

follow by showing that for all 0 ≤ ℓ ≤ r − 1:

∥x − z(ℓ)∥2
2 ≥ p2 + ∥x − z(ℓ+1)∥2

2, (4)

as this implies

d2(x, conv(Z))2 = ∥x − z(0)∥2
2 ≥ p2r.

We next prove Equation (4). Fix ℓ and consider z(ℓ). Since z(ℓ) ∈ conv(Bℓ(Z)) ⊂ conv(Y ),
we must have ∥x − z(ℓ)∥∞ ≥ d∞(x, conv(Y )) = p. Let i ∈ [n] be a coordinate for which
|xi − z

(ℓ)
i | ≥ p. Define w(ℓ) ∈ [0, 1]n as follows: w

(ℓ)
i = xi and w

(ℓ)
j = z

(ℓ)
j for j ̸= i. Then

∥x − z(ℓ)∥2
2 ≥ p2 + ∥x − w(ℓ)∥2

2.

To conclude the proof, note that as z(ℓ) ∈ conv(Bℓ(Z)) and w(ℓ) differs from z(ℓ) in at most
one coordinate, then w(ℓ) ∈ conv(Bℓ+1(Z)). This implies that ∥x − z(ℓ+1)∥2 ≤ ∥x − w(ℓ)∥2
which completes the proof. ◀
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We would need the following simple claim, showing that a bounded random variable
which does not deviate much from its expectation, must have a small variance.

▷ Claim 30. Let X be a random variable taking values in [0, 1]. Assume that for some
a, b > 0 we have

Pr[X ≥ E[X] + a] ≤ b.

Then

Var[X] ≤ 2(a + b).

Proof. Let Y = X − E[X] so that Y takes values in [−1, 1] and E[Y ] = 0. We have

0 = E[Y ] = E[max(Y, 0)] − E[max(−Y, 0)].

Therefore, E[max(Y, 0)] = E[max(−Y, 0)]. By assumption, Pr[Y ≥ a] ≤ b and hence

E[max(Y, 0)] ≤ a + b

which implies

E[max(−Y, 0)] ≤ a + b.

Thus

Var[X] = E[Y 2] ≤ E[|Y |] = E[max(Y, 0)] + E[max(−Y, 0)] ≤ 2(a + b). ◀

The final piece we need is Talagrand’s concentration inequality [20].

▶ Theorem 31 (Talagrand [20]). Let X, Y ⊂ {0, 1}n. Assume that for all x ∈ X,

d2(x, conv(Y )) ≥ λ.

Then

|X||Y |
22n

≤ exp(−λ2/4).

We now prove Theorem 27.

Proof of Theorem 27. Let t be the average value of {f(x) : x ∈ {0, 1}n}. Define

X = {x ∈ {0, 1}n : f(x) ≤ t},

Y = {y ∈ {0, 1}n : f(y) ≥ t + ε},

Z = {z ∈ {0, 1}n : f(z) ≥ t + 2ε},

W = {w ∈ {0, 1}n : f(w) ≥ t + 2ε and w is (r, ε)-insensitive}.

The assumption Var[f ] ≥ Ω(ε) implies by Claim 30 that |X|, |Y |, |Z| ≥ 2ε2n. We will soon
show that |W | ≤ ε2n. This will conclude the proof as all points in Z \ W are (r, ε)-sensitive,
and there are at least |Z| − |W | ≥ ε2n such points.

Let k = FCε(f). Lemma 28 gives that for all x ∈ X,

d∞(x, conv(Y )) ≥ 1
k

.
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Lemma 29 then gives that

d2(x, conv(W )) ≥
√

r

k
.

Applying Talagrand’s inequality (Theorem 31) to X, W then gives

|X||W |
22n

≤ exp(−r/4k2).

Choosing r = O(k2 log(1/ε)), and recalling that |X| ≥ ε2n, gives that |W | ≤ ε2n. This
concludes the proof. ◀

5 Conjectured extension of Talagrand’s inequality to the infinity norm

In this section we present a potential (but somewhat speculative) direction towards the
Aaronson-Ambainis conjecture, based on a conjectured extension of Talagrand’s inequality
to the L∞ norm.

Before doing so, it would be convenient for us to recast the AA conjecture in a more
amenable way. Similar to the equivalent formulation of the AA conjecture of f having an
influential variable, we consider the version of an influential small coalition.

▶ Conjecture 32 (AA conjecture: equivalent formulation). Let f : {0, 1}n → [0, 1] be computed
by a degree d polynomial, and let ε > 0. Then there is a set B ⊂ [n] of size |B| ≤ poly(d, 1/ε)
and an assignment b ∈ {0, 1}B such that Var[f(x)|xB = b] ≤ ε.

▷ Claim 33. Conjecture 1 and Conjecture 32 are equivalent.

Proof. It is clear that Conjecture 32 follows from Conjecture 1, by considering a leaf in the
decision tree approximating f . The reverse direction also holds by standard techniques:
querying the variables in the block B reduces the average block sensitivity for the function.
For more details, see for example [11, Lemma 6.1], where although their full proof is wrong,
this specific lemma is correct and gives the details for this procedure. ◁

Next, recall Talagrand’s inequality (Theorem 31), and consider replacing the distance
from L2 to L∞. What would change? First, the distance can be at most 1. Second, even
if X, Y are dense sets, their structure plays a part. Consider the following two motivating
examples.

▶ Example 34 (Subcubes). Let X = {x : x1 = 0}, Y = {x : x1 = 1}. Then |X| = |Y | = 2n−1

and d∞(x, conv(Y )) = 1 for all x ∈ X.

▶ Example 35 (Hamming balls). Let X = {x : |x| ≤ n/2 −
√

n}, Y = {x : |x| ≥ n/2 +
√

n}
where |x| denotes the Hamming weight of x. Then |X| = |Y | = Ω(2n) and d∞(x, conv(Y )) =
O(1/

√
n) for x on the boundary of X (namely, x with hamming weight |x| = n/2 −

√
n).

We conjecture that the main difference between these two examples is that, in the first
example X, Y have a variable with large influence, whereas in the second example all variables
have influence O(1/

√
n). We conjecture that this is a general phenomenon.

▶ Definition 36. Let X ⊂ {0, 1}n. The i-th influence of X is the probability that a random
element in X moves outside X when the i-th bit is flipped:

Infi[X] = Pr
x∈X

[x ⊕ ei /∈ X].

The maximal influence of X is Inf∞[x] = maxi Infi[X].
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▶ Conjecture 37 (Talagrand for L∞). Let X, Y ⊂ {0, 1}n. Assume that Inf∞[X], Inf∞[Y ] ≤ τ .
Then there exists x ∈ X such that

d∞(x, conv(Y )) ≤ poly(τ).

We show that Conjecture 37 also implies the AA conjecture.

▷ Claim 38. Conjecture 37 implies Conjecture 32.

Proof. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, and Var[f ] ≥ Ω(ε).
Let t be the average value of {f(x) : x ∈ {0, 1}n}. For α ∈ [ε, 2ε] to be determined soon,
define

X = {x : f(x) ≤ t − α}, Y = {x : f(x) ≥ t + α}.

The assumption that Var[f ] ≥ Ω(ε) implies by Claim 30 that |X|, |Y | ≥ ε2n. Combines
Lemma 28 and Theorem 13, it gives that for all x ∈ X, d∞(x, conv(Y )) ≥ p where p−1 =
poly(d, 1/ε, log n). Conjecture 37 then implies that either Inf∞[X] > τ or Inf∞[Y ] > τ where
τ−1 = poly(d, 1/ε, log n).

Assume without loss of generality that Inf∞[X] > τ . This means that there is an index
i ∈ [n] such that Infi[X] > τ . In other words, the linear threshold function sign(f(x) − t + α)
has an influential variable xi. We will now show that by a careful choice of α, this implies that
xi is also an influential variable for f . This in turn is sufficient to prove the AA conjecture.

Let β > 0 to be determined later (where we will have β−1 = poly(d, 1/ε, log n)). Say that
a value α is good if Prx∈{0,1}n [0 ≤ f(x) − t + α ≤ β] ≤ ετ/2. Note that if α is good, then we
get

Ex∈{0,1}n [|f(x ⊕ ei) − f(x)|]
≥ε · Ex∈X [|f(x ⊕ ei) − f(x)|]
≥εβ · Pr

x∈X
[f(x ⊕ ei) > t − α + β]

=εβ

(
Pr

x∈X
[f(x ⊕ ei) > t − α] − Pr

x∈X
[0 ≤ f(x) − t + α ≤ β]

)
≥εβ (Infi[X] − τ/2)
≥εβτ/2.

This implies that xi is an influential variable in f , with influence poly(d, 1/ε, log(n))−1, as
conjectured.

To conclude, we need to show that a good value of α exists. Assume not; then for
every α ∈ [ε, 2ε], we have at least a ετ/2 mass of {f(x) : x ∈ {0, 1}n} lying in the interval
[t−α, t−α+β]. This of course is impossible if we set β small enough, concretely β = O(τε2).

◁
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Abstract
We study the complexity of computing (and approximating) VC Dimension and Littlestone’s
Dimension when we are given the concept class explicitly. We give a simple reduction from Maximum
(Unbalanced) Biclique problem to approximating VC Dimension and Littlestone’s Dimension. With
this connection, we derive a range of hardness of approximation results and running time lower
bounds. For example, under the (randomized) Gap-Exponential Time Hypothesis or the Strongish
Planted Clique Hypothesis, we show a tight inapproximability result: both dimensions are hard to
approximate to within a factor of o(log n) in polynomial-time. These improve upon constant-factor
inapproximability results from [27].
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1 Introduction

VC Dimension [33] and Littlestone’s Dimension [23] are two of the most fundamental
quantities in learning theory; the former governs the sample complexity in PAC model to
within a constant factor [3, 14], while the latter governs the sample complexity in online
learning [23]. Due to this, it would be extremely useful to have an efficient algorithm for
computing or approximating these dimensions for any given concept class C ⊆ 2X .

Given the importance of the two quantities, it should come as no surprise that this
question has been investigated for several decades. Two models have been considered, based
on whether the concept class is given explicitly. In the first “implicit” model, the input
is a circuit which when given (indices of) C ∈ C and x ∈ X, evaluates to C(x) ∈ {0, 1}.
For this model, both problems are hard: Schaefer proved that computing VC Dimension is
Σ3

p-complete [31] whereas Littlestone’s Dimension is PSPACE-complete [32]. Furthermore,
Mossel and Umans [29] showed that VC Dimension is Σ3

p-hard even to approximate to within
a factor less than 2, and that it is AM-hard to approximate to within n1−ϵ-factor for any
constant ϵ > 0.

The second model–which is the focus of the remainder of this work–is the “explicit”
model, where the concept class is given as an |X| × |C|-matrix. It is not hard to see that
straightforward algorithms can solve both problems in nO(log n)-time, because both dimensions
are at most O(log n). Therefore, these problems cannot be NP-hard (unless NP is contained
in DTIME(nO(log n))). Papadimitriou and Yannakakis [30] defined a class similar to NP
but with “limited non-determinism” called LOGNP, and showed that VC Dimension is
complete for this class. Frances and Litman [12] showed that Littlestone’s Dimension is
also LOGNP-hard. A consequence of these results is that, assuming the Exponential Time
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Hypothesis (ETH)1, VC Dimension and Littlestone’s Dimension cannot be solved in no(log n)

time. More recently, Manurangsi and Rubinstein [24] extended these lower bounds to rule
out even approximation algorithms. Specifically, they showed, assuming ETH, that there
is no (2 − o(1))-approximation algorithm for VC Dimension and no (1 + ϵ)-approximation
algorithm for Littlestone’s Dimension that runs in nlog1−o(1) n time. Nonetheless, it remains
open whether any constant factor approximation is achievable in polynomial time:

▶ Question 1. Is there polynomial-time O(1)-approximation algorithm for VC Dimension or
Littlestone’s Dimension?

As mentioned earlier, VC Dimension characterizes the sample complexity in PAC learning
only to within a (large) constant factor [3, 14]. Therefore, Question 1 is not only a natural
question but it can also be argued that O(1)-approximation of VC Dimension is essentially
as good as computing it exactly for the purpose of approximating the sample complexity.

1.1 Our Contributions
We answer the above question negatively, under certain computational complexity assump-
tions. Before we state our results, let us briefly recall the assumptions that we rely on. (All
assumptions are formalized in Section 2.) In addition to ETH, we will use its strengthening
called Gap-ETH [7, 26] which (roughly) says that there is no 2o(N)-time algorithm even for
an approximate version of 3SAT. The Planted Clique Hypothesis [19, 18] states that there is
no polynomial-time algorithm that can distinguish between an Erdos-Renyi random graph
and one with a planted clique of size NΩ(1). The Strongish Planted Clique Hypothesis [28] is
a strengthening of Planted Clique Hypothesis that rules out even No(log N)-time algorithms.

With all the assumptions in mind, we can now state our results. We divide the results into
two groups, based on its inapproximability ratio. In the first group of results, we show, under
ETH, Gap-ETH and Strongish Planted Clique Hypothesis, that there is no polynomial-time
õ(log n)-approximation algorithm for VC Dimension / Littlestone’s Dimension, as stated
below.

▶ Theorem 2. Assuming ETH, there is no polynomial-time algorithm for approximating
VC Dimension or Littlestone’s Dimension to within o

(
log n

(log log n)ξ

)
factor for some constant

ξ > 0.

▶ Theorem 3. Assuming Gap-ETH, there is no polynomial-time algorithm for approximating
VC Dimension or Littlestone’s Dimension to within o(log n) factor.

▶ Theorem 4. Assuming the Strongish Planted Clique Hypothesis, there is no polynomial-time
algorithm for approximating VC Dimension or Littlestone’s Dimension to within o(log n)
factor.

Not only do these results answer Question 1, but the inapproximability factors are
essentially the best possible: an algorithm that always output one is an (log n)-approximation
algorithm.

If we only want to rule out any constant-factor approximation, then our lower bounds hold
not only against polynomial-time algorithms but slightly quasi-polynomial time algorithms
as well:

1 ETH [16, 17] states that 3SAT cannot be solved in 2o(N) time where N denotes the number of variables.
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▶ Theorem 5. Assuming the Strongish Planted Clique Hypothesis, there is no no(log n)-time
algorithm for approximating VC Dimension or Littlestone’s Dimension to within any constant
factor.

▶ Theorem 6. Assuming Gap-ETH, there is no no((log n)1/3)-time algorithm for approximating
VC Dimension or Littlestone’s Dimension to within any constant factor.

▶ Theorem 7. Assuming ETH, there is no n
o

(
(log n)1/3

(log log n)ξ

)
-time algorithm for approximating

VC Dimension or Littlestone’s Dimension to within any constant factor for some constant
ξ > 0.

Recall that there is also an nO(log n)-time exact algorithm for computing both dimensions.
Therefore, the running time lower bound in Theorem 5 is tight. On the other hand, while
Theorems 6 and 7 achieve larger inapproximability factors compared to [27], the running
time lower bounds are weaker than that in [27] due to technical reasons which we discuss
more in Section 7.

Finally, we also note that under the Planted Clique Hypothesis, we can rule out constant
factor approximation but only against polynomial-time algorithms:

▶ Theorem 8. Assuming the Planted Clique Hypothesis, there is no polynomial-time algorithm
for approximating VC Dimension or Littlestone’s Dimension to within any constant factor.

We remark that our results are also strong enough to rule out any fixed-parameter
tractable algorithms2 with non-trivial approximation ratios. We defer the discussion on this
to Appendix A.

Reduction from (Unbalanced) Biclique
All of our results are proved via a simple reduction from an unbalanced version of the
Maximum Balanced Complete Bipartite Graph (Maximum Biclique) problem. Indeed, the
fact that we can achieve multiple flexible results can be attributed to the rich literature
on the Maximum Biclique problem. Furthermore, by identifying this as a hard problem
underpinning the approximation of VC Dimension and Littlestone’s dimension, our reduction
helps demystify the rather specific reductions in [27], which seem to be tailored towards
starting from the Label Cover problem–and do not seem to be applicable e.g. with Planted
Clique hypotheses.

To define the Maximum Biclique problem, we need a few additional terminologies: we
use Ka,b where a, b ∈ N to denote the bipartite complete graph (biclique) with a vertices on
one side and b vertices on the other. We say that a bipartite graph G = (A, B, E) contains
Ka,b if there exist a-size S ⊆ A and b-size T ⊆ B such that S, T induces a complete bipartite
subgraph. Otherwise, if no such S, T exist, we say that G is Ka,b-free.

Most work in the literature has considered the case of balanced biclique, i.e. a = b. The
Maximum Balanced Biclique problem then asks for the maximum a such that the input
graph G contains Ka,a. For the purpose of stating its inapproximability, it is useful to define
the following “gap” version3, as stated below. Note that if (q1, q2)-Gap Biclique Problem
cannot be efficiently solved, then there is no efficient (q2/q1)-approximation algorithm for
Maximum Balanced Biclique.

2 Please refer to e.g. [9, 5] for background on parameterized complexity.
3 We provide an additional discussion on gap problems in Section 2.2.
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▶ Definition 9 ((q1, q2)-Gap Biclique Problem). Given a bipartite graph G = (A, B, E),
distinguish between the following two cases:

(YES) G contains Kq1,q1 as a subgraph.
(NO) G is Kq2,q2-free.

The Maximum Balanced Biclique problem turns out to be a challenging research question
from hardness of approximation point of view. Despite the well-understood status of its
non-bipartite counterpart [15, 21, 34], it is not even known if Maximum Balanced Biclique
problem is NP-hard to approximate to within a factor of 1.0001. Fortunately for us, several
hardness results are known under stronger assumptions [10, 2, 20, 24, 25, 4, 28].

As alluded to earlier, the exact problem we will use is not the balanced version above.
We need an unbalanced version where one side of the biclique has t vertices and the other
side has 2t vertices, as defined below.

▶ Definition 10 ((t1, t2)-Gap Exponential Biclique Problem). Given a bipartite graph G =
(A, B, E), distinguish between the following two cases:

(YES) G contains Kt1,2t1 as a subgraph.
(NO) G is Kt2,2t2 -free.

It should be noted that Gap Exponential Biclique is quite different from Gap Biclique.
For example, to get a constant gap–say t1 ≥ 2t2–in the former, we need the number of
vertices on one side to be 2t1 in the YES case versus 2t1/2 =

√
2t1 in the NO case. This seems

closer to the setting q2 = √
q1 (i.e. √

q1 gap) in the Gap Biclique problem. Furthermore,
Gap Exponential Biclique must have t1, t2 ≤ log n, meaning that the problem is solvable in
time nO(log n). Indeed, in our hardness results below, we have to resort to literature from
parameterized hardness of Gap Biclique, which also considers the case q1, q2 ≪ n. In some
cases, we have to adapt the reductions slightly to get the parameters sufficiently strong for
Gap Exponential Biclique.

Let us now turn our attention back to the main reduction, which is from Gap Exponential
Biclique to the question of approximating VC / Littlestone’s Dimension. In fact, our reduction
proves the hardness of approximating both VC and Littlestone’s Dimension simultaneously.
Specifically, we show that the following gap problem is hard4:

▶ Definition 11 ((d1, d2)-VC-Ldim Problem). Given a concenpt class C as a binary matrix,
distinguish between the following two cases:

(YES) The VC Dimension of C is at least d1.
(NO) The Littlestone’s Dimension of C is less than d2.

With all the components defined, we can now state the properties of our reduction:

▶ Theorem 12. If there is an T (n)-time algorithm for the (d1, d2)-VC-Ldim Problem, there
is an O(T (n))-time (randomized) algorithm for the (d1/2, 2d2)-Gap Exponential Biclique
Problem.

That is, any hardness of Gap Exponential Biclique with gap α can be translated to
hardness of VC-Ldim Problem with gap α/4. This allows us to easily translate the hardness
approximating of biclique problems to that of approximating VC / Littlestone’s Dimension.

4 Recall that the Littlestone’s Dimension of any class is no less than its VC Dimension.
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Organization

The rest of this paper is organized as follows. We provide some additional definitions in
Section 2. We then present the main reduction (Theorem 12) in Section 3. The subsequent
three sections then establish concrete hardness results (stated in Section 1.1). Finally, we
conclude with some discussion and open questions in Section 7.

2 Preliminaries

All approximation problems considered in this work are maximization problem. For these
problems, we say that an algorithm5 has an approximation ratio (or factor) r if its output
always lie between OPT/r and OPT, where OPT denote the true optimum for the input
instance.

2.1 VC Dimension and Littlestone’s Dimension

For a domain X, a concept c is simply a function from X to {0, 1}. A concept class C is
a set of concepts. For a subset S ⊆ X and a concept c, let c|S denote the restriction of
c on S, i.e. c|S : S → {0, 1} such that c|S(x) = c(x) for all x ∈ S. Furthermore, define
C|S := {c|S | c ∈ C}.

We now recall the definition of VC Dimension and Littlestone’s Dimenion.

▶ Definition 13 (VC Dimension [33]). The VC dimension of a concept class C, denoted by
VC(C), is defined as the size of the largest subset S ⊆ X such that C|S contains all boolean
functions on S.

▶ Definition 14 (Online Algorithm & Mistake Bound). An online learning algorithm A for
a concept class C is an algorithm that, at each step i, is given a sample xi, the algorithm
has to make a prediction zi and afterwards the algorithm is told the correct label yi. The
mistake bound of A for a sequence6 (x1, y1), . . . , (xT , yT ) is defined as the number of incorrect
predictions (i.e.

∑
i∈[T ] 1[zi ̸= yi]).

The mistake bound of A for a concept class C is defined as the maximum mistake bound
of A across all sequences (x1, y1), . . . , (xT , yT ) that are realizable by C (i.e. there exists c ∈ C
such that yi = c(xi) for all i ∈ [T ]).

▶ Definition 15 (Littlestone’s Dimension [23]). The Littlestone’s Dimension of C, denoted by
Ldim(C), is defined as the minimum mistake bound for C across all online algorithms A.

We note that the Littlestone’s Dimension is sometimes defined in terms of mistake trees,
but it was shown in [23] that this is equivalent to the above mistake bound definition. We
choose to work with the mistake bound definition because it is more convenient in our proofs.

For convenience, we also extend these biclique-related terminologies to concept classes
C ⊆ 2X , where the graph G is define as (X, C, E) where (x, c) ∈ E iff c(x) = 1.

5 We assume for simplicity that these algorithms are deterministic, although it is trivial to extend the
formalism and proofs to randomized approximation algorithms.

6 Throughout this work, we assume w.l.o.g. that x1, . . . , xT are distinct.
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2.2 Gap Problems
Gap problems we consider in this work (e.g. Definitions 9–11) belong to the class of promise
problems. (See e.g. [13] for a more thorough treatment on the topic.) A promise problem
consists of two disjoint languages LY ES and LNO. A randomized algorithm A is said to solve
the promise problem (LY ES , LNO) iff

for all inputs x ∈ LY ES , Pr[A(x) = Y ES] ≥ 2/3, and,
for all inputs x ∈ LNO, Pr[A(x) = NO] ≥ 2/3.

Note that the algorithm are allowed to output arbitrarily for input x /∈ LY ES ∪ LNO.
We say that an algorithm is a randomized reduction from a promise problem (LY ES , LNO)

to (L′
Y ES , L′

NO) if it takes in x and outputs x′ such that
If x ∈ LY ES , then Pr[x′ ∈ L′

Y ES ] ≥ 2/3.
If x ∈ LNO, then Pr[x′ ∈ L′

NO] ≥ 2/3.

It is simple to see that if the reduction runs in F (n) time (which also implies that it
products x′ of size N ≤ F (n)) and there is a randomized algorithm for solving (L′

Y ES , L′
NO)

in T (N) time, then there is a randomized algorithm for solving (LY ES , LNO) in O(T (F (n)))
time.

Since most of the biclique hardness results we use are through randomized reductions,
we will henceforth drop the “randomized” prefix and assume that any discussions related to
promise problems are for randomized algorithms and reductions.

2.3 Exponential Time Hypotheses
Given a 3CNF formula Φ, we let SAT(Φ) denote the fraction of clauses that can be simul-
taneously satisfied by an assignment. A degree of variable with respect to a formula Φ is
defined as the number of clauses it appears in. Furthermore, we define the (1, 1 − µ)-Gap
3SAT problem to be the problem of distinguishing between (YES) SAT(Φ) = 1, and (NO)
SAT(Φ) < 1 − µ.

ETH and Gap-ETH can be formulated as follows.

▶ Assumption 16 (Exponential Time Hypothesis (ETH) [16, 17]). No 2o(N)-time algorithm
can decide whether any given N -variable 3CNF formula Φ is satisfiable (i.e. SAT(Φ) = 1).

▶ Assumption 17 (Gap-Exponential Time Hypothesis (Gap-ETH) [7, 26]). For some constant
d, µ > 0, no 2o(N)-time algorithm can solve the (1, 1 − µ)-Gap 3SAT problem on N -variable
3CNF formulae with maximum degree at most d.

The nearly-linear size PCP of [6] gives a lower bound for Gap 3SAT problem under ETH
that is slightly weaker than that of Gap-ETH:

▶ Theorem 18 (Nearly-Linear Size PCP [6]). Assuming ETH, there exists constant υ, d, µ > 0
such that no 2o(N/(log N)υ)-time algorithm can solve the (1, 1 − µ)-Gap 3SAT problem on
N -variable 3CNF formulae with maximum degree at most d.

2.4 Planted Clique Hypotheses
Let G(N, p) denote the Erdos-Renyi random graph distribution where there are N vertices and
an edge exists between each pair of vertices with probability p. Furthermore, let G(N, p, κ)
denote the distribution of a graph sampled from G(N, p) but afterwards get planted with a
Clique of size κ.
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▶ Assumption 19 (Planted Clique Hypothesis (e.g. [19, 18])). There exists δ > 0 such that no
NO(1)-time algorithm A satisfies both of the following:

(Completeness) PrG∼G(N,p,⌈nδ⌉)[A(G) = 1] ≥ 2/3.
(Soundness) PrG∼G(N,p)[A(G) = 1] ≤ 1/3.

▶ Assumption 20 (Strongish Planted Clique Hypothesis [28]). There exists δ > 0 such that no
No(log N)-time algorithm A satisfies both of the following:

(Completeness) PrG∼G(N,p,⌈nδ⌉)[A(G) = 1] ≥ 2/3.
(Soundness) PrG∼G(N,p)[A(G) = 1] ≤ 1/3.

3 Reducing Biclique to VC/Littlestone’s Dimension

In this section, we present our main reduction (Theorem 12). Before we do so, let us
describe the high-level overview of the reduction. Let G = (A, B, E) be an input instance
of (d1, d2)-Gap Exponential Biclique. Perhaps the simplest reduction one can attempt is to
simply let the class C be corresponding to the adjacency matrix of G, i.e. X = A, C = B and
c(a) = 1 iff (a, c) ∈ E.

This simple reduction actually “almost works”. Specifically, the soundness (i.e. NO case)
actually holds. This can easily be seen for VC Dimension, because if C|S consists of all
boolean functions on S, then it must contain a K⌊|S|/2⌋,2⌊|S|/2⌋ . This means that in the NO
case, the VC Dimension must be less than 2d2. Below, in Lemma 21, we show that the same
bound holds even against Littlestone’s Dimension.

While the soundness holds, the completeness (i.e. YES case) of the reduction clearly fails:
even if G is a complete bipartite graph, the corresponding C has VC Dimension of just zero.
The problem here lies in the fact that “there are too many ones” in the adjacency matrix.
It turns out that this is very simple to fix: just flip each entry in the adjacency matrix to
zero w.p. 1/2. This means that the submatrix induced by the biclique is now a random
matrix; it is easy to show that such a matrix has high VC Dimension with large probability
(Lemma 22). This completes the high-level overview of the reduction.

3.1 Some Helpful Lemmas
Before we formalize the reduction, let us state a few necessary lemmas. First is the afore-
mentioned bound for the Littlestone’s Dimension for biclique-free concept class, which will
be used in the soundness proof.

▶ Lemma 21. Let t ∈ N and C be any Kt,2t-free concept class. Then, we must have
Ldim(C) < 2t.

To prove the above lemma, it is convenient to define C[(x1, y1), . . . , (xT , yT )] for any
sequence (x1, y1), . . . , (xT , yT ) as the class of concepts in C that is consistent with the
sequence. More formally,

C[(x1, y1), . . . , (xT , yT )] := {c ∈ C | ∀i ∈ [T ], c(xi) = yi}.

Proof of Lemma 21. To give the desired upper bound on Ldim(C), it suffices to give an
online algorithm A that achives a mistake bound of less than 2t on C. After receiving
(x1, y1), . . . , (xi−1, yi−1) and xi, the algorithm gives prediction zi based on the following rule:
1. If |C[(x1, y1), . . . , (xi−1, yi−1)]| ≥ 2t, the algorithm outputs 0.
2. Otherwise, the algorithm outputs argmaxz∈{0,1} |C[(x1, y1), . . . , (xi−1, yi−1), (xi, z)]| (tie

broken arbritrarily).

ITCS 2023
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Note that since C[(x1, y1), . . . , (xi−1, yi−1)] is non-increasing, the algorithm will first be in
the first stage (in the first case) and then moves to the second stage (the second case).

Since C is Kt,2t -free, A will make at most t mistakes in the first stage7. Once A reaches
the second stage, the size |C[(x1, y1), . . . , (xi−1, yi−1)]| reduces by a factor of (at least) two
with each mistake. Since it starts off with value less than 2t, A must make less than t

mistakes in the second stage. Therefore, in total A will make less than 2t mistakes. ◀

The second lemma we need, which will be used in the completeness argument, is that a
class consisting of independent random concepts have large VC Dimensions:

▶ Lemma 22. Let S be any t-size set and C ⊆ {0, 1}S be a concept class of size 2t, where
each concept is independently uniformly sampled at random from {0, 1}S. If t ≥ 4, then
VC(C) ≥ t/2 with probability at least 2/3.

Proof. Consider any subset S′ ⊆ S of size t′ := ⌈t/2⌉. We have

Pr[VC(C) < t/2] ≤ Pr[∃f ∈ {0, 1}S′
, f /∈ C|S′ ]

≤
∑

f∈{0,1}S′

Pr[f /∈ C|S′ ]

=
∑

f∈{0,1}S′

(1 − 1/2t′
)|C|

≤ 2t′
· e−|C|/2t′

= 2⌈t/2⌉ · e−2⌊t/2⌋
< 1/3,

where the second inequality is due to the union bound and the first equality is due to the
fact that each function is C is picked independently u.a.r. from {0, 1}S . ◀

3.2 The Reduction
We are now ready to prove Theorem 12.

Proof of Theorem 12. We will provide a reduction from the (d1, d2)-Gap Exponential
Biclique problem to the (d1/2, 2d2)-VC-Ldim problem such that the problem size remains
the same, which implies the theorem statement. (See discussion in Section 2.2.)

Given an instance G = (A, B, E) for the (d1, d2)-Gap Exponential Biclique Problem. Let
X = A and, for every b ∈ B, create a concept cb in C where cb(a) for each a ∈ A is defined
as follows.

If (a, b) /∈ E, let cb(a) = 0.
If (a, b) ∈ E, let cb(a) ∈ {0, 1} be drawn uniformly at random.

(Completeness) We may assume w.l.o.g. that d1 ≥ 4; otherwise, the problem can be
trivially solved in polynomial time. Suppose that G contains Kd1,2d1 , i.e. there exists
S ⊆ A, T ⊆ B of sizes d1, 2d1 respectively such that (s, t) ∈ E for all s ∈ S, t ∈ T . This,
together with the definition of C, means that ct|S for each t ∈ T is drawn independently
uniformly at random among {0, 1}S . Thus, we may apply Lemma 22 to conclude that
VC(C) ≥ VC(C|S) is at least d1/2 with probability 2/3.

(Soundness) If G is Kd2,2d2 -free, then C is also Kd2,2d2 -free (because the corresponding
graph of C is a subgraph of G). Therefore, Lemma 21 ensures that Ldim(Ci) ≤ 2d2. ◀

7 Otherwise, x1, . . . , xi−1 and the points in C[(x1, y1), . . . , (xi−1, yi−1)] would induce Kt,2t .
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4 (Gap-)ETH-Hardness of Exponential Biclique

Having presented the reduction, we will next prove concrete hardness results, starting with
those based on Gap-ETH and ETH. To prove these, we start by making a straightforward
observation: there is the trivial reduction from (d1, d2)-Gap Biclique to (⌊log d1⌋, d2)-Gap
Exponential Biclique (i.e. keeping the input graph exactly the same). This yields the
following result.

▶ Observation 23. If there exists an T (n)-time algorithm for the (⌊log d1⌋, d2)-Gap Expo-
nential Biclique Problem, there exists an T (n)-time algorithm for the (d1, d2)-Gap Biclique
Problem.

We will also need the following reduction from Gap 3SAT to Gap Biclique due to [4]
(which is in turn a modification of that from [24]).

▶ Theorem 24 ([4, Theorem 5.13]). For any constants d, µ > 0, there exists a constant
γ > 0 and a reduction from (1, 1 − µ)-Gap 3SAT problem on n-variable 3CNF formulae with
maximum degree at most d to (nγ/

√
r, r)-Gap Biclique on graphs of size n for any sufficiently

large r. Furthermore, n = 2Θd,µ(N/
√

r) and the reduction runs in nO(1) time.

4.1 Gap-ETH-Hardness
We will now prove the Gap-ETH hardness results (Theorems 3 and 6) by plugging in an
appropriate value of r in Theorem 24 and then apply our reduction (Theorem 12) afterwards.
For the o(log n) factor inapproximability result, we set r to be slowly growing function of N ,
as formalized below.

Proof of Theorem 3. Let α(n) denote any function8 such that α(n) = o(log n). We will
prove below that there is no polynomial-time algorithm for (4α(n)d, d)-Gap Exponential
Biclique, where d is a parameter to be set below. By Theorem 12, this immediately implies that
there is no polynomial-time α(n)-approximation algorithm for VC dimension or Littlestone’s
dimension.

Let Φ be the input to the (1, 1 − µ)-Gap 3SAT problem. Let r = ⌈σ ·
√

N/α(2N )⌉
where σ > 0 is a sufficiently small constant to be chosen later. Note here that r = ω(1)
because α(2N ) = o(log(2N )) = o(N). We apply the reduction in Theorem 24 to produce an
input graph G′ of size n = 2Θ(N/

√
r) ≤ 2o(n) for (nγ/

√
r, r)-Gap Biclique. Observation 23

also implies that this is an instance for (⌊log(nγ/
√

r)⌋, r)-Gap Exponential Biclique. Let
t1 = ⌊log(nγ/

√
r)⌋ = Θ(N/r) and d = t2 = r. From our choice of r, we have t1/t2 =

Θ(1/σ2) · α(2N ). Thus, by taking σ to be a sufficiently small constant, the ratio between
t1, t2 is at least 4α(2N ), which is in turn no less than 4α(n) for any sufficiently large N .

Thus, if there were a polynomial-time algorithm for (4α(n)d, d)-Gap Exponential Biclique
Problem, then we could apply the above reduction and run it on the resulting graph G′ to
solve the (1, 1 − µ)-Gap 3SAT problem in time 2o(N). This would violate Gap-ETH. ◀

For Theorem 6, we instead choose r = Θ(
√

N).

8 Henceforth, we assume w.l.o.g. that the approximation ratio (denoted by α(n)) is a non-decreasing
function of the problem size n; this is w.l.o.g. as otherwise we can always consider α̃(n) := maxn′≤n α(n)
instead.
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Proof of Theorem 6. Let C > 1 be any constant. We will prove below that there is no
no((log n)1/3)-time algorithm for (4Cd, d)-Gap Exponential Biclique, where d is a parameter
to be set below. By Theorem 12, this immediately implies that there is no no((log n)1/3)-time
C-approximation algorithm for VC dimension or Littlestone’s dimension.

Let Φ be the input to the (1, 1 − µ)-Gap 3SAT problem. Let r = ⌈σ ·
√

N⌉ where σ > 0
is a sufficiently small constant to be chosen later. We apply the reduction in Theorem 24
to produce an input graph G′ of size n = 2Θ(N/

√
r) = 2Θ(N3/4) for (nγ/

√
r, r)-Gap Biclique.

Observation 23 also implies that this is an instance for (⌊log(nγ/
√

r)⌋, r)-Gap Exponential
Biclique. Let t1 = ⌊log(nγ/

√
r)⌋ = Θ(N/r) and d = t2 = r. From our choice of r, we have

t1/t2 = Θ(1/σ2). Thus, by taking σ to be a sufficiently small constant, the ratio between
t1, t2 is at least 4C as desired.

Thus, if there were a no((log n)1/3)-time algorithm for (4Cd, d)-Gap Exponential Biclique
Problem, then we could apply the above reduction and run it on the resulting graph G′

to solve the (1, 1 − µ)-Gap 3SAT problem in time (2Θ(N3/4))o(log(2Θ(N3/4))1/3) = 2o(N). This
would violate Gap-ETH. ◀

4.2 ETH-Hardness
The proofs of Theorems 2 and 7 are nearly identical to those of Theorems 3 and 6, except
that we have to set r to be larger than the corresponding Gap-ETH-based results by a
polylogarithmic in N factor. This is to compensate for the weaker running time lower bound
we have under ETH from Theorem 18.

Proof of Theorem 2. Let ξ = 4υ where υ is the constant from Theorem 18. Let α(n)
denote any function such that α(n) = o

(
log n

(log log n)ξ

)
. We will prove below that there is no

polynomial-time algorithm for (4α(n)d, d)-Gap Exponential Biclique, where d is a parameter
to be set below. By Theorem 12, this immediately implies that there is no polynomial-time
α(n)-approximation algorithm for VC dimension or Littlestone’s dimension.

Let Φ be the input to the (1, 1 − µ)-Gap 3SAT problem. Let r = ⌈σ ·
√

N/α(2N )⌉ where
σ > 0 is a sufficiently small constant to be chosen later. Note here that r = ω((log N)2υ)
because α(2N ) = o

(
log(2N )

(log log(2N ))ξ

)
= o

(
N

(log N)ξ

)
. We apply the reduction in Theorem 24 to

produce an input graph G′ of size n = 2Θ(N/
√

r) ≤ 2o(N/(log N)υ) for (nγ/
√

r, r)-Gap Biclique.
Observation 23 also implies that this is an instance for (⌊log(nγ/

√
r)⌋, r)-Gap Exponential

Biclique. Let t1 = ⌊log(nγ/
√

r)⌋ = Θ(N/r) and d = t2 = r. From our choice of r, we have
t1/t2 = Θ(1/σ2) · α(2N ). Thus, by taking σ to be a sufficiently small constant, the ratio
between t1, t2 is at least 4α(2N ), which is in turn no less than 4α(n) for any sufficiently
large N .

Thus, if there were a polynomial-time algorithm for (4α(n)d, d)-Gap Exponential Biclique
Problem, then we could apply the above reduction and run it on the resulting graph G′ to
solve the (1, 1 − µ)-Gap 3SAT problem in time 2o(N/(log N)υ). From Theorem 18, this would
violate ETH. ◀

Proof of Theorem 7. Let ξ = υ be the constant from Theorem 18. Let C > 1 be any

constant. We will prove below that there is no n
o

(
(log n)1/3

(log log n)ξ

)
-time algorithm for (4Cd, d)-

Gap Exponential Biclique, where d is a parameter to be set below. By Theorem 12, this

immediately implies that there is no n
o

(
(log n)1/3

(log log n)ξ

)
-time C-approximation algorithm for VC

dimension or Littlestone’s dimension.
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Let Φ be the input to the (1, 1 − µ)-Gap 3SAT problem. Let r = ⌈σ ·
√

N⌉ where σ > 0
is a sufficiently small constant to be chosen later. We apply the reduction in Theorem 24
to produce an input graph G′ of size n = 2Θ(N/

√
r) = 2Θ(N3/4) for (nγ/

√
r, r)-Gap Biclique.

Observation 23 also implies that this is an instance for (⌊log(nγ/
√

r)⌋, r)-Gap Exponential
Biclique. Let t1 = ⌊log(nγ/

√
r)⌋ = Θ(N/r) and d = t2 = r. From our choice of r, we have

t1/t2 = Θ(1/σ2). Thus, by taking σ to be a sufficiently small constant, the ratio between
t1, t2 is at least 4C as desired.

Thus, if there were a n
o

(
(log n)1/3

(log log n)ξ

)
-time algorithm for (4Cd, d)-Gap Exponential Biclique

Problem, then we could apply the above reduction and run it on the resulting graph G′ to

solve the (1, 1 − µ)-Gap 3SAT problem in time (2Θ(N3/4))
o

(
log(2Θ(N3/4))1/3

(log log(2Θ(N3/4))ξ

)
= 2o(N/(log N)υ).

From Theorem 18, this would violate ETH. ◀

5 Hardness from Planted Clique Hypothesis

We next move on to prove hardness result based on the Planted Clique Hypothesis (Theorem 8).
We start by recalling that the Planted Clique Hypothesis by itself already implies a fairly
strong hardness of Gap Biclique:

▶ Lemma 25 (Folklore). Assuming the Planted Clique Hypothesis, for some constants
δ ∈ (0, 1), ζ > 1, there is no polynomial-time algorithm for (⌈N δ⌉, ζ⌈log N⌉)-Gap Biclique.

The above result is folklore; for completeness, we provide a proof sketch in Appendix B.
While Lemma 25 is indeed a strong result, it is not yet enough for us. Specifically, if we

want to apply Observation 23 from the previous section, then we would now only reduce
to the (δ log N, ζ log N)-Gap Exponential Biclique problem. However, this is trivial because
δ < 1 < ζ.

5.1 One-Sided Graph Product
The above problem is due to the fact that the YES case is too small to apply the observation
directly. To boost the YES case, we use the following “one-sided” graph product, which
helps boost one side of the biclique in the YES case while not increasing the NO case. The
reduction and its main properties are described below.

One-Sided Graph Product
Input: Bipartite Graph G = (A, B, E) where |A|, |B| = N , positive integers ℓR.
Output: Graph G′ = (A′, B′, E′).
The graph G′ is constructed as follows.
1. Let A′ = A.
2. Let B′ = BℓR where we view each element of B′ as a multiset.
3. For every a ∈ A′, T ∈ B′, include (a, T ) in E′ iff {a}, T induces a biclique in G.

Figure 1 One-Sided Graph Product.

▶ Lemma 26. Let δ ∈ (0, 1) be a constant and N be sufficiently large (depending on δ). Let
G, G′ be as in Figure 1. Then, we have

(Completeness) If G contains Kq1,q1 , q1 ≥ t1 and ℓR log(q1) ≥ t1, then G′ contains
Kt1,2t1 .
(Soundness) If G is Kq2,q2-free, q2 ≤ t2 and ℓR log(q2) ≤ t2, then G′ is Kt2,2t2 -free.

ITCS 2023
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Proof.
(Completeness) Let P ⊆ A, Q ⊆ B be a Kq1,q1-biclique in G. Observe that P and QℓR

induces a biclique in G′. We also have |QℓR | = qℓR
1 ≥ 2t1 where the inequality follows

from the second assumption on the parameters. Thus, we can conclude that G′ contains
Kt1,2t1 as desired.

(Soundness) Suppose for the sake of contradiction that G′ contains Kt2,2t2 , i.e. there exists
P ⊆ A′, T ⊆ B′ of sizes t2, 2t2 respectively that induces a biclique. By definition, this
also means that P and Q :=

(⋃
T ∈T T

)
⊆ B induce a biclique in the graph G. Since

T ⊆ QℓR , we must have Q ≥ |T |1/ℓR ≥ q2, where the second inequality follows from our
assumption that ℓR log(q2) ≤ t2. Recall also that we assume that t2 ≥ q2. As a result,
we can conclude that G contains Kq2,q2 . ◀

5.2 Proof of Theorem 8
We can now prove the desired hardness (Theorem 8) via the one-sided graph product where
we pick ℓR to be a sufficiently large constant.

Proof of Theorem 8. Let C > 1 be any constant. We will prove below that there is no
polynomial-time algorithm for (4Cd, d)-Gap Exponential Biclique, where d is a parameter to
be set below. By Theorem 12, this immediately implies that there is no polynomial-time
C-approximation algorithm for VC dimension or Littlestone’s dimension.

Let G be the input to the (⌈N δ⌉, ζ⌈log N⌉)-Gap Biclique problem. Let q1 = ⌈N δ⌉, d =
q2 = ⌈ζ log N⌉. We use the reduction in Figure 1 with t1 = 4Cd, t2 = d, ℓR = ⌈t1/ log(q1)⌉.
The reduction runs in polynomial time (because ℓR ≤ O(1)). We now check the completeness
and soundness:
(Completeness) By our setting of parameters, ℓR log(q1) ≥ t1. Furthermore, for any suf-

ficiently large N , we have q1 = Θ(N δ) is at least t1 = Θ(log N). Thus, applying the
completeness of Lemma 26, we conclude that, if G contains Kq1,q1 , then the G′ contains
Kt1,2t1 .

(Soundness) By our setting of parameters, q2 = t2. Furthermore, ℓR log(q2) = O(log log N)
must be less than t2 = Θ(log N) for any sufficiently large N . Thus, applying the
completeness of Lemma 26, we can conclude that, if G is Kq2,q2-free, then the G′ is
Kt1,2t1 -free.

Thus, if there were a polynomial-time algorithm for (4Cd, d)-Gap Exponential Biclique
Problem, then we could apply the above reduction and run it on the resulting graph G′ to
solve the (⌈N δ⌉, ζ⌈log N⌉)-Gap Biclique problem in polynomial time. From Lemma 25, this
would violate the Strongish Planted Clique Hypothesis. ◀

6 Hardness from Strongish Planted Clique Hypothesis

Finally, we will prove the hardness results based on the Strongish Planted Clique Hypothesis
(Theorems 4 and 5). Again, we start by recalling that the Strongish Planted Clique Hypothesis
already implies a fairly strong hardness of Gap Biclique, as stated below. (Proof sketch in
Appendix B.)

▶ Lemma 27 (Folklore). Assuming the Strongish Planted Clique Hypothesis, for some
constants δ ∈ (0, 1), ζ > 1, there is no No(log N)-time algorithm for (⌈N δ⌉, ⌈ζ · log N⌉)-Gap
Biclique.
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The proof of Theorem 5 is exactly the same as Theorem 8 except that we start with an
NΩ(log N) running time lower bound (in Lemma 27) instead of just polynomial running time
lower bound (in Lemma 25), so we end up with an nΩ(log n) running time lower bound as
well.

For the remainder of this section, we focus on proving the tight inapproximability ratio
(Theorem 4).

6.1 Two-Sided Randomized Graph Product

Again, we employ graph products, but this time the product is two-sided and furthermore
is randomized. This “two-sided randomized graph product” has been used several times in
literature (e.g. [20]) but we will consider different parameter regimes compared to previous
works. Therefore, we state the randomized graph product and its properties in full below.

Two-Sided Randomized Graph Product [1]
Input: Bipartite Graph G = (A, B, E) where |A|, |B| = N , positive integers n, ℓ.
Output: Graph G′ = (A′, B′, E′).
The graph G′ is constructed as follows.
1. For each i ∈ [n], independently sample Si ∼ Aℓ. Then, let A′ = {S1, . . . , Sn}.
2. For each j ∈ [n], independently sample Ti ∼ Bℓ. Then, let B′ = {T1, . . . , Tn}.
3. For every i, j ∈ [n], include (Si, Tj) in E′ iff Si, Tj induces a biclique in G.

Figure 2 Two-Sided Randomized Graph Product.

▶ Lemma 28. Let δ ∈ (0, 1) be a constant and N be sufficiently large (depending on δ).
Furthermore, suppose that n ≥ 102t1 · (N/q1)ℓ, n ≤ 1000N (1−0.5δ)ℓ, 20 ≤ ℓ and 0.005δ · t2 · ℓ ≥
q2. Then, the reduction in Figure 2 is a reduction from (q1, q2)-Gap Biclique to (2t1 , t2)-Gap
Biclique.

To prove Lemma 28, we require a lemma showing that S1, . . . , Sn, T1, . . . , Tn (when viewed
as sets) are “dispersers”, meaning that a union of a certain number of them is sufficiently
large. [28] also used such a property and their lemma (stated below) will be sufficient for us.

▶ Lemma 29 ([28, Lemma 7]). Let γ > 0, and suppose n ≤ 1000N (1−γ)ℓ, 20 ≤ ℓ. Let
S1, . . . , Sn, T1, . . . , Tn be as sampled as in Figure 2. Then, with probability at least 0.9, the
following event occurs: for every M ⊆ [n] with |M | ≤ N0.99γ/ℓ, we have |

⋃
i∈M Si| ≥

0.01γ|M |ℓ and |
⋃

i∈M Ti| ≥ 0.01γ|M |ℓ.

Proof of Lemma 28.
(Completeness) Let P ⊆ A, Q ⊆ B be a Kq1,q1-biclique in G. Observe that (A′ ∩ P ℓ)

and (B′ ∩ Qℓ) induce a biclique in G′. Notice also that each Si belongs to P ℓ with
probability (q1/N)ℓ. Therefore, we have E[|A′ ∩ P ℓ|] = n · (q1/N)ℓ ≥ 102t1 , where the
inequality follows from our assumption on parameters. Applying standard concentration
bounds, we can conclude that Pr[|A′ ∩ P ℓ| ≥ 2t1 ] ≥ 0.95. An analogous argument shows
that Pr[|B′ ∩ Qℓ| ≥ 2t1 ] ≥ 0.95. Applying the union bound, G′ contains K2t1 ,2t1 with
probability at least 0.9.
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(Soundness) From our assumption on the parameters, we can apply Lemma 29 (with
γ = 0.5δ), which guarantee that with probability 0.9, the following holds:

∀M ∈
(

[n]
t2

)
,

∣∣∣∣∣ ⋃
i∈M

Si

∣∣∣∣∣ ≥ q2 and

∣∣∣∣∣ ⋃
i∈M

Ti

∣∣∣∣∣ ≥ q2. (1)

We will prove that, when this holds, if G is Kq2,q2 -free, then G′ is Kt2,t2 -free.

Suppose contrapositively that G′ contains Kt2,t2 , i.e. there exists P ⊆ A′, Q ⊆ B′ each
of size t2 respectively that induces a biclique in G′. By definition, this also means that
P :=

(⋃
S∈P S

)
⊆ A and Q :=

(⋃
T ∈Q T

)
⊆ B induce a biclique in the graph G. By (1), we

must have |P |, |Q| ≥ q2, meaning that G contains Kq2,q2 . ◀

6.2 Proof of Theorem 4
We can now prove Theorem 4 by applying the above two-sided randomized graph product
with appropriate parameters (e.g. ℓ is o(log N)).

Proof of Theorem 4. Let α(n) denote any function such that α(n) = o(log n). We will prove
below that there is no polynomial-time algorithm for (4α(n)d, d)-Gap Exponential Biclique,
where d is a parameter to be set below. By Theorem 12, this immediately implies that
there is no polynomial-time α(n)-approximation algorithm for VC dimension or Littlestone’s
dimension.

Let G denote the input to the (⌈N δ⌉, ζ⌈log N⌉)-Gap Biclique problem. Let q1 =
⌈N δ⌉, q2 = ⌈ζ log N⌉ and d =

⌈
(log N)2/3/α(N log N )1/3⌉

. Note that d = ω(1) because
α(N log N ) = o(log(N log N )) = o(log2 N). We use the reduction in Figure 2 with t1 =
α(N log N ) ·d, t2 = d, ℓ = max

{
20,

⌈
200q2

t2δ

⌉}
, n = ⌈102t1 · (N/q1)ℓ⌉. Note that ℓ = O(q2/t2) =

o(log N). Furthermore, t1/ℓ = O(α(N log N ) · d2/ log N) = O(α(N log N )1/3 · (log N)1/3) =
o(log N). Therefore, we have n = O(2t1 · N (1−δ)ℓ) = N (1−δ+o(1))ℓ ≤ No(log N). The second-
to-last inequality also implies that n ≤ N (1−0.5δ)ℓ for any sufficiently large N . In other words,
for any sufficiently large N , the parameters satisfy conditions in Lemma 28.

Thus, the reduction runs in nO(1) = No(log N) time and produces an instance to the
(2t1 , t2)-Gap Biclique Problem. By Observation 23, this is also an instance for the (t1, t2)-Gap
Exponential Biclique problem. By definition, t1/t2 = α(N log N ) ≥ α(n) for any sufficiently
large N .

Thus, if there were a polynomial-time algorithm for (4α(n)d, d)-Gap Exponential Biclique
Problem, then we could apply the above reduction and run it on the resulting graph G′ to
solve the (⌈N δ⌉, ζ⌈log N⌉)-Gap Biclique problem in time No(log N). From Lemma 27, this
would violate the Strongish Planted Clique Hypothesis. ◀

7 Conclusion and Discussion

In this work, we establish several hardness of approximation results and running time lower
bounds for approximating VC Dimension and Littlestone’s Dimension. For polynomial-time
algorithms, we rule out o(log n)-approximation Theorems 2 and 4, which is tight. For any
constant factor approximation, we rule out algorithms that runs in no(log n) time under the
Strongish Planted Clique Hypothesis but only nõ(log1/3 N) time under ETH/Gap-ETH. The
latter is not a coincidence: the best running time lower bounds for finding k balanced biclique
known under ETH/Gap-ETH is only nΩ(

√
k) even for the exact version of the problem [22]

while the trivial algorithm runs in nO(k) time. Closing this gap is a well-known open problem
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in parameterized complexity. Due to our reduction, improved running time lower bounds for
finding k balanced biclique may also lead to improved running time lower bounds for VC
Dimension and Littlestone’s Dimension.

In addition to closing the gap in the time lower bounds, another interesting question–
originally posed in [12]–is whether there is an efficient online learner for any given concept
class with approximately optimal mistake bound (as defined in Definition 14). Ostensibly,
this problem is very similar to that of approximating Littlestone’s Dimension. In fact, in
the exact setting, [12] showed that there is an efficient online learner with exactly optimal
mistake bound iff there is an efficient algorithm for exactly computing Littlestone’s Dimension.
However, this reduction breaks down for the approximate setting. In particular, our results
do not rule out the fact that an efficient online learner with mistake bound at most, say,
twice the optimal exists. This remains an interesting open question. On this front, we remark
that the learner used in our reduction is indeed efficient (given in Lemma 21); instead, the
computational burden falls to the adversary / nature who has to choose the “hard” input
sequence that induces a large biclique.
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A Parameterized Hardness of Approximation

In this section, we briefly discuss the implications of our results for parameterized algorithms.
Fixed-parameter algorithms (FPT algorithms) are those that run in f(k) · nO(1)-time where
k denote the parameter (specified as part of the input) and, as is standard, n denote the
input size9. In our case, we say that an algorithm is an α-approximation FPT algorithm for
VC Dimension (resp. Littlestone’s Dimension) iff it is an FPT algorithm that can decide
between VC(C) ≥ k and VC(C) < k/α (resp. Ldim(C) ≥ k and Ldim(C) < k/α). We remark
that an α-approximation FPT algorithm is only non-trivial iff α = o(k), since there is a
trial nk/α-time α-approximation algorithm. We show that, unfortunately, no non-trivial
FPT approximation algorithm exists for VC / Littlestone’s Dimensions, as stated below.
Previously, W[1]-hardness against exact FPT algorithms was known [8], but we are not aware
of any result ruling out FPT approximation algorithms (even for small approximation ratio
e.g. 1.001).

▶ Corollary 30. Assuming Gap-ETH, there is no o(k)-approximation FPT algorithm for VC
Dimension or Littlestone’s Dimension.

▶ Corollary 31. Assuming the Strongish Planted Clique Hypothesis, there is no o(k)-
approximation FPT algorithm for VC Dimension or Littlestone’s Dimension.

The above corollaries are direct consequences of the following lemma, which shows that
any non-trivial FPT approximation algorithm can be used to obtain o(log n)-approximation
in polynomial-time, together with our o(log n)-factor hardness results from Theorem 3 and
Theorem 4.

▶ Lemma 32. If there is an o(k)-approximation FPT algorithm for VC Dimension (resp.
Littlestone’s Dimension), then there also exists a polynomial-time o(log n)-approximation for
VC Dimension (resp. Littlestone’s Dimension).

Proof. We only prove the statement for VC Dimension; the proof for Littlestone’s Dimension
is analogous. Suppose that there exists an α(k)-approximation algorithm A that runs in
f(k) · nO(1)-time for some α(k) = o(k). Let g : N → N be defined as g(n) := min{max{k ∈
N | f(k) ≤ n}, ⌊

√
log n⌋}. (If the set is empty, let g(n) = 0.) Note that limn→∞ g(n) = ∞,

i.e. g = ω(1). Let us now consider the following algorithm (where C denote the input concept
class):

Run A on C with k = g(n).
If A returns YES, then output k/α(k). Otherwise, output 1.

By definition of g(n), the algorithm runs in polynomial time.
To analyze the approximation ratio, consider two cases:
A returns YES. Then, we must have VC(C) ≥ k/α(k) and we output k/α(k). Therefore,
the approximation ratio is at most log n

k/α(k) ≤ o(log n), where the second inequality follows
from k = g(n) = ω(1) and α(k) = o(k).
A returns NO. Then, we must have VC(C) ≤ k and we output 1. The approximation
ratio here is at most k = g(n) ≤

√
log n.

Thus, in both cases, the approximation ratio is o(log n) as desired. ◀

9 For more detail on FPT approximation algorithms and hardness of approximation results, please refer
e.g. to the survey [11].
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B Proof Sketch of Lemma 25 and Lemma 27

The reduction from the Planted Clique graph G = (V, E) to an input G′ = (A′, B′, E′) to
Gap Biclique is as follows10:

Let A′, B′ be copies of V .
Add an edge between a ∈ A′, b ∈ B′ iff a = b or (a, b) belongs to E.

In the YES case where G contains ⌈N δ⌉-clique, then clearly G′ also contains K⌈Nδ⌉,⌈Nδ⌉.
On the other hand, if G is a random G(N, 1/2) graph, a standard union bound argument
shows that it does not contain any K⌈3 log N⌉,⌈3 log N⌉ w.h.p. It is not hard to see (see e.g. [4,
Lemma 5.17]) that this implies that G′ does not contain K⌈6 log N⌉,⌈6 log N⌉. This completes
the proof sketch.

10 This reduction is quite standard and is also used e.g. in [4].
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1 Introduction

In recent years there has been great interest in various models of passively mobile computation
networks, such as biological and biologically-inspired computing, passively-mobile sensor
networks, chemical reaction networks, and more. These models typically feature very weak
computation nodes, often modeled as finite-state machines, whose interactions with one
another are controlled by the environment. The goal is to study the dynamics of the system,
or to characterize its computation power. One of the most widely-studied problems in this
context is approximate majority: if each node starts out with some value or opinion, and there
is a noticeable gap in favor of one value, is it guaranteed that through their interactions with
each other, the nodes that hold the majority opinion can convert all the other nodes to their
opinion? Majority comes up in many contexts, ranging from implementable programming
language using DNA nanotechnology [13, 27] to a useful building block in distributed protocols
for passively-mobile sensor networks [8].

In this paper we focus on one specific model, 3-majority dynamics [14]: the nodes in the
population are denoted {1, . . . , n}, and each node has an initial value of either X or Y. The
nodes interact in triplets: when a triplet {i, j, k} is scheduled, all three nodes i, j, k change
their value to the majority value of the triplet – e.g., if i, j have value X and k has value
Y, then following the interaction {i, j, k}, all three nodes will have value X. This is in some
sense the minimal model under which agreement is possible: e.g., with pairwise interactions,
it is known that two possible states for the nodes do not suffice [24].

The environment that controls the interactions of the nodes is modeled as a scheduler.
Typically, two extreme types of schedulers are considered: worst-case schedulers, where the
next interaction is chosen adversarially at each step,1 and uniformly random schedulers,
where the next interaction is chosen uniformly at random from the set of possible interactions.
There is a wealth of results characterizing the parameters under which approximate (or exact)
majority can be computed in each setting, as well as the time and memory required to do
so [6, 7, 24, 17, 21, 4, 22, 23, 1, 12, 2, 14, 5, 11, 10, 9, 16]. The simplicity of the uniformly
random scheduler is appealing from the theoretical point of view, and allows us to tightly
characterize the behavior of various system dynamics; however, assuming a perfectly uniform
scheduler is perhaps too idealistic, and a-priori, it is not clear whether results proven under
this assumption are robust even to small changes in the scheduler’s distribution.

In this paper we consider an intermediate regime between worst-case and uniformly
random schedulers: we allow the scheduler to choose at each step some distribution µ over
the set of possible interactions, and the next interaction is then chosen according to µ. This
interpolates between the adversarial regime, which can be modeled by having the scheduler
choose a singleton distribution µ, and the uniformly random regime, which can be modeled
by always taking µ = U , the uniform distribution. It also includes the natural class of
schedulers where the next interaction is always chosen from the same distribution η, but η is
not necessarily uniform. Our central question in this paper is: how resilient are approximate
majority protocols to non-uniform schedulers? How far from the uniform scheduler is “too
far”?

To study this question formally, let us say that a scheduler S is (p, ε)-close to uniform
if at every step, the distribution µ chosen by S satisfies ||µ − U ||p ≤ ε, If µ never changes
we call the scheduler fixed. here, ||µ − η||p denotes the ℓp-distance between distributions,
defined by

1 Usually under some fairness assumption, e.g., that every possible interaction is scheduled infinitely
often. [8]
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||µ − η||p =
(∑

ω

|µ(ω) − η(ω)|p
)1/p

.

We focus on two extreme endpoints: the ℓ1-norm,

||µ − η||1 =
∑

ω

|µ(ω) − η(ω)|,

and the ℓ∞-norm, obtained by taking p → ∞:,

||µ − η||∞ = max
ω

|µ(ω) − η(ω)|.

Intuitively, the ℓ1-distance measures the cumulative changes between our scheduler’s distri-
bution and the uniform distribution, while the ℓ∞-distance measure the maximum difference
between them on any given interaction. These are two extreme cases – of all distances,
ℓ1-distance is the largest, while ℓ∞-distance is the smallest. (Our results for ℓ1 and ℓ∞
immediately imply results for other ℓp-norms, see full version for more details).

3-majority dynamics under a uniform scheduler

It was shown in [14] that under the uniformly random scheduler, if we initially have a gap of
Ω(

√
n log n) in favor of X, then this process converges, and quickly: w.h.p., within O(n log n)

steps all nodes will have value X (and symmetrically for Y, of course). Although [14] focuses
on interactions in triplets, they show that their results can be translated to other models –
e.g., to population protocols, where the nodes interact in pairs and have three possible states.
We believe that our results here can also be applied to population protocols, similar to [14].

The cost of creating a partition

It is not difficult to see that even a fixed scheduler that is very close to uniform can prevent
the system from reaching agreement, by disconnecting one node from the rest of the network:
if µ is the distribution where one specific node has probability 0 of appearing in any triplet,
and the remaining triplets have uniform probability, then

||µ − U ||1 = 2 ·
((

n − 1
2

)
/

(
n

3

))
= 1

Θ(n) ,

and

||µ − U ||∞ = 1(
n
3
) = 1

Θ(n3) .

More generally, if the initial configuration has a gap of ∆ < n/4 in favor of X, the scheduler
can choose a set A ⊆ [n] of 2∆ < n/2 nodes that have value X, and disconnect the set A from
the rest of the system, by setting to 0 the probability of any triplet that involves nodes from
both inside and outside A. We refer to this type of scheduler as a partition-based scheduler.
Disconnecting the set A “flips the majority” in the remainder of the system: the set [n] \ A

now has a gap of ∆ in favor of Y instead, and is likely to converge to Y (which occurs w.h.p
when ∆ is not too small). The nodes in the set A retain their original value, X, but most
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nodes in the system are in [n] \ A and will convert to Y instead. The ℓ1-distance incurred
by the scheduler is roughly proportional to the size of A; however, due to its nature, the
ℓ∞-distance is still 1/Θ(n3), dominated by the cost of “deleting” a single triplet.2

Our main result in this paper is that creating a partition is the worst the scheduler can
do: roughly speaking, if the scheduler’s distance from uniform does not allow it to disconnect
enough nodes to flip the majority in the remainder of the system, then we are guaranteed
w.h.p. that most of the system will converge to the initial majority value. However, the
details differ significantly between schedulers that are ℓ1- and ℓ∞-close to uniform, as we
explain next.

Our results

We first consider schedulers that are ℓ∞-close to uniform, that is, they do not change the
probability of any given triplet by much. In this case we have a strong dichotomy: essentially,
if the scheduler’s distance from uniform does not allow it to disconnect any single node, then
convergence to the majority is guaranteed to happen quickly, provided the initial gap is
large enough; but if the distance is sufficient to disconnect one node, then we cannot even
guarantee that more than 80% of the network converts to the majority value.

▶ Theorem 1 (Resilience under ℓ∞-distortion). The following hold:
1. For any ε ∈ [0, 3/4] and any (∞, ε/

(
n
3
)
)-close scheduler, if we start at a configuration with

a gap of at least (4εn + 16
√

n log n)/3 in favor of one value, then with probability 1 − 1/n

the system reaches consensus on the initial majority value within O(n log n) steps.
2. On the other hand, there is a fixed (∞, 1/

(
n
3
)
)-close scheduler S and an initial configuration

C0 where 55% of the nodes have value X, such that in the execution under S starting
from C0, within O(n log n) steps, the system converges to a configuration where only 20%
of the nodes have value X.

In part (1) of the theorem, the restriction of ε ≤ 3/4 is for simplicity; ε can be made
arbitrarily close to 1 (but still constant), and the gap required to guarantee fast convergence
then approaches εn + Θ

(√
n log n

)
.

For schedulers that are close to uniform in ℓ1, there is a gap between the distance that
can be tolerated in order to guarantee conversion of most of the system to the majority, and
the distance that can be tolerated in order to guarantee full consensus. We show:

▶ Theorem 2 (Resilience to ℓ1-distortions). The following hold:
1. Fix a constant α ∈ (0, 1/2). If ε ≤ O(α), then under any (1, 2ε)-close scheduler, starting

at any configuration with initial gap Ω(εn +
√

n log n) in favor of one value, w.h.p. within
O(n log n) steps we reach a configuration with gap ≥ (1 − 2α)n in favor of the initial
majority value, and w.h.p. the gap will never subsequently fall below (1 − 2α − o(1))n.

2. For any Ω
(√

n log n
)

≤ ε ≤ 1/4, there exists a fixed (1, 2ε)-close scheduler S and a
configuration C0 with initial gap O

(
εn +

√
n log n

)
in favor of X, such that in the execution

under S starting from C0, within O(n log n) steps, w.h.p. the system converges to a
configuration where less than n/2 nodes hold value X.

3. For any 0 ≤ ε < 1/(12n), under any (1, 2ε)-close scheduler, starting from any configuration
with gap Ω(

√
n log n), w.h.p. within O(n log n) steps we reach consensus on the majority.

2 In fact, the exact ℓ∞-distance of disconnecting one node, 1/
(

n
3

)
, already allows us to disconnect up to

n/5 nodes. To disconnect a set A of any size, a slight increase is due, but a distance of (3 + o(1))/
(

n
3

)
suffices.
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For example, this shows that we can tolerate an ℓ1-distance of roughly O(1/
√

n) without
asymptotically increasing the initial gap required under the uniform scheduler, Ω(

√
n log n).

(It is known that without an initial gap of Ω(
√

n log n), under the uniform scheduler, the
system will still converge w.h.p. to some value, but not necessarily the majority value [7, 14].)
If the ℓ1-distance is bounded away from 1/n, we get full convergence to the majority, and
this distance is tight, as shown by the example of disconnecting a single node.

We also remark that while part (1) of Theorems 1 and 2 can handle schedulers that
adaptively change the distribution in every round, the matching lower bound, part (2) of
both theorems, uses a partition-based scheduler, where the distribution is always the same.
This shows that adaptivity is not essential for the scheduler’s power to prevent the system
from reaching consensus.

As shown by Theorems 1 and 2, the partition-based scheduler is as bad as any scheduler
with a given distance from uniform can be (up to constants). However, is creating a partition
the only bad thing a scheduler can do, or do there exist “well-connected” schedulers that are
close to uniform but still prevent convergence to the majority? In Section 4 we answer this
question by showing an example of a scheduler that is “well-connected”, in the sense that it
has roughly the same weighted edge expansion as the uniform scheduler, but it causes the
system to converge to the wrong value (the minority value); we also give an example of a
well-connected scheduler that prevents the system from ever reaching a stable configuration.

2 Related Work

The problem of computing the majority has been extensively studied in the population
protocol (PP) model [6] and other closely-related models, such as chemical reaction networks
(CRNs) [26, 15], under both worst-case and randomized schedulers. A long line of research [6,
7, 24, 17, 21, 4, 22, 23, 1, 12, 2, 11, 10, 9] culminated in a precise characterization [16] of the
space-time trade-off for stably computing the exact majority. The optimal protocol of [16]
uses O(log n) memory states, and has a running time of O(n log n) interactions.

In the finite-memory regime, it is known that exact majority requires at least Ω̃
(
n2)

interactions, and this is achievable using 4 states (i.e., 2 bits of memory) [21, 17]. Furthermore,
it is known that exact majority cannot be solved with only 3 states [21]. Approximate majority
was first studied in [7], which showed that with an initial gap of ω(

√
n log n), there is a

3-state population protocol that converges to the majority in O(n log n) interactions. The
analysis of the 3-state protocol from [7] was simplified and tightened in [14], by reduction
to a one-dimensional random walk: [14] related the population protocol model to chemical
reactions with interactions in triplet, which are easier to analyze, and also showed that an
initial gap of Ω

(√
n log n

)
is sufficient for convergence. The techniques of [14] are the basis

for our upper bounds in this paper.
Most of the work on majority in population protocols and chemical reaction networks

assumes either worst-case or uniformly random schedulers, but there are some exceptions. For
example, [21] consider a scheduler that is uniformly random, but only over the edges of some
fixed connected graph G, rather than all pairs; [21] shows that for this scheduler, the 3-state
protocol of [7] might take exponentially long to converge, and could even converge to the
wrong value, despite a linear initial gap. Recently, [3] considered the same model, and showed
that graphs with high edge-expansion induce a well-behaved scheduler, so that any protocol
for the uniform scheduler can be adapted to this model. However, their transformation
incurs a super-constant blow-up in memory. Another way to relax the assumption of perfect
uniformity is introduced in [25], which studies leader election in a smoothed analysis version
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of population protocols: at each step, with some probability p the next interaction is chosen
uniformly at random, and with probability 1 − p it is chosen adversarially. Some work on
majority protocols also considers Byzantine agents (e.g., [7, 14]) or noisy communication
between agents (e.g., [20, 18, 19]).

3 Preliminaries

3-majority dynamics

As outlined in Section 1, in the 3-majority dynamics we have a system of n nodes, each with
an initial opinion (value) of either X or Y. The nodes interact in triplets: when the triplet
{i, j, k} is scheduled, nodes i, j, k change their opinion to the majority opinion among the
three (e.g., {X, X, Y} → {X, X, X}). We assume w.l.o.g. that initially the majority value is X.

A configuration C is a mapping C : [n] → {X, Y} describing the current opinion of each
node. We denote by #X(C), #Y(C) the number of nodes that have opinion X or Y in C,
respectively. The gap at configuration C is defined as ∆(C) = #X(C) − #Y(C). To simplify
the notation, when C is clear from the context, we omit it, and write x for #X(C), y for
#Y(C), and ∆ for ∆(C).

Given a set A ⊆ [n] of nodes and k ≥ 1, we let
(

A
k

)
denote the set of all k-tuples of

distinct elements drawn from A (e.g.,
(

A
3
)

is the set of all triplets from A).
Three events that feature often in our analysis are the events X , the conversion of a node

with value Y to value X (i.e., a triplet with values {X, X, Y}); Y, the conversion of a node
with value X to value Y; and P , a “productive step”, defined by P = X ∪ Y . Throughout an
execution, We say an event holds w.h.p if for any constant γ ≥ 1, the error probability can
be reduced to n−γ with the cost of constant factors in running time (and possibly in the
required initial gap) that only depend on γ.

Schedulers

A scheduler is a mapping S from a sequence of configurations representing the system’s
history so far, to a distribution over triplets in

([n]
3
)
, from which the next interaction will

be drawn. A run of a scheduler S starting from an initial configuration C0 is a sequence
of configurations starting at C0, where each configuration Ci is obtained from Ci−1 by
scheduling an interaction drawn from the distribution S(C0, . . . , Ci−1). A scheduler S is
called fixed if it always returns the same distribution, for which case we abuse notation
and denote that distribution by S; we also use this notation abuse in our upper bounds by
writing S instead of S(C0, . . . , Ci−1) to refer to the scheduler’s distribution for the current
step, when past configurations are already fixed. We let U denote the uniform scheduler,
where the next interaction is chosen uniformly at random from

([n]
3
)
.

A scheduler S is said to be (p, ε)-close to uniform, for p ≥ 1 or p = ∞ and ε ∈ [0, 2], if
for every sequence of configurations C0, . . . , Ci we have ||S(C0, . . . , Ci) − U ||p ≤ ε.

We rely on the following well-known characterization of the ℓ1-distance between distribu-
tions: for any two discrete distributions µ, η : Ω → [0, 1],

||µ − η||1 = 2 max
E⊆Ω

|µ(E) − η(E)| = 2
∑

ω:µ(ω)>η(ω)

(µ(ω) − η(ω)).

In other words, the ℓ1-distance exactly characterizes the maximum difference between the
probabilities assigned by the two distributions to any event.
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4 Lower Bounds

In this section we show several lower bounds on the initial gap required to withstand a given
distance from the uniform scheduler. We begin with the simple example of a partition-based
scheduler, which proves part (2) of Theorems 1 and 2. Then we show two schedulers that
do not cause a partition, and in fact leave the network “well-connected”, but still prevent
it from converging to the majority value: the first causes the network to converge to the
minority value w.h.p., and the second prevents it from converging at all. These examples all
involve some technical calculations, which can be found in the full version.

4.1 Partition-Based Schedulers
Consider a scheduler SA that partitions the network into two disconnected sets of nodes,
A ⊆ [n] and B = [n] \ A, by setting to zero the probability of any triplet that involves nodes
from both A and B. The remaining triplets are assigned uniform probability:

SA({i, j, k}) =

0, if {i, j, k} /∈
(

A
3
)

∪
(

B
3
)
,

1
|(A

3)∪(B
3)| , if {i, j, k} ∈

(
A
3
)

∪
(

B
3
)
.

We can bound the distance of SA from the uniform scheduler as follows:

▶ Lemma 3. For any set A ⊆ [n] of size |A| ≤ n/2, we have ||SA − U ||1 ≤ 12|A|/n.
Furthermore, if |A| ≤ n/5, then for all sufficiently large n we have ||SA − U ||∞ ≤ 1

(n
3) .

We note that for |A| ≤ n/2 (which allows for any partition), the ℓ∞-distance incurred by SA

is still at most (3 + o(1))/
(

n
3
)
, not much greater than when A is a single node. We omit the

distance calculations.
Using the partition-based scheduler, it is easy to see that if the initial configuration has a

gap of at most ε · n in favor of one value, then there is a (1, O(ε))-close to uniform scheduler
that causes the system to converge to the minority value: given Ω

(√
n log n

)
≤ ε ≤ n/4, let

C0 be an initial configuration with an initial gap of ∆(C0) ≤ εn in favor of X. Let A ⊆ [n]
be a set of 2εn nodes with opinion X, and let SA be the partition-based scheduler defined
above. By Lemma 3 we have ||SA − U ||1 ≤ 24ε. Under SA, the nodes in set A always retain
their initial opinion of X, since they never communicate with the nodes in B = [n] \ A; but
in the set B there is a large enough majority in favor of Y to guarantee convergence w.h.p.
to Y. This proves part (2) of Theorem 2.

With ℓ∞ the situation is even worse: the ℓ∞-distance is much more permissive than ℓ1,
in the sense that it allows us to make many small changes while only “paying” for the largest
of the changes. In particular, disconnecting a linear-sized set costs as much as disconnecting
a single node. Concretely, let C0 be a configuration where #X(C0) = 0.55n. We choose a set
A that consists of 0.2n nodes with value X. By Lemma 3, SA is (∞, 1/

(
n
3
)
)-close to uniform.

However, the set B = [n] \ A will converge to Y w.h.p, while the nodes in A will keep their
original value, X. Thus, the system converges to a configuration C where #Y(C) = 0.8n and
#X(C) = 0.2, which proves part (2) of Theorem 1.

4.2 Well-Connected Schedulers
The previous scheduler caused the system not to agree on the majority value by creating a
partition, which prevented some nodes from ever hearing an opinion differing from their own.
If we restrict the scheduler so that it is not allowed to create a partition or even come close
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to doing so, can it still cause the system not to converge to the majority? We show that the
answer is yes. One way to formalize the degree to which a scheduler is “connected” is to view
the scheduler as a weighted 3-uniform hypergraph, and consider its weighted edge-expansion,
which measures the worst-case ratio between the weight of the hyperedges adjacent to a node
set U , and the size of the set U .

Prior work on schedulers with good edge-connectivity

In population protocols, we have a population of n agents that interact in pairs rather
than triplets. While much of the work on population protocols assumes either a worst-case
scheduler or a uniformly random one, there is prior work on population protocols where the
scheduler is restricted to allow only a subset of possible interactions, represented by the edges
of an interaction graph G over the agents. The scheduler is then assumed uniformly random
over the edges of G. Specifically, for the regime of super-constant agent memory, it was
recently shown in [3] that such schedulers are “similar to the uniform scheduler” whenever
the graph G has a good edge-connectivity (i.e, it is a good expander). in the sense that any
protocol designed for the uniform scheduler over all pairs can be adapted to run correctly
under the scheduler SG that is uniformly random over only the edges of G (at the cost
of increasing the agents’ memory and the running time of the protocol). However, even
disregarding the difference between interaction in pairs and in triplets, these results do not
apply to our setting, for two main reasons: first, they do not hold in the constant-memory
regime that we focus on here; and second, the scheduler SG is assumed to be perfectly
uniform over the edges of G, but in general most schedulers cannot be represented as (or
even approximated by) SG for any graph G. Below we show that there are schedulers (for
triplets) that have good edge-expansion but still behave very differently from the uniform
scheduler.

Edge-connectivity with 3-way interactions

We represent a fixed scheduler S as a weighted 3-uniform hypergraph G = (V, T ), where
V = [n], T =

([n]
3
)

and the weights are the probabilities S : T → [0, 1] (so that
∑

t∈T S(t) = 1).
For a set of nodes U ⊆ V , we define the boundary of U to be the set of triplets that include
some node from U and some node outside U :

∂U := {t ∈ T : t ∩ U ̸= ∅, t ∩ (V \ U) ̸= ∅}.

For a set of triplets R ⊆ T , we define its weight to be the probability that any triplet from
the set is scheduled:

wt(R) :=
∑
t∈R

S(r).

Using this notation, the (weighted) edge expansion of the scheduler S is defined as:

h(S) := min
0<|U |≤ |V |

2

wt(∂U)
|U |

,

where for any vertex set U , the expression above is the edge-expansion of U , denoted by
h(U).

Notice that if U is exactly the set of nodes holding opinion Y, and all the other nodes
hold opinion X, then wt(∂U) is the probability of a productive step, i.e., a step where some
node changes its opinion. Thus, good edge-expansion for scheduler S means that for starting
at any configuration, under the scheduler S we have a decent probability for a productive
interaction, relative to the current number of nodes that hold the minority opinion.
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Let us first establish some upper and lower bounds on the possible values of h(S). The
partition-based scheduler that we considered above has very bad expansion, h(S) = 0 (as
does any other partition-based scheduler). A second, slightly less-immediate observation, is
the following:

▶ Observation 4. For any fixed scheduler S we have h(S) ≤ 3/n.

Proof. Consider only singleton sets, U = {i} for some i ∈ [n]. The boundary of U consists
exactly of the triplets that contain i, i.e, ∂U = {t ∈ T : i ∈ t}. If we sum the edge expansion
of all such singletons, we have

n∑
i=1

h({i}) =
n∑

i=1

wt(∂{i})
|{i}|

=
n∑

i=1

∑
t∈T :i∈t

S(t) =
∑
t∈T

3 · S(t) = 3.

Thus, by an averaging argument, there exists some singleton set {i} with edge expansion
h({i}) ≤ 3/n, implying that h(S) ≤ h({i}) ≤ 3/n. ◀

As can be expected, the uniform scheduler has very good edge expansion:

▶ Observation 5. The uniform scheduler S has h(S) ≥ 3/(2n).

Proof. By the symmetry of the scheduler, all sets of the same size have exactly the same
edge expansion. Let V ′ ⊆ V be some set of k nodes for 1 ≤ k ≤ n/2. Then

wt(∂V ) =
k
(

n−k
2
)

+ (n − k)
(

k
2
)(

n
3
) =

k(n−k)(k−1+n−k−1)
2

n(n−1)(n−2)
6

= 3k(n − k)
n(n − 1) .

Normalizing by the set size, we get

wt(∂V ′)
|V ′|

= wt(∂V ′)
k

= 3(n − k)
n(n − 1) .

This is decreasing in k, so taking k = n/2, we conclude that h(U) ≥ 3/(2n − 2) ≥ 3/(2n). ◀

Next, we give two “well-connected” schedulers, which both have nearly the same edge-
expansion as the uniform scheduler, Ω(1/n). However, one of schedulers causes the system
to converge to the initial minority value, and the other prevents the system from converging
at all.

Converging to the wrong value

Our first example is a scheduler that is (1, O(ε))-close to uniform, and is “well-connected” in
the sense that it has good weighted edge-expansion, but it causes the network to converge to
the wrong value. Let C0 be an initial configuration where nodes 1, 2 have opinion Y, and
the remaining nodes have a gap of Θ(εn) towards X. We construct a scheduler that always
schedules nodes 1 and 2 together whenever they appear, so that the opinion of these two
nodes can never flip (any triplet that includes them will already have two Ys). Moreover,
the scheduler gives nodes 1,2 “extra influence” over the rest of the nodes, by increasing the
probability of triplets of the form {1, 2, j} where j ̸= 1, 2. We prove that this additional
influence suffices to push the system away from reaching consensus on X, despite the initial
gap of Θ(εn) in favor of X.

More formally, let m = n − 2, and ϕ = ε + m/
(

n
3
)
, and define S be the following scheduler:

With probability ϕ, choose a uniformly random node j ∈ [n] \ {1, 2}, and schedule the
triplet {1, 2, j}.
With probability 1 − ϕ, schedule a uniformly random triplet {i, j, k} ∈

([n]\{1,2}
3

)
.
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The distance of S from the uniform scheduler is given by:

▶ Lemma 6. For any ε ≥ 6/n we have ||S − U ||1 = 2ε.

Now fix an initial configuration C0 where nodes 1, 2 have opinion Y, and the remaining
nodes have a gap of εn/100 towards X; that is, #Y(C0)/m = 1/2 − ε/200.

We begin by showing that as long as the gap in favor of X is relatively small, then within
our productive steps there is a noticeable “pull” towards conversion to Y. Moreover, as long
as Y does not already have a very large advantage, there is also a fairly good chance of
making a productive step:

▶ Lemma 7. Fix a configuration C where (1/2 − ε/100) ≤ #Y(C)/m ≤ 9/10, and assume
that ε = Ω(

√
log n/n). Then for all sufficiently large n, we have

Pr
S

[X ] + Pr
S

[Y] ≥ 1
25 , and Pr

S
[Y] − Pr

S
[X ] ≥ ε

25 .

Recall that the network starts with a gap of Θ(εn) in favor of X. Next we show that
because of the bias in favor of converting to Y, w.h.p., the network will never reach a gap in
favor of X that is twice the initial gap:

▶ Lemma 8. Fix a configuration C0 with #Y(C0)/m = 1/2 − ε/200, and assume that
ε ≥ Ω(

√
log n/n). Then under the scheduler S, w.h.p the system never reaches a configuration

C with #Y(C)/m ≤ 1/2 − ε/100.

Combining the two lemmas, we get the following.

▶ Lemma 9. Fix a configuration C0 with #Y(C0)/m = 1/2 − ε/200, and assume that
ε ≥ Ω(

√
log n/n). Then under the scheduler S, within 500n steps, w.h.p the system reaches

a configuration C1 where #Y(C1)/m ≥ 1/2 + 5ε.

Starting from configuration C1, we apply the first part of Theorem 2 to conclude that
the system converges w.h.p. to Y instead of to X, within a total of O(n log n) steps overall.

The connectivity of the scheduler we defined here is not far from that of the uniform
scheduler. This is implied by the following claim, which requires some calculations:

▷ Claim 10. For any set U ⊆ V of size at most n/2, the edge expansion of U is at least

wt(∂U)
|U |

≥ Θ(min{ϕ, 1/m}).

We use the scheduler with ε = Ω(1/n) and thus ϕ = Ω(1/n); also recall that m = n − 2.
Thus, the edge expansion of the scheduler is Θ(1/n).

Never reaching a stable configuration

Is convergence to some stable configuration guaranteed under any fixed scheduler? We
show that if the scheduler is far enough from uniform, the answer is no: consider an initial
configuration where nodes 1, 2 have value X, and the other nodes have value Y, and let S be
a scheduler that chooses a uniformly random node j ∈ {5, . . . , n}, and schedules w.p. 1/2
the triplet {1, 2, j} and w.p. 1/2 the triplet {3, 4, j}. Since nodes 1, 2 and 3, 4 are always
scheduled together, they always retain their initial value, X or Y respectively. We refer to
these two pairs as fixed pairs, and to the remaining nodes as free nodes. Because each free
node j ∈ {5, . . . , n} interacts with nodes 1, 2 and with nodes 3, 4 at least once every O(n log n)



U. Meir, R. Oshman, O. Shayevitz, and Y. Volkov 86:11

rounds (w.h.p.), the value of each of these nodes swings between X and Y repeatedly. We
can never reach convergence in the first place, because the fixed pairs cannot change their
opinions, but in fact, most of the time the opinions in the system are roughly evenly split
between X and Y. This is true as in each interaction the chosen free node j simply resets
its opinion to either X or Y with even probability, depending on the fixed pair used. The
outcome of the interaction does not depend on the previous values held by j or any other
free node.

Next we calculate the edge expansion of this scheduler. Let m = n − 4 be the number
of free nodes. The scheduler allows only 2m triplets to be scheduled: each free node has
one triplet with each fixed pair, 1, 2 and 3, 4. All triplets t have the same probability,
S(t) = 1/(2m). We bound the edge-expansion of any set U of at most n/2 nodes.

First, consider sets U that “split” a fixed pair: for either the pair 1, 2 or the pair 3, 4, the
set U includes one node from the pair but not the other. The boundary ∂U then contains all
m triplets that contain the pair split by U , and therefore wt(∂u) ≥ m/(2m) = 1/2. For sets U

of size |U | ≤ n/2, the edge-expansion of U is thus at least wt(∂U)/|U | ≥ (1/2)/(n/2) = 1/n.
Next, consider the case where no fixed pair is split by U , but U contains one of the fixed

pairs and not the other. For each free node j ∈ V (either in U or in V \ U) exactly one
triplet contributes to the boundary, the one containing j and the fixed pair on the other
side (either V \ U or U), and therefore wt(∂U) = m/(2m) = 1/2, and same as before, the
edge-expansion of U is at least 1/n.

The last remaining case is sets U that either include both fixed pairs, or neither. Assume
first that U includes neither fixed pair, that is, it contains only free nodes. The boundary of
U includes exactly 2|U | triplets: each free node in U contributes 2 triplets, one for each fixed
pair (outside U), and therefore wt(∂U) = 2|U |/(2m) = |U |/m. Thus, the edge-expansion is
h(U) = |U |/m/(|U |) = 1/m ≥ 1/n.

Now suppose U includes both fixed pairs. Then the complement, V \ U , includes neither,
and by the same argument as before wt(∂U) = wt(∂(V \ U)) = 2|V \ U |/(2m) = |V \ U |/m.
We recall that |U | ≤ n/2 ≤ |V \ U |. Therefore,

h(U) = wt(∂U)
|U |

= |V \ U |/m

|U |
≥ |U |/m

|U |
= 1/m > 1/n.

In all cases above, the expansion is at least 1/n, and thus h(S) ≥ 1/n.

5 Convergence Under Bounded Distance from the Uniform Scheduler

Our upper bounds that show convergence under bounded ℓ∞- or ℓ1-distance broadly follow
the outline of the analysis for the uniform scheduler, from [14]. The analysis has three phases:
in Phase I, it is shown that an initial gap of

√
n log n is likely to increase consistently until a

constant-factor gap (e.g., 99%) is reached. In Phase II, the small constant fraction of nodes
that hold the minority opinion holders decreases, until almost none are left, at most O(log n).
In phase III the network “chases” after the few “straggling nodes” that are left, which takes
time only due to their scarcity.

In our setting, the main obstacle is to understand the ways in which a scheduler that
deviates from the uniform distribution can cause problems. These can be put into two
categories.

Distorting high-probability events. In Phase I, while the system is still somewhat evenly
divided between X and Y, nodes change opinions very frequently: triplets with opinions
{X, X, Y} or {Y, Y, X} are very likely, but because we have a small gap in favor of X, triplets
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with opinions {X, X, Y} have a small but significant advantage: the events X and Y both
have probability Ω(1), but the difference between them is Pr[X ] − Pr[Y ] = Θ(∆/n), where ∆
is the current gap between X and Y. Over time, this bias towards X increases the gap, until
a large constant fraction of the system is converted to X.

A scheduler that is very close to uniform cannot greatly distort the probability of a large
event: if the scheduler is (1, ε)-close to uniform, it can only alter the probability of the
events X , Y by at most an additive ±ε, and if the scheduler is (∞, ε/

(
n
3
)
)-close to uniform,

it can only alter these probabilities by a multiplicative factor of (1 ± ε). This distortion is
not significant when X , Y are Ω(1). However, what the scheduler can significantly affect
is the gap between the events: since Pr[X ] − Pr[Y] = Θ(∆/n), and we are working with
ε = Θ(∆/n), the scheduler could theoretically wipe out the bias in favor of X, and cause the
system to tend towards Y (as demonstrated by the examples in Section 4). Nevertheless,
we are able to show that when ε is smaller than ∆/n by a sufficiently small constant factor,
enough bias towards X remains that the system still trends strongly towards X, allowing
Phase I of the analysis to go through. The analysis is fairly similar for both ℓ1 and ℓ∞,
although the exact details differ.

Distorting rare events. In Phases II and III of the analysis, the majority is already well-
established, and we wish to show that the few remaining Y eventually convert to X. However,
at this point the event X becomes less and less likely, because it requires a triplet with values
{X, X, Y}, and very few Ys remain. The event Y , a triplet {Y, Y, X}, is significantly less likely,
and in Phase III it can practically be neglected; our concern is that most of the time the
triplet scheduled will have values {X, X, X}, an “unproductive” step.

Since we are now working with events that are potentially very small (i.e., have low
probability), the distortion of the scheduler can directly affect the probability of these events
in a significant manner. Here, the effect of ℓ∞-distortion is very different from that of
ℓ1-distortion.

An ℓ∞-distance of ε/
(

n
3
)

translates to a multiplicative factor of (1 ± ε) in the probability
of any event. This multiplicative distortion is fairly well-behaved, even for small events, and
it allows the analysis of Phases II and III to go through even when ε is arbitrarily close to 1
(recall from Section 1 that an ℓ∞-distance of 1/

(
n
3
)

is enough to disconnect a node).
In ℓ1-distance, the situation is more difficult, because a small additive distortion can

completely erase a small event; we cannot guarantee full convergence even when ε = 1/n ,
as shown by the example that disconnects one node. (Phase I still goes through, allowing
us to prove that a large constant fraction of the system will agree on the majority value.)
However, when ε < 1/n, we are able to cope with the additive distortion and prove that we
still get full convergence with high probability.

6 Convergence Under Bounded ℓ∞-Distortion

In the sequel we use x, y to denote #X(C), #Y(C) when the configuration C is clear from
the context, and we similarly conflate the scheduler S with the distribution S(C0, . . . , Ci)
that it chooses at C0, . . . , Ci. Some proofs in this section are deferred to the full version.

A key lemma that is repeatedly used in our analysis is the following, which bounds how
much an (∞, ε/

(
n
3
)
)-close scheduler can influence the probabilities of important events in the

system. Roughly speaking, we show that the scheduler’s effect on the events X , Y is at most
a multiplicative (1 ± ε) (as claimed in the previous section), and that the scheduler is also
unable to greatly distort the ratio between the probabilities of these events.
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▷ Claim 11 (Probability bounds for ℓ∞). Fix 0 ≤ ε < 1, and a configuration with y ≤ n/2 ≤ x.
Then for any scheduler S with ||S − U ||∞ ≤ ε/

(
n
3
)
,

1. The probability of converting a Y to an X is bounded from below by: PrS [X ] ≥ 3(1 −
ε) x2y

n2(n−1) .

2. The probability of converting a X to an Y is bounded from above by: PrS [Y] ≤ 3(1 +
ε) xy2

n2(n−1) .

3. The probability of a productive step (converting an X to a Y, or vice-versa) is bounded
from below by: PrS [P] ≥ 3(1 − ε) xy

n(n−1) .

4. For the ratio between the probability of converting a Y to an X and the probability of
the reverse, we have: PrS [Y ]

PrS [X] ≤ (1+ε)y
(1−ε)(n−y) .

5. If we further assume ∆ = x − y ≥ εn, then the probability that a productive step converts
an X to a Y is bounded from below by: PrS [X |P ] ≥ 1

2 + ∆−εn
2n .

Throughout the analysis, we repeatedly argue that after each stage, there is only a very
small chance that we will ever regress significantly from the current gap. This allows us
to treat our progress as essentially “irreversible”. The next lemma captures the trade-off
between the current gap, and how far back we might regress, after discounting negligible
events. As in [14], it is proven using a gambler’s ruin argument: the probability of taking a
step backwards (event Y) is non-trivially smaller than that of taking a step forwards (event
X ), and using the bounded ratio between these probabilities that we proved in Claim 11, we
get the following.

▷ Claim 12. Fix 0 ≤ ε < 1, and a scheduler S which is (∞, ε/
(

n
3
)
)-close. Fix any margin

d ∈ N, any configuration with initial gap ∆0 ≥ εn + 3d (alternatively, y0 ≤ (n − εn − 3d)/2).
Then the probability of any future configuration reaching a gap of ∆ = ∆0 −2d (alternatively,
y = y0 + d) is at most exp

(
− 2(∆0−2d−εn)d

(1−ε)n

)
.

We now outline the three phases of the proof, which successively show that gap grows
and grows, until consensus on the majority is established.

Phase I

In the first phase, our goal is to start from the initial gap and show that the system reaches
a large gap of ∆ = 998n/1000 (that is, y = n/1000). We divide the phase into stages: in
each stage, we start with some gap ∆0, and the stage ends as soon as we double the initial
gap, reaching a configuration with gap ∆max = 2∆0. We claim the following:

▷ Claim 13 (Phase I stage). Fix any 0 ≤ ε < 3/4 and a scheduler S which is (∞, ε/
(

n
3
)
)-close,

and set d =
√

γn log(n). Fix a starting gap ∆0 such that (4εn + 16d)/3 ≤ ∆0 ≤ 998n/1000,
set a target gap ∆max = min{2∆0, 998n/1000}, and consider an execution of the majority
protocol starting with any configuration of gap ∆0. The probability that we do not reach a
configuration with gap ∆max within t = 2000n/(1 − ε) steps is at most 3n−2γ .

Proof. We consider three bad events:
1. Reaching a configuration with a gap significantly smaller than ∆0,
2. Having too few productive steps within the t steps we consider,
3. Within the productive steps, having too few steps that go in the right direction (X).

For the first bad event, we use Claim 12 to bound its probability: the probability of ever
reaching a configuration with gap of ∆min = ∆0 − 2d is at most exp

(
− 2(∆0−2d−εn)d

(1−ε)n

)
≤

exp
(

− 2d2

n

)
= exp(−2γ log(n)) = n−2γ , where the inequality uses the fact that ∆0 ≥ εn + 3d

and ε > 0. In the sequel, we may therefore assume that the gap stays above ∆min (and
therefore above εn) throughout the stage.
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The second bad event is having too few productive steps. Since Phase I only aims to
reduce the minority to y = n/1000, during the entire phase, there is a fairly good probability
of having a productive step: as long as y ≥ n/1000 we have xy = y(n − y) ≥ n2/2000, and
using the bound from Claim 11,

Pr[P] ≥ 3(1 − ε)
(xy

n2

)
≥ 3(1 − ε)

2000 .

Denote by p the number of productive interactions within t = 2000n/(1 − ε) steps. The
bound above implies E[p] ≥ 3n. By Chernoff, Pr[p < 2n] ≤ n−2γ .

Lastly, we bound the number of steps in each direction, within the 2n productive steps
that are guaranteed to us with high probability. Claim 11 gives us a bound on the probability
that we create a new X given a productive step, and the bound is monotonic in the current
gap; thus, throughout the stage,

Pr[X |P ] ≥ 1
2 + ∆min − εn

2n
.

Denote by r (resp., ℓ) the number of interactions producing X (resp., Y) during the first 2n

productive steps. Taking r ≥ n + ∆0/4 suffices to guarantee the gap we need.
Finally, our lower bound for E[r] is indeed larger than n + ∆0/4, and so by Chernoff,

Pr[r < n + ∆0/4] ≤ n−2γ . All together, if none of the three bad events happens, then within
t = 2000n/(1 − ε) steps, we get at least 2n productive steps, which give us a surplus of ∆0/4
interactions producing X as opposed to producing Y. This is enough to reach our target gap
of ∆max. The probability of any of the bad events occuring is at most 3n−2γ . ◁

The progress made in Phase I is summarized as follows:

▶ Corollary 14 (Phase I). Fix 0 ≤ ε < 3/4 and a scheduler S which is (∞, ε/
(

n
3
)
)-close and

d =
√

γn log(n). Starting at any configuration with gap ∆0 ≥ (4εn + 16d)/3, the probability
that within 2000n log(n)/(1 − ε) steps we do not reach a configuration with gap 998n/1000 is
at most n−(γ+1).

Phase II

In the second phase, our goal is to take the gap of 998n/1000 and keep increasing it towards
near-full consensus. In this phase we think in terms of y, the number of minority nodes
remaining, as this number determines the probability of a productive interaction. We start
Phase II with y = n/1000, and our goal is to reduce y to 20γ log n.

We again divide the phase into stages, each starting at a configuration where some number
y0 of nodes have value Y and ending as soon as we reach a configuration where at most
ymin = y0/2 have opinion Y. We claim the following:

▷ Claim 15 (Phase II stage). Fix 0 ≤ ε < 3/4 and a scheduler S which is (∞, ε/
(

n
3
)
)-close,

and set d = 20γ log(n). Fix a starting minority count y0 such that 2d ≤ y0 ≤ n/1000, set a
target value ymin = y0/2, and consider an execution of the majority protocol starting at any
configuration with y0 minority nodes. The probability that we do not reach a configuration
with ≤ ymin minority nodes within t = 16n/(1 − ε) steps is at most 3n−2γ .

To prove this claim, we first bound the probability of ever falling too far back, as we did in
Claim 13. Next, we prove that w.h.p., within t steps, we have “enough” interactions that
convert Y to X (at least c1y0 such interactions, for some constant c1), and “not too many”
interactions that produce Y (at most c2y0 such interactions, for some constant c2), so that
after at most t steps we reduce the number of Ys to at most y0/2.

We conclude Phase II:
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▶ Corollary 16 (Phase II). Fix 0 ≤ ε < 3/4 and a scheduler S which is (∞, ε/
(

n
3
)
)-close.

Starting at any configuration with minority count y ≤ n/1000, the probability that within
16n log(n)/(1 − ε) steps we do not reach a configuration with y = 20γ log(n) is at most
n−(γ+1).

Phase III

For the last phase we do not require many stages. We begin this phase with at most
y0 = 20γ log(n) that have opinion Y, and aim to reach full consensus (ymin = 0) within a
single stage.

▷ Claim 17 (Phase III stage). Fix 0 ≤ ε < 3/4 and a scheduler S which is (∞, ε/
(

n
3
)
)-close,

and set d = 20γ log(n). Fix a starting minority count y0 ≤ 40γ log(n) = 2d and consider an
execution of the majority protocol starting with any configuration with y0 minority nodes.
The probability that we does not reach full consensus on X within t = 80nd/(1 − ε) steps is
at most 3n−2γ .

At this very late point in the execution, the probability of a productive step can be very
small: it could be that only a single Y remains, and the probability of interacting with it
is roughly (1 − ε)/n. Nevertheless, over t = Ω(n log n) steps we will interact with all the
remaining Ys (w.h.p.). When such an interaction occurs, the chances that it converts a Y
to an X are overwhelming, because the number of remaining Ys is extremely small, and
converting an X to a Y requires two Ys. Thus we are able to show that with very high
probability, after t steps, no Ys remain.

Combining the three phases (Corollaries 14 and 16 and Claim 17) yields part (1) of
Theorem 1.

7 Convergence Under Bounded ℓ1-Distortion

Any scheduler that is (ε/
(

n
3
)
)-close in ℓ∞ is also ε-close in ℓ1, but not vice-versa. In this

section we briefly sketch our proof that the 3-majority dynamics also converges under a
scheduler that is close to uniform in ℓ1, but the scheduler must be very close to uniform,
or else we can only guarantee that a large constant fraction will agree on the majority. All
proofs in this section are deferred to the full version.

We begin again by bounding the distortion that the scheduler can cause to the probabilities
of the important events we consider:

▷ Claim 18 (Probability bounds for ℓ1). Fix 0 ≤ ε < 1, and a configuration with y ≤ n/2 ≤ x.
Then for any scheduler S which is (1, 2ε)-close,
1. The probability of converting a Y to an X is bounded from below by:

Pr
S

[X ] ≥ 3 x2y

n2(n − 1) − ε.

2. The probability of converting a Y to an X is bounded from above by:

Pr
S

[Y] ≤ 3 xy2

n2(n − 1) + ε.

3. The probability of a productive step (converting an X to a Y, or vice-versa) is bounded
from below by:

Pr
S

[P] ≥ 3 xy

n(n − 1) − ε.
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4. If x ∈ [αn, (1 − α)n] for α ∈ (0, 1/2], and we further assume ∆ ≥ 4εn/(3α), then for the
ratio between the probability of converting a Y to an X and the probability of the reverse,
we have:

Pr[Y]
Pr[X ] ≤ 1 −

∆ − 4εn
3α

n
.

5. If x ∈ [αn, (1 − α)n] for α ∈ (0, 1/2], then the probability that a productive step converts
an X to a Y is bounded from below by:

Pr[X |P ] ≥ 1
2 +

∆ − 4εn
3α

2n
.

Note that these bounds are additive in ±ε, unlike the multiplicative bounds in the corres-
ponding claim for the ℓ∞-norm (Claim 11). Also, here we are only able to say a productive
step is more likely to convert an X to a Y when the minority opinion still holds a linear
number of nodes. This is perhaps counter-intuitive: with a larger gap, one might expect a
larger inclination towards X. However, as explained in Section 5, both events X , Y hinge
on an interaction including one of the few Y nodes that remain, and for these the additive
distortion can be destructive.

The convergence analysis for bounded ℓ1 distance is divided into three phases, with the
similar guidelines as in the ℓ∞-case; However, in the ℓ1 regime, events with small probability
are more susceptible to the distortion of the scheduler: once Θ(εn) nodes with opinion Y
remain, a malicious scheduler can simply disconnect them, preventing full convergences. For
Phase II and Phase III, we prove that if ε = O(1/n), even events with small probability can
endure the distortion. Not only that, they even occur often enough to guarantee the same
(asymptotic) running time as the uniform scheduler.

Small chance of regression

As before, first we establish that once a certain gap is reached, there is only a small probability
of ever regressing too much. A parallel to Claim 12 can be shown for ℓ1, but with one major
difference: such a guarantee now depends on the value α such that at least αn minority
nodes are still present. This allows to control the additive distortion:

▷ Claim 19. Fix 0 < α < 1/2. Fix 0 ≤ ε < 1, and a scheduler S which is (1, 2ε)-close.
Fix any margin d ∈ N, and any configuration with gap 4εn/(3α) + 3d ≤ ∆0 ≤ n(1 − 2α)
(alternatively, αn ≤ y0 ≤ (n − 4εn/(3α) − 3d)/2). Then the probability of any future
configuration reaching a gap ∆ = ∆0 − 2d (alternatively, y = y0 + d) is at most

exp
(

−
2(∆0 − 2d − 4ε

3α n)d
n

)
.

This bound gets worse for smaller values of α, and it is carefully applied with different
values of α to minimize the error accumulated along the way. At every stage in the process
that aims to reduce the number of minority nodes to y, Claim 19 is applied using α = y/n.

Phase I, revisited

We have seen that with ε ≥ Θ(1/n) full convergence is not achievable. However, one might
still hope to get a large agreement for the majority value. Indeed, we show that in essence
disconnecting Θ(εn) is the worst a malicious scheduler can do. We switch the original goal of
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Phase I: instead of converting all but n/1000 nodes to the majority, it now aims to convert
all but αn nodes (where α ≥ Θ(ε) can now be a much smaller constant).

With the help of part (5) in Claim 18, we show:

▷ Claim 20 (Phase I stage, ℓ1). Fix 0 < α < 1/2. Fix 0 ≤ ε < 9α/16, and a scheduler S which
is (1, 2ε)-close. set d =

√
γn log(n). Fix a starting gap ∆0 such that 16εn/(9α) + 16d/3 ≤

∆0 ≤ (1 − 2α)n, set a target gap ∆max = min{2∆0, (1 − 2α)n}, and consider an execution of
the majority protocol starting with any configuration of gap ∆0. The probability it does not
reach a configuration with gap ∆max within t = 4n/α steps is at most 3n−2γ .

Repeatedly applying this claim, along Claim 19, proves part (1) of Theorem 2.

Reaching consensus

Whenever ε ≤ O(1/n), we simply plug in α = 1/3000 ≥ ε to complete Phase I with n/3000
minority nodes.

Phase II is composed of many stages. Applying Claim 19 with the correct value of α, we
get:

▷ Claim 21 (Phase II stage, ℓ1). Fix 0 ≤ ε ≤ 1/(12n) and a scheduler S which is (1, 2ε)-close,
and set d = 2γ log(n). Fix a starting minority count y0 such that d ≤ y0 ≤ n/2304, set
a target value ymin = max{y0/2, d}, and consider an execution of the majority protocol
starting with any configuration with y0 minority nodes. The probability it does not reach a
configuration with ymin minority nodes within t = 64n steps is at most 3n−2γ .

Applying this claim repeatedly, we get the following version of Phase II for ℓ1:

▶ Corollary 22 (Phase II, ℓ1). Fix 0 ≤ ε < 1/(12n) and a scheduler S which is (1, 2ε)-close.
Starting at any configuration with minority count y ≤ n/2304, the probability that within
64n log(n) steps we do not reach a configuration with y = 2γ log(n) is at most n−(γ+1).

Finally, Phase III uses a single stage to complete the process:

▷ Claim 23 (Phase III, ℓ1). Fix 0 ≤ ε < 1/(12n) and a scheduler S which is (1, 2ε)-close,
and set d = 2γ log(n). Fix a starting minority count y0 = d, set a target value ymin = 0,
and consider an execution of the majority protocol starting with any configuration with y0
minority nodes. The probability it does not reach a configuration with ymin minority nodes
within t = 64γn log n steps is at most 3n−2γ

Combining the three phases (part (1) of Theorem 2 with α = 1/3000, along with
Corollary 22 and Claim 23) yields part (3) of Theorem 2.

8 Conclusion

In this paper we initiate the study of majority dynamics under schedulers that are close to
uniform, but may have some non-negligible distance. We focused on the 3-majority dynamics
from [14], and showed that this natural process is fairly robust, and can essentially tolerate
any distance short of the distance required to partition the network. While we focused
here on 3-majority dynamics, the techniques used to analyze them apply also to population
protocols (e.g., the approximate majority protocol from [7]) and to other types of chemical
reaction networks, and so we believe that our techniques will have more general applicability.
We hope that our work can serve as a template for analyzing other protocols and dynamics,
leading to a better understanding of the robustness of population protocols and related
models, and to the development of robust algorithms for these models.
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Abstract
Assume that Alice can do only classical probabilistic polynomial-time computing while Bob can do
quantum polynomial-time computing. Alice and Bob communicate over only classical channels, and
finally Bob gets a state |x0⟩ + |x1⟩ with some bit strings x0 and x1. Is it possible that Alice can
know {x0, x1} but Bob cannot? Such a task, called remote state preparations, is indeed possible
under some complexity assumptions, and is bases of many quantum cryptographic primitives such
as proofs of quantumness, (classical-client) blind quantum computing, (classical) verifications of
quantum computing, and quantum money. A typical technique to realize remote state preparations
is to use 2-to-1 trapdoor collision resistant hash functions: Alice sends a 2-to-1 trapdoor collision
resistant hash function f to Bob, and Bob evaluates it coherently, i.e., Bob generates

∑
x

|x⟩|f(x)⟩.
Bob measures the second register to get the measurement result y, and sends y to Alice. Bob’s
post-measurement state is |x0⟩ + |x1⟩, where f(x0) = f(x1) = y. With the trapdoor, Alice can
learn {x0, x1} from y, but due to the collision resistance, Bob cannot. This Alice’s advantage
can be leveraged to realize the quantum cryptographic primitives listed above. It seems that the
collision resistance is essential here. In this paper, surprisingly, we show that the collision resistance
is not necessary for a restricted case: we show that (non-verifiable) remote state preparations
of |x0⟩ + |x1⟩ secure against classical probabilistic polynomial-time Bob can be constructed from
classically-secure (full-domain) trapdoor permutations. Trapdoor permutations are not likely to
imply the collision resistance, because black-box reductions from collision-resistant hash functions to
trapdoor permutations are known to be impossible. As an application of our result, we construct
proofs of quantumness from classically-secure (full-domain) trapdoor permutations.
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1 Introduction

Let us consider a two-party interactive protocol between Alice and Bob. Alice can do only
classical probabilistic polynomial-time computing while Bob can do quantum polynomial-time
computing. Alice and Bob communicate over only classical channels. After the interaction,
Alice finally outputs a pair {x0, x1} of n-bit strings x0, x1 ∈ {0, 1}n. If Bob behaves honestly,
he finally outputs the n-qubit state |x0⟩+ |x1⟩.1 On the other hand, no malicious Bob can
learn {x0, x1}. Such a task, called remote state preparations [11, 10, 17]2, is indeed possible

1 For simplicity, in this paper, we often omit the normalization factors of quantum states.
2 Generally speaking, remote state preparations are the task that a classical Alice delegates preparations

of quantum states to quantum Bob over a classical channel in such a way that Bob cannot learn which
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under some complexity assumptions, and is bases of many quantum cryptographic primitives
such as proofs of quantumness [6], (classical-client) blind quantum computing [9, 10, 3],
(classical) verifications of quantum computing [30, 17], and quantum money [35]. In fact, if
Alice can generate a quantum state |x0⟩+ |x1⟩ and send it to Bob over a quantum channel,
Alice can enjoy several advantages over Bob. For example, Bob cannot know the complete
classical description of the state, he cannot clone the state, and he has to disturb the state
if he measures it, etc. Such an inequivalence between Alice and Bob is clearly useful for
quantum cryptography. Remote state preparations somehow “simulate” such situations, and
can replace quantum channels with classical channels for some applications.

A typical technique to realize remote state preparations is to use 2-to-1 trapdoor collision
resistant hash functions [6]3: Alice sends a 2-to-1 trapdoor collision resistant hash function
f to Bob, and Bob evaluates it coherently, i.e., Bob generates

∑
x |x⟩|f(x)⟩. Bob measures

the second register to get the measurement result y, and sends y to Alice. Bob’s post-
measurement state is |x0⟩+ |x1⟩, where f(x0) = f(x1) = y. With the trapdoor, Alice can
learn {x0, x1} from y, but due to the collision resistance, Bob cannot. This Alice’s advantage
can be leveraged to realize the quantum cryptographic primitives listed above.

1.1 Our Results
The collision resistance seems to be essential for remote state preparations (and many other
quantum cryptographic primitives over classical channels.) In this paper, surprisingly, we
show that the collision resistance is not necessary for a restricted case. We show the following
result.

▶ Theorem 1. (Non-verifiable) remote state preparations of |x0⟩ + |x1⟩ secure against
classical probabilistic polynomial-time Bob can be constructed from classically-secure (full-
domain) trapdoor permutations.

Here, non-verifiable remote state preparations are remote state preparations that are blind
but not verifiable, i.e., no malicious Bob can learn which states he is generating, but Alice
cannot verify whether Bob has generated correct states or not. (A formal definition is given
in Definition 3.) A classically-secure trapdoor permutation is a permutation f : X → X such
that inverting it is hard for classical probabilistic polynomial-time adversaries, but it is easy
if a trapdoor is available. Full-domain means that X = {0, 1}n. (The formal definition is
given in Definition 8.) A proof of Theorem 1 is given in Section 3.

Trapdoor permutations are not likely to imply the collision resistance, because black-box
reductions from collision-resistant hash functions to trapdoor permutations are known to be
impossible [20, 25]. Classically-secure full-domain trapdoor permutations can be instantiated
with the hardness of factoring [4, 19].

states he is generating. [10] considered remote state preparations of random single-qubit states for the
applications to classical-client blind quantum computing. In this paper, on the other hand, we focus on
remote state preparations of an equal-weight superposition |x0⟩ + |x1⟩ of two n-qubit computational
basis states. Moreover, note that there are also verifiable remote state preparations [17] where Alice
can check whether Bob has generated correct states or not. Verifiability is not necessary for some
applications such as classical-client blind quantum computing, but seems to be necessary for some
applications such as classical verifications of quantum computing. In this paper, we do not consider the
verifiability.

3 A function f : X → Y is 2-to-1 if |{x ∈ X | f(x) = y}| = 2 for all y ∈ Y. A function f is called a
trapdoor collision resistant hash function if given f it is hard to find x and x′ such that f(x) = f(x′),
but it becomes easy if a trapdoor is available.
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We emphasize that our remote state preparations in Theorem 1 are proven to be secure
against only classical Bob, which unfortunately restricts the applications of our result. We
do not know how to achieve the quantum security. This is an important open problem. (For
more discussion, see Section 1.3.)

As an application of Theorem 1, we construct proofs of quantumness.

▶ Theorem 2. Proofs of quantumness can be constructed from classically-secure (full-domain)
trapdoor permutations.

Its proof is given in Section 4. Proofs of quantumness are two-party protocols between a
probabilistic polynomial-time verifier and a prover. A quantum polynomial-time prover can
make the verifier accept with high probability, but no probabilistic polynomial-time prover is
accepted by the verifier except for a negligible probability. (For a formal definition of proofs of
quantumness, see Definition 7.) The first construction of proofs of quantumness [6] is based on
trapdoor injective claw-free functions with the special property called adaptive-hardcore-bit
property. Here, an injective claw-free means that given a pair (f0, f1) of injective functions,
it is hard to find (x0, x1) such that f0(x0) = f1(x1). The adaptive-hardcore-bit property
roughly means that given (f0, f1), it is hard to find one xb of a claw (x0, x1) and d such that
d · (x0 ⊕ x1) = 0 at the same time. It is easy to see that injective claw-free functions imply
the collision resistance.4 A recent paper [27] has improved the result of [6] by removing the
necessity of the adaptive-hardcore-bit property. However, it still uses 2-to-1 trapdoor collision
resistant hash functions. Our Theorem 2 removes the necessity of the collision resistance
of [27].

1.2 Technical Overview
Our construction of remote state preparations from trapdoor permutations (Theorem 1)
is based on the statistically-hiding and computationally-binding commitment scheme from
one-way permutations [32], which is explained as follows. Let f : {0, 1}n → {0, 1}n be a
one-way permutation.
1. The sender of the commitment scheme chooses x← {0, 1}n, and computes y := f(x).
2. The receiver of the commitment scheme chooses hj ← 0j−11{0, 1}n−j for each j =

1, 2, ..., n− 1.
3. The receiver and the sender repeat the following procedure for j = 1, 2, ..., n− 1:

a. The receiver sends hj to the sender.
b. The sender returns the value cj := hj · y to the receiver.5

4. The receiver and the sender finally obtain the system of linear equations {hj · y = cj}n−1
j=1

that has two solutions y0, y1 ∈ {0, 1}n, where y0 is the lexicographically smaller one. Let
c ∈ {0, 1} be such that yc = y. The sender sends b⊕ c to the receiver as the commitment
of the bit b ∈ {0, 1}.

5. The opening for the commitment is x and b.
It is shown in [32] that if a probabilistic polynomial-time sender can find both x0 and x1
such that f(x0) = y0 and f(x1) = y1 with a non-negligible probability, then a probabilistic
polynomial-time adversary that breaks the security of the one-way permutation f can be
constructed, which shows the (classical) computational binding of the scheme.

4 Let us define a function g by g(0x) := f0(x) and g(1x) := f1(x). Assume that a collision (α, β) of g is
easily found, i.e., g(α) = g(β). Then, due to the injectivity of f0 and f1, the first bit of α and β should
be different. Without loss of generality, assume that α = 0x0 and β = 1x1. Then, (x0, x1) is a claw of
(f0, f1).

5 For two bit strings a, b ∈ {0, 1}n, a · b is the bitwise inner product, i.e., a · b :=
⊕n

j=1 ajbj .
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What happens if this NOVY’s interactive hashing is run coherently? Namely, let us
consider the following “quantum version” of the NOVY’s interactive hashing:
1. A quantum polynomial-time Bob prepares

∑
x∈{0,1}n |x⟩.

2. A probabilistic polynomial-time Alice chooses hj ← 0j−11{0, 1}n−j for each j =
1, 2, ..., n− 1.

3. Alice sends h1 to Bob.
4. Bob generates∑

x∈{0,1}n

|x⟩|h1 · f(x)⟩,

measures the second register to get the measurement result c1 ∈ {0, 1}, and sends c1 to
Alice. The post-measurement state is∑

x∈{0,1}n:h1·f(x)=c1

|x⟩.

5. Alice sends h2 to Bob.
6. Bob generates∑

x∈{0,1}n:h1·f(x)=c1

|x⟩|h2 · f(x)⟩,

measures the second register to get the measurement result c2 ∈ {0, 1}, and sends c2 to
Alice. The post-measurement state is∑

x∈{0,1}n:h1·f(x)=c1,h2·f(x)=c2

|x⟩.

7. If they repeat the above procedure for j = 3, 4, ..., n − 1, Bob finally possesses the
state |x0⟩ + |x1⟩, where f(x0) = y0, f(x1) = y1, and (y0, y1) is the two solutions of
{hj · y = cj}n−1

j=1 .
By the (classical) computational-binding of the NOVY’s commitment scheme, no probabilistic
polynomial-time Bob can learn both x0 and x1 at the same time with non-negligible probability.
If f is a trapdoor permutation, Alice can compute both x0 and x1, and it is clear that the
existence of the trapdoor does not degrade the security against Bob.

In this way, we can construct remote state preparations of |x0⟩ + |x1⟩ secure against
classical Bob from trapdoor permutations. Proofs of quantumness can be constructed from it
based on a similar idea of [27], which is a proof of Theorem 2: The verifier and the prover first
run remote state preparations of |x0⟩+ |x1⟩. Then, with probability 1/2, the verifier asks the
prover to measure the state in the computational basis. If the prover returns a correct x0 or x1,
the verifier accepts. With probability 1/2, the verifier chooses r ← {0, 1}n and sends it to the
prover. The prover generates the state |r·x0⟩|x0⟩+|r·x1⟩|x1⟩, and measures the second register
in the Hadamard basis. If the measurement result is d ∈ {0, 1}n, the post-measurement
state is |r · x0⟩+ (−1)d·(x0⊕x1)|r · x1⟩, i.e., one of the BB84 states. Then, runing the CHSH
game on it leads to proofs of quantumness: the quantum polynomial-time prover can output
the correct measurement result with high probability, but no probabilistic polynomial-time
prover can output the correct measurement result except for a small probability.

1.3 Open Problems
Our novel idea of running the NOVY’s interactive hashing coherently will have many other
interesting applications. Let us summarize several open problems.



T. Morimae and T. Yamakawa 87:5

Weakening assumptions. Our constructions of remote state preparations and proofs of
quantumness are based on the full-domain trapdoor permutations. One important open
problem is whether the assumption can be weakened or not.

First, can we remove the full-domain property? Though the factoring-based constructions
can be made full-domain [4, 19], it is not true in general. For example, the construction of
trapdoor permutations based on indistinguishability obfuscation (iO) [5] is not full-domain. In
many applications of trapdoor permutations like oblivious transfers [12] and non-interactive
zero-knowledge [13], the full-domain property can be weakened to a property called the
doubly enhanced property [19]. Can we replace full-domain trapdoor permutations in our
constructions with (non-full-domain) doubly enhanced trapdoor permutations? If this is
possible, then we would obtain proofs of quantumness from iO and one-way functions since
the iO-based trapdoor permutation [5] satisfies the doubly enhanced property. (Or, it is an
interesting open problem whether remote state preparations or proofs of quantumness can
be directly constructed from iO (plus one-way functions).)

Second, it is known that the NOVY’s commitment scheme with one-way permutations can
be improved to that with regular one-way functions [21] or even any one-way functions [22].6
Can we construct remote state preparations or proofs of quantumness from trapdoor functions,
not permutations? Known instantiations of trapdoor permutations are only factoring-based
ones (for full-domain cases) and iO-based ones (for non-full-domain cases). However, trapdoor
functions have many instantiations from Diffie-Hellman assumptions [34, 14], learning with
errors [34, 15], NTRU [24], and coding theory [31, 33], etc. A potential approach is to
coherently run the variant of the NOVY’s commitment based on regular one-way functions [21]
since trapdoor functions are automatically regular. However, in such a construction, the state
which the honest Bob gets after the interaction is not a superposition of two computational-
basis states, |x0⟩+ |x1⟩, but that of many computational-basis states, i.e.,

∑
x∈S |x⟩ with |S|

being polynomially or even exponentially large. We do not know how to construct proofs of
quantumness from such a superposition of many computational-basis states.

Finally, can we remove even the trapdoor? Is it possible to construct remote state prepara-
tions or proofs of quantumness from one-way functions? A recent work [39] constructs proofs
of quantumness in the quantum random oracle model. This demonstrates that trapdoors are
not inherent for proofs of quantumness. However, a standard-model instantiation of their
protocol based on standard assumptions is likely to require a completely new idea.

Other applications. The other important open problem is whether we can construct
other quantum cryptographic primitives, such as (classical-client) blind quantum computing
and (classical) verifications of quantum computing from trapdoor permutations (or even
trapdoor/one-way functions). For that goal, we have to show the quantum security of the
NOVY’s scheme. (Remember that our remote state preparations are known to be secure
against only classical Bob, because we do not show the security of the NOVY’s scheme
against quantum adversaries.) The security proof of [32] makes heavy use of the rewinding
technique, and therefore showing the quantum security of NOVY’s scheme seems to be a
challenging open problem, which is of independent interest.

6 We say that one-way functions are regular if the preimage sizes are equal for all images.
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1.4 Related Work

Remote state preparations. The first construction of (non-verifiable) remote state prepara-
tions of single-qubit states so called “QFactory” [10] used certain 2-to-1 trapdoor collision
resistant hash functions with some homomorphic predicates, which can be constructed
from the LWE assumption. [17, 40, 16] constructed verifiable remote state preparations of
single-qubit states that use the (noisy) trapdoor injective claw-free functions of [7].

Proofs of quantumness. A simple way of achieving “proofs of quantumness” is to ask the
prover to solve (non-interactive) problems in NP that can be solved in quantum polynomial-
time but are believed to be hard for probabilistic polynomial-time, such as factoring [38],
Pell’s equation [23], and matrix group membership [2], etc. In this paper, however, we do
not consider such approaches.

The original construction [6] of proofs of quantumness required the adaptive-hardcore-
bit property. [8, 27] removed the necessity of the adaptive-hardcore-bit property, but [8]
used 2-to-1 trapdoor injective claw-free functions and random oracles that can be queried
coherently, and [27] used 2-to-1 trapdoor collision resistant hash functions.

Publicly-verifiable proofs of quantumness were also studied. One-shot signatures [1]
imply proofs of quantumness, but the known construction of one-shot signatures is based
on one-shot chameleon hash functions, which satisfy the collision resistance. Moreover, the
known construction assumes classical oracles that can be queried coherently. [39] constructed
publicly-verifiable non-interactive proofs of quantumness with random oracles. Note that
random oracles are collision-resistant.

Recently, [28] showed a general compiler to transform non-local games to proofs of
quantumness via quantum homomorphic encryptions (QHE). Their assumption is only the
existence of QHE for certain class of quantum operations (such as controlled-Hadamard gates),
which can be instantiated with LWE [29]. Although homomorphic encryptions generally
imply the collision resistance [26], it is not known whether the restricted QHE used in [28]
implies the collision resistance.

The idea of [28] is that the quantum prover generates a bipartite state, and the classical
verifier remotely measures one of the registers via QHE so that the prover gets an unknown
state of the other register. It therefore can be also considered as (non-verifiable) remote state
preparations via QHE. Remote state preparations via QHE were also introduced in [36, 37]
in the contexts of quantum money and quantum tokenized signatures.

2 Preliminaries

We use the standard notations of quantum computing and cryptography. We use λ as the
security parameter. x← A means that an element x is sampled uniformly at random from the
set A. negl is a negligible function, and poly is a polynomial. For an algorithm A, y ← A(x)
means that the algorithm A outputs y on input x. For two bit strings a, b ∈ {0, 1}n, a · b is
the bitwise inner product, i.e., a · b :=

⊕n
j=1 ajbj .

Non-verifiable remote state preparations of |x0⟩ + |x1⟩ secure against probabilistic
polynomial-time Bob are defined as follows.

▶ Definition 3 (Remote State Preparations). Non-verifiable remote state preparations of
|x0⟩+ |x1⟩ secure against probabilistic polynomial-time Bob are two-party interactive protocols
between probabilistic polynomial-time Alice and quantum/probabilistic polynomial-time Bob
over a classical channel that satisfy the following two conditions.
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Perfect correctness: If quantum polynomial-time Bob behaves honestly, Alice outputs a pair
{x0, x1} of two n-bit strings x0, x1 ∈ {0, 1}n and Bob outputs the n-qubit state |x0⟩+ |x1⟩
with probability 1.

Classical security (blindness): For any probabilistic polynomial-time malicious Bob that
outputs a pair {α, β} of two n-bit strings α, β ∈ {0, 1}n,

Pr[{x0, x1} = {α, β} : {x0, x1} ← Alice, {α, β} ← Bob] ≤ negl(λ).

▶ Remark 4. Our definition is different from previous ones [10, 17] in the following two points.
First, they are interested in remotely generating single-qubit states while we consider remote
generations of |x0⟩+ |x1⟩. Second, [10, 17] consider the security against quantum Bob, while
we consider the one against only classical Bob. It is an important open problem whether we
can show the quantum security.
▶ Remark 5. Remote state preparations can have the verifiability [17], which roughly means
that Alice can check whether Bob has generated correct states or not. Some applications,
such as classical-client blind quantum computing, do not require the verifiability, but it seems
that verifiability is necessary for some applications, such as classical verifications of quantum
computing. In this paper, we do not consider verifiability.
▶ Remark 6. We can consider non-perfect correctness, but in this paper we consider only
perfect correctness, because our construction satisfies it. Moreover, it is reasonable to assume
in the definition that Alice sometimes outputs ⊥. However, for simplicity, we assume that
Alice never outputs ⊥. In fact, our construction satisfies it.

Proofs of quantumness are defined as follows.

▶ Definition 7 (Proofs of Quantumness). Proofs of quantumness are two-party protocols
between a probabilistic polynomial-time verifier V and a quantum/probabilistic polynomial-
time prover P over a classical channel such that V finally outputs ⊤ or ⊥. We require that
the following two conditions, α-correctness and β-soundness, are satisfied for some α and β

such that α− β ≥ 1
poly(λ) .

α-correctness: There exists a quantum polynomial-time prover P such that Pr [V → ⊤] ≥ α.
β-soundness: For any probabilistic polynomial-time prover P, Pr [V → ⊤] ≤ β.

Classically-secure full-domain trapdoor permutations are defined as follows.

▶ Definition 8 (Trapdoor Permutations). A family {fk}k∈Kλ
of permutations is called a

classically-secure full-domain trapdoor permutation family if there is a tuple of algorithms
(Gen, Eval, Inv) such that

Gen(1λ) → (td, k) : It is a probabilistic polynomial-time algorithm that, on input the
security parameter λ, outputs a trapdoor td and a key k.
Eval(x, k)→ x′ : It is a classical polynomial-time deterministic algorithm that, on input
k and a bit string x ∈ {0, 1}n, outputs a bit string x′ ∈ {0, 1}n.
Inv(td, x′)→ x′′ : It is a classical polynomial-time deterministic algorithm that, on input
x′ and td, outputs a bit string x′′.

We require the following two types of correctness and the security.
Evaluation correctness: For any x ∈ {0, 1}n,

Pr[x′ = fk(x) : x′ ← Eval(x, k), (td, k)← Gen(1λ)] = 1.

Inversion correctness: For any x ∈ {0, 1}n,

Pr[x′′ = x : x′′ ← Inv(td, x′), x′ ← Eval(x, k), (td, k)← Gen(1λ)] = 1.
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Classical security: For any probabilistic polynomial-time adversary A,

Pr[x′′ = x : x′′ ← A(x′, k), x′ ← Eval(x, k), x← {0, 1}n, (td, k)← Gen(1λ)] ≤ negl(λ).

We use the following result from [32]. (They show it for one-way permutations, not trap-
door permutations, but it is clear that the same result holds for the trapdoor permutations.)

▶ Theorem 9 ([32]). Let {fk}k∈Kλ
be a classically-secure full-domain trapdoor permutation

family. Let (Gen, Eval, Inv) be the associated tuple of algorithms. Let us consider the follow-
ing security game between a probabilistic polynomial-time challenger C and a probabilistic
polynomial-time adversary A.
1. C runs (td, k)← Gen(1λ). C sends k to A.
2. C chooses hj ← 0j−11{0, 1}n−j for each j ∈ {1, 2, ..., n− 1}.
3. C and A repeat the following for j = 1, 2, ..., n− 1:

a. C sends hj to A.
b. A sends cj ∈ {0, 1} to C.

4. A sends α, β ∈ {0, 1}n to C.
5. There exist exactly two y0, y1 ∈ {0, 1}n such that hj · yb = cj for all b ∈ {0, 1} and all

j ∈ {1, 2, ..., n − 1}. C outputs ⊤ if fk(α) = y0 and fk(β) = y1, or fk(α) = y1 and
fk(β) = y0. Otherwise, C outputs ⊥.

Then, for any probabilistic polynomial-time adversary A, Pr[C → ⊤] ≤ negl(λ).

3 Proof of Theorem 1

In this section, we provide a proof of Theorem 1.

Proof of Theorem 1. Let {fk}k∈Kλ
be a classically-secure full-domain trapdoor permutation

family. Let (Gen, Eval, Inv) be the associated tuple of algorithms. From them, we construct
non-verifiable remote state preparations of |x0⟩+ |x1⟩ secure against probabilistic polynomial-
time Bob as follows.
1. Alice runs (td, k)← Gen(1λ). Alice sends k to Bob.
2. Alice chooses hj ← 0j−11{0, 1}n−j for each j ∈ {1, 2, ..., n− 1}.
3. Alice and Bob repeat the following for j = 1, 2, ..., n− 1:

a. Alice sends hj to Bob.
b. Bob possesses the state

∑
x∈Xj−1

|x⟩, where

Xj :=
{

x ∈ {0, 1}n
∣∣∣ j∧

i=1
(hi · fk(x) = ci)

}
.

Bob generates∑
x∈Xj−1

|x⟩|hj · fk(x)⟩,

measures the second register to get the measurement result cj ∈ {0, 1}, and sends cj

to Alice. The post-measurement state of the first register is∑
x∈Xj

|x⟩.

4. Bob finally gets the state |x0⟩+|x1⟩, where there are exactly two bit strings y0, y1 ∈ {0, 1}n

such that hj · yb = cj for all b ∈ {0, 1} and all j ∈ {1, 2, ..., n− 1}, and fk(x0) = y0 and
fk(x1) = y1. Bob outputs the state.

5. From td, {hj}n−1
j=1 and {cj}n−1

j=1 , Alice computes {x0, x1} and outputs it.
The perfect correctness is clear. The classical security is obtained from Theorem 9. ◀
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4 Proof of Theorem 2

In this section, we show Theorem 2.

Proof of Theorem 2. Let us consider the following construction of proofs of quantumness,
which is similar to that of [27].
1. The verifier V and the prover P run non-verifiable remote state preparations of |x0⟩+ |x1⟩

secure against probabilistic polynomial-time Bob whose existence is guaranteed from the
existence of classically-secure full-domain trapdoor permutations due to Theorem 1. V
gets a pair {x0, x1} of n-bit strings x0, x1 ∈ {0, 1}n. Honest P gets the state |x0⟩+ |x1⟩.

2. V chooses v1 ← {0, 1}. V chooses r ← {0, 1}n. V sends v1 and r to P.
3. If v1 = 0: P measures |x0⟩+ |x1⟩ in the computational basis to get the measurement

result x ∈ {0, 1}n. P sends x to V. If x ∈ {x0, x1}, V outputs ⊤ and terminates the
protocol. Otherwise, V outputs ⊥ and aborts.
If v1 = 1: P changes |x0⟩+ |x1⟩ into
|r · x0⟩|x0⟩+ |r · x1⟩|x1⟩,

measures its second register in the Hadamard basis to get the measurement result
d ∈ {0, 1}n, and sends d to V. The post-measurement state of the first register is
|r · x0⟩+ (−1)d·(x0⊕x1)|r · x1⟩.

4. V chooses v2 ← {0, 1}. V sends v2 to P.
5. P measures the state in the basis{

cos π

8 |0⟩+ sin π

8 |1⟩, sin π

8 |0⟩ − cos π

8 |1⟩
}

if v2 = 0, and in the basis{
cos π

8 |0⟩ − sin π

8 |1⟩, sin π

8 |0⟩+ cos π

8 |1⟩
}

if v2 = 1. Let η ∈ {0, 1} be the measurement result. (For the measurement in the basis
{|ϕ⟩, |ϕ⊥⟩}, the result 0 corresponds to |ϕ⟩ and the result 1 corresponds to |ϕ⊥⟩.) P sends
η to V.

6. V outputs ⊤ if
(r · x0 = r · x1) ∧ (η = r · x0),

or
(r · x0 ̸= r · x1) ∧ (η = v2 ⊕ d · (x0 ⊕ x1)).

Otherwise, it outputs ⊥.

For the correctness, a straightforward calculation similarly to [27] shows that

Pr[V → ⊤] = 1
2 + 1

2 cos2 π

8 ≃ 0.925.

For the soundness, by almost the same argument as that in [27], we can show that for
any probabilistic polynomial-time cheating prover, we have

Pr[V → ⊤] ≤ 7
8 + negl(λ).

Note that 7
8 = 0.875 < 0.925. We include the full proof in Appendix A for completeness. ◀
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A Proof of Soundness

We give the omitted proof of the soundness of the proof of quantumness protocol given in
Section 4. Note that this is almost identical to that in [27].

Our goal is to prove that for any probabilistic polynomial-time cheating prover,

Pr[V → ⊤] ≤ 7
8 + negl(λ). (1)

Toward contradiction, suppose that there is a probabilistic polynomial-time cheating prover
A and a polynomial poly such that

Pr[V → ⊤] ≥ 7
8 + 1

poly(λ)

for infinitely many λ. In the following, we focus on such λ. Let STA be A’s state (including
the transcript and its own randomness) right after finishing the remote state preparation
protocol run in Step 1 and {x0, x1} be V ’s output for the remote state preparation protocol.
Then, by a standard averaging argument, for 1

2poly(λ) -fraction of (STA, {x0, x1}), we have

Pr[V → ⊤ | (STA, {x0, x1})] ≥
7
8 + 1

2poly(λ) , (2)

where Pr[V → ⊤ | (STA, {x0, x1})] denotes V ’s acceptance probability conditioned on a fixed
(STA, {x0, x1}). We fix such (STA, {x0, x1}) until Equation 7.

We define the following probabilities all of which are conditioned on the fixed value of
(STA, {x0, x1}):
p0: The probability that V returns ⊤ conditioned on v1 = 0.
p1: The probability that V returns ⊤ conditioned on v1 = 1.
p1,0: The probability that V returns ⊤ conditioned on v1 = 1 and v2 = 0.
p1,1: The probability that V returns ⊤ conditioned on v1 = 1 and v2 = 1.
Clearly, we have

Pr[V → ⊤|(STA, {x0, x1})] = p0 + p1
2 (3)
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and

p1 = p1,0 + p1,1
2 . (4)

By Inequality 2, Equation 3, and a trivial inequality p0, p1 ≤ 1, we have

p0 ≥
3
4 + 1

poly(λ) (5)

and

p1 ≥
3
4 + 1

poly(λ) . (6)

Let B be a classical deterministic polynomial-time algorithm that works as follows:
1. B takes STA and r ∈ {0, 1}n as input.
2. B runs Step 3 of A whose state is initialized to STA where B plays the role of V with

v1 = 1 and the given r. Let d ∈ {0, 1}n be the message sent from A to V and ST′A be
A’s state at this point.

3. B runs Step 5 of A whose state is initialized to ST′A where B plays the role of V with
v2 = 0. Let η1,0 be the message sent from A to V.

4. B runs Step 5 of A whose state is initialized to ST′A where B plays the role of V with
v2 = 1. Let η1,1 be the message sent from A to V. We note that this step is possible
because A is classical and in particular ST′A is classical and thus can be copied.

5. Output η1,0 ⊕ η1,1.
By the union bound, the probability that both (d, η1,0) and (d, η1,1) pass the verification is
at least

1− (1− p1,0)− (1− p1,1) = −1 + 2p1 ≥
1
2 + 1

poly(λ) ,

where the equation follows from Equation 4 and the inequality follows from Inequality 6.
When this occurs, for each v2 ∈ {0, 1}, we have

(r · x0 = r · x1) ∧ (η1,v2 = r · x0),

or

(r · x0 ̸= r · x1) ∧ (η1,v2 = v2 ⊕ d · (x0 ⊕ x1)).

(Remark that the same d is used for both cases of v2 = 0 and v2 = 1.) This implies that

η1,0 ⊕ η1,1 = r · (x0 ⊕ x1).

Therefore, we have

Pr
r←{0,1}n

[B(STA, r) = r · (x0 ⊕ x1)] ≥ 1
2 + 1

poly(λ) .

Thus, by the Goldreich-Levin theorem [18], there is a probabilistic polynomial-time algorithm
E such that

Pr[E(STA) = x0 ⊕ x1] ≥ 1
poly′(λ)

(7)

for some polynomial poly′. (Remark that what we showed so far is that the above hold for
1

2poly(λ) -fraction of (STA, {x0, x1}).)
Then, we construct a probabilistic polynomial-time algorithm C that breaks the security

of the remote state preparation protocol as follows:
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1. C interacts with V in the same way as A does in Step 1 of the proof of quantumness
protocol. Let STA be A’s state after completing this stage. Note that {x0, x1} is implicitly
defined as an outcome of V for the remote state preparation protocol.

2. C runs A for v1 = 0 and r ← {0, 1}n to get the response x′.
3. C runs E(STA) to get the output z.
4. C outputs {x′, x′ ⊕ z}.
For 1

2poly(λ) -fraction of (STA, {x0, x1}), by Inequalities 5 and 7, we have

Pr[x′ ∈ {x0, x1}|(STA, {x0, x1})] ≥
3
4 + 1

poly(λ)

and

Pr[z = x0 ⊕ x1|(STA, {x0, x1})] ≥
1

poly′(λ)
.

Moreover, the two events x′ ∈ {x0, x1} and z = x0 ⊕ x1 are independent once we fix
(STA, {x0, x1}). Therefore, for 1

2poly(λ) -fraction of (STA, {x0, x1}), we have

Pr[x′ ∈ {x0, x1} ∧ z = x0 ⊕ x1|(STA, {x0, x1})] ≥
3

4poly′(λ)
.

Therefore, we have

Pr[C → {x0, x1}] ≥
3

8poly(λ)poly′(λ)
.

This contradicts the security of the remote state preparation protocol (Definition 3). Therefore,
Equation 1 holds and the proof of soundness is completed.
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1 Introduction

The complexity class TFNP [13] captures a wide variety of search problems which are believed
to lie between P and NP – in fact, almost all problems in NP not yet known to be in P, or close
to it, appear to belong to this class. The “TF” in TFNP indicates that it is a class of total
function problems – computational search problems which are mathematically guaranteed
to have a solution on all instances – while the letters “NP” in TFNP signify that solutions
are polynomially checkable. Two things make TFNP interesting: First, it is a microcosm of
many complexity classes, each of which is identified with a non-constructive combinatorial
lemma used in the proof of totality [14, 9, 6]. Second, it contains – almost by its definition –
many problems that are of great interest in Cryptography. The most obvious and best known
example is of course factoring, but many other computational problems of cryptographic
interest lie in the subclass PPP [8, 15] whose existence lemma is the Pigeonhole Principle:
if there are 2n pigeons to be placed into 2n − 1 pigeonholes, there must exist a pigeonhole
with at least two pigeons.

In this paper we study the complexity of total search problems in the important field of
extremal combinatorics [2, 7, 10]. Notice that the Pigeonhole Principle itself can be seen
as an argument in extremal combinatorics: “If a combinatorial object of a certain kind
(here, a set mapped to [N ]) is large enough, it must contain a certain substructure (here
a collision).” This leads one to ask: Are then the computational problems coming from
extremal combinatorics in PPP? We point out that the combinatorial lemma underlying
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many such problems is a counting argument which iteratively uses a form of the Pigeonhole
Principle. Accordingly, we introduce a new complexity class, which we call “Polynomial Long
Choice” (PLC) capturing the complexity of the iterated Pigeonhole Principle.

To understand the generic problem in this class, consider the following two-player game.
Player 1 seeks to construct a long sequence of pigeons and Player 2 tries to make this
impossible. We start with 2n pigeons. At each stage, Player 1 can pick (without replacement)
a single pigeon from the remaining available pigeons to add to the long sequence. Once
Player 1 has made a move, Player 2 can then partition the remaining pigeons into two groups.
Next, Player 1 will pick a pigeon from one of these groups to add to the sequence, and the
pigeons from the other group will immediately be removed from the game. Player 1 wins
if a sequence of pigeons of length n + 1 is constructed, otherwise Player 2 wins. It is easy
to see that Player 1 has a winning strategy in this game (pick any pigeon from the larger
group in every iteration) – and this is the existence lemma defining PLC. To make this into
a computational problem, which we call Long Choice, we equip Player 2 with a suite of
polynomial-time algorithms, one for each stage of the game (we give the precise definitions
below); PLC is the class of all search problems reduced to Long Choice.

We show that Long Choice is PPP-hard, and hence PLC contains PPP. But is this
containment strict? And even if not, why is Long Choice, defined by an iterative application
of pigeonhole arguments, not contained in PPPP? The difficulty is this: The winning strategy
requires that Player 1 estimates the majority correctly at each stage and also successfully
selects a pigeon from this majority. PPP does not seem to support both of these challenges.

It turns out that PLC contains a host of natural problems embodying important theorems
in extremal combinatorics, first and foremost Ramsey’s, but also the sunflower theorem, the
Erdős-Ko-Rado lemma and König’s Lemma. The latter two, however, can be shown to be
PPP-complete. We also study problems associated with another classical result in extremal
combinatorics, namely Mantel’s Theorem (“a graph with N nodes and more than N2/4 edges
cannot be triangle-free”) and Turan’s theorem (the generalization to k-clique-free graphs).
We identify an infinite hierarchy of problems related to these theorems, each of which is
PPP-hard. This generalization of PPP seems substantially different from PLC, in the sense
that the source of computational hardness arises from information-theoretic reasons, namely,
an inefficient encoding of the search problem.

But iterating the Pigeonhole Principle can take us even higher: consider the dual problem
which can be called Short Choice: Suppose that the above game had 2n − 2 pigeons, and
that Player 1 now wants to terminate the game as soon as possible and Player 2 wants the
opposite, to extend it; the game terminates when one of the groups created by Player 2 is
empty. It is easy to see that Player 1 cannot be forced to make more than n − 1 moves,
by choosing in every iteration to continue in the smaller of the two groups. Now call this
problem Short Choice; it is certainly total, but it does not seem to belong to NP (how
does one verify that there is no pigeon left that is consistent with all the previous choices of
Player 1?). This is reminiscent of the empty pigeonhole principle recently explored in [11]
and the class PEPP belonging in TFΣ2P and not believed to be inside TFNP (or NP).

We show that Short Choice is a PEPP-hard problem that defines a new subclass of
TFΣ2P .

2 Long Choice

We start by recalling the definition of the class PPP. We first define the problem Collision
to be the following: we are given a Boolean circuit C with n input bits and n output bits,
and we seek either (a) an input x such that C(x) = 0n, or (b) a collision, two distinct inputs
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x ̸= y such that C(x) = C(y). The class PPP is the set of all search problems that reduce to
Collision. For the weak version of PPP, denoted PWPP, the circuit has n inputs and n − 1
outputs, and a collision is sought. It is known that n − 2 or fewer outputs, down to nδ for
any δ > 0, yield the same class [12].

Let us next define the search problem Ramsey, motivated by one of the most influential
theorems in all of combinatorics: Given a graph with 22n nodes, represented by a circuit with
4n input bits and one output bit, we seek either a clique with n nodes, or an independent set
with n nodes. The nodes are represented by 2n-bit strings and the circuit specifies the edge
relation of the graph. The well known proof of Ramsey’s theorem proceeds by constructing
a sequence of 2n nodes, where: the first node is arbitrary; and the next node is selected
from the available nodes to belong in the majority, either adjacent or nonadjacent to the last
node, whichever group is larger. In addition, the smaller group becomes unavailable. Since
we start with 22n nodes and the minority becomes unavailable at each step, it is clear that a
sequence of 2n nodes can be selected, and therein we will find either an independent set or a
clique with n nodes.

This proof inspires the key definition of this paper:

▶ Definition 1. The Long Choice problem is the following: There is a universe U of
2n objects, represented by the 2n n-bit strings. We are given a sequence of n − 1 circuits
P0, . . . , Pn−2, each of poly(n) size, such that Pi has (i + 2)n input bits and one output
bit; circuit Pi represents a predicate on i + 2 objects. We are asked to find a sequence of
n + 1 distinct objects a0, . . . , an, with the following property: for each i in [0, . . . , n − 2],
Pi(a0, . . . , ai, aj) is the same for all j > i.

▶ Theorem 2. Long Choice is a total problem in TFNP.

Proof. Our construction is inspired by the proof of Ramsey’s Theorem as well as the
two-player game which we described in the introduction.

First, we pick an arbitrary element a0 in the universe. Then, we partition the remaining
elements ai into two categories, based on the value of P0(a0, ai). Since there are 2n − 1
elements being partitioned, the majority of this partition must have at least 2n−1 elements.
We select an arbitrary element a1 from this majority and discard all elements from the
minority.

We then continue this procedure: we partition the remaining elements x based on the
value of P1(a0, a1, x), and we pick an arbitrary element a2 from the majority of this new
partition.

We can continue partitioning elements in this fashion and picking elements from the
majority until we arrive at a complete Long Choice certificate. This proves the totality of the
problem. Membership in TFNP follows from the fact that a candidate certificate sequence
a0, . . . an can be checked easily in polynomial time. ◀

Critically, Long Choice is also PPP-hard. To see why, consider the two-player game
from the Introduction which characterizes Long Choice. In this game, player 2 can behave
(i.e., the predicates Pi can be specified) in a way that guarantees that the only way player 1
wins is by finding a certificate to a PPP-complete problem Collision. Consider an instance
of Collision, given by a circuit, C, which maps n-bit strings to n-bit strings. Player 1
starts the game with 2n objects (the domain of the circuit). At each round, player 1 picks
an element from the remaining set of objects. If at any round, player 1’s choices so far
contain a certificate to Collision (that is, one element is a zero element or a pair of elements
collide under C), then player 2 stops partitioning the remaining elements. That is, player 2,
for the rest of the game, places all remaining elements into the same side of the partition,
guaranteeing a path to victory for player 1.
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In each round, player 2 considers the “vacant spots” in the range of C: the nonzero values
of the range that do NOT contain the image of player 1’s choices. At round 1 of the game,
player 1 makes some choice, call it a0. If C(a0) = 0, then player 1 has found a certificate,
and we are done. If C(a1) is positive, then there are 2n − 2 vacant spots left. Player 2 splits
the set of vacant spots into two even halves (there are many ways to do this, one way is for
player 2 to specify a constant, k and declare that all vacant spots less than or equal to k

belong to one half, and the vacant spots greater than k belong to the other).
Regardless of what value player 1 chooses for a1 in round 2, all subsequent elements must

belong to the same subgroup of C(a1). After C(a1) is chosen, the number of vacant spots in
this subgroup is 2n−1 − 2.

The game continues in this fashion, with player 2 always taking note of the remaining
available vacant spots, and splitting this set into 2 even groups. In general, after the i-th
round, there will be at most 2n−i+1 − 2 vacant spots left. Therefore, after the n-th round,
assuming no certificate has yet been found, there will be 21 − 2 = 0 vacant spots. Therefore,
the (n + 1)-th choice player 1 makes must provide a collision (or zero element). We provide
a complete proof of this result in the appendix.

▶ Theorem 3. Long Choice is PPP-hard.

Several problems reduce to simplified cases of Long Choice where the predicates have fixed
arity. Define Unary Long Choice to be the version of Long Choice where every predicate
Pi depends only on its last argument, i.e., Pi(a0, . . . , ai, x) = Pi(x). Define Binary Long
Choice to be the version of Long Choice where every predicate Pi depends only on two of its
arguments, the last argument x and one of the previous ak, i.e. Pi(a0, . . . , ai, x) = Pi(ak, x)
for some k ≤ i.

It is easy to see that PWPP reduces to Unary Long Choice: Given a circuit C for
PWPP with n input bits and n − 1 output bits, define Pi(x) to be the (i + 1)-th bit of C(x).
Then in any valid certificate a0, . . . , an−1, an for this instance of Unary Long Choice, we
must have C(an−1) = C(an).

▶ Theorem 4. PWPP reduces to Unary Long Choice.

In the next section we will see that Ramsey problems reduce to Binary Long Choice.
In the opposite direction, we can make the Long Choice problem harder by requiring

the elements ai in the certificate to satisfy additional conditions, while still preserving the
totality of the problem; for example we can require the ai to satisfy a given total order. In
the proof of the totality of Long Choice, we partition in each step the currently available
set and pick an arbitrary element from the majority. We can instead pick a specific element,
e.g. the smallest element under the given ordering. We call this generalization Long Choice
with Order; see the appendix for a formal definition.

3 Long Choice and r-Color Ramsey

Ramsey’s theorem for multi-colored graphs states that for every number r ≥ 2 of colors and
every integer n ≥ 2, there is a number R(r, n) such that for every r-coloring of the edges of
the complete graph on R(r, n) nodes there is a monochromatic clique with n nodes. The
standard Ramsey theorem corresponds to the case of r = 2 colors. A simple proof of the
multi-colored Ramsey theorem uses the same type of iterative process as the r = 2 case,
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except that in every step we partition the set of available nodes into r groups instead of 21;
as before, we pick the largest group to continue the process. The bound on R(r, n) from this
simple proof is R(r, n) ≤ rrn. Obtaining better upper and lower bounds on R(r, n) for r = 2
and for general r has been (and continues to be) the subject of a long line of intense research
effort.

In the computational version of the problem, denoted (r, n)-Ramsey, we are given the
r-coloring of an exponentially large complete graph, which is specified via a poly-size circuit
C, and are asked to find a monochromatic clique of size n. The Ramsey problem of the
last section is equivalent to (2, n)-Ramsey. The number r of colors in general need not be
fixed, it could be a function of n. Assume for simplicity that r is power of 2 (otherwise,
replace log r in the following by ⌈log r⌉). Every node of the complete graph is represented by
a unique rn log r-bit string, and the given circuit C takes as input two rn log r-bit strings
(two nodes u, v) and outputs a log r-bit string (the color of the edge (u, v)).

▶ Theorem 5. (r, n)-Ramsey is in PLC for all r, n. In particular, (r, n)-Ramsey reduces
to Binary Long Choice.

Proof Sketch. We describe first the proof for the case r = 2, which simply follows the
existence proof sketched in the previous section: Given a 2-colored complete graph on 22n

nodes, specified by a given circuit C, define the predicate Pi for each i, to map any sequence
a0, . . . , ai, x of nodes to the color, 0 or 1, of the edge (ai, x). Note that Pi depends only
on the last two arguments ai, x. Consider a valid certificate a0, . . . , a2n of this instance of
Binary Long Choice. For each i = 0, . . . , 2n − 2, all edges (ai, aj) for j > i must have the
same color, 0 or 1; assign this color to node ai. At least n of the 2n − 1 nodes a0, . . . a2n−2
are assigned the same color. These nodes induce a monochromatic clique of size n.

In the case of general r, given an r-colored complete graph on 2rn log r nodes, define each
function Pi as follows. Let k = (⌊i/ log r⌋) log r, i.e, k is the greatest multiple of log r that is
≤ i. Set Pi(a0, . . . , ai, x) to be the (i − k + 1)-th bit of the color of the edge (ak, x). Note
that again all these predicates depend only on two arguments, ak and x.

Consider a valid certificate a0, . . . , arn log r of this instance of Long Choice, and let
bi = ai log r for each i. From the construction of the Long Choice instance, it is easy
to see that, for each i = 0, . . . , r(n − 1), all edges (bi, bj) for j > i must have the same
color: note that the t-th bit of the color of edge (bi, bj), for all j > i, is the value of
Pl(a0, . . . , al, bj) = Pl(a0, . . . , al, al+1) for l = i log r + t − 1. Assign to each node bi the
(common) color of the edges (bi, bj), j > i. There are r(n−1)+1 distinct nodes b0, . . . , br(n−1),
each assigned one of r colors, therefore at least n of them are assigned the same color. These
nodes induce a monochromatic clique of size n. ◀

Finally, consider how Ramsey relates to PWPP. It was shown previously in [12] that
there exists a randomized reduction from PWPP to Ramsey, as well as a reduction from
PWPP to the multi-color Ramsey problem. In the full paper, we use properties of metric
spaces to provide an alternative deterministic reduction from PWPP to multi-color Ramsey.

4 Sunflowers

An important aspect in extremal combinatorics is the extremal bound: how large a system
has to be to guarantee that the desired combinatorial structure exists. Often times, the
tightest bounds are unknown - improving these bounds is an important research tradition in
Combinatorics [1, 3].

1 Along the same lines, we could extend Long Choice to allow the functions Pi to have a more general
range [r] instead of {0, 1}.
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However, despite this uncertainty, we can still use weaker extremal bounds to define
provably hard TFNP search problems, which we can then relate to the subclasses of TFNP.
In this section, we focus on the Sunflower Lemma [10], but this paradigm for reasoning about
extremal problems can be applied to many other problems as well.

We begin with some basic definitions.

▶ Definition 6. A k-set system is a collection of distinct sets in which every set contains
exactly k elements. A collection of distinct sets S1, . . . , Sn is a sunflower if for all i, j, Si ∩Sj

is the same.

The Sunflower lemma states that for all positive integers k, s, there is a number f(k, s)
such that every k-set system of size f(k, s) contains a sunflower of size s. The lemma was
formulated and proved by Erdős and Rado [5] for f(k, s) = k!(s − 1)k+1, using an inductive
proof that applies an iterative pigeonhole argument. The conjecture is that f(k, s) ≤ Ck for
some constant C that depends only on s. Progress on improving the upper bound on f(k, s)
was made recently in [1].

A computational problem based on the Sunflower Lemma was formulated in [12], and
shown to be hard on average assuming the existence of collision resistant hash function. Here,
we use an even weaker bound to define a problem which we call Naive Sunflower, and
relate it to the multi-color Ramsey problem.

▶ Definition 7 (Naive Sunflower). We are given a poly(k)-sized circuit

C : {0, 1}k3 log k 7→ ({0, 1}k3 log k)k

which is supposed to specify a family of 2k3 log k distinct sets of size k over a universe of
2k3 log k elements (each element is represented by a k3 log k-bit string). The problem is to
find either:
1. (An error): An index i such that the set (represented by) C(i) contains two identical

elements, or find two distinct indices i, j such that the sets C(i), C(j) are equal,or
2. A sunflower of size k2.

Following the exact same argument presented in [12], this problem is hard on average
assuming that Collision Resistant Hash Function families exist.

We will reduce Naive Sunflower to Multi-color Ramsey by using a characterization of
large sunflowers as a pairwise equidistant collection of points in a metric space. Given a k-set
system F , define the distance d(A, B) between any two sets A, B of F as d(A, B) = |A∆B|/2,
where A∆B = {A \ B} ∪ {B \ A} is their symmetric difference (it has even size since A, B

have the same size). The function d is a valid metric. Clearly, any sunflower in F is a set of
pairwise equidistant points in this metric.

Conversely, by a result of Deza [4], any collection of at least k2 −k +2 pairwise equidistant
k-sets must form a sunflower. Therefore, in this regime, we can reduce the problem of finding
a sunflower of size k2 to the problem of finding k2 pairwise equidistant sets. In turn, we can
reduce this problem to the multi-color Ramsey problem.

▶ Theorem 8. Naive Sunflower reduces to (
√

n, n)-Ramsey.

Proof. Consider an instance of Naive Sunflower, given by a circuit C. As above, C is
supposed to define a set system consisting of 2k3 log k sets, where each set contains k elements.
The core idea behind our reduction is simple: we construct a graph consisting of 2k3 log k

nodes, where the i-th node ui corresponds to the set C(i). To color the edges of this graph,
we use k colors, given by the numbers 1, 2, . . . , k. Every edge (ui, uj) is colored as follows.



A. Pasarkar, C. Papadimitriou, and M. Yannakakis 88:7

If C(i), C(j) are distinct k-sets, then assign color d(C(i), C(j)) to the edge (ui, uj). If one
of C(i), C(j) is not a k-set, e.g. contains a duplicate element, or if the sets are equal, then
assign color 1 to the edge (ui, uj).

Let n = k2. Since the graph has 2k3 log k = knk nodes, it contains a monochromatic clique
of size n = k2 by Ramsey’s Theorem. Let M be any such monochromatic clique of size k2.
If M contains a node ui such that C(i) is not a k-set, or if it contains two nodes ui, uj such
that C(i), C(j) are equal sets, then we have a violation for the circuit C. Otherwise, the
collection {C(i)|ui ∈ M} has k2 pairwise equidistant sets, and thus by Deza’s theorem, they
form a sunflower. ◀

We have shown earlier that (r, n)-Ramsey is in PLC for any r, n; thus we can conclude:

▶ Corollary 9. Naive Sunflower is in PLC.

5 Short Choice

As we have seen above, PPP is contained in the class PLC. There is an intuitive reason for
this: implicit in any PPP-complete problem is an iterated pigeonhole argument.

The class PEPP, introduced in [11], embodies the dual of the class PPP - an anti-
pigeonhole principle: if there are 2n −1 pigeons and 2n holes, then no matter how the pigeons
are placed, there must be an empty hole. PEPP belongs to the class TFΣ2P, which is
believed to lie outside of the class NP .

While the existence proof for Pigeonhole Circuit has a majority argument, the existence
proof for Empty has a corresponding “minority” argument. Suppose we are given an
instance of the PEPP-complete problem EMPTY : we are given a poly(n)-sized circuit
C : [2n − 1] 7→ [2n], where the inputs and outputs are all represented concisely using exactly
n bits. The challenge here is to find an element j in the range such that there is no i with
C(i) = j. There must exist a bit c1 such that the minority of elements in the domain of C

map to a n-bit string whose first bit is c1. This minority has size at most 2n−1 − 1. Among
the elements in this minority, there must exist a bit c2 such that the minority of these
elements map to a n-bit string whose second element is c2. This new minority has size at
most 2n−2 − 1. If we continue this argument n times, we find that there exists a bit string
c1 ◦ c2 ◦ · · · ◦ cn which is not in the image of C.

As discussed earlier, Long Choice is a generalization of PPP that encapsulates the
iterated majority arguments. We can define an analogous generalization of the class PEPP
that encapsulates the iterated minority argument. For this, we introduce a problem called
Short Choice, a problem in TFΣ2P which is the dual of Long Choice.

▶ Definition 10 (Subcertificate). Given a Long Choice problem instance defined by predicate
functions P0, P1, . . . , Pn−2 we call a subcertificate a sequence of distinct elements a0, a1, . . . , ak

(k ≤ n) which satisfy the Long Choice conditions imposed by the predicate functions Pi.
That is, for each predicate function i < k, we require that Pi(a0, . . . ai, aj) is the same for all
j > i.

▶ Definition 11 (Problem: Short Choice). The input is the same as in the Long Choice
problem, except that the universe U has now 2n −2 objects. As in Long Choice, we are given
a sequence of n − 1 poly(n)-sized circuits, P0, . . . , Pn−2, where each Pi defines a predicate
function Pi : U i+2 7→ {0, 1}

The problem is to find a sequence a0, a1, . . . , ak of at most n − 1 distinct objects in U

and a bit c ∈ {0, 1} with the property that (1) the sequence a0, a1, . . . , ak is a subcertificate,
and (2) there does not exist any object ak+1 ∈ U that both extends this subcertificate and has
Pk(a0, a1, . . . , ak, ak+1) = c.

ITCS 2023



88:8 Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

As in our discussion of Long Choice, we can show that Short Choice is both total
and PEPP-hard. The proof of totality uses a repeated minority argument, in the same
way that the proof for Long Choice used a repeated majority argument. And the proof of
PEPP-hardness is along similar lines as the PPP-hardness proof for Long Choice. We
provide the complete proofs in the appendix.

▶ Theorem 12. Short Choice is a total problem.

▶ Theorem 13. Short Choice is PEPP-hard

We can define the class PSC (Polynomial Short Choice) to be the class whose complete
problem is Short Choice.

6 König and Erdős-Ko-Rado

In this section we introduce and characterize computational problems associated with two
classical theorems in combinatorics.

6.1 König
König’s lemma states that in every infinite connected graph with finite degree there is an
infinite simple path starting at every node. The lemma is often stated and used for trees:
Every infinite (rooted) tree with finite branching has an infinite path (starting at the root).
The finite version of the lemma is that every large enough connected graph (or tree) with
bounded degree contains a long path. For example, every rooted binary tree with 2n nodes
contains a path of length n. The graph version follows easily from the tree version: Given a
connected graph, take a spanning tree of the graph, for example a breadth-first-tree from an
arbitrary node.

The standard proof of König’s tree lemma (both the infinitary as well as the finitary
version) is by the same type of repeated majority argument as in the proof of totality for
Long Choice. Starting from the root of the tree, proceed to the child whose subtree contains
the largest number of nodes, and repeat the process from there. If the tree is infinite, one of
the children must have an infinite subtree (since the degree is finite), thus this process will
generate an infinite path. Similarly, in the finite case, every iteration reduces the number of
nodes at most by a factor of d (the degree), so the process generates a path of logarithmic
length.

Given a (succinctly represented) exponentially large connected graph or tree with bounded
degree, e.g. a binary tree, how hard is it to find a long simple path? We formulate this
problem below for binary trees, represented through the parent information.

▶ Definition 14 (Problem: König). We are given a poly(n)-sized circuit, P : {0, 1}n →
{0, 1}n × {0, 1}. This circuit is supposed to define a rooted binary tree on 2n nodes, where
each node is encoded by a n-bit string. It does so by defining a parent relation: for a node u,
P (u) is an ordered pair (v, b) where v is the (binary encoding of) the parent of u, and b is a
bit which indicates whether u is the left or right child of v. If P (u) = u, that means that u

does not have a parent (it is a root node). In the König problem, we are given P and a root
node, r, and are asked to find either a violation (P does not specify a binary tree rooted at r)
or find a path of length n. Specifically, return one of the following certificates:
1. Identical children: Return 2 distinct nodes a and b with the property that P (a) = P (b).

(That is, they are both left children or right children of the same node).
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2. Invalid Root: Return r if P (r) ̸= r.
3. Non-Unique Root: Return a node s ̸= r with the property that P (s) = s.
4. Far Away Node: Return a node s with the following property: if we apply the parent

operator P to s a total of n times, we do not reach the root r.
5. Long Path: A sequence of n + 1 nodes a0, a1, . . . , an with a0 = r, and the property

that P (ai) = ai−1 for all i ≥ 1. Note that it suffices to provide an−1 as a valid certificate
here; the rest of the path can be recovered by applying the parent operator P .

We refer to the circuit P as the parent operator. In cases 1, 2, 3, P does not induce a binary
tree. The same is true in case 4, if applying P to s n times produces a repeated node;
otherwise, we get a simple path of length n. Case 5 yields a path of length n from the root r.

The proof of König’s lemma suggests that the problem should be in PLC. It turns out
that König is in fact in PPP, and furthermore it is complete; see the appendix for a formal
proof.

▶ Theorem 15. König is PPP-complete.

6.2 Erdős-Ko-Rado
The Erdős-Ko-Rado Lemma is one of the foundational results in extremal set theory.

▶ Theorem 16 (Erdős-Ko-Rado Lemma). If F is any k-set system over a universe X of size
n > 2k, and every pair of sets in F has non-empty intersection, then

|F | ≤
(

n − 1
k − 1

)
Thus, if |F | >

(
n−1
k−1

)
then F must contain two disjoint sets. How hard is it to find these

two disjoint sets, if F is a succinctly given exponentially large system?
Take the case in which k = 2 and the size of the universe is 2n. In this case, the Erdos-Ko-

Rado lemma tell us that the largest possible intersecting set system has size
(2n−1

1
)

= 2n − 1.
Therefore, given a 2-set system F of size 2n > 2n − 1, then F must contain two disjoint sets.

▶ Definition 17 (Problem Statement: Erdős-Ko-Rado). We are given a poly(n)-sized
circuit

F : {0, 1}n 7→ ({0, 1}n)2

which is supposed to represent a 2-set system of size 2n over the universe X = {0, 1}n. The
problem is to find either a violation (F is not a valid encoding) or two disjoint sets of the set
system. Specifically, return one of the following certificates:
1. (Error:) An index i such that F (i) = (a, a) for some a ∈ {0, 1}n (i.e., the set F (i) has

two identical elements), or two distinct indices i, j such that the sets (represented by)
F (i), F (j) are equal, or

2. (Disjoint sets:) Two indices i, j such that the sets (represented by) F (i), F (j) are disjoint.

By the Erdős-Ko-Rado lemma, one of these conditions must occur, placing the problem
in TFNP.

In the Appendix we show the following:

▶ Theorem 18. Erdős-Ko-Rado is PPP-complete.
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7 Mantel, Turán, and Bad Colorings

In this section, we introduce a new flavor of problems from extremal combinatorics which
generalize PPP. This class of problems is related to Mantel’s and Turán’s theorem and
graph colorings. Mantel’s theorem states that a triangle-free graph with N nodes has at
maximum ⌊N2/4⌋ edges. The maximum is achieved by a complete bipartite graph with
equal or almost equal parts (depending on whether N is even or odd). Turán’s theorem
answers the generalized question of what is the maximum number of edges in a graph with
N nodes that does not contain a (k + 1)-clique: the maximum is achieved by a complete
k-partite graph that has equal or almost equal parts (see [10] for a detailed exposition).

The same quantities answer the easier question of, what is the maximum number of
edges of a k-colorable graph on N nodes. A k-colorable graph whose color classes have sizes
x1, . . . , xk can have at most

∑
i̸=j xixj edges. Since the xi’s are integers that sum to N , it

can be shown that the maximum is achieved when they are all equal or almost equal.
These theorems induce corresponding total computational problems: Given (succinctly)

an exponential graph with more edges than the above bounds of Mantel or Turán, find a
triangle or a (k + 1)-clique respectively. If we are given in addition a k-coloring of the nodes,
find an illegally colored edge. We call these problems respectively Mantel, k-Turán and
Bad k-Coloring (Mantel is just 2-Turán). We define below formally the problems as
TFNP problems.

▶ Definition 19 (k-Turán). We are given a poly(n)-sized circuit E : [
(

k
2
)
(2n)2+1] 7→ [(k2n)2],

which is supposed to represent a graph with k2n nodes and
(

k
2
)
(2n)2 + 1 edges (nodes and

indices of edges are encoded by bit-strings of appropriate length as usual); E maps the index
of an edge to the two nodes of the edge. The problem is to find either a violation (E is not
a valid encoding of the edges of a graph) or a (k + 1)-clique. Specifically, return one of the
following certificates:
1. (Error): An index i such that E(i) consists of two identical nodes, or two distinct indices

i, j such that E(i), E(j) contain the same two nodes (not necessarily in the same order),
or

2. ((k + 1)-clique):
(

k+1
2

)
indices which are mapped by E to the edges of a clique on k + 1

nodes.

▶ Definition 20 (Bad k-Coloring). We are given a poly(n)-sized circuit E : [
(

k
2
)
(2n)2+1] 7→

[(k2n)2], which is supposed to represent a graph with k2n nodes and
(

k
2
)
(2n)2 + 1 edges and a

poly(n)-sized circuit C : [k2n] 7→ [k] which colors the nodes with k colors. The problem is to
find either a violation (E is not a valid encoding of the edges of a graph) or an edge whose
nodes have the same color. Specifically, return one of the following certificates:
1. (Error): An index i such that E(i) consists of two identical nodes, or two distinct indices

i, j such that E(i), E(j) contain the same two nodes (not necessarily in the same order),
or

2. (Bad edge): An index i such that E(i) = (a, b) and C(a) = C(b).

We show the following relations between PPP and these problems (proofs in the full
paper):

▶ Theorem 21.
1. PPP reduces to Bad 2-Coloring.
2. For all k ≥ 2, Bad k-Coloring reduces to k-Turán. In particular, Bad 2-Coloring

reduces to Mantel.
3. For all k ≥ 2, Bad k-Coloring reduces to Bad (k + 1)-Coloring.
4. For all k ≥ 2, k Turán reduces to (k + 1)-Turán.
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Thus, we have a hierarchy of problems on top of PPP. The Bad Coloring problems can be
viewed as instances of the pigeonhole problem (there is no iteration here), but the mapping
is given indirectly and cannot be easily constructed: We can view the indices of the edges as
the pigeons and the potential legal edges, i.e. all the pairs of differently colored nodes, as the
holes. There are more pigeons than holes, so either two pigeons are mapped to the same hole
(E(i), E(j) are the same edge for some pair of indices i, j)), or some pigeon is not mapped to
a hole (for some i, E(i) = (a, a) or E(i) = (a, b) with C(a) = C(b); this corresponds to the
special 0 value in the PPP problem). The difference with PPP, is that the set of holes (the
range of the mapping) is not given a priori explicitly as a set of bit-strings (or integers) as in
PPP, but rather it is implied indirectly by the coloring C. As a consequence, even for k = 2,
we cannot compute easily in polynomial time for example the number h of available holes (h
is the product of the sizes of the two color classes), and we cannot compute efficiently an
index function mapping each legal pair of nodes (pair (a, b) with C(a) ̸= C(b)) to an index
in [h]. In the Turán problems, there is in addition the complication of optimizing over all
partitions (colorings) and of seeking a clique rather than a single edge.

Another example along the same lines is the following bad k-set coloring problem:
Given (poly(n)-size circuits specifying) a k-coloring C of a set V of k2n nodes and a family
F of 2kn + 1 k-sets over V , find a k-set in F that is not panchromatic, i.e. two of its elements
have the same color, or find two equal sets in F .

▶ Theorem 22.
1. PPP is equivalent to Bad 1-set Coloring.
2. For all k ≥ 1, Bad k-set Coloring reduces to Bad (k + 1)-set Coloring

These problems form a hierarchy on top of PPP, where again existence of a certificate is
guaranteed by (1) the answer to an optimization problem (what is the maximum number of
panchromatic k-sets over all k-colorings), and (2) the pigeonhole principle, where however
the mapping is not given explicitly, but is defined indirectly in an inefficient manner.

8 Discussion and Future Work

The generalizations of PPP which we explore in this paper seem to give rise to a remarkably
rich set of tantalizing open questions. Some examples:
1. Prove black box separations between the problems and classes studied in this paper. For

example, prove a separation between PPP and PLC; between PEPP and PSC; between
PPP and the hierarchy of Turán and Bad coloring problems.

2. What other natural problems belong to PLC or are PLC-complete? One problem in
TFNP that has long evaded classification is Bertrand-Chebyshev: given a number n,
find a prime number between n and 2n.

3. What is the complexity of finding monochromatic cliques in smaller graphs, whose
existence is guaranteed by a century of fascinating improvements of Ramsey’s theorem?

4. What natural problems belong to the class PSC (but not to PEPP)?
5. How does PLC relate to problems in cryptography, and specifically lattices?
6. The Bad Coloring hierarchy suggests a novel source of computational hardness: inefficient

encoding of objects. What other interesting natural problems share this type of hardness?
7. More generally, what other problems from extremal combinatorics give rise to search

problems in TFNP, and how are these problems classified in TFNP subclasses?
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A Missing material from Section 2 (Long Choice)

We first remark that in the definition of Long Choice, it is unimportant what the initial
element a0 actually is, and whether it is specified or not. Consider a variant of the problem,
Constrained Long Choice, where a specific initial element is required. By the proof
of Theorem 2, this constrained variant is also a total search problem. In the full paper we
prove:

▶ Proposition 23. Long Choice with no initial element is equivalent to Constrained
Long Choice.

▶ Theorem 3. Long Choice is PPP-hard.

Proof. Suppose that we are given a circuit C0 mapping n bits to n bits, an instance of the
Collision problem. We can view the inputs and outputs of circuits both as n-bit strings
or as the equivalent integers in [0, . . . , 2n − 1]. Given C0, we define a new circuit, C which
maps n-bit strings to n-bit strings. On input a, we define C as follows:
1. C(a) = 2n − 1 (the all-1 string) if C0(a) = 0
2. C(a) = C0(a) otherwise
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By the pigeonhole principle, since C only maps inputs to nonzero values, it must have
collisions. Any such collision will either allow us to recover a collision in C0 or allow us to
recover a zero element of C.

We now reduce the problem instance given by circuit C to a Long Choice problem. We
begin by defining our set, U , to be the domain of circuit C: the set of n-bit strings. Note
that U has 2n distinct elements, each of which is represented as a unique n-bit string. It
now suffices to define n − 1 predicate functions P0, P1, . . . , Pn−2.

As in the proof of totality for Long Choice, we can think about constructing a certificate
by sequentially making the choices a0, a1, . . . , an. Put simply, our predicate functions will
classify the elements of U based on their images under C. These functions will enforce the
following property: subsequent elements of our Long Choice certificate will have images
under C which are closer and closer together. More specifically, consider the first three
elements of a Long Choice certificate, a0, a1, a2. While C(a0) and C(a1) may be more than
2n−1 − 1 units apart, predicate function P0 will enforce the condition that C(a1) and C(a2)
are within 2n−1 − 1 units of each other. Each predicate function will, in effect, enforce similar
“closeness” conditions. Ultimately, this will force any Long Choice certificate to have two
distinct elements whose images under C are 0 units apart (a collision under C!), as desired.

In the following discussion, we assume all inputs to predicate functions are distinct,
because this is required of any valid certificate.

We now explicitly define the predicate functions:
1. Pi(a0, . . . , ai, x) = 1 if C(x) is in the interval Fi (defined below)
2. Pi(a0, . . . , ai, x) = 0 if C(x) is not in the interval Fi.

To complete the definition, we define the intervals, Fi, which depend on the elements
a0, . . . , ai. Before we do so, we introduce some basic terminology to make this discussion
clearer.

1. Unfilled set: For any sequence of elements a0, . . . , ai and an interval [p, q], the unfilled
set of the interval is defined as {{p, p+1, . . . , q}\{C(a0), C(a1), . . . , C(ai)}} For example,
if given a sequence of points a0, a1, a2 with C(a0) = 0, C(a1) = 2, C(a2) = 1, the unfilled
set for the interval [0, 5] is {3, 4, 5}.

2. Indexing an interval: (Purely for notational convenience) Given an interval I = [a, b],
for k > 0, define I[k] as the interval containing the smallest k elements of I, and define
I[−k] as the interval containing the largest k elements of I. For example, given I = [1, 4],
I[2] = [1, 2], the first two integers in the interval, while I[−3] = [2, 4], the largest 3
integers in the interval.

We now define a sequence of intervals B0, . . . , Bi, . . . and F0, . . . , Fi, . . . . Critically, each
interval Fi is a contained in the corresponding interval Bi. We proceed with an inductive
definition.

Base Case Definition. For any single element sequence a0, the corresponding interval B0
is [1, 2n − 1]. The unfilled set for B0 has size 2n − 2. Consider the value of k that guarantees
that B0[k] has an unfilled set of size 2n−1 − 1. This can be easily computed: k = 2n−1 − 1 if
C(a0) > 2n−1 − 1, else k = 2n−1. We define F0 = B0[k].

Inductive Definition. Suppose that we have a sequence of elements a0, . . . , ai, and for all
k < i, Bk and Fk are defined. We first define Bi using the following rules:
1. First, if Bi−1 is an interval of size 1, then Bi = Fi = Bi−1
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2. Otherwise, if C(ai) is in Fi−1, then Bi = Fi−1. If C(ai) is not in Fi−1, then Bi =
Bi−1 \ Fi−1.

3. Finally, we define Fi. Let x denote the size of the unfilled set of Bi. Let k be the smallest
integer such that Bi[k] has ⌈ x

2 ⌉ unfilled spots. We let Fi = Bi[k].

This completes the definition of the Long Choice problem instance. It remains to prove
that a valid certificate for this problem instance allows us to recover a collision under C. Let
a0, a1, . . . , an be a valid certificate. If there is a collision among these elements, we are done.
So assume there is no collision; we will derive a contradiction.

Consider the sequence of set Bi, Fi generated from the sequence a0, a1, . . . , an. Note
that B0 ⊇ B1 · · · ⊇ Bi . . . and Fi ⊆ Bi for all i. It is easy to show inductively from the
construction that the following two properties hold:
1. ∀i, ∀j ≥ i, C(aj) ∈ Bi.
2. |Bi \ {C(a0), . . . , C(ai)}| = 2n−i − 2 for all i ≤ n − 2.

The basis case (i = 0) for both properties is trivial. The induction step for property 1
follows from the fact that Pi−1(a0, . . . , ai−1, aj) has the same value for all j ≥ i, hence either
all these C(aj) are in Fi−1 or they are all not in Fi−1 and thus they are in Bi−1 \ Fi−1
(because they are all in Bi−1 by the induction hypothesis). It follows from the definition of
Bi that they are all in Bi.

For the induction step of property 2 note that the induction hypothesis

|Bi−1 \ {C(a0), . . . , C(ai−1)}| = 2n−i+1 − 2

implies that both Fi−1 and Bi−1 \ Fi−1 have 2n−i − 1 unfilled spots. Since C(ai) ∈ Bi and
ai does not collide with any earlier aj , it follows that |Bi \ {C(a0), . . . , C(ai)}| = 2n−i − 2.

From property 2, Bn−2 has an unfilled set of size 22 − 2 = 2. The interval Fn−1 is, by
definition, constructed such that Fn−1 and Bn−2 \ Fn−1 both have 1 unfilled spot. Critically,
based on the definition of Pn−2, we know that C(an−1) and C(an) must both belong to Fn−1
or both belong to Bn−2 \ Fn−1. Therefore, C(an−1) and/or C(an) must collide with each
other or with another element in the sequence, a contradiction. ◀

Finally, we define Long Choice with Order formally:

▶ Definition 24 (Long Choice with Order). Consider a set U of 2n objects, each
represented by a unique n-bit string. We are given a sequence of n − 1 predicate functions,
P0, . . . , Pn−2 represented by poly(n)-size circuits. Predicate function Pi has arity i + 2:

Pi : U i+2 7→ {0, 1}

We are also given a function F , which purportedly defines a strict total order over the above
set U . The function F is also represented by a poly(n)-size circuit:

F : U2 7→ {0, 1}

Given two distinct inputs ax, ay, F (ax, ay) = 0 indicates that ax < ay in this total ordering.
F (ax, ay) = 1 indicates that ax > ay. The problem is to find any of the following:
1. Monotone certificate: A monotone increasing sequence of n + 1 distinct objects

a0, . . . , an in U , with the following property: for each i in [0, . . . , n − 2], Pi(a0, . . . , ai, aj)
is the same for all j > i.

2. Order Violation: A set of 3 distinct objects ax, ay, az which violate the transitivity
property of total orders.
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B Missing material from Section 5 (Short Choice)

▶ Theorem 12. Short Choice is a total problem.

Proof. Let U denote the set of 2n − 2 objects in the universe of this Short Choice problem
instance. We will construct a certificate, given by a subcertificate a0, a1, . . . , ak, (k ≤ n − 2)
and a bit c. In order to construct this sequence, we will also define a sequence of nonempty
sets U0 ⊃ U1 ⊃ · · · ⊃ Uk with the following properties:
1. U0 = U

2. |Uk| ≤ 2n−k − 2 for all k

3. ak ∈ Uk for all k and whenever k ≥ 1, a0, . . . , ak−1 ̸∈ Uk.
4. For every j ≤ k, an element x extends the subcertificate a0, a1, . . . , aj if and only if

x ∈ Uj \ {aj}.
5. For all x ∈ Uj+1, Pj(a0, . . . , aj , x) is the same.

As a base case, we begin by defining U0 := U , and we pick an arbitrary element a0 ∈ U0.
Note that the base case of our construction so far satisfies properties 1 and 2: U0 = U ,
|U0| = |U | ≤ 2n−0 − 2. Property 3 holds because a0 ∈ U0 (the second condition in property 3
is vacuously true here). Property 4 holds trivially, since any element x ̸= a0 must belong to
U0 \ a0.

We now define U1 in such a way that our base case satisfies property 5 as well. We
partition the elements x ∈ {U0 \ {a0}} in two groups based on the value P0(a0, x). We know
that |U0 \ {a0}| = 2n − 3, and since this set is being partitioned into two disjoint sets, the
minority must have size at most 2n−1 − 2. If the minority is nonempty, we define U1 to
be the minority (which guarantees condition 5 holds). We also define a1 as an arbitary
element of U1. Otherwise, if the minority is empty, this means that P0(a0, x) takes on a
constant value (call it b) for all x ∈ U \ {a0}. This in turn means that there is no value x

with P0(a0, x) = ¬b (the opposite of bit b). We can thus return a0 along with the bit ¬b as a
valid certificate to the Short Choice problem. This completes the base case.

Now, suppose for some 0 ≤ j ≤ k we have defined the nonempty sets U0 ⊃ U1 ⊃ · · · ⊃ Uj

and the subsequence a0, a1, . . . , aj in such a way that they satisfy the above properties.
We can first conclude based on properties 3 and 5 that the sequence a0, . . . , aj is a valid
subcertificate. Furthermore, an element x extends this subcertificate if and only if it belongs
to Uj \ {aj}, according to property 4.

To continue our inductive construction, we partition the elements x ∈ {Uj \ {aj}} based
on the value of Pj(a0, . . . , aj , x). If one side of this partition is empty, that means that there
exists a bit c ∈ {0, 1} such that there are no elements x ∈ {Uj \ {aj}} where a0, a1, . . . , x is
a subcertificate and Pj(a0, . . . , aj , x) = c. In this case, we are done: the sequence a0, . . . , aj

along with the bit value c, serves as a certificate to the problem.
Otherwise, both sides of this partition are nonempty. In this case, we can continue

the inductive construction: we pick the minority side of the partition of the elements
x ∈ {Uj \ {aj}}. We then define Uj+1 to be all of the elements on the minority side of the
partition, and pick an arbitrary element aj+1 ∈ Uj+1 to extend the subcertificate. We know
by the inductive hypothesis that |Uj | ≤ 2n−j − 2, and by the same Pigeonhole argument used
in the base case, we know that |Uj+1| ≤ 2n−j − 2, as desired. Thus properties 1 and 2 hold.
To see why property 3 holds, note that aj+1 ∈ Uj+1. Furthermore, a0, . . . , aj−1 ̸∈ Uj ⊃ Uj+1.
Finally, aj ̸∈ Uj , as stated above. To see why property 4 must hold, consider any candidate
element aj+2 which may extend the Long Choice subcertificate. We know from the inductive
hypothesis that aj+2 must belong to Uj \ aj . Additionally, we must also now have that

Pj(a0, . . . , aj , aj+1) = Pj(a0, . . . , aj , aj+2)
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By the definition of Pj , this means that aj+1 and aj+2 both belong to Uj+1, and since
aj+1 and aj+2 must be distinct in order to be in the same subcertificate, we conclude
aj+2 ∈ Uj+1 \ aj+1. This argument also shows that property 5 continues to hold as well.

Note that our construction can only proceed until j = n − 2. To see why, suppose that
j = n − 2. Then, by our inductive hypotheses, |Uj | ≤ 2n−(n−2) − 2 = 2. Furthermore, since
aj ∈ Uj by our assumption, we know that Uj \ {aj} has at most 1 other element. Denote this
element (if it even exists) by an−1, and consider the value cbad = Pn−2(a0, . . . , an−2, an−1).
It is clear that if we consider c to be the opposite bit of cbad, there are no elements x which
extend this subcertificate with Pn−2(a0, . . . , an−2, x) = c. Thus, we can return a0, . . . , an−2
and c and we are done.

Therefore, our construction is guaranteed to terminate with a subcertificate a0, . . . , aj

of the appropriate length, as well as a bit c, which provide us with a solution to the Short
Choice problem. ◀

▶ Theorem 13. Short Choice is PEPP-hard

Proof. Consider an instance of the PEPP-complete problem, Empty, which is given by
a poly(n)-sized circuit C : [2n − 2] 7→ [2n − 1], where the challenge is to find an element,
e ∈ [2n − 1] such that for all i ∈ [2n − 2], C(i) ̸= e.

We now define a Short Choice instance whose solution allows us to recover a solution
to the Empty problem.

The universe, U , of this instance consists of the elements in the set [2n − 2] (the domain
of C). It now suffices to define a sequence of predicate functions, P0, . . . , Pn−2.

Each predicate function Pi takes as input the distinct elements a0, a1, . . . , ai, x and
follows a similar procedure to the proof of PPP-hardness of Long Choice,. First, it
calculates a set Hi of elements belonging to the range of C. This set Hi has the form
[xi, yi] \ {C(a0), C(a1), . . . , C(ai)}. Pi then calculates the midpoint of Hi, defined as the
smallest value k ∈ Hi such that half of the elements of Hi are less than or equal to k. Pi

returns 1 if C(x) is less than or equal to the midpoint of Hi and 0 otherwise.
It now remains to define the sets Hi. The sets Hi are defined inductively with the

following two key properties:
1. |Hi| ≥ 2n−i − 2
2. If a0, a1, . . . , ai is a Long Choice subcertificate, then for every k ∈ {0, 1, . . . , i − 1},

C(aj) ∈ Hk

⋃
{C(a0), C(a1), C(a2), . . . , C(ak)} whenever j > k.

As a base case, given a first input of a0, P0 defines H0 := [2n − 1] \ {C(a0)}. This satisfies
the first inductive property: [2n − 1] \ {C(a0)} has 2n−0 − 2 elements.

To see why H0 satisfies the second inductive property, note that H0
⋃

C(a0) is actually
the set [2n − 1] - the range of C! Therefore, for any subcertificate, a0, a1, . . . , ai, we will have,
for all k ∈ {1, . . . , i}, that C(ak) ∈ H0

⋃
C(a0), as desired.

Now, suppose that the H0, . . . , Hi have been defined in such a way that they satisfy the
two inductive properties. Suppose Pi takes as input a valid subcertificate a0, . . . , ai, along
with a final element ai+1. Then, Pi first uses the elements a0, . . . , ai to define Hi. Next, it
calculates the midpoint of Hi. Then, Pi(a0, a1, . . . , ai, ai+1 returns 1 if C(x) is less than or
equal to the midpoint and 0 otherwise. Accordingly, we define Hi+1 as follows:
1. If Pi(a0, . . . , ai, ai+1) is 1, then we define Hi+1 to be the elements of Hi \ C(ai+1) which

are less than or equal to the midpoint of Hi

2. Otherwise, we define Hi+1 to be the elements of Hi \ C(ai+1) which are greater than the
midpoint of Hi
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To prove that the first inductive property holds for Hi+1, recall that by our inductive
assumption, Hi contains at least 2n−i − 2 elements. By definition, the midpoint will split
this set into two sets, A and B, each of size at least 2n−i−1 − 1. Hi+1 is defined as either
A \ C(ai+1) or B \ C(ai+1). Thus, in either case, Hi has at least 2n−i−i − 2 elements, as
desired.

To prove that the second property holds, assume without loss of generality that C(ai) is
greater than the midpoint of Hi−1. Then, as described above, we define Hi to be the subset
of Hi−1 \ C(ai) containing elements greater than the midpoint of Hi−1.

Now, in order for Pi−1(a0, a1, . . . , ai−1, aj) to be constant for all j ≥ i, we must have
that C(aj) is also greater than the midpoint of Hi−1. However, by the second inductive
assumption, we know that C(aj) must belong to Hi−1

⋃
{C(a0), . . . , C(ai−1)}. If we apply

these two facts together, we conclude that C(aj) must belong to the set Hi

⋃
{a0, . . . , ai−1, ai}.

Letting j = i + 1 in our case proves that the second inductive property holds.
Finally, consider any certificate to this instance. It consists of a subcertificate a0, . . . , aj

(j ≤ n − 2) and a bit, c. As we know, this bit c has the following property: there is no object
aj+1 which both extends the certificate and also has Pj(a0, . . . , aj , aj+1) = c.

Consider the set Hj ; it has size at least 2n−(j−2) − 2 ≥ 2n−(n−2) − 2 = 2. Thus, the
midpoint of Hj splits Hj into two nonempty subsets of size at least 1. Let A denote the
subset of Hj containing elements less than or equal to its midpoint, and let B denote the
subset of Hj containing elements greater than its midpoint. Suppose that c = 0. Then we
can conclude that there are no elements C(aj+1) ∈ B. If there were, we could pick such an
element to extend the Long Choice sequence. Thus any element of B would be a solution to
our problem. Similarly, if c = 1; then we can similarly conclude that there are no elements
C(aj+1) ∈ A; thus any element of A would be a solution to our problem. Finally, note that
we can easily identify which elements belong to the set A and B; as mentioned earlier, they
take the form [xi, yi] \ {C(a0), C(a1), . . . , C(ai)}. This completes the proof. ◀

C Missing material from Section 6 (König, Erdős-Ko-Rado)

C.1 König
The proof that König is PPP-complete (Theorem 15) follows from the next two lemmas.

▶ Lemma 25. König is PPP-hard

Proof. We provide a reduction from Collision. Suppose we are given a circuit C that
defines a Collision instance:

C : {0, 1}n 7→ {0, 1}n

We define a König problem instance on 2n+1 nodes, by a parent mapping :

P : {0, 1}n+1 7→ {0, 1}n+1 × {0, 1}

Note that P implicitly defines a graph on 2n+1 nodes. The nodes are supposed to be
arranged in a binary tree with root 0. We start by defining the positions of nodes whose
binary encodings are in the range [0, 2n − 1], and we do so recursively. First, 0 is the root.
Next, consider any node s in this range. If the binary encoding of s is odd, we define
P (s) = (⌊ s−1

2 ⌋, 0); that is, s is the left child of a node with binary encoding ⌊ s−1
2 ⌋. Similarly,

if the binary encoding of s is even, we define P (s) = (⌊ s−1
2 ⌋, 1). (This arrangement is similar

to the indexing of a heap.) Note that so far, our definition of P has absolutely no dependence
on the circuit C.

ITCS 2023



88:18 Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

To finish the definition of P , it remains to consider the nodes whose binary encodings are
in the range A = [2n, 2n+1 −1]. Consider a given node s whose encoding lies in the range given
by A. Then s − 2n lies in the domain of C. Furthermore, for each s ∈ A, s − 2n corresponds
to a unique element in the domain of C. For each s ∈ A, we let r = C(s − 2n) + 2n − 1 and
we define

P (s) = (⌊r − 1
2 ⌋, parity(C(s − 2n)))

where the parity function returns 0 if the input is even and 1 if it is odd.
Because the circuit C has range [0, 2n − 1], r must lie in the interval [2n − 1, 2n+1 − 1].

Then, based on the definition of P (s), the parent of each s ∈ A must lie in the interval
B = [2n−1 − 1, 2n − 1]. There are 2n−1 nodes in the interval B, and each of these nodes can
have at most 2 children. Thus, a total of 2n nodes can have parent nodes in the interval B.

On the other hand, every node of A must have a parent in the interval B, and we know
there are 2n nodes in the interval A. In addition to the nodes of A, we know that the node
2n − 1, which does not belong to A, also has a parent in B: P (2n − 1) = 2n−1 − 1. This
implies that a total of 2n + 1 elements must have a parent belonging to the interval B.

Since B can only have 2n children, by the pigeonhole principle, there must exist a node
in B with two left children or two right children. By the definition of the König problem,
these two left or right children form a valid certificate to the König problem. It remains to
show that these two nodes also provide a certificate for the Collision problem.

There are two cases to consider. In the first case, suppose that parent node 2n−1 − 1 has
two left children. We know that one of these children is the node 2n − 1, and the other child
must be a node s ∈ A. In this case, if P (s) = (⌊ r−1

2 ⌋ = 2n−1 − 1, 0), we can conclude that
r = 2n − 1. However, this would in turn imply that C(s − 2n) = 0, which means s − 2n is a
zero element to our original Collision problem!

In the second case, suppose that a parent node i > 2n−1 −1 has two left (or right) children.
This would imply that there are two distinct nodes s1, s2 ∈ A with P (s1) = P (s2). By the
definition of P , this in turn implies that C(s1 − 2n) = C(s2 − 2n). Since s1 ≠ s2, we can
conclude that s1 −2n and s2 −2n provide us with a collision in our Collision certificate. ◀

▶ Lemma 26. König is in PPP

Proof. We are given an instance of the König problem, which is defined by a root node,
r, and a circuit P : {0, 1}n 7→ {0, 1}n × {0, 1} As described above, P implicitly describes a
graph on 2n nodes. We wish to reduce it to an instance of Pigeonhole Circuit in polynomial
time. To do this, we define a circuit, C:

C : {0, 1}n 7→ {0, 1}n

where the domain of C will be the nodes of the graph defined by P .
In any binary tree, we can assign every node a unique “index” based on its position

relative to the root. This indexing scheme is defined in an inductive fashion. First, the root
is given index 0. Next, suppose a given node ai has index i. Then, we say that its left child
has index 2 ∗ i + 1 and its right child has index 2 ∗ i + 2;

Consider any node of the graph, g. Suppose that g is neither a Far away node nor a Long
path certificate nor a Non-unique root. (Note that all of these conditions are easy to verify).
Under these assumptions, we show how to efficiently find the index of g. To do this, we
repeatedly apply the parent operator, P , to the node g until we reach the root node. Based
on the assumptions we have made, this is always possible. Furthermore, it will require at
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most n − 1 applications of the parent operator. Every time we apply the parent operator to
a node, we receive two pieces of information: the node’s parent and whether the node is a
left or right child of its parent. Thus, once we reach the root node in this process, we have a
sequence of nodes a0, a1, a2, . . . , ak where ak = r and a0 = g. Furthermore, for each ai and
ai+1, we know whether ai is the left or right child of ai+1. We therefore have a path from r

to g. Using this path, we can use the indexing scheme mentioned above to find the indices of
the nodes r = ak, ak−1, . . . , a0 = g in that order to finally arrive at the index of node g.

We are now in a position to fully define the circuit C. On input i, C(i) outputs:
1. 0 if r is an invalid root
2. 0 if i ̸= r and i is a root (in this case, there is a non-unique root).
3. 0 if i is a Far Away Node
4. 0 if i provides a certificate for a Long Path.
5. If none of the above conditions are met, then let x be the index of node i in the binary

tree. C(i) returns x + 1.

It now remains to show that a certificate to the König problem can be recovered from a
certificate to the Collision problem we have just defined. There are two cases to consider.

In the first case, suppose our certificate to the Collision problem is a zero element. In
this case, there are four possibilities. Either r is an invalid root, or i ≠ r is a root, or i is a
Far Away Node or i is a certificate for a Long Path. We can polynomially verify all of these
conditions, and they all represent valid certificates to the König problem.

In the second case, suppose our certificate to the Collision problem is a collision of two
elements in which neither element is a zero element: i ̸= j with C(i) = C(j) ̸= 0. Then, we
know that i and j are not Long Path certificates and are not Far Away nodes. Furthermore,
we know that their indices must be equal to each other, which in turn implies that they are
left (or right) children of the same parent node. Thus, i and j are identical children and
provide us with a valid certificate. ◀

C.2 Erdős-Ko-Rado

▶ Theorem 18. Erdős-Ko-Rado is PPP-complete.

Proof. We first prove that Erdős-Ko-Rado is PPP-hard. Accordingly, suppose we are given
some instance of Collision, defined by a circuit C : {0, 1}n 7→ {0, 1}n, and the challenge is
to find an input that maps to 0 or find two distinct inputs which map to the same value.

We construct a circuit, F , which implicitly defines a 2-set system of size 2n. Our circuit
F takes, as input, an n-bit string, and outputs a ({0, 1}n)2-bit string: F (x) = (0n, C(x)).

It remains to show that any solution to this instance of the Erdős-Ko-Rado problem
allows us to recover a solution to the original Collision problem. There are 3 possible types
of certificates that we can find in the Erdős-Ko-Rado problem instance. First, consider
a certificate providing two disjoint sets. This is impossible from the above definition of F ,
since every set contains the element 0n. Second, consider a certificate x providing an invalid
set F (x). This means that C(x) = 0n, i.e. we find a zero element in the Collision problem.
Third, consider a certificate which defines a repeat set. That is, we have two indices a and b

with F (a) and F (b) defining the same set. As we see in the above definition of F , this implies
that C(a) = C(b), which provides us with a collision for our original Collision problem.
Thus, any certificate for the Erdős-Ko-Rado problem provides us with a certificate for the
Collision problem above.
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We now reduce Erdős-Ko-Rado to Collision. Consider an Erdős-Ko-Rado problem
instance, defined by a circuit F which implicitly provides us with a 2-set system of size 2n.
We construct a circuit C : {0, 1}n 7→ {0, 1}n as follows. We first examine two arbitrary sets
from the set system, F . Without loss of generality, we examine F (0) and F (1). If these two
sets are disjoint, identical, or invalid, we are done. Otherwise, they have an intersection of
exactly 1 element. Let F (0) = (a, b) and F (1) = (b, c), such that their intersection is {b}.
For any given index i, define C(i), as follows:
1. If F (i) outputs an invalid set, set C(i) = 0
2. If F (i) contains both b and d (where d ̸= b), then we let C(i) = d.
3. If F (i) does not contain b, then set C(i) = 0.

There are two cases to consider here. We start by considering the case in which we
recover a zero element. That is, we find an element x with C(x) = 0. This can only happen
in 2 cases, based on the above definition of C. First, F (x) might generate an invalid set. In
this case, x is a valid certificate. Second, F (x) might not contain b. In this case, suppose
F (x) = (p, q). We note that x is distinct from 1 and 0, because 0 and 1 are not zero elements,
based on the above definition. If F (x) is disjoint from either F (1) or F (0), then we are
done. If, instead, F (x) does not contain b and has nonempty intersection with F (1) and
F (0), then F (x) must contain a and c. Then, consider any index y that is distinct from
0, 1, x. If F (y) is invalid, we are done. If F (y) is identical to one of F (0), F (1), F (x), we have
found a repeated set certificate, and we are done. Otherwise, F (y) must be fully disjoint
from at least one of F (0), F (1), F (x), and we can recover two disjoint sets. That is, the only
way a set F (y) of size 2 intersects each of {a, b}, {a, c}, {b, c} is if F (y) is identical to one of
{a, b}, {a, c}, {b, c}.

Now, suppose that we recover a collision from C. That is, we find two distinct n-bit
strings x and y with C(x) = C(y). First, suppose C(x) = C(y) ̸= 0. Based on the above
definition of C, this can only happen if F (x) and F (y) both contain the element b as well
as the element C(x). In this case, F (x) and F (y) both describe the set {b, C(x)}, which
means that we have recovered a “repeated set” certificate. In the second case, suppose
C(x) = C(y) = 0. That is, suppose we have found two zero certificates. In this case, the
argument from above tells us that we can recover the desired certificate using any one of
these zero certificates. In this case, F (x) and F (y) are each either invalid sets or they do not
contain b. In the case that they are invalid sets, we are done. If these indices both do not
contain b, then F (x) and F (y) must each contain both a and c in order to have nonempty
intersection with F (1) and F (2). ◀
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It is well-known that randomized communication protocols are more powerful than deterministic
protocols. In particular the Equality function requires Ω(n) deterministic communication complexity
but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows
that randomized communication is strictly stronger than what can be solved by deterministic
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that the previously-studied Integer Inner Product function, which can be efficiently computed
even with bounded-error randomness, cannot be computed using sublinear communication in the
nondeterministic Equality model. To prove this we give a new matrix-theoretic characterization of
the nondeterministic Equality model: specifically, there is a tight connection between this model
and a covering number based on the blocky matrices of Hambardzumyan, Hatami, and Hatami, as
well as a natural variant of the Gamma-2 factorization norm. Similar equivalences are shown for the
unambiguous nondeterministic model with Equality oracles. A bonus result arises from these proofs:
for the studied communication models, a single Equality oracle call suffices without loss of generality.

Our results allow us to prove a separation between deterministic and unambiguous nondeter-
minism in the presence of Equality oracles. This stands in contrast to the result of Yannakakis
which shows that these models are polynomially-related without oracles. We suggest a number of
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1 Introduction

Two computationally unbounded parties each hold an n-bit string. Their goal is to compute
some function that depends on their inputs. For a given function, how many bits must they
exchange? In the paper that introduced this model, Yao proved that computing the Equality
function – that is, deciding whether or not the two parties’ inputs are equal – requires Ω(n)
bits of communication. This means that Equality is maximally hard in an asymptotic
sense, as n + 1 bits of communication always suffices [31]. However, if a public source of
randomness is available and some bounded probability of error is tolerated, Equality only
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requires O(1) bits of communication; a proof can be found in most introductory texts on the
subject [19, 29]. This means that randomized communication can be exponentially stronger
than deterministic communication. There has been recent interest in determining the power
of Equality in communication. We can sum up this direction of study with the following
question:

What total functions can be efficiently computed in a communication model where the
only access to randomness is via reduction to Equality?

Many known functions where randomization is useful can be solved by an efficient
deterministic protocol with access to an Equality oracle – for example, the greater-than
function [25]. On the other hand, it was recently shown that Equality alone cannot simulate
all randomized protocols [9]. In both of these results, the model under study is deterministic
and the oracle access resembles Turing reductions in classical complexity: the Equality
oracle may be queried many times and the results may be used however the parties want. In
this article we study what happens when these parameters are changed:

What functions can be efficiently computed when stronger models of communication
are given Equality oracle access?
Does restricting to many-one reductions change the power of Equality oracles?

Of specific interest to us is nondeterministic communication with access to an Equality
oracle. This is a natural restriction of Merlin-Arthur communication, an intriguing model
against which no linear lower bounds for explicit functions are known (see [1, 11]). Non-
deterministic communication with Equality queries has been implicitly studied before; for
example, Göös, Pitassi, and Watson showed a separation between this model and zero-error
randomized communication with access to a single nondeterministic oracle query [13]. Our
main results center around this model.

1.1 Blocky Matrices as Building Blocks
Given a two-party function F : {0, 1}n × {0, 1}n → {0, 1}, its communication matrix M

is a 2n × 2n matrix that acts as a bipartite truth table for F : each row represents some
input x, each column represents some input y, and entry M [x, y] is the value of F (x, y).
Nondeterministic flavors of communication complexity can be defined as minimization
problems for covers of M , using monochromatic rectangles as the basic building block
(a rectangle is a product set of rows and columns). For example, the nondeterministic
communication complexity of M , NPcc(M), is characterized by the logarithm of C1(M),
the minimum number of 1-monochromatic rectangles required to cover the ones of M , and
co-nondeterministic communication complexity, coNPcc(M), is the logarithm of C0(M), the
minimum cover size for the zeroes of M . Similarly the unambiguous complexity of M ,
UPcc(M), is characterized by the logarithm of χ1(M), the minimum number of disjoint
rectangles needed to cover the ones of M , and coUPcc(M) is the logarithm of χ0(M), the
minimum number of disjoint rectangles needed to cover the zeroes of M . This point of
view was highly successful in understanding the relationships between deterministic and
nondeterministic communication. For example, Aho, Ullman, and Yannakakis showed that
Pcc = NPcc ∩ coNPcc and thus deterministic communication complexity is characterized by
the logarithm of χ(M), the size of the minimum partition of M into disjoint monochromatic
rectangles [2]. Moreover, viewing nondeterministic communication as covering problems
brings out some equivalent formulations coming from extremal combinatorics and graph
theory. For example, the proof of superlogarithmic lower bounds on the coNPcc complexity of
problems with efficient UPcc protocols refuted a polynomial version of the Alon-Saks-Seymour
conjecture in graph theory [30, 6, 12].
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(a) Identity

matrices


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


(b) All-ones

matrices


1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1


(c) Direct sums of
all-ones matrices


1 0 1 0 1
0 1 0 1 0
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0


(d) Permutations of

(a)-(c)

Figure 1 Some examples of blocky matrices.

In this work we focus on communication complexity classes equipped with an Equality
oracle and introduce several equivalent characterizations of these classes as covering mini-
mization problems but now using Equality matrices as the basic building block. The
communication matrix for Equality is simply the 2n × 2n identity matrix. Therefore, the
set of inputs on which an Equality oracle call yields the answer 1 has the same basic
structure as the identity matrix, potentially with some rearrangements as the players may
locally map their inputs to other values in the query to the oracle. We will use the vocabulary
of Hambardzumyan, Hatami, and Hatami [15] who call such blowups of the identity matrix
blocky matrices:

▶ Definition 1. A blocky matrix is an identity matrix, perhaps with some rows and columns
deleted, duplicated, or permuted, and perhaps with all-zero rows or columns added. Equiva-
lently, a blocky matrix takes value 1 on a set R of rectangles, where any pair of rectangles in
R have disjoint row and column sets, and value 0 elsewhere.

See Figure 1 for some examples of blocky matrices.

We define the blocky cover number of M , CB
1 (M), to be the minumum number of blocky

matrices that are needed to cover the ones of M , and the blocky partition number of M ,
χB

1 (M), to be the minimum number of blocky matrices that are needed to disjointly cover
the ones of M . (See Section 2 for formal definitions.) We note that blocky cover number and
blocky partition number are a generalization of the standard notions of cover number and
partition number, and thus understanding properties of blocky cover and partition number
is an important tool for proving lower bounds for models of computation that have access to
Equality oracles.

[15] defined the blocky rank of M to be the minimum r such that M can be written
as a linear combination of r blocky matrices. Our definitions of covering and partition
minimization by blocky matrices can be seen as flavors of blocky rank, similar to the various
flavors of rank and γ2 norm (e.g., approximate rank, sign rank, approximate γ2, etc.) Here
again we see that complexity measures based on blocky rank measures are robust and come up
naturally in other areas. For example, Hambardzumyan, Hatami, and Hatami [15] observed
that blocky rank arises in operator theory where it is connected to idempotents in Schur
algebras, and unambiguous blocky complexity is related to covering problems in graph theory.
Another recent result is that a blocky version of sign rank essentially characterizes the size
of depth-2 linear threshold circuits [3].
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1.2 Our Results
New Characterizations

As mentioned above, nondeterministic, co-nondeterministic and deterministic communication
complexity are characterized by 1-cover number, 0-cover number and partition number,
respectively. We prove similar characterizations for nondeterministic communication classes
equipped with an Equality oracle.

▶ Theorem 2 (Simplified). Let F be a communication function on n bits. Let A be its
corresponding 2n × 2n Boolean communication matrix. Then

UPEQcc(F ) ≤ log χB
1 (A) ≤ O

(
UPEQcc(F ) · log n

)
.

Also,

NPEQcc(F ) = log CB
1 (A) ≤ O

(
NPEQcc(F ) · log n

)
.

In order to prove the above theorem, we define matrix-analytic characterizations of these
classes by variants of a new binary version of the well-studied γ2 norm. Recall that the γ2
norm of a matrix M is at most r if M can be decomposed into the product of matrices X

and Y such that all rows of X and columns of Y have ℓ2-norm at most r. This norm and
its approximate version are relaxations of the rank and approximate rank of M and have
several equivalent characterizations and many applications. (See [21] for a comprehensive
survey.) For a Boolean matrix M , we define the binary γ2 of M , γ2,B(M), by restricting X

and Y to be Boolean matrices. The binary generalization of the measure γ∞
2 , γ∞

2,B(M), is
defined similarly. (See Section 2 for formal definitions.) En route to proving Theorem 2, we
show that γ2,B characterizes UPEQcc complexity and γ∞

2,B characterizes NPEQcc complexity.
As a byproduct of the above proofs we obtain the following corollary, showing that

multiple Equality calls is no more powerful than a single Equality call with respect
to UPEQcc and NPEQcc. Note that in contrast this is false with respect to PEQcc as [28]
exhibited total functions easy for deterministic protocols with k Equality calls but hard
for deterministic protocols with less than k Equality calls.

▶ Corollary 3. With respect to unambiguous and nondeterministic communication, Turing-
style and many-one style reductions to Equality are polynomially equivalent. That is,
UPEQcc = U · EQcc and NPEQcc = ∃ · EQcc.

New Separations

In a beautiful paper, Chattopadhyay, Mande, and Sherif disproved the log approximate rank
conjecture by exhibiting a total function that has low approximate rank but requires large
BPPcc complexity [10]. We observe that the same function also has low UPEQcc complexity,
thereby obtaining the following new separation:

▶ Theorem 4. UPEQcc ̸⊂ coMAcc

As a corollary, we show that PEQcc ̸= UPEQcc, and thus Yannakakis’ result [30], showing
that Pcc = UPcc, breaks in the presence of Equality oracles.

Our second separation concerns the strength of deterministic communication equipped
with an Equality oracle versus unrestricted randomized communication. As mentioned
above, Chattopadhyay, Lovett and Vinyals [9] proved that there is a total function in BPPcc
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but with linear PEQcc complexity, thus proving BPPcc ̸⊂ PEQcc. (In fact their hard function
is in coRPcc, thus proving coRPcc ̸⊂ PEQcc.) The next theorem strengthens their separation
by showing that their function remains hard even for nondeterministic protocols with an
Equality oracle.

▶ Theorem 5 (Simplified). coRPcc ̸⊂ NPEQcc (and therefore BPPcc ̸⊂ NPEQcc and MAcc ̸⊂
NPEQcc).

The outline of the remainder of the paper is as follows. Section 2 contains background
information, definitions and notation. Section 3 develops basic properties of the new Boolean
γ2 measure, which are used to prove our main equivalences (Theorem 2). In Section 4 we
prove our separation theorems (Theorem 4 and Theorem 5). We conclude in Section 5 with
a discussion of our results and how they fit into the communication complexity landscape,
and highlight several intriguing open questions.

2 Preliminaries

A combinatorial rectangle (or simply “rectangle”) is a product set R = X × Y , where X is a
set of rows over some universe X and Y is a set of columns over some universe Y. We say
that R contains a row x if x ∈ X (or a column y if y ∈ Y ).

A rectangle is often interpreted in this paper as a matrix over X × Y where the entries in
X × Y are given value 1 and the other entries are given value 0. For example, if we say that
matrix A is the sum of a set of rectangles, we mean that A is the sum of the matrices based
on those rectangles.

For a matrix A, a monochromatic rectangle of A is a rectangle whose corresponding
entries in A have constant value. Often this value is specified; i.e. a combinatorial rectangle
in A that contains only ones is a 1-monochromatic rectangle.

We say that a set of rectangles R covers a subset S of coordinates in a matrix A if
every coordinate (i, j) ∈ S is contained in some R ∈ R and no coordinates outside of S are
contained in any R ∈ R. Such a set is called a cover of S. For example, if R contains exactly
the coordinates in A whose entries take value 1, R is a cover of the ones of A. Furthermore,
if the rectangles of R are disjoint (i.e. they do not overlap), R is a partition and is said to
partition S.

For two matrices A, A′ of the same size, A ◦ A′ represents the entry-wise product.

Blocky cover number and blocky partition number

We define matrix measures similar to partition number and cover number, but in terms of
blocky matrices instead of combinatorial rectangles.

▶ Definition 6. For a {0, 1}-valued matrix A, the blocky partition number of A, denoted
χB

1 (A), is the minimal r such that A can be expressed as the sum of r blocky matrices.

▶ Definition 7. For a {0, 1}-valued matrix A, the blocky cover number of A, denoted CB
1 (A),

is the minimal r such that A can be expressed as the entry-wise Or of r blocky matrices.
That is, if A[i, j] = 1 then the sum of the blocky matrices is at least 1, and otherwise the sum
is 0.

An equivalent way to define these would be that χB
1 (A) is the minimum number of blocky

matrices such that their constituent rectangles partition the ones of A, and CB
1 (A) is the

minimum number of blocky matrices such that their constituent rectangles cover A – this
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definition justifies the names “blocky partition number” and “blocky cover number”. It also
motivates the definition of two related measures: χB

0 (A) is the minimum number of blocky
matrices needed to partition the zeroes of A, and CB

0 (A) is defined similarly.

2.1 Communication complexity
We assume familiarity with the basics of communication complexity [19, 29]. This paper
uses the now-common notation for communication classes and models of Babai, Frankl,
and Simon [4]. Denote the complexity of a function F in a given communication model as
Ccc(F ), where C is an analogous class in classical complexity theory. As a slight abuse of
notation, “Ccc” is used both to refer to the set of functions with Ccc(F ) ≤ polylog(n) and to
the communication model itself.

For most of the standard communication models we reference in this paper – Pcc, BPPcc,
RPcc, NPcc, and MAcc – we point the reader towards Appendix B of the survey by Göös,
Pitassi, and Watson for definitions [13]. The only standard model we will need that is not
defined in that paper is UPcc, the model with unambiguous nondeterminism.

▶ Definition 8. UPcc is the unambiguous nondeterministic model, where a prover sends
the players a witness string, after which the players proceed deterministically. If the correct
output is 1, there must always be exactly one witness that leads the players to accept; if the
correct output is 0, there must never be such a witness. The cost of a protocol in the UPcc

model is the number of bits needed to encode the witness plus the maximum depth of the
deterministic portion.

Classes based on equality

We are interested in models of communication that are augmented with the ability to compute
the Equality function. To capture this notion, we first define a model of computation that
makes a single call to Equality and outputs the answer from that call.

▶ Definition 9 (Equality-based communication). A function F has a protocol in the model
EQcc if there exist some functions fX and fY such that F (x, y) ≡ fX(x) = fY (y). The cost
of any such protocol is 1.

This is a strange definition, as it does not assign a cost to most functions: no suitable fX

and fY exist for most F . Indeed, the only functions with a EQcc protocol are those whose
communication matrix is a blocky matrix! The restricted nature of EQcc means that it is
only truly useful when examining its composition with other models. To this end, we next
define an oracle model where Equality may be queried multiple times.

▶ Definition 10 (Communication with equality oracle queries). Let Ccc be any communication
model in which the parties can send messages deterministically. The model CEQcc is the same
as Ccc except that at any step where a party would send a bit deterministically, the parties
locally compute some functions fX(x, π) and fY (y, π) (where π is the transcript so far) and
learn whether or not fX(x, π) = fY (y, π). The cost for computing this equality is 1, and the
cost is otherwise defined the same as in Ccc.

The three models of most interest to us are PEQcc, NPEQcc, and UPEQcc. To aid in our
proofs we will give explicit definitions of these models that highlight the structure of a
protocol.
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▶ Definition 11. A PEQcc protocol is a decision tree. Each internal node v of the tree
corresponds to oracle queries to the Equality function: that is, it tests whether fX(x, π) =
fY (y, π) where π is the transcript that leads to node v. The internal nodes each have two
children, corresponding to “yes” and “no” answers to the query. Each leaf node w of the tree
corresponds to an output ow. The output of the protocol is computed by starting at the root
node, making the oracle query, traversing to the appropriate child, continuing this process
and halting upon reaching a leaf w, where we output ow. The cost of the PEQcc protocol is the
depth of the decision tree.

▶ Definition 12. An NPEQcc protocol is a collection of 2m PEQcc protocols with depth at most
d. The function computed by this NPEQcc is the Or of the functions computed by the PEQcc

protocols. The cost of the NPEQcc protocol is m + d.

The definition of UPEQcc is similar to the above, and only requires the addition of the
unambiguity constraint.

▶ Definition 13. A UPEQcc protocol is a collection of 2m PEQcc protocols with depth at most
d where no two of these PEQcc protocols have an input on which they both return 1 (that is,
their supports are pairwise disjoint). The function computed by this UPEQcc is the Or of the
functions computed by the PEQcc protocols. The cost of the UPEQcc protocol is m + d.

Many-one reduction classes

As discussed in the introduction, the model CEQcc represents a Turing reduction from the
model Ccc to the Equality function. In order to reason about many-one reductions to
Equality, we use counting class notation: this notation is standard in classical complexity,
see [16].

▶ Definition 14. An ∃·EQcc (respectively U·EQcc) protocol is an NPEQcc (respectively UPEQcc)
protocol where the constituent PEQcc protocols have depth 1 and simply return the output of
the Equality query.

2.2 The γ2 norm and variants
Let A be a matrix. The γ2 norm of A is defined as:

γ2(A) = min
X,Y

XY ⊤=A

r(X)r(Y )

where r(M) is the maximum ℓ2 norm of any row of M . This is indeed a norm, which can be
proven by examining the semidefinite program that computes it [22].

If A is {0, 1}-valued, then γ2(A) ≤ O(
√

rank(M)) – see the book of Lee and Shraibman
for more details [21]. The γ2 norm turns out to be very closely related with other natural
generalizations of rank. We can write a real matrix as

∑
i αiRi, where the αi are weights and

the Ri are rank-one {0, 1}-matrices (i.e. rectangles). The µ-norm of a matrix is the minimum
of
∑

i |αi| over {αi}, {Ri} where
∑

i αiRi equals the matrix. The ν-norm is defined similarly,
but where the rank-one {0, 1}-matrices are replaced with rank-one {−1, 1}-valued matrices.
By an application of norm duality and Grothendieck’s Inequality, for any real matrix A we
have γ2(A) ≤ ν(A) ≤ µ(A) ≤ 4KGγ2(A) where KG is Grothendieck’s constant [23].
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The above relationship between γ2 and rank means that the γ2 norm can be used to lower
bound deterministic communication complexity, as log rank(A) lower bounds deterministic
communication complexity. This is perhaps uninteresting, as rank itself is a tighter lower
bound: for example, the communication matrix of Equality has constant γ2 but exponen-
tially high rank. The power of γ2 in currently-known communication lower bounds arises
when we consider its approximate variant.

Approximate norms

Every matrix measure Φ has an associated α-approximate variant. Let A be a {0, 1}-valued
matrix. We say that A′ α-approximates A if A′ is positive on entries where A is 1, is
non-positive on entries where A is 0, and differs entrywise from A by at most α. The
α-approximate Φ of A, denoted Φα(A), is the minimum Φ(A′) over all A′ that α-approximate
A. See the book of Lee and Shraibman [21] for more discussion on this definition.1

Φα(A) = min
A′ where ∀x,y:

if A[x,y]=0 then A′[x,y]≤0
if A[x,y]=1 then A′[x,y]≥1

∥A−A′∥∞≤α

Φ(A′).

Let AF be the communication matrix of some function F . For any constant α, log γα
2 (AF )

lower bounds randomized communication complexity of F [24]. This can be proven directly
or by using γα

2 (AF ) = Θ(rankα(AF )) [20] and the fact that log rankα(AF ) lower bounds
randomized communication complexity [18]. This demonstrates the power of γα

2 in practice:
whereas the approximate rank of a matrix is not known to be efficiently computable, γα

2 (AF )
can be computed by a semidefinite program.

Motivated by taking the limit as α approaches infinity, we can also define the associated
infinity variant:

Φ∞(A) = min
A′ where ∀x,y:

if A[x,y]=0 then A′[x,y]≤0
if A[x,y]=1 then A′[x,y]≥1

Φ(A′).

Again letting AF be the communication matrix of some function F , there is an asympto-
tically tight connection between log γ∞

2 (AF ) and the discrepancy of combinatorial rectangles
in AF [23], which itself is known to be a tight bound on the so-called weakly-unbounded
randomized communication complexity of F (this model is denoted PPcc) [17].

Binary γ2

We are interested in a variant of the γ2 norm obtained by restricting the matrices X and Y

in the factorization of A to have entries in {0, 1}.

γ2,B(A) = min
{0,1}-matrices X,Y

XY ⊤=A

r(X)r(Y )

This variant is not a norm. In fact, γ2,B(A) is only defined if the entries of A are
non-negative integers. However, some useful properties of norms still hold for γ2,B. See
Section 3.1 for some of these.

1 Lee and Shraibman define α-approximation for {−1, 1}-valued matrices, and the definition ends up
being a bit simpler. However, our results overall are cleaner if we use {0, 1}-valued matrices, so we
suffer a bit of mess here.
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For our applications we will also use the infinity variant of γ2,B . Since γ2,B is only defined
for non-negative integer matrices, the constraint on the zeroes of the approximating matrix
must hold with equality. Explicitly:

γ∞
2,B(A) = min

A′ where ∀x,y:
if A[x,y]=0 then A′[x,y]=0
if A[x,y]=1 then A′[x,y]≥1

γ2,B(A′).

3 Characterizations

In this section we prove the matrix characterizations of nondeterministic communication
models with Equality oracles.

3.1 Properties of γ2 variants
First we will prove some helpful properties of γ2,B . We begin by giving an alternate definition
of γ2,B that will be more convenient to work with. Intuitively, optimizing γ2,B is equivalent
to finding a partition of the ones of a matrix into combinatorial rectangles that minimizes
the number of rectangles containing any row or column.

▶ Lemma 15. Let A be a matrix whose values are non-negative integers. Let R be a set of
combinatorial rectangles with

∑
R∈R R = A that minimizes

√
kxky, where kx (respectively

ky) is the maximum number of rectangles in R that contain any row (respectively column) of
A. Then γ2,B(A) =

√
kxky.

Proof. We begin by rearranging the terms in the definition of γ2,B to focus on the columns
of the factor matrices X and Y . Letting {u} be the columns of X and {v} be the columns
of Y , it is easy to see that γ2,B can be written as:

γ2,B(A) = min
{u},{v} sets of {0, 1}-valued vectors∑

i
uiv⊤

i =A

max
x,y

√∑
i

⟨ex, ui⟩2
√∑

i

⟨ey, vi⟩2

where ex is the vector that is 1 at location x and 0 elsewhere.
We can now verify that the characterization in the statement of the lemma is correct.

Since all vectors in {u} and {v} are {0, 1}-valued, the outer products uiv
⊤
i are combinatorial

rectangles. The sum of these rectangles is A. The expressions
∑

i⟨ex, ui⟩2 and
∑

i⟨ey, vi⟩2

are exactly kx and ky, respectively.2 Therefore, finding an optimal R as stated is exactly the
same as finding an optimal factorization of A. ◀

The alternate definition given in Lemma 15 allows for particularly simple proofs of the
following properties.

▶ Lemma 16. The measure γ2,B does not increase if a matrix has its rows or columns
deleted, duplicated, or rearranged, or if all-zeros rows or columns are added.

Proof. All of these operations allow us to keep the same structure of decomposition into
rectangles. ◀

2 Note that the exponents here are unnecessary, as the value of the inner products are always zero or one.
We include these only to highlight the equivalence with the ℓ2-norm in the definition of γ2,B .
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▶ Lemma 17. Any blocky matrix B has γ2,B(B) = 1.

Proof. The identity matrix has a γ2,B of 1 (the factor matrices are both the identity matrix).
Apply Lemma 16. ◀

▶ Lemma 18. Let A1 and A2 be two {0, 1}-valued matrices of the same dimensions. Then

γ2,B(A1 ◦ A2) ≤ γ2,B(A1)γ2,B(A2).

Proof. For i = 1, 2, let Ri be a partition of the ones of Ai into 1-monochromatic rectangles
achieving the minimum for γ2,B(Ai). Then {R ◦ R′ : R ∈ R1, R′ ∈ R2} is a partition of the
ones of A1 ◦ A2 into 1-monochromatic rectangles. If a row or column intersect R ◦ R′ then it
intersects both R and R′. ◀

▶ Lemma 19. Let A1 and A2 be two {0, 1}-valued matrices of the same dimensions whose
sets of 1-entries are disjoint. Then

γ2,B(A1 + A2) ≤ γ2,B(A1) + γ2,B(A2).

Proof. For i = 1, 2, let Ri be a partition of Ai achieving the minimum for γ2,B(Ai). Then
R1 ∪ R2 is a partition of the ones of A1 + A2 into 1-monochromatic rectangles. Every row
and column intersect at most γ2,B(A1) + γ2,B(A2) rectangles in this partition. ◀

Note that Lemma 19 does not give us subadditivity in situations where the ones of A1
and A2 are not disjoint. In fact, such a property does not hold.

We finish this subsection by proving tight bounds for the γ2,B of matrices of a specific
form.

▶ Lemma 20. γ2,B(Jn − In) = Θ(log n), where Jn is the n × n all-ones matrix.

Proof. Let En = Jn − In. Then the following recursive structure exists:

E2n =
(

En Jn

Jn En

)
.

It follows that γ2,B(E2n) ≤ γ2,B(En) + 1, and therefore γ2,B(En) ≤ O(log n).
The lower bound follows from Claim 7 in [27], which relies of a bound from [5]. The claim

says that if x1, . . . , xn and y1, . . . , yn are Boolean vectors satisfying that xiy
t
j = 0 if and only

if i = j, then there is some i ∈ [n] for which the number of ones in xi plus the number of
ones in yi is at least Ω(log n). ◀

Combining Lemma 16 and Lemma 20 gives us the following useful corollary.

▶ Corollary 21. γ2,B(Jn − B) = O(log n), where Jn is the n × n all-ones matrix and B is
any blocky matrix.

3.2 Connections between blocky measures and γ2 variants
Here we prove that blocky partition has a polynomial relationship with γ2,B and blocky cover
has a polynomial relationship with γ∞

2,B . Again, Lemma 15 helps us keep things simple.

▶ Lemma 22. Let A be a {0, 1}-valued matrix. Then:

γ2,B(A) ≤ χB
1 (A) ≤ (γ2,B(A))2 and γ∞

2,B(A) ≤ CB
1 (A) ≤ (γ∞

2,B(A))2.
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Proof. In the following, let A′ be the matrix that ∞-approximates A in the definition of
γ∞

2,B(A): that is, γ2,B(A′) = γ∞
2,B(A) and A′ is a matrix with non-negative integer values and

the same non-zero coordinates as A.
For a matrix M whose entries are non-negative integers let B be a set of blocky matrices

such that
∑

B∈B B = M . Then at most a single rectangle from each of these blocky matrices
can contain any given row or column of M , as the rectangles of each blocky matrix have
pairwise disjoint row and column sets. By Lemma 15, this means that the constituent
rectangles of B give an upper bound of γ2,B(M) ≤

√
|B| · |B| = |B|. If M = A, then B is a

partition of the ones of A into blocky matrices, and so we can set B such that |B| = χB
1 (A).

If M = A′, then B is a cover of the ones of A into blocky matrices, and so we can set B such
that |B| = CB

1 (A).
We now prove the other direction. Again, let M be a matrix whose entries are non-

negative integers. Let R be the optimal decomposition of M into combinatorial rectangles
as in the statement of Lemma 15 and let kx/ky be the associated row/column counts. Fix
some order on R. Define a set of kxky blocky matrices B as follows: for integers 0 < i ≤ kx

and 0 < j ≤ ky, blocky matrix Bi,j ∈ B is the set of row-column pairs (x, y) that are in the
ith rectangle that contains row x and the jth rectangle that contains column y (according to
the order that we fixed previously).

One can see that this definition of Bi,j does indeed yield a blocky matrix. Each entry in
the support of Bi,j is also in the support of some rectangle in R, and for any R ∈ R, it is
easy to see that the portion of R included in Bi,j is a product set – inclusion in Bi,j relies
only on fulfilling the ordering property on both the row and column – and that its rows and
columns are not shared with any other rectangle in Bi,j – only one rectangle R can be the
ith rectangle containing a row or the jth rectangle containing a column. Furthermore, each
entry in the support of R ∈ R is covered by some blocky matrix in B. Given this, we can see
that the sum of the matrices in B is M .

The size of B is kxky = (γ2,B(M))2. If M = A, B is a blocky partition of the ones of M

because R was a partition, and so B witnesses χB
1 (A) ≤ (γ2,B(A))2. If M = A′, then B is a

blocky covering of A and so CB
1 (A) ≤ (γ∞

2,B(A))2. ◀

3.3 Characterizations of equality-based protocols
We can now move on to proving the characterizations of Equality-based communication
classes. The proof techniques are essentially the same between the two theorems. Therefore,
we will state the intermediate lemmas in terms of both nondeterminism and unambiguous
nondeterminism.

▶ Lemma 23. Let F be a communication function on n bits. Let A be its corresponding
2n × 2n Boolean communication matrix. Then

log γ2,B(A) ≤ O
(

UPEQcc(F ) · log n
)

and log γ∞
2,B(A) ≤ O

(
NPEQcc(F ) · log n

)
.

Proof. Let Π be either a UPEQcc or NPEQcc protocol for F with 2m constituent PEQcc protocol
trees Ti of depth at most d. We can associate any node v of Ti with a Boolean matrix whose
set of 1-entries characterizes the subset of entries (x, y) on which the protocol reaches v.
Denote this matrix by Mv. As a simple example, for the root of the tree r, the matrix is
Mr = J2n .

Let v be any node in Ti, and let uL and uR be its children. Recall that uL will be reached
if the Equality query at v returned 0, and uR will be reached if that query returned 1.
Then there is some blocky matrix B such that:

MuR
= Mv ◦ B.

MuL
= Mv ◦ (J2n − B).
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Therefore, if v has depth d′ in Ti, Mv can be expressed as the entrywise product of d′

matrices that are either blocky or J2n minus a blocky matrix. By Lemma 17, Lemma 18,
and Corollary 21, this implies that for every node v in T , γ2,B(Mv) ≤ (n)d′ .3

Now we can prove the desired bounds. Let L be the set of all leaves ℓ of the trees Ti

where the corresponding PEQcc protocol would output 1. There are at most 2d2m such leaves.
If Π is a UPEQcc protocol, then for ℓ ∈ L the corresponding matrices Mℓ have disjoint

1-entries: leaves of a given tree will have disjoint 1-entries, and the inputs on which the
trees output 1 are disjoint. Therefore, A =

∑
ℓ∈L Mℓ, and so by Lemma 19 we have

γ2,B(A) ≤ (2n)d+m. Rearranging, we get log γ2,B(A) ≤ O ((d + m) · log n).
If Π is an NPEQcc protocol, a similar analysis holds, but we no longer have the property

that the inputs on which the trees output 1 are disjoint. Instead, we have that there is some
matrix A′ =

∑
ℓ∈L Mℓ which is non-zero exactly when A is non-zero. As above, by Lemma 19

we have γ2,B(A′) ≤ (2n)d+m. By the definition of γ∞
2,B , this means that γ∞

2,B(A) ≤ (2n)d+m.
Again, we can rearrange to yield log γ∞

2,B(A) ≤ O ((d + m) · log n). ◀

▶ Lemma 24. Let F be a communication function on n bits. Let A be its corresponding
2n × 2n Boolean communication matrix. Then

U · EQcc(F ) = log χB
1 (A) and ∃ · EQcc(F ) = log CB

1 (A).

Proof. If B is a partition (respectively cover) of the ones of A then in a U · EQcc (respectively
∃ · EQcc) protocol the nondeterministic witness can simply specify which blocky matrix in B
has the input in its support, and the parties can determine whether this is correct using a
single Equality call.

If Π is a U · EQcc (respectively ∃ · EQcc) protocol, then the associated matrices of the
constituent PEQcc trees are blocky and form a size 2k partition (respectively covering) of the
ones of A, where k is the cost of Π. ◀

▶ Theorem 2. Let F be a communication function on n bits. Let A be its corresponding
2n × 2n Boolean communication matrix. Then

UPEQcc(F ) ≤ U · EQcc(F ) = log χB
1 (A) = O(log γ2,B(A)) ≤ O

(
UPEQcc(F ) · log n

)
.

Also,

NPEQcc(F ) ≤ ∃ · EQcc(F ) = log CB
1 (A) = O(log γ∞

2,B(A)) ≤ O
(

NPEQcc(F ) · log n
)

.

Proof. The theorem follows from Lemma 22, Lemma 23, Lemma 24, and the facts that
U·EQcc(F ) ≥ UPEQcc(F ) and ∃·EQcc(F ) ≥ NPEQcc(F ) which follow easily from the definitions.

◀

4 Lower bounds and separations for equality protocols

In this section we prove our two separation results, both concerning the nondeterministic
communication classes UPEQcc and NPEQcc. The first separation, Theorem 4, establishes that
there is a total function in UPEQcc (and thus also in NPEQcc) that is not in coMAcc. The
second separation, Theorem 5, shows that there is a total function in coRPcc (and thus also
in BPPcc and MAcc) that is not in NPEQcc.

3 Corollary 21 is stated in terms of n × n matrices, whereas the matrices here are of dimension 2n × 2n.
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4.1 Proof of Theorem 4
In this section we prove Theorem 4, restated below.

▶ Theorem 4. UPEQcc ̸⊂ coMAcc.

The log rank conjecture is a long-standing open problem that asks whether the deter-
ministic communication complexity of a function and the rank of its communication matrix
are polylogarithmically related. Similarly, the log approximate rank conjecture asks a similar
question about the connection between randomized communication complexity and the
approximate rank of its communication matrix. Chattopadhyay, Mande, and Sherif give a
counterexample showing that the log approximate rank conjecture is false [10]. The function
that they use in their separation is called Sink◦XOR.

▶ Definition 25. The function Sink : {0, 1}(m
2 ) → {0, 1} interprets its inputs as assigning

directions to edges of the complete graph on m vertices and outputs 1 if that directed graph
has a sink.

The function Sink◦XOR : {0, 1}(m
2 ) × {0, 1}(m

2 ) → {0, 1} outputs the value of Sink(z),
where z = x ⊕ y is the entry-wise XOR of the inputs of Sink◦XOR.

The main result of Chattopadhyay, Mande, and Sherif is that Sink◦XOR has logarithmic
approximate rank but Ω(

√
n) randomized communication complexity – here, n is the length

of the inputs, so n =
(

m
2
)
. Indeed, they show the stronger result that coMAcc(Sink◦XOR) =

Ω(n1/4).4

▶ Lemma 26. U · EQcc(Sink◦XOR) = O(log n).

Proof. The witness indicates which vertex is the sink. As the graph defined in the problem
is complete, there is always at most one sink, which means this witness is unambiguous. The
parties then confirm that the vertex is a sink using a single Equality call as follows. For
a vertex v, let x[v] and y[v] be the inputs x and y restricted to the bits whose XOR will
determine the directions of the edges incident to v. Let w be the unique value such that v is
a sink if and only if x[v] ⊕ y[v] = w. The player that knows x can compute x[v] ⊕ w, and
then an Equality call can be used to determine if x[v] ⊕ w = y[v], which is the case if and
only if v is a sink. ◀

Lemma 26, combined with the main result of [10] that coMAcc(Sink◦XOR) = Ω(n1/4),
implies UPEQcc ̸⊂ coMAcc, thus proving Theorem 4. Of course, this also separates UPEQcc

from subsets of coMAcc; of particular interest is PEQcc. Theorem 4 shows that the result
of Yannakakis that Pcc = UPcc [30] does not hold when these classes are augmented with
Equality oracles. Theorem 4 also shows that UPEQcc is not closed under complement: the
negation of Sink◦XOR is in coUPEQcc but is not in MAcc, which is a superset of UPEQcc.

4.2 Proof of Theorem 5
Our main aim in this section is to prove Theorem 5 (restated below), giving a separation
between NPEQcc and MAcc.

4 Actually, their result is even stronger than this: coSBPcc(Sink◦XOR) = Ω(
√

n). The class coSBPcc

represents the small bounded-error model, which tightly characterizes the (0-sided) corruption bound.
It is known that coMAcc(F )2 ≥ coSBPcc(F ) for all F [14].
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▶ Theorem 5. There is a function F such that coRPcc(F ) = O(log n), but with NPEQcc(F ) =
Ω(n/ log n) and ∃ · EQcc(F ) = Ω(n). Therefore coRPcc ̸⊂ NPEQcc and thus MAcc ̸⊂ NPEQcc.

Chattopadhyay, Lovett, and Vinyals defined a lower bound technique that compares the
size of the largest 1-monochromatic rectangle of a function’s communication matrix with the
number of ones of that function [9]. We call the matrix measure used in their proof max-rect.

▶ Definition 27. Let A be a {0, 1}-valued m×n matrix, where α(A) is the number of ones in A

and β(A) is the size of the largest 1-monochromatic rectangle in A. The maximum-rectangle
bound A, denoted max-rect(A), is defined as:

max-rect(A) = α(A)√
β(A)

(
m+n

2
) .

Actually, this formulation of max-rect appeared in a preprint version of the aforementioned
paper [8] – in the full version [9], a more complicated expression is given. This latter measure
is used to give a tight (linear) lower bound on the PEQcc complexity of a function in coRPcc.
Using max-rect as defined here and in the preprint, the known techniques only give Ω (n/ log n)
bounds.

▶ Theorem 28 ([8, 9]). There is a function F : {0, 1}n × {0, 1}n → {0, 1} such that
coRPcc(F ) = O(log n) and whose corresponding 2n × 2n Boolean communication matrix A

has max-rect(A) = Ω(2n).

It turns out that max-rect is stronger than observed by Chattopadhyay, Lovett, and
Vinyals, and can be shown to lower bound NPEQcc with just a few tweaks of the proof
technique in the preprint [8]. This means that the function from Theorem 28 will work for
our separation.

▶ Theorem 29. Let A be a {0, 1}-valued m × n matrix. Then CB
1 (A) ≥ Ω(max-rect(A)).

Proof of Theorem 29. Let B be a cover of the ones of A with |B| = CB
1 (A) and let R be the

set of combinatorial rectangles in the blocky matrices of B. For a rectangle Ri ∈ R, we will
use the notation Ex(i) (respectively Ey(i)) for the event that x (respectively y) is contained
in Ri. Because the matrices of B are blocky, each row or column can only be contained in at
most |B| of these rectangles, i.e.

∑
i Ex(i) ≤ |B| and

∑
i Ey(i) ≤ |B|.

Then we have the following relationship between |B| and these Ri ∈ R:

(m + n)|B| ≥
∑

x

∑
i

Ex(i) +
∑

y

∑
i

Ey(i) =
∑

i

(∑
x

Ex(i) +
∑

y

Ey(i)
)

≥ 2
∑

i

√√√√(∑
x

Ex(i)
)(∑

y

Ey(i)
)

= 2
∑

i

√∑
x,y

(Ex(i)Ey(i))

= 2
∑

i

√
|Ri|.

The second inequality above follows from the AM-GM inequality. Let α(A) and β(A)
be as in the definition of max-rect. Then, since the rectangles of R are 1-monochromatic
rectangles that cover the ones of A, we have

∑
i |Ri| ≥ α(A) and, for all i, |Ri| ≤ β(A).

Together these constraints lower bound
∑

i

√
|Ri| by the minimum of an optimization

problem. This minimum is achieved if α(A)/β(A) of the Ri have area β(A), which gives∑
i

√
|Ri| ≥ α(A)/

√
β(A). Combining everything, we get

CB
1 (A) ≥ Ω

(
α(A)√

β(A)
(

m+n
2
)) = Ω(max-rect(A)). ◀
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Proof of Theorem 5. Combining Theorem 29 with our characterizations from Theorem 2:

∃ · EQcc(F ) = log CB
1 (A) and

log CB
1 (A) ≤ O

(
NPEQcc(F ) · log n

)
,

we get our desired bounds. ◀

We remark that for NPEQcc we get the same log n term in the denominator as [8], but for
∃ · EQcc we get the optimal linear lower bound.

5 Conclusion and open questions

Hambardzumyan, Hatami, and Hatami [15] initiated the study of blocky matrices and
blocky rank. They showed that it is a robust notion that is not only relevant to the study
of communication complexity, but also connected to central questions in operator theory.
Avraham and Yehudayoff [3] prove additional connections to circuit complexity, combinatorics,
and learning theory. Taken together, it seems clear that rank-like measures for blocky matrices
are a fundamental and robust notion, and deserving of further study.

In this paper, we continued this investigation by studying restrictions of blocky rank, and
show that they are equivalent to natural nondeterministic communication models equipped
with Equality, and moreover, have a dual characterization in terms of a variant of the
well-studied γ2 norm. Our new characterizations of these communication classes in turn led
to further understanding and new separation results.

This new line of inquiry has opened up several exciting new questions/directions, and
could potentially shed new light on key open problems in the area, such as the log rank
conjecture, and developing more tools and intuition for the poorly understood communication
classes MAcc and AMcc. Below we briefly discuss how these communication classes (and
blocky rank measures) are related to the communication landscape, and mention a few
specific open problems.

Figure 2 shows known relationships between the matrix measures and communication
classes that are under study in this paper. A box containing a matrix measure in this
diagram should be interpreted as the set of functions for which the value of that measure
is polylogarithmic on their communication matrices. For example, the box with “log rank”
includes all problems whose communication matrix has rank 2(log n)O(1) .

All of the relationships in Figure 2 are discussed in previous sections or follow straightfor-
wardly from the definitions. In the remainder of this section, we will talk about a few of the
gaps in this diagram, as well as some other intriguing open questions that naturally follow
from our work.

BPPcc vs. PRPcc

Two-sided randomness can simulate a deterministic protocol oracle calls to one-sided ran-
domized protocols, but is the other way true? This question has received some interest in
recent years, and separations are known between BPPcc and certain subsets of PRPcc: the
paper of Chattopadhyay, Lovett, and Vinyals discussed earlier shows that BPPcc ̸⊂ PEQcc [9]
and Pitassi, Shirley, and Watson show that limiting the number of RP calls allowed in PRPcc

to a constant gives a weaker complexity class [28]. The ultimate goal of such research would
be not only to resolve BPPcc vs. PRPcc, but also understand BPPcc vs. PNPcc. This latter
question was explicitly raised by Göös, Pitassi and Watson [13]. Recall that we focus on total
functions here – the relationship is already known when partial functions are allowed [26].
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Pcc

PEQcc

PRPcc

log rank

log γ2,B

= log χB
1

= UPEQcc

log γ∞
2,B

= log CB
1

= NPEQcc
BPPcc log γ2

coMAcc MAcc log rankα

= log γα
2

Figure 2 Relationships between the communication complexity measures. We consider total
functions only. A → B with a normal arrow represents A ⊆ B. The arrow is bold if that inclusion
is known to be strict (A ⊊ B). The arrow is dashed if a separation is known (A ̸⊂ B). Some
relationships are omitted if they can be derived from the others shown here.

Our work finds tight matrix-analytic characterizations of some Equality-oracle-based
communication models. If our understanding of RPcc oracles was similarly developed it would
represent tremendous progress towards resolving BPPcc vs. PRPcc.

▶ Open Question 1. Find a matrix-analytic technique that characterizes RPcc oracles in
communication complexity.

This problem seems difficult – one-sided randomness is hardly understood at all! For
example, we know that coRPcc ̸⊂ UPEQcc. However, the max-rect technique is itself one-sided,
and so is silent on RPcc vs UPEQcc. Resolving this seems like a concrete first step towards
understanding RPcc.

▶ Open Question 2. Is RPcc ⊂ UPEQcc?

We remark that the reverse is false (Sink◦XOR ̸∈ RPcc) and that the situation is easily
resolved without the unambiguity in the nondeterminism (RPcc ⊂ NPcc ⊂ NPEQcc).

How strong is γ2 in communication?

In the paper where it was introduced, Sink◦XOR was shown to have polynomial approxi-
mate rank by analyzing the Fourier decomposition of Sink and lifting these properties to
communication complexity [10]. The results in this paper give another way to show this
upper bound on approximate rank. From Lemma 26, the U · EQcc complexity of Sink◦XOR
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is logarithmic; Theorem 2 then gives us that its communication matrix has polynomial γ2,B ,
and for any matrix A, γ2,B(A) ≥ γ2(A) ≥ γα

2 (A). As mentioned in Section 2, approximate
γ2 and approximate rank are essentially equivalent [20].

This chain of inequalities highlights a huge gap in our understanding of the strength of
approximate rank in communication complexity: a very weak variant of approximate rank is
sufficient to upper bound Sink◦XOR! A better understanding of the power of γ2 and its
variants in communication complexity may lead us to a richer landscape of functions that
refute the log approximate rank conjecture. (For another paper about the search for stronger
counterexample that takes a different approach, see [7].) Here are a couple of concrete
questions in this direction:

▶ Open Question 3. Is there a function whose communication matrix would be lower bounded
by log γ2 but not log γα

2 ?

Separations between these measures are known outside the realm of communication
complexity. However, we are specifically searching for a function with quasipolynomial (or
better) approximate γ2 but exponential γ2, which appears to still be an unsolved problem.

Another inequality in the chain above is γ2,B(A) ≥ γ2(A). In a communication complexity
sense, these measures are exponentially separated because γ2,B is not closed under complement
but γ2 is. However, we find this argument somewhat unsatisfying, as it does not capture
many of the differences between γ2,B and γ2. We would like to consider a closure of γ2,B – a
minimal set that is lower bounded by γ2,B and is closed under complement and other simple
operations.

▶ Open Question 4. Is there a reasonable closure of γ2,B that is equivalent to γ2 in terms
of its ability to bound functions in communication complexity?

Perhaps the blocky rank measure of Hambardzumyan, Hatami, and Hatami is the right
place to look for such a closure. See their paper for a discussion about how blocky rank
relates to communication complexity [15].

PEQcc vs. NPEQcc ∩ coNPEQcc

As mentioned in Section 4, Pcc = UPcc [30] but PEQcc ̸= UPEQcc. There is another known
collapse of limited nondeterminism to determinism in communication complexity: Pcc =
NPcc ∩ coNPcc [2]. Does this hold with Equality oracles present?

▶ Open Question 5. Is PEQcc = NPEQcc ∩ coNPEQcc?

This is still open even if we restrict to unambiguous nondeterminism.

▶ Open Question 6. Is PEQcc = UPEQcc ∩ coUPEQcc?

Our results provide tools that may be helpful for solving this problem. To illustrate, let
us observe a couple of properties of these intersection classes. Theorem 2 and Lemma 15
imply that any function in UPEQcc ∩ coUPEQcc has a communication matrix that can be fully
partitioned into monochromatic rectangles where any row or column is contained in only a
few of these rectangles (in the case of NPEQcc ∩ coNPEQcc, replace the partition with a cover).
Furthermore, since max-rect lower bounds NPEQcc, a zero-sided version of max-rect (which
compares the number of zeroes with the largest 0-monochromatic rectangle) lower bounds
coNPEQcc. We can use the contrapositives of these lower bounds to show that any function
in NPEQcc ∩ coNPEQcc has a large monochromatic rectangle: either it has many ones and
therefore has a large 1-monochromatic rectangle or it has many zeroes and therefore has a
large 0-monochromatic rectangle.

ITCS 2023
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Quantum Proofs of Deletion for Learning with
Errors
Alexander Poremba ! Ï

California Institute of Technology, Pasadena, CA, USA

Abstract
Quantum information has the property that measurement is an inherently destructive process. This
feature is most apparent in the principle of complementarity, which states that mutually incompatible
observables cannot be measured at the same time. Recent work by Broadbent and Islam (TCC 2020)
builds on this aspect of quantum mechanics to realize a cryptographic notion called certified deletion.
While this remarkable notion enables a classical verifier to be convinced that a (private-key) quantum
ciphertext has been deleted by an untrusted party, it offers no additional layer of functionality.

In this work, we augment the proof-of-deletion paradigm with fully homomorphic encryption
(FHE). We construct the first fully homomorphic encryption scheme with certified deletion – an
interactive protocol which enables an untrusted quantum server to compute on encrypted data
and, if requested, to simultaneously prove data deletion to a client. Our scheme has the desirable
property that verification of a deletion certificate is public; meaning anyone can verify that deletion
has taken place. Our main technical ingredient is an interactive protocol by which a quantum prover
can convince a classical verifier that a sample from the Learning with Errors (LWE) distribution
in the form of a quantum state was deleted. As an application of our protocol, we construct a
Dual-Regev public-key encryption scheme with certified deletion, which we then extend towards
a (leveled) FHE scheme of the same type. We introduce the notion of Gaussian-collapsing hash
functions – a special case of collapsing hash functions defined by Unruh (Eurocrypt 2016) – and
we prove the security of our schemes under the assumption that the Ajtai hash function satisfies a
certain strong Gaussian-collapsing property in the presence of leakage.
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1 Introduction

Data protection has become a major challenge in the age of cloud computing and artificial
intelligence. The European Union, Argentina, and California recently introduced new data
privacy regulations which grant individuals the right to request the deletion of their personal
data by media companies and other data collectors – a legal concept that is commonly
referred to as the right to be forgotten [12]. While new data privacy regulations have been
put into practice in several jurisdictions, formalizing data deletion remains a fundamental
challenge for cryptography. A key question, in particular, prevails:

How can we certify that user data stored on a remote cloud server has been deleted?
© Alexander Poremba;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 90; pp. 90:1–90:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aporemba@caltech.edu
http://www.its.caltech.edu/~aporemba/
https://orcid.org/0000-0002-7330-1539
https://doi.org/10.4230/LIPIcs.ITCS.2023.90
https://eprint.iacr.org/2022/295
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


90:2 Quantum Proofs of Deletion for Learning with Errors

Without any further assumptions, the task is clearly impossible to realize in conventional
cloud computing. This is due to the fact that there is no way of preventing the data collector
from generating and distributing additional copies of the user data. Although it impossible
to achieve in general, proofs-of-secure-erasure [25, 11] can achieve a limited notion of data
deletion under bounded memory assumptions. Recently, Garg, Goldwasser and Vasudevan [12]
proposed rigorous definitions that attempt to formalize the right to be forgotten from the
perspective of classical cryptography. However, a fundamental challenge in the work of Garg
et al. [12] lies in the fact that the data collector is always assumed to be honest, which clearly
limits the scope of the formalism.

A recent exciting idea is to use quantum information in the context of data privacy [10, 7].
Contrary to classical data, it is fundamentally impossible to create copies of an unknown
quantum state thanks to the quantum no-cloning theorem [31]. Building on the work of
Coiteux-Roy and Wolf [10], Broadbent and Islam [7] proposed a quantum encryption scheme
which enables a user to certify the deletion of a quantum ciphertext. Unlike classical
proofs-of-secure-erasure, this notion of certified deletion is achievable unconditionally in
a fully malicious adversarial setting [7]. All prior protocols for certified deletion enable a
client to delegate data in the form of plaintexts and ciphertexts with no additional layer of
functionality. A key question raised by Broadbent and Islam [7] is the following:

Can we enable a remote cloud server to compute on encrypted data, while simultaneously
allowing the server to prove data deletion to a client?

This cryptographic notion can be seen as an extension of fully homomorphic encryption
schemes [27, 13, 5] which allow for arbitrary computations over encrypted data. Prior work
on certified deletion makes use of very specific encryption schemes that seem incompatible
with such a functionality; for example, the private-key encryption scheme of Broadbent and
Islam [7] requires a classical one-time pad, whereas the authors in [18] use a particular hybrid
encryption scheme in the context of public-key cryptography. While homomorphic encryption
enables a wide range of applications including private queries to a search engine and machine
learning classification on encrypted data [4], a fundamental limitation remains: once the
protocol is complete, the cloud server is still in possession of the client’s encrypted data.
This may allow adversaries to break the encryption scheme retrospectively, i.e. long after the
execution of the protocol. This potential threat especially concerns data which is required to
remain confidential for many years, such as medical records or government secrets.

Fully homomorphic encryption with certified deletion seeks to address this limitation as it
allows a quantum cloud server to compute on encrypted data while simultaneously enabling
the server to prove data deletion to a client, thus effectively achieving a form of everlasting
security [24, 17].

2 Main results

Our approach for certified deletion deviates from the hybrid encryption paradigm of previous
works [7, 17]. The main technical ingredient of our schemes is an interactive protocol by
which a quantum prover can convince a classical verifier that a sample from the Learning
with Errors [26] distribution in the form of a quantum state was deleted. Our techniques
are inspired by the quantum reduction from the Short Integer Solution (SIS) problem to
the Learning with Errors (LWE) problem [26, 29]. We use Gaussian superposition states to
encode LWE samples for the purpose of certified deletion while simultaneously preserving
their full cryptographic functionality. Because verification of a deletion certificate amounts
to checking whether it is a solution to the (inhomogenous) SIS problem, our encoding results
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in encryption schemes with certified deletion which are publicly verifiable – in contrast to
prior work based on hybrid encryption and BB84 states [7, 17]. Our results suggest a generic
template for certified deletion protocols which can be applied to many other cryptographic
primitives based on LWE.

2.1 Gaussian-collapsing hash functions
To analyze the security of our quantum encryption schemes based on Gaussian states, we
introduce the notion of Gaussian-collapsing hash functions – a special class of so-called
collapsing hash functions defined by Unruh [30]. Informally, a hash function h is Gaussian-
collapsing if it is computationally difficult to distinguish a superposition of Gaussian-weighted
pre-images under h from a single (measured) Gaussian pre-image. We prove that the
Ajtai collision-resistant hash function [1] is Gaussian-collapsing assuming the quantum
subexponential hardness of the decisional LWE problem.

▶ Theorem 1 (informal). The Ajtai hash function is Gaussian-collapsing assuming the
quantum subexponential hardness of the LWE problem.

We conjecture that the Ajtai hash function also satisfies a stronger variant of the Gaussian-
collapsing property in the presence of leakage (formally defined in Section 5.2).

2.2 Dual-Regev public-key encryption with certified deletion
Using Gaussian superpositions, we construct a public-key encryption scheme with certified
deletion which is based on the Dual-Regev scheme introduced by Gentry, Peikert and
Vaikuntanathan [14]. We prove the security of our scheme under the assumption that Ajtai’s
hash function satisfies the strong Gaussian-collapsing property in the presence of leakage.

▶ Theorem 2 (informal). There exists a secure Dual-Regev public-key encryption scheme with
certified deletion (and public verification) under the strong Gaussian-collapsing assumption.

2.3 (Leveled) fully homomorphic encryption with certified deletion
We construct the first (leveled) fully homomorphic encryption (FHE) scheme with certified
deletion based on our aforementioned Dual-Regev encryption scheme with the identical security
guarantees. Our FHE scheme is based on the (classical) dual homomorphic encryption scheme
used by Mahadev [22], which is a variant of the FHE scheme by Gentry, Sahai and Waters [15].
Our protocol supports the evaluation of polynomial-sized Boolean circuits on encrypted data
and, if requested, also enables the server to prove data deletion to a client.

▶ Theorem 3 (informal). There exists a secure Dual-Regev (leveled) FHE scheme with certified
deletion (and public verification) under the strong Gaussian-collapsing assumption.

3 Applications

Data retention and the right to be forgotten. The European Union, Argentina, and
California recently introduced new data privacy regulations – often referred to as the right to
be forgotten [12] – which grant individuals the right to request the deletion of their personal
data by media companies. However, formalizing data deletion still remains a fundamental
challenge for cryptography. Our fully homomorphic encryption scheme with certified deletion
achieves a rigorous notion of long-term data privacy: it enables a remote quantum cloud
server to compute on encrypted data and – once it is deleted and publicly verified – the
client’s data remain safeguarded against a future leak that reveals the secret key.

ITCS 2023



90:4 Quantum Proofs of Deletion for Learning with Errors

Private machine learning on encrypted data. Machine learning algorithms are used for
wide-ranging classification tasks, such as medical predictions, spam detection and face
recognition. While homomorphic encryption enables a form of privacy-preserving machine
learning [4], a fundamental limitation remains: once the protocol is complete, the cloud
server is still in possession of the client’s encrypted data. This threat especially concerns data
which is required to remain confidential for many years. Our results remedy this situation by
enabling private machine learning on encrypted data with certified data deletion.

Everlasting cryptography. Assuming that the server has not broken the computational
assumption before data deletion has taken place, our results could potentially transform a
long-term LWE assumption [26] into a temporary one, and thus effectively achieve a form of
everlasting security [24, 17].

4 Technical Summary

The Learning with Errors (LWE) problem was introduced by Regev [26] and has given rise
to numerous cryptographic applications, including public-key encryption [14], homomorphic
encryption [6, 15] and attribute-based encryption [3]. Let n,m ∈ N and q ≥ 2 be a prime
modulus, and α ∈ (0, 1) be a noise ratio parameter. In its decisional formulation, the
LWEm

n,q,αq problem asks to distinguish between a sample (A $←−Zn×m
q , s · A + e (mod q))

from the LWE distribution and a uniformly random sample. Here, s $←−Zn
q is a uniformly

random row vector and e ∼ DZm,αq is a row vector which is sampled according to the discrete
Gaussian distribution DZm,αq. The latter distribution assigns probability proportional to
ρr(x) = e−π∥x∥2/r2 to every lattice point x ∈ Zm, for r = αq > 0.

How can we certify that a (possibly malicious) party has deleted a sample from the LWE
distribution? The main technical insight of our work is that one can encode LWE samples as
quantum superpositions for the purpose of certified deletion while simultaneously preserving
their full cryptographic functionality. Superpositions of LWE samples have been considered
by Grilo, Kerenidis and Zijlstra [16] in the context of quantum learning theory and by Alagic,
Jeffery, Ozols and Poremba [2], as well as by Chen, Liu and Zhandry [9], in the context of
quantum cryptanalysis of LWE-based cryptosystems.
Let us now describe the main idea behind our constructions. Consider the Gaussian super-
position,1

|ψ̂⟩XY =
∑

x∈Zm
q

ρσ(x) |x⟩X ⊗ |A · x (mod q)⟩Y .

Here, we let σ = 1/α and use Zm
q to represent Zm ∩ (− q

2 ,
q
2 ]m. By measuring system Y in

the computational basis with outcome y ∈ Zn
q , the state |ψ̂⟩ collapses into the quantum

superposition

|ψ̂y⟩ =
∑

x∈Zm
q :

Ax=y (mod q)

ρσ(x) |x⟩ . (1)

1 A standard tail bound shows that the discrete Gaussian DZm,σ is essentially only supported on
{x ∈ Zm : ∥x∥ ≤ σ

√
m}. We choose σ ≪ q/

√
m and consider the domain Zm ∩ (− q

2 ,
q
2 ]m instead. For

simplicity, we also ignore that |ψ̂⟩ is not normalized.
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Note that the state |ψ̂y⟩ is now a superposition of short Gaussian-weighted solutions x ∈ Zm
q

subject to the constraint A · x = y (mod q). In other words, by measuring the above state in
the computational basis, we obtain a solution to the so-called (inhomogenous) short integer
solution (ISIS) problem specified by (A,y). The quantum state |ψ̂y⟩ in Eq. (1) has the
following duality property; namely, by applying the (inverse) q-ary quantum Fourier transform
we obtain the state

|ψy⟩ =
∑

s∈Zn
q

∑
e∈Zm

q

ρ q
σ

(e)ω−⟨s,y⟩
q |sA + e (mod q)⟩ , (2)

where ωq = e2πi/q is the primitive q-th root of unity. Throughout this work, we will refer
to |ψy⟩ and |ψ̂y⟩ as the primal and dual Gaussian state, respectively. Notice that the
resulting state |ψy⟩ is now a quantum superposition of samples from the LWE distribution.
This relationship was first observed in the work of Stehlé et al. [29] who gave quantum
reduction from SIS to LWE based on Regev’s reduction [26], and was later implicitly used
by Roberts [28] and Kitagawa et al. [20] to construct quantum money and secure software
leasing schemes.

Our quantum encryption schemes with certified deletion exploit the fact that a measure-
ment of |ψy⟩ in the Fourier basis yields a short solution to the ISIS problem specified by
(A,y), whereas ciphertext information which is necessary to decrypt is encoded using LWE
samples in the computational basis.

4.1 Dual-Regev public-key encryption with certified deletion
The key ingredient of our homomorphic encryption scheme with certified deletion is the Dual-
Regev public-key encryption scheme introduced by Gentry, Peikert and Vaikuntanathan [14].
Using Gaussian states, we can encode Dual-Regev ciphertexts for the purpose of certified
deletion while simultaneously preserving their full cryptographic functionality. Our scheme
Dual-Regev scheme with certified deletion consists of the following efficient algorithms:

To generate a pair (sk, pk), sample A ∈ Zn×(m+1)
q together with a particular short

trapdoor vector t ∈ Zm+1 such that A · t = 0 (mod q), and let pk = A and sk = t.
To encrypt b ∈ {0, 1} using the public key pk = A, generate for a random y ∈ Zn

q :

vk← (A,y), |CT⟩ ←
∑

s∈Zn
q

∑
e∈Zm+1

q

ρ q
σ

(e)ω−⟨s,y⟩
q |sA + e + b · (0, . . . , 0, ⌊q2⌋)⟩ ,

where vk is a public verification key and |CT⟩ is the quantum ciphertext for σ = 1/α.
To decrypt a ciphertext |CT⟩ using the secret key sk, measure in the computational basis
to obtain an outcome c ∈ Zm+1

q , and output 0, if cT · sk ∈ Zq is closer to 0 than to ⌊ q
2⌋,

and output 1, otherwise.

To delete the ciphertext |CT⟩, we simply perform measurement in the Fourier basis. We
show that the Fourier transform of the ciphertext |CT⟩ results in the dual quantum state

|ĈT⟩ =
∑

x∈Zm+1
q :

Ax=y (mod q)

ρσ(x)ω⟨x,b·(0,...,0,⌊ q
2 ⌋)⟩

q |x⟩ . (3)

Notice that a Fourier basis measurement of |CT⟩ necessarily erases all information about the
plaintext b ∈ {0, 1} and results in a short vector π ∈ Zm+1

q such that A · π = y (mod q).
In other words, to verify a deletion certificate we can simply check whether it is a solution
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∑
x∈Zm

q

Ax=y (mod q)

ρσ(x) |x⟩ |x0⟩, x0 ∼ DΛy
q (A), σ√

2

∑
s∈Zn

q

∑
e∈Zm

q

ρ q
σ

(e)ω−⟨s,y⟩
q |sA + e⟩

≈c

≈c

∑
u∈Zm

q

ω−⟨u,x0⟩
q |u⟩

FTq FTq

Figure 1 Overview of the Gaussian superposition states and their properties shown in this work.
The computational indistinguishability property holds under the (decisional) LWE assumption. Here,
FTq denotes the q-ary Fourier transform and Λy

q (A) = {x ∈ Zm : A · x = y (mod q)} denotes a
particular coset of the q-ary lattice Λ⊥

q (A) = {x ∈ Zm : A · x = 0 (mod q)}.

to the ISIS problem specified by the verification key vk = (A,y). Our scheme has the
desirable property that verification of a certificate π is public; meaning anyone in possession
of (A,y) can verify that |CT⟩ has been successfully deleted. Moreover, due to the tight
connection between worst-case lattice problems and the average-case ISIS problem [23, 14], it
is computationally difficult to produce a valid deletion certificate from (A,y) alone.

To formalize security, we use the notion of certified deletion security (formally,
IND-CPA-CD security) [7, 17] which roughly states that, once deletion of the ciphertext
is successful, the plaintext remains hidden even if the secret key is later revealed. We prove
the security of our schemes under the assumption that the Ajtai collision-resistant hash
function hA(x) = A · x (mod q) satisfies a certain strong collapsing property in the presence
of leakage.

4.2 Gaussian-collapsing hash functions.
Unruh [30] introduced the notion of collapsing hash functions in his seminal work on
computationally binding quantum commitments. Informally, a hash function h is called
collapsing if it is computationally difficult to distinguish between a superposition of pre-
images, i.e.

∑
x: h(x)=y αx |x⟩, and a single measured pre-image |x0⟩ such that h(x0) = y.

Motivated by the properties of the dual Gaussian state in Eq. (1), we consider a special
class of hash functions which are collapsing with respect to Gaussian superpositions. We say
that a hash function h is σ-Gaussian-collapsing, for some σ > 0, if the following states are
computationally indistinguishable:∑

x: h(x)=y

ρσ(x) |x⟩ ≈c |x0⟩ , s.t. h(x0) = y.

Here, x0 is the result of a computational basis measurement of the the Gaussian superposition
(on the left). Notice that any collapsing hash function h is necessarily also Gaussian-collapsing,
since a superposition of Gaussian-weighted vectors constitutes a special class of inputs to h.
Liu and Zhandry [21] implicitly showed that the Ajtai hash function hA(x) = A ·x (mod q) is
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collapsing – and thus Gaussian-collapsing – via the notion of lossy functions and (decisional)
LWE. In this work, we give a simple and direct proof of the Gaussian-collapsing property
assuming (decisional) LWE, which might be of independent interest.

The fact Ajtai’s hash function is Gaussian-collapsing has several implications for the
security of our schemes. Because our Dual-Regev ciphertext corresponds to the Fourier
transform of the state in Eq. (3), the Gaussian-collapsing property immediately implies the
semantic (i.e., IND-CPA) security under decisional LWE. We refer to Fig. 1 for an overview
of our Gaussian states and their properties.

To prove the stronger notion of IND-CPA-CD security of our Dual-Regev scheme with
certified deletion, we have to show that, once deletion has taken place, the plaintext remains
hidden even if the secret key (i.e., a short trapdoor vector t in the kernel of A) is later
revealed. In other words, it is sufficient to show that Ajtai’s hash function satisfies a particular
strong Gaussian-collapsing property in the presence of leakage; namely, once an adversary
A produces a valid short certificate π with the property that A · π = y (mod q), then A
cannot tell whether the input at the beginning of the experiment corresponded to a Gaussian
superposition of pre-images or a single (measured) pre-image, even if A later receives a short
trapdoor vector t in the kernel of A. Here, it is crucial that A receives the trapdoor vector t
only after A provides a valid pre-image witness π, otherwise A could trivially distinguish
the two states by applying the Fourier transform and using the trapdoor t to distinguish
between a superposition of LWE samples and a uniform superposition.

Unfortunately, we currently do not know how to prove the strong Gaussian-collapsing
property of the Ajtai hash function from standard assumptions (such as LWE or ISIS). The
problem emerges when we attempt to give a reduction between the IND-CPA-CD security of
our Dual-Regev public-key encryption scheme with certified deletion and the LWE (or ISIS)
problem. In order to simulate the IND-CPA-CD game successfully, we have to eventually
forward a short trapdoor vector t ∈ Zm+1 (i.e. the secret key) to the adversary once deletion
has taken place. Notice, however, that the reduction has no way of obtaining a short trapdoor
vector t such that A · t = 0 (mod q) as it is trying to break the underlying LWE (or ISIS)
problem with respect to A in the first place (!) Recently, Hiroka, Morimae, Nishimaki and
Yamakawa [17] managed to overcome similar technical difficulties using the notion of receiver
non-committing (RNC) encryption [19, 8] in the context of hybrid encryption in order to
produce a fake secret key. In our case, we cannot rely on similar techniques involving RNC
encryption as it seems difficult to reconcile with homomorphic encryption, which is the
main focus of this work. Instead, we choose to formalize the strong Gaussian-collapsing
property of the Ajtai hash function as a simple and falsifiable conjecture. To see why
the conjecture is plausible, consider the following natural attack. Given as input either
a Gaussian superposition of pre-images or a single (measured) pre-image, we perform the
quantum Fourier transform, reversibly shift the outcome by a fresh LWE sample2 and store
the result in an auxiliary register. If the input corresponds to a superposition, we obtain
a separate LWE sample which is re-randomized, whereas if the input is a single (measured)
pre-image, the outcome remains random. Hence, if the aforementioned procedure succeeded
without disturbing the initial quantum state, we could potentially provide a valid certificate
π and also distinguish the auxiliary system with access to the trapdoor. However, by shifting
the state by another LWE sample, we have necessarily entangled the two systems in a way
that prevents us from finding a valid certificate via a Fourier basis measurement. We make

2 To smudge the Gaussian error of the initial superposition, we can choose an error from a discrete
Gaussian distribution which has a significantly larger standard deviation.
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this fact more precise by proving a general uncertainty relation for Fourier basis projections
that rules out a large class of attacks, including the shift-by-LWE-sample attack described
above. Next, we extend our Dual-Regev scheme towards a (leveled) FHE scheme with certified
deletion.

4.3 Dual-Regev fully homomorphic encryption with certified deletion.
Our (leveled) FHE scheme with certified deletion is based on the (classical) Dual-Regev
leveled FHE scheme used by Mahadev [22] – a variant of the scheme due to Gentry, Sahai
and Waters [15]. Let n,m ∈ N, let q ≥ 2 be a prime modulus, and let α ∈ (0, 1) be the noise
ratio with σ = 1/α. Let N = (n+ 1)⌈log q⌉ and let G ∈ Z(m+1)×N

q denote the gadget matrix
designed to convert a binary representation of a vector back to its Zq representation. The
scheme consists of the following efficient algorithms:

To generate a pair of keys (sk, pk), sample A ∈ Z(m+1)×n
q together with a particular short

trapdoor vector t ∈ Zm+1 such that t ·A = 0 (mod q), and let pk = A and sk = t.
To encrypt a bit x ∈ {0, 1} using the public key A ∈ Z(m+1)×n

q , generate the following
pair consisting of a verification key and ciphertext for a random Y ∈ Zn×N

q with columns
y1, . . . ,yN ∈ Zn

q :

vk← (A,Y), |CT⟩ ←
∑

S∈Zn×N
q

∑
E∈Z(m+1)×N

q

ρq/σ(E)ω−Tr[ST Y]
q |A · S + E + x ·G⟩ ,

where G ∈ Z(m+1)×N
q denotes the gadget matrix and where σ = 1/α.

To decrypt a quantum ciphertext |CT⟩ using the secret key sk, measure in the computa-
tional basis to obtain an outcome C ∈ Z(m+1)×N

q and compute c = skT · cN ∈ Zq, where
cN ∈ Zm+1

q is the N -th column of C, and then output 0, if c is closer to 0 than to ⌊ q
2⌋,

and output 1, otherwise.
We remark that deletion and verification take place as in our Dual-Regev scheme with
certified deletion.

Our FHE scheme supports the evaluation of polynomial-sized Boolean circuits consisting
entirely of NAND gates, which are universal for classical computation. Inspired by the
classical homomorphic NAND operation of the Dual-Regev scheme [15, 22], we define an
analogous quantum operation UNAND which allows us to apply a NAND gate directly onto
Gaussian states. When applying homomorphic operations, the new ciphertext maintains the
form of an LWE sample with respect to the same public key pk, albeit for a new LWE secret
and a new (non-necessarily Gaussian) noise term of bounded magnitude. Notice, however,
that the resulting ciphertext is now a highly entangled state since the unitary operation
UNAND induces entanglement between the LWE secrets and Gaussian error terms of the
superposition. This raises the following question: How can a server perform homomorphic
computations and, if requested, afterwards prove data deletion to a client? In some sense,
applying a single homomorphic NAND gates breaks the structure of the Gaussian states
in a way that prevents us from obtaining a valid deletion certificate via a Fourier basis
measurement. Our solution to the problem involves a single additional round of interaction
between the quantum server and the client in order to certify deletion.

After performing a Boolean circuit C via a sequence of UNAND gates starting from the
ciphertext |CT⟩ = |CT1⟩ ⊗ · · · ⊗ |CTℓ⟩ in system Cin corresponding to an encryption of
x = (x1, . . . , xℓ) ∈ {0, 1}ℓ, the server simply sends the quantum system Cout containing an
encryption of C(x) to the client. Then, using the secret key sk (i.e., a trapdoor for the public
matrix pk), it is possible for the client to extract the outcome C(x) from the system Cout
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with overwhelming probability without significantly damaging the state. We show that it is
possible to rewind the procedure in a way that results in a state which is negligibly close
to the original state in system Cout. At this step of the protocol, the client has learned
the outcome of the homomorphic application of the circuit C while the server is still in
possession of a large number of auxiliary systems (denoted by Caux) which mark intermediate
applications of the gate UNAND. We remark that this is where the standard FHE protocol
ends. In order to enable certified deletion, the client must now return the system Cout to the
server. Having access to all three systems CinCauxCout, the server is then able to undo the
sequence of homomorphic NAND gates in order to return to the original product state in
system Cin (up to negligible trace distance). Since the ciphertext in the server’s possession is
now approximately a simple product of Gaussian states, the server can perform a Fourier
basis measurement of systems Cin, as required. Once the protcol is complete, it is therefore
possible for the client to know C(x) and to be convinced that data deletion has taken place.

5 Gaussian-Collapsing Hash Functions

Unruh [30] introduced the notion of collapsing hash functions in his seminal work on
computationally binding quantum commitments. Motivated by the properties of the dual
Gaussian state, we consider a special class of hash functions which are collapsing with respect
to Gaussian superpositions. Informally, we say that a hash function h is Gaussian-collapsing
if it is computationally difficult to distinguish between a Gaussian superposition of pre-images
and a single (measured) Gaussian pre-image (of h). We formalize this below.

▶ Definition 4 (Gaussian-collapsing hash function). Let λ ∈ N be the security parameter,
m(λ), n(λ) ∈ N and let q(λ) ≥ 2 be a modulus. Let σ > 0. A hash function family
H = {Hλ}λ∈N with domain X = Zm

q and range Y = Zn
q is called σ-Gaussian-collapsing if,

for every QPT adversary A,

|Pr[GaussCollapseExpH,A,λ(0) = 1]− Pr[GaussCollapseExpH,A,λ(1) = 1]| ≤ negl(λ).

Here, the experiment GaussCollapseExpH,A,λ(b) is defined as follows:
1. The challenger samples a random hash function h $←−Hλ and prepares the quantum state

|ψ̂⟩XY =
∑

x∈Zm
q

ρσ(x) |x⟩X ⊗ |h(x)⟩Y .

2. The challenger measures system Y in the computational basis, resulting in the state

|ψ̂y⟩XY =
∑

x∈Zm
q :

h(x)=y

ρσ(x) |x⟩X ⊗ |y⟩Y .

3. If b = 0, the challenger does nothing. Else, if b = 1, the challenger measures system
X of the quantum state |ψ̂y⟩ in the computational basis. Finally, the challenger sends
the outcome state in systems X to A, together with the string y ∈ Zn

q and a classical
description of the hash function h.

4. A returns a bit b′, which we define as the output of the experiment.

5.1 Ajtai’s hash function
We give a simple and direct proof that the Ajtai hash function is Gaussian-collapsing assuming
(decisional) LWE, which might be of independent interest.
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▶ Theorem 5. Let n ∈ N and q ≥ 2 be a prime with m ≥ 2n log q, each parameterized by
λ ∈ N. Let σ ∈ (

√
8m, q/

√
8m). Then, the Ajtai hash function family H = {Hλ}λ∈N with

Hλ =
{
hA : Zm

q → Zn
q s.t. hA(x) = A · x (mod q); A ∈ Zn×m

q

}
is σ-Gaussian-collapsing assuming the quantum hardness of the decisional LWEm

n,q,αq problem,
for any noise ratio α ∈ (0, 1) with relative noise magnitude 1/α = σ · 2o(n) :

Proof. Let A denote the QPT adversary in the experiment GaussCollapseExpH,A,λ(b) with
b ∈ {0, 1}. To prove the claim, we give a reduction from the decisional LWEm

n,q,αq assumption.
We are given as input a sample (A,b) with A $←−Zm×n

q , where b = s0 ·A + e0 (mod q)) is
either a sample from the LWE distribution with s0

$←−Zn
q and e0 ∼ DZm,αq, or where b is a

uniformly random string u $←−Zm
q .

Consider the distinguisher D that acts as follows on input 1λ and (A,b):
1. D prepares a bipartite quantum state on systems X and Y with

|ψ̂⟩XY =
∑

x∈Zm
q

ρσ(x) |x⟩X ⊗ |A · x (mod q)⟩Y .

2. D measures system Y in the computational basis, resulting in the state

|ψ̂y⟩XY =
∑

x∈Zm
q :

Ax=y

ρσ(x) |x⟩X ⊗ |y⟩Y .

3. D applies the generalized Pauli-Z operator Zb
q on system X, resulting in the state

(Zb
q ⊗ IY ) |ψ̂y⟩XY =

∑
x∈Zm

q :
Ax=y

ρσ(x)
(
Zb

q |x⟩X
)
⊗ |y⟩Y .

4. D runs A on input system X and classical descriptions of A ∈ Zn×m
q and y ∈ Zn

q .
5. D outputs whatever bit b′ ∈ {0, 1} the adversary A outputs.
Suppose that, for every λ ∈ N, there exists a polynomial p(λ) such that

|Pr[GaussCollapseExpH,A,λ(0) = 1]− Pr[GaussCollapseExpH,A,λ(1) = 1]| ≥ 1
p(λ) .

We now show that this implies that D succeeds at the decisional LWEm
n,q,αq experiment with

advantage at least 1/p(λ)− negl(λ). We distinguish between the following two cases.
If (A,b) is a sample from the LWE distribution with b = s0 ·A + e0 (mod q)), then the

adversary A receives as input the following quantum state in system X:

ZLWEm
n,q,αq

(∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

)
=

∑
s0∈Zn

q

∑
e0∈Zm

q−nDZm,αq(e0) Zs0·A+e0
q

∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

Z−(s0·A+e0)
q .

Due to the invariance of (primal) Gaussian states under shifts from the LWEm
n,q,αq distribution,

it follows that there exists a negligible function ε(λ) such that

ZLWEm
n,q,αq

(∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

)
≈ε

∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X
.

In other words, A receives as input a state in system X which is within negligible trace
distance of the dual Gaussian state |ψ̂y⟩, which corresponds precisely to the input in
GaussCollapseExpH,A,λ(0).
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If (A,b) is a uniformly random sample, where b is a random string u $←−Zm
q , then the

adversary A receives as input the following quantum state in system X:

Z
(∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

)
= q−m

∑
u∈Zm

q

Zu
q

∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

Z−u
q .

Because Z corresponds to the uniform Pauli-Z dephasing channel, it follows that

Z
(∣∣∣ψ̂y

〉〈
ψ̂y

∣∣∣
X

)
=

∑
x∈Zm

q

∣∣⟨x|ψ̂y⟩
∣∣2 |x⟩⟨x|X .

In other words, A receives as input a mixed state which is the result of a computational
basis measurement of the Gaussian state |ψ̂y⟩. Note that this corresponds precisely to the
input in GaussCollapseExpH,A,λ(1).

By assumption, the adversary A succeeds with advantage at least 1/p(λ). Therefore, the
distinguisher D succeeds at the decisional LWEm

n,q,αq experiment with probability at least
1/p(λ)− negl(λ). This proves the claim. ◀

5.2 Strong Gaussian-collapsing conjecture
Our quantum encryption schemes with certified deletion rely on the assumption that Ajtai’s
hash function satisfies a strong Gaussian-collapsing property in the presence of leakage. We
formalize the property as the following simple and falsifiable conjecture.

▶ Conjecture 6 (Strong Gaussian-Collapsing Conjecture).
Let λ ∈ N be the security parameter, n(λ) ∈ N, q(λ) ≥ 2 be a modulus and m ≥ 2n log q be
an integer. Let σ = Ω(

√
m) be a parameter and let H = {Hλ}λ∈N be the Ajtai hash function

family with

Hλ =
{
hA : Zm

q → Zn
q s.t. hA(x) = A · x (mod q); A ∈ Zn×m

q

}
.

The Strong Gaussian-Collapsing Conjecture (SGCn,m,q,σ) states that, for any QPT A,

| Pr[StrongGaussCollapseExpH,A,λ(0) = 1] − Pr[StrongGaussCollapseExpH,A,λ(1) = 1]| ≤ negl(λ).

Here, the experiment StrongGaussCollapseExpH,A,λ(b) is defined as follows:
1. The challenger samples Ā $←−Zn×(m−1)

q and prepares the quantum state

|ψ̂⟩XY =
∑

x∈Zm
q

ρσ(x) |x⟩X ⊗ |A · x (mod q)⟩Y ,

where A = [Ā|Ā · x̄ (mod q)] ∈ Zn×m
q is a matrix with x̄ $←−{0, 1}m−1.

2. The challenger measures system Y in the computational basis, resulting in the state

|ψ̂y⟩XY =
∑

x∈Zm
q :

Ax=y (mod q)

ρσ(x) |x⟩X ⊗ |y⟩Y .

3. If b = 0, the challenger does nothing. Else, if b = 1, the challenger measures system X

of the quantum state |ψ̂y⟩ in the computational basis. Finally, the challenger sends the
outcome state in systems X to A, together with the matrix A ∈ Zn×m

q and the string
y ∈ Zn

q .
4. A sends a classical witness w ∈ Zm

q to the challenger.
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5. The challenger checks whether A ·w = y (mod q) and ∥w∥ ≤
√
mσ/
√

2. If w passes both
checks, the challenger sends t = (x̄,−1) ∈ Zm

q to A with A · t = 0 (mod q). Else, the
challenger aborts.

6. A returns a bit b′, which we define as the output of the experiment.

Unfortunately, we currently do not know how to prove the conjecture from standard
assumptions, such as LWE or ISIS. The difficulty emerges when we attempt to reduce the
security to the LWE (or ISIS) problem with respect to the same matrix A ∈ Zn×m

q . In order
to simulate the experiment StrongGaussCollapseExpH,A,λ with respect to an adversary A, we
have to eventually forward a short trapdoor vector t ∈ Zm in order to simulate the second
phase of the experiment once A has produced a valid witness. Notice, however, that the
reduction has no way of obtaining a short vector t in the kernel of A as it is trying to break
the underlying LWE (or ISIS) problem with respect to A in the first place. Therefore, any
successful security proof must necessarily exploit the fact that there is interaction between
the challenger and the adversary A, and that a short trapdoor vector t is only revealed after
A has already produced a valid short pre-image of y ∈ Zn

q .
When trying to distinguish between the state |ψ̂y⟩ and a single Gaussian pre-image |x0⟩

with the property that A · x0 = y (mod q), it is useful to work with the Fourier basis.
Without loss of generality, we can assume that A instead receives one of the following states
during in Step 3; namely∑

s∈Zn
q

∑
e∈Zm

q

ρ q
σ

(e)ω−⟨s,y⟩
q |sA + e⟩X or

∑
u∈Zm

q

ω−⟨u,x0⟩
q |u⟩X .

One natural approach is prepare an auxiliary system, say B, which could later help
the adversary determine whether X corresponds to a superposition of LWE samples or a
superposition of uniform samples once the trapdoor t is revealed (ideally, without disturbing
X so as to allow for a Fourier basis measurement). Because finding a valid witness w to
the ISIS problem specified by (A,y) now amounts to a Fourier basis projection, we give an
entropic uncertainty relation which immediately rules out large class of attacks, including
the shift-by-LWE-sample attack we described earlier. There, the idea is to reversibly shift
system X by a fresh LWE sample into an auxiliary system B. If system X corresponds to
a superposition of LWE samples, we obtain a separate LWE sample which is re-randomized,
whereas, if X is a superposition of uniform samples, the outcome remains random. Hence, if
the aforementioned procedure succeeded without disturbing system X, we could potentially
find a valid witness w and simultaneously distinguish the auxiliary system B with access to
the trapdoor t. As we observed before, however, such an attack must necessarily entangle the
two systems X and B in a way that prevents it from finding a solution to the ISIS problem
specified by (A,y). Intuitively, if the state in system X yields a short-pre image w with high
probability via a Fourier basis measurement, then system X cannot be entangled with any
auxiliary systems. Because the set S of valid short pre-images (i.e. the set of solution to the
ISIS problem specified by A and y) is much smaller than the size of Zm

q (in particular, if
σ
√
m≪ q), our uncertainty relation tells us that the min-entropy of system X (once it is

measured in the computational basis) given system B must necessarily be large. We remark
that this statement holds information-theoretically, and does not rely on the hardness of LWE.
This suggests that, even if the trapdoor t is later revealed, system B cannot contain any
relevant information about whether system X initially corresponded to a superposition of
LWE samples, or to a superposition of uniform samples. While this argument is not sufficient
to prove the conjecture, it captures the inherent difficulty in extracting information encoded
in two mutually unbiased bases, i.e. the computational basis and the Fourier basis.



A. Poremba 90:13

References
1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Gary L.

Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108. ACM, 1996.
doi:10.1145/237814.237838.

2 Gorjan Alagic, Stacey Jeffery, Maris Ozols, and Alexander Poremba. On quantum chosen-
ciphertext attacks and learning with errors. Cryptography, 4(1), 2020. doi:10.3390/
cryptography4010010.

3 Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption,
arithmetic circuit abe, and compact garbled circuits. Cryptology ePrint Archive, Paper
2014/356, 2014. URL: https://eprint.iacr.org/2014/356.

4 Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning
classification over encrypted data. IACR Cryptology ePrint Archive, 2014:331, 2014. URL:
https://eprint.iacr.org/2014/331.

5 Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS ’11, pages 97–106, USA, 2011. IEEE Computer Society. doi:
10.1109/FOCS.2011.12.

6 Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. Cryptology ePrint Archive, Paper 2011/344, 2011. URL: https://eprint.
iacr.org/2011/344.

7 Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. Lecture Notes
in Computer Science, pages 92–122, 2020. doi:10.1007/978-3-030-64381-2_4.

8 Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 639–648, New York, NY, USA, 1996. Association for Computing
Machinery. doi:10.1145/237814.238015.

9 Yilei Chen, Qipeng Liu, and Mark Zhandry. Quantum algorithms for variants of average-case
lattice problems via filtering, 2021. arXiv:2108.11015.

10 Xavier Coiteux-Roy and Stefan Wolf. Proving erasure. 2019 IEEE International Symposium
on Information Theory (ISIT), July 2019. doi:10.1109/isit.2019.8849661.

11 Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing
functions. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011,
volume 6597 of Lecture Notes in Computer Science, page 125. Springer, 2011. doi:10.1007/
978-3-642-19571-6_9.

12 Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in
the context of the right to be forgotten. IACR Cryptol. ePrint Arch., page 254, 2020. URL:
https://eprint.iacr.org/2020/254.

13 Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
URL: crypto.stanford.edu/craig.

14 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432, 2007. URL:
https://eprint.iacr.org/2007/432.

15 Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology ePrint
Archive, Report 2013/340, 2013. URL: https://ia.cr/2013/340.

16 Alex B. Grilo, Iordanis Kerenidis, and Timo Zijlstra. Learning-with-errors problem is easy with
quantum samples. Physical Review A, 99(3), March 2019. doi:10.1103/physreva.99.032314.

17 Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified everlast-
ing zero-knowledge proof for qma, 2021. arXiv:2109.14163.

ITCS 2023

https://doi.org/10.1145/237814.237838
https://doi.org/10.3390/cryptography4010010
https://doi.org/10.3390/cryptography4010010
https://eprint.iacr.org/2014/356
https://eprint.iacr.org/2014/331
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2011/344
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1145/237814.238015
http://arxiv.org/abs/2108.11015
https://doi.org/10.1109/isit.2019.8849661
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1007/978-3-642-19571-6_9
https://eprint.iacr.org/2020/254
crypto.stanford.edu/craig
https://eprint.iacr.org/2007/432
https://ia.cr/2013/340
https://doi.org/10.1103/physreva.99.032314
http://arxiv.org/abs/2109.14163


90:14 Quantum Proofs of Deletion for Learning with Errors

18 Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum encryp-
tion with certified deletion, revisited: Public key, attribute-based, and classical communication,
2021. arXiv:2105.05393.

19 Stanisław Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Intro-
ducing concurrency, removing erasures. In Proceedings of the 19th International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT’00, pages 221–242,
Berlin, Heidelberg, 2000. Springer-Verlag.

20 Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing from
standard assumptions, 2021. arXiv:2010.11186.

21 Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. Cryptology ePrint
Archive, Paper 2019/262, 2019. URL: https://eprint.iacr.org/2019/262.

22 Urmila Mahadev. Classical verification of quantum computations, 2018. arXiv:1804.01082.
23 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian

measures. SIAM J. Comput., 37(1):267–302, 2007. doi:10.1137/S0097539705447360.
24 Jörn Müller-Quade and Dominique Unruh. Long-term security and universal composability.

In Salil P. Vadhan, editor, Theory of Cryptography, pages 41–60, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

25 Daniele Perito and Gene Tsudik. Secure code update for embedded devices via proofs of secure
erasure. Cryptology ePrint Archive, Report 2010/217, 2010. URL: https://ia.cr/2010/217.

26 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM, 56(6):34:1–34:40, 2005. doi:10.1145/1568318.1568324.

27 R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

28 Bhaskar Roberts. Toward secure quantum money. Princeton University Senior Thesis, 2019.
URL: http://arks.princeton.edu/ark:/88435/dsp01nc580q51r.

29 Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. Cryptology ePrint Archive, Paper 2009/285, 2009. URL:
https://eprint.iacr.org/2009/285.

30 Dominique Unruh. Computationally binding quantum commitments. Cryptology ePrint
Archive, Paper 2015/361, 2015. URL: https://eprint.iacr.org/2015/361.

31 W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(5886):802–
803, October 1982. doi:10.1038/299802a0.

http://arxiv.org/abs/2105.05393
http://arxiv.org/abs/2010.11186
https://eprint.iacr.org/2019/262
http://arxiv.org/abs/1804.01082
https://doi.org/10.1137/S0097539705447360
https://ia.cr/2010/217
https://doi.org/10.1145/1568318.1568324
http://arks.princeton.edu/ark:/88435/dsp01nc580q51r
https://eprint.iacr.org/2009/285
https://eprint.iacr.org/2015/361
https://doi.org/10.1038/299802a0


Online Pen Testing
Mingda Qiao #

Stanford University, CA, USA

Gregory Valiant #

Stanford University, CA, USA

Abstract
We study a “pen testing” problem, in which we are given n pens with unknown amounts of ink
X1, X2, . . . , Xn, and we want to choose a pen with the maximum amount of remaining ink in it.
The challenge is that we cannot access each Xi directly; we only get to write with the i-th pen until
either a certain amount of ink is used, or the pen runs out of ink. In both cases, this testing reduces
the remaining ink in the pen and thus the utility of selecting it.

Despite this significant lack of information, we show that it is possible to approximately maximize
our utility up to an O(log n) factor. Formally, we consider two different setups: the “prophet” setting,
in which each Xi is independently drawn from some distribution Di, and the “secretary” setting, in
which (Xi)n

i=1 is a random permutation of arbitrary a1, a2, . . . , an. We derive the optimal competitive
ratios in both settings up to constant factors. Our algorithms are surprisingly robust: (1) In the
prophet setting, we only require one sample from each Di, rather than a full description of the
distribution; (2) In the secretary setting, the algorithm also succeeds under an arbitrary permutation,
if an estimate of the maximum ai is given.

Our techniques include a non-trivial online sampling scheme from a sequence with an unknown
length, as well as the construction of a hard, non-uniform distribution over permutations. Both
might be of independent interest. We also highlight some immediate open problems and discuss
several directions for future research.
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1 Introduction

Suppose that we have a few whiteboard pens to choose from for an upcoming presentation.
We want to maximize the amount of remaining ink in the pen we pick, measured in writing
time. Naturally, before we make our decision, we write with each pen for a short while to
check whether the ink has almost run out. We face a dilemma regarding how long each pen
should be tested. If we use the pen for just five seconds, we could not distinguish whether it
had ten seconds or twenty minutes of writing time at the beginning. At the other extreme,
too long a test period may exhaust the ink in the pen, leaving us too little ink for the actual
writing.
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This toy problem models scenarios such as testing the service life of a flimsy spare part,
and more generally, other real-world decision-making in which obtaining information about
each option inevitably reduces the utility of the option. For example, we want to invest
in one of n start-ups with unknown growth potentials. We could, of course, watch from
the sidelines for a while, and see whether the total value of each company has grown to a
certain point (e.g., twice its initial value). However, we would have a lower return since our
investment in the company only starts at this point, and the 2x increase does not count
towards our profit.

To our knowledge, this “pen testing” problem first appeared as a competitive programming
problem, written by Ian Tullis and prepared by Petr Mitrichev, in Google Code Jam 2020 [38].
They considered the case that n = 15 pens hold 0, 1, 2, . . . , n − 1 units of ink respectively,
but are presented to us after a random shuffling. We can test the pens in an arbitrary order,
and possibly go back to a pen that we tested earlier for further testing, if this is deemed
necessary. Finally, we are asked to choose two of the pens, and we win the game if the total
units of remaining ink in them is at least n.

If we randomly pick two pens without any testing, our winning probability is clearly
below 50%. Surprisingly, it was shown by [38] that at n = 15, a better strategy wins
the game with a higher probability of ≈ 64.4%! This strategy is computed by dynamic
programming, in which each state simply consists of all the information that we obtain from
testing: the amount of ink that has been used from each pen, and whether each pen has run
out or not. For larger n, however, this approach would necessarily result in an exponential
runtime. Furthermore, in the general case that the amounts of ink in the pens are no longer a
permutation of (0, 1, 2, . . . , n−1), it is difficult to analyze how the optimal solution computed
by this dynamic programming scales asymptotically.

In this work, we formulate and study an online version of this pen testing problem, in
which we select only one of the n options, and both the testing and decision are subject to an
additional temporal restriction – we must review the n options in the given order. For each
option, we are allowed to test it to some extent, during which the value of the option also
decreases. Then, we need to make an irrevocable decision on whether to accept the option –
once we accept, the entire game ends and we cannot explore the remaining options; once we
reject an option, we can no longer go back to it if the later options appear less ideal.

This online pen testing problem that we consider is closely related to the theory of
optimal stopping, in which the player is often assumed to observe the value of each option
directly. In the single-choice case that we focus on, two well-studied settings are the prophet
inequality and the secretary problem. In the former, the values are assumed to be drawn
independently from n given distributions. In the secretary problem, the options can have
arbitrary values but the n options are assumed to arrive in a uniformly random order. We
discuss the connection between our work and this literature in Section 1.4. In this paper, we
study the online pen testing problem in settings similar to these two problems, and derive
the optimal guarantee that the player can achieve under minimal assumptions on the option
values.

Awerbuch, Azar, Fiat, and Leighton [3] studied a closely related and more general setting:
A decision-maker may hold at most one of n commodities on each day. At the end of the day,
each commodity issues a dividend of either 0 or 1 to its holders. The goal is to achieve a
total profit comparable to the dividend issued by the best commodity, by switching between
the commodities as few times as possible. In Remark 4 we discuss how pen testing can be
realized as a special case of this setting. We discuss this connection further when describing
our results (Section 1.2) and techniques (Section 1.3).
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1.1 Problem Setup
We first define the online pen testing problem formally.

▶ Definition 1 (Online pen testing). A problem instance is specified by X1, X2, . . . , Xn ≥ 0.
At each step i ∈ [n], the player first tests Xi and then makes a decision:

(Testing) The player picks threshold θi ∈ [0, +∞]. If Xi > θi, the test passes; the test
fails if Xi ≤ θi, in which case the player observes Xi. The remaining utility of option i

becomes X ′
i = max{Xi − θi, 0}.

(Decision) After seeing whether the test passes, the player either accepts or rejects the
i-th option irrevocably. If the player accepts, the game ends and the player receives a
score of X ′

i.

▶ Remark 2. The player may pick threshold θi = +∞, in which case the player gets to
observe Xi at the cost of leaving a remaining utility of X ′

i = 0.

▶ Remark 3. Our definition allows a more general testing procedure, in which the player
performs t tests sequentially at chosen thresholds θ

(1)
i , θ

(2)
i , . . . , θ

(t)
i ≥ 0. This is equivalent

to running a single test at threshold θi = θ
(1)
i + θ

(2)
i + · · · + θ

(t)
i .

▶ Remark 4. The problem can be viewed as a special case of the setting studied by [3], where
no switching is allowed and the commodities issue their dividend sequentially. Assuming that
X1, X2, . . . , Xn are all integers, the online pen testing problem corresponds to an instance
where the i-th commodity issues a unit dividend on Xi consecutive days starting from day
number 1 +

∑i−1
j=1 Xj , and zero dividend on each of the other days.

This problem can be viewed as a variant of the well-studied optimal stopping problem
in which information is both limited and costly. For each option i, we either: (1) receive a
single bit of information (namely, that Xi > θi holds) at the cost of reducing the value of
the option by θi; or: (2) observe Xi exactly when Xi ≤ θi, at the cost of losing all the utility
in option i.

Without any assumptions on X1, . . . , Xn, no non-trivial guarantee on the player’s score
can be made.1 In this paper, we consider the following two setups: the “prophet” setting and
the “secretary” setting, both of which make some distributional assumption on the instance.
In the following, we formally define the settings and the notion of competitive ratio in each
of them.

▶ Definition 5 (Prophet setting). The player is given information about distributions
D1, D2, . . . , Dn over [0, +∞), from which the n values X1, X2, . . . , Xn are drawn independ-
ently.

The player is α-competitive if its expected score, over the randomness in the distributional
information, the generation of (Xi)n

i=1, and the player itself, is at least 1
α ·EX∼D

[
maxi∈[n] Xi

]
.

▶ Remark 6. Formally, each Di is defined by a cumulative distribution function Fi : R → [0, 1]
that is non-decreasing, right-continuous, and satisfies limx→+∞ Fi(x) = 1 and Fi(x) = 0 for
x < 0. The resulting Di satisfies PrXi∼Di

[Xi ≤ x] = Fi(x). We assume that each Di has
a finite expectation, i.e., the integral

∫ +∞
0 [1 − Fi(x)] dx converges, which implies that the

expected maximum, EX∼D
[
maxi∈[n] Xi

]
, is also finite.

1 This is true even if the player can observe the value Xi directly.
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We will sometimes assume for simplicity that each Di is continuous, i.e., the corresponding
Fi(x) is continuous. In other words, Di has no point masses. The general case can be handled
using a simple reduction (see e.g., [33]). The continuity of Fi guarantees that for any
α ∈ (0, 1], we may define the (1 − α)-quantile of Di as the minimum number τ that satisfies
PrXi∼Di

[Xi > τ ] = 1 − Fi(τ) = α.

In the prophet setting, the values of different options are drawn independently from
distributions D1, D2, . . . , Dn. At the beginning of the game, the player is given certain
information about the distributions.2 We consider both the case that the player receives a
complete description of (Di)n

i=1, and the case where the player sees one sample X̂i drawn
from each Di. In the latter case, the observed sample X̂i is independent from the actual
value Xi, and the expected score of the player is defined over the randomness in (X̂i)n

i=1 as
well. Finally, the player’s score is compared to that of an omniscient prophet that knows the
realization of X1, . . . , Xn and always picks the highest one.

▶ Definition 7 (Secretary setting). The player is given information about a1, a2, . . . , an ≥ 0.
The n values X1, X2, . . . , Xn are guaranteed to be a permutation, either uniformly random
or arbitrary, of a1, a2, . . . , an.

The player is α-competitive in the random order case if its expected score, over the
randomness in both the permutation and the player itself, is at least 1

α · maxi∈[n] ai. The
player is α-competitive in the arbitrary order case if for any permutation (Xi)n

i=1 of (ai)n
i=1,

the player’s expected score, over the randomness in the player itself, is at least 1
α · maxi∈[n] ai.

Note that an α-competitive player for the arbitrary order case is also α-competitive
under a random arrival order. We consider the following three forms of information provided
to the player, in decreasing order of helpfulness: (1) full information, the player is given
a1, a2, . . . , an; (2) optimum information, the player is given maxi∈[n] ai; (3) no information,
the player is given nothing.

With full or optimum information, if the player could observe each Xi directly, it would
be easy to achieve a utiliy of maxi∈[n] ai – simply accept option i only if Xi is equal to
this maximum. This is, however, not true for the online pen testing problem. For example,
when (a1, a2, . . . , an) = (1, 2, . . . , n), the player can only ensure that Xi = n by setting the
threshold θi to n − 1, but this would leave a remaining utility of merely 1.

1.2 Our Results
We obtain the optimal competitive ratios (modulo constant factors) for online pen testing,
under different variants of the prophet and secretary settings defined above.

1.2.1 A Simple Lower Bound
The following example shows that even when the Xi’s are drawn independently from the
same “nice” distribution, our score can still be an Ω(log n) factor away from the optimal
outcome.

▶ Proposition 8. Suppose that X1, X2, . . . , Xn are drawn independently from the exponential
distribution with parameter 1. The expected score of the player is at most 1, while the
maximum among X1, X2, . . . , Xn is Hn :=

∑n
k=1

1
k = Ω(log n) in expectation.

2 Without information about (Di)n
i=1, this is as hard as the worst-case setting when every Di is degenerate.
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Proof of Proposition 8. Whenever the player accepts option i after testing it at threshold
θi, the expected remaining utility is EX∼D [X|X > θi] − θi = 1. The expected score of the
player is thus at most 1. The second claim follows from a straightforward calculation, which
is deferred to the full version. ◀

Note that the instance above is a special case of the prophet setting, in which
D1, D2, . . . , Dn are the same distribution. Furthermore, the lower bound argument still
goes through even in the “offline” setting of [38], i.e., the player is allowed to: (1) test the
pens in an arbitrary order; (2) come back and test some pen that has been tested; (3) accept
any pen after gathering all the information.

Perhaps surprisingly, this Ω(log n) lower bound is the only obstacle against a competitive
algorithm: An O(log n)-competitive algorithm exists in almost all the variants, even though
the player is under an additional temporal restriction, and has far less information about
(Xi)n

i=1.

1.2.2 The Prophet Setting
Our first result addresses the prophet setting, assuming that the player is given full descriptions
of the distributions.

▶ Theorem 9. In the prophet setting, there is an algorithm that, given D1, D2, . . . , Dn,
achieves a competitive ratio of O(log n).

In light of Proposition 8, the O(log n) competitive ratio is tight up to a constant factor.
This positive result can be strengthened to an O(log n)-competitive single-sample prophet
inequality.

▶ Theorem 10. In the prophet setting, there is an algorithm that, given samples
X̂1, X̂2, . . . , X̂n independently drawn from D1, D2, . . . , Dn, achieves a competitive ratio of
O(log n).

1.2.3 The Secretary Setting
Our positive result for the secretary setting states that an O(log n) competitive ratio is
achievable even if we are given no information about (ai)n

i=1 (under a random arrival order).
Furthermore, if the maximum value maxi∈[n] ai is given, an O(log n)-competitive algorithm
exists even if the arrival order is arbitrary. The O(log n) upper bound for the latter case also
follows from a result of [3] and the reduction outlined in Remark 4. Interestingly, we obtain
this competitive ratio using a quite different approach; we compare these two algorithms in
more detail in Section 1.3.

▶ Theorem 11 (Secretary setting, upper bounds; Theorem 2.3 of [3]). In the secretary setting,
an O(log n)-competitive algorithm exists in the following two cases: (1) the order is random
and the player is given no information; (2) the order is arbitrary and the player is given
optimum information.

We prove a matching Ω(log n) lower bound under settings that are even easier than those
in Theorem 11.

▶ Theorem 12 (Secretary setting, lower bounds). In the secretary setting, any algorithm
is at best Ω(log n)-competitive in the following two cases: (1) the order is random and the
player is given optimum information; (2) the order is arbitrary and the player is given full
information.

ITCS 2023
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In the easiest combination among all secretary settings – that (Xi)n
i=1 is a random

permutation of known values (ai)n
i=1, the competitive ratio is slightly improved to Θ

(
log n

log log n

)
.

▶ Theorem 13. In the secretary setting with random order and full information, there is an
O

(
log n

log log n

)
-competitive algorithm. Furthermore, this is tight up to a constant factor.

We found this result particularly surprising: if each ai were drawn from an exponential
distribution, the instance appears similar to the lower bound instance of Proposition 8 and it
may seem hard to achieve a super-constant improvement over this. The key insight is that,
given the random ordering of the ai’s, with good probability, there will be some j such that
the set {Xi : i > j} contains a super-constant “gap” in the following sense: There exists an
interval [A, B] of length B − A > Ω(log log n) such that {Xi : i > j} ∩ [A, B] = ∅, and for
some i > j, Xi > B. Given this, a simple scheme can achieve a score of B − A. The core of
the proof of the O

(
log n

log log n

)
upper bound is showing that for any set of ai’s, such a gap will

exist with good probability over the random order.
We summarize the results for the secretary setting in Table 1. The rows represents the

arrival order of a1, a2, . . . , an, and the columns represents the amount of information about
(ai)n

i=1 that is provided to the player. The setting becomes harder (or remains equally hard)
going from top to bottom and from left to right in the table.

Table 1 A summary of results for the secretary setting. The top-left cell follows from Theorem 13.
The bottom-right cell is folklore. The remaining four bounds follow from Theorems 11 and 12.

Full Information Optimum Information No Information

Random Order Θ
( log n

log log n

)
Θ(log n) Θ(log n)

Arbitrary Order Θ(log n) Θ(log n) Θ(n)

1.3 Proof Overview and Technical Highlights
We sketch the proofs of all our results, and highlight a few technical difficulties that are
tackled using new techniques that might be of independent interest.

1.3.1 The Prophet Setting, Given the Distributions
In the i.i.d. case that D1 = D2 = · · · = Dn = D, we show that the following single-threshold
algorithm succeeds: (1) Pick θ ≥ 0 and test each option with the same θi = θ; (2) Accept the
first option that passes the test. In particular, we prove that the single-threshold algorithm
at one of the thresholds among {τ1, τ1/2, τ1/4, τ1/8, . . . , τ1/n} is O(log n)-competitive, where
τα is the (1 − α)-quantile of D.

In the general case, however, this single-threshold approach no longer works: If each Di

is the degenerate distribution at value i, any single-threshold algorithm gives a score of at
most 1, whereas the optimum is n. Nevertheless, in this problem instance, our knowledge of
(Di)n

i=1 should allow us to realize that option n is the optimal one. Indeed, our algorithm
for the general case uses the distributional knowledge to identify a set of “valuable” options
and only test those options at carefully chosen thresholds (which depend on the individual
distributions).
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We remark that our analysis for the i.i.d. setting (especially the use of the exponential
distribution in the lower bound) resembles part of the analysis in [18], albeit in the different
context of money burning auction introduced by [22].

1.3.2 The Secretary Setting, Upper Bounds
When the arrival order is random and the optimum a[1] := maxi∈[n] ai is known, the single-
threshold approach again gives an O(log n)-competitive algorithm. We randomly choose a
threshold θ between 0 and a[1]. It is easy to prove that with probability Ω(1), among all the
options with value > θ, more than half of them have values higher than θ + Ω(a[1]/ log n).
The random arrival order then implies that the first option that passes the test at θ leaves
an Ω(a[1]/ log n) remaining value in expectation.

To prove Theorem 11, we need to remove either the knowledge of a[1], or the assumption
on the arrival order. The former can be done by estimating a[1] using a standard technique.
To handle an arbitrary arrival order, however, turns out to be non-trivial. Intuitively, among
the n>θ options with value > θ, we want to accept one of them uniformly at random, but
this is difficult without knowing n>θ in advance.

We define a “bit sampling” game that abstracts this challenge.

Bit Sampling Game: We observe an arbitrary sequence of m bits, with the promise
that strictly more than half of the bits are “1”. Crucially, we do not know m in
advance. We see the bits one by one, and may choose to commit to the next unseen bit
at any point. We win if our chosen bit is a “1”. Can we win with constant probability?
Can we win with probability ≥ 1/2?

Natural approaches to the problem (e.g., by guessing the value of m) only win the game
with probability O(1/ log n), where n is an upper bound on m. In Section 5.3, we give a more
intricate strategy that wins with probability Ω(1). This strategy then gives an algorithm for
Case (2) of Theorem 11.

Drucker [15] studied a similar sampling problem, in which the bit sequence is infinite and
the density of 1’s is lower bounded asymptotically. (Formally, the average of the first n bits
has a limit inferior of ≥ 1 − ϵ as n → +∞.) One main result of [15] is a family of strategies
that “commit to a bit 1” with a probability arbitrarily close to 1 − ϵ. Despite the similarity
between them, the two problems have different cruxes. Intuitively, the player in the setting
of [15] needs to wait patiently for the sequence to reach a “high-density region”, whereas the
player in the above game must commit more aggressively, in case that the sequence ends
very early.

As mentioned earlier, the O(log n) upper bound for the arbitrary arrival order case also
follows from Theorem 2.3 in [3]. When translated into the setting of online pen testing,
their algorithm picks a randomized threshold for each option, and accepts the first option
that passes the test. The thresholds are independently drawn from a flipped exponential
distribution over [0, a[1]], i.e., the probability of picking a higher threshold is exponentially
larger. In contrast, our approach uses the same, uniformly random threshold for all options,
and then uses the “bit sampling” scheme to ensure the competitive ratio.

1.3.3 The Secretary Setting, Lower Bounds
The proof for the first case of Theorem 12 (random order and optimum information) follows
from a change-of-distribution argument that transforms a distribution over instances to
another distribution that corresponds to the prophet setting. The proof for the other case
(arbitrary order and full information) is relatively more difficult.
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Recall that the prophet setting lower bound (Proposition 8) relies on the memoryless
property of the exponential distribution. It is thus natural to consider a sequence a1, a2, . . . , an

that contains ≈ n/2 copies of 1, ≈ n/4 copies of 2, ≈ n/8 copies of 3, . . ., and exactly one
occurrence of log2 n, since the uniform distribution over {a1, a2, . . . , an} is roughly a geometric
distribution, which is also memoryless. Hence, if (Xi)n

i=1 is a random permutation of (ai)n
i=1,

no matter how the player tests the first option, the expected remaining value is at most O(1).
If the same were true for all the remaining options in the sequence, an Ω(log n) lower bound
would follow.

However, this argument does not work perfectly – the construction only gives a weaker
lower bound of Ω

(
log n

log log n

)
in Theorem 13.3 Note that the player, given full information

about (ai)n
i=1, knows the multiset of the unseen values {Xi, Xi+1, . . . , Xn} at any step i. If

the uniform distribution over this set does not “resemble a geometric” for some i, the player
might exploit this to achieve a super-constant score. As we prove in the upper bound part
of Theorem 13, under a random arrival order and regardless of the choice of (ai)n

i=1, this
“non-geometric” property holds at some point i with a decent probability, so the player can
always shave a log log n factor off the competitive ratio.

In Section 6.2, we prove the Ω(log n) lower bound in Theorem 12, Case (2) by constructing
a more intricate distribution over permutations of essentially the same sequence (ai)n

i=1. This
distribution ensures that w.h.p. every suffix of the sequence (Xi)n

i=1 resembles the geometric
distribution, and thus the player can achieve an O(1) score at best.

1.3.4 The Single-Sample Prophet Setting
Our proof of Theorem 9 implies that, to be O(log n)-competitive in the prophet setting, it
suffices to know a few quantiles of D1 through Dn. We might hope that the same algorithm
can be implemented using the samples. However, this approach would not prove Theorem 10,
since the algorithm needs the (1 − 1/n)-quantile of each Di, which requires Ω(n) samples
from each distribution to estimate.

Interestingly, our results for the secretary setting can be applied to prove the single-
sample prophet inequality in Theorem 10. Given the samples X̂1, X̂2, . . . , X̂n, we use
â[1] := maxi∈[n] X̂i as an estimate for the maximum among the “real values” X1, . . . , Xn.
The problem instance can then be viewed as the arbitrary-order, optimum-information case of
the secretary setting, except that we only know a rough “hint” on the maximum. Fortunately,
our algorithm for Theorem 11, Case (2) can handle this case as well.

1.4 Related Work
Our work is closely related to the vast literature on the prophet inequality introduced by
Krengel, Sucheston and Garling [28] and the secretary problem that dates back to at least
the work of Dynkin [16]. We refer the readers to a tutorial of [19] for different solutions for
these two problems.

1.4.1 Prophets and Secretaries with Costs
Most closely related to this paper is the prior work on optimal stopping with observation
costs. For prophet inequalities, Jones [25] first considered a setting where the player has
to pay a fixed cost of c ≥ 0 to observe the value of each item. In other words, the net

3 In fact, this is inevitable in light of the upper bound part of Theorem 13.
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reward from accepting the i-th option is reduced to Xi − ic. [25] derived sharp bounds on
the difference between the score of the optimal player and that of a prophet who knows
X1, . . . , Xn. A special case of this setting that the values are i.i.d. was subsequently studied
by [34, 21, 27].

Bartoszyński and Govindarajulu [8] defined a variant of the secretary problem with
“interview costs”. Given constants a, b, c1, c2, . . . , cn ≥ 0, the player pays a cost of ck if the
k-th option is selected. Furthermore, a score of a or b is awarded, depending on whether
the chosen option has the highest or second highest value. More recently, [5] studied a
similar secretary problem with discounts, in which the value of the i-th option is d(i) · Xi,
where X1, X2, . . . , Xn are arbitrary values that arrive in a random order, and d(·) is a given
discount function.

Another related setting is the Pandora’s Box problem first introduced by Weitzman [39].
In this setting, the value vi of each option is independently drawn, and the player may choose
to examine the i-th option (i.e., to learn vi) at a posted cost of ci. Recent work has studied
several variants of Pandora’s Box: multiple selection under a combinatorial constraint [35],
with a more complex probing process specified by Markov chains [20], with a correlated prior
distribution [11], or under additional restrictions on the order of probing [9].

In all these previous settings, the player can still fully access the value of each option,
and the observation cost mostly depends on the number of options that the player observes
before accepting. In contrast, our model assumes a more restricted form of observation and
a cost that is commensurate with the extent to which we observe each option. On the other
hand, the player only needs to pay the cost for the option that it finally accepts.

1.4.2 Multiple Selection under Constraints
While we focus on the single choice setting of optimal stopping, we remark that there has
been a flurry of recent work in the TCS community on selecting multiple options, in either
prophet or secretary setting, under certain combinatorial constraints [26, 7, 10, 36, 24, 14,
29, 17, 30, 31, 32, 23, 37, 2, 1]. In particular, for the matroid secretary problem in which the
player is required to choose an independent set from some given matroid with the n options
as the ground set, it remains a major open problem whether an O(1)-competitive algorithm
exists.

1.4.3 Prophet Inequalities from Samples
Whereas most prior work on prophet inequalities makes the arguably strong assumption
on the full knowledge of the distributions, [4] explored the setting where the player only
observes a few samples from each distribution, and proved several O(1)-competitive prophet
inequalities that require only a single sample from each distribution, even for the multiple-
selection case under several types of matroid constraints. For the single-choice i.i.d. case, [12]
gave an algorithm that achieves a competitive ratio of α + ϵ with O(n2) samples for any
constant ϵ > 0, where α ≈ 1

0.745 is the optimal competitive ratio when the distribution is
known. [33] further improved the sample complexity to O(n) for the i.i.d. case, and also gave
a 2-competitive single-sample prophet inequality for the non-i.i.d. case. The competitive
ratio of 2 matches the case that the distributions are given.

1.5 Organization of the Paper
We start by highlighting several natural open problems and discussing future directions of
research in Section 2. In Section 3, we present a simple O(log n)-competitive algorithm for
the prophet setting under an additional i.i.d. assumption. This is extended to the general
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non-i.i.d. case (Theorem 9) in Section 4. Algorithms and lower bound constructions for the
secretary setting (Theorems 11 through 13) are presented in Sections 5 and 6. In Section 7,
we show how the results for the secretary setting imply the single-sample prophet inequality
in Theorem 10.

2 Discussion and Open Problems

We mention a few immediate open problems and directions for future work.
The main focus of this work is the order of the competitive ratio, so we will prioritize the

clarity of the algorithms/hard instances over optimizing the constant factors. (That said, all
the hidden constants in our results will be reasonably small and easy to keep track of.) The
most immediate open problem is to pin down the optimal constant factors in the competitive
ratios as n grows. Even in the i.i.d. case of the prophet setting, a multiplicative gap of e still
exists: The lower bound from Proposition 8 scales as Hn = (1 + o(1)) ln n, whereas in the
full version, we show that the upper bound from Theorem 9 can be refined to (e + o(1)) ln n.
We note that in the usual setup of single-choice prophet inequalities, the optimal competitive
ratio of 2 for the non-i.i.d. case was obtained in the fundamental work of Krengel, Sucheston
and Garling [28], while the i.i.d. case turned out to be more challenging, and was solved only
very recently by [13].

A natural extension of the current single-choice setting is to select several pens, while
maximizing the total remaining ink in them. The selection is subject to a cardinality
constraint or, more generally, an arbitrary combinatorial constraint. Following the seminal
work of [7, 6], there has been a flurry of recent work on matroid secretary problem, in which
the combinatorial structure is a matroid, and it remains an open problem to bound the
optimal competitive ratio in terms of the matroid rank (the current best bounds are Ω(1) and
O(log log rank)). For many special types of matroids, O(1)-competitive algorithms are known.
In particular, as noted in [5], many of such algorithms proceed by reducing a more general
matroid to a partition matroid, and the problem essentially becomes multiple instances of
the single-choice problem. Therefore, any matroid class that has such a partition property
also admits an O(log n)-competitive algorithm in the pen testing variant. It remains an
interesting question whether a similar O(log n) competitive ratio can be achieved in online
pen testing over other natural matroid types. Conversely, does the lack of information in
pen testing make it easier to prove lower bounds?

In our setting, testing an option with threshold θ reduces its utility by θ. We could
consider a slightly more general setting where the remaining utility of option i becomes
Xi − c(θi) for some given cost function c(·). For example, in the special case that c(θi) = αθi

for some α > 0, natural extensions of our current algorithmic techniques can still be applied.
Currently, the feedback from a test is binary – either “pass” or “fail”. In the whiteboard

pen example that motivates this work, it is also realistic to assume that we can tell when
the ink “starts to run out”. It would be interesting to formulate such a setting and explore
whether this smoothed feedback makes stronger guarantees possible.

3 Warmup: The IID Prophet Setting

We start with a special case of the prophet setting that D1, D2, . . . , Dn are the same dis-
tribution (denoted by D), a full description of which is given to the player. For simplicity,
we assume that D is a continuous probability distribution. By Remark 6, for α ∈ (0, 1],
we can define τα as the smallest (1 − α)-quantile of D, i.e., the minimum τ such that
PrX∼D [X > τ ] = α.
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In the following, X1, . . . , Xn are independent random variables that follow distribution D,
and Xmax := max{X1, . . . , Xn} is defined as their maximum. We start by upper bounding
the expected optimum, EX1,...,Xn∼D [Xmax]:

▶ Lemma 14. For any distribution D and θ ∈ R, EX1,...,Xn∼D [Xmax] ≤ θ + n ·
EX∼D [max{X − θ, 0}].

Proof. We have

E
X1,...,Xn∼D

[Xmax] ≤ θ + E
X1,...,Xn∼D

[max{Xmax − θ, 0}]

≤ θ + E
X1,...,Xn∼D

[
n∑

i=1

max{Xi − θ, 0}

]
= θ + n · E

X∼D
[max{X − θ, 0}] ,

where the second step holds since max{Xmax−θ, 0} is equal to the maximum of max{Xi−θ, 0}
over all i ∈ [n], which is in turn upper bounded by their sum. ◀

Another simple fact is that passing a test at τα gives an expected remaining utility of
Ω(τα/2 − τα).

▶ Lemma 15. For any distribution D and α ∈ (0, 1], EX∼D [X − τα|X > τα] ≥ τα/2−τα

2 .

Proof. We have

E
X∼D

[X − τα|X > τα] = EX∼D [(X − τα) · 1 [X > τα]]
PrX∼D [X > τα]

≥
EX∼D

[
(τα/2 − τα) · 1

[
X > τα/2

]]
PrX∼D [X > τα]

= (τα/2 − τα) ·
PrX∼D

[
X > τα/2

]
PrX∼D [X > τα] = 1

2(τα/2 − τα).

The second step follows from that (x − b) · 1 [x ≥ b] ≥ (a − b) · 1 [x ≥ a] for any x and
a > b. ◀

Lemma 14 with θ = τ1/n shows that EX1,...,Xn∼D [Xmax] ≤ τ1/n + n ·
EX∼D

[
max{X − τ1/n, 0}

]
. In the following, we prove Theorem 9 in the i.i.d. case by

giving two different algorithms. The score of the first algorithm is guaranteed to match the
second term, n · EX∼D

[
max{X − τ1/n, 0}

]
, up to a constant factor. The second algorithm,

on the other hand, achieves an expected score of τ1/n/O(log n).

Proof of Theorem 9 (i.i.d. case). We consider a single-threshold algorithm that tests every
option with the same chosen threshold θ, and accepts the first option that passes the test.

In the first algorithm, we use threshold θ = τ1/n. Since PrX∼D
[
X > τ1/n

]
= 1/n, the

algorithm accepts one of the n options with probability 1−(1−1/n)n > 1−1/e. Furthermore,
conditioning on that the algorithm accepts, the expected remaining utility is

E
X∼D

[
X − τ1/n|X > τ1/n

]
=

EX∼D
[
(X − τ1/n) · 1

[
X > τ1/n

]]
PrX∼D

[
X > τ1/n

]
=

EX∼D
[
max{X − τ1/n, 0}

]
PrX∼D

[
X > τ1/n

] (a · 1 [a > 0] = max{a, 0})

= n · E
X∼D

[
max{X − τ1/n, 0}

]
. (definition of τ1/n)
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Therefore, the expected score of this algorithm matches the n ·EX∼D
[
max{X − τ1/n, 0}

]
term up to a factor of 1 − 1/e.

Let k = ⌈log2 n⌉. Our second algorithm draws α uniformly at random from
{1, 2−1, 2−2, . . . , 2−(k−1)} and uses the threshold θ = τα. Conditioning on the choice of α, the
probability that one of the n options gets accepted is 1 − (1 − α)n > 1 − (1 − 1/n)n > 1 − 1/e.
Furthermore, conditioning on that one of the options is accepted, the expected score is at
least τα/2−τα

2 by Lemma 15. Thereby, this algorithm achieves an expected score of

1
k

· (1 − 1/e) ·
k−1∑
j=0

τ2−(j+1) − τ2−j

2 = (1 − 1/e)(τ2−k − τ1)
2k

≥
τ1/n

O(log n) .

An O(log n)-competitive algorithm follows from randomizing between the two algorithms
above. ◀

We remark that in the proof above, the final algorithm is a mixture of single-threshold
algorithms. Thus, there always exists a threshold τ (that depends on D) at which the
single-threshold algorithm is O(log n)-competitive.

4 Prophet Setting: The General Case

Now we tackle the general case that D1, D2, . . . , Dn are not necessarily identical. We still
assume for simplicity that each Di is continuous. Again, Remark 6 allows us to define τ

(i)
α as

the smallest (1 − α)-quantile of Di for every α ∈ (0, 1]. In the following, X1, X2, . . . , Xn are
independent samples from D1, D2, . . . , Dn respectively and we define Xmax := maxi∈[n] Xi.
The continuity of D1, . . . , Dn implies that Xmax also follows a continuous distribution.
Therefore, we may define τα as the smallest (1 − α)-quantile of Xmax.

Our proof first upper bounds EX∼D [Xmax] in terms of τ1/2 (analogously to Lemma 14):

E
X∼D

[Xmax] ≤ τ1/2 +
n∑

i=1
E

Xi∼Di

[
max{Xi − τ1/2, 0}

]
.

We will show that the single-threshold algorithm with θ = τ1/2 achieves a score that is at
least half of the second term above, so the main challenge is to match the first term τ1/2 up
to an O(log n) factor. However, unlike the i.i.d. setting, this cannot be done using the same
threshold for every option. Instead, we will bucket the distributions based on their tails, and
only test the options in the most significant group with thresholds that are chosen based on
their individual distributions.

Proof of Theorem 9. We start by writing the expected optimum into two parts. For each
part, we will give an algorithm whose score matches the part up to an O(log n) factor. Similar
to the proof of Lemma 14, we have

E
X∼D

[Xmax] ≤ τ1/2 + E
X∼D

[
max{Xmax − τ1/2, 0}

]
≤ τ1/2 +

n∑
i=1

E
Xi∼Di

[
max{Xi − τ1/2, 0}

]
.

We will group the distributions based on their tails. Let αi = PrXi∼Di

[
Xi > τ1/2

]
be the

probability that Xi exceeds the median of Xmax. The definition of τ1/2 implies that

1/2 = Pr
X∼D

[
Xmax ≤ τ1/2

]
=

n∏
i=1

Pr
Xi∼Di

[
Xi ≤ τ1/2

]
=

n∏
i=1

(1 − αi) ≥ 1 −
n∑

i=1
αi,
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and thus,
∑n

i=1 αi ≥ 1/2. Let k = ⌈log2 n⌉. We partition the n distributions into k + 3
groups depending on αi: For j = 0, 1, 2, . . . , k + 1, we define

Gj :=
{

i ∈ [n] : 2−(j+1) < αi ≤ 2−j
}

.

Furthermore, define Gk+2 :=
{

i ∈ [n] : αi ≤ 2−(k+2)}. Then, we have

1/2 ≤
n∑

i=1
αi =

k+1∑
j=0

∑
i∈Gj

αi +
∑

i∈Gk+2

αi ≤
k+1∑
j=0

|Gj |
2j

+ |Gk+2|
4n

≤
k+1∑
j=0

|Gj |
2j

+ 1
4 ,

and thus,
∑k+1

j=0 |Gj |/2j ≥ 1/4. This implies that for some j∗ ∈ {0, 1, . . . , k + 1},

|Gj∗ |/2j∗
≥ 1

4(k + 2) = 1
O(log n) .

To match the τ1/2 term, we use the following algorithm:
Draw α randomly from some distribution over {1, 2−1, 2−2, . . . , 2−j∗} to be determined
later.
Partition Gj∗ into t :=

⌈
|Gj∗ |
1/α

⌉
blocks B1, B2, . . . , Bt such that: (1) Each block except

Bt is of size 1/α; (2) the blocks are sorted chronologically, i.e., max Bk < min Bk+1 for
every k ∈ [t − 1].
Pick one of the t blocks, Bk, uniformly at random.
At each step i, ignore and reject option i if i /∈ Bk. Otherwise, test it with θi = τ

(i)
α and

accept if the test passes.
We first analyze the above algorithm for fixed α ∈ {1, 2−1, . . . , 2−j∗}, and then specify the
distribution from which α is drawn. Suppose that i ∈ Gj∗ is the l-th smallest number in
its block Bk. Note that l ∈ [1/α]. Then, we accept option i if the following three happen
simultaneously: (1) Bk is chosen at the third step of the algorithm; (2) None of the (l − 1)
options prior to i passes the test; (3) The test passes at step i. All these three happen with
probability

1
t

· (1 − α)l−1 · α ≥ 1
|Gj∗ |
1/α + 1

(1 − α)1/α−1 · α ≥ α

e(α|Gj∗ | + 1) .

Furthermore, by Lemma 15, conditioning on that option i passes the test at θi = τ
(i)
α , the

expected score is at least
τ

(i)
α/2−τ (i)

α

2 .
Therefore, conditioning on the choice of α, the expected score is lower bounded by

α

2e(α|Gj∗ | + 1) ·
∑

i∈Gj∗

(τ (i)
α/2 − τ (i)

α ) ≥ min {α|Gj∗ |, 1}
4e

· 1
|Gj∗ |

∑
i∈Gj∗

(τ (i)
α/2 − τ (i)

α ).

Let Z :=
∑j∗

j=0
1

min{2−j |Gj∗ |,1} . It follows from 2−j∗ |Gj∗ | ≥ 1
O(log n) that Z = O(log n). Then,

if we set α to 2−j with probability 1/ min{2−j |Gj∗ |,1}
Z for each j ∈ {0, 1, . . . , j∗}, our expected

score is at least

1
4eZ

· 1
|Gj∗ |

j∗∑
j=0

∑
i∈Gj∗

(τ (i)
2−(j+1) − τ

(i)
2−j ) = 1

4eZ|Gj∗ |
∑

i∈Gj∗

τ
(i)
2−(j∗+1) >

τ1/2

4eZ
=

τ1/2

O(log n) .

The second step above holds since every i ∈ Gj∗ satisfies PrXi∼Di

[
Xi > τ1/2

]
> 2−(j∗+1),

which implies τ
(i)
2−(j∗+1) > τ1/2.
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It remains to give another algorithm with an expected score comparable to∑n
i=1 EXi∼Di

[
max{Xi − τ1/2, 0}

]
. In fact, the single-threshold algorithm with τ1/2 would

suffice: it gives an expected score of

n∑
i=1

i−1∏
j=1

Pr
Xj∼Dj

[
Xj ≤ τ1/2

] · Pr
Xi∼Di

[
Xi > τ1/2

]
· E

Xi∼Di

[
Xi − τ1/2|Xi > τ1/2

] .

For each i ∈ [n], the first term
∏i−1

j=1 PrXj∼Dj

[
Xj ≤ τ1/2

]
is lower bounded

by PrX∼D
[
Xmax ≤ τ1/2

]
= 1/2. Furthermore, PrXi∼Di

[
Xi > τ1/2

]
·

EXi∼Di

[
Xi − τ1/2|Xi > τ1/2

]
is equal to

E
Xi∼Di

[
(Xi − τ1/2) · 1

[
Xi > τ1/2

]]
= E

Xi∼Di

[
max{Xi − τ1/2, 0}

]
.

Therefore, the expected score is lower bounded by 1
2

∑n
i=1 EXi∼Di

[
max{Xi − τ1/2, 0}

]
.

Finally, randomizing between the two algorithms proves the O(log n) competitive ratio. ◀

5 Algorithms for the Secretary Setting

In the secretary setting, the n values X1, X2, . . . , Xn are guaranteed to be obtained from
re-ordering (either randomly or arbitrarily) n numbers a1, a2, . . . , an ≥ 0. Furthermore,
we know either (ai)n

i=1 completely (full information), or only the maximum maxi∈[n] ai

(optimum information), or nothing at all (no information). In this section, we develop several
O(log n)-competitive algorithms under various combinations of the order assumption and
the information about (ai)n

i=1.
Our starting point is the simplest case – random ordering and full information – which

admits a single-threshold algorithm. We will show that a similar algorithm also succeeds
when only the maximum is known. To handle the two settings in Theorem 11, however, we
need to drop either the knowledge about the maximum ai, or the assumption on the arrival
order. The former case can be handled by a standard technique, whereas the latter requires
us to sample uniformly from a sequence of unknown length, a problem that turns out to be
non-trivial. We solve this latter challenge using a more careful sampling scheme, and thus
prove the theorem.

Finally, we go back to the simplest setting, and give a slightly better algorithm that is
O

(
log n

log log n

)
-competitive.

5.1 Warmup: Random Order, Full or Optimum Information
Suppose that we know a1, a2, . . . , an, and (Xi)n

i=1 is a uniformly random permutation of
(ai)n

i=1. Let a[i] denote the i-th largest value among a1, . . . , an. In the following, we give a
simple algorithm with an expected score of Ω

(
a[1]

log n

)
and thus an O(log n) competitive ratio.

Pick k = ⌊log2 n⌋ + 2 = O(log n) such that 2k−1 > n. For each j ∈ [k], let

nj :=
∣∣∣∣{i ∈ [n] : j − 1

k
a[1] < ai ≤ j

k
a[1]

}∣∣∣∣
be the number of values that are approximately a j

k fraction of the maximum. Clearly,∑k
j=1 nj ≤ n and nk ≥ 1. We use the shorthand notation n≥j := nj + nj+1 + · · · + nk. We

claim that there exists some j∗ ∈ {1, 2, . . . , k−1} such that nj∗ < n≥j∗+1. Otherwise, a simple
induction shows n≥j ≥ 2k−j for every 1 ≤ j ≤ k, which implies n ≥

∑k
j=1 nj ≥ 2k−1 > n, a

contradiction. Furthermore, given a1, a2, . . . , an, we can easily identify such an index j∗.
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Then, the single-threshold algorithm at θ = j∗−1
k a[1] succeeds. Recall that this algorithm

accepts the first Xi that exceeds θ and gives a score of Xi − θ. By definition, the number of
options that could pass the test is exactly n≥j∗ . Since nj∗ < n≥j∗+1 = n≥j∗ − nj∗ , at least
half of these n≥j∗ options (initially) have values ≥ j∗

k a[1]. Given that the values are shuffled
uniformly at random, with probability at least 1/2, the remaining utility of the option that
we accept is at least j∗

k a[1] − θ = j∗

k a[1] − j∗−1
k a[1] = a[1]

k . Our expected utility is then lower
bounded by 1

2 · a[1]
k = Ω

(
a[1]

log n

)
.

Now we extend the approach to the case with only optimum information. In the algorithm
above, the knowledge of (ai)n

i=1 is only used for choosing the right j∗ in the threshold. We
show that a similar algorithm that picks j∗ randomly is still O(log n) competitive, and thus
can be applied to the optimum information case.

Under the same definition of k, nj and n≥j as above, we draw j uniformly at random
from [k − 1], and run the single-threshold algorithm with θ = j−1

k · a[1]. Conditioning on the
choice of j, we accept one of the n≥j options with value > θ uniformly at random, so our
utility is at least a[1]

k with probability at least n≥j+1
n≥j

. Averaging over the randomness in j

lower bounds the expected score by

a[1]

k
· 1

k − 1

k−1∑
j=1

n≥j+1

n≥j
≥

a[1]

k
·

k−1∏
j=1

n≥j+1

n≥j

 1
k−1

=
a[1]

k
·
(

n≥k

n≥1

) 1
k−1

≥
a[1]

k
· n− 1

k−1 .

Our choice of k gives n− 1
k−1 > 1/2, so our score is a 1

2k = 1
O(log n) fraction of the optimum a[1].

5.2 Random Order, with No Information
We further discard the knowledge of a[1] and prove Case (1) of Theorem 11: unknown
values a1, a2, . . . , an arrive in a uniformly random order. A simple idea that is often used
in secretary problems is to observe half of the options, and use the largest value among
them as an estimate of a[1]. If a[1] appears in the latter half, while this estimate is within a
constant factor to a[1], we would obtain a competitive algorithm by making the argument in
the previous section robust. However, this never holds if a[1] is much larger than the second
largest value a[2]. Fortunately, another simple algorithm works for this case – single-threshold
with the maximum among the first half as the threshold.

To formalize this idea, we state the following lemma that further generalize the “warmup”
algorithm to the case where we are only given a “hint” about a[1].

▶ Lemma 16. In the secretary setting under random order, there is an algorithm that, given
any â[1] that lies in [0, a[1]], achieves a score of at least â[1]

O(log n) in expectation.

The proof of the lemma follows from simply replacing a[1] with â[1] in the argument above;
a formal proof can be found in the full version.

Proof of Theorem 11, Case (1). We observe the values of the first m := ⌊n/2⌋ options (by
using threshold +∞), and let â[1] be the largest among them. With probability m·(n−m)

n·(n−1) ≥ 1/4,
an option with value a[2] appears in the first m ones, while an option with value a[1] is in the
remaining n − m ones. This implies â[1] = a[2] ≤ a[1] and we condition on this event in the
following.

Conditioning on the options that appear in the first m steps, the remaining n − m

options are still a uniformly random permutation of the unseen ones. Therefore, applying
the algorithm from Lemma 16 with the hint â[1] gives an expected score of at least â[1]

O(log n) =
a[2]

O(log n) . On the other hand, if we simply test each of the last n − m options with threshold
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â[1] and accept the first one that passes the test, we will either accept an option with initial
value a[1] (if a[1] > a[2]), or accept nothing (if a[1] = a[2]). In either case, our score is a[1] −a[2].
Therefore, using one of the two strategies randomly gives an expected score of at least

1
4 · 1

2

(
a[2]

O(log n) + a[1] − a[2]

)
=

a[1]

O(log n) . ◀

5.3 Arbitrary Order, with Optimum Information
We give another O(log n)-competitive algorithm when a1, a2, . . . , an arrive in an arbitrary
order, and we only know the maximum value a[1]. Recall that the “warmup” algorithm is the
single-threshold algorithm with a randomly chosen θ = j−1

k a[1], where k = Θ(log n) and j is
uniformly drawn from [k − 1]. The analysis uses the following two observations. First, among
the options that could pass the test, a constant fraction of them are “good” in the sense
that their values are higher than θ + a[1]/k, which give a score of ≥ a[1]/k. Second, since the
options arrive in a random order, the one that we accept is “good” with Ω(1) probability.

The same algorithm fails in the arbitrary order case, since the options might be ad-
versarially ordered such that the “good” options always appear after the “bad” ones. If we
(hypothetically) knew the number n≥j of total options that could pass the test at θ, this
would not pose a challenge, since we could instead draw l uniformly at random from [n≥j ]
and accept the l-th option that passes the test. Unfortunately, we cannot obtain (or even
estimate) n≥j without knowing a1, a2, . . . , an.

The following “bit sampling” game is an abstraction of this challenge. An adversary picks
a binary sequence of an unknown length m ∈ [n], with the only restriction that the fraction
of ones is strictly higher than 1/2. The player, knowing n but not m, observes the bits one
by one, and may choose to commit to the next unseen bit at any point (including before
seeing any bits). The player wins if the chosen bit is a “1”, and loses if it either commits to
a “0”, or fails to select a bit before the end of the sequence.

The player would easily win with probability > 1/2 if it could select one of the m bits
uniformly at random. This uniform sampling would be possible if either the sequence length
m were known, or the bits came in a random order. When the order is arbitrary and m is
unknown, it might appear that the player’s only strategy is to guess the sequence length
m̂, and to sample one of the first m̂ bits uniformly. Unfortunately, this succeeds only if m̂

is within a constant factor to the actual sequence length m, which at best happens with
probability O

(
1

log n

)
.

Perhaps surprisingly, with a better strategy, the player wins the game with a constant
probability regardless of the maximum sequence length n.

▶ Lemma 17. In the bit sampling game, the player has a strategy that wins the game with
probability at least 1

6 .

In the following, we first show how this result implies an online pen testing algorithm
(with arbitrary order, optimum information), and then prove Lemma 17. We will actually
prove a slightly more general result, which immediately implies Case (2) of Theorem 11 and
will be useful in later sections.

▶ Lemma 18 (Strengthening of Theorem 11, Case (2)). In the secretary setting under arbitrary
order, there is an algorithm that, given any â[1] that lies in [0, a[1]], achieves a score of at

least â[1]
O(log n) in expectation.
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Proof of Lemma 18. Let k = 2⌊log2 n⌋ + 2, draw j∗ uniformly at random from [k − 1], and
set θ := j∗−1

k · â[1]. For each j ∈ [k], let n≥j := |{i ∈ [n] : ai > j−1
k · â[1]}|. Note that n≥1 ≤ n

and n≥k ≥ 1.
We claim that with probability ≥ 1/2, j∗ satisfies that n≥j∗ < 2n≥j∗+1. Suppose

otherwise, that there exist k/2 different values 1 ≤ j1 < · · · < jk/2 ≤ k − 1 such that
n≥j ≥ 2n≥j+1 holds for every j ∈ {j1, . . . , jk/2}. This would give

n ≥ n≥1 ≥ 2k/2n≥k ≥ 2⌊log2 n⌋+1 · 1 > n,

a contradiction. We condition on the event that n≥j∗ < 2n≥j∗+1 in the following.
Since n≥j∗+1 >

n≥j∗

2 , among the n≥j∗ options that could pass the test at θ, strictly more

than half of them would leave a remaining utility of at least â[1]
k . We call them the “good”

options, and the other options (that pass the test but leave a utility <
â[1]

k ) the “bad” ones.
Now we simulate the player from Lemma 17 on a hypothetical bit sampling instance

with maximum sequence length n. We test the options one by one with the same threshold
θ. If an option i passes the test, we check whether the player in the bit sampling problem
commits to the next bit. If so, we accept option i; otherwise, we further test the option to
check whether its initial value is above j∗+1

k · â[1]. If so, we feed a “1” to the bit sampling
player and feed a “0” otherwise.

Assuming that n≥j∗ < 2n≥j∗+1 holds, the probability that we end up with a score ≥ â[1]
k

is lower bounded by the player’s winning probability, which is ≥ 1/6 by Lemma 17. This
lower bounds our expected score by 1

2 · 1
6 · â[1]

k = â[1]
O(log n) and proves the lemma. ◀

Our strategy for the bit sampling game crucially keeps track of the difference, denoted
by ∆, between the number of zeros and ones. Intuitively, when ∆ = 0, the adversary might
be tempted to set the next bit to “1” and end the sequence. Thus, the player must commit
with Ω(1) probability in order to “catch” this bit. On the other hand, the player can be less
aggressive when ∆ is large.

Proof of Lemma 17. Consider the following strategy of the player:
Before seeing each bit, let ∆ denote the number of zeros minus the number of ones, among
all bits that have appeared so far.
Commit to the next bit with probability 2−(∆+2). With the remaining probability, observe
the next bit and proceed.

We prove the following claim by an induction on t: Assuming that n − t bits have been
observed, and the number of zeros is higher than the number of ones by ∆ ≥ 0, the player
following the above strategy wins with probability at least 1

3
(
1 − 2−(∆+1)). Applying this

claim with t = n and ∆ = 0 shows that the player wins with probability ≥ 1
6 .

At the base case that t = 0, since the sequence contains more ones than zeros, ∆ cannot
be non-negative and there is nothing to prove. Now we proceed to the inductive step and
assume that the claim holds for t − 1. Since currently the number of zeros is greater than or
equal to the number of ones, the sequence is not over and there must be a next bit. First
suppose that the next bit is 1. With probability 2−(∆+2), the player selects the next bit and
wins the game. With the remaining probability, we reach the t − 1 case where the difference
between the bit counts is ∆ − 1. If ∆ ̸= 0, we can apply the inductive hypothesis and
lower bound the winning probability by 1

3
(
1 − 2−∆)

; when ∆ = 0, the winning probability
is trivially lower bounded by 0 = 1

3
(
1 − 2−∆)

. Thus, in either case, the overall winning
probability is at least
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2−(∆+2) +
(

1 − 2−(∆+2)
)

· 1
3

(
1 − 2−∆)

= 1
3

(
1 − 2−(∆+1) + 2−(2∆+2)

)
≥ 1

3

(
1 − 2−(∆+1)

)
.

Similarly, if the next bit is 0, the algorithm wins with probability at least(
1 − 2−(∆+2)

)
· 1

3

(
1 − 2−(∆+2)

)
≥ 1

3

(
1 − 2−(∆+1)

)
.

This completes the inductive step and proves the lemma. ◀

5.4 An Improved Algorithm under Random Ordering, with Full
Information

We finish the section by proving the upper bound part of Theorem 13, which shaves a
log log n factor off the competitive ratio in the random order, full information case. Note that
given a1, a2, . . . , an and having observed X1 through Xi, the player knows the n − i unseen
values up to a random permutation, namely, {Xi+1, Xi+2, . . . , Xn} = {a1, a2, . . . , an} \
{X1, X2, . . . , Xi}.

We say that a “gap” appears in {Xi+1, Xi+2, . . . , Xn} if, for some A < B, the set contains
at least one element larger than B, but nothing in interval (A, B]. The key observation is
that, whenever such a gap appears, the player can secure a score of B − A by testing the
remaining options at threshold A and accepting the first one that passes the test, as it must
leave a remaining utility of at least B − A. Our proof of Theorem 13 essentially shows that
with a good probability, a gap of size ≈ log log n

log n · a[1] appears at some point i.

Proof of Theorem 13 (Upper Bound). Let k ≥ 1 be an integer to be determined later. For
each j ∈ [k], define nj := |{i ∈ [n] : j−1

k a[1] < ai ≤ j
k a[1]}| and let n≥j := nj + nj+1 + · · · + nk

be the number of options with utility > j−1
k a[1].

Before testing each option i, we review the multiset of unseen values. If, for some
j ∈ {1, . . . , k − 1}, none of the values lies in

(
j−1

k a[1],
j
k a[1]

]
and at least one of them is higher

than j
k a[1], we test each remaining option at threshold j−1

k a[1] and accept the first one that
passes the test. Otherwise, we test option i at threshold +∞ (so that we see Xi) and reject
it. Note that if the condition holds for any j at any point i, the player receives a score of
at least a[1]/k. In the remainder of the proof, we show that this is indeed the case with
probability Ω(1), for some carefully chosen k.

Let Ej denote the event that, among the n≥j options with value > j−1
k a[1], the one that

appears last has value > j
k a[1]. Note that event Ej implies that our algorithm would detect

this gap of size a[1]
k , and thus secure a score ≥ a[1]

k . Given that the options are randomly
ordered, Ej happens with with probability exatly n≥j+1

n≥j
. Furthermore, it can be verified that

E1, E2, . . . , Ek−1 are independent. Thus, the probability that none of the events happens is

k−1∏
j=1

(
1 − n≥j+1

n≥j

)
= exp

(k − 1) · 1
k − 1

k−1∑
j=1

ln
(

1 − n≥j+1

n≥j

) .

Note that
∏k−1

j=1
n≥j+1

n≥j
= n≥k

n≥1
≥ 1

n . By the AM-GM inequality,

1
k − 1

k−1∑
j=1

n≥j+1

n≥j
≥

k−1∏
j=1

n≥j+1

n≥j

 1
k−1

≥ n−1/(k−1).
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Then, using ln(1 − x) ≤ −x, we have

1
k − 1

k−1∑
j=1

ln
(

1 − n≥j+1

n≥j

)
≤ − 1

k − 1

k−1∑
j=1

n≥j+1

n≥j
≤ −n−1/(k−1),

and the probability that none of E1, E2, . . . , Ek−1 happens is at most
exp

(
−(k − 1) · n−1/(k−1)).

We pick k = Θ
(

log n
log log n

)
such that (k − 1) · n−1/(k−1) ≥ 1, which guarantees that the

algorithm ends up with score ≥ a[1]
k with probability ≥ 1 − e−1. The expected utility

is thereby at least (1 − e−1) · a[1]
k = Ω

(
log log n

log n · a[1]

)
. In other words, the algorithm is

O
(

log n
log log n

)
-competitive. ◀

6 Lower Bounds for the Secretary Setting

In this section, we prove all the lower bounds for the secretary setting. We start with
the random order, full information case in Theorem 13. We then prove the second case of
Theorem 12 (arbitrary order, full information) using a similar sequence (ai)n

i=1, but under a
harder distribution over permutations of the values. Finally, we prove Case (1) of Theorem 12,
essentially by reducing the setting to the i.i.d. case of the prophet setting, which has a simple
lower bound construction based on the exponential distribution (Proposition 8).

6.1 Random Order, Full Information
Fix integer k ≥ 1 and let n = 2k+1 − 1. We consider the sequence a1, a2, . . . , an in which
each j ∈ {0, 1, . . . , k} appears 2k−j times. We will show that, when a1, a2, . . . , an arrive in a
uniformly random order, the highest expected score that the player can achieve is O(log k).
This would establish the k

O(log k) = Ω
(

log n
log log n

)
lower bound on the competitive ratio.

We first note that the optimal algorithm for this specific instance should satisfy a few
constraints.
▶ Remark 19. Since all the values are integers between 0 and k in this problem instance, we
can assume without loss of generality that each threshold θi chosen by the player is among
{0, 1, . . . , k}. Indeed, picking a threshold higher than k is equivalent to picking θi = k, and a
non-integral threshold θi gives the same information as ⌊θi⌋, but leaves a smaller remaining
value. Under this assumption, the score of the player always lies in {0, 1, . . . , k}.

The following lemma states that, for any ∆ ∈ {1, 2, . . . , k}, the probability that the player
gets a score ≥ ∆ is exponentially small in ∆.

▶ Lemma 20. In the instance defined as above, for any ∆ ∈ [k] and θ ∈ {0, 1, . . . , k − ∆},
the probability that the player gets a score of ≥ ∆ after accepting an option that has been
tested at θi = θ is at most 4 · 2−∆.

We first show, via a straightforward calculation, that the lower bound in Theorem 13
immediately follows from the lemma.

Proof of Theorem 13 (Lower Bound). For each ∆ ∈ [k], Lemma 20 together with a union
bound over θ ∈ {0, 1, . . . , k − ∆} shows that the probability of achieving score ≥ ∆ is at
most (k − ∆ + 1) · 4 · 2−∆ ≤ 4k · 2−∆. Therefore, the expected score of the player is upper
bounded by

∑k
∆=1 Pr [score ≥ ∆] ≤

∑+∞
∆=1 min{1, 4k · 2−∆} = O(log k). Since a[1] = k, the

competitive ratio is at least k
O(log k) = Ω

(
log n

log log n

)
. ◀
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Now we prove Lemma 20.

Proof of Lemma 20. Fix ∆ ∈ [k] and an integer θ between 0 and k − ∆. We say that the
player “wins”, if it gets a score of at least ∆ after testing the accepted option with threshold
θ. We may assume without loss of generality that the player, to maximize its probability of
winning, uses either of the following two strategies at each option i:

(Observe) The player observes Xi by testing the option at θ = k and then rejecting it.
(Commit) The player tests Xi at θi = θ, and accepts if the test passes.

Indeed, using any threshold θi ̸= θ does not count towards the winning probability; the
player may as well observe Xi perfectly by picking θi = k.

Among the options that could pass a test at θ, we say that an option is “good” if its
value is at least θ + ∆, and “bad” otherwise. There are G :=

∑k
j=θ+∆ 2k−j good options and

B :=
∑θ+∆−1

j=θ+1 2k−j bad ones.
We will prove by induction on t that, when there are exactly t remaining options and

they contain b bad ones and g good ones (b + g ≤ t), the probability of accepting a good
option is at most g

b+g (interpreted as 0 if b = g = 0).
At the base case t = 0, we can only have b = g = 0 and the claim clearly holds. Suppose

that the claim holds at t′ = t − 1, and we fix b, g such that b + g ≤ t. First assume that the
player chooses to commit. With probability 1 − b+g

t , the next option fails the test at θ, and
the player moves on. The conditional winning probability is still ≤ g

b+g by the inductive
hypothesis. With probability g

t , the next option is good and is accepted by the player,
in which case the player wins. Similarly, the player accepts a bad option and loses with
probability b

t . Thus, the overall winning probability is upper bounded by(
1 − b + g

t

)
· g

b + g
+ g

t
· 1 + b

t
· 0 = g

b + g
.

If the player decides to observe, a similar reasoning shows that the player wins with
probability at most(

1 − b + g

t

)
· g

b + g
+ g

t
· g − 1

(g − 1) + b
+ b

t
· g

g + (b − 1) = g

b + g
.

Therefore, applying the claim at t = n, b = B and g = G shows that the probability in
question is at most

G

B + G
=

∑k
j=θ+∆ 2k−j∑k
j=θ+1 2k−j

≤ 2 · 2k−(θ+∆)

2k−(θ+1) = 4 · 2−∆. ◀

6.2 Arbitrary Order, Full Information
Now we move on to the worst-case order setting, and try to strengthen the previous lower
bound to Ω(log n). We will actually construct a hard distribution over permutations of
some fixed sequence. In light of the O

(
log n

log log n

)
upper bound in Theorem 13, this hard

distribution cannot be uniform.
Let k ≥ 1 be an integer. We generate an instance with n = 40 + 41 + · · · + 4k options in

total by repeating the following two steps:
Sample X from the geometric distribution that takes each value j ∈ {0, 1, 2, . . .} with
probability 2−(j+1).
If X ≤ k and X has appeared less than 4k−X times in the sequence, we append value X

to the sequence.
Clearly, the resulting sequence is always a permutation of the length-n sequence in which
each j ∈ {0, 1, . . . , k} appears exactly 4k−j times.
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By the same argument as in Remark 19, we may assume that player picks each threshold
θi from {0, 1, . . . , k}, so that the resulting score is always among {0, 1, . . . , k}. The key step
of the lower bound is the following lemma.
▶ Lemma 21. In the instance defined as above, for any integer ∆ ≥ 3, the probability of
getting a score of exactly ∆ is at most c · 2−∆, where c = 21 is a universal constant.

Compared to Lemma 20, the lemma above is stronger in that it bounds the total
probability of getting a high score, even after a union bound over all the possible thresholds
θ, by an exponentially small quantity in ∆.

Assuming Lemma 21, the second case of Theorem 12 follows from a simple calculation:

Proof of Theorem 12, Case (2). The expected score of any algorithm is upper bounded by∑k
∆=1 ∆ · Pr [score = ∆] ≤ 3 + c ·

∑+∞
∆=3 ∆ · 2−∆ = O(1), where the second step follows from

Lemma 21. This proves the k
O(1) = Ω(log n) lower bound. ◀

Proof of Lemma 21. Fix ∆ ≥ 3. We say that the player wins if its score is exactly ∆, and
assume that the player tries to maximize its probability of winning according to this criterion.
When the player accepts an option i after testing it with threshold θi, we say that this
acceptance is risky if at least one of the unseen options has value θi + 1; the acceptance of
option i is called safe otherwise.

In the following, we will show that the probability that the player wins (i.e., obtain score
exactly ∆) by accepting an option riskily is at most 21−∆, while the probability of a safe
acceptance is also small (in fact, doubly exponential in ∆). The lemma would then follow
easily.

We start with the case of a risky win. We condition on the event that the player riskily
accepts option i after testing it with threshold θi, as well as the realization of X1, X2, . . . , Xi−1.
For each j ∈ {0, 1, . . . , k}, we say that j is active, if j appears at least once in Xi, Xi+1, . . . , Xn.
Clearly, the definition of a risky acceptance implies that θi + 1 is active.

Our construction of the sequence implies that, conditioning on X1, X2, . . . , Xi−1, the next
value Xi is distributed over all active values j, with the probability of Xi = j proportional to
2−j . Therefore, given that θi +1 is active, the conditional probability of the event Xi = θi +∆
is upper bounded by 2−(θi+∆)

2−(θi+1)+2−(θi+∆) ≤ 21−∆. This means that conditioning on a risky
acceptance, the probability of winning the game (i.e., exactly getting score ∆) is at most
21−∆. Consequently, the probability of a risky win is at most 21−∆.

Then, we turn to upper bounding the probability of a safe win. For θ ∈ {0, 1, . . . , k − ∆},
we call the options with value θ +1 the “θ-bad” ones, and those with value θ +∆ the “θ-good”
ones. Let Eθ be the event that the last θ-good option appears after the last θ-bad option. For
the player to get score ∆ by safely accepting option i, it must be the case that Xi = θi + ∆,
while θi + 1 never appears in Xi+1, Xi+2, . . . , Xn. In other words, event Eθi

must happen.
Therefore, we can upper bound the probability of a safe win by controlling the probability of
each Eθ.

Let G := 4k−(θ+∆) and B := 4k−(θ+1) denote the total numbers of θ-good and -bad
options. We focus on the length-(B + G) subsequence of X1, X2, . . . , Xn consisting of only
θ + 1 and θ + ∆. Our construction of (Xi)n

i=1 guarantees that this subsequence follows the
same distribution as the output of the following procedure:

Sample Y1, Y2, . . . , YB+G independently from the Bernoulli distribution with mean µ =
2−∆

2−1+2−∆ .
For each i = 1, 2, . . . , B + G, if Yi = 0, append θ + 1 to the end of the sequence, and
append θ + ∆ otherwise. Repeat this step until either θ + 1 has appeared B times, or
θ + ∆ has appeared G times.
In the former case, append θ + ∆ to the end of the sequence until the sequence has length
B + G; append θ + 1 in the latter case.
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Note that Eθ is exactly the event that the last entry of the length-(B + G) sequence is
θ + ∆. For this to happen, we must have Y1 + Y2 + · · · + YB+G ≤ G, which, by a Chernoff

bound, happens with probability at most exp
(

− 1
2 ·

(
1 − G

µ(B+G)

)2
· µ(B + G)

)
. Recall that

B = 4k−(θ+1), G = 4k−(θ+∆) and µ = 2−∆

2−1+2−∆ . We have G
µ(B+G) = 2−1+2−∆

2∆(4−1+4−∆) ≤ 1
2 , where

the last step holds for ∆ ≥ 3. This simplifies the bound into

Pr [Eθ] ≤ exp
(

−µ(B + G)
8

)
≤ exp

(
−2−∆ · 4k−θ−1

8

)
≤ exp

(
−2k−θ

32

)
.

The last step above holds since k − θ ≥ ∆. The probability that at least one of Eθ happens
is then upper bounded by

∑k−∆
θ=0 Pr [Eθ] ≤

∑k−∆
θ=0 exp

(
− 2k−θ

32

)
=

∑k
j=∆ exp

(
− 2j

32

)
.

In total, the winning probability of the player (either risky or safe) is at most 21−∆ +∑k
j=∆ exp

(
− 2j

32

)
, which is at most 21 · 2−∆ for any ∆ ≥ 3. ◀

6.3 Random Order, Optimum Information
Finally, we prove the first case of Theorem 12: The competitive ratio is still Ω(log n), even
if the options arrive in a random order and we are given the maximum value. We prove
the lower bound by considering a distribution over (a1, a2, . . . , an). The distribution is
chosen such that the expectation of a[1] is at least Ω(log n), while any pen testing algorithm,
when given a[1] and running on a random permutation of (ai)n

i=1, achieves an O(1) score in
expectation.

Let D be the distribution of min
{

X, ln n
2

}
when X is drawn from the exponential

distribution with parameter 1. In other words, we truncate the exponential by moving all
the probability mass from its tail

[ ln n
2 , +∞

)
to a point mass at ln n

2 . We draw a1, a2, . . . , an

from D independently. Intuitively, one of the a1, a2, . . . , an would take value ln n
2 with

high probability, so the player gains little information from a[1]. Without this additional
information, the player is essentially in the i.i.d. prophet setting, working on the lower bound
instance from Proposition 8.

Proof of Theorem 12, Case (1). Let a1, a2, . . . , an be drawn independently from D. We
first show that w.h.p., a[1] = ln n

2 . Indeed, the probability of never getting a sample ln n
2 is

given by:
(

1 − e− ln n
2

)n

=
(

1 − 1√
n

)n

≤ e−
√

n. Therefore, the expectation of a[1] is at least
(1 − e−

√
n) · ln n

2 = Ω(log n).
Then, we argue that no player could get an expected score strictly higher than 1 + e−

√
n ·

ln n
2 = O(1), when the value of a[1] is given and (Xi)n

i=1 is chosen as a random permutation
of (ai)n

i=1. Here, the expectation is over the choice of (ai)n
i=1, the random arrival order, as

well as the randomness in the player itself. Suppose that this is not true. Then, we consider
running the same algorithm on the same distribution over problem instances, except that
the player is always given value ln n

2 instead of a[1]. Since a[1] ̸= ln n
2 only happens with

probability e−
√

n, and the score of the player is always between 0 and ln n
2 , the expected

score of the player decreases by at most e−
√

n · ln n
2 , and is thus still strictly higher than 1.

However, this is impossible: After a random permutation, X1, . . . , Xn are still n inde-
pendent samples from D. Then, whenever the player accepts an option i after testing it at
some θi < ln n

2 , the expected score is upper bounded by

E
Xi∼D

[Xi − θi|Xi > θi] = E
X∼Exp(1)

[
min

{
X,

ln n

2

}
− θi

∣∣∣∣ min
{

X,
ln n

2

}
> θi

]
≤ E

X∼Exp(1)
[X − θi|X > θi] = 1.

This gives a contradiction.
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Therefore, when a1, a2, . . . , an are drawn i.i.d. from D, the expected optimum is Ω(log n)
whereas the expected score of any algorithm is O(1). By an averaging argument, for every
algorithm there exists (deterministic) a1, a2, . . . , an on which the player’s competitive ratio
is Ω(log n). ◀

7 A Single-Sample Algorithm for the Prophet Setting

Suppose that, in the prophet setting of online pen testing, the distributions D1, D2, . . . , Dn

from which (Xi)n
i=1 is drawn are unknown, and we only get to learn them by drawing

a few samples from each Di. How many samples are sufficient for the player to be still
O(log n)-competitive?

Naturally, we might want to simulate the algorithm drawn from Section 4 using samples
from D1, D2, . . . , Dn. Recall that the algorithm only requires a few quantiles of the n

distributions, namely τ
(i)
θ for all i ∈ [n] and θ ∈ {1/2, 1/4, . . . , 1/n}. Calculating these

quantiles (even approximately) from samples, however, requires Ω(n) samples from each Di.
Despite this, we show that a single sample from each Di is sufficient, thus proving

Theorem 10. We also emphasize that unlike in Sections 3 and 4, the following proof allows
non-continuous distributions, i.e., Di may have point masses.

Proof of Theorem 10. Let random variable Xmax denote the maximum of X1, . . . , Xn when
they are drawn independently from D1, . . . , Dn. The cumulative distribution function of
Xmax, F (x) := PrX∼D [Xmax ≤ x], is right-continuous. Thus, it is valid to define A ≥ 0 as
the smallest number such that PrX∼D [Xmax ≤ A] = F (x) ≥ 1/3. Similarly, we can define
B ≥ 0 as the largest number such that PrX∼D [Xmax ≥ B] ≥ 1/3. We can verify that A ≤ B,
and

Pr
X∼D

[A ≤ Xmax ≤ B] ≥ 1 − Pr
X∼D

[Xmax < A] − Pr
X∼D

[Xmax > B] ≥ 1 − 1
3 − 1

3 = 1
3 .

Let â[1] denote the maximum among X̂1, X̂2, . . . , X̂n, where X̂i is the sample from Di

that is provided to the player. Clearly, â[1] follows the same distribution as Xmax. Thus,
â[1] ∈ [A, B] holds with probability at least 1/3, and we condition on this event in the
following.

We will give two different algorithms that achieve an Ω
(

1
log n

)
fraction of â[1] and

EX∼D [Xmax] − â[1], respectively.
For the first algorithm, assuming that â[1] ≤ B, we have

Pr
X∼D

[
â[1] ≤ Xmax]

≥ Pr
X∼D

[B ≤ Xmax] ≥ 1/3.

Then, assuming that â[1] ≤ Xmax holds, we may view X1, X2, . . . , Xn as an instance of the
secretary setting under an arbitrary arrival order, and â[1] can be viewed as a “hint” on the
maximum value that satisfies the precondition of Lemma 18. Thus, if we run the algorithm
from the lemma with â[1], we obtain an expected score of 1

3 · â[1]
O(log n) = â[1]

O(log n) .
The second algorithm is the single-threshold algorithm with θ = â[1], and its expected

score is given by

n∑
i=1

i−1∏
j=1

Pr
Xj∼Dj

[
Xj ≤ â[1]

] · Pr
Xi∼Di

[
Xi > â[1]

]
· E

Xi∼Di

[
Xi − â[1]|Xi > â[1]

]
.

ITCS 2023



91:24 Online Pen Testing

The first factor,
∏i−1

j=1 PrXj∼Dj

[
Xj ≤ â[1]

]
, is at least

Pr
X∼D

[
Xmax ≤ â[1]

]
≥ Pr

X∼D
[Xmax ≤ A] ≥ 1/3.

The product of the other two factors is equal to

E
Xi∼Di

[
(Xi − â[1]) · 1

[
Xi > â[1]

]]
= E

Xi∼Di

[
max{Xi − â[1], 0}

]
.

Therefore, the expected score is lower bounded by

1
3

n∑
i=1

E
Xi∼Di

[
max{Xi − â[1], 0}

]
= 1

3 E
Xi∼Di

[
n∑

i=1
max{Xi − â[1], 0}

]

≥ 1
3 E

X∼D

[
max
i∈[n]

max{Xi − â[1], 0}
]

= 1
3 E

X∼D

[
max{Xmax − â[1], 0}

]
≥

EX∼D [Xmax] − â[1]

3 .

Therefore, conditioning on each â[1] ∈ [A, B], running one of the two algorithms uniformly
at random gives an expected score of

1
2

[
â[1]

O(log n) +
EX∼D [Xmax] − â[1]

3

]
= EX∼D [Xmax]

O(log n) .

The overall expected score is then 1
3 · EX∼D [Xmax]

O(log n) , so the algorithm is O(log n)-competitive. ◀
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Abstract
How should we use ML-based predictions (e.g., risk of heart attack) to inform downstream binary
classification decisions (e.g., undergoing a medical procedure)? When the risk estimates are perfectly
calibrated, the answer is well understood: a classification problem’s cost structure induces an optimal
treatment threshold j⋆. In practice, however, predictors are often miscalibrated, and this can lead to
harmful decisions. This raises a fundamental question: how should one use potentially miscalibrated
predictions to inform binary decisions?

In this work, we study this question from the perspective of algorithmic fairness. Specifically,
we focus on the impact of decisions on protected demographic subgroups, when we are only given
a bound on the predictor’s anticipated degree of subgroup-miscalibration. We formalize a natural
(distribution-free) solution concept for translating predictions into decisions: given anticipated
miscalibration of α, we propose using the threshold j that minimizes the worst-case regret over
all α-miscalibrated predictors, where the regret is the difference in clinical utility between using
the threshold in question and using the optimal threshold in hindsight. We provide closed form
expressions for j when miscalibration is measured using both expected and maximum calibration
error which reveal that it indeed differs from j⋆ (the optimal threshold under perfect calibration).
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1 Introduction

ML-based predictions are used to inform increasingly consequential decisions about individuals.
We consider a setup in which a single risk predictor (e.g., estimating the risk of a cardiovascular
event in a 10-year followup period) is used to inform multiple downstream binary classification
decisions (e.g., whether to prescribe a certain medication, or have the individual undergo a
medical procedure). Naturally, these problems may differ in their cost structure (the relative
costs of correct and incorrect predictions). For example, a false positive can be quite costly
in the context of a potentially dangerous medical procedure, but less costly in the context
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of prescribing a medication without significant side effects2. The cost structure determines
the utility of a proposed classifier; specifically, we consider the Net Benefit [35], defined as a
weighted combination of the fraction of true positive and false positive predictions, with the
weights determined by the cost structure.

With this setup in mind, how should predictions be translated into binary treatment
decisions? When the risk predictor is calibrated, this question is well understood: we should
treat individuals whose predicted risk exceeds the therapeutic threshold3, j⋆ (a function
of the cost structure of the classification problem) [27]. Here, (perfect) calibration is the
requirement that for each prediction “category” v ∈ [0, 1], of the individuals for whom the
predicted risk was v, exactly a v-fraction actually receive positive outcomes. Previous work
demonstrated, both in real-world scenarios and through simulations, that applying j⋆ to
miscalibrated risk predictions negatively effects the utility of downstream decisions [6, 33];
see Section 2.2 for an extended discussion.

1.1 From predictions to decisions under miscalibration
Our work is motivated by concerns about the impact of decisions on protected demographic
subgroups of the population. While the above discussion stresses the importance of calibration,
risk predictors are often miscalibrated on demographic subgroups [4]. Starting with [14], a
series of works aim to address this concern by learning multi-calibrated risk predictors, whose
calibration errors are bounded for a rich collection of subgroups C. Crucially, however, we do
not expect to achieve perfect or near-perfect subgroup calibration: assuming the number of
training samples is bounded, and the collection C is rich, calibration errors – while bounded –
are inevitable. This raises the concern that the utility experienced by protected subgroups
(whose predictions are not perfectly calibrated) will be negatively impacted.

Our starting point is the following question: if j⋆ is the optimal threshold to apply to a
predictor p that is perfectly calibrated (irrespective of both the distribution on inputs and
the specifics of the predictor p), is there an analogously optimal threshold ĵ to apply to an
imperfectly-calibrated predictor? This raises many natural questions: which solution concept
should we use to determine optimality? What should the threshold be? Is it actually different
from j⋆? We focus on the setting where we know an upper bound α on the predictor’s
calibration error (and this bound applies to all subgroups in the collection).

To build intuition, consider a classification task for which the therapeutic threshold is
j⋆ = 0.05 (this means the benefit from a true positive prediction is 19 times larger than the
harm from a false positive prediction; see the discussion in Section 2.2). Should we treat
individuals whose predicted risk is 0.04? Under perfect calibration we would be guaranteed
that on average, these individuals would not benefit from treatment; but what if we anticipate
some amount of miscalibration? If we use j⋆, but our predictor is under-estimating the risk
(the probability of positive outcomes w.r.t the target distribution), we will regret not treating.
Perhaps we should use a lower threshold, e.g. ĵ = 0.03? But if we use ĵ and our predictor
is over-estimating the risk, we will regret treating! Balancing these competing scenarios
is tricky, since the non-symmetric errors within a certain miscalibration bound α (over- or
under-estimation) may have different consequences in our context. Given these complex
considerations, what treatment threshold should we use?

2 For the remainder of this paper we have this example in mind and therefore refer to the binary decisions
as treat/don’t treat decisions.

3 The therapeutic threshold is the smallest true risk level (true probability of a positive outcome) where
treatment gives non-negative utility. If a predictor is calibrated, then applying the therapeutic threshold
to the predicted risks maximizes the utility. The well-known fact that thresholding the predictions at
0.5 minimizes the ℓ1 (i.e., 0/1) loss (symmetric costs) is a special case.
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We give an overview of our main contributions:

A new solution concept: minimizing the worst-case regret under miscalibration

We formalize the above intuition by proposing that decisions should be made using a regret
minimization approach. We define the regret from thresholding a predictor p at a threshold
j ∈ [0, 1] rather than at a threshold j′ ∈ [0, 1] w.r.t a distribution D′, as the difference
between the expected utility obtained by using j′ and the expected utility obtained by using
j (the expectation is over D′).

Naturally, the eventual form of such a regret-minimizing threshold ĵ will depend on
what information is available about the predictor, the true distribution, and the collection
of groups C. For example: are the predictor and the collection C fixed in advance, and
can the threshold be tailored to them? Can we obtain labeled or unlabeled samples from
the true distribution and use these to inform the threshold? In this work, our emphasis
is on the setting where all we know is a bound on the predictor’s calibration error on the
subgroups in C: the predictor p and the distribution D are unknown (as are the restrictions
of D to subgroups in C). In particular, the treatment threshold should be independent of
the true distribution. We therefore study the minimization of the worst-case regret, defined
as the maximal regret that can be experienced, over all the possible alternative thresholds
j′, and over all possible predictors p and distributions D′ (that satisfy that p is at most
α-miscalibrated on D′ w.r.t. the collection C).

We emphasize several points regarding this solution concept:

The regret-minimizing threshold is, by design (and similarly to the therapeutic threshold
j⋆), a distribution free notion: it is only a function of the anticipated miscalibration α

and of the cost structure (as manifested in the treatment threshold j⋆). In particular,
the regret-minimizing threshold does not vary between groups or individuals. This is
important, since the groups may intersect: if the threshold varied by group, which
threshold would we use for an individual who is a member of several groups?

The worst-case regret does not depend on the collection C: since we account for the
worst-case predictor p and distribution D′ (of bounded calibration error), the regret
experienced by any sub-group is automatically bounded. Indeed, the regret is also
bounded for sub-groups outside of the collection C, so long as they experience bounded
miscalibration error.

Looking ahead, the therapeutic threshold j⋆ does not always minimize the regret: it
diverges from the regret-minimizing threshold when we anticipate errors (α > 0) and
when the problem’s cost structure is asymmetrical.

Minimax-regret as a solution concept for robust decision-making has roots a variety of
disciplines, including econometrics [23, 20], statistics [2] and operations [16]. Specifically, our
notion of regret is related to the notion of Clinical Harm, a performance measure from the
decision-analytic literature [32]. The clinical harm of a classification model is the difference
between its utility and the utility of (the better of) two naive baselines: treating all individuals
(treatment threshold 0) and treating none (threshold 1). We measure regret with respect to
all possible alternative threshold (not just 0 and 1) and thus the regret for using a threshold
is always at least as large as its clinical harm. Bounding the worst-case regret also implies
bounds on the clinical harm.

ITCS 2023
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Simple closed-form expressions for the regret-minimizing thresholds

We provide simple and efficiently-computable closed-form solutions for computing the regret-
minimizing threshold, when the miscalibration is quantified using the standard measures of
maximum and expected calibration errors (Definitions 2 and 1). This is our main technical
contribution. We note that the regret-minimizing threshold is the solution to a min-max
problem over an exponential space of possibilities (in particular, all possible predictors and
distributions that conform to the miscalibration bound), so it is infeasible to compute it by
enumerating over all possibilities.

Our derivation highlights that the optimal threshold naturally follows a “conservatism
in the face of uncertainty” approach. Recall the example above, where j⋆ = 0.05 and the
predicted risk is 0.04: intuitively, it made sense to hedge our bets and treat these individuals,
since the potential benefit if their risk was underestimated is much larger than the potential
harm if the risk was over-estimated. The regret-minimizing threshold gives a rigorous
explanation and formalization for this intuition.

On a technical level, we obtain the closed-form expressions in two steps. First, we show
that the regret can always be maximized by a predictor that comes from a very restricted
class, where all individuals have one of (at most) two possible risk levels. We then derive a
closed-form expression for computing a regret-minimizing threshold over this restricted class.
See Section 5.

Discussion: Beyond worst-case regret

In this work we have initiated the study of decision-making under miscalibration. Our work
shows that even slight miscalibration may require taking the miscalibration into account
– and changing the method by which we “translate” risk predictions to binary decisions.
We demonstrated this behaviour for the distribution-free setting, in which p, D and C are
assumed to be unknown, but it’s natural to consider what happens when we relax some of
these assumptions. For example, we may have a fixed predictor and collection of sets in
mind. Perhaps we can also obtain unlabeled examples from D at the time of thresholding
p. Technically, our framework can be adapted to such settings by modifying the notion
of regret: instead of worst-case regret (in which we optimize over all possible predictors
and distributions subject to the miscalibration bound), consider the regret w.r.t a more
restricted collection of predictors and distributions. The resulting optimization problem
(which may be more computationally challenging) will give rise to thresholds that can be
distribution-dependent, predictor-dependent, and dependent on the collection of subgroups.
An interesting direction for future exploration is whether (and how) the optimal treatment
threshold under miscalibration changes when we make these additional assumptions.

Organization

The rest of the manuscript is organized as follows. In Section 2 we define our setup and the
notions of calibration and utility we will use. In Section 3 we define our notion of regret.
In Section 4 we show that under perfect calibration, treating at j⋆ guarantees non-negative
regret, but that under miscalibration, the regret can be negative (and significant, depending
on the cost structure). We study regret-minimizing thresholds under miscalibration in Section
5. We conclude with additional related work in Section 6.
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2 Preliminaries

Let X denote the space of covariates and Y ∈ {0, 1} the modeled event (e.g. heart attack
within 10 years). Let D denote an unknown distribution on X . We distinguish between risk
predictors (whose goal is to predict the probability of the target event given covariates) and
classifiers (denoting the binary decisions that are informed by the risk estimate).

Risk predictors. Throughout, we assume the [0, 1] risk prediction interval is discretized
to a grid of width 1/m, Gm = { 1

m , 2
m , . . . , m−1

m }, where m ∈ N is an external parameter
controlling the fine-ness of the grid. Hence, predictors are a mapping p : X → Gm. As
a convention, we use p⋆ to denote predictors that determine the data-generation process
(specifying the probability of positive outcome given covariates) and p to denote estimates.
For a predictor p, µp,i denotes the probability mass of individuals whose prediction is i/m:
µp,i = Prx∼D[p(x) = i/m]. In Section 5 we use Ξ to denote all the set of all “legal” level-sets,
i.e. {µp,i}m

i=1 such that each µp,i is non-negative and all the µp,i’s sum to 1.

Classifiers. A classifier is a mapping h : X → {0, 1}. Given that the outcomes are generated
according to p⋆, we use TPp⋆(h) and FPp⋆(h) to denote the fraction of true positive and false
positive classifications in the target population4: TPp⋆(h) = Prx∼D,y∼p⋆(x)[h(x) = 1 ∧ y = 1]
and FPp⋆(h) = Prx∼D,y∼p⋆(x)[h(x) = 1 ∧ y = 0].

In this work, our focus is on classifiers derived from the risk predictions. I.e., in which
h(x) ∈ {0, 1} is some function of p(x) (and possibly x itself). We restrict our attention to
family of transformations that determine treatment by thresholding the risk predictor at
a fixed threshold; we use hp,j to denote the binary decisions obtained by thresholding p at
threshold j/m: hp,j(x) := 1[p(x) > j/m].

In this section we review two different ways to quantify the performance of risk predictors.
Clinical harm (Section 2.2) explicitly takes into account the downstream decisions informed
by the predictions via a simplified utility-based analysis, and measures the potential decrease
in performance relative to two naive benchmarks. Calibration (Section 2.1), on the other
hand, does not take into account the downstream decisions and instead asks that the risk
predictor outputs scores that can meaningfully be interpreted as probabilities.

2.1 Calibration
Perfect calibration requires that for every value v ∈ [0, 1], the true expectation of the outcomes
among those who receive prediction v is exactly v. In practice, as mentioned, we don’t
expect predictors to be perfectly calibrated. We now discuss two different ways to measure
approximate calibration. We use notions from the literature but our presentation will be
slightly different: Usually, the data generating process (for us, denoted by p⋆) is considered
as fixed and so calibration is only a property of the predictor in question. Looking ahead, we
will instead think of calibration as a joint property of both p and p⋆ (formally, as a relation
over pairs of predictors). In our setup, p is perfectly calibrated w.r.t p⋆ if for every i ∈ [m]
for which µp,i > 0, Pr

x∼D,y∼p⋆(x)
[y|p(x) = i/m]︸ ︷︷ ︸

≜ ỹp,p⋆,i

= i/m.

4 Note that these are different from the true positive and false positive rates which measure the conditional
probability, e.g. Prx∼D,y∼p⋆(x)[h(x) = 1|y = 0].
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The calibration error on the i-th bin is therefore |ỹp,p⋆,i − i/m|. Expected calibration error
bounds the weighted sum of calibration errors, where the i−th bin is weighted according
to the fractional mass of D that “lands” in this bin according to the predictor in question.
Maximum calibration error instead bounds each |ỹp,p⋆,i − i| separately.

▶ Definition 1 (Expected Calibration Error (ECE) [25]). Fix γ > 0. We say that a predictor p

has an expected calibration error of γ w.r.t p⋆ if
∑m

i=1 µp,i · |ỹp,p⋆,i − i/m| ≤ γ.

▶ Definition 2 (Maximum Calibration Error (MCE) [25]). Fix γ > 0. We say that a predictor
p has a maximum calibration error of γ w.r.t p⋆ if for every i ∈ [m] for which µp,i > 0, we
have |ỹp,p⋆,i − i/m| ≤ γ.

We note that both ECE and MCE depend on the underlying distribution via the level
sets {µp,i}m

i=1. We thus use (p, p⋆) ∈ RECE(γ) and (p, p⋆) ∈ RMCE(γ) as shorthand notation
for the ECE and MCE relations, when the relevant {µp,i}m

i=1’s are clear from context.
We also note that MCE is a stronger requirement than ECE: keeping {µp,i}m

i=1 fixed,
(p, p⋆) ∈ RMCE(γ) implies (p, p⋆) ∈ RECE(γ).

2.2 Utility-based metrics
Background. Predictive models are often evaluated using notions of accuracy, such as
calibration and various measures of discrimination (sensitivity, specificity, AUC). However,
these methods often have little clinical relevance: e.g., how high an AUC is high enough
to justify clinical use of a prediction model? [3] Naturally, the answer depends on the
consequences of the particular clinical decisions informed by the predictive model. Decision
analytic methods explicitly consider the clinical consequences of decisions. Let UT P , UF P ,
UT N and UF N denote the utilities for all combinations of treatment decisions and disease
outcomes5.

Given a predictor p and costs U = {UT P , UF P , UF N , UT N }, how should treatment de-
cisions be made? Consider an individual that receives a prediction of i/m. Recalling
the short-hand notation ỹp,p⋆,i ≜ Prx∼D,y∼p⋆(x)[y = 1|p(x) = v], their expected utility
from opting to receive treatment is ỹp,p⋆,i · UT P + (1 − ỹp,p⋆,i) · UF P ; similarly, their ex-
pected utility from opting to not receive treatment is ỹp,p⋆,i · UF N + (1 − ỹp,p⋆,i) · UT N .
Thus, from a utility theory perspective, the optimal threshold, which we denote j⋆ and
refer to as the therapeutic threshold, is the point for which these two utilities are equal:
ỹp,p⋆,j⋆ · UT P + (1 − ỹp,p⋆,j⋆) · UF P = ỹp,p⋆,j⋆ · UF N + (1 − ỹp,p⋆,j⋆) · UT N . Under perfect
calibration ỹp,p⋆,j⋆ = j⋆/m; plugging this in and re-organizing, we obtain m−j⋆

j⋆ = UT P −UF N

UT N −UF P
.

In other words, under perfect calibration, we have the following relationship between the
therapeutic threshold j⋆ and the derived costs:

m − j⋆

j⋆
= P

L
(1)

where the profit P ≜ UT P −UF N is the difference in utilities from making a positive instead of
a negative prediction for disease among those with the disease, and the loss L ≜ UT N − UF P

is the negative of the difference in utilities from making a positive instead of a negative
prediction for disease among those without the disease.

5 For a concrete example, [11] give the following numeric example for colorectal cancer: UF N = −100, for
the possibility of death and morbidity due to failing to detect colorectal cancer; UF P = −1, for the risk
of bleeding or perforation of the colon; UT P = −11, for the risk of bleeding or perforation of the colon
and the lowered chance of death or morbidity from colorectal cancer due to early detection; and finally,
UT N is set to zero as a reference value.
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Net Benefit, Clinical Utility and Clinical Harm. Decision curve analysis [35] is a simplified
utility-based analysis: instead of specifying the full costs U = {UT P , UF P , UF N , UT N }, it
only relies on the relative values P and L6. By fixing the profit at P = 1, the relative
harm of a False Positive prediction, following Equation (1), is given by L = − j⋆

m−j⋆ . [35]
proceed to define the Net Benefit of the predictor p as the weighted average of False Positives
and True Positives of binary classifier hp,j⋆ (obtained by thresholding the risk scores at j⋆):
NetBenefit(p) = P · TPp⋆(hp,j⋆) − L · FPp⋆(hp,j⋆) = TPp⋆(hp,j⋆) − j⋆

m−j⋆ · FPp⋆(hp,j⋆).
This is the called Net Benefit of the model as it reflects the “effective” fraction of True

Positives: the fraction of True Positive predictions, minus the number of False Positive
predictions – as “valued” in terms of True Positives.

Suppose we calculated the Net Benefit of a risk model p at some threshold to be, say,
0.151. How “good” is this value? Is it high enough to justify treatment using the model?
One simple “sanity check” is that the Net Benefit of the model is better than the Net
Benefit obtained by two naive alternatives, that could have been carried out without the risk
prediction model: (i) to treat everyone, and (ii) to treat no one. The Clinical Utility of a
prediction model p is the excess Net Benefit over the better of these two simple baselines,
and a model is said to be Clinically harmful if there exists a treatment threshold for which
the clinical utility is negative [32]. When the risk threshold is varied, the Net Benefit of
the model, the Net Benefit of the default strategies and the model’s Clinical Utility can be
plotted by risk threshold to obtain a decision curve; see [17, 36] for an overview of reading
such decision curves from a practitioner’s viewpoint.

3 Defining Regret

Our work extends classic decision-curve analysis by applying ideas from online learning and
regret minimization. Our notion of regret requires two extensions of the classic Net Benefit:
the first makes the Net Benefit symmetric and the second generalizes it to classifiers derived
by thresholds other than j⋆. We refer to the result as the generalized Net Benefit, and derive
a useful closed-form expression for computing it.

Symmetric Net Benefit

The Net Benefit as originally defined in [35] is not symmetric: it takes values in the range
(−∞, β), where β is the base rate in the target population. This is an artifact of the
(arbitrary) choice to fix the profit (rather than the loss) at 1. To address this, we will consider
the Net Benefit w.r.t new symmetric relative costs P ′ and L′, ensuring that the ratio remains
unchanged, P/L = P ′/L′ (recall, from Equation 1, only the ratio of the costs matters in this
analysis). 7

Disentangled Net Benefit

It’s crucial to note that in the above discussion, the therapeutic threshold j⋆ served two
distinct roles: on one hand, it defined the transformation from predictions (p) to binary
decisions (hp,j⋆); on the other hand, it also implicitly captured the costs in question, and

6 For example, in the example of colorectal cancer discussed above [11], the profit is P = 89 the loss is
L = 1.

7 Specifically, we will ensure that the lower of the two costs is set to 1: (i) If j⋆ < m/2, then P > L,
so we set L′ = 1 and obtain P ′ = m−j⋆

j⋆ ; (ii) If j⋆ > m/2, then P < L, so we set P ′ = 1 and obtain
L′ = j∗

m−j∗ .
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thus determined how the derived binary classifier hp,j⋆ was evaluated. In other words, the
existing literature on Net Benefit implicitly assumes that the transformation from predictions
to decisions will use the therapeutic threshold, j⋆. As discussed, an important component
of our work is considering making binary decisions using thresholds other than j⋆. This
is a natural perspective when miscalibration is involved, since the derivation of j⋆ as the
“optimal” threshold was under the assumption of perfect calibration. It is therefore crucial
for us to disentangle these two roles of j⋆. We will work with the following more general
notion of Net Benefit, that quantifies the Net Benefit of making predictions using a threshold
j when the actual costs are implied by j⋆:

▶ Definition 3 ((Disentangled) Net Benefit). Fix a predictor p. The Net Benefit of making
predictions using a threshold j when the therapeutic threshold is j⋆ is

Λ(p, j; p⋆, j⋆) = P ′ · TPp⋆(hp,j) − L′ · FPp⋆(hp,j) (2)

We can combine Equation 2 with the definitions of the symmetric costs P ′ and L′ from
the previous section to obtain a useful expression for the disentangled Net Benefit (see
Appendix A for the proof):

▶ Lemma 4. For every {µp,i}m
i=1, p, p⋆ and j, j⋆,

Λ(p, j; p⋆, j⋆) =
∑
i>j

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}
(3)

Regret

Recall that the Clinical Harm from making decisions using a predictor p and threshold
j is the Net Benefit of the better of the two naive strategies (treat all, and treat none)
minus the Net Benefit of the model. Since treat all is like thresholding p at 0 and
and treat none is like thresholding p at 1, we can write the clinical harm succinctly as
max {Λ(p, 0; p⋆, j⋆), Λ(p, 1; p⋆, j⋆)} − Λ(p, j; p⋆, j⋆).

With this in mind, it is natural to “measure” j not only against the two specific thresholds
{0, 1}, but also against every constant threshold. We refer to this as the regret incurred
by making decisions using a predictor p and threshold j, akin to the notion of regret from
online learning (where the “benchmark” class we compete against is the class of all constant
thresholds):

regret(p, j; p⋆, j⋆) = max
j′

Λ(p, j′; p⋆, j⋆) − Λ(p, j; p⋆, j⋆) (4)

In Section 5 we study the question of minimizing the worst-case regret under miscalibra-
tion.

4 Treating at the therapeutic threshold

In this section, we formally study the guarantees obtained by thresholding p at the therapeutic
threshold j⋆. In particular, we show that: (i) when p is perfectly calibrated, using j⋆ guarantees
no regret (in that the regret from Equation 4 is non-positive); (ii) when p is α-miscalibrated,
using j⋆ can lead to regret that scales like α · m.

▶ Lemma 5 (No regret under perfect calibration.).

(p, p⋆) ∈ RECE(0) =⇒ regret(p, j⋆; p⋆, j⋆) ≤ 0

See Appendix B for the proof.
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▶ Example (Regret under α-miscalibration). Consider the following two constant predictors:
p⋆ ≡ 1 − α and p ≡ 1. Clearly, (p, p⋆) ∈ RECE(α). Consider the Clinical Utility of treating
at the therapeutic threshold when the latter is equal to j⋆ = m − 1. Note that since p = 1, the
Net Benefit of the model is essentially the Net Benefit of the “treat all” strategy, which is
((1 − α) · 1) − (α · j⋆

m−j⋆ ) = 1 − α · m. On the other hand, the Net Benefit of the “treat none”
strategy is 0. Hence the Clinical Utility of the model is 1 − α · m, and the regret of using p

with threshold j⋆ is lower bounded by α · m − 1.

5 Decision-making under miscalibration

The example above shows that under miscalibration, there are extreme cases in which using
the therapeutic threshold j⋆ “as is” could be very costly. It also highlights two natural ways
to reduce this “worst case” clinical harm: the first is to obtain predictors with stronger
calibration guarantees to begin with, and the second is to use coarser predictions (effectively
limiting the largest expressible cost of a misclassification in this framework). In practice,
some amount of miscalibration is unavoidable, and having the ability to make granular
predictions is important. We therefore turn our attention to a third “knob”: the mechanism
by which we translate predictions to decisions. Specifically, we ask:

Given α > 0 and the therepeutic threhsold j⋆, which threhsold minimizes the worst-case
regret under α-miscalibration?

Giving rise to the following min-max optimization problem:

ĵ(α, m, j⋆) ∈ arg min
j

max
{µp,i}m

i=1∈Ξ
(p,p⋆)∈R(α)

regret(p, j; p⋆, j⋆)

︸ ︷︷ ︸
≜c(j;j⋆,R(α))

(5)

Here, R(α) is a miscalibration relation (e.g. ECE or MCE) and we define the “cost” of a
threshold, c(j; j⋆, R(α)), as the maximal regret that we might experience by using it. The
maximum is effectively over any distribution D on the domain X and every predictors p

and p⋆ that are within the allowed miscalibration level; in practice, since the only effect the
distribution D has on this expression is via the level sets of the predictor p, we replace D

with the masses of the level sets, {µp,i}m
i=1. Recall that Ξ ensures these choices are legal

(non-negative and sum to 1).
We refer to a solution of Equation (5) as the conservative therapeutic threshold. We note

that the fact we have shown that using j⋆ can cause α · m clinical harm does not yet imply
that j⋆ itself is not a solution to (5); in principle, we anticipate that in this setup every
choice of threshold j would give rise to some regret, and so using j⋆ itself still could be the
best threshold, in a regret minimization sense.

Our main technical contribution is a closed-form expression for the optimal threshold (a
solution to Equation (5)), when miscalibration is measured using either maximum calibra-
tion error:

▶ Theorem 6 (Optimal thresholds under miscalibration). Fix m ∈ N and α > 0. Then
ĵMCE(α, m, j⋆) (the optimal threshold when the MCE can be as large as α) is given by

0 0 ≤ j⋆ ≤ α
2 · m

2j⋆ − αm α
2 · m ≤ j⋆ ≤ αm

j⋆ αm ≤ j⋆ ≤ (1 − α)m
2j⋆ − (1 − α)m (1 − α)m ≤ j⋆ ≤ (1 − α

2 ) · m

m (1 − α
2 ) · m ≤ j⋆ ≤ m

ITCS 2023



92:10 Decision-Making Under Miscalibration

Figure 1 Plotting the conservative therapeutic thresholds ĵMCE and ĵECE (see Theorem 6) vs
the standard therapeutic threshold.

and ĵECE(α, m, j⋆) (the optimal threshold when the ECE can be as large as α) is given by
max

{
1, (1 + α) · m − αm2

j⋆

}
j⋆ < αm

j⋆ αm < j⋆ < (1 − α)m
min

{
m, αm · j⋆

m−j⋆

}
j⋆ > (1 − α)m

Theorem 6 reveals that irrespective of how we measure miscalibration and for every α > 0,
j⋆ is indeed not the regret-minimizing threshold (at least not everywhere). Intuitively, the
expression for ĵ reveals a natural “conservatism in the face of uncertainty” behaviour: the
conservative threshold “clips” the decisions in an α-region around the edges of the prediction
interval, where the relative costs of false positive or false negative predictions are highest,
and α-miscalibration could be most detrimental. Figure 1 demonstrates visually how the
optimal thresholds differ from j⋆, and also how they differ from one another. Intuitively,
we see that ĵECE is even more “conservative” than ĵMCE . Intuitively, this makes sense –
bounding the expected calibration error of a predictor is a weaker guarantee than bounding
the maximum calibration error.

See Appendix C for the proof; we sketch the main idea below. For both notions, the
proof consists of three parts:
1. Reducing the original optimization problem (Equation 5) into a simplified one, where p

is additionally constrained to be “simple”. Formally, simple depends on how we measure
miscalibration: for MCE, this is a constant predictor (i.e., that is supported on only a
single value); and for ECE, this is an “almost” constant predictor (i.e., supported on at
most two values).

2. Showing that under the constraint that p is “simple”, we can carefully derive a closed-form
expression for the maximal regret under miscalibration (cost).

3. Showing that the minimizer of the above cost follows the expressions defined in the
theorem statement.

6 Further Related Work

Clinical decision-making. The derivation of the therapeutic threshold dates back to [27].
Decision curve analysis was introduced by Vickers and Elkin in [35], and has since gained
popularity in the area of clinical risk prediction and decision making, see e.g. [22, 24, 21,
1]. Other decision-analytic measures such as Relative Utility [3] and Net Reclassification
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Improvement [18] are also common, but are all simple transformations of the Net Benefit [34].
The effect of discrimination on the Net Benefit was explored in [34, 35]. Recently, [29, 28]
consider the impact of different fairness interventions on clinical utility.

Calibration: clinical decision-making perspective. Calibration is an important requirement
when using risk prediction models to support medical decision making. Several studies
demonstrate that miscalibration can negatively effect a model’s clinical utility. For example,
Collins and Altman [6] evaluated prognostic models for predicting the 10-year risk of
cardiovascular disease on a large cohort of general practice patients in the UK. Their results
demonstrate that the Framingham risk score overestimates the risk in women and in men,
resulting in a harmful model for risk thresholds of around 20% and higher. Additional
examples in this vein are discussed in [33], which like us, study the effect of miscalibration
on Net Benefit. They use simulation studies to demonstrate that inducing miscalibration can
make a model clinically harmful, stressing the importance of calibration as a desiderata for
risk prediction models. Our theoretical results and experiments complement theirs: motivated
by the observation that miscalibration can never be eliminated entirely, we shift the focus to
the mapping from predictions to decisions as a means to combat anticipated miscalibration.
Finally, [32] define a hierarchy of calibration measures, proving that “moderate calibration”,
which corresponds to the standard notion of (exact) calibration, guarantees no clinical harm.
We generalize this result to the stronger notion of no regret and depart from their analysis
by considering the effect of miscalibration.

Calibration: additional perspectives. Calibration is an important concept that has been
studied in different contexts (fairness, safety, robustness, etc). As discussed, most relevant to
our work is the multi-calibration requirement proposed in [14]. Technically, it sits between the
notions of “moderate calibration” and “strong calibration” from [31, 32]. Multi-calibration
has since been extended [10] and studied in a variety of additional contexts: ranking [9],
multi-group learning with general loss functions [30], online decision-making [13], and the
prediction of higher order moments [15]. Most related to this work is [4], which applies
the methodology of [14, 19] to post-process risk models, such as the Framingham risk score
mentioned above, to satisfy subgroup calibration w.r.t a large collection of demographic
subgroups of interest. The connection between calibration and eliminating clinical harm
serves as another motivation for guaranteeing predictions are also calibrated on a subgroup-
level. Finally, calibration has also been studied in the context of domain generalization, see
e.g. [38, 37].

Post-processing predictors. Our focus on translating predictions to binary decisions is
conceptually related to a fundamental question in learning theory, which is whether predictors
that are optimal for one loss function (e.g., ℓ2 loss, or calibration loss) can be post-processed
into predictors that are optimal for other objectives. [7, 5] study the power of post-processing
calibrated scores into decisions when the objective is to equalize certain statistical fairness
notions across subgroups, which is not our objective. More related to our work are results in
[26, 8] showing that for accuracy metrics including F-scores and AUC, applying the optimal
post-processing transformation to the ℓ2-loss minimizing predictor in a class H yields a
classifier competitive with the best classifier in the class of binary classifiers derived by
thresholding models from H. Recently, [12] proposed the notion of an omnipredictor, which
takes this idea one step further and seeks a single predictor that can be post-processed to be
competitive with a large collection of loss functions and w.r.t arbitrary classes of functions.
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Their work leverages connections to the notion of multicalibration to prove that this objective
is computationally feasible: there exists a predictor p with the guarantee that for every
convex loss function, applying the optimal post-processing transformation for p⋆ to p yields
an optimal classifier for this loss, albeit with a degradation in performance that depends on
the Lipchitzness of the loss function in question. Our point about the clinical harm scaling
like O(α · m) under α-miscalibration can be viewed as a lower bound showing that there
indeed exist interesting and natural cases in which this is unavoidable (here, the granularity
parameter m acts as the Lipchitz constant). Unlike the above works, we don’t assume that the
distribution on which the predictor was trained is the same distribution on which performance
is evaluated after post-processing. Rather, our only knowledge of the target distribution is
that the predictor’s miscalibration error is bounded, and we aim to minimize the worst-case
regret over all target distributions and all possible alternative treatment thresholds. We
further remark that the post-processing transformation we apply (the conservative threshold)
is in fact not what we would apply to p⋆ (which has 0 miscalibration error).
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A Proof of Lemma 4

Note that by definition, we can write the fraction of True Positives and False Positives as

TPp⋆(hp,j) =
∑
i>j

µp,i · ỹp,p⋆,i, FPp⋆(hp,j) =
∑
i>j

µp,i · (1 − ỹp,p⋆,i)

So, by definition of the symmetric Net Benefit, we have:

Λ(p, j; p⋆, j⋆) = P ′ · TPp⋆(hp,j) − L′ · FPp⋆(hp,j)

=
∑
i>j

µp,i [P ′ · ỹp,p⋆,i − L′ · (1 − ỹp,p⋆,i)]

=


∑

i>j µp,i

[
m−j⋆

j⋆ · ỹp,p⋆,i − (1 − ỹp,p⋆,i)
]

j⋆ ≤ m/2∑
i>j µp,i

[
ỹp,p⋆,i − j⋆

m−j⋆ (1 − ỹp,p⋆,i)
]

j⋆ > m/2

=
{∑

i>j µp,i
m·ỹp,p⋆,i−j⋆

j⋆ j⋆ ≤ m/2∑
i>j µp,i

m·ỹp,p⋆,i−j⋆

m−j⋆ j⋆ > m/2

=
∑
i>j

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}

B Proof of Lemma 5

Consider p, p⋆ such that (p, p⋆) ∈ RECE(0). By definition, this guarantees that for every
level set i, ỹp,p⋆,i = i/m. Using Lemma 4, we have that for every threshold j′,

Λ(p, j′; p⋆, j⋆) − Λ(p, j⋆; p⋆, j⋆) =
∑
i>j′

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆} −
∑
i>j⋆

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}

=
∑

j′<i≤j⋆

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆} −
∑

j⋆<i≤j′

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}

=
∑

j′<i≤j⋆

µp,i
i − j⋆

min {m − j⋆, j⋆}︸ ︷︷ ︸
≤0

−
∑

j⋆<i≤j′

µp,i
i − j⋆

min {m − j⋆, j⋆}︸ ︷︷ ︸
≥0

≤ 0

Since this holds for every threshold j′, it also holds for the maximum, hence the required.

http://arxiv.org/abs/2102.10395
http://arxiv.org/abs/2007.08259
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C Proof of Theorem 6

C.1 Maximum Calibration Error
MCE: Part 1. Recall that we defined c(j; j⋆, R) ≜ max{µp,i}m

i=1∈Ξ, (p,p⋆)∈R(α)
regret(p, j; p⋆, j⋆). In this section we will use c̃(j; j⋆, R) to denote the maximal regret
when p is additionally constrained to be a constant predictor. Our objective in this part is
to show that for every j and j⋆, c(j; j⋆, RMCE) = c̃(j; j⋆, RMCE). Note that the direction
c̃(j; j⋆, RMCE) ≤ c(j; j⋆, RMCE) is trivial; it’s left to prove the other direction.

Fix j, j⋆ and α > 0. We want to show that for every {µp,i}m
i=1 ∈ Ξ and predictors p, p⋆

such that (p, p⋆) ∈ RMCE(α), and for every jR, there exist {µp̃,i}m
i=1 ∈ Ξ and predictors p̃, p̃⋆

and j̃R such that:

(p̃, p̃∗) ∈ RMCE(α) (6)
∃i such that µp̃,i = 1 (7)

regret(j; j⋆, p, p⋆, jR) ≤ regret(j; j⋆, p̃, p̃⋆, j̃R) (8)

Fix {µp,i}m
i=1 ∈ Ξ and predictors p, p⋆ such that (p, p⋆) ∈ RMCE(α), and fix a threshold

jR. W.l.o.g, assume jR < j. Let i∗ = arg maxjR<i<j
m·ỹp,p∗,i−j∗

min{m−j∗,j∗} , and define the following
predictors: p̃(x) ≡ i∗/m and p̃∗(x) ≡ ỹp,p∗,i∗ . Note that p̃ is a constant prediction, so (7)
holds. Also, (6) follows directly by the assumption that (p, p⋆) ∈ RMCE(α) (but note that
here we use the fact that miscalibration is measured using maximum calibration error). We
will now argue that taking j̃R = jR, also (8) holds. Note that by definition of i⋆,

regret(j; j⋆, p, p⋆, jR) =
∑
i>jR

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}
−

∑
i>j

µp,i · m · ỹp,p⋆,i − j⋆

min {m − j⋆, j⋆}

≤
∑

jR<i<j

µp,i · m · ỹp,p⋆,i∗ − j⋆

min {m − j⋆, j⋆}

= m · ỹp,p⋆,i∗ − j⋆

min {m − j⋆, j⋆}
·

∑
jR<i<j

µp,i︸ ︷︷ ︸
≤1

≤ m · ỹp,p⋆,i∗ − j⋆

min {m − j⋆, j⋆}

On the other hand, by the definition of p̃ and p̃⋆, we have:

regret(j; j⋆, p̃, p̃∗, j̃R) =
∑
i>jR

µp̃,i · m · ỹp̃,p̃∗,i − j∗

min {m − j⋆, j⋆}
−

∑
i>j

µp̃,i · m · ỹp̃,p̃∗,i − j⋆

min {m − j⋆, j⋆}

=
∑

jR<i<j

µp̃,i · m · ỹp̃,p̃∗,i − j⋆

min {m − j⋆, j⋆}

= m · ỹp̃,p̃∗,i∗ − j⋆

min {m − j⋆, j⋆}

= m · Ex[p̃∗(x)] − j⋆

min {m − j⋆, j⋆}

= m · ỹp,p∗,i∗ − j⋆

min {m − j⋆, j⋆}

Combining, we have shown (8), which concludes the claim that c(j; j⋆, RMCE) ≤
c̃(j; j⋆, RMCE).
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MCE: Part 2. Next, we will show that the maximal regret w.r.t (p, p⋆) ∈ RMCE(α) when
p is constant is

max {min {m − j⋆, j − j⋆ + αm} , min {j⋆, j⋆ − j + αm}}
min{m − j⋆, j⋆}

(9)

Fix a constant predictor p and an arbitrary predictor p⋆. Let v denote the value p

is supported on (i.e., the level set for which that µp,v = 1). Note that w.l.o.g, we can
additionally assume that p⋆ is constant too - the regret consists of the difference between
Net Benefits, which is only a function of ỹp,p⋆,v, which is the same if we replace p⋆ with its
expectation. We use v⋆ to denote the value p⋆ is supported on. In this case, the regret of j

w.r.t j⋆ is exactly

0 v < j, v⋆ < j⋆∣∣∣ m·v⋆−j⋆

min{m−j⋆,j⋆}

∣∣∣ v < j, v⋆ ≥ j⋆∣∣∣ m·v⋆−j⋆

min{m−j⋆,j⋆}

∣∣∣ v ≥ j, v⋆ < j⋆

0 v ≥ j, v⋆ ≥ j⋆

Recall that to determine the cost of j, we would like to choose v, v⋆ to maximize this
expression. We will consider two choices for v: v ≤ j and v > j:
1. When v ≤ j, to maximize the regret we want to choose v⋆ ≥ j. In that case the regret

will be
∣∣∣ m·v⋆−j⋆

min{m−j⋆,j⋆}

∣∣∣, which is maximized when v⋆ is maximized; under the maximum
calibration constraint, m · v⋆ can be as large as min {m, v + αm}, which in turn can be
as large as min {m, j + αm}. So the regret in this case is

min{m, j + αm} − j⋆

min{m − j⋆, j⋆}
= min{m − j⋆, j − j⋆ + αm}

min{m − j⋆, j⋆}

2. When v > j, to maximize the regret we want to choose v⋆ < j. In that case the regret
will be

∣∣∣ j⋆−m·v⋆

min{m−j⋆,j⋆}

∣∣∣, which is maximized when v⋆ is minimized; under the maximum
calibration constraint, m · v⋆ can be as small as max{0, v − αm}, which in turn can be as
small as max{0, j − αm}. So the regret in this case is

max{0, j − αm} − j⋆

min{m − j⋆, j⋆}
= max{−j⋆, j − j⋆ − αm}

min{m − j⋆, j⋆}
= min{j⋆, j⋆ − j + αm}

min{m − j⋆, j⋆}

Finally, since we can also chose whether v ≤ j or v > j, we obtain that the overall
maximum regret is exactly the expression in Equation (9), which concludes this part.

MCE: Part 3 . It’s left to argue why the minimizer of the cost from Equation (9) is ĵ

defined in the theorem statement. First, we note that since the denominator of Equation (9)
is non-negative and independent of j, it suffice to minimize the following cost

max {min {m − j⋆, j − j⋆ + αm} , min {j⋆, j⋆ − j + αm}}

Note:
In the first minimum, the first expression “dominates” (i.e., is smallest) iff j ≥ (1 − α)m;
In the second minimum, the first expression “dominates” (i.e., is smallest) iff j ≤ αm.

So we can start by simplifying according to the following regions: Left (meaning j ≤ α ·m),
Middle (meaning αm ≤ j ≤ (1 − α)m) and Right (meaning j ≥ (1 − α)m).
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Middle: The expression becomes max {j − j⋆ + αm, j⋆ − j + αm}. The first term
increases in j and the second decreases in j, so the optimal choice is j − j⋆ + αm =
j⋆ − j + αm ⇒ j = j⋆.
Left: The expression becomes max {j − j⋆ + αm, j⋆}. Similarly, the optimal choice in
this range is j = 2j⋆ − αm.
Right: The expression becomes max {m − j⋆, j⋆ − j + αm}, so the optimal choice is
j = 2j⋆ − (1 − α)m.

To summarize, given j⋆, we have several options: choose j = j⋆ incurring a cost of αm;
choose j = 2j⋆ − αm incurring a cost of j⋆; or choose j = 2j⋆ − (1 − α)m incurring a cost of
m − j⋆. From this, we can derive the optimal threshold ĵ, depending on j⋆:

if αm ≤ j⋆ ≤ (1 − α)m, we have that j⋆ ≥ αm and m − j⋆ ≥ αm, so the optimal choice
is j = j⋆.
if j⋆ ≤ αm, then the optimal choice is j = max{0, 2j⋆ − αm}.
If j⋆ ≥ (1 − α)m, then the optimal choice is j = min{1, 2j⋆ − (1 − α)m}.

Which is precisely the expression in the theorem statement, concluding the proof of the
optimal threshold under miscalibration when using maximum calibration error.

C.2 Expected Calibration Error

We now follow the same logic but when miscalibration is measured using expected calibration
error (ECE). Here, the reduction in the first part is more subtle: we show that we also need
to take into account slightly more complex predictors, that can be supported on two values
(not one).

ECE: Part 1. Fix j, j⋆ and α > 0. This time, we want to show that for every {µp,i}m
i=1 ∈ Ξ

and predictors p, p⋆ such that (p, p⋆) ∈ RECE(α), and for every jR, there exist {µp̃,i}m
i=1 ∈ Ξ

and predictors p̃, p̃⋆ and j̃R such that:

(p̃, p̃∗) ∈ RECE(α) (10)
∃i1, i2 such that µp̃,i1 + µp̃,i2 = 1 (11)

regret(j; j⋆, p, p⋆, jR) ≤ regret(j; j⋆, p̃, p̃⋆, j̃R) (12)

Fix {µp,i}m
i=1 ∈ Ξ and predictors p, p⋆ such that (p, p⋆) ∈ RECE(α), and fix a threshold

jR. W.l.o.g, assume jR < j. Intuitively, our construction of the “simple” p̃ will collect all the
level sets outside [jR, j] into a single level set, whose value is arbitrary (say 0), and all the
level sets inside [jR, j] into a single level set, whose value is the mean. We will construct p̃⋆

accordingly to ensure that the resulting pair (p̃, p̃⋆) is still in the ECE relation.

Consider the predictor p̃ that puts µ1 mass on a value v1 and µ2 mass on a value v2, defined

as follows: v1 = 0; v2 =
∑

i∈[jR,j]
µp,i·(i/m)∑

i∈[jR,j]
µp,i

; µ1 =
∑

i/∈[jR,j] µp,i and µ2 =
∑

i∈[jR,j] µp,i.

For p̃⋆, we define it such that ỹp̃,p̃⋆,v1 = v⋆
1 and ỹp̃,p̃⋆,v2 = v⋆

2 , where v⋆
1 , v⋆

2 are defined as

follows: v⋆
1 = 0; v⋆

2 =
∑

i∈[jR,j]
µp,i·ỹp,p⋆,i∑

i∈[jR,j]
µp,i

.
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Note that Equation (11) holds since by construction µ1 + µ2 = 1. For (10), we bound the
ECE of p̃ w.r.t p̃⋆:∑

i

µp̃,i ·
∣∣i/m − ỹp̃,p̃⋆,i

∣∣ = µ1 · |v1 − v⋆
1 | + µ2 · |v2 − v⋆

2 |

= µ2 · |v2 − v⋆
2 |

=

∣∣∣∣∣∣
∑

i∈[jR,j]

µp,i · (i/m) −
∑

i∈[jR,j]

µp,i · ỹp,p⋆,i

∣∣∣∣∣∣
≤

∑
i∈[jR,j]

µp,i · |i/m − ỹp,p⋆,i|

≤ α

where the last transition is by the fact that (p, p⋆) ∈ RECE(α). Finally, for Eq. (12):

regret(j; j⋆, p̃, p̃⋆, j̃R) =
∑

jR<i<j

µp̃,i ·
m · ỹp̃,p̃⋆,i − j⋆

min {m − j⋆, j⋆}

= µ2 · m · v⋆
2 − j⋆

min {m − j⋆, j⋆}

=
∑

i∈[jR,j]

µp,i ·
m ·

∑
i∈[jR,j]

µp,i·ỹp,p⋆,i∑
i∈[jR,j]

µp,i
− j⋆

min {m − j⋆, j⋆}

=
∑

i∈[jR,j]

µp,i ·
m ·

∑
i∈[jR,j]

µp,i·ỹp,p⋆,i∑
i∈[jR,j]

µp,i
−

j⋆·
∑

i∈[jR,j]
·µp,i∑

i∈[jR,j]
·µp,i

min {m − j∗, j∗}

=
∑

i∈[jR,j] µp,i · (m · ỹp,p⋆,i − j⋆)
min {m − j⋆, j⋆}

= regret(j; j⋆, p, p⋆, jR)

This concludes the proof of Part 1.

ECE: Part 2. Next, we will show that the maximal regret incurred by a threshold j w.r.t
j⋆, under (p, p⋆) ∈ RECE(α) when p is additionally constrained to be “almost constant” (in
the sense formalized above) is

1
min {m − j⋆, j⋆}

·



max
{

j⋆, αm · m−j⋆

m−j

}
j < j⋆, j ≤ αm

max
{

j⋆ − j + αm, αm · m−j⋆

m−j

}
αm < j ≤ j⋆

max
{

j − j⋆ + αm, αm · j⋆

j

}
j⋆ < j ≤ (1 − α)m

max
{

m − j⋆, αm · j⋆

j

}
j ≥ j⋆, j > (1 − α)m

(13)

Fix j, j⋆. Consider some choice of threshold jR and predictors p, p⋆ ∈ RECE(α). Since p

is assumed to be “simple”, we will assume it is supported on two values v1, v2 (where v1 is
between j and jR, and v2 is not), with v⋆

1 , v⋆
2 denoting the respective conditional expectation

of p⋆, similar to the notation used in Part 1. We will split into two cases: jR ≤ j and jR > j.
When jR ≤ j,

min {m − j⋆, j⋆} · regret(j; j⋆, p, p⋆, jR) =
∑

jR<i<j

µp,i · (mỹp,p⋆,i − j⋆) = µ1 · (m · v⋆
1 − j⋆)
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Since we want to maximize this expression, we want to choose v⋆
1 as large as possible;

we can therefore assume w.l.o.g that v⋆
1 ≥ v1 (and also trivially v⋆

2 ≥ v2). We can therefore
re-parametrize the expressions in terms of v1, v2 and δ1 = v⋆

1 − v1 > 0, δ2 = v⋆
2 − v2 > 0,

yielding the following optimization problem (whose value is the maximal regret we are
interested in):

max
µ1,v1,v2,δ1,δ2

µ1 · (m · (v1 + δ1) − j⋆) subject to



v1 ∈ [jR, j]
v2 /∈ [jR, j]
µ1 ∈ [0, 1]
δ1 ∈ [0, 1 − v1]
δ2 ∈ [0, 1 − v2]
µ1 · δ1 + (1 − µ1) · δ2 ≤ α

Note that we can re-write the objective as m · µ1v1 + m · µ1δ1 − µ1 · j⋆. Since µ1δ1 will
just be α (or as large as it can be), we are left with maximizing m · µ1(v1 − j⋆/m). Now, the
behaviour will depend on the relationship between j and j⋆:

If j ≥ j⋆, then the optimal thing is to put the most weight on µ1 as possible; i.e., have
v1 = j/m, µ1 = 1 and δ1 = α. For the solution to be legal, v1 + δ1 must not exceed 1. So
the optimal choice is δ1 = min {α, 1 − j/m} . In particular:

If α < 1 − j/m, the value of the objective would be j − j⋆ + αm.
If α > 1 − j/m, the value of the objective would be m − j⋆.

If j < j⋆, then the optimal thing would be to put as little weight on µ1 as possible;
i.e. have v1 = j, δ1 = 1 − j/m and µ1 = α

1−j/m . The value of the objective would be
α

1−j/m · (m(j/m + 1 − j/m) − j⋆) = αm · m−j⋆

m−j .

To summarize, the maximal regret achievable when jR ≤ j is

1
min {m − j⋆, j⋆}

· =


j − j⋆ + αm j⋆ < j < (1 − α)m
m − j⋆ j > j⋆, j > (1 − α)m
αm · m−j⋆

m−j j < j⋆

(14)

Let us now repeat this analysis for the case jR > j. This time,

min {m − j⋆, j⋆} · regret(j; j⋆, p, p⋆, jR) =
∑

j<i<jR

µp,i · (mỹp,p⋆,i − j⋆) = µ1 · (j⋆ − m · v⋆
1)

Since we want to maximize this expression, this time we want to choose v⋆
1 as small

as possible; we can therefore assume w.l.o.g that v⋆
1 ≤ v1 (and also trivially v⋆

2 ≤ v2).
Re-parametrizing in terms of δ1 = v1 − v⋆

1 ≥ 0 and δ2 = v2 − v⋆
2 ≥ 0, we have the following

optimization problem:

max
µ1,v1,v2,δ1,δ2

µ1 · (j⋆ − m · (v1 − δ1)) subject to



v1 ∈ [j, jR]
v2 /∈ [j, jR]
µ1 ∈ [0, 1]
δ1 ∈ [0, v1]
δ2 ∈ [0, v2]
µ1 · δ1 + (1 − µ1) · δ2 ≤ α

Since we can re-write the objective as µ1 · j⋆ + m · µ1δ1 − m · µ1v1, and again µ1δ1 will
just be α (or as large as it can be), we are left with maximizing m · µ1(j⋆/m − v1). The
behaviour again depends on the relationship between j and j⋆:
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If j < j⋆, then the optimal thing is to put the most weight on µ1 as possible; i.e., have
v1 = j/m, µ1 = 1 and δ1 = α. For the solution to be legal, v1 − δ1 must be non-negative.
So the optimal feasible choice is δ1 = min {α, j/m}. In particular:

If α < j/m, the value of the objective will be j⋆ − j + αm.
If α > j/m, the value of the objective will be j⋆.

If j > j⋆, then the optimal thing is to put as little weight on µ1 as possible; i.e. have
v1 = j/m, δ1 = j/m and µ1 = α

j/m . The value of the objective would be α
j/m · (j⋆ −

m(j/m − j/m)) = αm · j⋆

j .

To summarize, the maximal regret achievable when jR > j is

1
min {m − j⋆, j⋆}

· =


j⋆ − j + αm αm < j < j⋆

j⋆ j < j⋆, j < αm

αm · j⋆

j j > j⋆

(15)

Finally, since we also maximize over jR, we combine Equations (14) and (15) to obtain
precisely the expression from Equation (13), which concludes the proof of this part.

ECE: Part 3. It’s left to argue that the minimizer of the cost in Equation (13) is the
expression from the theorem statement. We will ignore the term 1

min{m−j⋆,j⋆} since it is
non-negative and does not depend on j.

As we did for MCE, we will begin by simplifying the cost according to the following
regions: Left (meaning j ≤ α · m), Left Middle (meaning αm < j ≤ j⋆), Right Middle
(meaning j⋆ ≤ j < (1 − α)m), and Right (meaning j > (1 − α)m).

Left: The expression becomes max{j⋆, αm · m−j⋆

m−j }, and the optimal choice in this region
is max{0, (1 + α)m − αm2

j⋆ }.
Left Middle: The expression becomes max{j⋆ − j + αm, αm · m−j⋆

m−j }, and j⋆ is an
optimal choice in this region.8
Right Middle: The expression becomes max{j −j⋆ +αm, αm · j⋆

j }, and j⋆ is an optimal
choice in this region.9
Right: The expression becomes max{m − j⋆, αm · j⋆

j }, and the optimal choice in this
region is min{m, αm · j⋆

m−j⋆ }.

To summarize, given j⋆, we have several options: choose max{0, (1 + α)m − αm2

j⋆ },
incurring a cost of j⋆; choose j⋆, incurring a cost of αm; or choose min{m, αm · j⋆

m−j⋆ },
incurring a cost of m − j⋆. From this, we can derive the optimal threshold ĵ as a function of
j⋆, which exactly follows that in the theorem statement, concluding the required.

8 This follows by observing that j⋆ is a solution to the quadratic equation (in j) j⋆ − j + αm = αm · m−j⋆

m−j
9 This follows by observing that j⋆ is a solution to the quadratic equation (in j) j − j⋆ + αm = αm · j⋆

j
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Motivated by large-market applications such as crowdsourcing, we revisit the problem of budget-
feasible mechanism design under a “small-bidder assumption”. Anari, Goel, and Nikzad (2018) gave
a mechanism that has optimal competitive ratio 1 − 1/e on worst-case instances. However, we
observe that on many realistic instances, their mechanism is significantly outperformed by a simpler
open clock auction by Ensthaler and Giebe (2014), although the open clock auction only achieves
competitive ratio 1/2 in the worst case. Is there a mechanism that gets the best of both worlds, i.e.,
a mechanism that is worst-case optimal and performs favorably on realistic instances? To answer
this question, we initiate the study of beyond worst-case budget-feasible mechanism design.

Our first main result is the design and the analysis of a natural mechanism that gives an
affirmative answer to our question above:

We prove that on every instance, our mechanism performs at least as good as all uniform
mechanisms, including Anari, Goel, and Nikzad’s and Ensthaler and Giebe’s mechanisms.
Moreover, we empirically evaluate our mechanism on various realistic instances and observe that
it beats the worst-case 1 − 1/e competitive ratio by a large margin and compares favorably to
both mechanisms mentioned above.

Our second main result is more interesting in theory: We show that in the semi-adversarial
model of budget-smoothed analysis, where the adversary designs a single worst-case market for a
distribution of budgets, our mechanism is optimal among all (including non-uniform) mechanisms;
furthermore our mechanism guarantees a strictly better-than-(1 − 1/e) expected competitive ratio
for any non-trivial budget distribution regardless of the market. (In contrast, given any bounded
range of budgets, we can construct a single market where Anari, Goel, and Nikzad’s mechanism
achieves only 1 − 1/e competitive ratio for every budget in this range.) We complement the positive
result with a characterization of the worst-case markets for any given budget distribution and prove
a fairly robust hardness result that holds against any budget distribution and any mechanism.
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1 Introduction

The budget-feasible mechanism design problem was introduced by Singer [20] and has become
a core problem in algorithmic mechanism design [8, 9, 3, 21, 6, 10, 11, 13, 5, 7, 18, 22, 23,
15, 2, 14, 1, 12, 16, 4]. We will use microtask crowdsourcing as a running example for this
problem (see Section 2.1 for a formal setup): An employer (buyer) on a crowdsourcing
platform (market I) such as Mechanical Turk or Microworkers is given a fixed budget B,
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and is looking to acquire some services from a set of workers (sellers) [n]. Each worker i can
perform a microtask (provide a service) that has a utility ui to the employer at an incurred
cost ci to the worker himself. The employer’s total utility is

∑
i∈W ui for the services provided

by each subset of workers W ⊆ [n]. As is common in the literature, the employer knows
the workers’ utilities ui’s (e.g. by grading their work ex-post, or using the worker’s rating
on previous tasks), but does not know their private costs ci’s. Moreover, in large-market
applications like microtask crowdsourcing, it is often very natural to make a small-bidder
assumption: the cost of each worker is a small fraction of the employer’s total budget1.

The objective of budget-feasible mechanism design is to design a truthful mechanism that
maximizes the employer’s total utility while keeping the total payment to the workers within
the budget. Roughly speaking, a truthful mechanism makes sure the workers honestly report
their private costs ci’s by providing them incentives (payments) and decides which subset
of services the employer will get (allocation), and we want the mechanism to maximize the
total utility of the services allocated to the employer, under the constraint that the total
payment does not exceed B.

Without any incentive constraints (i.e., the workers’ costs are public, and the employer
only needs to pay a worker’s cost to get the worker’s service), this becomes the well-known
knapsack problem. Therefore, it is standard to consider the following performance metric
for a mechanism: the ratio between the utility achieved by the mechanism and the optimal
utility of the knapsack problem without incentive constraints in a worst-case market and for
a worst-case budget. This metric is called the worst-case competitive ratio, and a mechanism
is α-competitive if its worst-case competitive ratio is ≥ α ∈ [0, 1].

Research in budget-feasible mechanism design has been focusing on designing (polynomial-
time) mechanisms that achieve optimal worst-case competitive ratio. Under the small-bidder
assumption, [2] gave a (1− 1/e)-competitive mechanism and characterized the worst-case
instances2 for which any mechanism can only achieve at most 1− 1/e competitive ratio.

Although this optimal result provides a satisfactory answer with respect to worst-case
competitive ratio, our quest to design even better mechanisms does not come to an end.
Indeed, recall that worst-case competitive ratio measures a mechanism’s performance in
worst-case market given worst-case budget. Such worst-case market and worst-case budget
rarely appear in practice. Even if we are given an typical-case market and/or an typical-case
budget, a mechanism that achieves optimal worst-case competitive ratio could (potentially)
perform as bad as on the worst-case instance. We probably would not prefer such worst-case
optimal mechanism over other mechanisms that perform much better on the typical-case
instances. To make this point more concrete, consider the following extremely simple instance:

▶ Example 1. The buyer has a budget B = n, and each of n seller’s services has a cost 1 to
the seller himself and a utility 1 to the buyer.

For the simple instance in Example 1 (which satisfies small-bidder assumption), simply offering
a payment of 1 to each seller extracts full utility, but [2]’s worst-case optimal mechanism
only obtains a (1 − 1/e)-fraction. Moreover, instead of identical sellers’ costs, consider a
more natural variant of Example 1, where the sellers’ costs are sampled i.i.d. from a natural
distribution (e.g., Gaussian/uniform/exponential/mixture distribution). Our numerical
simulation shows that [2]’s mechanism only obtains close-to-(1− 1/e) fraction of the optimal
utility for these natural instances, while a simple open clock auction [10], that is equivalent

1 Other important applications where this assumption is natural include allocation of R&D subsidies by
government agencies and emission reduction auctions [2].

2 An instance is specified by a market I and a budget B.
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to setting a single uniform price, obtains significantly larger fractions (see Table 1). Of course
the open clock auction also extracts the full utility for the simple instance in Example 1.
However, it is known that the open clock auction is suboptimal in the worst case: [2] exhibits
a simple example for which the open clock auction has worst-case competitive ratio 1/2.

Is there a mechanism that gets the best of both worlds, i.e., a mechanism that is
worst-case optimal and “performs favorably” on every instance (not just in the worst
case)?

By “perform favorably”, we mean that the mechanism should achieve utility at least as
good as a large class of mechanisms. Which class of mechanism should we consider as an
appropriate benchmark? At least, we want this class to include the previous mechanisms
of [2] and [10]. The most ambitious class is obviously the class of all the mechanisms, but
as we now explain, it is unfair to compare with this class. Consider the mechanism in the
following example:

▶ Example 2. Consider an arbitrary instance (I, B) specified by market I and budget B,
which becomes a knapsack problem when sellers’ costs are public, and the optimal solution
(i.e., the optimal subset of sellers’ services) to this knapsack problem always exists. Now we
hard-code the market I in the following mechanism: When given an input instance (I ′, B′)
(assume for simplicity3 that I ′ has the same number of sellers as I, but the sellers’ costs and
utilities in I ′ can be arbitrarily different from I), this mechanism reads nothing from input
except the budget B′, and it always non-uniformly offers each seller, who is in the optimal
knapsack solution of instance (I, B′), a posted price that is equal to this seller’s cost in I,
and offers nothing to the remaining sellers.

Although the mechanism in Example 2 is silly (because it always decides the allocation and
payments according to I regardless of the actual market I ′ it is facing), it is a well-defined
non-uniform posted price mechanism that is truthful and budget-feasible. Even though we
expect this mechanism to perform poorly in general, it is optimal for the specific market
I that is hard-coded in it, and there is no way we can compete with such unreasonable
mechanism on instance (I, B). In order to exclude such mechanisms while including the
mechanisms of [2] and [10], we restrict our attention to the class of all the uniform mechanisms
(for now4). Roughly speaking, a mechanism is uniform if the distributions of normalized
offers is essentially the same for all the sellers (see Section 2.1.1 for the exact definition).

It is noteworthy that unlike algorithm design, where one can combine two algorithms by
taking the best solution outputted by these algorithms, naively combining two mechanisms
in such way typically does not result in a truthful mechanism, which motivates us to search
for a new mechanism that satisfies the desiderata in our main question. With the above
motivation, we initiate the study of beyond worst-case budget-feasible mechanism design, and
we also make the small-bidder assumption given its wide applicability in practice (see [2,
Section 10]). In the next two subsections, we give an overview of our results. In terms of
the significance, we believe the first main result (instance optimality), which compares our
new mechanism with uniform mechanisms, is more significant from the practical perspective,
and the techniques are arguably not complicated and hence can be applied in practice. The
second main result (budget-smoothed analysis), which compares our new mechanism with
the general (possibly non-uniform) mechanisms is more interesting from the theoretical
perspective. We believe these two results complement each other, and we hope these results

3 This is without loss of generality, because otherwise the mechanism could use an arbitrary mapping
from sellers in I to sellers in I ′.

4 In our results for budget-smoothed analysis, we will compare to all (possibly non-uniform) mechanisms.
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could encourage researchers in the broad area of mechanism design to examine the worst-case
optimal mechanisms for their mechanism design problems through beyond-worst-case lens
and design even better mechanisms with improved beyond-worst-case performance.

1.1 Main result I: instance optimality
The first result of this paper is the design and (theoretical and empirical) analysis of a new
natural mechanism. We prove that our new mechanism performs at least as good as any
uniform mechanism on every instance (Theorem 11).

▶ Theorem 3 (Instance-optimality against uniform mechanisms).
We give a computationally efficient, truthful and strictly budget-feasible randomized mechan-
ism, that, on every instance of the budget-feasible mechanism design problem with additive
buyer’s utility function and small sellers, achieves ≥ (1− o(1)) of the expected utility of any
uniform mechanism.

Moreover, we empirically evaluate our mechanism on many realistic instances and observe
that it beats the worst-case 1− 1/e competitive ratio by a large margin.

Empirical analysis. Specifically, we compare the performance of our mechanism, the open
clock auction [10], and [2]’s mechanism on synthetic instances (see Section 3.4 for details).
We observe that our mechanism and the open clock auction outperform [2]’s worst-case
optimal mechanism on all synthetic instances by a large margin. In the instances where
the distribution of sellers’ cost-per-utility is multi-modal5, our mechanism outperforms both
other mechanisms significantly (recall that we indeed prove that it is always optimal).

Our mechanism in a nutshell. An idealized version of our mechanism, where we know
the market statistics (i.e., the empirical distribution of sellers’ types6), has the following
nice interpretation: each seller is independently offered one of two possible prices, and can
choose to accept or reject the offer she receives. Knowing the market statistics is a reasonable
assumption in many cases in practice, e.g. when the buyer has access to historical bids. In
general, when the statistics are not known, we can randomly partition the sellers into two
subsets, and compute prices for each half based on market statistics estimated from truthful
reporting of costs from the other half.

The main novelty of our mechanism is the design of its idealized version – a greedy-type
uniform “mechanism” (Mechanism 1), which can be interpreted as a probabilistic combination
of at most two uniform prices per utility. We prove that this greedy “mechanism” is instance-
optimal compared to all the uniform mechanisms by a neat greedy exchange argument. We
are surprised that despite being such a natural “mechanism” (from the information-theoretic
point of view), Mechanism 1 has never been studied in the literature to our best knowledge.

In the random partitioning step for estimating the market statistics, the technical part
is how to control the noise caused by random partitioning (overly large noise could ruin
the budget feasibility of the mechanism without giving up a significant fraction of utility).
Thanks to the simple form of our idealized mechanism, we are able to succinctly discretize
the space of candidate allocation rules. Moreover, in order to upper bound the influence of

5 We note that multi-modal sellers’ distribution is possible in the real world. For example, in an
international market, the average cost-per-utility of sellers in a country could differ from that in another
country because of the difference of resources/technology between different countries.

6 A seller’s type is specified by his cost and utility.
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each individual seller during the random partitioning, we truncate the allocation rule, which
does not lose much utility because of small-bidder assumption. By a careful probabilistic
analysis, we show that combining these techniques is sufficient to approximate our idealized
greedy mechanism within negligible error. Therefore, the approximate version of the greedy
mechanism, which is our final mechanism (Mechanism 2), is (nearly) optimal on every
instance compared to any uniform mechanism.

1.2 Main result II: budget-smoothed analysis

We have shown that empirically our mechanism’s performance on realistic instances is much
better than the 1− 1/e competitive ratio on the “worst-case instance”, which suggests that
optimality on the “worst-case instance” is a weak notion that fails to capture better-than-
worst-case performance. We also have shown that our mechanism beats all the uniform
mechanisms on “every instance”, but as we explained before, we restricted our attention
to the class of uniform mechanisms, because it is unreasonable to compare with the class
of non-uniform mechanisms on “every instance”, which suggests that optimality on “every
instance” is somewhat too strong if we hope to compare our mechanism with the more
general non-uniform mechanisms.

Thus in addition to our first result, we strike a reasonable middle ground between “worst-
case instance” and “every instance” by examining our mechanism under the budget-smoothed
analysis framework recently introduced in [19] in the context of submodular maximization.
This framework gives a reasonable notion of beyond-worst-case instances that allows us to
theoretically compare our mechanism to all the (even non-uniform) mechanisms.

Briefly (see the formal definition in Section 2.2), the budget-smoothed analysis framework
is a semi-adversarial model: We first pick a budget distribution and a mechanism, and
then the adversary, who knows the mechanism and the budget distribution, chooses a single
worst-case market, and finally we sample a budget from the distribution and measure the
mechanism’s expected competitive ratio (formally defined in Section 2.2) on the adversarially
chosen market, where the expectation is over the randomness of the budget distribution and
(potentially) the mechanism itself. (The motivation of the budget-smoothed analysis in the
context of budget-feasible mechanism design deserves an in-depth discussion, which we defer
to Section A in the full version due to the interest of space.)

We show the following fundamental results in the budget-smoothed analysis model.

Optimal mechanism and worst-case markets for any budget distribution. We prove
that our mechanism is optimal (see Definition 5) among all the (not necessarily uniform)
mechanisms on the worst-case market for any budget distribution7 (Theorem 13), and
moreover, the expected competitive ratio of our mechanism is guaranteed to be strictly better
than 1− 1/e for every nontrivial budget distribution regardless of the market8 (Theorem
4.3 in the full version). In contrast, given any bounded range of budgets, we construct a
single market where [2]’s worst-case optimal mechanism cannot beat the worst-case 1− 1/e

competitive ratio for any budget in this range (Theorem D.2 in the full version), which
exhibits a strong separation between our mechanism and [2]’s mechanism.

7 It is particularly interesting that our mechanism, which does not require any knowledge of the budget
distribution, is optimal even when compared with the mechanisms that know the budget distribution.
In other words, our mechanism intrinsically adjusts itself to the budget distribution optimally.

8 Moreover, in Section E of the full version, we formulate a (non-convex) mathematical program that
computes the expected competitive ratio on the worst-case market for any given budget distribution.
We solve this program for various distributions and observe nonnegligible improvement over 1 − 1/e.
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Our proof of the optimality result is conceptually appealing: We observe that once we
fix an arbitrary budget distribution, determining the worst-case market and the optimal
mechanism is a min-max game between the adversary and the mechanism designer, in which
the adversary tries to give a market that minimizes the mechanism’s performance, and the
mechanism designer hopes to design a mechanism that performs best on the adversarially
chosen market. We analytically solve the equilibrium for this min-max program, and the
solution comes with a characterization of the worst-case markets for any given budget
distribution (Theorem 13).

Robust hardness result against any budget distribution. On the negative side, we prove
a robust hardness result that shows for any budget distribution and any mechanism, there
is a market on which the mechanism’s expected competitive ratio is bounded away from 1
(specifically, at most 0.854 – see Theorem 4.4 in the full version). In comparison, the previous
worst-case hardness result [2] is very sensitive to budget perturbation: If we perturb (i.e.,
multiply) the budget of the worst-case instance by a significant factor like 2.5, then simply
setting a single uniform price (i.e., [10]’s open clock auction) will achieve 100% of the optimal
utility.

2 Preliminaries

2.1 Problem setup
In the budget-feasible mechanism design (a.k.a., procurement auction) problem with additive
utility, there is a market I consisting of one buyer and n sellers, and each seller i has an item
with a public utility ui ∈ R≥0 and a private cost ci ∈ R≥0. The buyer has a budget B ∈ R≥0
and wants to buy items from the sellers. The goal of the budget-feasible mechanism design
problem is to design a truthful mechanism that maximizes buyer’s total utility while keeping
the total payment to sellers within the budget, which we now explain more formally.

Truthful mechanisms. A mechanism takes as input the buyer’s budget B, the sellers’ public
utilities ui’s and the private costs9 ci’s reported by the sellers, and then outputs which items
should be allocated to the buyer and how much the buyer should pay to each seller. Formally,
the output of a (randomized) mechanism, i.e., allocation and payments, can be represented
by10 an allocation function g : Rn

≥0 → [0, 1]n and a payment function Qg : Rn
≥0 → Rn

≥0, where
g takes the sellers’ cost-per-utility γi := ci/ui’s as input γ⃗, and outputs (the expectation of)
the fraction of each item that is allocated to the buyer (and hence, the expected utility the
buyer gets from seller i is the i-th coordinate of the output of g, which we denote by g(γ⃗)i,
times ui, and the expected cost of seller i is g(γ⃗)i · ci), and Qg takes the same input and
outputs the associated (expected) payment-per-utility for each item (namely, the expected
payment to seller i is the i-th coordinate of the output of Qg, which we denote by Qg(γ⃗)i,
times ui).

A deterministic mechanism is truthful if reporting the true γi always maximizes the net
profit for each seller i ∈ [n], namely, for any γ−i ∈ Rn−1

≥0 (where γ−i denotes all the γj ’s
except γi), for all z ∈ R≥0,

9 We note that there are mechanisms that do not directly ask the sellers to report their costs such as
clock auctions. However, our definition is without loss of generality by the revelation principle.

10 If the mechanism is deterministic, g and Qg output the deterministic allocations and deterministic
payments, respectively, and if the mechanism is randomized, they output the expected allocations and
expected payments.
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Qg(γi, γ−i)i · ui − g(γi, γ−i)i · ci ≥ Qg(z, γ−i)i · ui − g(z, γ−i)i · ci. (1)

In general, a mechanism can be randomized, and a randomized mechanism is simply a
distribution of deterministic mechanisms. In this light, we say a randomized mechanism
is truthful-in-expectation if reporting the true γi only maximizes seller i’s net profit in
expectation over the randomness of the mechanism, i.e., Eq. (1) holds in expectation for the
randomized mechanism.

The celebrated Myerson’s lemma [17] asserts that (i) an allocation function g can be
implemented as a truthful-in-expectation mechanism if and only if g is monotone, i.e., for
all i ∈ [n] and any γ−i ∈ Rn−1

≥0 , gi(·) := g(·, γ−i)i is a non-increasing function, and (ii)
there exists a unique payment function Qgi

associated with gi, which is given by Qgi
(γ) :=

γ · gi(γ) +
∫ ∞

γ
gi(z)dz.

Budget feasibility. Note that we want the randomized mechanisms to strictly satisfy the
budget constraint, i.e., every deterministic mechanism in the support of the distribution has
to satisfy the following budget constraint∑

i∈[n]

Qgi
(γi)ui ≤ B,

and our proposed randomized mechanism will indeed strictly satisfy the budget constraint.
The goal of budget-feasible mechanism design is to design a (randomized) mechanism, that

is (truthful/truthful-in-expectation) and budget-feasible, to maximize the buyer’s (expected)
total utility

∑
i∈[n] gi(γi)ui.

If the sellers’ costs are public, the problem becomes the well-known knapsack problem,
and we call the optimal utility of this knapsack problem the non-IC (i.e., without the
incentive compatible constraints) optimal utility. The standard performance measure for
a (randomized) mechanism M on the instance (I, B) is the competitive ratio, i.e. the ratio
RM(I, B) between the (expected) total utility (over M’s randomness) achieved by M and
the non-IC optimal utility.

Finally, we make a small-bidder assumption [2]: for budget B, we require that each seller’s
cost is at most o(B).

2.1.1 Further important concepts
Uniform mechanism. We call a mechanism11 with allocation function g uniform if given
any γi’s, there exists a 1-dimensional allocation function f : R≥0 → [0, 1] such that for all
i ∈ [n], it holds that gi(·) = f(·). Otherwise, we call the mechanism non-uniform.

Fractional versus indivisible. We mentioned that the allocation function specifies the
fraction of item purchased from each seller. This makes sense when the item is fractional, e.g.,
the item is the time of a worker. However, there are settings where the items are indivisible,
and then, the image of an allocation function should be {0, 1}n instead. Under small-bidder
assumption, an indivisible item procurement problem can be reduced to a fractional problem.
Specifically, there is a rounding procedure from [2, Supplemental Material, Section 7] that
we can directly apply.

11 For example, the idealized versions of [2]’s mechanism (Mechanism 3 in the full version of our paper),
[10]’s mechanism and our mechanism (Mechanism 1) are all uniform mechanisms.
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▶ Lemma 4 ([2, Supplemental Material, Section 7]). Let x̃1, . . . , x̃n be the fractional allocations
and p̃1, . . . , p̃n be the associated payments. Under small-bidder assumption, there is a rounding
procedure that outputs integral allocations x1, . . . , xn and payments p1, . . . , pn, which achieves
approximately the same expected utility as the fractional allocations, while preserving individual
rationality, truthfulness in expectation, and strict budget feasibility.

Henceforth, given this reduction, unless specified otherwise, we only consider
divisible items in this paper, and the results apply to indivisible items as well.

2.2 Budget-smoothed analysis

Budget-smoothed analysis is a semi-adversarial model introduced in [19] in the context of
submodular optimization. In our setting, given any fixed distribution of budgets D, the
performance metric for a mechanism M in the budget-smoothed analysis is the D-budget-
smoothed competitive ratio: the worst possible ratio between the utility achieved by M and
the non-IC optimum in expectation (over budget distribution and mechanism’s randomness),
i.e.,

min
I

E
B∼D

[RM(I, B)],

where E
B∼D

[RM(I, B)] is the expected competitive ratio of M on market I for budget distri-
bution D. Fixing an arbitrary budget distribution D, the goal of the mechanism designer is
to design a mechanism M that achieves optimal D-budget-smoothed competitive ratio, and
hence, we have a max-min game between the mechanism designer and the adversary

max
M

min
I

E
B∼D

[RM(I, B)].

In other words, we are interested in the expected outcome of the following budget-smoothed
analysis game:

Budget-smoothed analysis game

1. Fix a distribution of budgets D. The mechanism designer, who knows the budget
distribution D, picks a mechanisma M.

2. The adversary, who knows the budget distribution D and the mechanism M chosen by
the mechanism designer, chooses a worst-case marketb I (sellers’ costs and utilities).

3. Then, a budget B is drawn at random from D.
4. Finally, the mechanism designer runs M on the instance (I, B) (and compare the

performance to the non-IC optimum).
a Note that the mechanism designer knows D and hence is allowed to choose a mechanism M that is

tailored to D, i.e., the mechanism designer knows D and then specifies what M does for each budget
B in the support of D as she likes. Interestingly, as we will show later, our optimal mechanism does
not need any knowledge of D.

b Note that the adversary chooses the market I after knowing D and M. For example, if the mechanism
designer chose the silly mechanism in Example 2 that hard-codes some market I1, this mechanism
will perform poorly in the budget-smoothed analysis game, because the adversary can choose a
completely different market I2 after observing the mechanism chosen by the mechanism designer.
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▶ Definition 5. A mechanism M∗ is worst-case optimal for a budget distribution D if for
any other mechanism M, minI E

B∼D
[RM∗(I, B)] ≥ minI E

B∼D
[RM(I, B)].

We refer the interested readers to [19] for the original motivation and naming of the
budget-smoothed analysis model. In our context, we can think of the D-budget-smoothed
competitive ratio as the average competitive ratio of multiple employers operating in the
worst-case market I with different budgets (the empirical distribution of their budgets is D),
and the employers’ budgets can easily vary by an order of magnitude because of different
sizes of business (as in the Microworkers example in Table 3 of the full version). Given
such budget distribution supported on a wide range, even if the market I is worst-case, the
“average” employers who use an “average” budget could potentially enjoy a competitive ratio
that is significantly better than the worst-case optimal competitive ratio 1 − 1/e (and by
Markov inequality, most employers achieve strictly better-than-(1− 1/e) competitive ratio).

3 Instance-optimality against uniform mechanisms

In this section, we first derive a uniform “mechanism” in the complete-information setting,
where the sellers’ private costs are known. To be precise, the complete-information uniform
“mechanism” applies a single monotone allocation function and the associated Myerson’s
payment function to all the sellers and guarantees strict budget-feasibility just like a normal
uniform budget-feasible mechanism, and the only caveat is that to compute the allocation
function, the complete-information uniform “mechanism” needs to know all the sellers’ costs.
This complete-information uniform “mechanism” is essentially a greedy procedure. Then, we
show that this greedy “mechanism” is instance-optimal compared to all the uniform budget-
feasible mechanisms. That is, for every market and every budget, compared to all the uniform
budget-feasible mechanisms that satisfy Myerson’s characterization of truthful-in-expectation
mechanisms, the greedy “mechanism” achieves the optimal buyer’s utility.

Apparently, this greedy “mechanism” by itself is not very useful, since we eventually
want a normal mechanism that works in the setting where sellers’ private costs are hidden.
Therefore, we design a randomized mechanism to approximate the greedy “mechanism”, i.e.,
our randomized mechanism is nearly as good as the greedy “mechanism” on every instance.
On a high level, this is done by first randomly partitioning the market into two halves, and
then applying our greedy “mechanism” on each half to get an allocation function and the
associated payment function, and finally applying the allocation and payment function we
get from one half to the other half in a sequential fashion until certain budget threshold is
met.

3.1 Greedy is an instance-optimal uniform “mechanism”
In this subsection, we describe the greedy “mechanism” Greedy in the complete information
setting, where the sellers’ private costs are given, and prove that it is instance-optimal
compared to all the uniform truthful-in-expectation budget-feasible mechanisms. The pseudo-
code of Greedy is given in Mechanism 1.

It works as follows – Suppose that the sellers are grouped and sorted according to their
cost-to-utility ratio c/u. Greedy searches for the best monotone allocation function (and
given the allocation function, the payment is determined by Myerson’s lemma). It does this
iteratively. In each iteration, suppose that it has bought all the items from the sellers with
cost-to-utility ratio at most ci−1/ui−1, then it will choose the sellers whose c/u ranges from
(ci−1/ui−1)+ to cj/uj for some j ≥ i, and simultaneously increase the fraction bought from
these sellers until either they are fully purchased or the budget is exhausted.
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We now explain how Greedy selects the next j in each iteration. For each candidate
seller k, it computes the marginal utility per marginal payment (denoted by ei,k) achieved
by simultaneously increasing the fraction of items purchased from all the buyers in i, . . . , k.
Greedy then greedily selects j to be the index that maximizes the marginal utility per
marginal payment.

Mechanism 1 Greedy.
Input : (ci, ui) for i ∈ [n], B.

1 Merge the sellers with equal cost-to-utility γi := ci

ui
into one seller by summing up

their costs and utilities, and let u0 be the utility of the merged seller with cost 0
(u0 = 0 if there is no such seller) and let γ0 = 0, f(0) = 1. Sort all non-zero-cost
merged sellers such that the γi are non-decreasing, and let n′ be the number of
non-zero-cost merged sellers;

2 i← 1;
3 while i ≤ n′ do
4 Choose j ∈ {i, i + 1, . . . , n′} that maximizes ei,j (ei,j is defined by Eq. (3));
5 if B > qmax

i,j (qmax
i,j is defined in Eq. (2)) then

6 Let f(γ) = 1 for all γ ∈ (γi−1, γj ] and B = B − qmax
i,j ;

7 i = j + 1;
8 else
9 Let f(γ) = B

qmax
i,j

for all γ ∈ (γi−1, γj ] and break;
10 end
11 end
12 for each original seller i ∈ [n] do
13 Purchase f(γi) fraction of seller i’s item and pay uiQf (γi), where Qf is the

payment rule corresponding to f given by Myerson’s lemma, i.e.,
Qf (γ) = γ · f(γ) +

∫ ∞
γ

f(z)dz;
14 end

▶ Theorem 6. For divisible items, Greedy decides the allocation and the payment for all
the sellers using a single monotone allocation function and the associated Myerson’s payment
function, and it is strictly budget-feasible, and moreover, on every instance, Greedy achieves
buyer’s utility no less than any uniform truthful-in-expectation budget-feasible mechanism.

Proof. First, observe that f in Greedy is a non-increasing function, and we apply the
same f, Qf to all the sellers in Greedy. In each iteration of the while loop, suppose we
increase the allocation function f ’s value over (γi−1, γj ] from zero to certain f(γj), the
payment-per-utility Qf (γ) = γ · f(γ) +

∫ ∞
γ

f(z)dz should also increase for every γ ≤ γj .
Specifically, for every γ ≤ γi−1, the γ · f(γ) part does not change, but the

∫ ∞
γ

f(z)dz part
increases from zero to

∫ γj

γ+
i−1

f(γj)dz = f(γj) · (γj − γi−1), and thus, Qf (γ) increases by
f(γj) · (γj − γi−1). For every γ ∈ (γi−1, γj ], the γ · f(γ) part increases from zero to γ · f(γj),
and the

∫ ∞
γ

f(z)dz part increases from zero to
∫ γj

γ
f(γj)dz = f(γj) · (γj−γ), and thus, Qf (γ)

increases by f(γj) · γj in total. Since the total utility of the sellers with cost-per-utility at
most γi−1 is

∑
0≤l≤i−1 ul, and the total utility of the sellers with cost-per-utility in (γi−1, γj ]

is
∑

i≤l≤j ul, it follows that the additional payment the mechanism makes in this iteration is
qi,j := f(γj) · (γj − γi−1) ·

∑
0≤l≤i−1 ul + f(γj) · γj ·

∑
i≤l≤j ul, which is at most (equal when

f(γj) = 1)
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qmax
i,j := (γj − γi−1) ·

∑
0≤l≤i−1

ul + γj ·
∑

i≤l≤j

ul, (2)

and hence, the if condition in Greedy ensures the budget feasibility. Moreover, observe that
the additional utility Greedy gains in this iteration is vi,j := f(γj) ·

∑
i≤l≤j ul. Therefore,

the ratio between the additional utility we gain and the additional price we pay, when we
increase f(γ) uniformly for all γ ∈ (γi−1, γj ], is

ei,j := vi,j

qi,j
. (3)

In each iteration, Greedy selects the best j that maximizes ei,j . Now we show the instance
optimality using a greedy exchange argument. Consider any other monotone allocation rule
g and suppose γi+1 is the smallest among all the sellers’ γ’s such that g(γi+1) ̸= f(γi+1).
(Such γi+1 cannot be 0 because otherwise, letting g(0) = 1 cannot increase the payment or
decrease the utility for g.) Now we show how to make g more consistent with f without
decreasing its achieved utility.

Case (i): g(γi+1) > f(γi+1). Then f(γi+1) < 1 since g(γi+1) ≤ 1. We now argue
that f(γi) = 1. By our choice of γi+1, f(γi) = g(γi) ≥ g(γi+1) > f(γi+1), and given that
f(γi) > f(γi+1), Greedy prefers the items before i+1. Therefore it will not start buying the
(i + 1)-th item until those items are exhausted. Moreover, f(γi+1) must be strictly positive,
because otherwise, f does not spend as much budget as g. Hence indeed f(γi) = 1.

Hence Greedy must have chosen the best ei+1,k for some k > i + 1, where the inequality
is due to the budget feasibility of g. (Indeed, if k = i + 1, then there is enough budget for
Greedy to increase f(γi+1) to g(γi+1), since g is budget-feasible.) Let γ ≥ γi+1 denote the
largest cost-per-utility such that g(γ) > 0. We can assume γ = γl for some l ≥ i + 1 because
otherwise we can truncate the extra part of g while preserving its utility. Note that Greedy
guarantees that ei+1,k ≥ ei+1,l′ for all i + 1 ≤ l′ ≤ l. Hence, if we decrease g over (γi, γl] to 0
and use the saved budget to uniformly increase g over (γi, γk], the resulting utility cannot
decrease.

Case (ii): g(γi+1) < f(γi+1). Suppose that Greedy chose the best ei1,i2 for some
i1 ≤ i + 1 ≤ i2. Therefore, f is a constant on (γi1−1, γi2 ], and by monotonicity of g and our
assumption that γi+1 is the first place where two allocation functions differ, it follows that
f is strictly larger than g on (γi1−1, γi2 ]. Since Greedy guarantees that ei1,i2 ≥ ei1,j for
any j ≥ i1, we can decrease g on (γi1−1, +∞) simultaneously and use the saved budget to
uniformly increase g on (γi1−1, γi2 ], which can not decrease the achieved utility. We keep
doing this unless g reaches 1 on (γi1−1, γi′ ] for some i′ ≤ i2. Then, either f is 1 on (γi1−1, γi2 ],
and hence, g becomes more consistent with f , or f is < 1 on this interval, in which case,
we can decrease g on (γi1−1, +∞) to 0 and use the saved budget to uniformly increase g on
(γi1−1, γi2 ]. ◀

Since [2] showed for a single budget, there is a uniform mechanism (also with knowledge
of all ci’s) that has worst-case competitive ratio 1− 1/e (and there is a matching hardness
result), Theorem 6 implies that Greedy has worst-case competitive ratio 1− 1/e.
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3.2 Greedy allocation rule: a lottery of two posted prices

Before we present the final randomized mechanism, we observe some nice properties of
Greedy which will help us analyze Greedy in a more intuitive way. The key observation,
which follows directly from the design of Greedy, is that the allocation rule of Greedy has
a simple form that can be fully characterized by three parameters12:

▶ Observation 7. The allocation rule f of Greedy is a (≤ 2)-step function, i.e., there exists
some (t, p1, p2) where t ∈ [0, 1) and13 0− ≤ p1 ≤ p2,

f
( c

u

)
=


1 c

u ≤ p1

t p1 < c
u ≤ p2

0 c
u > p2

,

and we say that f is characterized by (t, p1, p2).

Observation 7 allows us to think of the allocation rule of Greedy as a lottery (distribution)
of at most two posted prices:

▶ Observation 8. Given an allocation rule f of Greedy that is characterized by (t, p1, p2)
where t ∈ [0, 1) and 0− ≤ p1 ≤ p2, consider the following randomized posted-price mechanism:

For each seller, the buyer independently tosses a (biased) random coin and offers this
seller either (i) a payment-per-utility p2 with probability t; or (ii) a payment-per-utility
p1 with probability 1− t. Then, each seller can accept the offer (give the item to the
buyer and receive the payment) or leave.

The above randomized posted-price mechanism, which is a lottery of two posted prices,
has the same allocation function as f in expectation.

Proof. Let f̄ denote the expected allocation function of the above randomized posted-price
mechanism. Now we show that f̄ is equivalent to f . First, a seller with a cost-per-utility
c
u ≤ p1 will accept either offer p1 or p2 (because both payments-per-utility are no less than
his cost-per-utility), and hence f̄( c

u ) = 1. On the other hand, a seller with a cost-per-utility
c
u ∈ (p1, p2] will only accept offer p2 (because only p2 is no less than his cost-per-utility), and
hence f̄( c

u ) = Pr[p2 is offered] = t. Finally, a seller with a cost-per-utility c
u > p2 will not

accept either of the offer (because both payments-per-utility are below his cost-per-utility),
and hence f̄( c

u ) = 0. ◀

The same allocation function obviously achieves the same total utility in expectation, and
moreover, by Myerson’s lemma, it also makes the same total payment in expectation.
Therefore, Observation 8 provides a more intuitive way to calculate the total utility and
the total payment for Greedy (using the posted prices rather than explicitly using the
allocation rule of Greedy and Myerson’s payment rule), which we formalize in the following
observation:

12 One might notice that this characterization actually captures a strictly more general class of allocation
rules than just the possible outputs of Greedy. This is for the convenience of analysis later, and we
will call any allocation rule that can be characterized in this way a “greedy allocation rule”.

13 0− denotes a strictly negative number that is arbitrarily close to 0.
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▶ Observation 9. Given an allocation rule f of Greedy that is characterized by (t, p1, p2)
where t ∈ [0, 1) and 0− ≤ p1 ≤ p2, for any subset of sellers S ⊆ [n], let Uf (S) and Bf (S)
denote the total utility and the total payment respectively when we apply f to the sellers in
S, and let Up(S) and Bp(S) denote the total utility and total payment respectively when we
offer a posted price (payment-per-utility) p ∈ R≥0 to the sellers in S (and each seller can
accept the offer or leave). Then, we have that

Uf (S) = (1− t)Up1(S) + tUp2(S),
Bf (S) = (1− t)Bp1(S) + tBp2(S), (4)

and moreover, for all p ∈ R≥0,

Bp(S) = pUp(S),

Up(S) =
∑

i∈S s.t. ci/ui≤p

ui. (5)

Proof. Eq. (4) follows immediately by Observation 8 and the discussion above, and Eq. (5)
follows by definition of the posted-price mechanism. ◀

We remark that Observation 9 makes it easier to prove multiplicative concentration inequalities
for Uf (S) and Bf (S) when S is a random subset of [n] (specifically, by Eq. (4) and Eq. (5),
both Uf (S) and Bf (S) can be written as non-negative linear combination of Up1(S) and
Up2(S), and thus, it suffices to prove multiplicative concentration inequalities for Up1(S) and
Up2(S)).

3.3 Approximating greedy via random sampling
We have shown that Greedy is instance-optimal compared to all the uniform mechanisms
in Theorem 6, but it requires the knowledge of private costs. In this subsection, we present a
proxy of Greedy called Random-Sampling-Greedy, which uses random sampling14 to
approximate the distribution of private costs, and in Theorem 11, we will show that this
randomized mechanism strictly satisfies the budget constraint and with high probability
achieves almost the same utility as Greedy.

Before that, we introduce two subroutines that will be applied in Random-Sampling-
Greedy. The first subroutine handles an edge case of a small subset T of sellers with
exceptionally high utility. The second subroutine adjusts the price p1 to a new price p̂1, to
handle an edge case where Up1([n] \ T ) is very small. Intuitively, after those adjustments
, the utility of any individual seller, who is not in T and has a cost-per-utility at most p̂1,
is tiny relative to Up̂1([n] \ T ). Therefore when S is a uniformly random subset of [n] \ T ,
Up̂1(S) is concentrated around its expectation w.h.p. (We will show this formally in the
analysis of Random-Sampling-Greedy in the full version.)

Pre-purchasing the most valuable items. The first subroutine, which will be the first step
of Random-Sampling-Greedy, is pre-purchasing the items of highest utilities. By the
small-bidder assumption, each seller’s cost is o(B). Thus, for an arbitrarily large integer

14 An alternative method often used in the literature is for every seller, computing the prices for the
market excluding this seller and then offering the computed prices to this seller. We remark there exist
instances for which this method violates budget-feasibility when applied to our idealized mechanism.
Besides, random partitioning is much more computationally efficient than this alternative method.

ITCS 2023



93:14 Beyond Worst-Case Budget-Feasible Mechanism Design

constant C, we can pre-purchase the top C items of highest utilities by making a payment
ϵ1B/C to each of the C sellers, and the remaining budget is (1− ϵ1)B. Henceforth, we let T

denote the set of the top-C items and let U(T ) denote their total utility.

Truncating a greedy allocation rule. We let η > 0 be a parameter which we use for this
truncation step (later we will choose η to be an arbitrarily small constant and then choose
C such that ηC is arbitrarily large). Suppose we are given an allocation rule f of Greedy
that is characterized by (t, p1, p2) where t ∈ [0, 1) and 0− ≤ p1 ≤ p2. We let f̂ denote the
truncated allocation rule of f . Specifically, f̂ is characterized by (t, p̂1, p2), and p̂1 is defined
as follows

p̂1 :=
{

0− Up1([n] \ T ) < U(T )
ηC

p1 Up1([n] \ T ) ≥ U(T )
ηC

.

That is, we get f̂ by decreasing the value of f over [0, p1] to t if Up1([n] \T ) is less than U(T )
ηC

(recall that Up1([n] \ T ) is the total utility of the sellers in [n] \ T whose cost-per-utility is at
most p1 by Observation 9).

We observe that applying truncation will not significantly decrease (relative to U(T )) the
utility attained by the allocation rule:

▶ Observation 10. For all S ⊆ [n], Uf (S)− Uf̂ (S) ≤ U(T )
ηC .

Proof. By our design of the truncation step and Observation 9, Uf (S) − Uf̂ (S) = (1 −
t)(Up1(S)− Up̂1(S)) ≤ Up1(S)− Up̂1(S). Moreover, by definition of p̂1, Up1(S)− Up̂1(S) = 0
if Up1(S) ≥ U(T )

ηC , and obviously Up1(S)− Up̂1(S) ≤ Up1(S) < U(T )
ηC if otherwise. ◀

The Random-Sampling-Greedy mechanism

Now we present Random-Sampling-Greedy (Mechanism 2) and its theoretical guarantee
(Theorem 11). The analysis of Random-Sampling-Greedy (the proof of Theorem 11),
which is rather technical but still interesting, is deferred to Section C in the full version for
the interest of space.

Mechanism 2 Random-Sampling-Greedy.
Input : (ci, ui) for i ∈ [n], B, and parameters ϵ1, δ1, η, C.

1 Buy the items from the top C sellers T of highest utilities and pay each of them
ϵ1B/C;

2 Partition the other sellers [n] \ T into X and Y uniformly at random;
3 (Virtually, aka without making actual allocations or payments) run Greedy

mechanism on X and Y with budget (1−δ1)B
2 , separately, and get the resulting

allocation rules fX , fY ;
4 Truncate fX , fY using parameter η and get f̂X , f̂Y and their associated payment

rules Q̂X , Q̂Y ;
5 In an arbitrary order, sequentially apply f̂X , Q̂X to the sellers in Y until we spend

(1−ϵ1)B
2 on Y , and then sequentially apply f̂Y , Q̂Y to the sellers in X until we spend

(1−ϵ1)B
2 on X;
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▶ Theorem 11. For divisible items, under the small-bidder assumption, for every ϵ > 0, there
exists sufficiently small δ1, η > 0 and sufficiently large C such that, Random-Sampling-
Greedy is truthful-in-expectation and strictly budget-feasible and with high probability
achieves utility at least (1− ϵ)-fraction of the utility attained by Greedy.

3.4 Numerical simulation on synthetic instances
We compare the performance of Greedy, Random-Sampling-Greedy with [2]’s mechanism
AGN, and the best cutoff rule with proper tie breaking Cutoff (i.e., [10]’s open clock
auction) on synthetic datasets, where the market has 1000 sellers, each of whom has unit
utility and cost sampled from various distributions (negative cost is rounded to 0), and
the buyer’s budget is 20000. When we run Random-Sampling-Greedy for this instance,
we simply set ϵ1, δ1, η, C to 0 (these constants were only used to prove asymptotically high
probability bounds). The results are summarized in Table 1 (for each cost distribution, we
take the average and the standard deviation of the results of 100 runs). We observe that
Greedy always dominates other mechanisms since it is instance-optimal uniform mechanism,
and Random-Sampling-Greedy (RS-Greedy) is usually almost as good as Greedy with
only a small difference due to random sampling (as illustrated in Figure 1, this difference
goes to 0 when the size of market increases, which matches Theorem 11). Moreover, on all
the synthetic instances, Greedy and RS-Greedy beat the worst-case 1− 1/e competitive
ratio by a large margin, while AGN only obtains close-to-(1− 1/e) competitive ratio. On the
other hand, for unimodal distributions, Cutoff often performs well, but for multi-modal
distributions, it is significantly outperformed by Greedy and RS-Greedy. This matches
our intuition:

▶ Example 12. Consider the instance where all n sellers have unit utilities, and n/2 sellers
have costs 0 and n/2 sellers have costs 1, and the buyer has budget n. The best cutoff
rule (i.e., setting a best uniform price-per-utility for all sellers) only gets the n/2 sellers
with zero cost and hence achieves competitive ratio 1/2, while Greedy can choose tuple
(t = 1/2, p1 = 0, p2 = 1) and achieve competitive ratio 3/4.

Table 1 Competitive ratios achieved by different mechanisms on synthetic datasets.

Cutoff AGN Greedy RS-Greedy
0.816 ± 0.004 0.632 ± 0.001 0.818 ± 0.004 0.81 ± 0.006
0.709 ± 0.005 0.633 ± 0.003 0.711 ± 0.004 0.702 ± 0.006
0.74 ± 0.008 0.663 ± 0.006 0.743 ± 0.008 0.736 ± 0.009
0.69 ± 0.003 0.633 ± 0.002 0.726 ± 0.003 0.718 ± 0.005
0.68 ± 0.009 0.634 ± 0.003 0.712 ± 0.006 0.706 ± 0.007

Each row contains the results for a distinct cost distribution. The distributions from top to bottom are
N (20, 5), Unif(0, 40), Exp(20), 1

2 N (10, 3) + 1
2 N (30, 3), 1

3 N (5, 3) + 1
3 N (20, 3) + 1

3 N (35, 3).

4 Budget-smoothed analysis

In this section, we analyze our mechanism in the budget-smoothed analysis framework. Our
main results of budget-smoothed analysis are:

Our mechanism obtains near-optimal budget-smoothed competitive ratio for any budget
distribution when compared to all (possibly non-uniform) mechanisms (Theorem 13).
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Figure 1 This figure shows that the difference between competitive ratios achieved by Greedy
and RS-Greedy (y-axis) diminishes when the market size n (x-axis) increases. In each subplot, the
market has n sellers, each of whom has unit utility and cost sampled from a distinct distribution
(negative cost is rounded to 0), and the buyer’s budget is 20n. Each datapoint in the plot is the
average of 20 runs, and the shaded area captures one standard deviation.

Our mechanism obtains strictly better than 1− 1/e budget-smoothed competitive ratio
on any non-trivial budget distribution (Theorem 4.3 in the full version). In Section E of
the full version, we also formulate a (non-convex) mathematical program that computes
the budget-smoothed competitive ratio for any given budget distribution. We solve this
program for various distributions and observe non-negligible improvement over 1− 1/e.
Given any bounded range of budgets, there is a single market on which, simultaneously
for every budget in the range, [2]’s mechanism obtains only 1 − 1/e competitive ratio
(Theorem D.2 in the full version).
Our mechanism (and hence all possibly non-uniform mechanisms by Theorem 13) has
budget-smoothed competitive ratio bounded away from 1 (specifically, at most 0.854) for
any budget distribution (Theorem 4.4 in the full version).

4.1 Greedy is optimal for any budget distribution
In this subsection, we analyze the budget-smoothed competitive ratio of our complete-

information “mechanism” Greedy for any budget distribution. We show that Greedy
is optimal for any budget distribution –even among non-uniform mechanisms– and the
ratio goes beyond 1 − 1/e when there are multiple budgets in the support of the budget
distribution. These results extend to Random-Sampling-Greedy due to Theorem 11. We
will characterize the worst Bayesian market for truthful-in-expectation uniform mechanisms,
where n sellers have the same utility, and their costs are drawn from a continuous distribution.
This characterization can be viewed as a generalization of the worst-case instance15 in [2].
Then, we argue that this Bayesian market is as hard for truthful-in-expectation non-uniform
mechanisms. But before that, we explain why the continuous cost distribution and equal
utilities are not restrictions, i.e., for an arbitrary market, we can construct a Bayesian market
with continuous cost distribution and equal utilities that exhibits the same hardness for
truthful-in-expectation uniform mechanisms as the original market.

4.1.1 From arbitrary market to Bayesian market
Given an market I with n sellers of utilities ui’s and costs ci’s, we first construct a Bayesian
market I1 with a discrete distribution. The market I1 has M ·

∑
i ui sellers16, where M is

a sufficiently large number. Let D1 be a distribution over { ci

Mui
| i ∈ [n]} such that the

15 J.Z. wants to thank Nima Anari for an inspiring discussion of the worst-case instance in [2].
16 Without loss of generality, we assume that M ·

∑
i
ui is an integer.
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probability of ci

Mui
is ui/(

∑
j uj). Each seller has utility 1

M , and his cost is drawn from D1.
We need to verify two things: (i) the non-IC optimal utilities of the knapsacks for I and I1
are almost equal, and (ii) the best achievable utilities by uniform mechanisms for I and I1
are also almost the same. For (ii), it suffices to consider Greedy because of Theorem 6.
The reason both of these hold is that the optimal utility and the best achievable utility only
depend on the cost-to-utility ratio c

u ’s and the total utility of the sellers with the same c
u ,

and if M is sufficiently large, with high probability these quantities do not change much in
I1 compared to I.

Next, we construct a Bayesian market I2 with the same setup as I1 but a continuous
distribution for sellers’ costs. To this end, consider the CDF of D1, which is some step
function F (c), we can approximate each step in F arbitrarily well by a logistic function and
glue them together such that the CDF is differentiable. For the same reason as above, the
best achievable competitive ratio of a uniform mechanism for I2 is approximately equal to
that for I1.

4.1.2 Characterizing the worst Bayesian market
▶ Theorem 13. For any distribution D over any m budgets B1 < B2 · · · < Bm, let F (c)
be the CDF of the distribution of costs of the worst17 Bayesian market for D. Then, the
following hold:

Consider the plot of cF (c) with respect to F (c). cF (c) is a piecewise-linear function of
F (c) with at most m non-zero linear pieces, and has non-decreasing slope.
For each budget, the utility-maximizing allocation rule for this market is a uniform cutoff
rule, namely, f(c/u) = 1(c/u ≤ c∗/u∗) for some c∗/u∗.
Greedy is worst-case optimal for budget distribution D (see Defintion 5) compared
to all the truthful-in-expectation (not necessarily uniform) mechanisms. (Note that the
optimality also holds for Random-Sampling-Greedy due to Theorem 11.)

Proof. From the previous discussion, it suffices to consider a Bayesian market, where n

sellers have the same utility, and their costs are drawn from a continuous distribution, the
CDF of which is some continuous F . The following min-max program computes the cost
distribution that gives the worst expected competitive ratio for budget distribution D against
uniform allocation rules (later we will show that non-uniform rules are not any better for the
worst distribution),

inf
F

sup
f1,...,fm

m∑
i=1

Pr[Bi] ·
F (0) +

∫ ∞
0+ fi(c) dF (c)

τi

s.t. ∀i ∈ [m],
∫ τi

0
c dF (c)︸ ︷︷ ︸

total payment of non-IC optimum

= Qfi
(0) · F (0) +

∫ ∞

0+
Qfi

(c) dF (c)︸ ︷︷ ︸
Myerson’s payment for fi

= Bi,

∀i ∈ [m], ∀c ≥ 0, fi(c) ∈ [0, 1],
and F is a continuous CDF,

where Pr[Bi] is the probability of Bi according to D, fi is the allocation function for i-th
budget, and τi’s denote the expected non-IC optimal utility for the corresponding budgets,
and we hard-code in the program those τi’s which result in the worst expected ratio. Although
we did not require fi’s to be monotone here, later we will show that if we add the monotonicity

17 By “worst for D”, we mean it minimizes the best possible expected competitive ratio that is achievable
by any mechanism given budget distribution D.
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constraint, the worst ratio does not change. Also, note that we only require budget feasibility
in expectation for the allocation function, and hence, the optimality of Greedy will hold
even among ex ante budget-feasible mechanisms. We should have restricted the non-IC
optimal solution to be ex post budget-feasible, but this is fine, because as market size n

grows, with high probability, the budget spent in the optimal solution is concentrated around
its expectation, and cutting the budget slightly does not decrease the optimal utility much
(see Lemma B.5 in the full version).

Now we derive that∫ ∞

0+
Qf (c) dF (c) =

∫ ∞

0+

(
f(c) · c +

∫ ∞

c

f(x) dx

)
dF (c) (Myerson’s payment identity)

=
∫ ∞

0+
f(c) · c dF (c) +

(
F (c) ·

∫ ∞

c

f(x) dx

)
|∞0+

−
∫ ∞

0+
F (c) d

(∫ ∞

c

f(x) dx

)
(Integration by parts)

=
∫ ∞

0+
f(c) · c dF (c)− F (0) ·

∫ ∞

0+
f(x) dx

+
∫ ∞

0+
f(c) F (c)dc︸ ︷︷ ︸

= F (c)
F ′(c) dF (c)

=
∫ ∞

0+
f(c) ·

(
c + F (c)

F ′(c)

)
dF (c)− F (0) ·Qf (0).

Therefore, the maximization problem in the min-max program can be seen as a fractional
knapsack (where dF (c) is the value of an item c, and c + F (c)

F ′(c) is its weight per value), and
the best allocation function should choose the c’s with small c + F (c)

F ′(c) = d(cF (c))
dF (c) . We now

prove several structural properties about the plot (curve) of cF (c) with respect to F (c).

Any feasible curve should have non-decreasing slope from the origin. Notice that d(cF (c))
dF (c)

is the slope of this curve at F (c), and c is the slope of the line from the origin to the point of
the curve at F (c). Any feasible curve should have non-decreasing slope from the origin since
F (c) is non-decreasing in c and vice versa.

Now we show the structural result about the worst-case F for one budget, and later we
will extend to many budgets.

The curve is piecewise-linear w.l.o.g. Given a feasible curve for some F , we discretize
the smooth curve into a piecewise-linear curve. The discretization is sufficiently fine-grained
such that the slope of the curve and the slope to the origin at each point are close to those
of the original curve, and there are only finitely many non-differentiable points. Hence the
min-max program is still valid, and its result does not change much. It suffices to consider
such piecewise-linear curves.

Worst-case curve has non-decreasing slope. Our first observation is that the worst-case
curve should have non-decreasing slope. If it does not, we can re-order the linear pieces
according to their slopes, and the re-ordering preserves the probability mass of c’s with any
fixed slope. Hence the best allocation rule makes the same utility as before. Meanwhile,
the slope to the origin at each c can only become smaller than that before re-ordering.
The budget spent by the non-IC optimal solution to get the same utility as before is the
integration of the slope from origin from 0 to some τ , which can only decrease. Therefore,
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F (c)

cF (c)

1
(a) 1 budget.

F (c)

cF (c)

1c2c1

(b) 2 budgets.

Figure 2 On the left: Starting from an arbitrary piecewise linear curve (red dotted), we can
re-order its pieces to get blue dashed curve and then again into the green solid curve. These steps
only make the market worse. The worst F (green solid) for one budget is “ReLU shaped”.
On the right: The worst F for 2 (m respectively) budgets should have at most 2 (m respectively)
non-zero linear pieces. Consider the optimal allocation functions for two budgets, which are cutoff
rules, if neither cutoff lies in (c1, c2), then changing the red dashed curve into the blue solid curve
makes the market worse.

the re-ordering can only decrease the competitive ratio of the best allocation rule. This is
illustrated in Figure 2 (a), when we re-order the red dotted curve and get the blue dashed
curve.

A claim following from the non-decreasing slope is that the best allocation rule should be
a cutoff rule.

▷ Claim 14. Utility-maximizing allocation function for a convex F (c)-to-cF (c) curve is a
cutoff rule.

Proof of Claim 14. Indeed, since the best allocation rule comes from solving the fractional
knapsack problem we mentioned above and the value per weight (equal to slope) is non-
decreasing, the solution should be f(c) = 1 for all c ≤ c1, and f(c) = t < 1 for all c1 < c ≤ c2,
for some c1 < c2. This rule can be seen as a probabilistic combination of two cutoff rules,
i.e., with some probability α offer cutoff price c1 and offer c2 otherwise, and the expected
utility and payment are αF (c1) + (1− α)F (c2) and αc1F (c1) + (1− α)c2F (c2) respectively.
Consider the c3 such that F (c3) = αF (c1) + (1 − α)F (c2), because the curve is convex,
c3F (c3) ≤ αc1F (c1) + (1−α)c2F (c2). Hence the cutoff rule at c3 makes the same utility but
spends no more than the probabilistic rule, and the claim follows. ◁

Worst-case curve for one budget is a ReLU function. Next, we argue that the worst-case
(convex) curve for one budget should be a ReLU function, i.e., it is zero at first and then
becomes a linear function. Suppose otherwise, we let c∗ be the cutoff price of the best
allocation rule. We can draw a line between (F (c∗), c∗F (c∗)) and the F (c)-axis with slope
equal to the slope of the worst curve at (F (c∗), c∗F (c∗)). Consider the ReLU curve whose
non-zero linear part is this line. Notice that (F (c∗), c∗F (c∗)) does not change and is still
optimal, and hence the optimal utility achievable by any allocation rule does not change.
Meanwhile, the slope from origin at each c can only become smaller, and therefore, the
budget spent by the non-IC optimal solution to get the same utility as before can only
decrease. This is illustrated in Figure 2 (a), where we change the blue dashed curve into the
green solid curve. Furthermore, the part of the original curve after (F (c∗), c∗F (c∗)) has slope
larger than the slope at this point, and decreasing this part to the line with the slope at this
point only decreases the spent budget for the non-IC optimal solution and does not change
the result of the best allocation rule. The final curve is a ReLU, and the best achievable
competitive ratio only gets worse.
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Characterizing the worst-case curve for many budgets. Now we show that the worst-case
curve for m budgets has at most m non-zero linear pieces by generalizing the above argument.
Consider the m optimal cutoff rules for m budgets respectively, if there are more than m

non-zero linear pieces, then there is one piece from some (F (c1), c1F (c1)) to some other
(F (c2), c2F (c2)) such that the open interval (c1, c2) does not contain any optimal cutoff.
If this is not the last piece of the curve, we can extend the piece before (F (c1), c1F (c1))
upwards and the piece after (F (c2), c2F (c2)) downwards until they intersect, which decreases
the number of linear pieces. Similar to the one budget case, this step does not change the
payments of optimal cutoff rules and can only decrease the payments of non-IC optimal
solutions, and therefore, this only makes the market worse. This is illustrated in Figure 2 (b),
where we change the red curve to the blue. If it is the last piece of the curve, namely
F (c2) = 1, then we can simply extend the piece before (F (c1), c1F (c1)) upwards until it hits
1 horizontally. The argument in this case is analogous.

Adding monotonicity constraints to the min-max program. Next, we explain why restrict-
ing fi’s to be monotone does not change the optimal value to the min-max program. As
we argued above, the best allocation rules for the worst distribution F ∗ are cutoff rules f∗

i ,
which are monotone. Since (F ∗, {f∗

i | i ∈ [m]}) is an equilibrium of the min-max program
without monotonicity constraints, (F ∗, {f∗

i | i ∈ [m]}) is obviously also an equilibrium of the
min-max program with monotonicity constraints. Notice that the min-max program with
monotonicity constraints satisfies the conditions of Sion’s minimax theorem (see Lemma B.6
in the full version). Hence the optimal value to this program is equal to the objective value
at this equilibrium.

Non-uniform allocation rule is not better. We show that for a Bayesian market that
matches our characterization, non-uniform rules do not outperform uniform rules. Consider
a general (possibly non-uniform) mechanism where each seller i has its own allocation rule
A

(i)
c−i . Now let P

(i)
c−i(c) = 1−A

(i)
c−i(c). An implementation of A

(i)
c−i is sampling cutoff prices

from the distribution whose CDF is P
(i)
c−i To see this, the probability that the item of price

ci is bought is 1− P
(i)
c−i(ci) = A

(i)
c−i(ci), and the expected payment is∫ cmax

ci

cdP (i)
c−i

(c) = cP (i)
c−i

(c)|cmax
ci
−

∫ cmax

ci

P (i)
c−i

(c)dc

= cmax − ciP
(i)
c−i

(ci)−
∫ cmax

ci

P (i)
c−i

(c)dc

= cmax − ci(1−A(i)
c−i

(ci))−
∫ cmax

ci

(1−A(i)
c−i

(c))dc

= ciA
(i)
c−i

(ci) +
∫ cmax

ci

A(i)
c−i

(c)dc,

which is exactly the Myerson payment corresponding to A
(i)
c−i . Since the allocation rule

A
(i)
c−i can be seen as a probabilistic combination of cutoff rules, as we have shown before,

by convexity of the F (c)-to-(cF (c)) curve (see Claim 14), there is a cutoff rule p
(i)
c−i that

achieves the same utility but with less or equal payment compared to A
(i)
c−i . Moreover, p

(i)
c−i ’s

together can be seen as a probabilistic cutoff rule that depends on random variable c−i,
and hence again by the same argument, there is a cutoff rule pi that does as good as the
random p

(i)
c−i for seller i. Finally, for the same reason, the uniform cutoff rule p such that

F (p) = 1
n

∑n
i=1 F (pi) is as good as the non-uniform rule pi’s.
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Since Greedy uses the best monotone uniform allocation rule for any instance by
Theorem 6, the min-max program with additional monotonicity constraint solves for the
worst-case expected competitive ratio for Greedy. Thus, the observation in the above
paragraph implies that Greedy is worst-case optimal compared to all the truthful-in-
expectation (even non-uniform) mechanisms. ◀
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Abstract

Random graph models with community structure have been studied extensively in the literature.
For both the problems of detecting and recovering community structure, an interesting landscape
of statistical and computational phase transitions has emerged. A natural unanswered question is:
might it be possible to infer properties of the community structure (for instance, the number and
sizes of communities) even in situations where actually finding those communities is believed to be
computationally hard? We show the answer is no. In particular, we consider certain hypothesis
testing problems between models with different community structures, and we show (in the low-degree
polynomial framework) that testing between two options is as hard as finding the communities.

In addition, our methods give the first computational lower bounds for testing between two
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distribution and an i.i.d. “null” distribution.
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94:2 Is It Easier to Count Communities Than Find Them?

1 Introduction

The problem of detecting and recovering community structure in random graph models
has been studied extensively in the literature. Popular models include the planted dense
subgraph model [2, 12], where an Erdős–Rényi base graph is augmented by adding one or
more “communities” – subsets of vertices with a higher-than-average connection probability
between them – and the stochastic block model (see [1, 18] for a survey). There are by
now a multitude of results identifying sharp conditions based on the problem parameters,
e.g. edge probabilities and number/sizes of communities, under which it is possible (or
impossible) to recover (exactly or approximately) the hidden partition of vertices, given a
realization of the graph as input. Notably, many settings are believed to exhibit a statistical-
computational gap; that is, there exists a “possible but hard” regime of parameters where
it is statistically possible to recover the communities (typically by brute-force search) but
there is no known computationally efficient, meaning polynomial-time, algorithm for doing
so. It may be that this hardness is inherent, meaning no poly-time algorithm exists, which is
suggested by a growing body of “rigorous evidence” including reductions from the planted
clique problem [7, 12] and limitations of known classes of algorithms [4, 9, 15, 19].

Despite all this progress, one question that remains relatively unexplored is the following:
in the aforementioned “hard” regime, even though it seems hard to recover the communities,
might it still be possible to learn something about the community structure (e.g., the number
or sizes of communities)? After all, in some models it has already been established that
detecting the presence of a dense subgraph (i.e., distinguishing the planted subgraph model
from an appropriate Erdős–Rényi “null” model) appears to be strictly easier than actually
recovering which vertices belong to it [7, 8, 12, 19]. Existing detection-recovery gaps of this
nature often occur due to a “trivial” test for detection (e.g., the total edge count), and the
motivation for our work is to understand more precisely which properties of the community
structure can be inferred in the hard regime, and which ones cannot.

A simple testing problem

One of the simplest inference tasks on the community structure is to detect the number of
communities. Let us consider a toy problem of testing between two graph models: under
P the graph contains one community of expected size k, while under Q the graph contains
two communities each of expected size k{2. The community membership of each vertex
is independent in both models (k{n under P and k{p2nq, k{p2nq under Q) and vertices
cannot be members of more than one community. Suppose any pair of vertices from the
same community are connected independently with probability 2q and 3q under P and Q,
respectively, and all the other pairs of vertices are connected independently with probability
q under both models. Such a parameterization matches the expected degrees of the nodes
under the two distributions, so that a simple test based on the total edge count fails to
distinguish between P and Q. One natural test is to threshold the number of triangles. It
is easy to derive that the expected number of triangles under P and Q scale as different
constant multiples of q3k3, and the variance of the number of triangles is of order Θpn3q3q

under both models. Thus, the simple triangle counting algorithm consistently distinguishes
P and Q if q3k3 "

a

n3q3, i.e. qk2{n " 1.
It is intriguing that the condition for the triangle counting algorithm to succeed coincides

with the conjectured computational barrier for the more difficult task of finding all members
of the community under the model P [19]. In other words, in the entire “hard” regime where
one cannot efficiently locate the planted community, the triangle counting algorithm fails to



C. Rush, F. Skerman, A. S. Wein, and D. Yang 94:3

even tell whether the graph contains one or two communities. In this paper, we show that
this statement extends beyond the simple triangle counting algorithm to all low-degree tests.
Our main result is given in the following (informal) theorem statement.

▶ Theorem 1.1 (Informal). If qpk2{n_1q ď 1{polylogpnq, then no low-degree test consistently
tests between the graph models with one and two planted communities.

Moreover, the informal result of Theorem 1.1 extends to a much wider class of testing
problems than those for which it is stated. We find that, whenever recovery is computationally
hard, all low-degree tests fail to distinguish models with different numbers of planted
communities of possibly different sizes. In other words, inferring the community structure is
just as hard as finding members of the planted communities themselves. We show a similar
phenomenon for graphs with Gaussian weights. See Theorems 2.4 and 2.5 for the formal
statements. It is important to note that our results apply even in regimes where it is easy
to distinguish P (or Q) from an Erdős–Rényi graph; that is, one cannot recover our results
simply by arguing that both P and Q are hard to distinguish from Erdős–Rényi.

The low-degree testing framework

Unfortunately, it seems to be beyond the current reach of computational complexity theory
to prove that no polynomial-time algorithm can distinguish two random graph models, even
under an assumption like P ‰ NP. Nonetheless, a popular heuristic – the low-degree testing
framework [5, 13, 14, 15] (see [17] for a survey) – gives us a rigorous basis on which to
form conjectures about hardness of such problems. Specifically, we will study the power of
low-degree tests, a class of methods that includes tests based on edge counts, triangle counts,
and other small subgraph counts. Strikingly, low-degree tests tend to be as powerful as all
known polynomial-time algorithms for testing problems that are (informally speaking) of
the flavor that we consider in this paper; see [13, 17] for discussion. In this paper, we will
prove low-degree hardness, meaning failure of all low-degree tests (to be defined formally in
Section 2.1), for certain testing problems; this can be viewed as an apparent barrier to fast
algorithms that we believe is unlikely to be overcome by known techniques, and perhaps
indicates fundamental computational hardness.

Planted-versus-planted testing

We emphasize that there is a key difference between our work and existing hardness results
for high-dimensional testing. The testing problems we consider are between two different
“planted” distributions, each with a different type of planted structure. In contrast, previous
low-degree hardness results for testing (e.g., [13, 14, 15, 17] and many others) have always
considered testing between “planted” and “null,” where the null distribution has i.i.d. or
at least independent entries. On a technical level, planted-versus-null problems are more
tractable to analyze because we can explicitly construct a basis of orthogonal polynomials
for the null distribution, but this strategy seems more difficult to implement for planted-
versus-planted problems.

The idea of planted-versus-null testing goes beyond the low-degree framework. Other
forms of average-case lower bounds typically also, either explicitly or implicitly, leverage
a hard planted-versus-null testing problem; this includes reductions from planted clique
(e.g., [6, 7]), sum-of-squares lower bounds (e.g., [5, 16]), and statistical query lower bounds
(e.g., [10, 11]). In fact, these frameworks seem to struggle in settings where there is not a
hard planted-versus-null testing problem available.
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Our work overcomes this barrier that has limited the use of the above methods: we
demonstrate for the first time that low-degree hardness results can be proven for planted-
versus-planted problems. We give some general-purpose formulas (Propositions 2.7 and 2.8)
that can be used to analyze a wide variety of such problems in random graphs or random
matrices, not limited to just the specific models studied in this paper. The proof techniques
are inspired by [19], which studies estimation problems rather than testing. On a technical
level, the core challenge in our analysis is to bound certain recursively-defined quantities
called rα (defined in (1)). These are analogous to the cumulants that appear in [19], and
while the rα are not cumulants, they enjoy a number of similar convenient properties (see
Section 3) that are important for the analysis.

Alternative proof strategy for hardness of recovery

As a byproduct, our results corroborate the computational barrier for planted dense subgraph
recovery established in [19]. Indeed, if there were an algorithm that successfully recovers
a planted community, one could turn this into an algorithm for testing one community
versus two. Therefore the “hard” regime for recovery contains the “hard” regime for testing
community structure.

This provides an alternative method for establishing detection-recovery gaps. For problems
where recovery of the planted structure is strictly harder than detecting its presence, it is not
viable to deduce optimal hardness of recovery from a planted-versus-null testing problem.
However, our work demonstrates that it is possible to attain the sharp recovery threshold via
reduction from a planted-versus-planted problem, as long as the two planted distributions
are appropriately chosen.

Open problems

A natural next step is to investigate whether our method yields sharp computational
thresholds for other problems that exhibit detection-recovery gaps. For example, the problem
of parameter estimation in sparse high-dimensional linear regression likely has a detection-
recovery gap (see [3]) and can potentially be related to a testing problem between two planted
models, e.g. between a sparse linear regression and a mixture of two sparse linear regressions.

Another open question is whether our computational hardness result can be shown in ways
beyond the low-degree testing framework, such as by using the sum-of-squares framework,
statistical query framework, or reduction from the planted clique problem. In particular, if
the problem of testing community structure can be reduced from planted clique, this would
yield a reduction from planted clique to planted dense subgraph recovery, which is an open
problem (see [7]).

2 Main results

2.1 Low-degree testing
We begin by explaining what it means for a low-degree test to distinguish two high-dimensional
distributions.

▶ Definition 2.1. Suppose Pn and Qn are distributions on RN for some N “ Nn. A degree-D
test is a multivariate polynomial fn : RN Ñ R of degree at most D (really, a sequence of
polynomials, one for each problem size n). Such a test f is said to strongly separate P and
Q if, in the limit n Ñ 8,
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d

max
"

Var
Q

rf s, Var
P
rf s

*

“ o p|EPrf s ´ EQrf s|q ,

and weakly separate P and Q if
d

max
"

Var
Q

rf s, Var
P
rf s

*

“ O p|EPrf s ´ EQrf s|q .

Strong separation is a natural sufficient condition for success of a polynomial-based test
because it implies (by Chebyshev’s inequality) that P and Q can be distinguished by
thresholding f ’s output, with both type I and II errors op1q. Weak separation also implies
non-trivial testing, i.e. better than a random guess; see [3, Prop. 6.1]. In this paper, we
characterize the limits of low-degree tests. For upper bounds, in the “easy” regime, we
show that a constant-degree test achieves strong separation, implying a poly-time algorithm
for testing with op1q error probability. For lower bounds, in the “hard” regime, we show
that for some D “ ωplog nq, no degree-D test can achieve even weak separation. Because
many known algorithms can be implemented as degree-Oplog nq polynomials (e.g., spectral
methods; see Section 4.2.3 of [17]), we treat this as “evidence” that no polynomial-time
algorithm achieves non-trivial testing power, i.e. better than a random guess. Our results, in
fact, often rule out much higher degree tests (e.g., D “ nΩp1q), depending on how far the
parameters lie from the critical threshold.

2.2 Model formulation
We consider the problem of testing between two random graph models, both of which contain
planted communities but with different community structures. We focus on testing between
two additive Gaussian models where the edge weights are Gaussian, and between two binary
observation models where the edges are unweighted and the diagonal is set to zero to ensure
no self-loops in the graph.

▶ Definition 2.2 (Additive Gaussian model). Given the number of vertices n, total community
size k, signal strength λ ą 0, number of communities M , and vector of community proportions
x P r0, 1sM with

řM
ℓ“1 xℓ “ 1, define the additive Gaussian model P “ PGaussianpn, k, λ, M, xq

as follows. Under P, independently for each i P rns :“ t1, 2, . . . , nu, the community label σi

is sampled such that σi “ ℓ with probability xℓk{n for each ℓ P rM s and σi “ ‹ (a symbol
indicating membership in none of the communities) with probability 1 ´ k{n. For each pair
of vertices i, j P rns with i ď j, the edge weight Yij is sampled from

Yij „

$

&

%

N
´

λ
xℓ

, 1
¯

, σi “ σj “ ℓ for some ℓ P rM s,

N p0, 1q, otherwise.

For i ą j, the edge weight Yij is defined to be Yji.

Notice that with the above definition, each community ℓ P t1, 2, . . . , Mu is expected to be
of size xℓk and the expected number of vertices which do not belong to any community is
n ´ k. The choice of mean λ{xℓ ensures that on average, the vertices in one community have
the same weighted degree (row sum of Y ) as the vertices in any other community.
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▶ Definition 2.3 (Binary observation model). Given the number of vertices n, total community
size k, edge probability parameters q, s ě 0, number of communities M , and vector of
community proportions x P RM with

řM
ℓ“1 xℓ “ 1, define the Binary observation model

P “ PBinarypn, k, q, s, M, xq as follows. The community labels tσiuiPrns are sampled the same
way as in the additive Gaussian model. Given the community labels, for each pair of vertices
i, j P rns with i ă j, the edge weight Yij is sampled from

Yij „

$

&

%

Bernoulli
´

q ` s
xℓ

¯

, σi “ σj “ ℓ for some ℓ P rM s,

Bernoulli pqq, otherwise.

For i ą j, the edge weight Yij is defined to be Yji and the diagonal entries set to zero Yii “ 0.

For example, if we want to model two communities of equal sizes, we can choose M “ 2
and x1 “ x2 “ 1

2 . The communities are then both expected to be of size k{2. If we also set
s “ q we have an in-community connection probability of 3q and every other pair of nodes is
connected with probability q as in the toy model discussed in the Introduction.

The two models introduced in Definitions 2.2 and 2.3 only differ in the edge weight
distributions, as the community labels follow the same distribution under both models.
Alternatively, we can write Sℓ for the set of vertices in community ℓ, so that σi “ ℓ if and
only if i P Sℓ. Note that by definition, each vertex i can belong to at most one community.
In other words, the communities tSℓuℓPrMs are disjoint.

With the other parameters fixed, we consider testing between model P with M planted
communities and community proportions x P r0, 1sM , and the model Q with M 1 planted
communities and community proportions x1 P r0, 1sM 1 for some M 1 ‰ M . In short, for
both Gaussian and Bernoulli edge weight models, we establish a “hard” regime where the
distributions P and Q cannot be weakly separated by low-degree tests. We consider the
regime n Ñ 8 and allow all the parameters k, λ, M, x to depend on n; thus, our results can
apply to a growing number of communities, although our main focus is on the case where
M, M 1 are fixed so that our upper and lower bounds match.

▶ Theorem 2.4 (Additive Gaussian model). Given parameters n, k, λ, M, M 1, x, x1, define
distributions P “ PGaussianpn, k, λ, M, xq and Q “ PGaussianpn, k, λ, M 1, x1q. Assume that
M minℓ xℓ ě C and M 1 minℓ x1

ℓ ě C for some constant C ą 0. Write ĂM “ |M ´ M 1| and
xM “ maxtM, M 1u. We have:

If D5
xM2λ2pk2{n _ 1q “ op1q, then no degree-D test weakly separates P and Q.

If ĂM2λ2k2{n “ ωp1q and ĂM2k{xM2 “ ωp1q, then there exists a degree-1 test that strongly
separates P and Q.

In the regime k2 ě n, xM “ Op1q, and D ď polylogpnq, Theorem 2.4 precisely character-
izes (up to logarithmic factors) the computational threshold for low-degree testing. This
threshold coincides with the conjectured computational threshold for recovering a single
planted community, which has been established in the low-degree polynomial framework [19,
Theorem 2.5]. We focus on the k2 ě n regime in this paper, as this is where there is a
conjectured detection-recovery gap, but we suspect that when xM is constant, λ2pk2{n_1q „ 1
is the computational threshold across the entire parameter regime. The optimal test when
k2 ă n should be based on the maximum diagonal entry, and while this is not a polynomial,
it should be possible to approximate it by one (similar to Section 4.1.1 of [19]).

▶ Theorem 2.5 (Binary observation model). Given parameters n, k, q, s, M, M 1, x, x1, define
distributions P “ PBinarypn, k, q, s, M, xq and Q “ PBinarypn, k, q, s, M 1, x1q. Assume that
M minℓ xℓ ě C and M 1 minℓ x1

ℓ ě C for some constant C ą 0 and that q ` s{pminℓ xℓq ď τ1
for some constant τ1 ă 1. Write ĂM “ |M ´ M 1| and xM “ maxtM, M 1u. We have:
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If D5
xM2ps2{qqpk2{n _ 1q “ op1q, then no degree-D test weakly separates P and Q.

If ĂM2{3ps2{qqk2{n “ ωp1q, xM´1{3sk “ ωp1q and ĂM2k{xM2 “ ωp1q then there exists a
degree-3 test that strongly separates P and Q.

The upper and lower bounds match (up to log factors) provided k2 ě n, xM “ Op1q,
D ď polylogpnq, and q ě 1{n. The condition q ě 1{n is natural since without it there will
be isolated vertices. The regime k2 ă n is more complicated, and some open questions
remain here even for simpler testing and recovery problems than those we study here; see
Section 2.4.1 of [19] for discussion.

2.3 Proof overview
Main quantity to bound: advantage

In order to rule out weak separation between distributions P “ Pn and Q “ Qn on RNn , it
will suffice to bound the degree-D “advantage,” named as such to emphasize that it measures
the ability of low-degree polynomials to outperform random guessing and defined as

AdvďDpP,Qq :“ sup
f deg D

EPrf s
a

EQrf2s
,

where f ranges over polynomials RN Ñ R of degree at most D. The quantity AdvďD is also
the norm of the degree-D likelihood ratio (see [13, 17]), but we will not use this interpretation
here as the likelihood ratio is difficult to work with in our setting. We note that while the
notion of separation is symmetric between P and Q, the notion of advantage is not; for
our purposes, we could just as easily work with AdvďDpQ,Pq instead of AdvďDpP,Qq. The
following basic fact connects AdvďD with strong/weak separation.

▶ Lemma 2.6. Fix a sequence D “ Dn.
If AdvďDpP,Qq “ Op1q then no degree-D test strongly separates P and Q.
If AdvďDpP,Qq “ 1 ` op1q then no degree-D test weakly separates P and Q.

The proof of Lemma 2.6, along with the proofs of all facts in this section, can be found
in Section 5. In light of Lemma 2.6, it remains to bound AdvďD. We will provide a few
general-purpose bounds, one for Gaussian problems and one for binary-valued problems.
Both will involve the following recursively-defined quantities rα introduced in what follows.

Recursive definition for the r-values

Suppose X is a random variable taking values in RN , which may have a different distribution
under P and Q. For α, β P NN where N “ t0, 1, 2, . . .u, define

|α| :“
ÿ

i

αi, α! :“
ź

i

αi!,
ˆ

α

β

˙

:“
ź

i

ˆ

αi

βi

˙

, and Xα :“
ź

i

Xαi
i .

Also define β ď α to mean “βi ď αi for all i” and define β ň α to mean “βi ď αi for
all i and for some i the inequality is strict: βi ă αi.” With this notation in hand, define
rα “ rαpXq P R for α P NN recursively by

rα “ EP rX
αs ´

ÿ

0ďβňα

rβ

ˆ

α

β

˙

EQ
“

Xα´β
‰

. (1)
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Bounds on advantage

We have the following general-purpose bounds on AdvďD in terms of rα defined in (1). The
proofs are inspired by [19] and can be found in Section 5.

▶ Proposition 2.7 (General additive Gaussian model). Suppose P and Q take the following
form: to sample Y „ P (or Y „ Q, respectively), first sample X P RN from an arbitrary
prior PX (or QX , resp.), then sample Z „ N p0, IN q, and set Y “ X ` Z. Define rα as
in (1). Then

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPNN , |α|ďD

r2
α

α! .

▶ Proposition 2.8 (General binary observation model). Suppose P and Q each take the following
form. To sample Y „ P (or Y „ Q, respectively), first sample X P RN from an arbitrary
prior PX (or QX , resp.) supported on X P rτ0, τ1s

N with 0 ă τ0 ď τ1 ă 1, then sample
Y P t0, 1uN with entries conditionally independent given X and ErYi|Xs “ Xi. Define rα as
in (1). Then

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

r2
α

pτ0p1 ´ τ1qq|α|
.

Combinatorial properties of the rα

The upshot of the two propositions above is that to show hardness of distinguishing P versus
Q, it suffices to bound the recursively defined rα. This task is made easier by indentifying
combinatorial properties the rα enjoy. In Section 3, we show general results for how properties
of the probability spaces transfer to behaviour of the rα. We may consider α P NN as a
multigraph, see Section 3.1, and we word the results in this language. Loosely speaking the
results we present are as follows:

If P and Q are multiplicative for disjoint graphs α and β then rαYβ “ rαrβ (Lemma 3.1).
If EPrX

τ s “ EQrX
τ s for all trees τ , then the r value is zero on trees (Lemma 3.2).

The r-values are indifferent to constant shifts to X (Lemma 3.3).
If we scale X by a constant factor c to construct rr, then rrα “ c|α|rα (Lemma 3.4).

Putting it all together

In Section 4 we pivot back to considering our particular probability spaces P and Q and
calculate the expected value of Xα as a function of properties of the graph α (see Lemma 4.1).
This, together with the multiplicative and tree results for the rα, allow us to bound Adv in
the Gaussian case. The scaling and shifting properties of the rα are used to show we can
deduce the graph case from the Gaussian case.

3 The recursive algebra of planted vs planted

The recursively defined rα play a central role in our proof. By Proposition 2.7, the “advantage”
Adv is bounded above by a sum of squares of the rα; therefore, to show low-degree hardness
for a distinguishing problem, it is enough to control the size of this sum of squares. In this
section, we explore the combinatorial behaviour of these rα and show that they exhibit very
nice properties under only mild assumptions on the probability spaces P and Q. (We will
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write P and Q for the probability spaces in this section both to emphasise that these results
hold for any probability spaces and to ease the notational burden.) We assume throughout
that both P and Q are symmetric, i.e. they are supported on X for which Xij “ Xji.

3.1 The graph interpretation
As in [19], it will be convenient to think of α P NN as a multigraph, possibly with self-loops,
on the vertex set rns where N “ npn` 1q{2 and we take αij , for each i ď j, to be the number
of edges between vertices i and j. For example, for n “ 3, N “ 6 and if we fix the order to be
α “ pα11, α12, α22, α13, α23, α33q then p0, 2, 0, 1, 1, 0q is the graph and, for n “ 2, N “ 3,
p1, 1, 0q is the graph a single edge with a loop at one vertex. For graphs α and β we
consider β to be a subgraph of α, denoted β Ď α, if the labelled edge set of β is a subset
of the labelled edge set of α. For example, for the graph α “ , the graphs β “ and
β1 “ are distinct subgraphs. For graph α and subgraph β Ď α define αzβ to be the graph
obtained from α by first removing the labelled edges in β and then removing isolated vertices
- e.g. z “ (not ). Similarly, let α X β denote the graph obtained by first taking the
intersection of both graphs and then deleting any isolated vertices.

The usefulness of considering graphs with labelled edge sets is that it simplifies the
expression for the recursion in the definition of rα. To avoid confusion, write vα for the
vector that maps to the graph α. Note first that if vβ ď vα then β Ď α and vice-versa.
However the counts are different. For fixed α and β with vβ ď vα there are

`

vα

vβ

˘

many distinct
edge-labelled graphs β1 such that β1 Ď α and vβ1 “ vβ . Hence, for edge-labelled graphs
the equivalent recursive definition to (1) is as follows, where the sum is over edge-labelled
subgraphs.

For graph α, the term rα is defined recursively by

rα “ EP rXαs ´
ÿ

∅ĎβĹα

rβ EQ

”

Xαzβ
ı

, (2)

starting from the base case of the empty graph r∅ “ 1. For example, if the probability spaces
are exchangeable (i.e. β “ and β1 “ etc. have the same expectations under both P and
Q) then

r “ EP

„

X

ȷ

´ EQ

„

X

ȷ

´ 3r EQ

„

X

ȷ

´ 3r EQ

”

X
ı

.

We will use the notion of edge-labelled subgraphs, denoted Ď, to aid the proofs but for the
rest of the paper we consider α P NN , or equivalently α a graph without edge labels, and
denote by ď the non-labelled subset or subgraph relation.

3.2 Combinatorial properties of the r-values
We will be interested in how properties of the probability spaces transfer to the behaviour of
rα. We will see that the rα behave multiplicatively over taking disjoint unions if the following
property holds for P and Q. Let α Y β denote the disjoint union of α and β. We say the
probability space A is multiplicative over disjoint unions if (3) holds:

EA

“

XαYβ
‰

“ EA rXαsEA

“

Xβ
‰

for any graphs α and β. (3)

▶ Lemma 3.1. Suppose P and Q are symmetric and multiplicative over disjoint unions, i.e.
they satisfy (3), then for any α and β, we have rαYβ “ rα rβ .
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Proof. We proceed by induction on the number of edges.

Base case. Suppose α consists of two disjoint edges, denoted by and . Then from (2),

r “ EP

”

X
ı

EP

”

X
ı

´ r∅ EQ

”

X
ı

EQ

”

X
ı

´ r EQ

”

X
ı

´ r EQ

”

X
ı

,

where we used the multiplicative property of (3) to deduce EP

”

X
ı

“ EP

”

X
ı

EP

”

X
ı

.

Now substituting r∅ “ 1 along with r “ EP

”

X
ı

´ EQ

”

X
ı

and the corresponding
expression for r , we get

r “ EP

”

X
ı

EP

”

X
ı

´EP

”

X
ı

EQ

”

X
ı

´EP

”

X
ı

EQ

”

X
ı

`EQ

”

X
ı

EQ

”

X
ı

“ r r .

Inductive step. Fix τ “ αYβ and assume the factorization of r holds for graphs with fewer
than |τ | “ |α| ` |β| edges. For any graph γ define zγ by zγ :“ EP rXγs ´ rγ . Then, first note

zα zβ “ EP rXαsEP

“

Xβ
‰

´ zα EP

“

Xβ
‰

´ zβ EP rXαs ` rα rβ ,

and that because α and β are disjoint and P satisfies (3), we have EP rXαsEP

“

Xβ
‰

“

EP

“

XαYβ
‰

. Hence,

zα zβ “ EP

“

XαYβ
‰

´ zα EP

“

Xβ
‰

´ zβ EP rXαs ` rα rβ ,

and now (back) substituting EP rXαs “ rα ` zα and EP

“

Xβ
‰

“ rβ ` zβ we find

rα rβ “ EP

“

XαYβ
‰

´ rα zβ ´ rβ zα ´ zα zβ .

By definition, rαYβ “ EP

“

XαYβ
‰

´ zαYβ ; therefore, to complete the proof, it suffices to show
the identity

zαYβ “ zβ rα ` zα rβ ` zα zβ . (4)

Again, write τ “ α Y β and note that by the definitions of rτ and zτ , we have

zτ “ EP rXτ s ´ rτ “ ´
ÿ

γĹτ

rγEQ

”

Xτzγ
ı

. (5)

Now observe that for any γ Ĺ τ since τ “ α Y β we have γ “ γα Y γβ where γα “ γ X α and
γβ “ γ X β. Thus γ is a disjoint union of γα and γβ with strictly fewer total edges than
α Y β and so by the inductive hypothesis rγ “ rγα

rγβ
. Hence, for any fixed γ Ĺ α Y β,

rγ EQ

”

XpαYβqzγ
ı

“ rγα
EQ

”

Xαzγα

ı

rγβ
EQ

”

Xβzγβ

ı

. (6)

There are two special cases for (6). If γα “ α, then

rγ EQ

”

XpαYβqzγ
ı

“ rα rγβ
EQ

”

Xβzγβ

ı

,

and symmetrically for the case γβ “ γ. Note that because γ is a strict subgraph of α Y β

either of γα “ γ or γβ “ β may hold but not both.
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In the expression for zαYβ in (5) we take the sum over tγ : γ Ĺ α Y βu and partition
it into sums over the sets S1 “ tγ : γα “ α, γβ Ĺ βu, S2 “ tγ : γα Ĺ α, γβ “ βu and
S3 “ tγ : γα Ĺ α, γβ Ĺ βu. We begin with S1: by (6),

´
ÿ

γPS1

rγ EQ

”

XpαYβqzγ
ı

“ ´
ÿ

γβĹβ

rα rγβ
EQ

”

Xβzγβ

ı

“ rα zβ .

Similarly taking the sum over S2 yields rβ zα. Lastly, the sum over S3 is given by

´
ÿ

γPS3

rγ EQ

”

XpαYβqzγ
ı

“ ´
ÿ

γαĹα, γβĹβ

rγα
EQ

”

Xαzγα

ı

rγβ
EQ

”

Xβzγβ

ı

“ zα zβ .

By (5), zαYβ can be obtained as a sum of fpγ, α Y βq over γ Ĺ α Y β for some function f .
However, when we sum the same function f over γ in S1, S2 and S3 it gives the three terms
on the right hand side of (4), thus confirming the identity as required. ◀

▶ Lemma 3.2. For all τ where τ is a forest, meaning a graph with no cycles, suppose that
P and Q satisfy EP rXτ s “ EQ rXτ s . Then, rα “ 0 for any forest graph α.

Proof. The proof is almost immediate by induction on the number of edges. For the base case
we note r “ EP

”

X
ı

´EQ

”

X
ı

“ 0. For any fixed forest α and β Ĺ α, the graph β is a forest
on strictly fewer edges and so by induction rβ “ 0, but then rα “ EP rXαs´EQ rXαs “ 0. ◀

We also show that one can add a constant shift to the distribution without changing the
values of the rα. The proof is somewhat technical, so we relegate it to Section 5.

▶ Lemma 3.3. Let rX be defined by rXij “ Xij `yij where yij P R is non-random for each pair
i, j. Then, for any probability spaces P and Q, for rα “ rαpP, Q, Xq and rrβ “ rrβpP, Q, rXq,
and for all γ, we have that rγ “ rrγ .

The following lemma concerns the effect on r of scaling.

▶ Lemma 3.4. Fix a P R and a ‰ 0. Let rX be defined by rXij “ aXij. Then for any
probability spaces P and Q, for rα “ rαpP, Q, Xq and rrβ “ rrβpP, Q, rXq, and for all γ, we
have that rrγ “ a|γ| rγ , where |γ| equals the number of edges in the graph γ, i.e. |γ| “ |Epγq|.

Proof. This proof is a simple induction on |α|. The base case is easy as rr∅ “ r∅ “ 1 as
required. Now, fix α for some |α| ą 1, and assume we have proven the result for |β| ă |α|.
However,

rrα “ EP

”

rXα
ı

´
ÿ

HĎβĹα

rrαzβ EQ

”

rXβ
ı

“ a|α|EP rXαs ´
ÿ

HĎβĹα

rrαzβ a|β|EQ

“

Xβ
‰

.

By the inductive hypothesis, rrαzβ “ a|αzβ| rαzβ and so by the equation above we are done as
a|β|a|αzβ| “ a|α|. ◀

4 Proof

In this section we give the full proofs of the main results, Theorems 2.4 and 2.5.

Proof of Theorem 2.4. Hard regime. We start by proving the computational lower bound.
By definition of the Additive Gaussian model, we can write the observed edge weights
Y “ tYijuiďj as Y “ X ` Z, where Z consists of i.i.d. N p0, 1q entries, and

Xij “

#

λ{xℓ σi “ σj “ ℓ for some ℓ P rM s,

0 otherwise.
(7)
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Recall the sequence rα, defined recursively via

rα “ EP rX
αs ´

ÿ

0ďβňα

rβ

ˆ

α

β

˙

EQ
“

Xα´β
‰

.

By Lemma 2.6 and Proposition 2.7, we have that if
ÿ

α : |α|ďD

r2
α

α! “ 1 ` op1q, (8)

then no degree-D test can weakly separate P and Q. Thus, to prove the computational lower
bound, it suffices to show that (8) holds for D5λ2M2pk2{n _ 1q “ op1q.

We will demonstrate (8) by proving the following three facts. (We consider the sets α as
graphs and write V pαq for the vertex set and Cpαq for the set of connected components, see
Section 3.1 for details.)

(i) For all α, the term rα factorizes over the connected components of α. That is,

rα “
ź

βPCpαq

rβ .

(ii) If at least one connected component of α is a tree, then rα “ 0.
(iii) For all α, where |α| “ |Epαq| counts the edges in the graph α,

|rα| ď p|α| ` 1q|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Fact (i) follows directly from Lemma 3.1. To see Fact (ii), we note that by Lemma 3.2 it
suffices to show that for any τ a tree, we have EP rX

τ s “ EQ rXτ s. But recall that for a
tree, the number of edges is one less than the number of vertices, i.e. |τ | “ |V pτq| ´ 1 and τ

consists of one connected component so that |Cpτq| “ 1. Thus, by Lemma 4.1 we are done.
Fact (iii) follows from Lemma 4.2. We will state and prove Lemmas 4.1 and 4.2 at the end
of this section.

Next, we argue that the three facts combined yield (8). From fact (iii), we have for
each α,

r2
α ďp|α| ` 1q2|α|

˜

xMλ

C

¸2|α|
ˆ

k

n

˙2|V pαq|

“p|α| ` 1q2|α|

˜

xM2λ2k2

C2n

¸|Epαq|
ˆ

k2

n

˙|V pαq|´|Epαq|

n´|V pαq|.

From (ii), we know that rα is nonzero only when all connected components of α contain at
least one cycle. Denote

Gd,v “ tα : |Epαq| “ d; |V pαq| “ v; for all β P Cpαq, β is not a treeu .

Note that for all d, v such that v ą d, we have that Gd,v “ H because if all connected
components of α contains at least one cycle, we must have |α| ě |V pαq|. Thus for k2 ě n,
we have shown that for all d, v with α P Gd,v,

r2
α ď pd ` 1q2d

˜

xM2λ2k2

C2n

¸d

n´v.
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On the other hand, for k2 ă n, we have

r2
α ď pd ` 1q2d

˜

xMλ

C

¸2d
ˆ

k

n

˙2v

ď pd ` 1q2d

˜

xMλ

C

¸2d

n´v.

Combined with the bound on r2
α for k2 ě n, we have shown that

r2
α ď pd ` 1q2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v.

Next, we bound the size of Gd,v by counting the number of graphs with exactly d edges and
v vertices:

|Gd,v| ď

ˆ

n

v

˙ˆ

v

2

˙d

ď nvv2d. (9)

where the factor
`

n
v

˘

enumerates the possibilities for the vertex set in α; the
`

v
2
˘d factor

counts the allocation of the d edges, allowing for edge multiplicity. Combining (12) (see
Lemma 4.2 below) and (9) yields

ÿ

α : |α|ďD

r2
α

α! ď r2
0 `

D
ÿ

d“1

d
ÿ

v“1

ÿ

αPGd,v

r2
α

α!

ď 1 `

D
ÿ

d“1

d
ÿ

v“1
|Gd,v| ¨ pd ` 1q2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v

ď 1 `

D
ÿ

d“1

d
ÿ

v“1
nvv2dpd ` 1q2d

¨

˝

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

n´v

“ 1 `

D
ÿ

d“1

¨

˝pd ` 1q2

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d
d
ÿ

v“1
v2d

ď 1 ` D
D
ÿ

d“1

¨

˝pD ` 1q2D2

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

ď 1 ` D
D
ÿ

d“1

¨

˝

˜

2D2
xMλ

C

¸2
ˆ

k2

n
_ 1

˙

˛

‚

d

“ 1 ` p1 ` op1qq 4D5

˜

xMλ

C

¸2
ˆ

k2

n
_ 1

˙

“ 1 ` op1q,

where the last two equalities follow by the condition D5pxMλq2pk2{n_1q “ op1q, under which
the summation over d is a geometrically decreasing sequence, dominated by the first term.

Easy regime. Next, we show that in the “easy” regime λ2
ĂM2pk2{n_ 1q “ ωp1q and ĂM2k “

ωpxM2q, there is a low-degree test that strongly separates P and Q. When λ2
xM2k2{n “ ωp1q,

consider the algorithm that uses pT “
ř

i Yii, the sum of the diagonal elements, as the test
statistic. We can compute the first and second moments of pT under the two models using
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(7) to note that under P, we have Yii “
λ
xℓ

` N p0, 1q if σi “ σj “ ℓ for some ℓ P rM s and
Yii “ N p0, 1q otherwise, where each community label ℓ is selected with probability xℓk

n and
no label is selected with probability 1 ´ k

n . Under Q, we replace x and M with x1 and M 1.

EP

”

pT
ı

“ nEP rY11s “ n

»

–

ÿ

ℓPrMs

λ

xℓ
¨ Ptσ1“ℓu ` 0 ¨ Ptσ1“‹u

fi

fl “ n
ÿ

ℓPrMs

kλ

n
“ Mkλ,

EQ

”

pT
ı

“ nEQ rY11s “ M 1kλ,

Var
P

”

pT
ı

ď nEP
“

Y 2
11
‰

“ n

»

–

ÿ

ℓPrMs

ˆ

λ2

x2
ℓ

` 1
˙

¨ Ptσ1“ℓu ` 1 ¨ Ptσ1“‹u

fi

fl “ n `
ÿ

ℓPrMs

kλ2

xℓ
,

Var
Q

”

pT
ı

ď nEQ
“

Y 2
11
‰

“ n `
ÿ

ℓPrM 1s

kλ2

x1
ℓ

.

Note also that M minℓ xℓ ě C implies maxℓ 1{xℓ ă M{C; thus,
ř

ℓďM
1

xℓ
ď M2{C. Hence,

when ĂM2k{xM2 “ ωp1q and ĂM2λ2k2{n “ ωp1q,
d

max
"

Var
Q

”

pT
ı

, Var
P

”

pT
ı

*

“ o
´
ˇ

ˇ

ˇ
EP

”

pT
ı

´ EQ

”

pT
ı
ˇ

ˇ

ˇ

¯

.

Thus, thresholding pT strongly separates P and Q. ◀

Proof of Theorem 2.5.

Hard regime. The proof proceeds by comparison to a corresponding Gaussian model,
so that we can reuse the calculations in the proof of Theorem 2.4. Our starting point
is Proposition 2.8. Define X “ Xpq,sq appropriately for our binary testing problem, i.e.,
X

pq,sq

ij “ q ` s{xℓ if σi “ σj “ ℓ, and X
pq,sq

ij “ q otherwise. Let τ0 “ q, and recall that
we have a valid constant τ1 ă 1 by assumption. Consider the additive Gaussian testing
problem (as in Theorem 2.4) with the same parameters n, k, M, x as our binary model, and
with λ :“ s{

a

qp1 ´ τ1q. Let Xpλq denote the corresponding X as per Proposition 2.7, i.e.,
X

pλq

ij “ λ{xℓ if σi “ σj “ ℓ, and X
pλq

ij “ 0 otherwise. Note X
pq,sq

ij “ ps{λqX
pλq

ij ` q and so by
Lemmas 3.3 and 3.4 we have, rαpX

pq,sqq “ ps{λq|α|rαpX
pλqq. By Proposition 2.8,

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

rα

`

Xpq,sq
˘2

pqp1 ´ τ1qq
|α|

“

d

ÿ

αPt0,1uN , |α|ďD

rα

`

Xpλq
˘2

ď

g

f

f

e

ÿ

αPNN , |α|ďD

rα

`

Xpλq
˘2

α! .

In other words, we have related the conclusion of Proposition 2.8 to the conclusion of
Proposition 2.7 but with s{

a

qp1 ´ τ1q in place of λ. The result now follows by the proof of
Theorem 2.4.

Easy regime. We now consider a signed triangle count pR as our test statistic. Let

pR “
ÿ

iăjăk

RijRikRjk where Rij “ Yij ´ q. (10)
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Expectation and variance calculations for pR are computed in Lemma 5.1 of Section 5.5.
Denote by xM the maximum of M and M 1. Then,

ˇ

ˇ

ˇ
EP

”

pR
ı

´ EQ

”

pR
ı
ˇ

ˇ

ˇ
“ 1

3
ˇ

ˇM ´ M 1
ˇ

ˇ s3 k3 `1 ` Opn´1q
˘

,

and

max
"

Var
P

”

pR
ı

, Var
Q

”

pR
ı

*

ď
1
C

xM2k5s6 ` xMk4s4q `
1
C

xM2k4s5 ` 1
3 n3q3 ` nk2sq2 ` k3q2s ` k3qs2 ` 1

3
xMk3s3

(11)

where C is the constant from the assumption that M minℓ xℓ, M 1 minℓ x1
ℓ ą C. Writing

ĂM “ |M´M 1|, notice that to prove strong separation it suffices to show that each term in (11)
is opĂM2s6k6q. For the fourth term to be opĂM2s6k6q is equivalent to ĂM2{3s2k2{pnqq “ ωp1q,
one of our assumptions. Similarly for the first term to be opĂM2s6k6q is equivalent to
ĂM2kxM2 “ ωp1q another of our assumptions. For the last term to be opĂM2s6k6q is equivalent
to ĂM2{3

xM´1{3sk “ ωp1q, which is implied by our assumption xM´1{3sk “ ωp1q. All other
terms follow also because of these assumptions. ◀

▶ Lemma 4.1. For each α P NN , and for each x “ px1, . . . , xcq with
ř

ℓ xℓ “ 1,

EP rX
αs “ λ|α|

ˆ

k

n

˙|V pαq|
ź

βPCpαq

c
ÿ

ℓ“1
x

|V pβq|´|β|

ℓ .

Proof. First consider β a connected graph. Note that for pi, jq P β, if it is not the case that
i, j P Sℓ for some ℓ then Xpi,jq „ N p0, 1q and so EP

“

Xpi,jq
‰

“ 0 (here, we have used that our
Sℓ’s do not overlap). Hence, for β connected,

EP
“

Xβ
‰

“

c
ÿ

ℓ“1
P pV pβq P Sℓq

ˆ

λ

xℓ

˙|β|

“

c
ÿ

ℓ“1

ˆ

xℓ k

n

˙|V pβq| ˆ
λ

xℓ

˙|β|

.

Notice, it is now enough to show that the Xβ ’s are independent for β’s connected components
of α, as this would imply that EP rX

αs “
ś

βPCpαq EP
“

Xβ
‰

and we have the result.
This independence follows because Xpi,jq depends only on the events ri P Sℓs, rj P Sℓ1s

for each ℓ, ℓ1; thus, Xβ and Xβ1 are independent as long as their vertex sets V pβq and V pβ1q

do not overlap. As the vertex sets of connected components are mutually non-overlapping,
we have finished the proof. ◀

▶ Lemma 4.2. Suppose Mxp1q ě C and M 1x1
p1q

ě C where xp1q :“ minℓ xℓ for some constant
C ą 0. Then there exists editn0 P N such that for n ą n0, for all α, we have that rα satisfies

|rα| ď p|α ` 1|q|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

. (12)

Proof. We will argue by induction on |α|. A graph α with |α| “ 1 is either a tree with two
vertices and one edge, or a self-loop with one vertex and one edge. If α is a tree, then rα “ 0
and (12) trivially holds. If α is a self-loop, we have by Lemma 4.1,

rα “ EP rX
αs ´ EQ rXαs “ Mλ

ˆ

k

n

˙

´ M 1λ

ˆ

k

n

˙

ď p|α| ` 1q|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

,
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where the last inequality is because C ď Mxp1q ď 1. We have shown (12) for |α| “ 1.
Suppose (12) holds for all α with |α| ď d ´ 1; next we show it also holds for |α| “ d.

If α is not connected, then each connected component β P Cpαq has |β| ă d. Thus from
the factorization lemma and the induction hypothesis, we have

|rα| “
ź

βPCpαq

|rβ |ď
ź

βPCpαq

p|β| ` 1q|β|

˜

λxM

C

¸|β|
ˆ

k

n

˙|V pβq|

ďp|α| ` 1q|α|

˜

λxM

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Thus (12) holds. Next we show (12) for α connected. If α is a tree, then by Fact (ii) we have
rα “ 0 and (12) holds. Therefore it suffices to consider α that is not a tree. Recall that

rα “ EP rX
αs ´ EQ rXαs ´

ÿ

0ăβňα

rβ

ˆ

α

β

˙

EQ

”

Xαzβ
ı

. (13)

For the first term in (13), we can apply Lemma 4.1 for connected α:

EP rX
αs “ λ|α|

ˆ

k

n

˙|V pαq|
ÿ

ℓPrMs

x
|V pαq|´|α|

ℓ ď λ|α|

ˆ

k

n

˙|V pαq|
“

Mxp1q

‰|V pαq|´|α|

“
“

Mxp1q

‰|V pαq|´|α|
M1´|V pαq|pMλq|α|

ˆ

k

n

˙|V pαq|

ď

ˆ

Mλ

C

˙|α| ˆ
k

n

˙|V pαq|

for large enough n. The last inequality is because we assumed that α is not a tree. Thus
|V pαq| ď |α|, and pMxp1qq

|V pαq|´|α| ď C |V pαq|´|α| ď C |α|.
Next we bound the third term in (13). For each β ň α that is nonempty, |β| ă |α| “ d.

From the induction hypothesis we have

|rβ | ď p|β| ` 1q|β|

˜

xMλ

C

¸|β|
ˆ

k

n

˙|V pβq|

.

Thus
ˇ

ˇ

ˇ
rβEQXαzβ

ˇ

ˇ

ˇ

ďp|β| ` 1q|β|

˜

xMλ

C

¸|β|
ˆ

k

n

˙|V pβq|

¨ λ|αzβ|

ˆ

k

n

˙|V pαzβq|
ź

γPCpαzβq

ÿ

ℓPrM 1s

px1
ℓq

|V pγq|´|γ|

“p|β| ` 1q|β|

˜

xMλ

C

¸|α|̂

k

n

˙|V pαq|
˜

xM

C

¸´|αzβ|
ˆ

k

n

˙´|V pβqXV pαzβq|
ź

γPCpαzβq

ÿ

ℓPrM 1s

px1
ℓq

|V pγq|´|γ|

ďp|β| ` 1q|β|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|
ź

γPCpαzβq

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq

|V pγq|´|γ|.

Next we show that for all γ P Cpαzβq, we have that pxM{Cq´|γ|
ř

ℓPrM 1spx
1
ℓq

|V pγq|´|γ| ď 1.
Note that |V pγq| ď |γ| ` 1. We discuss the cases |V pγq| “ |γ| ` 1 and |V pγq| ď |γ| separately.
If |V pγq| “ |γ| ` 1, then

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq

|V pγq|´|γ| “

˜

xM

C

¸´|γ|

ď 1.
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If |V pγq| ď |γ|, then we have

˜

xM

C

¸´|γ|
ÿ

ℓPrM 1s

px1
ℓq

|V pγq|´|γ| ď

ˆ

M

C

˙´|γ|

M 1 px1
p1qq

|V pγq|´|γ|

paq

ď

´

xMx1
p1q

¯|V pγq|´|γ|
xM1´|V pγq| C |γ|

pbq

ď C |V pγq|
xM1´|V p|γ|q|

pcq

ď 1,

where (a) is from M 1 ď M ; (b) is from M 1x1
p1q

ě C and |V pγq| ď |γ|; (c) is from C ď 1,
xM ě 1, and |V pγq| ě 1 for all γ P Cpαzβq. We have shown that

ˇ

ˇ

ˇ
rβEQXαzβ

ˇ

ˇ

ˇ
ď p|β| ` 1q|β|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

.

Plug in the values of EPrX
αs and EQrX

αs to (13) to obtain

|rα| ď

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

` λ|α|

ˆ

k

n

˙|V pαq|

`
ÿ

0ăβňα

ˆ

α

β

˙

p|β| ` 1q|β|

˜

xMλ

C

¸|α|̂

k

n

˙|V pαq|

ď

«

1 ` 1 `
ÿ

0ăβňα

p|β| ` 1q|β|

ff˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

ď p|α| ` 1q|α|

˜

xMλ

C

¸|α|
ˆ

k

n

˙|V pαq|

,

where the last inequality is because

2 `
ÿ

0ăβňα

ˆ

α

β

˙

p|β| ` 1q|β|
“ 2 `

ÿ

0ăℓă|α|

ˆ

|α|

ℓ

˙

pℓ ` 1qℓ ď p|α| ` 1q|α|
.

We have shown that (12) holds for all α. ◀

5 Additional proofs

5.1 Proof of Lemma 2.6

First we prove the statement for weak separation. Assume, for the sake of contradiction,
that some degree-D test g : RN Ñ R weakly separates P and Q. Without loss of generality,
we can shift and scale g so that EQrgs “ 0 and EPrgs “ 1. Weak separation guarantees that
for sufficiently large n, VarQrgs “ EQrg

2s ď C for some positive constant C ą 0. Defining
f “ g ` C, we have

AdvďD ě
EPrf s

a

EQrf2s
“

1 ` C
a

EQrg2s ` C2
ě

1 ` C
?

C ` C2
“

c

1 ` C

C
,

which is a constant strictly greater than 1, contradicting AdvďD “ 1 ` op1q. The proof for
strong separation is identical, except now C “ op1q.
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5.2 Proof of Proposition 2.7
The proof is similar to the proof of Theorem 2.2 in [19], so we only explain the differences. Our
distribution Q plays the role of the single “planted” distribution in [19]. The only difference
is that the quantity ErfpY qxs from [19] needs to be replaced by our EPrfpY qs, which means
(in the notation of [19]) the vector c needs to be redefined as cα “ EPrhαpY qs “ EPrX

αs{
?

α!.

5.3 Proof of Proposition 2.8
Follow the proof of Theorem 2.7 in [19], but redefine c “ pcαqαPt0,1uN by cα “ EPr rX

αs where
rXi “ pµ ` 1{µqXi ´ 1{µ and µ “

b

1´τ1
τ0

. This gives the bound

AdvďDpP,Qq ď

g

f

f

e

ÿ

αPt0,1uN , |α|ďD

rαp rXq2

p1 ` τ0 ´ τ1q2|α|

where rαp rXq is defined in (1). Using Lemmas 3.3 and 3.4, we have rαp rXq “ pµ`1{µq|α|rαpXq,
so the above simplifies to give the result.

5.4 Proof of Lemma 3.3
Base case(s). Note that by definition rrH “ rH “ 1. Let |α| “ 1, i.e. α “ tiju for some
1 ď i ď j ď n. Then the base step follows directly from the definition

rrα “ EP

”

rXij
ı

´ EQ

”

rXij
ı

“ EP

“

Xij
‰

` yij ´ EQ

“

Xij
‰

´ yij “ rα.

Inductive step. Fix α with |α| ą 1 and assume rrβ “ rβ for all β Ĺ α. Directly from the
definition of r and the inductive hypothesis,

rrα “ EP

”

rXα
ı

´ EQ

”

rXα
ı

´
ÿ

HĹβĹα

rrαzβ EQ

”

rXβ
ı

“ EP

”

rXα
ı

´ EQ

”

rXα
ı

´
ÿ

HĹβĹα

rαzβ EQ

”

rXβ
ı

.

We consider the third term, call it ˚. Writing yη to indicate
ś

ijPη yij , first notice that

EQ

”

rXβ
ı

“ EQ

«

ź

ijPβ

pXij ` yijq

ff

“ EQ

“

Xβ
‰

`
ÿ

HĹηĎβ

yη EQ

”

Xβzη
ı

;

hence,

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹβĹα

rαzβ

ÿ

HĹηĎβ

yη EQ

”

Xβzη
ı

.

If we let β1 “ βzη, instead of summing over 0 Ĺ β Ĺ α and then H Ĺ η Ď β, we may sum
over H Ĺ η Ĺ α then H Ď β1 Ĺ αzη. Thus, noting also that αzβ “ pαzηqzβ1,

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹηĎα

yη
ÿ

HĎβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

.
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But, by the definition of rαzη,
ÿ

HĎβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

“ rαzη `
ÿ

HĹβ1Ĺαzη

rpαzηqzβ1 EQ

”

Xβ1
ı

“ EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı

,

which gives the following expression for ˚ where we no longer have the sum over β1:

˚ “
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

`
ÿ

HĹηĎα

yη
´

EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı¯

.

Substituting this expression for ˚ into our original expression for rrα we have

rrα “ EP

”

rXα
ı

´EQ

”

rXα
ı

´
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

´
ÿ

HĹηĎα

yη
´

EP

”

Xαzη
ı

´ EQ

”

Xαzη
ı¯

.

However, this last term is precisely what we need to cancel with the difference between
EP

”

rXα
ı

and EP rXαs and the difference between EQ

”

rXα
ı

and EQ rXαs. Therefore,

rrα “ EP rXαs ´ EQ rXαs ´
ÿ

HĹβĹα

rαzβ EQ

“

Xβ
‰

“ rα,

and we have proven the inductive step.

5.5 Calculations for signed triangle counts
In this section we analyse the degree 3 signed triangle count test statistic pR, defined in (10),
and show bounds on the expectation and variance of pR, which will prove it strongly separates
P and Q in the easy regime. Recall,

pR “
ÿ

iăjăk

Rij Rik Rjk where Rij “ Yij ´ q.

▶ Lemma 5.1. Given parameters n, k, q, s, M and x P RM with
ř

ℓPrMs xℓ “ 1, we let
P “ PBinarypn, k, q, s, M, xq. Assume that M minℓ xℓ ě C. Then,

EP

”

pR
ı

“ 1
3 Ms3k3 `1 ` Opn´1q

˘

,

Var
P

”

pR
ı

ď 1
C M2k5s6 ` Mk4s4q ` 1

C M2k4s5 ` 1
3 n3q3 ` nk2sq2

` k3q2s ` k3qs2 ` 1
3 Mk3s3.

Proof. Recall that in our model, the binary random variable Yij takes value 1 with probability
q`s{xc if σi “ σj “ c for some c P rM s and takes value 1 with probability q otherwise. Thus,
we may calculate the expected values of Rij conditioned on the community assignments of i

and j:

EP rRij | σi “ ci, σj “ cjs “

#

s
xc

if ci “ cj “ c for some c P rM s,
0 otherwise.

(14)

We now split the proof into expectation and variance calculations. All probabilities, expecta-
tions and variances will be with respect to P, but we drop the subscript.
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Expectation. Let

N tri “ ttij, ik, jku : i, j, k P rns, i ă j ă ku ,

and then we may express the signed triangle count pR by pR “
ř

SPNtri RS . Fix a set of
edges in N tri, w.l.o.g. S “ t12, 13, 23u. Then, writing rM s‹ for the set t‹, 1, . . . , Mu (recall ‹
denotes no community membership),

E rRSs “
ÿ

c1,c2,c3PrMs‹

E rR12 R13 R23 |σ1 “ c1, . . . , σ3 “ c3sP pσ1 “ c1, . . . , σ3 “ c3q

“
ÿ

c1,c2,c3PrMs‹

ź

ijPt12,13,23u

E rRij | σ1 “ c1, . . . , σ3 “ c3s
3
ź

i“1
P pσi “ ciq ,

as the expected values of Rij and Rik are independent conditional on the community
assignments of i, j, k. Note by (14), ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Therefore the only non-zero terms in the sum above are those for which
c1 “ c2 “ c3 “ c for some c P rM s. Let Cc be the event that σ1 “ σ2 “ σ3 “ c, then

E rRSs “

M
ÿ

c“1

ź

ijPS

E rRij | Ccs

3
ź

i“1
P pσi“cq “

M
ÿ

c“1

s3

x3
c

ˆ

kxc

n

˙3
“ Mk3s3n´3.

Because |N tri| “
`

n
3
˘

“ 1
3 n3p1 ` Op 1

n qq, the expectation of pR is as claimed.

Variance. Recall pR “
ř

SPNtri RS and so the variance is

Var
”

pR
ı

“
ÿ

S,T PNtri

E rRSRT s ´ E rRSsErRT s .

Note that if V pSq X V pT q “ ∅, i.e. the sets of pairs have no vertices in common, then RS

and RT are independent and these terms cancel in the expression above. Hence we need only
sum over S, T with one overlapping vertex, with two overlapping vertices or equivalently one
overlapping edge and lastly with all three vertices overlapping or equivalently S “ T . Thus

Var
”

pR
ı

ď
ÿ

S,T PNtri

|V pSqXV pT q|“1

E rRSRT s `
ÿ

S,T PNtri

|SXT |“1

E rRSRT s `
ÿ

SPNtri

E
“

R2
S

‰

. (15)

The terms above correspond to the sets of pairs overlapping as , and respectively
where the gray edges denote pairs in S and the pink edges denote pairs in T .

We begin by bounding the first term in (15), i.e. that corresponding to . Fix some pair
of sets which overlap on one vertex, w.l.o.g. S1 “ t12, 13, 23u and T1 “ t14, 15, 45u. Then,
similarly to the expectation, again writing rM s‹ for the set t‹, 1, . . . , Mu,

ErRS1RT1s “
ÿ

c1,...,c5PrMs‹

ź

ijPS1YT1

ErRij | σ1“c1, . . . σ5“c5s
5
ź

i“1
P pσi“ciq

as the expected values of Rij and Rik are independent conditional on the community
assignments of i, j, k. Note that ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Therefore the only non-zero terms in the sum above are those for which
c1 “ . . . “ c5 “ c for some c P rM s. Let Cc be the event that σ1 “ . . . “ σ5 “ c, then

ErRS1RT1s “

M
ÿ

c“1

ź

ijPS1YT1

ErRij | Ccs

5
ź

i“1
P pσi“cq “

M
ÿ

c“1

s6

x6
c

ˆ

kxc

n

˙5
“ k5s6n´5

M
ÿ

c“1

1
xc

.
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Since there are at most n5 ways we may pick S, T P N tri with |V pSq X V pT q| “ 1, we may
conclude that the first term of (15) is at most k5s6 řM

c“1
1

xc
.

We next bound the second term in (15), i.e. that corresponding to . Similarly to above,
fix some pair of sets which overlap on one edge, w.l.o.g. S2 “ t12, 13, 23u and T2 “ t12, 14, 24u.

ErRS2RT2s “
ÿ

cPrMs4
‹

ErR2
12R13R23R14R24 | σ1 “ c1, . . . , σ4 “ c4s

4
ź

i“1
P pσi “ ciq

“
ÿ

cPrMs4
‹

ErR2
12 | σ “ cs

ź

ijPt13,23,14,24u

ErRij | σ “ cs
4
ź

i“1
P pσi “ ciq (16)

since, as before, Rij and Rik are independent when we have conditioned on the community
assignments of i, j, k. Again, recall ErRij |σi “ ci, σj “ cjs is equal to zero unless ci “ cj “ c

for some c P rM s. Thus for the product over ij P t13, 23, 14, 24u in (16) to be non-zero all
vertices must have the same community assignment to some c P rM s. Hence,

ErYS2YT2s “

M
ÿ

c“1
ErR2

12 | Ccs
ź

ijPt13,23,14,24u

ErRij | Ccs

4
ź

i“1
P pσi “ cq.

Calculate the conditional expectation of the square.

ErR2
ij | σi “ ci, σj “ cjs “

#

qp1 ´ qq ` s
xc
p1 ´ 2qq if ci “ cj “ c for some c P rM s

qp1 ´ qq otherwise,
(17)

and thus,

ErRS2RT2s “

M
ÿ

c“1

ˆ

qp1 ´ qq `
s

xc
p1 ´ 2qq

˙ˆ

s

xc

˙4 ˆ
kxc

n

˙4

“ M

ˆ

ks

n

˙4
qp1 ´ qq `

ˆ

ks

n

˙4
sp1 ´ 2qq

M
ÿ

c“1

1
xc

.

Since there are at most n4 ways we may pick S, T P N tri with |S X T | “ 1, we may conclude
that the second term of (15) is at most Mk4s4q ` k4s5 řM

c“1
1

xc
.

Lastly we bound the third (and last) term in (15), i.e. that corresponding to . Similarly
to above, fix a set S (and T which entirely overlaps with it), w.l.o.g. S3 “ t12, 13, 23u.
Calculate

ErR2
S3
s “ P pD0q pqp1 ´ qqq

3
`

3
ÿ

i“1

M
ÿ

c“1
P rDi,cs

ˆ

qp1 ´ qq `
s

xc
p1 ´ 2qq

˙i

pqp1 ´ qqq
3´i

ď P pD0qq
3 `

3
ÿ

i“1

M
ÿ

c“1
P rDi,cs

ˆ

q `
s

xc

˙i

q3´i

where Di,c denotes the set of community assignments such that i of R12, R13, R23 has
distribution Berpq ` s{xcq (while the others have distribution Berpqq), and D0 denotes the
set of community assignments where all three have distribution Berpqq. Observe D1,c is
the set of assignments such that two vertices have label c P rM s and the other vertex
has label in t‹, 1, . . . , Muztcu and thus P pD1,cq ď 3pxck{nq2. Note D2,c “ ∅. Lastly
P pD3,cq “

ř

cPM pxck{nq3 as D3,c is the community assignment where each of the three
vertices has label c. Then P pD0q “ 1´

ř

c P pD1,cq´
ř

c P pD3,cq. Substituting these bounds
for D0 and Di,c for i “ 1, 2, 3 and writing ρc “ kxc{n we get
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ErR2
S3
s ď q3p1 ´ 3ρ2

c ´ ρ3
cq ` 3

M
ÿ

c“1
ρ2

c

ˆ

q `
s

xc

˙

q2 `
M
ÿ

c“1
ρ3

c

ˆ

q `
s

xc

˙3

“ q3 ` 3n´2k2sq2 ` n´3k3

˜

3q2s
M
ÿ

c“1
x2

c ` 3qs2 ` Ms3

¸

.

Since there are
`

n
3
˘

ways to pick S P N tri the third term of (15) is at most 1
3 n3ErR2

S3
s,

1
3 n3ErR2

S3
s ď 1

3 n3q3 ` nk2sq2 ` k3q2s ` k3qs2 ` 1
3 Mk3s3

where we substituted
ř

cPM x2
c ,
ř

cPM x3
c ď 1. To finish, recall we assumed M minc xc ą C

for some constant C, and note this implies maxc 1{xc ă M{C and thus
ř

c 1{x2
c ă M2{C.

Apply this to the bounds from the first and second terms of (15) and we are done. ◀

References
1 Emmanuel Abbe. Community detection and stochastic block models: recent developments.

The Journal of Machine Learning Research, 18(1):6446–6531, 2017.
2 Ery Arias-Castro and Nicolas Verzelen. Community detection in random networks. arXiv

preprint, 2013. arXiv:1302.7099.
3 Afonso S Bandeira, Ahmed El Alaoui, Samuel B Hopkins, Tselil Schramm, Alexander S Wein,

and Ilias Zadik. The Franz-Parisi criterion and computational trade-offs in high dimensional
statistics. arXiv preprint, 2022. arXiv:2205.09727.

4 Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local statistics, semidefinite
programming, and community detection. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1298–1316. SIAM, 2021.

5 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019.

6 Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal
component detection. In Conference on learning theory, pages 1046–1066. PMLR, 2013.

7 Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower
bounds for problems with planted sparse structure. In Conference On Learning Theory, pages
48–166. PMLR, 2018.

8 Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and
submatrix localization with a growing number of clusters and submatrices. The Journal of
Machine Learning Research, 17(1):882–938, 2016.

9 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

10 Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds
for robust estimation of high-dimensional gaussians and gaussian mixtures. In 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 73–84. IEEE, 2017.

11 Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. Journal of the ACM (JACM),
64(2):1–37, 2017.

12 Bruce Hajek, Yihong Wu, and Jiaming Xu. Computational lower bounds for community
detection on random graphs. In Conference on Learning Theory, pages 899–928. PMLR, 2015.

13 Samuel Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis, Cornell
University, 2018.

http://arxiv.org/abs/1302.7099
http://arxiv.org/abs/2205.09727


C. Rush, F. Skerman, A. S. Wein, and D. Yang 94:23

14 Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm,
and David Steurer. The power of sum-of-squares for detecting hidden structures. In 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.

15 Samuel B Hopkins and David Steurer. Efficient bayesian estimation from few samples:
community detection and related problems. In 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 379–390. IEEE, 2017.

16 Pravesh K Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower
bounds for refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 132–145, 2017.

17 Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness
of hypothesis testing: Predictions using the low-degree likelihood ratio. In ISAAC Congress
(International Society for Analysis, its Applications and Computation), pages 1–50. Springer,
2022.

18 Cristopher Moore. The computer science and physics of community detection: Landscapes,
phase transitions, and hardness. Bulletin of EATCS, 1(121), 2017.

19 Tselil Schramm and Alexander S Wein. Computational barriers to estimation from low-degree
polynomials. The Annals of Statistics, 50(3):1833–1858, 2022.

ITCS 2023





An Improved Lower Bound for Matroid Intersection
Prophet Inequalities
Raghuvansh R. Saxena
Microsoft Research, Cambridge, MA, USA

Santhoshini Velusamy
Harvard University, Cambridge, MA, USA

S. Matthew Weinberg
Princeton University, NJ, USA

Abstract
We consider prophet inequalities subject to feasibility constraints that are the intersection of
q matroids. The best-known algorithms achieve a Θ(q)-approximation, even when restricted
to instances that are the intersection of q partition matroids, and with i.i.d. Bernoulli random
variables [13, 22, 2]. The previous best-known lower bound is Θ(√q) due to a simple construction
of [28] (which uses i.i.d. Bernoulli random variables, and writes the construction as the intersection
of partition matroids).

We establish an improved lower bound of q1/2+Ω(1/ log log q) by writing the construction of [28] as
the intersection of asymptotically fewer partition matroids. We accomplish this via an improved
upper bound on the product dimension of a graph with pp disjoint cliques of size p, using recent
techniques developed in [5].
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1 Introduction

Consider a gambler who faces the following challenge: There is a sequence of n independent
random variables X1, . . . , Xn, and a set system I of feasibility constraints over [n]. The
gambler knows I, and the distribution Di of each Xi, but not its realization. One at a time,
Xi will be drawn from Di and revealed to the gambler, at which point she must immediately
and irrevocably accept or reject the element. At all times, the set A of accepted elements
must be in I (meaning that if A ∪ {i} /∈ I, the gambler must reject i). The gambler’s payoff
at the end of the game is

∑
i∈A Xi.

The gambler’s goal is to design an algorithm that maximizes her expected reward, and
competes against a prophet. The prophet knows all realizations when making decisions, and
therefore achieves expected reward EX⃗←D⃗[maxS∈I{

∑
i∈S Xi}]. The ratio of the prophet’s

expected reward to the optimal gambler’s expected reward is referred to as a prophet
inequality.

Prophet inequalities have received significant attention within optimization under uncer-
tainty, and within TCS broadly, due to their similarity to online algorithms and additionally,
due to a deep connection to multi-dimensional mechanism design discovered by [11]. The
canonical question asked is the following: for a given class C of potential feasibility con-
straints, what is α(C), the best prophet inequality that can be guaranteed on any instance
with I ∈ C? [11, 3, 28, 8, 24, 18, 22, 33, 30, 25, 6, 21, 10, 13].
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In this direction, asymptotically tight (and sometimes, exactly tight) bounds are known
on α(C) for many classes of interest. For example, when C is the class of 1-uniform matroids1,
α(C) = 2 [29, 35]. When C is the class of k-uniform matroids, α(C) = 1 + Θ(1/

√
k) [3]. When

C is the class of all matroids, α(C) = 2 [28]. See Section 1.2 for further discussion.
Perhaps the most canonical class of constraints where asymptotically-tight guarantees

remain unknown is the intersection of q matroids. Here, state-of-the-art algorithms achieve
an e(q + 1)-approximation [22], and an improved (q + 1)-approximation for the intersection of
q partition matroids [13].2 Note also that even if we restrict attention to cases where each Di

is i.i.d. Bernoulli, asymptotically better algorithms are not known. On the other hand, the
best-known lower bound of Ω(√q) comes from a simple construction of [28], where feasibility
constraints can be written as the intersection of partition matroids and are fully-symmetric
(see Section 2 for a formal definition), and the distributions are i.i.d. Bernoulli. Our main
result provides the first improvement on their lower bound.

▶ Theorem 1. For any q, let CPartInt(q) be the class of feasibility constraints that are the
intersection of q partition matroids. Then α(CPartInt(q)) ≥ q1/2+Ω(1/ log log q).

While the quantitative improvement in Theorem 1 over Ω(√q) is relatively minor, we
highlight several aspects of the significance of our approach below.

1.1 Context and Technical Highlights
First, we note that the construction and analysis of [28] is exceptionally simple, and has
not previously been improved. Specifically, for any p, their construction provides a prophet
inequality instance with i.i.d. Bernoulli distributions where:
(a) it is straightforward to argue that the gambler achieves at most an Ω(p) fraction of the

prophet’s expected reward, and
(b) it is reasonably simple (although non-trivial) to argue that the feasibility constraints can

be written as the intersection of p2 partition matroids.
We overview both aspects of their construction in Section 3. Their simple construction
is a canonical hard instance, and plausibly witnesses (asymptotically) the strongest inap-
proximability among matroid intersection prophet inequalities. Prior to our work, it was
plausible that p2 is the minimum number of matroids needed to write their construction.
Beyond Theorem 1, one contribution of our results is an improved analysis of this canonical
construction.

Beyond matroid intersection prophet inequalities as an application, analysis of their con-
struction has connections to a purely graph-theoretic problem in Combinatorics. Specifically,
the product dimension of a graph G is the minimum number of proper vertex colorings
of G so that every pair of non-adjacent edges in G have the same color in at least one
coloring. If Q(s, r) denotes the disjoint union of r cliques each of size s, then the number of
partition matroids needed to write the [28] construction is exactly the product dimension
of Q(p, pp) (we will formally state this when we overview their construction). Prior to our
work, the best-known upper bound on the product dimension of Q(p, pp) was p2. Our work
improves this to p2−Ω(1/ log log p), leveraging recent work on the product dimension of Q(s, r)
for r ≫ ss [5]. We overview further related work on the product dimension of Q(s, r) in
Section 1.2.

1 A 1-uniform matroid is just the collection of n singleton sets and the empty set.
2 Note that the intersection of q partition matroids is equivalent to the case where each element is a

hyperedge in a q-dimensional q-partite hypergraph, and I contains all matchings.
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Finally, we additionally note a broader agenda in our work that, to the best of our
knowledge, has not been previously studied within the TCS community: given a set system I,
what is the minimum number q of matroids I1, . . . , Iq so that I = ∩q

i=1Iq? Our work brings
advanced tools from Combinatorics to address questions of this form when we additionally
ask that all Ij are partition matroids. A stronger toolkit for this agenda will be useful to
analyze broad algorithmic questions on matroid intersections, especially in cases where it is
straightforward to construct a canonical hard instance (such as the [28] construction), but it
is not straightforward to write it as a matroid intersection.

1.2 Related Work
Krengel, Sucheston, and Garling [29] pose the first single-choice prophet inequality, and
Samuel-Cahn shows how to achieve the same optimal guarantee with an exceptionally simple
thresholding algorithm [35]. Chawla et al. identify a fundamental connection between prophet
inequalities and multidimensional mechanism design, and design novel prophet inequalities for
the case when I is the intersection of two partition matroids [11]. Following this, numerous
works identify asymptotically optimal (and sometimes, exactly optimal) prophet inequalities
for uniform matroids [3, 8, 27], arbitrary matroids [28, 22, 30], polymatroids [18], the
intersection of two partition matroids [25, 21], independent sets in graphs [24], and arbitrary
downwards-closed set systems [33]. Recent works also consider efficient approximation
schemes for the optimal gambler strategy [6], and algorithms with limited samples [8, 34, 10].

One canonical class of feasibility constraints for which an asymptotically-tight prophet
inequality remains unknown is the intersection of q matroids. On the positive side, state-
of-the-art algorithms achieve an approximation guarantee of O(q) [28, 22, 13]. For the
intersection of q arbitrary matroids, the best-known guarantee is e(q + 1) [22]. For the
intersection of q partition matroids, the best-known guarantee is q + 1 [13]. The best known
lower bound is Ω(√q), due to a simple construction of [28].3

Also related to our work is the distinction between adversarial-order prophet inequalities
vs. random-order prophet inequalities, and arbitrary product distributions vs. i.i.d. distribu-
tions. There is a very rich literature on single-choice prophet inequalities from i.i.d. distri-
butions [1, 16, 14, 34, 12, 15, 26], and an equally rich literature on random-order prophet
inequalities [20, 19, 9, 2, 23, 17, 32, 7]. However, all of these works identify constant-factor
improvements under i.i.d or random-order restrictions. Most consider settings (such as
matroids, matchings, or single-choice) where constant-factor prophet inequalities exist with
adversarial order and non-i.i.d. distributions (and therefore beyond constant-factor improve-
ments are not possible). The most relevant of these works to our results is [2], which provides
an improved prophet inequality of q + 1 (from e(q + 1)) for the intersection of q matroids
subject to random arrival order (instead of adversarial). The relevant aspect of this body
of works to our paper is that the best-known algorithms, even when restricted to instances
with i.i.d. Bernoulli random variables and intersections of q partition matroids, achieve at
best a O(q) approximation guarantee. At the same time, the hardest-known construction,
witnessing an imapproximability of Ω(√q), also uses i.i.d. Bernoulli random variables and is
the intersection of q partition matroids. We emphasize this aspect when stating our main
results.

3 Incidentally, [28] mistakenly claim a lower bound of Ω(q) in their paper. This mistake, which was later
realized by the authors, does not affect any of the other results in the paper, which include an O(q)
prophet inequality for intersection of q matroids. However, it does quantitatively affect the obtained
lower bound, which was used to claim that the algorithm is tight. We elaborate on this when we
overview their construction.
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Our results provide improved upper bounds on the product dimension of Q(p, pp), the
disjoint union of pp cliques of size p. Our result leverages recent progress of [5] on the product
dimension of Q(s, r) when r ≫ ss. Prior to their work, [31, 4] nail down Q(2, r).

1.3 Summary and Roadmap
We improve the best-known lower bound on matroid intersection prophet inequalities to
q1/2+Ω(1/ log log q), via an improved upper bound of p2−Ω(1/ log log p) on the product dimension
of Q(p, pp).

This paper is structured as follows: After providing the required definitions in Section 2,
we provide the known connection between the product dimension and matroid intersection
prophet inequalities in Section 3. We then overview the framework of [5] in Section 5 and
present our improvement in Section 4. We finish with some concluding remarks in Section 6.

2 Preliminaries

Basic Notation

We use [a, b] to denote the set of integers between a and b including a and b. We also use [n]
in place of [1, n] to denote the set of integers {1, . . . , n}. For prime p, we interchangeably
view Zp as the field Z/pZ and the set [0, p − 1]. The notion considered will be clear from
context.

Refresher on Matroids

A set system I over [n] is a matroid if I is downwards-closed (for all S ⊆ T , T ∈ I ⇒ S ∈ I),
non-trivial (∅ ∈ I), and satisfies the augmentation property (for all S, T ∈ I, if |T | > |S|,
there exists an i ∈ T \ S such that S ∪ {i} ∈ I). A partition matroid I partitions [n] into
disjoint sets S1, . . . , Sk, and deems a set T ∈ I if and only if |T ∩ Si| ≤ 1 for all i. The
intersection of q matroids is a set system I that can be written as I = ∩q

j=1Ij , where each Ij

is a matroid. If each Ij is a partition matroid, we will call this the intersection of q partition
matroids. Observe that I is an intersection of q partition matroids if and only if there exists
a q-partite q-dimensional hypergraph with edges as elements of [n] so that a set S of edges is
feasible if and only if they form a matching.4

2.1 Approach to Bound Product Dimension
Product Dimension

Recall that the product dimension of a graph G is the minimum number of proper colorings
of the vertices of G such that for every non-adjacent pair (u, v) ∈ V (G), they share the
same color in at least one coloring. We’ll use the notation PD(s, r) to refer to the product
dimension of the graph consisting of r disjoint cliques of size s. Our approach to upper
bound PD(s, r), also used in [5], is based on the following definitions:

4 To see one direction, let G = (V1 ⊔ . . . ⊔ Vq, E) be a q-partite q-dimensional hypergraph. For each j,
define a partition matroid Ij that partitions edges by which node in Vj they are adjacent to. To see the
other direction, let I1, . . . , Iq be partition matroids. Make a q-partite q-dimensional hypergraph with
nodes V1, . . . , Vq, where |Vj | is equal to the number of parts in Ij . For each element i ∈ [n], make an
edge in the graph containing exactly one node in Vj , corresponding to the part containing i.
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▶ Definition 2 ((ℓ, p)-Family). Let ℓ be a non-negative integer and p be a prime. We use the
term (ℓ, p)-Family to refer to subsets of Zℓ

p.

▶ Definition 3 (S-covering). For two vectors v⃗, w⃗ ∈ Zℓ
p, and a set S ⊆ Zp, we say that the

pair v⃗, w⃗ is S-covering if for all s ∈ S, there exists an index i ∈ [ℓ] such that vi − wi = s

(mod p). We say that an (ℓ, p)-Family F is S-covering if every pair of distinct elements in
F is S-covering.

In particular, we will be interested in the following quantity:

▶ Definition 4. Define AAM(p, N) (the “Alon-Alweiss Measure”) to be the minimum ℓ such
that a Zp-covering (ℓ, p)-Family of size N exists.

Intuitively, we think of being given a fixed (large) prime p, and a target N . Our goal is to
find a family of N vectors over Zp, such that for any pair of vectors v⃗, w⃗ in the family, and
any s ∈ Zp, there exists an index i such that vi − wi = s (mod p). As the dimension ℓ of the
vectors grows, this becomes easier. Our goal is to find constructions of this form with the
smallest possible ℓ, and AAM(p, N) denotes the minimum ℓ for which this is possible. We
now confirm the relation between AAM(p, N) and the product dimension of disjoint cliques.

▶ Observation 5 ([5]). PD(p, N) ≤ AAM(p, N).

Proof. Consider a graph G with N disjoint cliques of size p. We show that if there exists a
Zp-covering (ℓ, p)-Family of size N , then there exist ℓ proper colorings of G such that any
two non-adjacent vertices in G have the some color in at least one coloring. For k ∈ [ℓ],
define coloring k to be such that vertex i in clique j is given color vj

k + i (mod p), where vj

is the j-th vector in the family. These colorings are indeed proper as the p nodes in each
clique receive distinct colors. Now, consider any two non-adjacent vertices, say vertex i in
clique j and vertex i′ in clique j′ ̸= j. We have to show that there exists k ∈ [ℓ] such that
vj

k + i = vj′

k + i′ (mod p) ⇐⇒ vj
k − vj′

k = i′ − i (mod p). However, this is true by definition
of a Zp-covering Family and the fact that j ̸= j′. ◀

Essentially, AAM(p, N) captures the minimum product dimension that can be achieved
by using exactly p colors, and by having every coloring be “cyclic” within each clique. Our
main technical results will upper bound AAM(p, N).

2.2 Matroid Intersection Prophet Inequalities
We briefly formally define terminology that we will use when discussing approximation
guarantees of prophet inequalities.

▶ Definition 6 (Approximability of a Prophet Inequality Instance). For a given prophet inequality
instance I, D1, . . . , Dn, let OptG(X⃗) denote the set of elements selected by the optimal gambler
strategy on the realizations X⃗.5 Then the approximability α(I, D1, . . . , Dn) of the instance
is:

α(I, D1, . . . , Dn) :=
EX⃗←D⃗

[
maxS∈I

{∑
i∈S Xi

}]
EX⃗←D⃗

[∑
i∈OptG(X⃗) Xi

] .

5 Note that the optimal gambler strategy is well-defined in all cases, and can be computed (not necessarily
in polynomial time) via dynamic programming.
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We will also use the following two quantities to refer to the approximability of a class
of prophet inequality instances. Below, Cn refers to a class of feasibility constraints on n

elements, and C := {Cn}n∈N refers to an ensemble of such classes, Pn refers to a class of
product distributions on n elements, P := {Pn}n∈N refers to an ensemble of such classes,
and Dn refers to the set of all product distributions on n elements.

α(C) := sup
n∈N,I∈Cn,D⃗∈Dn

{α(I, D⃗)}.

α(C, P) := sup
n∈N,I∈Cn,D⃗∈Pn

{α(I, D⃗)}.

For example, when C represents the class of all one-uniform matroids and P represents the
class of i.i.d. distributions, we have α(C) = 2 [29, 35] and α(C, P) ≈ 1/0.745 [16]. Similarly,
when C represents the class of all matroids, we have α(C) = 2 [28].

3 Connecting Prophet Inequalities to AAM(p, N)

The following classes of feasibility constraints, and of distributions, are relevant for implica-
tions of our results:

CMatInt(q): feasibility constraints that can be written as the intersection of q matroids.
CPartInt(q): feasibility constraints that can be written as the intersection of q partition
matroids. Note that this is equivalent to the class of all feasibility constraints that can
be written with elements as hyperedges in a q-partite q-dimensional hypergraph, and
feasible sets as matchings in that hypergraph.
CSymPartInt(q): feasibility constraints that are fully symmetric and can be written as
the intersection of q partition matroids. For a permutation σ over the elements and
a set of feasibility constraints I, we say that I is invariant under σ if for all sets S,
S ∈ I ⇔ σ(S) ∈ I. We say that I is fully symmetric if for all elements x, y, there exists
a permutation σ such that σ(x) = y and I is invariant under σ.
Piid: The class of all i.i.d distributions
PiidBernoulli: The class of all i.i.d. Bernoulli distributions.

We first summarize the positive results known for prophet inequalities in these settings.

▶ Theorem 7 ([22, 2, 13]). The following bounds are known on the approximability of prophet
inequalities for the intersection of q matroids:

α(CMatInt(q)) ≤ e(q + 1) [22], and α(CMatInt(q)) ≤ 4(q − 2) [28].
α(CPartInt(q)) ≤ q + 1 [13].
α(CMatInt(q), Piid) ≤ q + 1 [2].
No improvements are known for further special cases, even α(CSymPartInt(q), PiidBernoulli).

In terms of lower bounds on α(CMatInt(q)), a construction of [28] establishes the following.
We repeat the construction below for completeness.

▶ Proposition 8 ([28]). Let q > 0 be given and let p > 0 be the largest such that q ≥
AAM(p, pp). It holds that:

α(CSymPartInt(q), PiidBernoulli) ≥ (1 − 1/e)p/2.

Proof. Consider a graph G with pp disjoint cliques of size p. As q ≥ AAM(p, pp), we
conclude from Observation 5 that q ≥ PD(p, pp). Thus, there exist q proper colorings of G

such that two vertices are adjacent if and only if they have different colors in all q colorings.
The colorings define q partitions of the vertices in G and for all k ∈ [q], we let Ik be the
partition matroid over the partition defined by the k-th coloring. Let I = ∩q

i=1Ii.



R. R. Saxena, S. Velusamy, and S. M. Weinberg 95:7

We first claim that I is just the set of all cliques in G. Indeed, a subset of vertices S ∈ I
if and only if S ∈ Ik for all k ∈ [q]. The latter happens if and only if the vertices in S have
have different colors in all q colorings which by definition, happens if and only if they form a
clique.

It follows from the definition of G and the above claim that I is fully symmetric.6 Now,
consider the prophet inequality instance whose elements are vertices in G, the feasibility
constraints are given by I and distribution for all elements is i.i.d. Bernoulli, and equal to 1
with probability 1/p. The prophet for this instance simply selects the clique with the most
number of 1s. As with probability 1 − (1 − 1/pp)pp ≥ 1 − 1/e, there exists some clique with
all p vertices set to 1, the prophet’s expected reward is at least (1 − 1/e)p.

However, as soon as the gambler accepts some element, they are locked into a clique,
without knowing the value of the other elements of the clique. The reward from the accepted
element is at most 1, and the expected reward from the rest of the clique is at most
1 − 1/p. Therefore, the optimal gambler strategy gets expected reward at most 2. Thus the
multiplicative gap between the prophet and the optimal gambler is at least (1 − 1/e)p/2 and
the proposition holds. ◀

Proposition 8 provides a path towards showing that7 the algorithms referenced in The-
orem 7 are asymptotically tight, by showing strong upper bounds on AAM(p, pp). Here is
what is known about AAM(p, N) prior to our work:

▶ Theorem 9. The following are upper and lower bounds on AAM(p, N), for prime p:
1. AAM(p, N) ≤ p · ⌈logp(N)⌉. This implies that AAM(p, pp) ≤ p2.
2. For sufficiently large p, AAM(p, N) ≤ max{p1+5 log2 log2 p, log(2− 1

log2 p

)N} [5].

3. AAM(p, N) ≥ max{p, log(2+ 12
p−6 )(N)}.

Proof. We prove each item in turn:
1. As AAM(p, N) is monotone in N , we can assume that N is a power of p without losing

generality. Define ℓ = p · logp(N) for convenience. For i ∈ [N ], define the ℓ length
vector whose first ℓ/p coordinates are the representation of i in base p, the second ℓ/p

coordinates are the representation of i in base p multiplied by 2 modulo p and so on. It
suffices to show that (ℓ, p)-Family consisting of all these vectors in Zp-covering. Indeed,
for any two vectors i ̸= i′ differ in at least one coordinate of their base p-representation
and let ∆ ̸= 0 be the difference between the two values of this coordinate modulo p. By
our construction, the vectors i, i′ cover all multiples of ∆ modulo p which is all of Zp (as
p is a prime).

2. Note that if N ≤ pp5 log2 log2 p , the result follows from Item 1. If not, we define ℓ =
log(2− 1

log2 p

)N and observe that ℓ > p5 log2 log2 p. By the definition of AAM(·) (Defini-
tion 4, it suffices to show that there exists a Zp-covering (ℓ, p)-Family of size N . This
essentially is the result of [5], and is recapped as Theorem 16 below.

6 To see this, let τ : [pp] → [pp] permute cliques, and ρ : [p] → [p] permute within a clique. Then for
any τ, ρ, the feasibility constraints are invariant under the permutation στ,ρ that defines στ,ρ((i, j)) :=
(ρ(i), τ(j)). Now, for any (i, j), (i′, j′), there is a ρ with ρ(i) = i′ and τ with τ(j) = j′. For this (τ, ρ),
στ,ρ(i, j) = (i′, j′), and the constraints are invariant under στ,ρ. Therefore, the constraints are fully
symmetric.

7 [28] also mistakenly claim that AAM(p, pp) = Θ(p). If true, this would imply that all the quantities
{α(CMatInt(q)), α(CPartInt(q)), α(CSymPartInt(q)), α(CMatInt(q), PiidBernoulli), α(CPartInt(q), PiidBernoulli),
α(CSymPartInt(q), PiidBernoulli)} are Θ(q). However, this part of their proof has a subtle error.
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3. AAM(p, N) ≥ p simply because in order for two distinct vectors to possibly be Zp-covering,
they must have at least p coordinates. We now show that AAM(p, N) ≥ log(2+ 12

p−6 )(N).
To this end, let x be the largest integer at most p/4 − 1 and let ℓ > 0 be arbitrary such
that there exists a Zp covering (ℓ, p)-Family F of size N . By our choice of x, we have
that x > p/4 − 2 and there exists y ∈ Zp that is not in the set {−2x, . . . , 2x} (mod p).
We first claim that for all z⃗ ∈ Zℓ

p, there is at most one element v⃗ of F such that
zi − vi ∈ {−x, . . . , x} (mod p) for all i ∈ [ℓ]. Indeed, if there were two distinct vectors
v⃗ ̸= w⃗, then this pair only covers the set {−2x, . . . , 2x}, and does not cover y ∈ Zp, a
contradiction. With this claim and the fact that x > p/4 − 2, we can upper bound N as:

N ≤
(

p

2x + 1

)ℓ

≤
(

2p

p − 6

)ℓ

=⇒ ℓ ≥ log(2+ 12
p−6 ) N. ◀

4 Proof of Main Result

4.1 Overview of The Proof
We now give a brief overview covering all of our main ideas. Our goal is to show Theorem 1
that is a lower bound for prophet inequalities for the intersection of q partition matroids. As
mentioned in the introduction, we shall follow the approach of [28, 5] that says that such a
lower bound follows if we prove strong enough upper bounds on the measure AAM(p, N)
from Definition 4. Specifically, we shall employ Proposition 8 that shows that if we have
have a better than quadratic bound on AAM(p, pp), say we show that AAM(p, pp) ≤ p2−δ,
then we also get α(CSymPartInt(p2−δ), PiidBernoulli) ≥ Ω(p), or equivalently, that

α(CSymPartInt(q), PiidBernoulli) ≥ q1/2+O(δ),

and Theorem 1 follows.

4.1.1 Getting a Quadratic Bound
In order to understand how we get a better than quadratic bound on AAM(p, pp), it will be
instructive to first understand how to get a quadratic bound and show that AAM(p, pp) ≤
Õ(p2) (such a bound, using a different argument, was also observed by the authors of [28]).
Recall from Definition 4 that in order to show such a bound, we have to show that there
exists a Zp-covering (Õ(p2), p)-Family of size pp. We construct such a family by starting
with a {0, 1}-covering (2, p)-Family of size 2, namely the family F0 consisting of the vectors
(0, 0) and (0, 1), and using it to get families with better parameters. We define two different
boosting operations:
1. Size for length boosting: This operation increases the size of the family by a power

of 2, i.e., takes it from N to N2, at the cost of also increasing the length ℓ be a factor
2. That is, we want to start with an S-covering (ℓ, p)-Family F of size N and get an
S-covering (2ℓ, p)-Family F ′ of size N2. To do this, define the family F ′ to have all
possible N2 concatenations obtained by concatenating 2 vectors from the family F and
observe that F ′ satisfies all the required properties.

2. Cover for length boosting: This operation increases the number of elements covered
by a factor of 2 at the cost of also increasing the length ℓ be a factor 2. That is, we want to
start with an S-covering (ℓ, p)-Family F of size N and get an S′-covering (2ℓ, p)-Family F ′
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of size N , where |S′| = 2 · |S|. To do this, sample a uniformly random element s ∈ Zp \{0}
and define the family F ′ to have the vector (v⃗, s · v⃗) for every vector v⃗ ∈ F . Observe that
the new family F ′ shatters all the elements in S′ = S ∪ sS.8 and has length 2ℓ.
In general, it may happen that |S′| < 2 · |S| if we are unlucky in our sample of s or if the
set S that we started with was very large. Thus, this boosting operation is not without
“flaws”. Nonetheless, there are ways one can overcome these flaws when we use it in the
actual construction by, say, ensuring all sets S have a certain form and/or being clever in
the choice of the element s. We elide these details for now and assume that this operation
indeed satisfies |S′| = 2 · |S|.

Starting from our family F0 and using these two operations log2 p times (for a total of
2 log2 p operations in total) each indeed gives us a Zp-covering (Õ(p2), p)-Family of size pp,
as claimed.

4.1.2 Getting a Better Bound
Our main idea towards getting a better bound is to “combine” the two operations in Items 1
and 2 in order to save on some of the 2 log2 p operations. To this end, we recall the
construction of [5] (recapped in Theorem 16) that shows that if ℓ is huge as compared to p,
say ℓ ≥ p5 log2 log2 p, then there exists a Zp-covering (ℓ, p)-Family of size (almost) 2ℓ. Observe
that the above construction actually does better than simply using the operations in Items 1
and 2. Indeed, if we were to use the operations in Items 1 and 2 to get the same parameters,
we would end up with an (ℓ · p, p)-Family instead of the (ℓ, p)-Family that they get. If
ℓ = p5 log2 log2 p, the saving is a

(
1 − O

( 1
log2 log2 p

))
factor in the exponent, which is exactly

what we want.
The problem is that their requirement that ℓ ≥ p5 log2 log2 p is already much larger than

the quadratic bound we are hoping to beat, and therefore unaffordable. However, they also
use this larger value of ℓ to get a family of size 2ℓ which is also much larger than the pp size
family that we want to construct. Is it possible to get around their requirement at the cost
of reducing the size of the obtained family?

The answer is yes, and our approach to do this starts by applying their construction for
a value k that satisfies 2kO(log2 log2 k) = pp. As log2 log2 k and log2 log2 p are the same order
of magnitude, this does not affect our improvement in the bound. At the same time, this
reduces their requirement to ℓ ≥ k5 log2 log2 k = p log2 p which is something we can afford and
also keeps the size of the obtained family above pp, as needed. However, the problem is that
the obtained family does arithmetic over Zk (instead of Zp) and is only Zk-covering (instead
of Zp-covering). We fix these two problems next.

1. Fixing the arithmetic: Even though Zk ⊆ Zp and thus, every element of Zk can be
“naturally” seen as an element of Zp, observe that we do not have the guarantee that a
Zk-covering (ℓ, k)-Family “naturally” implies a Zk-covering (ℓ, p)-Family. This is because
of the fact that the difference of two numbers a and b modulo k may not be the same as
their difference modulo p.
However, observe that if a ≥ b (as an integer), then it is indeed the case a − b (mod k) is
the same as a − b (mod p), and thus the transformation follows naturally. However, if
a < b (as an integer), then a − b (mod k) is the same as a + k − b (mod p) and we do

8 We define sS to be the set sS =
{

s · s′ (mod p) | s′ ∈ S
}

.
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not get the required guarantee. The way we fix this is to replace a by a vector of length
log2 k whose j-th entry, for j ∈ [log2 k] is a, if the j-th bit in the binary representation of
a is 1 and a + k otherwise (and likewise for b).
Now, if a < b (as an integer), there exists a j ∈ [log2 k] such that the j-th bit in the
binary representation of a is 0 and the j-th bit in the binary representation of b is 1.
Then, the difference in the j-th entry of the vectors is exactly a + k − b (mod p), as
desired. This does blow up the length of the vector by a factor of log2 k ≤ log2 p but as
we save a factor of pΩ

(
1

log2 log2 p

)
≫ log2 p using the [5] construction, this is affordable.

2. Fixing the set covered: It remains to boost the covered set from Zk to Zp, and we
do this using ideas similar to those described in the boosting operation in Item 2 above.
Specifically, we take M = p·log2 p

k random elements s1, . . . , sM and replace each vector v⃗

in the original family with the vector
(
s1 · v⃗, . . . , sM · v⃗

)
.9 This ensures that new family

covers the set s1Zk ∪ · · · ∪ sMZk, which can be shown to be equal to Zp with non-zero
probability. Thus, there exists a choice of s1, . . . , sM such that the resulting family will
be Zp-covering, as desired.

4.1.3 Limitations
We finish this section with some remarks on the limitations of our two boosting operations.
Observe that our two operations are extremely simple, only requiring concatenation and
scaling of vectors in the original family. On the other hand, the [5] construction we use as a
starting point is significantly more involved. One may wonder whether it is possible to get a
better than quadratic bound using simple concatenation procedures alone and not work with
the [5] construction at all.

In Section 4.4, we show that this is not possible, by studying a broad class of concaten-
ation procedures, that we call agnostic, and showing that they do not give any significant
improvement over applying the two boosting operations in Items 1 and 2 separately. This
shows not only that we must use something more involved like [5] but also that our procedure
to fix the set covered in Item 2 in Section 4.1.2 is almost tight amongst a large class of
procedures. We conclude that the possible avenues towards better bounds on AAM(p, pp)
using a similar approach are:
(a) a better starting point than Theorem 16, or
(b) a vastly different boosting procedure.

4.2 A Key Theorem
In this section, we prove Theorem 1. The core of the proof is the following improved bound
on AAM(p, pp):

▶ Theorem 10. For all primes p > p0 large enough, we have:

AAM(p, pp) ≤ p
2−Ω

(
1

log2 log2 p

)
.

Before proving Theorem 10, we show why it implies Theorem 1.

9 Recall that we only want to increase the size of the set covered by a factor of p
k and we increase the

length by a factor of M = p·log2 p
k . The extra log2 p factor is again affordable as it is much smaller than

p
Ω
(

1
log2 log2 p

)
.
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Proof of Theorem 1. The inequality α(CPartInt(q)) ≥ α(CSymPartInt(q), PiidBernoulli)
is straightforward from our definitions. Thus, it suffices to show that
α(CSymPartInt(q), PiidBernoulli) ≥ q1/2+Ω(1/ log2 log2 q). Owing to Proposition 8, this
follows if we show that for all large enough q, there exists p ≥ q1/2+Ω(1/ log2 log2 q) such
that AAM(p, pp) ≤ q. This is because, by Theorem 10 and with an appropriate choice of
constants, we have:

AAM(p, pp) ≤ p
2−Ω

(
1

log2 log2 p

)
≤ q

(
1
2 +Ω

(
1

log2 log2 q

))
·
(

2−Ω
(

1
log2 log2 p

))
≤ q. ◀

4.3 Proof of Theorem 10
We now prove Theorem 10 by showing the following stronger theorem, that proves a bound
on AAM(p, N), for general N .

▶ Theorem 11. For all p, N large enough that satisfy N ≤ 2plog2 log2 p , we have:

AAM(p, N) ≤ p log2 p · (log2 N)
(

1−Ω
(

1
log2 log2 log2 N

))
.

Indeed, Theorem 11 implies Theorem 10, as plugging N = pp gives:

AAM(p, pp) ≤ (p log2 p)2−Ω
(

1
log2 log2 p

)
≤ p

2−Ω
(

1
log2 log2 p

)
.

Thus, it suffices to show Theorem 11, which we do in the rest of this section. Fix p, N as
in the statement of Theorem 11 and define ℓ1 = 2 log2 N and k to be the largest prime
that satisfies k5 log2 log2 k ≤ log2 N . As it is well known that there is a prime between m

and 2m for every integer m and we have N ≤ 2plog2 log2 p , our choice of k implies that
(log2 N)

1
15 log2 log2 log2 N ≤ k ≤ p and thus, Theorem 11 follows if we show that:

AAM(p, N) ≤ p log2 p log2 N√
k

. (1)

Henceforth, we denote the right hand side in Equation (1) by ℓ∗. We start by applying
Theorem 16 (which can be applied as N , and therefore k, is large enough) with k and ℓ = ℓ1
to get that there exists Zk-covering (ℓ1, k)-Family F1 of size at least N .

The existence of F1 makes some progress towards Equation (1), which by Definition 4
requires us to show Zp-covering (ℓ∗, p)-Family of size N . However, a key difference is that
the arithmetic in the family F1 is done modulo k while we desire a family with arithmetic
modulo p. We show how to do this in the next lemma, that also blows up ℓ1 by a small
factor. Define ℓ2 = 2ℓ1 · log2 k.

▶ Lemma 12. There exists a [0, k − 1]-covering (ℓ2, p)-family F2 of size N .

Proof. For every u⃗ ∈ F1 (which we interpret as an element of Zℓ1
p ), we construct a vector

v⃗ ∈ Zℓ2
p and define F2 to be the set containing all the constructed v⃗. To construct v⃗ from u⃗,

we use the following procedure: To start, define v⃗ to be 2 log2 k copies of u⃗, concatenated to
each other. We keep the last log2 k copies unchanged10 but update the first log2 k copies. In
this update, for copy j ∈ [log2 k], we add k to every coordinate whose j-th bit in its binary
representation is 0. More formally, for i ∈ [ℓ1], if the j-th bit in the binary representation
of ui is 0, we set coordinate i in copy j to be ui + k (mod p), and keep it unchanged as ui

otherwise.

10 Actually, only 1 out of these log2 k are needed to make the argument work. The remaining are used
only to ensure that the length of v⃗ is as needed.
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Due to the unchanged copies, the constructed v⃗ are all distinct, and thus the size of F2 is
N , as needed. It remains to show that F2 is [0, k − 1]-covering. Consider any two distinct
vectors v⃗, v⃗′ ∈ F2 and let u, u′ be the elements of F1 they are constructed from. We need
to show that for all k′ ∈ [0, k − 1], there is a coordinate where v⃗ and v⃗′ differ by k modulo
p. For this, note first that as F1 is a Zk-covering (ℓ1, k)-Family, there exists a coordinate
i ∈ [ℓ1] such that ui − u′i = k′ (mod k). Viewing ui and u′i as integers, this implies that
either ui − u′i = k′ or ui − u′i = k′ − k. As the former case implies that ui − u′i = k′ (mod p),
we are done by taking coordinate i in the last copy of v⃗ and v⃗′.

For the latter case, note that this only happens if ui < u′i (as an integer). Thus, there
exists j ∈ [log2 k] such that the j-th bit in the binary representation ui is 0 and the j-th bit
in the binary representation u′i is 1. This means that coordinate i in the copy j of v⃗ is ui + k

(mod p) and coordinate i in the copy j of v⃗′ is u′i. It follows that the difference is k′ (mod p)
as desired. ◀

Finally, we use F2 to construct an Zp-covering (ℓ∗, p)-Family of size N , finishing the
proof. We will do this by creating many copies of all vectors in F2 and “scaling” each copy
appropriately. To show that such a scaling is possible, we need the following lemma:

▶ Lemma 13. There exists a set S ⊆ Zp with |S| ≤ p ln p
k−1 such that for all g ∈ Zp, there exist

i ∈ [0, k − 1] and j ∈ S such that i · j = g (mod p).

Proof. We prove this via the probabilistic method. Draw p ln p
k−1 elements (as k ≤ p, p ln p

k−1
can be made an integer by multiplying by a small constant) from Zp uniformly at random
with replacement and let S be the set of these elements. Clearly, we have |S| ≤ p ln p

k−1 and it
suffices to show that the probability that there exists g ∈ Zp such that for all i ∈ [0, k − 1],
j ∈ S we have i · j ≠ g (mod p) is strictly smaller than 1. For this we union bound over all
the p values of g and show that for a fixed g, the probability that for all i ∈ [0, k − 1], j ∈ S

we have i · j ̸= g (mod p) is strictly smaller than 1/p.
This is clearly true for g = 0 as the fact that i can be 0 implies the stated event will never

happen. If g ̸= 0, the probability the stated even happens is exactly the probability that
none of the elements g · 1−1, . . . , g · (k − 1)−1 (inverses modulo p) are ever sampled, which is(

1 − k−1
p

) p ln p
k−1

< e− ln p = 1/p. ◀

We are now ready to finish the proof of Theorem 11.

Proof of Theorem 11. As hinted above, we create many copies of all vectors in F2 and
scale each copy appropriately. Specifically, let S be the set promised by Lemma 13 and let
s1, . . . , s|S| be the elements of S. Define ℓ3 = |S| · ℓ2. Construct an (ℓ3, p)-family F3 of size
N by constructing, for every v⃗ ∈ F2, a vector w⃗ =

(
s1 · v⃗, . . . , s|S| · v⃗

)
and adding it to S. As

Lemma 13 implies that there are non-zero elements in S, the constructed w⃗ are different for
every v⃗, and thus the size of F3 equals that of F2, which is N .

We claim that F3 is Zp-covering. Consider any two distinct vectors w⃗, w⃗′ ∈ F3 and let
v⃗, v⃗′ be the elements of F2 they are constructed from. We need to show that for all g ∈ Zp,
there is a coordinate where w⃗ and w⃗′ differ by g modulo p. Let i ∈ [0, k − 1] and j ∈ |S|
be such that i · sj = g (mod p) and note that these exist by Lemma 13. Note first that
as F2 is a [0, k − 1]-covering (ℓ2, p)-Family, there exists a coordinate a ∈ [ℓ2] such that
v⃗a − v⃗′a = i (mod p). This means that in copy j of w⃗ and w⃗′, the i-th coordinates differ by
sj · (⃗va − v⃗′a) = i · sj = g (mod p), as desired. As k is large enough, we also have:

ℓ3 = |S| · ℓ2 ≤ p ln p

k − 1 · ℓ2 = p ln p

k − 1 · 4 · log2 k · log2 N < ℓ∗,

and Equation (1) follows and we are done. ◀
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4.4 Limitations of Our Approach
This section fleshes out the limitations of our approach that we discussed at a high level in
Section 4.1.3. We start by defining an agnostic concatenation procedure.

▶ Definition 14 (Concatenation Procedure). Let z, k, k′, p be integers such that k ≤ k′ ≤ p.
A (z, k, k′, p)-agnostic concatenation procedure takes as input a sequence (α1, . . . , αz), where
each αj ∈ Zp\{0} and an S-covering (ℓ, p)-Family V, for some ℓ > 0 and some set S ⊆ Zp\{0}
of size k11 and outputs a set S′ ⊆ Zp \{0} of size k′ and the largest S′-covering (zℓ, p)-Family
V ′ that is a subset of the set W := {(α1v⃗1, . . . , αz v⃗z) | ∀j ∈ [z] : v⃗j ∈ V}.

For η > 0, we say that the concatenation procedure boosts the size by η if |V ′| ≥ |V|η

regardless of the choice of V (and therefore, also regardless of ℓ and S).

Observe that the two boosting procedures mentioned in Section 4.1.1 are indeed agnostic
concatenation procedures. The first one is a (2, k, k, p)-agnostic concatenation procedure
(for all integers k) that boosts the size by 2 as it increases the length by a factor of 2 and
squares the size. The second one is a (2, k, 2k, p)-agnostic concatenation procedure (for all
integers k <

√
p) that boosts the size by 1 as it increases length by a factor of 2 and keeps

the size unchanged. Note that we assume k <
√

p in the second one as that ensures that for
all sets S ⊆ Zp \ {0} of size k, there exists s ∈ Zp such that S and sS are disjoint, as needed
for Item 2 in Section 4.1.1. To avoid such issues, we assume that k is small enough in this
section.

By combining these two procedures in sequence, it is possible to get for any integers a

and b, a (2a+b, k, 2bk, p)-agnostic concatenation procedure that boosts the size by 2a. We
show that, up to constants, this is the best possible bound for all agnostic concatenation
procedures.

▶ Proposition 15. Let z, k, k′, p be integers and k ≤ k′ ≤ p. Every (z, k, k′, p)-agnostic
concatenation procedure boosts the size by at most 4kz

k′ (even for small k).

Proof. Fix an (z, k, k′, p)-agnostic concatenation procedure and a sequence (α1, . . . , αz). Let
V be the [0, k − 1]-covering (ℓ2, p)-family F2 constructed in Lemma 12. We run the procedure
on (α1, . . . , αz) and V and let S′ and V ′ be its output.

Observe that every coordinate of every vector in V lies in [0, 2k − 1] (mod p). This
immediately implies that for any v⃗, w⃗ ∈ V and every coordinate i, we have vi − wi ∈
[1 − 2k, 2k − 1] (mod p), and in particular there are at most 4k − 1 possibilities. Use this
to conclude that for all j ∈ [z], the set Sj = {αj · (vi − wi) | i ∈ [ℓ2], v⃗, w⃗ ∈ V} satisfies
|Sj | < 4k.

Next, define S′ to be the set output be the (z, k, k′, p)-agnostic concatenation procedure
and recall that |S′| = k′ and 0 /∈ S′. As |Sj | < 4k for all j ∈ [z], there exists a g′ ∈ S′ such
that g′ ∈ Sj for at most 4kz

k′ many values of j ∈ [z]. Define T = {j ∈ [z] | g′ ∈ Sj} to be the
set of these values and note that |T | ≤ 4kz

k′ .
Now, consider any two elements v⃗ := (α1v⃗1, . . . , αz v⃗z), w⃗ := (α1w⃗1, . . . , αzw⃗z) of the set

V ′ output by the (z, k, k′, p)-agnostic concatenation procedure. By definition, the pair (⃗v, w⃗)
is S′ covering and therefore, there exists j ∈ [z] and i ∈ [ℓ2] such that αj · (v⃗j,i − w⃗j,i) = g′

(mod p). As g′ ∈ S′ implies g′ ̸= 0, this is only possible if v⃗j ̸= w⃗j and g′ ∈ Sj =⇒ j ∈ T .
Overall, we get that for any two vectors v⃗, w⃗ ∈ V ′, there exists j ∈ T such that v⃗j ̸= w⃗j .

However, this means that |V ′| ≤ |V||T | ≤ |V|
4kz
k′ and the lemma follows. ◀

11 That 0 /∈ S is without loss of generality as getting a 0-covering family is easy.
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5 Summary of [5]

The goal of this section is to prove the following theorem, which is a quantitative statement
of the main result of [5].

▶ Theorem 16. There exists a sufficiently large p1 such that for all primes p > p1 and all
ℓ ≥ p5 log log p, there is a Zp-covering (ℓ, p)-Family of size at least

(
2 − 1

log p

)ℓ

.

To prove Theorem 16, we actually show the following result which implies it.

▶ Theorem 17. There exists a sufficiently large p1 such that for all primes p > p1, there
exists an ℓ(p) ≤ p4 log log p for which there is a (Zp \ {0})-covering (ℓ, p)-Family A(p) of size

at least
(

2 − 0.75
log p

)ℓ(p)
.

We argue why Theorem 16 follows from Theorem 17.

Proof of Theorem 16 assuming Theorem 17. Fix p, ℓ as in Theorem 16. Let ℓ′ be the
largest integer multiple of ℓ(p) that is strictly smaller than ℓ. We claim that their exists a

(Zp \ {0})-covering (ℓ′, p)-Family A′ of size at least
(

2 − 0.75
log p

)ℓ′

. Indeed, consider the set of
all vectors formed by concatenating ℓ/ℓ′ elements of A(p) together. This set clearly has size(

2 − 0.75
log p

)ℓ

, and is clearly still (Zp \ {0})-covering.
Next, define an (ℓ, p)-Family A to the be same as the family A′ except that each element

in A′ is appended by ℓ−ℓ′ zeros. Note that A is Zp-covering because A′ is (Zp \ {0})-covering.

Thus, the only remaining step in the proof is to show that |A| ≥
(

2 − 1
log p

)ℓ

. This is because
our choice of ℓ′ implies:

|A| = |A′| ≥
(

2 − 0.75
log p

)ℓ′

≥
(

2 − 0.75
log p

)ℓ−p4 log log p

≥
(

2 − 1
log p

)ℓ

.

The final inequality holds for sufficiently large p, which defines p1. ◀

The rest of this section is dedicated to proving Theorem 17. Fix p as in the statement
of Theorem 17. We first capture the main steps of [5] in Sections 5.1 and 5.2, and finally
establish Theorem 17 in Section 5.3.

5.1 Families Closed Under Multiplication
For a set S ⊆ Zp and a value a ∈ Zp, we use aS to to denote the set aS = {as | s ∈ S}. The
main result of this section is Lemma 19, which provides a technique to turn a (structured)
S-covering family into an (aS ∪ S)-covering family for any a ∈ Zp. This procedure is a
key step that will be applied repeatedly to grow from a family that covers a small set to a
Zp-covering family.

▶ Definition 18. Let ℓ > 0 be an integer and V be an (ℓ, p)-Family. We say that V is closed
under scalar multiplication if for all a ̸= 0 ∈ Zp and all v⃗ ∈ V, we have av⃗ ∈ V.

▶ Lemma 19. Let ℓ > 0 be an integer and V be an (ℓ, p)-Family closed under scalar
multiplication. Let S ⊆ Zp. If there exist integers N, K > 0 such that V can be partitioned
into K (disjoint) S-covering families V = V1 ∪ · · · ∪ VK , each of size at least N , then, for all
m ≥ 0 and all a ̸= 0 ∈ Zp, there exists an ((m − 1)ℓ, p)-Family V ′ ⊆ Vm−1 of size at least
Nm

|V| that is (aS ∪ S)-covering.
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Proof. In this proof, for z > 0, it shall sometimes be convenient to view vectors in Zzℓ
p and

elements of
(
Zℓ

p

)z. For a vector v⃗ ∈ V, we define the value k(v⃗) to be the unique value
k ∈ [K] such that v⃗ ∈ Vk. Observe that k(v⃗) is well defined as V1 ∪ · · · ∪ VK form a partition
of V. Let w⃗0 ∈ V be arbitrary. For all z > 0, define the (zℓ, p) family Wz as the set of all
z-tuples (w⃗1, . . . , w⃗z) of elements of V such that for all i, w⃗i is in the same part as a−1w⃗i−1
(observe that because V is closed under scalar multiplication, a−1w⃗i−1 ∈ V). That is:

Wz =
{

w⃗ ∈ Vz | ∀i ∈ [z] : w⃗i ∈ Vk(a−1w⃗i−1)
}

.

We claim that for all z > 0, we have |Wz| ≥ Nz. Indeed, observe that when z = 1,
W1 consists of all w⃗1 such that w⃗1 is in the same part as a−1w⃗0. Whatever part this is, it
contains at least N elements (by hypothesis in the lemma statement), so therefore the claim
holds for z = 1. We now prove the claim for all z by induction. Indeed, observe that every
element of Wz is an element (w⃗1, . . . , w⃗z−1) of Wz−1 concatenated by some w⃗z in the same
part as a−1w⃗z−1. Whatever part this is, is has size at least N by hypothesis. Therefore, for
every element in Wz−1, there are at least N ways to extend it to an element in Wz, and each
of these extensions are unique. This implies that |Wz| ≥ Nz for all z > 0, and in particular
that |Wm| ≥ Nm.

We now partition the elements w⃗ of the set Wm based on the value of w⃗m (the last
coordinate), and define v⃗∗ ∈ V to be such that the part corresponding to w⃗m = v⃗∗ is the
largest, breaking ties arbitrarily. We define our set V ′ using this part, specifically:

V ′ =
{

w⃗′ ∈
(
Zℓ

p

)m−1 | (w⃗′, v⃗∗) ∈ Wm

}
.

Observe that V ′ ⊆ Vm−1. Also, by our choice of v⃗∗, we have |V ′| ≥ Nm

|V| , as claimed. It
remains to show that V is (aS ∪ S)-covering. For this we recall Definition 3 and fix two
arbitrary vectors v⃗ ̸= v⃗′ ∈ V ′. As v⃗ ̸= v⃗′, there exists an i ∈ [m − 1] such that v⃗i ≠ v⃗′i. Define
is and ib to be the smallest and the largest such i, respectively. As both (v⃗, v⃗∗), (v⃗′, v⃗∗) ∈ Wm

by definition of V ′, we get (defining v⃗m = v⃗′m = v⃗∗ for convenience):

v⃗is , v⃗′is
∈ Vk(a−1w⃗is−1) and v⃗ib+1 ∈ Vk(a−1v⃗ib) ∩ V

k
(

a−1v⃗′
ib

).
As v⃗is

̸= v⃗′is
by our choice of is and we have that Vk(a−1w⃗is−1) is S-covering, we get from the

former that for all s′ ∈ S, there exists j ∈ [ℓ] such that v⃗is,j − v⃗′is,j = s′ (mod p). Similarly, as
the sets V1∪· · ·∪VK form a partition of V , the latter is only possible if k

(
a−1v⃗ib

)
= k

(
a−1v⃗′ib

)
.

However, this means that there exists k ∈ [K] such that a−1v⃗ib
≠ a−1v⃗′ib

are two elements of
Vk. As Vk is S-covering, this means that for all for all s′ ∈ aS, there exists j ∈ [ℓ] such that
v⃗ib,j − v⃗′ib,j = s′ (mod p). Combining the two results and using Definition 3, we get that V
is (aS ∪ S)-covering, as desired. ◀

5.2 Balanced Codewords
This section introduced Balanced Codewords, the main object used to build a base case
family that covers a small set, and that is structured enough to repeatedly apply until it
covers all of Zp Lemma 19.

For a non-negative integer ℓ that is a multiple of p−1, we define Bℓ to be the (ℓ, p)-Family
such that all b⃗ ∈ B contain all elements a ≠ 0 ∈ Zp the same number of times and do not
contain 0. In particular, we have that the family Bℓ is closed under scalar multiplication

▶ Lemma 20. Consider an integer ℓ > 0 that is a multiple of p − 1. Let S ⊆ Zp and A ⊆ Bℓ

be an S-covering (ℓ, p)-Family of size at least 10ℓ · log p. There exists K > 0 and a partition
Bℓ = C1 ∪ · · · ∪ CK such that for all k ∈ [K], we have that Ck is an S-covering family of size
at least |A|

10ℓ·log p .
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Proof. The proof will use the following lemma (from [5]) that is based on the well-known
Hall’s theorem.

▶ Lemma 21 ([5], Lemma 2.1). Let G = (L ∪ R, E) be a bipartite graph such that all vertices
in L have the same degree, say dL, and all vertices in R have the same degree, say dR.
Assume that dR ≥ log(2|R|). There exists a subset of E that is a union of vertex-disjoint
stars with centers in L, each star having at least dL

4·log(2|R|) leaves, such that all vertices of R

are leaves.

To see why Lemma 21 holds, note that if we only had to show a bound of dL

dR
on the number

of leaves, it would follow from Hall’s theorem. In fact, this would holds even under the
weaker assumption that all vertices in R have degree at most dR. Lemma 21 now follows as
one can use dR ≥ log(2|R|) to subsample vertices in L so that the degree of each vertex in R

is reduced to be between 1 and 4 · log(2|R|).
We now prove Lemma 20. Define a bipartite graph G = (L ∪ R, E) where L is the set

of all permutations π on ℓ elements and R is the set Bℓ. A vertex π ∈ L is adjacent to a
vertex b⃗ ∈ R if and only if π(⃗b) ∈ A, where π(⃗b) denotes the string obtained by permuting
the coordinates of b⃗ according to π. Using the notation of Lemma 21, we have for this graph
that:

|L| = ℓ! |R| = ℓ!
((ℓ/(p − 1))!)p−1 ≤ pℓ

dL = |A| dR = |L| · |A|
|R|

≥ |A| ≥ log(2|R|).

Thus, we can apply Lemma 21 and get a union of vertex-disjoint stars as claimed in the
lemma. We get that the leaves of these stars form a partition of R = Bℓ, and we define K

to be the number of stars and Bℓ = C1 ∪ · · · ∪ CK to be the partition. By Lemma 21, we
have for all k ∈ [K] that |Ck| ≥ |A|

10ℓ·log p and to finish the proof it suffices to show that Ck is
S-covering for all k ∈ [K]. We do this next using Definition 3.

Fix k ∈ [K]. Let b⃗ ̸= b⃗′ be a pair of elements in Ck. By definition of our bipartite
graph G, there exists π ∈ L such that π(⃗b), π(⃗b)′ ∈ A. As A is S-covering, we get that the
pair π(⃗b), π(⃗b)′ is S-covering. It follows that the pair b⃗, b⃗′ is also S-covering, finishing the
proof. ◀

5.3 Proof of Theorem 17
We now prove Theorem 17

Proof of Theorem 17. Let ℓ = p(p − 1) · p3.5 log log p. We shall actually show a stronger
statement, as explained next. Let α be a primitive root of p. For z ≥ 0, define ℓz =
p(p − 1) · 23.5z·log log p and the set Sz =

{
α0, α1, α2, α3, . . . , α2z−1}. We will show that for all

0 ≤ z ≤ log p, there exists an Sz-covering (ℓz, p)-Family Az of size at least
(

2 − 0.5(z+1)
(log p)2

)ℓz

that satisfies Az ⊆ Bℓz
. The theorem then follows by taking z = log p and using the fact

that (Zp \ {0}) ⊆ Slog p (which is because α is a generator). We define Az inductively.

Base case. For the base case, we define A0 to be the set of all b⃗ ∈ Bℓ0 for which the first
2ℓ0
p−1 locations only contain the elements 1 and 2 and contain them the same number of times,
the next 2ℓ0

p−1 locations only contain the elements 3 and 4 and contain them the same number
of times, and so on. Note that A0 ⊆ Bℓ0 is S0 covering and satisfies (as

(2n
n

)
≥ 22n

2n for all
n > 0):
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|A0| =
( 2ℓ0

p−1
ℓ0

p−1

) p−1
2

≥ 2ℓ0(
2ℓ0
p−1

) p−1
2

≥

(
2 − 0.5

(log p)2

)ℓ0

.

Inductive case. For the inductive case, we consider z > 0 and define Az assuming Az−1
is already defined. First, apply Lemma 20 to get an integer Kz−1 > 0 and a partition
Bℓz−1 = Cz−1,1 ∪ · · · ∪ Cz−1,Kz−1 of Bℓz−1 such that for all k ∈ [Kz−1], we have that Cz−1,k is

an Sz−1-covering family of size at least |Az−1|
10ℓz−1·log p ≥ 1

ℓ2
z−1

·
(

2 − 0.5z
(log p)2

)ℓz−1
.

We can now apply Lemma 19 (as Bℓz−1 is closed under scalar multiplication) with
m = (log p)3.5 + 1 and a = α2z−1 to get an Sz-covering (ℓz, p)-Family Az ⊆ Bℓz of size at
least:

|Az| ≥

 1
ℓ2

z−1
·

(
2 − 0.5z

(log p)2

)ℓz−1
m

· 1∣∣Bℓz−1

∣∣
≥

 1
ℓ2

z−1
·

(
2 − 0.5z

(log p)2

)ℓz−1
m

· 1
pℓz−1

≥

 1
ℓ2

z−1
·

(
2 − 0.5z

(log p)2

)ℓz−1
m

·

(
1 − 0.1

(log p)2

)ℓz−1·m

(As m = (log p)3.5 + 1)

≥

((
1 − 1√

ℓz−1

)
·

(
2 − 0.5z

(log p)2

)
·

(
1 − 0.1

(log p)2

))ℓz−1·m

≥

(
2 − 0.5(z + 1)

(log p)2

)ℓz−1·m

≥

(
2 − 0.5(z + 1)

(log p)2

)ℓz

. ◀

6 Conclusion

We improve the best-known lower bound for matroid intersection prophet inequalities to
q1/2+Ω(1/ log log q), via an improved upper bound on the product dimension of Q(p, pp) to
p1/2−Ω(1/ log log p). There are numerous open directions posed by our work. For example:

What is the product dimension of Q(p, pp)? By Proposition 8, improved upper bounds
on Q(p, pp) imply improved lower bounds on α(CSymPartInt(q), PiidBernoulli).
Can the [28] construction be written using p2−Ω(1) (perhaps not partition) matroids?
Are there asymptotically better algorithms for the matroid intersection prophet inequality?
What about the special case of partition matroids, symmetric feasibility constraints, and
i.i.d. Bernoulli random variables?

More generally, our work also proposes consideration of the following class of problems: given
a set system I, what is the minimum number q of (partition) matroids I1, . . . , Iq such that
I = ∩q

i=1Iq?12

12 The authors thank Bobby Kleinberg for suggesting this broader agenda.
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Abstract
We study unitary property testing, where a quantum algorithm is given query access to a black-box
unitary and has to decide whether it satisfies some property. In addition to containing the standard
quantum query complexity model (where the unitary encodes a binary string) as a special case, this
model contains “inherently quantum” problems that have no classical analogue. Characterizing the
query complexity of these problems requires new algorithmic techniques and lower bound methods.

Our main contribution is a generalized polynomial method for unitary property testing problems.
By leveraging connections with invariant theory, we apply this method to obtain lower bounds
on problems such as determining recurrence times of unitaries, approximating the dimension of a
marked subspace, and approximating the entanglement entropy of a marked state. We also present
a unitary property testing-based approach towards an oracle separation between QMA and QMA(2),
a long standing question in quantum complexity theory.
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1 Introduction

The query model of quantum algorithms plays a central role in the theory of quantum
computing. In this model, the algorithm queries (in superposition) bits of an unknown input
string X, and after some number of queries decides whether X satisfies a property P or not.
We now have an extensive understanding of the query complexity of many problems; we refer
the reader to Ambainis’s survey [9] for an extensive list of examples.

Although this query model involves quantum algorithms, the task being solved is classical
property testing, that is, deciding properties of classical strings. This has been very useful
for comparing the performance of classical versus quantum algorithms for the same task. In
contrast, quantum property testing – deciding properties of quantum objects such as states
and unitaries – has been been studied much less but has been receiving more attention in
recent years [35].
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In this paper we focus on unitary property testing, where the goal is to decide whether a
unitary U satisfies a property P by making as few queries to U as possible. This systematic
study of this topic was initiated by Wang [46], and various aspects have been studied further
in [35, 22, 7]. We continue explorations of this topic by developing a new lower bound
technique, demonstrating its utility with several unitary property testing problems, and
exploring intriguing connections between unitary property testing, invariant theory, and
the complexity class QMA(2). Before presenting our findings in detail, we first explain the
unitary property testing model.

1.1 Unitary Property Testing
The model of unitary property testing we consider is formally defined as follows. Fix a
dimension d and let Pyes,Pno denote disjoint subsets (called yes and no instances respectively)
of d-dimensional unitary operators. A tester for deciding the problem P = (Pyes,Pno) is
a quantum algorithm that, given query access to a unitary U ∈ Pyes ∪ Pno (called the
problem instance), accepts with high probability if U ∈ Pyes and otherwise accepts with low
probability.1

This model includes the standard query model as a special case: a quantum query to
a classical string X ∈ {0, 1}d is defined to be a query to the unitary U that maps |i⟩ to
(−1)Xi |i⟩ for all i ∈ [d]. In other words, the unitary is self-adjoint and diagonal in the
standard basis.

We can go beyond self-adjoint, diagonal unitaries and study quantum analogues of classical
property testing problems, such as:

Testing quantum juntas: if U is an n-qubit unitary, determining whether there is a
k-sized subset S of qubits outside of which U acts as the identity. This is analogous to
determining whether the input X, interpreted as a function on {0, 1}n, only depends on
a k-subset of coordinates. This was studied in [46, 22].
Approximate dimension: promised that U applies a phase to all states |ψ⟩ in a subspace
S of dimension either at w or 2w, determine the dimension of the subspace. This is
analogous to the classical problem of approximating the Hamming weight of an input X.
This was studied in [4].

We can also study property testing problems that have no classical analogue at all, such as:
Unitary recurrence times: Determining whether U t = I or ∥U t − I∥ ≥ ϵ (promised that
one is the case) where t is a fixed integer.
Hamiltonian properties: Promised that U = e−iH for some Hamiltonian H with bounded
spectral norm, determine properties of H, such as whether it is a sum of k-local terms,
or the ground space is topologically ordered.
Unitary subgroup testing: decide whether U belongs to some fixed subgroup of the unitary
group (such as the Clifford subgroup). This was studied in [16].
Entanglement entropy problem: Given access to a unitary U = I − 2 |ψ⟩ ⟨ψ| for some
state |ψ⟩ ∈ Cd ⊗ Cd, decide if the entanglement entropy of the state |ψ⟩ is low or high,
promised one is the case.

These examples illustrate the rich variety of unitary property testing problems: some are
motivated by well-studied classical problems in computer science (such as junta testing and
approximate counting), whereas others are inspired by questions in quantum physics (e.g.,
identifying quantum chaos, topological order, or entanglement).

1 We note that the concept of property testing discussed in this paper is more general than typically
presented in the literature (see, e.g., [46, 24]), where no instances are defined to be ϵ-far from the set of
yes instances for some distance measure. In this paper we allow for other ways of defining no instances
(as long as they are disjoint from yes instances), which may be more natural in many contexts.
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1.2 A Generalized Polynomial Method and Its Applications

Our main contribution is a lower bound technique for unitary property testing that generalizes
the well-known polynomial method in complexity theory. First introduced by Nisan and
Szegedy as [36] in classical complexity theory and then adapted for quantum algorithms by
Beals, et al. [10], the polynomial method is a powerful technique to lower bound the quantum
query complexity of a variety of problems (see, e.g., [6, 18], and the references therein).

The polynomial method is based on the fact that a quantum algorithm making T queries
to a boolean input X = (x1, . . . , xn) yields a real polynomial p : Rn → R of degree at most
2T such that p(x1, . . . , xn) is equal to the acceptance probability of the algorithm on input
X. If the algorithm distinguishes between yes and no instances with some bias, so does
the polynomial p. Thus, lower bounds on the degree of any such distinguishing polynomial
directly translates into a lower bound on the quantum query complexity for the same task.

We generalize this to arbitrary unitary properties.

▶ Proposition 1.1 (Generalized polynomial method). The acceptance probability of a quantum
algorithm making T queries to a d× d unitary U and its inverse U∗ can be computed by a
degree at most 2T self-adjoint2 polynomial p : C2(d×d) → C evaluated at the matrix entries
of U and U∗. Thus, degree lower bounds on such polynomials yields a query lower bound on
the algorithm.

Proof. Refer to Section 3.1 of the full version [41]. ◀

Furthermore, we say that a unitary property P = (Pyes,Pno) is closed under inversion if
U ∈ Pyes iff U∗ ∈ Pyes, and U ∈ Pno iff U∗ ∈ Pno. All properties we will study in this paper
will be closed under inversion, and hence the polynomial p satisfies a symmetry under this
condition.

▶ Proposition 1.2. Let P be an property closed under inversion and suppose there is a T -
query quantum algorithm for testing property P. Let p be the polynomial from Proposition 1.1
that computes the acceptance property of the algorithm. Then, we may assume that p(U,U∗) =
p(U∗, U).

Proof. Refer to Section 3.1 of the full version [41]. ◀

Hence, while establishing the existence of p is straightforward, proving lower bounds on
its degree is another matter. The standard approach in quantum query complexity is to
symmetrize p to obtain a related polynomial q whose degree is not too much larger than p,
and acts on a much smaller number of variables (ideally a single variable). The choice of
symmetrization method depends on the problem being analyzed. For example, for (classical)
properties that only depend on the Hamming weight of the boolean string (these are called
symmetric properties in the literature), the polynomial p is averaged over all binary strings
with Hamming weight k in order to obtain a univariate polynomial q(k) (this is known as
Minsky-Papert symmetrization [34]). Lower bounds on the degree of q can be then obtained
by using Markov-Bernstein type inequalities from approximation theory.

2 A self-adjoint polynomial is unchanged after complex conjugating every variable and every coefficient.
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1.2.1 Lower Bounds for Unitarily Invariant Properties
To make Proposition 1.1 useful, we develop symmetrization techniques for unitary properties
that are invariant under certain symmetries. We first study unitarily invariant properties3:
these are properties P = (Pyes,Pno) such that conjugating an instance in Pyes ∪ Pno by any
g in the unitary group U(d) does not change whether it is a yes or no instance (in other
words gPyesg

−1 ⊆ Pyes and gPnog
−1 ⊆ Pno for all g ∈ U(d)). An example of such a property

includes deciding whether a unitary U is a reflection about a subspace of Cd of dimension at
most w (the no instances) or dimension at least 2w (the yes instances).

It is easy to see that whether a unitary U is a yes or no instance of a unitarily invariant
property P only depends on the multiset of eigenvalues of U . In fact, we can say something
stronger; the following establishes a symmetrization method for polynomials that decide
unitarily invariant properties.

▶ Theorem 1.3 (Symmetrization for unitarily invariant properties). Let P = (Pyes,Pno) de-
note a d-dimensional unitarily invariant property. Suppose there is a T -query quantum
algorithm that accepts yes instances with probability at least a and no instances with proba-
bility at most b. Then there exists a degree at most 2T symmetric4 self-adjoint polynomial
q(z1, . . . , zd, z

∗
1 , . . . , z

∗
d) satisfying

If U ∈ Pyes then q(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) ≥ a

If U ∈ Pno then q(z1, . . . , zd, z
∗
1 , . . . , z

∗
d) ≤ b

where (z1, . . . , zd) and (z∗
1 , . . . , z

∗
d) are the eigenvalues of U and their complex conjugates,

respectively.

Proof. Refer to Section 3.1 of the full version [41]. ◀

The symmetrization of Theorem 1.3 may at first appear quite modest. The symmetrized
polynomial q still acts on 2d variables, which is fewer than the 2d2 variables acted on by the
original polynomial p from Proposition 1.1, but is a far cry from a univariate polynomial which
approximation theory is best suited to handle. We have made some progress, however: as
mentioned, the property P only depends on the eigenvalue multiset of U , and the polynomial
q is directly a function of the eigenvalues (whereas the original polynomial p is a function
of the matrix entries of U , which are not obviously related to the property in a low-degree
fashion). Furthermore, the polynomial q can be symmetrized further to obtain a univariate
polynomial r, which we analyze using approximation theory. We illustrate this with two
applications of Theorem 1.3.

Unitarily Invariant Subspace Properties

As a warmup, consider subspace properties, which consist of reflections about a subspace, i.e.,
U = I − 2Π where Π is the projector onto some subspace S ⊆ Cd. We say that U encodes
the subspace S. An example of a unitarily invariant subspace property is the Approximate
Dimension problem, which we parametrize by an integer w ∈ {1, 2, . . . , d}. The yes instances
consist of (unitaries encoding) subspaces of dimension at least 2w, and the no instances
consist of subspaces of dimension at most w. This is a quantum generalization of the
Approximate Counting problem, which is to determine whether the Hamming weight of an
input string is at least 2w or at most w.

3 We acknowledge that the name “unitarily invariant unitary property” may seem redundant! The first
“unitarily” refers to the symmetry; the second “unitary” refers to the type of property we are studying.

4 Here, symmetric means that for all permutations π : [d] → [d], permuting the variables zi → zπ(i) and
z∗

i → z∗
π(i) leaves the polynomial q unchanged.
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Since the eigenvalues of subspace unitaries are either 1 or −1, by Theorem 1.3 unitarily
invariant subspace properties yield polynomials that compute acceptance probabilities on
(a subset of) {1,−1}d. Note that, after mapping {1,−1} to {0, 1}, these are the same kind
of polynomials that arise when analyzing classical properties! In fact, there is a one-to-one
correspondence between symmetric classical properties S (properties that only depend on
the Hamming weight of the input) and unitarily invariant subspace properties P.

This implies that the polynomial q given by Theorem 1.3 (associated to a unitarily
invariant subspace property P), also distinguishes between the yes and no instances of the
associated classical symmetric property S. This yields a lower bound method for the query
complexity of P:

▶ Proposition 1.4. Let P be a unitarily invariant subspace property and let S be the associated
symmetric classical property. The query complexity of distinguishing between yes and no
instances of P is at least the minimum degree of any polynomial that distinguishes between
the yes and no instances of S.

Proof. Refer to Section 4.1 of the full version [41]. ◀

Therefore, degree lower bounds on polynomials that decide a classical symmetric property
S, automatically yield query complexity lower bounds for the quantum property P . Approxi-
mate degree lower bounds on symmetric boolean functions are well-studied in complexity
theory [37, 25]; these can be automatically “lifted” to the unitary property testing setting.

We note that there is another way of seeing this reduction: any T -query tester for P
is automatically a T -query tester for S; thus lower bounds on S imply lower bounds on P.
Here our motivation is to present Proposition 1.4 as a simple application of Theorem 1.3.

For example, the Approximate Dimension problem contains the Approximate Counting
problem as a special case. Any polynomial that decides with bounded error the Approximate
Counting problem must have degree at least Ω(

√
d/w), which implies the same lower bound

for the query complexity of the Approximate Dimension problem.

Recurrence Time of Unitaries

Not all unitarily invariant properties reduce to classical lower bounds. For instance, we
analyze a problem related to the recurrence times of unitaries.

In general, the recurrence time of a dynamical system is the time that the system takes
to return to a state that is close to its initial state (if it exists). The recurrence statistics of
dynamical systems have been extensively studied in the physics literature, where they have
been used as indicators of chaotic behaviour within a dynamical system [40]. As the time
evolution of a quantum system is governed by a unitary operator, the recurrence times of
unitary matrices is of particular interest. The Poincaré recurrence theorem guarantees that
the recurrence time exists for certain quantum mechanical systems [15]. For example, the
expected recurrence times of a Haar-random unitary were studied in [32]. We now define
these concepts more formally.

▶ Definition 1.5 (Recurrence Time Problem). The (t, ϵ)-Recurrence Time problem is to decide,
given oracle access to a unitary U , whether U t = I (yes case) or ∥U t − I∥ ≥ ϵ in the spectral
norm (no case), promised that one is the case.

Note that the instances of this problem are generally not self-adjoint; their eigenvalues
can be any complex number on the unit circle. There is no obvious classical analogue of
the unitary Recurrence Time problem, and thus it does not seem to naturally reduce to a
classical lower bound. We instead employ Theorem 1.3 to prove the following lower bound
on the Recurrence Time problem:

ITCS 2023
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▶ Theorem 1.6. Let ϵ ≤ 1
2π . Any quantum query algorithm solving the (t, ϵ)-Recurrence

Time problem for d-dimensional unitaries with error ϵ must use Ω(max( t
ϵ ,

√
d)) queries.

Proof. Refer to Section 4.2 of the full version [41]. ◀

We prove the lower bound by observing that the Recurrence Time problem is testing
a unitarily invariant property, and hence Theorem 1.3 applies to give a polynomial q
representing the acceptance probability of any algorithm solving the problem in terms of the
eigenvalues of the input unitary U . We then symmeterize the polynomial q by constructing
a distribution D(p, z) on unitaries with exactly two eigenvalues {1, z = eiθ} such that the
expected acceptance probability r(p, z) of the algorithm over D(p, z) remains a polynomial
in p and z. Afterwards, Markov-Bernstein type inequalities are used to prove a lower bound
on the degree of r.

We also establish the following upper bound:

▶ Theorem 1.7. The (t, ϵ)-Recurrence Time problem can be solved using O(t
√
d/ϵ) queries.

Proof. Refer to Section 4.2 of the full version [41]. ◀

It is an interesting question to determine whether the upper bound or lower bound (or
neither) is tight.

1.2.2 Beyond Unitarily Invariant Properties
For unitarily invariant properties, there was a natural candidate for how to symmetrize
the polynomials p we get from Proposition 1.1 by using viewing p as a polynomial in the
eigenvalues of the matrix U rather than the matrix entries of U . However, a symmetrization
technique for other properties is less unclear. In this direction, we develop symmetrization
techniques based on invariant theory.

Invariant theory studies the action of a group G on a polynomial ring C[x1, . . . , xn]. We
denote the action of g ∈ G on f ∈ C[x1, . . . , xn] by g · f. The ring of invariant polynomials
C[x1, . . . , xn]G is then the subring of C[x1, . . . , xn] consisting of polynomials satisfying g·f = f

for all g ∈ G, that is f ∈ C[x1, . . . , xn]G is left unchanged by the action of g for all group
elements.

There are many natural questions about the invariant ring C[x1, . . . , xn]G one can ask,
such as construction of a generating set for the invariant ring. For example, one classical
example is the action of a permutation σ ∈ Sn acting on a polynomial p(x1, . . . , xn) by
permuting the variables by σ · p = p(xσ(1), . . . , xσ(n)). The invariant ring is known as the ring
of symmetric polynomials, for which there are many well-known generating sets. One example
of a generating set is the power sum symmetric polynomials given by pi =

∑n
j=1 x

i
j , which

generate the symmetric polynomial ring as an algebra. In other words, for any symmetric
polynomial f , there exists a polynomial g for which f = g(p1, . . . , pn). There are similar
characterizations of the invariant ring for numerous other group actions.

To connect invariant theory with our Proposition 1.1, we prove the following result for
testing G-invariant unitary properties. Since we are studying properties of general unitaries,
not just boolean strings, we consider symmetries coming from subgroups of the unitary group
U(d). Let G ⊆ U(d) be a compact subgroup equipped with a Haar measure µ (i.e., a measure
over G that is invariant under left-multiplication by elements of G).

▶ Definition 1.8 (G-invariant property). Let G ⊆ U(d) be a compact group. A d-dimensional
unitary property P = (Pyes,Pno) is G-invariant if for every g ∈ G we have gPyesg

−1 ⊆ Pyes

and gPnog
−1 ⊆ Pno.
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▶ Definition 1.9 (Invariant rings). Let C[X,Y ]d be the ring of complex polynomials in matrix
variables X = (xi,j)1≤i,j≤d and Y = (yi,j)1≤i,j≤d. Observe that there is an action of G on
any f(X,Y ) ∈ C[X,Y ] by simultaneous conjugation g · f(X,Y ) = f(gXg−1, gY g−1).

The invariant ring C[X,Y ]Gd is the subring of polynomials in C[X,Y ]d satisfying g · f = f

for all g ∈ G.

The general theory of invariant theory guarantees the existence and finiteness of a
generating set for the invariant ring C[X,Y ]G for all compact groups, which includes all finite
groups, the unitary group, and products of unitary groups as special cases. Furthermore,
the following proposition connects the invariant ring to property testers for G-invariant
properties.

▶ Proposition 1.10 (Symmeterization for G-invariant properties). Suppose P = (Pyes,Pno) is
a G-invariant d-dimensional unitary property. If there is a T -query tester for P that accepts
yes instances with probability at least a and no instances with probability at most b, then
there exists a self-adjoint degree-2T polynomial q in the invariant ring C[X,X∗]Gd satisfying

If U ∈ Pyes, then q(U,U∗) ≥ a.
If U ∈ Pno, then q(U,U∗) ≤ b.

Proof. Refer to Section 3.1 of the full version [41]. ◀

While Proposition 1.10 at first may seem difficult to apply, the invariant ring has been
characterized in numerous cases. Depending on the group, the associated invariant ring may
have a much simpler description than the full polynomial ring, making it easier to prove
degree lower bounds. For instance, in the case where G is the full unitary group, the invariant
polynomials are exactly symmetric polynomials in the eigenvalues of U and the adjoint U∗.

We illustrate this connection to invariant theory by considering property testing questions
related to entanglement of quantum states, which is a central concept in quantum information
theory. Recall that a state |ψ⟩ ∈ Cd ⊗ Cd is entangled if it cannot be written as a tensor
product of two states |ψ1⟩ ⊗ |ψ2⟩ where |ψ1⟩ , |ψ2⟩ ∈ Cd. The property of being entangled is
invariant under the local unitary group instead of the full unitary group.

▶ Definition 1.11 (Local Unitary Group). Let d1, d2 ≥ 2. The local unitary group LU(d1, d2)
is the subgroup U(d1) × U(d2) of U(d1d2) consisting of all unitaries of the form g ⊗ h where
g ∈ U(d1), h ∈ U(d2).

Furthermore, the entanglement entropy of a state |ψ⟩ ∈ Cd ⊗ Cd can be used as a
measurement of how entangled the state is. Numerous definitions of entanglement entropy
have been proposed in the physics and quantum information literature; we use the following
definition of entanglement entropy in this work.

▶ Definition 1.12 (Rényi 2-entropy). Given a state |ψ⟩ ∈ Cd ⊗Cd with reduced density matrix
ρ, the Rényi 2-entropy of |ψ⟩ is defined as H2(|ψ⟩) = − log Tr(ρ2).

We now define the Entanglement Entropy problem as the task of distinguishing between
high and low entropy states.

▶ Definition 1.13 (Entanglement Entropy Problem). Let 0 < a < b ≤ log d. Given oracle
access to a reflection oracle U = I − 2|ψ⟩⟨ψ| where |ψ⟩ ∈ Cd ⊗ Cd, decide whether or not the
state |ψ⟩ satisfies one of the following two conditions, promised one of the following is the
case:

Low entropy case: H2(|ψ⟩) ≤ a
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High entropy case: H2(|ψ⟩) ≥ b

Since entanglement entropy of a state is an LU-invariant quantity (i.e. H2((g ⊗ h) |ψ⟩) =
H2(|ψ⟩) for all unitaries g and h), the Entanglement Entropy problem corresponds to an LU-
invariant unitary property, opening the door to exploiting well-known results from invariant
theory to prove query lower bounds. Indeed, leveraging a characterization of LU-invariant
polynomials by Procesi [38] and Brauer [17], and specializing it to the Entanglement Entropy
problem, we obtain the following lower bound using our generalized polynomial method and
Proposition 1.10:

▶ Theorem 1.14. Assume a ≥ 5. Given parameters a < b ≤ log d, any tester must make
Ω(exp(a/4)) queries to distinguish between the low and high entropy cases in the Entanglement
Entropy problem.

Proof. Refer to Section 5.2 of the full version [41]. ◀

We hope that this connection between invariant theory and quantum query complexity
can be used as a general framework to prove new lower bounds.

1.3 Property Testing with Quantum Proofs
We also study unitary property testing with quantum proofs: in addition to getting query
access to the instance U , the tester also receives an additional quantum state called a proof
that supposedly certifies that U is a yes instance. On one hand, having access to a quantum
proof can significantly reduce the number of queries to U needed. On the other hand, the
proof state is not trusted and must be verified: if U is a no instance it must be rejected with
high probability no matter what proof was provided. Since this definition is analogous to
the definition of the complexity class QMA, we call this the “QMA property testing model”.
Similarly we call the standard definition of unitary property testing (without quantum proofs)
the “BQP property testing model”.

An illustration of QMA property testing is that of unstructured search, where the goal is
to determine whether U |ψ⟩ = − |ψ⟩ for some state |ψ⟩ (and acts as the identity everywhere
else) or whether U = I, promised that one is the case. If U is d-dimensional, then the
generalized polynomial method (see Section 4.2 of [41]) implies the BQP query complexity of
this problem is Θ(

√
d), but on the other hand the QMA query complexity of this problem

is 1: given a proof state |θ⟩, the tester can verify using a single query whether U applies a
nontrivial phase to |θ⟩, in which case the tester would accept, and otherwise reject. Thus
quantum proofs can dramatically reduce the query complexity of a problem.

The QMA property testing model motivates the following questions: which problems
admit query speedups when quantum proofs are provided? For which problems are quantum
proofs useless? In addition to the BQP property testing lower bounds mentioned above, we
prove QMA property testing lower bounds for the Approximate Dimension, Recurrence Time,
and Entanglement Entropy problems.

We note that in the BQP setting, our lower bounds can also be obtained by other methods,
such as the “hybrid method” of [13]. However, it is unclear how to apply this method in the
QMA setting, and hence the polynomial method appears necessary to prove non-trivial QMA
lower bounds. Furthermore, even in the BQP setting, we believe that the polynomial method
provides a clean and simple method to prove lower bounds compared to other methods.

The QMA lower bound for Approximate Dimension is obtained by observing that any
QMA tester for Approximate Dimension is also a QMA tester for the classical Approximate
Counting problem (i.e., counting the Hamming weight of an input string). Thus, the lower
bound follows immedately from the QMA lower bound on Approximate Counting proved by
Aaronson, et al. [4]:
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▶ Theorem 1.15 (QMA lower bound for Approximate Dimension). Suppose there is a T -
query algorithm that solves the Approximate Dimension problem (i.e. deciding whether a
d-dimensional unitary encodes a subspace of dimension at least 2w or at most w) with the
help of a m-qubit proof. Then either m = Ω(w), or T ≥ Ω(

√
d
w ).

Proof. Refer to Section 4.1 of the full version [41]. ◀

As with the BQP lower bound for the Recurrence Time problem, the QMA lower bounds
for the Recurrence Time problem requires more work than leveraging lower bounds on a
related classical problem. However, using a similar technique as the BQP lower bound, we
obtain the following:

▶ Theorem 1.16 (QMA lower bound for the Recurrence Time problem). Let ϵ ≤ 1
2π . Suppose

there is a T -query algorithm that solves the Recurrence Time problem for d-dimensional uni-
taries with the help of an m-qubit proof. Then either m ≥ Ω(d), or T ≥ Ω(max(

√
d
m ,

t
m ,

1
ϵ )).

Proof. Refer to Section 4.2 of the full version [41]. ◀

Finally, we also adapt the technique for the BQP lower bound for the Entanglement
Entropy problem, to prove a QMA lower bound for the same problem.

▶ Theorem 1.17 (QMA lower bound for the Entanglement Entropy problem). Assume a ≥ 5
and a < b ≤ log d Suppose there is a T -query algorithm that solves the entanglement entropy
problem with the help of an m-qubit witness, then mT ≥ Ω(exp(a/4)).

Proof. Refer to Section 5.2 of the full version [41]. ◀

We note that we are able to give an algorithm for the entanglement entropy problem using
O(exp(a)) queries and a certificate size with O(exp(a)) qubits as long as the gap satisfies
b ≥ 2a. Furthermore, our best upper bound in the QMA setting for the Recurrence Time
problem is identical to the BQP upper bound (Theorem 1.7), which uses O( t

√
d

ϵ ) queries. It
is open whether or not the query complexity in the QMA setting can be improved by making
use of the witness, or if the lower bounds can be tightened.

1.4 QMA vs. QMA(2)
In addition to the QMA model of property testing with the help of a quantum proof, we can
also study what happens if we place restrictions on the proof states allowed. For example,
what if the proof is guaranteed to be a classical string (i.e., a QCMA proof) or is unentangled
across a fixed bipartition of qubits (i.e., a QMA(2) proof)?

For example, consider the problem of testing whether or not a given unitary U was the
identity I or a reflection I − 2|ψ⟩⟨ψ| where |ψ⟩ is an n-qubit state. As we observed in the
previous section, this problem can be solved using one query given access to a proof state
|ψ⟩. However, Aaronson and Kuperberg [5] showed that if the proof given was an m-bit
classical string, any quantum algorithm must use Ω(

√
2n

m+1 ) queries to distinguish between
the two cases. In particular, the result was used by Aaronson and Kuperberg in [5] to give a
quantum oracle separation between QMA and QCMA.

The complexity class QMA(k) is defined as the class of problems verifiable by a polynomial
time quantum circuit with access to k ≥ 2 unentangled proofs. It was shown in [27] that for
any constant k > 2, we have QMA(k) = QMA(2), as any QMA(k) verifier can be simulated
by a QMA(2) verifier.
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As discussed in Aaronson’s survey paper on quantum query complexity in [2], an oracle
separation between QMA(2) and QMA is a notorious open problem in quantum complexity
theory. There is evidence that QMA(2) could be more powerful than QMA:

The existence of QMA(2) protocols for the verification of NP-complete problems (eg.
graph 3-colouring) using a logarithmic number of qubits, as outlined in [14]. If there
were a QMA protocol for these problems using a logarithmic number of qubits, then NP
⊆ QMAlog = BQP, which is considered unlikely [33]. Otherwise, if there exists a QMA
protocol with a sublinear number of qubits for 3-SAT or 3-colouring, then the (classical)
Exponential Time Hypothesis is false [3, 19]. 5

Certain problems in quantum chemistry, specifically the pure state N -representability
problem, known to have QMA(2) protocols but not QMA protocols [31].
The non-existence of a product test using local quantum operations and classical commu-
nication (LOCC) as proven in [27]. If an LOCC product test existed, then QMA(2) =
QMA.

On the other hand, despite many years of study, the only complexity inclusions about QMA(2)
known are QMA ⊆ QMA(2) ⊆ NEXP, a vast gap in the complexity-theoretic landscape. A
first step towards showing that QMA(2) is indeed more powerful than QMA would be to
identify an oracle relative to which QMA(2) is different than QMA. This would already have
very interesting consequences in quantum information theory, such as ruling out the existence
of disentanglers [3].

In this paper we identify a unitary property testing problem, for which if we can prove a
strong QMA lower bound would immediately imply an oracle separation between QMA(2)
and QMA. While we do not obtain a lower bound, we present some observations that may
be helpful towards eventually obtaining the desired oracle separation.

In order to define the problem, we first have to define the notion of an ϵ-completely
entangled subspace. This is a subspace S ⊆ Cd ⊗ Cd such that all states |θ⟩ ∈ S are ϵ-far in
trace distance from any product state |ψ⟩ ⊗ |ϕ⟩. It is known, via the probabilistic method,
that there exist subspaces of dimension Ω(d2) that are Ω(1)-completely entangled [28]. We
now introduce the Entangled Subspace problem:

▶ Definition 1.18 (Entangled Subspace problem). Let 0 ≤ a < b < 1 be constants. The
(a, b)-Entangled Subspace problem is to decide, given oracle access to a unitary U = I − 2Π
where Π is the projector onto a subspace S ⊆ Cd ⊗ Cd, whether

(yes case) S contains a state |θ⟩ that is a-close to a product state |ψ⟩ ⊗ |ϕ⟩.
(no case) S is b-completely entangled

promised that one is the case.

First, we observe that the Entangled Subspace property is LU-invariant: applying local
unitaries g ⊗ h to a subspace S preserves whether it is a yes instance or a no instance of
the problem. Thus one can hope to prove query lower bounds for the Entangled Subspace
problem in both the BQP and QMA setting using our generalized polynomial method and
tools from invariant theory.

Next, we observe that there is in fact a QMA(2) upper bound for the Entangled Subspace
problem:

5 We can prove there is an oracle relative to which NP does not have sublinear-sized QMA proofs, using
an argument of Aaronson similar to that in [1] that combines the “guessing lemma” and the polynomial
method.
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▶ Proposition 1.19 (QMA(2) upper bound for the Entangled Subspace problem). The Entangled
Subspace problem can be solved by a QMA(2) tester, meaning that the tester receives a proof
state in the form |ψ⟩ ⊗ |φ⟩ of poly log(d) qubits, makes poly log(d) queries to the unitary
U , and can distinguish between yes and no cases with constant bias. We call this tester the
product test verifier.

Proof. Refer to Section 6.1 of the full version [41]. ◀

The QMA(2) tester from Proposition 1.19 is based on the product test, which is a procedure
for detecting whether a state |θ⟩ is close to a product state |ψ⟩ ⊗ |ϕ⟩, given access to k ≥ 2
copies |θ⟩⊗k. We use of a generalization of the product test analysis of [43] that applies for
all k ≥ 2, which they showed for the case k = 2.

We conjecture the following QMA lower bound on the Entangled Subspace problem.

▶ Conjecture 1.20. Any QMA tester for the Entangled Subspace problem that makes T queries
to the oracle and receives an m-qubit witness must have either m or T be superpolynomial in
log d.

If this conjecture is true, then this would imply the existence of a quantum oracle that
separates QMA from QMA(2): the oracle would encode, for each QMA tester, an instance of
the Entangled Subspace problem that the tester decides incorrectly.

As a first step towards understanding whether Conjecture 1.20 is true, we analyze the
behavior of product test verifier from Proposition 1.19 in the QMA setting. This means that
instead of getting a proof state that is promised to be unentangled across a bipartition, the
product test verifier receives a single pure state that may be entangled everywhere. We show
that the product test verifier loses its soundness in the QMA setting:

▶ Theorem 1.21. There exists a 6-dimensional completely entangled subspace S and an
entangled proof state |θ⟩ that the product test verifier accepts with probability 1 (even though
it rejects all product proof states |ψ⟩ ⊗ |ϕ⟩ with high probability).

Proof. Refer to Section 6.3 of the full version [41]. ◀

The construction of the “fooling” subspace S and the proof state |θ⟩ is completely explicit
and combinatorial; we believe it can suggest how more general QMA verifiers (beyond the
product test) can be fooled, which would give insight towards proving Conjecture 1.20.
Indeed in Appendix B of [41], we characterize all states that pass the product test with
probability one, which enables the construction of other “fooling” subspaces for the product
test.

Constraints on the Conjecture

We now identify constraints on the conjecture: we show that we cannot hope to prove a super-
polynomial QMA lower bound on the Entangled Subspace problem when only considering
one-dimensional subspaces. This is a consequence of the following general statement:

▶ Lemma 1.22. Let P denote a property where the instances are unitaries encoding a one-
dimensional subspace (i.e. a pure state): U = I − 2|ψ⟩⟨ψ| for some state |ψ⟩. Suppose that
there is a T -query QMA(2) tester that decides P, with the condition that a valid proof state
for yes instances is |ψ⟩⊗2. Then there exists a O(T )-query QMA tester that also decides P.

Proof. Refer to Section 6.2 of the full version [41]. ◀
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Let P denote the property testing problem where in the yes case the unitary encodes a
product state |φ⟩ ⊗ |ξ⟩ and in the no case it encodes an entangled state. Proposition 1.19
yields an efficient QMA(2) tester for this property. This lemma shows that there is also
a QMA tester for this property. Intuitively, this theorem is saying that property testing
questions related to quantum states are insufficient to give an oracle separation between
QMA and QMA(2). On the other hand, as far as we know, Conjecture 1.20 potentially could
be proved by giving a QMA lower bound for the Entangled Subspace problem restricted to
two-dimensional subspaces.

Average Case Problems

Finally, we also propose two average case variants of the Entangled Subspace problem, in
which the task is to distinguish between two distributions over unitaries U .

▶ Definition 1.23 (Planted Product State Problem). Let 0 < s < d2 denote an integer
parameter. Consider the following two distributions over subspaces S of Cd ⊗ Cd:

No planted state: S is a Haar-random subspace of dimension s.
Has planted state: S is an (s+ 1)-dimensional subspace chosen by taking the span of
a Haar-random s-dimensional subspace with a product state |ψ⟩ ⊗ |ϕ⟩ for Haar-random
|ψ⟩ , |ϕ⟩.

The Planted Product State problem is to distinguish, given oracle access to a unitary
U = I − 2Π encoding a subspace S, whether S was sampled from the No planted state
distribution ( no case) or the Has planted state distribution ( yes case), promised that one
is the case.

▶ Definition 1.24 (Restricted Dimension Counting Problem). Let 0 < t ≤ d and 0 < r ≤ t2

denote integer parameters. Consider the following distribution, parameterized by (t, r), over
subspaces S ⊆ Cd ⊗ Cd:

Sample Haar-random t-dimensional subspaces R,Q ⊆ Cd.
Sample a Haar-random r-dimensional subspace of S ⊆ R⊗Q.

Let 0 < C1 < C2 < 1 denote constants. The Restricted Dimension Counting problem is to
decide, given query access to a unitary U = I − 2Π encoding a subspace S, whether S was
sampled from either the (t, C1t

2) distribution or (t, C2t
2) distribution, promised that one is

the case.

The relationship between these two average case problems and the Entangled Subspace
problem is captured by the following propositions.

▶ Proposition 1.25. If S is sampled from the Has planted state distribution of the Planted
Product State problem, then it is a yes instance of the Entangled Subspace problem. If S is
sampled from the No planted state distribution with s = Cd2 for some sufficiently small
constant C > 0, then it is a no instance with overwhelming probability.

Proof. Refer to Section 6.4 of the full version [41]. ◀

▶ Proposition 1.26. There exist constants 0 < C1 < C2 < 1 such that if S is sampled from
the (t, C1t

2) distribution from the Restricted Dimension Counting problem, it is a no instance
of the Entangled Subspace problem with overwhelming probability. If it is sampled from the
(t, C2t

2) distribution, then it is a yes instance with overwhelming probability.
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Proof. Refer to Section 6.4 of the full version [41]. ◀

These two propositions are proved using methods from random matrix theory. Proposi-
tion 1.19 in turn implies that the Planted Product State and Restricted Dimension Counting
problems can be solved by a QMA(2) tester with overwhelming probability. We further
conjecture that in fact these two problems cannot be solved in polynomial time by a QMA
tester. This conjecture would clearly also imply an oracle separation between QMA and
QMA(2).

▶ Conjecture 1.27. Any QMA tester that solves the Planted Product State or Restricted
Dimension Counting problems with constant probability either requires a proof state of
super-polynomial size, or make super-polynomially many queries to the oracle.

As evidence towards Conjecture 1.27, we show a lower bound against QCMA testers.

▶ Theorem 1.28. Any T -query quantum algorithm solving the Planted Product State problem
with the help of an m-bit classical witness must have m or T superpolynomial in log d.

Proof. Refer to Section 6.6 of the full version [41]. ◀

We believe that these two average case problems are connected to several interesting
topics. The first is the QMA versus QMA(2) problem, of course. Their formulation also
suggests that tools from random matrix theory can be brought to bear to study them. Finally,
the Restricted Dimension Counting problem is, as the name suggests, a more structured,
special case of the general Approximate Dimension problem, for which we proved a strong
QMA lower bound! Perhaps the techniques used to prove lower bounds on the Approximate
Dimension problem can be extended to the Restricted Dimension Counting problem.

1.5 Related Work
In quantum query complexity, there have been two main paradigms for proving lower bounds
for query complexity, namely the polynomial method [10] and the adversary method [45].
The methods are generally incomparable, as there are problems where one method is able to
prove a tight lower bound but the other cannot. For instance, the collison problem [30] is a
case where the polynomial method proves a tight lower bound but the adversary method
provably fails to do so. On the other hand, Ambanis [8] constructed an example where
the adversary method is provably better than the polynomial method. Furthermore, for
evaluation of Boolean functions, the general adversary method characterizes the quantum
query complexity up to constant factors [39].

However, in their original form, both methods assume that the quantum oracle encodes
a Boolean function f : {0, 1}n → {0, 1}. A similar generalization of the adversary method
to unitary property testing problems was introduced by Belovs [11]. In particular, it was
applied to the approximate counting problem [12], with a symmetrization technique based
on the representation theory of the symmetric group.

Next, unitary property testing questions were also considered by Aharanov et al. in [7],
who introduced a model called quantum algorithmic measurement and studied the query
complexity of problems in this model. Their techniques used to prove lower bounds in their
model primarily rely on the combinatorics of Weingarten functions, which discuss in Section
3.2 of the full version [41]. However, their model allows for interaction between a prover
and a verifier, whereas we discuss query lower bounds in the non-interactive setting. Similar
sample complexity lower bounds for quantum machine learning problems were proven using
Weingarten calculus techniques in the works of [20] and [21].
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Next, Kretschmer [29] as well as Copeland and Pommersheim [23] also studied query
complexity problems where the oracle does not necessarily encode a Boolean function. In
particular, [29] studied the quantum query complexity of the heavy output generation problem
and is motivated by recently quantum supremacy experiments, and [23] studied problems
where the set of possible oracles form a representation of a group. However, there is a
substantial difference between lower bound techniques in our works, which relies on linear
programming duality in [29] and group character theory in [23].

Finally, we also note that Gur et al. [26] consider the query complexity of estimating
the von Neumann entropy to a multiplicative factor of α > 1, promised that the entropy of
the given quantum state is not too small. They established a Ω(d

1
3α2 ) lower bound on the

query complexity by reduction to the collision problem lower bound of [30]. On the other
hand, the strongest lower bound we are able to prove is a Ω(d 1

4α ) lower bound by setting
parameters a = 1

α log d and b = log d in the definition of our problem. However, our results
are incomparable with their results since the oracle access models we consider are different.

2 Open Questions

We end by describing some open problems and future directions.

Strong QMA Lower Bounds for the Entangled Subspace Problem

Can one show that any QMA tester for the Entangled Subspace problem requires either a
superpolynomial number of queries, or a superpolynomial sized witness? This would yield a
(quantum) oracle separation between QMA and QMA(2), and in particular would rule out
the existence of so-called “disentanglers” [3].

Better Query Upper Bounds

Are the bounds proven using the generalized polynomial method tight? In particular, the
following gaps remain:

We have shown that there is a O( t
√

d
ϵ ) upper bound and a Ω(max( t

ϵ ,
√
d)) lower bound

in the BQP setting for the recurrence problem and used this bound to prove a similar
lower bound in the QMA setting. Is there a better lower or upper bound in either the
BQP or QMA settings? However, a more sophisticated symmetrization technique may be
required to improve the lower bound.
We expect the BQP lower bound in Theorem 1.14 for the entanglement entropy can be
improved by using a more creative application of the polynomial method.

Improving Theorem 1.21

Is the counterexample of Theorem 1.21 tight, in the sense that there are no examples that
fool the verifier in dimensions 2, 3, 4, or 5? Otherwise, if there was an example that fools
the verifier in dimension 2, this would give additional evidence that the Entangled Subspace
problem in low dimensions is already hard for QMA.

Other Applications of the Generalized Polynomial Method

What are other applications of the generalized polynomial method? For instance, Procesi
[38] has characterized the invariants of matrix tuples under conjugation by the general linear,
unitary, orthogonal, and symplectic groups. Are there natural problems in quantum query
complexity that display other, non-unitary symmetries?
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Applications of Weingarten Calculus

Can the Weingarten calculus techniques introduced in Section 3.2 of the full version [41] be
used to prove lower bounds on unitary property testing problems? In particular, could it be
used to prove degree lower bounds for acceptance probability polynomials?

A Generalized Dual Polynomial Method?

A line of works established tight quantum query lower bounds on classical problems by
employing a method of dual polynomials [42, 44, 18]. The goal of this method is to prove
degree lower bounds of acceptance probability polynomials, but instead of symmetrizing the
polynomials to obtain a polynomial of one or two variables, one instead takes advantage
of linear programming duality to prove the degree lower bounds; this involves constructing
objects known as dual polynomials. A natural question would be to investigate whether
the method of dual polynomials can be extended to prove query lower bounds for unitary
property testing.
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Abstract
Recent works of Roughgarden (EC’21) and Chung and Shi (SODA’23) initiate the study of a new
decentralized mechanism design problem called transaction fee mechanism design (TFM). Unlike
the classical mechanism design literature, in the decentralized environment, even the auctioneer (i.e.,
the miner) can be a strategic player, and it can even collude with a subset of the users facilitated
by binding side contracts. Chung and Shi showed two main impossibility results that rule out the
existence of a dream TFM. First, any TFM that provides incentive compatibility for individual users
and miner-user coalitions must always have zero miner revenue, no matter whether the block size is
finite or infinite. Second, assuming finite block size, no non-trivial TFM can simultaneously provide
incentive compatibility for any individual user and for any miner-user coalition.

In this work, we explore what new models and meaningful relaxations can allow us to circumvent
the impossibility results of Chung and Shi. Besides today’s model that does not employ cryptography,
we introduce a new MPC-assisted model where the TFM is implemented by a joint multi-party
computation (MPC) protocol among the miners. We prove several feasibility and infeasibility results
for achieving strict and approximate incentive compatibility, respectively, in the plain model as
well as the MPC-assisted model. We show that while cryptography is not a panacea, it indeed
allows us to overcome some impossibility results pertaining to the plain model, leading to non-trivial
mechanisms with useful guarantees that are otherwise impossible in the plain model. Our work is
also the first to characterize the mathematical landscape of transaction fee mechanism design under
approximate incentive compatibility, as well as in a cryptography-assisted model.
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1 Introduction

The widespread adoption of blockchains and cryptocurrencies spurred a new class of de-
centralized mechanism design problems. The recent works of Roughgarden [29, 30] as well
as Chung and Shi [7] considered a particularly important decentralized mechanism design
problem, that is, transaction fee mechanism (TFM) design. In a transaction fee mechanism
(TFM), we are auctioning space in the block to users who want their transactions included
and confirmed in the block. If the block can contain up to k transactions, one can equivalently
think of selling k identical products to the bidders.
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Prior works [24, 32, 4, 5, 29, 30, 12] observed that transaction fee mechanism design
departs significantly from classical mechanism design [26]. The vast majority of classical
auctions assume that the auctioneer honestly implements the prescribed mechanism. In
comparison, in a blockchain environment, the auctioneer (i.e., the miner of the block), can
be a strategic player in itself: it can deviate from the prescribed mechanism if it increases its
expected gain; or it can collude with a subset of the users, and play strategically to improve
the coalition’s joint utility. As earlier works pointed out [24, 32, 4, 5, 29, 30], the existence
of decentralized smart contracts in blockchain environments make it easy for the miner and
users to rendezvous and engage in binding side contracts. Such side contracts allow the
coalition to split their gains off the table in a binding fashion.

Observing the new challenges that arise in a decentralized environment, earlier works [24,
32, 4, 5, 29, 30] formulated a set of desiderata for a “dream” TFM:

User incentive compatibility (UIC): a user’s best strategy is to bid truthfully, even when
the user has observed others’ bids.
Miner incentive compatibility (MIC): the miner’s best strategy is to implement the honest
mechanism, even when the miner has observed all users’ bids.
c-side-contract-proofness (c-SCP): playing honestly maximizes the joint utility of a
coalition consisting of the miner and at most c users, even after having observed all others’
bids.

A line of works explored how to get a dream TFM. However, assuming that the block
size is finite, i.e., there can be more bids than the block size, all known works fall short of
achieving all three properties at the same time. The closest we have come to in terms of
achieving a dream TFM is in fact Etherem’s EIP-1559. At a very high-level, when there is
congestion, EIP-1559 behaves like a first-price auction which is not UIC. When the block
size is infinite (i.e., no congestion), EIP-1559 approximates the following “burning posted
price” auction: there is a fixed reserve price r, every bid that is at least r gets included and
confirmed, and pays the price of r. All users’ payment is burnt and the miner gets nothing1.
Roughgarden [29, 30] proved that when the block size is infinite, indeed, the burning posted
price auction achieves all three properties at the same time!

Subsequently, Chung and Shi [7] further explored the landscape of TFM. They proved
two interesting impossibility results:
1. Zero miner revenue. Any (possibly randomized) TFM that satisfies both UIC and SCP

must always have 0 miner revenue, even when the miner colludes with at most one user,
and no matter whether the block size is finite or infinite. This shows that the total
burning in EIP-1559 is no accident: it is necessary to achieve all three properties under
infinite block size.

2. Finite-block impossibility. Suppose that block size is finite, then no non-trivial (possibly
randomized) TFM can achieve UIC and SCP at the same time, even when the miner
colludes with at most one user. This shows that it is no accident that all prior works
fail to achieve the dream TFM for finite block sizes – indeed, there is a mathematical
impossibility!

Given the status quo of our understanding, we ask the following natural question:
Are there meaningful new models or relaxations that allow us to circumvent the impossib-
ility results of Chung and Shi?

1 In practice, the miner gets a fixed block reward that is irrelevant to our game-theoretic analysis, so we
ignore the fixed block reward in our modeling.
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Chung and Shi [7] made an initial exploration along this line. They show a relaxation
that allows us to circumvent the impossibilities and achieve positive miner revenue under
finite block size. In particular, their relaxation requires the additional assumption that
offending bids (e.g., overbid or fake transactions) that have been posted to the public
cannot be retracted in the future, and thus the offender may have to pay a cost when the
offending transaction is confirmed in the future. While this assumption holds for some
cryptocurrencies such as Bitcoin, it may not be universally true for all cryptocurrencies.
Therefore, an important question is what other models or relaxations allow us to circumvent
the impossibilities.

In this paper, we explore two new directions, aiming to understand whether they allow
us to circumvent the impossibilities of Chung and Shi [7]: i) using an approximate notion
of incentive compatibility that allows an ϵ additive slack; and ii) having the miners jointly
run a multi-party computation (MPC) protocol to realize the TFM. Throughout the paper,
we refer to the today’s model, which does employ cryptography, as the plain model, and we
refer to the case where the TFM is realized with MPC as the MPC-assisted model.

1.1 Our Results and Contributions

Our paper makes novel contributions at both conceptual and technical levels. From a technical
perspective, prior to our work, we lacked techniques for characterizing the solution space of
approximate incentive compatibility – in particular, classical tools like Myerson’s Lemma [25]
breaks down when we allow ϵ slack in the incentive compatibility, and thus our classical
insights often fail. One of our main technical contributions is to develop new techniques for
mathematically reasoning about approximate incentive compatibility. On the conceptual
front, while an elegant line of work has shown ways in which cryptography and game theory
can help each other [19, 22, 1, 27, 3, 2, 15, 14, 16, 21, 10, 18, 9, 31, 8, 28, 23, 13, 11] (see
Section 1.2 for more discussions), our work is of a different nature. Our results reveal exciting
new connections between cryptography and mechanism design, motivated by a practical
problem. The popularity of blockchains and decentralized applications poses many exciting
new challenges for decentralized mechanism design, and cryptography-meets-game-theory is
a natural and promising paradigm. We thus hope that our new conceptual contributions can
provide fodder and inspire new works in this exciting and much explored space.

We give a summary of our main results below.

1.1.1 Characterizing Miner Revenue under Approximate Incentive
Compatibility

We first focus on the plain model that was studied in earlier works [24, 32, 4, 29, 30, 12, 7].
Recall that assuming infinite block size, it is possible to achieve a dream TFM (e.g., the
burning posted price auction), but the miner revenue has to be zero. We ask the following
question: suppose we are willing to relax the incentive compatibility notion and allow an ϵ

additive slack, can we circumvent the zero miner revenue lower bound? If so, exactly how
much miner revenue can we hope for?

More specifically, ϵ-incentive-compatibility (including ϵ-UIC, ϵ-MIC, and ϵ-SCP) requires
that any deviation cannot increase the strategic individual or coalition’s utility by more than
ϵ. We show that under ϵ-incentive-compatibility, we can achieve linear (in the number of
users) miner revenue assuming infinite block size. Moreover, we give matching upper- and
lower-bounds that tightly characterize exactly how much miner revenue can be attained.

ITCS 2023
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Infinite block size

Consider the simple posted price auction with reserve price r ≤ ϵ
c where c is the maximum

number of users controlled by the strategic coalition: all bids that bid at least r are confirmed.
Each confirmed bid pays r. All payment goes to the miner. It is not hard to show that the
above auction satisfies strict UIC, strict MIC (for an arbitrarily sized miner-coalition), and
ϵ-SCP against c-sized coalitions. Further, the expected total miner revenue is Θ(n · ϵ

c ) when
the users’ true values are not too small.

Although the above posted price achieves linear in n revenue, the drawback is that the
miner revenue is unscalable: even as the users’ bids scale up (e.g., by some multiplicative
factor), the miner revenue does not grow proportionally. We therefore ask if randomization
can help achieve scalability in miner revenue. We show that indeed the following randomized
TFM achieves scalability in miner revenue:

Proportional auction // Let r be a fixed reserve price.
Every bid b ≥ r is confirmed with probability 1 and every candidate bid b < r is
confirmed with probability b/r. Each confirmed bid b pays p = min{ b

2 , r
2 }.

For each confirmed bid, miner gets a pre-determined threshold r′ =
√

2rϵ
9c if p ≥ r′.

For example, suppose all users’ bids are sampled independently from some distribution
D, and let m be the median of the distribution such that Prx∼D[x ≥ m] ≥ 1/2 (or any other
constant). Then, if we set r = m, the expected miner revenue (taken over the randomness of
users’ bids as well as of the TFM itself) is Ω(n · min(m,

√
mϵ
c )).

Combining the posted price auction and the proportional auction, we have the following
theorem:

▶ Theorem 1.1. Consider the hybrid auction which, given some bid distribution D with
median m, runs either the posted posted price auction with reserve price r = min( ϵ

c , m) or
the proportional auction with the reserve price r = m, depending on which one has higher
expected revenue. The hybrid auction is strict UIC, strict MIC (for an arbitrarily sized miner
coalition), and ϵ-SCP against any miner-user coalition with at most c users. Further, it
achieves Ω

(
n · (min( ϵ

c +
√

mϵ
c , m))

)
expected total miner revenue.

Next, we prove a matching bound that shows the limitation on how much miner revenue
can be attained under approximate incentive compatibility, as stated in the following theorem
– this bound holds no matter whether the block size is finite or infinite.

▶ Theorem 1.2 (Limit on miner revenue for infinite block size). For any possibly randomized
TFM (in the plain model) that satisfies ϵ-UIC, ϵ-MIC, and ϵ-SCP for miner-user coalitions
with 1 user, the expected total miner revenue over a random bid vector sampled from Dn

must be upper bounded by

Eb∼Dn [µ(b)] ≤ 6n · (ϵ +
√

ϵ · Ex∼D[
√

x]),

where µ(b) denotes the total miner revenue under the bid vector b, n is the number of users,
Di denotes the true value distribution of user i ∈ [n].

Finite block size

Another natural question is: can we circumvent the finite-block impossibility under approx-
imate incentive compatibility? Unfortunately, although it is indeed possible to overcome
the finite-block impossibility with approximate incentive compatibility, we prove a new
impossibility result that rules out the existence of “useful” mechanisms whose social welfare
(i.e., the sum of everyone’s utilities) scales up proportionally w.r.t. the bid distribution:
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▶ Theorem 1.3 (Scalability barrier for approximate incentive compatibility in the plain model).
Fix any ϵ > 0, and suppose that the block size is k. Any (possibly random) TFM in the plain
model that simultaneously satisfies ϵ-UIC, ϵ-MIC, and ϵ-SCP (even when the miner colludes
with at most one user) has at most Õ(k3ϵ) social welfare where k is the block size and Õ(·)
hides logarithmic factors.

1.1.2 Can We Circumvent the Finite-Block Impossibility with
Cryptography?

Due to the negative result of Theorem 1.3, we want to seek other avenues that allow
us to circumvent the finite-block impossibility. Since cryptography is widely deployed in
today’s blockchains, it is natural to ask whether we can bring cryptography to the design of
transaction fee mechanisms, to help us achieve what is otherwise impossible.

New model: MPC-assisted TFM

Consider a scenario henceforth called the MPC-assisted model, where a set of miners jointly
run a multi-party computation (MPC) protocol to implement the TFM. Although in practice,
lighter-weight cryptography would be desirable, as an initial theoretical exploration of the
feasibility/infeasibility landscape, it makes sense to start with a generic abstraction like MPC.
One may think of the MPC protocol as providing the following ideal functionality FTFM:

Each player (either user or miner) may act as any number of identities (including 0), and
on behalf of each identity, submit a bid to FTFM.
The ideal functionality FTFM executes the prescribed allocation rule of the TFM to decide
which transactions to include and confirm in the block; it executes the payment rule and
miner revenue rule of the TFM to decide how much each confirmed bid pays and the
total miner revenue. FTFM then sends to all players the set of bids that are confirmed,
what price each confirmed bid pays, and the total miner revenue.

We require that the total miner revenue does not exceed the total payment, and that the
total miner revenue is split among the miners.

We assume that there is a separate process to decide the set of miners whose job is
to jointly run the MPC protocol. For example, this decision can be made through either
proof-of-work or proof-of-stake. In the former case, the total miner revenue is effectively split
among the miners proportional to their mining power. In the latter case, the total miner
revenue is effectively split among the miners proportional to their stake.

We assume that the majority of the miners are honest and that the MPC provides
guaranteed output (i.e., the strategic miners cannot cause the MPC protocol to abort without
producing outcome). Note that if we can indeed design an incentive compatible protocol in
the MPC-assisted model, then, no miner would be incentivized to deviate from the honest
protocol, and this reinforces the honest majority assumption.

Intuitively, an MPC-assisted TFM restricts the strategy space for players in comparison
with the plain model:
R1 A strategic individual or coalition must decide its strategy without having seen honest

users’ bids (c.f. in the plain model, a strategic individual or coalition can decide their
strategy after seeing other players’ bids).

R2 Once the set of bids are committed to, the allocation rule must be implemented honestly
(c.f. in the plain model, the winning miner or block proposer can strategically choose
which transactions to include in the block).
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Exactly because of the MPC-assisted model imposes the above restrictions on the strategy
space, we are hopeful that it may allow us to circumvent impossibilities. Before we explain
our results, we first discuss how to define incentive compatibility in the MPC-assisted model.

Ex post vs. Bayesian notions of incentive compatibility

In the plain model, because a strategic individual or coalition can decide their bids after
seeing others’ bids, prior works [30, 7] considered an ex post notion of incentive compatibility.
In the new MPC-assisted model, since players must submit their bids to FTFM without
seeing others’ bids, it also makes sense to consider a Bayesian notion of equilibrium.

Informally, we say that an MPC-assisted TFM satisfies Bayesian Nash Equilibrium (BNE)
for a strategic coalition (or individual) C, following the honest strategy allows C to maximize
its expected gain, assuming that the bids of users not in C are drawn independently from
some known distribution. If the coalition C consists of an individual user, we say that the
scheme satisfies Bayesian UIC. When C consists of at most ρ fraction of the miners, we say
that the scheme satisfies Bayesian MIC against a ρ-sized miner-coalition, Finally, when the
coalition C consists of at most ρ fraction of miners as well as at least 1 and at most c users,
we say that the scheme satisfies Bayesian SCP against a (ρ, c)-sized coalition.

Jumping ahead, for the MPC-assisted model, all our mechanism designs achieve incentive
compatibility even in the ex post setting – in other words, the incentive compatibility
guarantees hold even if FTFM leaks other players’ bids to the strategic players before they
decide their own strategy. On the other hand, all of our impossibilities hold even for the
Bayesian setting. This makes both our upper- and lower-bounds stronger.

MPC-assisted TFM under strict incentive compatibility

Unfortunately, as we show in the full version, the MPC-assisted model does not help us
circumvent the zero miner revenue lower bound, even for Bayesian notions of equilibrium.
Instead, the main question we care about here is whether the MPC-assisted model allows
us to circumvent the finite-block impossibility. It turns out that the answer is not a simple
binary one.

First, we show that absent user-user collusion, we can indeed circumvent the strong
finite-block impossibility of Chung and Shi [7]. Specifically, we can indeed construct a TFM
that simultaneously achieves UIC, MIC, and (ρ, c = 1)-SCP for any ρ. In particular, consider
the following finite-block posted price auction – recall that to specify an MPC-assisted TFM,
we only need to specify the allocation rule, the payment and miner revenue rules.

MPC-assisted, finite-block posted price auction

Let r be a fixed reserve price. Any bid that is at least r is considered as a candidate.
Randomly choose up to block size k candidates to confirm. Any confirmed bid pays r.
All payment is burnt and the miner revenue is 0.

▶ Theorem 1.4 (MPC-assisted, finite-block posted price auction). The above MPC-assisted,
finite-block posted price auction satisfies UIC, MIC, and (ρ, 1)-SCP in the ex post setting for
an arbitrary ρ ∈ [0, 1].

Since Theorem 1.4 holds even in the ex post setting, another interpretation is that the
enforcement of the allocation rule (i.e., restriction R2, and not R1) is what allows us to
circumvent the finite-block impossibility when c = 1.
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Table 1 Mathematical landscape of TFM. Results in gray background are shown in this
paper. ✗ means impossible and ✓ means possible. Θ(·) means that we show matching upper and
lower bounds – here m is a term that depends on the scale of the bid distribution, and we ignore
terms related to c for simplicity. Unless otherwise noted, the impossibilities hold even for c = 1.

plain model MPC-assisted model

Infinite block strict 0 miner rev [7] 0 miner rev

approximate Θ(n · (ϵ +
√

mϵ)) miner rev Θ(n · (ϵ +
√

mϵ)) miner rev

Finite block
strict ✗ [7] ✓: c = 1, ✗: c ≥ 2

approximate scalability ✗ (ignoring log terms) scalability ✓

The above finite-block posted price auction works for c = 1, i.e. no user-user collusion;
however, it fails when the coalition may contain c ≥ 2 users. Imagine that the number of
users n = k + 1, and the coalition consists of two users and any fraction of miners. Now,
suppose one of the colluding users has true value v ≫ r, and the other has true value v′ = r.
In this case, the user with true value v′ = r should simply drop out and not submit a
bid. This guarantees that the friend with large true value will be confirmed, and thus the
coalition’s joint utility increases.

It turns out that this is no accident. We prove that for c ≥ 2, no MPC-assisted TFM can
achieve UIC, MIC, and SCP for (ρ, c)-sized coalitions at the same time for any choice of ρ.
Further, the impossibility holds even assuming Bayesian notions of incentive compatibility.

▶ Theorem 1.5 (Finite-block impossibility in the MPC-assisted model for c ≥ 2). Let c ≥ 2
and let ρ ∈ [0, 1]. No (possibly randomized) MPC-assisted TFM with non-trivial utility can
simultaneously achieve Bayesian UIC, Bayesian MIC, and Bayesian SCP for (ρ, c)-sized
coalitions, assuming finite block size.

MPC-assisted TFM under approximate incentive compatibility

Recall that in the plain model, even with approximate incentive compatibility, we cannot
have scalable TFMs whose social welfare scales w.r.t. the bid distribution (Theorem 1.3).
We show that if we consider approximate incentive compatibility in the MPC-assisted model,
we can overcome this scalability barrier. Specifically, we construct an MPC-assisted TFM
called the “diluted posted price auction” that can achieve up to Θ(M · k) social welfare when
many people’s bids are large enough, where M is an upper bound on users’ bid.

MPC-assisted, diluted posted price auction
Let r be a fixed reserve price, let M be the maximum possible value of the bid, and
let k be the block size.
Remove all bids that are less than r, and suppose that there are ℓ bids left – these
bids form the candidate pool.
Let N = max{c ·

√
kM
2ϵ , k}. If ℓ < N , pad the candidate pool with fake 0 bids such

that its size is N .
Choose k bids at random from the candidate pool. All real bids chosen are confirmed
and pay the reserve price r.
The miner gets 2ϵ

c for each confirmed bid.
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In the above mechanism, suppose we set the reserve price r ≤ M/2, and further, imagine
that n ≫ k people bid M . In this case, we will achieve Θ(M · k) social welfare with high
probability.

▶ Theorem 1.6 (MPC-assisted, diluted posted price auction). The above MPC-assisted, diluted
posted price auction satisfies strict UIC, strict MIC, and ϵ-SCP for (ρ, c)-sized coalitions in
the ex post setting, for any choice of ρ and c. Further, the mechanism is scalable, i.e., it can
achieve Θ(M · k) expected social welfare under some bid configurations.

Summary of landscape

Summarizing our understanding so far, we present the mathematical landscape of TFM in
Table 1. Our results show that cryptography can help us circumvent fundamental impossib-
ilities of the plain model under finite block size. First, for strict incentive compatibility,
cryptography allows us to overcome the finite-block impossibility for c = 1 (Theorem 1.4).
Second, with approximate incentive compatibility, cryptography allows us to overcome the
scalability barrier for finite block size in the plain model.

On the other hand, cryptography is also not a panacea. For example, it does not
fundamentally help us improve miner revenue in the infinite block size setting.

1.2 Additional Related Work

We review some additional related works besides the most closely related works on transaction
mechanism design [24, 32, 4, 5, 29, 30, 12, 7] mentioned earlier.

Earlier, an elegant line of work [19, 22, 1, 27, 3, 2, 15, 14, 16, 21, 10, 18, 9, 31, 8, 28,
23, 13, 11] revealed ways in which cryptography and game theory can help each other.
Among them, some works [10] showed how to rely on cryptography to remove the trusted
mediator assumption in certain game theoretic notions such as correlated equilibrium.
Some [19, 1, 20, 27, 9, 31] showed that adopting game theoretic notions of fairness rather
than the more stringent cryptographic notions of fairness can allow us to circumvent well-
known lower bounds. Recently, Ferreira et al. [13] and Essaidi et al. [11] showed that using
cryptographic commitments can help us circumvent lower bounds pertaining to credible
auctions. As Chung and Shi [7] explained, credible auction is of a different nature from
transaction fee mechanism design. Transaction fee mechanism is a new type of decentralized
mechanism design problem, and the new connections between cryptography and mechanism
design revealed in our paper differ in nature from the settings in prior works.

2 Model and Definitions

Notation

We use bold letters to denote vectors. For a vector b = (b1, . . . , bN ), we use bi to represent
the i-th entry of vector b. The notation b−i = (b1, b2, . . . , bi−1, bi+1, . . . , bN ) represents all
except the i-th entry. We often use (b−i, bi) and b interchangeably. Throughout the paper,
we use n to denote the number of users, and N to denote the number of bids. N is equal to
n if everyone behaves truthfully. However, strategic users may post zero or multiple bids –
in this case N may not be equal to n. Given a distribution D, we use the notation Supp(D)
to denote its support. We use R≥0 to denote non-negative real numbers.
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2.1 Transaction Fee Mechanism in the Plain Model

We first define transaction fee mechanism (TFM) in the plain model. Henceforth, we use C
to denote a coalition of strategic players (or a strategic individual). In particular, C can be a
user, the miner of the present block, or a coalition of the miner and one or more users.

Plain model

In the plain model, a transaction fee mechanism (TFM) describes the following game:
1. Users not in C submit their bids where each bid is represented by a single real value – let

b−C denote the resulting bid vector.
2. The coalition C sees b−C , and then users in C submit their bids.
3. The miner of the present block, possibly a member of C, chooses up to k bids to include

in the block, where k denotes the maximum block size.
4. Among the at most k bids included in the block, the trusted blockchain decides 1) which

of them are confirmed, 2) how much each confirmed bid pays, and 3) how much revenue
is paid to the miner.

Therefore, to specify a transaction fee mechanism (TFM) in the plain model, it suffices
to specify the following rules which are possibly randomized functions:

Inclusion rule: given a bid vector b, the inclusion rule chooses up to k bids to include in
the block;
Confirmation and payment rules: Given the at most k bids included in the block, the
confirmation rule decides which ones to confirm, and the payment rule decides how much
each confirmed user pays.
Miner revenue rule: Given the at most k bids included in the block, the miner revenue
rule decides how much the miner earns.

In particular, the inclusion rule is implemented by the miner, and if the miner is strategic,
it may not follow the prescribed inclusion rule but instead choose an arbitrary set of bids to
include. By contrast, the confirmation, payment, and miner revenue rules are implemented
by the blockchain, and honest implementation is guaranteed.

We assume that the (honest) TFM is symmetric in the following sense: if we apply any
permutation π to an input bid vector b = (b1, . . . , bN ), it does not change the distribution
of the random variable represented by the set {(bi, xi, pi)}i∈[N ] where xi and pi are random
variables denoting the probability that bid i is confirmed, and its payment, respectively. An
equivalent, more operational view of the above condition is the following. We may assume
that the honest mechanism can always be equivalently described in the following manner:
given a bid vector b where each bid may carry some extra information such as identity or
timestamp, the honest mechanism always sorts the vector b by the bid amount first. During
this step, if multiple bids have the same amount, then arbitrary tie-breaking rules may be
applied, and the tie-breaking can depend on the extra information such as timestamp or
identity. At this point, the inclusion rule and the confirmation rules should depend only on
the amount of the bids and their relative position in the sorted bid vector. Note that our
symmetry requirement is natural and quite general – it captures all the mechanisms we know
so far [24, 32, 4, 5, 29, 30, 12]. In particular, due to possible tie-breaking in the sorting step,
our symmetry condition does not require two bids of the same amount to receive the same
treatment, i.e., the distribution of their outcomes can be different.
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FTFM: Ideal Functionality
// The functionality is parametrized with the allocation, payment, and miner revenue
rules.

1. Receive a single bid bi from each identity. Let b be the resulting bid vector.
2. Run the allocation rule, the payment rule, and the miner revenue rule with the

bid vector b. The outputs include a bit vector indicating whether each bid in b is
confirmed or not, a payment vector where all unconfirmed bids must pay 0, and the
total miner revenue. Send the outputs to everyone.

Figure 1 Ideal functionality realized by the MPC protocol.

Strategy space

A user’s truthful behavior is submit a single bid representing its true value. However, strategic
users may choose to submit zero to multiple bids, and the bids need not reflect their true
value.

An honest miner does not submit any bids and honestly implements the prescribed
inclusion rule. A strategic miner, on the other hand, may not honestly implement the
prescribed inclusion rule – it can pick an arbitrary set of up to k bids of its choice to include.
A strategic miner can also post fake bids. A coalition C’s strategy space is defined in the
most natural manner, i.e., it includes any strategic behavior of its members.

Notably, any strategic player in C can decide its actions after having observed the bids of
the remaining users not in C.

2.2 Transaction Fee Mechanism in the MPC-Assisted Model
Imagine that all miners jointly run an multi-party computation (MPC) protocol that imple-
ments the TFM. Figure 1 depicts the natural ideal functionality (denoted FTFM) realized by
the MPC protocol. Further, the MPC protocol can achieve full security with guaranteed
output as long as the majority of the miners are honest. Therefore, following the modular
composition [6] paradigm in the standard cryptography literature, we can simply assume
that a trusted party FTFM exists – this is often referred to as the FTFM-hybrid model. The
instantiation of FTFM is available in the full version.

MPC-assisted model

A transaction fee mechanism (TFM) in the MPC-assisted model describes the following
game:
1. Every player (i.e., user or user) can take on zero to multiple identities, and every identity

submits a bid represented by a single real value to FTFM defined in Figure 1.
2. FTFM decides which bids to confirm, how much each confirmed bid pays, and the total

miner revenue. The total miner revenue is split among the miners.

Therefore, to specify a TFM in the MPC-assisted model, we need to specify the allocation
rule, the payment rule, and the miner revenue rule – we assume that these rules are possibly
randomized, polynomial-time algorithms, and the syntax of the rules are evident from FTFM
in Figure 1. In comparison with the plain model, here the inclusion rule and the confirmation
rule are combined into a single allocation rule, since both inclusion and confirmation decisions
are made by FTFM. Just like in the plain model, we assume that the (honest) TFM is
symmetric.
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Strategy space

A user’s honest behavior is to take on a single identity, submit a single bid which reflects its
true value. However, as mentioned above, any strategic user can take on zero or multiple
identities, submit zero or multiple bids that need not be its true value.

An honest miner does not take on any identities or submit any bids. However, a strategic
miner can take on one or more identities and submit fake bids. Unlike the plain model, here,
a strategic miner can no longer choose which bids to include in the block – the allocation rule
(i.e., the counterpart of the inclusion + confirmation rules of the plain model) is enforced by
FTFM.

One technicality is whether the distribution of users’ identities matter, and whether
choosing identities strategically should be part of the strategy space. Jumping ahead, all of
our mechanisms are proven to be incentive compatible even when the strategic individual or
coalition can arbitrarily choose their identities as long as they cannot impersonate honest
users’ identities. On the other hand, all of our impossibility results hold even when the
strategic individual or coalition is forced to choose their identities from some a-priori known
distribution. This makes both our feasibility and infeasbility results stronger.

2.3 Defining Incentive Compatibility
Utility

Every user i ∈ [n] has a true value vi ∈ R≥0 if its transaction is confirmed. If user i’s
transaction is confirmed and the user pays pi, then its utility is defined as vi − pi. A miner’s
utility is simply its revenue.

The utility of any strategic coalition C is the sum of the utilities of all members of C.
Considering the joint utility of the coalition is appropriate since we assume that the coalition
has a binding mechanism (e.g., decentralized smart contracts) to split off their gains off the
table.

Ex post incentive compatibility

We first define ex post incentive compatibility for both the plain model and the MPC-assisted
model. Roughly speaking, ex post incentive compatibility requires that a strategic player or
coalition’s best response is always to behave honestly, even after observing the remaining
users’ bids. Similary, ex post ϵ-incentive compatibility requires that no strategy can increase
a strategic player or coalition’s expected utility by more than ϵ in comparison with the
honest strategy, and this should hold even if the coalition can decide its strategy after having
observed the remaining users’ bids.

Below in our formal definitions, we define the approximate case that allows ϵ slack. When
ϵ = 0, we get strict incentive compatibiity – in this case, we can omit writing the ϵ.

▶ Definition 2.1 (Ex post incentive compatibility). We say that a mechanism satisfies ex post
ϵ-incentive compatibility for a set of players C (possibly an individual), iff for any bid vector
b−C posted by users not in C, for any vector of true values vC of users in C, no strategy can
increase C’s expected utility by more than ϵ in comparison with honest behavior. Specifically,

UIC. We say that a TFM (in either the plain or MPC-assisted model) satisfies ex post
ϵ-user incentive compatibility (UIC), iff for any n, for any i ∈ [n], for any bid vector
b−i of all users other than i, for any true value vi of user i, no strategy can increase i’s
expected utility by more than ϵ in comparison with truthful bidding.
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MIC. In the plain model, we focus on the miner of the present block when defining miner
incentive compatibility. We say a TFM in the plain model satisfies ex post ϵ-miner
incentive compatibility MIC, iff for any bid vector b, no strategy can increase the miner’s
expected utility by more than ϵ in comparison with honest behavior. Recall that that here,
the miner’s honest behavior is to honestly implement the inclusion rule and not inject
any fake bids.
In the MPC-assisted model, we want MIC to hold for any coalition controlling at most ρ

fraction of the miners. Therefore, we say that an MPC-assisted TFM satisfies ex post
ϵ-MIC against ρ-sized coalitions, iff for any coalition controlling at most ρ fraction of
the miners, for any bid vector b, no strategy can increase the miner’s expected utility by
more than ϵ in comparison with honest behavior. In the FTFM-hybrid world, the miner’s
honest behavior is simply not to take on any identities and inject any fake bids.
SCP. In the plain model, we want side-contract-proofness to hold for any miner-user
coalition that involves the miner of the present block, and up to c users. We say that
a TFM in the plain model satisfies ex post ϵ-side-contract-proofness (SCP) for c-sized
coalitions, iff for any miner-user coalition consisting of the miner and up to c users, for
any bid vector b−C posted by users not in C, no strategy can increase C’s expected utility
by more than ϵ in comparison with honest behavior.
In the MPC-assisted model, we want SCP to hold for any miner-user coalition that
involves up to ρ fraction of the miners and up to c users. We say that an MPC-assisted
TFM satisfies ex post ϵ-SCP for (ρ, c)-sized coalitions, iff for any miner-user coalition2

consisting of at most ρ fraction of the miners and up to c users, for any bid vector b−C
posted by users not in C, no strategy can increase the coalition’s utility by more than ϵ in
comparison with honest behavior.

Bayesian incentive compatibility

For the MPC-assisted model, it also makes sense to consider a Bayesian notion of incentive
compatibility. In particular, the MPC-assisted model requires that the strategic player
or coalition decides its strategy without having seen the remaining users’ bids. We may
assume that the strategic player or coalition has some a-prior belief of each honest user’s
true value distribution. We assume that all honest users’ true values are independently and
identically distributed (i.i.d.) and sampled from some distribution D. In Bayesian incentive
compatibility, we imagine that a strategic individual or coalition cares about maximizing
its expected utility where the expectation is taken over not just the random coins of the
mechanism, but also the remaining honest users’ bids.

Henceforth, given a set S of players, we use the notation DS to denote Du where u is the
number of users in S. Similarly, D−i := Dn−1. Again, we define ϵ-incentive compatibility for
the Bayesian setting below, where the corresponding strict incentive compatibility notions
can be obtained by setting ϵ = 0.

▶ Definition 2.2 (Bayesian incentive compatibility). We say that an MPC-assisted TFM
satisfies Bayesian ϵ-incentive compatibility for a coalition or individual C, iff for any vC
denoting the true values of users in C, sample b−C ∼ D−C, then, no strategy can increase C’s
expected utility by more than ϵ in comparison with honest bevavior, where the expectation is
taken over randomness of the honest users bids b−C, as well as random coins consumed by
the TFM. Specifically,

2 We require the miner-user coalition to consist of a non-zero fraction the miners and at least one user –
otherwise the definition would degenerate to UIC or MIC.
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UIC. We say that an MPC-assisted TFM satisfies Bayesian ϵ-UIC, iff for any n, for any
user i ∈ [n], for any true value vi ∈ R≥0 of user i, for any strategic bid vector bi from
user i which could be empty or consist of multiple bids,

E
b−i∼D−i

[
utili(b−i, vi)

]
≥ E

b−i∼D−i

[
utili(b−i, bi)

]
− ϵ

where utili(b) denotes the expected utility (taken over the random coins of the TFM) of
user i when the bid vector is b.
MIC. We say that an MPC-assisted TFM satisfies Bayesian ϵ-MIC for ρ-sized coalitions,
iff for any miner coalition C controlling at most ρ fraction of the miners, for any strategic
bid vector b′ injected by the miner,

E
b−C∼D−C

[
utilC(b−C)

]
≥ E

b−C∼D−C

[
utilC(b−C , b′)

]
− ϵ

where utilC(b) denotes the expected utility (taken over the random coins of the TFM) of
the coalition C when the input bid vector is b.
SCP. We say that an MPC-assisted TFM satisfies Bayesian ϵ-SCP for (ρ, c)-sized coali-
tions, iff for any miner-user coalition consisting of at most ρ fraction of the miners and
at most c users, for any true value vector vC of users in C, for any strategic bid vector
bC of the coalition (whose length may not be equal to the number of users in C),

E
b−C∼D−C

[
utilC(b−C , vC)

]
≥ E

b−C∼D−C

[
utilC(b−C , bC)

]
− ϵ

Note that the Bayesian notions of incentive compatibility do not make sense in the plain
model, since in the plain model, the strategic individual or coalition can decide its move
after having observed the remaining honest users’ bids. This is why we adopt only the
ex post notion in the plain model. Formally, it is easy to show that any mechanism that
satisfies Bayesian incentive compatibility in the plain model also satisfies ex post incentive
compatibility.

In the MPC-assisted model, both notions make sense, and the ex post notions are strictly
stronger than the Bayesian counterparts. Jumping ahead, all of our impossibility results
for the MPC-assisted model work even for the Bayesian notions, and all of our mechanism
designs in the MPC-assisted model work even for the ex post notions. This makes both our
lower- and upper-bounds stronger.

3 Approximate Incentive Compatibility for Infinite Block Size

In the plain model, no UIC and SCP mechanism (even for c = 1 and infinite block size) can
achieve positive miner revenue [7]. In our full version, we show that the same zero miner
revenue lower bound holds even in the MPC-assisted model. Therefore, we consider how to
get meaningful miner revenue using the relaxed notion of approximate incentive compatibility.
In this section, we give a tight characterization of approximate incentive compatibility for
infinite block size. This tight characterization applies to both the MPC-assisted model and
the plain model.

3.1 Bounds on Miner Revenue
We first prove a limit on miner revenue in the MPC-assisted model, which holds even for in
the Bayesian setting. The same limit applies to the plain model for the ex post setting – to
see this, observe that the strategy space is strictly larger in the plain model, and moreover,
for the plain model, we only care about ρ = 1.
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We now show an MPC-assisted mechanism simultaneously satisfies ϵ-UIC, ϵ-MIC and
ϵ-SCP even for the Bayesian setting and even for c = 1 and an arbitray choice ρ ∈ (0, 1],
then the miner can gain at most O(n · (ϵ + ·

√
m∗ · ϵ))-miner revenue, where n is the number

of users, and m∗ is a term that depends on the “scale” of the bid distribution.
To prove the limit on the miner revenue, we care only about the probability of each bid

being confirmed, the expected payment of each bid, and the miner revenue. Therefore, we
introduce the following notations to denote the outputs of the allocation, payment, and miner
revenue rules – we assume that each user’s true value is drawn i.i.d. from some distribution
D since we are considering the Bayesian setting:

Allocation rule: given a bid vector b = (b1, . . . , bN ), the allocation rule outputs a
vector x(b) := (x1, . . . , xN ) ∈ [0, 1]N , where each xi denotes the probability of bi being
confirmed.
Payment rule: given a bid vector b = (b1, . . . , bN ), the payment rule outputs a vector
p(b) := (p1, . . . , pN ) ∈ RN , where each pi denotes the expected payment of bi.
Miner revenue rule: given a bid vector b = (b1, . . . , bN ), the miner revenue rule outputs
µ(b) ∈ R, denoting the amount paid to the miner.

We also define D−i := DN−1, and for the i-th user, we define

xi(·) = E
b−i∼D−i

[xi(b−i, ·)], pi(·) = E
b−i∼D−i

[pi(b−i, ·)], µi(·) = E
b−i∼D−i

[µ(b−i, ·)].

Henceforth, we often use (x, p, µ) to denote a TFM in the MPC-assisted model. The crux
of our proof is to characterize how miner revenue changes when we lower one user’s bid to 0.
We then apply this argument n times, and lower each user’s bid one by one to 0 to get the
desired bound. To make the second step work, we need to use approximate MIC to remove a
user’s bid from consideration once we have lowered it to zero – this ensures that in any step
of our inductive argument, the non-strategic users’ bids are always i.i.d. sampled from D.

Warmup

To understand how much the miner revenue changes when one user lowers its bid to 0, we
start from a simplified case where a TFM (x, p, µ) is Bayesian strict-UIC and Bayesian ϵ-SCP
for c = 1 and some ρ ∈ (0, 1]. By Myerson’s Lemma [25], strict-UIC implies that, for any
user i, the allocation rule xi(·) must be non-decreasing. Moreover, the expected payment
when bidding b is specified as

pi(b) = b · xi(b) −
∫ b

0
xi(t)dt.

We care about how much the miner revenue can increase when user i bids r instead of
0. One trivial upper bound can be obtained as follows. Imagine that user i’s true value is
0, but it bids r instead. In this case, the user’s loss in utility (in comparison with truthful
bidding) is represented by the area of the gray triangle S in Figure 2a. Due to ϵ-SCP, the
miner revenue increase when user i bids r instead of 0 must be upper bounded by S + ϵ.
This bound, however, is not tight. To make it tighter, we consider bounding it in two steps
by introducing a mid-point r′ ∈ (0, r). If user i’s true value is 0, but it bids r′ instead, its
utility loss is the area S1 of Figure 2b. By ϵ-SCP, we conclude that µi(r′) − µi(0) ≥ S1 + ϵ.
Now, imagine user i’s true value is r′ but it bids r instead. Using a similar argument, we
conclude that µi(r) − µi(r′) ≥ S2 + ϵ (see Figure 2b). Summarizing the above, we have that
µi(r) − µi(0) ≥ S1 + S2 + 2ϵ.
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(a) When user i changes its bid from 0 to r, it
loses utility S. Therefore, miner revenue changes
by no more than S + ϵ.

0 r′ r0

1

S1

S2

(b) When user i changes its bid from 0 to r′, it
loses utility S1. Then when it changes its bid
from r′ to r, it loses utility S2.

Figure 2 User’s utility change.

To get a tight bound, the key is how to choose the optimal number of steps L we use in
the above argument. Taking more steps makes the total area of the gray triangles smaller;
however, every step incurs an extra ϵ. Given the number of steps L, the sum of the L

triangles is upper bounded by r/L, and since each step incurs an additive ϵ term, our goal is
to minimize the expression r/L + ϵL. Picking L =

√
r
ϵ minimizes the expression and thus

we have that µi(r) − µi(0) ≤ 2
√

rϵ.

Full proof. The above warmup argument works for strict-UIC and ϵ-SCP. We want to
prove a limitation on miner revenue for Bayesian ϵ-UIC and ϵ-SCP. The challenge is that for
ϵ-UIC, Myerson’s lemma no longer holds – in particular, the allocation rule may not even be
monotone any more. The key idea our proof is to give a generalization of Myerson’s lemma
to account for the ϵ slack in incentive compatibility. The full proof is available in the full
version.

3.2 Achieving Optimal Revenue: Proportional Auction

We now show that the limit on miner revenue in Theorem 1.2 is asymptotically tight, i.e.,
we can indeed design a TFM, even in the plain model, whose miner revenue asymptotically
matches that in Theorem 1.2 for some natural bid distribution.

Proportional Auction (plain model)
Parameters: the slack ϵ, the reserved price r where r ≥ 2ϵ.
Input: a bid vector b = (b1, . . . , bN ).
Mechanism:

Inclusion rule. Include all bids in b.
Confirmation rule. For each bid b, if b < r, it is confirmed with the probability b/r;
otherwise, if b ≥ r, it is confirmed with probability 1.
Payment rule. For each confirmed bid b, if b < r, it pays b/2; otherwise, it pays r/2.
Miner revenue rule. For each confirmed bid b, if b ≥

√
2rϵa, then miner is paid

√
2rϵ
2 .

a This guarantees that the miner revenue does not exceed the total payment.
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The above mechanism is called the proportional mechanism since the user’s confirmation
probability is proportional to the bid in the region [0, r], and any bid that is at least r is
confirmed with probability 1.

▶ Theorem 3.1. The above proportional auction in the plain model is UIC, MIC and 5
4 cϵ-SCP

against c-sized coalitions for arbitrary c ≥ 1.

Proof intuition

We provide the proof intuition here, the full proof is available in the full version. First, UIC
and MIC are easy to prove. Observe that the allocation rule (i.e., the union of the inclusion
and confirmation rules) is monotone, and by design, the payment rule is the unique one that
satisfies Myerson’s Lemma. Therefore, the mechanism satisfies UIC. It is easy to see that
injecting a bid does not help the miner, since each bid’s contribution to the miner revenue is
independent and limited by the payment amount.

Proving that the mechanism satisfies 5
4 cϵ-SCP is more technical. Here we give an

illustrative explanation to show that the joint utility of each user and the miner can increase
by at most 5

4 ϵ. Since underbidding does not increase the user’s utility or the miner’s revenue,
we focus on overbidding. Note that overbidding does not increase the joint utility for a user
whose true value is v ≥ r. Therefore, we focus in the case where the colluding user has true
value v < r and overbids.

If v ≥
√

2rϵ, the user’s utility loss when overbidding to v′ is represented by the gray
triangle in Figure 3a. Meanwhile, the miner’s expected revenue increases by

√
2rϵ
2 ( v′

r − v
r ),

which is the area of the dashed rectangle in Figure 3a. Therefore, when the user overbids by
v′ − v =

√
2rϵ
2 , the coalition’s utility increase is maximized and equals to ϵ

4 .
If v <

√
2rϵ and the colluding user overbids to v′ ≥

√
2rϵ, then the user’s utility loss

when overbidding to v′ is represented by the area of the gray triangle in Figure 3b. The
miner’s revenue now increases by v′

r ·
√

2rϵ
2 , because the user’s utility would be 0 if the

user behaves honestly. The increase in the miner’s revenue is represented by the dashed
rectangle in Figure 3b. The increase in the joint utility of the coalition is maximized when v

is arbitrarily close to
√

2rϵ and the user overbids by v′ − v =
√

2rϵ
2 . In this case, the joint

utility of the coalition increases by 5
4 ϵ.

4 Characterization of Finite Block Size in the Plain Model

In real-world blockchains, we do not have an infinite block size. Chung and Shi [7] showed that
no non-trivial plain-model TFM can achieve strict UIC and strict SCP (even when c = 1) for
finite block size. In this section, we show that although approximate incentive compatibility
can help us overcome this impossibility, nonetheless we cannot get useful mechanisms whose
social welfare scales with the bid distribution (ignoring logarithmic terms).

▶ Theorem 4.1. Suppose the block size is upper bounded by k. Fix any ϵ > 0. Given any
TFM in the plain model that satisfies ϵ-UIC, ϵ-MIC and ϵ-SCP when the miner can collude
with at most c = 1 user, and given any bid vector b, let M = max(b) be the maximum bid of
any user, it must be that

the miner’s expected revenue is upper bounded by 12k2ϵ log
(

M
ϵ + 1

)
+ 2kϵ;

every user’s expected utility is upper bounded by 12k2ϵ log
(

M
ϵ + 1

)
+ (2k + 1)ϵ conditioned

on the bid being included in the block, and assuming the bid reflects its true value;
the expected social welfare is upper bounded by O

(
k3ϵ log

(
M
ϵ + 1

)
+ k2ϵ

)
.
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(a) An illustrative example of the coalition’s
joint utility change when the user’s true value
v ≥

√
2rϵ.

√
2rϵ r′

1

b

v′v

√
2rϵ
2

(b) An illustrative example of the coalition’s
joint utility change when the user’s true value
v <

√
2rϵ.

Figure 3 Coalition’s joint utility change when the miner colluding with one user.

A direct corollary of Theorem 4.1 is that there is no non-trivial mechanism that satisfies
approximate incentive compatibility if the user’s true value is unbounded. This implies that
there is no universal mechanism that works for all bid distributions. Formally,

▶ Corollary 4.2. Suppose the block size is upper bounded by k. Fix any ϵ > 0. If users’ true
values are unbounded, then no (possibly randomized) non-trivial TFM in the plain model can
simultaneously satisfy ϵ-UIC and ϵ-SCP, even if the miner colludes with only one user.

Proof. For the sake of contradiction, assume that there exists an ϵ > 0, such that there exists
a non-trivial TFM satisfying ϵ-UIC and ϵ-SCP. Recall that xi(b) denotes the probability
of user i’s bid being confirmed given that the world consists of the bid vector b (assuming
the mechanism is honestly implemented). We define x̃i(b′) to be the probability of user
i’s bid being confirmed conditioned on its bid being included in the block configuration b′.
According to the assumption that the mechanism is non-trivial, there must exist an i ∈ [k]
and a block configuration b′ = (b∗, b−i) such that b∗ has a positive probability x̃i(b′) of
being confirmed.

Now imagine the world consists of the bid vector b where

b = (b1, b2, . . . , bk−1, M, M, . . . , M︸ ︷︷ ︸
T

),

where T ≥ 2k

x̃i(b′)
and M is some large number (larger than max{b1, . . . , bk}) that we will

specify later.
Since the block size is bounded by k, there must exist a user j whose true value is M yet

its probability of being confirmed is no more than k
T ≤ 1

2 x̃i(b′) by our choice of T . Therefore,
user j’s utility (assuming the mechanism is honestly implemented) is at most M · 1

2 x̃i(b′).
Now consider the coalition of the miner and user j. By Theorem 4.1, their joint utility when
behaving honestly is at most

M · 1
2 x̃i(b′) + 12k2ϵ log

(
M

ϵ
+ 1

)
+ 2kϵ.
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However, the miner can ask user j to bid b∗ instead of its true value M and include
(b1, . . . , bk−1, b∗) into the block, where the bid b∗ comes from user j. Since the payment
cannot exceed the bid, now the utility of user j is at least

M · x̃i(b′) − b∗.

As long as M is large enough such that

M · x̃i(b′) − b∗ ≥ M · 1
2 x̃i(b′) + 12k2ϵ log

(
M

ϵ
+ 1

)
+ 2kϵ + ϵ,

the coalition gains ϵ more joint utility comparing to honest strategy. This contradicts ϵ-SCP.
Note that since user’s true value can be unbounded, such M must exist. Therefore, there
does not exist a non-trivial mechanism that satisfies ϵ-UIC and ϵ-SCP simultaneously. ◀

Proof Roadmap
We first explain the blueprint. To prove that the total social welfare is small, we first show
that the miner revenue must be Õ(k2ϵ) for any bid configuration. If we can show this, then
given that the block size is finite, we can show that every user i’s utility conditioned on being
included is small, which then allows us to bound the total social welfare. Suppose this is not
the case, i.e., suppose that under some bid configuration b := (b1, . . . , bN ), there is a user i

with expected utility (conditioned on being included) significantly larger than the maximum
possible expected miner revenue (which is upper bounded by Õ(k2ϵ)). Then, imagine a world
consisting of b and additionally (infinitely) many users whose true value is the same as bi. In
this case, there must be one such user j whose expected utility is almost 0. Thus, if j is the
miner’s colluding friend, the miner would be willing to sacrifice all of its revenue, pretend
that the world consists of b where the i-th coordinate is replaced with j’s bid, and run the
honest mechanism subject to j being included. In this case, the coalition can increase its
expected joint utility since user j would be doing much better than the honest case.

The crux of our proof, therefore, is to show that the expected miner revenue must be
bounded for any bid vector. To show this, we take two main steps. First, we show that if
the world consists of only bids of value M , the expected miner revenue must be small. Using
the above as base case, we then go through an inductive argument to show that in fact, for
any bid vector where users do not necessarily bid M , the miner revenue must be small too.
Note that showing the first step itself relies on another inductive argument that inducts on
the length of the bid vector. The full proof is available in the full version.

5 Characterization for Finite Block Size in the MPC-Assisted Model

5.1 Characterization for Strict Incentive Compatibility
In this section, we give a characterization of strict incentive compatibility in the MPC-assisted
model for finite block size. We show that cryptography helps us overcome the finite-block
impossibility [7] for c = 1, but for c ≥ 2, the impossibility still holds.

5.1.1 Feasibility for c = 1
In the MPC-assisted model, we indeed can have a mechanism that achieves UIC, MIC, and
(ρ, 1)-SCP against a coalition controlling ρ ∈ (0, 1] fraction of the miners and c = 1 user.
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MPC-assisted, finite-block posted price auction
Parameters: the reserved price r, and a block size k.
Input: a bid vector b = (b1, . . . , bN ).
Mechanism:

Allocation rule. Any bid that is at least r is considered as a candidate. Randomly
select k bids from the candidates to confirm.
Payment rule. Each confirmed bid pays r.
Miner revenue rule. Miner gets 0 revenue.

In the above mechanism, the miner gains zero revenue. This is inevitable as we show in our
full version. Even in the MPC-assisted model, the miner must have zero revenue if we insist
on strict incentive compatibility (even under Bayesian notions of equilibrium).

▶ Theorem 5.1. Assuming a finite block size k. The above MPC-assisted, finite-block posted
price auction in the MPC-assisted model satisfies UIC, MIC, and (ρ, 1)-SCP (in the ex post
setting) for arbitrary ρ ∈ (0, 1].

Proof. We will prove the three incentive compatibility properties separately.

UIC. Let vi denote the true value of user i. First, refusing to bid cannot increase its utility.
Moreover, injecting bids does not help either. To see this, assume that user i bids its true
value vi and injects a bid b′. If b′ < r, then it does not influence user i’s utility. If b′ ≥ r, it
either decreases the probability of user i being confirmed if vi ≥ r, or it brings user i negative
expected utility if vi < r.

Thus, we only need to argue that overbidding or underbidding does not increase the user’s
utility. If user i’s true value vi < r, then its utility when overbidding b ≥ r is q · (vi − r) < 0,
where q is the probability of b being confirmed. If user i’s true value vi ≥ r, then underbidding
b < r brings it 0-utility, whereas the honest utility q(vi − r) is positive. Therefore, no matter
how user i deviates from the protocol, its utility does not increase.

MIC. Since the total miner revenue is always 0, injecting fake bids does not increase the
colluding miner’s utility. The miner cannot increase its utility by deviating from the protocol.

SCP. No matter how the coalition deviates, the colluding miner’s revenue is always 0.
Therefore, the joint utility of the coalition is at most the utility of the colluding user. By
strict UIC, the joint utility does not increase. ◀

Note that the above mechanism does not work for c = 2. Imagine that the miner colludes
with two users i and j, where user i has true value exactly r and user j has a sufficiently
large true value. User i may choose not to bid to increase the probability of user j being
confirmed. This brings the coalition strictly more utility than behaving honestly.

5.1.2 Impossibility for c ≥ 2
Unfortunately, even in the MPC-assisted model, no mechanism with non-trivial utility can
achieve UIC, MIC, and (ρ, 2)-SCP, even for Bayesian notions of incentive compatibility. To
see this, observe that under the strict incentive compatible notion, (ρ, c)-SCP implies that
any coalition of ≤ c users cannot benefit from any deviation3, since the miner revenue has to
be 0. Similar to the proof in Goldberg and Hartline [17], we show that any mechanism that

3 We credit Bahrani, Garimidi, Roughgarden, Shi, and Weinberg for making this observation.

ITCS 2023



97:20 What Can Cryptography Do for Decentralized Mechanism Design?

is Bayesian UIC and Bayesian SCP against a (ρ, 2)-sized coalition (for an arbitrary ρ ∈ (0, 1]
must satisfy the following condition: no matter how a user j changes its bid, user i’s utility
should not change, and thus derive the impossibility result. Formally,

▶ Theorem 5.2. Suppose the block size is k. No MPC-assisted mechanism with non-trivial
utility simultaneously achieves Bayesian UIC, Bayesian MIC and Bayesian SCP against
(ρ, 2)-sized coalitions.

The full proof is available in the full version.

5.2 Feasibility of Approximate Incentive Compatibility
Although strict (even Bayesian) incentive compatibility is impossible to achieve for c ≥ 2 in
the MPC-assisted model, we have meaningful feasibility results if we allow ϵ additive slack.
Still, we use k to denote the finite block size and M to denote the upper bound of the true
values. Specifically, we can achieve Θ(kM) social welfare as long as many people place high
enough bids, which is asymptotically the best possible social welfare one can hope for.

MPC-assisted, Diluted Posted Price Auction
Parameters: the block size k, an upper bound c of the number of users colluding with
the miner, an upper bound M of users’ true values, a slack ϵ ≥ 0, and a posted-price r

such that r ≥ ϵ
2c .

Input: a bid vector b = (b1, . . . , bN ).
Mechanism:
1. Allocation rule.

Given a bid vector b = (b1, . . . , bN ), remove all bids which are smaller than r.
Let b̃ = (̃b1, . . . , b̃ℓ) denote the resulting vector.

Let T = max
(

2c
√

kM
ϵ , k

)
. If ℓ ≥ T , let d = b̃. Else, let d = (̃b1, . . . , b̃ℓ, 0, . . . , 0)

such that |d| = T . In other words, d is b̃ appended with T − ℓ zeros.
Randomly choose a set S of size k from d, and every non-zero bid in S is confirmed.

2. Payment rule. For each confirmed bid b, it pays r.
3. Miner revenue rule. For each confirmed bid b, the miner is paid ϵ

2c .

▶ Theorem 5.3. Suppose there exists an upper bound M on users’ true values. The above
MPC-assisted, diluted posted price auction satisfies UIC, MIC, and ϵ-SCP (in the ex post
setting) against (ρ, c)-sized coalitions for arbitrary ρ ∈ (0, 1] and c ≥ 1.

The proof is available in the full version.
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Efficient Algorithms for Certifying Lower Bounds
on the Discrepancy of Random Matrices
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Abstract
In this paper, we initiate the study of the algorithmic problem of certifying lower bounds on the
discrepancy of random matrices: given an input matrix A ∈ Rm×n, output a value that is a lower
bound on disc(A) = minx∈{±1}n ∥Ax∥∞ for every A, but is close to the typical value of disc(A)
with high probability over the choice of a random A. This problem is important because of its
connections to conjecturally-hard average-case problems such as negatively-spiked PCA [7], the
number-balancing problem [26] and refuting random constraint satisfaction problems [43]. We give
the first polynomial-time algorithms with non-trivial guarantees for two main settings. First, when
the entries of A are i.i.d. standard Gaussians, it is known that disc(A) = Θ(

√
n2−n/m) with high

probability [15, 5, 45] and that super-constant levels of the Sum-of-Squares SDP hierarchy fail to
certify anything better than disc(A) ≥ 0 when m < n − o(n) [31]. In contrast, our algorithm certifies
that disc(A) ≥ exp(−O(n2/m)) with high probability. As an application, this formally refutes a
conjecture of Bandeira, Kunisky, and Wein [7] on the computational hardness of the detection
problem in the negatively-spiked Wishart model. Second, we consider the integer partitioning
problem: given n uniformly random b-bit integers a1, . . . , an, certify the non-existence of a perfect
partition, i.e. certify that disc(A) ≥ 1 for A = (a1, . . . , an). Under the scaling b = αn, it is known
that the probability of the existence of a perfect partition undergoes a phase transition from 1 to
0 at α = 1 [14]; our algorithm certifies the non-existence of perfect partitions for some α = O(n).
We also give efficient non-deterministic algorithms with significantly improved guarantees, raising
the possibility that the landscape of these certification problems closely resembles that of e.g. the
problem of refuting random 3SAT formulas in the unsatisfiable regime. Our algorithms involve a
reduction to the Shortest Vector Problem and employ the Lenstra-Lenstra-Lovász algorithm.
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1 Introduction

The key object of study in this paper is the discrepancy of a given matrix A ∈ Rm×n, defined
as

disc(A) = min
x∈{±1}n

∥Ax∥∞ . (1.1)

The problem of giving worst-case bounds on the discrepancy of matrices A satisfying various
assumptions has received intense study (see e.g. the books [38, 17, 18] and references
therein) and is connected to many fundamental problems in theoretical computer science,
combinatorics, statistics and beyond. While much of past work has focused on proving such
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bounds non-constructively, recent research (see the survey [8]) considers the algorithmic
search problem: given as input a matrix A, is there a polynomial-time algorithm that produces
a signing x ∈ {±1}n so that ∥Ax∥∞ is close to disc(A)?

Charikar, Newman and Nikolov [16] showed it is NP-hard to distinguish between matrices
A ∈ {0, 1}m×n with discrepancy zero and those with discrepancy Ω(

√
n), when m = O(n).

Given this result, it is natural to study the discrepancy in an average-case setting in which
A is taken to be a random matrix. The study of this average-case setting is also motivated
by the task of covariate balancing in randomized controlled trials [32, 36, 45]. A sequence of
works [33, 20, 11, 15, 5, 45] studying this problem has led to the following state-of-the-art
non-algorithmic result [15, 5, 45]: if the entries of A are i.i.d. standard Gaussian random
variables, then with high probability it holds that disc(A) = Θ(

√
n2−n/m). Furthermore,

Turner, Meka and Rigollet give a polynomial-time algorithm (which is a generalization
of the classic Karmarkar-Karp algorithm [33]) that finds a signing achieving discrepancy
exp(−Ω(log2(n)/m)) with high probability, provided that m = O(

√
log(n)). This begs the

question of whether or not this problem exhibits a statistical-to-computational gap: does
there exist a polynomial-time algorithm that can compute with high probability a signing
that achieves a discrepancy value at most O(

√
n2−n/m) on Gaussian input A?

Recently, Gamarnik and Kızıldağ [26] proved that in the m = 1 setting, the set of
signings achieving low discrepancy value for random A satisfies the Overlap Gap Property
(OGP), which is thought to be an indicator of algorithmic hardness (see the survey [25]).
While they formally show that the class of “stable” algorithms fails to produce signings with
discrepancy value smaller than exp(−ω(n/ log1/5(n))), they establish that OGP holds up to
discrepancy value exp(−ω(

√
n log(n))). Using statistical physics-inspired techniques, several

works [12, 13, 5, 41, 1, 27] have given evidence of the presence of statistical-to-computational
gaps in average-case discrepancy problems.

Inspired by a rich body of research on the problem of certifying the unsatisfiability of
random constraint satisfactions problems (CSPs) [43, 35, 7, 6], we initiate the study of the
algorithmic problem of efficiently certifying lower bounds on the discrepancy of random
matrices. More specifically, we ask: is there an efficient algorithm ALG which outputs a value
ALG(A) on input A such that for every A it holds that ALG(A) ≤ disc(A), but for random
A, ALG(A) is close to the true high-probability value Θ(

√
n2−n/m)? While prior works have

only focused on the search problem, we believe the certification problem is well-motivated
for the following reasons.

First, a natural approach to understanding the complexity of finding low-discrepancy
signings is to study the problem of distinguishing a random matrix with i.i.d. N (0, 1)
entries that has discrepancy Θ(

√
n2−n/m) with high probability from a random matrix with

a“planted” signing that attains significantly smaller discrepancy. Bandeira, Kunisky, and
Wein [7] showed that a problem of this type, called the detection problem in the negatively-
spiked Wishart model, is hard for the class of low-degree polynomial algorithms in some
regime of parameters and conjectured that the same should be true for all polynomial-
time algorithms. Observe that if an algorithm can solve the harder problem of certifying
disc(A) ≥ δ with high probability for a Gaussian matrix A and some δ > 0, then it can
distinguish such an A from any family of matrices with discrepancy smaller than δ.

Second, the certification problem has been thoroughly studied in the context of random
CSPs [43, 35, 7, 6] and has connections to cryptography [4], learning theory [21], and
proof complexity [24]. This body of work has amassed strong evidence of the optimality of
semidefinite programming (SDP)-based algorithms for a wide class of average-case problems
exhibiting statistical-to-computational gaps. Given the relative scarcity of algorithms for
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solving average-case discrepancy problems, we hope that further study of the certification
problem will inspire the development of novel algorithmic techniques and candidate optimal
algorithms.

Finally, there is a long history of works in computer science and discrete mathematics
designing efficent algorithms to complement non-constructive proofs of combinatorial results.
The known proof that the discrepancy of a m × n Gaussian matrix is at least Ω(

√
n2−m/n)

with high probability makes use of the first-moment method. So, the naive algorithm to
certify this fact simply enumerates the discrepancy values of all 2n possible signings. For
this reason, the problem of certifying average-case discrepancy lower bounds is non-trivial
and thematically aligned with a large body of research that aims to characterize when
non-constructive proofs can be made algorithmic.

Inspired by the success of convex relaxation techniques for certification problems in the
context of random CSPs, it is natural to ask whether these techniques are applicable to
certifying lower bounds on the discrepancy of random matrices. Interestingly, it is known that
the nΩ(1)-degree Sum-of-Squares (SoS) SDP relaxation of 1.1 has value equal to 0 with high
probability when m < n − o(n) [31]. Given the success of SoS in the context of random CSPs,
this negative result begs the question of whether there exists any polynomial-time algorithm
certifying a value better than zero. In this paper, we give the first efficient certification
algorithm with non-trivial guarantees for certifiying average-case discrepancy lower bounds.

▶ Theorem 1. There is an efficient deterministic algorithm that on input A ∈ Rm×n with
m ≤ n and i.i.d. standard Gaussian entries certifies that disc(A) > exp(−O(n2/m)) w.h.p. .

Theorem 1 stands in sharp contrast to the state of affairs for certifying unsatisfiability of
random CSPs, for which the SoS SDP hierarchy is believed to be the optimal algorithm.
Furthermore, it immediately refutes a conjecture of Bandeira, Kunisky, and Wein [7] on the
computational hardness of the detection problem in the negatively-spiked Wishart model.
In this problem, the goal is to distinguish which of the two following distributions a given
matrix A ∈ Rm×n was sampled from:
1. (Null) The rows of A are i.i.d. samples from N (0, In).
2. (Planted) The rows of A are i.i.d. samples from N (0, In − β

n vvT ), where β < 1 is the
signal-to-noise ratio and v is drawn uniformly at random from {±1}n.

By taking orthogonal complements, one can verify that this problem is equivalent to
detecting whether a random subspace contains a planted Boolean vector. Bandeira et
al. showed that low-degree polynomial algorithms fail to distinguish these distributions
when β2 < n/m and conjectured that this extends to all polynomial-time algorithms
(Conjecture 3.1 of [7]). It is straightforward to verify that if A is sampled from the planted
distribution, then disc(A) ≤ polylog(m)

√
n(1 − β) with high probability. Hence, for some

β ≥ 1 − exp(−O(n2/m)), the algorithm from Theorem 1 can distinguish the null and planted
distributions, since the discrepancy under the planted distribution is strictly smaller than
the discrepancy lower bound certified by the algorithm under the null distribution. However,
we emphasize that our algorithm will only succeed for β exponentially close to 1, so it is
possible that a refined version of the conjecture of Bandeira et al. does still hold. Zadik,
Song, Wein, and Bruna [46] can formally solve the same problem when β = 1 and mention
that their algorithm also likely works when β is exponentially close to 1.

We also mention an interesting phenomenon regarding efficient non-deterministic cer-
tification. Here, an efficient non-deterministic certification algorithm is one that produces
a polynomial size witness that exists with high probability for a random matrix A, does
not exist for any low-discrepancy A and can be verified (but not necessarily computed) in
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polynomial time. The existence of such an algorithm is an average-case analogue of being
in the complexity class coNP. A fascinating result of Feige, Kim and Ofek [23] shows the
existence of polynomial size certificates of the unsatisfiability of random 3SAT formulas on
n variables and m = O(n1.4) clauses, whereas it is strongly believed that polynomial time
algorithms for certifying unsatisfiability can only succeed when m = Ω(n1.5). We leave open
the possibility of a similar phenomenon occuring in the context of average-case discrepancy.

▶ Theorem 2. There is an efficient non-deterministic algorithm that on input A ∈ Rm×n

with m ≤ n and i.i.d. standard Gaussian entries certifies that disc(A) ≥ exp(−O(n log(n)/m))
w.h.p. .

While we do not prove any algorithmic hardness results in this paper, the previous two
theorems raise the possibility of a regime of parameters in which there are succinct certificates
of discrepancy lower bounds, yet there are no efficient algorithms to find these certificates.
In the language of Feige, Kim and Ofek, this means that for the average-case complexity
of this discrepancy problem, “coNP ⊆ P” for δ > exp(−O(n2/m)) and “coNP ⊆ NP ”for
δ > exp(−O(n log(n)/m)).

We now turn our attention to the integer partitioning problem, a generalization of one of
the six original NP-complete problems of Garey and Johnson [29], for which a similar story
takes place. Given n uniformly random b-bit integers a1, . . . , an, the integer partitioning
problem asks to find a perfect partition, i.e. a subset S ⊆ [n] such that∣∣∣∣∣∑

i∈S

ai −
∑
i/∈S

ai

∣∣∣∣∣ ≤ 1.

This is nothing but an average-case discrepancy problem in disguise; rescaling Ā = a/2b

(to be thought of as a vector of b-bit truncations of Unif([0, 1]) random variables), a perfect
partition exists if and only if disc(Ā) ≤ 2−b. The integer partitioning problem has been
studied thoroughly in both the computer science [33, 30, 34] and statistical physics [39, 40, 14,
9, 10, 12, 13] communities and was among the first average-case combinatorial optimization
problems for which phase transition behavior was fully characterized. Under the scaling
b = αn, Borgs, Chayes, and Pittel [14] showed that the probability of existence of a perfect
partition undergoes a phase transition: when α < 1 a perfect partition exists w.h.p. and
when α > 1, no perfect partition exists w.h.p. . Motivated by the previous discussion, we ask:
what is the smallest value of α > 1 for which there is an efficient algorithm that certifies
the absence of perfect partitions? To the best of our knowledge, this question has not been
studied before. We give analogues of Theorems 1 and 2, the first non-trivial certification
guarantees for integer partitioning.

▶ Theorem 3. There is an efficient deterministic algorithm that on input a1, . . . , an ∈
{0, . . . , 2b − 1} drawn i.i.d. uniformly at random certifies that no perfect partition of a1, . . . an

exists w.h.p. when b = αn for some α = O(n).

▶ Theorem 4. There is an efficient non-deterministic algorithm that on input a1, . . . , an ∈
{0, . . . , 2b − 1} drawn i.i.d. uniformly at random for b = αn certifies that no perfect partition
of a1, . . . an exists w.h.p. for some α = O(log(n)).

1.1 Techniques
At a high level, our algorithms reduce the problem of certifying lower bounds on discrepancy
to the problem of deciding whether a certain lattice contains a short vector. To approximately
solve this instance of the shortest vector problem (SVP) in polynomial time, we invoke the
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Lenstra–Lenstra–Lovász (LLL) algorithm. In fact, our result allows one to translate, in a
black-box way, the approximation guarantee of any given SVP oracle O to the discrepancy
lower bound cerified by our algorithm instantiated with O.

We also remark that lattice basis reduction techniques have recently been used to
solve search versions of various average-case problems exhibiting conjectural statistical-to-
computational gaps [28, 44, 22, 46]. These works are not directly comparable to the present
paper for two reasons. First, they study search problems, whereas we study certification; in
general, there is no formal connection between the two and in some cases, their complexities
can be quite different (see [7] for a notable example). Second, while they do not directly
apply to the negatively-spiked Wishart model, they can solve a greater variety of problems,
such as non-Gaussian component analysis [22], clustering Gaussian mixtures [46] and various
other noiseless inference problems [28, 44]. Our results complement this line of work by
demonstrating the utility of lattice-based techniques for solving certification problems as
well. For both search and certification problems, lattice basis reduction techniques break
computational barriers that apply to other classes of algorithms like low-degree polynomials
and SoS.

1.2 Future work

In this work, we gave the first non-trivial algorithms for two fundamental average-case
certification problems. We bring to bear a novel algorithmic technique for the certification
problem that outperforms standard convex relaxation techniques. While we focused on
Gaussian and integer input settings for simplicity, we believe it is straightforward to extend our
results to a broader class of distributions satisfying mild concentration and anti-concentration
properties.

Our results leave open the possibility of a statistical-to-computational gap for certifying
discrepancy lower bounds, mirroring the scenario for random CSPs. An important direction
for future research is to either design algorithms which improve on those in this paper or
provide rigorous evidence for hardness of average-case certification of discrepancy lower
bounds. This is a particularly challenging task because it is currently unclear whether such
gaps can be predicted by analyzing a restricted class of algorithms. We have no reason to
believe that the algorithms in this paper are optimal; any improvement on the value certified
in, say, Theorem 1 would be very interesting. Again taking inspiration from the study of
certifying unsatisfiability of random CSPs [43], we ask: can one design a sub-exponential
time algorithm that certifies a better value than the value given in Theorem 1?

We conclude by mentioning another related open problem regarding the discrepancy
of Bernoulli matrices. It is known that the probability that an m × n matrix A with
i.i.d. Bernoulli(1/2) entries will have discrepancy at most 1 undergoes a phase transition
from 0 to 1 at n = Θ(m log m) [42] and that it will have discrepancy Θ(

√
n) with high

probability when n = Θ(m). Altschuler and Niles-Weed [3] conjecture that no efficient
algorithm can even find a constant discrepancy signing in the regime n ≥ Cm log m. We
pose the following certification problem: what is the largest n for which there is an efficient
algorithm that certifies the discrepancy of a random binary matrix is strictly bigger than
1 with high probability? Unfortunately, the algorithms in this paper do not apply to this
Bernoulli model.
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2 Preliminaries

2.1 Computational model
We now specify the details of the computational model in which our algorithms operate. Let
A ∈ Rm×n be a matrix whose entries are i.i.d. according to some distribution D on R and
b ∈ N be a truncation parameter. The algorithm receives as input the matrix Ā ∈ Rm×n

whose (i, j) entry is Aij truncated to b bits of precision, for every i ∈ [m], j ∈ [n]. We say
that an algorithm ALG certifies a discrepancy lower bound of δ = δ(m, n, b) on Ā if:

For every input Ā, ALG outputs a value ALG(Ā) such that ALG(Ā) ≤ disc(Ā).
For random input Ā generated as described above, ALG(Ā) ≥ δ with high probability.

In the Gaussian setting (i.e. D = N (0, 1)), our algorithm works in a model in which it
can query the b most significant bits in the binary representation of any entry of A at O(b)
computational cost, for any b.

For the integer partitioning problem (i.e. D = Unif([0, 1])), the algorithm is simply
given as input the b-bit representations of the numbers a1, . . . , an for some value of b that
it cannot choose. Furthermore, we say that an algorithm certifies the non-existence of a
perfect partition if for every instance a1, . . . , an, the algorithm never reports that no perfect
partition exists if one does exist.

2.2 SVP
Given a collection of linearly independent vectors B = {b1, . . . , bk} ⊂ Rd, the lattice L = L(B)
generated by basis vectors in B is defined as

L =
{

k∑
i=1

xibi : x ∈ Zk

}
.

For any lattice L, we can define the length of its shortezt non-zero vector as

λ1(L) = min
x∈L\{0}

∥x∥2 .

The GapSVPα problem is to distinguish, given an input lattice L (described by its basis)
and parameter α ≥ 1, whether λ1(L) ≤ 1 or λ1(L) > α, under the promise that L satisfies
exactly one of these two conditions. The main algorithm in this work requires an oracle for
the GapSVPα problem; we now state the guarantees of two algorithms for SVP.

▶ Theorem 5 ([37]). There is a deterministic algorithm that given input collection B =
{b1, . . . , bk} ⊂ Qd of linearly independent vectors with bit complexity b solves the GapSVPα

problem on instance L(B) for α = 2k/2 in time poly(k, d, b).

▶ Theorem 6 ([2]). There is some constant c > 0 such that for any instance L(B), described
by a collection B = {b1, . . . , bk} ⊂ Qd of linearly independent vectors with bit complexity b, of
GapSVPα with α = c

√
k, there is a non-deterministic algorithm that produces a poly(k, d, b)-

time verifiable certificate of either λ1(L(B)) ≤ 1 or λ1(L(B)) > α.

2.3 John ellipsoid
Let M ∈ Rm×n and define the centrally-symmetric polytope PM = {x ∈ Rn : ∥Mx∥∞ ≤ 1}
and the ball of radius r as B(0, r) = {x ∈ Rn : ∥x∥2 ≤ r}. John’s Theorem guarantees the
existence of an invertible linear transformation T such that:

B(0, 1) ⊆ T (PM ) ⊆ B(0,
√

n).

We will require an efficient algorithm for approximately computing such a T .
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▶ Theorem 7 (Theorem 1.1 of [19]). There is an efficient algorithm that given input M ∈
Rm×n with poly(m, n)-bit entries outputs an invertible linear transformation T ∈ Rn×n

satisfying:

B(0, 1) ⊆ T (PM ) ⊆ B(0, 2
√

n). (2.1)

3 Certifying discrepancy lower bounds

The key subroutine in the algorithms behind Theorems 1-4 is Algorithm 1. In this section,
we state and analyze Algorithm 1, after which the proofs of the main theorems will follow
easily. The following lemma verifies that Algorithm 1 correctly certifies lower bounds on
discrepancy.

1. Input: Matrix Ā ∈ Rm×n with b-bit entries and rows Ā1, . . . , Ām, parameters
δ > 0, α ≥ 1 and GapSVPα oracle O.

2. Define Sδ = {x ∈ Rn : |
〈
Āi, x

〉
| ≤ δ, i = 1, . . . , m} ∩ [−1, 1]n.

3. Compute an invertible linear transformation T ∈ Rn×n such that B(0, 1) ⊆ T (Sδ) ⊆
B(0, 2

√
n) (using the algorithm from Theorem 7).

4. Define the lattices L = T (Zn) and L′ = 1
2

√
n

L.
5. Query O on input lattice L′. Output δ if λ1(L′) > α. Otherwise, output 0.
6. Output: Value ALG(Ā) that satisfies ALG(Ā) ≤ disc(Ā).

Figure 1 Certification algorithm.

▶ Lemma 8 (Correctness). On any input Ā ∈ Rm×n with b-bit entries and any δ > 0,
Algorithm 1 satisfies ALG(Ā) ≤ disc(Ā).

Proof. To prove the claim, it suffices to the consider the case that disc(Ā) < δ. In this case,
there exists x ∈ {±1}n such that

∥∥Āx
∥∥

∞ < δ. In particular, it holds that x ̸= 0 and x ∈
Sδ ∩Zn. Next, note that Tx ̸= 0 (by invertibility of T ) and Tx ∈ T (Sδ) ∩ L ⊆ B(0, 2

√
n) ∩ L.

Together, these imply that λ1(L′) ≤ 1. By correctness of the GapSVPα oracle, Algorithm 1
will return 0, so we may conclude ALG(Ā) ≤ disc(Ā). ◀

Lemma 9 below characterizes the high-probability value certified by Algorithm 1 in terms
of various parameters of the input distribution.

▶ Lemma 9. Assume that m ≤ n and let A ∈ Rm×n with entries i.i.d. according to a
continuous distribution D with density bounded by 1 and tail function QD(t) = Pz∼D(|z| > t).
Next, suppose there are δ > 0, b ∈ N, M ∈ [0, 2b − 1] so that the following conditions are
satisfied:
1. δ ≤ exp(−4n log(2α

√
n)/m)

2. QD(M) = o(n−1(2α
√

n + 1)−n/m)
3. b ≥ 2 log2(Mαn) + 2n log2(2α

√
n + 1)/m

Then on input Ā ∈ Rm×n which is the entry-wise b-bit truncation of A, Algorithm 1 satisfies
ALG(Ā) ≥ δ w.h.p. .

In order to prove Lemma 9, we use the following result concerning the anti-concentration
of the rows of the input matrix.
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▶ Lemma 10. Let A ∈ Rn have coordinates i.i.d. according to a continuous distribution D
with density bounded by 1, tail function QD, Ā be its b-bit truncation, and y ∈ Rn be any
vector satisfying 1 ≤ ∥y∥∞ ≤ β. Next, let θ ≥ 0 and M ≥ 0. Then, we have:

P(|
〈
Ā, y

〉
| ≤ θ) ≤ 2θ + 2Mnβ

2b
+ nQD(M).

Proof of Lemma 9. To prove the claim, it suffices to show that λ1(L) > 2α
√

n w.h.p. on
random input Ā. By definition, this means B(0, 2α

√
n) ∩ L = {0}, which is in turn implied

by T −1(B(0, 2α
√

n)) ∩ Zn = {0} (because T is invertible). By Condition 2.1, it holds that
T −1(B(0, 2α

√
n)) = 2α

√
nT −1(B(0, 1)) ⊆ 2α

√
nSδ. The proof will be complete by showing

that 2α
√

nSδ ∩Zn = {0} with high probability. Define the set U = Zn∩[−2α
√

n, 2α
√

n]n\{0}.
Then we conclude with:

P(2α
√

nSδ ∩ Zn ̸= {0}) ≤ |U| · max
y∈U

P(
∣∣〈Ā1, y

〉∣∣ ≤ 2α
√

nδ)m

≤ |U| · (4α
√

nδ + 4Mαn1.5

2b
+ nQD(M))m

≤ (2α
√

n + 1)n · (4α
√

nδ + 4Mαn1.5

2b
+ nQD(M))m = o(1)

where the second inequality follows from Lemma 10 and the final equality follows from the
assumptions on δ, M, b. ◀

Proof of Lemma 10. Defining E to be the event that ∥A∥∞ ≤ M , we have that:

P(|
〈
Ā, y

〉
| ≤ θ) = P(E)P(|

〈
Ā, y

〉
| ≤ θ|E) + P(Ec)P(|

〈
Ā, y

〉
| ≤ θ|Ec)

≤ P(|
〈
Ā, y

〉
| ≤ θ|E) + P(Ec).

By a union bound and definition of the tail function, the second term is upper bounded by
nQD(M). To control the first term, note that on the events E and |

〈
Ā, y

〉
| ≤ θ,

|⟨A, y⟩| ≤ |
〈
Ā, y

〉
| + |

〈
A − Ā, y

〉
|

≤ θ +
∥∥A − Ā

∥∥
∞ ∥y∥1

≤ θ +
∥∥A − Ā

∥∥
∞ · n ∥y∥∞

≤ θ + Mnβ

2b
.

Setting θ′ = θ + Mnβ
2b and assuming y1 ≥ 1, without loss of generality, we can control the

first term as follows:

P(|
〈
Ā, y

〉
| ≤ θ|E) ≤ P(|⟨A, y⟩| ≤ θ′|E)

≤ P

(
−

n∑
i=2

Ai
yi

y1
− θ′

y1
≤ A1 ≤ −

n∑
i=2

Ai
yi

y1
+ θ′

y1

∣∣∣∣∣E
)

≤ 2θ′

y1
≤ 2θ′. ◀

3.1 Proofs of main results
Equipped with the above technical lemmas, we now prove Theorems 1 and 3. The proofs of
Theorems 2 and 4 follow in the same way, but by using the algorithm in Theorem 6 as a
GapSVPα oracle instead of the LLL algorithm.
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Proof of Theorem 1. The certification procedure is as follows:
1. First, set u = O(log(mn)) and certify that |Aij | ≤ u for all i ∈ [m], j ∈ [n] by inspecting

the first b = 8n3 bits of each entry Aij ; record this b-bit truncation in Āij . If for some
(i, j) it holds that |Āij | > u, then output 0. Otherwise, proceed to the next step.

2. Run Algorithm 1 with parameters α = 2n/2, δ = exp(−6n2/m), b = 8n3 and the LLL
algorithm as a GapSVPα oracle on input Ā. Output ALG(Ā) − un

2b .
To prove correctness of the procedure, we show that for any A, the value it outputs for
instance A is a lower bound on disc(A). If there is i ∈ [m], j ∈ [n] such that |Aij | > u,
then the procedure outputs 0 (which trivially lower bounds disc(A)) in the first step. If
|Aij | ≤ u for all i ∈ [m], j ∈ [n], then disc(A) ≥ disc(Ā) − un

2b . By Lemma 8, we also have
disc(Ā) ≥ ALG(Ā). Hence, the value output by the procedure is always a lower bound on
disc(A).

Next, note that the runtime of the procedure is dominated by the approximate John
ellipsoid computation and the call to the GapSVPα oracle in Algorithm 1. By Theorems 5
and 7, each of these steps can be implemented in deterministic poly(m, n, b) time.

We now analyze the high-probability value certified by this procedure Aij ∼ N (0, 1). In-
voking Lemma 9 with D = N (0, 1), M = Θ(n log(n)/

√
m), QD(M) ≤ 2 exp(−M2/2), which

satisfy the hypotheses, we conclude that the procedure certifies disc(A) ≥ exp(−O(n2/m))
w.h.p. . ◀

Proof of Theorem 3. First, observe that if a1, . . . , an ∈ {0, 2b − 1}, then certifying that no
perfect partition of a1, . . . , an exists is equivalent to certifying that disc(Ā) > 2−b, where
Ā = (a1/2b, . . . , an/2b). Note also that Ā has the same distribution as that of the entrywise
b-bit truncation of a random vector A ∈ Rn with entries i.i.d. according to Unif([0, 1]). To
certify the non-existence of a perfect partition, run Algorithm 1 on input Ā with parameters
α = 2n/2, δ = 2−b and the LLL algorithm as a GapSVPα oracle. If ALG(Ā) > 0, then report
that no perfect partition exists.

The correctness of this procedure follows immediately from Lemma 8: if on any input
a1, . . . , an it holds that ALG(Ā) > 0, then ALG(Ā) = δ = 2−b and disc(Ā) > 2−b. Hence, the
procedure will never report the non-existence of a perfect partition if one exists.

As in the proof of Theorem 1, the runtime of the procedure is dominated by the approx-
imate John ellipsoid computation and the call to the GapSVPα oracle, each of which can be
implemented in deterministic poly(n, b) time.

Next, we show that if b is sufficiently large, then the procedure reports the non-existence
of a perfect partition with high probability. Invoking Lemma 9 with D = Unif([0, 1]),
M = 1, QD(M) = 0, which satisfy the hypotheses provided b ≥ Cn2 for some sufficiently
large absolute constant C > 0, we conclude that w.h.p. , Algorithm 1 on input Ā outputs
δ = 2−b > 0. ◀
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Abstract
This paper studies the interaction of oracles with algorithmic approaches to proving circuit complexity
lower bounds, establishing new results on two different kinds of questions.
1. We revisit some prominent open questions in circuit lower bounds, and provide a clean way

of viewing them as circuit upper bound questions. Let Missing-String be the (total) search
problem of producing a string that does not appear in a given list L containing M bit-strings of
length N , where M < 2n. We show in a generic way how algorithms and uniform circuits (from
restricted classes) for Missing-String imply complexity lower bounds (and in some cases, the
converse holds as well).

We give a local algorithm for Missing-String, which can compute any desired output bit
making very few probes into the input, when the number of strings M is small enough. We
apply this to prove a new nearly-optimal (up to oracles) time hierarchy theorem with advice.
We show that the problem of constructing restricted uniform circuits for Missing-String
is essentially equivalent to constructing functions without small non-uniform circuits, in a
relativizing way. For example, we prove that small uniform depth-3 circuits for Missing-
String would imply exponential circuit lower bounds for Σ2EXP, and depth-3 lower bounds for
Missing-String would imply non-trivial circuits (relative to an oracle) for Σ2EXP problems.
Both conclusions are longstanding open problems in circuit complexity.

2. It has been known since Impagliazzo, Kabanets, and Wigderson [JCSS 2002] that generic
derandomizations improving subexponentially over exhaustive search would imply lower bounds
such as NEXP ̸⊂ P/poly. Williams [SICOMP 2013] showed that Circuit-SAT algorithms running
barely faster than exhaustive search would imply similar lower bounds. The known proofs of
such results do not relativize (they use techniques from interactive proofs/PCPs). However,
it has remained open whether there is an oracle under which the generic implications from
circuit-analysis algorithms to circuit lower bounds fail.

Building on an oracle of Fortnow, we construct an oracle relative to which the circuit
approximation probability problem (CAPP) is in P, yet EXPNP has polynomial-size circuits.
We construct an oracle relative to which SAT can be solved in “half-exponential” time, yet
exponential time (EXP) has polynomial-size circuits. Improving EXP to NEXP would give an
oracle relative to which Σ2E has “half-exponential” size circuits, which is open. (Recall it is
known that Σ2E is not in “sub-half-exponential” size, and the proof relativizes.) Moreover,
the running time of the SAT algorithm cannot be improved: relative to all oracles, if SAT is
in “sub-half-exponential” time then EXP does not have polynomial-size circuits.
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1 Introduction

Which complexity classes have small-size non-uniform circuit families, and which do not?
While this question dates back to the 1970s [37, 24, 36], our known answers are astound-
ingly incomplete. We believe that NP does not have polynomial-size circuit families, but
our best-known results have to replace the class NP with considerably larger complexity
classes. Kannan [24] proved that Σ2EXP (the exponential-time version of Σ2P) does not
have polynomial-size circuits, and his proof extends to “sub-half-exponential” size circuits,
i.e., for size functions H(n) where H(H(n)c)c < o(2n/n) for a fixed constant c ≥ 1 [31].
Buhrman, Fortnow, and Theirauf [15] proved that the exponential-time version of Merlin-
Arthur (MAEXP) does not have polynomial-size circuits. However, it remains open whether
NEXP (nondeterministic exponential time) has polynomial-size circuits, in spite of research
attempting to attack the problem via faster circuit-analysis algorithms [21, 23, 41]. Perhaps
even more embarrassingly, there could be infinitely many input lengths for which even Σ2EXP
and MAEXP problems have polynomial-size circuits on just those input lengths. Furthermore,
there is no known barrier to establishing stronger lower bounds for Σ2EXP – not even
a relativization barrier. For example, according to current knowledge, there could be a
relativizing proof (one that holds with respect to all oracles) that Σ2EXP requires maximum
(Θ(2n/n)) circuit complexity, or there could be an oracle under which Σ2EXP has at most
2nε circuit complexity, for all ε > 0.1 (Note that we could not have both.)

We propose a clean way of studying such lower bound questions, as circuit upper bound
questions. We begin by defining a simple search problem over binary strings.

Missing-String: Let N, M be such that M < 2N . Given a list L of M strings which
are N -bits long, output an N -bit string y that is not in L.

We call such a string y a missing string for L. Missing-String is a natural and classic
problem arising (for example) whenever one wishes to assign a “name” to a new resource in a
network.2 Note that Missing-String is a total search problem; since M < 2N , every instance
has a solution.3 Building on long-known connections showing how circuit lower bounds lead
to oracles separating complexity classes [18], we show that the above circuit lower bound
questions (and more) can be viewed as questions about how efficiently Missing-String can
be solved, giving equivalences between algorithms for Missing-String and circuit lower
bounds. In particular, the depth-3 circuit complexity of Missing-String is innately tied to
the question of whether Σ2EXP has functions with exponential circuit complexity.

1 Using the oracle that makes P = NP, there is an oracle relative to which Σ2EXP requires maximum
circuit complexity. However, we don’t know any oracles relative to which Σ2EXP has smaller circuit
complexity.

2 In the literature, the representation is often a list of integers, and the problem is called the “missing
integer” problem. There is a well-known linear time algorithm (see for example Chapter 1 of [13]) which
is apparently a common tech interview problem.

3 One may view Missing-String as an “exponential-sized” version of the Empty problem, studied
in [27, 29, 34]: given a circuit C : {0, 1}m → {0, 1}N where N > m, find an N -bit string y such that no
x has C(x) = y. In Empty, one is given a (small) circuit with m outputs whose truth table is the list of
strings, and the task is to find a missing string in the list.
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1.1 Local Algorithms for Missing-String and New Time Hierarchies

First, we study how well Missing-String can be solved by algorithms which only probe a
few bits of the list in order to determine an output bit, and use our results to derive new
time hierarchy theorems with advice that are very close to tight (relative to oracles).

As a starting point, observe that when M ≤ N (the number of strings is at most the
length of the strings) Cantor’s diagonal argument shows that one can make only 1 probe to
determine each output bit of a missing string. We consider natural generalizations of this
fundamental algorithm. Let K ≥ 1 be a small parameter. How many probes are needed to
compute a missing string, when M ≤ KN? In Section 3, we give an algorithm for Missing-
String that is local in that each output bit of the missing string can be computed separately
in about O(K log2 K) time, making only O(K log K) probes into the list L, provided that
M ≤ KN . (It is easy to show that Ω(K) probes are required; see Appendix A.) It is an
interesting open problem to close the gap between our O(K log K) upper bound and the
Ω(K) lower bound.

Applying our Missing-String algorithm directly, we prove a new relativizing time
hierarchy theorem against super-linear advice. The most generic form of our hierarchy is the
following.

▶ Theorem 1. For all (time-constructible) α(n) ≥ 0, t(n) ≥ n2, unbounded β(n), and every
oracle A,

TIMEA[t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)] ̸⊂ i.o.-TIMEA[t(n)]/(n + α(n)).

That is, there are functions in time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) that cannot
be simulated in time t(n) even with n + α(n) non-uniform advice, for all but finitely many
input lengths n.

The above theorem holds for “reasonable” models of computation such as multitape Turing
machines, random access Turing machines, random access machines, and so on. Previously,
it was known that TIME(t(n) log2 t(n)) ̸⊂ i.o.-TIME(t(n))/(n − ω(1)) for appropriate time
bounds t(n) [38, 17]. The basic idea in such proofs is to use the input itself as potential
advice in the hard function; however, this strategy can only possibly diagonalize against
advice of length less than n, whereas the lower bound in Theorem 1 holds for machines with
advice longer than n. It was also well-known that by running for at least Ω(2α(n)) time, one
could enumerate all α(n)-bit advice strings, and diagonalize against α(n)-bit advice machines
(see e.g.,Theorem 3 of [21]). Our Theorem 1 adds a factor of n to the advice length of such
time hierarchies. In contrast, Theorem 1 is interesting in that it is not proved by directly
diagonalizing over algorithms with n + α(n) advice: on any given input, the hard function
in Theorem 1 has to simulate multiple algorithms on multiple advice strings and inputs, in
order to determine its output.

Theorem 1 has several interesting corollaries, illustrating tradeoffs between running time
and advice. As time hierarchies are so fundamental to complexity lower bounds, we believe
these new hierarchies may be useful in future separations.

▶ Corollary 2. For all c ≥ 1, TIME[2n · nc+3] ̸⊂ i.o.-TIME[2n]/(n + c log n).

▶ Corollary 3. For all ε > 0, TIME[n3 · 22εn] ̸⊂ i.o.-TIME[2εn]/((1 + ε)n).

▶ Corollary 4. For every c, TIME[n2c log3 n] ̸⊂ i.o.-TIME[nc]/(n + c log n).
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For example, Corollary 3 says there are problems solvable in about 22εn time which cannot
be solved in 2εn time with (1 + ε)n advice: we can compute a hard function in significantly
less time than the number of possible advice strings (2n+εn) that we must diagonalize against.

The lower bound of Theorem 1 is essentially tight, in that there are oracles relative to
which the containment actually holds if the running time of the hard function is slightly
decreased [43] (see also Appendix A).

Good Circuits for Missing-String Are Equivalent to Circuit Lower Bounds

Next, we show that the problem of constructing good uniform circuits for Missing-String
is equivalent to constructing relativizing circuit lower bounds for uniform complexity classes.
First, we give an equivalence between almost-everywhere circuit lower bounds and circuits
for Missing-String. To keep the presentation clean, we start with stating our results for
ΣkE = ΣkTIME[2O(n)], but our connection holds for any exponential-time complexity class,
with appropriate modifications for Missing-String circuits (See Theorem 7). Recall that
SIZEA(s(n)) is the class of functions with an A-oracle circuit family of size O(s(n)), and
i.o.-SIZEA(s(n)) is the class of functions having A-oracle circuits of size O(s(n)) on infinitely
many input lengths n.

▶ Theorem 5 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds). For
all k, the following are equivalent:

For every oracle A, ΣkEA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
For all n, Missing-String has a poly(N)-time uniform depth-(k + 1) circuit family of
2poly(N) size and poly(N) bottom fan-in, on all lists of length M := 2Õ(s(O(log N))) with
N = 2n.4

According to current knowledge, Theorem 5 only refers to an open problem in the case of
k = 2. The other values of k are already settled, and Theorem 5 implies interesting results
about the Missing-String problem in those cases:

For k = 1, it is known ([43]) that there is an oracle A such that NEA = NTIMEA[2O(n)] ⊂
SIZEA(O(n)). Theorem 6 implies that Missing-String cannot be solved by depth-2
circuits of quasi-polynomial size, even for M ≤ 2log1.1(N).
For k ≥ 3, recall it is known ([24, 31]) that for all oracles A, Σ3EA has maximum
A-oracle circuit complexity almost everywhere (that is, Σ3EA ̸⊂ i.o.-SIZE(H(n) − 1),
where H(n) = (1 ± o(1))2n/n denotes the maximum circuit complexity of n-bit Boolean
functions). This directly corresponds to the existence of uniform depth-4 circuits solving
Missing-String for all M < 2N .

Recall it is open whether Σ2E ⊂ i.o.-SIZE(Õ(n)) (even relative to some oracle). Theorem 5
shows that the problem of proving “almost-everywhere” (relativizing) lower bounds for Σ2E
is equivalent to constructing uniform depth-3 circuits for Missing-String over lists of length
M = 2Õ(log N).

Similarly to Theorem 5, we can show that constructing uniform circuits for Missing-
String that succeed on only infinitely many bit-string lengths N = 2n would still imply
circuit lower bounds.

4 Our notion of uniformity is the typical “direct connect” uniformity; see the Preliminaries (Section 2) for
more details.
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▶ Theorem 6 (Circuits for Missing-String Imply Circuit Lower Bounds). Let k ≥ 1. If for
infinitely many n, Missing-String has a poly(log N)-time uniform depth-(k + 1) circuit
family of 2poly(N) size and poly(N) bottom fan-in, on all lists of length M := 2Õ(s(log N)) with
strings of length N = 2n, then ΣkEA ̸⊂ SIZEA(s(n)) for all oracles A.

As mentioned above, the proofs of Theorems 5 and 6 easily generalize to other exponential-
time complexity classes (and correspondingly, other circuit types for Missing-String). Let
us briefly describe what the generalization looks like. For t ≥ 0, let Y1, . . . , Y2t be the list of
all t-bit strings in lexicographical order. For an arbitrary G : {0, 1}⋆ → {0, 1}, we define the
complexity class G-E, where a decision problem f is in GE if and only if there is a constant
c > 0 and Turing machine M(x, y) running in 2cn time when |x| = n and |y| = 2cn, such
that for all x,

f(x) = 1 ⇐⇒ G(M(x, Y1), . . . , M(x, Y22cn )) = 1.

That is, the value of f(x) is determined by computing G on a doubly-exponential length
input, and this input is computed by evaluating M(x, ·) on all possible strings of length 2cn.
It is easy to see that OR-E = NE, AND-E = co-NE, Σ2E is equivalent to a case where G is
an OR of AND, and so on.

▶ Theorem 7 (Generic Equivalence). The following are equivalent:
For every oracle A, G-EA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
For all n, Missing-String has a poly(N)-time uniform circuit family of 2poly(N) size on
all lists of length M := 2Õ(s(O(log N))) with N = 2n, where the output gate of each circuit
is a copy of G, and the inputs to G are decision trees of depth poly(N).

Non-Relativizing Circuit Lower Bounds as Circuits for Missing-String on “Easy”
Inputs

Although no relativization barriers are known against circuit lower bounds for Σ2EXP, it
would be natural for a complexity theorist to be unsettled by the relativizing nature of the
previous theorems. Our perspective also yields insight into the precise difference between
non-relativizing circuit lower bounds (e.g. NEXP ̸⊂ SIZE(nO(1)), MAEXP ̸⊂ SIZE(nO(1)) [15])
and relativizing ones, by viewing these questions in terms of low-depth circuits for Missing-
String.

Let L be an ordered list of M = 2t bit strings, each of length N = 2n. We say that L is
S(n)-compressible if there is a circuit C of at most S(n) size, with t + n inputs, such that the
2t+n-bit truth table of C corresponds exactly to L. In other words, L is S(n)-compressible if
there is an S(n)-size circuit encoding it. We observe that constructing low-depth circuits
for Missing-String on S(n)-compressible inputs corresponds directly to (non-relativizing)
circuit lower bounds. We illustrate the idea with the case of NE := NTIME[2O(n)].

▶ Theorem 8. Let S(n) ≥ n. NE ̸⊂ SIZE(S(n)) if and only if there is a poly(N)-time uniform
depth-two circuit family of size 2poly(N) for Missing-String that succeeds for infinitely many
N = 2n, when M = 2O(S(n) log S(n)) and the list L is S(n)-compressible.

As noted above, since there is an oracle relative to which NE ⊂ SIZE(O(n)), Theorem 6
shows that Missing-String on M = 2poly(log N) strings cannot be solved on general inputs
with depth-two circuits of 2poly(N) size. Theorem 8 says that, if we believe NE ̸⊂ SIZE(nO(1))
is true (and we do!), then we should believe that Missing-String can be solved with
small uniform depth-two circuits on nO(1)-compressible inputs. The fact that compressible
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inputs make the problem easier is counterintuitive; many complexity theorists believe that
separations like EXP ̸= NEXP are just as likely as separations like P ̸= NP, but the EXP vs
NEXP problem is exactly the P versus NP problem restricted to highly compressible inputs.
In our setting, the difference between non-relativizing circuit lower bounds versus relativizing
ones is precisely the difference between solving Missing-String on highly-compressible
inputs versus general, arbitrary inputs (oracles).

1.2 Non-Relativizing Aspects of the Algorithmic Method
A secondary set of results in this paper concern the so-called “algorithmic method” for
proving circuit complexity lower bounds via the design of circuit-analysis algorithms that
beat exhaustive search. Impagliazzo-Kabanets-Wigderson [21] showed that faster algorithms
for approximating circuit acceptance probability implies circuit lower bounds. Let CAPP be
the task: given a Boolean circuit C, output a value v such that |v − Prx[C(x) = 1]| < 1/10.

▶ Theorem 9 ([21]). If CAPP is solvable on n-size circuits in 2nε time for every ε > 0, then
NEXP does not have polynomial-size circuits.

This algorithms-to-lower-bounds connection was sharpened in subsequent work, and
extended to SAT algorithms. An example result is:

▶ Theorem 10 ([41]). Suppose for all k, Circuit-SAT on nk-size circuits can be solved in
O(2n/nk) time. Then NEXP does not have polynomial-size circuits.

It has been generally believed that this “algorithmic method” is not subject to the typical
complexity barriers [11, 33, 4, 20, 8]. Indeed, Williams [41] states of the algorithmic method:

“we believe the relativization and algebrization barriers would be avoided, because all
nontrivial SAT algorithms that we know do not relativize or algebrize.”

However, until now, no specific oracles have been provided relative to which the connection
from circuit-analysis algorithms to circuit lower bounds fails.5 Relativized versions of these
algorithms-to-lower-bounds connections would be very useful for applying this methodology
more broadly in complexity theory, for at least two reasons.
1. For one, a line of work [3, 9, 10] has shown how weak nondeterministic simulations of

Arthur-Merlin games would imply certain lower bounds against nondeterministic circuits,
suggesting that the algorithmic method might relativize in some sense. More recently, it
has been shown how more efficient quantum algorithms can imply quantum circuit lower
bounds [7]. A generic relativizing algorithms-to-lower-bounds theorem could potentially
yield theorems like these “for free”.

2. For another, it has been known for many years that lower-bounds-to-algorithms connec-
tions showing how circuit complexity lower bounds imply pseudorandom generators [32, 22]
do relativize [28]. This relativizing property has been incredibly useful in the devel-
opment of pseudorandom generators based on hardness assumptions. In other words,
we have known for many years that there are relativizing connections in the “reverse”
direction, from lower bounds to algorithms.

5 Since there are oracles (and algebraic extensions thereof) relative to which NEXP ⊂ ACC0 [43, 4],
it follows that the overall combination of a circuit-analysis algorithm plus the connection between
circuit-analysis algorithms and circuit lower bounds avoids barriers [42]. Here, we are interested in the
question of whether the connections themselves avoid barriers.
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We show that, unfortunately, relativizing connections between circuit-analysis algorithms
and circuit lower bounds do not exist in general. On the one hand, this is bad news for those
who would like to have a single generic theorem connecting algorithms to lower bounds for
different “modes” of computation (such as nondeterministic, quantum, etc). On the other
hand, perhaps it is simply inherent in any powerful-enough connection that its methods must
not relativize.

A World Where CAPP is Easy, But There Are No Circuit Lower Bounds

First, improving an oracle of Fortnow [16], we show that the connection of [21] does not
relativize, in a very strong sense:

▶ Theorem 11. There is an oracle A such that CAPP (for A-oracle circuits) is in PA but
EXPNPA

has polynomial-size A-oracle circuits.

(Fortnow [16] gave an A relative to which the theorem holds with EXP, instead of EXPNP.)
In this relativized world, circuit acceptance probabilities can be approximated in P, yet
no meaningful new circuit lower bounds follow. This oracle exists in spite of the fact that
equivalences between circuit complexity and pseudorandom generators do relativize [28]. So
under the same oracle A, no meaningful pseudorandom generators exist either (even ones
equipped an NP oracle), but white-box derandomization (CAPP) is in P.

A World Where SAT is Easy, But There Are No Circuit Lower Bounds for EXP

What about the case of faster SAT algorithms? Are there oracles relative to which SAT
can be solved more efficiently, yet no circuit lower bounds follow? It is known (e.g., [41],
Proposition 2) that if SAT is in O(H(n)) time then EXP ̸⊂ P/poly, for any “sub-half-
exponential” H(n) satisfying H(H(nk)2) ≤ 2n for all k, and that proof relativizes.6 Could
one conclude EXP lower bounds from a SAT algorithm that runs just slightly slower? We
give an oracle relative to which this is not true:

▶ Theorem 12. There is an oracle A and a function H such that TIMEA[2n] ⊂ SIZEA[O(n)],
SATA can be solved in poly(H(poly(n))) time with an A-oracle, H(H(n)) ≤ 2n and H is
monotone increasing.

Could a slower SAT algorithm imply NEXP circuit lower bounds instead? If we could
replace EXP with NEXP in Theorem 12, that would yield an oracle relative to which Σ2E
has “half-exponential” size circuits, which is open. (Recall it is known that Σ2E is not in
“sub-half-exponential” size, and the proof relativizes.) That is, our oracle stops just short of
showing that non-relativizing methods are necessary for proving stronger Σ2E circuit lower
bounds. While half-exponential functions have been known to pop up naturally in circuit
complexity for over 20 years [31], Theorem 12 is the first oracle result (to our knowledge)
that “explains” the half-exponential barrier. We leave it as interesting open problems to
show an algebrization barrier for similar settings.

2 Preliminaries

We assume familiarity with complexity theory, especially notions such as the polynomial
hierarchy and non-uniform circuit families [6]. Here, we recall some particularly important
notions for this work.

6 See Appendix B for a proof outline.
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We use h : N → N to denote a “half-exponential” function, i.e., for all n, h(n) is a strictly
monotone increasing function satisfying h(h(n)) = 2n.7 It is widely believed (and sometimes
claimed) that there exist h(n) which are is time constructible [31, 2, 1].8 For a function
f : {0, 1}⋆ → {0, 1}, we let fn : {0, 1}n → {0, 1} denote the n-th slice of f , i.e., the function
f restricted to n-bit inputs.

We say that a function s : N → N is nice if it satisfies s(n + log(n)) ≤ Õ(s(n)) = s(n) ·
poly(log s(n)). We note that most commonly studied functions such as cn, nk, nlogk(n), 2nε

, 2εn

are all nice. Unless otherwise specified, we will assume all functions s are nice.

Uniform Circuits

In Theorems 6 and 5, we consider poly(N)-time constant-depth uniform circuits of 2poly(N)

size for the Missing-String problem, and relate their existence directly to functions in
ΣkE that have high circuit complexity. Here we give a few more details about the kind of
uniformity we require. These circuit families are “direct connect” uniform (in the sense of
Ruzzo [35, 25]), in that local gate information about the n-th circuit Cn of size 2poly(N) can
be computed in poly(N) time. In particular, there is a language in P of strings of the form
⟨N, g, y⟩ where g and y are bit strings labelling gates in Cn (taking poly(N) bits to describe)
and the output of y is an input to g in Cn, along with strings of the form ⟨N, g, t⟩ where
t is the type of gate g (taking poly(N) bits to describe). This set of triples is often called
the connection language of the underlying circuit. We stipulate that for circuits with 2n

outputs, each output gate has a label of the form x01t where x ∈ {0, 1}n is the label of the
x-th output. This makes it convenient to construct the label of any particular output gate.

Characterizations of NP and ΣkP in general in terms of exponential-size “direct-connect”
uniform circuits of constant depth are well-known [39, 40]. We will use relativized versions
of these results. In our results regarding ΣkE and circuit lower bounds, the inputs to our
uniform circuits for Missing-String will already be of length N = 2n (where n is the
input length to the ΣkE machine). In particular, we only need the following relativized
equivalence between uniform circuits and the exponential hierarchy, which follows readily
from the literature on circuits representing PH [18, 5].

▶ Theorem 13. For all oracles A, the following classes are equivalent:
ΣkEA = ΣkTIMEA[2O(n)].
The class of decision problems computed by poly(2n)-time uniform depth-(k + 1) circuits
with output gate OR, size 2poly(2n), and bottom fan-in poly(2n). The n-th circuit takes as
input an n-bit string x as well as all values of the oracle A up to length poly(2n).
The class of decision problems computed by poly(2n)-time uniform depth-(k + 1) circuits
with output gate OR, size 2poly(2n), bottom fan-in poly(2n), and 2n output gates. The
n-th circuit takes as input all values of the oracle A up to length poly(2n), and outputs
the truth table of the function on all n-bit inputs.

Relativized Circuit Complexity

We recall notions of relativized circuit complexity, as originally defined by Wilson [43]. In a
nutshell, relativized circuit complexity studies Boolean logic circuits with the usual AND,
OR, NOT gates, along with extra oracle gates. In particular, for A : {0, 1}⋆ → {0, 1}, an

7 Note that such a function must be one-to-one, and therefore strictly increasing: if h(n) = h(m) = z for
some n ̸= m, then h(z) = h(h(n) = 2n and h(z) = h(h(m)) = 2m, a contradiction.

8 We have not yet found a rigorous proof in the literature, but we have no reason to doubt its existence,
given the vast literature on computing half-exponential functions.
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A-oracle circuit C is a Boolean circuit over the basis of ORs and ANDs of fan-in two, NOTs,
and gates computing Ak : {0, 1}k → {0, 1} where Ak is the k-th slice of A. The size of such a
circuit C is defined to be the sum of all fan-ins over all gates (in other words, we are counting
the number of wires). Note that each copy of Ak contributes k to the circuit size. We define
SIZEA[(S(n))] to be the class of decision problems f : {0, 1}⋆ → {0, 1} such that for every n,
there is an A-oracle circuit Cn of O(S(n)) size that computes the n-th slice of f .

In the following, we consider a binary encoding of A-oracle circuits which is paddable: if
a circuit C has an encoding of length ℓ, then for all ℓ′ > ℓ, C has an encoding of length ℓ′.
In our encoding of an A-oracle circuit, we do not give a full description of Ak if it appears in
the circuit; rather, we assume that the oracle A is known implicitly to the encoder/decoder.
We can define a relativized version of the P-complete Circuit Evaluation problem:

▶ Definition 14. Let A : {0, 1}⋆ → {0, 1} be an oracle. In the CIRC-EVALA problem, we
are given an input 1n0zx, and the task is to return the evaluation of x ∈ {0, 1}n on the
A-oracle circuit encoded by z.

Observe that by standard arguments, CIRC-EVALA ∈ TIMEA[Õ(n)], i.e., A-oracle circuits
can be evaluated in quasi-linear time with an A-oracle.

2.1 A Normal Form for Relativized Circuits
The results of this subsection may be known, but we have not found a reference. We show
that relativized circuit complexity can be radically simplified for the problems we wish to
study. For the oracles A in the literature placing a complexity class CA in SIZEA[s(n)] for
small s(n) (e.g., [43, 16]), the actual circuits used in such simulations is always extremely
simple: they consist of one A-oracle gate with some of its O(s(n)) inputs hard-coded with
zeroes and ones.

It turns out that considering such simple circuits is without loss of generality. We will
show that for the purposes of simulating complexity classes with relativized circuits, we may
freely assume that the A-oracle circuits we consider consist of one A-oracle gate. In the
following, let A : {0, 1}⋆ → {0, 1} be an oracle.

▶ Definition 15. For nice s(n) > n, A[s(n)] is the class of decision problems f : {0, 1}⋆ →
{0, 1} such that there is an infinite sequence of strings {zn} such that for all n, |zn| ≤ s(n),
and for all x ∈ {0, 1}n, f(x) = 1 ⇐⇒ A(znx) = 1.

In other words, A[s(n)] is the class of problems solvable by circuits consisting of exactly
one gate, an A-oracle gate, along with an “advice” string zn plugged into that oracle gate.
Observe that from our definitions we have A[s(n)] ⊆ SIZEA[O(s(n))], as the “fan-in” of the
single A gate is n + s(n).

The following basic lemma shows that for most interesting complexity classes C, if there is
an oracle A relative to which C has O(s(n))-size A-oracle circuits, then there is another oracle
B relative to which C has circuits comprised of exactly one B-oracle gate of O(s(n) log s(n))
fan-in. This “normal form” greatly simplifies the problem of finding an oracle relative to
which a complexity class C has small circuits, and will be very useful in our results relating
circuits for Missing-String to circuit complexity lower bounds (Theorems 6 and 5).

▶ Lemma 16. Let C be a complexity class (defined by machines) such that for all A,
CTIMEA[Õ(n)] ⊂ CA.

There is an oracle A such that CA ⊂ SIZEA[s(n) · poly(log s(n))] if and only if there is an
oracle B such that CB ⊂ B[s(n) · poly(log s(n))].
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Similarly, there is an oracle A such that CA ⊂ i.o.-SIZEA[s(n) · poly(log s(n))] if and only
if there is an oracle B such that CB ⊂ i.o.-B[s(n) · poly(log s(n))].

Proof. For both statements, one direction of the equivalence is trivial. In the following,
we prove that an oracle A satisfying CA ⊆ SIZEA[O(s(n))] implies an oracle B satisfying
CB ⊆ B[O(s(n) log s(n))].

The idea is to simply define B to be CIRC-EVALA. Let M be an arbitrary machine
computing a function in C. Since CIRC-EVALA ∈ TIMEA[Õ(n)], using the assumption
that CTIMEA[Õ(n)] ⊆ CA we may infer that MB = MCIRC-EVALA computes some function
f ′ ∈ CA. Let NA be a CA-machine computing f ′, so NA is equivalent to MB. Applying
the assumption CA ⊂ SIZEA[s(n)], there is an A-oracle circuit family {DA

n } of size O(s(n))
simulating NA. Let zn be a description of DA

n , such that |zn| ≤ O(s(n) log s(n)). We have
DA

n (x) = MB(x) on all n-bit inputs x, and DA
n (x) = B(1n0znx), since B = CIRC-EVALA.

Therefore the function computed by MB is in B[O(s(n) log s(n))]. As this containment holds
for every M , we conclude that CB ⊆ B[O(s(n))]. An analogous argument proves the same
result for infinitely-often inclusions. ◀

2.2 Efficient Methods for Finding a Missing String
Multiple linear-time algorithms are known for Missing-String; see Chapter 1 of [13] for one
of them. In fact, Missing-String can be solved very efficiently using a “voting” strategy.
The strategy is well-known in computational learning theory; the first reference we are aware
of that uses the strategy to find a missing string is Lemma 3 of [24] (a paper on circuit
lower bounds), although as a method for mistake-bounded learning (a.k.a. the “Halving
Algorithm”) it was apparently first observed by Barzdins and Freivalds [12].

▶ Theorem 17. The Missing String problem on M strings (each of length N) can be solved
by an algorithm using O(M +N) time, or an algorithm using simultaneously O(M log M +N)
time and O(log(M) + log(N)) space, assuming constant-time random access to the input. In
particular, to compute any bit of the missing string, both algorithms only have to probe at
most 2M distinct bits of the input.

Proof. We generalize the proof of Lemma 3 in [24]. Compute the bit b1 that occurs least
among the first bits of all strings, taking b1 = 0 if both bits occur equally often. Thus the
number of strings with first bit equal to b1 is at most M/2. Among those strings with their
first bit equal to b1, compute the bit b2 that occurs least in the second bit of those strings.
Repeating this process for at most t ≤ ⌈log2(M)⌉ times on the i-th bit, for i = 1, ..., t, we
obtain a prefix b1 · · · bt that is not a prefix of any string in the list. Filling the rest of the
string with zeroes (which takes at most O(N) time), we obtain a missing string.

Let us first analyze the number of probes needed. To compute b1, we have to make M

probes. For i > 1, to compute bi given the bits b1, . . . , bi−1, the aforementioned procedure
only has to make at most M/2i−1 probes into the list. This is because in the previous
iteration, we probed the (i − 1)th bit of ti−1 ≤ M/2i−2 strings, and to compute bi we only
have to probe those i-th bits for which the (i − 1)th bit of those ti−1 strings equals the least
occurring bit bi−1. Hence the total number of probes to compute bt (and any other bits) is
at most

t−1∑
i=0

M/2i ≤ 2M.

We can use an O(log M)-bit counter to determine each bit bi. Recalling that incrementing
a counter takes only constant amortized time, the above procedure can be implemented in
O(M) time by maintaining a data structure that is initially filled with all M strings, such
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that after the i-th iteration we can remove the strings whose i-bit prefix disagrees with
b1 · · · bi in O(|Si|) time, where |Si| is the cardinality of the list in the i-th iteration. (A
modified linked list suffices.)

To get a space-efficient algorithm, observe that we only need O(log M) extra space to
store a counter and to store the bits b1, . . . , bi. However, in the i-th iteration, to compute
bi given b1, . . . , bi−1, we will apparently need to re-compute all

∑i−1
j=0 M/2j = 2M(1 − 1/2i)

bits probed so far, in order to count the “minority bit” over those strings which have not
yet been eliminated; this makes the running time O(M log M). Note that any extra zeroes
printed at the end of the missing string (to make it have length N) do not count as part of
the space usage; they are part of the output, and they can be handled with an O(log N)-bit
counter that counts up to N − t. ◀

Theorem 17 will be useful in our Missing-String algorithms which use a smaller number
of probes.

3 Local Algorithms for Missing-String and New Non-Uniform
Hierarchies

In this section, we consider algorithms computing Missing-String in a local fashion, probing
very few bits to determine any particular output bit of the missing string. As a consequence,
we will conclude a new non-uniform time hierarchy theorem.

Recall that in Missing-String, we are given a list L of M < 2n strings each of N bits,
and wish to output an N -bit string (a missing string) that is not in L. We say an algorithm
A for Missing-String is b-probe if for all i = 1, . . . , N , A can determine the i-th bit of its
missing string by only probing b bits in the input list L.

In order to have a small value for b, it is required that the list length M is fairly small. As
an example, consider the special case where M ≤ N : the number of strings in L is at most
the string length. The classical diagonal argument immediately gives a 1-probe algorithm for
Missing-String: the i-th bit of our missing string will flip the i-th bit of the i-th string
in L. For integer k ≥ 1, when M ≥ k · N , it is easy to prove that there is no k-probe
Missing-String algorithm at all (we give a proof in Appendix A for completeness). We
provide an algorithm that nearly matches this simple lower bound:

▶ Theorem 18 (Local Algorithm for Missing-String). For all positive t, set k := ⌊(2t −
1)/(2t)⌋. For all positive integers N and M ≥ 2t such that M ≤ kN , there is an algorithm for
Missing-String on all M -size lists of N -bit strings which uses only O((log N)2 + k log2 k)
time and 2(2t − 1) ≤ O(k log k) probes to compute any desired output bit.

Proof. The idea is to reduce the case of M ≤ kN to the case where we have 2t − 1 strings of
length t for small t, by breaking the N -bit strings into substrings.

Let L be a list of M ≤ kN strings of length N , and let i ∈ {1, . . . , n} be the index of the
desired output bit. For simplicity let us assume M is a multiple of 2t − 1 (but the result
does not require it). Our algorithm A conceptually partitions the list of M strings into
ℓ := M/(2t − 1) sublists L1, . . . , Lℓ of at most 2t − 1 strings each.9 (We say “conceptually”,
because the algorithm does not actually have to partition the list in order to determine the
i-th output bit.) We say that the sublist Lj is responsible for the i-th output bit if and only if

1 + t · (j − 1) ≤ i ≤ t · j.

9 If M is not a multiple of 2t − 1, then we need to set ℓ := ⌈M/(2t − 1)⌉. To accommodate that increase
in the calculations, we may set k := ⌊(2t − 1)/(2t)⌋.
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For example, the sublist L1 is responsible for output bits 1, . . . , t, sublist L2 is responsible
for output bits t + 1, . . . , 2t, and so on. From our assumption that M ≤ kN , it follows that
t · M/(2t − 1) = t · ℓ ≤ N , so it may be that not all output bits are “covered” by some sublist.

Given i, our Missing-String algorithm A first determines the j ∈ {1, . . . , ℓ} such that
Lj is responsible for the i-th output bit, by simply dividing i by t, taking at most O((log N)2)
time. (If there is no such sublist, then A outputs 0 for the i-th output bit.) Next, the
algorithm A considers an instance of Missing String on a set of substrings, defined as
follows: over all q ≤ 2t − 1 strings in Lj , strings y1, . . . , yq ∈ {0, 1}t are defined by taking
each string x ∈ Lj and truncating x to the t-bit substring x[1 + t · (j − 1)] · · · x[t · j]. Then, A

uses the algorithm of Theorem 17 to determine a missing string z ∈ {0, 1}t that is not among
y1, . . . , yq ∈ {0, 1}t, by probing at most 2q ≤ 2(2t − 1) ≤ O(k log k) bits and (conservatively)
using O(t2t) ≤ O(k log2 k) time.10 Finally, A outputs the bit zi⋆ , where i⋆ = i − t(j − 1).

We claim that the string output by A (over all i = 1, . . . , N) avoids every string in L. For
each j = 1, . . . , ℓ, over those t bit positions i that Lj is responsible for, we are constructing a
substring z of length t which avoids all strings in Lj , in the corresponding t bit positions of
the strings in Lj . Since N ≥ t · ℓ, there are enough bit positions so that for all ℓ sublists Lj ,
we can construct a substring z of length t avoiding the strings in Lj , each time using a disjoint
set of t bit positions from all other sublists. The string output by A is a concatenation of all
such z, avoiding all sublists Lj and thus avoiding the entire list L. ◀

What is the minimum number of probes needed to compute bits of a Missing-String,
when M ≤ kN? We leave it as an interesting open problem to close the gap between the
simple lower bound of k probes (Theorem 34) and our upper bound of O(k log k) probes
(Theorem 18).

▶ Remark 19. Instead of measuring the worst-case number of probes needed to compute
one bit of the missing string, suppose we consider the problem of simply constructing a
missing string with the minimum number of total bit probes. In this case, the algorithm of
Theorem 17 is essentially optimal: it constructs a missing string over M ≤ 2N − 1 strings of
length N with at most 2M total probes into the input, and it is easy to see that at least M

total probes are required (each string must be probed in at least one bit position). Therefore,
with respect to this measure of probe complexity, we know the optimal number of probes
within a factor of 2.

▶ Remark 20. For at least one interesting case, we can determine the exact number of probes
required. Suppose we are given exactly 2t − 1 strings of length t, so that the missing string
is unique. In this case, the i-th bit of the missing string can be determined by taking the
XOR of the i-th bits of all strings in the list. (The missing string equals the bit-wise XOR of
all 2t − 1 other strings.) Thus we can use only 2t − 1 probes for each output bit. In this
scenario, there is an algorithm making M = 2t − 1 probes per output bit, and the number of
probes cannot be made smaller than M .

3.1 Non-Uniform Time Hierarchies

While Theorem 18 is interesting in its own right, we are interested in complexity-theoretic
applications. Let us first prove Theorem 1, which is the most general form we will consider.

10 We add a log-factor to the running time here, just to ensure that the time bound of Theorem 17 also
holds for models such as multitape Turing machines.
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▶ Reminder of Theorem 1. For all (time-constructible) α(n) ≥ 0, unbounded β(n), t(n) ≥ n2,
and every oracle A,

TIMEA[t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)] ̸⊂ i.o.-TIMEA[t(n)]/(n + α(n)).

That is, there are functions in time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) that cannot
be simulated in time t(n) even with n + α(n) non-uniform advice, for all but finitely many
input lengths n.

Proof. Let A be an arbitrary oracle. We will construct a function f that is computable in
time O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)) with an A-oracle, which cannot be computed
in O(t(n)) time with an A-oracle, even with n + α(n) bits of non-uniform advice, on all but
finitely many input lengths n.

To compute f , we will (implicitly) define a very large instance of Missing-String, such
that the list L contains the 2n-bit truth tables of all machines we would like to diagonalize
against, and we will define the function fn (f restricted to n-bit inputs) to have our missing
string as its truth table. Each bit of the truth table of fn will be computable in the desired
running time, by applying Theorem 18 appropriately.

Set m := n + α(n) + β(n). Associate all m-bit strings with pairs of the form (y, i), where
y is a possible advice string of length n + α(n), and i is a beta(n)-bit string encoding a
possible Turing machine/algorithm Mi running in t(n) time with an A-oracle. (Since β(n)
is unbounded, eventually every machine is encoded.) Make a list L of M = 2m strings of
length N = 2n, where each string encodes the truth table obtained by running some Mi with
some advice y on all n-bit inputs. Provided we can solve Missing-String for the list L, on
every possible n, this will produce the truth table of a function that cannot be computed on
all but finitely many input lengths n by all such algorithms with n + α(n) advice.

We can use our algorithm from Theorem 18 provided that 2m ≤ k2n, i.e., k ≥ 2α(n)+β(n).
Setting k to be 2α(n)+β(n), we can make a number of probes which is at most

O(k log k) ≤ O((α(n) + β(n)) · 2α(n)+β(n)).

For our particular list L, every probe into L corresponds to simulating some algorithm Mi

on some advice y of length n + α(n) and some input x′ of length n, for O(t(n) log t(n)) time.
(We allow an extra log t(n) factor for a universal simulator.) Thus the running time required
to compute all probes is

O(t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)).

Besides computing all the probes, the additional runtime cost of the local algorithm for
Missing-String is negligible:

O((log N)2 + k log2 k) ≤ O(n2 + t(n) log t(n) · (α(n) + β(n)) · 2α(n)+β(n)).

This completes the proof. ◀

Theorem 1 has several interesting corollaries, illustrating tradeoffs between the running
time and advice.

▶ Corollary 21.
1. For all c ≥ 1, TIME[2n · nc+3] ̸⊂ TIME[2n]/(n + c log n).
2. For all ε > 0, TIME[n3 · 22εn] ̸⊂ TIME[2εn]/((1 + ε)n).
3. For every c, TIME[n2c log3 n] ̸⊂ TIME[nc]/(n + c log n).
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Proof.
1. Set t(n) = 2n, β(n) = log n, and α(n) = c log n in Theorem 1.
2. Set α(n) = εn, β(n) = log n, t(n) = 2εn.
3. Set α = c log n, β(n) = log log n, t(n) = nc. ◀

In the above corollaries, note that in all cases the hard function actually does not have
enough time to directly “try all possible advice strings” and run the algorithms it must
diagonalize against. Furthermore, as mentioned earlier, the theorem is essentially tight
for relativizing lower bounds, because there is an oracle B such that TIMEB(o(2cn)) ⊂
TIMEB(O(n))/((c + 1)n). (See Appendix A for a sketch of this result, in terms of Missing-
String.)

4 Circuits for Missing-String And Circuit Lower Bounds

In this section, we prove relations and equivalences between the existence of uniform circuits
for Missing-String and relativizing circuit lower bounds for functions in the exponential
hierarchy. We will focus on the case of Σ2E as it is the most relevant “frontier” class for
exponential-size circuit lower bounds.

▶ Definition 22. We say that an oracle A : {0, 1}⋆ → {0, 1} is supported on m-bit strings if
A(x) = 0 for all x satisfying |x| ̸= m. We will view an A supported on m-bit strings as a
string of length 2m.

In the following, think of f(n) as a very slow-growing function (e.g., f(n) = log(n)).

▶ Definition 23. Fix an n ∈ N. Let U be a Σ2E Turing machine such that |U | ≤ f(n).
Define the function DU,n : {0, 1}2s(n)+n → {0, 1}n such that for every oracle A supported on
(s(n) + n)-bit strings,

DU,n(A) = {UA(x)}x∈{0,1}n .

We define {DU,n} to be the corresponding family of functions.

▶ Definition 24. Let {Gn} be a multi-output circuit family with 2s(n)+n inputs and 2n

outputs. We say that {Gn} is a good circuit family if it is a poly(2n)-time uniform depth-3
family of the form

OR2poly(2n) ◦ AND2poly(2n) ◦ ORpoly(2n),

as defined in Section 2.

▶ Lemma 25. Let {Gn} be a good circuit family. Then there exists a Σ2E Turing machine
U such that for all n and all inputs A ∈ {0, 1}2s(n)+n , Gn(A) = DU,n(A). That is, Gn(A)
outputs the values of UA(x) over all x of length n.

Proof. Follows from Theorem 13. ◀

Here we will prove Theorem 6 for the case of k = 2; the case of arbitrary k is straightfor-
ward.

▶ Theorem 26 (Circuits for Missing-String Imply Circuit Lower Bounds, Theorem 6 for Σ2E).
If for infinitely many n, Missing-String can be solved by a good circuit family, on all lists
of length M := 2Õ(s(log N)) with strings of length N = 2n, then Σ2EA ̸⊂ SIZEA(Õ(s(n))) for
all oracles A.
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Similarly, if for all n, Missing-String can be solved by a good circuit family, on all lists
of length M := 2Õ(s(log N)) with strings of length N = 2n, then Σ2EA ̸⊂ i.o.-SIZEA(Õ(s(n)))
for all oracles A.

Proof. We will prove the first implication; the modification to the second implication is
straightforward. By Lemma 25, the hypothesis implies that there exists a Σ2E Turing
machine U such that the good circuit family solving Missing-String computes the same
function as {DU,n}. Let V be a Σ2E-machine simulating U , so that whenever U asks a query
to the oracle of length log(M) + n, V uses the actual oracle result, and for all queries of other
lengths V pretends the query answer is 0. Let A be any oracle and let An be its restriction
to (log(M) + n)-bit strings; that is, An(z) = A(z) if |z| = (log(M) + n), and An(z) = 0
otherwise. Observe that An restricted to strings of length (log(M) + n) can be viewed as an
instance of the Missing-String problem with a list of length M and each string of length
N = 2n. From these definitions, we infer that for all x ∈ {0, 1}n, V A(x) = UAn(x) and hence

{V A(x)}x∈{0,1}n = {UAn(x)}x∈{0,1}n = DU,n(An).

As DU,n can solve the Missing-String problem with a list of length M and each string of
length N = 2n for infinitely many n, we have that for infinitely many n, for all A, and for all
z ∈ {0, 1}log(M),

{V A(x)}x∈{0,1}n = DU,n(An) ̸= {An(z, x)}x∈{0,1}n = {A(z, x)}x∈{0,1}n .

In turn, this implies that for infinitely many n, for all A, and for z ∈ {0, 1}log(M),

{V A(x)}x∈{0,1}n ̸= {A(z, x)}x∈{0,1}n .

As this condition holds for infinitely many n, we conclude that for all A, V A does not have
A-oracle circuits consisting of one query of length log(M) to A, i.e., V A ̸∈ A[log(M)].11

For every constant d, assigning M := 2s(log N) logd(s(log N)) implies that for all A, V A ̸∈
A[s(n) logd(s(n)]. Hence, V A ̸∈ A[Õ(s(n))]. Since V A is a Σ2EA machine, this implies
that for all A, Σ2EA ̸⊂ A[Õ(s(n))]. Finally, by Lemma 16, this implies that for all B,
Σ2EB ̸⊂ SIZE[Õ(s(n))]B . ◀

Now, we want to go in the opposite direction: we want to show that if Missing-String
does not have good uniform circuits, then Σ2EA ⊂ i.o.-SIZEA[O(s(n))] for some oracle A.
(Contrapositively, we will show that relativizing circuit lower bounds for Σ2E imply good
uniform circuits for Missing-String.) This direction will take more work. To this end, we
define a property P which will be sufficient to imply Σ2EA ⊂ i.o.-SIZEA[O(s(n))]. Property P

asks for something stronger than a typical lower bound: a single input to the Missing-String
problem on which all uniform circuits (algorithms) fail. We will later see (Lemma 30) how
Missing-String lower bounds can be used to derive property P , by allowing a little loss in
the parameters.

▶ Definition 27. Let P (s, f, n) be the following property:
There is an oracle Q supported on (s + n)-bit strings such that, for every Σ2TIME[2n]

Turing machine of description length |U | ≤ f , the function DU,n cannot solve the Missing-
String problem on the input Q, with list of length M = 2s and strings of length N = 2n.

11 See Section 2 for a definition of the A[s(n)] notation.
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Roughly speaking, property P says “there is a bad input Q that breaks every machine U

(of length at most f) trying to solve Missing-String.”

▶ Lemma 28. Let f(n) be unbounded. If there are infinitely many n such that P (s(n), f(n), n)
holds, then there exists a constant µ and an oracle A such that Σ2TIME[2n]A ⊂
i.o.-SIZEA[µs(n)].

Proof. The oracle will be constructed in stages.

Stage 1. Start with the first n for which P (s(n), f(n), n) holds. Then there exists an oracle
B supported on (s(n) + n) bit strings, so that for all Σ2TIME[2n] Turing machines U where
|U | ≤ f(n)/2, there exists a z ∈ {0, 1}s(n) such that that UB(x) = B(z, x) for all x of length
n. That is, UB has a “trivial” B-oracle circuit of size s(n) + n on inputs of length n. Set
A := B. We will view A as a set defined by the inputs on which the oracle A is 1.

Stage i for i > 1. Let us now extend the previous statement for infinitely many n. Let m

upper bound the length of the binary encoding of the set A. Let nj refer to the integer n

chosen in stage j, where 1 ≤ j < i.
In stage i, we choose n such that three properties hold.

1. f(n) > 2 · m

2. P (s(n), f(n), n) holds.
3. n is large enough to satisfy 2ni−1·f(ni−1) < s(n) + n.

We want to add a set Bn of strings of length s(n) + n to our existing oracle A, yielding a
new oracle A := A ∪ Bn. We can argue by induction that all existing entries in the set A

have length at most 2ni−1f(ni−1), hence by Property 3, A ∩ Bn = ∅. Note that any machine
of the form UA∪Bn can be thought of as another machine UBn

2 where in U2 we hard-code
A, where |U2| ≤ |U | + m. By Property 1, if |U | ≤ f(n)/2, then |U2| ≤ f(n). As in stage
1, property P (s(n), f(n), n) implies there exists an oracle Bn supported on (s(n) + n) bit
strings such that for all Σ2TIME[2n] machines U2 satisfying |U2| ≤ f(n), there is a string z

of length s(n) such that UBn
2 (x) = Bn(z, x) for all x ∈ {0, 1}n. That is, UBn

2 has a “trivial”
Bn-oracle circuit on inputs of length n.

Therefore, for all Σ2TIME[2n] machines U satisfying |U | ≤ f(n)/2, there is a string
z′ of length s(n) such that for all n-bit x, UA∪Bn(x) = UBn

2 (x) = Bn(z′, x). Note that
since z′ is of length s(n), and A only contains strings of length less than s(n) + n, we have
Bn(z′, x) = (A ∪ Bn)(z′, x). Therefore UA∪Bn(x) = (A ∪ Bn)(z′, x) for all x. That is, UA∪Bn

also has a “trivial” (A ∪ Bn)-oracle circuit.
Now, we set A to be A ∪ Bn. By Property 3, we chose n to be large enough that all

previous machines considered do not query strings of length s(n) + n. Hence for this new
setting of A, we still have that for all Σ2TIME[2n] Turing machines U with |U | ≤ f(nj)/2, and
for all j < i, there is an zj of length s(nj) such that for all x of length nj , UA(x) = A(zj , x).

Let A denote the final oracle after all stages. For infinitely many n, for all Σ2TIME[2n]
machines U with |U | ≤ f(n)/2, we have a string zn of length s(n) such that for all x,
UA(x) = A(zn, x). As f(n) is unbounded, this is sufficient to imply that Σ2TIME[2n]A ⊆
i.o.-A[s(n)].12 Taking µ to be a constant satisfying A[s(n)] ⊆ SIZEA[µs(n)], we conclude
that Σ2TIME[2n]A ⊂ i.o.-SIZEA[µs(n)]. ◀

We next define a property R, which intuitively corresponds to the existence of lower
bounds for the Missing-String problem.

12 See Section 2 for a definition of the A[s(n)] notation.
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▶ Definition 29. Let R(s, f, n) denote the following property:
For all functions DU,n (where U is a Σ2TIME[2n] Turing machine, and the description

length |U | ≤ f), there exists an oracle Q supported on (s + n) bit strings such that DU,n

cannot solve the Missing-String problem on lists of length M = 2s and strings of length
N = 2n on input Q.

Roughly speaking, property R says “for all machines U , there is a bad input Q on which
U does not solve Missing-String”, while property P said “there is a single bad input Q

such that no machine U solves Missing-String on Q.” In Lemma 30 we will show how
property R actually implies the stronger property P , with a little loss in the parameters.

Let f(n) < s(n), n < s(n) and let f(n) be poly(n)-time constructible (eventually we will
choose f(n) = log n). Define n′ := n + f(n) and define s′ such that s′(n′) := s(n) − f(n).
Note that s(n) + n = s′(n′) + n′. We now show that property R implies property P , with a
mild loss in the parameters.

▶ Lemma 30. There exists a constant c such that R(s′(n), c, n′) =⇒ P (s(n), f(n), n).
Therefore, if there are infinitely many m such that R(s′(m), c, m) holds, then there are
infinitely many m such that P (s(m), f(m), m) holds.

Proof. We will prove the contrapositive. If P (s(n), f(n), n) is false, then for every possible
input Q of length 2n+f(n) to the Missing-String problem with M = 2s(n) and N = 2n, at
least one function of the form DU,n (where U is a Σ2TIME[2n] machine, |U | ≤ f) correctly
solves Missing-String on Q.

We will now show that there is a single function which solves the Missing-String
problem over all lists of length M = 2s(n)−f(n) and strings of length N = 2n+f(n). Later we
will argue that this function can be computed in Σ2TIME[2n].

Note that M · N = 2n+s(n). We may think of each string T of length 2n+f(n) in the
list as being divided into 2f(n) sub-strings, each of length 2n. Creating a list of all these
sub-strings gives us an instance I of the Missing-String problem with list of length
2s(n)−f(n) · 2f(n) = 2s(n) and strings of length 2n. Similarly we will think of the output of
length 2n+f(n) as being divided into 2f(n) sub-outputs, each of length 2n. Let Uz be the
Σ2TIME[2n] machine with description z, where |z| ≤ f(n). To obtain the zth sub-output,
we evaluate the function DUz,n on I, obtaining a string of length 2n. Note that all the
sub-functions are being run on the same instance of Missing-String with list of length
M = 2s(n) and strings of length N = 2n, generated by treating the sub-strings as strings.
Since P (s(n), f(n), n) is false, some machine Uw solves Missing-String correctly: there
exists a string w of length at most f(n) such that DUw,n is correct on the instance I. This
means that the wth sub-output is distinct from all sub-strings in the input. Hence the entire
output string of length 2n+f(n) must be distinct from all strings in the input. Therefore this
function correctly solves Missing-String on lists of length M = 2s(n)−f(n) and strings of
length N = 2n+f(n).

We observe that this function is of the form DU ′,n′ where U ′ is a Σ2TIME[2n] machine
and |U ′| = O(1). In fact, U ′ is the machine which on input zx (where |z| = f(n), |x| = n,
|zx| = n + f(n) = n′) simply returns the output of the Σ2TIME[2n] machine with description
z on input x. It is now easy to verify that the constructed function is equivalent to DU ′,n′ .
Note that U ′ runs in time O(2n) ≤ O(2n′). As f(n) is polynomial-time constructible, we get
that |U ′| ≤ O(1). Taking c = |U ′|, we see that R(s′(n), c, n′) is false. ◀

▶ Corollary 31. Let f(n) = log(n) and let s′ be a nice function. There exists constants
c, d such that if there are infinitely many n′ such that R(s′(n), c, n′) holds, then there are
infinitely many n such that P (s′(n) logd(s′(n)), f(n), n) holds.
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Proof. Choose c to be the constant from Lemma 30. Choose d to be a constant such that
s′(n + log(n)) + log(2n) < s′(n) logd(s′(n)), existence of d is guaranteed because s′ is a nice
function (see Section 2 for a definition). Let R(s′(n), c, n′) be true. Define n, s(n) to be the
solutions of n+f(n) = n′ and s(n) = f(n)+s′(n′). By Lemma 30 we have that P (s(n), f(n), n)
is true. Note that s(n) = f(n) + s′(n′) ≤ f(n′) + s′(n′) = log(n + log(n)) + s′(n + log(n)) ≤
log(2n) + s′(n + log(n)) ≤ s′(n) logd(s′(n)). Hence P (s′(n) logd(s′(n)), f(n), n) holds. ◀

▶ Theorem 32 (Equivalence of Missing-String Lower Bounds and Circuit Upper Bounds,
Theorem 5 for Σ2E). For all nice functions s(n), the following are equivalent:
1. For every oracle A, Σ2EA ̸⊂ i.o.-SIZEA(Õ(s(O(n)))).
2. Missing-String can be solved by a good circuit family on all lists of length M and strings

of length N = 2n where M satisfies M = 2Õ(s(O(log N)))

Proof. By Theorem 26 we have that 2 =⇒ 1.
Let us now prove ¬2 =⇒ ¬1. By Lemma 25, for a good circuit family {Gn} there exists a

Σ2E Turing machine U such that the output of Gn is the same as that of {DU,n}. Hence by ¬2
we have that for all circuit families {DU,n} such that U is a Σ2E machine, there are infinitely
many n such that DU,n cannot solve the Missing-String problem for some M = 2Õ(s(O(n)))

and N = 2n. This implies that for all constants c, there are infinitely many n such that
property R(Õ(s(O(n))), c, n) holds. Taking f(n) = log(n) and applying Corollary 31, it
follows that there are infinitely many n such that P (Õ(s(O(n))), f(n), n) holds. Applying
Lemma 28, there exists an oracle B such that Σ2TIME[2n]B ∈ i.o.-SIZEB[Õ(s(O(n)))]B.
Finally, by padding we conclude that Σ2EB ∈ i.o.-SIZEB[Õ(s(O(n)))], which is equivalent
to ¬1. ◀

4.1 A Perspective on Non-Relativizing Lower Bounds
In this section, we observe that non-relativizing lower bounds are equivalent to uniform
circuits for Missing-String on low-complexity inputs.

▶ Reminder of Theorem 8. Let S(n) ≥ n. NE ̸⊂ SIZE(S(n)) if and only if there is a
poly(N)-time uniform depth-two circuit family of size 2poly(N) and poly(N) bottom fan-in
for Missing-String that succeeds for infinitely many N = 2n, when the list L is S(n)-
compressible.

The proof follows easily from the framework given earlier in this section.

Proof. (Sketch) First, assume NE ̸⊂ SIZE(S(n)), and let M be an NE machine without
S(n)-size circuits for infinitely many n. Applying the standard translation between NP and
DC-uniform circuits (see 2) we can define a poly(2n)-uniform depth-two circuit family {Cn}
which takes no inputs, and whose 2n output gates print the truth table of M on n-bit inputs.
For infinitely many n, this family {Cn} is printing a string which is not S(n)-compressible;
therefore it cannot be on any S(n)-compressible list.

For the other direction, suppose there is a poly(N)-time uniform depth-two circuit family
{Cn} of size 2poly(N) for Missing-String that succeeds for infinitely many N = 2n, when
the list L is S(n)-compressible. So there is an infinite set {ni} where for all i, the circuit
Cni

, given the list Lni
of all possible 2ni-bit truth tables of circuit complexity at most

S(ni), outputs an 2ni-bit truth table T which does not appear in Lni
. This T therefore

has circuit complexity greater than S(n). Note that either there are infinitely many i such
that the depth-two circuit Cni is an OR of AND (of poly(N) fan-in), or there are infinitely
many i such that it is an AND of OR (of poly(N) fan-in). In the first case, we have an
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NE machine computing a function not in SIZE(S(n)); in the second case, we have a coNE
machine computing a function not in SIZE(S(n)) (which implies an NE machine as well;
the class SIZE(S(n)) is closed under complement). In more detail, in the first case, our NE
machine on an input x (of length n) will first check the gate type of the output gate of Cn.
If the type is OR, then the NE machine evaluates Cn on the list Ln, obtaining a truth table
T , and the machine outputs the appropriate bit of T , corresponding to x. (If the type is
AND, the NE machine just reports 0.) ◀

5 Oracles Breaking The Algorithmic Method for Circuit Lower Bounds

Notation

We will use [s1, s2, . . . , sk] to denote an encoding of a k-tuple of strings s1, s2, . . . , sk from
which s1, s2, . . . , sk can be efficiently recovered. We define the key of the string [s1, s2, . . . , sk]
to be the string s2.

Recall the Circuit Approximation Probability Problem (CAPP): given a circuit C, output
a value v ∈ (0, 1) such that |v − Prx[C(x) = 1]| < 1/10. (Here, the choice of 1/10 is
arbitrary; it just needs to be a small-enough constant greater than 0.) CAPP is a canonical
PromiseBPP-complete problem [19]. Building on oracle constructions of Fortnow [16] and
Wilson [43], we show there is a relativized world in which exponential-time with an NP
oracle has linear-size circuits yet CAPP is in P. (Recall it is known that subexponential-time
algorithms for CAPP imply NEXP ̸⊂ P/poly [21].)

▶ Reminder of Theorem 11. There is an oracle A such that CAPP (for A-oracle circuits)
is in PA but EXPNPA

has polynomial-size A-oracle circuits.

In particular, our proof will show that ENP = TIMENP[2O(n)] has O(n)-size circuits relative
to A; the consequence for EXPNP follows from standard (relativizing) padding arguments.
The idea is to carefully construct an oracle with “keyed” strings that allow us to determine
ENP computations fast, while including enough structure in other parts of the oracle to
make CAPP easy to solve. The first part builds on Wilson’s oracle that places ENP in linear
size [43], while the second part builds on Fortnow’s oracle that puts CAPP in P [16].

Proof. Since ENP = ESAT, it suffices to consider ESAT. Let MA be a ESATA machine deciding
a linear-time complete set for ESATA . It suffices to provide a linear-size circuit family for
MA. Let MA run in TIMENP[2cn] for a sufficiently large constant c ≥ 1.

The construction of A will proceed in stages. All possible queries to A will be partitioned
into fixed queries and unfixed queries. As the construction progresses, we will convert unfixed
queries to fixed queries, and the oracle values of fixed queries will not be changed. In stage 0
we begin with A(x) = 0 for all x, and all queries to A are unfixed. We will inductively prove
that:
1. After stage n, at most 22(c+1)n queries to A of the form [i, . . .] where i > n have been

fixed.
2. After stage n, all queries of length at most n are fixed.
This is clearly true after stage 0.

Stage n. We start by handling all n-bit inputs x ∈ {0, 1}n to MA, one by one. For each
x, the output of MA(x) can be viewed as a decision tree of depth at most 2cn (capturing
the deterministic decisions made by MA(x) between queries to A), where each node of the
decision tree is a DNF (capturing the SATA queries) of at most 22cn terms, where each term
has width at most 2cn, and the DNF variables correspond to queries of A. We will always
simplify DNFs by substituting the values of oracle A on fixed queries.
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First, we show that we can fix a “small” number of queries to A that will determine the
value of MA(x). Starting from the DNF D at the top node of the decision tree, if D evaluates
to a fixed constant, then we follow the relevant child node and repeat the following on its
DNF. Otherwise, if D is non-constant, we set D to be true by taking one term of unfixed
queries, setting the values on those queries appropriately, and fixing those queries. As each
term of D has width at most 2cn, this changes and fixes at most 2cn values of A. From now
on, as long as we restrict ourselves to only changing unfixed queries to A, D will not change
its output. After setting D to be true, we move to the relevant child in the decision tree,
and repeat the procedure, continuing until we reach a leaf of the tree.

As the depth of the decision tree is at most 2cn, the above procedure fixes at most
2cn · 2cn = 22cn queries of A. From now on, as long as we only change unfixed queries
of A, the output of MA(x) will not change. Repeating the procedure over all x, we add
at most 2n · 22cn = 2(2c+1)n queries to the set of fixed queries. Combining this with the
induction hypothesis from stage n − 1, the total number of fixed inputs (of the form [i, . . .]
where i > n − 1) is at most 2(2c+1)n + 22(c+1)(n−1) = 22(c+1)n−2c. Thus there is some string
zn of length 2(c + 1)n such that no string of the form [n, zn, . . .] is fixed. We use zn to
“encode” the behavior of MA: we set A[n, zn] = 1 and fix [n, zn], and for all x ∈ {0, 1}n,
we set A([n, zn, x]) = MA(x) and fix [n, zn, x]. Observe that the outputs of MA(x) remain
unchanged, as we have only modified A on unfixed inputs. Finally, we set all other strings of
length n as fixed, proving the second inductive hypothesis for stage n. The total number of
fixed strings of the form [i, . . .] (where i > n) is 1 + 2n + 2n + 22(c+1)n−2c < 22(c+1)n, proving
the first inductive hypothesis for stage n. In stage n, we will not fix any more inputs of the
form [i, . . .] where i > n.

Now we modify A in other places, to accommodate a CAPP algorithm. Letting C be an
oracle circuit and letting B be an oracle. let CB denote the circuit obtained by replacing all
oracle gates of fan-in f in C with the f -th slice of B.

We go through every oracle circuit C in turn. If CA is satisfiable, then we encode an
input x such that CA(x) = 1, by setting and fixing A([n, zn, C]) = 1 and A([n, zn, C, i]) = xi

for i = 1, . . . , |x|. If CA is unsatisfiable, then let S be the set of keys such that CA queries
some string with that key on at least a 1

2|C| fraction of its possible inputs. We can encode S

by setting and also fixing A([n, zn, C]) = 0 and A([n, zn, C, i]) = binary(S)i where binary(S)
denotes a binary encoding of S. Note that |S| ≤ 2|C|2, so the binary encoding has poly(|C|)
size. This completes stage n. Note that, as we perform the above modifications for every
circuit C, we are in fact fixing an infinite number of queries in stage n. However, none of the
queries we fix here have the form [i, . . .] where i > n, so it does not affect our first inductive
hypothesis.

We will now argue correctness. To compute MA on an n-bit x, we can simply return
A[n, zn, x]. As |zn| = 2(c+1)n, we obtain an O(n)-size A-oracle circuit that computes MA(x)
on all n-bit inputs. Therefore ENPA ⊂ SIZEA[O(n)].

Now we show that the oracle A lets us solve CAPP in polynomial time. We begin
with a weaker problem. In GAP-SAT, we are given a circuit C and are promised that
either C is unsatisfiable, or at least half of its possible assignments are satisfying; the
task is to distinguish between these two promise conditions. GAP-SAT is a canonical
PromiseRP-complete problem.

We will show that our oracle A lets us solve GAP-SAT in polynomial time. Let Ak be
the oracle after stage k, and let A be the final oracle constructed after all stages. Suppose
we are given a GAP-SAT instance C. We start by observing that for all x and for every
k > |C|, CA(x) = CAk (x). This follows because (1) C cannot query strings longer than |C|,
and (2) the inductive hypothesis implies that at the end of stage k, all unfixed inputs have
length greater than k, so we only modify inputs of length greater than k after that.
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Our GAP-SAT algorithm works as follows (following Fortnow [16]). Begin with k := 1,
and z1 hard-coded in the algorithm. First we check if A([k, zk, C, . . .]) encodes a string x. If
so, then if CA(x) = 1 we are done. If CA(x) = 0 instead, we know that CA(x) = 0 while
CAk (x) = 1. (That is, when we were encoding A in stage k, x was a satisfying assignment to
C, but later x became an unsatisfying assignment.) This means that CAk (x) must query
some string of the form [j, zj , . . .] for j > k. Let {zj} be the set of all keys of such queries in
CAk (x). As we can check if a given string z is equal to zj by checking if A[j, z] = 1, we can
determine zj for some j > k, and restart the entire procedure with k = j. Note that if k is
ever larger than |C|, and a satisfying input x is not encoded by A, then we should reject, as
CA(x) = CAk (x) for all x and CAk is unsatisfiable.

Now suppose A([k, zk, C, . . .]) does not encode a string x. In that case, CAk must have
been unsatisfiable, and A([n, zk, C, . . .]) encodes a set S. We construct the set S with
O((|C|)2) queries to A, and check if there is a z ∈ S and j ∈ [k + 1, |C|] such that A[j, z] = 1.
If such a z is found, we now have zj for some j > k, and we can again restart the procedure
with k = j.

If no z ∈ S has this property, then we claim that CAk and CA differ on less than a
|C| · 1

2|C| = 1
2 fraction of all inputs. To see why this claim is true, first note that CAk (x) and

CA(x) can only differ if CAk (x) makes a query with key zj , where j ∈ [k + 1, |C|]. If zj ̸∈ S,
then on less than a 1

2|C| fraction of inputs, CAk (x) makes a query with key zj . If for every
j ∈ [k + 1, |C|] we have zj ̸∈ S, then CAk (x) ̸= CA(x) on at most a (|C| − k + 1) · 1

2|C| < 1
2

fraction of the inputs. Recalling that CAk is unsatisfiable, it follows that CA accepts less
than a 1

2 of the inputs and so does not satisfy the promise condition. (We can output any
answer at this point.) This concludes the description of the GAP-SAT algorithm.

Finally, we observe that a polynomial-time GAP-SAT algorithm is sufficient for a CAPP
algorithm. In particular, Lautemann’s proof that BPP ⊆ Σ2P [30] implies PromiseBPP ⊆
PromiseRPPromiseRP (as observed by [14]), and the proof relativizes. Since CAPP on A-oracle
circuits is solvable in polynomial time with our oracle A, and CAPP is PromiseRP-complete,
the above containment implies that PromiseBPP problems are solvable in polynomial time
relative to our oracle. Fortnow [16] shows this condition is sufficient for solving CAPP in
polynomial time (and his proof relativizes). ◀

▶ Reminder of Theorem 12. There is an oracle A and a function H such that TIMEA[2n] ⊂
SIZEA[O(n)], SATA can be solved in poly(H(poly(n))) time with an A-oracle, H(H(n)) ≤ 2n

and H is monotone increasing.

In the following, we let h denote a half-exponential function, i.e., a strictly monotone
increasing h : N → N where h(h(n)) = 2n.

Proof. Let NA(x) be a nondeterministic machine accepting a linear-time complete language
for the class NTIMEA[O(n)]. In particular, let NA run in time ≤ µn. For a sufficiently
large constant c ≥ 1, setting s(n) := h(n)c, we will construct an oracle A such that for all
n and for all x ∈ {0, 1}n, NA(x) = A(1s(n)0x). Then the language L(NA) can be decided
in time poly(h(n)) with the oracle A, by simply constructing s(n) ones, and querying A on
1s(n)0x. By padding, it follows that SAT will be computable in poly(h(poly(n))) relative to
the oracle A.

All queries to A will have one of three types: fixed, unfixed, and derived. Initially all
queries of the form 1s(n)0x where x ∈ {0, 1}n are derived. Throughout the construction of
the oracle, we will never set the value of A on derived queries; rather, we will assume that
on derived queries the oracle satisfies A(1s(n)0x) := NA(x) for all x ∈ {0, 1}n. This means
that whenever the oracle A is changed, we assume that the value of A on derived queries
is also changed to satisfy A(1s(n)0x) := NA(x). This can always be done, since 1s(n)0x is
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too long to be queried directly by NA(x). Over the course of the oracle construction, some
unfixed and derived queries will become fixed queries. Whenever a derived query of the form
1s(n)0x with |x| = n into a fixed query, we will ensure that the output of NA(x) does not
change after that. This will ensure that the condition NA(x) = A(1s(n)0x) is maintained.

Let MA be a EA machine which accepts a linear-time complete set for EA. We wish to
construct A so that MA has small A-oracle circuits. Let MA run in time at most 2cn for a
large enough constant c. (Note that this fixes s(n) = h(n)c).

We will proceed in stages. In stage 0, we begin with A(y) = 0 for all y, and all queries
other than derived queries to A are unfixed. We will inductively prove that after stage n:
1. At most 2c(n+1) queries of A have been fixed.
2. All derived queries have length at least s(n + 1).
These properties are clearly true after stage 0.

Stage n. Our aim is to modify A such that there is a string zn of length O(n) such that
MA(x) = A(znx) for all x ∈ {0, 1}n. As MA is a EA machine, we may view its computation
on n-bit input as a decision tree of depth at most 2cn where each node of the tree queries A

on some input. We can simplify the tree by substituting the values of all fixed queries to A.
We are left with two kinds of queries: derived and unfixed. Note that the oracle value of each
derived query A(1s(|y|)0y) is the same as NA(y). Because NA runs in nondeterministic µn

time, each query A(1s(|y|)0y) can in turn be replaced with a DNF Dy of at most 2µ|y| terms,
of width at most µ|y| (each term has at most µ|y| literals). By substituting the values for the
fixed queries, Dy can be simplified so that each literal of Dy corresponds to the value of A

on an unfixed or derived query. We next prove that, because we took s(|y|) to be sufficiently
large, the following stronger condition holds: every literal in every DNF Dy must correspond
to an unfixed query, i.e., not a derived query.

▷ Claim 33. For every derived query A(1s(|y|)0y) by MA on any input x of length n,
|y| < h(n).
Each literal of the DNF Dy corresponds to an unfixed (not derived) query to the oracle
A.

Proof. Let 1s(|y|)y be a derived query of MA(x). As MA(x) runs in at most 2cn time, we have
that s(|y|) < 2cn. Since s(|y|) = h(|y|)c, this implies that h(|y|) < 2n. Since h(h(n)) = 2n

and h is monotone increasing, we must have |y| < h(n). Furthermore,

|y| < h(n) = s(n)1/c < s(n)/µ,

where the last inequality holds for all large enough n. As NA(y) runs in time at most µ|y|, it
follows that all queries by NA(y) are of length at most µ|y| < s(n). The literals of the DNF
Dy correspond to the oracle queries of NA(y), therefore hence all literals in Dy correspond to
queries to A of length less than s(n). As our induction hypothesis says that derived queries
are of length greater than s(n), each literal of Dy corresponds to an unfixed query. ◁

Given the claim, our EA machine MA can be viewed as a decision tree where each node
of the tree is labelled by a DNF over the unfixed queries to A. We have now reached the
same situation that arose in Theorem 11, which also arises in Wilson’s [43] construction of
an oracle B such that ENPB ⊂ SIZE[O(n)]B . We will use the same proof technique to embed
MA in SIZEA[O(n)].

We will handle each x ∈ {0, 1}n one by one. For each x, the output of MA(x) can be
viewed as a decision tree of depth 2cn where each node of the decision tree is a DNF with
at most 2µh(n) < 22n terms and each term has width at most µh(n) < 2n. Each literal in
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each DNF corresponds to an unfixed (but not derived) value of A. We start from the DNF
corresponding to the top node of the decision tree. We just set an arbitrary term of this DNF
to true by setting values of A on unfixed queries and fixing them. As each term has width at
most 2n, this fixes at most 2n values of A. As long as we only change unfixed queries, the
DNF will not change its output. Next, we move to the next active node in the decision tree
and repeat the procedure, until we reach a leaf node of the tree. Since the tree has depth at
most 2cn, the number of queries to A that were fixed is at most 2cn · 2n = 2(c+1)n. As long as
we change only unfixed queries from now on, MA(x) will not change its output. Repeating
the above for all n-bit x, in total we fix at most 2(c+1)n · 2n = 2(c+2)n queries of A. Finally,
we convert all inputs of the form 1s(n)0x from derived to fixed, proving the second inductive
hypothesis for stage n. Combining this with the induction hypothesis from stage n − 1, the
total number of fixed inputs is 2cn + 2(c+2)n + 2n < 2(c+4)n for a large enough constant c.
Hence there exists a string zn of length O(n) such that no string of the form zn . . . is fixed.
We set A[znx] := MA(x) for all x ∈ {0, 1}n, and declare znx to be fixed. This is a valid
assignment, as doing so does not change the values of MA(x) (we have only changed the
value of A on unfixed inputs). This completes stage n.

Note that the total number of queries that are fixed is at most 2(c+4)n + 2n ≤ 2c(n+1) for
a large enough constant c. This proves the first inductive hypothesis for stage n.

Finally, we note that MA has low circuit complexity. For all x of length n, we have
MA(x) = A(znx). Since |zn| ≤ O(n), the query to A can be implemented as a linear sized
circuit on n-bit inputs. Since MA recognizes a linear time complete set for EA, we also
have ENPA ⊂ SIZEA[O(n)]. We also showed that for all x ∈ {0, 1}n, NA(x) = A(1s(n)0x),
hence the language L(NA) is in TIME[O(s(n)]. It follows that SAT is computable in time
s(nc) ≤ h(nc)c for a constant c ≥ 1. (Indeed, all of NP is in TIME[h(nO(1))O(1)].) ◀
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A Simple Lower Bound for Local Algorithms Solving Missing-String

Recall M is the number of bit strings in our input list to Missing-String, and N is the
length of the bit strings. Recall that an algorithm is k-probe if for all i = 1, . . . , N , the i-th
output bit of the missing string can be determined by only probing k bits of the input list.

▶ Theorem 34. Every k-probe algorithm for Missing-String can only be correct when
M ≤ kN .

Proof. First, we prove that any procedure for Missing-String must make at least M probes
overall into the list. In particular, the procedure must probe each of the M strings in at least
one bit. Otherwise, the procedure did not probe some string x at all; then, given whatever
string y the procedure produces, the string x could be set equal to y, contradicting the
assumption that the procedure computes Missing-String.
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Therefore, since any k-probe Missing-String algorithm makes kN overall probes into
the list, we must have M ≤ kN , i.e. k ≥ M/N . ◀

The above simple theorem can be applied to show that our (relativizing) time hierarchy
with advice (Theorem 1) is extremely close to optimal for some parameters. For example, by
setting α(n) = cn, β(n) = log n, t(n) = 10n in Theorem 1, we have for all c > 0:

TIME[(n3 log n) · 2cn] ̸⊂ i.o.-TIME[O(n)]/(cn + n).

Using the simple lower bound of Theorem 34, one can argue that there is an oracle A

such that for all c > 0, and all unbounded functions α(n),

TIMEA[2cn/α(n)] ⊂ TIMEA[O(n)]/(cn + n),

showing that the generic argument of Theorem 1 cannot be improved significantly.
Let us sketch the idea of how this works, from the perspective of the Missing-String

problem. We build up the oracle A in stages, starting from n = 1 and increasing n after each
stage. On a given input length n, consider a list L of all M = O(2(c+1)n) truth tables of
length N = O(2n), one truth table for every possible query to the A oracle of type (i, x, y),
where i is the index of a machine MA

i (a string of length at most log(α(n))/2), x is an input
string of length at most n, and y is of length at most (c + 1)n − log(α(n))/2. (Some of
the values of the bits in L have been determined in previous stages, but some have not.)
Consider an algorithm B that on input (i, x′) attempts to simulate an algorithm MA

i on x′

of length n, making k ≤ 2cn/α(n) queries to the list L to determine its output. If a probe
into L is a value of the oracle A that was already determined in previous stages, we answer
consistently; otherwise, we output that the value of A on the new query is 0.

Following the proof of Theorem 34, for every fixed choice of i, the total number of
queries into the list L (across all inputs of length up to n) is at most Θ(2n · 2cn/α(n)) <

2(c+1)n−log(α(n)/2 = M/
√

α(n). Therefore there is always at least one truth table corres-
ponding to strings of the form (i, ·, y) in L that was not queried by Mi over the n-bit strings,
even in previous stages. The oracle A can therefore be assigned such that this completely-
unqueried truth table equals the truth table of Mi on n-bit inputs. Thus the algorithm B

(and Mi for all i) on n-bit inputs can always be simulated by an A-oracle circuit of one gate
of the form A(i, x, y), where y has length (c + 1)n − log(α(n))/2, and x is an input of length
n. Thus B can be simulated in O(n) time with oracle A and (c + 1)n advice.

B Fast-enough SAT Implies EXP Lower Bounds

Here we recall a proposition showing that if SAT is solvable in “sub-half-exponential” time,
then circuit lower bounds for EXP follow. The proof relativizes.

▶ Proposition 35 ([41]). If SAT is in O(H(n)) time then EXP ̸⊂ P/poly, for any function
H(n) satisfying H(H(nk)2) ≤ 2n for all k.

Proof. Recall EXP ⊂ P/poly implies EXP = Σ2P [26], and recall that Σ2P = ∃ · ∀ · P,
where the ∃ and ∀ denote existential and universal alternations over nO(1) bits. Assuming
SAT is in O(H(n)) time, we have Σ2P ⊆ ∃ · TIME[H(nO(1))]. Then, an ∃ · TIME[H(nO(1))]
computation can be expressed as a SAT instance of length at most H(nO(1))2. Applying the
SAT algorithm once again implies

EXP = Σ2P ⊆ TIME[H(H(nO(1))2)] ⊆ TIME[2n · nO(1)],

contradicting the time hierarchy theorem. ◀
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1 Introduction

Consensus, the task in which multiple processes need to agree on some value, based on local
inputs, is a fundamental problem in distributed computing. At the heart of this problem
lies the question of whether and how it is possible for the processes to exchange enough
information with each other in order to reach agreement, e.g., on a numerical value or
on performing a joint action. While deterministic consensus has been studied intensively
for several decades, it is still unknown whether and, in particular, how quickly it can be
achieved in fundamental models such as the one we study here: synchronous dynamic directed
networks controlled by an oblivious message adversary.
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The study of such dynamic networks is of both practical and theoretical interest: It
is of practical relevance, as the communication topology of many large-scale distributed
systems is dynamic (e.g., due to mobility, interference, or failures) and its links are often
asymmetric (e.g., in optical or in wireless networks) [27]. It is also of fundamental theoretical
interest, as solving consensus in dynamic directed networks is known to be significantly more
difficult [33, 32] than solving consensus in dynamic networks with bidirectional links [26].

Focusing on the worst-case perspective, we consider a lock-step synchronous model where
a message adversary [2] may drop an arbitrary set of messages sent by some processes in each
round. This results in a sequence of directed communication graphs, whose edges indicate
which process can successfully send a message to which other process in that round. We
specifically consider the fundamental oblivious message adversary model [12] introduced by
Coulouma, Godard and Peters, which is specified via a set D of allowed communication
graphs from which the message adversary can pick one arbitrarily in each round.

The oblivious message adversary model is appealing because it is conceptually simple and
still provides a highly dynamic network model: The set of allowed graphs can be arbitrary,
and the nodes that can communicate with one another may vary greatly from one round to
the next (e.g., if a message failed on a link in some round, messages may still be sent on this
link in successive rounds). It is hence also well-suited for settings where significant transient
message loss occurs, such as in wireless networks subject to interference. Furthermore, this
model includes as a special case the classic link failure model by Santoro and Widmayer [30],
where up to f links may fail in each round: the model is equivalent to a set of allowed graphs
which contains all communication graphs where ≤ f edges are missing.

Interestingly, determining consensus solvability for a given set of graphs D and, in
particular, designing a consensus algorithm which succeeds whenever this is possible, is
difficult [12]. For example, sometimes, a “weaker adversary”, i.e., an adversary that allows
for more communication overall (e.g., supporting a larger set D and failing less links), may
render consensus impossible, while it would be possible for a smaller set D. However, to
the best of our knowledge, nothing is known about the complexity of deciding consensus
solvability given D, i.e., using a centralized algorithm and, in particular, about the time
complexity of distributed consensus in the cases where it is possible.

Contributions. In this paper, we present both a practical decision procedure for consensus
solvability, based on the beta classes introduced in [12], and provide the first study of the
consensus time complexity in this model. In more detail:

We provide a centralized decision procedure for determining consensus solvability for a
given oblivious message adversary D and bound its complexity. Compared to the beta
class criterion proposed in [12], our decision procedure has the advantage of being explicit,
simple and early deciding.
We provide both upper and lower bounds for the worst-case time complexity of distributed
consensus1 for oblivious message adversaries. Interestingly, this time complexity may
depend not only on the number of processes n and the number of iterations TD required
by our centralized decision procedure, but sometimes also on the number of connected
components in the outcome of the decision procedure after TD iterations. Indeed, by

1 We emphasize that worst-case time complexity of distributed consensus means that no correct consensus
algorithm can terminate faster than the lower bound in all possible runs, and that there is some
consensus algorithm that terminates within the upper bound in all runs. When we talk about the time
complexity of consensus in our paper, we always mean worst-case time complexity.
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means of two deliberately crafted examples of oblivious message adversaries, we show
that consensus termination times exponential in n can happen whether or not TD is
exponential in n. Note that the dependency on the number of connected components
could not be inferred from the existing beta class results [12].

Our results also shed an interesting new light on the relationship between distributed
consensus and broadcasting: As the input value of some process is known to reach all other
processes in linear time under any oblivious message adversary [13, 14, 37, 18], one might
be tempted to expect that consensus can also be achieved quickly. Our results show that,
quite to the contrary, reaching consensus can take exponential time, even in cases where the
decision procedure terminates in only a few iterations.

Paper organization. The remainder of this paper is organized as follows. After a brief survey
of related work in Section 2, we introduce our formal model and terminology in Section 3.
The description and analysis of our decision procedure and our consensus algorithm are
presented in Section 4 and Section 5, respectively, and our lower bound results are presented in
Section 6. A fully worked out scenario showing constant iteration complexity vs. exponential
consensus termination time is provided in Section 7. We conclude our contribution and
discuss directions for future work in Section 8.

2 Related Work

Consensus is a fundamental task in distributed computing, and the question whether and
when consensus is possible has engaged researchers at least since the influential impossibility
result by Fischer, Lynch, and Paterson [16] and its generalizations [8]. Consensus problems
come in different flavors and arise in many settings, including shared memory architectures,
message-passing systems, and blockchains, among others [29, 24, 9, 34, 1].

Research on deterministic consensus in synchronous message-passing systems subject to
link failures dates back to the seminal paper by Santoro and Widmayer [30], who showed
that consensus is impossible if up to n − 1 messages may be lost each round. This result has
later been generalized along many dimensions [31, 32, 11, 7, 12, 10, 17]. For example, in [32],
Schmid, Weiss and Keidar showed that consensus can even be solved when a quadratic
number of messages is lost per round, provided these losses do not isolate the processes.
Several generalized models have been proposed in the literature [19, 21, 11], like the heard-of
model by Charron-Bost and Schiper [11], and different agreement problems like approximate
and asymptotic consensus have been studied in these models [10, 17]. In many of these
and similar works on consensus [15, 5, 33, 6, 36, 28, 9], a model is considered in which, in
each round, a digraph is picked from a set of allowed graphs. Afek and Gafni coined the
term message adversary for this abstraction [2], and used it for relating problems solvable in
wait-free read-write shared memory systems to those solvable in message-passing systems.
For a detailed overview of the field, we refer to the recent survey by Winkler and Schmid [34].

An interesting alternative model for dynamic networks assumes a T -interval connectivity
guarantee, that is, a common subgraph in the communication graphs of every T consecutive
rounds [25, 26]. In contrast to our directional model, solving consensus is relatively simple
here, since the T -interval connectivity model relies on bidirectional links and always connected
communication graphs. For example, 1-interval-connectivity, the weakest form of T -interval
connectivity, implies that all nodes are able to reach all the other nodes in the system.
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Another related model arises in the context of wait-free computation in shared memory
systems with immediate atomic snapshots. These systems can be roughly described using one
specific oblivious message adversary, containing all transitively closed tournaments. Wait-free
computation in this context is often studied using topological tools [20, 3, 4, 22, 23]. This line
of work did not provide any time complexity bounds for consensus in our model, however.

Closely related to our work is the paper by Coulouma, Godard, and Peters [12], who
substantially refined the results of [31]. The authors consider oblivious message adversaries
and identify an equivalence relation on the sets of communication graphs, which captures
the essence of consensus impossibility via non-broadcastability of one of the so-called beta
equivalence classes of this relation. The decision procedure from Section 4 can be seen as
an explicit computation of these beta classes. Moreover, [12] also presents a distributed
consensus algorithm that, essentially, computes the beta classes. However, in stark contrast to
our paper, neither the iteration complexity of our decision procedure nor the time complexity
of distributed consensus has been studied in this or any other paper we are aware of.

3 Model and Preliminaries

We assume a set Π = {p1, . . . , pn} of n processes, which execute a deterministic distributed
protocol to reach consensus. Processes operate in lock-step synchronous rounds, where each
round consists of a phase of message exchanges among the processes, followed by some
local computation, whose execution time is assumed to be negligible. We consider a full
information protocol where, in each round, every process broadcasts its complete local history
(its view obtained at the end of the previous round, or the initial state), and computes a
deterministic choice function ∆ based on its current view, which also involves all views it
received from other processes in this round.

Each phase of message exchange is restricted by a (possibly different) directed graph
on Π, called a communication graph, which is chosen by an oblivious message adversary. A
message from p to q is delivered in round r only if the communication graph of round r

contains the edge (p, q). Since every process knows its own current view, we just assume that
the communication graph always contains all the self-loops. We use InG(v) to denote the
in-neighborhood of process v in a graph G. Messages are unacknowledged and rounds are
communication-closed, i.e., messages that are sent in round r arrive in round r or not at all.

A communication pattern is a sequence of communication graphs, which (along with
the initial views of all processes and the choice function ∆) will uniquely define a run of
the system. In the oblivious message adversary model, there is a set D of allowed graphs,
and the admissible communication patterns are all infinite sequences of graphs from D. For
brevity, we identify our message adversary with its set of allowed communication graphs.

For a communication graph G, let Gr = (G)r
i=1 denote the communication pattern that

consists of r repetitions of G. For a set of communication graphs G, let Gr = {(Gi)r
i=1 :

Gi ∈ G} be the set of communication patterns of length r that consist only of graphs from
G. Given a set of allowed graphs D, the oblivious message adversary generated by D may
thus be written as Dω.

Let σ = (Gi)r
i=1 be a communication pattern, where its length r ≥ 1 can be any integer

or infinite (denoted ω), and let Σ be a set of communication patterns. We use σ|r′ = (Gi)r′

i=1
to denote the r′-round prefix of σ, which is only defined if the length of σ is at least r′,
and Σ|r′ = {σ|r′ : σ ∈ Σ} to denote the set of all r′-round prefixes of Σ; by convention,
σ|0 = ε, where ε is the empty word. We use σ(r′) = Gr′ to denote the r′th graph of σ and
Σ(r′) = {σ(r′) : σ ∈ Σ} for the set of communication patterns Σ. If σ has a finite length r

and H is an arbitrary communication graph, we write σ′ = σ ◦ H to denote σ extended by H ,
i.e., the communication pattern of length r + 1 with σ′(i) = σ(i) for i ≤ r and σ′(r + 1) = H .
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A root component of a graph is a strongly connected component that has no incoming
edge from a node outside of the component. We call a graph G rooted if it has a single root
component and write Root(G) for the node set of the root component of G. Note that if a
graph G is rooted then a node (in our context: a process) p ∈ V (G) has a path to every other
node (process) in G if and only if p ∈ Root(G). In Claim 3 below, we show that consensus
is trivially impossible if the set of allowed graphs contains a graph that is not rooted, and
for this reason we consider adversaries whose set D consists of rooted graphs only. A set of
communication graphs S is root-compatible if all their root components contain a common
node, i.e.,

⋂
G∈S Root(G) ̸= ∅. We will show that root-compatibility is a central concept

when it comes to consensus solvability.
In our full information protocol, the view of process p in σ at time (= end of round) r ≥ 1

comprises the view of all the processes that p had in its in-neighborhood in the round r

communication graph σ(r), along with the round number r. The initial view of process p

consists of its input value xp (see the specification of the consensus problem below) and the
round number 0. Formally, views are recursively defined as viewσ(p, 0) = {(p, 0, xp)} and, for
r > 0, viewσ(p, r) = (p, r, Vσ(p, r − 1)), where Vσ(p, r − 1) = {viewσ(q, r − 1) : (q, p) ∈ σ(r)}.

For notational simplicity, we will subsequently use the tuple (p, r) to refer to the view
of process p at time r. We thus use (p, r′) ⇝σ (q, r) to denote that p at time r′ < r has
influenced q at time r, which can be expressed formally by the existence of a sequence of
processes p = p1, . . . , pr−r′+1 = q satisfying viewσ(pi, r′ + i − 1) ∈ Vσ(pi+1, r′ + i − 1) for
1 ≤ i ≤ r − r′. We say that p is a broadcaster in σ (or equivalently, that a communication
pattern σ is broadcastable by p), if (p, 0)⇝σ (q, r) for some time r, for all q ∈ Π.

Two communication patterns σ and σ′ of the same length are indistinguishable by a
process p, denoted σ ∼p σ′, if this process has the same view in σ and in σ′, eventually or in
each round r in case of infinite patterns. Formally, σ ∼p σ′ ⇔ viewσ(p, r) = viewσ′(p, r) if σ

and σ′ are r-round patterns, and σ ∼p σ′ ⇔ viewσ(p, r) = viewσ′(p, r) for all r if σ and σ′

are infinite. We write σ ∼ σ′ if σ ∼p σ′ for some p. We also use σ ̸∼p σ′ ⇔ ¬(σ ∼p σ′), and
σ ̸∼ σ′ ⇔ (∀p ∈ Π : σ ̸∼p σ′).

Given a set Σ of communication patterns of the same length, we define its indistinguisha-
bility graph I(Σ) as follows. The nodes of I(Σ) are the communication patterns in Σ, and the
two communication patterns σ, σ′ ∈ Σ are connected by an edge if σ ∼ σ′, i.e., if they are in-
distinguishable for some process. We label each edge with the set of processes defining it, that
is, we define an edge labeling function ℓ : E(I(Σ)) → 2Π by ℓ((σ, σ′)) = {p ∈ Π : σ ∼p σ′}.

Our first simple, yet important insight is that root components can preserve indistin-
guishability. Consider two communication patterns σ, σ′ that are indistinguishable for a
set of processes ℓ((σ, σ′)), and assume that there is an allowed graph G ∈ D such that
Root(G) ⊆ ℓ((σ, σ′)). Then, the communication patterns σ ◦ G and σ′ ◦ G are also in-
distinguishable for the processes in Root(G): in G, these processes only receive messages
from other members of Root(G), and so these extended communication patterns are still
indistinguishable for them.

▷ Claim 1. Let D be an oblivious message adversary, r be a round, and e = (σ, σ′) be an
edge in I(Dr). For r > 1, the edge (σ|r−1, σ′|r−1) is in I(Dr−1). Moreover, if there is a
graph G ∈ D such that Root(G) ⊆ ℓ(e) then the edge e′ = (σ ◦ G, σ′ ◦ G) is in I(Dr+1) and
its label ℓ(e′) satisfies Root(G) ⊆ ℓ(e′) ⊆ ℓ(e).

Proof. If r > 0, for every p ∈ ℓ(e), the indistinguishability σ ∼p σ′ also implies σ|r−1 ∼p

σ′|r−1, so the edge (σ|r−1, σ′|r−1) is indeed in I(Dr−1).
To prove the second part of our claim, consider any process p ∈ Root(G). By the definition

of a root component, we have InG(p) ⊆ Root(p), so each process q with (q, r) ∈ viewσ◦G(p, r+
1), is in Root(G), and satisfies viewσ(q, r) = viewσ′(q, r), because Root(G) ⊆ ℓ(e). This
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immediately implies that viewσ◦G(p, r + 1) = viewσ′◦G(p, r + 1) and thus the edge e′ exists
and Root(G) ⊆ ℓ(e′). The last part, ℓ(e′) ⊆ ℓ(e), follows because if viewσ◦G(q, r + 1) =
viewσ′◦G(q, r + 1) = (q, r + 1, Vσ(q, r)) for some process q then viewσ(q, r) = viewσ(q, r), as,
by definition, viewσ(q, r) ∈ Vσ(q, r). ◁

In the consensus problem, each process p has an input value xp ∈ V , taken from some
(usually finite) domain V , and an output value yp, initialized to ⊥, to which it can write
irrevocably, i.e., only once. An algorithm solves consensus in our setting if it ensures that

eventually, every process p decides, i.e., assigns yp ̸= ⊥ (termination),
if yp ̸= ⊥ and yq ̸= ⊥ then yp = yq for all p, q ∈ Π (agreement),
if yp = v ̸= ⊥ then there is a process q ∈ Π such that xq = v (validity).

Since we consider only full information protocols, our consensus algorithm is actually
a collection of choice functions. For every p ∈ Π, the choice function ∆p maps every
possible viewσ(p, r) to a decision value yp ∈ V ∪ {⊥}, such that ∆(viewσ(p, r)) ̸= ⊥ implies
∆(viewσ(p, r′)) = ∆(viewσ(p, r)) for every r′ ≥ r. The configuration Cr

σ of our system
at the end of round r in σ, is the vector of the elements (viewσ(p, r), ∆(viewσ(p, r))), for
all p, and the run (also called execution) corresponding to σ is the sequence (Cr

σ)r≥0. In
the oblivious message adversary model, a run is uniquely determined by the input value
assignment contained in the initial views and the communication pattern since the algorithm
is deterministic.

With these definitions in mind, we now state two properties of consensus under oblivious
message-adversaries, which will be of central importance in this paper. We first observe that
any valid decision value must be the input value of a broadcaster. The proof of the following
claim uses the same argument as [35, Theorem 2].

▷ Claim 2. Let D be an oblivious message adversary and let σ ∈ Dω. If in some correct
consensus algorithm, all processes decide v in a run with σ, then v is the input value of a
broadcaster in σ.

Proof. By the termination condition, there is a round r such that in all runs with σ all
processes decide by this round when running a given correct consensus algorithm. Suppose
that there is a r-round run γ with communication pattern σ where all processes decide v even
though no broadcaster in σ has input value v. We show that this leads to a contradiction to
the assumed correctness of the consensus algorithm.

Let P = {i1, . . . , ik} be the identifiers of those processes that start with input value v in
γ. By validity, P ̸= ∅. Let γj denote the run that is the same as γ, except that the processes
with identifiers i1, . . . , ij have an input value ̸= v. We show by induction that some process
decides v in γj for 0 ≤ j ≤ k. Thus in the run γk some process decides v, even though no
process has input v in this run, a contradiction to the validity condition of consensus.

The base of the induction j = 0 follows immediately because γ ∼ γ0 = ε.
For the step from j to j + 1, where 0 ≤ j < k, we observe that, because σ is not

broadcastable for any process with an identifier from P , there is a process q such that
(pij+1 , 0) ̸⇝ (q, r). Since γj is identical to γj+1 except for the input of pij+1 , we have
γj ∼q γj+1. As all processes decide by round r in γj , and because they decide v by
hypothesis, q and, by agreement, all processes decide v in γj+1. ◁

Our second observation is that every communication graph in the set of allowed graphs
of an oblivious message adversary, under which consensus is solvable, must be rooted.

▷ Claim 3. If an oblivious message adversary contains, in its set of allowed graphs D, a
graph G that is not rooted, then consensus is impossible.

Proof. The pattern σ = Gω may be played by the adversary even though it is not broad-
castable by any process, thus the claim follows from Claim 2. ◁
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4 A Decision Procedure for Consensus Solvability

In this section, we present a decision procedure for determining whether consensus is solvable
under an oblivious message adversary with a set D of allowed graphs. In a nutshell, our
procedure revolves around the (undirected) indistinguishability graph I(D), constructed
from the given input set D: the nodes of the indistinguishability graph represent the
graphs of D and the edges represent indistinguishability. Given I(D), we create a sequence
N1 = I(D), N2, . . . of refinements of I(D), and use the last graph NTD to decide if consensus
is solvable under the oblivious message adversary D. Here, TD is the number of iterations of
the decision procedure. Our decision procedure can be viewed as an iterative computation of
the beta classes introduced in [12], which is also early-terminating: it may terminate early if
broadcastability of the intermediate result is already guaranteed. As an additional feature, it
reveals a certain relation between the number of iterations of the decision procedure under a
given oblivious message adversary and the time complexity of distributed consensus.

More concretely, our approach, summarized in Algorithm 1, uses the fact that a graph
whose root component is a subset of ℓ(e) is suitable for perpetuating the indistinguishability
for at least some of the processes of ℓ(e) (according to Claim 1). The algorithm starts
from the indistinguishability graph N1 = I(D) of D, where D is viewed as a set of 1-round
communication patterns: the nodes of I(D) are the graphs of D, and two graphs A, B ∈ D
are connected by an edge if there is a process p that has the same set of incoming edges
in A and in B. The algorithm then computes a sequence (Ni)i≥1 of graphs, using iterative
refinement. To refine from Ni−1 to Ni, it keeps all Ni−1’s nodes, but only a subset of its
edges (Line 9): an edge e is kept (by adding it to the set Ei) if the connected component of
e in Ni−1 contains a communication graph G such that Root(G) ⊆ ℓ(e) (Line 8).

This procedure continues until the set of edges does not change for two successive iterations,
or until all remaining connected components are root-compatible, i.e., all its communication
graphs have a common member in their respective root components. As we will see later
in Theorems 12 and 14, the root-compatibility of the connected components of the refined
indistinguishability graph is precisely what is required to make consensus solvable.

Whereas the number of iterations of our decision procedure could be exponential (see
Claim 7), every iteration can be performed efficiently, as its main components require merely
the computation of reachability in graphs: In each G ∈ D during the initialization, and in Ni

in iteration i. The running time is hence polynomial in n and |D| for both the initialization
and for each iteration:

▷ Claim 4. The initialization phase of Algorithm 1 can be implemented in O(|D|2n3) time,
and each of its iterations can be implemented in O(|D|3n2) time.

Proof. Recall that the transitive closure of a (directed or undirected) graph G = (V, E) is a
graph H = (V, Ê) such that (u, v) ∈ Ê if there is a (directed) path from u to v in G. The
transitive closure can be computed in O(|V |3) time using combinatorial algorithms (e.g., the
Floyd–Warshall algorithm), and slightly faster using fast matrix multiplication.

For the initialization, compute for each G ∈ D its transitive closure, and set Root(G) as
the set of nodes that can reach all other nodes – we have seen that being in Root(G) and
being able to reach all other nodes are equivalent conditions. Overall, this takes O(|D|n3)
time. Then, build the graph I(D) and assign labels to its edges by going over all pairs
(A, B) ∈ D × D and checking for every p ∈ Π whether InA(p) = InB(p), which takes
O(|D|2n2) time.

For iteration i, start by computing the transitive closure of Ni−1 (in fact, this is done
at the end of the previous iteration). For each edge (A, B) ∈ Ei−1, go over all graphs G

reachable from A to see if one of them satisfies Root(G) ⊆ ℓ((A, B)). This takes O(|D|3n2)
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time overall. To check the stopping condition, compare Ei and Ei−1 (taking O(|D|2) time),
compute the transitive closure of Ni to find its connected components (taking O(|D|3) time),
and finally, for each of the at most |D| connected components, go over Π and mark for each
process p ∈ Π if there is a graph in the connected component (which has size at most |D|)
that does not have p in its root. Overall, this takes no more than O(|D|3n2) time. ◁

For the algorithm, we assume that all graphs of D have a unique root component, as
consensus is trivially impossible otherwise (Claim 3). Note that, for two communication
graphs A, B, we have ℓ((A, B)) = {p ∈ Π : A ∼p B} = {p ∈ Π : InA(p) = InB(p)}.

Algorithm 1 The decision procedure. It iteratively constructs the refined indistinguisha-
bility graph NTD for a set of allowed graphs D.

Input: A set of allowed graphs D
Output: The refined indistinguishability graph NTD. Consensus is solvable if and only if

all connected components of NTD are root-compatible.
// Initialization:

1 i← 1
2 N1 ← I(Σ) for Σ = D

// Iterative construction:
3 repeat
4 i← i + 1
5 Ei ← ∅
6 foreach e ∈ Ei−1 do
7 Let G be the communication graphs reachable from the endpoints of e in Ni−1

8 if ∃G ∈ G : Root(G) ⊆ ℓ(e) then
9 Ei ← Ei ∪ {e}

10 Ni ← ⟨D, Ei⟩
11 until Ni = Ni−1 or all connected components of Ni are root-compatible
12 return Ni−1

The following corollary provides a concise statement of the rule according to which the
decision procedure selects which edges to keep when refining Ni−1(D) into Ni(D).

▶ Corollary 5. Let e = (A, B) be an edge of Ni(D), for i > 1. Then in Ni−1(D):
1. the edge e = (A, B) exists, and
2. there exists a graph Ge with Root(Ge) ⊆ ℓ(e), such that A, B and Ge are in the same

connected component.

Proof. According to Algorithm 1, an edge e = (A, B) can only persist in Ni if it was already
present in Ni−1 and there was a corresponding graph Ge with Root(Ge) ⊆ ℓ(e) connected to
A and B in Ni−1. ◀

We observe that, in order for an edge e of the indistinguishability graph to be “protected”
from being omitted by the decision procedure by Line 9 of Algorithm 1, there must exist a
communication graph whose root component is a subset of the label of e. This motivates the
following definition.

▶ Definition 6. Given a set of allowed graphs D, let E be a set of edges of I(D) and G ⊆ D
be a set of communication graphs. We call E protected by G if for every e ∈ E there is a
graph Ge ∈ G such that Root(Ge) ⊆ ℓ(e).
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The following upper bound on the number of iterations TD of the decision procedure
exploits the maximum number of different labels of the edges of I(D).

▷ Claim 7. The number of iterations of the decision procedure, TD, satisfies TD < |D| and
TD < 2n.

Proof. For a set of communication graphs G, let Ni[G] denote the subgraph of Ni induced
by G. According to Algorithm 1, there must exist a set of communication graphs G ⊆ D
such that Ni[G] is connected and not root-compatible for all i < TD, whereas all connected
components of NTD are root-compatible. That is, G constitutes the last connected component
of I(D) that had to be broken apart by the decision procedure in order to arrive at a graph
NTD where all connected components are root-compatible.

Furthermore, for 1 < i < TD, the set Ci(G) of nodes reachable from G in Ni satisfies
|Ci(G)| < |Ci−1(G)|. This is because, if the (i − 1)th iteration of the decision procedure
does not result in the removal of a node from Ci−1(G), then a set of edges that connects
Ci−1(G) in Ni−1 is protected by the communication graphs of Ci−1; hence, no node will be
removed from Cj(G) for any j ≥ i. This cannot come to pass, however, because then the
decision procedure would already have terminated after i < TD iterations. Hence, at least
one graph of D get disconnected from G in each round, and TD < |D|.

In addition, all edges e of the connected component of G in Ni that have the same label
ℓ(e) = λ are removed during a single iteration of the decision procedure: If e is removed from
the connected component of G in Ni, then there is no communication graph in Ci(G) that
protects e and so all edges with label λ are removed from the connected component of G.
We recall that every label is a nonempty subset of Π, thus there are at most 2n − 1 different
labels. The claim follows because, as we have shown above, |Ci(G)| < |Ci−1(G)|; hence at
least one edge is removed from the connected component of G in Ni during the ith iteration
of the decision procedure. ◁

Before looking more closely into the ramifications of a large number of iterations TD of the
decision procedure of a given oblivious message adversary D, it is instructive to study a few
“extreme” examples of such adversaries, and, in particular, how the number of communication
graphs |D| relates to TD. As we already know that TD < |D|, one may wonder how large
that gap between them can be. The following examples show an exponential gap, with
TD = 1 and |D| exponential in n. We first present such a scenario in which consensus is
solvable: the set of all communication graphs that consist of a single clique of a fixed size
⌊n/c⌋, for a constant c, and all the edges from each clique node to all other nodes (plus the
self loops). There are exponentially many such graphs, yet no two are indistinguishable to
any of the nodes, so the decision procedure already terminates after the first iteration because
each connected component in I(D) consists of a single communication graph. An example
where the decision procedure terminates quickly despite an exponentially sized D, where
consensus is impossible, is the set of all rooted trees for n > 2. In this case, there is a path
in I(D) connecting every two trees T1, T2. Also, every edge e in I(D) has a corresponding
tree T ∈ D that protects this edge, since there is a tree T with Root(T ) ⊆ ℓ(e).

On the other hand, the question arises whether there are examples where TD is (almost)
the same as |D|. This is of course the case if |D| is small, but we answer this question
affirmatively also for the case where TD is even exponential in n, by constructiong an
explicit example (Section 6). In a nutshell, we choose a set of communication graphs
D = {G1, . . . , GTD}, where the root component of each graph consists of a different set of
processes of the same cardinality, i.e., for every G, G′ ∈ D we have | Root(G)| = | Root(G′)|,
but if G ̸= G′ then Root(G) ̸= Root(G′). Furthermore, we let

G1 ∼R3 G2 ∼R4 G3 ∼R5 . . . ∼RTD GTD −1 ∼S GTD, (1)
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where Ri = Root(Gi) and S is a nonempty set such that no G ∈ D satisfies Root(G) ⊆ S.
Here, the decision procedure can remove only the rightmost edge ∼S in the first iteration,
only the edge ∼RTD in the second iteration, and so on, because all the remaining edges are
protected by one of the remaining graphs.

Also in this case, consensus might be solvable (as in the example in Section 6 described
above), or it might be impossible, as in the instance

G′
1 ∼R′

3
G′

2 ∼R′
1

G′
3 = G1 ∼R3 G2 ∼R4 . . . ∼RTD GTD −1 ∼S GTD

where we assume that G′
1 and G′

2 are chosen such that they are not root-compatible: in this
case, the indistinguishability G′

1 ∼R′
3

G′
2 will never break.

In view of the above results, it might be tempting to assume that it is TD that actually
determines the worst-case termination time of distributed consensus. Interestingly, this is
not the case. Complementing the result of Theorem 12 established in Section 5, we show
in Section 7 that there are instances of oblivious message adversaries where the decision
procedure terminates after a constant number of iterations, while the consensus termination
time is at least exponential in n. This example also reveals that the time complexity of
distributed consensus is not solely determined by the need to compute (overapproximations
of) the beta classes of [12].

5 Time Complexity of Consensus

In this section, we study the worst-case time complexity of consensus, and also ascertain our
claim from Section 4, namely, that the decision procedure of Algorithm 1 correctly assesses
oblivious message adversaries where consensus is solvable. Thus, throughout this section,
we consider an oblivious message adversary, where, after some number TD of iterations,
Algorithm 1 determined that all connected components of the refined indistinguishability
graph NTD are root-compatible.

For solving consensus, we use the fact that non-connectivity in NTD implies non-
connectivity in I(D(n−1) TD +1), in the following sense: Let C1 and C2 be two different
connected components of NTD, and t > (n − 1) TD. Then, any two communication patterns
σ1 ∈ Ct

1 and σ2 ∈ Ct
2, consisting only of graphs of C1 and C2, respectively, are not connected

in the indistinguishability graph I(Dt).
We then apply a pigeon-hole argument to show that all connected components of I(Dct)

are broadcastable, where c is the number of connected components of NTD. Note that this
choice guarantees that graphs from at least one connected component are used at least t

times. From here, a choice function ∆p can be easily defined by (i) for each connected
component C of I(Dct), choosing one of its broadcasters, denoted b(C), and (ii) if p’s view is
consistent with a graph sequence σ, and σ belongs to a connected component C of I(Dct),
then p decides on the input xb(C) of b(C), for which viewσ(b(C), 0, xb(C)) must already be
present in p’s view.

It is rather immediate that such a procedure solves consensus, given the mapping b(C)
which we define in the remainder of this section: Termination follows from the existence
of the mapping b(C); validity follows because the decided value was some process’ input
value; agreement is a consequence of all pairwise indistinguishable views lying in the same
connected component C of I(Dct). Hence two different decisions can only occur in runs that
are distinguishable for everyone (and are thus distinct runs).

A path π = (σ0, . . . , σs) in I(Dr) is a sequence of communication patterns such that
(σi, σi+1) ∈ E(I(Dr)) for all 0 ≤ i < s. Given such a path and r′ ≤ r, we write π|r′ to denote
the path (σ0|r′ , . . . , σℓ|r′) in I(Dr′) of the r′-round prefixes of the communication patterns
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in π, which exists by Claim 1. Similarly, we denote by π(r′) the path (σ0(r′), . . . , σℓ(r′))
in I(D) of the r′th graphs of the communication patterns in π. Both π|r′ and π(r′) are
indeed paths in the corresponding indistinguishability graphs, due to a more general claim:
Removing an intermediate communication round from all communication patterns in a path
cannot disconnect it, as stated below.

For a communication pattern σ of length r, and some round r′ ≤ r, let σ − r′ denote
σ|r′−1◦σ(r′+1)◦· · ·◦σ(r), i.e., the communication pattern σ with the round r′ communication
graph omitted. Corollary 8 shows that edges, and hence paths, between communication
patterns in I(Dr) are preserved when omitting some round r′.

▶ Corollary 8. If the edge (σ, σ′) is in I(Dr), then the edge (σ − r′, σ′ − r′) is in I(Dr−1) as
well.

Proof. Assume for contradiction that the edge is not preserved, i.e., σ ∼ σ′ while σ − r′ ̸∼
σ′ − r′. So, there is a process p such that σ ∼p σ′ (this is true for at least one process, p)
while σ − r′ ̸∼p σ′ − r′ (this is true for all processes, and specifically for p). This implies
that there exists a round r′′ ≠ r′ and a process q with w.l.o.g. (q, r′′) ⇝σ−r′ (p, r) but
(q, r′′) ̸⇝σ′−r′ (p, r) or viewσ−r′(q, r′′) ̸= viewσ′−r′(q, r′′): if no such q, r′′ existed, we would
have σ − r′ ∼p σ′ − r′. Since (q, r′′) ⇝σ−r′ (p, r), we also have (q, r′′) ⇝σ (p, r), as the
sequence of processes causing (q, r′′) to be in viewσ−r′(p, r) also exists in σ and we just
need to take path where the process of round r′ is the same as of round r′ − 1. To finish,
it suffices to consider two cases: if (q, r′′) ̸⇝σ′ (p, r), then p distinguishes σ and σ′ since
it has viewσ(q, r′′) in its view in σ but does not have viewσ′(q, r′′) in its view in σ′; if
(q, r′′)⇝σ′ (p, r), then p distinguishes σ and σ′ by having viewσ(q, r′′) ̸= viewσ′(q, r′′) in its
views. In both cases σ ̸∼p σ′, a contradiction. ◀

The following corollary relates the preservation of an edge in I(Dr) to the root components
of the communication graphs that occur in the communication patterns of this edge.

▶ Corollary 9. Let D be a set of allowed graphs and 0 < r′ < r integers. Consider an edge
e = (σ, σ′) ∈ I(Dr) such that e′ = (σ|r′ , σ′|r′) ∈ I(Dr′) satisfies σ|r′ ̸= σ′|r′ . Then, there are
at most |ℓ(e′)| − 1 rounds rj, r′ < rj ≤ r, satisfying Root(σ(rj)) ̸⊆ ℓ(e′).

Proof. By Claim 1, we can be sure that e′ exists. For a contradiction, suppose that there are
|ℓ(e′)| rounds r′ < r1 < · · · < r|ℓ(e′)| ≤ r such that each rj satisfies Root(σ(rj)) ̸⊆ ℓ(e′). Let

Uj = {p ∈ Π : ∃q ∈ Π \ ℓ(e′) (q, r′)⇝σ (p, rj)} (2)

denote the set of processes that received a message by round rj , sent after round r′, from a
process outside of ℓ(e′). Let r0 = r′ and U0 = Π \ ℓ(e′). Note that from σ|r′ ̸= σ′|r′ it follows
that ∅ ̸= ℓ(e′) ̸= Π and thus U0 ̸= ∅.

Let U j = Π \ Uj and consider the cut (Uj , U j) in σ(rj), the communication graph at
round rj . Since we have Root(σ(rj)) ̸⊆ ℓ(e′), there is a process p′ ∈ Root(σ(rj)) \ ℓ(e′). On
the one hand, p′ ∈ Root(σ(rj)) \ ℓ(e′) immediately implies p′ ∈ Uj , since (p′, r′)⇝σ (p′, rj).
On the other hand, p′ ∈ Root(σ(rj)) implies that in σ(rj) there is a path from p′ to every
node. Hence, if U j ̸= ∅, then there is a node p′′ ∈ U j , and a path in σ(rj) from p′ to p′′; this
path must cross an edge ẽj from Uj to U j .

We now use induction on j = 0, . . . , |ℓ(e′)| to show that |Uj | ≥ n−|ℓ(e′)|+j. For the basis
j = 0, we have already shown that |U0| = n−|ℓ(e′)| > 0. In the induction step, we prove that
Uj grows by at least one (unless Uj = Π) due to the edge ẽj = (q′, q′′) from Uj to U j . As, for
every q ∈ Π \ ℓ(e′) in the definition if Uj in Equation (2), (q, r′)⇝σ (q′, rj) in conjunction
with (q′, rj) ⇝σ (q′′, rj+1) implies (q, r′) ⇝σ (q′′, rj+1), we obtain Uj+1 ⊇ Uj ∪ {q′′} as
required.
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It hence follows that |U|ℓ(e′)|| = n, i.e., by round r ≥ r|ℓ(e′)|, every process has received a
message, sent after round r′, from a process q outside of ℓ(e′). Consequently, at time r, the
view of every process contains the view of a process q that could distinguish σ|r′ and σ′|r′ ,
hence every process can also distinguish σ and σ′. Formally, ∀p ∈ Π ∃q ∈ Π \ ℓ(e) : (q, r′)⇝σ

(p, r) and viewσ(q, r′) ̸= viewσ′(q, r′), which implies that viewσ(p, r) ̸= viewσ′(p, r). That is,
every process that can distinguish σ|r′ and σ′|r′ can also distinguish σ and σ′, contradicting
the existence of the edge er = (σ, σ′) in I(Dr). ◀

We proceed with Lemma 10, which generalizes and formalizes chains like Equation (1),
made up of connected subgraphs S1, . . . , Si which are interconnected in a chain. It uses
protected edges in order to delay the separation of root-incompatible connected components
as much as possible, namely, by removing the interconnects between Sj and Sj+1 in Ni−j ,
i.e., from right (i) to left (1).

▶ Lemma 10. Given an oblivious message adversary D and i connected subgraphs S1, . . . , Si

of I(D) such that for every 1 ≤ j < i, the edges of
⋃j

j′=1 Sj′ are protected by the communica-
tion graphs of

⋃j+1
j′=1 Sj′ , and Sj is connected to Sj+1 in Ni−j , it holds that S1 is a connected

subgraph of Ni.

Proof. We show that all edges of S1 are in Ni. In order to do so, we prove by induction on
i′ = 1, . . . , i, that all edges of

⋃i−i′+1
j′=1 Sj′ are in Ni′ .

The base i′ = 1 follows directly from the code of Algorithm 1: N1 = I(D), and each
graph Sj′ is a subgraph of I(D), thus every edge of

⋃i
j′=1 Sj′ is in N1.

For the inductive step from i′ to i′ + 1, assume that every edge of
⋃i−i′+1

j′=1 Sj′ is present
in Ni′ . By assumption, every edge e of

⋃i−i′

j′=1 Sj′ is protected by a communication graph G

of
⋃i−i′+1

j′=1 Sj′ , i.e., by Definition 6, Root(G) ⊆ ℓ(e). As we also assume that Sj is connected
to Sj+1 in Ni−j for 1 ≤ j < i, we have that Si−i′−j′ is connected to Si−i′−j′+1 in Ni′+j′ for
0 ≤ j′ < i − i′. Since Ni′+j′ is a refinement of Ni′ , Si−i′−j′ is connected to Si−i′−j′+1 also
in Ni′ . Hence

⋃i−i′+1
j′=1 Sj′ is a connected subgraph of Ni′ , and thus e is connected to G in

Ni′ . Thus, in Ni′ , e is in the same connected component as a graph G with Root(G) ⊆ ℓ(e)
and, by Line 8 of Algorithm 1, we have e ∈ Ni′+1. ◀

We are now ready for the main technical result of this section: For r = (n − 1) · TD, we
show how the connectivity of two r-round communication patterns in I(Dr), consisting only
of communication graphs from two sets C1 and C2, respectively, is related to the connectivity
of C1 and C2 in NTD as computed by Algorithm 1.

▶ Lemma 11. Given an oblivious message adversary D, let C constitute a connected
component of NTD and let C̄ = D \ C. For r = (n − 1) · TD, there is no connection in I(Dr)
between any σ1 ∈ Cr and any σ2 ∈ C̄Dr−1. Herein, σ2 ∈ C̄Dr−1 denotes the fact that σ2 is
composed of one graph of C̄ and then r − 1 graphs of D.

Proof. Assume for a contradiction that there exist σ1 ∈ Cr and σ2 ∈ C̄Dr−1 which are
connected in I(Dr). We show that C is connected to some node of C̄ in NTD, contradicting
the fact that C is a connected component of NTD. We do so by proving that there are
TD connected subgraphs π1, . . . , πTD in I(D), such that each of them intersects C, π1 also
intersects C̄, and, for every 1 ≤ j < i = TD, the edges of

⋃j
j′=1 πj′ are protected by the

communication graphs of
⋃j+1

j′=1 πj′ . Moreover, πj is connected to πj+1 in Ni−j : We have
that πj and πj+1 both intersect C, and since C is a connected component in Ni and Ni is a
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refinement of Ni−j , all nodes of C are in the same connected component of Ni−j . We can
hence apply Lemma 10, which reveals that π1 is a connected subgraph of Ni. As π1 also
intersects both C and C̄, however, we have the required contradiction.

Let π̃ be a path that connects σ1 and σ2 in I(Dr). Recall that, for a round r′ ≤ r, π̃(r′)
denotes the round r′ communication graphs σ(r′) for all communication patterns σ of π̃. By
a repeated application of Corollary 8, we get that π̃(r′) is a path that connects σ1(r′) ∈ C
and σ2(r′) ∈ D in I(D) where, in particular, π̃(1) connects σ1(1) ∈ C and σ2(1) ∈ C̄.

We now construct each connected subgraph πj , 1 ≤ j ≤ i, as a union of paths π̃(r′). That
is, for some set Rj ⊆ {1, . . . , r} of rounds, which we will define below, we set πj =

⋃
r′∈Rj

π̃(r′).
We denote the largest round of Rj as r∗

j = max(Rj).
For 1 ≤ m < i, we inductively construct Rm+1 from Rm, starting with R1 = {1},

i.e., setting π1 = π̃(1). We will assert that (1) r∗
m+1 ≤ r∗

m + n − 1 and (2) the edges of
πm =

⋃
r′∈Rm

π̃(r′) are protected by the communication graphs of πm+1 =
⋃

r′∈Rm+1
π̃(r′).

For 1 ≤ m ≤ TD, property (1) together with r∗
1 = 1 guarantees r∗

m ≤ (n − 1)(m − 1) + 1 ≤
(n − 1) · TD = r, thus π̃(r′) is well-defined for all r′ ∈ Rm.

Given Rm for 1 ≤ m < i, we construct Rm+1 as follows: By Corollary 9, for every
edge e ∈ πm, there is a round re ≤ r∗

m + n − 1 such that π̃(re) contains a graph G with
Root(G) ⊆ ℓ(e). Let Rm+1 be the set of all such rounds, i.e., Rm+1 =

⋃
e∈E(πm) π̃(re).

This ensures (1) by construction and also (2), because every edge e of πm is protected
by a communication graph G of π̃(re) ⊆ πm+1. Hence, the edges of πm are protected
by the communication graphs of πm+1 and so the edges of

⋃m
k=1 πk are protected by the

communication graphs of
⋃m+1

k=1 πk. ◀

We can now state the main theorem of this section, an upper bound on the time complexity
of consensus.

▶ Theorem 12. Let D be the set of allowed communication graphs of an oblivious message
adversary. If the connected components of NTD(D) are root-compatible, then consensus is
solvable by round c(n − 1)(TD +1), where c is the number of connected components in NTD.

Proof. We show that every connected component of the indistinguishability graph I(Dt) is
broadcastable for t = c(n − 1)(TD +1). This implies the theorem, because there exists a
mapping for every connected component C of I(Dt) to a process p, such that p is a broadcaster
in every communication pattern of C. More specifically, as C is an indistinguishability
component, there is, for every process q and every σ ∈ Dt, a map viewσ(q, t) 7→ p such that
p is a broadcaster in every communication pattern of σ’s connected component in I(Dt). In
every run with a communication pattern from C, every process has thus already learned the
input xp of p, which is a valid decision value. Our decision procedure hence defines a correct
consensus algorithm.

It remains to show the broadcastability of the connected components of I(Dt). Consider
a run σ ∈ Dt, and all the communication patterns σ(i), i = 1 . . . , c(n − 1)(TD +1) appearing
in it. By the pigeon-hole principle, at least one connected component C of NTD must supply
(n − 1)(TD +1) of these graphs, when counted with repetitions. That is, there is a set
R ⊆ {1, . . . , c(n − 1)(TD +1)}, with |R| = (n − 1)(TD +1), such that every ri with i ∈ R

satisfies σ(ri) ∈ C. Note that the occurrence of n − 1 or more graphs from C in σ already
suffices to ensure that it is broadcastable by every process p ∈

⋂
G∈C Root(G), i.e., that

every process q ∈ Π has (p, 0, xp) ∈ viewσ(q, t).
Consider another run σ′ ∈ Dt that is connected to σ in I(Dt), and the communication

patterns σ′(i) appearing in it. If n−1 or more of the latter satisfied σ′(ri) ∈ C, σ′ would also
be broadcastable by

⋂
G∈C Root(G), so assume that this is not the case. There are hence at
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most n − 2 indices rj ∈ R where σ′(rj) ∈ C. Let R′ ⊆ R with |R′| = (n − 1) · TD be the set
of indices obtained by discarding all these indices rj from R, in addition to discarding some
additional indices ̸= 1 so as to match the desired size of R′.

We now construct the ((n − 1) TD)-round communication patterns ρ, ρ′ defined by
ρ(j) = σ(rj), ρ′(j) = σ′(rj) for each j ∈ R′. That is, starting out from σ and σ′, which are
connected in I(Dt), we remove all communication rounds not in R′. By Corollary 8, ρ and ρ′

are connected in I(D(n−1) TD). This, however, contradicts Lemma 11, because ρ ∈ C(n−1) TD

and ρ′ ∈ C̄(n−1) TD ⊆ C̄ × D(n−1) TD −1 by construction, where C is a connected component
in NTD and C̄ is its complement. ◀

The result of Theorem 12 suggests that, besides the termination time TD of the decision
procedure (which can be attributed to the complexity of finding broadcastable components)
and the number of processes n−1 (which accounts for the worst-case information propagation
time from root components to all other processes), the number of connected components c in
NTD might also cause exponential time complexity for solving distributed consensus. And
indeed, the scenarios presented in Section 7, where TD is constant, prove this to be true.

6 Lower Bounds

This section complements our positive results above by studying lower bounds. In the
following, we first establish a relationship between the iteration complexity of the decision
procedure and the termination time of consensus. We then derive a time complexity lower
bound for the decision procedure, and combine it with the first result to establish a consensus
termination time lower bound.

6.1 Decision complexity and consensus termination time
First, we present a relationship (Theorem 14) between the number of iterations of Algo-
rithm 1 and the time complexity of consensus. As before, let Ni = Ni(D) be the refined
indistinguishability graph Ni after i iterations according to Algorithm 1, with the set of
allowed graphs D sometimes omitted for brevity. Our general strategy is to establish that the
impossibility of consensus after i rounds is equivalent to the existence of a set of “broadcast-
incompatible” communication patterns of length i, which are connected to each other in
the indistinguishability graph I(Di). We ensure broadcast-incompatibility by letting this
set also contain communication patterns Gi, i.e., i repetitions of the same communication
graph G, taken from a set of root-incompatible graphs. Due to the requirement that every
decision must be on the input of some broadcaster whose input value has reached everyone
(recall Claim 2), this suffices: in Gi, the only processes that have reached everyone are the
members of Root(G), the root component of G. Thus, not all these communication patterns
can have led to the same decision value, which is a contradiction since all connected round-i
communication patterns must have led to the same decision value if consensus was solved
after i rounds.

The core of our proof is in Lemma 13. It shows that the connectivity of some communica-
tion graphs A, B in Ni(D) implies the connectivity of the communication patterns Ai, Bi in
the indistinguishability graph I(Di). Informally speaking, it uses an inductive construction
for an arbitrary edge (A, B) of Ni to show how the corresponding connectivity between Ai

and Bi can be preserved for i rounds in I(Di). The proof crucially relies on the fact that
every Ni is a refinement of Ni−1, with N1 being a refinement of I(D), which is due to the
fact that Algorithm 1 iteratively only removes selected edges (Line 9) but never adds any
edges.
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To show that the connectivity of Ai and Bi is preserved, we use the path in Ni from
A to ℓ(e), respectively B to ℓ(e), to extend the already constructed connected prefixes
Ai−1 and Bi−1. Note that this path also occurs in Ni−1 due to Corollary 5. To illustrate
this, consider a (very simple) example, where we have that A ∼p B occurs in N2 and
furthermore p = Root(C) such that C ∼p′ A as well as C ∼p′′ B occur in N1. In this case, we
have the following indistinguishability relation between communication patterns of length 2:
A ◦ A ∼p′ A ◦ C ∼p B ◦ C ∼p′′ B ◦ B. This argument can be applied inductively to establish
the indistinguishability relation for communication patterns Ai and Bi.

▶ Lemma 13. Let Ci be a connected component of Ni(D) and let A, B be communication
graphs in Ci. Then Ai is connected to Bi in I(Di).

Proof. The lemma holds immediately for i = 1: As a one-round communication pattern
consists of only a single communication graph, A1 = A and B1 = B are both in the connected
component C1.

Thus, we henceforth assume that i > 1, and prove the following claim by induction on k,
for k = 1, . . . , i: For each edge (A, B) ∈ Ci there is a path πk in I(Dk) connecting Ak to Bk.
In addition, for k < i, the connected component Ci−k of A and B in Ni−k is such that, for
every edge e = (σ, σ′) ∈ πk, both the round k communication graphs σ(k), σ′(k) ∈ Ci−k and
there is a graph Ge ∈ Ci−k such that Root(Ge) ⊆ ℓ(e).

The base, k = 1, follows because e = (A, B) ∈ Ci implies that (A1, B1) ∈ I(D1), and by
Corollary 5 there is Ge ∈ Ci−1 such that Root(Ge) ⊆ ℓ(e).

For the step from k−1 to k, k > 1, there exists a path πk−1 ∈ I(Dk−1) that connects Ak−1

to Bk−1. Let e = (σ, σ′) ∈ πk−1 be an arbitrary edge in πk−1. By the induction hypothesis,
σ(k − 1), σ′(k − 1) ∈ Ci−k+1 and there is a graph Ge ∈ Ci−k+1 with Root(Ge) ⊆ ℓ(e).
Consequently, there exist paths π̃1 = (Γ1, Γ2, . . . , Γm) and π̃2 = (Λ1, Λ2, . . . , Λm′) in Ci−k+1
that connect σ(k − 1) to Ge and Ge to σ′(k − 1), respectively.

Consider (Γj , Γj+1) ∈ π̃1 ⊆ Ci−k+1. From Corollary 5, we know that (Γj , Γj+1) ∈ I(D1),
which implies σ ◦ Γj ∼ σ ◦ Γj+1. This enables us to prefix σ to each communication graph of
π̃1, which makes σ ◦ π̃1 = (σ ◦Γ1, σ ◦Γ2, . . . , σ ◦Γm) a path in I(Dk). Following a symmetrical
argument, σ′ ◦ π̃2 = (σ′ ◦ Λ1, σ′ ◦ Λ2, . . . , σ′ ◦ Λm′) is also a path in I(Dk).

Moreover, since Root(Ge) ⊆ ℓ(e), it follows from Claim 1 that e′ = (σ◦Ge, σ′◦Ge) ∈ I(Dk).
Therefore, π̃e = (σ ◦ π̃1, e′, σ′ ◦ π̃2) is a path from σ ◦ σ(k − 1) to σ′ ◦ σ′(k − 1) in I(Dk). If
we substitute each edge e ∈ πk−1 by π̃e, we thus obtain a path πk that connects Ak to Bk in
I(Dk).

Now, consider any edge e′ ∈ πk. By construction, e′ = (σ ◦ Γj , σ ◦ Γj+1), or e′ = (σ′ ◦
Λj , σ′◦Λj+1) or e′ = (σ◦Ge, σ′◦Ge). If e′ = (σ◦Γj , σ◦Γj+1), then the round k communication
graphs are Γj and Γj+1. Since π̃1 ∈ Ci−k+1, it follows from Corollary 5 that (Γj , Γj+1) ∈ Ci−k,
and there exists a communication graph Ge′ ∈ Ci−k with Root(Ge′) ⊆ ℓ((Γj , Γj+1)) = ℓ(e′).
A symmetrical argument holds for the case where e′ = (σ′ ◦ Λj , σ′ ◦ Λj+1). Finally, if
e′ = (σ ◦Ge, σ′ ◦Ge), then the round k communication graphs are both Ge, which is in Ci−k+1
by the induction hypothesis. Corollary 5 guarantees Ge ∈ Ci−k, and since Root(Ge) ⊆ ℓ(σ, σ′),
it follows that Root(Ge) ⊆ ℓ(σ ◦ Ge, σ′ ◦ Ge). This shows that Ge is a suitable choice for Ge′ ,
which completes the induction step. ◀

▶ Theorem 14. If Ni(D) contains a connected component Ci that is not root-compatible,
then not all processes in all runs of a correct consensus algorithm are able to decide after i

rounds under the oblivious message adversary represented by D.
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Proof. For the purpose of deriving a contradiction, suppose that the theorem does not hold.
Let S be a set of graphs from Ci that is not root-compatible. By Claim 2, for each G ∈ S,
the decision value in a run with communication pattern Gi that consists of i repetitions of
G must be a value v = xp for some p ∈ Root(G). Since S is root incompatible, there exists
some H ∈ S such that xp is not a root value of H.

It follows from Lemma 13 that Gi is connected to Hi in I(Di). Therefore, there is a
sequence of runs (σ1 = Gi, σ2, . . . , σm = Hi) such that σk is indistinguishable from σk+1.
Since all processes decided v = xp in Gi = σ1, by the validity condition of consensus, σ2
and inductively all processes in the sequence including Hi should also decide v = xp. Thus,
Claim 2 yields the contradiction that Hi decided a non-broadcasted value. ◀

We conclude by explaining why Theorem 14 refines the lower bound from [12, Theo-
rem 4.10], which stated that consensus is impossible if some beta class is not root-compatible,
by making the round number i and hence a time complexity lower bound explicit. In fact,
in our terminology, the beta classes are the connected components of NTD, where TD is
the smallest round such that NTD = NTD −1. Thus, the existence of a root-incompatible
beta class is equivalent to NTD containing a root-incompatible connected component. Note
that, since NTD = NTD −1, even if we remove the termination condition from Line 11 of
Algorithm 1, for all TD′ ≥ TD −1, we still have that NTD′ = NTD, because, according to
Algorithm 1, if the set of edges remains the same in an iteration of TD, then it will remain
the same for all future iterations as well. Thus, we can apply Theorem 14 to show that, in
this case, every consensus algorithm has, for every round, a run where some process has
not yet decided. As for an oblivious message adversary with a set of allowed graphs D, it
holds that every infinite communication pattern σ with σ|r ∈ Dr for every round r satisfies
σ ∈ Dω (i.e., oblivious message adversaries are limit-closed, see [35] for details), this implies
that there is an infinite run where consensus is not achieved.

6.2 Exponential iteration complexity of the decision procedure
As we have seen above, consensus termination time is related to the iterations of the decision
procedure. Informally, this is due to the fact that the information encoded in the sequence
N1, . . . , Ni can be seen as a compact summary of the evolution of the indistinguishability
relation of the corresponding communication pattern prefixes. Thus, a lower bound on the
iteration complexity of the decision procedure immediately gives us a lower bound for the
round complexity of any consensus algorithm.

In this section, we show that the decision procedure may take an exponential (in n) number
of iterations until it terminates. This implies that there are oblivious message adversaries
under which consensus is achievable, but reaching it takes exponential time. As already
sketched at the end of Section 4, we show this by constructing a specific instance of such
an oblivious message adversary, with a set of N = 1.3n allowed graphs D = {G1, . . . , GN },
whose indistinguishability graph I(D) contains the following connected component:

G1 ∼R3 G2 ∼R4 G3 ∼R5 . . . ∼RN+1 GN (3)

Herein, Ri = Root(Gi) for 1 ≤ i ≤ N , and RN+1 ̸= Root(G) for all G ∈ D. Therefore, I(D)
contains a path of length N − 1. Since all edges except the rightmost one are protected,
Algorithm 1 only removes one edge per iteration, from right to left. More precisely, it holds
that G1 ∼R3 . . . ∼RN−i+1 GN−i ∈ Ni. Consequently, N iterations are needed until all edges
have disappeared, which establishes our claim.
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Figure 1 Lower bound communication graphs.

Informal overview of the definition of D. First, we choose a sequence of sets {R1, . . . , RN }
that will play the role of root components of D. We will choose those from the first half
{p1, . . . , pn/2} of the processes only. Each Ri is chosen to be unique, of the same size n/12,
and Ri, Ri+1 and Ri+2 must be be mutually disjoint. Note that we need N , i.e., exponentially
many such Ri.

The first step in the definition of the graph Gi is to make Ri its root component, which
is done by fully connecting its members to form a clique and ensuring a path to every
other process. However, when doing so, we also need to guarantee that Gi ∼Ri+2 Gi+1
are the only indistinguishability relations in I(D). We secure this by making sure that
every process except for the ones in Ri+1 and Ri+2 can distinguish Gi from any other
graph Gj , j ≠ i. This is accomplished by adding an outgoing edge from every member
of Ri to every process in Π \ (Ri+1 ∪ Ri+2), and no other outgoing edge from members
of {p1, . . . , pn/2}. Since Ri is unique, any process in Π \ (Ri+1 ∪ Ri+2) will know if graph
Gi is being played: This is immediately obvious for every process p in the second half
B == {pn/2+1, . . . , pN }, as InGi(p)∩{p1, . . . , pn/2} = Ri. For a process p in the “leftover set”
Li = Π\(B ∪Ri ∪Ri+1 ∪Ri+2) ⊆ {p1, . . . , pn/2}, we have InGi

(p)∩{p1, . . . , pn/2} = Ri ∪{p}.
Since Ri ∪ {p} is larger than the size of the root components, p knows that it is not part
of the root component, and can hence also uniquely determine Ri and hence the graph Gi

being played. Figure 1a illustrates this construction.
However, we must also make sure that all the members of Ri+1 (resp. Ri+2) consider

only Gi and Gi−1 (resp. Gi and Gi+1) as possibilities for the actually played graph. This
means that the in-neighborhood of any process in Ri+1 (resp. Ri+2) must be the same in
Gi and Gi−1 (resp. Gi and Gi+1). So far, the processes in Ri+1 or Ri+2 do not receive any
message from {p1, . . . , pn}, i.e., the only know that they are either in Ri+1 or in Ri+2. To
tell them apart, we will connect some processes in B = {pn/2+1, . . . , pN } to the members
of Ri+1 ∪ Ri+2, in a way that encodes i + 1 (for the members of Ri+1) or i + 2 (for the
members of Ri+2). A process in Ri+1 ∪ Ri+2 can hence tell from its in-neighborhood whether
it belongs to Ri+1 or Ri+2. More specifically, abbreviating B[i] = {b ∈ B | ib−(n/2+1) = 1},
where iℓ is the ℓth bit in the binary expansion of i, we just make sure that InGi

(p) = B[i + 1]
for every p ∈ Ri+1 and InGi(p) = B[i + 2] for every p ∈ Ri+2. This construction satisfies
our indistinguishability requirements: Each process in Ri+1 (resp. Ri+2) can tell where it
belongs to, but do not know whether Gi or Gi−1 (resp. Gi or Gi+1) is played.

Formal definition of the root components Ri. We define Ri by splitting {p1, . . . , pn/2}
into {p1, . . . , pn/4} and {pn/4+1, . . . , pn/2}, and construct the sequence R1, R2, . . . of root
components from partitions of these ranges alternatingly: Consider all the partitions of
{p1, . . . , pn/4} into three sets of size n/12 each. Partition number ℓ + 1 constitutes the
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root components R6ℓ+1, R6ℓ+2, R6ℓ+3. Similarly, consider consider all the partitions of
{pn/4+1, . . . , pn/2} into three sets of size n/12 each. Set partition ℓ + 1 constitutes the root
components R6ℓ+4, R6ℓ+5, R6ℓ+6.

The sequence clearly satisfies, by construction, the following properties:
1. |Ri| = n/12, since we are considering equal-sized partitions of n/4 processes into 3 disjoint

sets.
2. Ri ̸= Rj for i ̸= j, since all sets of the partitions are unique.
3. Ri, Ri+1, Ri+2 are pairwise disjoint, since they are either members of the same partition

and thus disjoint, or one belongs to segment {p1, . . . , pn/4} and another to segment
{pn/4+1, . . . , pn/2}.

The length N of the sequence is dominated asymptotically by the number of partitions
of {p1, . . . , pn/4} into three equisized sets, which is 1

6
(

n/4
n/12

)(
n/6

n/12
)
. The definition of the

binomial coefficients, along with simple bounds on the factorial function, give

1
6

( n
4
n
12

)( n
6
n
12

)
=

(
n
4

)
!

6
((

n
12

)
!
)3 ≥ c

3n/4

n
> 1.3n (4)

where c is a constant and n is sufficiently large. It follows that N is exponential in n.

Formal definition of Gi. We are now ready to define the graphs Gi, recall also Figure 1a.
Let B = {pn/2 + 1, . . . , pn}. For each 1 ≤ i ≤ N , the graph Gi is composed of disjoint 5
node sets: B, Ri, Ri+1, Ri+2, where Ri, Ri+1, Ri+2 ⊆ {p1, . . . , pn/2}, B = {pn/2 + 1, . . . , pn},
and Li = Π \ (B ∪ Ri ∪ Ri+1 ∪ Ri+2).

Connect every two nodes in Ri by bi-directional edges, forming a clique. From each
node in Ri, add a directed edge to each node in B ∪ Li. Finally, for an index i, let
B[i] = {b ∈ B | ib−(n/2+1) = 1}, where iℓ is the ℓth bit in the binary expansion of i. Add an
edge from each node of B[i] to each node of Ri+1, and similarly, from each node of B[i + 1]
to each node of Ri+2.

We are now ready to show that the so-constructed graphs form an indistinguishability
chain according to Equation (3).

▷ Claim 15. For 1 ≤ i ≤ N , we have B[i] ̸= ∅, and for 1 ≤ i < j ≤ N , we have B[i] ̸= B[j].

Proof. As N = 1.3n, we find log2(N) < n/2, so each 1-bit of i is represented by a process in
B, which ends up being in B[i]. This establishes the second assertion. The first one is now
trivial, as i ≥ 1. ◁

▷ Claim 16. For 1 ≤ i ≤ N , we have Root(Gi) = Ri.

Proof. This is immediate from the graph’s definition. In Gi, all nodes in Ri are connected to
one another and have no incoming edges from any node not in Ri. From each of them, there
is a direct edge to all nodes of B ∪ Li. Moreover, by Claim 15, there is at least one process
b ∈ B[i], so there is a path from each node in Ri, through b, to each node in Ri+1 ∪ Ri+2.

◁

▷ Claim 17. We have Gi ∼Ri+2 Gi+1 for 1 ≤ i ≤ N − 1, and these are the only indistin-
guishability relations in the graph.
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Proof. As we have already explained in the informal overview, in Gi, every process that is
not in Ri+1 ∪ Ri+2 can determine that the graph is Gi from its in-neighborhood. This is
immediately obvious for processes in B, and also possible for a process p ∈ Li by observing
| InGi(p)| = n/12 + 1 and removing itself from it for determining Ri.

For a process p ∈ Ri+1 (resp. Ri+2), it holds by construction that InGi(p) = B[i + 1] =
InGi−1(p) (resp. InGi−1(p) = B[i + 2] = InGi+1(p)), and that Gi−1 (resp. Gi+1) is the only
other graph besides Gi where the in-neighborhood of p is the same. ◁

Our lower bound is now easy to prove.

▶ Theorem 18. There is an oblivious message adversary under which consensus is solvable,
but for which the decision procedure takes time exponential in n to terminate.

Proof. Let D = {Gi | 1 ≤ i ≤ N}, where N = 1.3n for n begin sufficiently large for
Equation (4) to hold. We consider Algorithm 1, and show, by induction on the iteration
number i, that after iteration i the graphs G1, . . . , GN−i+1 constitute the only nontrivial
connected component in Ni.

The base case is N1 = I(D), where the graphs G1, . . . , GN are connected by Claim 17. For
the inductive step i − 1 → i, i > 1, assume G1, . . . , GN−i+2 is the only nontrivial connected
component in Ni−1, and consider iteration i.

For G1, . . . , GN−i+1, every two consecutive graphs Gj , Gj+1 with 1 ≤ j ≤ N − i are
indistinguishable for a set Rj+2 by Claim 17, which is the root component of Gj+2 by
Claim 16. Since Gj+2 is in the same connected component as Gj and Gj+1 in Ni−1, the
edge Gj ∼Rj+2 Gj+1 is incorporated by the algorithm in Ni.

On the other hand, the edge GN−i+1 ∼RN−i+3 GN−i+2 of Ni−1 is not added to Ni. This
is since RN−i+3 is the root component of GN−i+3, which is not in the nontrivial connected
component of Ni. Since all the root components have equal sizes and are distinct, RN−i+3
cannot be contained in any other root component either. This completes the induction step.

It follows that the algorithm takes N = 1.3n iterations to complete. Upon completion,
each connected component of NN is a single, root-compatible graph, so consensus is solvable
under D. ◀

6.3 Exponential termination time of consensus
From Theorem 14, we immediately obtain a termination time lower bound of Ω(TD) for
solving consensus. Consequently, the oblivious message adversary used in (the proof of)
Theorem 18, where TD = N = 1.3n for sufficiently large n, reveals a lower bound that is
exponential in n.

We now adapt the oblivious message adversary from Theorem 18 (Section 6.2) to get
consensus termination time of Ω(n1.3n); that is, we show that the termination time of
consensus may be Θ(n) times larger than TD even when TD is exponential. To this end,
in the graph Gi shown in Figure 1a, we replace the direct edges from Ri to B by a path
consisting of processes taken from a set P ⊆ {pn/2+1, . . . , pn} with |P | = Ω(n) (i.e., taken
away from the original B), as illustrated in Figure 1b.

In more detail, we change the graph construction from Section 6.2 as follows:
B = {n/2 + 1, . . . , 0.9n} and P = {0.9n + 1, . . . , n};
Add the directed edges (p, p + 1) for all p ∈ P \ {n};
Instead of an edge from each node of Ri to each node of B, add an edge from each node
of Ri to h = 0.9n + 1, and from n to each node of B.
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Let h = 0.9n be the first node on the inserted path. Whereas our new construction
introduced the additional indistinguishability Gi ∼p Gj for all p ∈ (B ∪ P ) \ {h} for any
Gi, Gj ∈ D, it does not affect the iteration complexity of the decision procedure, since no
R ⊆ (B ∪ P ) ever occurs as a root component in a graph of D. Thus, all edges e with
ℓ(e) ⊆ (B ∪ P ) are removed in the first iteration, according to Corollary 5.

It is easy to see that Claim 15 still holds, as we have log2(N) < 0.4n, and Claim 16 holds
by construction. Regarding Claim 17, the original indistinguishability relations still hold, but
are now expanded by additional indistinguishabilities labeled by a process p ∈ (P ∪ B) \ {h},
which are removed in the first iteration of the decision procedure.

The crucial property of our new construction is that any Gi, Gi+1, when repeated for
0.1n rounds, yield indistinguishable communication patterns.

▷ Claim 19. Gr
i ∼p Gr

i+1 for all r ≤ 0.1n and all p ∈ Ri+2.

Proof. Observe that, by construction, we have InGi(p) = InGi+1(p) for all p ∈ X = P \
{h} ∪ B ∪ Ri+2. The claim follows, because every path from a process outside X to a
process in Ri+2 has length at least |P | + 1. It thus takes at least |P | + 1 repetitions of Gi,
respectively Gi+1, until a process of Π \ X reached a process of Ri+2. Since |P | = 0.1n, in a
round r ≤ 0.1n, the nodes of Ri+2 have hence the same view in both Gr

i and Gr
i+1. ◁

The following Lemma 20 shows that we can even “inflate” arbitrary communication
patterns of the oblivious message adversary from Section 6.2:

▶ Lemma 20. Consider (σ, σ′) ∈ I(Dk), where D is the oblivious message adversary of
Section 6.2. Let D̃ be the modified oblivious message adversary of Section 6.3, and σ̃ resp. σ̃′

in D̃(k0.1n) be the communication pattern obtained from replacing every round i graph σ(i)
resp. σ′(i) according to Figure 1a by 0.1n instances of the corresponding graph according to
Figure 1b. Then, (σ̃, σ̃′) ∈ I(D̃0.1nk).

Proof. We prove, by induction over k ≥ 1, that (i) the 0.1nk prefixes σ̃|0.1nk and σ̃′|0.1nk

satisfy σ̃|0.1nk ∼R σ̃′|0.1nk for R = ℓ(σ, σ′) ̸= ∅, and (ii) that σ̃|0.1nk ∼B σ̃′|0.1nk if and only if
σ|k ∼B σ′|k for the processes B = {pn/2+1, . . . , pn}. Note carefully that σ ∼R σ′ also implies
σ|k ∼R σ′|k, as well as σ(k) ∼R σ′(k). As a consequence, there is some i such that, for every
k, either σ(k) = Gi and σ′(k) = Gi+1 (or vice versa), with R = Ri+2, or else σ(k) = σ′(k).

For the induction basis k = 1, the only non-trivial case is σ|1 = σ(1) = Gi ∈ D and
σ′|1 = σ′(1) = Gi+1 ∈ D, and R = Ri+2. From Claim 19, we get σ̃|0.1n ∼R σ̃′|0.1n as needed
for (i). As for (ii), the lenght 0.1n of the path P in Figure 1b ensures that all processes in B

have the same distinguishing power in both the original and in the inflated prefix.
For the induction step k −1 → k, k > 1, we assume for our hypothesis that σ̃|0.1n(k−1) ∼R

σ̃′|0.1n(k−1) and that all processes in B have the same distinguishing power. Assume for a
contradiction for (i) that σ̃|0.1nk ̸∼R σ̃′|0.1nk, i.e., some process p ∈ R can distinguish the
two prefixes. Consider the round k graphs σ(k) and σ′(k). If σ(k) = σ′(k) = Gj ∈ D, we
immediately get a contradiction, since appending 0.1n instances Ĝ0.1n

j of the corresponding
Ĝj ∈ D̃ to both σ̃|0.1n(k−1) and σ̃′|0.1n(k−1) cannot break their indistinguishability for p.

So let us assume w.l.o.g. Gi = σ(k) and Gi+1 = σ′(k) with R = Ri+2. Since we know
from Claim 19 that the corresponding graphs in D̃ ensure Ĝ0.1n

i ∼p Ĝ0.1n
i+1 , the information

that allows p to distinguish σ̃|0.1nk and σ̃′|0.1nk was relayed to it from some informed process
q′ during the last 0.1n rounds. Since Ri+2 only has incoming edges from B in Figure 1b,
there exists an informed process q ∈ B that relayed this information to p by the last of these
rounds. This q must have been informed at the latest in round 0.1nk − 1. Since the path P

in Figure 1b has length 0.1n, however, Ri (resp. Ri+1) cannot be the source of information
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that allows q to distinguish σ̃|0.1nk and σ̃′|0.1nk. Consequently, q must already have had
information to distinguish σ̃|0.1n(k−1) and σ̃′|0.1n(k−1). From (ii) of our induction hypothesis,
we can infer that this is also true in the original σ|k−1 and σ′|k−1. Since q sends a message
to Ri+2 in round k here, this would contradict σ|k ∼R σ′|k, and therefore completes the
induction step for (i).

The induction step for (ii) is trivial, as the processes in B only get information from the
respective root component, either directly (in the original prefix) or delayed via the path P

(in the inflated one). The induction hypothesis hence just carries over from k − 1 to k. ◀

Lemma 20 immediately gives the consensus termination time for our new oblivious
message adversary:

▶ Theorem 21. There is an oblivious message adversary for which solving consensus takes
Ω(n1.3n) rounds.

Proof. Consider any two indistinguishable communication patterns σ, σ′ of the message
adversary of Theorem 18 on the path between GN−1

1 and GN−1
2 in I(D)N−1. As TD =

N = 1.3n, Lemma 13 guarantees that this path exists. Lemma 20 immediately provides us
with inflated communication patterns µ, µ′ ∈ I(D)0.1n(N−1) for our new oblivious message
adversary, which are also indistinguishable. Together, they form a path between G

0.1n(N−1)
1

and G
0.1n(N−1)
2 in I(D)0.1n(N−1). Since the root components R1 = Root(G1) and R2 =

Root(G2) are disjoint, not all processes can have decided by round 0.1n(N − 1), as claimed.
◀

7 Another Source of Consensus Time Complexity

In this section, we investigate whether the number of iterations TD of the decision procedure
is the sole cause for a large time complexity of consensus under an oblivious message
adversary. Before we do so, however, let us briefly reiterate what we have achieved so far.
In Theorem 12, we have established that consensus can be solved after c(n − 1) TD rounds,
whereas Theorem 21 revealed that there are in fact oblivious message adversaries where
consensus takes up to n TD rounds to terminate and TD may be exponential in n. Thus, in
this case, a time complexity exponential in n is asymptotically tight for solving consensus
under an oblivious message adversary. As we know that the consensus time complexity is
always at most c(n − 1) TD, and since we have examples where it is at least n TD, it might
hence be tempting to assume that TD also determines the termination time of consensus
in all cases. In this section, we will see that this is not the case, as, to the contrary, there
are instances where the decision procedure terminates after a constant number of iterations
while the consensus time complexity is still exponential in n, i.e., where c is exponentially
large. We now proceed to show how to derive such an instance.

7.1 A partition of an oblivious message adversary
Before going into the details of how to construct an oblivious message adversary with the
desired property of incurring a large time complexity of consensus while maintaining a low
TD, we define an abstract property that, if satisfied by an oblivious message adversary D
for a parameter t, leads to a consensus time complexity in the order of t. Informally, this
property is that there exists a partition S1, . . . , St of D such that S1 is connected in the
indistinguishability graph I(D) and all the edges that make up this connection are protected
by the communication graphs of S2. Similarly, S2 is connected in I(D) and all of the edges
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in this connection, along with the ones from S1, are protected by the communication graphs
of S3 and so on. Our claim is that if there exist t-round communication pattern that have no
common broadcaster and whose round 1 ≤ r ≤ t communication graphs are picked from Sr,
then consensus is impossible by round t. The reason for this, as shown in more detail below,
is that the set of communication patterns S1 ◦ . . . ◦ St is connected in the indistinguishability
graph I(Dt), because each Sr can maintain the connectivity of S1 ◦ . . . ◦ Sr−1 in I(Dr−1) as
all the edges relevant for this connectivity are protected by the communication graphs of Sr.

Formally, we express this property as follows:

▶ Definition 22. Let S1, . . . , St be a partition of D with the following properties, for 1 ≤ i ≤ t:
(i) Each Si is connected. That is, for each G, G′ in Si, there is a path from G to G′ in the

indistinguishability graph I(D) that consists only of elements from Si.
(ii) The edges of the subgraph of I(D), induced by

⋃i−1
j=1 Sj, are protected by the communi-

cation graphs of Si.
(iii) There is no process p such that every communication pattern of Σ = S1 ◦ . . . ◦ St is

broadcastable by p.

Given this partition, we show in Claim 23 below that Σ is connected in I(Dt), which
shows that consensus is impossible after t rounds: If all processes do decide after t rounds
in all runs with a communication pattern of Σ, they all decide the same value because Σ is
connected in I(Dt). Thus, in some run with communication pattern σ ∈ Σ, the decision is on
an input of a process p even though σ is not broadcastable by p, which contradicts Claim 2.

▷ Claim 23. The communication patterns of Σt = S1 ◦ . . . ◦ St are pairwise connected to
each other in I(Dt).

Proof. Throughout this proof, let I(D)[S] denote the subgraph of I(D), induced by the set
of communication graphs S.

We show an even stronger claim, namely that there is a set of edges Et that connects
Σt in I(Dt) such that for each e ∈ Et there is an e′ ∈ I(D)[

⋃
j≤t Sj ] with the same label

ℓ(e) = ℓ(e′). We show this by induction on k with Σk = S1 ◦ . . . ◦ Sk.
The base of the induction k = 1 follows directly from property (i) of Definition 22, as S1

is connected in I(D).
For the step from k to k + 1, the induction hypothesis is that there are edges Ek that

connect Σk such that for every e ∈ Ek there is an e′ ∈ I(D)[
⋃

j≤k Sj ] with ℓ(e) = ℓ(e′). We
use the graphs of Sk+1 to extend Σk to Σk+1 while maintaining the connectivity of Σk+1 as
follows.

For every σ1, σ2 ∈ Σk with e = (σ1, σ2) ∈ Ek, we add to Σk+1 the extensions σ1 ◦ G

and σ2 ◦ G such that G ∈ Sk+1 and G protects e. Such a communication graph G exists
because of property (ii) of Definition 22 and because there is an edge e′ ∈ I(D)[

⋃
j≤k Sj ]

with ℓ(e) = ℓ(e′) by hypothesis.
Finally, for all extensions σ1 ◦ G, σ2 ◦ G and σ2 ◦ G′, σ3 ◦ G′ added to Σk+1 in this way,

by property (i) of Definition 22, there is a path π from G to G′ in I(D) that consists only of
graphs G′′ ∈ Sk+1. We can thus add all the communication patterns {σ2 ◦ G′′ : G′′ ∈ π} to
Σk+1 as well: This maintains the connectivity of Σk+1 and ensures the induction hypothesis
as the path π lies entirely in I(D)[Sk+1] by property (i) of Definition 22. ◁
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7.2 An example: choosing the processes
We now construct a set of communication graphs that can be partitioned in accordance with
Definition 22, into t = 1.07n sets. For a set Π of n processes, let m = ⌈ n

10 ⌉. We construct an
oblivious message adversary with a partition on it, D =

⋃t
i=1 Si, where each Si is a set of

2i + 1 graphs, denoted Si = {Gi,j | 1 ≤ j ≤ 2i + 1}. Each graph Gi,j is defined by a partition
of the process set Π as

Π =


B ∪ Rj ∪ Ui ∪ U ′

i ∪ Li,j for j = 1,

B ∪ Rj ∪ Ui ∪ Li,j for j even,

B ∪ Rj ∪ U ′
i ∪ Li,j for j ≥ 3 odd.

The process sets are B = [5m + 1, n], which is fixed for all i, j; Rj with |Rj | = m, which
constitutes the members of the root components of all the graphs Gi,j ; Ui, U ′

i , with |Ui| =
|U ′

i | = m; and finally Li,j , which is the set of all the remaining processes. We choose processes
for these sets inductively on i as follows: For the base i = 1, we just list the appropriate sets
for the communication graphs of S1 = {G1,1, G1,2, G1,3}:
(b1) R1 = [4m + 1, 5m]
(b2) R2 ⊆ [1, 2m], |R2| = m, chosen arbitrarily
(b3) R3 ⊆ [2m + 1, 4m], |R3| = m, chosen arbitrarily
(b4) U1 ⊆ [2m + 1, 4m] \ R3
(b5) U ′

1 ⊆ [1, 2m] \ R2

We proceed with the inductive step of our construction. For this we assume that we are
given R1, . . . , R2i+1 and Ui, U ′

i , and show how to construct R2i+2, R2i+3 and Ui+1, U ′
i+1.

(s1) We let R2i+2 = U ′
i

(s2) We let R2i+3 = Ui

(s3) We let Ui+1 be an arbitrary subset of [2m+1, 4m] of size m, different (but not necessarily
disjoint) from R2, R4 . . . R2i+2

(s4) We let U ′
i+1 be an arbitrary subset of [1, 2m] of size m, different (but not necessarily

disjoint) from R3, R5 . . . R2i+3
Note that steps (s1) and (s2) are always possible, as long as the sets Ui and U ′

i are defined.
To see that we can repeat step (s3) for t times, note that there are

(2m
m

)
many ways to choose

a set Ui+1 ⊆ [2m + 1, 4m] of size m. We have(
2m

m

)
≥ (2m)m

mm
= 2m ≥ 2n/10 > 1.07n

and the claim follows. The claim for (s4) is analogous.

7.3 An example: the graph structure
We now show how to combine the sets Rj , Ui, U ′

i , B, and Li,j in Gi,j to obtain an oblivious
message adversary that has a partition as described in Definition 22 for t = 1.07n (for an
illustration, see Figure 1c). While the choice processes of Rj is independent of i, the edges
between them in Gi,j will be different and depend crucially on i.

More specifically, the graph Gi,j always contains a directed cycle in Rj in increasing
order of the process identifiers. Since |Rj | = m and each process already has one incoming
edge from the preceding process, there are m − 2 other potential incoming edges we can
choose to add for every member. Hence, there are m · 2m−2 > t (for n large enough) possible
interconnects for Rj , and for each i we choose a different one.
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We define the other edges of Gi,j as follows. Each graph contains edges from all process
of Rj to all processes of B and Li,j . For an index i, let B[i] = {b ∈ B | ib−(5m+1) = 1},
where ih is the hth bit in the binary expansion of i. Note that for i ̸= i′, 1 ≤ i, i′ ≤ t we have
B[i] ̸= B[i′], i.e. all the bits of i are represented in B[i], since log2 t < 0.1n < |B|.

The rest of the edges depend on j, as follows.
For j = 1, add an edge from each node of B[i] to each node of Ui ∪ U ′

i ∪ Li,j .
For j even, add an edge from each node of B[i] to each node of Ui ∪ Li,j .
For j ≥ 3 odd, add an edge from each node of B[i] to each node of U ′

i ∪ Li,j .

7.4 An example: properties of the adversary
Finally, let us establish our main claim, namely that the above construction indeed yields
an oblivious message adversary where the consensus time complexity t = 1.07n grows
exponentially with n, yet TD = 2, a constant. In the remainder of this section, we show
these properties for the oblivious message adversary D constructed above. First, we prove
that D partitions as described in Definition 22.

▷ Claim 24. The sets S1, . . . , St are a partition according to Definition 22.

Proof. First, since all Gi,j are different, S1, . . . , St is indeed a partition of D. For property
(i), the connectivity of Si, pick any Gi,j ∈ Si. We show that this graph is indistinguishable
to some processes from Gi,1, and thus the graph is connected by an edge to Gi,1 in I(D). If
j is odd, the in-neighborhood of every process of U ′

i is the same in Gi,j and in Gi,1, namely
B[i]. Similarly, if j is even, every process of Ui has B[i] as its in-neighborhood in Gi,j , and
this is also the case for Gi,1.

To prove property (ii), which states that the communication graphs of Si protect the
edges that were used to connect S1, . . . , Si−1, it suffices to show that for every 1 ≤ i′ < i,
there are communication graphs G, G′ ∈ Si such that Root(G) ⊆ Ui′ and Root(G′) ⊆ U ′

i′ .
For a given 1 ≤ i′ < i, note that the graphs Gi,2i′+2, Gi,2i′+3 ∈ Si satisfy R2i′+2 = Ui′ and
R2i′+3 = U ′

i′ by construction.
For property (iii), which states that there is no process by which all communication

patterns of Σ = S1 ◦ · · · ◦ St are broadcastable, let us investigate the processes that were
able to broadcast in (Gi,2)t

i=1 ∈ Σ and (Gi,3)t
i=1 ∈ Σ. We observe that, by (b2) and (b3),

for all 1 ≤ i ≤ t, Root(Gi,2) = R2 ⊆ [1, 2m] and Root(Gi,3) = R3 ⊆ [2m + 1, 4m] and thus
R2 ∩ R3 = ∅. As the broadcasters of (Gi,2)t

i=1 are R2 and the broadcasters of (Gi,3)t
i=1 are

R3, property (iii) holds. ◁

▷ Claim 25. The decision procedure terminates after TD = 2 iterations on D.

Proof. First, note that all the roots Rj are contained in [1, 5m], while B = [m5 + 1, n], hence
no edge of I(D) labeled only by processes of B will be preserved after the first iteration.
Similarly, when considering the preservation of edges, processes of B in the labels can be
ignored.

Now, we show that in the first iteration of the decision procedure, none of the edges of
I(D) that connect graphs from different sets in the partition D =

⋃t
i=1 Si are preserved.

Consider Gi,j ∈ Si, Gi′,j′ ∈ Si′ , i ̸= i′, such that Gi,j ∼ℓ Gi′,j′ . Note that in Gi,j , the
processes of Ui (or U ′

i if j is odd) and Li,j have B[i] as their incoming edges, while the
corresponding processes in Gi′,j′ have B[i′], and B[i] ̸= B[i′], so none of Ui (or U ′

i), Ui′ (or
U ′

i′), Li,j and Li′,j′ could intersect ℓ.
Hence, the only processes in ℓ that can occur in a root component of a graph in D

are processes of Rj and Rj′ . Let us study |Rj ∩ Rj′ ∩ ℓ|: if j ̸= j′ then Rj ̸= Rj′ so
|Rj ∩ Rj′ ∩ ℓ| < |Rj | = m; if j = j′, then the fact that the choice of interconnects for Rj in
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Gi,j depends on i guarantees that at least one process of Rj is not in in ℓ and hence not in
Rj ∩ Rj′ ∩ ℓ, and again |Rj ∩ Rj′ ∩ ℓ| < m. As any root component Rj′′ of a graph in D has
|Rj′′ | = m, no such root component satisfies Rj′′ ⊆ Rj ∩ Rj′ ∩ ℓ, and the edge ℓ is not being
preserved in the first iteration.

Second, we show that in the second iteration of the decision procedure, none of the
edges in I(D) that is within a set Si is preserved. Assume for contradiction that for some
i, there are graphs Gi,j , Gi,j′ , Gi,j′′ ∈ Si, j ̸= j′ such that Gi,j ∼ℓ Gi,j′ and Rj′′ ⊆ ℓ. All
the processes of B, Li,j and Li,j′ have incoming edges from Rj (or Rj′), and since Rj ̸= Rj′

none of these processes appear in ℓ. Note that 1 ≤ j′′ ≤ 2i + 1, and the sets Ui and U ′
i are

chosen to be different from R1, . . . , R2i+1, which implies Rj′′ ̸= Ui, U ′
i .

If j = 1, then the only processes that can appear in ℓ are those of Ui ∪U ′
i . This is because,

in Gi,1, processes of R1 do not have any incoming edge from B, which they have in all other
graphs of Si, and processes of Li,1 have incoming edges from R1, which no process has in any
other graphs of Si. Therefore Rj′′ ⊆ ℓ ⊆ Ui ∪ U ′

i , where Ui ⊆ [2m + 1, 4m] and U ′
i ⊆ [1, 2m].

But either Rj′′ ⊆ [1, 2m] or Rj′′ ⊆ [2m + 1, 4m], and |Rj′′ | = |Ui = |U ′
i |, so either Rj′′ = Ui

or Rj′′ = U ′
i , a contradiction.

If j is even, Rj′′ ⊆ ℓ ⊆ Rj ∪ Ui, as any process not in Rj ∪ Ui has incoming edges from
all processes of Rj in Gi,j , which it does not have in Gi,j′ . We have Rj ⊆ [1, 2m] (as j is
even) and Ui ⊆ [2m + 1, 4m], while either Rj′′ ⊆ [1, 2m] or Rj′′ ⊆ [2m + 1, 4m]. So, either
Rj′′ = Rj or Rj′′ = Ui. This can only occur if j = j′′: the sets Rk are different for different
indices k, and Ui is chosen to be different from R1, . . . , R2i+1. The case of j > 1 odd is
analogous, and we conclude that j = j′′ in both cases. The same analysis applies for j′, and
so we have j = j′′ = j′, a contradiction. ◁

From this, we conclude the main theorem of this section.

▶ Theorem 26. There exists an oblivious message adversary with a consensus time complexity
exponential in n in spite of a constant iteration complexity TD of the decision procedure.

8 Conclusions

We presented a simple procedure for deciding whether consensus is solvable under a given
oblivious message adversary. Whereas it can be viewed as an early terminating version of the
abstract beta class characterization by Couloma, Godard, and Peters [12], our formulation
turned out to be instrumental for characterizing the, to the best of our knowledge, previously
unknown worst-case termination time of distributed consensus under a given oblivious
message adversary. We discovered a relation between the number of iterations of the decision
procedure and the consensus termination time, and the importance of the existence and
number of root-compatible connected components in the refined indistinguishability graph.

Our work opens several interesting avenues for future work. For example, while we have
pursued a combinatorial approach, it would be interesting to study the time complexity of
the consensus and other agreement prototols from a topological perspective as well. It would
further be interesting to fully understand the implications of our approach on distributed
information dissemination problems such as broadcast, and explore alternative adversarial
models. Another interesting avenue of research is a possible algorithmic and/or engineering
improvement of our decision procedure, and to empirically evaluate its performance for
different oblivious message adversaries.
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We study the complexity of proof systems augmenting resolution with inference rules that allow, given
a formula Γ in conjunctive normal form, deriving clauses that are not necessarily logically implied by
Γ but whose addition to Γ preserves satisfiability. When the derived clauses are allowed to introduce
variables not occurring in Γ, the systems we consider become equivalent to extended resolution.
We are concerned with the versions of these systems without new variables. They are called BC−,
RAT−, SBC−, and GER−, denoting respectively blocked clauses, resolution asymmetric tautologies,
set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some
restricted version of the ability to make assumptions that hold “without loss of generality,” which is
commonly used informally to simplify or shorten proofs.

Except for SBC−, these systems are known to be exponentially weaker than extended resolution.
They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation
of the formula along with the proof when moving between proof systems. By taking advantage of
this fact, we construct formulas that separate RAT− from GER− and vice versa. With the same
strategy, we also separate SBC− from RAT−. Additionally, we give polynomial-size SBC− proofs of
the pigeonhole principle, which separates SBC− from GER− by a previously known lower bound.
These results also separate the three systems from BC− since they all simulate it. We thus give an
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1 Introduction

1.1 Properties of commonly studied proof systems
Most of the commonly studied rule-based propositional proof systems,1 such as resolution [3,
27], Frege [8], cutting planes [9], polynomial calculus [6], Lovász–Schrijver [23], are in several
senses well behaved. For instance, they are monotonic, strongly sound, and strongly closed
under restrictions.

A proof system P is monotonic if for all sets Γ and Γ′ of formulas such that Γ ⊆ Γ′ and
for every formula φ we have

Γ ⊢P φ =⇒ Γ′ ⊢P φ,

1 Throughout this paper, by “proof” we mean a refutation of satisfiability (i.e., a derivation of ⊥ from a
set Γ of formulas, where ⊥ denotes a contradiction such as the empty clause).
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where ⊢P is the derivability relation for P . Since we often express a proof as a tree,
monotonicity naturally holds for most proof systems. It has the consequence that the
validity of an inference in the proof relies only on some subset of the previously derived
formulas as opposed to the entire set.
Strong soundness is the property of a proof system P that a formula φ can be derived in
P from a set Γ of formulas only if φ is logically implied by Γ (i.e., every total assignment
satisfying all formulas in Γ also satisfies φ), written as

Γ ⊢P φ =⇒ Γ |= φ. (1)

Soundness is less strict than strong soundness in that it only requires (1) to hold for
φ = ⊥.
For a formula φ and a partial assignment α, let φ|α denote the formula obtained by
first replacing every assigned variable x occurring in φ by α(x) and then recursively
simplifying all of the subformulas. For a set Γ of formulas, let Γ|α := {ψ|α | ψ ∈ Γ}. We
call φ|α the restriction of φ under α, and similarly for Γ. We say a proof system P is
strongly closed under restrictions if for every set Γ of formulas, for every formula φ, and
for every partial assignment α that does not satisfy φ, we have

Γ ⊢P φ =⇒ Γ|α ⊢P φ|α. (2)

As in the case of soundness, (weak) closure under restrictions only requires (2) to hold for
φ = ⊥. Closure under restrictions is often also defined by the more quantitative condition
that for every P -proof Π of Γ and every partial assignment α there exist a P -proof Π′ of
Γ|α of size polynomial in the size of Π.

None of the above properties are necessary for soundness, and proof systems that do not
have them can be stronger since such systems are more permissive in terms of the kinds
of reasoning they allow. Possibly the most prominent example of such a system in proof
complexity is extended Frege [8]. When refuting a set Γ of formulas, extended Frege allows
(in addition to the axioms and the rules of the underlying Frege system) proof steps of the
form x ↔ φ, where x is a variable and φ is an arbitrary formula, with the condition that x
not occur in Γ, any of the preceding steps, or φ. Another example is extended resolution [29],
which uses a similar rule although in a more restricted form since resolution works only
with clauses. With x a “new” variable as before and p, q literals, extended resolution allows
introducing x ↔ p ∧ q via the following clauses, where the overline denotes negation:

x ∨ p x ∨ q x ∨ p ∨ q (3)

Extended Frege (and similarly extended resolution) has none of the above properties, although
the reasons are not particularly interesting:

Monotonicity fails to hold since we cannot necessarily derive x ↔ φ from Γ′ ⊇ Γ if x
already occurs in Γ′.
Strong soundness fails to hold since Γ may not imply x ↔ φ under assignments α such
that α(x) ̸= α(φ). Nevertheless, extended Frege is sound because Γ and Γ ∪ {x ↔ φ}
are equisatisfiable (i.e., Γ is satisfiable if and only if Γ ∪ {x ↔ φ} is satisfiable), seen as
follows: if an assignment α satisfies Γ but falsifies x ↔ φ, flipping α(x) gives a different
assignment α′ satisfying both Γ and x ↔ φ.
Strong closure under restrictions fails to hold since otherwise we could choose a partial
assignment that only assigns x to True and conclude that every formula φ can be derived
from Γ, which contradicts the soundness of extended Frege.
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In all of the above cases, the counterexamples rely crucially on the fact that x is a new
variable. This ability to abbreviate complex formulas by variables significantly increases
the difficulty of proving lower bounds for extended Frege and makes it one of the strongest
propositional proof systems. (Extended resolution is equivalent to it over refutations of sets
of clauses.) From this point on, we use “formula” and “set of clauses” interchangeably.

Proof systems that violate the above properties for more sophisticated reasons (i.e., not
simply due to the introduction of new variables) also exist. In this paper we compare the
proof complexity of four such systems that augment resolution with inference rules of varying
expressiveness. Given a set Γ of clauses, these rules allow deriving clauses that are not
necessarily logically implied by Γ but whose addition to Γ preserves satisfiability. We call
such clauses redundant. Deciding the redundancy of a clause with respect to a set of clauses
is coDP-complete2 [2], so we consider only the inference rules that rely on polynomial-time
verifiable syntactic conditions corresponding to restricted versions of redundancy. These rules
may be viewed as capturing the commonly used technique of making assumptions that hold
“without loss of generality” when writing informal mathematical proofs. Such assumptions
are not logically implied by the hypotheses at hand, but their use is justified by the fact
that they can be eliminated at the possible cost of an increase in the size of the proof. The
formal rules we study rely on syntactic criteria to justify such assumptions, with weaker
criteria allowing the introduction of stronger assumptions. In this way, these rules allow us to
directly express various kinds of informal reasoning that are otherwise difficult to formalize.

From the perspective of the broader study of proof complexity, these systems are somewhat
unique in that Frege does not simulate even the weakest variant unless Frege and extended
Frege are equivalent [4, Corollary 2.5]. It would be interesting to determine whether some
variant of these systems, despite having the same limited syntax as resolution and no new
variables, simulates a subsystem of Frege stronger than resolution.

1.2 Related work

1.2.1 Proof complexity

The inference rules we study originate from the notion of blocked clauses, developed initially
by Kullmann [20, 21] to give improved deterministic algorithms for 3-SAT. We call a clause
C blocked with respect to a set Γ of clauses if there exists a literal p ∈ C such that all
possible resolvents of C on p against clauses from Γ are tautological (i.e., contain a literal and
its negation). Kullmann [22] showed that blocked clauses are redundant and thus considered
an inference rule that, given a set Γ of clauses, allows us to extend Γ with a clause that is
blocked with respect to Γ. This rule, along with resolution, gives the proof system called
blocked clauses (BC). As illustrated below, BC is not monotonic, not strongly sound, and not
strongly closed under restrictions.

▶ Example 1. The clause C = x ∨ y is blocked with respect to the set Γ = {x ∨ y, x ∨ y}.
Monotonicity fails to hold since we cannot derive C from Γ′ = Γ ∪ {y} in BC: the set Γ′

is satisfiable but Γ′ ∪ {C} is unsatisfiable.
Strong soundness fails to hold since Γ does not imply C under assignments that set both
x and y to True.

2 The class DP = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}, which is a superset of both NP and coNP, was defined
by Papadimitriou and Yannakakis [25].
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Strong closure under restrictions fails to hold since for an assignment α that sets y to
True we cannot derive C|α = x from Γ|α = {x} in BC: the set Γ|α is satisfiable but
Γ|α ∪ {C|α} is unsatisfiable.
It is apparent from the definition of a blocked clause that deleting clauses from Γ enlarges

the set of clauses that are blocked with respect to Γ. With this observation at hand, Kullmann
defined a strengthening of BC called generalized extended resolution (GER) that allows the
temporary deletion of clauses from Γ. Arbitrary deletion of clauses does not necessarily
preserve satisfiability; however, since no subset of a satisfiable Γ is unsatisfiable, it is also
possible to further strengthen GER by allowing the arbitrary deletion of a clause as a proof
step. The resulting system is called deletion blocked clauses (DBC).

Conversely to the above point, the failure of monotonicity becomes particularly important
when deletion is not allowed since it implies that the validity of blocked clause additions
performed in sequence are order dependent. In particular, not every set of clauses that are
all blocked with respect to Γ can be derived from Γ by a sequence of blocked clause additions.
For this reason, proving upper bounds for generalizations of BC involves carefully ensuring
the validity of sequences of inferences.

Without any additional restrictions, the above systems all simulate extended resolution
since the clauses in (3) can be added in sequence as blocked clauses if we are allowed to
introduce new variables: starting with a set Γ of clauses not containing the variable x, we
can derive

x ∨ p followed by x ∨ q since no occurrence of the literal x precedes either step (so both
clauses are vacuously blocked), and then
x∨p∨q since its resolvents on x against x∨p and x∨q (i.e., the only preceding occurrences
of x) are tautological.

The study of these systems becomes interesting when we disallow new variables. A proof of Γ
is without new variables if it contains only the variables that already occur in Γ. Throughout
this paper, we denote a proof system variant that disallows new variables with the superscript
“−” (e.g., BC− is BC without new variables). We denote a variant that allows arbitrary
deletion with the prefix D. All of those variants constitute examples of proof systems that
share the peculiarities of extended resolution from Section 1.1 without being allowed new
variables.

Kullmann [22] proved that extended resolution simulates GER. He also proved that GER−

is exponentially stronger than resolution and exponentially weaker than extended resolution.
In later work, Järvisalo, Heule, and Biere [15] defined a different generalization of BC by
essentially replacing “tautological” in the definition of a blocked clause with “implied by Γ
through unit propagation.” (Unit propagation is an automatizable but incomplete variant of
resolution.) The result is still a polynomial-time verifiable redundancy criterion since the
only important property of tautologies in the argument for the redundancy of a blocked
clause C with respect to Γ is that tautologies are implied by Γ. This generalization is called
resolution asymmetric tautologies (RAT). Yet another generalization of BC along a different
axis is called set-blocked clauses (SBC), defined by Kiesl, Seidl, Tompits, and Biere [17]. We
call a clause C set-blocked with respect to a set Γ of clauses if there exists some nonempty
L ⊆ C such that for all D ∈ Γ with D ∩ L ̸= ∅ and D ∩ L = ∅ the set

(
C \ L

)
∪
(
D \ L

)
is

tautological. A blocked clause is the special case where L is a singleton, so set-blockedness
expands the scope of the literals in C that we consider. Deciding the set-blockedness of a
clause with respect to a set of clauses is NP-complete [17]. To ensure that an SBC proof
is polynomial-time verifiable, every step in the proof that adds a clause C as set-blocked
is expected to indicate the subset L ⊆ C for which C is set-blocked. With that said, to
reduce clutter, we leave this requirement out of our definitions and indicate those subsets
only informally throughout this paper.
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Subsequent works [13, 16] defined further generalizations, showed simulations between
some variants, and gave polynomial-size proofs (without new variables) of the pigeonhole
principle in a variant called set-propagation redundancy (SPR−) that combines SBC− and
RAT−. Recently, Buss and Thapen [4] initiated a systematic study of the proof complexity of
the many generalizations of BC−. Among other results, they showed that the bit pigeonhole
principle, parity principle, clique-coloring principle, and Tseitin tautologies have polynomial-
size SPR− proofs. They also showed that SPR− can undo (with polynomial-size derivations)
the effects of or-ification, xor-ification, and lifting with index gadgets. In view of these results,
SPR− appears to be surprisingly strong.3 Buss and Thapen also proved an exponential size
lower bound for RAT−, separating DRAT− and SPR− from it. Superpolynomial lower bounds
for SPR− or even SBC− are currently open.

1.2.2 SAT solving
As the use of SAT solvers in propositional theorem proving increased, it became standard to
expect a solver to produce a proof alongside an unsatisfiability claim. Modern SAT solvers
are based on conflict-driven clause learning (CDCL) [24] and essentially search for resolution
proofs. As a result, the initial proof systems developed to help verify the outputs of CDCL
SAT solvers were based on resolution [10, 31]. However, most of the current SAT solvers
go beyond CDCL and employ an array of inprocessing techniques [15] that transform the
formula during the search. These techniques are often not strongly sound, and resolution falls
short for expressing them. Järvisalo, Heule, and Biere [15] observed that DRAT simulated all
of the common techniques used at the time, and, following the implementation of a practical
verifier [32], DRAT became the de facto standard proof system used in SAT solvers. Extended
resolution could also be used for verification; however, it is only known to simulate DRAT
with polynomial overhead [16, Section 4.5], whereas DRAT simulates extended resolution
with no overhead. There are also a few examples of DRAT enabling significant gains over the
smallest known extended resolution proofs (see, e.g., [16, Table 1]), which is important for
practical purposes.

Another practical motivation for studying these systems is their potential usefulness in
proof search due to the surprising strength of the variants without new variables. Recent
works have introduced a SAT solving paradigm called satisfaction-driven clause learning
(SDCL) [14, 12] that can fully automatically discover small proofs of the pigeonhole principle.
Its usefulness remains limited, though, since it was observed to improve upon CDCL only
on specific classes of formulas. Exploiting the power of these systems might be a promising
avenue for the research that aims to improve the performance of practical SAT solvers. To
this end, it is important to understand the relative strengths of these systems.

1.3 Results
We prove some results concerning the relative strengths of BC−, RAT−, SBC−, and GER−,
continuing the line of work [22, 13, 16, 4] on the proof complexity of generalizations of BC−.
Figure 1 summarizes the state of the proof complexity landscape surrounding these systems
after our results.

3 As remarked by Buss and Thapen [4, Section 4], the apparent strength of SPR− stems from the ability
to exploit symmetries, which are abundant in the combinatorial principles used for proving lower bounds
against the commonly studied proof systems. Other interesting examples of systems that easily prove
such combinatorial principles are the variants of Krishnamurthy’s symmetric resolution [19, 30, 1, 28],
obtained by augmenting resolution with rules that explicitly support reasoning about symmetries.
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BC−

SBC−

RAT−

SPR−

GER− DBC−

DSBC−

DRAT−

DSPR−

Figure 1 In the above diagram, the proof systems are placed in three-dimensional space with
BC− at the origin. Moving away from the origin along each axis corresponds to a particular way of
generalizing a proof system. For systems P and Q, we use P Q to denote that P simulates Q;
(and P Q to indicate an “interesting” simulation, where P is not simply a generalization of Q);
P Q to denote that P is exponentially separated from Q (i.e., there exists an infinite sequence
of formulas admitting polynomial-size proofs in P while requiring exponential-size proofs in Q); and
P Q to denote that P both simulates Q and is exponentially separated from Q. Arrows in red
indicate the relationships that are new in this paper. To reduce clutter, some relationships that are
implied by transitivity are not displayed (e.g., DBC− simulates RAT− and is exponentially separated
from it through DRAT−).

Our first main result is a two-way separation between RAT− and GER−.

▶ Theorem 2. There exists an infinite sequence (Γn)∞
n=1 of formulas such that Γn admits

RAT− proofs of size nO(1) but requires GER− proofs of size 2Ω(n). Conversely, there exists
an infinite sequence (∆n)∞

n=1 of formulas such that ∆n admits GER− proofs of size nO(1) but
requires RAT− proofs of size 2Ω(n).

Since both RAT− and GER− are generalizations of BC−, the above result also separates
both systems from BC−. It was already understood that GER− is between BC− and DBC−

in strength, and GER− is in fact “strictly” between BC− and DBC− by Theorem 2.
For both directions of the separation, we follow a strategy that exploits the equivalence

of BC− (without new variables) to extended resolution under effective simulations [11, 26],
which allow the translation of the formula (in a satisfiability-preserving way) along with the
proof when moving between proof systems. In particular, Kullmann [22, Lemma 8.4] and
Buss and Thapen [4] observed that it is possible to incorporate new variables into a formula
Γ in such a way that BC−, while still technically only using the variables occurring in the
formula, simulates an extended resolution proof of Γ.

▶ Lemma 3 ([4, Lemma 2.2]). Suppose that a formula Γ has an extended resolution proof of
size m and that Γ and the set X = {y ∨ x1 ∨ · · · ∨ xm, y} of clauses have no variables in
common. Then Γ ∪X has a BC− proof of size O(m).
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To separate RAT− and GER−, we incorporate new variables into formulas in ways that
are useful to only one of the two systems. We achieve this by “guarding” the new variables by
clauses instead of providing them as in Lemma 3. Recall that, for a clause to be redundant
with respect to a formula according to some syntactic criterion in this paper, every clause in
the formula has to satisfy a certain condition. We take advantage of this fact to include the
new variables within a strategically chosen set X of guard clauses alongside an unsatisfiable
formula Γ. With a suitable choice of X , we are able to impose enough limitations upon the
redundant clauses derivable in a system to ensure that the new variables can essentially be
ignored in a proof of Γ ∪ X .

For each direction of the separation, when proving the upper bound for one of the two
systems, we show that it can efficiently work through the guard clauses and use the new
variables to simulate the extended resolution proof. When proving the lower bound for the
other system, we show essentially that it is closed under restrictions4 for the specific formulas
and partial assignments that we construct. (Neither system is closed under restrictions in
general.) In other words, the guard clauses make it impossible for the system to efficiently
“access” the new variables, thus preventing it from achieving any speedup. This allows us to
use the existing separations of extended resolution from RAT− and GER− to separate the two
systems without needing to prove lower bounds entirely from scratch. The main difficulty is
in coming up with the appropriate ways of incorporating new variables into formulas.

As our next main result, we separate SBC− from RAT− (and hence BC−) with the same
strategy. In fact, we reuse the formulas separating GER− from RAT− and show that SBC−

can also efficiently work through the guard clauses in them, although in a different manner
than GER−.

▶ Theorem 4. There exists an infinite sequence (Γn)∞
n=1 of formulas such that Γn admits

SBC− proofs of size nO(1) but requires RAT− proofs of size 2Ω(n).

Finally, we give polynomial-size SBC− proofs of the pigeonhole principle, which exponen-
tially separates SBC− from GER− by a lower bound due to Kullmann [22, Lemma 9.4].

▶ Theorem 5. There exists an infinite sequence (Γn)∞
n=1 of formulas such that Γn admits

SBC− proofs of size nO(1) but requires GER− proofs of size 2Ω(n).

Along the way to our main results, we prove a partial simulation of RAT− by BC−. It is
partial in the sense that the size of the produced BC− proof is not always a polynomial in
the size of the RAT− proof (which is impossible due to Theorem 2). It also has the property
that, although the produced proof may sometimes be small, the simulation cannot necessarily
be carried out in time polynomial in the size of the produced proof. This is because the
simulation involves generating satisfying assignments to certain formulas obtained in the
process. To our knowledge, all of the “natural” simulations between the commonly studied
proof systems are efficient, so the partial simulation of RAT− by BC− is an odd example.
Another notable aspect of the simulation is that it directly informed the construction of the
formulas that we use for separating RAT− from GER−. We discuss this further at the end of
Section 4. Due to the technical nature of the simulation, we do not state it here in detail.

1.4 Open questions
We leave open the following.

▶ Question 6. Is RAT− exponentially separated from SBC−?

4 We use closure under restrictions here in the quantitative sense described in Section 1.
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▶ Question 7. Is GER− exponentially separated from SBC−?

Answering these questions will complete the picture of the relative strengths of the
weakest generalizations of BC− along each axis in Figure 1. However, we do not even have
any superpolynomial lower bounds for SBC−. If a separation of extended resolution from
SBC− is shown, it might be possible to relatively easily separate RAT− and GER− from
SBC− by tailoring guarded extension variables that SBC− cannot access (in the manner of
the current paper).

As an aside, the formulas that we use for the separations in this paper are arguably
“artificial” in that they do not encode any combinatorial principles. Separations with “natural”
formulas give more intuitive insight into the relative capabilities of the proof systems being
considered, so it is desirable to reprove Theorems 2 and 4 using formulas that encode some
combinatorial principles. On the other hand, those artificial formulas enable relatively simple
and modular proofs of the separations. An interesting open question is whether our strategy
of separating two proof systems P and Q, both of which effectively simulate a strong system
R, through syntactic manipulations of formulas that separate R from P and Q is more
generally applicable.

Another desirable goal is to establish tighter connections between the more commonly
studied proof systems and the generalizations of BC−. As mentioned earlier, Frege does not
simulate BC− unless it also simulates extended Frege. Additionally, it is already known that
bounded-depth Frege does not simulate BC− [4, Corollary 2.3]. We naturally wonder about
the converse direction.

▶ Question 8. Is there a subsystem of Frege stronger than resolution that DBC− simulates?

2 Preliminaries

We denote the set of positive integers by N+. For n ∈ N+, we let [n] := {1, . . . , n}. For a
sequence S = (x1, . . . , xn), its length is n and we denote it by |S|. We use ⟨x⟩ to compactly
denote an infinite sequence (xn)∞

n=1.

2.1 Propositional logic
For notation we mostly follow Buss and Thapen [4].

We use 0 and 1 to denote False and True, respectively. A literal is a propositional variable
or its negation. A set of literals is tautological if it contains a pair of complementary literals
x and x. A clause is the disjunction of a nontautological set of literals. We denote by V, L,
and C respectively the sets of all variables, all literals, and all clauses. A conjunctive normal
form formula (CNF) is a conjunction of clauses. We identify clauses with sets of literals and
CNFs with sets of clauses. In the rest of this section we use C, D to denote clauses and Γ, ∆
to denote CNFs.

When we know C ∪D to be nontautological, we write it as C ∨D. We write C ∨̇D to
indicate a disjoint disjunction, where C and D have no variables in common. We sometimes
write Γ ∪ {C} as Γ ∧ C.

We denote by var(Γ) the set of all the variables occurring in Γ. We say C subsumes D,
denoted C ⊒ D, if either D is tautological or C ⊆ D. For CNFs, we say Γ subsumes ∆,
denoted Γ ⊒ ∆, if for all D ∈ ∆ there exists some C ∈ Γ such that C ⊒ D. We take the
disjunction of a clause and a CNF as C∨∆ := {C∨D | D ∈ ∆ and C∪D is nontautological}.
We say Γ and ∆ are equisatisfiable, denoted Γ ≡sat ∆, if they are either both satisfiable or
both unsatisfiable. With respect to Γ, a clause C is redundant if Γ \ {C} ≡sat Γ ≡sat Γ ∪ {C}.
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A partial assignment α is a partial function α : V ⇀ {0, 1}, which also acts on literals
by letting α(x) := α(x). We identify α with the set {p ∈ L | α(p) = 1}, consisting of all the
literals it satisfies. For a set L of literals, we let L := {x | x ∈ L}. In particular, we use C to
denote the smallest partial assignment that falsifies all the literals in C. We say α satisfies
C, denoted α |= C, if there exists some p ∈ C such that α(p) = 1. We say α satisfies Γ if
for all C ∈ Γ we have α |= C. For C that α does not satisfy, the restriction of C under α is
C|α := C \ {p ∈ C | α(p) = 0}. Extending the above to CNFs, the restriction of Γ under α is
Γ|α := {C|α | C ∈ Γ and α ̸|= C}.

2.2 Proof complexity
We recall the definition of a proof system (in the sense of Cook and Reckhow [8]) and the basic
notions of proof complexity, which can also be found in the recent textbook by Krajíček [18,
Chapter 1].

In the rest of this section we think of Γ as a formula and Π as a proof, each encoded by a
string over some finite alphabet.

▶ Definition 9. A proof system is a polynomial-time computable binary relation P such that
the following hold.

Soundness: For all Γ and Π, if P (Γ,Π) holds then Γ is unsatisfiable.
Completeness: For all unsatisfiable Γ, there exists some Π such that P (Γ,Π) holds.

We call any Π satisfying P (Γ,Π) a P -proof of Γ.

Proof complexity is concerned with the sizes (or lengths) of proofs. For a proof system P

and a formula Γ, we define sizeP (Γ) := min{|Π| | Π is a P -proof of Γ} if Γ is unsatisfiable
and sizeP (Γ) := ∞ otherwise.

▶ Definition 10. A proof system P simulates Q if for all unsatisfiable Γ we have sizeP (Γ) =
sizeQ(Γ)O(1). Additionally, P polynomially simulates Q if there exists a polynomial-time
algorithm for converting a Q-proof of Γ into a P -proof of Γ.

▶ Definition 11. Proof systems P and Q are equivalent if they simulate each other. Addi-
tionally, P and Q are polynomially equivalent if they polynomially simulate each other.

We say P is exponentially separated from Q if there exists some sequence ⟨Γ⟩ of formulas
such that sizeP (Γn) = nO(1) while sizeQ(Γn) = 2Ω(n). We call such ⟨Γ⟩ easy for P and hard
for Q.

2.3 Resolution
▶ Definition 12. The resolution rule is

A ∨̇ x B ∨̇ x
A ∨B

,

where A, B are clauses and x is a variable. We call A ∨B the resolvent of A ∨ x and B ∨ x

on x.

▶ Definition 13. The weakening rule is

A
A ∨B

,

where A and B are clauses. We call A ∨B a weakening of A.
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We define a resolution proof in a slightly different form than usual: as a sequence of
CNFs instead of a sequence of clauses.

▶ Definition 14. A resolution proof of a CNF Γ is a sequence Π = (Γ1, . . . ,ΓN ) of CNFs
such that Γ1 = Γ, ⊥ ∈ ΓN , and, for all i ∈ [N − 1], we have Γi+1 = Γi ∪ {C}, where

C is a resolvent of two clauses D,E ∈ Γi or
C is a weakening of some clause D ∈ Γi.

The size of Π is N .

We write Res to denote the resolution proof system. A well known fact is that resolution
proofs are preserved under restrictions: if (Γ1,Γ2, . . . ,ΓN ) is a resolution proof of Γ, then, for
every partial assignment α, the sequence (Γ1|α,Γ2|α, . . . ,ΓN |α) contains a resolution proof
of Γ|α. This implies in particular the following.

▶ Lemma 15. For every CNF Γ and every partial assignment α, we have sizeRes(Γ|α) ≤
sizeRes(Γ).

We next define a weakened version of resolution that comes up often in the study of
decision algorithms for satisfiability.

▶ Definition 16. A unit propagation proof is a resolution proof where each use of the
resolution rule is of the form

A ∨̇ x x
A

.

Unit propagation is not complete. With Γ, ∆ CNFs and L = {p1, . . . , pk} a set of literals,
we define Γ ∧ L := Γ ∧ p1 ∧ · · · ∧ pk and write

Γ ⊢1 ⊥ to denote that there exists a unit propagation proof of Γ,
Γ ⊢1 L to denote

(
Γ ∧ L

)
⊢1 ⊥,

Γ ⊢1 ∆ to denote that for all D ∈ ∆ we have Γ ⊢1 D.
Note that Γ ⊢1 ∆ implies Γ |= ∆. Moreover, whether Γ ⊢1 ∆ holds can be decided in
polynomial time. This makes it useful as a component in defining inference rules.

As in the case of resolution, unit propagation proofs are preserved under restrictions.

▶ Lemma 17. For every CNF Γ, every set L of literals, and every partial assignment α such
that α ̸|= L, if Γ ⊢1 L, then Γ|α ⊢1 L|α.

Proof. The proof is available in the full version. ◀

From this point on, we discuss some strengthenings of the resolution proof system.

▶ Definition 18. Let Γ be a CNF and p, q be arbitrary literals. Consider a new variable x
(i.e., not occurring in any one of Γ, p, q). We call {x∨ p, x∨ q, x∨ p∨ q} a set of extension
clauses for Γ. In this context, we refer to x as the extension variable.

▶ Definition 19. A CNF Λ is an extension for a CNF Γ if there exists a sequence (λ1, . . . , λt)
such that Λ =

⋃t
i=1 λi, and, for all i ∈ [t], we have that λi is a set of extension clauses for

Γ ∪
⋃i−1

j=1 λj.

▶ Definition 20. An extended resolution proof of a CNF Γ is a pair (Λ,Π), where Λ is
an extension for Γ and Π is a resolution proof of Γ ∪ Λ. The size of (Λ,Π) is defined to be
|Λ| + |Π|.

We write ER to denote the extended resolution proof system.
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3 Inference rules

We recall the redundancy criteria that lead to the inference rules we use to augment resolution
proofs. The definitions are adapted from previous works [22, 15, 17, 13, 4].

▶ Definition 21. A clause C = p ∨̇ C ′ is a blocked clause (BC) for p with respect to a CNF
Γ if, for every clause D of the form p ∨̇D′ in Γ, the set C ′ ∪D′ is tautological.

A strict generalization of the notion of a blocked clause is a resolution asymmetric
tautology, defined as follows.

▶ Definition 22. A clause C = p ∨̇ C ′ is a resolution asymmetric tautology (RAT) for p
with respect to a CNF Γ if, for every clause D of the form p ∨̇D′ in Γ, we have Γ ⊢1 C

′ ∪D′.

Another strict generalization of a blocked clause is a set-blocked clause.5

▶ Definition 23. A clause C is a set-blocked clause (SBC) for a nonempty L ⊆ C with
respect to a CNF Γ if, for every clause D ∈ Γ with D ∩ L ̸= ∅ and D ∩ L = ∅, the set(
C \ L

)
∪
(
D \ L

)
is tautological.

We say C is a BC with respect to Γ if there exists a literal p ∈ C for which C is a BC
with respect to Γ, and similarly for RAT and SBC. Note that the above definitions do not
prohibit BCs, RATs, or SBCs with respect to Γ from containing variables not occurring in Γ.

It was shown by Kullmann [22], Järvisalo, Heule, and Biere [15], and Kiesl, Seidl, Tompits,
and Biere [17] that BCs, RATs, and SBCs are redundant, which makes it possible to use
them to define proof systems.

▶ Theorem 24. If a clause C is a BC, RAT, or SBC with respect to a CNF Γ, then
Γ \ {C} ≡sat Γ ≡sat Γ ∪ {C}.

▶ Definition 25. A blocked clauses proof of a CNF Γ is a sequence Π = (Γ1, . . . ,ΓN ) of
CNFs such that Γ1 = Γ, ⊥ ∈ ΓN , and, for all i ∈ [N − 1], we have Γi+1 = Γi ∪ {C}, where
either

C is a resolvent of two clauses D,E ∈ Γi,
C is a weakening of some clause D ∈ Γi, or
C is a blocked clause with respect to Γi.

The size of Π is N .

We write BC to denote the blocked clauses proof system. Replacing “blocked clause” by
“resolution asymmetric tautology” in the above definition gives the resolution asymmetric
tautologies proof system, which we denote by RAT. Replacing it by “set-blocked clause” gives
the set-blocked clauses proof system, which we denote by SBC.

RAT and SBC are two generalizations of BC, and we now define another, designed to
overcome the dependence of the validity of BC inferences on the order of clause additions
(see [22, Section 1.3]).

For a CNF Γ and a set V of variables, we let

BV (Γ) := {C ∈ C | C is a BC for a literal of some x ∈ V with respect to Γ}.

We also let

5 We define a set-blocked clause in a slightly different, although equivalent, way compared with the
original [17, Definition 4.1].
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B(Γ) := BV(Γ),
Bin(Γ) := B(Γ) ∩ Γ,
B−

V (Γ) := {C ∈ BV (Γ) | var(C) ⊆ var(Γ)},
B−(Γ) := B−

var(Γ)(Γ).

Before proceeding, we observe the below result, which follows immediately from the
definition of a blocked clause.

▶ Lemma 26. For all CNFs Γ and ∆ such that Γ ⊆ ∆, we have B(Γ) ⊇ B(∆).

Thus, we may assume without loss of generality that all of the blocked clause additions
in a BC proof are performed before any resolution steps. (A similar assumption does not
necessarily hold for RAT proofs.)

▶ Definition 27. A sequence (C1, . . . , Cm) of some clauses from a CNF Γ is a maximal
blocked sequence for Γ if for all i ∈ [m] the clause Ci is blocked with respect to Γ \

⋃i−1
j=1{Cj}

and Bin(Γ \
⋃m

i=1{Ci}) is empty.

For a CNF Γ, a maximal blocked sequence is unique up to the ordering of its clauses [22,
Lemma 6.1], which makes the following notion well defined.

▶ Definition 28. Let (C1, . . . , Cm) be a maximal blocked sequence for a CNF Γ. The kernel
of Γ is ker(Γ) := Γ \

⋃m
i=1{Ci}.

▶ Definition 29. A CNF Λ is a blocked extension for a CNF Γ if ker(Γ ∪ Λ) = ker(Γ).

▶ Definition 30. A generalized extended resolution proof of a CNF Γ is a pair (Λ,Π), where
Λ is a blocked extension for Γ and Π is a resolution proof of Γ ∪ Λ. The size of (Λ,Π) is
defined to be |Λ| + |Π|.

We write GER to denote the generalized extended resolution proof system. The relationship
between GER and BC is made clear by the following characterization of blocked extensions.

▶ Lemma 31 ([22, Lemma 6.5]). A CNF Λ is a blocked extension for a CNF Γ if and only if
there exists a CNF Γ′ ⊆ Γ and an ordering (C1, . . . , Cm) of all the clauses in Λ ∪ (Γ \ Γ′)
such that for all i ∈ [m] the clause Ci is blocked with respect to Γ′ ∪

⋃i−1
j=1{Cj}.

This result gives a view of GER as a version of BC that allows the temporary deletion of
clauses from the initial formula (i.e., clauses can be deleted as long as they are added back
later).

In this paper, we study the variants of BC, RAT, SBC, and GER that disallow the use of
new variables. We say that a proof of a CNF Γ is without new variables if all the variables
occurring in the proof are in var(Γ). In the case of GER, this constraint applies to the
blocked extension. We use BC−, RAT−, SBC−, and GER− to denote the variants without
new variables.

3.1 Useful facts
We conclude this section with a few standalone results that we will refer back to later. We
defer their proofs to the full version.

▶ Lemma 32. For every CNF Γ such that ker(Γ) = Γ, we have sizeGER−(Γ) = sizeBC−(Γ).

▶ Lemma 33. For every CNF Γ, we have sizeBC−(Γ) ≥ sizeRes(Γ ∪ B−(Γ)).
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▶ Definition 34. The projection of a CNF Γ onto a literal p is the CNF projp(Γ) := {C \{p} |
C ∈ Γ and p ∈ C}.

This definition plays a role in both our (partial) simulation of RAT− by BC− and our
GER− lower bounds. In particular, we use the following fact, which was already observed by
Kullmann [22, Section 4].

▶ Lemma 35. A clause C = p ∨̇ C ′ is a BC for p with respect to a CNF Γ if and only if the
partial assignment C ′ satisfies projp(Γ).

The next result is essentially due to Chang [5, Theorem 1]. Although its original form is
slightly weaker, the exact statement below can be obtained by a modification of Chang’s
proof. We provide its proof in the full version.

▶ Lemma 36. For every CNF Γ and every clause C such that Γ ⊢1 C, there exists a
resolution derivation (Γ1, . . . ,ΓN ) with N ≤ |var(Γ)| + 1 such that Γ1 = Γ, C ∈ ΓN , and
Γ ∪ {C} ⊒ ΓN .

The following gives a simple condition under which we regain monotonicity.

▶ Lemma 37 ([4, Lemma 1.20]). Let Γ and ∆ be CNFs such that Γ ⊆ ∆ and Γ ⊒ ∆. If a
clause is a BC, RAT, or SBC with respect to Γ, then it is a BC, RAT, or SBC with respect
to ∆.

4 Partial simulation of RAT− by BC−

We will show how to convert a RAT addition into a sequence of BC additions and resolution
steps. Assume that all the BCs and RATs in this section are without new variables.

▶ Definition 38. The nonblocking CNF of a clause C for a literal p ∈ C with respect to a
CNF Γ is NBΓ

p (C) :=
{
D \ C

∣∣ D ∈ projp(Γ) and (C \ {p}) ∪D is nontautological
}

.

As a consequence of the above definition, we have var
(

NBΓ
p (C)

)
∩ var(C) = ∅.

We say an assignment α minimally satisfies a CNF Γ, denoted α |=min Γ, if α satisfies Γ
while no proper subset α′ ⊊ α satisfies Γ. We let µ(Γ) :=

{
E ∈ C

∣∣ E |=min Γ
}

. Since two
different minimally satisfying assignments cannot contain one another, no clause E ∈ µ(Γ) is
contained in a different clause E′ ∈ µ(Γ).

▶ Example 39. Let Γ = {x, y ∨ z}. This CNF has two minimally satisfying assignments:
{x, y} and {x, z}. We thus have µ(Γ) = {x ∨ y, x ∨ z}.

Noting that Γ ∪ µ(Γ) is unsatisfiable for every CNF Γ, we let s(Γ) := |µ(Γ)| + sizeRes(Γ ∪
µ(Γ)). When Γ is unsatisfiable, we simply have s(Γ) = sizeRes(Γ).

▶ Theorem 40. Let C = p ∨̇ C ′ be a RAT for p with respect to a CNF Γ. There exists a
BC− derivation (Γ1, . . . ,ΓN ) such that Γ1 = Γ, C ∈ ΓN , and Γ ∪ {C} ⊒ ΓN , where, letting
Σ = NBΓ

p (C) and letting n = |var(Γ)|, we have N ≤ |Σ|(n+ 1) + s(Σ).

Proof. Since C is a RAT for p, for all D ∈ NBΓ
p (C) we have Γ ⊢1 C

′ ∨̇D, which implies in
particular that Γ ⊢1 C ∨̇D. Then, using Lemma 36, for all D ∈ NBΓ

p (C) we derive C ∨̇D

from Γ in resolution using at most n+ 1 steps. More formally, we derive Γ′ ∪
(
C ∨̇ NBΓ

p (C)
)

from Γ, where Γ′ is the set of intermediate clauses, guaranteed by Lemma 36 to satisfy
{C} ⊒ Γ′.

We proceed differently depending on the satisfiability of NBΓ
p (C).
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Case 1 (NBΓ
p (C) is unsatisfiable.) There exists a resolution proof Π = (∆1, . . . ,∆m), where

∆1 = NBΓ
p (C) and ⊥ ∈ ∆m. Suppose Π is a minimum-size proof, so it does not use

weakening. Consider the sequence Π′ = (C ∨ ∆1, . . . , C ∨ ∆m). This sequence is a valid
resolution derivation of C from C ∨̇ NBΓ

p (C), seen as follows:
By the definition of NBΓ

p (C), it has no variables in common with C. Since we assumed
that Π does not use weakening, no subsequent CNF in Π has any variables in common
with C either.
Let i ∈ [m− 1]. The sequence Π is a resolution proof, so we have ∆i+1 = ∆i ∪ {E},
where E is a resolvent of some F,G ∈ ∆i. Since ∆i has no variables in common with
C, it is not possible to resolve F and G on a variable of C. Then the clause C ∨̇E is a
resolvent of C ∨̇ F and C ∨̇G, which are in C ∨ ∆i. This proves by induction that Π′

is a valid resolution derivation.
Finally, since ⊥ ∈ ∆m, we have C ∈ (C ∨ ∆m).

Thus, resolution can derive C from Γ in at most
∣∣∣NBΓ

p (C)
∣∣∣(n + 1) + sizeRes

(
NBΓ

p (C)
)

steps.
Case 2 (NBΓ

p (C) is satisfiable.) Let Ψ = Γ ∪ Γ′ ∪
(
C ∨̇ NBΓ

p (C)
)

(i.e., the current CNF).
Since C ⊒ (Ψ\Γ), the literal p does not occur in Ψ\Γ. Then we have projp(Ψ) = projp(Γ),
and, consequently, NBΨ

p (C) = NBΓ
p (C).

Let E be a clause such that var(E) ∩ var(C) = ∅. By Lemma 35, the clause p ∨̇ C ′ ∨̇ E

is a BC for p with respect to Ψ if and only if the partial assignment C ′ ∨̇ E satisfies
projp(Ψ). By the definition of a nonblocking CNF, C ′ already satisfies projp(Ψ)\NBΨ

p (C),
so p ∨̇ C ′ ∨̇ E is a BC for p with respect to Ψ if and only if E satisfies NBΨ

p (C).
Let us write µ for µ

(
NBΨ

p (C)
)

. All clauses in C ∨̇ µ are blocked for p with respect to Ψ,
and the addition of each such clause of the form C ∨̇E rules out, for C ∨̇ NBΨ

p (C), every
partial assignment α containing C ∪ E. Then we have

(
C ∨̇ NBΨ

p (C)
)

∪ (C ∨̇ µ) |= C,
where every partial assignment containing C falsifies the left-hand side (i.e., NBΨ

p (C) ∪ µ
is unsatisfiable). Also, no clause E ∈ µ contains p and no clause E ∈ µ is a subset of a
different clause E′ ∈ µ. This implies in particular that, for every subset µ′ ⊆ µ and for
every clause E ∈ µ \ µ′, if E |= NBΨ

p (C), then E |= NBΨ
p (C) ∪ µ′. We thus derive C ∨̇ µ

from Ψ by a sequence of blocked clause additions.
As in the previous case, attaching C to a resolution proof of NBΨ

p (C)∪µ gives a resolution
derivation of C, so we derive C from

(
C ∨̇ NBΨ

p (C)
)

∪ (C ∨̇ µ) in resolution.
In the end, BC− can derive C from Γ in at most

∣∣NBΓ
p (C)

∣∣(n+1)+ |µ|+sizeRes
(
NBΓ

p (C) ∪ µ
)

steps. ◀

Given a RAT− proof, we can apply the above theorem to recursively replace the earliest
RAT addition in the proof by a BC− derivation. The intermediate clauses in the derivation
replacing the addition of a RAT C are all subsumed by C, which ensures by Lemma 37 that
the validity of later RAT additions are preserved. We can thus translate an entire RAT−

proof to a BC− proof.
In the above simulation, when NBΓ

p (C) is unsatisfiable, we do not use any blocked clause
additions. By Lemma 35, no blocked clause for p exists, and since the RAT addition by itself
only gives useful information about the clauses containing p, a simulation where we add a
clause that is blocked for a different literal needs to be more sophisticated. In particular,
such a simulation is unlikely to be local in the sense of the output consisting of a sequence
of derivations that each simulate a single step in the input. (Most simulations in proof
complexity are local.) Assuming that the above simulation is the best possible, if every RAT
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addition in a RAT− proof Π has an unsatisfiable nonblocking CNF, then BC− essentially
falls back to refuting the nonblocking CNFs for locally simulating Π. This observation hints
at the transformation in (4) for separating RAT− from GER−.

5 Incomparability of RAT− and GER−

We now show that RAT− is exponentially separated from GER− and vice versa, which also
exponentially separates both systems from BC−. For both directions, we follow a strategy
similar at a high level to the one that Kullmann [22, Lemma 8.4] used to prove an exponential
separation of BC− from resolution.

Let P and Q be proof systems (without new variables) that simulate BC−. To separate P
from Q, we take a sequence ⟨Γ⟩ of CNFs separating ER from Q and we incorporate extension
variables into the formulas in a way that allows P to simulate the ER proof while preventing
Q from achieving any speedup. This strategy is made possible by the fact that BC− effectively
simulates ER. See also the discussion by Buss and Thapen [4, Section 2.2].

From this point on, given a CNF Γ, we use (Λ∗,Π∗) to denote a minimum-size ER proof
of Γ, where Λ∗ is the union of a sequence of t(Γ) := |Λ∗|/3 sets of extension clauses such
that the ith set λi is of the form {xi ∨ pi, xi ∨ qi, xi ∨ pi ∨ qi}. Thus, we implicitly reserve{
x1, . . . , xt(Γ)

}
as the set of extension variables used in Λ∗. We assume without loss of

generality that the variables of pi and qi are in var(Γ) ∪ {x1, . . . , xi−1} for all i ∈ [t(Γ)].

5.1 Exponential separation of RAT− from GER−

Let Γ be a CNF and (Λ∗,Π∗) be a minimum-size ER proof of Γ as described above. Consider
the transformation

G(Γ) := Γ ∪
t(Γ)⋃
i=1

[
(xi ∨ Γ) ∪ (xi ∨ Γ)

]
, (4)

where x1, . . . , xt(Γ) are the extension variables used in Λ∗. When Γ is unsatisfiable, each
extension variable above is “locked” behind the projection Γ, which RAT− can overcome but
BC− cannot.

▶ Lemma 41. For every CNF Γ, we have sizeRAT−(G(Γ)) ≤ sizeER(Γ).

Proof. We will show that the minimum-size ER proof (Λ∗,Π∗) of Γ directly gives a RAT−

proof of G(Γ) of the same size.
We write t for t(Γ). Let (λ1, . . . , λt) be the sequence of t sets of extension clauses that

make up Λ∗. Consider an arbitrary i ∈ [t], and suppose that we have derived
⋃i−1

j=1 λj from
G(Γ) by a sequence of RAT additions, so the current CNF is ∆ = G(Γ) ∪

⋃i−1
j=1 λj . We will

introduce the clauses in λi = {xi ∨ pi, xi ∨ qi, xi ∨ pi ∨ qi} by a sequence of RAT additions.
Note that, since λi is a set of extension clauses for Γ ∪

⋃i−1
j=1 λj , so far the variable xi occurs

only in G(Γ) \ Γ.
1. The clause xi ∨ pi is a RAT for xi with respect to ∆ because all earlier occurrences of

xi are clauses of the form xi ∨D, where D ∈ Γ. We thus require ∆ ⊢1 {pi} ∪D for all
D ∈ Γ. This is indeed the case since we actually have D ∈ ∆ by the construction of G(Γ),
which implies ∆ ⊢1 {pi} ∪D.

2. The clause xi ∨ qi is similarly a RAT for xi with respect to ∆ ∪ {xi ∨ pi}.
3. The clause xi ∨ pi ∨ qi is similarly a RAT for xi with respect to ∆. Moreover, it is a

BC for xi with respect to {xi ∨ pi, xi ∨ qi} since {pi, pi, qi} and {qi, pi, qi} are both
tautological. As a result, xi ∨ pi ∨ qi is a RAT with respect to ∆ ∪ {xi ∨ pi, xi ∨ qi}.
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It follows by induction that we can derive Λ∗ from G(Γ) in RAT−. Since Π∗ is a resolution
proof of Γ ∪ Λ∗, and since G(Γ) contains Γ, we also have a resolution proof of G(Γ) ∪ Λ∗.
Thus, we have a RAT− proof of G(Γ) of size |Λ∗| + |Π∗| = sizeER(Γ). ◀

As a consequence of the above, if a sequence ⟨Γ⟩ of CNFs is easy for ER, then, independent
of whether ⟨Γ⟩ is easy or hard for RAT−, the sequence G(⟨Γ⟩) := (G(Γ1),G(Γ2), . . . ) is easy
for RAT−. In contrast, the following result implies that the extension variables added by G
are of no use to BC−.

▶ Lemma 42. For every CNF Γ, we have sizeBC−(G(Γ)) ≥ sizeRes(Γ ∪ B−(Γ)).

Proof. When Γ is satisfiable, the inequality holds trivially, so suppose that Γ is unsatisfiable.
Applying Lemma 33 to G(Γ), we have

sizeBC−(G(Γ)) ≥ sizeRes
(
G(Γ) ∪ B−(G(Γ))

)
. (5)

We claim that no clause in B−(G(Γ)) is blocked for a literal of any of the variables in
X =

{
x1, . . . , xt(Γ)

}
. To see this, consider a clause C of the form x ∨̇ C ′, where x ∈ X. If C

is blocked for x with respect to G(Γ), then C ′ is a satisfying assignment to projx(G(Γ)) = Γ
by Lemma 35. Since Γ is unsatisfiable, no such assignment exists. Therefore, C cannot be
blocked for x, which leaves us with

B−(G(Γ)) = B−
var(Γ)(G(Γ)). (6)

Furthermore, since Γ ⊆ G(Γ), every clause in B−
var(Γ)(G(Γ)) has to be blocked in particular

with respect to Γ. This requires B−
var(Γ)(G(Γ)) to consist of clauses of the form C ∨̇D, where

C ∈ B−(Γ) and var(D) ⊆ X (with D possibly empty). In light of this, consider a partial
assignment α such that

α(z) =
{

1 if z ∈ X

undefined otherwise.

It is straightforward to see that G(Γ)|α = Γ. Additionally, for every clause C ∨̇ D (of the
above form) in B−

var(Γ)(G(Γ)), the restriction (C ∨̇D)|α is either 1 or C. We thus have(
G(Γ) ∪ B−

var(Γ)(G(Γ))
)∣∣∣

α
= Γ ∪ B−(Γ). (7)

Putting (5), (6), and (7) together, we finally obtain

sizeBC−(G(Γ)) ≥ sizeRes
(
G(Γ) ∪ B−(G(Γ))

)
= sizeRes

(
G(Γ) ∪ B−

var(Γ)(G(Γ))
)

≥ sizeRes

((
G(Γ) ∪ B−

var(Γ)(G(Γ))
)∣∣∣

α

)
(Lemma 15)

= sizeRes
(
Γ ∪ B−(Γ)

)
,

which is the desired inequality. ◀

For certain CNFs, the above result carries over to GER−.

▶ Lemma 43. For every CNF Γ such that ker(Γ) = Γ, we have sizeGER−(G(Γ)) ≥ sizeRes(Γ ∪
B−(Γ)).
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Proof. The proof is available in the full version. ◀

To prove the separation, we invoke the above results with Γ as the pigeonhole principle,
which states that every “pigeon” i ∈ [n+ 1] is mapped to some “hole” k ∈ [n] and that no
two distinct pigeons i, j ∈ [n+ 1] are mapped to the same hole. It is defined for n ∈ N+ as

PHPn :=
⋃

i∈[n+1]

{pi,1 ∨ · · · ∨ pi,n} ∪
⋃

i,j∈[n+1], i ̸=j
k∈[n]

{pi,k ∨ pj,k},

where we call the first set of clauses the pigeon axioms and the second set the hole axioms.

▶ Theorem 44. RAT− is exponentially separated from GER−.

Proof. Cook [7] constructed polynomial-size ER proofs of PHPn, which implies by Lemma 41
that sizeRAT−(G(PHPn)) = nO(1). Kullmann [22, Theorem 2] proved that sizeRes(PHPn ∪
B−(PHPn)) = 2Ω(n). Noting that ker(PHPn) = PHPn for all n ∈ N+, we apply Lemma 43
to obtain sizeGER−(G(PHPn)) = 2Ω(n). Thus, G(⟨PHP⟩) exponentially separates RAT− from
GER−. ◀

5.2 Exponential separation of GER− from RAT−

We proceed in a similar way to the previous section. Let Γ be a CNF and (Λ∗,Π∗) be a
minimum-size ER proof of Γ. Take a set

{
y1, . . . , yt(Γ)

}
⊆ V \ var(Γ ∪ Λ∗) of t(Γ) distinct

variables. Consider the transformation

H(Γ) := Γ ∪
t(Γ)⋃
i=1

{xi ∨ yi, xi ∨ yi}, (8)

where x1, . . . , xt(Γ) are the extension variables used in Λ∗. As before, only one of the two
systems can make any use of the extension variables incorporated into the formula. This
time, the temporary deletion available to GER− makes the difference.

▶ Lemma 45. For every CNF Γ, we have sizeGER−(H(Γ)) ≤ sizeER(Γ).

Proof. Let (Λ∗,Π∗) be the minimum-size ER proof of Γ. We will show that the clauses in
Λ∗ ∪ (H(Γ) \ Γ) can be derived from Γ in some sequence by blocked clause additions, which
implies by Lemma 31 that Λ∗ is a blocked extension for H(Γ).

Recall that extension clauses can be derived in sequence by blocked clause additions.
Then, since Λ∗ is an extension for Γ, we derive Λ∗ by such a sequence. Next, from Γ ∪ Λ∗,
we derive the clauses in H(Γ) \ Γ. Let us write t for t(Γ). Consider the sequence (x1 ∨
y1, . . . , xt ∨ yt, x1 ∨ y1, . . . , xt ∨ yt). For each i ∈ [t], the ith clause xi ∨ yi in the first
half of the sequence is blocked for yi since yi does not occur in any of the earlier clauses.
Similarly, the ith clause xi ∨ yi in the second half of the sequence is blocked for yi since the
only earlier occurrence of yi is the clause xi ∨ yi and {xi, xi} is tautological. As a result, Λ∗

is a blocked extension for H(Γ).
Since Π∗ is a resolution proof of Γ∪Λ∗, and since H(Γ) contains Γ, we also have a resolution

proof of H(Γ) ∪ Λ∗. Thus, we have a GER− proof of H(Γ) of size |Λ∗| + |Π∗| = sizeER(Γ). ◀

▶ Lemma 46. Let Γ be a CNF, and let n = |var(Γ)|. We have sizeRAT−(H(Γ)) ≥ sizeRAT− (Γ)
n+1 .
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Proof. We write t for t(Γ). Let V = var(H(Γ) \ Γ) (i.e., the set of variables added by H),
and let α be a partial assignment such that

α(z) =
{

1 if z ∈ V

undefined otherwise.

We claim that, for all N ∈ N+, given a RAT− derivation Π = (∆1, . . . ,∆N ) with ∆1 = H(Γ),
there exists a RAT− derivation Π′ = (Ψ1, . . . ,ΨN ′) with N ′ ≤ N · (|var(Γ)| + 1) such that

∆1|α = Γ = Ψ1,
∆N |α ⊆ ΨN ′ , and
∆N |α ⊒ ΨN ′ .

The second condition above implies in particular that if ⊥ ∈ ∆N , then ⊥ ∈ ΨN ′ . This in
turn implies the desired statement, since it means that if H(Γ) has a RAT− proof of size N ,
then Γ has a RAT− proof of size at most N · (|var(Γ)| + 1).

We proceed by induction. For a derivation Π = (∆1) of size 1 with ∆1 = H(Γ), the
derivation Π′ = (∆1|α) satisfies the conditions above. Let Π = (∆1, . . . ,∆m) be a RAT−

derivation with ∆1 = H(Γ). Suppose that Π′ = (Ψ1, . . . ,Ψm′) is a RAT− derivation with
m′ ≤ m · (|var(Γ)| + 1) satisfying the above conditions. Let C be a clause that is derived
from ∆m either by resolution, weakening, or RAT addition. We will show that there exists
a RAT− derivation from Ψm′ |α of a CNF that contains and is subsumed by (∆m ∪ {C})|α.
For simplicity, we will establish this for ∆m|α instead of Ψm′ |α, with the understanding that
the containment and the subsumption conditions above imply by Lemma 37 that the same
derivation can be made also from Ψm′ |α. There exists a trivial derivation when α |= C since
it implies that (∆m ∪ {C})|α = ∆m|α, so suppose that α ̸|= C. As a consequence, α does
not satisfy any subset of C.

From this point on, we write ∆ instead of ∆m to reduce clutter.
Case 1 (C is a resolvent of D,E ∈ ∆ on v.) Without loss of generality, suppose that v ∈ D

and v ∈ E.
Case 1.1 (v ∈ V .) We have E|α = (E \ {v})|α. Since (E \ {v}) ⊆ C, we have E|α ∈ ∆|α

and E|α ⊆ C|α, so C|α is derived from ∆|α by weakening.
Case 1.2 (v /∈ V .) Since (D \ {v}) ⊆ C and (E \ {v}) ⊆ C, and since α does not set v,

we have D|α ∈ ∆|α and E|α ∈ ∆|α. Moreover, C|α is a resolvent of D|α ∈ ∆|α and
E|α ∈ ∆|α, so C|α is derived from ∆|α by resolution.

Case 2 (C is a weakening of a clause D ∈ ∆.) Since D ⊆ C, we have D|α ∈ ∆|α and
D|α ⊆ C|α, so C|α is derived from ∆|α by weakening.

Case 3 (C is a RAT for p ∈ C with respect to ∆.) Since we assumed α ̸|= C, there are two
possibilities: either p ∈ V or var(p) /∈ V .
Case 3.1 (p ∈ V .) Either p = xi or p = yi for some i ∈ [t]. Suppose p = xi. (The

case for p = yi is symmetric.) Since C is a RAT for xi with respect to ∆, and
since xi ∨ yi ∈ ∆, we have ∆ ⊢1 (C \ {xi}) ∪ {yi}. By Lemma 17, we also have
∆|α ⊢1

(
(C \ {xi}) ∪ {yi}

)∣∣
α
, which simplifies to ∆|α ⊢1 C|α. By Lemma 36, there

exists a resolution derivation of C|α from ∆|α of size |var(∆|α)| + 1 ≤ |var(Γ)| + 1.
Moreover, the final CNF in this derivation is subsumed by ∆|α ∪ C|α = (∆ ∪ {C})|α
as desired.

Case 3.2 (var(p) /∈ V .) The clause C is of the form C ′ ∨̇ p with var(p) /∈ V . Since C is
a RAT for p with respect to ∆, for every clause D ∈ ∆ of the form D′ ∨̇ p, we have
∆ ⊢1 C

′ ∪ D′. We will show that C|α is a RAT with respect to ∆|α. Every clause
D ∈ ∆ such that α |= D simply disappears from ∆|α, so such clauses are irrelevant
when determining whether C|α is a RAT with respect to ∆|α. On the other hand, for
D ∈ ∆ of the form D′ ∨̇ p such that α ̸|= D, we have ∆|α ⊢1 (C ′ ∪D′)|α by Lemma 17.
Thus, C|α is a RAT for p with respect to ∆|α. ◀
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Let n = 2k for k ∈ N+. For a propositional variable x, let us write x ̸= 0 and x ̸= 1 to
denote the literals x and x, respectively. To prove the separation, we invoke the above results
with Γ as the bit pigeonhole principle, which states that for all i, j ∈ [n+ 1] such that i ̸= j

the binary strings pi
1 . . . p

i
k and pj

1 . . . p
j
k are different. It is defined for n as

BPHPn :=
⋃

i,j∈[n+1], i ̸=j

(h1,...,hk)∈{0,1}k

(
k∨

ℓ=1
pi

ℓ ̸= hℓ ∨
k∨

ℓ=1
pj

ℓ ̸= hℓ

)
.

▶ Theorem 47. GER− is exponentially separated from RAT−.

Proof. Buss and Thapen [4, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR−,
which ER simulates. By Lemma 45, we have sizeGER−(H(BPHPn)) = nO(1). They [4,
Theorem 5.4] also proved that sizeRAT−(BPHPn) = 2Ω(n). Applying Lemma 46 gives
sizeRAT−(H(BPHPn)) = 2Ω(n). Thus, H(⟨BPHP⟩) exponentially separates GER− from
RAT−. ◀

Theorem 2 follows directly from Theorems 44 and 47.

6 Exponential separation of SBC− from RAT−

Recall the transformation in (8), which we used to construct formulas separating GER− from
RAT−. We had

H(Γ) = Γ ∪
t(Γ)⋃
i=1

{xi ∨ yi, xi ∨ yi},

where x1, . . . , xt(Γ) are the extension variables used in a minimum-size ER proof (Λ∗,Π∗) of
Γ. We prove below that SBC− can use those variables and simulate the ER proof of Γ, so
deletion is not the only way to overcome the obstacles in H(Γ) that prevent RAT− from
gaining any speedup.

▶ Lemma 48. For every CNF Γ, we have sizeSBC−(H(Γ)) ≤ 2 · sizeER(Γ).

Proof. We write t for t(Γ). Let (λ1, . . . , λt) be the sequence of t sets of extension clauses
that make up Λ∗. For each i ∈ [t], we will first derive the clauses in λ′

i := {xi ∨ yi ∨ pi, xi ∨
yi ∨ qi, xi ∨ yi ∨ pi ∨ qi} by a sequence of SBC additions. Consider an arbitrary i ∈ [t], and
suppose that we have derived

⋃i−1
j=1 λ

′
j from H(Γ) by a sequence of SBC additions, so the

current CNF is ∆ = H(Γ) ∪
⋃i−1

j=1 λ
′
j .

1. The clause E1
i := xi ∨ yi ∨ pi is an SBC for L = {xi, yi} with respect to ∆ because xi ∨ yi

and xi ∨ yi are the only clauses in ∆ that intersect with L, and both of these clauses also
intersect with L (i.e., there is nothing to check).

2. The clause E2
i := xi ∨ yi ∨ qi is similarly an SBC for L = {xi, yi} with respect to ∆.

Furthermore, we have E1
i ∩ L = ∅, so E2

i is an SBC with respect to ∆ ∪
{
E1

i

}
.

3. The clause E3
i := xi ∨ yi ∨ pi ∨ qi is similarly an SBC for M = {xi, yi} with respect to ∆.

It is also an SBC for M with respect to
{
E1

i , E
2
i

}
since

(
E3

i \M
)

∪
(
E1

i \M
)

= {pi, qi, pi}
and

(
E3

i \M
)

∪
(
E2

i \M
)

= {pi, qi, qi} are both tautological. As a result, E3
i is an SBC

with respect to ∆ ∪
{
E1

i , E
2
i

}
.

It follows by induction that we can derive
⋃t

i=1 λ
′
i from H(Γ) in SBC−. For each i ∈ [t],

resolving E1
i and E2

i against xi ∨ yi and resolving E3
i against xi ∨ yi gives λi, thus we can

derive Λ∗ from H(Γ) in SBC−. Since Π∗ is a resolution proof of Γ ∪ Λ∗, and since H(Γ)
contains Γ, we also have a resolution proof of H(Γ) ∪ Λ∗. In the end, we have an SBC− proof
of H(Γ) of size at most 2|Λ∗| + |Π∗| ≤ 2 · sizeER(Γ). ◀
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It is now straightforward to deduce Theorem 4 by invoking Lemmas 46 and 48 with Γ as
the bit pigeonhole principle (in the manner of the proof of Theorem 47).

7 Exponential separation of SBC− from GER−

We now give polynomial-size SBC− proofs of PHPn. More specifically, we observe that the
SPR− proofs of PHPn constructed by Buss and Thapen [4, Theorem 4.3] are in fact valid
SBC− proofs, so the proof below closely follows theirs. (No knowledge of SPR− is required
to follow this section.)

▶ Lemma 49. sizeSBC−(PHPn) = nO(1).

Proof. We essentially formalize in SBC− a short inductive proof of PHPn, which assumes
without loss of generality that the smallest pigeon is mapped to the smallest hole, derives
from this assumption a renamed instance of PHPn−1, and inductively repeats these steps
until deriving a trivial contradiction.

Recall that PHPn consists of the clauses Pi := pi,1 ∨ · · · ∨ pi,n and Hi,j,k := pi,k ∨ pj,k for
i, j ∈ [n+ 1] and k ∈ [n] with i ̸= j.

For i ∈ [n− 1], j ∈ [n+ 1], and k ∈ [n] such that j, k > i, let

Ci,j,k := pi,k ∨ pj,i ∨

 ∨
ℓ∈[n+1]

ℓ̸=i

pℓ,k

 ∨

 ∨
ℓ∈[n+1]

ℓ̸=j

pℓ,i

 .

Also, for i ∈ [n− 1], let Λi := {Ci,j,k | j ∈ [n+ 1], k ∈ [n], and j, k > i}. We will first show
that, for all i ∈ [n− 1], from Ψi−1 := PHPn ∪

⋃i−1
ℓ=1 Λℓ we can derive the clauses in Λi in any

order by a sequence of set-blocked clause additions, which implies that we can obtain Ψn−1
from PHPn in SBC−. Afterwards, we will give a polynomial-size resolution derivation of the
empty clause from Ψn−1, concluding the proof.

For every clause Ci,j,k ∈ Λi and every subset Λ′
i ⊆ Λi \ {Ci,j,k}, we claim that Ci,j,k is

an SBC for L = {pi,k, pj,i, pi,i, pj,k} ⊆ Ci,j,k with respect to Ψi−1 ∪ Λ′
i. This requires us to

show that for all D ∈ Ψi−1 ∪ Λ′
i with D∩L ̸= ∅ and D∩L = ∅ the set

(
Ci,j,k \L

)
∪
(
D \L

)
is tautological. There are three cases.

Case 1 (D ∈ PHPn.) If D is a clause in PHPn such that D ∩ L ̸= ∅ and D ∩ L = ∅, then
either D = Hi,i′,i for some i′ ∈ [n+ 1] such that i′ ≠ j or D = Hj,j′,k for some j′ ∈ [n+ 1]
such that j′ ̸= i. If D = Hi,i′,i, then we have pi′,i ∈ Ci,j,k \ L and pi′,i ∈ D \ L, so the
union of the two sets is tautological. The argument for the case of D = Hj,j′,k is similar.

Case 2 (D ∈
⋃i−1

ℓ=1 Λℓ.) Let D = Ci′,j′,k′ be an arbitrary clause in
⋃i−1

ℓ=1 Λℓ, where i′ < i and
j′, k′ > i′. A simple inspection shows that we have D ∩ L ≠ ∅ if and only if k′ = i or
k′ = k. If k′ = i, then pi,i ∈ D. Noting that i′ ̸= j, if k′ = k, then pj,k ∈ D. Either
way, D ∩ L = ∅ fails to hold, so there exists no D ∈

⋃i−1
ℓ=1 Λℓ such that D ∩ L ̸= ∅ and

D ∩ L = ∅.
Case 3 (D ∈ Λ′

i.) Let D = Ci,j′,k′ be an arbitrary clause in Λ′
i, where j′, k′ > i. It is

straightforward to see that we have pi,i ∈ D unless j′ = i. Then, since j′ > i, there exists
no D ∈ Λ′

i such that D ∩ L = ∅.

Thus, we obtain Ψn−1 from PHPn in SBC−, and now we construct a resolution proof of
Ψn−1. First, for each (i, j, k) such that Ci,j,k is defined, we resolve Ci,j,k against the axioms
for the holes k and i to derive pi,k ∨ pj,i. Then, for each i ∈ [n] and j ∈ [n + 1] such that
j > i, we derive the clause pj,i by induction on i as follows: Fix i and j such that j > i. Let

∆i,j := {pi,k | k ∈ [n] and k < i} ∪ {pi,i ∨ pj,i} ∪ {pi,k ∨ pj,i | k ∈ [n] and k > i},
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where we have the clauses in the first set from the induction hypothesis, the second set from
PHPn, and the third set from resolving Ci,j,k against the hole axioms in the previous step.
Resolving each clause in ∆i,j against the pigeon axiom Pi thus gives pj,i. Finally, we resolve
for each i ∈ [n] the clause pn+1,i against Pn+1 to derive the empty clause. ◀

Kullmann [22, Lemma 9.4] showed that sizeGER−(PHPn) = 2Ω(n), so Theorem 5 follows
by Lemma 49.

References
1 Noriko H. Arai and Alasdair Urquhart. Local symmetries in propositional logic. In Proceedings

of the 9th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX), number 1847 in Lecture Notes in Computer Science, pages
40–51. Springer, 2000. doi:10.1007/10722086_3.

2 Lee A. Barnett, David Cerna, and Armin Biere. Covered clauses are not propagation redundant.
In Proceedings of the 10th International Joint Conference on Automated Reasoning (IJCAR),
number 12166 in Lecture Notes in Computer Science, pages 32–47. Springer, 2020. doi:
10.1007/978-3-030-51074-9_3.

3 Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, The University of
Chicago, 1937.

4 Sam Buss and Neil Thapen. DRAT and propagation redundancy proofs without new variables.
Logical Methods in Computer Science, 17(2:12), 2021. doi:10.23638/LMCS-17(2:12)2021.

5 Chin-Liang Chang. The unit proof and the input proof in theorem proving. Journal of the
ACM, 17(4):698–707, 1970. doi:10.1145/321607.321618.

6 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Symposium on Theory of Computing
(STOC), pages 174–183. Association for Computing Machinery, 1996. doi:10.1145/237814.
237860.

7 Stephen A. Cook. A short proof of the pigeon hole principle using extended resolution. ACM
SIGACT News, 8(4):28–32, 1976. doi:10.1145/1008335.1008338.

8 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

9 William Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)
90039-4.

10 Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Proceedings of the Design, Automation and Test in Europe Conference (DATE),
pages 886–891. IEEE Computer Society, 2003. doi:10.1109/DATE.2003.1253718.

11 Alexander Hertel, Philipp Hertel, and Alasdair Urquhart. Formalizing dangerous SAT en-
codings. In Proceedings of the 10th International Conference on Theory and Applications
of Satisfiability Testing (SAT), number 4501 in Lecture Notes in Computer Science, pages
159–172. Springer, 2007. doi:10.1007/978-3-540-72788-0_18.

12 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Encoding redundancy for satisfaction-
driven clause learning. In Proceedings of the 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), number 11427 in Lecture
Notes in Computer Science, pages 41–58. Springer, 2019. doi:10.1007/978-3-030-17462-0_3.

13 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems.
Journal of Automated Reasoning, 64(3):533–554, 2020. doi:10.1007/s10817-019-09516-0.

14 Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. PRuning through satisfac-
tion. In Proceedings of the 13th Haifa Verification Conference (HVC), number 10629 in Lecture
Notes in Computer Science, pages 179–194. Springer, 2017. doi:10.1007/978-3-319-70389-3_
12.

ITCS 2023

https://doi.org/10.1007/10722086_3
https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.23638/LMCS-17(2:12)2021
https://doi.org/10.1145/321607.321618
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/1008335.1008338
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.1007/978-3-540-72788-0_18
https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/978-3-319-70389-3_12


101:22 Exponential Separations Using Guarded Extension Variables

15 Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the
6th International Joint Conference on Automated Reasoning (IJCAR), number 7364 in Lecture
Notes in Computer Science, pages 355–370. Springer, 2012. doi:10.1007/978-3-642-31365-3_
28.

16 Benjamin Kiesl, Adrián Rebola-Pardo, Marijn J. H. Heule, and Armin Biere. Simulating
strong practical proof systems with extended resolution. Journal of Automated Reasoning,
64(7):1247–1267, 2020. doi:10.1007/s10817-020-09554-z.

17 Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Local redundancy in SAT:
Generalizations of blocked clauses. Logical Methods in Computer Science, 14(4:3), 2018.
doi:10.23638/LMCS-14(4:3)2018.

18 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019. doi:10.1017/
9781108242066.

19 Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22(3):253–275,
1985. doi:10.1007/BF00265682.

20 Oliver Kullmann. Worst-case analysis, 3-SAT decision and lower bounds: Approaches for
improved SAT algorithms. In Satisfiability Problem: Theory and Applications, number 35 in
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 261–313.
American Mathematical Society, 1997. doi:10.1090/dimacs/035.

21 Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1–2):1–72, 1999. doi:10.1016/S0304-3975(98)00017-6.

22 Oliver Kullmann. On a generalization of extended resolution. Discrete Applied Mathematics,
96–97:149–176, 1999. doi:10.1016/S0166-218X(99)00037-2.

23 László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1 optimiza-
tion. SIAM Journal on Optimization, 1(2):166–190, 1991. doi:10.1137/0801013.

24 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

25 Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets (and some
facets of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984. doi:
10.1016/0022-0000(84)90068-0.

26 Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In Proceedings of
the 1st Innovations in Computer Science (ICS), pages 370–382. Tsinghua University Press,
2010.

27 John A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, 1965. doi:10.1145/321250.321253.

28 Stefan Szeider. The complexity of resolution with generalized symmetry rules. Theory of
Computing Systems, 38(2):171–188, 2005. doi:10.1007/s00224-004-1192-0.

29 Grigori S. Tseitin. On the complexity of derivation in propositional calculus. Zapiski Nauchnykh
Seminarov LOMI, 8:234–259, 1968.

30 Alasdair Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathematics,
96–97:177–193, 1999. doi:10.1016/S0166-218X(99)00039-6.

31 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In Proceedings of the
10th International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.

32 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT), number 8561 in Lecture
Notes in Computer Science, pages 422–429. Springer, 2014. doi:10.1007/978-3-319-09284-3_
31.

https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/s10817-020-09554-z
https://doi.org/10.23638/LMCS-14(4:3)2018
https://doi.org/10.1017/9781108242066
https://doi.org/10.1017/9781108242066
https://doi.org/10.1007/BF00265682
https://doi.org/10.1090/dimacs/035
https://doi.org/10.1016/S0304-3975(98)00017-6
https://doi.org/10.1016/S0166-218X(99)00037-2
https://doi.org/10.1137/0801013
https://doi.org/10.1109/12.769433
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1145/321250.321253
https://doi.org/10.1007/s00224-004-1192-0
https://doi.org/10.1016/S0166-218X(99)00039-6
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

	p000-Frontmatter
	Preface

	p001-Abboud
	1 Introduction
	1.1 Our Contribution: Worst-Case to Expander-Case Self-Reductions
	1.2 Applications
	1.3 Related Work

	2 Preliminaries
	3 Technical Overview
	4 The Reductions
	4.1 The Expansion Layer Construction
	4.2 Direct-WTERs for Maximum Cardinality Matching and Minimum Vertex Cover
	4.3 Direct-WTER for k-Clique
	4.4 Direct-WTER for Subgraph Isomorphism
	4.5 ED-WTER for 4-Cycle
	4.6 Direct-WTER for Minimum Dominating Set

	5 Definition

	p002-Abdolazimi
	1 Introduction
	1.1 Related Work

	2 Main Technical Theorem
	3 Main Theorems
	3.1 Matroid alpha-Partition Property (Proof of Theorem 4)
	3.2 Matroid Secretary alpha-Partition Property (Proof of Theorem 2)

	4 Conclusion

	p003-Allender
	1 Introduction
	2 Preliminaries
	3 A New Characterization of NISZK
	4 More Powerful Reductions
	5 A New Characterization of SZK
	6 Less Powerful Reductions
	7 Discussion
	8 An Application

	p004-Andoni
	1 Introduction
	1.1 Our results

	2 Preliminaries and notation
	2.1 Symmetric norms
	2.2 Probabilistic Tools
	2.3 Duality

	3 Reductions and communication complexity lower bounds
	4 Sparsification for l_p
	5 Efficient protocol for arbitrary symmetric norm 
	5.1 Compositions of norm
	5.2 Top-k norm
	5.3 Proof of Theorem 4

	6 Sparsification for symmetric norms
	6.1 Proof of Theorem 8

	7 Extension complexity and communication complexity of IP_P

	p005-Anshu
	1 Introduction
	1.1 Main results
	1.2 Discussion and open questions


	p006-Arvind
	1 Introduction
	1.1 Derandomization of RIT from the hardness of polynomial identities
	1.2 Noncommutative rank of matrices over the free skew field
	1.3 Linear pencil representations for a new class of rational functions
	1.3.1 Proof Sketch


	2 Preliminaries
	2.1 Linear pencils and rational functions
	2.2 Algebraic branching programs (ABPs)
	2.3 Matrix Inverse
	2.4 Recognizable series
	2.5 Matrix coefficient realization theory

	3 Derandomization of RIT from the Hardness of Polynomial Identities
	4 Computing the Matrix Rank over the Free Skew Field
	4.1 The Rank Computation

	5 Efficient Linear Pencils for Inversely Disjoint r-Skewed Circuits
	6 Future Directions

	p007-Assadi
	1 Introduction
	1.1 Our results
	1.2 Our techniques

	2 Preliminaries
	3 High-Level Overview
	4 All-Norm Load Balancing in the Streaming Model
	4.1 The All-Norm Oracle Problem
	4.2 Nested Matching Hierarchies
	4.3 Matching Hierarchies and Lp-Norms
	4.4 An All-Norm Oracle from a Nested Matching Hierarchy
	4.5 Nested Matching Hierarchies in the Semi-Streaming Model


	p008-Attias
	1 Introduction
	1.1 The adversarial streaming model
	1.2 Existing framework: Ben-Eliezer et al. BJWY20
	1.3 Existing framework: Hassidim et al. HKM+20
	1.4 Existing framework: Woodruff and Zhou WZ21
	1.5 Our results
	1.6 Other related works

	2 Preliminaries
	2.1 Preliminaries from Differential Privacy

	3 A Framework for Adversarial Streaming
	3.1 Construction Overview
	3.2 Analysis Overview
	3.2.1 First component: Privacy analysis
	3.2.2 Second component: Conditional accuracy
	3.2.3 Third component: Calibrating to avoid capping
	3.2.4 Forth component: The framework is robust
	3.2.5 Fifth component: Calculating the space complexity


	4 Toggle Difference Estimator from a Difference Estimator
	5 Applications
	A Missing Statements

	p009-Babaioff
	1 Introduction
	1.1 Additional Related Work

	2 Preliminaries
	2.1 The Basic Setting
	2.1.1 The Allocation Problem
	2.1.2 Mechanisms
	2.1.3 The Combined Market

	2.2 Extensions

	3 Welfare Loss and Secondary Markets
	4 Price of Anarchy via Smooth Framework
	4.1 Extension: Correlated Valuations
	4.2 Extension: Acquiring Additional Information

	5 Welfare Guarantees under Posted Pricing
	5.1 Application: Balanced Prices for Carbon Markets

	6 Best of Both Worlds: Uniform-Price Auction with Reserves

	p010-Baig
	1 Introduction
	1.1 Efficiently Testable Circuits Compiler
	1.2 Our Technical Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Notation for Circuits
	2.2 Tampering Model

	3 A compiler transforming circuits into testable circuits
	3.1 Parameters of our Construction

	4 Compilers
	4.1 The basic ideas
	4.1.1 Covering sets
	4.1.2 The simplest solution
	4.1.3 Sufficiently tamper-resilient gadgets
	4.1.4 Costly compression

	4.2 General construction

	5 Small covering set for every circuit
	5.1 Introduction
	5.2 k-divisible circuits
	5.3 Every circuit with maximum fan-in d is (d+1)-divisible
	5.4 Constructing small covering sets for k-divisible circuits
	5.5 Reducing high conductivity of the control wires

	6 The main result
	7 Conclusion and open problems

	p011-Balkanski
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Warm-Up: a 4-Consistent and n^2-Robust Mechanism
	4 The Scaled Greedy Mechanism
	4.1 The mechanism
	4.2 The analysis

	5 The Error Tolerant Scaled Greedy Mechanism
	6 Perfect Consistency Implies Unbounded Robustness
	A Missing Analysis from Section 3

	p012-Banerjee
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Problem Setup and Definitions
	3 Exploring with a Known Target Distance
	3.1 Definitions: Anchors, Degeneracy, and Criticality
	3.2 The TreeX-KnownDist Algorithm
	3.3 Analysis for the TreeX-KnownDist Algorithm
	3.4 Bounding the Extra Exploration
	3.5 Bounding the Movement Cost

	4 The General Tree Exploration Algorithm
	4.1 Definitions
	4.2 The TreeX Algorithm
	4.3 Analysis of the TreeX Algorithm

	5 The Planning Problem
	5.1 Analysis
	5.1.1 Analysis for Trees (Theorem 4(i))

	5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))
	5.3 Analysis for Bounded Doubling Dimension: Integer Lengths

	6 Closing Remarks
	A Further Discussion
	A.1 l_0-versus-l_1 Error in Suggestions
	A.2 Extending to General Edge-Lengths
	A.3 Gradient Information


	p013-Bauer
	1 Introduction
	1.1 Related work
	1.2 Summary of results

	2 Notation and Preliminaries
	3 Homological Hitting Set on Surfaces
	3.1 Improved algorithm for Homological Hitting Set

	4 Minimal hitting sets are not necessarily cocycles
	5 W[1]-hardness for Homological Hitting Set
	6 FPT Algorithm for Homological Hitting Set
	7 Conclusion and Discussion

	p014-Beame
	1 Introduction
	2 Preliminaries
	3 On the insufficiency of low deficiency and high min-entropy rate
	4 Lifting theorem for semi-structured protocols
	4.1 High level overview and invariants
	4.2 The Simulation Algorithm
	4.3 Analysis of the simulation algorithm
	4.4 Parity decision trees and Res(+) proofs

	5 Summary and future directions

	p015-Ben-Eliezer
	1 Introduction
	1.1 Related Work
	1.1.1 Noisy Computation and the PMC Model
	1.1.2 Local Error Correction and the ``Positive Rate'' Conjecture
	1.1.3 The Reproducibility and Replication Crisis
	1.1.4 Knowledge Aggregation vs. Information Spreading

	1.2 Models
	1.2.1 Semantics
	1.2.2 Parameters
	1.2.3 State evolution
	1.2.4 Initial state
	1.2.5 The simple CKP
	1.2.6 Phenomena we care about
	1.2.7 PT components

	1.3 Proof Ideas and Techniques

	2 Our Results
	2.1 Results for the Simple Model
	2.2 Results for the General Model

	3 Discussion and Open Questions

	p016-Bhaskara
	1 Introduction
	1.1 Probe Model and Motivation
	1.2 Results and Conceptual Contribution
	1.3 Overview and Technical Highlight
	1.4 Other Related Work

	2 Model and Results
	2.1 Our Results

	3 Online Linear Optimization in the BESTPROBE Model
	3.1 Algorithm: Differentially Private Regularization
	3.2 Analysis
	3.3 Handling Imperfect Hints

	4 Stochastic MAB in the BESTPROBE Model with k = 2 Probes
	4.1 The Meta UCB-V Algorithm
	4.2 Reverse Prophet Inequalities
	4.3 Proof of Theorem 8

	5 Stochastic MAB in the ALLPROBE Model
	5.1 Some Tail Bounds
	5.2 Proof of Theorem 11

	6 Handling Correlation Between Arms in the ALLPROBE Model
	6.1 Correlation-Exploitation Algorithm
	6.2 Analysis
	6.2.1 Tight Instance


	7 Conclusion

	p017-Bitansky
	1 Introduction
	1.1 Our Result
	1.2 Technical Overview

	2 Preliminaries
	2.1 Relaxed Time-Lock Puzzles
	2.2 Decomposable Obfuscation
	2.2.1 Decomposing Compatible Algorithms

	2.3 Homomorphic Encryption

	3 Constructing Fully Homomorphic Encryption
	3.1 FHE Construction Overview
	3.2 Correctness
	3.3 Security


	p018-Blanc
	1 Introduction
	1.1 Our results

	2 Proof overviews
	2.1 Overview of the proof of Theorem 2
	2.2 Overview of the proof of Theorem 3

	3 Discussion and future work
	4 Basic results regarding the certification problem
	4.1 The necessity of an NP oracle
	4.2 Certificate complexity, minimal certificates, and monotonicity

	5 A structural result for functions with low certificate complexity
	5.1 Useful facts for the proof of Lemma 23
	5.2 Proof of Lemma 23
	5.3 A robust version of Lemma 23

	6 Balanced influences and an algorithmic version of Corollary 33
	6.1 Estimating balanced influences
	6.2 Technical remarks

	7 Our certification algorithm: Proof of Theorem 2
	8 Hardness of instance-wise guarantees: Proof of Theorem 3
	8.1 Putting it all together: Proof of Theorem 3


	p019-Blasiak
	1 Introduction
	1.1 Results
	1.2 Outline

	2 Background
	3 Barriers for matrix groups
	3.1 A representation-theoretic barrier
	3.2 A barrier for subgroups that are not self-normalizing

	4 Constructions in Lie groups
	4.1 Asymptotic Lie exponent 3
	4.2 Conjugates of rotation groups

	5 Open problems

	p020-Bodwin
	1 Introduction
	1.1 Fault-Tolerance
	1.1.1 Fault-Tolerance Definitions and Previous Results

	1.2 Our Results
	1.3 Open Problems

	2 Technical Overview and Outline
	2.1 Algorithm
	2.2 Analysis
	2.3 Outline

	3 Algorithm and Double-Blocking
	3.1 Algorithm and Correctness
	3.2 Double-Blocking Sets

	4 Main Size Analysis (assuming dispersion)
	4.1 Graph Cleaning
	4.2 SCUM Path Counting
	4.3 Limiting SCUM Path Meets (Dispersion)
	4.4 Proof Wrapup
	4.4.1 k=3
	4.4.2 General Odd k


	5 Limiting SCUM Path Meets (k=3)
	5.1 Technical Lemmas on Path Structure
	5.2 Proof of Lemma 23

	6 Limiting SCUM Path Meets for General Odd k
	6.1 Technical Lemmas on Path Structure
	6.2 Proof of Lemma 24

	7 Polynomial-Time Version
	8 Lower Bounds
	8.1 General Lower Bound
	8.2 Lower Bound for k=2


	p021-Bodwin
	1 Introduction
	1.1 Our Model of Rating Systems
	1.1.1 Formal Model of Rating Systems
	1.1.2 K-Functions

	1.2 The Elo and Sonas Rating Systems
	1.3 Strategyproof Rating Systems and Our Results
	1.3.1 Volatility Hacking
	1.3.2 Opponent Indifference and First Main Result
	1.3.3 P Opponent Indifference and Second Main Result
	1.3.4 Strong P Opponent Indifference and Third Main Result

	1.4 Further Details on Previous Work 
	1.5 Applications
	1.6 Related Strategyproof Rating Mechanisms
	1.7 Open Problems and Future Directions

	2 Preliminaries
	3 Opponent Indifference
	3.1 Opponent Indifference vs. Full Scale
	3.2 Impossibility of Strong Opponent Indifference

	4 P Opponent Indifference
	4.1 Characterization of P Opponent Indifference
	4.2 Characterization of Strong P Opponent Indifference

	A Extra Proofs

	p022-Bourneuf
	1 Introduction
	1.1 Our Results
	1.2 Techniques and Ideas
	1.3 PPP-Completeness From Extremal Combinatorics
	1.4 Related Work
	1.5 Open Problems

	2 Preliminaries
	2.1 Total Search Problems

	3 Property-Preserving Encodings
	3.1 Cover Encodings

	4 Erdős-Ko-Rado Theorem on Intersecting Families
	4.1 A Generalized Erdős-Ko-Rado Problem

	5 Sperner's Theorem on Largest Antichains
	6 Cayley's Tree Formula
	7 Ward-Szabó Theorem on Swell Colorings
	8 Mantel's Theorem on Triangle-Free Graphs
	8.1 Generalization with Turán's Theorem


	p023-Boyle
	1 Introduction
	1.1 Our Contributions
	1.2 Open Problems

	2 Preliminaries
	2.1 Obfuscation

	3 Low-End Obfuscation from Learning
	4 Impossibility of Obfuscating 3-CNF to k-CNF
	5 Separating Forms of Information-Theoretic iO
	5.1 Separating Perfect and Deterministic Obfuscation in the CRS Model

	A Separating Perfect and Deterministic ``Obfuscation'' for Equivalence Relations

	p024-Brakerski
	1 Introduction
	1.1 Our techniques
	1.2 Discussions and open questions

	2 Preliminaries
	2.1 Quantum information
	2.2 Quantum algorithms

	3 EFI pairs of states
	4 Commitments and semi-honest oblivious transfer
	5 Dichotomy for secure two party computations
	6 Quantum computational zero knowledge proofs

	p025-Braverman
	1 Introduction
	1.1 Prior Works
	1.2 Parallel Works
	1.3 Main Results
	1.4 Our Technique

	2 Elementary Constructions of Embeddings
	2.1 Embedding p-biased Cubes
	2.2 Monotone Symmetric Embeddings
	2.3 Embeddings from Monotone Perfect Matchings
	2.4 Monotonicity Testers and Isoperimetric Inequalities from Almost Perfect Matchings

	3 Constructing Efficient Monotone Matchings on the Hypercube
	3.1 Theorem 20: Proof Overview
	3.2 Shadows, Kruskal-Katona and Approximating Collections with Small Shadow
	3.2.1 The Kruskal-Katona Theorem
	3.2.2 Approximating a Collection with a Small Shadow

	3.3 Fractional Monotone Matchings
	3.4 Monotone Matchings on Random Subsets of the Slice
	3.5 Matching Union of Slices and a Random Subset to a Slice
	3.6 Proof of Theorem 20


	p026-Braverman
	1 Introduction
	1.1 Our Results
	1.1.1 Solving Max-Cut on Small Set Expanders
	1.1.2 Spectral Partitioning
	1.1.3 Parallel Repetition

	1.2 Our Technique
	1.2.1 Proof of Theorem 3
	1.2.2 Proof of Theorem 4
	1.2.3 Proof of Theorem 6


	2 Solving Max-Cut on SSE's: Proof of Theorem 3
	2.1 The Goemans-Williamson Semi-definite Program Relaxation
	2.2 Reducing the Dimension of the Semi-Definite Program Solution
	2.3 The Soft Rounding: the Cubicular Rounding
	2.3.1 Partitioning the 3-dimensional sphere into cubes
	2.3.2 Division of the sphere
	2.3.3 Rounding to the Boundary
	2.3.4 Rounding to the Corners

	2.4 The Integral Rounding Procedure

	3 Spectral Partitioning
	3.1 Cheeger's Inequality on SSE's
	3.2 Dense cuts on SSE's

	4 Strong Parallel Repetition for Unique-Games on SSE's
	4.1 Parallel Repetition: the Information Theoretic Set-up
	4.1.1 The information theoretic approach
	4.1.2 Departing from [4]

	4.2 Qunatizing the Random Variables
	4.3 Using the Random Variables to Derive a Strategy

	A Information Theory
	B Probability Theory
	B.1 A Relation Between KL-divergence and Hellinger Distance
	B.2 Small KL-divergence and high probability events
	B.3 Correlated sampling


	p027-Bressan
	1 Introduction
	2 Our Results
	2.1 Simpler Hardness Proofs for More Graph Families
	2.2 The Complexity of #Sub(H - > G)
	2.3 The Complexity of #IndSub(H - > G)
	2.4 The Complexity of #Hom(H - > G)

	3 Related Work
	4 Overview of Our Techniques
	4.1 Classifying Subgraph and Induced Subgraph Counting
	4.2 Classifying Homomorphism Counting via Wall Minors

	5 Outlook

	p028-Broadbent
	1 Introduction
	1.1 Summary of Techniques
	1.2 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Quantum Information
	2.3 Probability
	2.4 Exact and Approximate Representation Theory

	3 Monogamy-of-Entanglement Games
	3.1 Definitions
	3.2 Observables, Bias, and Positivity

	4 Rigidity of the TFKW Game
	4.1 Sum-of-Squares Decomposition
	4.2 Exact Rigidity
	4.3 Robust Rigidity
	4.4 Parallel-Repeated Robust Rigidity
	4.5 Observed Statistics

	5 Applications
	5.1 Preliminaries and Notation
	5.2 Weak String Erasure
	5.3 Bit Commitment from WSE
	5.4 Everlasting Randomness Expansion


	p029-Buhrman
	p030-Buss
	1 Introduction
	1.1 Overview: Connections Proof Complexity, and Circuit Complexity, and TFNP
	1.2 Our Results

	2 Proof Complexity and Black-Box TFNP
	2.1 A Proof System for any TFNP Problem
	2.2 TFNP Problems for Proof systems which Prove their own Soundness
	2.3 Example: The Polynomial Calculus
	2.4 Characterizing Dynamic Variants of Static Systems

	3 Communication TFNP and Monotone Circuit Complexity
	3.1 Communication TFNP
	3.2 Complete Problems give TFNP Characterizations
	3.3 Universal Functions vs. Complete Functions

	4 Future Directions
	A Appendix: Proof of Theorem 11

	p031-Chakraborty
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Conclusion

	2 Preliminaries
	3 Approximation Algorithm for 1-Median
	3.1 Extension to the k-Median
	3.2 Extension to the k-median with outliers

	4 Streaming Algorithm for Approximating k-Median
	5 Improved Space Bound for (1-)Median

	p032-Chakraborty
	1 Introduction
	1.1 Motivation for certificate games
	1.2 Our results
	1.3 Overview of our techniques

	2 Certificate game complexity
	2.1 Certificate games with public and private coins
	2.2 Certificate games with quantum and non-signaling strategies
	2.3 Dual formulation of CGpub and CGns

	3 Preliminaries
	3.1 Query complexity
	3.2 Sensitivity, certificate complexity and their variants

	4 Public and private randomness in certificate games
	4.1 Public coin certificate game for the Tribes function 
	4.2 A framework for upper bounds based on hashing
	4.3 Upper bounds on CGpub by C and EC
	4.4 Upper bound on public coin certificate game complexity by R
	4.5 Upper and lower bounds for private coin certificate games

	5 Lower bounds on quantum certificate game complexity
	6 Relations and separations between measures
	6.1 Relationship between the various models of certificate games
	6.2 Approximate Index: Exponential gap between R and CGpub for a partial Boolean function

	7 Single bit versions

	p033-Chattopadhyay
	1 Introduction
	1.1 Consequence for proof complexity
	1.2 Related work

	2 The simulation
	2.1 Notation
	2.1.1 Decision trees and complexity measures
	2.1.2 Composed relations and simulation terminology

	2.2 Overview of the simulation
	2.3 The simulation algorithm
	2.4 The ROW-REDUCE subroutine
	2.5 Correctness
	2.6 Simulation theorems
	2.7 Non-adaptive and round-respecting simulations

	A Deferred proofs

	p034-Chen
	1 Introduction
	1.1 Our Results
	1.1.1 A direct proof of NQP notsubset ACC^0
	1.1.2 An improved derandomization of MA_{ACC^0}
	1.1.3 An improved lower bound for NEXP against ACC^0
	1.1.4 An improved construction of PSPACE-complete language

	1.2 Intuition

	2 Overview of the Derandomization-centric Perspective on the Algorithmic Method
	2.1 An Overview of Williams' EWL-centered Proofs
	2.1.1 Overview for the proof of Theorem 8
	2.1.2 Overview for the Proof of Theorem 9

	2.2 NQP Lower Bounds via Derandomization of Merlin-Arthur Protocols
	2.2.1 NQP Lower Bounds via Derandomization
	2.2.2 Average-case Lower Bounds for NQP via Randomized Encodings



	p035-Chen
	1 Introduction
	1.1 Our Results
	1.1.1 Equivalence of Black-Box Constructive Properties and Circuit Lower Bounds
	1.1.2 Bootstrapping Results on Black-box Natural Properties


	2 Preliminaries
	2.1 Sublinear Time Classes
	2.2 Properties
	2.3 Nondeterministic Classes and Easy Witnesses
	2.4 Probabilistically Checkable Proofs
	2.4.1 PCP Witnesses
	2.4.2 An Efficient PCP System from [8]


	3 Technical Ingredient: Smooth, Strong, and Locally-Decodable PCPs
	3.1 Definitions
	3.1.1 Smoothness
	3.1.2 Strongness
	3.1.3 Local Decodability

	3.2 The Construction

	4 Black-Box Constructive Properties are Unavoidable
	4.1 Equivalence with NEXP Lower Bounds
	4.2 Eliminating the Advice with CAPP Algorithms

	5 On the Impossibility of Stronger Constructivity Notions
	5.1 Non-existence of Deterministic Constructive Properties against Polynomial-size Classes
	5.2 DTIME[polylog(N)]-natural Properties against Fixed-polynomial-size Classes from Pseudorandom Restrictions

	6 A Bootstrapping Result For Black-Box Natural Properties

	p036-Cheu
	1 Introduction
	1.1 Our Results
	1.1.1 Techniques

	1.2 Related Work
	1.3 Open Questions

	2 Preliminaries
	2.1 Non-interactive Multi-Server Protocols
	2.2 Online Algorithms

	3 From Multi-Server Protocols to Online Algorithms
	3.1 Properties of Local Randomizers
	3.2 The Two-server Case
	3.2.1 Step One: Shifting to Pure Differential Privacy
	3.2.2 Step Two: Generating Messages to Server 2 via Bayesian Re-Sampling
	3.2.3 Step Three: Implementing Bayesian Re-Sampling via Rejection Sampling

	3.3 The Multi-server Case

	4 Application: A Lower Bound for Parity Learning
	A Deferred Proofs
	B A Two-Server Protocol for Robust Count Estimates

	p037-Childs
	1 Introduction
	2 Genuine and rooted algorithms
	2.1 Genuine algorithms
	2.2 Rooted algorithms

	3 Transcript states
	4 Classical simulation of genuine, rooted algorithms
	4.1 Checking procedures
	4.2 Mapping addresses to vertices
	4.3 The classical algorithm
	4.4 The good, the bad, and the ugly
	4.5 Faithful simulation of the good part
	4.6 The state is mostly good

	5 Hardness of classical cycle finding with a 3-color oracle

	p038-Chuzhoy
	1 Introduction
	1.1 A More Detailed Overview of our Results and Techniques

	2 Preliminaries
	2.1 General Notation
	2.2 Problem Definitions and Additional Notation

	3 Conditional Hardness of Densest k-Subgraph
	3.1 Conjecture on Hardness of 2-CSP's
	3.2 Conditional Hardness of Densest k-Subgraph
	3.3 Proof of Theorem 10

	4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph
	5 Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning
	6 Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph

	p039-Cohen
	1 Introduction
	1.1 Relation to Prior Work
	1.2 Applications
	1.3 Private Selection: Improving better-than-median selection
	1.4 Direct Applications of Private Selection
	1.4.1 Query Releasing
	1.4.2 Top-k Selection
	1.4.3 Stable Selection

	1.5 Improved Sparse Vector Technique with Applications
	1.5.1 Review of Sparse Vector Technique and its Applications
	1.5.2 Intuition


	2 Proof of Privacy Theorems
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 2
	2.2.1 Preliminaries
	2.2.2 Reduction to an Asymmetrical Coin Game
	2.2.3 Analysis of the Coin Game
	2.2.4 Wrap-up


	3 Proofs for Selected Applications
	3.1 Better-Than-Median Selection
	3.2 Query Releasing
	3.3 Stable Selection


	p040-Coregliano
	1 Introduction
	2 Preliminaries
	3 Exact Completeness of the Krawtchouk LP Hierarchy
	3.1 A Pseudoprobability LP Formulation
	3.2 Exact Completeness Proof

	4 Exact Completeness of the Partial Krawtchouk LP Hierarchy
	4.1 A Pseudoprobability LP Formulation
	4.2 Exact Completeness Proof

	5 On Integrality Related Properties
	6 Conclusion

	p041-Deng
	1 Introduction
	2 Preliminaries
	2.1 Notation

	3 s-Happy Multicalibration
	4 Application: Algorithmic Fairness in Prediction Intervals
	5 Application: Target-independent Learning
	5.1 Universally Adaptive Predictors under l_2 Loss
	5.2 Universally Adaptive Conformal Prediction 
	5.3 Prediction with Missing Data

	6 Discussion and Conclusion
	A Additional Literature Review
	B Omitted Details for Section 3
	B.1 Details for the Sample Version Algorithm

	C Omitted Details for Section 4
	C.1 Proof of Remark 5

	D Omitted Details for Section 5
	D.1 Proof of Theorem 11
	D.2 Proof of Theorem 12
	D.3 Proof of Theorem 14

	E Relation to the existing literature
	E.1 Relation to Omnipredictors
	E.2 Generalized Statistical Parity Subgroup Fairness
	E.3 Comparison between marginal coverage and calibrated coverage


	p042-Dey
	1 Introduction
	1.1 Comparison to Related Work
	1.2 Preliminaries

	2 Jordan Normal Form
	3 Spectral Factorization
	4 Discussion and Future Work

	p043-Dobrokhotova-Maikova
	1 Introduction
	2 The Techniques and Initial Results
	3 Depth 3
	4 Depth 4

	p044-Dobzinski
	1 Introduction
	2 Preliminaries
	3 Rigidity
	3.1 Definitions and Basic Properties
	3.1.1 Union of Rigid Sets

	3.2 On the Structure of Ex-post IR Rigid Sets

	4 Kolmogorov Complexity
	4.1 Natural Orders
	4.2 Low Kolmogorov Complexity of Cremer and McLean's Distributions
	4.3 The Kolmogorov Complexity of Approximations
	4.3.1 Distributions with High Kolmogorov Complexity for Every Approximation


	A Explicit Constructions of Interim IR Rigid Sets
	A.1 Construction I: Random High Values
	A.1.1 Construction of a Set of m-divisible Sets

	A.2 Construction II: Geometrically Increasing Base Sets

	B A General Construction of Interim IR Rigid Sets
	B.1 The Main Technical Theorem


	p045-Dufoulon
	1 Introduction
	1.1 Our Techniques
	1.2 Additional Related Work

	2 Preliminaries
	3 Problem Statement and Algorithm Overview
	3.1 Scheme Overview

	4 Preprocessing Phase
	5 Single Shortest Path Construction
	6 Shortest-path Tree Construction
	7 Wake-up Phase
	7.1 Detailed Description
	7.2 Analysis of the Wake-up Phase


	p046-Efremenko
	1 Introduction
	1.1 Our Results
	1.1.1 No f-channel is Weaker than beeping
	1.1.2 Noisy cas is Strictly Weaker than cas
	1.1.3 beeping is At Least As Strong as Noisy cas

	1.2 Related Work
	1.2.1 Interactive Coding
	1.2.2 Broadcast Lower Bounds


	2 Overview
	2.1 Fooling Sets
	2.2 Lower Bounds Assuming Fooling Sets
	2.2.1 Lower Bound Against Deterministic Protocols
	2.2.2 Lower Bound Against Randomized Protocols

	2.3 Removing the Fooling Set Assumption

	3 Models
	4 BEEPING Lower Bound
	5 Hardness of Interactive Coding
	5.1 CAS is THRESHOLD[2]


	p047-El-Hayek
	1 Introduction
	2 Basic Tools
	3 Broadcasting on Trees
	3.1 The Upper Bound
	3.2 The Lower Bound

	4 Covering on k-Forests
	4.1 The Upper Bound
	4.2 The Lower Bound

	5 k-Broadcasting on k-rooted Networks
	5.1 The Upper Bound
	5.2 The Lower Bound

	6 Related Work
	7 Conclusion

	p048-Epasto
	1 Introduction
	1.1 Computational Model
	1.2 Our Results and Comparison to Prior Work
	1.2.1 Differentially Private Streaming Continual Release Algorithms
	1.2.2 Differentially Private Sliding Window Continual Release Algorithms

	1.3 Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Functions to Compute
	2.3 Differential Privacy
	2.4 Streaming Continual Release Summing and Counting
	2.5 Probability Tools

	3 Continual Released Summing with Better Additive Error
	4 Continual Released Number of Distinct Elements
	4.1 Number of Distinct Elements for Small Universe
	4.2 Number of Distinct Elements for General Universe

	5 Continual Released l_p Heavy Hitters and Frequency Moment Estimation
	5.1 Continual Released CountSketch
	5.2 Continual Released l_p Heavy Hitters
	5.3 Differentially Private Continual Released Counting of Low Frequency Elements
	5.3.1 Number of Low Frequency Elements for Small Universe
	5.3.2 Number of Low Frequency Elements for General Universe

	5.4 l_p Moment Estimation
	5.4.1 Analysis of High Frequency Elements
	5.4.2 Analysis of Low Frequency Elements
	5.4.3 Putting All Together


	6 Extension to Sliding Window Continual Release Algorithms

	p049-Fawzi
	1 Introduction and Main Result
	1.1 Main result
	1.2 Related work
	1.3 Proof technique
	1.4 Numerical implementation


	p050-Filtser
	1 Introduction
	1.1 Power cut sparsifier
	1.2 Application to distance oracles
	1.3 Related work
	1.4 Preliminaries

	2 Technical overview
	2.1 Verifying expander decompositions in a dynamic stream
	2.2 Constructing an expander decomposition
	2.3 Distance Oracle


	p051-Filtser
	1 Introduction
	2 Flipped Fréchet measure on polygonal curves
	2.1 A near linear time algorithm for FF in 1D
	2.2 Quadratic time algorithms
	2.3 Quadratic lower bounds
	2.4 More than 2 agents

	3 Social distancing in a simple polygon
	3.1 Red on an arbitrary path mission
	3.2 Red on a shortest path mission
	3.3 SDW of closed curves and polygons
	3.4 Social distancing in a skinny polygon (or a tree)

	A Social distancing on graphs
	A.1 Abstract Graphs
	A.2 Geometric Graphs


	p052-Gaitonde
	p053-Gharibian
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Related Work
	1.4 Open questions
	1.5 Organization

	2 Definitions
	3 Universal Quantum Path Following Lemma
	3.1 Decomposition of Pauli Interactions
	3.2 Applying Quantum Path Following to GSCON_exp

	4 Embedding streaming proofs into unentanglement
	4.1 Preliminary ingredients
	4.2 Proof sketch

	5 Applications of the Embedding Lemma
	5.1 Reductions to Separable Sparse Hamiltonian (SSH)
	5.2 Containment in QMA(2,p,q,r)


	p054-Ghazi
	1 Introduction
	1.1 Contributions

	2 Formal Definitions & Basic Properties
	2.1 Partial Differential Privacy
	2.2 Basic Properties of Partial DP

	3 Related Work
	4 Answering Query Workloads
	4.1 Warmup: Average Error via Noise Addition
	4.2 Maximum Error via an Iterative Algorithm

	5 Histograms, Heavy Hitters & Applications
	5.1 Our Algorithm
	5.2 Analysis
	5.3 Lower Bound
	5.4 Applications of Histograms

	6 Robust Learning of Halfspaces
	6.1 From Sample-Only Privacy to Sample-and-Label Privacy
	6.2 Robust Empirical Risk Minimization
	6.3 Robust Learning of Halfspaces: Reduction to Nets
	6.3.1 Private Robust Learner for Halfspaces


	7 Discussion
	7.1 Assumptions about the Adversary
	7.2 Bayesian & Information-Theoretic Interpretations

	8 Conclusion
	8.1 Further work

	References

	p055-Ghazi
	1 Introduction
	2 Setting
	2.1 Utility Definition
	2.2 Cumulative, Time-Window, and Fixed-Window Queries
	2.3 Neighboring Notions
	2.4 Counting Distinct and k-Occurring Elements
	2.5 Singleton vs Bundle Setting

	3 Our Contributions
	3.1 Highlights of our results
	3.2 Algorithmic Overview: Event-Level DP Setting
	3.2.1 Cumulative
	3.2.2 Time-window
	3.2.3 Fixed-window

	3.3 Algorithmic Overview: Item-Level DP Setting
	3.3.1 Time-window
	3.3.2 Fixed-window

	3.4 Overview of the Lower Bounds
	3.4.1 Polynomial in T and T/W Lower Bounds
	3.4.2 Polynomial in k Lower Bounds

	3.5 Related Work

	4 Preliminaries
	4.1 Tools from Differential Privacy
	4.1.1 Composition Theorems
	4.1.2 Group Privacy

	4.2 Range Query
	4.3 1-Way Marginal
	4.4 Linear Queries
	4.5 Assumptions on Parameters

	5 Cumulative Queries
	5.1 Algorithm
	5.2 Lower Bounds

	6 Fixed-Window Queries
	6.1 Event-Level DP
	6.1.1 Time Horizon Reduction: Proof of Lemma 18
	6.1.2 Algorithm
	6.1.3 Lower Bounds

	6.2 Item-Level DP
	6.2.1 Algorithms
	6.2.2 Lower Bounds


	7 Time-Window Queries
	7.1 Event-Level DP
	7.1.1 Algorithm
	7.1.2 Lower Bounds

	7.2 Item-Level DP
	7.2.1 Algorithms
	7.2.2 Lower Bounds


	8 Conclusions and Open Questions
	References

	p056-Girish
	1 Introduction
	1.1 Polynomial-Time Algorithms
	1.1.1 BPP and ZPP
	1.1.2 Interactive Proofs for Verifying Randomness

	1.2 Logarithmic-Space Algorithms
	1.3 Query-Complexity Separations
	1.4 Relations to Other Work

	2 Preliminaries
	2.1 Our Model of Computation
	2.2 Robustly-Randomized Algorithms
	2.3 Streaming Proofs

	3 Streaming Proofs for BPL
	3.1 Proof of Claim 7

	4 Relations with Other Complexity Classes
	5 Query-Complexity Separations
	A Appendix
	A.1 A BPL-complete Problem


	p057-Goldberg
	1 Introduction
	1.1 Our Contribution
	1.2 Background, Related Work

	2 Preliminaries
	3 Lower Bound
	4 Upper Bound and Implications on Complexity
	5 NP-Hardness for the Exact Number of Cuts
	6 Future Work
	A Proof of Lemmas 6,7

	p058-Goldenberg
	1 Introduction
	1.1 Our Contribution
	1.2 Notation
	1.3 Technical Overview

	2 Computing {{ED}_a} Exactly
	3 Approximating {{ED}_a}
	4 Answering Approximate LCE Queries
	4.1 Text-to-Pattern Hamming Distances for Almost Periodic Strings
	4.2 Text-to-Pattern Hamming Distances for Arbitrary Strings
	4.3 Proof of Theorem 1.8

	5 Lower Bound for Computing {{ED}_a} Exactly
	5.1 Unbounded Distance
	5.2 Bounded Distance


	p059-Goldreich
	1 Introduction
	2 Defining IPPs and Types of IPPs With PO-Queries
	3 Main Results
	4 Techniques
	4.1 Emulating IPPs That Use PO-Queries by Standard Testers
	4.2 Emulating Some Types of IPPs by IPPs That Use PO-Queries

	5 Some Comments About Our Conventions
	6 Related Works
	7 Models and Notation

	p060-Gopalan
	1 Introduction
	1.1 Our Contributions
	1.1.1 Loss OI for specific families
	1.1.2 Calibrated multiaccuracy
	1.1.3 Perspective
	1.1.4 Structure of this manuscript


	2 Technical Overview
	2.1 Omniprediction from outcome indistinguishability
	2.1.1 Loss OI
	2.1.2 Characterizing Loss OI via calibration and multiaccuracy
	2.1.3 Non-convex losses
	2.1.4 Lipschitz losses

	2.2 Loss OI in GLMs
	2.3 Algorithms for Calibrated Multiaccuracy
	2.4 Related Work and Discussion

	3 Preliminaries
	4 Outcome Indistinguishability for loss functions
	4.1 Loss-OI implies Omniprediction
	4.2 Loss OI from Calibration and Multiaccuracy


	p061-Gotlib
	1 Introduction
	1.1 High Dimensional Expansion Toolset
	1.2 Proof Strategy
	1.3 Proof Layout
	1.4 Related Work
	1.5 Paper Organisation

	2 Preliminaries
	2.1 Simplicial Complexes
	2.2 On Assignments and l-Assignments
	2.3 Coboundary Expansion
	2.4 Covers of Simplicial Complexes
	2.5 Agreement Expansion

	3 The Representation Complex
	4 On the Covers That Correspond to Coboundaries
	5 Local Assignments in the Original Complex Imply a Near Cover in the Representation Complex
	6 Presenting a Test for List Agreement

	p062-Goyal
	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Feasibility Result
	2.2 Impossibility Result

	3 Preliminaries
	3.1 Notation
	3.2 Concepts from Quantum Computation
	3.3 Quantum Secret Sharing
	3.4 Quantum Authentication Schemes

	4 Model of Multiparty Computation
	4.1 Communication and Adversarial Models
	4.2 Multi-Party Asynchronous Quantum Computation
	4.3 Classical Trusted Third Party

	5 Protocols
	5.1 Verified Quantum State Authentication
	5.2 Asynchronous Weak Quantum Secret Sharing with Weak Termination
	5.3 Asynchronous Verifiable Quantum Secret Sharing
	5.4 Asynchronous Toffoli Gate Computation
	5.5 Asynchronous Multiparty Quantum Computation


	p063-Grandoni
	1 Introduction
	1.1 Related Work
	1.1.1 Equal Demands
	1.1.2 Relation with Heuristics in Practice


	2 Overview of our Techniques
	2.1 Big Terminals Only (Section 4)
	2.2 General Terminals (Section 5)
	2.3 Open Questions

	3 Preliminaries
	4 Algorithm for Big Terminals Only (Proof of Theorem 3)
	5 Algorithm for General Terminals (Proof of Theorem 1)
	5.1 Case 1: OPT Has Sufficiently Many Tours
	5.2 Case 2: OPT Has a Bounded Number of Tours


	p064-Grewal
	1 Introduction
	1.1 Main Ideas

	2 Preliminaries
	2.1 Stabilizer States and Stabilizer Complexity Measures
	2.2 Boolean Fourier Analysis
	2.3 Weyl Operators and Bell Difference Sampling

	3 Certificate of Low Stabilizer Complexity
	3.1 The Fourier Spectrum of the Characteristic Distribution
	3.2 Low-Stabilizer-Complexity States
	3.3 Haar-Random States

	4 Algorithm and Sample Complexity Analysis
	5 Open Problems
	A Algorithm Improvements via State Preparation Unitary
	B On the Tightness of Our Analysis

	p065-Gupta
	1 Introduction
	1.1 Results and Paper Outline
	1.2 Related Work

	2 Randomized algorithm for Vector Scheduling
	2.1 Hurdles and Resolutions
	2.2 Algorithm Description
	2.3 Analysis
	2.3.1 Competitive ratio analysis
	2.3.2 Recourse analysis


	3 Fully Dynamic Vector Bin Packing
	3.1 Algorithm Description
	3.2 Analysis

	4 Deterministic Fully-Dynamic Vector Scheduling
	4.1 Useful Notation
	4.2 Algorithm Definition
	4.3 Analysis
	4.3.1 Competitive Ratio
	4.3.2 Recourse


	5 Conclusions and Future Directions

	p066-Haitner
	1 Introduction
	1.1 Our Results
	1.2 Our Technique
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Distributions and Random Variables
	2.2.1 Entropy and Distance Measures

	2.3 Encoding and Compression
	2.4 One-way Functions
	2.5 Pseudoentropy and Next-bit Pseudoentropy
	2.5.1 KL-hardness


	3 Incompressibility and Next-bit Pseudoentropy
	3.1 Our Results
	3.1.1 Incompressibility - > Next-Bit Pseudoentropy
	3.1.2 Strong-Next-Bit Pseudoentropy

	3.2 Applications to Sparse Languages
	3.3 Proving Lemma 36 – Incompressibility implies Next-Bit Pseudoentropy
	3.4 Proving Lemma 45 – Next-bit Predictor to Compression
	3.5 Proving Lemma 42 – Strong-Next-Bit Pseudoentropy implies Incompressibility
	3.6 Additional Missing Proofs


	p067-Harsha
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	2.1 Search Problems
	2.2 Local Search and Continuous Local Search
	2.3 Downward-self-reducibility

	3 Downward self-reducibility of PLS-complete problems
	4 Downward self-reducible problems are in PLS
	5 Unique TFNP and Downward self-reducibility
	6 Discussion and Open Problems

	p068-He
	1 Introduction
	1.1 P-invariant complexity
	1.2 The word problem over a finite permutation group
	1.3 The formula size of {Word}_{S_n,k}
	1.4 Our results
	1.5 The lower bound technique
	1.6 Related work
	1.6.1 TC_d and AC_d formula lower bounds for {Word}_{S_n,k}
	1.6.2 The word problem for finitely presented groups


	2 Preliminaries
	3 S_n^{k-1}-invariant formulas for {Word}_{S_n,k}
	4 Overall technique
	5 The lower bound framework
	6 Applying the framework
	6.1 TC lower bounds for nonabelian simple groups
	6.1.1 Structural results
	6.1.2 The properties of mu

	6.2 TC lower bounds for cyclic groups of prime order
	6.2.1 The properties of mu

	6.3 Proof of Theorem 3

	7 Future directions

	p069-Henzinger
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Notation and Problem Statement
	3 A Cut-Toggling Algorithm for Solving Laplacian Linear Systems
	3.1 Analysis of Dual KOSZ

	4 Lower Bound on the Per-Iteration Complexity of the Algorithm
	4.1 The TreeFlow Data Structure

	5 Speeding Up Dual KOSZ
	5.1 A Faster Algorithm using Batching
	5.2 A Still Faster Algorithm via Batching, Sparsification, and Recursion
	5.3 The Sparsify and Recurse Algorithm
	5.4 Analysis of the Sparsify and Recurse Algorithm
	5.4.1 Error Analysis
	5.4.2 Running Time Analysis



	p070-Hirahara
	1 Introduction
	1.1 Our Learning Model
	1.2 Our Results
	1.3 Related Work

	2 Techniques
	2.1 Proof Techniques for Theorems 2 and 3
	2.2 Proof Techniques for Theorem 4
	2.3 Proof Ideas for Theorem 5


	p071-Hitron
	1 Introduction
	1.1 Our Contribution
	1.2 Preliminaries

	2 Key Techniques
	2.1 Congestion-Sensitive Compilers
	2.2 Secure Network Optimization

	3 Congestion-Sensitive Compilers
	3.1 Few-Time Pad Encryption
	3.2 Our General Transformation

	4 Secure MST

	p072-Hu
	1 Introduction
	1.1 Sample Complexity of Comparative Learning
	1.2 Multiaccuracy and Multicalibration
	1.3 Our Contributions
	1.3.1 Comparative Learning
	1.3.2 Correlation Maximization
	1.3.3 Realizable Multiaccuracy and Multicalibration
	1.3.4 Covering Number Bound
	1.3.5 Boosting
	1.3.6 Comparative Regression
	1.3.7 Comparative Online Learning
	1.3.8 Sample Complexity Duality

	1.4 Related Work

	2 Preliminaries
	2.1 VC and Fat-shattering Dimensions for Partial Hypothesis Classes
	2.2 An Abstract Learning Task
	2.3 Learning Partial Binary Hypotheses
	2.4 Other Notation

	3 Sample Complexity of Comparative Learning
	4 Sample Complexity of Correlation Maximization
	5 Sample Complexity of Realizable Multiaccuracy and Multicalibration
	6 Comparative Regression via Omnipredictors
	7 Comparative Online Learning

	p073-Hu
	1 Introduction
	1.1 Our Results
	1.1.1 Existence of Indistinguishable Sequences
	1.1.2 General Coordinate Descent Framework for Adaptively Querying Distance Oracles
	1.1.3 Lower Bounds on the Recovery Problem
	1.1.4 Adaptively Querying Distance Oracles, Optimally
	1.1.5 Non-adaptively Querying Distance Oracles, Optimally


	2 Preliminaries
	3 Recovery Using Adaptive Queries
	3.1 General Framework of Coordinate Descent
	3.2 Edit Distance
	3.3 DTW Distance

	4 Recovery Using a Non-Adaptive Edit Distance Oracle
	4.1 Exact Recovery with Extra Character(s)
	4.2 Exact Recovery without Extra Characters

	5 Recovery Using a Non-Adaptive DTW Distance Oracle
	5.1 Hardness Result without Extra Characters
	5.2 Recovery without Extra Characters w.r.t. Equivalence Classes
	5.3 Exact Recovery with Extra Character(s)
	5.3.1 With O(1) Extra Characters


	6 Recovery Using Fréchet Distance Oracle
	7 Related Work
	8 Open Problems and Research Directions
	A Coordinate Descent Algorithm Instantiation

	p074-Ikenmeyer
	1 Introduction
	1.1 Exact Bounds
	1.2 Universal Upper Bounds

	2 Preliminaries
	3 Hazard-Derivatives and the Monotone Barrier
	4 A Karchmer-Wigderson Game for Hazard-free Computation
	4.1 Restriction to prime implicants and prime implicates

	5 Hazard-Free Formulas for the Multiplexer Function
	5.1 The Multiplexer Function and its Communication Matrix
	5.2 Size optimal hazard-free formula
	5.3 Formulas of improved depth

	6 Proofs for the hazard-free Karchmer-Wigderson game
	7 Alternation Depth Two and Two-round Protocols
	8 Limited hazard-freeness

	p075-Jin
	1 Introduction
	1.1 Comparison with Previous Approaches
	1.2 Other Related Work

	2 Notation and Preliminaries
	2.1 Probability
	2.2 Anonymous Reserve

	3 Empirical Algorithm
	4 Revenue Smoothness
	4.1 
	4.2 
	4.3 Continuous Regular Setting
	4.4  Setting
	4.5 Continuous  Setting

	5 Conclusion and Further Discussion

	p076-Jin
	1 Introduction
	2 Preliminaries
	3 Overview of results and techniques
	3.1 Foundational properties
	3.2 Complexity of NE in SimSGs
	3.3 Complexity of NE in TBSGs
	3.4 Efficient algorithms for TBSGs under localized rewards

	4 Related work

	p077-Jones
	1 Introduction
	1.1 Main results
	1.2 Related work

	2 Preliminaries
	2.1 Random constraint satisfaction problems (CSPs)
	2.2 Mean-field spin glasses
	2.3 Solution geometry of optimization problems
	2.3.1 Extended remark on multi-overlaps

	2.4 Fourier analysis on the hypercube
	2.5 Concentration inequalities

	3 Sparse and dense models have the same free energy
	3.1 Proof of Theorem 3.4
	3.1.1 Taking the derivative of phi_{beta}(t)
	3.1.2 The Poisson derivative
	3.1.3 The Gaussian derivative
	3.1.4 Putting it all together


	4 Optimal value of a random Max-CSP
	4.1 Numerical calculations

	5 Overlap gaps in a random Max-CSP
	5.1 The branching OGP

	6 Discussion

	p078-Kaufman
	1 Introduction
	1.1 Posets; Links, Random Walk operators and regularity properties
	1.1.1 Posets and Graded Posets
	1.1.2 Weighted Posets and Weighted Random Walks
	1.1.3 Links and induced weight functions
	1.1.4 Regularity properties of posets
	1.1.5 Definitions of expanding posets

	1.2 Local to global theorems for general posets
	1.2.1 Fast Random walk convergence from one sided local expansion for posets
	1.2.2 Equivalence between global RW convergence and two-sided expanding links 
	1.2.3 Trickling Down theorem from local expansion for posets

	1.3 A construction of non simplicial bounded degree expanding posets
	1.4 Plan of the paper

	2 Weighted graded posets: definitions, regularity properties and the basic decomposition
	2.1 Posets
	2.2 Graded posets
	2.3 Weighted graded posets
	2.3.1 The upper and lower walks

	2.4 Links and localization
	2.5 Regularity properties and their basic consequences
	2.6 Expansion notions for posets

	3 Posetification and constructions of sparse expanding posets

	p079-Kim
	1 Introduction
	1.1 Decision-Making under Outcome Performativity
	1.1.1 Performative Omniprediction

	1.2 Our Contributions
	1.2.1 Efficient Performative Omnipredictors Exist
	1.2.2 Learning Performative Omnipredictors Reduces to Supervised Learning
	1.2.3 Universally-Adaptable Omnipredictors

	1.3 Our Techniques: Performative Outcome Indistinguishability
	1.3.1 Performative Outcome Indistinguishability
	1.3.2 Learning Outcome Performative Predictors
	1.3.3 Universal Adaptability under Outcome Performativity

	1.4 Related Work and Discussion
	1.4.1 Performative Prediction
	1.4.2 Reinforcement Learning and Contextual Bandits
	1.4.3 Multicalibration and Outcome Indistinguishability
	1.4.4 Omniprediction

	1.5 Overview of Full Manuscript


	p080-Kol
	1 Introduction
	1.1 Our Results
	1.1.1 Lower Bounds for Max-CSP
	1.1.2 Lower Bound for Max-CUT


	2 Models and Preliminaries
	2.1 Notation
	2.2 Constraint Satisfaction Problems
	2.3 Communication Complexity
	2.4 Streaming Algorithms

	3 Reducing Max-AND to Max-CSP
	4 Communication Lower Bound for Max-CSP
	4.1 Proof of Lemma 9
	4.1.1 The Reduction
	4.1.2 Analysis


	5 Communication Lower Bound for Max-CUT
	5.1 Lower Bound for 3IND-SET
	5.2 Lower Bound for Max-CUT

	A Streaming Lower Bound for Approximate Max-CSP

	p081-Kong
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Complements and Substitutes
	2.2 Information Theory Background

	3 Information-theoretic Consensus
	3.1 Two Consensus Protocols
	3.2 Quick Consensus
	3.3 No False Consensus with Substitutes

	4 Illuminating Prediction Markets with Information Theory
	4.1 Prediction Market Overview
	4.2 Preliminaries for Prediction Markets
	4.3 Expected Payment = Conditional Mutual Information
	4.4 Strategic Revelation

	5 Conclusion and Discussion
	A Additional Proofs
	B Complete Agreement

	p082-Liu
	1 Introduction
	1.1 Result 1: Defining Depth-Bounded Quantum Adversaries
	1.2 Result 2: Constructing One-Time Memory and One-Time Programs
	1.3 Result 3: Dealing with Constant Errors
	1.4 Technical Overview
	1.5 Other Related Work
	1.6 Paper Organization

	2 Preliminaries
	2.1 Quantum Random Oracle Model
	2.2 Wiesner States and Unclonability
	2.3 Time-Lock Puzzles

	3 Bounded Depth Quantum Adversaries
	4 One-Time Memory against Bounded Depth Quantum Adversaries
	4.1 Definitions
	4.2 Construction
	4.3 Security Proof


	p083-Liu
	1 Introduction
	1.1 Our Results
	1.2 Related work
	1.3 Future directions

	2 Preliminaries
	2.1 Terminals and connectivity
	2.2 Matroids and representative sets
	2.3 Sparsest cut and conductance

	3 Polynomial Time Vertex Sparsification
	3.1 Overview of proof
	3.2 Proof of Theorems 1 and 2

	A Missing Proofs
	A.1 Proof of Lemma 12


	p084-Lovett
	1 Introduction
	1.1 Our results
	1.2 Related works

	2 Complexity measures of bounded functions
	2.1 Our results

	3 Upper bounding the integrality gap of block sensitivity
	3.1 Smoothness and fractional cover
	3.2 Bounding the integrality gap

	4 Small block sensitivity
	5 Conjectured extension of Talagrand's inequality to the infinity norm

	p085-Manurangsi
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 VC Dimension and Littlestone's Dimension
	2.2 Gap Problems
	2.3 Exponential Time Hypotheses
	2.4 Planted Clique Hypotheses

	3 Reducing Biclique to VC/Littlestone's Dimension
	3.1 Some Helpful Lemmas
	3.2 The Reduction

	4 (Gap-)ETH-Hardness of Exponential Biclique
	4.1 Gap-ETH-Hardness
	4.2 ETH-Hardness

	5 Hardness from Planted Clique Hypothesis
	5.1 One-Sided Graph Product
	5.2 Proof of Theorem 8

	6 Hardness from Strongish Planted Clique Hypothesis
	6.1 Two-Sided Randomized Graph Product
	6.2 Proof of Theorem 4

	7 Conclusion and Discussion
	A Parameterized Hardness of Approximation
	B Proof Sketch of Lemma 25 and Lemma 27

	p086-Meir
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Lower Bounds
	4.1 Partition-Based Schedulers
	4.2 Well-Connected Schedulers

	5 Convergence Under Bounded Distance from the Uniform Scheduler
	6 Convergence Under Bounded l_{infinity}-Distortion
	7 Convergence Under Bounded l_{1}-Distortion
	8 Conclusion

	p087-Morimae
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Open Problems
	1.4 Related Work

	2 Preliminaries
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	A Proof of Soundness

	p088-Pasarkar
	1 Introduction
	2 Long Choice
	3 Long Choice and r-Color Ramsey
	4 Sunflowers
	5 Short Choice
	6 König and Erdős-Ko-Rado
	6.1 König
	6.2 Erdős-Ko-Rado

	7 Mantel, Turán, and Bad Colorings
	8 Discussion and Future Work
	A Missing material from Section 2 (Long Choice)
	B Missing material from Section 5 (Short Choice)
	C Missing material from Section 6 (König, Erdős-Ko-Rado)
	C.1 König
	C.2 Erdős-Ko-Rado


	p089-Pitassi
	1 Introduction
	1.1 Blocky Matrices as Building Blocks
	1.2 Our Results

	2 Preliminaries
	2.1 Communication complexity
	2.2 The gammatwo norm and variants

	3 Characterizations
	3.1 Properties of gammatwo variants
	3.2 Connections between blocky measures and Gamma 2 variants
	3.3 Characterizations of equality-based protocols

	4 Lower bounds and separations for equality protocols
	4.1 Proof of Theorem 4
	4.2 Proof of Theorem 5

	5 Conclusion and open questions

	p090-Poremba
	1 Introduction
	2 Main results
	2.1 Gaussian-collapsing hash functions
	2.2 Dual-Regev public-key encryption with certified deletion
	2.3 (Leveled) fully homomorphic encryption with certified deletion

	3 Applications
	4 Technical Summary
	4.1 Dual-Regev public-key encryption with certified deletion
	4.2 Gaussian-collapsing hash functions.
	4.3 Dual-Regev fully homomorphic encryption with certified deletion.

	5 Gaussian-Collapsing Hash Functions
	5.1 Ajtai's hash function
	5.2 Strong Gaussian-collapsing conjecture


	p091-Qiao
	1 Introduction
	1.1 Problem Setup
	1.2 Our Results
	1.2.1 A Simple Lower Bound
	1.2.2 The Prophet Setting
	1.2.3 The Secretary Setting

	1.3 Proof Overview and Technical Highlights
	1.3.1 The Prophet Setting, Given the Distributions
	1.3.2 The Secretary Setting, Upper Bounds
	1.3.3 The Secretary Setting, Lower Bounds
	1.3.4 The Single-Sample Prophet Setting

	1.4 Related Work
	1.4.1 Prophets and Secretaries with Costs
	1.4.2 Multiple Selection under Constraints
	1.4.3 Prophet Inequalities from Samples

	1.5 Organization of the Paper

	2 Discussion and Open Problems
	3 Warmup: The IID Prophet Setting
	4 Prophet Setting: The General Case
	5 Algorithms for the Secretary Setting
	5.1 Warmup: Random Order, Full or Optimum Information
	5.2 Random Order, with No Information
	5.3 Arbitrary Order, with Optimum Information
	5.4 An Improved Algorithm under Random Ordering, with Full Information

	6 Lower Bounds for the Secretary Setting
	6.1 Random Order, Full Information
	6.2 Arbitrary Order, Full Information
	6.3 Random Order, Optimum Information

	7 A Single-Sample Algorithm for the Prophet Setting

	p092-Rothblum
	1 Introduction
	1.1 From predictions to decisions under miscalibration

	2 Preliminaries
	2.1 Calibration
	2.2 Utility-based metrics

	3 Defining Regret
	4 Treating at the therapeutic threshold
	5 Decision-making under miscalibration
	6 Further Related Work
	A Proof of Lemma 4
	B Proof of Lemma 5
	C Proof of Theorem 6
	C.1 Maximum Calibration Error
	C.2 Expected Calibration Error


	p093-Rubinstein
	1 Introduction
	1.1 Main result I: instance optimality
	1.2 Main result II: budget-smoothed analysis

	2 Preliminaries
	2.1 Problem setup
	2.1.1 Further important concepts

	2.2 Budget-smoothed analysis

	3 Instance-optimality against uniform mechanisms
	3.1 Greedy is an instance-optimal uniform ``mechanism''
	3.2 Greedy allocation rule: a lottery of two posted prices
	3.3 Approximating greedy via random sampling
	3.4 Numerical simulation on synthetic instances

	4 Budget-smoothed analysis
	4.1 Greedy is optimal for any budget distribution
	4.1.1 From arbitrary market to Bayesian market
	4.1.2 Characterizing the worst Bayesian market



	p094-Rush
	1 Introduction
	2 Main results
	2.1 Low-degree testing
	2.2 Model formulation
	2.3 Proof overview

	3 The recursive algebra of planted vs planted
	3.1 The graph interpretation
	3.2 Combinatorial properties of the r-values

	4 Proof
	5 Additional proofs
	5.1 Proof of Lemma 2.6
	5.2 Proof of Proposition 2.7
	5.3 Proof of Proposition 2.8
	5.4 Proof of Lemma 3.3
	5.5 Calculations for signed triangle counts


	p095-Saxena
	1 Introduction
	1.1 Context and Technical Highlights
	1.2 Related Work
	1.3 Summary and Roadmap

	2 Preliminaries
	2.1 Approach to Bound Product Dimension
	2.2 Matroid Intersection Prophet Inequalities

	3 Connecting Prophet Inequalities to {AAM}(p,N)
	4 Proof of Main Result
	4.1 Overview of The Proof
	4.1.1 Getting a Quadratic Bound
	4.1.2 Getting a Better Bound
	4.1.3 Limitations

	4.2 A Key Theorem
	4.3 Proof of Theorem 10
	4.4 Limitations of Our Approach

	5 Summary of AlonA20
	5.1 Families Closed Under Multiplication
	5.2 Balanced Codewords
	5.3 Proof of thm:aa20-actual

	6 Conclusion

	p096-She
	1 Introduction
	1.1 Unitary Property Testing
	1.2 A Generalized Polynomial Method and Its Applications
	1.2.1 Lower Bounds for Unitarily Invariant Properties
	1.2.2 Beyond Unitarily Invariant Properties

	1.3 Property Testing with Quantum Proofs
	1.4 QMA vs. QMA(2)
	1.5 Related Work

	2 Open Questions

	p097-Shi
	1 Introduction
	1.1 Our Results and Contributions
	1.1.1 Characterizing Miner Revenue under Approximate Incentive Compatibility
	1.1.2 Can We Circumvent the Finite-Block Impossibility with Cryptography?

	1.2 Additional Related Work

	2 Model and Definitions
	2.1 Transaction Fee Mechanism in the Plain Model
	2.2 Transaction Fee Mechanism in the MPC-Assisted Model
	2.3 Defining Incentive Compatibility

	3 Approximate Incentive Compatibility for Infinite Block Size
	3.1 Bounds on Miner Revenue
	3.2 Achieving Optimal Revenue: Proportional Auction

	4 Characterization of Finite Block Size in the Plain Model
	5 Characterization for Finite Block Size in the MPC-Assisted Model
	5.1 Characterization for Strict Incentive Compatibility
	5.1.1 Feasibility for c = 1
	5.1.2 Impossibility for c > = 2

	5.2 Feasibility of Approximate Incentive Compatibility


	p098-Venkat
	1 Introduction
	1.1 Techniques
	1.2 Future work

	2 Preliminaries
	2.1 Computational model
	2.2 SVP
	2.3 John ellipsoid

	3 Certifying discrepancy lower bounds
	3.1 Proofs of main results


	p099-Vyas
	1 Introduction
	1.1 Local Algorithms for Missing-String and New Time Hierarchies
	1.2 Non-Relativizing Aspects of the Algorithmic Method

	2 Preliminaries
	2.1 A Normal Form for Relativized Circuits
	2.2 Efficient Methods for Finding a Missing String

	3 Local Algorithms for Missing-String and New Non-Uniform Hierarchies
	3.1 Non-Uniform Time Hierarchies

	4 Circuits for Missing-String And Circuit Lower Bounds
	4.1 A Perspective on Non-Relativizing Lower Bounds

	5 Oracles Breaking The Algorithmic Method for Circuit Lower Bounds
	A Simple Lower Bound for Local Algorithms Solving Missing-String
	B Fast-enough SAT Implies EXP Lower Bounds

	p100-Winkler
	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	4 A Decision Procedure for Consensus Solvability
	5 Time Complexity of Consensus
	6 Lower Bounds
	6.1 Decision complexity and consensus termination time
	6.2 Exponential iteration complexity of the decision procedure
	6.3 Exponential termination time of consensus

	7 Another Source of Consensus Time Complexity
	7.1 A partition of an oblivious message adversary
	7.2 An example: choosing the processes
	7.3 An example: the graph structure
	7.4 An example: properties of the adversary

	8 Conclusions

	p101-Yolcu
	1 Introduction
	1.1 Properties of commonly studied proof systems
	1.2 Related work
	1.2.1 Proof complexity
	1.2.2 SAT solving

	1.3 Results
	1.4 Open questions

	2 Preliminaries
	2.1 Propositional logic
	2.2 Proof complexity
	2.3 Resolution

	3 Inference rules
	3.1 Useful facts

	4 Partial simulation of RAT- by BC-
	5 Incomparability of RAT- and GER-
	5.1 Exponential separation of RAT- from GER-
	5.2 Exponential separation of GER- from RAT-

	6 Exponential separation of SBC- from RAT-
	7 Exponential separation of SBC- from GER-


