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Abstract
Cut problems form one of the most fundamental classes of problems in algorithmic graph theory. In
this paper, we initiate the algorithmic study of a high-dimensional cut problem. The problem we
study, namely, Homological Hitting Set (HHS), is defined as follows: Given a nontrivial r-cycle
z in a simplicial complex, find a set S of r-dimensional simplices of minimum cardinality so that S
meets every cycle homologous to z. Our first result is that HHS admits a polynomial-time solution
on triangulations of closed surfaces. Interestingly, the minimal solution is given in terms of the
cocycles of the surface. Next, we provide an example of a 2-complex for which the (unique) minimal
hitting set is not a cocycle. Furthermore, for general complexes, we show that HHS is W[1]-hard
with respect to the solution size p. In contrast, on the positive side, we show that HHS admits an
FPT algorithm with respect to p + ∆, where ∆ is the maximum degree of the Hasse graph of the
complex K.
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1 Introduction

A graph cut is a partition of the vertices of a graph into two disjoint subsets. The set
of edges that have one vertex lying in each of the two subsets determines a so-called cut-
set. Typically, the objective function to optimize involves the size of the cut-set. Graph
cuts have a ubiquitous presence in theoretical computer science, and they have also found
many real-world applications in clustering, shape matching, image segmentation, and energy
minimization problems in computer vision. We begin with the observation that graphs are
1-dimensional simplicial complexes. As we will observe in the ensuing discussion, cuts have a
natural homological interpretation. Then, it is natural to mull over how would the notion of
cuts have been defined had it first emerged in the context of simplicial complexes. Guided
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13:2 On Computing Homological Hitting Sets

by the intuition that comes from topology, cuts as constructs need not be limited merely
to achieve separation. For instance, viewing graph cuts as arising from coboundaries of a
subset of vertices has led to the emergence of a rich and powerful theory of high-dimensional
expansion [17,18,33]. In this work, we instead aim to extend the notion of cuts to achieve
homology modification via removal of simplices.

Specifically, we study the problem of removing the minimum number of r-simplices from a
complex so that an entire homology class is destroyed. Formally, the problem Homological
Hitting Set (HHS) can be described as follows: given a nontrivial Z2 r-cycle ζ in a
simplicial complex K, find a set S of r-dimensional simplices of minimum cardinality so
that S meets every cycle homologous to ζ. HHS on graphs can be described as follows:
Suppose we are given a graph G with k components. Let C be one of the components of G.
Then, β0(G) = |k|, and each component determines a 0-cycle. So the question of HHS is to
determine the minimum number of vertices you need to remove so that C is not a component
anymore. The answer is trivial! One needs to remove all the vertices in C. For example in
Figure 1, C2 ceases to be a component if and only if all four vertices in C2 are removed. The
global variant of HHS, denoted by GHHS, asks for the minimum number of r-simplices that
need to be removed so that the class of some r-cycle is destroyed.

We note that it is the unidimensionality of graphs that makes the problem trivial.
Moreover, even the “cut” aspect of the problem is not immediately visible for graphs. In
contrast, for higher-dimensional complexes, the problem has a distinct cut flavor. For instance,
consider the planar complex shown in Figure 2. The minimum number of edges that need to
be removed so that every cycle homologous to ζ is destroyed is three (shown in red), whereas
a solution to GHHS comprises of only two edges. In Figure 3, the cocycle ϑ is the minimal
hitting set for the cycle ζ. Note that the edges in the minimal hitting sets happen to be in
the “thin” portions of the respective complexes. So although HHS does not generalize any
cut problems from graph theory, we view it as a high-dimensional cut problem that concerns
homology modification.

1.1 Related work
Duval et al. [20] studied the vector spaces and integer lattices of cuts and flows associated to
CW complexes and their relationships to group invariants. Ghrist and Krishnan [29] proved
a topological version of the max-flow min-cut theorem using methods from sheaf theory.
There is also a long line of work on cuts in surface embedded graphs [4,5,10,11,12,13,23,
24], which is closely related to our work. For a mathematical introduction to graphs on
surfaces, we refer the reader to [32, 37], and for an up-to-date algorithmic introduction to
the subject, we recommend the lecture notes and surveys by Colin de Verdière [14,16] and
Erickson [21,22], respectively. There is a growing body of work on parameterized complexity
in topology [1,3,6, 7, 8, 9, 10,30,34,35,39], and much of this paper can be characterized as
such. Independently of our work, and prior to it, Maxwell and Nayyeri [36] defined the
problem of finding combinatorial cuts in [36] which is, in some sense, dual to Homological
Hitting Set.

1.2 Summary of results
Surfaces

Our first result, expounded in Section 3, is the following: Homological Hitting Set (HHS)
admits a polynomial-time algorithm on triangulations of closed surfaces. At the heart of our
proof lies an appealing characterization of the minimal solutions in terms of the cocycles of
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Figure 1 Graph G with three components.

ζ

ξ

Figure 2 The figure shows two (simple) cycles that belong to [ζ] in green. Note that any cycle in
[ζ] must pass through at least one of the three red edges. Thus, the set of red edges constitutes a
minimal hitting set of ζ. On the other hand, ξ has a minimal hitting set of size 2.

Figure 3 The figure shows a triangulated torus. The cycle ζ is shown in purple. The cocycles η

and ϑ “transversal” to ζ are shown in black. Any cycle homologous to ζ passes through at least one
of the edges of η (resp. ϑ). ϑ has a smaller support, and is, therefore, a more desirable “hitting set”.
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13:4 On Computing Homological Hitting Sets

the surface, which is of independent interest. Specifically, we show that a minimal solution
set is necessarily a nontrivial cocycle. Eventually, we arrive at a very simple 3-step algorithm
for HHS on surfaces.

Counterexample

In Section 4, we show that there exists a 1-cycle in a non-orientable 2-complex (which is not
a surface) whose minimal homological hitting set is not a cocycle.

W[1]-hardness and NP-hardness

For general complexes, in Section 5, we show that HHS is W[1]-hard with respect to the
solution size k as the parameter, (and hence, it is also NP-hard). The proof is based on a
reduction from Multicolored Clique. Here, the reduction shows the essence of hardness:
its description is short, but its proof exposes various “behaviors” that we find interesting.
The forward direction requires a nontrivial parity based argument, while the reverse direction
shows how to “trace” a solution through the complex.

Fixed-parameter tractability

On the positive side, in Section 6, we show that HHS admits an FPT algorithm with respect
to k + ∆, where ∆ is the maximum degree of the Hasse graph of the complex K. Here, the
main insight is that a minimal solution must be connected. Having this insight at hand, the
algorithm follows: If we search across the geodesic ball of every r-simplex in the complex K,
we will find a solution.

Problem definition

We now provide a formal definition for Homological Hitting Set (HHS).

▶ Problem 1 (Homological Hitting Set).
Instance: A d-dimensional simplicial complex K, a natural number k, a natural

number r < d and a non-bounding cycle ζ ∈ Zr(K).

Parameter: k.

Question: Does there exist a set S of r-dimensional simplices with |S| ≤ k such that
S meets every cycle homologous to ζ?

More generally, one can ask for a hitting set of minimum weight on a weighted complex
K. In Section 3, we study the weighted version of the problem on surfaces.

Let KS denote the complex obtained from K upon removal of the set of r-simplices S
along with all the cofaces of the simplices in S. In particular, the homology class [ζ] does
not survive in KS . The inclusion map ι : KS ↪−→ K induces a map ι̃ : Hr(KS) → Hr(K). Then,
S is a homological hitting set if and only if [ζ] is not in the image of ι̃. Let α̂i = ι̂(αi). Let
A denote the matrix with nontrivial r-cycles α̂i as its columns. Let M denote the matrix
[A | ∂r+1(K)] and C(M) the column space of M. The following lemma ensures polynomial
time verification for the decision variant of Homological Hitting Set.

▶ Lemma 1. ζ /∈ column space of M if and only if S meets every cycle homologous to ζ.

Proof. (=⇒) Let ρ be a cycle homologous to ζ such that S does not meet ρ. Then, ρ ∈ C(M)
since it survives in KS . The claim follows from observing that ζ is homologous to ρ.
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(⇐=) Suppose that S meets every cycle that is homologous to ζ. Thus, at least one
simplex is removed from every cycle homologous to ζ. Then, a cycle homologous to ζ (in K)
is not present in KS . The claim follows. ◀

Lemma 1 provides an easy way to check if a set constitutes a feasible solution. Let ω
denote the exponent of matrix multiplication, and n denote the size of the input complex.
Checking if a set S is a feasible solution to HHS amounts to first building the matrix M, and
then solving a linear system of equations. Both operations can also be done in O(nω) time.

▶ Lemma 2. HHS is in NP, and in XP with respect to the solution size k as the parameter.

2 Notation and Preliminaries

Simplicial homology

Given a simplicial complex K, we will denote by K(p) the set of p-dimensional simplices in K,
and np the number of p-dimensional simplices in K. The complex induced by K(p) is called
the p-dimensional skeleton of K, and is denoted by Kp. We denote by HK, the Hasse graph
of K, which is simply the graph that has a node for every simplex σ of the complex, and
an edge for every pair of simplices (σ, τ) if σ is incident on τ , and their dimensions differ
by 1. We say that a complex K is weighted if it comes equipped with a non-negative weight
function on its simplices. The link of a simplex σ in a complex K is the subcomplex of K,
denoted by lkσ, wherein a simplex τ belongs to lkσ if an only if τ is contained in a simplex
that contains σ and τ is disjoint from σ.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the form∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called a p-chain. Since

chains can be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field, Cp(K), in this
case, is a vector space of dimension np over Z2. The p-simplices in K form a (natural) basis
for Cp(K). This establishes a natural one-to-one correspondence between elements of Cp(K)
and subsets of K(p). Thus, associated with each chain is an incidence vector v, indexed
on K(p), where vσ = 1 if σ is a simplex of v, and vσ = 0 otherwise. The boundary of a
p-simplex is a (p− 1)-chain that corresponds to the set of its (p− 1)-faces. This map can
be linearly extended from p-simplices to p-chains, where the boundary of a chain is the
Z2-sum of the boundaries of its elements. Such an extension is known as the boundary
homomorphism, and denoted by ∂p : Cp(K) → Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle
if ∂pζ = 0, that is, ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As
before, since we are working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain
η ∈ Cp(K) is said to be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that is,
η ∈ im ∂p+1. The group of p-dimensional boundaries is denoted by Bp(K). In our case, Bp(K)
is also a vector space, and in fact a subspace of Cp(K). Thus, we can consider the quotient
space Hp(K) = Zp(K)/Bp(K). The elements of the vector space Hp(K), known as the p-th
homology group of K, are equivalence classes of p-cycles, where p-cycles are equivalent if their
Z2-difference is a p-boundary. Equivalent cycles are said to be homologous. For a p-cycle ζ,
its corresponding homology class is denoted by [ζ]. Bases of Bp(K), Zp(K) and Hp(K) are
called boundary bases, cycle bases, and homology bases respectively.

The coboundary of a p-simplex is a (p+1)-cochain that corresponds to the set of its (p+1)-
cofaces. The coboundary map is linearly extended from p-simplices to p-cochains, where the
coboundary of a cochain is the Z2-sum of the coboundaries of its elements. This extension
is known as the coboundary homomorphism, and is denoted by δp : Cp(K) → Cp+1(K). A
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13:6 On Computing Homological Hitting Sets

cochain η ∈ Cp(K) is called a p-cocycle if δpη = 0, that is, η ∈ ker δp. The collection of
p-cocycles forms the p-th cocycle group of K, denoted by Zp(K), which is also a vector space
under Z2 addition. A cochain η ∈ Cp(K) is said to be a p-coboundary if η = δp−1ξ for some
chain ξ ∈ Cp−1(K), that is, η ∈ im δp−1. The collection of p-coboundaries forms the p-th
coboundary group of K, denoted by Bp(K) which is also a vector space under Z2 addition.
The three vector spaces are related as follows: Bp(K) ⊂ Zp(K) ⊂ Cp(K). Therefore, we can
define the quotient space Hp(K) = Zp(K)/Bp(K), which is called the p-th cohomology group
of K. The elements of the vector space Hp(K), known as the p-th cohomology group of K,
are equivalence classes of p-cocycles, where p-cocycles are equivalent if their Z2-difference
is a p-coboundary. Equivalent cocycles are said to be cohomologous. For a p-cocycle η, its
corresponding cohomology class is denoted by [η]. The p-th Betti number of K, denoted by
βp(K) is defined as βp(K) = dim Hp(K) = dim Hp(K). The identity ⟨δη, ζ⟩ = ⟨η, ∂ζ⟩ holds for
the maps δ and ∂.

Using the standard bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp
] whose

column vectors are boundaries of p-simplices is called the p-th boundary matrix. Likewise,
using standard bases for Cp(K) and Cp+1(K), the matrix [δpσ1 δ

pσ2 . . . δ
pσnp

] whose column
vectors are coboundaries of p-simplices is called the p-th coboundary matrix. Abusing
notation, we denote the p-th boundary and coboundary matrices by ∂p and δp, respectively.

We say that a p-cycle ζ is incident on a p-simplex σ if ζ contains σ. A set of p-cycles
{ζ1, . . . , ζg} is called a homology cycle basis if the set of classes {[ζ1], . . . , [ζg]} forms a
homology basis. For brevity, we abuse notation by using the term (p-th) homology basis
for {ζ1, . . . , ζg}. Similarly, a set of p-cocycles {η1, . . . , ηg} is called a (p-th) cohomology
cocycle basis if the set of classes {[η1], . . . , [ηg]} forms a cohomology basis. Given a weighted
complex K, the weight of a cycle is the sum of the weights of its simplices, and the weight
of a homology basis is the sum of the weights of the basis elements.We call the problem
of computing a minimum weight basis of Hp(K) the minimum p-homology basis, and the
problem of computing a minimum weight basis of Hp(K), the minimum p-cohomology basis.

For a triangulated surface (more generally a 2-manifold) L, we denote by DL, the dual
graph of L, which is simply the graph that has a node for every 2-simplex (d-simplex) and an
edge connecting two nodes if the corresponding 2-simplices (d-simplices) are incident on a
common edge ((d− 1)-simplex) in the complex L.

▶ Notation 3. Since there is a 1-to-1 correspondence between the p-chains of a complex K
and the subsets of K(p), we abuse notation by writing ∂C in place of ∂(

∑
σ∈C σ), for C ⊂ K(p).

Likewise, for p-cochains δ(
∑

τ∈C′ τ), we often write δC′.
We also abuse notation in the other direction. That is, we treat chains and cochains as

sets. For instance, sometimes we say that a (co)chain γ intersects a (co)chain ζ, when we
actually mean that the corresponding sets of simplices of the respective (co)chains intersect.
We say that a simplex σ ∈ ζ, when indeed the simplex σ belongs to the set associated to ζ.

▶ Remark 4. For the chain and cochain groups Cp(K) and Cp(K), there is a map

Cp(K) × Cp(K) → Z2, (ζ, η) 7→ η(ζ).

This bilinear map is referred to as the evaluation map. Furthermore, it induces another
bilinear map, which is also non-degenerate.

Hp(K) × Hp(K) → Z2

In particular, if we evaluate the r-cocycle η on a r-cycle ζ, then by linearity,

η(ζ) = η(
∑
σi∈ζ

σi) =
∑
σi∈ζ

η(σi).
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Owing to Z2 addition, η(ζ) ∈ {0, 1}. By non-degeneracy, we mean that:
1. η is trivial if and only if η(ζ) = 0 for all p-cycles ζ.
2. ζ is trivial if and only if η(ζ) = 0 for all p-cocycles η.

As a consequence of non-degeneracy, the evaluation map is well-defined. In particular,
for any cocycle κ ∈ [η] and any cycle ξ ∈ [ζ], η(ζ) = κ(ξ).

Parameterized complexity

Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each
instance of Π is associated with a parameter k. Here, the goal is to confine the combinatorial
explosion in the running time of an algorithm for Π to depend only on k. Formally, we
say that Π is fixed-parameter tractable (FPT) if any instance (I, k) of Π is solvable in time
f(k) · |I|O(1), where f is an arbitrary computable function of k. A weaker request is that for
every fixed k, the problem Π would be solvable in polynomial time. Formally, we say that
Π is slice-wise polynomial (XP) if any instance (I, k) of Π is solvable in time f(k) · |I|g(k),
where f and g are arbitrary computable functions of k. In other words, for a fixed k, Π has
a polynomial time algorithm, and we refer to such an algorithm as an XP algorithm for
Π. Nowadays, Parameterized Complexity supplies a rich toolkit to design FPT and XP
algorithms [15, 19, 27]. Parameterized Complexity also provides methods to show that a
problem is unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-hardness
replaces the one of NP-hardness, and for reductions we need not only construct an equivalent
instance in FPT time, but also ensure that the size of the parameter in the new instance
depends only on the size of the parameter in the original one.

▶ Definition 5 (Parameterized Reduction). Let Π and Π′ be two parameterized problems. A
parameterized reduction from Π to Π′ is an algorithm that, given an instance (I, k) of Π,
outputs an instance (I ′, k′) of Π′ such that:

(I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π′.
k′ ≤ g(k) for some computable function g.
The running time is f(k) · |Π|O(1) for some computable function f .

If there exists such a reduction transforming a problem known to be W[1]-hard to another
problem Π, then the problem Π is W[1]-hard as well. Central W[1]-hard problems include,
for example, Clique parameterized by solution size, and Independent Set parameterized
by solution size. To show that a problem Π is not XP unless P = NP, it is sufficient to show
that there exists a fixed k such that Π is NP-hard. If the problem Π is in NP for a fixed k

then it is said to be in para-NP, and if it is NP-hard for a fixed k then it is para-NP-hard.

3 Homological Hitting Set on Surfaces

Recall that the star of a vertex v of a complex K, written starK(v), is the subcomplex
consisting of all faces of K containing v, together with their faces. A triangulated surface S
in Rd is a simplicial complex consisting of a finite set of triangles such that every vertex of
the surface belongs to at least one triangle and the star of each vertex is a simplicial disk. A
closed surface is a surface that is compact and without boundary.

In this section, we describe a polynomial time algorithm for HHS on triangulated closed
surfaces. The algorithm has a very simple high-level description. See Algorithm 1. Through-
out, ζ denotes a nontrivial 1-cycle in a triangulated closed surface S equipped with a weight
function on edges.

ITCS 2023
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Figure 4 The figure illustrates a subcomplex of a closed surface. If C is a minimal solution set
and a1 ∈ C, then either f1 ∈ C or a2 ∈ C. Assuming a2 ∈ C and iterating the argument, we obtain a
cocycle η ⊂ C shown in red. Finally, we show η = C and hence the edges f1, f2, f3, f4 ̸∈ C.

Algorithm 1 An algorithm for HHS on surfaces with input cycle ζ.

1: Find a minimum 1-cohomology basis of S.
2: Arrange the cocycles in the basis in the ascending order of weight.
3: Pick the smallest weight cocycle η with η(ζ) = 1.

▶ Lemma 6. A minimal homological hitting set is a nontrivial cocycle that induces a cycle
graph in DS.

Proof. Let C be a minimal solution set, and let DS(C) be the subgraph of DS induced by C.
Targeting a contradiction, we assume that there exists a vertex in DS(C) with degree 1.

Let τ be the 2-simplex corresponding to a vertex in DS(C) with degree 1 in DS(C). Let e1
be the unique edge in DS(C) incident on τ . Let e2 and f1 be the edges incident on τ that
are not in C. From the minimality of C, we conclude that there exists a cycle γ ∈ [ζ] with
C ∩ γ = {e1}, for if this were not true then C \ {e1} would also be a hitting set, contradicting
the minimality of C. Then, for the cycle γ′ = γ + ∂τ , we have e2, f1 ∈ γ′ and e1 ̸∈ γ′. Since
γ′ differs from γ only on a simplex boundary, and since by assumption on the degree of τ in
DS(C), e2, f1 ̸∈ C, we conclude that γ′ ∩ C = ∅, a contradiction. Therefore, all the vertices in
DS(C) have degree at least 2. See Figure 4 for an example.

Hence, there exists a connected 1-cocycle η for which η ⊂ C, and Cη is a subgraph of
DS(C). In other words, for surfaces, there always exists a 1-cocycle that is supported by a
minimal solution set. By construction, there always exists a γ such that η(γ) = 1. Let γ′

be any cycle homologous to γ. Then, γ′ = γ + κ, where κ is a boundary. From Remark 4,
η(γ′) = η(γ) + η(κ), and η(κ) = 0. Hence, η(γ′) = 1. That is, η itself is a hitting set, and
η = C. ◀

▶ Corollary 7. Let k > 1 be an integer. Let ηi for i ∈ [k] be nontrivial 1-cocycles. If ηi for
i ∈ [k] are not minimal hitting sets for the input cycle ζ, then any cocycle ϑ cohomologous to∑k

i=1 ηi is also not a minimal hitting set.

Proof. A cocycle ϑ cohomologous to
k∑

i=1
ηi can be written as

k∑
i=1

ηi + δ(S) where S is a

collection of vertices. Then, by linearity,

ϑ(ζ) =
k∑

i=1
ηi(ζ) + δ(S)(ζ) =

k∑
i=1

ηi(ζ) +
∑
v∈S

δ(v)(ζ).

Using Lemma 6 and Remark 4, δ(v)(ζ) = 0 for every v ∈ S, and ηi(ζ) = 0 for i ∈ [k − 1].
The claim follows. ◀
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Although this is fairly well known, for the sake of completeness, we describe an algorithm
for computing minimum cohomology basis of a triangulated surface that uses the minimum
homology basis algorithm as a subroutine.

▶ Lemma 8. The minimum cohomology basis problem on surfaces can be solved in the same
time as the minimum homology basis problem on surfaces.

Proof. Let S be a surface with a weight function w on its edges. Let Ŝ be the dual cell
complex of S. Then, to every edge e of S there is a unique corresponding edge ê in Ŝ. We now
define a weight function on the edges of Ŝ in the obvious way: w(ê) = w(e). Let Ŝ′ be the
simplicial complex obtained from the stellar subdivision of each of the 2-cells of Ŝ. The weight
function on edges of Ŝ is extended to a weight function on edges of Ŝ′ by assigning weight ∞
to every newly added edge during the stellar subdivision. Such a complex Ŝ′ can be computed
in linear time. It is easy to check that the cocycles of S are in one-to-one correspondence
with the cycles of Ŝ, and the cminimalycles of Ŝ are in one-to-one correspondence with finite
weight cycles of Ŝ′. Moreover, if η is a cocycle of S, and if η̂ and η̂′ are the corresponding
cycles in Ŝ and Ŝ′, respectively, then w(η) = w(η̂) = w(η̂′). Hence, computing a minimum
homology basis for K̂′ gives a minimum cohomology basis for S. ◀

▶ Theorem 9. Let n denote the number of simplices in a surface, and β denote the rank
of its first homology group. Then, Algorithm 1 computes a minimal solution for HHS of a
surface in O(β3n log2 n) time.

Proof. Let {νi | i ∈ [β]} be a minimum 1-cohomology basis for S. Then, by Lemma 6,
any minimal solution set is a cocycle. So, we can let k be the smallest integer for which
νk | k ∈ [β] evaluates to 1 on the input cycle ζ. By Corollary 7, every cocycle cohomologous
to a combination of cocycles in νi | [i] ∈ [k − 1] evaluates to 0 on ζ.

On the other hand, because of the matroid structure on cohomology bases [25, Section
4], νk is the minimum weight cocycle independent of {νi | i ∈ [k − 1]}. Since the weights
are positive, νk is a simple connected graph cycle in DS. By Remark 4, νk evaluates to 1 on
every cycle in [ζ]. Therefore, νk is a minimal solution.

Step-1 of Algorithm 1 requires O(β3n log2 n) time in the worst case if one uses the
minimum (co)homology basis algorithm by Borradaile et al. [4]. Using a standard sorting
algorithm, Step-2 can be computed in O(β log β) time. Finally, Step-3 can be implemented
in O(βn logn). ◀

3.1 Improved algorithm for Homological Hitting Set
We note that to compute the minimum hitting set what we truly need is not a minimal
cohomology basis, but only the smallest weight cocycle that evaluates to 1 on the input cycle
ζ. This can be achieved by opening the black box from [4]. Given a surface S with n vertices,
let β denote the rank of the first homology group of S.

Algorithm 2 An improved algorithm for HHS on surfaces with input cycle ζ.

1: Construct the dual surface S̊. The dual of ζ, denoted by ζ̊, is a nontrivial cocycle in S̊.
2: A topological space S̊ζ called the cyclic double cover [4], which is a covering space of S̊,

is constructed.
3: A multiple source shortest path procedure is run O(β) times on S̊ζ to find the minimum

weight cycle η̊ such that ζ̊(η̊) = 1.
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In the surface S, the dual of η̊, denoted by η, is a cocycle in S satisfying η(ζ) = 1. The
costliest step in Algorithm 2 is Step-3. Using from [4, Lemma 6.8], Step-3 takes at most
O(β2n log2 n) time. This gives an improvement by a factor of β over Algorithm 1.

4 Minimal hitting sets are not necessarily cocycles

In this section, we introduce an example of a complex whose minimum hitting set is not a
cocycle. We will first introduce a special complex that we call the cactus complex of an edge.

The cactus complex

Given an edge e, the cactus complex of e of height h, denoted by Ch(e), is defined inductively
as follows.
1. The complex C1(e) is merely the edge e itself. Edge e is assigned height 1.
2. Given Ck(e), for some k ≥ 1, we now describe the procedure to obtain Ck+1(e): Identify

a 2-simplex, denoted by σf , to every edge f of height k in Ck(e). The complex obtained
at the end of all identifications is Ck+1(e). Every edge in Ck+1(e) that has a unique
2-simplex incident on it is assigned height k + 1. For every f , the associated simplex σf

is assigned height k.
See Figure 5 for an illustration of a cactus complex of the edge bc of height 5.
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Figure 5 The figure depicts a cactus complex of the edge bc of height 5. The edges of the complex
are labeled with their respective heights.

The twisted key complex

The twisted key complex can be described as follows. Start with an annulus formed by the
red 2-simplices as shown in Figure 6. Attach a pencil-like complex made of blue 2-simplices
as shown in the figure. Identify a cactus complex of height 22 to every red edge such that
the red edge has height 1 in the cactus subcomplex. Finally, identify the blue edges with the
same labels along orientations shown by directed arrows. The resulting complex is called the
twisted key complex.
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Next, we recall a lemma from Munkres [38, Lemma 3.2] that will be used to provide a
guarantee that the twisted key complex is, in fact, a simplicial complex.

▶ Lemma 10 (Munkres, [38, Lemma 3.2]). Let L be a finite set of labels. Let K be a simplicial
complex defined on a set of vertices V . Also, let f : V → L be a surjective map associating
to each vertex of K a label from L. The labeling f extends to a simplicial map g : K → Kf

where Kf has vertex set V and is obtained from K by identifying vertices with the same label.
If for all pairs v, w ∈ V , f(v) = f(w) implies that their stars starK(v) and starK(w) are

vertex disjoint, then, for all faces η, ω ∈ K we have that
η and g(η) have the same dimension, and
g(η) = g(ω) implies that either η = ω or η and ω are vertex disjoint in K.

Lemma 10 provides a way of gluing faces of a simplicial complex by a simplicial quotient
map obtained from vertex identifications. In particular, Lemma 10 provides conditions under
which the gluing does not create unwanted identifications, and the resulting complex thus
obtained is also a simplicial complex. Since the stars of the vertices that are identified are
vertex disjoint (See Figure 6), the twisted key complex is a simplicial complex by Lemma 10.

Let ζ = {DL, LN,NR,RS,SV,VH,HF,FD} be the input cycle. Next, we will show that the
minimum hitting set of ζ is not a cocycle.
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Figure 6 The figure illustrates some of the simplices of the twisted key complex. To begin with
one starts with the unlabeled complex in the figure which looks like a key. To every red edge in
this complex, one attaches a cactus complex of height 22. Then, the complex is labeled as shown.
The edges labeled E1F1 are identified with each other with the arrow depicting the orientation
of the identification. The edges labeled E1L1 are also identified with each other with the arrow
depicting the orientation of the identification. The resulting complex is the twisted key complex.
Let ζ = {DL, LN, NR, RS, SV, VH, HF, FD} be the input cycle. Then, a minimal hitting set of [ζ] has
a minimum of 21 edges. In this case, the unique minimum hitting set comprises of the blue edges of
the twisted key complex, which we denote by S. The edges E1L1, L1F1 and F1E1 belong to S and are
incident on the 2-simplex E1L1F1. Hence, S is not a cocycle.

▶ Lemma 11. If a red edge of the twisted key complex belongs to a minimum hitting set of ζ,
then the minimum hitting set has cardinality at least 22.

Proof. Without loss of generality, let AC be the red edge which belongs to a minimum hitting
set S of ζ. By minimality of S, there is a cycle γ ∈ [ζ] such that γ ∩ S = {AC}. In the cactus
complex identified to edge AC, AC is of height 1. Then, the support of γ + ∂σAC differs from
the support of γ only on the two edges of height 2 that are incident on σAC. Hence, one of
the edges of height 2 incident on σAC belongs to S. Repeating this argument inductively, we
see that if AC is in S, then there is at least one edge of height h for every 1 ≤ h ≤ 22 in the
cactus complex incident on AC that also belongs to S, proving the claim. ◀
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▶ Theorem 12. The cycle ζ of the twisted key complex T has a unique minimum hitting set
C, where C is not a cocycle of T.

Proof. If the set C does not contain any red or blue edges of T, then C is not a hitting set of
ζ. Since we aim to find a hitting set of size smaller than 22, from Lemma 11, we hypothesize
that C has at least one blue edge and no red edges. Without loss of generality let C1D1 be a
blue edge in C. By minimality of C, there exists a cycle γ such that γ ∩ C = {C1D1}. Since
the cycles γ + ∂(C1D1E1) and γ + ∂(C1D1A1) are also hit by C, we conclude that A1C1 ∈ C
and E1D1 ∈ C. Inductively applying this argument, we conclude that all blue edges must
lie in C. Therefore, |C| = 21. Since the choice of C1D1 at the beginning of the argument is
arbitrary, it follows that ζ has a unique minimal hitting set, namely, one that comprises of
all the blue edges. Finally, δC = δ

∑
e∈C e = {F1E1L1} ̸= 0. In other words, since the edges

E1F1, F1L1 and E1L1 all belong to C, and F1E1L1 is a 2-simplex in T, C is not a cocycle. ◀

5 W[1]-hardness for Homological Hitting Set

In this section, we obtain W[1]-hardness results for HHS with respect to the solution size k
as the parameter via parameterized reductions from Multicolored Clique. We begin this
section by recalling some common notions from graph theory.

A k-clique in a graph G is a complete subgraph of G with k vertices. A k-coloring of a
graph G is an assignment of one of k possible colors to every vertex of G (that is, a vertex
coloring) such that vertices of the same color do not share an edge. A graph G equipped
with a k-coloring is called a k-colored graph. Then, a multicolored k-clique in a colored graph
is a k-clique with a k-coloring. Multicolored Clique (MCC) asks for the existence of a
multicolored k-clique in a k-colored graph G. We remark that reducing from MCC is a highly
effective tool for showing W[1]-hardness [26]. Formally, MCC is defined as follows:

▶ Problem 2 (Multicolored Clique (MCC)).
Instance: A graph G = (V, E), and a vertex coloring c : V → [k].

Parameter: k.

Question: Does there exist a multicolored k-clique H in G?

▶ Theorem 13 (Fellows et al. [26]). MCC is W[1]-complete.

For i ∈ [k], the subset of vertices of color i is denoted by Vi. Clearly, the vertex coloring
c induces a partition on V :

V = ∪k
i=1Vi, and Vi ∩ Vj = ∅ for all i, j ∈ [k].

We now provide a parameterized reduction from MCC to HHS. For r = |V | − 1, we define an
(r + 1)-dimensional complex K(G) associated to the given colored graph G as follows.

Vertices. The set of vertices of K(G) contains the disjoint union of the vertices V in the
graph G, the set of colors [k], and an additional dummy vertex d. Altogether, we have
r + k + 2 vertices in K(G) so far. In what follows, further vertices are added to K(G).

Simplices. Below, we describe the simplices that constitute the complex K(G).



U. Bauer, A. Rathod, and M. Zehavi 13:13

τv
i,j

τu
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αu
j

αu
j

σi σj

V V

d

V

Figure 7 The figure shows simplices in X ⊊ K(G). In particular, αv
i is the common face of τv

i,j

and σi, αu
j is the common face of τu

j,i and σj , and βv,u
i,j is the common face of τv

i,j and τu
j,i. The

dashed lines indicate identical facets. The set of r-simplices supported by the vertices V ∪ {d} form
a nontrivial r-cycle in K(G).

The cycle ζ. First, add the r-simplex V corresponding to vertex set V of the graph G. Next,
add the r-simplices (V \ {u}) ∪ {d} for every u ∈ V . The collection of these r + 2 simplices
of dimension r forms a nontrivial r-cycle ζ. The simplices (V \ {u}) ∪ {d} for every u ∈ V

are deemed undesirable, whereas the simplex V is classified as admissible. As explained later,
we wish to make the inclusion of undesirable simplices in solutions prohibitively expensive.

Next, we describe the sets X1 and X2, which are collections of (r + 1)-simplices.

The set X1. For every i ∈ [k], add an (r + 1)-simplex σi = V ∪ {i} to X1.
That is, X1 = {σi = V ∪ {i} | i ∈ [k]} .

▶ Definition 14 (Admissible and undesirable facets of σi). The admissible facets of σi are:
The facet V .
The facets (V \ {v}) ∪ {i} of σi for all v ∈ Vi.

The facet (V \ {v}) ∪ {i} for all v ̸∈ Vi are the undesirable facets of σi.

The idea here is that including an admissible simplex of the form (V \ {v}) ∪ {i} in S
is akin to picking the vertex v of color i for constructing the colorful clique, whereas the
coloring specified by undesirable facets is incompatible with the coloring c on vertices V .
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The set X2. For every color i ∈ [k], for every vertex v in Vi and every color j ∈ [k] \ {i},
add an (r + 1)-simplex τv

i,j = (V \ {v}) ∪ {i, j} to X2.
That is, X2 =

{
τv

i,j | i ∈ [k], v ∈ Vi, j ∈ [k] \ {i}
}
.

▶ Definition 15 (Admissible and undesirable facets of τv
i,j). The admissible facets of τv

i,j are:
(V \ {v, u}) ∪ {i, j} with u ∈ Vj and {u, v} ∈ E, and
(V \ {v}) ∪ {i},

A facet of τv
i,j that is not admissible is said to be undesirable.

By design, picking an admissible facet of the form (V \ {v, u}) ∪ {i, j} is akin to picking
the edge {u, v} of color {i, j} for constructing the colorful clique, whereas the admissible
facet (V \ {v}) ∪ {i} is common with σi. Undesirable simplices of τv

i,j correspond either to
coloring that is incompatible with c or with edges that are not even present in E.

▶ Notation 16. The admissible facets (V \ {v}) ∪ {i} and (V \ {v, u}) ∪ {i, j} are denoted
by αv

i and βv,u
i,j , respectively. For every vertex v ∈ V of color i, there is a facet αv

i . For every
edge {u, v} ∈ E, there is a facet βv,u

i,j , where i is the color of v and j is the color of u.

▶ Remark 17 (Meaning of superscripts and subscripts of simplices). A simple mnemonic for
remembering the meaning of the notation for simplices is as follows: the indices in the
subscript are the included colors, and the vertices in the superscript indicate the vertices
excluded from V . For instance, βv,u

i,j is the full simplex on the vertex set (V \ {v, u}) ∪ {i, j}.
In this case, colors i and j are included and vertices u and v are excluded. The same
notational rule applies for αv

i , σi and τv
i,j .

▶ Remark 18 (Correspondence between colors and vertices in αv
i β

v,u
i,j and τv

i,j). In our notation,
the first color corresponds to the first vertex, the second color to the second vertex.

In αv
i , vertex v is of color i, whereas in βv,u

i,j , v is of color i and u is of color j.
In τv

i,j , v is of color i and the vertex associated to color j is not specified. It is, in fact,
chosen through a facet βv,u

i,j ≺ τv
i,j .

Now, let X = X1 ∪ X2. The (r + 1)-simplices in X along with incident facets are shown
in Figure 7. We intend to make the inclusion of undesirable simplices in the solution
prohibitively expensive. For this purpose, we add an additional set Y of (r + 1)-simplices
(called inadmissible simplices).

Undesirable and inadmissible simplices. The undesirability of certain r-simplices is imple-
mented as follows: Let m = n3. Then, to every undesirable r-simplex ω = {v1, v2, . . . , vr+1},
associate m new vertices Uω = {uω

1 , u
ω
2 , . . . , u

ω
m}. Now introduce m new (r + 1)-simplices

Υω = {µi(ω) = {v1, v2, . . . , vr+1, u
ω
i } | i ∈ [m]}

that are cofacets of ω.

▶ Definition 19 (Set of inadmissible simplices associated to an undesirable simplex ω). The set
of r-simplices in {{facets of µi(ω)} | i ∈ [m]} is denoted by [ω]. The simplices in the set [ω]
are said to be inadmissible. In particular, ω itself is inadmissible.

See Figure 8 for an illustrative example. Every edge in Figure 8 is a facet of some simplex
µi(ω), and hence inadmissible, whereas ω is undesirable (as well as inadmissible).

Further, note that the set of vertices in Uω and r-simplices in Υω are unique to ω. As
we observe later, introducing these new simplices makes inclusion of ω in the solution set
prohibitively expensive. Denote by Y the set of all (r + 1)-simplices added in this step.
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Figure 8 For every undesirable simplex ω = {v1, v2, . . . , vr+1} m new vertices Uω =
{uω

1 , uω
2 , . . . , uω

m} are added to K(G). Also, m new (r + 1)-simplices Υω = {µi(ω) =
{v1, v2, . . . , vr+1, uω

i } | i ∈ [m]} are added to K(G) as cofacets of ω. The facets of µi(ω) for
every i ∈ [m] are the inadmissible simplices associated to ω and denoted by [ω].

The final complex K(G) used in the reduction is the complex obtained by taking closure
of simplices in X ∪ Y (under taking subsets). It is easy to check that the inadmissible and
admissible simplices of K(G) partition the set of r-simplices of K(G).

▶ Remark 20 (Size of K(G)). We note that every subset of vertices of G is a simplex in
K(G). However, K(G) is represented implicitly, and the simplices of dimensions other than r
and (r + 1) are not used in the reduction. Thus, although K(G) as a simplicial complex is
exponential in the size of G, the reduction itself is polynomial in the size of G because the
number of r and (r + 1) dimensional simplices of K(G) are polynomial in size of G.

Choice of parameter. Let (k +
(

k
2
)

+ 1 =
(

k+1
2

)
+ 1) be the parameter for HHS on K(G).

▶ Lemma 21. If there exists a multicolored k-clique H = (VH , EH) of G, then there exists a
homological hitting set S for ζ consisting of

(
k+1

2
)

+ 1 r-simplices.

Proof. We construct a set S of r-simplices that mimics the graphical structure of H. First,
we define

Sα =
{
αv

i | v ∈ Vi ∩ VH

}
Sβ =

{
βv,u

i,j | v ∈ Vi, u ∈ Vj , {i, j} ∈ EH

}
Then, we set S = {V } ∪ Sα ∪ Sβ . Next, note that every cycle ζ ′ ∈ [ζ] can be expressed as

ζ ′ = ζ +
∑

νi∈X ′

∂νi +
∑

µj∈Y′

∂µj

for some X ′ ⊂ X1 ∪ X2 and Y ′ ⊂ Y. Let X ′
1 = X ′ ∩ X1, and X ′

2 = X ′ ∩ X2. Now, we claim
that removing S from K(G) destroys every cycle ζ ′ ∈ [ζ]. We show this by establishing that
in every ζ ′ ∈ [ζ] the coefficient of at least one of the simplicies of S is 1. In other words,
S ∩ ζ ′ ̸= ∅ for every ζ ′ ∈ [ζ].
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Figure 9 In this figure, τv
i,j and τu

j,i belong to X ′′
2 , σi and σj belong to X ′

1, and αv
i and αu

j belong
to Sα. T accounts for all the incidences of the boundaries of simplices in X ′′

2 on simplices in Sα.
The final part of the argument in Case 4 of Lemma 21 is depicted here. Since |T | is even and the
coefficient of all the simplices of S \ {V } have coefficient 0 in some cycle ζ′ ∈ [ζ], we have X ′

1 = O,
and O has even cardinality. But if this is so, then the coefficient of V in ζ′ is (1 + |O|) mod 2 = 1.

Case 1: X ′ = ∅. Then, V ∈ S has coefficient 1 in cycle ζ ′. This is because simplices in Y
are not incident on V , and V ∈ ζ.

Case 2: X ′
1 ̸= ∅, X ′

2 = ∅. Then, the cycle ζ ′ can be written as

ζ ′ = ζ +
∑

σj∈X ′
1

∂σj +
∑

µℓ∈Y′

∂µℓ

Then, every αv
j ∈ S for σj ∈ X ′

1 and v ∈ VH ∩Vj has coefficient 1 in cycle ζ ′. This is because
αv

j ∈ ∂σj for every σj ∈ X ′
1, but αv

j ̸∈ ζ and αv
j ̸∈ ∂µℓ for any µℓ ∈ Y ′.

Case 3: X ′
1 = ∅, X ′

2 ̸= ∅. This case is identical to Case 1 since V ∈ S has coefficient 1
in ζ ′.

Case 4: X ′
1 ̸= ∅, X ′

2 ̸= ∅. If every simplex τv
p,q ∈ X ′

2 is such that v ∈ Vp \ VH , then this
case becomes identical to Case 2. So we will assume without loss of generality that the
set X ′′

2 =
{
τv

p,q | p, q ∈ [k], v ∈ Vp ∩ VH , τ
v
p,q ∈ X ′

2
}

is non-empty. For some {u, v} ∈ EH and
u ∈ Vq, v ∈ Vp, if τv

p,q ∈ X ′′
2 and τu

q,p ̸∈ X ′′
2 , then the coefficient of βv,u

p,q ∈ S in ζ ′ is 1 because
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the only two (r+ 1)-simplices incident on βv,u
p,q are τv

p,q and τu
q,p. So, without loss of generality

assume that the symmetric simplex τu
q,p is also in X ′′

2 . In other words, |X ′′
2 | is even. Note that

for every τv
p,q ∈ X ′′

2 , exactly one facet of τv
p,q lies in Sα, namely αv

p. Hence the cardinality of the
multiset T =

{
∂τv

i,j ∩ Sα | τv
i,j ∈ X ′′

2
}

is even. Let C(σi) =
∣∣{τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j ∩ Sα

}∣∣.
Also, let E = {σi | C(σi) is even} and O = {σi | C(σi) is odd}.

Note that |T | =
∑
σi∈E

C(σi) +
∑

σi∈O
C(σi).

Since |T | is even, |O| must be even. By construction, X ′
1 ⊆ O ∪E . For some i, let v ∈ Vi ∩VH .

Now, if σi ∈ E ∩ X ′
1, then the coefficient of αv

i ∈ S in ζ ′ is 1 because the only (r + 1)-
simplices incident on αv

i are
{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
∪ {σi}, and |

{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
|

is even when σi ∈ E . So, without loss of generality assume that E ∩ X ′
1 is empty. That

is, we assume that X ′
1 ⊆ O. But if σi ∈ O \ X ′

1, then the coefficient of αv
i ∈ Sα in ζ ′ is 1

because in that case the only (r + 1)-simplices incident on αv
i are

{
τv

i,j ∈ X ′′
2 | αv

i ∈ ∂τv
i,j

}
and

∣∣{τv
i,j ∈ X ′′

2 | αv
i ∈ ∂τv

i,j

}∣∣ is odd. So, we assume that O = X ′
1. But if O = X ′

1, then
V ∈ S has coefficient 1 in ζ ′ because
1. O is even, and the simplices in O are incident on V

2. V ∈ ζ.
This completes the proof. Figure 9 illustrates the final part of the argument. ◀

While the forward direction (Lemma 21) of the reduction is unaffected by the addition of
inadmissible simplices, the inadmissible simplices are indispensable for proving the reverse
direction (Lemma 22). We defer the proof of Lemma 22 to the full version of the paper.

▶ Lemma 22. If R is a feasible solution for HHS on K(G) and |R| =
(

k+1
2

)
+ 1, then one

can obtain a k-clique H of G from R.

Theorem 13 and Lemmas 21 and 22 combine to give the following theorem.

▶ Theorem 23. HHS is W[1]-hard.

6 FPT Algorithm for Homological Hitting Set

In Section 5 we showed that HHS is W[1]-hard with the solution size k as the parameter.
This motivates the search of other meaningful parameters that make the problem tractable.
With that in mind, in this section, we prove an important structural property about the
connectivity of the minimal solution sets for HHS. First, we start with a definition.

▶ Definition 24 (Induced subgraphs in Hasse graphs). Given a d-dimensional complex K with
Hasse graph HK, and a set S of r-simplices for some r < d, the subgraph of HK induced by
S is the union of S with the set of (r + 1)-dimensional simplices incident on S.

▶ Lemma 25. Given a d-dimensional complex K, a minimal solution of HHS for a non-
bounding cycle ζ ∈ Zr(K) for some r < d induces a connected subgraph of HK.

Proof. Let HS be the subgraph of the Hasse graph HK induced by a minimum homological
hitting set S of a non-bounding cycle ζ ∈ Zr(K). Targeting a contradiction, assume that HS
is a disjoint union of C1 and C2. That is, C1 and C2 are subgraphs of HS that do not share
any (r + 1)-simplices. Since S is minimal, there exists an r-cycle ϕ ∈ [ζ] that contains an
r-simplex in C1 but not any of the r-simplices in C2, and an r-cycle ψ ∈ [ζ] that contains an
r-simplex in C2 but not any of the r-simplices in C1. Then, ϕ = ψ + ∂b, for some (r + 1)
chain b. Let b′ be an (r+1)-chain obtained from b by removing exactly those (r+1)-simplices
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that belong to C1. Now, let ϕ′ = ψ + ∂b′. By construction, ϕ′ is disjoint from C1. Also,
because C1 and C2 are disjoint, the simplices removed from b to obtain b′ do not belong to
C2. Hence, ϕ′ is disjoint from C2. In other words, ϕ′ ∈ [ζ] does not meet S, and S is not a
hitting set, a contradiction. Therefore, the induced subgraph of S is connected. ◀

Note that the path from any r-simplex to another r-simplex passing through a shared
(r+ 1)-simplex in the Hasse graph is of size 2. So it follows from Lemma 25 that any minimal
solution of size at most k lies in some geodesic ball of radius 2k of some r-simplex in the
Hasse graph. If we enumerate all the connected sets in the geodesic ball of every r-simplex in
the complex K, then we will find a solution if one exists. Algorithm 3 provides a pseudocode
for this algorithm.

Algorithm 3 FPT Algorithm for Homological Hitting Set with k + ∆ as the parameter.

1: SOL = K;
2: for each r-simplex τ of K do
3: Consider the set Sτ of all simplices within the graph distance 2k (in HK) of τ .
4: for every connected subset S ⊆ Sτ with |S| ≤ k do
5: if S is a hitting set of ζ and |S| < | SOL | then
6: SOL = S;
7: if | SOL | < k then return SOL;

Note that in Line 4 of Algorithm 3, we need to enumerate only the connected subsets S
of cardinality less than or equal to k. We use Lemmas 27 and 28 by Fomin and Villanger [28]
that provide very good bounds for enumerating connected subgraphs of graphs. First, we
introduce some notation.

▶ Notation 26. The neighborhood of a vertex v is denoted by nbd(v) = {u ∈ V : u, v ∈ E},
whereas the neighborhood of a vertex set S ⊆ V is set to be nbd(S) = ∪v∈S nbd(v) \ S.

▶ Lemma 27 ( [28, Lemma 3.1]). Let G = (V,E) be a graph. For every v ∈ V , and b, d ≥ 0,
the number of connected vertex subsets C ⊆ V such that
1. v ∈ C,
2. |C| = b+ 1, and
3. | nbd(C)| = d

is at most
(

b+d
b

)
.

▶ Lemma 28 ( [28, Lemma 3.2]). All connected vertex sets of size b+ 1 with d neighbors of
an n-vertex graph G can be enumerated in time O(n2 · b · (b+ d) ·

(
b+d

b

)
) by making use of

polynomial space.

In Algorithm 3, b = O(k) and d = O(k∆). Therefore,(
b+ d

b

)
=

(
O(k∆)
O(k)

)
≤ (k∆)O(k) = 2O(k log(k∆)). (1)

Hence, by Lemma 28, for a single r-simplex, the number of connected sets enumerated in
Line 4 is O(n2 · O(k) · O(k∆) · 2O(k log(k∆))) = O(n5 · 2O(k log(k∆))) time. Since we do this
for every r-simplex τ in K, all candidate sets in Lines 4-6 can be enumerated in at most
O(n6 · 2O(k log(k∆))) time. Using Lemma 2, one can check if the set is a feasible solution in
time O(nω), where ω is the exponent of matrix multiplication. Checking feasibility for every
enumerated connected set takes O(nω+1 · 2O(k log(k∆))) time. Hence, the algorithm runs in
O(n6 · 2O(k log(k∆))) time, which is fixed parameter tractable in k + ∆.
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▶ Theorem 29. HHS admits an FPT algorithm with respect to the parameter k + ∆, where
∆ is the maximum degree of the Hasse graph and k is the solution size. The algorithm runs
in O(n6 · 2O(k log(k∆))) time.

Proof. The correctness of Algorithm 3 follows immediately from Lemma 25. ◀

▶ Remark 30. Note that the degree ∆ of the Hasse graph HK is bounded when the dimension
of the complex is bounded and the number of incident cofacets on every simplex (or cell)
is bounded. It is easy to check that Lemma 25 and Algorithm 3 are also applicable for
cubical sets. We describe all results in this paper for simplicial complexes only to keep the
background requirements to minimum. Low dimensional cubical sets are commonly used in
dynamical systems computations [31, Definition 2.9], and provide an example of a family of
complexes for which ∆ is bounded.

7 Conclusion and Discussion

In Section 3, we describe Algorithm 1 only for triangulated surfaces. In the full version of
the paper, we will generalize Algorithm 1 to cellularly embedded graphs and manifolds.

In Section 5, we prove that Homological Hitting Set is W[1]-hard. While this may
be discouraging at first, we note in Remark 30 that for important families of complexes like
cubical sets, Homological Hitting Set is tractable in the natural parameter. Overall, we
believe that an algorithmic study of high-dimensional cuts is fruitful.
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