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Abstract

A problem is downward self-reducible if it can be solved efficiently given an oracle that returns
solutions for strictly smaller instances. In the decisional landscape, downward self-reducibility is well
studied and it is known that all downward self-reducible problems are in PSPACE. In this paper,
we initiate the study of downward self-reducible search problems which are guaranteed to have a
solution – that is, the downward self-reducible problems in TFNP. We show that most natural
PLS-complete problems are downward self-reducible and any downward self-reducible problem in
TFNP is contained in PLS. Furthermore, if the downward self-reducible problem is in TFUP (i.e.
it has a unique solution), then it is actually contained in UEOPL, a subclass of CLS. This implies
that if integer factoring is downward self-reducible then it is in fact in UEOPL, suggesting that no
efficient factoring algorithm exists using the factorization of smaller numbers.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases downward self-reducibility, TFNP, TFUP, factoring, PLS, CLS

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.67

Related Version arXiv Version: https://arxiv.org/abs/2209.10509

Funding Prahladh Harsha: Research supported by the Department of Atomic Energy, Government
of India, under project 12-R&D-TFR-5.01-0500.
Daniel Mitropolsky: Supported in part by the Columbia-IBM center for Blockchain and Data
Transparency, by LexisNexis Risk Solutions, and by European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019547).
Alon Rosen: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement No. 101019547) and Cariplo
CRYPTONOMEX grant.

Acknowledgements This work was initiated when the first and second authors were visiting the
third author at Bocconi University and we are thankful to Boccconi University for their hospitality.
We thank Pavel Hubácek, Eylon Yogev, and Omer Paneth for their comments on an earlier draft of
this paper. We also thank the anonymous referees for several useful comments and informing us
of End-Of-Potential-Line and UniqueEOPL, the complete problems for the classes CLS and
UEOPL respectively, which simplified certain parts of our proof.

© Prahladh Harsha, Daniel Mitropolsky, and Alon Rosen;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 67; pp. 67:1–67:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prahladh@tifr.res.in
https://www.tifr.res.in/~prahladh/
https://orcid.org/0000-0002-2739-5642
mailto:mitropolsky@cs.columbia.edu
https://dmitropolsky.github.io/
mailto:alon.rosen@unibocconi.it
https://www.alonrosen.net/
https://orcid.org/0000-0002-3021-7150
https://doi.org/10.4230/LIPIcs.ITCS.2023.67
https://arxiv.org/abs/2209.10509
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


67:2 Downward Self-Reducibility in TFNP

1 Introduction

Perhaps the most surprising thing
about Self-Reducibility is its longevity.

Eric Allender

Self-reducibility (sometimes also referred to as auto-reducibility) asks the question if a
problem instance is easy to solve if one can solve other instances of the problem easily. More
precisely, a computational problem is said to be self-reducible if there exists an efficient
oracle machine that on input an instance of the problem solves it by making queries to
an oracle that solves the same problem, with the significant restriction that it cannout
query the oracle on the given instance. First introduced in the context of computability by
Trakhtenbrot [24] more than five decades ago, self-reducibility has proved to be immensely
useful in computational complexity theory, especially in the study of decision problems.
Various notions of self-reducibility have been studied (for a detailed survey on self-reducibility,
the reader is referred to Balcázar’s systematic study [3], Selke’s comprehensive survey [23]
and Allender’s survey [2]).

Downward self-reducibility, the key notion studied in this paper, refers to the kind of
self-reducibility wherein the oracle machine is allowed to query the oracle only on instances
strictly smaller than the given instance. Satisfiability, the prototype NP-complete problem
as well as several other related NP-complete problems can be easily shown to be downward
self-reducible. This simple observation led to plethora of search-to-decision reductions for
NP-complete problems. All NP-complete problems are self-reducible and many natural
NP-complete problems are also downward self-reducible. Furthermore, it is known that every
downward self-reducible problem is contained in PSPACE (folklore). Another notion of
self-reducibility that is extremely well-studied is random self-reducibility; wherein the oracle
machine (which is randomized in this case) is only allowed to query the oracle on random
instances of the problem, under a natural distribution on the input instance. There are
problems in PSPACE which are known to be both downward self-reducible as well as random
self-reducible, in particular permanent, one of the #P-complete problems. The downward
and random self-reducibility of the permanent and other PSPACE-complete problems led
to efficient interactive proofs for PSPACE.

Almost all the study of downward self-reducibility, to date, has been focused in the
decisional landscape. In this work, we initiate the study of downward self-reducibility for
search problems which are guaranteed to have a solution, that is problems in TFNP. This
is motivated by the oft asked, but yet unresolved, question regarding integer factoring: is
factoring an integer any easier if we know how to factor all smaller integers? Or equivalently,
is factoring downward self-reducible?

1.1 Our results
Our focus will be on the class of search problems for which there is guaranteed to be a
solution, more concisely referred to as TFNP. Within TFNP, there are several sub-classes
of search problems such as PLS, PPAD, PPP, PPA, CLS, for which the totality – the
fact that every instance has an efficiently verifiable solution – arises from some underlying
combinatorial principle. These problems are typically defined in terms of natural complete
problems. For instance, the class PLS, which is a subclass of TFNP, containing problems
where totality is guaranteed by a “local-search” principle, is characterized by its complete
problems ITER and Sink-of-DAG. Our first result shows that several of these natural
complete problems for PLS are in fact downward self-reducible.



P. Harsha, D. Mitropolsky, and A. Rosen 67:3

▶ Theorem 1.1. ITER, Sink-of-DAG are downward self-reducible.

This result is similar to the corresponding situation for NP and PSPACE. Most of
the naturally occuring NP-complete and PSPACE-complete problems are downward self-
reducible. It is open if all NP-complete or PSPACE-complete problems are downward
self-reducible. The situation is similar for PLS: it is open if every PLS-complete problem is
downward self-reducible.

Given the above result, one may ask if there are problems outside PLS in TFNP which
are downward self-reducible. Our next result rules this out.

▶ Theorem 1.2. Every downward self-reducible problem in TFNP is in PLS.

That is, just as PSPACE is the ceiling for downward self-reducible problems in the
decisional world, PLS contains all downward self-reducible problems in TFNP. An immediate
corollary of these two results is that a downward self-reducible problem in TFNP is hard iff
a problem in PLS is hard.

We then ask if we can further characterize the downward self-reducible problems in
TFNP: what about search problems which are guaranteed to have an unique solution, more
concisely denoted as TFUP. In this case, we show that the above containment of d.s.r
problems in TFNP in the class PLS can be strengthened if the search problem is guaranteed
to have an unique solution: the problem then collapses to UEOPL, a subclass of CLS (itself
a sub-class of PLS), which is one of the lowest subclasses known in the TFNP hierarchy.

▶ Theorem 1.3. Every downward self-reducible problem in TFUP is in UEOPL.

We now return to the question on downward self-reducibility of integer factoring. Let
Factor denote the problem of finding a non-trivial factor of the given number if the number
is composite or outputting “prime” if the number is prime and AllFactors be the problem
of listing all the non-trivial factors of a given number if it is composite or outputting “prime”
if the number is prime. Clearly, AllFactors is in TFUP. It is not hard to check that
AllFactors is downward self-reducible iff Factor downward self-reducible. Combining this
with the above result, we get that factoring collapses to UEOPL if factoring is downward-self
reducible. This result can be viewed as evidence against the downward self-reducibility of
factoring.

▶ Corollary 1.4. If Factor or AllFactors is downward self-reducible, then Factor and
AllFactors ∈ UEOPL.

1.2 Related work
The class TFNP was introduced by Meggido and Papadmitriou [20]. In 1994, Papadimitriou
initated the study of syntactic subclasses of TFNP, i.e., search problems where totality is
guaranteed by combinatorial principles, including PPAD [22].

In the original 1990 paper, Meggido and Papadimitriou proved that if TFNP contains an
NP-hard problem, then the polynomial hierarchy collapses to first level, i.e. NP = co-NP.
Since this is generally believed not to be true, TFNP has emerged as an important potential
source of “intermediate” problems – that is, problems that are not in P but not NP-complete.
Since our work gives a new characterization of PLS-hardness, it is related to work that shows
PLS-hardness from cryptographic assumptions, such as in [6, 14, 17]. In addition to hardness
from cryptographic assumptions, Bitansky and Gerichter recently showed unconditional
hardness of PLS relative to random oracles, as well as hardness of PLS from incrementally
verifiable computation (though an instantiation of this is given through cryptographic
assumptions) [5].

ITCS 2023
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The connection between factoring and TFNP has been studied by Buresh-Oppenheim [7]
and later by Jerabek [18]. Their work shows that factoring is reducible to PPA ∩ PPP.
It is known that PPAD ⊆ PPA ∩ PPP, but whether factoring is in PPAD is an open
problem. This paper makes progress in the study of factoring and TFNP by showing that if
a downward self-reduction for factoring exists, factoring is not only in PPAD but also in
CLS. CLS was introduced by Daskalakis and Papadimitriou in 2011 [10], and in a recent
breakthrough result, shown to be exactly the intersection PPAD ∩ PLS [12]. Recently,
it was also shown that CLS is hard relative to a random oracle but with the additional
assumption of #SAT hardness [8]. More recently, in concurrent and independent work to
ours, it was shown that UEOPL (and hence CLS) hardness can be based on any downward
self-reducible problem family that additionally satisfied a randomized batching property, and
for which the Fiat-Shamir heuristic protocol is unambiguously sound [4]. This complements
our results in interesting ways; we base hardness of UEOPL on any problem in unique
TFNP that is d.s.r., while theirs is based on any problem that is d.s.r. (not necessarily
total) but requires an additional batching property and an assumption about the Fiat-Shamir
heuristic for interactive protocols for that problem. The reductions in Theorems 1.1 and 1.2
are reminiscent of the reductions in [9] and [11] in their reliance on downward self-reducibility.
The major differences between these works and our work are (i) these results work with
specific d.s.r. problems (viz., sumcheck of low-degree polynomials and iterated squaring)
while we work with any d.s.r. problem in TFNP; and (ii) these results rely on problems
“outside” of NP while we rely on problems in TFNP. This allows us to do away with
non-interactive proofs/arguments that the aforementioned works rely on (since a solution of
a TFNP problem is itself a proof) and generalise/abstract out the assumption (i).

Organization

The rest of this paper is organized as follows. We first begin with some preliminaries in
Section 2 where we recall the definitions of various subclasses of problems in TFNP and
the notion of downward self-reducibility. In Section 3, we show that some of the classical
PLS-complete problems such as ITER, Sink-of-Dag are downward self-reducible, thus
proving Theorem 1.1. Next, in Section 4, we show that every downward self-reducible problem
in TFNP is contained in PLS, thus proving Theorem 1.2. In Section 5, we observe that if
the search problem is in TFUP, then the reduction in Section 4 can be strengthened to show
that the problem is contained in CLS (thus, proving Theorem 1.3). This immediately yields
Corollary 1.4 on the consequence of the downward self-reducibility of factoring. We finally
conclude with some closing thoughts in Section 6.

2 Preliminaries

▶ Notation. Throughout this paper || denotes concatenation of strings. We impose an
ordering on strings in {0, 1}n lexicographically, e.g. for x = 1011 and y = 1001, x > y.
Sometimes we will write [T ] to represent the subset of strings {0, 1}⌈log(T )⌉ that are at most
T as binary numbers.

2.1 Search Problems
We begin by recalling the definitions of search problems, TFNP, and its subclasses.

▶ Definition 2.1 (Search problem). A search problem is a relation R ⊂ {0, 1}∗ × {0, 1}∗. We
will variously write xRy, (x, y) ∈ R and R(x, y) = 1 to mean that (x, y) is in the relation
R, or equivalently that y is a solution to x in the search problem R. A Turing Machine or
algorithm M solves R if for any input x, M(x) halts with a string y on the output tape such
that (x, y) ∈ R.
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▶ Definition 2.2 (NP search problem). A search problem R is an NP search problem if (1) there
exists a polynomial p(·) such that for every x ∈ {0, 1}∗, the set Yx = {y ∈ {0, 1}∗ : (x, y) ∈
R} ⊆ {0, 1}p(n) and (2) there exists a polynomial time Turing Machine M such that for
all pairs of strings x, y, M(x, y) = 1 ⇐⇒ (x, y) ∈ R. The class of NP search problems is
denoted FNP.

▶ Definition 2.3 (TFNP). A search problem R is total if for every x ∈ {0, 1}∗, there exists
at least one y such that (x, y) ∈ R. The class of total NP search problems is called TFNP.

2.2 Local Search and Continuous Local Search
The study of total complexity is primarily interested in problems where totality – the fact
that for any input there is a solution (that can be efficiently verified) – is the result of
some combinatorial principle. A fundamental subclass of this kind is PLS, which intuitively
captures problems whose totality is guaranteed by a “local search”-like principle (that is,
the principle that if applying some efficient step increases an objective but the objective is
bounded, a local optimum must exist).

▶ Definition 2.4 (Sink-of-DAG). Given a successor circuit S : {0, 1}n → {0, 1}n such
that S(0n) ̸= 0n, and a valuation circuit V : {0, 1}n → [2m − 1] find v ∈ {0, 1}n such that
S(v) ̸= v but S(S(v)) = S(v) (a sink), or V (S(v)) ≤ V (v).

It is not hard to show that Sink-of-DAG ∈ TFNP: since the range of V is finite,
successively applying S must result in a sink of S, or a local maximum of V (note that
exponentially many applications of S may be required to find this solution, so we cannot say
that PLS is solvable in polynomial time). Any problem that is polynomial-time reducible to
Sink-of-DAG would also be in TFNP.

▶ Definition 2.5 (PLS [19]). The class PLS, for polynomial local search, consists of all
search problems in TFNP that are polynomial-time reducible to Sink-of-DAG.

In this paper, we will be interested in several other complete problems in PLS.

▶ Definition 2.6 (ITER [21]). Given a successor circuit S : {0, 1}n → {0, 1}n such that
S(0n) > 0n, find v ∈ {0, 1}n such that S(v) > v, but S(S(v)) ≤ S(v).

▶ Definition 2.7. ITER-with-source: Given a successor circuit S : {0, 1}n → {0, 1}n

and a source s ∈ {0, 1}n such that S(s) > s, find v ∈ {0, 1}n such that S(v) > v, but
S(S(v)) ≤ S(v).

Analogously to ITER versus ITER-with-source, one can define Sink-of-DAG-with-
source, where instead of the guarantee that S(0n) ̸= 0n, we are given an additional input
s ∈ {0, 1}n such that S(s) ̸= s. The following is folklore:

▶ Theorem 2.8. All of ITER, ITER-with-source, Sink-of-DAG, Sink-of-DAG-with-
source are PLS-complete.

Proof.
ITER → Sink-of-DAG: Given an instance S of ITER, let S′ = S and V ′ = S; a
solution v of (S′, V ′) is trivially a solution of S.
Sink-of-DAG → ITER: Given an instance (S, V ) of Sink-of-DAG, let S′ : {0, 1}2n →
{0, 1}2n be the circuit computing S′(V (x)||x)) = V (S(x))||S(x) and S′(y||x) = y||x
if y ̸= V (x), and source s′ = V (0n)||0n. A solution v of S′ must satisfy that either
S(S(v)) = S(v), or V (S(S(v)) ≤ S(v), so either v or S(v) is a solution to S.

ITCS 2023
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X → X-with-source, where X ∈ {ITER, Sink-of-DAG}: to specify the additional
argument s, let s = 0n.
X-with-source → X, where X ∈ {ITER, Sink-of-DAG}: replace the successor
circuit S of either problem with S′ that computes S′(0n) = s and S′(x) = x for x ̸= 0n. ◀

Another fundamental class in the study of total complexity is PPAD, which similar to
PLS is a sink-(or source)-finding problem, but where the existence of sinks is not guaranteed
by a consistently increasing valuation, but rather by the presence of a predecessor circuit. In
both PLS and PPAD, a principle (either the increasing valuation or the predecessor circuit)
ensures that loops are not possible along a path.

▶ Definition 2.9 (End-of-line). In End-of-Line (or EOL) problem, we are given a
successor circuit S : {0, 1}n → {0, 1}n and a predecessor circuit P : {0, 1}n → {0, 1}n such
that S(0n) ̸= 0n and P (0n) = 0n and we need to output either another source node (v s.t.
S(v) ̸= v and P (v) = v) or a sink node (v s.t. P (v) ̸= v but S(v) = v).

▶ Definition 2.10 (PPAD [22]). The class PPAD, for polynomial parity arguments on
directed graphs, consists of all search problems in TFNP that are polynomial-time reducible
to End-of-Line.

In this paper we will be interested in the class CLS, which was originally defined with
respect to a continuous analogue of PLS and PPAD. However, it has recently been shown to
have a much simpler complete problem which is the natural unification of PLS and PPAD:

▶ Definition 2.11 (End-of-Potential-Line [13]). Given a successor circuit S : {0, 1}n →
{0, 1}n and a predecessor circuit P : {0, 1}n → {0, 1}n such that S(0n) ̸= 0n and P (0n) = 0n,
as well as a valuation circuit V : {0, 1}n → [2m − 1], find either

a “PPAD-like solution”: v s.t. S(v) ̸= v = P (v) or P (v) ̸= v = S(v)
a “PLS-like solution”: v s.t. S(v) ̸= v, P (S(v)) = v and V (S(v)) ≤ V (v).

▶ Definition 2.12 (CLS, defined in [10], completeness of End-of-Potential-Line proved
in [15]). The class CLS, for continuous local search, is the class of total search problems
polynomial time reducible to End-Of-Potential-Line.

A recent result surprised the TFNP community:

▶ Theorem 2.13 ([12]). CLS = PLS ∩PPAD.

We think of End-of-Line and End-of-Potential-Line instances as defining an ordered
“line” consisting of the vertices 0n, S(0n), S2(0n), . . .. If there were exactly one “line” in the
instance, the solution to these problems would be unique. We will be interested in a version
of End-of-Potential-Line that allows an additional kind of solution, namely one which
demonstrates the existence of at least two lines.

▶ Definition 2.14 (UniqueEOPL [13]). Given an instance (S, P, V ) of End-of-Potential-
Line with vertex set {0, 1}n, find a solution to the original problem or two points u ̸= v ∈
{0, 1}n such that x ̸= S(x), y ̸= S(y) and either V (x) = V (y) or V (x) < V (y) < V (S(x)).

Observe that either V (x) = V (y) or V (x) < V (y) < V (S(x)) in the new type of solution
above implies the existence of at least two “lines” in the graph represented by (S, P, V ). This
problem leads to the definition of a natural subclass of CLS:

▶ Definition 2.15 (UEOPL [13]). The class UEOPL is the class of total search problems
polynomial time reducible to UniqueEOPL.

▶ Proposition 2.16 ([13]). UEOPL is a subclass of CLS.
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2.3 Downward-self-reducibility
▶ Definition 2.17. A search problem R is downward self-reducible (d.s.r) if there is a
polynomial time oracle algorithm for R that on input x ∈ {0, 1}n makes queries to an
R-oracle of size strictly less than n = |x|.

In this definition of downward self-reducible, the number of bits of the input must
be smaller in oracle calls. Indeed, both TQBF and SAT are d.s.r. in this sense by the
usual trick of instantiating the first quantified variable x1, and simplifying the resulting
Boolean expression to remove x1 entirely. However, there is a related notion of downward
self-reducibility which can be defined to certain classes of structured problems or languages,
where the number of variables of the instance decreases in oracle calls, even if the number of
bits of the sub-instances does not decrease. A circuit problem is one where inputs are always
circuits C : {0, 1}n → {0, 1}m under some fixed representation of circuits, and solutions are
inputs to the circuit of the form s ∈ {0, 1}n.

▶ Definition 2.18. A circuit problem is circuit-d.s.r. if there is a polynomial time oracle
algorithm for R that on input C : {0, 1}n → {0, 1}m makes queries to an R-oracle on circuits
with ν ≤ n input bits, and µ ≤ m output bits, and ν + µ < n + m (at least one of ν or µ is
smaller than n or m respectively).

Throughout the rest of the paper we will only consider circuit problems where the size of
the input circuit |C| is at least n and at most polynomial in n and m; this way an algorithm’s
complexity is equivalent as a function of the number of inputs and outputs or of the actual
input size (that is, |C|).

▶ Definition 2.19. We say that a circuit problem is circuit-d.s.r. with polynomial-blowup if
it is circuit d.s.r and furthermore on input C with n + m inputs and outputs, it makes oracle
queries on circuits of size at most |C|+ poly(nm).

The reader might immediately ask: what is the relation between these notions of self-
reducibility? It might seem one is a weaker version of the other, but this does not seem to
be the case. In fact, the authors initially believed this was indeed the case, but despite this
intuition, attempts at proving it failed! For circuit problems in TFNP, it would be interesting
if there any connection between these two different notion of downward self-reducibility.

3 Downward self-reducibility of PLS-complete problems

In this section, we initiate the study of downward self-reducibility in TFNP by showing that
of the four (4) canonical PLS-complete problems, three (3) are circuit-d.s.r. and one is both
circuit-d.s.r. and d.s.r. Showing that a circuit problem is d.s.r. is trickier, as it requires not
only reducing the input and output bits but also shrinking the entire circuit representation.

▶ Theorem 3.1. ITER-with-source is d.s.r. and circuit-d.s.r. with polynomial blowup.

The following definition will be useful for the proof of Theorem 3.1:

▶ Definition 3.2. Given an (acyclic) circuit C : {0, 1}n → {0, 1}m, the input restriction of
C on input bit i ∈ [n] to value b ∈ {0, 1}, denoted Ci→b, is the circuit obtained by setting the
input i to b, and then removing input bit i by “propagating” its value through the circuit (the
exact process is given following this definition). Similarly, the output restriction of C formed
by excluding output bit j ∈ [m], denoted C\j, is defined by removing the j-th output bit and
propagating the effect throughout the circuit.

ITCS 2023
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Propagating a restriction is intuitive, but the details are given for completeness. For an
input restriction Ci→b, initially, input bit i is replaced by the constant value b. In polynomial
time the circuit can be partitioned into layers 1, . . . , L such that a gate in later ℓ has inputs
in layers ℓ′ < ℓ and layer 1 are the input bits. For each layer ℓ = 2, . . . , L, we modify every
gate G in layer ℓ that has as at least one input that was replaced by a constant in an earlier
layer:

if G = NOT and its input was replaced with constant β, replace G with constant ¬β;
if G ∈ {AND,OR} and both input bits ι, κ were replaced with constants, replace G with
the value (ι G κ);
if G = AND and only input bit ι was set to constant β, if β = 0 replace G by 0, and if
β = 1 remove G by replacing any outgoing wires from G into layers ℓ′ > ℓ with outgoing
wires from κ;
if G = OR and only input bit ι was set to constant β, if β = 1 replace G by 1, and if
β = 0 remove G by replacing any outgoing wires from G into layers ℓ′ > ℓ with outgoing
wires from κ.

For an output restriction C\j we start by removing output bit j, and then for each layer
ℓ ∈ {L−1, . . . , 1}, remove any gate which feeds only into gates that were removed in previous
layers. Both input and output restrictions can be constructed in polynomial time. Both
kinds of restriction have a smaller circuit representation in any reasonable representation of
circuits1, that is, |Ci→b| < |C| and |C\j | < |C|.

Proof of Theorem 3.1. The key observation is that we can first query a restriction of S to
the first half of inputs (that is, those beginning with a 0) and either obtain a sink, or else a
string whose successor is in the second half of inputs (those beginning with 1). With this
new source, we can reduce the problem to finding a sink in the second half of inputs.

Concretely, given an instance (S, s) such that S : {0, 1}n → {0, 1}n and S(s) > s, define
S0 = (S1→0)\1 and S1 = (S1→1)\1, i.e., the input restriction with the first bit set to 0
or 1 respectively, and the output restriction obtained by excluding the first output bit
1. These restrictions can be constructed efficiently and are necessarily smaller in total
representation than S, and S0(x) = S(0||x)1:n−1, S1(x) = S(1||x)1:n−1 where the subscript
denotes returning that range of bits.

Now, if s > 2n−1, then (S1, s1:n−1) defines a valid smaller instance of ITER-with-
source and given solution w to (S1, s1:n−1), v = 1||w is a solution to (S, s). Otherwise,
assuming s < 2n−1, we query the oracle for (S0, s1:n−1). Any solution w of this sub-instance
for which S(0||w) < 2n−1 − 1 and S(S(O||w)) < 2n−1 − 1 directly yields a solution for S,
namely v = 0||w. Otherwise, there are several possible kinds of “false” solutions. In each case
we will have either a solution to S, or otherwise a vertex σ ∈ {0, 1}n such that σ > 2n−1 such
that S(σ) > σ and in which case we query (S1, σ1:n−1) for solution z, and output v = 1||z.

Again, if w is the solution returned by the downward ITER oracle on (S0, s1:n−1):
1. If S(0||w) ≥ 2n−1, then either S(S(0||w)) < S(0||w) (and then 0||w is a solution for

(S, s)) or we set σ = S(0||w) and continue as above.
2. If S(0||w) < 2n−1 but S(S(0||w)) ≥ 2n−1, then either S(S(S(0||w))) < S(S(0||w)) (in

which case S(0||w) is a solution for (S, s)), or set σ = S(S(0||w)).

1 We note that is possible to come up with a “pathological” circuit representation such that restrictions
with propagation of this kind result in a longer circuit representation, even though the number of nodes
in the DAG encoded by the representation has decreased.
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Note, that in addition to shrinking the circuit size, the oracle sub-instances have one
less input and output bit, so ITER-with-source is also circuit-d.s.r. with sub-constant
blowup. ◀

▶ Theorem 3.3. ITER, Sink-of-DAG and Sink-of-DAG-with-source are circuit-d.s.r.
with polynomial blowup.

For the notion of circuit-d.s.r. to make sense for Sink-of-DAG and Sink-of-DAG-with-
source, which as defined have several input circuits with the same domain, we think of the
inputs to these problems as a single circuit which reuses the same input bits and concatenates
the outputs. This works because although these problems are defined with multiple circuit
inputs, a solution is a single input (that satisfies some relation depending on the circuits).
That is, to be circuit-d.s.r. the oracle sub-instances must decrease the input size for each
circuit, or the output size for any circuit.

Proof.
1. ITER: We follow roughly the same algorithm as in the proof of Theorem 3.1 but with

s = 0n; when we query S0 = (S1→0)\1 we either obtain a solution to the original instance,
or a vertex σ ∈ {0, 1}n such that σ ≥ 2n−1 and S(σ) > σ. The problem is that we
cannot just input-restrict the first bit to 1, since the source of this new circuit must be
0n−1 and S1(0n−1) = S(2n−1) and it may not be that σ = 2n−1; therefore, we modify
S1 = (S1→1)\1 to “redirect” the input 0n−1 to the new source by adding a component
that checks if the input is 0n−1, and if so feeds a hardcoded σ1:n−1 into the rest of the
circuit, and otherwise feeds in the input unchanged. This gadget can be implemented
with O(n) additional gates, so ITER is circuit-d.s.r with polynomial-blowup.

2. Sink-of-DAG-with-source: Let V ′ = V\1 be the output restriction of the first bit; we
query (S, V ′) and obtain solution w. If both V (w) < 2m−1 and V (S(w)) < 2m−1 then
w is a solution to the original instance; otherwise, this gives us a σ ∈ {0, 1}n such that
V (σ) ≥ 2m−1 and S(σ) ̸= σ. For the next subquery, the valuation circuit will again be
V ′, but we also use a modified successor circuit S′: on input x ∈ {0, 1}n it checks whether
V (x) < V (σ) and if so outputs x, and otherwise outputs S(x). We also set s′ = σ. The
modification to S′ ensures no x for which V (x) < V (σ) can be a solution to (S′, V ′, s′).
Since this algorithm only ever decreases the output bits of of the valuation circuit in
oracle calls, it is necessary to check that it can be solved when output bits cannot be
decreased any further, that is when m = 1; indeed, in that case the problem is trivial
can be found by applying S just once. S′ needs to be implemented carefully to ensure
polynomial-blowup: instead of copying V , the output bits of V are moved down into a
non-output layer, and S′ compares these bits to the hardcoded S(σ) (n− 1 of these bits
are also reused directly to compute V ′). This gadget can be implemented with O(m)
additional overhead.

3. Sink-of-DAG: The construction is exactly as above, except S′ has an additional compo-
nent which checks if x = 0n, and if so feeds a harcoded σ into the rest of the circuit for
S′ and V ′. This gadget can be implemented with O(n) additional overhead. ◀

A natural question is whether every PLS-complete problem is d.s.r. (or circuit d.s.r. if it
is a circuit problem). The difficulty with answering this question is that, as evidenced in this
section, downward self-reducibility seems to depend on the details of the input representation
of the problem. This is analogous to the case of downward self-reducibility in decision
problems: SAT, and more generally TQBF, are known to be d.s.r., but the property is
not known to be true for all NP- or PSPACE-complete problems. The same ideas to

ITCS 2023



67:10 Downward Self-Reducibility in TFNP

show any NP-complete problem has a search-to-decision self-reduction does not work when
considering downward self-reducibility, either in the decisional landscape or in TFNP. If, say
the reduction from SAT to A squares the input length, it is not clear how to use downward
self-reducibility of SAT to get it for A.

▶ Open Problem 3.4. Is every PLS-complete problem downward self-reducible?

4 Downward self-reducible problems are in PLS

In the previous section we proved that the canonical PLS-complete problems are downward
self-reducible. The natural question is whether the reverse is true. Indeed, we are able to
show the following theorem (restated from the introduction):

▶ Theorem 1.2. Every downward self-reducible problem in TFNP is in PLS.

The “moral” of these results (Theorems 1.2 and 3.1 that some PLS-complete problems
are d.s.r. and d.s.r. problems are in PLS) is the following corollary. An equivalent one exists
in the decisional landscape, namely, that a hard language is d.s.r. iff there is a hard language
in PSPACE.

▶ Corollary 4.1. A problem in PLS is hard if and only if a downward-self reducible problem
in TFNP is hard. Here, “hard” can mean worst-case hard, or average-case hard with respect
to some efficiently sampleable distribution.

Proof. This is essentially restatement of Theorems 1.2 and 3.1 together. On one hand, if a
problem in PLS is hard (either worst-case, or average-case with respect to some sampleable
distribution) then any PLS complete problem is also hard (with the same notion of hardness
carrying over); in particular, ITER ∈ PLS is hard. Conversely if a d.s.r. problem in TFNP
is hard, then by Theorem 1.2 the same problem is in PLS. ◀

Proof of Theorem 1.2. If R is downward self-reducible with algorithm A′, then there exists
the following (inefficient) depth-first recursive algorithm A for R: on input x, simulate A′

and for any oracle call to an instance x′ where |x′| < x, run A(x′) to obtain a solution, and
then continue the simulation of A′. The idea of reducing R to Sink-of-DAG is to represent
its intermediate states of this algorithm as vertices of a DAG. Of course, this graph may
have exponential size.

Intuitively, we will represent the intermediate states of A as a list of the recursive instances
invoked by A up to the current depth of recursion, along with the solutions to already-solved
recursive instances. We can assume without loss of generality that on inputs of length n,
A makes exactly p(n) downward calls (this can be done by “padding” the algorithm with
unused additional calls to some fixed sub-instance) and that solutions have size q(n).

The Sink-of-DAG vertex set will consist of strings s ∈ {0, 1}P (n) where P (n) =
n + q(n) +

∑n−1
i=1 p(n− i + 1)× (n− i + q(n− i)) which we will call states or nodes. Note

P (n) < p(n)q(n)n2 and is hence polynomial size. We interpret a string s ∈ {0, 1}P (n) as a
table s[·, ·] indexed by the depth of recursion i ∈ {0, . . . , n− 1}, and index j of the recursive
call at depth i, with j ∈ [p(n − i + 1)] (except for i = 0 where j can only be 1). Each
s[i, j] ∈ {0, 1}n−i ×Bq(n−i) can contain an instance of R, and possibly a solution. That is,
s[i, j] can be one of: (1) a pair (ξ,⊥) of an R-instance ξ and special symbol ⊥, (2) a pair
(ξ, γ) of an R-instance ξ and purported solution γ, or (3) the pair (⊥,⊥) representing no
instance.
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Algorithm 1 Valid? (Algorithm for whether state s is valid in Theorem 1.2.)

Input:
State s ∈ {0, 1}P (n), s[i, j] ∈ {0, 1}n−i × {0, 1}q(n−1) for i ∈ [n− 1] and
j ∈ [p(n− i + 1)].
Input x to search problem R.

Output: True if state s is valid for input x, else False

Set (ξ, y)← s[0, 1]
if ξ ̸= x then return false;

if y ̸= ⊥ then return “(x, y)
?
∈ R” ;

Set j ← 1
while (xj , yj) := s[1, j] ̸= (⊥,⊥) do

if xj is not the next input queried by A after x1, . . . , xj−1 with solutions
y1, . . . , yj−1 then return False;

if yj ̸= ⊥ and (xj , yj) /∈ R then return False;
Set sxj

∈ {0, 1}P (n−1) as follows: sxj
[0, 1] = s[1, j], and sxj

[ι, κ] = s[ι + 1, κ] for
ι ∈ [n− 1].

if Valid?(sxj
, xj) then break while loop;

else return False;
Set j ← j + 1

for j′ ∈ {j + 1, . . . , p(n)} do
if s[1, j′] ̸= (⊥,⊥) then return False;

return True.

On input x, the starting state s0 is defined by setting s0[0, 1] = (x,⊥) and s[i, j] = (⊥,⊥)
for all other i, j. We say that a state s is valid for input x based on the following recursive
definition: s[0, 1] = (x,⊥), and there exists j ∈ [p(n)] (where n = |x|) such that
1. s[1, j′] = (⊥,⊥) for all j′ > j,
2. for j′ ≤ j, s[1, j′] = (xj′ , yj′) where yj′ is a correct solution for xj′ (except for j′ = j

where yj′ can be ⊥),
3. for each j′ ≤ j, xj′ is the next (n− 1)-size subquery made by A on input x given previous

subqueries x1, . . . , xj′−1 and respective solutions y1, . . . , yj′−1,
4. if yj = ⊥, then letting sxj

∆= s[i′, j′] be the table defined by sxj [0, 1] = (xj ,⊥) and
s[i′, j′] = s[i′ + 1, j′] for i′ ∈ [n− 2] and j′ ∈ p((n− 1)− i′ + 1), syj

is a valid state for
input xj .

See Algorithm 1 for the pseudocode for checking if a state is valid.
Condition 4 says that, letting sxj

be the subtable of s corresponding to the computation
of A to solve the instance xj– that is, (xj ,⊥) in its first cell sxj

[0, 1], and the rest of s[ι, j]
for ι > 2– sxj is valid.

Validity can be checked efficiently by the recursive algorithm implicit to this definition;
its time complexity is T (n) ≤ poly(p(n)) + T (n− 1) = poly(n).

The successor function S is also defined recursively. For invalid states the successor
function returns the state itself; as they cannot be reached this makes them isolated nodes
that cannot be a solution to the Sink-of-Dag instance. For valid states, let (x, y) = s[0, 1].
If y ≠ ⊥ is a solution, then S(s) := s (the node is a sink as it contains a solution to x).
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Algorithm 2 S (Algorithm for the successor circuit S in Theorem 1.2.)

Input:
State s ∈ {0, 1}P (n) where s[i, j] ∈ {0, 1}n−i × {0, 1}q(n−1) for i ∈ [n− 1] and
j ∈ [p(n− i + 1)].
Input x to search problem R, and n := |x|.

Output: Successor state of state x on input x

if valid?(s, x) =False then return s;
Set (x, y)← s[0, 1]
if y ̸= ⊥ then return s;
Let j ∈ [p(n)] such that ∀ j′ > j, s[1, j′] = (⊥,⊥)
Set (xj , yj)← s[1, j]
if j = p(n) and yj ̸= ⊥ then

Simulate A(x) after queries x1, . . . , xj with solutions y1, . . . , yj to obtain y such
that (x, y) ∈ R.

Let s′ ∈ {0, 1}P (n) with s′[0, 1] = (x, y) and (⊥,⊥) elsewhere.
return s′.

else if yj ̸= ⊥ then
Simulate A(x) after queries x1, . . . , xj with solutions y1, . . . , yj to obtain next
query xj+1.

Let s′ := s, but s′[1, j + 1] := (xj+1,⊥).
return s′.

else
Let sxj ⊂ s be the subset of cells of s as indexed by sxj [0, 1] = s[1, j], and
sxj

[ι, κ] = s[ι + 1, κ] for ι ∈ [n− 1].
Let s′

xj
= S(sxj , xj).

Let s′ := s with subrange sxj
replaced by s′

xj
.

return s′.

Otherwise, if y = ⊥ (and s represents an intermediate state of the algorithm A), let j ∈ p[n]
be the index of the last subquery (of size n − 1) encoded by s, exactly as in conditions
(2)-(4) in the algorithm for validity, with corresponding cell (xj , yj) = s[1, j]. If yj ̸= ⊥ and
j < p(n), we simulate A to obtain the next subquery xj+1 of size n− 1 (given the previous
subqueries x1, . . . , xj with solutions y1, . . . , yj) and set the [1, j + 1]-cell to (xj+1,⊥) (that is,
S(s)[1, j + 1] = (xj+1,⊥) and S(s)[i′, j′] = s[i′, j′] for all other (i′, j′) ̸= (1, j + 1)). Note that
this part is non-recursive (since by definition, xj+1 is the very next recursive call made by A)
and requires polynomial time. If yj ̸= ⊥ and j = p(n), we similarly simulate A to obtain the
final solution y to x since all the subqueries made by A on input x have been obtained with
their answers; we set S(s)[1, 0] = (x, y) and set all other cells to (⊥,⊥). Finally if yj = ⊥,
s represents an intermediate state of A currently at a deeper level of recursion. Construct
sxj as in the validity algorithm (sxj is a subset of the cells of s, namely (xj ,⊥) as cell [0, 1],
and the rest of s at levels 2 and beyond); let σxj

= S(sxj
) be the successor of sxj

when
simulating A on sxj

; S(s) returns s, replacing the subset of cells corresponding to sxj
with

σxj
. Observe that the time to compute the successor is at most the time to simulate A

between recursive calls or the time to compute the successor for a smaller sub-instance, that
is Ts(n) ≤ poly(n) + Ts(n− 1) = poly(n). See Algorithm 2 for the pseudocode for checking
if a state is valid.
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Finally, for valid nodes, the potential circuit V will return how far the state is in the depth-
first recursive algorithm. The position π(s) ∈ {0, 1}cn2 of a valid state s in the simulation of
A can be computed as follows. Let ji be the last cell at each level i = 1, . . . , n− 1 that is
not (⊥,⊥) (i.e., ji is the last index such that s[i, ji] contains a subquery). If s is a solution
(sink), π(s) = Π(n), and otherwise π(s) = 1 +

∑n−1
i=1 min{1, ji}+ max{0, ji − 1} ×Π(n− i).

It is clear that the only valid node to not have a valid successor is the one corresponding
to the final configuration of A, with solution y, a solution to the Sink-of-DAG instance
gives a solution to x (by reading (x, y) = s[0, 1]). ◀

In Sections 2.3 and 3 we discussed the related notion of circuit-d.s.r. in which the sub-
instances to the oracle need not be smaller, but the number of input or output bits decreases.
While we do not know the exact connection between these notions, in particular whether
they are equivalent for circuit problems, the following theorem establishes that it is enough
for a TFNP problem to be downward self-reducible in either sense to guarantee membership
in PLS.

▶ Theorem 4.2. Let R be a circuit problem in TFNP that is circuit-d.s.r. with polynomial
blowup. Then R ∈ PLS.

Proof. Let A′ be the algorithm from the definition of circuit-d.s.r. As in d.s.r., A′ can be
used to construct an (inefficient) depth-first recursive algorithm A that solves R: simulate
A′(C), and on oracle calls to a sub-instance C ′, run A(C ′). Critically, A terminates even
though |C ′| may be greater than |C|, because the sum of input and output bits n + m

decreases with each level of recursion.
The reduction to Sink-of-DAG is the same as in the proof of Theorem 1.2: the graph

will represent intermediate states of the depth-first recursive algorithm A. However, the
size of states will be different. Without loss of generality assume R makes exactly p(|C|)
sub-instance calls, and if R is circuit-d.s.r. with polynomial-blowup, we have that each
sub-instance has size at most |C|+ (nm)c for some c > 0. Hence, for a circuit of size |C| we
have P (|C|) = |C|+ n +

∑n+m−1
i=1 p(|C|+ i(nm)c)(|C|+ i(nm)c)n ≤ poly(n, m) bits suffices

to represent intermediate states. ◀

Note that the size of representing intermediate states of A is where it is critical that R

be circuit-d.s.r with polynomial blowup; if instead, for instance, we had the guarantee that
sub-instances have size f(|C|), then at depth-i sub-instances would have size f (i)(|C|) which
even for the modest function f(α) = 2α would give sub-instances of size 2i|C|, which are too
big to represent as Sink-of-DAG nodes.

Finally, we can give a characterization of PLS-hardness analogous to Corollary 4.1:

▶ Corollary 4.3. A problem in PLS is hard if and only if there exists a hard circuit problem
in TFNP that is circuit-d.s.r. with polynomial blowup.

Proof. This is a restatement of Theorems 2.8 and 4.2 together. ◀

5 Unique TFNP and Downward self-reducibility

Several highly structured problems in TFNP have the additional proprety that for every
input, the solution is unique. Most of these problems are algebraic in nature– such as
factoring, and finding the discrete logarithm of an element of a cyclic group for a certain
generator. We find, perhaps surprisingly, that d.s.r. problems with the additional condition
of unique solutions are not only in PLS, but in CLS!
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▶ Definition 5.1 ([16]). TFUP, for “unique” TFNP, is the class of problems in TFNP
where for each input x there is exactly one solution y.

▶ Definition 5.2. Sink-of-Verifiable-Line (SVL): given a successor circuit S : {0, 1}n →
{0, 1}n, source s ∈ {0, 1}n, target index T ∈ [2n] and verifier circuit V : {0, 1}n× [T ]→ {0, 1}
with the guarantee that for (x, i) ∈ {0, 1}n × [T ], V (x, i) = 1 iff x = Si−1(s), find the string
v ∈ {0, 1}n s.t. V (v, T ) = 1.

SVL is a promise problem; in particular, there is no way to efficiently check the guarantee
about the verifier circuit V . A solution is guaranteed to exist if the promise is true, and the
solution must be unique. It is possible to modify the problem (by allowing solutions that
witness an “error” of the verifier circuit) in order to obtain a search problem in TFNP, but
for our purposes SVL is sufficient:

▶ Theorem 5.3 ([13]). SVL is polynomial-time reducible to UEOPL.

Bitansky, Paneth and Rosen [6], building on the results of Abbot, Kane and Valiant [1],
used a reversible pebbling game (also known as the east model) to make the computation of
the successor circuit reversible and show that SVL is polynomial-time reducible to PPAD
(see [1, Section 4.3] and [6, Section 3]). Hubaćek and Yogev [17] then strengthened this
result by showing that the same reduction shows SVL is polynomial-time reducible to CLS.
Finally, in recent work this was strengthened by observing that the same reduction works for
UEOPL [13].

▶ Lemma 5.4. Every d.s.r. problem and every circuit-d.s.r. circuit problem in TFUP reduces
to SVL.

Proof. Given a d.s.r. (or circuit-d.s.r.) problem R, we construct a graph with successor
circuit S exactly as in the proof of Theorem 1.2 or Theorem 1.2. The key observation is that
if R has unique solutions, we can construct a verifier circuit V as in Definition 5.2 for which
the SVL promise holds true.

Let Π(n) denote the total length of the path from the initial state s0 to the unique
sink in the Sink-of-DAG instance from the earlier theorem proofs; we have Π(n) =
p(n) × Π(n − 1) = p(n) × p(n − 1) · · · × p(1). While Π(n) may be exponential it can be
represented with

∑
log(p(n − i)) = O(n2) bits; that is, the distance of each valid node

from s0 in the graph can be represented with cn2 for some constant c. The position
π(s) ∈ {0, 1}cn2 of a valid state s in the simulation of A can be computed as follows. Let
ji be the last cell at each level i = 1, . . . , n− 1 that is not (⊥,⊥) (i.e., ji is the last index
such that s[i, ji] contains a subquery). If s is a solution (sink), π(s) = Π(n), and otherwise
π(s) = 1 +

∑n−1
i=1 min{1, ji}+ max{0, ji − 1} ×Π(n− i). Equivalently this can be computed

recursively; using the sub-table notation from Theorem 1.2, where j is the last cell at level 1
that is not (⊥,⊥), π(s) = 1 + (j−1)Π(n−1) + π(sxj ). Either way, Π and π can be computed
efficiently. Since the sink is the Π(n)-th state, the SVL instance will have target T = Π(n).

Critically, since R ∈ TFUP, for each i ∈ [Π(n)] there is exactly one state s ∈ {0, 1}P (n)

such that π(s) = i: to see this, for every sub-instance x′ invoked by A, there is a unique
solution y′, and given a sequence of previous sub-instances and solutions at a given level of
recursion, the next sub-instance is uniquely determined by A. We define V (s, i) = 1 if s is a
valid state (as in the proof of Theorem 1.2) and π(s) = i. ◀

As a consequence of Theorem 5.3 and the previous lemma, we have the following theorem
(restated from the introduction).
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▶ Theorem 1.3. Every downward self-reducible problem in TFUP is in UEOPL.

This result yields an interesting application to the study of number-theoretic total
problems such as factoring. It is an open problem whether there exists an algorithm for
factoring that uses oracle calls on smaller numbers. The following observations are evidence
that the answer may be no.

▶ Definition 5.5. AllFactors is the problem of, given an integer, listing its non-trivial
factors in increasing order, or “prime” if it is prime. Factor is the problem of returning a
non-trivial factor, or “prime” if it is prime.

AllFactors is in TFUP. AllFactors and Factor are almost the same problem:
Factor is Cook reducible to AllFactors with one oracle call and AllFactors is Cook
reducible to Factor with log(input size) oracle calls. A consequence of Theorem 1.3 is the
following:

▶ Corollary 1.4. If Factor or AllFactors is downward self-reducible, then Factor and
AllFactors ∈ UEOPL.

Proof. If either problem is downward self-reducible, so is the other. Given a downward
self-reduction A of Factor, to solve AllFactors on input n, run A (replacing its downward
oracle calls with those for AllFactors) to obtain factor m, and then run the oracle on n

m .
Given a downward self-reduction B of AllFactors, to solve Factor on input n run B

and return any factor– replace downward oracle calls to AllFactors with ones to Factor
and at most log(log(n)) additional downward queries. Hence if either problem is d.s.r.,
AllFactors ∈ UEOPL, but since Factor ≤p AllFactors, Factor ∈ UEOPL. ◀

Factor ∈ UEOPL, and hence in CLS, would be a surprising consequence to TFNP
community. While it has been shown that Factor can be reduced to the TFNP-subclasses
PPA and PPP, the intersection of which contains PPAD, it has been a long outstanding
question whether Factor

?
∈ PPAD. An algorithm for factoring N which queries numbers at

most N/2 (this is what it means for the input size to shrink by at least one bit, but note that
any number that could contain a non-trivial factor of N is at most N/2) would immediately
place Factor not just in PPAD, but also in PLS (since CLS = PPAD ∩ PLS)!

6 Discussion and Open Problems

In this paper we have initiated the study of downward self-reducibility, and more broadly
self-reducibility, in TFNP. Naturally, a host of questions remain:

What is the relationship between downward self-reducibility and circuit-downward self
reducibility for circuit problems in TFNP?
What other problems in PLS are downward self-reducible? Is it possible every PLS-
complete problem is downward self-reducible? As a first step, it would be helpful to prove
that the suite of PLS-complete local constraint/clause maximization problems (where
a specific neighborhood function is specified as part of the problem, such as Flip or
Kernighan-Lin) are d.s.r.
Another important notion of self-reducibility is that of random self-reducibility (r.s.r.):
a problem R is r.s.r. if it has a worst-to-average case reduction. The details vary but
one definition is R is r.s.r. if it has a randomized Las Vegas algorithm if there exists
an algorithm solving R on 1/poly(n)-fraction of inputs. Some very important algebraic
problems in TFNP, such as the discrete logarithm, and RSA inversion, are r.s.r. These
problems are also in PPP, so a natural starting point is to ask whether all r.s.r. problems
in TFNP are in PPP.
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