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—— Abstract

We show that the deterministic decision tree complexity of a (partial) function or relation f lifts
to the deterministic parity decision tree (PDT) size complexity of the composed function/relation
f og as long as the gadget g satisfies a property that we call stifling. We observe that several
simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits,
Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing
randomized communication lifting theorems ([G66s, Pitassi, Watson. SICOMP’20], [Chattopadhyay
et al. SICOMP’21]) imply PDT-size lifting. However there are two shortcomings of this approach:
first they lift randomized decision tree complexity of f, which could be exponentially smaller than its
deterministic counterpart when either f is a partial function or even a total search problem. Second,
the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to
f- Reducing the gadget size to a constant is an important open problem at the frontier of current
research.

Our result shows that even a random constant-size gadget does enable lifting to PDT size.
Further, it also yields the first systematic way of turning lower bounds on the width of tree-like
resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size
of tree-like proofs in the resolution with parity system, i.e., Res(®), of the unsatisfiability of closely
related constant-width CNF formulas.
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1 Introduction

Theorems that lift the complexity of a function in a weaker model of computation to that of
the complexity of a closely related function in a stronger model, have proved to be extremely
useful and is a dominant theme of current research (see, for example, [10, 4, 11, 2, 15]). One
early use of this theme is in the celebrated work of Raz and McKenzie [16], that built upon
the earlier work of Edmonds et al. [7] to yield a separation of the hierarchy of monotone
circuit complexity classes within NC. The central tool of that work is an argument lifting
the query complexity of a (partial) relation f to the two-party communication complexity
of the composed relation f o g, where g is a two-party function, now commonly called a
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gadget. It required much technical innovation to prove the natural intuition that, if the
gadget g is obfuscating enough, the best that the two players can do to evaluate f o g is
to follow an optimal decision tree algorithm Q for f, solving the relevant instance of g to
resolve each query of @ encountered along its path of execution. The major utility of this
theorem lies in the fact that it reduces the difficult task of proving communication complexity
lower bounds to the much simpler task of proving decision tree complexity lower bounds.
Indeed, this point was driven home more recently, in the beautiful work of Gods, Pitassi and
Watson [10], who established tight quadratic gaps between communication complexity and
(rectangular) partition number, resolving a longstanding open problem. This was, arguably,
largely possible as the task was reduced to finding an appropriate analog of that separation
in the query world. This last work triggered a whole lot of diverse work on such lifting
theorems. Such theorems have been proved for the randomized model [11, 2], models with
application to data-structures [3], proof and circuit complexity (see, for example, [6, 8, 9]),
quantum computing [1], extended formulations [14] etc.

Most of these lifting theorems work with gadgets whose size is at least logarithmic in the
arity of the outer function. A current challenge in the area is to break this barrier and prove
lifting with sub-logarithmic gadget size (see, for example, [15]), ultimately culminating in
constant-size gadgets. It is not clear whether existing ideas/methods can be pushed to achieve
this. Faced with this, we consider lifting decision-tree (DT) complexity to intermediate
models that are more complex than DT but simpler than 2-party communication. Parity
decision tree (PDT) is a natural choice for such a model. Indeed, in tackling another major
open problem in communication complexity, the Log-Rank Conjecture (LRC), researchers
have realized the importance and utility of such intermediate models. For instance, the
natural analogue of LRC is open for PDTs (see [18, 19]) giving rise to a basic conjecture
in Fourier analysis. The analogue of LRC was recently proved for AND-decision trees [13]
bringing forth interesting techniques. Further, the randomized analog of LRC, known as the
Log-Approximate-Rank Conjecture (LARC) was recently disproved [5] using a surprisingly
simple counter-example. The key to discovering this counter-example lay in finding the
corresponding counter-example against the analog of the LARC for PDTs.

Taking cue from these developments, we consider lifting DT complexity using small
gadgets to PDT and allied complexity in this work. We are able to find an interesting
property of gadgets, which we call “stifling”, that we prove is sufficient for enabling such
lifting even with constant gadget size. We define a Boolean function g : {0,1}™ — {0,1} to
be k-stifled if for all subsets of k input variables and for all b € {0, 1}, there exists a setting
of the remaining m — k variables that forces the value of g to b (i.e., the values of the k
variables are irrelevant under the fixing of these m — k variables). Formally,

» Definition 1. Let g : {0,1}™ — {0,1} be a Boolean function. We say that g is k-stifled if
the following holds:

VS C [m] with |S| < k and Vb € {0,1},

3 z € {0,1}"\S such that for all z € {0,1}™ with T|pmps = 2,9(x) = 0.

We refer the reader to Section 2.1 for formal definitions of complexity measures. We
obtain a lifting theorem from decision tree complexity (DT(:)) of a function f to parity

decision tree size (PDTsize(-), denoting the minimum number of nodes in a parity decision
tree computing the function) of f composed with a gadget g that is stifled.!

! We remark here that even a lifting theorem from DT(f) to deterministic communication complexity
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» Theorem 2. Let g: {0,1}™ — {0,1} be a k-stifled function and let f C {0,1}" x R be a
relation. Then PDTsize(f o g) > 2PT(f)k,

In order to prove this, we start with a PDT for fog of size 2¢, say, and construct a depth-(d/k)
DT for f by “simulating” the PDT. Using a similar simulation, we also give lower bounds
on the subspace decision tree complexity of f o g, where subspace decision trees are decision
trees whose nodes can query indicator functions of arbitrary affine subspaces. Let sDT(:)
denote subspace decision tree complexity.

» Theorem 3. Let g: {0,1}™ — {0,1} be a k-stifled function, and let f C {0,1}" X R be a
relation. Then sDT(fog) > DT(f) - k.

We observe in Claim 22 that the bounds in the above two theorems are equivalent up to
logarithmic factors. More precisely we show that Theorem 2 follows (up to a constant factor
in the exponent in the RHS) from Theorem 3, and that Theorem 3 follows (up to a logn
factor in the RHS) from Theorem 2. It is easy to see that both of the above theorems
individually imply a lifting theorem from DT(f) to PDT(f o g). We choose to state this
as a separate theorem since it is interesting in its own right, and we feel that the proof of
Theorem 4 gives more intuition.

» Theorem 4. Let g: {0,1}™ — {0,1} be a k-stifled function, and let f C {0,1}" x R be a
relation. Then PDT(f og) > DT(f) - k.

Examples of stifled gadgets (functions that are k-stifled for some integer k > 1) are the
well-studied Indexing function and the Inner Product Modulo 2 function, as we show in
Claim 7 and Claim 8. It is worth noting that we obtain tight lifting theorems for constant-
sized gadgets. Although there is no gadget of arity 1 or 2 that is stifled, both the Indexing
gadget on three bits and the Majority gadget on three bits are stifled. Define the Majority
function on n input bits by MAJ,(z) = 1 iff |{i € [n] : ; = 1}| > n/2. Define the Indexing
function as follows.

» Definition 5 (Indexing Function). For a positive integer m, define the Indexing function,
denoted IND,, : {0,1}+2" — {0,1}, by IND,,(2,y) = Ubin(z), where bin(z) denotes the
integer in [2™] represented by the binary expansion x.

In the above definition, we refer to {z;:i € [m]|} as the addressing variables, and
{y; : j € [2"]} as the target variables.

» Definition 6 (Inner Product Modulo 2 Function). For a positive integer m, define the Inner
Product Modulo 2 Function, denoted P, : {0,1}?™ — {0,1}, by IPp (21, .+, Ty Y1y -+ s Yn) =

We show that IND,,, is m-stifled for all integers m > 1, and IP,, is 1-stifled for all integers
m > 2. We refer the reader to Appendix A for proofs of the three claims below. We also
show in Appendix A that the Majority function MAJ,, on m input bits is ([m/2] — 1)-stifled
and no Boolean function on m input bits is [m/2]-stifled (hence, “Majority is stiflest”).

of f og would not imply Theorem 2 as a black box. This is because deterministic communication
complexity can be much larger than the logarithm of PDTsize (for instance, for the Equality function).
However a lifting theorem from randomized decision tree complexity of f to randomized communication
complexity of f o g does imply a lifting theorem from randomized decision tree complexity of f to
PDTsize of f o g (see Claim 24 and the following discussion).

33:3
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> Claim 7. For all integers m > 1, the function IND,,, is m-stifled.
> Claim 8. For all integers m > 2, the function IP,, is 1-stifled.

We also show that a random Boolean function (the output on each input is chosen
independently to be 0 with probability 1/2 and 1 with probability 1/2) on m input variables
(where m is sufficiently large) is (logm/2)-stifled with high probability.

> Claim 9. Let g:{0,1}™ — {0,1} be a random Boolean function with m sufficiently large.
Then with probability at least 9/10, g is ((logm)/2)-stifled.

Theorem 4, Theorem 3 and Theorem 2 imply the following results for the Indexing gadget
in light of Claim 7.

» Corollary 10. Let f C {0,1}™ x R be a relation. Then for all positive integers m,

PDT(f o IND,,) > DT(f) -m
sDT(f o IND,,,) > DT(f) - m,
PDTsize(f o IND,,,) > 2PT()m,

We now show that the Parity function witnesses tightness of the above corollary. It is easy to
see that for all relations f PDT(foIND,,) < DT(f)-(m+1). In fact, our proof can be modified
to show PDT(foIND,,) > DT(f)-m+1 (see Remark 20). Let &,, denote the Parity function
on n input variables. It outputs 1 if the number of 1s in the input is odd, and 0 otherwise.
It is well known that DT(®,,) = n. We have PDT(®,, ocIND,,,) < DT(®,) -m+1=nm+ 1:
query all the m addressing variables in each block to find out the relevant variables using
nm queries. The output of the function (which is the parity of all relevant target variables)
can now be computed using a single parity query. Thus our result is tight.

Since IP,;, is 1-stifled for all integers m > 2 (Claim 8), we analogously obtain the following
results for the Inner Product Modulo 2 gadget.

» Corollary 11. Let f C {0,1}™ X R be a relation. Then for all positive integers m > 2,

PDT(f o IP,,) > DT(f),
sDT(f oIP,,) > DT(f),
PDTsize(f o IP,,,) > 2PT(/),

Since a random gadget on m inputs is (2(logm))-stifled (Claim 9), we obtain analogous
results for random gadgets as well.

1.1 Consequence for proof complexity

A central question in the area of proof complexity is “Given an unsatisfiable CNF C, what is
the size of the smallest polynomial-time verifiable proof that C is unsatisfiable?” To give
lower bounds on the size of such proofs for explicit formulas C, the question has been studied
with the restriction that the proof must come from a simple class of proofs. Two of these
classes are relevant to us: resolution and linear resolution. Resolution is now well understood
and strong lower bounds on the size of resolution based proofs are known for several basic and
natural formulas, like the pigeonhole principle, Tseitin formulas and random constant-width
CNFs. However, linear resolution introduced by Raz and Tzameret [17], where the clauses are
conjunctions of affine forms over Fy, are poorly understood. In fact, it remains a tantalizing
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challenge to prove super-polynomial lower bounds on the size of linear resolution proofs for
explicit CNFs. One promising way to make progress on this question is to prove a lifting
theorem that lifts ordinary resolution proof-size lower bounds for a CNF to linear resolution
proof-size lower bounds for a lifted CNF. Indeed, relatively recently, riding on the success
and popularity of lifting theorems on communication protocols, Garg, G66s, Kamath and
Sokolov [8] showed that ordinary resolution proof-size complexity, among other things, can be
lifted to cutting plane proof-size complexity. However, lifting to linear resolution proof-size
still evades researchers.

A first step towards the above would be to lift tree-like resolution proof-size bounds
to tree-like linear resolution proof-size bounds. Although lower bounds for tree-like linear
resolution proof-size were established by Itsykson and Sokolov [12], there was no systematic
technique known that would be comparable to the generality of a lifting theorem. Our lifting
theorem provides the first such technique as explained below.

The starting point is the well-known fact that the size of the smallest tree-like resolution
proof that C is unsatisfiable is the same as the size of the smallest decision tree that computes
the relation S¢ := {(z,C): C is a clause of C and C(x) = 0}. Similarly, the size of the
smallest tree-like Res(®) (linear resolution over Fz) proof that C is unsatisfiable is the same
as the size of the smallest parity decision tree that computes Sec.

Let C be a CNF with n variables and ¢ clauses, each of width at most w. For a gadget
g:{0,1}™ — {0, 1}, we define the CNF Cog as follows. For each clause C' € C, take the clauses

of a canonical CNF computing I'c : (y1,...,yn) € ({0,1}™)" — C(g9(y1),9(y2),--,9(yn)).

Note that I'¢ is a function of at most mw variables, and thus can be expressed as a CNF
with at most 2™ clauses, each of width at most mw. Define C o g to be the CNF whose
clauses are Joce I'c-

Our results in this paper yield PDT lower bounds against S¢ o g given DT lower bounds
against S¢. To compute Sc o g we get as input y = (y1,...,yn) € ({0,1}™)™ and we have
to output a clause C' € C such that C(z) = 0 where z = (g9(y1),...,9(yn)). On the other
hand to compute Sco, We get as input y and we have to output a clause D € [Jp o I'c such
that D(y) = 0. However if D(y) = 0 and D € T'¢, then by definition of I'c, C(z) = 0 where
z=(9(1),--.,9(yn)). Hence computing Sco, is sufficient to compute S¢ o g and our lower
bounds against S¢ o g translate to lower bounds against Scog, bringing us back to the realm
of proof complexity.

Our size lifting (Theorem 2) is particularly relevant, when applied with g as the Indexing
gadget on 3 bits, for example. Let C be a 3-CNF C with n variables and t clauses, with
tree-like resolution width at least d. Our theorem implies a tree-like Res(®) size lower bound
of 2¢ for the CNF C o INDy, with 3n variables and O(t) clauses, each of maximum width at
most 9.

1.2 Related work

Independently and concurrently with our work, Beame and Koroth obtained closely related
results. They show that a particular property of a gadget, conjectured recently by Lovett et
al. [15] to be sufficient for lifting using constant size, is in fact insufficient to yield constant-size
lifting. Using properties special to Indexing, they obtain a lifting theorem from decision tree
height complexity of f to the complexity of f o IND in a restricted communication model
that they define, where IND has constant size. Further, modifying the proof of this result
they also lift decision tree complexity of f to PDT size complexity of f o IND.

33:5
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We, on the other hand, prove directly a lifting theorem for PDT size, from deterministic
decision tree height, that works for any constant size gadget that satisfies the abstract
property of stifling. Examples of such gadgets are IND, IP, Majority and random functions.
While there are some similarities between our and their arguments, especially in the use of
row-reduction, our proof is entirely linear algebraic with no recourse to information theory.

2  The simulation

In Section 2.1 we introduce necessary notation for proving our theorems. In Section 2.2 we
give an overview of the simulation for Theorem 4 (i.e., we show an algorithm that takes
a low-depth PDT computing f o g and constructs a low-depth DT computing f). We do
this for the sake of simplicity; the simulations used to prove Theorem 2 and Theorem 3 are
small modifications of the simulation used to prove Theorem 4. In Section 2.3 we show the
simulation in full detail, with a key subroutine explained in Section 2.4. We then analyze
correctness of the simulation in Section 2.5. We conclude the proofs of all of our theorems in
Section 2.6.

2.1 Notation

Throughout this paper, we identify {0,1} with Fo. We identify vectors in F} with their
characteristic set, i.e., a vector x € F¥ is identified with the set {i € [n] : ; = 1}. For vectors
a,b € Fy, let (a,b) denote Y ., a;b; modulo 2. We say a vector in F} is non-zero if it does
not equal 0™. For a positive integer n we use the notation [n] to denote the set {1,2,...,n}
and the notation [n]p to denote the set {0,1,...,n — 1}. Throughout this paper R denotes
an arbitrary finite set. When clear from context, “4+” denotes addition modulo 2.

2.1.1 Decision trees and complexity measures

A parity decision tree (PDT) is a binary tree whose leaf nodes are labeled in R, each internal
node is labeled by a parity P € FJ and has two outgoing edges, labeled 0 and 1. On an
input « € {0,1}", the tree’s computation proceeds from the root down as follows: compute
val(P,z) := (P, z) as indicated by the node’s label and follow the edge indicated by the
computed value. Continue in a similar fashion until reaching a leaf, at which point the
value of the leaf is output. When the computation reaches a particular internal node, the
PDT is said to query the parity label of that node. A decision tree (subspace decision tree,
respectively), denoted DT (sDT, respectively), is defined as above, except that queries are to
individual bits (indicator functions of affine subspaces of F%, respectively) instead of parities
as in PDTs.

A DT/PDT/sDT is said to compute a relation f C {0,1}"™ x R if the output r of
the DT/PDT/sDT on input x satisfies (x,r) € f for all z € {0,1}". The DT/PDT/sDT
complexity of f, denoted DT(f)/PDT(f)/sDT(f), is defined as

DT(f)/PDT(f)/sDT(f) := i WT).
(f)/ (f)/s (f) T:T is a DT/PDr'II‘l}gDT computing f dept ( )

The decision tree size (parity decision tree size, respectively) of f, denoted DTsize(f)
(PDTsize(f), respectively), is defined as

DTsize(f)/PDTsize(f) := S DT/errg% computing f size(T),

where the size of a tree is the number of leaves in it.
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2.1.2 Composed relations and simulation terminology

For positive integers n,m, a relation f C {0,1}" x R, a function ¢ : {0,1} — {0,1}
and strings {y; € {0,1}™ : i € [n]}, we use the notation ¢"(y1,...,y,) to denote the n-bit
string (g(y1),---,9(yn)). The relation fog C ({0,1}™)" x R is defined as (y1,...,Yn,7) €

(fog) <= (9(y1)s---,9(yn),7) € f.

We view the input to f o g as an mn-bit string, with the bits naturally split into n blocks.

A parity query P to an input of f o g can be specified as an element of (F5*)™. For i € [n]
and a parity query P, P|; € F3* refers to the restriction of P to the ith block. For a parity
query P and a set of indices S C [m] x [n], P|s refers to the restriction of P to the set of
indices S. We say parity P touches block i or P touches a set S if P|; is non-zero or P|g is
non-zero, respectively.

A string y' € ({0,1}™)™ is said to be a completion of a partial assignment y € ({0,1, *}™)"
if y; = y; for all i € [m] x [n] with y; # *.

For a node N in a PDT and bit a € {0,1}, we use child(V, a) to denote the node reached
on answering the parity at the node NV as a. For a parity P and a partial assignment y such
that y; # * for all ¢ € P, val(P,y) denotes (P, y).

2.2 Overview of the simulation

In this subsection we sketch and describe our simulation algorithm with the goal of proving
Theorem 4. The proofs of Theorem 2 and Theorem 3 follow along similar lines, and are
formally proved in Section 2.6. We prove Theorem 4 via a simulation argument: given a
PDT of depth d for f o g, we construct a DT of depth at most d/k for f.

On input z € {0,1}", our decision tree algorithm simulates the PDT traversing a path
from its root to a leaf, and outputs the value that the PDT outputs at that leaf. During
this traversal the decision tree algorithm queries bits of x. It also keeps track of a partial
assignment y € ({0, 1, *}™)™ satisfying the following property that guarantees correctness:
For all w € {0,1}" consistent with the queried bits of z there is a completion y’ of y such
that

9"(y') = w, and

the path traversed by the PDT on input 3’ is the same as that traversed in the simulation.
This ensures that once the simulation reaches a leaf of the PDT, every input w that is
consistent with the queried bits of x has the same output as the output at the leaf. That is,
the simulation is a valid query algorithm for f.

To carry out the simulation we assign to every parity query along the path a block that
the parity query touches, unless its output value is already determined by y. We say that
the parity query has that block marked. At a high level, if a block has been marked by only
a few parity queries, then we have enough freedom in the block to do the following:

set its output (i.e., the value of g on the variables in the block) to any bit we wish by

setting some of the variables in the block (this uses the stifling property of g), and

retroactively complete this partial assignment so that each of the parity queries marking
the block evaluate to any bit of our choosing on the completed input.
We use these to prove the property that guarantees correctness. The first point helps us in
getting a partial assignment y such that ¢"(z) = w for all completions z of y, and the second
helps us complete it to a 7’ that reaches the leaf we want it to reach. A formal statement of
the required properties is in Claim 17.

During the simulation once a block, say block ¢, has been marked by k parity queries
we carefully choose k bits of the block that we will keep unset in our partial assignment
throughout the simulation. These k bits are what allow us to perform the completion as in

337

ITCS 2023



33:8

Lifting to Parity Decision Trees via Stifling

the second bullet above. We then query the value of z; and set the other m — k bits in block
1 to ensure that the output of block i is set to x;. The fact that we can do this crucially uses
the assumption that the gadget g is k-stifled. In the process above, every parity in the PDT
simulation marks at most one block, and a variable x; is not queried until the ¢th block is
marked k times. Thus the depth of the resultant DT is at most d/k.

A situation that may arise is when a parity P marks block ¢ but a previous parity query P’
that marked block ¢ has P|; = P’|;, for example. However, at some point we may be required
to set P|; to 0 and P’|; to 1 in order to follow the path in the simulation, which is impossible.
To avoid such issues we preprocess each parity query P to ensure that when it marks block
i, P|; is not in the linear span of {P’|; : P’ is an earlier parity that marks block i}. The
simulation algorithm is given in Algorithm 1 with the preprocessing subroutine given in
Algorithm 2. Algorithm 1 uses two other functions, described below.

» Definition 12. Let g : {0,1}™ — {0,1} be a k-stifled Boolean function. We define the
function STIFLE, to be a canonical function that takes as input a set S C [m] with |S| < k
and a bit b and outputs a partial assignment y € {0,1,*}™ such that

forallie [m], i€ S < y; =%, and

for all completions y' of y, g(y’') =b.
The existence of such a function in the definition above is guaranteed since g is k-stifled.

» Definition 13. Define the function FINDVARS to be a canonical function that takes as
input a set {Py,..., Py} of ¢ linearly independent vectors in F5* and outputs a set S of ¢
indices in [m] such that {P;|s},c(y are also linearly independent vectors.

The existence of such a function in the definition above is guaranteed by the fact that an
£ x m matrix of rank ¢ has ¢ linearly independent columns, and the ¢ x ¢ matrix defined by
restricting the original matrix to these columns also has rank .

2.3 The simulation algorithm

In Algorithm 1, we start with a PDT T of size 2¢ for fog, and an unknown input = € {0, 1}".
Our simulation constructs a decision tree for f of depth at most d/k.? This would prove
Theorem 2. We use the following notation in Algorithm 1:
num is the number of parity queries in 7' that are simulated so far.
M is an array storing parity queries made so far (after processing).
A is an array storing the answers to the parities in M. These are such that answering the
queries in M with the answers in A is equivalent to answering the queries in the PDT to
reach the node reached by the simulation algorithm.
For all i € [n], MARK]J{] is the set of indices in M of parity queries that have the ith
block marked. That is, MARK[:] = {j € [num]y : M[j] marks block i}.
y is the partial assignment stored by the simulation algorithm. It is initialized to (x™)™.
For all ¢ € [n], FREE[i] is the set of indices in block i of y that have not yet been set.
That is, FREE[:] = {(7,7) : j € [m],y;; = *}. It is initialized to {i} x [m] for each i € [n].
@ is the set of indices of x queried during the simulation.

The algorithm starts at the root node of the PDT and does the following for each parity
query P it comes across in its traversal down the PDT (Line 9).

2 QOur algorithm is designed to work with k& > 1. For instance, Line 16 is intended to catch the kth time a
block is marked, which does not make sense for k£ = 0.
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In Line 10 it processes the parity query using the ROW-REDUCE subroutine. The
subroutine outputs a parity P’, a “correction” bit b and an index j € [n] denoting which
block was marked by the parity (or L if no block was marked). As stated in Claim 14,
these outputs satisfy the following: for all y € {0,1}™",

val(M[i], y) = Ali]¥i € [numly| = [val(P,y) =0 <= val(P',y) = b].

In other words, for all inputs consistent with the answers to the previous parity queries

made along the path, P evaluates to 0 if and only if P’ evaluates to b.

It adds P’ to the list M of processed parities in Line 11. There are now two possibilities:
If P’ does not mark a block (Line 12), then all variables appearing in P’ are already
set in y (see Claim 16). Hence A[num] is set to val(P’,y) (Line 13) and the simulation
algorithm answers val(P’,y) + b to the original parity query at the current node
(Line 26).

If P’ marks block j:

If this is the kth parity to mark block j (Line 16), the simulation queries the value
of z; (Line 17). It then uses the FINDVARS function to select k bits in the jth block
to keep unset (Line 19). It sets the remaining m — k bits of the jth block of y using
the STIFLE, function to ensure that the output of the jth block is z; (Line 20).
The stifling property of g is crucially used in this step.

The algorithm sets the value of A[num] (in Line 24) such that the simulation
algorithm answers the parity query at the current node (Line 26) so as to go to the
smaller subtree.

When it reaches a leaf it outputs the value at that leaf.

2.4 The ROW-REDUCE subroutine

We now discuss the ROW-REDUCE subroutine, which describes how to process an in-
coming parity and choose which block it should mark. Algorithm 2 takes as inputs
P,M,AMARK,FREE, each of which are described below.

P is the new parity query to be processed.

The previously processed parity queries are stored in M.

The answers given in the simulation to the parities in M are stored in A.

MARK(:] is the set of indices of parity queries that have the ith block marked.

FREE[:] is the set of unset variables in block ¢ in the partial assignment (referred to as y

in Section 2.2) of the input to f o g that the simulation keeps.

The processed parity P’ is initialized to P, and a correction bit b is initialized to 0. In
Line 4, we go through the blocks of variables in order looking for a block to assign the
incoming parity to. The check made on Line 5 is to see whether this parity can mark the
current block j. It cannot mark block j if its restriction to FREE[j] is in the linear span of
the restrictions of earlier parities that marked block j. We detail what the algorithm does
based on this check below.

In Lines 5 to 8, we consider the case where the parity being processed, restricted to the

jth block, is a linear combination of the restrictions of earlier parities that marked the jth

block. That is, there is a set S C MARK[j] such that P'|rregp) = D ;g Mil|Fregp)- In

Line 7 we update the parity by adding » ;g M|[i] to P’. This ensures that P’|rreg[;) = 0.
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Algorithm 1 Simulation of a PDT T for f o g to obtain a DT for f.

Input: z € {0,1}"

1

—
Q@

11:
12:
13:

14:
15:
16:

17:
18:
19:

20:

21:
22:
23:
24:
25:
26:

27:
28:

29

© 0N DU W N

: Py < root(T)

num < 0

M <+ ]

A+

: MARK([i] + 0Vi € [n]

Dy ()"

: FREE[i] < {i} x [m]Vi € [n]
Q0

while P,m is not a leaf of T' do

and return the processed query,
a correction bit and the index

of the marked block.
M |[num] < P’
if j = 1 then
Alnum] <+ val(M[num], y)

else
MARK][j] < MARK][j] U {num}
if IMARK]j]| = k then

Query x;
Q< Qu{j}

ylj <= STIFLE4(S, z;)

FREE[j] + {j} x S
end if

Alnum] < b +b
end if
Pyum+1 <+ child(Paum, A[num] + b)

num <— num + 1
end while
: Output the value output at Pym

P’ b, j <+ ROW-REDUCE(Pnym, M, A, MARK, FREE)
Process the current parity query

S « FINDVARS({M[i]|; : i € MARK[;]})

b’ < arg min, size(child(Pnum, a))

> Starting the simulation of the

PDT

If no block has been marked
By Claim 16, all variables
appearing in M|[num] have been
set in y.

If this is the kth time the jth
block is marked

Update set of queried variables.
Select k bits of block j that

will remain unset in y.
Set other bits in block j to

force the jth block to output
value x;. This is possible
since g is k-stifled.

If no block was marked

(Line 12-13), go to the child

as dictated by the set variables.
Else, go to the child with the
smaller subtree, as ensured by
Lines 23 and 24.
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Algorithm 2 The ROW-REDUCE routine.

Input: P,M,AMARK,FREE
1: markedindex + L
P+ P
b+ 0
for j from 1 to n do
if P'|rregp;) is in the linear span of {M[iHFREE[j} 1€ MARK[j]} then

Let S C MARK[]] be such that P/|FREE[j] = ZieS MU”FREE[j]-

P« P+ g M[i] >
Observe that P’|pregf;] = OFREEL] after this step.

8: b%b—l—ZieSA[i]

9: else

10: markedindex < j

11: break > Ensure that no more than 1 block is marked.
12: end if

13: end for

14: return P’, b, markedindex

Then in Line 8 we update the correction bit b by adding >
the following holds for all y.

ses Ali] to it. This is so that

val(M[i),y) = Ali] Vi € [num]o] = {vaI(P, y) =0 < val(P,y) = b}.

In Lines 9 to 11, we consider the case when the current parity restricted to FREE[j] is
not a linear combination of the restrictions of the earlier parities that marked the jth
block. In this case we have the current parity mark the jth block (Line 10) and then
return P’ b, j.
Notice that a block is marked only in the latter case. If this case does not occur for any of
the [n] blocks, then no block is marked and the procedure returns P’,b, L.

2.5 Correctness

We first address the fact that we primarily deal with the values of the processed parities
rather than the original parity queries from the PDT. The following claim says that answering
the processed parity is in fact equivalent to answering the original parity from the PDT.

> Claim 14. Let P’,b, j be the output of ROW-REDUCE when run with its first three inputs
being P, M and A. Let num be the number of entries in M. Then for all y € {0,1}™",

val(M[i],y) = Ai]Vi € [num]o} = [val(P7 y) =0 < val(P,y) = b].

Proof. The output P’ is computed from the input P only through modifications by Line 7 of
Algorithm 2. That is, there is some subset S C [num]o such that P’ = P+ 3, ¢ M[i]. The
output b is also modified alongside the modifications of P’ so that b= 3", _¢ A[i].

Hence for any input y, val(P’,y) = val(P,y) + >_,cq val(M[i],y). The claim follows. <

As a corollary, we get that analyzing inputs that answer all the processed parities according
to the answer array A is the same as analyzing inputs that follow the path taken by the
PDT simulation.
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» Corollary 15. The following statement is a loop invariant for the while loop in Line 9 of
Algorithm 1. For all y € {0,1}™™,

[vaI(M[i],y) = Ali|Vi € [num]o} = {y reaches Pnum]

Proof. The loop is initially entered with the array M being empty and P, being the root
of the PDT. Clearly the statement holds at this point. We now prove by induction that it is
a loop invariant.

Suppose the statement holds at the beginning of an execution of the loop. M[num] is
populated in this execution by the parity output by the ROW-REDUCE subroutine in Line 10.
By Claim 14 and the fact that the statement held at the beginning of the execution, every
input y that reaches the node P, satisfies val(M[num],y) = val(Pum, y) + b. In Line 26 we
go to the node Pym41 = child(Poym, A[num] + b). Hence the inputs that reach Pyym+1 are
exactly those that reach P, m and satisfy M[num] = A[num]. We then increment num and
the loop ends, so the statement holds at the end of an execution of the loop. |

We now show that the processed parities are very structured.

> Claim 16. Let num be the number of queries made by the simulated PDT at a certain
point in the simulation. Recall that the processed parities are stored in M[0] to M[num — 1].
1. Let ¢ € [num]p. If the parity M[i{] marks block j (i.e., ¢ € MARK[j]), then for
every block j1 < j, M[i] N FREE[j1] = 0, where M[i] is viewed as the set of indices
{a € [m] x [n] : M[i]o = 1}.
If Mi] does not mark any block, then the above holds for all j; € [n].
2. For every block j € [n], the parities { M[i]|rreef;) : @ € MARK[j]} are linearly independent.

Proof. We prove the two properties in order.
1. We prove the first property by induction on 7.
Let’s assume that the property holds for all i’ < i. Note that M[i] is the processed
parity output by ROW-REDUCE when it was called to process P;. Similarly j is the
block marked by ROW-REDUCE during the same call. During the processing, the
algorithm ran through all blocks j; < j in order (or j; < n if no block was marked) and
took the branch of Line 5 of Algorithm 2 in each. To prove that M[i] N FREE[j;] = 0
for each j; < j, we use a second induction on j;.
When the algorithm looks at block j; (i.e., in the jith iteration of Line 4 in
Algorithm 2), we assume that the partially processed parity P’ has, for each js < j1,
P’ NFREE[j2] = 0. When looking at block ji, the algorithm may process P’ further
by adding to it some previously processed parities that had marked block j; (Line 7).
But any previously processed parity would be stored in M[i’] for some i’ < i. By
our first induction hypothesis we know that any such M[i’] that had marked block
J1 has, for each jo < ji, M[i'] "FREE[j2] = 0. Hence even after adding such parities
to P’ it still holds that for each js < ji, P’ N FREE[j3] = 0. The added parities
explicitly ensure that P’ N FREE[j;] = () and so for each j, < 71, P’ N FREE[j2] = 0.
This completes the second induction.
Since this second induction proves the required statement for all j; < j, this completes
the first induction as well.

2. For the second property we note that if a processed parity P’ marks a block j (Line 10 of
Algorithm 2), then P’|pregf;] is not in the linear span of P”|gregf;) for previous parities
P” that have block j marked (since the if condition Line 5 was not satisfied). Hence the
set of parities that mark a block are necessarily linearly independent. Moreover, when
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FREE[j] is modified (see Line 19 of Algorithm 1), it is chosen to be the output of the
function FINDVARS on input {M[i]|; : i € MARK][j]}. By the definition of FINDVARS,
this ensures that {M[i]|rreef;) : ¢ € MARK[j]} remains linearly independent. <

We finally prove the correctness of the simulation.

> Claim 17. For any string w € {0, 1}" consistent with the queried bits of x there is an
input y to f o g that reaches the leaf P, and satisfies ¢"(y) = w.

Proof. Fix a string w € {0,1}" consistent with the queried bits of . We start with the
partial assignment y maintained by the PDT simulation and complete it.

Fixing variables in y to ensure ¢g"(y) = w: The bits of y that are already fixed ensure
that for any queried bit z;, g(y|;) = w; (these are set in Line 20 of Algorithm 1).
Now for each unqueried bit z;, first note that ¢ := |[MARK[j]| < k (otherwise Line 17 of
Algorithm 1 ensures that x; is queried). We do the following:
Get a set S = FINDVARS({M[i]\j}ieMARKU]) of ¢ indices such that {M[i][s};cmarkp)
are still linearly independent.
Assign y|; to be STIFLE,(S,w;) to ensure that all the bits of y|; indexed in S are
unset, those outside are set, and all completions of y|; evaluate to w; when g is applied
to them. This is possible since g is k-stifled and ¢ < k.2 We will continue to use
FREE[;] to refer to the set S.
Now we are guaranteed that any extension of y with bits set as above will yield the string
w when ¢g" is applied to it.
Before we move on to ensuring that y reaches the leaf P, let us make the useful
observation that at this point |[MARK][j]| = |[FREE[j]| for all j € [n]. We have ensured
this for all j that were unqueried by the simulation. For those that were queried, note
that the simulation only queries z; when |[MARK[j]| = k, and on querying z;, FREE[j] is
modified to have size k (Lines 16 and 21 of Algorithm 1). By Claim 16, we know that
{M[i]|rree(; : ¢ € MARK[j]} are linearly independent parities. Hence in Algorithm 2,
when processing block j, Line 5 will always fire and block j is never marked again. This
ensures that MARK[j] and FREE[j] do not get modified again.
Extending y to guarantee that it reaches the leaf P, .:
By Corollary 15 the inputs y that reach the leaf P,,, are exactly those that answer A[i]
to each processed parity query M{i].
We analyze each parity query in M. There are two cases: one where the current parity
query under consideration marks a block, and the other where the parity query under
consideration does not mark a block.

When i ¢ |J; MARK[j]: By Claim 16 the only non-zero entries of M[i] are variables
that have previously been set in y (in Line 20 of Algorithm 1). Hence the parity query
MTi] has to evaluate to val(M[i],y) when queried on any extension of y, and indeed
Ali] is set to val(M]i],y) in Line 13 of Algorithm 1.

When i € [J; MARK[j]: Let I = |J; MARK[j]. Note that |I| = > [MARK]j]| since
at most one block gets marked for each parity. Since |FREE[j]| = [MARK]j]| for all
j € [n], there are still |I] unset bits of y. Let us refer to these variables by unset(y)
and their complement by set(y).

3 Tt suffices to assume ¢ < k here. See Remark 20 for a discussion on how we can modify our simulation
to exploit this.

33:13

ITCS 2023



33:14 Lifting to Parity Decision Trees via Stifling

FREE[1] FREE[2] FREE[n]
MARK]1] Alia Ali2 s Al1n
MARK(2] Alg1 Alzg - Alzn
MARK n] Al Al “e Alnn

Figure 1 The structure of the matrix A. A|;; is a linearly independent submatrix for each i € [n],
and Al; ; is the all-0 matrix when ¢ > j.

Let us now construct a matrix M € ng[mn] where the rows are indexed by I and row

i is the vector M[i]. We also consider the column vector b € F] where the rows are
indexed by I and the entry b; = A[i].

Our goal is to find a column vector v € F[an} such that veet(y) = Yset(y) and Muv = b.
Setting the unset bits of y according to v would give us what we want, a completion of
y that answers A[i] to each parity query M[i]. To this end let us write the matrix M
as follows (after an appropriate permutation of columns).

M=[A | A],

where the first set of columns corresponds to indices in unset(y), and the second set of
columns corresponds to indices in set(y).
Let b = A'vseq(y). If we find a setting of vynset(y) such that Avypser(yy = b+ V',
then Mv = b and this would conclude the proof. We prove the existence of such a
setting by noting below that the rows of A are independent and hence its image is
FL. To prove the independence of the rows of A, view A as a block matrix made
up of submatrices {Al;;}; ;c(,) with Al;; containing the rows MARK[] and columns
FREE[j] (see Figure 1). Note that submatrices of the form AJ; ; are square matrices
since [IMARK[i]| = |FREE[:]| for all i € [n].
By Claim 16 and the way we defined FREE[¢] using the FINDVARS function (ensuring
that the restriction of parities in MARK][:] to FREE[i] preserves independence),

Al; ;i is a linearly independent submatrix for each i € [n], and

Al; ; is the all-0 matrix when ¢ > j.
The independence of the rows of A easily follows from this “upper triangular”-like
structure. <

We require the following observation for the proof of Theorem 3 since we work with a
slightly modified simulation algorithm there.
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» Observation 18. The correctness analysis of Algorithm 1 described in this section still
holds if we set A[num| to byym € {0,1} in Line 24, where boym is an arbitrary function of the
history of the simulation.

Finally we observe that the number of queries made by the simulation is at most d/k.
» Observation 19. Algorithm 1 makes at most d/k queries to x.

Proof. First observe that every parity in the simulation marks at most one block. The query
x; is made by the simulation (Line 17) only when MARK([j] gets k elements in it (Line 16).

So the number of queries made is at most |UJ;<,,) MARK[;] ‘/k < d/k, since the number of

iterations in the simulation (captured by num) is at most the depth of the PDT, which is d
by assumption. |

It follows from the correctness of Algorithm 1 and the observation above that PDT(fog) >
DT(f) - k (proving Theorem 4). We observe below that our simulation can be modified so as
to give a stronger bound of PDT(f o g) > DT(f) - k + 1. Note that this bound is tight since
PDT (&, o IND;) < n + 1, for instance.

» Remark 20. Note that we query x; in Algorithm 1 when the jth block is marked for the
kth time. The reason behind this is that we can handle a block being marked k times while
still having the freedom to set its output by the stifling property of g. Moreover this might
not be true after the block is marked for the (k+ 1)th time. However querying x; in the same
iteration where the jth block is marked for the kth time (Lines 16 and 17) is premature. We
can modify our algorithm so as to query x; after block j is marked £ times and a new parity
attempts to mark it for the (k + 1)th time. With this modification, once we query x; and set
variables so that its output is fixed, the parity can no longer mark block j and needs to be
reprocessed using Algorithm 2 with the updated value of FREE[j] so that it either triggers a
query in a later block (in which case we repeat this process), marks a later block, or marks
no block at all. If the set of queries to x is denoted by @, then the number of parity queries
being made by the simulation is at least |Q|k 4+ 1: When the last of the queries in @ is made,
say xj, then the jth block and all blocks corresponding to previously queried variables had
already been marked k times before the parity query appeared that triggered the query of x;.
Hence there were at least |Q|k parity queries processed before the parity query that resulted
in the simulation querying ;. As a result we get PDT(f og) > DT(f)-k+ 1.

2.6 Simulation theorems

In this section we conclude the proofs of Theorem 4, Theorem 3, Theorem 2, Corollary 10
and Corollary 11.

Proof of Theorem 4. It follows from the correctness of Algorithm 1 described in the previous
section, and Observation 19. |

Proof of Theorem 2. Consider a PDT Tp for f o g of size s. Suppose the DT T we get
for f from the simulation makes d queries on a worst-case input, say on « € {0,1}". Note
that whenever a parity marks a block in the simulation algorithm (i.e., Line 14 fires), the
algorithm then chooses to go to the child with the smaller subtree (Lines 24 and 26). So
in Line 26, the size of the subtree rooted at Pyym+1 is at most half the size of the subtree
rooted at Pn,m. When the simulation algorithm is run on input x, it reaches a leaf of Tp,
and at least dk parities are such that they mark some block in the process. This is because
the simulation queries a variable only after its corresponding block has been marked £ times.
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Hence the size of the subtree rooted at the reached leaf is at most a 2~9 fraction of s. Thus,
s > 29 The theorem now follows from the correctness of Algorithm 1 described in the
previous section. <

Towards the proof of Theorem 3, we work with a modified query model instead of
considering subspace decision trees. This query model is described below.

For each affine subspace choose an arbitrary ordering of the constraints. We define a
“parity constraint” query to be a query of the form (v, z) ~ 4 where v € F3'",a € Fy. Define
a “parity constraint” query protocol as a protocol that makes parity constraint queries. The
answer to a query (v, ) < a is either “Right” if (v, ) = a or “Wrong” if (v, z) # a. The cost
of the protocol is defined to be the worst-case number of queries that were answered “Wrong”
during a run of the protocol.

Now given a subspace decision tree T', we construct a parity constraint query protocol as
follows:

When an affine subspace query is made in T, instead query the parity constraints making

up the affine subspace query in a canonical order. Stop when any of the parity constraints

is answered “Wrong”.

If a constraint has been answered “Wrong”, traverse 1" as if the affine subspace query had

failed. If no constraint has been answered “Wrong”, traverse T' as if the affine subspace

query had succeeded.
Clearly the number of wrong answers in any execution of this protocol is upper bounded
by the worst case number of affine subspace queries made by T, and the parity constraint
protocol computes the same relation as the original subspace decision tree.

Proof of Theorem 3. From a subspace decision tree computing f o g, construct a parity
constraint query protocol T computing f o g without increasing the cost, as described above.
Note that a parity constraint query protocol tree is just a parity decision tree except that for
every internal node its outgoing edges have an extra label of “Right” and “Wrong”.

We modify Lines 23 and 24 of Algorithm 1 as follows. We look at the current query node
in the PDT to see what answer b’ € Fy corresponds to a “Wrong” edge. We set A[num] to
b + b so that in Line 26 the simulation does take the “Wrong” edge.

Hence for every i € ;¢ MARK(]j], the parity query M[i] corresponds to a “Wrong”

answer. Thus note that cost(T") > ‘Uje[n] I\/IARK[j}‘. On the other hand, the query z; is
made by the simulation only when MARK][j] gets k elements in it. So the number of queries
made is at most |UJ;¢(, MARK[j] ’/k < cost(T")/k. The correctness of this modified algorithm

follows from the correctness of Algorithm 1 described in the previous section, along with
Observation 18. |

Corollary 10 and Corollary 11 follow from Theorem 4, Theorem 3, Theorem 2, the fact
that IND,, is m-stifled (Claim 7) and the fact that IP,, is 1-stifled (Claim 8).

2.7 Non-adaptive and round-respecting simulations

When run on a non-adaptive parity decision tree for f o g of cost d, our simulation algorithm
actually results in a non-adaptive decision tree for f of cost d/k. This observation relies on
the fact that in the course of every iteration (of Line 9 of Algorithm 1), the updates done
to M, MARK, @ and FREE depend solely on the sequence of parities P that are processed.
More formally,
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The outputs P’ and j from the ROW-REDUCE routine are functions of P, M, MARK, k and
FREE. They do not depend on the input A. M and MARK are then updated depending
solely on these outputs.

The decision to query a variable z; (and hence to append j to @, in Lines 17 and 18 of
Algorithm 1) depends only on MARK, and the resulting update to FREE[j] (Line 21 and
the two preceding lines of Algorithm 1) only depends on M and MARK.

Now consider a run of the simulation algorithm on a non-adaptive PDT. By Observation 19
this results in a DT that computes f with cost at most d/k. By the observations above and
since the parity decision tree is non-adaptive, the simulation algorithm processes the same
sequence of parity queries regardless of what path it takes down the non-adaptive PDT. Hence
the set @ (and hence the queries made) does not depend on what path the simulation algorithm
takes, and they can be made non-adaptively. Thus, we obtain the following theorem where
NADT(:) denotes non-adaptive decision tree complexity and NAPDT(:) denotes non-adaptive
parity decision tree complexity.

» Theorem 21. Let g:{0,1}™ — {0,1} be a k-stifled function, and let f C {0,1}"™ x R be
a relation. Then NAPDT(f o g) > NADT(f) - k.

This argument can easily be adapted to say that when run on a “t-round” PDT (that
is, parity queries are done simultaneously in each round), the simulation algorithm results
in a t-round DT with the guarantee that if the parity decision tree has made at most d;
queries during its first ¢ rounds, the decision tree makes at most d;/k queries during its first
1 rounds.
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A Deferred proofs

> Claim 22. Theorem 2 follows (up to a constant factor in the exponent in the RHS) from
Theorem 3. Theorem 3 follows (up to a logn factor in the RHS) from Theorem 2.

This claim immediately follows from the following bounds relating PDTsize and sDT.
> Claim 23. Let F C {0,1}™ x R be a relation. Then,

log PDTsize(F')

<sDT(F') < 2log PDTsize(F).
logn

The first inequality can be shown by a naive simulation of a sDT by a PDT, and the
second one via a standard tree/protocol-balancing trick. Due to space constraints, we defer
these proofs to the full version of our paper.
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We next state a claim that shows that the randomized communication complexity of
a function is bounded from above by its PDT size. Let RS(-) denote e-error randomized
communication complexity. It is well known that the public-coin e-error randomized commu-
nication complexity of the Equality function on 2n input bits is O(log(1/¢)). It is easy to see
that the same protocol and same upper bound also holds for the communication complexity
of checking whether a joint input lies in an arbitrary (but known to both players) affine
subspace.

> Claim 24. Let F C {0,1}" x {0,1}" x R be a relation. Then,
R(F) < O(log(PDTsize(F)) x loglog(PDTsize(F))).

Proof. Consider a PDT T of size s computing F'. Just as in the previous proof, Alice and
Bob jointly identify a node v" in T that has at least s/3 and at most 2s/3 leaves under
it. They use O(loglog s) bits of communication to find out with error probability at most
1/(6log s) whether the computation of T' on their joint input reaches v’. This can be done
since the set of inputs reaching v’ is an affine subspace. Irrespective of the outcome, the
size of the resultant PDT reduces to at most 2s/3. The players then recurse at most 2log s
times to reach a leaf and output the value at that leaf. By a union bound, the error of this
protocol is at most 1/3. The total cost of this protocol is at most O(log sloglog s). <

In particular, the claim above implies that a lifting theorem from randomized decision tree
complexity of f to R®(f o g) (see, for example, [11, 2], for such lifting theorems, albeit
for gadgets of super-constant size) implies a lifting theorem from randomized decision tree
complexity of f to PDTsize(f o g).

Proof of Claim 7. Let S be an arbitrary subset of [m] LI [2™] of size m, and let b € {0,1}. We
need to show that there exists a setting of variables in [m] U [2™] \ S that fixes the value of
IND,,, to b. Suppose there are ¢ addressing variables and m — £ target variables in S. Fix the
remaining 2™ — m + £ target variables to value b.

We now claim that there exists a setting of the free (outside of S) m — ¢ addressing
variables such that the “relevant” target variable is always one of the free (outside of S)
target variables, regardless of the setting of the £ “Majority is stiflest” addressing variables
in S. This would prove the claim since we have set all of the free target variables to value
b, and hence IND,, would always output b regardless of the assignments to variables in S.
Towards a contradiction, suppose not. Then, for each setting of the free m — ¢ addressing
variables there exists a setting of the constrained addressing variables such that the relevant
target variable is one of the m — ¢ constrained target variables. Thus, 2™~¢ < m — ¢, which
is easily seen to be false for all £ € {0,1,...,m — 1} and all integers m > 1. <

Proof of Claim 8. Let the inputs to IP,,, be denoted by z1, s, ..., Tm,y1, Y2, .-, Ym. Pick an
arbitrary set of size 1. Without loss of generality we may assume that this set is {x1}. Given

b € {0,1} we need to show that there exists a setting of the variables xa, ..., Zm, Y1, -, Ym
that fixes the value of IP,, to b. To this end, fix y; = 0. This implies z; A y; = 0. Hence, re-
gardless of the value of x1, the function now evaluates to IP,,,_1(z2, ..., ZTm,y2,...,Ym). Since
m > 2, IP,,_1 is a non-constant function, and we can set the values of xao,...,Zm, Y2, ., Ym
such that IP,,_1 (29, ..., Zm, Y2, ..., Ym) (and thus IP,, (21,22, ..., Tm,Y1,Y2,- .-, Ym)) evalu-
ates to b. This concludes the proof. <

» Remark 25. The parameters in Claim 7 and Claim 8 cannot be improved. That is,

33:19

ITCS 2023



33:20

Lifting to Parity Decision Trees via Stifling

IND,,, is not (m + 1)-stifled: Consider the set S of all addressing variables and a single
target variable. We have |S| = m + 1. Regardless of how we set the remaining variables,
the restricted function is never fixed because the addressing variables could be assigned
values to point to the target variable in S (which could have value either 0 or 1).

IP,, is not 2-stifled: Consider the set x1,y;. Regardless of how we set the remaining
variables, the function value is different when 1 Ay; = 1 as compared to when z1 Ay; = 0.

We observe below that “Majority is stiflest”. More precisely, we show that MAJ, :
{0,1}™ — {0,1} is ([n/2] — 1)-stifled and no Boolean function on n inputs is [n/2]-stifled.

> Claim 26 (Majority is stiflest). Let f: {0,1}" — {0,1} be a Boolean function. Then, f
cannot be [n/2]-stifled. Moreover MAJ,, is ([n/2] — 1)-stifled.

Proof. We prove the two claims in order.

Towards a contradiction, assume f is [n/2]-stifled. Pick an arbitrary set S of size [n/2].
By definition, there exists a setting of variables in S that forces the value of f to 0. Since
|S| = |n/2] < [n/2], the assumption also implies the existence of a setting of variables
in S that forces the value of f to 1. Since these settings are on disjoint sets of variables,
this implies a setting of variables that forces the value of f to both 0 and 1, which yields
a contradiction.

Pick an arbitrary set of variables S of size [n/2] — 1 and an arbitrary b € {0,1}. By
definition of the Majority function, fixing all variables in S to value b forces the function
value to be b, concluding the proof. <

Proof of Claim 9. Fix S C [m] with |S| = k = logm/2. For z € {0,1}l™\% and 2’ € {0,1}%,
let the input (z,2) € {0,1}" be defined by (2, 2")|s = 2’ and (2, 2)|p\s = 2. We have for
every fixed z € {0, 1}mN\S]
1
Pr[vz' € {0,1}%,9(z,2') = 0] = 3

Since these events are independent for each z € {0, 1}I™\5]

zm—k

1
Pr[fz € {0,1}™\S such that V2’ € {0,1}%,¢g(z,2') = 0] = (1 - 22k>

m—k

Thus, the probability that “S isn’t O-stifled” is at most (1 — 2%) . The same bound

holds for the probability that S isn’t 1-stifled. By a union bound over all S C [m] with
|S| =k, we get

m—k
1\2
Pr[g is not k-stifled] < <7Z> ) (1 — 22k>
< gkloemtl . oxp (*mekfzk) using standard inequalities
< 2(10g2 m)/2+1,2(m—10g m—+/m) log e

< 1/10,

where the last inequality holds for sufficiently large m. <
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