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Abstract
Data dissemination is a fundamental task in distributed computing. This paper studies broadcast
problems in various innovative models where the communication network connecting n processes is
dynamic (e.g., due to mobility or failures) and controlled by an adversary.

In the first model, the processes transitively communicate their ids in synchronous rounds along
a rooted tree given in each round by the adversary whose goal is to maximize the number of rounds
until at least one id is known by all processes. Previous research has shown a ⌈ 3n−1

2 ⌉ − 2 lower
bound and an O(n log log n) upper bound. We show the first linear upper bound for this problem,
namely ⌈(1 +

√
2)n − 1⌉ ≈ 2.4n.

We extend these results to the setting where the adversary gives in each round k-disjoint forests
and their goal is to maximize the number of rounds until there is a set of k ids such that each process
knows of at least one of them. We give a

⌈ 3(n−k)
2

⌉
− 1 lower bound and a π2+6

6 n + 1 ≈ 2.6n upper
bound for this problem.

Finally, we study the setting where the adversary gives in each round a directed graph with k

roots and their goal is to maximize the number of rounds until there exist k ids that are known by
all processes. We give a

⌈ 3(n−3k)
2

⌉
+ 2 lower bound and a ⌈(1 +

√
2)n⌉ + k − 1 ≈ 2.4n + k upper

bound for this problem.
For the two latter problems no upper or lower bounds were previously known.
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1 Introduction

Data dissemination is one of the most fundamental tasks in distributed systems. This
paper studies data dissemination in an innovative model where the communication network
connecting n processes is dynamic. In particular, we consider a worst-case perspective and
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47:2 Time Complexity of Broadcast and Its Variants in Dynamic Networks

assume that the information flow between the processes is controlled by an oblivious message
adversary which may drop an arbitrary set of messages sent by some processes in each round.
This results in a sequence of directed communication graphs, whose edges tell which process
can successfully send a message to which other process in a given round. The oblivious
message adversary model is appealing because it is conceptually simple and still provides a
highly dynamic network model: The set of allowed graphs can be arbitrary, and the nodes
that can communicate with one another can vary greatly from one round to the next. It
is, thus, well-suited for settings where significant transient message loss occurs, such as in
wireless networks subject to interference, jamming, or mobility.

We look into three data dissemination problems in dynamic networks: broadcast, cover
and k-broadcast. These problems come in many flavors and feature intriguing connections to
other classic problems such as leader(s) election, regular and k-set consensus (also known as
k-set agreement), for which our problems’ time complexity is typically a lower bound.

In particular, we assume that each process has a unique id and in every message each
process communicates all the ids it knows of so far. We first study a fundamental model
where communication happens along arbitrary rooted trees, chosen by an adversary who
aims to maximize the broadcast time, which is the number of rounds it takes until there exists
a process that everyone knows of. We then extend our investigations to sparser networks,
considering k-forests (a union of k rooted trees). Here the adversary will maximize the cover
time, which is the number of rounds it takes until there exists k process such that everyone
knows of at least one of them. Moreover, in more highly connected networks, we study
k-rooted dynamic networks (directed graphs with k roots), where the adversary aims at
maximizing the k-broadcast time, which is the number of rounds it takes until there exist
k processes that everyone knows of. Before presenting our results, we introduce our model
more formally.

Model

Let n be the number of processes and let each process have a unique identifier from [n].
Let G be a fixed set of directed networks with n nodes such that each node has a unique
identifier from [n]. There will be a sequence of rounds t = 1, 2, . . . , such that, in each round
t, an adversary chooses a network G̃t from G, which determines the communication links in
round t as follows: Initially every process knows (or has heard) of its own identifier. During
round t process i sends all identifiers it knows of to its out-neighbors in G̃t. The rounds stop
whenever the objective – broadcast, k-broadcast or cover of size k – is attained. The goal of
the adversary is to maximize the number of rounds.

To model the information propagation we use graph products:

▶ Definition 1. If A = ([n], E1) and B = ([n], E2) are two directed networks on n nodes,
then the product graph A ◦ B is the network on n nodes, with edge set E, where (x, y) ∈ E

if and only if there exist a node z such that (x, z) ∈ E1 and (z, y) ∈ E2.

Consider round t and let G(t) be the product graph G(t) = G1 ◦ . . . ◦ Gt, where Gi is
created from G̃i by adding a self-loop to every node. Note that in G(t) the in-neighbors of a
process x are exactly the processes that x knows of after t rounds, and its out-neighbors are
the processes it has sent information to. We added a self-loop to every node in Gi to capture
the fact that no process “forgets” any piece of information in any round. An example is
given in Figure 1.

We will consider three different models, each of which has a different objective, detailed
below. Figure 2 summarizes the 3 models, gives examples and states the results.



A. El-Hayek, M. Henzinger, and S. Schmid 47:3

1

2:1

3:2 4:2

5:4

1

2:1

3:21

4:2

5:42

5:42

2:154

3:21

4:2

1:42

Figure 1 Example of information propagation. Self-loops are omitted, but are present on every
node in every round. x : yz means that y was an in-neighbor of x before the current round (and
still is), whereas z is a new in-neighbor of x. We omit mentioning x in its own in-neighbors as it is
always the case.

Broadcasting on Trees

▶ Definition 2. Let Tn be the set of all rooted trees with a self-loop added at every node.

In this variant, the networks given by the adversary are restricted to trees in Tn and we
analyze the broadcasting time t∗, which is the smallest round t such that there exists a node
in G(t) with an out-edge to every other node. Note that this corresponds to a process such
that every other process has heard of its identifier. We will say that the node has broadcast
(its identifier to everyone) or simply broadcast has happened. Trees being rooted ensure that
broadcast happens in a finite number of rounds1.

▶ Definition 3. The broadcast time t∗(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗(G1, G2, . . .) = min{t ∈ N : ∃x ∈ [n], ∀y ∈ [n], (x, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 4. The broadcast time t∗(G) of an adversary G, is defined as follows:

t∗(G) = max{t∗(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗(Tn). Note that even in the simple case where the
adversary gives the same directed tree in each round, the broadcast time can be as large as
n − 1, namely if the tree is simply a path. Conversely, in each round, it is easy to see that at
least one new edge appears in the product graph2, and thus the broadcast time is at most
n2. This raises the question of how large the broadcast time can be made if in each round a
different directed tree can be used.

This has been an open question for several years. Results from Charron-Bost and Schiper
in 2009 [4] and Charron-Bost, Függer, and Nowak in 2015 [3] imply an n log n upper bound.
In 2019, Zeiner, Schwarz, and Schmid [18] gave a linear upper bound when the adversary is
restricted to trees with either a constant number of leaves or a constant number of inner
nodes. They also gave a

⌈ 3n−1
2
⌉

− 2 lower bound. In 2020, Függer, Nowak, and Winkler [12]
improved the general upper bound to 2n log log n + O(n). So far, it has been an open
conjecture [18] whether the broadcast time is linear for arbitrary sequences of rooted trees.

1 If the adversary can choose a non-rooted graph, it could repeat this graph indefinitely, preventing
broadcast.

2 In each round, the identifier of the root reaches someone new.

ITCS 2023
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Covering on k-forests

▶ Definition 5. We define Fk
n to be the set of all forests over n processes which are the union

of k rooted trees and a self-loop is added at every node.

In this variant, the networks given by the adversary are restricted to networks from Fk
n ,

and we analyze the cover time tc
k, which is the smallest round t such that there exists a set

I ⊂ [n], |I| ≤ k, such that every node x of G(t) has at least one in-neighbor from I. Said
differently, there exists a set of k nodes such that every node knows of at least one of them.

▶ Definition 6. The cover time tc
k(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

tc
k(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n], ∀y ∈ [n], ∃i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 7. The cover time tc
k(G) of an adversary G, is defined as follows:

tc
k(G) = max{tc

k(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on tc
k(Fk

n). To the best of our knowledge, there is
no prior work that gives upper or lower bounds on tc

k(Fk
n).

k-Broadcasting on k-rooted Networks

▶ Definition 8. Let Rk
n be the set of all (directed) networks over n nodes that (1) have k

roots, that is k different processes r1, . . . , rk such that there exists a directed path from any ri

to any process in [n], and (2) have a self-loop at every node.

In this variant, the networks given by the adversary are restricted to networks from Rk
n, and

we analyze the k-broadcasting time t∗
k, which is the smallest round t such that there exist k

nodes in G(t) with an out-edge to every other node. Said differently, there exists a set of k

nodes such that every node knows of all of them.

▶ Definition 9. The k-broadcast time t∗
k(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗
k(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n], ∀i ̸= j, xi ̸= xj

∧ ∀y ∈ [n], ∀i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦ Gt}

▶ Definition 10. The k-broadcast time t∗
k(G) of an adversary G, is defined as follows:

t∗
k(G) = max{t∗

k(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗
k(Rk

n). To the best of our knowledge, there is
no prior work that gives upper or lower bounds on t∗

k(Rk
n).

Contribution

We give asymptotically tight bounds for all three settings, see also Figure 2.
(1) First we settle the open problem about time complexity of broadcast in dynamic trees,

by showing that it is linear. Hence, Zeiner et al.’s [18] conjecture is true. In particular, we
present an upper bound of

⌈
(1 +

√
2)n
⌉

≈ 2.4n, which complements their
⌈ 3n−1

2
⌉

− 2 lower
bound.

(2) We further show that covering on k-forests also takes linear time, by giving a
π2+6

6 n + 1 ≈ 2.6n upper bound and a
⌈

3(n−k)
2

⌉
− 1 lower bound.

(3) Finally, we show that k-broadcasting on k-rooted networks is linear as well, by giving
an upper bound of

⌈
(1 +

√
2)n
⌉

+ k − 1 ≈ 2.4n + k, and a lower bound of
⌈

3(n−3k)
2

⌉
+ 2.
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Model: Broadcasting on Trees Covering on k-Forests k-Broadcasting on k-rooted Networks
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Lower Bound: [18]:
⌈

3n−1
2

⌉
− 2

⌈ 3(n−k)
2

⌉
− 1

⌈ 3(n−3k)
2

⌉
+ 2

[12]: O(n log log n)

Upper Bound:
⌈
(1 +

√
2)n
⌉

π2+6
6 n + 1

⌈
(1 +

√
2)n
⌉

+ k − 1

Figure 2 Summary of models and results. The adversary chooses a sequence of graphs as stated
in order to delay the objective as much as possible. In the objective examples, x : y means that y is
an in-neighbour of x at the round the objective is attained. Underlines are for emphasis purposes
only.

Organization

The remainder of this paper is organized as follows. Section 2 introduces some basic tools
that will be useful throughout the paper, and presents first insights. In Section 3, we give
the linear upper bound for broadcast time in our model. Section 4 and Section 5 respectively
showcase our results for the cover on k-forests and the k-broadcast on k-rooted networks.
After reviewing related work in Section 6, we conclude and provide some future research
directions in Section 7. All the lower bound results can be found in the full version of the
paper, as well as other basic proofs.

2 Basic Tools

In this section, we define generalizations of the in- and out-neighborhoods in the product
graph, and some basic properties these tools follow. The proofs of these properties being
basic, we defer them to the the full version of the paper.

▶ Definition 11. The in-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by It′

t (x), is defined as follows: If t ≤ t′, It′

t (x) is the in-neighborhood of process x in the
graph Gt ◦ . . . ◦ Gt′ . If t = t′ + 1, set It′

t (x) = {x}. Otherwise, It′

t (x) = ∅.

▶ Definition 12. The out-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by Ot′

t (x), is defined as follows: If t ≤ t′, Ot′

t (x) is the out-neighborhood of process x in the
graph Gt ◦ . . . ◦ Gt′ . If t = t′ + 1, set Ot′

t (x) = {x}. Otherwise, Ot′

t (x) = ∅.

ITCS 2023
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We prove in the full version of the paper that these generalized neighborhoods behave as
expected:

▶ Lemma 13. Let t, t′ ≥ 0, x, y ∈ [n]. Then x ∈ Ot′

t (y) ⇔ y ∈ It′

t (x).

▶ Lemma 14 (Transitivity). Let t, t′, t′′ ≥ 0, and x, y, z ∈ [n]. We have the following
properties:

i. If y ∈ Ot′

t (x) and z ∈ Ot′′

t′+1(y), then z ∈ Ot′′

t (x).
ii. If x ∈ It′

t (y) and z ∈ Ot′′

t′+1(y),then z ∈ Ot′′

t (x).
iii. If x ∈ It′

t (y) and y ∈ It′′

t′+1(z), then z ∈ Ot′′

t (x).
And finally, we show that these neighborhoods only grow over time:

▶ Lemma 15 (Monotonicity). If in each round, all nodes have a self-loop, then for any
t1 ≤ t2 and t3 ≤ t4, for any process x we have:

i. It3
t2

(x) ⊆ It4
t1

(x).
ii. Ot3

t2
(x) ⊆ Ot4

t1
(x).

3 Broadcasting on Trees

In this section, we focus on the fundamental problem of broadcasting on dynamic trees. We
give an upper bound for the problem, before recalling a lower bound.

3.1 The Upper Bound
We will show that the key to understand how information propagate is to consider what the
root knows – or the in-neighbors of the root – before the beginning of every round. We will
show that the root must either have a lot of in-neighbors that were roots in previous rounds,
or many in-neighbors in general. We will then show that any in-neighbor of the root before
a round has at least one more out-neighbor after the round than before it. We will finally
show that any adversary that tries to balance these two facts will fail to prevent broadcast
for a time longer than linear.

▶ Definition 16. Let t be a round. We denote by rt the root of Gt, and call it the root of the
round t.

Harnessing the fact that there always exists a path from a root to any other process in a
network, we give the two following lemmas:

▶ Lemma 17. Let t, t′ be rounds such that t ≤ t′. We have that:
i. If x is a process such that rt /∈ It′

t+1(x), then
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

ii. If x is a process such that rt′ ∈ Ot′−1
t (x), then

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣, unless
∣∣∣Ot′−1

t (x)
∣∣∣ =

n.

Proof. i. We will show that there exists a process y ∈ It′

t+1(x) that has an in-neighbor z in
Gt such that z /∈ It′

t+1(x). Then, by Transitivity (Lemma 14), z ∈ It′

t (x). By Monotonicity
(Lemma 15), we have It′

t+1(x) ⊂ It′

t (x), this will show that
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Let us now find such a z. Consider the path from rt to x in Gt. Since rt /∈ It′

t+1(x), and
trivially x ∈ It′

t+1(x), this path must include an edge (z, y) such that z /∈ It′

t+1(x), y ∈ It′

t+1(x).



A. El-Hayek, M. Henzinger, and S. Schmid 47:7

ii. Let us look at the case
∣∣∣Ot′−1

t (x)
∣∣∣ < n. We will show that there exists a process

y ∈ Ot′−1
t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1

t (x). Then, by Transitivity
(Lemma 14), z ∈ Ot′

t (x). By Monotonicity (Lemma 15), we have Ot′−1
t (x) ⊂ Ot′

t (x), this will
show that

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1
t (x)

∣∣∣ < n, there exists a process a such that a /∈ Ot′−1
t (x).

Consider the path from rt′ to a in Gt′ . Since rt′ ∈ Ot′−1
t (x), and a /∈ Ot′−1

t (x), this path
must include an edge (y, z) such that z /∈ Ot′−1

t (x), y ∈ Ot′−1
t (x). ◀

The following lemma will link the number of in-neighbors a node has to the number of
in-neighbors it has among the roots of the preceding rounds:

▶ Lemma 18. Let x be a process, and t1, t2 be rounds such that t1 ≤ t2. Then:∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}
∣∣+ 1 ≤

∣∣It2
t1

(x)
∣∣

This will be proven using Lemma 17.i, since every time rt /∈ It2
t1

(x), It2
t1

(x) gets larger:

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}. Then, in particular, for any t ∈ A, we have
rt /∈ It2

t+1(x). Then, for all t ∈ a, applying Lemma 17.i, we have
∣∣It2

t (x)
∣∣ >

∣∣It2
t+1(x)

∣∣. Let
A = {t1, . . . , tk}, with ti < ti+1 for any 1 ≤ i < k. Then:∣∣It2

t1
(x)
∣∣ ≥

∣∣It2
t1 (x)

∣∣ >
∣∣It2

t1+1(x)
∣∣ ≥

∣∣It2
t2 (x)

∣∣ >
∣∣It2

t2+1(x)
∣∣ ≥ . . . >

∣∣∣It2
tk+1(x)

∣∣∣ ≥ 1

Where the non-strict inequalities derive by Monotonicity(Lemma 15), and the last one
from the fact that tk + 1 ≤ t2 + 1 ⇒ x ∈ It2

tk+1(x). There are k = |A| strict inequalities over
integers, which concludes the proof. ◀

We now define the rounds graph, which will keep track of the information – the in-neighbors
– the root of each round has:

▶ Definition 19. We define the rounds graph as follows:
The graph has 2n +

⌈√
2n
⌉

nodes: one node representing each process, and one node for
each of the first

⌈
(1 +

√
2)n
⌉

rounds.
And it has the directed edges: one edge from a process p to a round t if p ∈ It−1

1 (rt), and
one edge from a round t <

⌈√
2n
⌉

to a round t′ > t if rt ∈ It′−1
1 (rt′).

We will now show that there is at least a node of out-degree n in that graph, which will
translate into a process that has broadcast its piece of information to everyone:

▶ Lemma 20. In the rounds graph, there is at least a node of out-degree n.

Proof. Let us look at round t. If t ≤
⌈√

2n
⌉
, then t has in-degree at least t. Indeed, it has

in-degree:∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1
1 (rt)}

∣∣+
∣∣It−1

1 (x)
∣∣

≥ 1 +
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣ = t

where we used Lemma 18 for the inequality. Similarly, if t >
⌈√

2n
⌉
, then t has in-degree at

least
⌈√

2n
⌉
. Indeed, it has in-degree:

ITCS 2023
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∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

, rt′ /∈ It−1
1 (rt)}

∣∣∣
=
⌈√

2n
⌉

where we used Lemma 18 for the first inequality.
Summing the in-degrees over all the rounds, we get that the number of edges |E| is at

least:

|E| ≥
⌈√

2n⌉∑
t=1

t + n ×
⌈√

2n
⌉

=
⌈√

2n
⌉ (⌈√

2n
⌉

+ 1
)

2 + n
⌈√

2n
⌉

>
⌈
(1 +

√
2)n
⌉

n

But only the n nodes representing the processes and the nodes representing the first⌈√
2n
⌉

− 1 rounds have out edges. The pigeonhole principle asserts then that one of those
nodes has an out-degree of at least n. ◀

▶ Theorem 21. t∗(Tn) ≤
⌈
(1 +

√
2)n
⌉

Proof. Assume it is not the case, that is, for every process x ∈ [n], for every round
t ≤

⌈
(1 +

√
2)n
⌉
, |Ot

1(x)| < n. We know that in the rounds graph, there is a node y of degree
at least n. Define z as follows: if y represents a process, let z be that process. If y represents
a round, let z be the root of that round. We will show that z must have broadcast before⌈
(1 +

√
2)n
⌉

rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, this means that

z ∈ Iti−1
1 (rti) ⇔ rti ∈ Oti−1

1 (z) for every i ∈ [n]. By Lemma 17ii, we thus have, for every
i ∈ [n], that

∣∣Oti
1 (z)

∣∣ >
∣∣Oti−1

1 (z)
∣∣. Then, using Monotonicity (Lemma 15) for non-strict

inequalities:∣∣Otn
1 (z)

∣∣ >
∣∣Otn−1

1 (z)
∣∣ ≥

∣∣∣Otn−1
1 (z)

∣∣∣ >
∣∣∣Otn−1−1

1 (z)
∣∣∣ ≥ . . . ≥

∣∣Ot1
1 (z)

∣∣ >
∣∣Ot1−1

1 (z)
∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least
n, which is a contradiction. ◀

3.2 The Lower Bound
A lower bound for this problem has been given by Zeiner, Schwarz, and Schmid [18]:

▶ Theorem 22. t∗(Tn) ≥
⌈ 3n−1

2 − 2
⌉

A figure of that lower bound can be found in the full version of the paper.

4 Covering on k-Forests

In this section, we study an adversary that has to choose a communication network in each
round that is a union of k trees. In this setting, we cannot ensure broadcast, so we look at
the time when there exists a cover of size k: k processes such that any other process has
heard of at least one of them.
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4.1 The Upper Bound
Even though the problem is very similar to broadcasting on trees, the proofs of Section 3 do
not translate in a straightforward way into an upper bound for covering on k-forests. We
thus have a completely different proof for this problem.

The intuition of our approach is as follows: We will start with a cover of size n at some
time t′ = t(n) that is large enough, and then go back in time until we find a process that
can reach two other processes, say, x and y, of that cover. Calling this process pn−1 and
the corresponding time t(n−1), we thus have pn−1 ∈ It(n)

t(n−1)(x) and pn−1 ∈ It(n)

t(n−1)(y). When
repeating the process, we then remove x and y from our set of processes to cover, add pn−1,
and start over, until the cover has size k. We need to be careful to guarantee that rounds do
not overlap.

Indeed, to remove pn−1 from our set of processes to cover, we have to reach it before
round t(n−1), otherwise we will not be guaranteed to reach x or y at time t(n). Thus, we
will store with each process x of the cover the corresponding round t such that x has to be
reached by round t by the process that replaces x in the cover. More specifically, we model
the cover by a series of sets (Au)k≤u≤n, where each Au is a collection of u pairs (p, t), where
p is a process, and t is a round. To compute Au−1 from Au, we have to find a process that
can reach two processes p1, p2 by rounds t1, t2, such that (p1, t1), (p2, t2) ∈ Au and then we
replace these two pairs by a new pair, creating the cover Au−1.

In this section we first state the definitions and results of this section, before giving the
full proof to each of our claims. We first define what it means for a set A of pairs (p, t) to be
a cover.

▶ Definition 23. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is a cover of
a set B of processes for round t ≥ maxs{ts} if for every b ∈ B, there exists an i ∈ [s] such
that b ∈ Ot

ti+1(ai).

We next couple the cover property of set A with strictness, which indicates that we did
not (yet) go back enough in time to find a process that reaches two different processes in A.

▶ Definition 24. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is strict at
round t if there exists no process p ∈ [n] and i, j ∈ [s], i ≠ j such that p ∈ Iti

t (ai) and
p ∈ Itj

t (aj).

As we consider earlier and earlier rounds, the sets Iti
t (ai) will get larger and larger, and

A will lose its strictness. Thus, we then define the following sequence of covers of [n], and
analyze their strictness over time. We carefully choose our set As so that it has cardinality s.
This means that Ak has cardinality k, which is our goal.

▶ Definition 25. Let t′ be a large enough round. For every k ≤ s ≤ n, we define a sequence
of strict sets As and rounds t(s) as follows:

Define An = {(i, t′) : i ∈ [n]}, t(n) = t′.
Define t(s) = maxj∈N{As+1 is not strict at round j}. As As+1 is not strict at round t(s),

there exist i, j ∈ [s + 1] and a process ps such that ps ∈ Iti

t(s)(ai) ∩ Itj

t(s)(aj). If (ps, t(s) − 1) ∈
As+1, we define As = As+1 \ {(ai, ti)}, else we define As = (As+1 \ {(ai, ti), (aj , tj)}) ∪
{(ps, t(s) − 1)}.

Define ∆s = t(s) − t(s−1) for k + 1 ≤ s ≤ n.

Recall that our goal is to upper bound t′, which can be done if we upper bound
∑n

s=k+1 ∆s.
The strictness of a set is a key notion as a strict set has the following very useful property:

ITCS 2023
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Figure 3 The strict rounds graph. Vertex u’s weight represents ∆u = t(u) − t(u−1). The weight of
an edge (u, s) represents how much a round t ∈ [t(u−1) + 1, t(u)] contributes at least to Ss. Because
of the strictness of As, the sum of the weights of the in-neighbors (multiplied by the edges’ weight)
of a node s, which is smaller than Ss, should not exceed n.

▶ Lemma 26 (Strict Increments). Let s ≥ k + 1 and let A = {(a1, t1), . . . , (as, ts)} be a strict
set of size s at round t. Let I ⊆ {i ∈ [s] : t ≤ ti + 1}. Then there exists a set of indices
J ⊆ I, |J | ≥ |I| − k, such that for every i ∈ J ,

∣∣Iti
t−1(ai)

∣∣ >
∣∣Iti

t (ai)
∣∣.

Proof. Consider a root r of round t − 1. As A is strict at round t is follows that r ∈ Iti
t (ai)

for at most one ai with i ∈ I. As there are at most k roots in round t−1, it follows that there
are at least |I|−k values i ∈ I such that none of the roots of round t−1 is in Iti

t (ai). Let J be
the set of all such values of i. Let us denote for any p ∈ [n] the root of the tree that contains p

in round t by the value rt(p). It follows that in particular rt−1(ai) /∈ Iti
t (ai). Since t ≤ ti + 1,

we have that ai ∈ Iti
t (ai). Now for each such i the path from rt−1(ai) to ai in Gt−1 must

contain an edge (x, y) such that x /∈ Iti
t (ai), and y ∈ Iti

t (ai). By Transitivity (Lemma 14), it
holds that (Iti

t (ai) ∪ {x}) ⊆ Iti
t−1(ai), which implies that

∣∣Iti
t−1(ai)

∣∣ >
∣∣Iti

t (ai)
∣∣. ◀

It is not hard to show that all ai of As fulfill t(s) ≤ ti + 1. The following lemma helps us find
more sets that satisfy the conditions of the Strict Increments Lemma. This essentially follows
from the fact that, by construction, at least 2s − u elements from Au are shared with As.

▶ Lemma 27. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s − u.

We now define the strict rounds graph, which we use to analyze the values of ∆s as s varies
from n to k. A depiction of that graph can be seen in Figure 3.

▶ Definition 28. The strict rounds graph (V, E) consists of n − k vertices, labeled from k + 1
to n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex
s if s ≤ u ≤ min{2s − k − 1, n}, and its weight is w(u, s) = 2s − k − u.

The next lemma is the crucial lemma: To bound t′ we first bound the following “weighted
volumes”. If we define αs to be the weighted out-degree of a node s, and the volume of s to
be αs multiplied by its own weight, then in the strict rounds graph, the cumulative sum over
the volumes of the first j vertices is at most j · n.

▶ Lemma 29. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u − k) · n.

We briefly sketch the proof of this lemma. We first prove that for every k + 1 ≤
w ≤ u the sum σw :=

∑min{2w−k−1,n}
v=w (2w − k − v) ∆v is at most n as follows. Since

for every k + 1 ≤ w ≤ u the set Aw is strict at all rounds t ≥ t(w−1) + 1, it fol-
lows that Sw :=

∑
(ai,ti)∈Aw

∣∣∣Iti

t(w−1)+1(ai)
∣∣∣ is at most n. We then lower bound Sw by
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∑min{2w−k−1,n}
v=w (2w − k − v) ∆v in two steps: First, Lemma 27 allows us to find a set I of

cardinality larger than 2w − v for each round in the interval [t(v−1) + 1, t(v)] that fits the
Strict Increments Lemma’s conditions. We then use the Strict Increments Lemma to show
that Sw increases by 2w − v − k in each of those rounds, which results in a lower bound of
σw for Sw, and thus the upper bound σw ≤ n. Summing this inequality over all u − k nodes
w with w ≤ u gives

∑
w≤u σw ≤ (u − k) · n.

Next note that σw is the weighted in-degree of node w in the strict rounds graph where
each edge is weighted by the product of its edge weight and the weight of its tail. By
definition, the tail of every (directed) edge has a higher label than its head and, thus, every
outgoing edge of a node s ≤ u is also an incoming edge of a node w ≤ u. This allows us to
argue that

∑
w≤u σw is at least

∑
s≤u ∆sαs, which leads to the final result.

We use Lemma 29 to bound t′ as follows. We first show that any vertex weight distribution
on the strict rounds graph following the volume bound must fulfill the following property.

▶ Lemma 30. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict
rounds graph such that for every u ∈ {k+1, . . . n},

∑
s≤u δsαs ≤ (u−k)·n. Then

∑n
s=k+1 δs ≤

π2+6
6 n.

Lemma 29 and Lemma 30 give the desired bound on
∑n

s=k+1 ∆s, which in turn bounds t′.

▶ Corollary 31.
∑n

s=k+1 ∆s ≤ π2+6
6 n

▶ Theorem 32. tc
k(Fk

n) ≤ π2+6
6 n + 1

The rest of this section is dedicated to proving in detail all of those claims, as well
as introducing all concepts, stating and proving any intermediate lemmata that would be
necessary. First we analyze in detail the sets defined in Definition 25, making sure they have
the desired cardinality and proving that they form a cover of [n] from round 1 to t′. Note
that it directly follows from Definition 25 that the size of As is s and we will in the following
always use (ai, ti) for 1 ≤ i ≤ s to denote the elements of the set As.

▶ Lemma 33. For every s ∈ {k, . . . , n}, |As| = s.

Proof. It is true by reverse induction. Indeed, it is trivially true for s = n. Suppose it is
true for some s ∈ {k + 1, . . . , n} and consider two cases: If (ps−1, t(s−1) − 1) ∈ As, then
|As| − |As−1| = 1, as only (ai, ti) is removed from As. If (ps−1, t(s−1) − 1) ̸∈ As, then both
(ai, ti) and (aj , tj) are removed from As and (ps−1, t(s−1) − 1) is added, which implies that
|As| − |As−1| = 1. Thus, in both cases |As| − |As−1| = 1. As by induction |As| = s, it follows
that |As−1| = s − 1. ◀

In Definition 25, we offset t(s) by one when introducing ps in As, which guarantees that
As is a cover of [n] for round t′, as shown below.

▶ Lemma 34. For every s ∈ {k, . . . , n}, we have that As is a cover of [n] for round t′.

Proof. We show the claim by reverse induction. It holds trivially for s = n. Assume now
that As+1 is a cover of [n] for round t′. We will show that this implies that As is also a cover
of [n] for round t′. By the fact that As+1 is a cover, it follows for each x ∈ [n] that there
exists a h ∈ [s + 1] such that x ∈ Ot′

th+1(ah). If (ah, th) ∈ As, then there is nothing to do. If
however (ah, th) /∈ As, then ps ∈ Ith

t(s)(ah), and by Transitivity (Lemma 14) it follows that
x ∈ Ot′

t(s)(ps). ◀
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Now that we are assured that the cover property will hold throughout, we give the
intuition of what follows. As defined above, we have ∆u = t(u) − t(u−1) for k < u ≤ n.
We will then look at As for some s ∈ {k, . . . , n}. Since As is strict at round t(s−1) + 1,
it follows that

(
Iti

t(s−1)+1(ai)
)

i∈[s]
are pairwise disjoint subsets of [n], which implies that

Ss =
∑

(ai,ti)∈As

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ is at most n. We will find a lower bound for that value that

depends on the values of ∆u.
To do so, we will use the Strict Increments Lemma (Lemma 26). Indeed we will first

prove that for every i ∈ [s], it holds that t(s) ≤ ti + 1. This will allow us to use the Strict
Increments Lemma (Lemma 26) between rounds t(s−1) + 2 and t(s) and so each of those
rounds contributes an additive s − k to the lower bound of Ss. Of course, such a contribution
only happens if t(s−1) + 2 ≤ t(s).

We will further prove that there exist s − 1 elements i ∈ [s] such that t(s+1) ≤ ti + 1. This
will follow from the fact that |As ∩ As+1| ≥ s − 1, and that for every (a, t) ∈ As+1, we have
that t(s+1) ≤ t + 1. This allows us to use the Strict Increments Lemma (Lemma 26) between
rounds t(s) + 1 and t(s+1), so that each of those rounds contributes at least an additive
s − 1 − k to the lower bounds of Ss in addition to the contribution of rounds [t(s−1) + 2, t(s)].

In fact, we will generalize this analysis to all values of u ≥ s with Au ∩ As ≠ ∅, and for
each u every round in [t(u−1) + 1, t(u)] contributes at least 2s − k − u to the lower bound of
Ss, leading to a contribution at at least (2s − k − u)∆u for u.

▶ Lemma 35. As is strict at round t(s) + 1, for any s ∈ {k, . . . , n}.

Proof. Let s ∈ {k, . . . , n}. As+1 is strict at round t(s) + 1. Assume by contradiction that
As is not strict at round t(s) + 1, that is, there exists a x ∈ [n] and i, j ∈ [s] such that
x ∈ Iti

t(s)+1(ai) and x ∈ Itj

t(s)+1(aj). Since It(s)−1
t(s)+1 (ps) = ∅ because t(s) + 1 > (t(s) − 1) + 1,

we have that x /∈ It(s)−1
t(s)+1 (ps). This implies that (ai, ti), (aj , tj) ∈ As+1, which contradicts the

strictness of As+1. This concludes the proof. ◀

▶ Corollary 36. t(s) ≤ t(s+1) ∀s ∈ {k, . . . , n − 1}

▶ Corollary 37. For every s ∈ {k, . . . , n}, we have that for every i ∈ [s], t(s) ≤ ti + 1.

Proof. By reverse induction, it is true for s = n, as for every i ∈ [n], ti = t(n). Assume it
is true for some s + 1 for s ∈ {k, . . . n − 1}, and let us look at As. Then by Corollary 36
and the induction hypothesis, for every i ∈ [s] we have that either (ai, ti) ∈ As+1 and thus
t(s−1) ≤ t(s) ≤ ti + 1, or that (ai, ti) = (ps, t(s) − 1) and trivially the inequality holds. ◀

▶ Lemma 38. Let s, u ∈ {k, . . . , n} such that s ≤ u. Then As ∩ Au ≥ 2s − u.

Proof. By reverse induction, it is trivially true for s = u. Assume we have |As+1 ∩ Au| ≥
2(s + 1) − u for some s such that k ≤ s ≤ u − 1.

We have that, by distribution of the intersection over the union operator:

As+1 ∩ Au = ((As+1 ∩ As) ∪ (As+1 \ As)) ∩ Au = (As+1 ∩ As ∩ Au) ∪ ((As+1 \ As) ∩ Au)

Hence:

|As ∩ Au| ≥ |As+1 ∩ As ∩ Au| ≥ |As+1 ∩ Au|−|(As+1 \ As) ∩ Au| ≥ 2(s+1)−u−2 = 2s−u

Where we used that |(As+1 \ As) ∩ Au| ≤ |As+1 \ As| ≤ 2, because we removed at most two
elements from As+1 to get As. ◀
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t(s−1) + 1 t1 t(s) t2 t3 t4 t5 t6 t7
a1 ■ □ ■ □ ■  # # # # # # # # # # # # # #
a2 ■ ■ ■ □ ■ ■ ■ □  # # # # # # # # # # #
a3 □ ■ □ ■ □ ■ □ □ ■ □  # # # # # # # # #
a4 ■ □ ■ ■ ■ ■ ■ ■ ■ □ ■  # # # # # # # #
a5 □ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ ■ □ □ □  # # # #
a6 ■ ■ ■ ■ ■ □ □ ■ □ ■ ■ □ ■ □ ■ □ □ □  #
a7 ■ ■ □ ■ □ ■ ■ ■ □ ■ □ □ □ ■ □ □ □ □ □  

∆s − 1 ∆s+1 ∆s+2 ∆s+3 ∆s+4 ∆s+5

Figure 4 Illustration of proof of Lemma 39, with s = 7 and k = 2. Each column represents a
round, each row represents an element (ai, ti) of As, ordered according to ti. Remember that every
ti directly precedes a t(u). We add a square if t ≤ ti, and a circle otherwise. The entry is black if∣∣Iti

t (ai)
∣∣ >
∣∣Iti

t+1(ai)
∣∣ and white otherwise. We have one black circle per row. Indeed, we have that∣∣Iti

ti+1(ai)
∣∣ = |{ai}| = 1 > 0 =

∣∣Iti
ti+2(ai)

∣∣. Lemma 27 gives a lower bound on the number of squares
for each column. The Strict Increments Lemma asserts that there are at most k white squares per
column. A lower bound for Ss is thus the number of black entries.

▶ Lemma 27. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s − u.

Proof. It is a direct implication of Corollary 37 and Lemma 38.
Indeed, |I| =

∣∣{(a, t) ∈ As : t(u) ≤ t + 1}
∣∣, and we have {(a, t) ∈ As : t(u) ≤ t + 1} ⊇

{(a, t) ∈ As ∩ Au : t(u) ≤ t + 1} = {(a, t) ∈ As ∩ Au} = As ∩ Au, where the penultimate
equality holds by Corollary 37 applied to u. Lemma 38 states that |As ∩ Au| ≥ 2s − u. ◀

▶ Lemma 39. Let ∆s = t(s) − t(s−1). Then, for every s ∈ {k + 1, . . . , n}:
min{2s−k−1,n}∑

u=s

(2s − k − u) ∆u ≤ n

An illustration of the proof can be found in Figure 4.

Proof. Let s ∈ {k + 1, . . . , n}. If for every u such that s ≤ u ≤ min{2s − k − 1, n}, we have
∆u = 0, then the result is immediate. If not, let x = min{u : s ≤ u ≤ min{2s−k−1, n}∧∆u >

0}. In the rest of the proof, let u be restricted to fulfill x ≤ u ≤ min{2s − k − 1, n} and
let Iu

s = {i ∈ [s] : t(u) ≤ ti + 1}. By Lemma 27, we have that |Iu
s | ≥ 2s − u. To prove the

claim we will give upper and lower bounds for Ss =
∑

i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣. The upper bound

directly follows from the fact that t(s−1) + 1 is the smallest round at which As is strict, which
implies that Ss ≤ n.

We next fix a round t with t(u−1) + 1 ≤ t ≤ t(u). We have that t(s−1) is the largest round
As is not strict at (by Definition 25), so it is strict at t ≥ t(u−1) + 1 > t(s−1). By the Strict
Increments Lemma (Lemma 26), there exists a set Ju

s (t) ⊆ Iu
s with |Ju

s (t)| ≥ |Iu
s | − k ≥

2s − u − k such that for every j ∈ Ju
s (t),

∣∣∣Itj

t−1(aj)
∣∣∣ >

∣∣∣Itj

t (aj)
∣∣∣. As every j ∈ Ju

s (t) belongs
to Iu

s it follows that t ≤ t(u) ≤ tj + 1. Thus, for every (j, t) ∈ [s] × N with t > tj + 1 it holds
that it does not belong to Ju

s (t), or, equivalently, 1(j ∈ Ju
s (t)) = 0.

We can then write:

Ss :=
∑
i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ =

∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

(∣∣Iti
t (ai)

∣∣−
∣∣Iti

t+1(ai)
∣∣)

We first separate the second sum according to which interval [t(u−1) + 1, t(u)] round t

belongs to, and furthermore add a third sum that is equal to 0, since 1(j ∈ Ju
s (t)) = 0 for

every (j, t) ∈ [s] × N such that t > tj + 1. For the consecutive inequality note that by the
definition of Ju

s (t), we have that in the second sum
∣∣Iti

t (ai)
∣∣−
∣∣Iti

t+1(ai)
∣∣ ≥ 1(i ∈ Ju

s (t + 1)).
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Ss ≥
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t + 1 ≤ t(u))
(∣∣Iti

t (ai)
∣∣−
∣∣Iti

t+1(ai)
∣∣)

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


≥
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti∑

t=t(s−1)+1

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t + 1 ≤ t(u))1(i ∈ Ju
s (t + 1))

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


=
∑
i∈[s]

∣∣Iti
ti+1(ai)

∣∣+
ti+1∑

t=t(s−1)+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))


≥
∑
i∈[s]

(∣∣Iti
ti+1(ai)

∣∣
+

max{ti+1,t(min{2s−k−1,n})}∑
t=t(s−1)+2

min{2s−k−1,n}∑
u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Ju
s (t))

)
=: X1

We next invert the two sum symbols, and delete terms where 1(t(u−1) + 1 ≤ t ≤ t(u)) = 0:

X1 ≥
∑
i∈[s]

1 +
t(x)∑

t=t(x−1)+2

1(i ∈ Jx
s (t)) +

min{2s−k−1,n}∑
u=x+1

t(u)∑
t=t(u−1)+1

1(i ∈ Ju
s (t))


≥ s +

t(x)∑
t=t(x−1)+2

∑
i∈[s]

1(i ∈ Jx
s (t)) +

min{2s−k−1,n}∑
u=x+1

t(u)∑
t=t(u−1)+1

∑
i∈[s]

1(i ∈ Ju
s (t)) =: X2

Using that
∑

i∈[s] 1(i ∈ Ju
s (t)) = |Ju

s (t)| ≥ 2s − k − u and ∆u = t(u) − t(u−1):

X2 ≥ s + (∆x − 1)(2s − k − x) +
min{2s−k−1,n}∑

u=x+1
(2s − k − u)∆u ≥

min{2s−k−1,n}∑
u=s

(2s − k − u)∆u,

where the last inequality follows since x ≥ s which implies that 2s − k − x ≤ 2s − k − s ≤ s

and that ∆u = 0 for u < x.
As
∑

i∈[s]

∣∣∣Iti

t(s−1)+1(ai)
∣∣∣ = Ss ≤ n, the claim follows. ◀

We now recall the definition of the strict rounds graph, which is built to harness the
previous result.

▶ Definition 28. The strict rounds graph (V, E) consists of n − k vertices, labeled from k + 1
to n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex
s if s ≤ u ≤ min{2s − k − 1, n}, and its weight is w(u, s) = 2s − k − u.

The graph is represented in Figure 3. Each node s with k +1 ≤ s ≤ (n+k)/2 has s−k +2
incoming edges, namely (s, s), (s+1, s), . . . , (2s−k −1, s), with weights s−k, s−k −1, . . . , 1,
respectively. Each node s with (n + k)/2 < s ≤ n has n + 1 − s incoming edges, namely
(s, s), (s + 1, s), . . . , (n, s), with weights s − k, s − k − 1, . . . , 2s − k − n, respectively.
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Each node s has s + 1 −
⌊

s+k
2
⌋

outgoing edges, namely (s, s), (s, s − 1), . . . , (s,
⌊

s+k
2
⌋

+ 1)
of weight s − k, s − k − 2, . . . , respectively. If s − k is even, all outgoing edges of s have even
weight and the edge (s,

⌊
s+k

2
⌋

+ 1) has weight 2. If s − k is odd, all outgoing edges of s have
odd weight and the edge (s,

⌊
s+k

2
⌋

+ 1) has weight 1.

▶ Lemma 40. Let u ∈ [n], and define Eout
u := {(s, v) ∈ E : s ≤ u}. In the strict rounds

graph, we have that∑
(s,v)∈Eout

u

∆sw(s, v) ≤ (u − k) · n

Proof. We are summing over all the out-edges of all the vertices with a label at most u. Let
Ein

u = {(s, v) ∈ E : v ≤ u}. Every outgoing edge of a node s ≤ u must end at a node v with
v ≤ s ≤ u. Thus, it is contained in the set of incoming edge of all nodes v with v ≤ u. Said
differently, Eout

u ⊆ Ein
u .

Since all the terms are positive, we have:∑
(s,v)∈Eout

u

∆sw(s, v) ≤
∑

(s,v)∈Ein
u

∆sw(s, v) =
∑
v≤u

∑
s:(s,v)∈E

∆sw(s, v)

≤
∑
v≤u

∑
s:(s,v)∈E

∆s(2v − k − s) ≤
∑
v≤u

min{n,2v−s−1}∑
s=v

∆s(2v − k − s)

Applying Lemma 39, the claim follows. ◀

▶ Lemma 41. Let s ≥ k + 1. If s − k is odd, we have
∑

v:(s,v)∈E w(s, v) = ( s−k+1
2 )2. If it is

even, we have
∑

v:(s,v)∈E w(s, v) = ( s−k
2 )2 + s−k

2 .

Basically, as discussed above and seen in Figure 3, if s − k is odd, we have that∑
v:(s,v)∈E w(s, v) = 1+3+5+ · · ·+s−k = ( s−k+1

2 )2, while if it is even,
∑

v:(s,v)∈E w(s, v) =
2 + 4 + 6 + · · · + s − k = ( s−k

2 )2 + s−k
2 . The full proof can be found in the full version of the

paper.

▶ Definition 42. We define the following numbers: β = π2+6
6 , αs = ( s−k+1

2 )2 if s − k is odd,
αs = ( s−k

2 )2 + s−k
2 if s − k is even.

Note that αs is an integer for all values of s ≥ k. By applying this definition to the bounds
of Lemmata 40 and 41 we achieve the following result.

▶ Lemma 29. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u − k) · n.

▶ Lemma 30. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict
rounds graph such that for every u ∈ {k+1, . . . n},

∑
s≤u δsαs ≤ (u−k)·n. Then

∑n
s=k+1 δs ≤

π2+6
6 n.

Proof. We will show that
∑n

s=k+1 δsαs is maximized when δs = α−1
s · n for every s. Let

{δs}k+1≤s≤n be such that
∑n

s=k+1 δsαs if maximized. Assume by contradiction that there
exists a k + 1 ≤ s ≤ n such that δs < α−1

s · n. Let v be the smallest such s and set
ϵ = n − δvαv > 0. We can then build a different solution γ by setting γs = δs for every
s /∈ {v, v + 1}, and setting γv = δv + ϵα−1

v = α−1
v · n > δv and γv+1 = δv+1 − ϵα−1

v+1. Note
that for every u ∈ {k + 1, . . . n},

∑
s≤u γsαs ≤ (u − k) · n as

(1) for u < v it holds that
∑

s≤u γsαs = (u − k) · n,

ITCS 2023



47:16 Time Complexity of Broadcast and Its Variants in Dynamic Networks

(2) for u = v it holds that
∑

s≤u γsαs = (ϵα−1
v )αv + δvαv +

∑
s<u δsαs = (n − δvαv) +

δvαv +
∑

s<u δsαs = n + (u − 1 − k) · n = (u − k) · n, and

(3) for u ≥ v + 1 if holds that
∑

s≤u γsαs =
∑

s≤v−1 δsαs + γvαv + γv+1αv+1 +∑
v+2≤s≤u δsαs =

∑
s≤v−1 δsαs + δvαv + ϵαv+1α−1

v+1 + δuα−1
u − ϵαuα−1

u +
∑

v+2≤s≤u δsαs =∑
s≤u δsαs ≤ (u − k) · n.

Now note that
∑n

s=k+1 γsαs >
∑n

s=k+1 δsαs as the αs values are decreasing in s, which
gives a contradiction to the assumption that δ maximizes

∑n
s=k+1 δsαs. It now follows that

n∑
s=k+1

δs ≤
n∑

s=k+1
α−1

s n ≤
∞∑

s−k=1
α−1

s n ≤ n
∑
ℓ∈N

1
ℓ2 + n

∑
ℓ∈N

1
ℓ2 + ℓ

= βn.

where the last equation follows by the fact that
∑

ℓ∈N
1
ℓ2 = π2/6 and

∑
ℓ∈N

1
ℓ2+ℓ =

∑
ℓ∈N

1
ℓ −

1
ℓ+1 = 1. ◀

▶ Corollary 31.
∑n

s=k+1 ∆s ≤ π2+6
6 n

▶ Theorem 32. tc
k(Fk

n) ≤ π2+6
6 n + 1

Proof. We have
∑n

s=k+1 ∆s =
∑n

s=k+1 t(s) − t(s+1) = t′ − t(k), which is at most π2+6
6 n by

Corollary 31. Setting t(k) = 1, we get that t′ ≤ π2+6
6 n + 1. Lemma 34 ensures that Ak is

a cover of [n] for t′, which means that for every x ∈ [n], there exists a i ∈ [k] such that
x ∈ Ot′

ti+1(ai). Since mini{ti} = t(k) − 1 = 0, this means that every x ∈ [n] belongs to
Ot′

1 (ai), which implies that tc
k(Fk

n) ≤ t′. ◀

4.2 The Lower Bound
We build a lower bound example based on the lower bound for broadcasting on trees. A
figure and analysis of that example can be found in the full version of the paper, which yields
the following result:

▶ Theorem 43. tc
k(T k

n ) ≥
⌈ 3n−3k

2 − 1
⌉

5 k-Broadcasting on k-rooted Networks

In this section, we study the case where the adversary has to choose a communication network
that has k roots at least in each round. This allows us to enforce not only broadcast, but
rather k-broadcast.

The problem is very similar to the one studied in the Section 3, and indeed a slight
modification of the proofs there work for this problem.

5.1 The Upper Bound
By using a technique very similar to Section 3, we will show that whenever we have a set
A ⊂ [n] of size at most k − 1, we can find a process p /∈ A that has broadcast, as long as we
have waited for a large enough number of rounds.

▶ Definition 44. Let t be a round. We denote by Rt the set of the roots of Gt.

Recall that |Rt| ≥ k.
The following two lemmata, very similar to Section 3, can be proven by looking at paths

going from a root to a carefully chosen node.
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▶ Lemma 45. Let t ≤ t′ be rounds, and let x and r be processes such that, r ∈ Rt and
r /∈ It′

t+1(x). Then
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Proof. We will show that there exists a process y ∈ It′

t+1(x) that has an in-neighbor z in
Gt such that z /∈ It′

t+1(x). Then, by Transitivity (Lemma 14), z ∈ It′

t (x). By Monotonicity
(Lemma 15), we have that It′

t+1(x) ⊂ It′

t (x), this will show that
∣∣∣It′

t (x)
∣∣∣ >

∣∣∣It′

t+1(x)
∣∣∣.

Let us now find such a z. Consider the path from r to x in Gt. Since r /∈ It′

t+1(x),
and trivially x ∈ It′

t+1(x), this path must include an edge (z, y) such that z /∈ It′

t+1(x),
y ∈ It′

t+1(x). ◀

▶ Lemma 46. Let t ≤ t′ be rounds, and let x and r be processes such that r ∈ Rt′ , and
r ∈ Ot′−1

t (x). Then
∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣, unless
∣∣∣Ot′−1

t (x)
∣∣∣ = n.

Proof. Let us look at the case
∣∣∣Ot′−1

t (x)
∣∣∣ < n. We will show that there exists a process

y ∈ Ot′−1
t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1

t (x). Then, by Transitivity
(Lemma 14), z ∈ Ot′

t (x). By Monotonicity, we obviously have Ot′−1
t (x) ⊂ Ot′

t (x), which
implies that

∣∣∣Ot′

t (x)
∣∣∣ >

∣∣∣Ot′−1
t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1
t (x)

∣∣∣ < n, there exists a process a such that

a /∈ Ot′−1
t (x). Consider the path from r to a in Gt′ . Since r ∈ Ot′−1

t (x), and a /∈ Ot′−1
t (x),

this path must include an edge (y, z) such that z /∈ Ot′−1
t (x), y ∈ Ot′−1

t (x). ◀

We now give a lemma that links the number of in-neighbors of a node to the number of
previous rounds whose root are in-neighbors of said node:

▶ Lemma 47. Let x be a process, let t1 ≤ t2 be rounds, and let rt denote a root of Rt for
every t ∈ {t1, . . . , t2}, then it holds that∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2

t1
(x)}

∣∣+ 1 ≤
∣∣It2

t1
(x)
∣∣

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2
t1

(x)}. Then, in particular, for any t ∈ A, we have
rt /∈ It2

t+1(x). Then, for all t ∈ a, applying Lemma 45, we have
∣∣It2

t (x)
∣∣ >

∣∣It2
t+1(x)

∣∣. Let
k = |A| and let A = {t(1), . . . , t(k)}, with t(i) < t(i+1) for 1 ≤ i < k. Then by Monotonicity
(Lemma 15) it follows that∣∣It2

t1
(x)
∣∣ ≥

∣∣It2
t(1)(x)

∣∣ >
∣∣∣It2

t(1)+1(x)
∣∣∣ ≥

∣∣It2
t(2)(x)

∣∣ >
∣∣∣It2

t(2)+1(x)
∣∣∣ ≥ . . . >

∣∣∣It2
t(k)+1(x)

∣∣∣ ≥ 1

There are k = |A| inequalities over integers, which concludes the proof. ◀

We now define the rounds graph avoiding some set A, which is the equivalent of the
rounds graph of Section 3, this time being very careful not to choose any process from A

being used as a root for a round.

▶ Definition 48. Let A be an arbitrary set of processes with |A| < k. We define the rounds
graph avoiding set A as follows: It contains 2n +

⌈√
2n
⌉

+ |A| nodes, namely
1. one process node representing each process.
2. one round node for each of the first

⌈
(1 +

√
2)n
⌉

+ |A| rounds.
For each round t, let rt be a vertex of Rt \ A. The graph contains
1. a directed edge to every round node t from each process node p with p ∈ It−1

1 (rt).
2. a directed edge from every round node t <

⌈√
2n
⌉

+ |A| to a round node t′ > t if
rt ∈ It′−1

1 (rt′).
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We now find a node in the rounds graph that has out-degree n, that is not a node from
A. This node will represent a process that has broadcast.

▶ Lemma 49. For any set A of processes with |A| < k, the rounds graph avoiding set A

contains at least one node of out-degree n that is not a node representing a process of A.

Proof. As in the proof of Lemma 20 we apply the pigeonhole principle on the edges, however,
this time we will ignore out-edges from nodes representing processes from A. Let us look at
round t. If t ≤

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least t. Indeed, it has
in-degree:∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ ∈ It−1

1 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1

1 (rt)}
∣∣ = t

where we used Lemma 47 for the inequality. Therefore, it has at least t − |A| in-neighbors not
in A. Similarly, if t >

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least
⌈√

2n
⌉

+ |A|.
Indeed, it has in-degree:∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣+
∣∣It−1

1 (rt)
∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣+ ∣∣{t′ : 1 ≤ t′ ≤ t − 1, rt′ /∈ It−1
1 (rt)}

∣∣
≥ 1 +

∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉

+ |A| , rt′ ∈ It−1
1 (rt)}

∣∣∣
+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ /∈ It−1
1 (rt)}

∣∣∣ =
⌈√

2n
⌉

+ |A|

where we used Lemma 47 for the first inequality. Therefore, it has at least
⌈√

2n
⌉

in-neighbors
not elements of A.

Summing the in-degrees over all the rounds, we get that the number of edges
∣∣EA

∣∣ with
no endpoint in A is at least:

∣∣EA

∣∣ ≥
⌈√

2n⌉+|A|∑
t=|A|

(t−|A|)+n×
⌈√

2n
⌉

=
⌈√

2n
⌉ (⌈√

2n
⌉

+ 1
)

2 +n
⌈√

2n
⌉

>
⌈
(1 +

√
2)n
⌉

n

But only the n − |A| nodes representing the processes and the nodes representing the
first

⌈√
2n
⌉

− 1 + |A| rounds have out-edges among those counted. The pigeonhole principle
asserts then that one of those nodes has an out-degree of at least n. ◀

▶ Lemma 50. For any set A of processes with |A| < k, there exists a process z /∈ A that has
broadcast its identifier to everyone after

⌈
(1 +

√
2)n
⌉

+ |A| rounds.

Proof. Build the rounds graph avoiding A. We know that in that graph, there is a node y

of degree at least n, that is not a process node representing A. Define z as follows: (1) If y

represents a process, let z be that process. It follows that z /∈ A. (2) If y represents a round
t, let z be the root rt, which is not in A by definition of the graph. We will show in either
case that z must have broadcast before

⌈
(1 +

√
2)n
⌉

+ |A| rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, and in both cases (1)

and (2), this means z ∈ Iti−1
1 (rti

) which is equivalent to rti
∈ Oti−1

1 (z) for every i ∈ [n]. By
Lemma 46, we thus have, for every i ∈ [n], that

∣∣Oti
1 (z)

∣∣ >
∣∣Oti−1

1 (z)
∣∣. Then:∣∣Otn

1 (z)
∣∣ >

∣∣Otn−1
1 (z)

∣∣ ≥
∣∣∣Otn−1

1 (z)
∣∣∣ >

∣∣∣Otn−1−1
1 (z)

∣∣∣ ≥ . . . ≥
∣∣Ot1

1 (z)
∣∣ >

∣∣Ot1−1
1 (z)

∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least
n, which implies that z has broadcast. ◀
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This naturally leads to an upper bound for the k-broadcasting on k-rooted networks:

▶ Theorem 51. t∗
k(Rk

n) ≤
⌈
(1 +

√
2)n
⌉

+ k − 1

Proof. By contradiction, assume that the set A of elements that have broadcast after⌈
(1 +

√
2)n
⌉

+ k − 1 rounds is smaller than k and apply Lemma 50 to find a process not
in A that has broadcast in time less than

⌈
(1 +

√
2)n
⌉

+ |A| rounds, contradicting the
assumption. ◀

5.2 The Lower Bound
We build a lower bound example based on the lower bound for broadcasting on trees. A
figure and analysis of that example can be found in the full version of the paper, which yield
the following result:

▶ Theorem 52. t∗
k(Rk

n) ≥
⌈ 3n−9k

2 + 2
⌉

6 Related Work

Broadcasting, gossiping, and other information dissemination problems have been studied
by the distributed computing community for decades already [13]. Most classic literature
on network broadcast considers a static setting, e.g., where in each round each node can
send information to one neighbor [14]. This model has also been explored in the context of
gossiping, e.g., by Fraigniaud and Lazard [11]. Kuhn, Lynch and Oshman [15] explore the
all-to-all data dissemination problem (gossiping) in an undirected dynamic network, where
processes do not know beforehand the total number of processes and must decide on that
number. Ahmadi, Kuhn, Kutten, Molla and Pandurangan [2] study the message complexity
of broadcast in an undirected dynamic setting, where the adversary pays up a cost for
changing the network. Broadcast has also been studied in dynamic communication networks
which evolve randomly, e.g., by Clementi et al. [5], and in the radio network model [10], just
to give a few examples.

A closely related yet different problem to broadcasting is the consensus problem. Our
model builds up on the heard-of model first introduced by Charron-Bost and Schiper [4],
where authors prove results for the solvability of consensus also considering oblivious message
adversaries. Among other results, they give a log n upper bound for nonsplit graphs, which
are graphs for which every pair of nodes has a common in-neighbor. This would result in
an n log n upper bound for rooted trees when combining it with the result of Charron-Bost,
Függer and Nowak [3]. Függer, Nowak, and Winkler [12] prove that the time complexity
of broadcast is a lower bound for consensus time. A general characterization of oblivious
message adversaries on which consensus is solvable, based on broadcastability, has been
presented by Coulouma, Godard and Peters in [6]. A time complexity analysis has further
been studied by Winkler, Rincon Galeana, Paz, Schmid, and Schmid [17]. Another similar
problem is agreement, considered by Santoro and Widmayer [16], where only a k-majority
should agree on a value, as opposed to everyone for consensus. Afek, Gafni, Rajsbaum,
Raynal and Travers [1] studied a generalization to consensus that is k-set consensus, where
each node has to decide on a value such that all the nodes together do not decide on more
than k different values.

In this paper, we have studied the broadcasting problem on directed dynamic networks,
with an adversary that can choose the communication network at each round among rooted
trees. Zeiner, Schwarz, and Schmid [18] give a n log n upper bound to our exact problem by
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using graph-theoretic reasoning. They also give a
⌈ 3n−1

2
⌉

− 2 lower bound by providing an
explicit example. They further show that under an adversary that can only choose rooted
trees with a fixed number of leaves or internal nodes, broadcast time is linear.

There has also been interest in a problem variant which only differs in the pool of networks
the adversary can choose a network from for each communication round. Függer, Nowak,
and Winkler [12] give an O(log log n) upper bound if the adversary can only choose nonsplit
graphs. Combined with the result of Charron-Bost, Függer, and Nowak [3] that states that
one can simulate n − 1 rounds of rooted trees with a round of a nonsplit graph, this gives the
previous O(n log log n) upper bound for broadcasting on trees. Dobrev and Vrto [8, 7] give
specific results when the adversary is restricted to hypercubic and tori graphs with some
missing edges.
Bibliographic note: an announcement of this work has been presented at ACM PODC 2022 [9].

7 Conclusion

In this paper, we considered an innovative version of the classic broadcast problem where
processes communicate across a dynamically changing network, as it often arises in practice
(e.g., due to interference). Like in the static setting, the broadcast problem on dynamic
networks is related to consensus and leader election: broadcast is a prerequisite for consensus,
and hence, the time complexity of broadcast is a lower bound for the consensus and leader
election complexity.

Our main contribution is a proof that the broadcast time is at most linear in this setting,
which is asymptotically optimal. We further presented several natural generalizations of our
model and result.

Our work opens several avenues for future research. In particular, it will be interesting to
study the broadcast time also in non-adversarial environments where graphs evolve according
to a random process (e.g., due to random node movements). It will also be interesting to
further explore the implications of our methods on the closely related consensus problem.
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