
On Flipping the Fréchet Distance
Omrit Filtser !

The Open University of Israel, Ra’anana, Israel

Mayank Goswami !

Queens College CUNY, Flushing, NY, USA

Joseph S. B. Mitchell !

Stony Brook University, NY, USA

Valentin Polishchuk !

Linköping University, Sweden

Abstract
The classical and extensively-studied Fréchet distance between two curves is defined as an inf max,
where the infimum is over all traversals of the curves, and the maximum is over all concurrent
positions of the two agents. In this article we investigate a “flipped” Fréchet measure defined by a
sup min – the supremum is over all traversals of the curves, and the minimum is over all concurrent
positions of the two agents. This measure produces a notion of “social distance” between two curves
(or general domains), where agents traverse curves while trying to stay as far apart as possible.

We first study the flipped Fréchet measure between two polygonal curves in one and two
dimensions, providing conditional lower bounds and matching algorithms. We then consider this
measure on polygons, where it denotes the minimum distance that two agents can maintain while
restricted to travel in or on the boundary of the same polygon. We investigate several variants of the
problem in this setting, for some of which we provide linear time algorithms. Finally, we consider
this measure on graphs.

We draw connections between our proposed flipped Fréchet measure and existing related work
in computational geometry, hoping that our new measure may spawn investigations akin to those
performed for the Fréchet distance, and into further interesting problems that arise.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases curves, polygons, distancing measure

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.51

Related Version Full Version: https://arxiv.org/abs/2203.04548

Funding Omrit Filtser : This work is supported by the Eric and Wendy Schmidt Fund for Strategic
Innovation, by the Council for Higher Education of Israel, and by Ben-Gurion University of the
Negev.
Mayank Goswami: This work is supported by US National Science Foundation (NSF) awards
CRII-1755791 and CCF-1910873.
Joseph S. B. Mitchell: This work is partially supported by the National Science Foundation (CCF-
2007275), the US-Israel Binational Science Foundation (BSF project 2016116), Sandia National
Labs, and DARPA (Lagrange).
Valentin Polishchuk: This work is supported by grants from the Swedish Research Council and the
Swedish Transport Administration

Acknowledgements We thank the anonymous reviewers for their many helpful comments. We thank
the many participants of the Stony Brook CG Group, where discussions about geometric social
distancing problems originated in Spring 2020, as the COVID-19 crisis expanded worldwide. We
would also like to thank Gaurish Telang for helping to solve a system of non-linear equations.

© Omrit Filtser, Mayank Goswami, Joseph S. B. Mitchell, and Valentin Polishchuk;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 51; pp. 51:1–51:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omrit.filtser@gmail.com
https://orcid.org/0000-0002-3978-1428
mailto:mayank.goswami@qc.cuny.edu
mailto:joseph.mitchell@stonybrook.edu
mailto:valentin.polishchuk@liu.se
https://doi.org/10.4230/LIPIcs.ITCS.2023.51
https://arxiv.org/abs/2203.04548
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 On Flipping the Fréchet Distance

1 Introduction

The classical Fréchet distance between two curves P and Q is defined as the minimum length
of a leash required for a person to walk their dog, with the person and the dog traversing
P and Q from start to finish, respectively. Inspired by the challenge of maintaining social
distancing among groups and individuals, we consider the question of developing a notion
opposite to the Fréchet distance, where instead of keeping the agents close (short leash), we
keep them as far apart as possible.

In this paper we propose a new measure, called the Flipped Fréchet measure, to capture
the amount of social distancing possible while traversing two curves. While Fréchet distance
is defined as an inf max, where the infimum is over all traversals of the curves, and the
maximum is over all concurrent positions of the two agents, the flipped Fréchet measure1 is
defined as a sup min – the supremum is over all traversals of the curves, and the minimum is
over all concurrent positions of the two agents. How efficiently can this measure be computed,
for curves in one or two dimensions? What if the two agents are walking on edges of a graph,
which may or may not be embedded in the plane? Such questions have been considered for
Fréchet distance, and in this paper we initiate their study for the flipped Fréchet measure.

We refer to the two agents as “Red” and “Blue” henceforth. Considering the social
distancing problem further, what if Blue is not restricted to move along some given curve;
rather, it can choose its own path? We now start arriving at a class of problems that have no
analogues in the Fréchet version. Of course, if Blue had no restrictions at all, it could just
go to infinity and thus be far from Red (on any path). It therefore makes sense to restrict
the domain for Blue, e.g. to a simple polygon P in which Red is traveling, and measure
separation using geodesic distance in P . We consider questions regarding the complexity
of calculating a strategy for Blue to stay away from Red, when Red is traveling on a given
path, which may or not be a geodesic in P .

An architect designing spaces within a building is faced with choices about the shapes of
these spaces, where one must choose, say, between two polygons P and Q where agents will
move, in hopes to maximize the potential for social distancing. In order to do so, it would
be useful to have a notion of a “social distancing width” of a polygon, that captures the
difficulty or ease with which two agents can move around in a polygon while maintaining
separation. Consider a simple polygon P where the Red agent is on a mission to follow
a path, e.g. to traverse the boundary of P , while the Blue agent moves within P (with a
starting point of Blue’s choice), in order to maximize the minimum Red-Blue distance. We
define the social distance width (SDW for short) of a polygon P to be the minimum Red-Blue
distance that can be maintained throughout the movement, maximized over all possible
movement strategies, and study algorithms to compute the SDW of a polygon.

For all of the above problems, in addition to developing algorithms for the general versions,
we also consider special scenarios which facilitate faster algorithms; for example, while our
algorithm for computing the SDW for general polygons runs in quadratic time, we show that
for skinny polygons (or a tree), one can compute the SDW in linear time.

Although this article mostly considers the above problems in the case of k = 2 agents, in
general one may be given k agents and k associated domains. Each agent is restricted to
move only within its respective domain, and at least one of the agents has some mission,
e.g., to move from a given start point to a given end point, or to traverse a given path inside
the domain. In addition, the domains may be shared or distinct, and different agents may

1 One observes that this measure is not a metric/distance as it does not satisfy the triangle inequality.

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:3

have different speeds. The goal is to find a movement strategy for all the agents, such that
the minimum pairwise distance between the agents at any time is maximized. Additionally,
one may seek to minimize the time necessary to complete one or more missions.

This new class of problems is different from the usual motion planning problems between
robots, or disjoint disks, in some fundamental aspects. Most, if not all, literature on robot
motion planning assumes robots are cooperating on some task. One then considers optimizing
objectives like makespan, or total distance travelled, etc. However, the kind of movement we
consider is far from cooperative – in fact, some agents may not care about social distancing,
while others do. Some may be “on a mission” while others are just trying to maintain a
safe distance. In addition, different agents may have different starting times and deadlines.
Furthermore, as mentioned above, one also encounters design problems, where one may want
to configure a layout of a building, a floor plan, or designate rules for traffic flow, in order to
facilitate social distancing.

Related Work. The Fréchet distance is an extensively investigated distance measure for
curves, starting with the early work of Alt and Godau [2] in ’95. There is a quadratic-time
algorithm for computing it [12, 2], and it was recently shown [5] that under the Strong
Exponential Time Hypothesis (SETH), no subquadratic algorithm exists, not even in one
dimension [6]. Moreover, under SETH, no subquadratic algorithm exists for approximating
the Fréchet distance within a factor of 3 [7].

The problem of coordinating collision-free motion of two agents traveling on polygonal
curves was considered already in ’89 by O‘Donnell and Lozano-Perez [18], in the context of
robot manipulators. Assuming some additional restrictions on the movements of the agents
(e.g. robots are not allowed to simultaneously traverse segments that are too close), they
give an O(n2 log n) algorithm for minimizing the completion time.

There is an extensive literature on related problems of motion planning in robotics.
Perhaps most closely related to our work is that of coordinated motion planning of 2 or more
disks; see [10], on nearly optimal (in terms of lengths of motions) rearrangements of multiple
unit disks and the related work of [16]. (In our problems, instead of minimizing length of
motion for given radius disks, we seek to maximize the radii.)

The problem of computing safe paths for multiple speed-bounded mobile agents that must
maintain separation standards arises in air traffic management (ATM) and Aircraft/Train
Scheduling applications. [3] studied the problem of computing a large number of “thick paths”
for multiple speed-bounded agents, from a source region to a sink region, where the thickness
of a path models the separation standard between agents, and the objectives are to obey speed
bounds, maintain separation, and maximize throughput. In the Aircraft/Train Scheduling
problem (see [10, 21, 20]), given a set of paths on which the agents travel, and a separation
parameter, the goal is to find a collision-free motion of the agents while minimizing the time
of completion. (In our problems, we are not maximizing a “throughput” or makespan; rather,
we maximize a separation standard, for a given set of agents.)

In the maximum dispersion problem, the goal is to place n (static) points within a domain
P in order to maximize the minimum distance between two points. (Optionally, one may also
seek to keep points away from the boundary of P .) An optimal solution provides maximum
social distancing for a set of static agents, who stand at the points, without moving. Constant
factor approximation algorithms are known [4, 13]. (The problem is also closely related to
geometric packing problems, which is a subfield in itself.) In robotics, the problem of motion
planning in order to achieve well dispersed agents has also been studied: move a swarm of
robots, through “doorways”, into a geometric domain, in order to achieve a set of agents
well dispersed throughout the domain. Such movements can be accomplished [17] using local
strategies that are provably competitive.

ITCS 2023

51:4 On Flipping the Fréchet Distance

In the adversarial setting, in which one or more agents is attempting to move in order to
avoid (evade) a pursuer, there is considerable work on pursuit-evasion in geometric domains
(e.g., the “lion and man” problem); see the survey [8].

Our results. In this paper, we (mostly) consider the case of k = 2, i.e., two agents, “Red”
and “Blue”, that move inside their given domains. Further, in this paper, unless stated
otherwise, we do not consider speed to be a limiting factor; e.g., when Blue moves in order
to maintain distance from Red, we assume that Blue can move at a sufficient speed.

We begin by considering the scenario in which the two domains are polygonal curves R

and B. The agents’ missions are to traverse their respective curves, from the start point to
the end point, in order to maximize the minimum distance between the agents. The Flipped
Fréchet measure between the two curves is the maximum separation that can be maintained.
In Section 2 we consider both the continuous case (agents move continuously along the edges
of their curves), and the discrete case (agents “jump” between consecutive vertices of their
curves). We first show that the Flipped Fréchet measure between two n-vertex curves in
one dimension (1D) can be computed in near-linear time. This is in sharp contrast with
continuous Fréchet distance, which has quadratic conditional (SETH-based) lower bounds
in 1D [7]. We then develop quadratic or near-quadratic time algorithms for computation
of discrete Flipped Fréchet measure in 1D and 2D, and for 2D continuous Flipped Fréchet
measure. We also complement our quadratic-time algorithms with conditional lower bounds
(conditioned on the Orthogonal vectors (OV) problem), even for approximation: we give a
quadratic conditional lower bound on approximating SDW for curves in 2D up to a factor
better than

√
5

2
√

2 , and a quadratic conditional lower bound on approximating discrete SDW
for curves in 1D, with a factor better than 2

3 .
We then restrict the domain for Blue to a simple polygon P , and measure separation

using geodesic distance in P . In Section 3 we consider several versions. In the first, the
Red agent has a mission to walk along a given path inside the polygon. The Blue agent
must stay as far as possible from Red, and the only restriction is to move inside P . This is
related to the motion planning problem in which we are given a set of disjoint bodies (e.g.,
disks), and we seek a motion plan that allows them to remain disjoint while each moves to a
destination. We give a quadratic time algorithm for this problem. We then show that under
the reasonable assumption that Red moves on a geodesic, one can compute a strategy for
Blue in near linear time.

Next, we consider a simple polygon P where the Red agent is on a mission to traverse
the boundary of P , while the Blue agent moves within P (with a starting point of Blue’s
choice), in order to maximize the minimum Red-Blue distance. We define the social distance
width (SDW for short) of a polygon P to be the minimum Red-Blue distance that can be
maintained throughout the movement, maximized over all possible movement strategies. We
develop quadratic time algorithm to compute the SDW of a polygon, but show that when
P is a skinny polygon (a tree), a strategy for Blue can be computed in linear time. Due to
space constraints, we place our results on agents walking on a graph (which may or may
not be embedded in the plane), and on defining and computing the social distance width of
geometric graphs, in the appendix.

2 Flipped Fréchet measure on polygonal curves

In this section the domains of Red and Blue are two polygonal curves R and B, respectively.
We begin by giving some basic definitions; then, we describe tools that were used in classic
algorithms for Fréchet distance and the relation to the social distancing problem for curves.

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:5

A polygonal curve P in Rd is a continuous function P : [1, n] → Rd, such that for any
integer 1 ≤ i ≤ n − 1 the restriction of P to the interval [i, i + 1] forms a line segment.
We call the points P [1], P [2], . . . , P [n] the vertices of P , and say that n is the length of P .
For any real numbers α, β ∈ [1, n], α ≤ β, we denote by P [α, β] the restriction of P to the
interval [α, β]. Then, for any integer 1 ≤ i ≤ n − 1, P [i, i + 1] is an edge of P . A continuous,
non-decreasing, surjective function f : [0, 1] → [1, n] is called a traversal of P .

Let P : [1, n] → Rd and Q : [1, m] → Rd be two polygonal curves. A traversal of P and Q

is a pair τ = (f, g), with f : [0, 1] → [1, n] a traversal of P , g : [0, 1] → [1, m] a traversal of Q.

▶ Definition 1 (Flipped Fréchet Measure). The Flipped Fréchet measure (FF) of P and Q is
FF(P, Q) = sup

τ=(f,g)
min

t∈[0,1]
∥P (f(t)) − Q(g(t))∥.

Note that the well-studied Fréchet distance between P and Q is
infτ=(f,g) maxt∈[0,1] ∥P (f(t)) − Q(g(t))∥, where τ is a traversal of P and Q.

The discrete case. When considering discrete polygonal curves, we simply define a polygonal
curve P as a sequence of n points in Rd. We denote by P [1], . . . , P [n] the vertices of P , and
for any 1 ≤ i ≤ j ≤ n let P [i, j] = (P [i], P [i + 1], . . . , P [j]) be a subcurve of P .

Consider two sequences of points P, Q of length n and m, respectively. A traversal τ of
P and Q is a sequence, (i1, j1), . . . , (it, jt), of pairs of indices such that i1 = j1 = 1, it = n,
jt = m, and for any pair (i, j) it holds that the next pair is (i, j +1), (i+1, j), or (i+1, j +1).

▶ Definition 2 (Discrete Flipped Fréchet Measure). The discrete Flipped Fréchet measure
(dFF) of P and Q is dFF(P, Q) = max

τ
min

(i,j)∈τ
∥P [i] − Q[j]∥.

Notice that unlike in the continuous case, the distances between the agents are only
calculated at the vertices of the polygonal curves.

The discrete Fréchet distance (DFD) between P and Q is minτ max(i,j)∈τ ∥P [i] − Q[j]∥,
and it can be computed in O(nm) time [12] using a simple dynamic programming algorithm.

From now on, we assume for simplicity that both curves R and B have length n; however,
our algorithms and proofs can be easily adapted to the general case of m ̸= n.

We give (Section 2.1) a near-linear algorithm to compute the continuous FF measure in 1D,
demonstrating that “flipping” the objective function makes this setting easier: for continuous
Fréchet there exist conditional quadratic lower bounds [6, 7]. We give quadratic algorithms
and then conditional lower bounds (Sections 2.2 and 2.3) for computing or approximating
other variants (1D discrete, 2D continuous and discrete) of FF measure, specifically:

a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH),
on approximating FF measure for curves in 2D, with approximation factor

√
5

2
√

2 .
a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH),
on approximating dFF measure for 1D curves, with approximation factor 2

3 .

2.1 A near linear time algorithm for FF in 1D
Consider the decision version of (continuous) FF in 1D: Given two paths, R and B, on the
x-axis, each specified by n points, we are to determine if it is possible to find a traversal of
the two paths so that Red and Blue maintain separation larger than δ during their traversals.
We assume, w.l.o.g., that R[1] < B[1]. We can also assume that B[1] − R[1] > δ, as otherwise
we can simply return NO. Notice that it suffices to consider the problem of maintaining
separation at least 0 between R and a shifted (by δ) copy of B; we seek to determine if
FF(B, R) > 0. Let bmax be the rightmost point of B and let rmin be the leftmost point of R.

ITCS 2023

51:6 On Flipping the Fréchet Distance

▶ Lemma 3. If FF(B, R) > 0, then:
(i) All of R must be to the left of bmax, and all of B must be to the right of rmin.
(ii) While Blue is at bmax, any subpath of R can be traversed by Red. While Red is at rmin,

any subpath of B can be traversed by Blue.
(iii) There exists a traversal achieving FF(B, R) > 0 such that at some point Blue is at bmax

and Red is at rmin.

Proof. (i) holds by continuity: if R has a point to the right of bmax, Red must cross Blue
before getting to that point. The claim for B is symmetric. (ii) then follows from (i).

For (iii), consider a traversal τ , and assume that Blue reaches bmax before Red reached
rmin. Let r′ be the location of Red when Blue is at bmax; r′ does not have to be a vertex of
R, but in any case r′ precedes rmin along R. Let b′ ∈ B be Blue’s location at the time Red
reaches rmin (b′ is after bmax). By (ii), while Blue is at bmax, Red can go from r′ to rmin – so
(bmax, rmin) becomes part of the traversal. Again by (ii), while Red is at rmin, Blue can go
from bmax to b′. From (b′, rmin), Blue and Red can follow τ to complete the traversal. ◀

Lemma 3 allows us to assume, w.l.o.g., that bmax and rmin are the first points of B and
R, respectively (i.e., B[1] = bmax, R[1] = rmin): for arbitrary B, R we can separately solve
the problem for the subpaths of Blue from bmax to B[n] and Red from rmin to R[n], and the
problem for the (reversed) subpaths of Blue from bmax to B[1] and Red from rmin to R[1].

Let bmin (resp., rmax) be the leftmost (resp., rightmost) x-coordinate of B (resp., R). If
bmin ≤ R[1], or rmax ≥ B[1], then by Lemma 3 (i) we get FF(B, R) = 0. In addition, if
bmin > rmax, then we see that FF(B, R) > 0, since the x-coordinates of the paths do not
overlap. We are thus left with the case in which R[1] < bmin ≤ rmax < B[1] (see Figure 1).
If B[n] > rmax, then a feasible traversal has Red remain at R[1] while Blue traverses B

from B[1] to B[n], after which Red can traverse R from R[1] to R[n]. Thus, assume that
B[n] ≤ rmax; this is the case shown in the figure.

Let B+ be the last vertex on the Blue path such that B+ > rmax. Notice that such a
vertex always exists because B[1] > rmax. Let R− be the leftmost vertex on the Red path
after it visits rmax for the last time.

R(1) B(1)bmin rmax

R−

B[n]R[n]

B+

time

x

Figure 1 Determining if SDW (B, R) > 0: viewing the traversals of the Red and Blue paths, R

and B, in space-time.

▶ Lemma 4. If FF(R, B) > 0, then there exist a traversal achieving FF(R, B) > 0 such that
at some point Blue is at B+ and Red is at R−.

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:7

Proof. Consider a traversal τ ′ where Blue traverses the path from B[1] to B+ while Red is
at R[1], then Red traverses the path from R[1] to R− while Blue is at B+. Such a traversal
is always possible because B+ is to the right of rmax. Now consider a traversal τ achieving
FF(R, B) > 0. We show how to complete τ ′ to a traversal achieving FF(R, B) > 0.

If in τ Red visits R− before Blue visits B+, then let r1 be the location of Red when Blue
is at B+. Since B+ is to the right of rmax, in τ ′ we can have Red traverse the path from R−

to r1 while Blue is at B+. Then, continue as in τ to complete the traversal.
Else, in τ Blue visits B+ before Red visits R−. Let b1 be the location of Blue when Red

is at R−, and let b2 be the location of Blue when Red is at rmax in the traversal τ . In τ ,
Blue traverses the subpath from b2 to b1 while Red traverses the subpath from rmax to R−.
Now, since R− is the leftmost point on the subpath from rmax to R−, Blue can traverse the
subpath from b2 to b1 while Red is at R−. Notice that b2 either precedes B+, or it is on the
edge incident to B+. Therefore, in τ ′ we can have Blue traverse the subpath from B+ to b1
while Red is at R−. Again we continue as in τ to complete the traversal. ◀

By the above lemma, we can simply use the following traversal: Blue traverses B from
B[1] to B+ while Red is at R[1]. Then Red traverses R from R[1] to R− while Blue is at
B+. The situation now is: Blue is at B+ and the subpath of Blue starting at B+ is entirely
to the left of B+ (because B[n] ≤ rmax); Red is at R− and the subpath of Red starting at
R− is entirely to the right of R−. Also note that R− is not the first vertex of R. We are
thus back to our initial conditions, and can apply the algorithm recursively. More formally,
consider the following recursive algorithm. Given two curves R, B such that R[1] ≤ B[1],
rmin = R[1] is the leftmost point in R and bmax = B[1] is the rightmost point in B:
1. Find bmin and rmax.
2. If bmin ≤ R[1] or rmax ≥ B[1], return NO.
3. If bmin > rmax or B[n] > rmax, return YES.
4. Else, find B+ and R−. Recurse with B+, . . . , B[n] and R−, . . . , R[n].

Running time. We begin with a preprocessing step, where we sort the vertices of R and B.
For the decision algorithm, given a value δ, we merge the sorted lists of R and B − δ in linear
time. Then, we can compute in linear time: (i) The leftmost and rightmost vertices that
follow each vertex of the curve (this can be done in a single scan of the curve). (ii) For each
vertex r of R, the last vertex of B that is located to the right of r. In each recursive step
of the algorithm, we can compute the points bmin, rmax, B+, and R−, in linear time. Thus,
the total running time for the decision procedure is O(n). For the optimization (finding the
maximum δ that allows separation), we note that the maximum separation is achieved when
Red and Blue are on vertices, because otherwise, their distance can increase by having one of
them wait on a vertex. Thus, for finding the maximum possible δ, we can do a binary search
among the O(n2) different distances, using distance selection at each step in O(n log n) time.
The distance selection algorithm stores all O(n2) distances implicitly in a sorted matrix, and
then applies the sorted matrix selection algorithm of [14] in O(n log n) time.

▶ Theorem 5. Given two polygonal curves P, Q of length n in 1D, their social distance width,
FF(P, Q), can be computed in O(n log2 n) time.

2.2 Quadratic time algorithms
In this section we describe algorithms for computing continuous and discrete FF(R, B);
the algorithms are based on similar algorithms for computing the continuous and discrete
Fréchet distances, in times O(n2 log n) and O(n2), respectively. As with Fréchet distance,
our algorithms use the notion of a free-space diagram, appropriately adapted.

ITCS 2023

51:8 On Flipping the Fréchet Distance

The free space diagram. The δ-free space diagram [2] of two curves P and Q represents
all possible traversals of P and Q with Fréchet distance at most δ. We adapt this notion to
our new setting.

Let Cij = [i, i + 1] × [j, j + 1] be a unit square in the plane, for integers 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ m − 1. Let B = [1, n] × [1, m] be the square in the plane that is the union of the
squares Cij . Given δ > 0, the δ-free space is Fδ = {(p, q) ∈ B | ∥P (p) − Q(q)∥ ≥ δ}. In other
words, it is the set of all red-blue positions for which the distance between the agents is at
least δ. A point (p, q) ∈ Fδ is a free point, and the set of non-free points (or forbidden points)
is then B \ Fδ. Note that for Fréchet distance, these definitions are reversed (“flipped”).
We call the squares Cij the cells of the free space diagram; each cell may contain both free
and forbidden points. An important property of the free space diagram is that the set of
forbidden points inside a cell Cij (i.e., Cij ∩ Fδ) is convex [2].

δ

Cij

Figure 2 Right: a free space cell Cij . For FF, the free space is white, while for Fréchet distance,
the free-space is gray. The gray region within a cell is convex. Left: the free space diagram of two
curves. The black points and dashed lines indicate critical values of type (iii), which are openings in
the free space diagram defined by two red edges and one blue edge.

Notice that a monotone path through the free space Fδ between two free points (p, q)
and (p′, q′) corresponds to a traversal of P [p, p′] and Q[q, q′]. Thus, FF(P, Q) ≥ δ if and
only if there exists a monotone path through the free space Fδ between (0, 0) and (n, n) (i.e.
(n, n) is “reachable” from (0, 0)). The Fréchet distance between P and Q can be computed
in O(n2 log n) time [2] as follows. For a given value of δ, the reachability diagram is defined
to be the set of points in Fδ reachable from (0, 0). As the set of free points in each cell is
convex, the set of “reachable” points on each of the boundary edges of a cell is a line segment.
Thus, one can construct in constant time the reachable boundary points of a cell, given the
reachable boundary points of its bottom and left neighbor cells (see Figure 2). Therefore,
computing the reachability diagram (and hence solving the decision version of the problem)
takes O(n2) time using a dynamic programming algorithm. For the optimization, there are
O(n3) critical values of δ, which are defined by (i) the distances between starting points and
endpoints of the curves, (ii) the distances between vertices of one curve and edges of the
other, and (iii) the common distance of two vertices of one curve to the intersection point of
the bisector with some edge of the other. Then, parametric search, based on sorting, can
be performed in time O((n2 + Tdec) log n), where Tdec is the running time for the decision
algorithm.

In the case of FF, we can again compute the reachability diagram in O(n2) time, as in
each cell the set of forbidden points is convex, and thus the set of “reachable” points on each
of the boundary edges of a cell is at most two line segments. The set of critical values is
similar, except that the third type can occur between three edges (see Figure 2, left). Thus,
by arguments similar to [2], we have a O(n2 log n) time algorithm for computing FF(P, Q).

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:9

▶ Theorem 6. There is an O(dn2 log n) time exact algorithm for computing the Flipped
Fréchet measure of two polygonal n-vertex curves in Rd.

For the discrete version of FF, a simple dynamic programming algorithm (similar to the
one known for discrete Fréchet distance) gives an O(n2) solution. In short, let OPT [i, j]
be the FF of P [1, i] and Q[1, j]; then, by the definition of dFF we have OPT [i, j] =
min{∥P [i] − Q[j]∥, max{OPT [i − 1, j], OPT [i, j − 1], OPT [i − 1, j − 1]}}.

▶ Theorem 7. There exists an O(dn2) time exact algorithm for computing the dFF measure
of two polygonal n-vertex curves in Rd.

2.3 Quadratic lower bounds
Bringmann and Mulzer [6] give a lower bound (conditioned on SETH) for computing the
discrete Fréchet distance between two curves in 1D, using a reduction from the Orthogonal
Vectors (OV) problem. We prove similar results below for FF in 2D and dFF in 1D.

The Orthogonal Vectors problem is defined as follows. Given two sets U = {u1 . . . uN }
and V = {v1 . . . vN }, each consisting of N vectors in {0, 1}D, decide whether there are
ui ∈ U, vj ∈ V orthogonal to each other, i.e., ui(k) · vj(k) = 0 for every k = 1, . . . , D (where
ui(k) denotes the kth coordinate of ui). Bringmann and Mulzer [6] showed that if OV has
an algorithm with running time DO(1) · N2−ε for some ε > 0, then SETH fails.

In the following, by an algorithm with approximation factor α < 1 we mean an algorithm
that outputs a traversal whose maintained separation distance is at least α times the FF,
given by an optimal traversal.

In Theorem 8 we show that for continuous FF, increasing the dimension from 1D (where
we gave a near-linear-time algorithm) to 2D likely rules out subquadratic algorithms. Then,
in Theorem 9 we show a quadratic lower bound for the discrete version in 1D.

▶ Theorem 8 (FF Lower Bound in 2D). There is no algorithm that computes the FF measure
between two polygonal curves of length n in the plane, up to an approximation factor at least√

5
2

√
2 , and runs in time O(n2−δ) time for any δ > 0, unless OV fails.

Proof. Set α =
√

5
2

√
2 ≈ 0.79. Given an instance U = {u1 . . . uN }, V = {v1 . . . vN } of OV, we

show how to construct two curves R and B of length O(N · D) in the plane, such that if
U × V contains an orthogonal pair then FF(R, B) ≥ 1, and if U × V does not contain an
orthogonal pair then FF(R, B) ≤ α. Therefore, if there exists an algorithm with running
time O(n2−ε) for computing FF of two curves of length n in the plane, then FF(R, B) can
be computed in O((DN)2−ε), which means that OV can be decided in DO(1) · N2−ε time,
and SETH fails. Moreover, if FF can be approximated up to a factor of α, then again we get
that OV can be decided in DO(1) · N2−ε time, and SETH fails. As in [6], we assume that D

is even (otherwise add a 0 coordinate to each vector).
The construction of R (resp. B) is such that for each vector ui ∈ U (resp. vj ∈ V), we

construct a vector gadget curve Ai (resp. Bj), such that if ui and vj are orthogonal then
FF(Ai, Bj) = 1, and otherwise FF(Ai, Bj) ≤ α. Then, we connect the vector gadgets into
curves R and B.

Consider the following set of points (see Figure 3):
Points on the x-axis: x = (−1.5, 0), r = (−0.75, 0), r′ = (−0.5, 0), b = (0.25, 0),
b′ = (0.5, 0)
Points on the y-axis: cu

0 = −cd
0 = (0, 0.75), cu

1 = −cd
1 = (0, 0.25), u = −d = (0, 0.5)

Octagon points: p1 = −p5 = (0.25, 0.5), p2 = −p6 = (0.5, 0.25), p3 = −p7 = (0.5, −0.25),
p4 = −p8 = (0.25, −0.5)

ITCS 2023

51:10 On Flipping the Fréchet Distance

Other points: s1 = (1, 0.5), t1 = (1, −0.5), s2 = (−0.25, −0.25), t2 = (0.25, 0.25)
Notice that all the points are located on a regular grid with side length 0.25, and that
∥s1−t2∥ = ∥t1−s2∥ = ∥cu

1 −p4∥ = ∥cu
1 −p5∥ = ∥cd

1−p1∥ = ∥cd
1−p8∥ = ∥r−cu

1 ∥ = ∥r−cd
1∥ = α.

s1

t1

x r b
r′ b′

u

d

cu0

cu1

cd1

cd0

t2

s2

p1

p2

p3

p4p5

p6

p7

p8

Figure 3 The curves R and B for the continuous FFlower bound.

For each ui ∈ U , the gadget Ai is constructed as follows:

r′ ⃝k=1,..., D
2

(
p7 ◦ p8 ◦ u ◦ cu

ui(2k−1) ◦ u ◦ p8 ◦ p7 ◦ p6 ◦ p5 ◦ d ◦ cd
ui(2k) ◦ d ◦ p5 ◦ p6

)
◦ r′ .

Similarly, for vj ∈ V , the gadget Bi is constructed as follows:

b′ ⃝k=1,..., D
2

(
p3 ◦ p4 ◦ d ◦ cd

vi(2k−1) ◦ d ◦ p4 ◦ p3 ◦ p2 ◦ p1 ◦ u ◦ cu
vi(2k) ◦ u ◦ p1 ◦ p2

)
◦ b′ .

It is easy to see that if ui, vj are orthogonal then FF(Ai, Bj) = 1, because the traversal
that uses “antipodal” points maintains distance 1 between Red and Blue. For the other
direction, we claim that if FF(Ai, Bj) > α, then ui, vj are orthogonal. Now assume that
ui(1) = 1, so R starts with r′, p7, p8, u, cu

1 . Notice that when Blue traverses the subcurve
b′, p3, p4, d, Red cannot reach cu

1 . If vj(1) = 1, then the next move of Blue is toward cd
1, and

the distance between the agents becomes at most α (if Red in on p8 while Blue is on cd
1 then

their distance is exactly α). This means that ui(1) = vj(1) = 1 is not possible. Therefore,
at least one of ui(1), vj(1) is 0. Notice that Blue will visit d for the first time before Red
visits d for the first time. Similarly, Red will visit u for the first time before Blue visits u for
the first time. Moreover, Red cannot reach r′ before Blue leaves d, and Blue cannot reach
b′ before Red leaves u. Thus, the movement of Red and Blue is synchronized in the sense
that when Red is moving from u towards d, Blue is moving from d towards u, and vice versa.
Hence, by similar (symmetric) arguments, we get that ui(k) = vj(k) = 1 is not possible for
all k = 2, . . . , D as well, and ui, vj are orthogonal.

The gadgets Ai and Bj are connected into R and B as follows:

R = x◦(0, 0)◦s2⃝i=1,...,N (r ◦ Ai)◦r◦t2◦(0, 0)◦x , B = ⃝j=1,...,N (s1 ◦ b ◦ Bj ◦ b ◦ t1) .

If ui ∈ U, vj ∈ V are orthogonal, then Blue traverses ⃝k=1,...,j−1 (s1 ◦ b ◦ Bk ◦ b ◦ t1) while
Red stays at x, then Blue moves to s1. Now Red moves from x to (0, 0), to s2, then traverses
⃝k=1,...,i−1 (r ◦ Ak), and moves to r just before Ai. Now Blue moves to b just before Bj , and
they traverse Ai and Bj in sync, keeping distance ≥ 1. Now Red moves to r while Blue moves
to b, then Blue moves to t1. While Blue is on t1, Red traverses ⃝k=i+1,...,N (r ◦ Ak)◦r′ ◦t2 ◦x.
Finally, Blue traverses ⃝k=j+1,...,N (s1 ◦ b ◦ Bk ◦ b ◦ t1) while Red is on x.

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:11

For the converse, assume that FF(R, B) > α. When Red reaches (0, 0) for the first time,
Blue must be on s1 or t1 (or on the edge between them). If Blue is on t1, then it must move
towards s1 before Red can continue to s2; moreover, when Red reaches s2 Blue can only be
strictly above the x-axis either on the edge (t1, s1) or (s1, b). Thus we can assume that when
Red is on s2, Blue is on s1 immediately before some vector gadget Bj . Now consider the
first time when Red reaches t2. At this time, Blue can be either near t1 (strictly below the
x-axis) or near cd

0. However, if Blue is near cd
0, it is not possible for the agents to continue

their movement: Blue cannot reach d and Red cannot reach (0, 0). Thus we can assume
that when Red reaches t2, Blue is near t1 and strictly below the x axis. We conclude that
between the first time that Red visited s2 and the first time that Red visited t2, Blue had
to traverse the vector gadget Bj in order to get from a point strictly above the x axis to a
point strictly below it. Before Blue starts traversing Bj , it first visits b, but when Blue is on
b, the only possible location of Red is near r (more precisely, on the edge between r and r′,
but not on r′). Notice that Red cannot be near x since it has not visited t2 yet. Now there
are two options: (1) Red is immediately before some vector gadget Ai, and thus by previous
arguments ui and vj are orthogonal, or (2) Red has finished all its vector gadgets, and it
waits on r while Blue traverses Bj . In this case, notice that since ∥r − cu

1 ∥ = ∥r − cd
1∥ = α,

Blue cannot reach any of cu
1 , cd

1 while Red is on r; thus, vj must be a 0-vector, implying ui

and vj are orthogonal. ◀

We now show that the discrete FF likely requires quardratic time, even in 1D.

▶ Theorem 9 (Discrete 1D Lower Bound). There is no O(n2−ε) time α-approximation
algorithm for dFF in 1D, for any ε > 0 and α > 2/3, unless OV fails.

Proof. Given an instance U = {u1 . . . uN }, V = {v1 . . . vN } of OV, we show how to construct
two curves R and B of length O(N · D) on the line, such that if U × V contains an
orthogonal pair then dFF (R, B) ≥ 1, and if U × V does not contain an orthogonal pair then
dFF (R, B) ≤ 2/3. Therefore, if there exists an algorithm with running time O(n2−ε) for
computing dFF of two curves of length n on the real line, then dFF (R, B) can be computed
in O((DN)2−ε), which means that OV can be decided in DO(1) · N2−ε time, and SETH fails.
Moreover, if dFF can be approximated up to a factor of 2/3, then again we get that OV can
be decided in DO(1) · N2−ε time, and SETH fails. Again as in [6] we assume that D is even.

Consider the following set of points on the line (see Figure 4): w1 = −w2 = 5/3,
x2 = −x1 = 1, ae

0 = bo
0 = −ao

0 = −be
0 = 2/3, ae

1 = bo
1 = −a0

1 = −be
1 = 1/3, s = 0.

We first construct vector gadgets. For each ui ∈ U , we create a subsequence Ai of R: for
odd (resp. even) k, the kth point in Ai is ao

ui(k) (resp. ae
ui(k)). Similarly, for vj ∈ V , we

create a subsequence Bj of B, using bs instead of as. It is easy to see that Red and Blue can
traverse Bj and Ai while maintaining distance 1 if and only if ui, vj are orthogonal (they
jump between odd and even points in sync, “opposite” each other, and at least one of them
is at “far” point, indexed with 0). Note that any such vector gadget has length D.

The gadgets Bj are connected into B as follows: B = w1 ◦ B1 ◦ w2 ◦ w1 ◦ B2 ◦ w2 ◦ · · · ◦
w1 ◦ BN ◦ w2. Let W be the sequence of D(N − 1) points that alternate between ao

0 and ae
0

starting with ao
0 (Red can traverse each of N − 1 length-D subpaths of W in sync with Blue

on any Bj). We construct R as follows: R = W ◦ x1 ◦ s ◦ A1 ◦ s ◦ A2 ◦ · · · ◦ s ◦ AN ◦ s ◦ x2 ◦ W .
The proof that OV is a Yes instance if and only if dFF (R, B) ≥ 1 is similar to that

in [6], with an important change: here, we also show that if OV is a No instance, then
dFF (R, B) ≤ 2/3. Indeed, notice that since dFF (R, B) is determined by the distance
between two vertices, one from R and one from B, we get that if dFF (R, B) > 2/3, then
necessarily dFF (R, B) ≥ 1 (as there are no two points in our construction with distance
in the range (2/3, 1)). Therefore, it is enough to show that if OV is a No instance, then
dFF (R, B) < 1.

ITCS 2023

51:12 On Flipping the Fréchet Distance

sbe0 be1 bo1 bo0
x2x1

ao0 ao1 ae1 ae0

w2 w1

W

W

A1

A2

B1

B2

0 1/3 2/3 1 5/3−1/3−2/3−1−5/3

Figure 4 For a pair of orthogonal vectors, Red and Blue jump in sync between as and bs, with at
least one of them at a “far” point (indexed with 0).

If ui ∈ U, vj ∈ V are orthogonal, then Red traverses D(N − j) points on W while Blue
stays at w1, then Blue traverses B1 . . . Bj−1 in sync with Red traversing the rest of W . Now,
while Blue stays at w1 before Bj , Red goes to x1 and traverses A1 . . . Ai−1, then goes to s

before Ai. Then, Ai, Bj are traversed in sync, Blue stays at w2 while Red completes the
traversal of Ai+1, . . . , AN and goes to x2, and finally Blue can complete the traversal of
Bj+1, . . . , BN in sync with Red traversing the second W gadget. When Blue goes to w2, Red
is able to complete the traversal of W .

For the converse, assume that dFF (R, B) ≥ 1. When Red is on x1, Blue must be to the
right of s, but if Blue is not on w1, then they cannot take the next step – so Blue must be
on w1, right before some vector gadget Bj . Immediately after leaving w1, Blue gets to bo

0 or
bo

1, implying that Red must be at ao
0 or ao

1, i.e., either in some vector gadget Ai or on the
second W (since it already passed x1). However, if it is on W , it must have gone through x2
which is too close to w1, so Red is in Ai. Now while they are on Ai and Bj , Red and Blue
must jump in sync, until one of them reaches the end point of their respective vector gadget.
Therefore, if Red did not start on the first point of Ai, then it will finish Ai and appear at s

before Blue has finished Bj . This means that Ai and Bj were traversed simultaneously, and
since dFF (R, B) ≥ 1, the respective vectors have to be orthogonal. ◀

2.4 More than 2 agents
Our algorithm for continuous FF in 1D generalizes to any number k ≥ 2 of agents, with
a running time of O(kn log n), as follows. Let A1, A2, . . . , Ak be the polygonal paths of k

agents in 1D. Given a distance value δ, our goal is to decide whether the k agents can traverse
their respective paths while maintaining distance δ from one another. Since we are on a line
and agents cannot cross paths, we only need to maintain distances for neighboring (along
the line) agents. Therefore, we can translate each Ai by −(i − 1)δ (for 2 ≤ i ≤ k), and then
our goal is to find non-crossing traversals, or corresponding paths on the space-time graph.
This can be done by fixing a path for A1, then using our algorithm for two agents to align a
corresponding path for A2, then consider the path of A2 as fixed, and align a path for A3
and so on (recall that we can have an agent walk in infinite speed).

The question of whether or not there exists an algorithm in 2D with running time fully
polynomial in k remains open (for the Fréchet distance of a set of curves, the best known
running time is roughly O(nk); see [11]).

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:13

3 Social distancing in a simple polygon

In this section we consider distancing problems in which the given domain (for both Red
and Blue) is a simple polygon. Since the two agents are moving inside the same polygon, it
is natural to consider geodesic distance (i.e., the shortest path inside the polygon) instead of
Euclidean distance to measure separation.

Consider a scenario in which Red and Blue have to traverse two polygonal paths R and
B, both inside a given polygon P , and their goal is to find a movement strategy (a traversal)
that maintains geodesic distance of at least δ between them. For the analogous Fréchet
problem (Red and Blue have to maintain geodesic distance of at most δ), Cook and Wenk [9]
presented an algorithm that runs in O(n2 log N) time, where N is the complexity of P and
n is the complexity of R and B. Their algorithm is based on the fact that the free space in a
cell of the diagram is x-monotone, y-monotone, and connected. Then the geodesic decision
problem can be solved by propagating the reachability information through a cell in constant
time, as for the Euclidean Fréchet distance. Thus, we can apply a similar “flipped” algorithm
for computing the FF(R, B) under geodesic distance in nearly quadratic time.

When both Red and Blue are restricted to traverse a given path, it seems that the
Fréchet-like nature of the problem leads to near-quadratic time algorithms. Thus, in this
section we consider the scenario where Blue has more freedom, and it is not required to
traverse a given path. We first consider the case when Red is walking on an arbitrary path
in the polygon; we show that while the naive solution takes at least cubic time, there exists
a quadratic time algorithm for this problem. We then describe two variants for which we
present linear time algorithms; the first is where Red is walking along a shortest path in the
polygon, and second is where Red is traversing the boundary of a skinny polygon (a tree).

Throughout this section, we will use SDW to denote social distancing width, to differentiate
from the Flipped Fréchet versions where both the Red and Blue curves are given as input.

3.1 Red on an arbitrary path mission
Consider the case when Red moves along some given path R in P , and Blue may wander
around in P , starting from some given point b. The free-space diagram can be adapted to the
case of a path and a polygon, by partitioning the polygon into a linear number of convex cells
(for example, a triangulation). This is a three-dimensional structure, which contains O(n2)
cells (assuming that the complexity of both R and P is O(n)). However, for maintaining
geodesic separation, building the free-space may be cumbersome, because it would involve
building the parametric shortest path map in a triangle as the source moves along a segment,
and such SPM may have Ω(n) combinatorial changes. Instead, we show that Blue may stay
on the boundary, thus reducing the problem to the standard free-space diagram between a
path and a closed curve. We will prove:

▶ Theorem 10. Let P be a polygon with n vertices, b a point in P , and R a path between
two points r and r′ in P . There exists an O(n2 log n)-time algorithm to decide whether there
exists a path B in P starting from b, such that SDW (R, B) > 1 under geodesic distance.

The proof follows from the following observation and lemma, and by using the O(n2 log n)-
time algorithm of [9] for geodesic Fréchet.

▶ Observation 11. Let p be an arbitrary point inside a polygon P , and D be the closed
geodesic disk of any radius centered at p, then D splits both P and ∂P into the same number
of connected components, and there is a natural one-to-one correspondence between them.

ITCS 2023

51:14 On Flipping the Fréchet Distance

▶ Lemma 12. Assume that the point b is on the boundary. If there exists a path B in P

starting from b, such that SDW (R, B) > 1 under geodesic distance, then there exists such a
path B′ that is entirely on the boundary of P .

Proof. Let r1 be the first point of R, and denote by C1, C2, . . . , Ck the set of connected
components of P \ Dr1 (where Dr1 is the unit geodesic disk around r1 as in Section 3.2).
Assume that b lies in C1. When Red moves along R, some of the connected components may
disappear, split, or merge with other connected components, and some new connected
components may appear. More formally, we can say that a sequence of connected components
of P \Dr (where r is moving continuously in P) belong to the same “combinatorial” connected
component, if its intersection converges to some non-empty area of P . By Observation 11, as
long as none of the above changes in the combinatorial definition of C1 occur, then Blue can
remain at some point on the boundary of C1, because as Red moves, C1 contains a single
connected piece of ∂P on which Blue can walk. Consider the first time when Red reaches a
point r2 on R such that C1 either disappear, split, or merge. If C1 disappears, then Blue
had no way to escape. If C1 splits, then by Observation 11, Blue can move on the boundary
of C1 to any of the new connected components, right before the split occurs. If C1 merges
with another connected component, say C2, then again by Observation 11, Blue can move to
the boundary of C2 via the boundary of C1. In any of this cases, Blue can move via ∂P to
the connected component in which it was if it would walk along B. ◀

▶ Remark. The above lemma applies only to geodesic distance separation – if Blue is
maintaining separation using Euclidean distance, Blue may need to go inside the polygon
(see the figure below). In this case we build the 3D free-space, but note that its complexity
is quadratic, because the complexity of each free-space cell that corresponds to a triangle of
P and a red edge is constant, and thus the free-space can be searched in quadratic time.

3.2 Red on a shortest path mission
Assume that Red moves along a geodesic path R in P (Red is on a mission and does not care
about social distancing) while Blue may wander around anywhere within P starting from a
given point b. We show that the decision problem, whether Blue can maintain (geodesic)
social distance at least 1 from Red, can be solved in linear time.

▶ Theorem 13. Let P be a polygon with n vertices, b a point in P , and R a geodesic shortest
path between two points r and r′ in P . There exists an O(n)-time algorithm to decide whether
there exists a path B in P starting from b, such that SDW (R, B) > 1 under geodesic distance.

Proof. We use |ab| to denote the geodesic distance between points a, b ∈ P . For a point
t ∈ R let Dt = {p ∈ P : |tp| ≤ 1} be the unit geodesic disk centered on t; let M = ∪t∈RDt

be the set of points within geodesic distance 1 from R (Figure 5, left). Without loss of
generality, assume b /∈ Dr (otherwise separation fails from the start). The disk Dr splits P

into connected components (a component is a maximal connected subset of P \ Dr): Blue

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:15

r

r′
Dr

b

M r

r′

bSt

Ut

t

St

Ut

p

t∗

p′
t′

b

Figure 5 Left: Dr splits P into connected components. Blue escaping Red as there exists a
safe point. Middle: the boundary between St and Ut is dashed. Blue cannot escape because its
connected component equals M \ Dr. Right: Blue escapes when Red is at t.

can freely move inside a component without intersecting Dr; in particular, if the component
P ′ ∋ b of b is not equal to M \ Dr (i.e., if P ′ \ M ≠ ∅), then Blue can move to a point in
P ′ \ M (a safe point) and maintain the social distance of 1 from Red (existence of a safe
point can be determined by tracing the boundary of M). Next, we show that the existence
of such a safe point is also necessary for Blue to maintain the distance of 1 from the geodesic
shortest path R.

Indeed, as Red follows R, Dt sweeps M ; let St ⊆ M be the points swept (at least once)
by the time Red is at t ∈ R and let Ut = M \ St be the unswept points. Since b /∈ Dr = Sr,
initially Blue is in the unswept region. Assume that there is no safe point (P ′ = M \ Dr)
and yet Blue can escape. Suppose Blue can escape from the unswept to swept when Red is
at t ∈ R (Figure 5, right). Then there exists a point p on the boundary between Ut and St

that is further than 1 from t, say |pt| = 1 + ε for some ε > 0. Since p is on the boundary
of St, at some position t∗ ∈ π before t, we had |t∗p| = 1. Since p is on the boundary of Ut,
there exists an unswept point p′ ∈ Ut within distance less than ε from p: |p′p| < ε. Finally,
since Ut = M \ St is part of M , p′ becomes swept when Red is at some point t′ ∈ π after t:
|t′p′| ≤ 1. We obtain that there are three points t∗, t, t′ along a geodesic path π and a point
p such that |t∗p| ≤ 1 < 1 + ε = |tp| and |t′p| ≤ |t′p′| + |p′p| < 1 + ε = |tp|, contradicting the
fact that the geodesic distance from a point to a geodesic path is a convex function of the
point on the path [19, Lemma 1] (this is the place where we use that R is a geodesic path: if
R is not geodesic, it is not necessary for the Blue to escape from M while Red is at r).

r

r′

R

e
u

Figure 6 SPMs from edges and vertices of π are computed separately in parts of P defined by
perpendiculars to path edges (some shown dashed). Gray and lightblue parts are charged to (the
right side of) the edge e and to vertex u of R resp.

We now show how to implement our solution to the decision problem in O(n) time.
To build the geodesic unit disk Dr we compute the shortest path map (SPM) from r (the
decomposition of P into cells such that for any point p inside a cell the shortest r-p path has

ITCS 2023

51:16 On Flipping the Fréchet Distance

the same vertex v of P as the last vertex before p) – the SPM can be built in linear time [15];
then in every cell of the SPM we determine the points of Dr: any cell is either fully inside
Dr, or fully outside, or the boundary of the disk in the cell is an arc of the radius-(1 − |rv|)
circle centered on the vertex v of P . The set M can be constructed similarly, using SPM
from R. To build the SPM, we decompose P by drawing perpendiculars to the edges of R at
every vertex of the path (see Figure 6): in any cell of the decomposition, the map can be
built separately because the same feature (a feature is a vertex or a side of an edge) of R

will be closest to points in the cell (the decomposition is essentially the Voronoi diagram of
the features). In every cell, the SPM from the feature can be built in time proportional to
the complexity of the cell (the linear-time funnel algorithm for SPM [15] works to build the
SPM from a segment too: the algorithm actually propagates shortest path information from
segments in the polygon). Since the total complexity of all cells is linear, the SPM is built in
overall linear time. After Dr and M are built, we test whether b ∈ Dr (if yes, the answer is
No) and trace the boundary of M to determine the existence of a safe point (the answer is
Yes iff such a point exists). ◀

3.3 SDW of closed curves and polygons

Consider a scenario in which the polygonal curves R and B are closed curves. Here, the
starting points of Red and Blue are not given as an input, and the goal is to decide whether
they can traverse their respective curves while maintaining distance at least δ. The analogous
Fréchet problem has been investigated by Alt and Godau [2], who presented an O(n2 log2 n)
time algorithm, and later by Schlesinger et. al. [22], who improved the running time to
O(n2 log n). Those algorithms include the construction of dynamic data structures for the
free space diagram, which is again based on the fact that the free space within a cell is
convex. Since, in our “flipped” case, the forbidden space is convex, similar data structures
can be used in order to compute the SDW of two closed curves in near quadratic time.

We can then define the Social Distance Width of two polygons P1, P2 as a special case
in which R is the boundary of P1 and B is the boundary of P2; i.e., SDW (P1, P2) =
SDW (∂P1, ∂P2). Similarly, the Social Distance Width of a (single) polygon P is SDW (P) =
SDW (∂P, ∂P). We have

▶ Theorem 14. The social distance width of a polygon P of n vertices can be decided in
O(n2) time.

The notion of SDW of a polygon is possibly related to other characteristics of polygons, such
as fatness. Intuitively, if the polygon P is fat under standard definitions, then the SDW of P

will be large. However, the exact connection is yet unclear (see Figure 7), and we leave open
the question of what exactly is the relation between the two definitions.
We now show that in special cases, the SDW can be computed in linear-time.

3.4 Social distancing in a skinny polygon (or a tree)

In this section we consider the case in which the shared domain of Red and Blue is a tree T ,
and the distance is the shortest-path distance in the tree (the distance between vertices u

and v denoted |uv|). Red moves around T in a depth-first fashion: there is no start and end
point, it keeps moving ad infinitum. In particular, if T is embedded in the plane, the motion
is the limiting case of moving around the boundary of an infinitesimally thin simple polygon,
and the distance is the geodesic distance inside the polygon.

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:17

δ

Figure 7 A δ-fat polygon P , and the free space diagram showing that SDW (P) ≪ δ.

▶ Theorem 15. Let T be a tree with n vertices, embedded in the plane, and R be a traversal
of T in a depth-first fashion. There exists an O(n)-time algorithm to find a path B in T that
maximizes SDW (R, B) under the geodesic distance.

a

b

cr r

c

ba Ta

Figure 8 Red is at c while Blue moves between a and b. Left: A star. Right: A schematic
representation of a tree.

Proof. If T is a path, then clearly SDW (R, B) = 0 because there is no way for Blue to avoid
meeting Red at the same vertex. Thus we start with the case when T is a star (Figure 8,
left). Let r be the root of the star and let |ra| ≥ |rb| ≥ |rc| be the 3 largest distances from r

to the leaves (i.e., the distance to the root from all other leaves is at most |rc|). Assume that
the leaves a, b, c are encountered in this order as Red moves around T (this assumption is
w.l.o.g., since the other orders are handled similarly); we call r and |rc| the 2-outlier center
and radius of T because allowing 2 outliers, |rc| is the smallest radius to cover T with a disk
centered at a vertex of the tree. Now, on the one hand, Blue can maintain distance |rc| from
Red: when Red is at a, Blue is at c; when Red is at b, Blue moves to a; when Red is at c,
Blue moves to b; the minimum distance of |rc| is achieved when Blue is at c. On the other
hand, the distance must be at least |rc| at some point, since Blue cannot sit at a or at b all
the time, and, while Blue moves from a to b through r, Red must be somewhere else (other
than a or b).

We now consider an arbitrary tree T . Let r ∈ T be a vertex. Removal of r disconnects T

into several trees; for a vertex v ̸= r of T let Tv ∋ v be the subtree of v. Let a be the vertex
of T furthest from r, let b be the vertex of T \ Ta furthest from r, and let c be the vertex of
T \ Ta \ Tb furthest from r (Figure 8, right). Call |rc| the 2-outlier radius of r, and assume
r∗ is the vertex whose 2-outlier radius is the largest. As in a star, Blue can maintain the
distance of |r∗c| from Red by cycling among a, b, c “one step behind” Red. Also as in a star,
a larger distance cannot be maintained because, again, Blue has to pass through r∗ on its
way from a to b, and the best moment to do so is when Red is at c. If instead Blue does
it when Red is, say, at a vertex a′ ∈ Ta, then let l ∈ Ta be the least common ancestor of a

and a′: if |la′| < |r∗c|, then Blue comes within |la′| < |r∗c| from Red; otherwise the 2-outlier
radius of l is larger than that of r∗.

ITCS 2023

51:18 On Flipping the Fréchet Distance

To find r∗ in linear time, note that ab is a diameter of T : it is a longest simple path in
T . The diameter of a tree can be computed in linear time via dynamic programming: pick
some arbitrary non-leaf node as the root, and store the depths of subtrees for each node;
the diameter is realized by the summed depth of the two deepest subtrees of a node. All
diameters of a tree intersect because if two diameters uv, u′v′ do not intersect, then there
exist vertices w ∈ uv, w′ ∈ u′v′ that connect the two diameters and the distance from each
of w, w′ to one of the endpoints of its diameter is at least half the diameter, implying that
the distance between these endpoints is strictly larger than the diameter (Figure 9, left).
Moreover, since the tree has no cycles, the intersection of all its diameters is a path π in T .
Note that the distance from a diameter endpoint to the closest point on π can only have
two values (depending on which endpoint of π is closer). We claim for any point r′ not on π,
the point r on π closest to it has a larger 2-outlier radius, and thus r∗ may be found on π.
Indeed, let Tr be the tree that contains r after removing r′, and let v be the farthest point
from r′ not in Tr. Since |r′v| is strictly smaller than the distance between r and the closest
diameter endpoint (see Figure 9, right), we get that the 2-outlier radius of r′ is at most |r′v|.
On the other hand, the 2-outlier radius of r is at least |rv|, and clearly |rv| > |r′v|.

≥ D/2

≥ D/2

u′
v′

vu

w′

w

r1
π

r2

< min{|rr1|+ d1, |rr2|+ d2}

r

r′

d2

d2

d1

d1

v

Figure 9 Left: If |uv| = |u′v′| = D, then |uww′v′| > D. Right: The distance from any diameter
endpoint to the closest endpoint of π (thick) is the d, for otherwise one of the diameters is longer
than another. The 2-outlier radius of r is d, while the 2-outlier radius of r′ cannot exceed d.

We thus compute a diameter ab (linear time) and pick the vertex with the largest 2-outlier
radius on the diameter as r∗ by checking the vertices one by one. As we check consecutive
vertices on ab, the distances |ra| and |rb| are updated trivially, and the subtrees T \ Ta \ Tb

are pairwise-disjoint for different vertices r along the diameter; thus the longest paths in all
the subtrees can be computed in total linear time. ◀

The discussion on this special case of thin polygons, leads us to investigating the more
general case of Social Distance Width of two graphs, which we discuss in Appendix A.

References
1 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal of

algorithms, 49(2):262–283, 2003.
2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995. doi:10.1142/S0218195995000064.
3 Esther M. Arkin, Joseph S. B. Mitchell, and Valentin Polishchuk. Maximum thick paths

in static and dynamic environments. Comput. Geom., 43(3):279–294, 2010. doi:10.1016/j.
comgeo.2009.02.007.

4 Christoph Baur and Sándor P. Fekete. Approximation of geometric dispersion problems.
Algorithmica, 30(3):451–470, 2001. doi:10.1007/s00453-001-0022-x.

5 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. of the 55th IEEE Annual Symposium on
Foundations of Computer Science FOCS, pages 661–670, 2014. doi:10.1109/FOCS.2014.76.

6 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
JoCG, 7(2):46–76, 2016. doi:10.20382/jocg.v7i2a4.

https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1016/j.comgeo.2009.02.007
https://doi.org/10.1016/j.comgeo.2009.02.007
https://doi.org/10.1007/s00453-001-0022-x
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.20382/jocg.v7i2a4

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:19

7 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proc. of the 30th Annual
Symposium on Discrete Algorithms SODA, pages 2887–2901. SIAM, 2019. doi:10.1137/1.
9781611975482.179.

8 Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and pursuit-evasion
in mobile robotics – A survey. Auton. Robots, 31(4):299–316, 2011. doi:10.1007/
s10514-011-9241-4.

9 Atlas Cook and Carola Wenk. Geodesic Fréchet distance inside a simple polygon. ACM
Transactions on Algorithms (TALG), 7(1):1–19, 2010.

10 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
SIAM J. Comput., 48(6):1727–1762, 2019. doi:10.1137/18M1194341.

11 Adrian Dumitrescu and Günter Rote. On the fréchet distance of a set of curves. In Proceedings
of the 16th Canadian Conference on Computational Geometry, CCCG’04, Concordia University,
Montréal, Québec, Canada, August 9-11, 2004, pages 162–165, 2004. URL: http://www.cccg.
ca/proceedings/2004/39.pdf.

12 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical report,
Citeseer, 1994.

13 Sándor P. Fekete and Henk Meijer. Maximum dispersion and geometric maximum weight
cliques. Algorithmica, 38(3):501–511, 2004. doi:10.1007/s00453-003-1074-x.

14 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM J. Comput., 13(1):14–30, 1984. doi:10.1137/0213002.

15 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126–152, 1989.

16 Shai Hirsch and Dan Halperin. Hybrid motion planning: Coordinating two discs moving
among polygonal obstacles in the plane. In Jean-Daniel Boissonnat, Joel W. Burdick, Ken
Goldberg, and Seth Hutchinson, editors, Algorithmic Foundations of Robotics V, Selected
Contributions of the Fifth International Workshop on the Algorithmic Foundations of Robotics,
WAFR 2002, Nice, France, December 15-17, 2002, volume 7 of Springer Tracts in Advanced
Robotics, pages 239–256. Springer, 2002. doi:10.1007/978-3-540-45058-0_15.

17 Tien-Ruey Hsiang, Esther M. Arkin, Michael A. Bender, Sándor P. Fekete, and Joseph
S. B. Mitchell. Algorithms for rapidly dispersing robot swarms in unknown environments.
In Jean-Daniel Boissonnat, Joel W. Burdick, Ken Goldberg, and Seth Hutchinson, editors,
Algorithmic Foundations of Robotics V, Selected Contributions of the Fifth International
Workshop on the Algorithmic Foundations of Robotics, WAFR 2002, Nice, France, December
15-17, 2002, volume 7 of Springer Tracts in Advanced Robotics, pages 77–94. Springer, 2002.
doi:10.1007/978-3-540-45058-0_6.

18 Patrick A. O’Donnell and Tomás Lozano-Pérez. Deadlock-free and collision-free coordination
of two robot manipulators. In Proceedings of the 1989 IEEE International Conference on
Robotics and Automation, Scottsdale, Arizona, USA, May 14-19, 1989, pages 484–489. IEEE
Computer Society, 1989. doi:10.1109/ROBOT.1989.100033.

19 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a simple
polygon. Discrete & Computational Geometry, 4(6):611–626, 1989.

20 Christian Scheffer. Train scheduling: Hardness and algorithms. In M. Sohel Rahman,
Kunihiko Sadakane, and Wing-Kin Sung, editors, WALCOM: Algorithms and Computation
– 14th International Conference, WALCOM 2020, Singapore, March 31 – April 2, 2020,
Proceedings, volume 12049 of Lecture Notes in Computer Science, pages 342–347. Springer,
2020. doi:10.1007/978-3-030-39881-1_30.

21 Christian Scheffer. Scheduling three trains is np-complete. In J. Mark Keil and Debajyoti
Mondal, editors, Proceedings of the 32nd Canadian Conference on Computational Geometry,
CCCG 2020, August 5-7, 2020, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
pages 87–93, 2020.

22 Michail I Schlesinger, EV Vodolazskiy, and VM Yakovenko. Similarity of closed polygonal
curves in Fréchet metric. arXiv preprint, 2014. arXiv:1409.4613.

ITCS 2023

https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1137/18M1194341
http://www.cccg.ca/proceedings/2004/39.pdf
http://www.cccg.ca/proceedings/2004/39.pdf
https://doi.org/10.1007/s00453-003-1074-x
https://doi.org/10.1137/0213002
https://doi.org/10.1007/978-3-540-45058-0_15
https://doi.org/10.1007/978-3-540-45058-0_6
https://doi.org/10.1109/ROBOT.1989.100033
https://doi.org/10.1007/978-3-030-39881-1_30
http://arxiv.org/abs/1409.4613

51:20 On Flipping the Fréchet Distance

A Social distancing on graphs

In this section we consider social distancing measures for graphs. We focus on undirected
graphs, but our results readily extend to directed graphs. A geometric graph is a connected
graph with edges that are straight line segments embedded in the plane. We consider
geometric graphs to be automatically weighted, with Euclidean edge weights.

We will call non-geometric graphs simply as abstract graphs, and unless otherwise
mentioned, we give each edge of an abstract graph a length of one. Since we are interested
in formulating meaningful distance measures, we assume that an all-pairs shortest path
preprocessing has been done on G, and pairwise distances are available in O(1) time. Let
G = (V, E), n = |V| and m = |E|. By a path of length k in an abstract graph G = (V, E)
we mean a sequence P of k vertices: P = {p1, p2, · · · , pk} ⊆ V , with edges pipi+1 ∈ E for all
1 ≤ i ≤ k − 1, and we write |P | = k. Note that we allow vertices to be repeated (that is, we
don’t distinguish between a path and a walk).

For abstract graphs, we assume that Red and Blue both move on the same graph, as there
is no ambient metric defining the distance between Red and Blue. For geometric graphs,
however, we will also consider the case when Red and Blue move on different graphs or in
the embedding space, as the distance between them is still well-defined.

A.1 Abstract Graphs
We state our result for Blue staying away from Red on an abstract graph.

▶ Theorem 16 (Blue distancing from Red, abstract). Assume Red travels on a known path R

of length k in an abstract graph G, and Blue can travel anywhere with a speed s ≥ 0 times
that of Red, for some integer s. There exists a decision algorithm for the Blue distancing
from Red-on-a-mission problem that

for s ∈ {0, 1, n − 1}, runs in time O(km),
for arbitrary 1 < s < n − 1, runs in time O(nk min(ds, n)), where d is the maximum
degree of any vertex in G.

Proof. Take k copies Gi of G, for 1 ≤ i ≤ k; let (v, i) be the vertex corresponding to vertex
v in the ith copy Gi. Construct a directed graph G̃ by connecting these copies as follows (it
may be helpful to imagine these copies “stacked” on top of each other):

For every v ∈ V and every 1 ≤ i ≤ k − 1, add a directed edge from (v, i) to (v, i + 1).
If s = 0, add no more edges. If s = 1, add an edge between the vertex (v, i) and vertex
(w, i + 1) for all neighbors w of v in G, for all (v, i), 1 ≤ i ≤ k − 1.
If 1 < s < n − 1, add an edge between between the vertex (v, i) and vertex (w, i + 1) for
all vertices w such that the distance between w and v in G is at most s, for all (v, i),
1 ≤ i ≤ k −1. Note that there are at most ds many such vertices, where d is the maximum
degree of a vertex in G.
if s = n − 1, add an edge from vertex (v, i) to all vertices in Gi+1.

Let R = {r1, r2, · · · , rk} be the path of Red. Once G̃ is constructed, delete the vertex
(ri, i) and all its neighbors from Gi if Blue is looking to stay distance at least one away from
Red. If Blue instead aims to stay δ away, delete the δ neighborhood of these vertices from
each copy. This results in a graph G′. If Blue’s starting position b is given, run BFS/DFS
to see if b can reach any vertex in Gk, and return yes or no accordingly. If blue can start
from any vertex, then check if any vertex in G1 can reach some vertex in Gk, and answer
yes or no accordingly. The runtime depends on the complexity of G̃, which is O(mk) if
s ∈ {0, 1, n − 1}, and O(nk min(ds, n)) otherwise, which completes the proof. ◀

O. Filtser, M. Goswami, J. S. B. Mitchell, and V. Polishchuk 51:21

A.2 Geometric Graphs
Now we consider geometric graphs. Let R : [0, ℓ] → R2 be a polygonal curve in R2, consisting
of ℓ line segments, with the ith line segment Ri = R|[i−1,i] where 1 ≤ i ≤ ℓ. We also assume
that each segment Ri is parameterized naturally by R(i + λ) = (1 − λ)R(i) + λR(i + 1). The
curve R is assumed to be known: this is how Red is traveling. On the other hand, we are
also given a geometric graph G in which Blue is restricted to travel, and the problem is to
determine if there is a path P ∈ G (a path in G is the polygonal curve formed by the edges
between the start and end points of P), such that SDW (R, P) ≥ δ, where the SDW between
R and P is defined as in the continuous SDW between polygonal curves in Section 2. Note
that by adopting this definition we are considering the Euclidean distance between Red and
Blue: if one instead considers geodesic distance, Red will also need to be restricted to travel
in G. We remark on this setting later.

▶ Theorem 17 (Blue distancing from Red, geometric). The decision problem, given R (the
path of Red) and G (the graph of Blue), and a distance δ, can be solved in time O(km),
where k is the length of R (number of vertices) and m is the number of edges in G.

Proof. We first define the free space surface for our problem. Consider an edge ei,j =
(vi, vj) ∈ E, and let F i,j

δ denote the δ-free space of ei,j and R (note that ei,j : [0, 1] → R2

is a polygonal curve of length 1). Analogous to [1], we glue the corresponding free-space
diagrams of any two edges in E that share a common vertex, along the boundary of the
diagram that corresponds to this vertex. Doing so for all edges ei,j ∈ E yields the free space
surface S.

As in [1], we get that there exists a path P in G with SDW (R, P) ≥ δ if and only if there
exists a y-monotone path through the δ-free space in S between a point (0, s) in some F i,j

δ ,
to a point (k, t) in some F i′,j′

δ . Such a path corresponds to a continuous surjective traversal
of R from R(0) to R(k), and some continuous non-surjective traversal P of G that starts on
a point s on the edge ei,j and ends on a point t on ei′,j′ . By similar arguments, such a path
can be found in O(km) time by computing the reachability diagram as in [2]. ◀

SDW of a Graph. We now move to defining the social distance width of a graph that we
briefly mentioned in Section A of the appendix. A curve on a geometric graph corresponding
to a surjective (non-surjective) map will be called a traversal (partial traversal) of the graph.
We note that traversals may need to backtrack, and we allow partial traversals to do so too.

Define, for two geometric graphs H and G, SDW (H, G) = suph,g mint∈[0,1] d(h(t), g(t)),
where h is a traversal of H and g is a partial traversal of G. The setting is that Red is going
about its business on H, and must traverse it completely in some order, while Blue is only
trying to stay away, and is restricted to be on G. Finally, we define for a graph G, its social
distance width, as SDW (G) = SDW (G, G) where again, we are free to choose either the
Euclidean or the geodesic version.

▶ Theorem 18. For two geometric graphs H and G, the Euclidean SDW (H, G) can be
computed in time O(mhmg), where mh (resp. mg) denotes the number of edges in the graph
H (resp. G).

Proof. It is enough to show how to compute SDW (H, G); SDW (G) is then obtained by
putting H = G. To this end, we construct the free space surface in a manner similar to
that of the Red-on-a-mission case described previously. For every edge e = (u, v) ∈ H and
f = (x, y) ∈ G, we construct a free space cell Ce,f , which can be thought of as a subset of
[0, 1]2. For edges e and e′ sharing a vertex v, we glue Ce,f and Ce′,f along their right and

ITCS 2023

51:22 On Flipping the Fréchet Distance

left edges, respectively, which correspond to Cv,f . In this way we obtain a cell complex in
three dimensions, with faces corresponding to cells Ce,f , edges corresponding to Cu,f (or
Cv,f , Ce,x, or Ce,y), and vertices corresponding to Cu,x, etc. The rest of the proof follows
the lines of [1]. ◀

The above result shows that when d denotes the Euclidean distance, SDW (H, G) can be
computed in time O(mhmg). The following observation shows that even the geodesic case
behaves nicely, as the free space is convex.

▶ Lemma 19. For any L > 0, the free space (defined to be the points for which the geodesic
distance is at least L) inside a cell of the free-space diagram is a convex polygon.

Proof. Consider 2 edges, e = (v1, v2) and f = (u1, u2) in an embedded PSLG (planar straight
line graph), with coordinates x on e such that x(v1) = 0, y on f such that y(u1) = 0.

Let d1, d2, d3 and d4 be the distances between v1u2, v1u1, v2u2 and v2u1, respectively.
Then, the geodesic distance between a point at position x on e and a point at position y on
f is simply

d(x, y) = min(x + d2 + y, x + d1 + |f | − y, |e| − x + d4 + y, |e| − x + d3 + |f | − y),

which is a minimum of four functions that are linear in (x, y). Thus, d(x, y) is concave,
piecewise-linear, and the locus of points (x, y) for which d(x, y) ≥ L is a convex polygon, for
any L. ◀

As a result, we obtain an algorithm with the same running time for geodesic distance.

	1 Introduction
	2 Flipped Fréchet measure on polygonal curves
	2.1 A near linear time algorithm for FF in 1D
	2.2 Quadratic time algorithms
	2.3 Quadratic lower bounds
	2.4 More than 2 agents

	3 Social distancing in a simple polygon
	3.1 Red on an arbitrary path mission
	3.2 Red on a shortest path mission
	3.3 SDW of closed curves and polygons
	3.4 Social distancing in a skinny polygon (or a tree)

	A Social distancing on graphs
	A.1 Abstract Graphs
	A.2 Geometric Graphs

