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Abstract
In this work, we put forward the notion of “efficiently testable circuits” and provide circuit compilers
that transform any circuit into an efficiently testable one. Informally, a circuit is testable if one can
detect tampering with the circuit by evaluating it on a small number of inputs from some test set.

Our technical contribution is a compiler that transforms any circuit C into a testable circuit
(Ĉ, T̂) for which we can detect arbitrary tampering with all wires in Ĉ. The notion of a testable
circuit is weaker or incomparable to existing notions of tamper-resilience, which aim to detect or
even correct for errors introduced by tampering during every query, but our new notion is interesting
in several settings, and we achieve security against much more general tampering classes – like
tampering with all wires – with very modest overhead.

Concretely, starting from a circuit C of size n and depth d, for any L (think of L as a small
constant, say L = 4), we get a testable (Ĉ, T̂) where Ĉ is of size ≈ 12n and depth d+log(n)+L ·n1/L.
The test set T̂ is of size 4 · 2L. The number of extra input and output wires (i.e., pins) we need to
add for the testing is 3 + L and 2L, respectively.
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1 Introduction

A circuit compiler is a mapping that takes as input (the description of) a circuit C and outputs
(the description of) a compiled circuit C ′. Many such compilers have been proposed, where
the compiler’s task is to output a circuit that is functionally equivalent to the input circuit but
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10:2 Efficiently Testable Circuits

whose physical implementation will provide some useful additional security properties. Here
“functionally equivalent” means C ′ computes the same function as C but some compilers
require additional input and/or output wires or require the inputs and outputs to be encoded
in a special way. An influential line of research in this domain are private circuits [13, 12, 7],
which aim to hide secrets like cryptographic keys in the compiled circuit in the presence of
physical attacks like leakage, tampering, or hardware trojans. We will discuss these in more
detail in Section 1.3.

In this work, we consider circuits’ integrity rather than secrecy. While private circuits
address the setting where an adversary gets access to a device (like a smart card) doing
cryptographic computations and aims at extracting the key through leakage, tampering, or
by outright replacing the circuit (i.e., hardware trojans). We consider a setting where an
adversary can attack the circuit before it is delivered to the honest parties and want the
honest parties to be able to efficiently detect whether such tampering took place.

Integrity vs. Secrecy. Detecting tampering is arguably an easier task than protecting secrets.
In fact, the approach to safeguard secrets against tampering in “private circuits II” [12] and
against trojans in “private circuits III” [7] is to detect integrity violations that could lead to
information leakage and self-destruct the circuit once such a violation is detected. These
integrity checks must happen continuously whenever the circuit is evaluated, as a single
query to a tampered circuit can leak the secret.

In this work, we consider a more benign setting where an adversary can initially tamper
with a circuit, which is then delivered to the user. The user can then test the circuit to certify
its integrity. This is conceptually similar to traditional testing in circuit manufacturing (see,
e.g., [3]). However, while there the goal is the detection of random errors that creep in during
manufacturing, we consider extremely powerful adversarial tampering attacks where the
circuit (before compilation) can be adversarially designed. The tampering attack can affect
the entire (compiled) circuit as long as its topology remains unchanged.

Our notion is motivated by security aspects of cryptographic circuits (which hide a secret)
as well as non-cryptographic circuits (where we just care about integrity). As a cryptographic
example consider an adversary who tries to tamper with a smart-card used for signing to
make it output the secret key if queried on a random message only known to the adversary.
Such tampering is not detectable through normal testing, but once the cards are deployed
the adversary can extract secret keys through a simple signing query.

As an example of a non-cryptographic circuit consider a chip used in a router which is
tampered so it can be triggered with an innocent looking package to route all “interesting”
data to some particular server controlled by the adversary. Our compiler could also be
interesting in a context where we only consider benign errors, but want to be able to detect
those efficiently with 100% certainty. A great example are chips used in space exploration,
here integrity is often crucial, while the high radiation takes its toll on circuit components.

1.1 Efficiently Testable Circuits Compiler

We will construct a compiler that maps any circuit C : Zs
2 → Zt

2 into an efficiently testable
one, which is a tuple (Ĉ, T̂) where Ĉ : Zs+s′

2 → Zt+t′

2 is a circuit that is functionally equivalent
to C when setting the s′ extra inputs to 0 and ignoring the t′ extra outputs (the |t subscript
indicates that only the first t bits of the output are considered)

∀X ∈ Zs
2 : Ĉ|t(X∥0s′

) = C(X)
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Figure 1 Illustration of our toy circuit C (A) and its compiled version Ĉ (D). (B) is a trivial
solution with large output while (C) has only two extra output bits but is only secure assuming no
tampering with the chained OR/AND gadgets as explained in the text.

and T ⊆ Zs+s′

2 is a small test set. Ĉ is efficiently testable in the sense that when applying
a tampering τ to Ĉ such that this tampered circuit Ĉτ errs on at least one input, there is
already an input in the small test set which will certify this∃X ∈ Zs

2 : Ĉτ
|t(X∥0s′

) ̸= Ĉ|t(X∥0s′
)︸ ︷︷ ︸

=C(X)

 ⇒
(
∃X ∈ T : Ĉτ (X) ̸= Ĉ(X).

)

The Tampering Model. The class of tamperings we consider allows for tampering every
wire in the circuit in an arbitrary way. Concretely, the tampering τ specifies for every wire
one of four possible actions: do nothing, flip the value or set it to constant 0 or 1. There is
one restriction, the tampering is “conductive”: if a gate output wire has fan-out > 1, i.e., it
is used as input to more than one gate (where a final output is considered a gate), then the
adversary can only choose one tampering function which will affect all those wires identically.
We will refer to this as the conductivity assumption. This assumption has been used in
previous works on tamper-resilient circuit compilers including Private Circuits II [12].

While one can turn any circuit into a functionally equivalent one where all gates have
fan-out 1 by using COPY gates (cf. Figure 6), this transformation will, unfortunately, not
preserve the testability of the circuit, so we have to consider the requried fan-out as a
parameter. We refer to a circuit where no wire has fan-out ≥ k as k-conductive, and the
testable circuit created by our compiler will be 3-conductive.

1.2 Our Technical Contribution
In this section, we will sketch the main ideas behind our compiler using the toy circuit
C(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) as illustrated in Figure 1.(A) as running example.

Preprocessing - Circuits with Covering Sets. Before we can apply our compiler, we perform
some minor preprocessing of the circuit. For one thing, we need the preprocessed circuit to
be non-conductive (i.e., each gate has fan-out 1). Moreover our compiler will require that
the input circuit C : Zs

2 → Zt
2 comes with a covering set of inputs T ⊆ Zs

2, which is a set of
inputs such that for every wire w in C and every b ∈ {0, 1}, there is an input X ∈ T such

ITCS 2023
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c = 1
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Figure 2 If in the core circuit some wire is tampered changing 0 to 1 (either flipping the wire or
setting to constant 1) this will be detected by the chained OR (1 to 0 by the chained AND) gadget.
Trying to tamper with the gadget (on the right one wire is set to 0 trying to “fix” the yOR output)
itself will not prevent detection as now the control output yOR will not change when we flip the
control input cOR, so the yOR output on either 00000 or 00001 will be wrong.

that in the evaluation C(X) the wire w carries value b. For our toy circuit T = {0000, 1111}
is a covering set (all wires are 0 on input 0000 and all wires are 1 on input 1111). In general,
a covering set might not exist or be hard to find (it is easily seen to be NP-complete). We
show how to derive from any circuit a functionally equivalent one together with a covering
set of size 4. This requires adding 3 extra input wires and some XOR gates. In the worst
case the size of the circuit doubles, but typically it will increase by much less.

A Trivial (but Impractical) Solution. Given a non-conductive circuit C ′ with covering
set T (as produced by the preprocessing) we can get a testable circuit (Ĉ, T̂) by using the
covering set as the test set, i.e., T̂ = T, and letting Ĉ be C ′ with an extra output wire for
every wire in C ′ as shown in Figure 1.(B). To see why (Ĉ, T̂) is testable consider any wire w

which was tampered. On some input X ∈ T̂ this wire will take the wrong value, and this
value can be directly observed on the outputs.

There is a subtle flaw in the above argument. The tampering on the particular wire w on
input X could be “undone” by some tampering higher up in the circuit. To fix the argument
it is sufficient to let w be a topologically first tampering, meaning no wire on a path from an
input to w is tampered. Let us also stress that Ĉ is 2-conductive as each wire is additionally
used as output. We can’t simply use COPY gates to make the circuit non-conductive as then
the observed outputs and values on the internal wires could be tampered with individually,
and the above argument breaks down. Thus already this impractical construction highlights
the importance of the conductivity assumption.

Assuming Non-Tamperable Test Gates. The reason the solution just outlined is not
practical is the huge number of output wires. This makes checking whether the test queries
are correct expensive. More importantly, while circuits can have billions of gates, the number
of pins (input/output wires) is much more limited for technical reasons. Assume we could
create a compiler by adding gates and wires to the circuit which the adversary is not allowed
to tamper with. Then there is a simple solution using the same test set T̂ = T as the trivial
solution just outlined, but adding just 2|T| output wires: For every X ∈ T, consider all wires
which should be 1 on this input, and output the AND of all these bits. Similarly, output the
OR of all bits set to 0.
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Recall that for our toy circuit C = {0000, 1111}. On input 0000 all wires are 0 and thus
we just need to compute one big OR whose output is denoted yOR in Figure 1.(C). Similarly,
on the other input 1111 all wires are 1 and thus we just need one big AND gadget. For
reasons that will become clear later, our gadget applies the AND/OR gates sequentially, and
not in a tree fashion, which would result in a much lower depth circuit.

For our toy circuit, this just increased the number of outputs by 2, in general, it will
increase the number of outputs by at most 8 (≤ 2 outputs for each of the ≤ 4 test queries).
The compiled toy circuit is 3-conductive. In general, this compiler will output a (|T|+ 1)-
conductive circuit, but we observe that each wire only needs to go to one OR and one AND
gadget even if it is 0 (or 1) for more than one test query. With this observation, we get a
3-conductive circuit no matter how large T is. Using this observation we also see that the
size of the circuit triples (one extra OR and AND gate for each wire).

The Actual Compiler. The previous solution is not secure once the adversary can also
tamper with the OR and AND gadgets. There is a surprisingly simple and elegant fix to
this. As illustrated in Figure 1.(D) we add one extra input, a control bit xs+1 = c. This
control bit is given as the first input to all sequential AND and OR gadgets. It is safe to use
COPY gates to create enough copies of c (i.e., we allow each of the copies to be tampered
with independently), so the circuit remains 3-conductive. For our toy circuit we just need
two copies (cAND, cOR)← COPY(c).

The test set T̂ for this compiled circuit Ĉ is twice as big as for the previous construction
where it was just the covering set T: now for each X ∈ T we add X∥0 and X∥1 to T̂. For
our toy circuits, we get

T̂ = {00000, 00001, 11110, 11111}.

Security. We will prove that a circuit (Ĉ, T̂) constructed as described from an input circuit
C is testable. Let us here just give some intuition as to why this is the case for our toy
circuit. Assume there is a tampering in the C subcircuit of Ĉ that sets some wire to 1 as
illustrated in Figure 2.(A). If there is no tampering on the OR gadget then we will detect
tampering as we get a wrong output yOR = 1 on input 00000 ∈ T̂. The adversary can tamper
with the OR gadget, say set a wire to 0 as shown in Figure 2.(B), but now yOR = 1 on input
00001 ∈ T̂ (i.e., same input but the control bit is c = 1), which is the wrong value and thus
we will detect tampering.

This is not just a particular example, we observe that whenever there is at least one wire
(other than the control bit) coming into such a sequential OR gadget that is set to 1, then no
matter how the gadget is tampered, the output of this gadget will not change if we just flip
the value of the control. An analogous statement holds for the AND gadget assuming some
input is 0.

For our toy circuit, this means that once the adversary decided to apply a tampering τ

that sets a wire to 1 in the C subcircuit of Ĉ, and using the convention that Cτ
y (X) denotes

the value of the wire y when C is tampered according to τ and evaluated on X, we will have

ĈτyOR(00000) = Ĉτ
yOR

(00001)

no matter how the gadgets are tampered with, while without tampering

ĈyOR(00000) = 0 ̸= ĈyOR(00001) = 1

and thus we will detect a wrong output on some test query. Similarly, using the AND gadget
we will detect whenever some internal wire is set to 0.

ITCS 2023
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cOR
yOR

x1 = 0 x2 = 0 x3 = 0 cOR

x1 = 0

x2 = 0

x3 = 0

yOR

set to 1

set to 1

set to 0

Figure 3 left: Our OR gadget with four inputs: a control bit cOR and three inputs x1, x2, x3. If
x1 = x2 = x3 = 0 then the output is the control yOR = xOR. The key property of this gadget used in
the proof is the following: If (at least) one of the inputs is tampered to 1 (in the figure x2 is set
to 1), then, no matter which other wires are tampered with, the output yOR will be the same if we
set cOR = 0 and cOR = 1 as the output of the 2nd OR gate will be 1 in both cases, thus “forgetting”
the value of cOR. right: Arranging the gates in a (low depth) tree structure does not have this
property. The figure shows a tampering of x2 to 1 and one more tampering such that yOR = cOR

holds if x1 = x2 = x3 = 0.

A major drawback of our construction is its depth. For a circuit C with n wires, the
OR and AND gadgets in the complied Ĉ will have depth up to n (and at least n/4), which
for most circuits is not acceptable. Unfortunately, we cannot simply replace the sequential
OR and AND gadgets with say a tree (that would only have logarithmic depth) as then the
gadgets would no longer have the property required for the security proof we just sketched,
we illustrate this problem in Figure 3.

x1 x2 x3 x4

y1

cOR

c = x5

c′ = x6

yOR AND yOR OR

cAND

yAND ANDyAND OR

x1 x2 x3 x4

y1

yAND yOR

cAND cOR

c

Figure 4 left: Compilation of our toy circuit C at the basic level L = 1. The depth of the
sequential AND and OR gadgets is as high as the number of wires in C. right: A compilation at
level L = 2, the sequential gadgets of length m are chopped up into ≈

√
m chunks, each of length

≈
√

m (here m = 7 and the chunks are of length 3, 2 and 2). The depth of the compression gadgets
drops from m to 2

√
m (and ≈ L · m1/L for general L).

Decreasing Depth. We will now outline how the depth of the “testing circuit” (i.e., the
part of Ĉ which is not the initial C circuit) can be brought down from n to L · n1/L for a
parameter L ∈ N, with L = 1 giving the basic construction outlined above. While the depth
decreases with larger L, the test set and the number of additional output wires will increase
exponentially in L. That is not really an issue as already small values of L will be sufficient
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to make the circuit depth of the testing part very small. As a numerical example, for n = 232

(4 billion gates), with L = 4 we get a depth of ≈ 4 · 232/4 = 1024 while for L = 5 that drops
to 85.

We will outline our approach for our toy circuit and L = 2 as shown on the right side of
Figure 4. For L = 2, the basic idea is to split the OR and AND gadgets into ≤

√
n smaller

ones of length
√

n. Each of them needs the control bit as the first input, which we create
using COPY gates (we can arrange them in a balanced tree, so the depth for this is just
O(log(n))). The problem is that while before we had one output from every OR/AND gadget,
now we have up to

√
n outputs (one from each shorter gadget). We can use our compression

idea recursively to compress these to 2 values.
For this, we need another control bit c′ (the first and second level control bits are shown

in blue and brown in the figure). The output of each smaller gadget (shown in orange in the
figure) is then forwarded to an OR and an AND gadget which gets the control bit c′. Let us
mention that the fan-out of the smaller gadgets is 2, and we can’t use a COPY gate to get it
down to 1 as the security proof will rely on both output wires carrying the same value.

For general L we split the gadget recursively into chunks of depth n1/L. We need L extra
input wires for the control bits and the number of additional output wires doubles if we
increase L by 1, so it is at most 8 · 2L. The test set for this more general construction also
doubles if we increase L by 1: for every x ∈ T it contains the inputs xc1c2 . . . cL for all 2L

choices of the L control bits. For our toy example where T = {0000, 1111} and L = 2 as
illustrated in the figure this means

T̂ = {000000, 000001, 000010, 000011, 111100, 111101, 111110, 111111}

x1 x2 x3 x4

y1

cOR

c = x5

c′ = x6

yOR AND yOR OR

cAND

yAND ANDyAND OR

SET TO 1

X

Figure 5 Intuition for the security proof for our toy circuity using L = 2.

Security for General L. We show that for any L, the above complied circuit (Ĉ, T̂) is
testable.

This can be proven by induction on L and we will give some intuition for our toy circuit
for L = 2 relying on the intuition we already provided for L = 1. Consider again that a
(topologically first) tampering is setting a wire to 1 as indicated in Figure 5. This wire is
going into an OR gadget, and its output, denoted α in the figure will not switch if we flip
the control input c, no matter how the compression gadget is tampered (using the same
argument as to why the yOR input didn’t flip in the L = 1 construction), so α will take the
same value on inputs of the form 00000∗ and 00001∗ where ∗ can be either 0 or 1.

ITCS 2023



10:8 Efficiently Testable Circuits

Let us assume it takes value α = 0. In this case the output (labeled yOR_AND in the
figure) of the AND gadget on the 2nd level will be identical on inputs 000010 and 000011 as
the α = 0 input to the AND gate in this gadget will make the output of this gate independent
of the c′ control bit. But yOR_AND should be different on those two inputs, so we will observe
an inconsistent output on one of those two inputs. For the case where α = 1 the argument
uses the 2nd level OR gadget for inputs 000000 and 000001.

The Sections 4,5,6 of this work give a formal description of a circuit compiler compiling
into testable circuits. The result is summarized with TestableCircuitCompiler procedure
(see Algorithm 4) that takes two parameters - a circuit C and a number L ∈ N+ - and
outputs a testable circuit - (Ĉ, T̂). The properties of the construction are summarized in the
Theorem 1.

▶ Theorem 1. Given any circuit C : Zs
2 → Zt

2 (of size n, depth d), and a number L ∈ N+,
the procedure TestableCircuitCompiler(C, L) outputs a pair (Ĉ, T̂) such that:

Ĉ is a circuit with additional 3 + L input bits and additional 2L output bits, i.e. Ĉ :
Zs+3+L

2 → Zt+2L

2 . The size of Ĉ is bounded by 12n, and its depth is bounded by d +
log(n) + L · (3n)1/L. The size of the test set T̂ is 4 · 2L.
The pair (Ĉ, T̂) is a testable circuit, i.e. for any tampering τ(

∃X ∈ Zs
2 : Ĉτ

|t(X||03+L) ̸= Ĉ|t(X||03+L)
)
⇒

(
∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

)
and Ĉ is functionally equivalent to C, i.e. ∀X∈Zs

2
: Ĉ|t(X||03+L) = C(X).

Section 6 gives a detailed description of the procedure TestableCircuitCompiler and
proof of the Theorem 1.

1.3 Related Work
Generally, this work can be viewed as a part of research on securing cryptographic imple-
mentations against the so-called physical attacks, i.e., attacks in which the adversary exploits
the physical properties of the devices, instead of attacking them on the algorithmic level.
The theoretical study of this area was initiated by Micali and Reyzin in [17]. In particular,
as already highlighted above, our results are related to the papers studying the so-called
tampering attacks, which is a long line of work initiated by [11].

The general compilers for protecting against the physical attacks were first considered
in the papers on leakage-resilience [13], and then on tamper-resilience [12]. Our model of
tampering (“resetting to 0/1”, “toggling”, and the “conductivity” assumption) is taken from
the latter paper. Other works on tamper-resilient compilers include [5, 6, 10, 9, 15] and
many more. In the context of trojan-resilience, the general compilers were considered in [7].
The model in [7] is orthogonal to ours: on one hand, it is more general, since it permits
the adversary to change the topology of the circuit. On the other hand, it uses a stronger
assumption than we do, namely: it relies on the existence of an untamperable “master
circuit”. The security guarantees of [7] are also weaker than ours, since they only provide
trojan-resilience for a limited number of executions of the device.

A general compiler for trojan-resilience has also been recently constructed in [4], where the
authors achieve security against adversaries that are more general than the ones considered
by us. They also have the advantage of not modifying the circuit specification. On the
other hand, as in [7] they require a trusted circuit. Moreover, they make an assumption that
the inputs to the device come from an iid source, and they provide only limited security
guarantees, namely, they only achieve correctness for a certain fraction of the executions of
the device.
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1

1

0 0
0

0

1

Figure 6 left: Part of a 2-conductive circuit, any tampering (a toggle is illustrated) will affect
the two inputs in the same way. right: Using a COPY gate the circuit can be made 1-conductive,
allowing more general tampering attacks where each wire can now be tampered individually.

Another, orthogonal to ours, model in this area is the one where the adversary is allowed
to replace the value of the output of the gate by one of their inputs (the so-called adversarial
short circuit errors). This model has been introduced in [16], and further studied, e.g.,
in [14, 8]. Some papers (e.g. [1, 18]) also propose to use the techniques from verifiable
computations. They typically provide strong security guarantees at a cost of significant
computational overhead. Moreover, they also rely on the “master circuit” assumption.

For an overview of practical methods of defending against the trojan attacks see, e.g., [2].
The problem of the testing errors on wires is also extensively studied in the practical
community, see, e.g., [3]. However, all these practical approaches are heuristic and do not
come with a well-defined security model and guarantees.

2 Preliminaries

Let [k] := {1, 2, ..., k}. We denote the set of wires W of a circuit C as W (C). We use
a standard computation model of Boolean circuits as e.g. used in the private circuits
literature [12]. For the most part, we will only discuss simple stateless Boolean circuits.
Extensions to more general models like allowing memory cells or randomness gates are
straightforward. A circuit C operates on a set G of allowed gates and given some input X

produces an output Y . We consider an adversary who can arbitrarily tamper with every
wire of the circuit, that is, choose one of the four possible actions: do nothing, flip the value
or set it to constant 0 or 1. It will be convenient to also model the input, output wires of the
circuit (aka. pins) as gates with indegree, outdegree 0, respectively.

We require that tampering is conductive. This means that if an output wire of a gate
is used as input to more than one gate, we think of this as a single wire for which only
one tampering action can be chosen. We leave it as a main open problem to construct a
compiler not relying on this assumption. This assumption is conciliated by the fact that in
the compiled circuit any wire is used as input to at most three gates, which we refer to as
3-conductive. We assume that the input circuit is not conductive (which means 1-conductive,
i.e., each wire is used as input to exactly one gate), this is without loss of generality as
by using copy gates (x, x) = COPY(x) every k-conductive circuit can be turned into a
non-conductive one while at most doubling the circuit size and increasing the depth by a
factor ⌈log(k)⌉.

2.1 Notation for Circuits
In this section, we define the notation for the Boolean circuits which we will use throughout
the paper. Circuits can be modeled as directed acyclic graphs (DAGs), and we will extensively
use standard graph theory notation. Concretely, a circuit is modeled as a DAG Cγ = (V, E)

ITCS 2023



10:10 Efficiently Testable Circuits

where vertices refer to gates and the directed edges refer to wires. The circuit definition Cγ

comes with a labeling function γ : V → G which assigns specific gates to the vertices. We
will often omit the parameter γ since it is chosen when specifying the circuit and cannot
be tampered with. Each wire carries a bit from Z2, and each gate is taken from the set of
allowed gates G (including {AND, OR, XOR, COPY, NOT} and two special {IN, OUT} gates).
For v ∈ V , let E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E} be the sets of v’s incoming
and outgoing edges, respectively. For e = (u, v) ∈ E we define V −(e) = u and V +(e) = v.

Fan-Out and Conductivity. Each gate type in G has some given number of input and
output wires [the OUT(IN) gate has fan-in 1(0) and fan-out 0(1), the OR, XOR, AND gates
have fan-in 2 and fan-out 1, NOT gates have fan-in, fan-out 1, COPY gates have fan-in 1,
fan-out 2]. Each output wire is used as an input wire to at least one other gate (if not the
gate is redundant and it can be removed). An output wire can lead to more than one input
wire. The fan-out of an output wire is the number of input wires it leads to. A circuit is
k-conductive if no wire has a fan-out greater than k; a 1-conductive circuit is also called
non-conductive. Every k-conductive circuit can be turned into non-conductive one by using
copy gates COPY(x) = (x, x) as illustrated in Figure 6. As said before, this transformation
does not preserve security against wire tampering as considered in this work, where tampering
with a wire of fan-out > 1 affects all the input wires in the same way. It will be convenient
to define two non-standard gates: the input and output gates denoted IN, OUT. We split
the vertices into three sets V = I ∪ G ∪ O, where I = {I1, I2, ..., Is} are vertices which are
assigned to IN, and O = {O1, O2, ..., Ot} are these assigned to OUT. Given Cγ = (V, E) and
an input X = (x1, ..., xs) ∈ Zs

2 we define a valuation function valCγ ,X : V ∪ E → Z2 which
assigns each gate the value it outputs and each wire the value it holds when the circuit is
evaluated on X. More formally the valuation function for vertices v ∈ V and edges e ∈ E is
defined as:

valCγ ,X=(x1,x2,...,xs)(v) =

xi, if v = Ii.

γ(v)(valCγ ,X(E−(v))), otherwise.

valCγ ,X(e) = valCγ ,X(V −(e)).

We will sometimes just write valX if the circuit considered is clear from the context. The
behaviour of the circuit C can be associated with the function that it evaluates, i.e. C : Zs

2 →
Zt

2. We can define this function as follows: C(X) = (valC,X(O1), valC,X(O2), ..., valC,X(Ot)).

2.2 Tampering Model
We consider an adversary who can tamper with every wire in the circuit. The tampering
of a wire is described by a function Z2 → Z2 from the class of the four possible bit tamper
functions T = {id, neg, one, zero}. The tampering of an entire circuit C = (V, E) is defined
by a function τ : E → T . mapping each wire to a tampering function. For convenience, we
sometimes write τe to denote τ(e).

Conductivity and Tampering. The only restriction we put on the tampering is: for the
output wires from a vertex with fan-out > 1 the same tampering is applied. In our graph
notation, this means that for every v ∈ V and e, e′ ∈ E+(v) we have τ(e) = τ(e′). The only
exception is the copy gate as it has two output wires. Here the tampering must fall into
one of two choices (one for each output wire), i.e., for v ∈ V where γ(v) = COPY we have
|{τ(e) : e ∈ E+(v)}| ≤ 2.
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Now we can extend our notion of the valuation to also take tampering into account in
order to define the valuation of a tampered circuit valτX : V ∪ E → Z2. The only difference
to the (non-tampered) valuation function is that we apply the tampering to each value of an
edge after it is being computed, formally:

valτCγ ,X=(x1,2,...,xs)(v) =

xi, if v = Ii.

γ(v)(valτCγ ,X(E−(v))), otherwise.

valτCγ ,X(e) = τe(valτCγ ,X(V −(e))).

By Cτ we can again understand a function that describes the input-output behaviour of
the tampered circuit: Cτ (X) = (valτC,X(O1), valτC,X(O2), ..., valτC,X(Ot)).

3 A compiler transforming circuits into testable circuits

In this work, we develop a notion of (efficiently) testable circuits. Consider some circuit
C : Zs

2 → Zt
2, then its testable version is a circuit (Ĉ : Zs+s′

2 → Zt+t′

2 , T̂ ⊂ Zt+t′

2 ) which is
functionally equivalent (i.e. Ĉ computes the same function by setting the s′ extra input bits
to 0 and ignoring the t′ extra output bits), but additionally is able to detect any non-trivial
tampering τ (i.e. any tampering that makes Ĉ output something else than output of C,
ignoring the last t′ test bits) by observing its input-output behaviour on some small set T̂ of
test inputs.

▶ Definition 2 (A testable circuit). For any circuit C : Zs
2 → Zt

2, a pair (Ĉ, T̂) - a circuit
Ĉ : Zs+s′

2 → Zt+t′

2 along with a testing set T̂ ⊂ Zs+s′

2 - is a testable circuit if and only if:
Ĉ is functionally equivalent to C, i.e. ∀X ∈ Zs

2 : Ĉ|t(X∥0s′) = C(X),
(Ĉ, T̂) is testable, i.e. for any tampering τ

∃X ∈ Zs
2 : Ĉτ

|t(X||0s′
) ̸= Ĉ|t(X||0s′

) ⇒ ∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

In the subsequent sections we construct a compiler that takes any circuit and maps it to a
testable circuit.

▶ Definition 3 (Compiler transforming into testable circuits). A circuit compiler C is an
algorithm transforming a circuit C : Zs

2 → Zt
2 into a testable circuit (Ĉ : Zs+s′

2 → Zt+t′

2 , T̂ ⊂
Zs+s′

2 ).

3.1 Parameters of our Construction

A useful circuit compiler C should meet the following (informal) conditions: (1) Ĉ is not
much more complex than the input circuit C (since we want the compiled circuit to be
practical in production and use); (2) T̂ is not too large (to allow an efficient verification).

As mentioned in the introduction, our compiler first precompiles the circuit C into an
intermediary (C ′,T) and finally outputs the compiled (Ĉ, T̂). Let n, n′, n̂ denote the number
of verticefs, and d, d′, d̂ the depth of C, precompiled C ′ and compiled Ĉ, respectively. Our
compiler takes as additional input a recursion parameter L, which then gives the parameters
described in Table 1 below.
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Table 1 Parameters summary.

Input C Preprocessed C ′ Compiled Ĉ

Input size s s + 3 s + 3 + L

Output size t t t + 2L

Number of gates n 3n 12n

Circuit depth d d + log(n) d + log(n) + L · [3n]1/L

Test set size 4 · 2L

The circuit Ĉ is 3-conductive, recall that this means that a gate can have an output wire
with fan-out of up to 3, and a tampering affects all these wires in the same way. We assume
the input circuit C is non-conductive (i.e., 1-conductive), which is without loss of generality
as any circuit can be transformed into a non-conductive one at a modest cost using COPY
gates. We cannot make Ĉ non-conductive this way as this would not preserve its testability.

4 Compilers

In this section, we will show an efficient circuit compiler, which works for arbitrary circuit.
As a warm-up, we will present two impractical (but educative) solutions: they make I/O size
or the depth of the compiled circuit linear in the size of the original circuit. We will then
build on these basic ideas to make a practical construction.

Unlike some other circuit compilers, our compiled circuit C will be a subcircuit of
the compiled Ĉ. Let us also stress that we do not rely on any tamper-free components,
randomness gates or alike.

4.1 The basic ideas
4.1.1 Covering sets
Recall, that the tampering on a wire e is a function τe : Z2 → Z2 assigned to that wire. If any
of the functions associated with wires on the circuit is not identity, the circuit is tampered.
So the general idea is to check the behaviour of every wire when it should transfer the value
0 and when it should transfer the value 1 in a smart way. To work with this intuition, we
define a covering set. It is a set of inputs for which every wire would take both values, 0 and
1. Formally speaking,

▶ Definition 4. We say, that a set of inputs T = {t1, ..., tk} is a covering set (for some
circuit C) if

∀ e ∈ E(C), b ∈ {0, 1} ∃X ∈ T : valX(e) = b .

In general, a circuit may not have a covering set at all, as some wires could be 0 or 1
on every input to the circuit. Fortunately, every circuit can be efficiently modified into a
functionally equivalent circuit with a covering set of constant size. We will demonstrate the
construction in Section 5.

Intuitively, a covering set seems to be the smallest testing set for the testable circuit. If
the circuit would be tested on a set of inputs that do not form a covering set, then there
would exist a wire which would take only one value for each test, say 0. Then we would not
detect zero tampering on this wire.

The rest of this section assumes that the circuit C under consideration has been trans-
formed into a circuit C ′ with a small covering set T.
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4.1.2 The simplest solution

A trivial solution is to simply output every wire value. For this we increase the fan-out of
every wire by one, and connect each wire to new output gates Ot+1, Ot+2, ..., Ot+n. Now we
can simply check the values of these output gates on our covering set. Since the circuit is a
DAG, there always exists a topologically first tampered wire. The output value related to
this wire must show an inconsistency for some element of the covering set.

Let us stress that already this solution increases the conductivity by one, i.e. if we start
with a non-conductive circuit, we get a 2-conductive circuit. Simply using a COPY gate for
each wire and outputting the extra wire would not increase the conductivity, but it would
also not guarantee that we detect every tampering even after evaluating the compiled circuit
on a covering set.

Nevertheless, the above construction is totally impractical. Although the circuit size only
doubles, it massively increases the number of output wires. This not only makes testing the
correctness of the outputs impractical but is also unimplementable. In practice, circuit pins
(input/output wires) are expensive and they should only constitute a tiny fraction of the
circuit size as they are large and must be placed at the border.

In the rest of this section, we will show how to compress these extra outputs in a way that
still allows us to detect inconsistency. The challenge is to achieve this while also allowing for
the compressing part of the circuit to be tampered with.

4.1.3 Sufficiently tamper-resilient gadgets

In our construction we will use gadgets (circuits) that compute multi-input OR (mOR) and
multi-input AND (mAND) functions, and are tamper-resilient to some extent. We will show
their construction a bit later. For now, we only need to define their properties. In general,
the gadget has normal and additional inputs. It should compute OR/AND functions on its
input and prevent some class of tampering on some subset of the input wires.

▶ Definition 5 (Sufficiently Tamper Resilient mOR). A multi-input OR with inputs x1, ..., xm, c

and output y, is a sufficiently tamper-resilient mOR (STRmOR) gadget if:
1. It computes OR on its inputs, i.e. valx1...xmxmc(y) = 0 iff x1 = x2 = ... = xm = c = 0.
2. If the tampering τ changes some 0 to 1 among x1, ..., xm, then valτ0m+1(y) = valτ0m1(y).

Similarly,

▶ Definition 6 (Sufficiently Tamper Resilient mAND). A multi-input AND with input
x1, ..., xm, c and output y, is a sufficiently tamper-resilient mAND (STRmAND) gadget if:
1. It computes AND on its inputs, i.e. valx1...xmxmc(y) = 1 iff x1 = x2 = ... = xm = c = 1.
2. If the tampering τ changes some 1 to 0 among x1, ..., xm, then valτ1m+1(y) = valτ1m0(y).

At the first sight, the definition says nothing about the inconsistency between the tampered
and untampered version of the gadget. However, since STRmOR (STRmAND) computes the
general OR (AND) function, the following holds for untampered versions of the gadgets: (1)
valSTRmOR,0m+1(y) ̸= valSTRmOR,0m1(y), (2) valSTRmAND,1m+1(y) ̸= valSTRmAND,1m0(y). Thus
there is an inconsistency between the outputs of the untampered circuit and its tampered
version, which can be easily verified on the input sets {0m+1, 0m1}, {1m+1, 1m0}, respectively.

The STRmOR and STRmAND can be realized as the ChainMultiOR, ChainMultiAND,
presented in the Figure 7. To simulate mOR function with m inputs we would need only m

simple OR gates.
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yc

x1 x2 xm

yc

x1 x2 xm

Figure 7 Construction of the ChainMultiOR and the ChainMultiAND. The actual inputs are on
the bottom.

1 1 1 1 10 0 0

STRmAND

STRmORCOR
i

CAND
i

Figure 9 For every element ti ∈ T we extend the circuit by one mOR, one mAND gadget, single
input gate, and 2 output gates. STRmOR, STRmAND gadgets gather as normal inputs these wires,
which are covered for value 0,1 (respectively) for this extension.

c

0 → 1

constant

Figure 8 For any tampering on the input wire which would change the value from 0 to 1, the
output becomes blind to everything that happens before. In particular, the output does not depend
on c.

▶ Lemma 7. ChainMultiOR(ChainMultiAND) is a STRmOR(STRmAND).

Proof. The first condition holds obviously. Let τ be a tampering such that xi is tampered
to 1. Consider the function f(c) := valτ00...0c(y). Then the OR gate, which takes xi as
input, is unaffected by the second input (see Figure 8), since the value 1 on on of its inputs
determines the output of OR. Therefore any change in the value of c cannot change the
value of the output of this gadget, so f(c) is a constant. An analogous proof can be made for
ChainMultiAND. ◀

4.1.4 Costly compression
Now we can present a bit more practical solution (as we will see, it has 1 main drawback -
it increases the depth of the circuit). For this we assume not 2-, but 3-conductivity. Every
internal wire of the original circuit is branched into 3 wires along with its tampering. One
continues into the circuit as before, and two others are used for the testing.

The general idea looks as follows: we get the circuit C along with its covering set T. For
each wire we choose 2 tests which cover both values 0,1 for this test. Then for each element
of T we expand the circuit by STRmOR, STRmAND gadgets with normal inputs, which are
covered by this set (as in the Figure 9.
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Algorithm 1 Compress0.

Input: (C ′,T)
/* a circuit along with its covering set */
Output: (Ĉ, T̂)
/* a testable circuit functionally equivalent to C ′ along with its

testing set */
1 Ĉ := C ′, k := |T|, T̂ = ∅
2 Construct the sets W b

j = {e ∈ E(C ′) : valtj (e) = b} for j = 1, ..., k; b = 0, 1
3 W b

j = W b
j −

⋃j−1
i=1 W b

j for j = 1, ..., k; b = 0, 1
4 Add Is+1 to the set of input gates of Ĉ

5 for j = 1, ..., k do
6 Extend Ĉ by STRmORj gadget with inputs from W 0

j ∪ {Is+1}, output OOR
j

7 Extend Ĉ by STRmANDj gadget with inputs from W 1
j ∪ {Is+1}, output OAND

j

8 end
9 for j = 1, ..., k do

10 T 0
j := tj |0

11 T 1
j := tj |1 T̂ = T̂ ∪ {T 0

j , T 1
j }

12 end
13 return (Ĉ, T̂)

▶ Lemma 8. Let (C ′,T) be a circuit with covering set and Compress0 be the Algorithm 1.
Then (Ĉ, T̂) = Compress0(C ′,T) is a testable circuit.

Proof. Assume that Ĉτ is tampered non-trivially. Thus at least one wire in the original
subcircuit C ′ is tampered. Take the topologically first tampered wire e ∈ E(C ′). Let i, j ∈ [k]
be indices such that valC′,ti

(e) = 0, valC′,tj
(e) = 1.

Assume WLOG, that the tampering on e changes 0 to 1 (i.e tampering is one or toggle

function). We will show, that the gadget STRmORi enables us to detect the tampering on Ĉτ .
Consider the tests T 0

i , T 1
i . Since the STRmORi gadget is sufficiently tamper-resilient, and at

least one of the incoming wires is tampered from 0 to 1, we will detect the inconsistency. ◀

The solution presented above has a major drawback - it makes the depth of the compiled
circuit linear in the size of the original circuit, which is unacceptable for many practical
applications. Fortunately, this can be resolved.

4.2 General construction
We are now ready to present a solution with low depth and small I/O size. The starting
point is the naive solution from the section 4.1.2. The full output will be then compressed
layer by layer - each layer will be reducing the size of the additional output by the factor
n

1
L

2 , where L is the number of layers. For every layer the additional outputs will be divided
into groups of n

1
L and every group will be compressed using the chain gadget from section

4.1.3 to 2 output bits. We call the factor n
1
L the width of the layer.

A fragment of the construction of a single layer is presented in the Figure 10.

▶ Lemma 9. Let (C ′,T) be a testable circuit of conductivity 1, size n, depth d, input size
s + k and output size t + r, where r output bits are used for testing (consistency check). Then
(Ĉ, T̂) = Compress(C,T, L) is a testable circuit of conductivity 3, depth < d+ l ·n 1

L +log(n),
input size s + l, output size t + 2L and |T′| = 2L|T|.

ITCS 2023



10:16 Efficiently Testable Circuits

Algorithm 2 Compress.

Input: (C ′ : Zs
2 → Zt

2,T), L

/* a circuit with its covering set, parameter */
Output: (Ĉ, T̂)
/* efficiently testable circuit */

1 Ĉ := C ′;
2 for e ∈ E(C ′) - append Oe as the output gate to Ĉ; for b = 0, 1, j = 1, ..., |T| - make

W b
j set out from (Oe)e∈E(C′) gates

3 for l=1,...,L do
4 Append Is+l gate to Ĉ;
5 for j = 1, ..., |T| do
6 Divide the set W b

j into the subsets W b
j,i of the size n

1
L ;

7 for i=1,... do
8 Extend Ĉ by ChainMultiOR made from W 0

j,i ∪ Is+l with V 0
i as the output;

9 Extend Ĉ by ChainMultiAND made from W 1
j,i ∪ Is+l with V 1

i as the
output;

10 end
11 W b

j =
⋃

i{V b
i }

12 end
13 end
14 T̂ :=

⋃
T ∈T T |ZL

2 ;
15 return (Ĉ, T̂) ;

Figure 10 A fragment of the subcircuit produced by Algorithm 2. We assume the chain length
parameter w1/L = 3. In the picture we can see a fragment of the construction starting with the
inputs of the Layer i − 1 ≥ 1 organized into groups of 3. They are then processed by mOR gates
connected to a single control bit Ci−1. The outputs from these gates (indicated with green, blue,
and brown lines) are then connected to new gates mOR and mAND which are again connected to
new mOR and mAND gates connected to a single control bit Ci (lines 8 and 9 of the Algorithm 2).
The mOR and mAND gates are implemented with STRmOR and STRmAND gadgets.

Proof. First, we prove, that (Ĉ, T̂) is a testable circuit. Let τ be nontrivial tamper-
ing over C ′. Consider the topologically first tampered e along with associated with Oe.
Then for some b ∈ Z2 we have τ(e)(b) = 1 − b. Let i0, i1 ∈ [k] be indices such that
valC,tib

(e) = b for b ∈ {0, 1}. The algorithm collects Oe by 2 chain gadgets. For b = 0, 1
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the output of ChainMultiOR, ChainMultiAND, respectively, is constant (along with test Tib
).

For the next step of the algorithm (i.e. l = 2) this constant value is collected by an-
other pair of ChainMultiOR/ChainMultiAND gadgets, so it works just like the tampering
on the inputs to these gadgets. For one of the gadgets this tampering meets the require-
ment for STRmOR/STRmAND (see Definition 5). By induction, we obtain, that for some
q ∈ [2L], X ∈ ZL−1

2 : valτ
Ĉ,Tib

X0
(Ot+q) = valτ

Ĉ,Tib
X1

(Ot+q), where for the not tampered Ĉ

these 2 values should be different. Therefore the inconsistency will be detected when Ĉ is
tested on all the elements of T̂. So the pair (Ĉ, T̂) is a testable circuit.

Next, we need to prove, that the algorithm Compress actually achieves the desired
parameters. It is not difficult; we can observe, that the algorithm adds L layers. Each of
them (1) adds a single input gate; (2) multiplies the number of additional output wires by
the factor 2

n
1
L

; (3) makes the depth of the circuit higher by n
1
L . Moreover, the conductivity

of the internal wires need to be 3, and of the rest of the wires - at most 2. Every test from
the original test set is duplicated 2L times (by adding a sequence of 0, 1 of length L). ◀

5 Small covering set for every circuit

5.1 Introduction
Recall that the construction Ĉ from the previous section assumes that each wire from the
input circuit C ′ takes values 0 and 1 given some inputs from the testing set - it has a covering
set (see Definition 4).

In fact, for many practical circuits, some number of random inputs should form, with
a high likelihood, a covering set for the majority of its wires (e.g. one may expect that
the majority of wires in circuits computing pseudorandom values take random values given
random inputs), but the general problem of the existence of covering set for the set of
all wires W (C) of an arbitrary circuit C is NP-hard (consider SAT instances). In this
section we will design an algorithm that transforms any circuit C : Zs

2 → Zt
2 into a circuit

C ′ : Zs+s′

2 → Zt
2 with a covering set for W (C ′) of a small size. The new circuit C ′ will be

functionally equivalent to C (i.e. ∀X∈Zs
2
C ′

|t(X||0s′) = C(X). In the case of standard circuits
with maximum fan-in of the gates equal to 2, we will obtain a 4-element covering set.

Now we will give a brief description of the algorithm. It starts the creation of the covering
set by evaluating the circuit on all zeroes input and all ones input. Next, we observe that at
all zeroes input each wire wj ∈ W (C) : V −(w) ̸= IN is evaluated to either 0 or 1 (i.e. it is
evaluated to some vj = valC,0s(wj)). Finally, the algorithm divides the wires in W from C

into a small number of subsets of wires Wi. Every subset is proceeded in one step, in which
the wires from Wi are fixed (i.e. each wire wj ∈Wi now is evaluated to v′

j ≠ vj) by adding
only 1 additional control bit at each step. The details of the algorithm are given in the next
subsections.

5.2 k-divisible circuits
In the final step of the algorithm, we fix the values on all w ∈ Wi, by manipulating the
inputs of V −(w) using a single control bit for each Wi. To this end, we need to divide W to
k disjoint subsets W1, W2, . . . , Wk, such that:

1. outputs of some gate should belong to a different Wi than inputs to this gate, i.e.

∀i ∈ [k], win, wout ∈Wi : V +(win) ̸= V −(wout);
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2. for each gate, all of its output wires belong to the same subset, i.e.

̸ ∃i ̸= j, w1 ∈Wi, w2 ∈Wj : V −(w1) = V −(w2).

We say that a set of wires W in a circuit C is k-divisible if it can be partitioned into
k subsets W1, . . . , Wk meeting the conditions above. Any family of subsets W1, W2, ..., Wk

which proves that C is k-divisible is called a k-division for C.

5.3 Every circuit with maximum fan-in d is (d+1)-divisible
Let C = (V, E) be a circuit, where every n ∈ V has maximum fan-in not greater than d. We
will show a greedy algorithm that constructs its (d + 1)-division efficiently.

It starts with the family of empty sets W1, . . . , Wd+1. Firstly we assign all the input
wires of the circuit C (i.e. all w ∈ E : γ(V −(w)) = IN) to W1. Then we process the gates
of the circuit C in the topological order: for every gate g we assign its all output wires -
w ∈ E+(g) - to Wi where the index i is the smallest one not assigned to any of the input
wires of g. It is easy to see that after finishing the algorithm, all of the wires of the circuit
w ∈W belong to some Wi, and one needs a family of size d + 1 to finish the algorithm on a
circuit C with maximum fan-in d.

5.4 Constructing small covering sets for k-divisible circuits
Let C : Zs

2 → Zt
2 be a circuit (W1, ..., Wk) and its k-division. We construct a circuit

C ′ : Zs+s′

2 → Zt
2 with s′ = k which can emulate C and has a covering set T of size k + 1.

The algorithm works in steps that correspond to parts Wi of the division. In every step,
we try to fix the values taken by the wires from the corresponding part, after which every
w ∈Wi is evaluated to both 0 and 1 on some inputs from the test set. As mentioned before,
the fixing is achieved by extending the input with a new input bit - called a control bit - and
adding to the test set a new input. All w ∈Wi are fixed by XORing the new control bit with
the wires of input bits to V −(w). It is not possible to fix all w ∈Wi at once by inserting the
required XOR gates, since the valuations of the fixed wires may depend on each other. For
this reason, we process all wires from Wi in topological order.

The Algorithm 3 below takes as input a definition of C and produces a new C ′, functionally
equivalent to C, along with a covering set T for the C ′. It constructs the new C ′ and the
new T in steps, keeping track of valuations of w in the structure V , i.e. in every moment
of the execution of the algorithm b ∈ V [w] =⇒ ∃T ∈T : valC′,T (w) = b. One needs to see
that the modifications introduced in the circuit, as gates are processed in a topological order,
may already be sufficient to fix outputs of the topologically subsequent gates, therefore the
processing in the line 15 of the algorithm may not always be necessary.

To compute C(X) we simply complement X with 0s on the control input wires: C(x) =
C ′(x||0k).

▶ Theorem 10. Given a circuit C : Zs
2 → Zt

2, the procedure Covering(C) returns a pair
(C ′,T) such that: (1) C ′ is a circuit with additional k bits, i.e. C ′ : Zs+k

2 → Zt
2, (2) C ′ is

functionally equivalent to C, i.e. ∀X∈Zs
2
C(x) = C ′(x||0k), (3) T is a covering set for C ′.

Proof. To see that ∀X∈Zs
2
C(x) = C ′(x||0k), please note that when control bits are equal to

0, then the XOR gates added to the C will not change its standard behaviour. Note that we
need only a single XOR gate for every wire in the original circuit, because all output wires
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Algorithm 3 Covering.

Input: C : Zs
2 → Zt

2
Output: (C ′,T)

1 W1, . . . , Wk+1 = k-division of C /* Computed using the algorithm from
Section 5.3 */

2 Initialize C ′ = C, V = {}, T = {1s0k}; Add k new control input wires to C ′

3 for w ∈W, b ∈ {0, 1} do
4 Append b to V [w] whenever valC′,1s0k (w) = b.
5 end
6 for i ∈ [k] do
7 Ti = 0s+i−110k−i; T = T ∪ {Ti}
8 for n ∈ V (G) (processed in a topological order) do
9 if E+(g) ⊆Wi and ∃b∈{0,1} : ∀w∈E+(g)b /∈ V [w] then

10 Set L = E+(g)
11 if ∀w∈LvalC′,Ti

(w) ̸= b then
12 Update C ′ by adding a XOR gate between the s + i’th input wire of C ′

and and input of n that sets w ∈ L to b on the input Ti

13 end
14 Append b to V [w] for all w ∈ L

15 end
16 end
17 end
18 return G′,T

from every gate are evaluated to the same value (see the details in Section 2.1) and belong
to the same subset of k-division (according to its definition). Moreover, every new XOR gate
refers to some Wi (a XOR gate refers to Wi, when it was made to fix one of the elements
of Wi).

Now we will show, that every w′ ∈ E(C ′) takes both values when C ′ on some of the test
inputs from the T. Consider the following cases:

γ(V −(w′)) = IN, therefore w′ either belongs to one of the first s input bits, or is one
of the new control bits. In the first case, w′ takes value 1 on the test input introduced
during the initialization in the line 4 of the Algorithm and the value 1 on one of the
inputs added during the processing of one of the Wi. In the second case on the test input
introduced during the initialization in the line 4 the w′ is evaluated to 0 and on one of
the tests Ti added during the processing of every Wi in the k-division it takes value 1.
γ(V −(w′)) is one of the gates of the origin C (except from input gates). In this case, w′

was evaluated to one bit b during the initialization phase in the line 4 of the Algorithm.
What is more assuming that w′ ∈Wi, then during the fixing i’th step of the Algorithm it
is assured to be evaluated to the bit 1− b on the test input with the i’th control bit set
to 1,
γ(V −(w′)) is one of the XOR gates added during the processing of the Algorithm. In this
case, one of the input wires w′′ of the XOR gate must be processed in the Algorithm at
least once. For this reason when the other - control - input wire to the XOR gate is set to
0, then the wire w′ takes its value from w′′. As shown in the point above, w′′ must be
evaluated to both bits at some inputs from the test set. ◀
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▶ Corollary 11. A circuit C with max fan-in 2 has a k-division of size 2 + 1 = 3, thus the
Algorithm 3 will produce on such input a circuit C ′ with 3 additional input bits and a test
set T of size 1 + 3 = 4.

5.5 Reducing high conductivity of the control wires
Since in any k-division W1, . . . , Wk of a set of wires W of a circuit C all wires going out of a
single gate must belong to the same Wi, the size of Wi is bounded by the number of gates of
the circuit n = |V (C)|. The i′th control bit in the Algorithm 3 can be thus used even as
many as n times. This means that the specification of the circuit requires the implementation
of highly conductive control wires. We can reduce this requirement, by reapplying COPY
gates to the control wires added by the Algorithm 3.

▶ Corollary 12. (Ĉ : Zs+k
2 → Zt

2,T) created by running the Algorithm 3 on C : Zs
2 → Zt

2
and replacing every highly conductive control wire of the intermediary wire with a log-
depth construction of copy gates is a pair such that: (1) T is a covering set for Ĉ, (2)
∀X∈Zs

2
C(X) = Ĉ(X||0k).

Proof. Note that replacing every highly conductive control wire with a construction of copy
gates creates a set of wires which are all evaluated to bit b whenever the i’th control input is
set to b. ◀

6 The main result

Finally, we can collect partial results from the previous sections and define a complete
circuit compiler. The Algorithm 4 TestableCircuitCompiler takes as parameters a
circuit C : Zs

2 → Zt
2 and a number L ∈ N+. It firstly transforms the circuit C into a

circuit C ′ with a covering set, using the Covering procedure defined in the Section 5.
Finally, it transforms the intermediary circuit into a testable circuit with an extended test
set using the procedure TestableCircuitCompiler defined in the Section 4. Algorithm 4
TestableCircuitCompiler is a circuit compiler transforming into testable circuits C.

Algorithm 4 TestableCircuitCompiler.

Input: (C, L)
/* A circuit C : Zs

2 → Zt
2 and a number of layers L ∈ N+ */

Output: (Ĉ, T̂)
/* A testable circuit Ĉ : Zs+3+L

2 → Zt+2L

2 and its test set T̂ */
1 (C ′,T)← Covering(C)
2 (Ĉ, T̂)← Compress(C ′,T, L)
3 return (Ĉ, T̂)

▶ Theorem 1. Given any circuit C : Zs
2 → Zt

2 (of size n, depth d), and a number L ∈ N+,
the procedure TestableCircuitCompiler(C, L) outputs a pair (Ĉ, T̂) such that:

Ĉ is a circuit with additional 3 + L input bits and additional 2L output bits, i.e. Ĉ :
Zs+3+L

2 → Zt+2L

2 . The size of Ĉ is bounded by 12n, and its depth is bounded by d +
log(n) + L · (3n)1/L. The size of the test set T̂ is 4 · 2L.
The pair (Ĉ, T̂) is a testable circuit, i.e. for any tampering τ(

∃X ∈ Zs
2 : Ĉτ

|t(X||03+L) ̸= Ĉ|t(X||03+L)
)
⇒

(
∃T ∈ T̂ : Ĉτ (T ) ̸= Ĉ(T )

)
and Ĉ is functionally equivalent to C, i.e. ∀X∈Zs

2
: Ĉ|t(X||03+L) = C(X).
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Proof. The testability and functional equivalence of the circuit Ĉ follows from the Theorems 9
and 10. Below we give a discussion on the parameters of our compiler. We assume that after
each subprocedure the number of wires w is approximately the same as the number of gates
n in the circuit. The first subprocedure of the algorithm produces a circuit C ′ with depth
d′ ≤ d + log(n), size n′ ≤ n + n + n, and its covering set of size k′ = 4. What is more the
intermediary circuit has added only 3 control bits to the input, i.e.: C ′ : Zs+3

2 → Zt
2. By

applying the Algorithm Compress with L layers, we can calculate the following parameters
of the output circuit:

its modified input and output size - Ĉ : Zs+3+L
2 → Zt+2L

2 ,
its modified circuit size is the number of the gates n′ of the circuit C ′ plus the number
of gates used for each layer. In the construction with L layers, the algorithm chains of
length w′1/L are used. The first layer adds w′1/L w′

w′1/L = w′ new gates and gives w′

w′1/L

output wires), the 2’nd layer adds 2 w′

w′1/L gates build upon w′

w′1/L output bits from the
first layer, the i’th layer adds 2i−1 w′

w′(i−1)/L gates. Finally, a linear number of copy gates
is added to deliver i′th control bit to chains in each layer. In general:

n̂ ≤ n′ +
L∑

i=1
2i−1 w′

w′(i−1)/L
+

L∑
i=1

2i−1 w′

w′i/L
= n′ + w′1/L(w′ − 2L)

w′1/L − 2
+ w′ − 2L

w′1/L − 2
≤

n′ + 2w′ + w′ ≤ 3n + 3 · 3n

its modified circuit depth d̂ ≤ d′ +
∑

i∈{1,...,L} w′1/L, i.e. d̂ ≤ d + log(n) + L · (n′)1/L =
d + log(n) + L · [3n]1/L, the new size of the test set k̂ = 4 · 2L. ◀

7 Conclusion and open problems

In this work, we introduced the notion of efficiently testable circuits and provided a compiler
that transforms any circuit into an efficiently testable one that detects tampering with every
wire of the circuit.

While the tampering model is already quite powerful, there are two natural ways in which
one could hope to strengthen it:

Conductivity. Our compiled circuit has gates with a fan-out up to 3, i.e., an output wire
can be used as input wire for up to 3 gates. While one can reduce the fan-out to 1 using
COPY gates, this will break security as the tampering model we (and also other works) use
crucially requires that gate input wires that come from the same output wire are tampered
in the same way. We leave it as an open problem to find a compiler satisfying a stronger
notion, where all input wires can be individually tampered, or show that such a compiler
does not exist.

Gate Tampering. While our tampering model allows tampering with every wire, it does
not allow tampering with the gates. Recall that our construction starts with a precompiled
circuit that comes with a small set of inputs to the circuit (the covering set) such that for
every wire there are inputs in that set which set this wire to 0 and 1, respectively. If we use
a more demanding set which, for every gate, contains circuit inputs that set the input wires
to that gate to all possible values (i.e., 00, 01, 10, 11 for a gate with two inputs), our compiled
circuit does achieve security against gate tampering, but only for the subcircuit which is the
input circuit, not the additional gates added by the compiler.
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