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Abstract
We consider protocols where users communicate with multiple servers to perform a computation
on the users’ data. An adversary exerts semi-honest control over many of the parties but its view
is differentially private with respect to honest users. Prior work described protocols that required
multiple rounds of interaction or offered privacy against a computationally bounded adversary.
Our work presents limitations of non-interactive protocols that offer privacy against unbounded
adversaries. We prove that these protocols require exponentially more samples than centrally private
counterparts to solve some learning, testing, and estimation tasks. This means sample-efficiency
demands interactivity or computational differential privacy, or both.
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1 Introduction

Following the seminal work by Dwork, McSherry, Nissim, and Smith [11], much research
in differential privacy takes place in the central model. This assumes owners of data are
willing to give their data to a central analysis server – an analyst for short – who runs a
differentially private algorithm and reports the output to the (adversarial) world. Such an
algorithm will guarantee that, loosely speaking, its output will not leak much information
about any individual who gave their data. But the analyst could run other algorithms, so
leaks and data misuse can still occur.

To keep data out of an analyst’s hands, prior research has produced a variety of alternative
models. A well-studied example is the local model. Here, users of mobile phones or web
browsers run differentially private algorithms on their data and send the resulting messages
to the analyst [22, 18]. The local nature of the randomization ensures privacy for any user
even when the analyst and all others users are corrupted by the adversary. An inherent
limitation of such a protocol is that the privacy noise from the users significantly weakens
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36:2 Necessary Conditions in Multi-Server Differential Privacy

the signals they are meant to send; Kasiviswanathan, Lee, Nissim, Raskhodnikova, and
Smith showed that locally private parity learning demands exponentially more samples than
centrally private parity learning [18].

A line of work augments local protocols with a shuffler, an intermediary that applies
a random permutation on user messages before sending the result to the analyst [6, 9].
The anonymity offered by the shuffler acts as a second layer of protection, atop the local
randomization. The shuffler can be securely instantiated via anonymous broadcast protocols
(e.g. Eskandarian & Boneh [13]) or classic mixnets (see Chaum [7]).

We focus on an alternative relaxation of the local model that appears in various forms
in prior work [20, 2, 21, 5]: instead of just one analysis server, we assume there are k ≥ 2
servers who share responsibility in processing user messages. An adversary can corrupt all
but one of the users (as in the local model) and a large and unknown subset of the servers.1
The adversary observes the messages received by parties it corrupts; we would like this view
to change only slightly when an honest user changes their contribution. We remark that
this multi-server model subsumes the shuffle model, since Eskandarian & Boneh create a
multi-server protocol that performs anonymous broadcast [13].

That construction relies on the assumption that the adversary is computationally bounded.
As noted by Steinke [20], such an assumption also implies accurate simulation of centrally
private algorithms via secure multiparty computation. But classic work in central and local
privacy allow unbounded adversaries. The natural line of thought is to explore the power of
multi-server protocols when playing against that stronger class of adversary.

We are also interested in practical protocols: they should ideally be computationally
lightweight, consume low bandwidth, and take place over few rounds of interaction. We focus
on interactivity. Specifically, we would like to know how many rounds are needed to solve
problems with few samples. There is precedent for such results in distributed differential
privacy: in the local model, Joseph, Mao, and Roth showed exponential separations between
r-round and r + 1-round protocols [17].

As a starting point for adapting this to the multi-server setting, we can consider 1-round
or non-interactive protocols. Here, each party produces one batch of outputs and never
receives feedback. Refer to Figure 1 for a visualization.

In Appendix B, we sketch a non-interactive multi-server protocol that ensures differential
privacy against an unbounded adversary. It accurately estimates the sum of bits held by
users. But aside from this basic task, what can multi-server protocols compute if they must
be non-interactive and ensure privacy against an unbounded adversary?

1.1 Our Results
We show that the protocols of interest cannot perform some learning, testing, and estimation
tasks without exponentially more samples than centrally private algorithms. An example is
parity learning.

▶ Theorem 1.1 (Informal). Consider the family of non-interactive multi-server protocols that
offer ϵ-differential privacy against unbounded adversaries that control ≤ ⌈k/2⌉ servers. If each
user samples d binary features and a binary label from the same distribution, any member of
the protocol family requires Ω(2d/2/ϵ) samples to find a parity function that predicts the label
of a fresh sample.

1 Steinke [20] and Talwar [21] describe protocols that ensure privacy holds when k − 1 servers are corrupt.
Our results apply to protocols with a weaker guarantee.
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Figure 1 Diagram of a non-interactive two-server protocol. Users input their data into local
randomizers, which send one message to each server. The first server produces a intermediary value,
which the second server uses to produce the output. No party responds to messages (there are no
cycles in the graph).

For comparison, Kasiviswanathan et al. show that O(d/ϵ) samples suffice under ϵ-central
privacy [18]. In the full version of this work, we present similar exponential gaps in sample
complexity for feature selection, simple hypothesis testing, and sparse mean estimation.
Finally, we present a lower bound for uniformity testing, which is polynomially larger than
the upper bound in the central model.

Our lower bounds have the following implication:

To solve some tasks with as few samples as the central model, multi-server protocols
must be interactive or only ensure computational differential privacy, or both.

We note that our result holds in the case where the adversaries are honest but curious,
meaning that the adversaries follow the protocol but they use the information they have
access to in arbitrary ways. Our result implies a lower bound on sample complexity for more
general adversaries, because the adversary can still choose to follow protocol.

1.1.1 Techniques
To arrive at our lower bounds, we take two high-level steps. First, we transform a multi-server
protocol Π into an internally private online algorithm AΠ. Such an algorithm reads its input
in a single for-loop and ensures that its internal state at the end of any single iteration
respects differential privacy. This ensures that an adversary does not gain much advantage
by intruding into the algorithm’s memory. In our second step, we invoke lower bounds for
internally private algorithms. As noted in the thesis by Cheu [8], these lower bounds are
implied by the work of Cheu and Ullman [10] and Amin, Joseph, and Mao [1].

Section 3.2 describes the complete transformation for the two-server case; we briefly
sketch the main ideas here. AΠ processes its input stream x1, . . . , xm in two batches. The
first batch, labeled [n] = {1, . . . , n}, serves as the input to an execution of Π (on n samples):
AΠ simulates the construction of messages from every user i ∈ [n] to server 1. It is tempting
to also simulate the messages to server 2, but the pair of messages may be non-private.2
This motivates the second batch of samples, labeled {n + 1, . . . , m}.

2 Consider additive secret sharing amongst two servers: one share reveals nothing but the joint distribution
is wholly dependent on the data value.

ITCS 2023



36:4 Necessary Conditions in Multi-Server Differential Privacy

Table 1 A non-exhaustive sampling of work on multi-server differential privacy. Most existing
protocols are interactive and assume a bounded adversary. We are the first to give lower bounds.

No. No. Corrupt Bounded > 1 Notes
Servers Servers Adversary? round?

[2] 3 ≤ 2 A protocol for histograms.

Yes Users prove inputs are valid.

[5] 2 ≤ 1 A protocol for histograms
with optimal ℓ∞ error

[20]
≤ k − 1

Yes, Yes Protocols for counting, heavy-
for some hitters, feature selection

[21] Not if servers A protocol for vector sum.
k agree on coins Rejects a user’s vector if too big.

This
≤ ⌈k/2⌉ No No Lower bounds for feat. selection,

Work parity learning, and more

Naively, we could use the second batch to sample from the marginal distributions of the
messages to server 2. But the message a user sends to server 2 could depend on the one it
sent to server 1. So we instead rely on a technique by Joseph, Mao, Neel, and Roth [16]: for
each user i, AΠ obtains a fresh sample from D conditioned on having seen the message from
i to server 1. This proxy for i’s data is then used to produce the message from i to server 2.
A technical hurdle arises from the fact that the desired conditional distribution requires the
specification of D, which is unknown to the algorithm. But AΠ approximates a sample from
the conditional distribution by performing rejection sampling on the second batch of samples
from D.

Joseph et al. developed their technique in the context of local protocols, where the
adversary can see all of the messages that an honest user generates [16]. In our model, the
adversary can only see a subset of them. As a consequence, the simulator AΠ will purge old
messages from memory when they are no longer needed: once AΠ simulates the message
from i to server 2, it erases the message from i to server 1.

▶ Remark 1.2. It is conceivable that one could prove our transformations satisfy pan-privacy.
An online algorithm satisfying this notion ensures differential privacy for any pairing of
internal state and output. The lower bounds by Cheu & Ullman and Balcer et al. were
originally stated for pan-privacy [10, 3]. But proofs of pan-privacy require an extra layer of
case analysis, so we choose to prove only internal privacy to ease readability.

1.2 Related Work
The whitepaper by Apple & Google presents an interactive protocol for exposure notification
analytics [2]. It offers protection against bounded adversaries. Bell, Gascon, Ghazi, Ku-
mar, Manurangsi, Raykova, and Schoppmann also describe an interactive protocol offering
computational DP [5]. It provably achieves asymptotically optimal ℓ∞ error for histogram
estimation. Talwar [21] and Steinke [20] both describe information-theoretically secure pro-
tocols, though the vector summation protocol in [21] assumes shared coins. Computational
guarantees are offered by some protocols in [20]. See Table 1 for a summary of the above
works. To our knowledge, we are the first to prove lower bounds in the multi-server model.

Other works, while not in the same model that we study, are of sufficient similarity to
warrant mentioning below.
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McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [19] present lower bounds in
the two-party model, as do Haitner, Mazor, Silbak, and Tsfadia [14]. In that model, each of
two servers has direct access to half of all user data and an honest server interacts with its
peer in a way that ensures differential privacy for its half of the users. The model captures
the scenario where users are evenly divided on which server to trust. In contrast, users in the
two-server case of our model are all uncertain as to which server is honest. This distinction
has an important consequence: a server in the two-party model can simply run a centrally
private algorithm on their half of the samples, so the sample complexity in the central and
two-party models are asymptotically identical. This holds for parity learning but also for
any of the statistical estimation and testing problems we consider.

Beimel, Nissim, and Omri [4] study protocols that ensure privacy against an unbounded
adversary like we do, but they focus on a user-to-user setting without dedicated servers.
More significantly, the authors limit their constructions to secure function evaluation of
differentially private algorithms, while we do not impose that constraint.

Finally, we remark that our online algorithms differ from the type found in the continual
release literature (see Jain, Raskhodnikova, Sivakumar, and Smith [15] & citations within).
There, the online algorithm outputs a value after every read. The stream of outputs must
respect differential privacy and also serve as a good estimate of some function as applied to
each prefix (e.g. sum). In contrast, the online algorithms we construct only produce output
at the end of the stream. Moreover, we define privacy with respect to an arbitrary internal
state chosen by the adversary but a private continual release algorithm could conceivably
maintain a non-private internal state.

1.3 Open Questions
An intriguing open question is whether interactivity alone suffices to learn parity with low
sample complexity. We can also ask the more fine-grained question that motivated our work:
are there strong separations between r and r + 1 round protocols like in the local model?

Our work also leaves open the possibility of sample-efficient, non-interactive parity learning
with computational differential privacy. We do not know the minimal assumptions needed to
perform parity learning with polynomial sample complexity. For example, it is unknown if
one-way functions suffice.

2 Preliminaries

For any (possibly randomized) algorithm M and distribution D over inputs of M , M(D) is
shorthand for the distribution of M(x) when x ∼ D. For any pair of distributions P, Q, the
expression SD (P, Q) denotes the statistical (total variation) distance between the two.

We write P ≈ε,δ Q if, for all events Y , both of the following are true:

P [P ∈ Y ] ≤ eε · P [Q ∈ Y ] + δ

P [Q ∈ Y ] ≤ eε · P [P ∈ Y ] + δ

In the case where δ = 0, we simply write P ≈ε Q.

▶ Fact 2.1 (Post-Processing). If P ≈ε,δ Q, then for any algorithm M , M(P) ≈ε,δ M(Q)

Throughout this work, user refers to a party who holds a single input value and server
refers to a party who does not hold any input.

ITCS 2023
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2.1 Non-interactive Multi-Server Protocols
Here, we take the number of users to be n and the number of servers to be k > 1. A protocol
Π in the non-interactive multi-server model is specified by a tuple ({Ri}i∈[n], {Aj}j∈[k], G).
Each Ri is a local randomizer run by user i on their data; if all randomizers are identical,
we simply write R. Meanwhile, Aj is an algorithm run by server j ∈ [k]. Finally, G is a
k-node directed acyclic graph that determines the communication pattern between servers.
We assume nodes (servers) are named according to a topological ordering. For brevity, we
will drop the term “non-interactive” when discussing these protocols. Algorithm 1 describes
how Π is executed.

Algorithm 1 The execution of a multi-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) on
input x⃗.

For i ∈ [n]
User i samples (yi,1, . . . , yi,k) from Ri(xi)
User i sends yi,j to server j, for all j ∈ [k]

For j ∈ [k]
Server j receives y1,j , . . . , yn,j from users and zj′→j from servers j′ where
(j′, j) ∈ G

If j = k :
The protocol’s output is zout ← Aj({yi,j}i∈[n], {zj′→j}(j′,j)∈G)

Else
Server j samples {zj→j′′}(j,j′′)∈G from Aj({yi,j}i∈[n], {zj′→j}(j′,j)∈G)
Server j sends zj→j′′ to server j′′

An attack Φ is specified by a tuple (Cu, Cs). Cu ⊂ [n] is the set of corrupted users while
Cs ⊂ [k] is the set of corrupted servers. For any multi-server protocol Π, input x⃗, and attack
Φ, an adversary’s view in execution ΠΦ(x⃗) is the random variable

ViewΠ
Φ(x⃗) := (zout, {zj→j′}(j,j′)/∈Cs×Cs

, {yi,j}(i,j)/∈Cu×Cs
, {xi}i∈Cu

)

That is, an adversary attacking Π with Φ can observe the output of the protocol, all messages
except those between honest parties, and the data of corrupted users.

For differential privacy to be satisfied, the adversary’s view must be insensitive to any
one user.

▶ Definition 2.2 (Multi-Server Differential Privacy). Π is (ε, δ)-differentially private against c

corrupted servers if, for all Φ where |Cs| ≤ c and for every neighboring pair x⃗ ∼ x⃗ ′ differing
on i /∈ Cu,

ViewΠ
Φ(x⃗) ≈ε,δ ViewΠ

Φ(x⃗ ′)

Our work relies on a variety of constructions involving local randomizers, so we close
this subsection with some relevant notation. For any subset of servers S, let Ri,S be the
algorithm that, on input x, computes (yi,1, . . . , yi,k) ← Ri(x) and reports only {yi,j}j∈S .
For any event E and disjoint subsets of servers S, S′, let Ri,S(x) | Ri,S′(x) ∈ E denote the
distribution of {yi,j}j∈S conditioned on {yi,j}j∈S′ ∈ E, where {yi,j}j∈[k] are jointly drawn
from Ri(x). We use Ri,S(D) and Ri,S(D) | Ri,S′(D) ∈ E to denote the distributions when x

is first sampled from D.
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2.2 Online Algorithms
An online algorithm M is specified by three algorithms (Minit, Mupdate, Mout). Algorithm 2
depicts how M is executed on a stream x⃗ of length n: after initializing state, it repeatedly
updates the state based upon the input stream.

Algorithm 2 The execution of an online algorithm M = (Minit, Mupdate, Mout).

Initialize internal state S0 ←Minit(·)
For i ∈ [n]

Update internal state Si ←Mupdate(i, Si−1, xi)
Compute output zout ←Mout(Sn)
Return zout

To define privacy in this model, we mirror the previous section and define adversarial
views. We make two assumptions: Mupdate is atomic and the privacy adversary can only
view one internal state.

▶ Definition 2.3 (Internally Private Online Algorithms). For any online algorithm M , input x⃗,
and time of intrusion t, let ViewM

t (x⃗) := St where St is generated as in Algorithm 2. M is
(ε, δ)-internally private if and only if the following holds for every neighboring pair x⃗ ∼ x⃗ ′

and intrusion time t:

ViewM
t (x⃗) ≈ε,δ ViewM

t (x⃗ ′)

The above definition originates in the thesis by Cheu [8]. It is a relaxation of pan-privacy,
wherein the adversary’s view also includes the output zout [12, 1, 3, 10].

3 From Multi-Server Protocols to Online Algorithms

▶ Theorem 3.1. Suppose Π is a k-server protocol that takes n inputs and offers (ε, δ)-privacy
against ⌈k/2⌉ corrupt servers. There exists a (7ε, O(e5εδ))-pan-private algorithm AΠ that
takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for any distribution D
over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

We proceed in three stages. First, we prove some essential technical lemmas regarding
local randomizers. Next, we describe how to simulate Π with an online algorithm in the
case where k = 2. Finally, we argue that any protocol with larger k can be simulated by a
two-server protocol with the same privacy parameters.

3.1 Properties of Local Randomizers
Although Π’s privacy guarantee does not imply any Ri is differentially private, it is straight-
forward to show that any strict subset of the randomizer’s outputs is (ε, δ)-private.

▷ Claim 3.2. For any user i ∈ [n] and subset of servers S ⊂ [k] where |S| ≤ ⌈k/2⌉, Ri,S is
(ε, δ)-differentially private.

Proof. Consider any attack Φ where Cs = S and i /∈ Cu. Fix any x⃗ ∼ x⃗ ′ that differ on
i. Both ViewΠ

Φ(x⃗) and ViewΠ
Φ(x⃗ ′) contain messages from user i to servers in S in the same

positions; closure under post-processing (Fact 2.1) implies Ri,S(xi) ≈ε,δ Ri,S(x′
i). ◁

ITCS 2023



36:8 Necessary Conditions in Multi-Server Differential Privacy

It is easier to work with local randomizers that satisfy pure differential privacy than those
that only satisfy approximate differential privacy. For this reason, we present the following
technical lemma:

▶ Lemma 3.3. If RL : X → Y is (ε, δ)-differentially private, there exists an algorithm R̃L

that is 2ε-differentially private such that, for any x ∈ X , SD
(
RL(x), R̃L(x)

)
≤ δ.

Proofs of Lemma 3.3 can be found in prior work; see e.g. Lemma 3.7 in Cheu and Ullman
[10]. By combining this lemma with Claim 3.2, we obtain a very useful corollary:

▶ Lemma 3.4. For any user i ∈ [n] and subset of servers S ⊂ [k] where |S| ≤ ⌈k/2⌉, there ex-
ists a 2ε-differentially private algorithm R̃i,S such that for any x ∈ X , SD

(
Ri,S(x), R̃i,S(x)

)
≤

δ.

3.2 The Two-server Case
▶ Theorem 3.5. Suppose Π is a two-server protocol that takes n inputs and offers (ε, δ)-
privacy against one corrupt server. There exists a (7ε, O(e5εδ))-internally-private online
algorithm AΠ that takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for
any distribution D over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

We construct a sequence of algorithms M1, M2, M3. Each approximates its predecessor
and we show that M3, by erasing unnecessary random variables, is our desired internally
private algorithm AΠ.

▶ Remark 3.6. M1 and M3 are online algorithms but to enhance readability, we avoid
explicitly decomposing them into initialization, update, and output sub-routines as done in
Section 2.2.

3.2.1 Step One: Shifting to Pure Differential Privacy
The pseudocode of M1 is given in Algorithm 3. The sole difference between M1 and the
correct execution of Π (Algorithm 1) is swapping Ri,1 with R̃i,1, the (2ε, 0)-d.p. version
of Ri,1. We do this to ease downstream analysis. Note that this step can be skipped if Π
already guarantees δ = 0.

Algorithm 3 M1(x⃗), an online algorithm that approximates Π(x⃗).

For i ∈ [n]
yi,1 ∼ R̃i,1(xi) /* Refer to Lemma 3.4 */
yi,2 ∼ Ri,2(xi) | Ri,1(xi) = yi,1

z1→2 ∼ A1(y1,1, . . . , yn,1)
zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

▷ Claim 3.7. For any protocol inputs x⃗, SD (M1(x⃗), Π(x⃗)) ≤ nδ

Proof. Lemma 3.4 implies that swapping out Ri,1 for R̃i,1 changes the distribution only by δ

at each of the n sample points. A union bound completes the proof. ◁
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3.2.2 Step Two: Generating Messages to Server 2 via Bayesian
Re-Sampling

The pseudocode of M2 is given in Algorithm 4. It proceeds in two phases, each dedicated
to simulating a server’s inputs. Like M1, it creates the messages to server 1 by running
R̃1,1, . . . , R̃n,1 on the input. Unlike M1, M2 does not generate the messages to server 2
{yi,2}i∈[n] directly from the input. Instead, it performs Bayesian re-sampling as done by
Joseph, Mao, Neel, and Roth [16]: to produce yi,2, it runs the local randomizer on a fresh
sample from D conditioned on having seen yi,1.

Algorithm 4 M2(x⃗), an algorithm that uses Bayesian re-sampling to simulate M1(x⃗)
when x⃗ ∼ Dn.

/* First Phase: Create messages to server 1 */
For i ∈ [n]

yi,1 ∼ R̃i,1(xi)
z1→2 ∼ A1(y1,1, . . . , yn,1)
/* Second Phase: Create messages to server 2 by re-sampling data */
For i ∈ [n]

x̂i ∼ D | R̃i,1(D) = yi,1
yi,2 ∼ Ri,2(x̂i) | Ri,1(x̂i) = yi,1

zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

We visualize the second phase of M2 in Figure 2.

Figure 2 Visualization of how M2 simulates the messages to server 2.

▷ Claim 3.8. The distribution M2(Dn) is identical to M1(Dn)

For brevity, we defer the proof to Appendix A.

3.2.3 Step Three: Implementing Bayesian Re-Sampling via Rejection
Sampling

M2 requires us to sample from D conditioned on R̃i,1(D) = yi,1, for every i. Since D is the
unknown distribution that is the subject of study, M2 can only be a thought experiment.
But we approximate the desired conditional distribution by performing private rejection

ITCS 2023



36:10 Necessary Conditions in Multi-Server Differential Privacy

sampling on independent samples from D, as done by Joseph et al. [16]. This modification is
presented in M3 (Algorithm 5). It takes in m > n samples, the excess being used for the
rejection sampling. The updated second phase is visualized in Figure 3.

Algorithm 5 M3(Dm), an online algorithm that approximates M2(Dn).

/* First Phase: Create messages to server 1 */
For i ∈ [n]

yi,1 ∼ R̃i,1(xi)
z1→2 ∼ A1(y1,1, . . . , yn,1)
/* Second Phase: Create messages to server 2 by re-sampling data */
/* Re-sampling approximated by rejection sampling */
i← 1
For h ∈ {n + 1, . . . , m}

Compute acceptance rate rateh ←
P[R̃i,1(xh)=yi,1]

2·maxu P[R̃i,1(u)=yi,1]
ah ∼ Ber(rateh)
Erase rateh from internal state
If ah = 1 :

yi,2 ∼ Ri,2(xh) | Ri,1(xh) = yi,1
Erase yi,1 from internal state
i← i + 1
If i = n + 1 :

Break loop

zout ← A2(z1→2, y1,2, . . . , yn,2)
Return zout

For brevity, Appendix A contains the proofs of the statements in this subsection.

▷ Claim 3.9. For any β ∈ (0, 1), there is some m = O(e4εn + e2ε log(1/β)) where
SD (M3(Dm), M2(Dn)) ≤ β

We briefly sketch where this claim comes from. Because each R̃i,1 is 2ε private (Lemma
3.4), we can see that rateh – the rate at which we accept a sample in the second batch as
a proxy for a sample in the first batch – is at least exp(−2ε)/2. The expected number of
consumed samples is therefore O(e2εn). We note that number of consumed samples is a sum
of geometrically distributed random variables; a tail bound accounts for the extra e2ε factor
and the e2ε ln(1/β) term.

Our last step is to prove M3 ensures internal differential privacy.

▷ Claim 3.10. If Π is (ε, δ)-private against 1 corrupt server, then M3 is (7ε, O(e5εδ))-internally
private.

It is conceivable that our transformation is pan-private, meaning that the pairing of
internal state and output is differentially private, but proving so would double the number of
cases in our analysis. We state our cases as separate sub-claims.

▷ Claim 3.11. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ differ only on i∗ ∈ [n],
then for any intrusion time t > i∗

ViewM3
t (x⃗) ≈2ε ViewM3

t (x⃗ ′)
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Figure 3 Visualization of how M3 simulates the messages to server 2, assuming it has sample
access to D.

At a high level, the above comes from the fact that intrusions will either yield only
information accessible to server 1 (which is 2ε-private), or yield only a post-processing of
z1→2 (which comes from server 1’s view).

▷ Claim 3.12. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ that differ only on
i∗ ∈ [n + 1, m], then for any intrusion time t > i∗,

ViewM3
t (x⃗) ≈7ε,3e5εδ ViewM3

t (x⃗ ′)

To see where the above comes from, note that an adversary intruding at time t can only
obtain at and precisely one of yi,1 and yi,2 (determined by at). Privacy of at follows from
privacy of each R̃i,1. If the adversary views yi,1, we again have privacy via R̃i,1. Otherwise,
we argue that the marginal distribution of yi,2 is close to that of R̃i,2(xt) which is private.

Why are Interactive Protocols Difficult to Transform?

One can imagine a two-server protocol where server 2 sends some z2→1 to server 1, who then
produces the output zout. This is challenging to transform into a private online algorithm.
To see why, recall that we need to simulate the view of the server who produces output,
which is here the joint random variable (y1,1, . . . , yn,1, z1→2, z2→1). Our method allows
us to privately simulate a different random variable (y1,2, . . . , yn,2, z1→2, z2→1). We could
attempt to iteratively replace each yi,2 with yi,1 by again using Bayesian re-sampling, but the
construction must now involve z1→2. This random variable is obtained from n independent
samples from D, unlike one in Algorithm 4. Rejection sampling is now quite difficult: we
would need a way to compute an acceptance rate for a batch of n users, all while trying to
maintain privacy of the internal state after reading each user’s data.

3.3 The Multi-server Case
Here, we construct a reduction from the k-server case to the two-server case.

▷ Claim 3.13. If the k-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) is (ε, δ)-differentially
private against ⌈k/2⌉ corrupted servers, then there exists a two-server protocol Π′ =
({R′

i}i∈[n], {A′
j}j∈[2], G′) which is (ε, δ)-differentially private against 1 corrupted server and

Π(x⃗) = Π′(x⃗) for any input x⃗ = (x1, . . . , xn).
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We provide the proof sketch here. The formal proof is deferred to Appendix A

Proof Sketch. In the two-server protocol Π′, the first server A′
1 plays the role of servers

A1, . . . , A⌈k/2⌉ – meaning it simulates all their code and interactions – while the second server
A′

2 plays the role of A⌈k/2⌉+1, . . . , Ak. The message from each user to A′
1 (resp. A′

2) is a
tuple consisting of messages from that user to A1, . . . , A⌈k/2⌉ (resp. A⌈k/2⌉+1, . . . , Ak). Next,
the message from A′

1 to A′
2 is a tuple consisting of messages from the first half of servers in

Π to the second half. Finally, the output of A′
2 is the output of Ak.

For the accuracy, every computation in the servers of Π is done in A′
1 and A′

2, so the
output of A′

2 is the same with the output of Ak. For the privacy, since the protocol Π can
defend the corruption of ⌈k/2⌉ servers, it can keep private when the first half of servers are
corrupted or when the second half of servers are corrupted. Thus the protocol Π′ can keep
private when A′

1 or A′
2 is corrupted. ◁

Combining Theorem 3.5 and Claim 3.13, we finally arrive at Theorem 3.1. We restate it
below for convenience:

▶ Theorem 3.1. Suppose Π is a k-server protocol that takes n inputs and offers (ε, δ)-privacy
against ⌈k/2⌉ corrupt servers. There exists a (7ε, O(e5εδ))-pan-private algorithm AΠ that
takes m = O(e4εn + e2ε log(1/β)) inputs with the following property: for any distribution D
over inputs,

SD (Π(Dn), AΠ(Dm)) ≤ nδ + β

4 Application: A Lower Bound for Parity Learning

Given Theorem 3.1, we can invoke any one of the lower bounds for pan-privacy. For brevity,
we only present a parity learning lower bound (and accompanying definitions). Other lower
bounds can be found in the full version of our work.

To streamline the presentation, we assume ε = O(1) and δ ≪ 1/n.
Let X = {±1}d+1 be the domain; we will treat the last bit of every member string as

the label of the string. The error of a parity function (ℓ, b) ∈ 2[d] × {±1} with respect to a
distribution D over X is

errD(ℓ, b) := P
x∼D

b ·
∏
j∈ℓ

xj ̸= xd+1



Figure 4 Visualization of how to use two servers to simulate the execution of k servers.
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▶ Definition 4.1 (Parity Learning). An algorithm M performs (d, t, α)-parity learning with
sample complexity n if it takes n independent samples from a distribution D over X and
reports a tuple (L, B) ∈ 2[d] × {±1} such that, with probability 99/100, |L| ≤ t and

errD(L, B) ≤ min
|ℓ|≤t,b

errD(ℓ, b) + α

The following lower bound can be found in the thesis by Cheu [8].
(

d
≤t

)
is shorthand for∑t

j=0
(

d
j

)
.

▶ Theorem 4.2. If online algorithm M performs (d, t, α)-parity learning with sample
complexity n and is (ε, δ)-pan-private for δ = 0 or δ log

((
d

≤t

)
/δ

)
≪ α2ε2/

(
d

≤t

)
, then

n = Ω
(√(

d
≤t

)
/αε

)
.

We remark that the above still holds if we had set a smaller success probability in the
problem definition (e.g. 9/10 instead of 99/100). Such flexibility allows us to combine the
above theorem with Theorem 3.1 and obtain the following bound on the sample complexity
of any parity learner in the (non-interactive) multi-server model.

▶ Theorem 4.3. If Π is a k-server protocol that solves (d, t, α)-parity learning with sample
complexity n and offers (ε, δ)-differential privacy against ⌈k/2⌉ corrupt servers for δ = 0 or
δ log

((
d

≤t

)
/δ

)
≪ α2ε2/

(
d

≤t

)
, then n = Ω

(√(
d

≤t

)
/αε

)
In contrast, Kasiviswanathan et al. show that O(d/αε) samples suffice under ε-central

privacy [18].

Proof of Theorem 4.3. Fix β to be a small constant. From Theorem 3.1 and our bound on
ε, we can create an (O(ε), O(δ))-pan-private algorithm that takes O(n) inputs and produces
output that is within nδ + β of the parity learner in statistical distance. Note that this gap
is bounded by a small constant (e.g. 9/100) due to the magnitude of δ and our choice of β.
So the pan-private algorithm learns parity with only a slightly smaller success probability
and O(n) samples. Theorem 4.2 will still apply. ◀
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A Deferred Proofs

▷ Claim 3.8. The distribution M2(Dn) is identical to M1(Dn)

Proof. Because the outputs of M1, M2 are determined by running A2 on (z1→2, {yi,2})i∈[n]),
it will suffice to show that (z1→2, {yi,2})i∈[n]) has the same distribution in both M2(Dn) and
M1(Dn).

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗)

]
=

∑
v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗), ∀i yi,1 = vi

]
=

∑
v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

M2(Dn)
[∀i yi,1 = vi]

=
∑

v⃗

P
M2(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

yi,1∼R̃i,1(D)
[∀i yi,1 = vi]

(By construction)

=
∑

v⃗

P [A1(v⃗) = z] ·
n∏

i=1
P

M2(Dn)
[yi,2 = ui | yi,1 = vi]︸ ︷︷ ︸

T

· P
yi,1∼R̃i,1(D)

[∀i yi,1 = vi] (1)

(1) follows from the fact that y1,2, . . . , yn,2 are mutually independent and also independent
of z1→2.

We know that the term T is equal to P
M1(Dn)

[yi,2 = ui | yi,1 = vi] because M2 merely

changes the sampling order from “data, message 1, message 2” to “message 1, data, message
2.” Thus,

(1) =
∑

v⃗

P [A1(v⃗) = z] · P
M2(Dn)

[∀i yi,2 = ui | ∀i yi,1 = vi] · P
yi,1∼R̃i,1(D)

[∀i yi,1 = vi]

=
∑

v⃗

P
M1(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗) | ∀i yi,1 = vi

]
· P

M1(Dn)
[∀i yi,1 = vi]

= P
M1(Dn)

[
(z1→2, {yi,2}i∈[n]) = (z, u⃗)

]
◀

▷ Claim 3.9. For any β ∈ (0, 1), there is some m = O(e4εn + e2ε log(1/β)) where
SD (M3(Dm), M2(Dn)) ≤ β

Proof. As before, our analysis will condition on an arbitrary realization of (z1→2, {yi,1})i∈[n]).
We will in fact spend much of the proof studying M∞

3 (D∞), a version of M3 which
takes in an unbounded stream of samples (replace the second for-loop with a while-loop).
After establishing basic facts, we show that this alternate algorithm correctly simulates
M2(Dn). Then we show that this alternate algorithm consumes only m samples with ≥ 1−β

probability. Therefore, stopping at the m-th sample changes the overall distribution by at
most β.

Facts about M∞
3 (D∞): Let η1 be the number of iterations of the while-loop until we

obtain y1,2 and move pointer i to 2. For i > 1, let ηi be number of iterations between
sampling yi−1,2 and sampling yi,2.
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We now characterize the distribution of every ηi. To do so, note that, for any step h in
the while-loop before yi,2 is sampled,

P
xh∼D

[ah = 1] =
∫ 1

v=0
v · P

xh∼D
[rateh = v] dv

=
∫ 1

v=0
v · P

xh∼D

[
P

[
R̃i,1(x) = yi,1

]
2 ·maxu P

[
R̃i,1(u) = yi,1

] = v

]
dv

=: pi ∈
[

1
2e2ε

,
1
2

]
(2)

The last step comes from Lemma 3.4. The immediate corollary is that ηi is drawn from
Geo(pi), the geometric distribution characterizing the number of Ber(pi) trials until success.

Correctness of M∞
3 (D∞): Because we have shown that the acceptance rate of a sample

is nonzero (pi > 0), the algorithm eventually samples yi,2 for every i. We claim this implies
correct simulation. Specifically, conditioned on ah = 1, we claim that xh is drawn from the
correct posterior D | R̃i,1(D)yi,1. The calculation below is adapted from an equivalent step
in Joseph et al. [16]:

P [xh = x | ah = 1] = P [ah = 1 | xh = x] · P [xh = x]
P [ah = 1]

=
P

[
R̃i,1(x) = yi,1

]
2 ·maxu P

[
R̃i,1(u) = yi,1

] · P [xh = x]∑
x̂ P [xh = x̂] · P[R̃i,1(x̂)=yi,1]

2·maxu P[R̃i,1(u)=yi,1]

=
P

[
R̃i,1(x) = yi,1

]
· P [xh = x]∑

x̂ P [xh = x̂] · P
[
R̃i,1(x̂) = yi,1

]
= P

v∼D

[
v = x | R̃i,1(v) = yi,1

]
Distance between M∞

3 (D∞) and M3(Dm): The total number of samples consumed by
M∞

3 (D∞) is n+
∑n

i=1 ηi. Since we know each ηi is a geometric random variable, the following
lemma is useful:

▶ Lemma A.1 (Tail Bound for Geometric Convolutions). Fix any p1, . . . , pn, ℓ ∈ (0, 1/2] such
that ℓ ≤ pi for every i ∈ [n]. If we sample ηi from Geo(pi) for every i ∈ [n], then

n∑
i=1

ηi = O

(
n

ℓ
ln 1

ℓ
+ 1

ℓ
ln 1

β

)
with probability at least 1− β, for any β ∈ (0, 1).

Refer to the full version of our paper for a proof. From (2), we have that ℓ = 1/2e2ε so
that substitution implies

n∑
i=1

ηi = O

(
e2εn ln(2e2ε) + e2ε ln 1

β

)
= O

(
e4εn + e2ε ln 1

β

)
(ln(2e2ε) < 1 + 2ε)

So setting m to the above (plus n) ensures M3(Dm) is within β of M∞
3 (D∞) in statistical

distance. Because we know M∞
3 (D∞) matches M2(Dn), the proof is complete. ◁
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▷ Claim 3.10. If Π is (ε, δ)-private against 1 corrupt server, then M3 is (7ε, O(e5εδ))-internally
private.

▷ Claim 3.11. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ differ only on i∗ ∈ [n],
then for any intrusion time t > i∗

ViewM3
t (x⃗) ≈2ε ViewM3

t (x⃗ ′)

Proof. We proceed with case analysis, first with t ∈ [n]. The state St (resp. S′
t) consists of all

random variables created by M3(x⃗) (resp. M3(x⃗ ′)) up to time t, which includes the messages
{yi,1} (resp. {y′

i,1}) for i ∈ [t]. When t = n, the state also includes z1→2 (resp. z′
1→2), the

message between the servers. But these random variables are obtained from post-processing
the messages. Thus, it will suffice to show

{yi,1}i∈[n] ≈2ε {y′
i,1}i∈[n]

Because R̃i∗,1 is (2ε, 0)-private, we have that yi∗,1 ≈2ε y′
i∗,1. And by construction, every

other yi,1 is identically distributed with y′
i,1. The claim follows by the mutual independence

of the messages.
For other intrusion times t ∈ [n + 1, m], observe that xi∗ (resp. x′

i∗) is never read again
so that the claim again holds by post-processing. ◁

▷ Claim 3.12. If Π is (ε, δ)-private against 1 corrupt server and x⃗, x⃗ ′ that differ only on
i∗ ∈ [n + 1, m], then for any intrusion time t > i∗,

ViewM3
t (x⃗) ≈7ε,3e5εδ ViewM3

t (x⃗ ′)

Proof. In this case, notice that the view on input x⃗ is3

ViewM3
t (x⃗) = (z1→2, y1,2, . . . , yı̂−1,2, yı̂,1, . . . , yn,1, an+1, . . . , at)

where each ah is a bit sampled from Ber(rateh) and ı̂ = 1 +
∑t

h=n+1 ah is the index of the
user in the first batch whose data we are re-sampling. Likewise,

ViewM3
t (x⃗ ′) = (z′

1→2, y′
1,2, . . . , y′

ı̂′−1,2, y′
ı̂′,1, . . . , y′

n,1, a′
n+1, . . . , a′

t)

where each a′
h is sampled from Ber(rate′

h) and ı̂′ = 1 +
∑t

h=n+1 a′
h.

Let v(i∗) ∈ [n] (resp. v′(i∗)) be the value of the pointer i at the beginning of iteration i∗

in M3(x⃗) (resp. M3(x⃗) ′).
We will argue that (ai∗ , yv(i∗),2) ≈7ε,3e5εδ (a′

i∗ , yv′(i∗),2). This suffices because the other
pairs of variables in ViewM3

t (x⃗) are either (a) identically distributed with counterparts in
ViewM3

t (x⃗ ′) or (b) obtained by post-processing (ai∗ , yv(i∗),2).
By the privacy of every R̃i,1, we have that P [ah = 1],P [a′

h = 1] ∈ [1/2e2ε, 1/2] for any
h ∈ [n + 1, m]. Then,

P [ah = 1]
P [a′

h = 1] ≤
1/2

1/2e2ε
= e2ε

P [ah = 0]
P [a′

h = 0] ≤
1− 1/2e2ε

1/2 = 2− e−2ε < e2ε (Taylor series)

3 Similar to before, the views include zout and z′
out when t = m but closure under post-processing will

again ensure that this does not affect the proof.
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Consequently,

P
[
(ai∗ , yv(i∗),2) ∈ E

]
= P

[
(ai∗ , yv(i∗),2) ∈ E, ai∗ = 0

]
+ P

[
(ai∗ , yv(i∗),2) ∈ E, ai∗ = 1

]
≤ e2ε · P

[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 0

]
· P [a′

i∗ = 0]
+ e2ε · P

[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
· P [a′

i∗ = 1]

= e2ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 0
]
· P [a′

i∗ = 0]

+ e2ε · P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
· P [a′

i∗ = 1] (3)

The last step comes from two facts. First, xi∗ (resp. x′
i∗) will not be used in the creation

of yv(i∗),2 (resp. y′
v(i∗),2) when ai∗ = 0 (resp. a′

i∗ = 0) because the bit indicates rejection.
Second, v(i∗) is identically distributed with v′(i∗) because the inputs x⃗, x⃗ ′ are by definition
identical prior to i∗.

If ai∗ = 1, xi∗ will be used to generate yv(i∗),2. Let Yj be the range of Rv(i∗),j and we
assume without loss of generality it is discrete.

P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
=

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
yv(i∗),1 = y | ai∗ = 1

]
=

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
R̃v(i∗),1(xv(i∗)) = y

]
≤ e2ε ·

∑
y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
R̃v(i∗),1(xi∗) = y

]
(Lemma 3.4)

≤ e2ε ·

δ +
∑

y∈Y1

P
[
(ai∗ , yv(i∗),2) ∈ E | yv(i∗),1 = y, ai∗ = 1

]
· P

[
Rv(i∗),1(xi∗) = y

]
(Lemma 3.4)

= e2ε · P
[
Rv(i∗),2(xi∗) ∈ F

]
+ e2εδ (4)

where F be the subset of Y2 such that y ∈ F if and only if (1, y) ∈ E.
Symmetric reasoning yields

P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]
≥ e−2ε · P

[
Rv′(i∗),2(x′

i∗) ∈ F
]
− e−2εδ (5)

We also know that v(i∗) is identically distributed with v′(i∗) and, for any i,

P [Ri,2(xi∗) ∈ F ] ≤ eεP [Ri,2(x′
i∗) ∈ F ] + δ, (6)

Combining (4), (5), and (6), we obtain

P
[
(ai∗ , yv(i∗),2) ∈ E | ai∗ = 1

]
< e5ε · P

[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]

+ 3e3εδ

When we substitute the above into (3), we have

P
[
(ai∗ , yv(i∗),2) ∈ E

]
< e2ε · P

[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 0
]
· P [a′

i∗ = 0]

+ e2ε ·
(

e5ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E | a′

i∗ = 1
]

+ 3e3εδ
)
· P [a′

i∗ = 1]

< e7ε · P
[
(a′

i∗ , y′
v′(i∗),2) ∈ E

]
+ 3e5εδ

which is what we wanted to prove. ◁
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▷ Claim 3.13. If the k-server protocol Π = ({Ri}i∈[n], {Aj}j∈[k], G) is (ε, δ)-differentially
private against ⌈k/2⌉ corrupted servers, then there exists a two-server protocol Π′ =
({R′

i}i∈[n], {A′
j}j∈[2], G′) which is (ε, δ)-differentially private against 1 corrupted server and

Π(x⃗) = Π′(x⃗) for any input x⃗ = (x1, . . . , xn).

Proof. Recall that the i-th local randomizer in Π has the form Ri(xi) = (yi,1, . . . , yi,k).
R′

i(xi) (Algorithm 6) constructs (y′
i,1, y′

i,2), where the first element is (yi,1, . . . , yi,⌈k/2⌉) and
the second is (yi,⌈k/2⌉+1, . . . , yi,k).

Algorithm 6 R′
i, the i-th local randomizer in the two-servers protocol.

Let Ri be the i-th local randomizer in the k-server protocol.
Input: xi

1 Sample (yi,1, . . . , yi,k) ∼ Ri(xi).
2 Let y′

i,1 = (yi,1, . . . , yi,⌈k/2⌉) and y′
i,2 = (yi,⌈k/2⌉+1, . . . , yi,k).

3 Return (y′
i,1, y′

i,2)

A′
1 (Algorithm 7) simulates the execution of A1 . . . A⌈k/2⌉ and A′

2 (Algorithm 8) simulates
A⌈k/2⌉+1 . . . Ak. Since we assume that all servers in Π are named according to a topological
ordering, A′

2 will not produce a message destined for a server simulated by A′
1: there is no

interaction between the two servers. Let z′
1→2 be the collection of messages from the first

half of the k servers to the second half.

Algorithm 7 A′
1, the first server in the two-server protocol.

Let A1, . . . , A⌈k/2⌉ be the 1-st to ⌈k/2⌉-th servers in the k-server protocol.
Input: y′

1,1, . . . , y′
n,1, where y′

i,1 = (yi,1, . . . , yi,⌈k/2⌉+1) for i ∈ [n]
1 Sample (z1→2, . . . , z1→k) ∼ A1(y1,1, . . . , yn,1).
2 For j ∈ {2, . . . , ⌈k/2⌉}
3 Sample (zj→j+1, . . . , zj→k) ∼ Aj(y1,j , . . . , yn,j , z1→j , . . . , zj−1→j).
4 Let z′

1→2 = (z1→⌈k/2⌉+1, . . . , z1→k, . . . , z⌈k/2⌉→⌈k/2⌉+1, . . . , z⌈k/2⌉→k).
5 Return z′

1→2

Algorithm 8 A′
2, the second server in the two-server protocol.

Let A⌈k/2⌉+1, . . . , Ak be the ⌈k/2⌉+ 1-th to k-th servers in the k-server protocol.
Input: y′

1,2, . . . , y′
n,2, z′

1→2, where y′
i,2 = (yi,⌈k/2⌉+1, . . . , yi,k) for i ∈ [n] and

z′
1→2 = (z1→⌈k/2⌉+1, . . . , z1→k, . . . , z⌈k/2⌉→⌈k/2⌉+1, . . . , z⌈k/2⌉→k)

1 For j ∈ {⌈k/2⌉+ 1, . . . , k − 1}
2 Sample (zj→j+1, . . . , zj→k) ∼ Aj(y1,j , . . . , yn,j , z1→j , . . . , zj−1→j).
3 Sample zout ∼ Ak(y′

1→k, . . . , y′
n→k, z1→k, . . . , zk−1→k

4 Return zout

The new protocol preserves accuracy because the output of A′
2 is identical to the output

of Ak.
We now argue that Π′ is (ε, δ)-differentially private against 1 corrupted server if Π is

(ε, δ)-differentially private against ⌈k/2⌉ corrupted servers. This is done by arguing any
attack Φ′ = (C ′

u, C ′
s) against Π′ corresponds to an attack Φ against Π. Specifically, let the

set of corrupted users in Φ to be Cu = C ′
u. If the set of corrupted servers in Φ′ is C ′

s = {1},
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let Cs = {1, . . . , ⌈k/2⌉}. If C ′
u = {2}, let Cs = {⌈k/2⌉+ 1, . . . , k}. Note that |Cs| ≤ ⌈k/2⌉

and the view of the adversary in both attacks are identical. Since Π is (ε, δ)-differentially
private against Φ, Π′ must be (ε, δ)-differentially private against Φ′. ◁

B A Two-Server Protocol for Robust Count Estimates

Here, we sketch an example of a protocol in our model. It performs differentially private
counting (summation of {0, 1} values). Steinke [20] gave a simple protocol for this problem
but a malicious user can greatly skew the count estimate.4 The protocol by Talwar [21] is
designed with such attacks in mind. It performs high-dimensional addition (summation of
values in the unit ℓ2 ball). The one-dimensional nature of counting admits a greatly simpler
construction.

Before we define the algorithms that make up the protocol, we give some preliminary
notation. For predicate p, I{p} is 1 if p is true and 0 if it is false. For natural number t, let
Dt be the distribution over [t] such that P

η∼Dt

[η = v] ∝ exp(−ε · |t/2− v|).
On input xi, the local randomizer R samples ηi from Dt and reports

(yi,1 ← xi + ηi, yi,2 ← ηi)

The first server samples α1 from Dt and reports

z1→2 := α1 +
∑
i∈[n]

yi,1 · I{yi,1 ∈ [0, t + 1]}

to the second server, who then reports

zout := z1→2 + α2 − t−
∑
i∈[n]

yi,2 · I{yi,2 ∈ [0, t + 1]}

where α2 is yet another sample from Dt.

In our analysis, we make the simplifying assumption that δ ≪ ε < 1.

▷ Claim B.1. For t = Θ( 1
ε log 1

δ ), the protocol is (ε, δ)-differentially private against 1
(semi-honest) corrupted server.

Proof Sketch. Without loss of generality, we will ensure privacy for user 1 and assume the
adversary corrupts all other users.

If server 1 is corrupted but server 2 is honest, the only variables pertaining to user 1 the
adversary can obtain are y1,1 and α2 + y1,1 − y1,2 = α2 + x1. The former is received directly
from user 1. The latter is obtainable by subtracting the other user’s messages from zout. y1,1
is the result of adding noise from a truncated discrete Laplace distribution to x1, a value
with sensitivity 1. The same is true for α2 + x1. Hence we have (ε, δ)-differential privacy
from composition (and the right choice of parameters).

If server 2 is corrupted (but server 1 is honest), the adversary can observe y1,2 and the
value α1 + y1,1. The former is direct from user 1 while the latter is obtained by subtracting
the other user’s messages from z1→2. The adversary can compute α1 + y1,1 − y1,2 = α1 + x1
which is (ε, δ)-differentially private for the same reason that α2 + x1 is private. ◁

4 Each honest user secret-shares their value across servers, so the modulus must be at least n. But a
single malicious user can send shares that encode a Ω(n) value instead of a {0, 1} value and honest
servers cannot detect this.
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▷ Claim B.2. If all parties are honest and t is set as above, then the protocol produces an
unbiased estimate of the count such that, with 90% probability, the error is O

( 1
ε

)
. If there

are m malicious users and no malicious servers, the error is O
(

m
ε log 1

δ

)
.

Proof Sketch. We first argue that there is no bias in the honest execution. In this case, we
equate zout with the sum of h1 = α1 + α2 − t and h2 =

∑
i∈[n] yi,1 · I{yi,1 ∈ [0, t + 1]} − yi,2 ·

I{yi,2 ∈ [0, t + 1]}. The random variable h1 has mean 0 because t = E [α1 + α2]. And observe
that the construction of yi,1, yi,2 implies h2 =

∑
xi.

Now we argue the error is likely low. By manipulating geometric series, it can be shown
that |α1 − t/2| is at most k with probability (eε + 1− e−εk)/(eε + 1−Θ(δ)). Invoking our
bounds on δ and ε, this probability is at least 0.95 when k = Θ(1/ε). The same goes for α2.
A union bound completes the proof.

We conclude with the analysis of the manipulation case. The honest servers limit the
influence of any user on the output to be O(t) because they only add messages that belong
in the range [0, t + 1]. Hence, no coalition of m users can introduce more than O

(
m
ε log 1

δ

)
bias. ◁
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