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Abstract
Over the last two decades, a significant line of work in theoretical algorithms has made progress in
solving linear systems of the form Lx = b, where L is the Laplacian matrix of a weighted graph
with weights w(i, j) > 0 on the edges. The solution x of the linear system can be interpreted as the
potentials of an electrical flow in which the resistance on edge (i, j) is 1/w(i, j). Kelner, Orrechia,
Sidford, and Zhu [15] give a combinatorial, near-linear time algorithm that maintains the Kirchoff
Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles
(cycle toggling).

In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential
Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all
potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that
this dual algorithm also runs in a near-linear number of iterations.

We show, however, that if we abstract cut toggling as a natural data structure problem,
this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been
conjectured to be difficult for dynamic algorithms [11]. The conjecture implies that the data structure
does not have an O(n1−ϵ) time algorithm for any ϵ > 0, and thus a straightforward implementation
of the cut-toggling algorithm requires essentially linear time per iteration.

To circumvent the lower bound, we batch update steps, and perform them simultaneously instead
of sequentially. An appropriate choice of batching leads to an Õ(m1.5) time cut-toggling algorithm
for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our
algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce
the running time to O(m1+ϵ) for any ϵ > 0. Thus, the dual cut-toggling algorithm can achieve
(almost) the same running time as its primal cycle-toggling counterpart.
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1 Introduction

Over the last two decades, a significant line of work in theoretical algorithms has made
progress in solving linear systems of the form Lx = b, where L is the Laplacian matrix of a
weighted graph with weights w(i, j) > 0 on the edges. Starting with the work of Spielman
and Teng [19], researchers have devised a number of algorithms that run in near-linear time in
the number of edges of the graph (corresponding to the number of non-zeros in the matrix L).
The solution x of the linear system can be interpreted as the potentials of an electrical flow in
which the resistance of each edge is r(i, j) = 1/w(i, j), and the current supplied to each node
i is b(i). There have been many nice algorithmic ideas introduced using this interpretation of
the linear system, as well as many applications of the fast algorithms for solving this system
to other flow problems, such as the maximum flow problem [5, 6, 14, 16, 9].

Since the initial work of Spielman and Teng, a number of different near-linear time
algorithms have been proposed. In this paper, we wish to focus on a particular simple,
combinatorial algorithm by Kelner, Orrechia, Sidford, and Zhu [15], hereafter referred to as
the KOSZ algorithm; this algorithm has been the subject of several implementation studies
[4, 3, 7, 12]. The KOSZ algorithm uses the idea of an electrical flow in solving the linear
system Lx = b. An electrical flow f is one that obeys the flow conservation constraints at
each node i, saying that the net flow out of i is b(i) (sometimes known in this context as
the Kirchoff Current Law, or KCL), and Ohm’s law, which says that there exists a vector
x such that the flow from i to j, f(i, j), equals (x(i)− x(j))/r(i, j). There exists a flow f
that satisfies these two properties, and the corresponding potential vector x solves Lx = b.
Ohm’s Law is known to be equivalent to the Kirchoff Potential Law (KPL), which says that
the flow f satisfies the property that around any directed cycle C,

∑
(i,j)∈C r(i, j)f(i, j) = 0.

Given KPL, potentials satisfying Ohm’s law can be constructed by picking any spanning
tree T rooted at a vertex r, setting x(r) to 0, and x(k) to the sum of f(i, j)r(i, j) on the
path in T from k to r; these potentials are known as tree-induced potentials.

The KOSZ algorithm starts by picking a spanning tree T ; for the running time of the
algorithm, it is important that the tree has low stretch; its definition is otherwise not crucial
to the description of the algorithm.The algorithm starts by constructing a flow f that satisfies
flow conservation using only the edges in T . For a near-linear number of iterations, the
algorithm picks at random a non-tree edge (i, j) and considers the fundamental cycle C

closed by adding (i, j) to T ; it then alters the flow f along C to satisfy KPL (and such that
KCL continues to be satisfied). By picking (i, j) with the appropriate probability, Kelner
et al. show that the energy of the resulting flow decreases by a factor 1− 1

τ in expectation,
where τ is a parameter related to the stretch. The algorithm then returns the tree-induced
potentials x associated with T and the flow f . Kelner et al. [15] show that the resulting
potentials are close to the potentials of the associated electrical flow for the graph. The
KOSZ algorithm has the pleasing properties that it is easy to understand both the algorithm
and the analysis, and it is also close in spirit to known network flow algorithms; in particular,
it resembles the primal network simplex algorithm for the minimum-cost flow problem.

The primal network simplex algorithm for the minimum-cost flow problem has a natural
dual algorithm in the dual network simplex algorithm, in which node potentials are altered
on one side of a fundamental cut of a tree (the cut induced by removing an edge in the tree).
Similarly, polynomial-time cycle-canceling algorithms for minimum-cost flow (e.g. Goldberg
and Tarjan [10]) have natural dual analogs of polynomial-time cut-cancelling algorithms (e.g.
Ervolina and McCormick [8]). We refer to the first type of algorithm as a cycle-toggling
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algorithm, and the dual analog as a cut-toggling algorithm. Thus, the KOSZ algorithm is a
cycle-toggling algorithm for solving Laplacian linear systems. However, no corresponding
cut-toggling algorithm exists in the literature, leading immediately to the following question:

Does there exist a cut-toggling algorithm for solving Laplacian linear systems / computing
near-minimum energy flows, and how efficiently can it be implemented?

1.1 Our Contributions
We propose a dual analog of the KOSZ algorithm which performs cut-toggling rather than
cycle-toggling. We refer to this algorithm as Dual KOSZ, and we show it converges in a
nearly-linear number of cut-toggling steps. Thus, Dual KOSZ would be a nearly-linear time
algorithm if each cut-toggling operation could be implemented to run in polylogarithmic
time.

Our next contribution is to show that the natural data structure abstraction of this
cut-toggling process can be reduced to the online matrix-vector (OMv) problem, which has
been conjectured to be hard [11]. This implies that it is unlikely for there to be a black-box
data structure that implements a single cut-toggling operation in sublinear time, unlike cycle
toggling.

This result initially seems to present an insurmountable difficulty to obtaining a nearly-
linear time algorithm. However, we show that we can exploit the offline nature of the cut
toggles, obtaining an exact data structure for computing a sequence of K cut-toggles in
O(K

√
m) time total, which yields an algorithm that runs in Õ(m1.5) time overall. Inter-

estingly, Boman, Deweese, and Gilbert [3] explored an implementation of KOSZ that also
batched its cycle-toggling updates by looking for collections of edge-disjoint cycles.

We further show that by incorporating sparsification and its associated approximations,
we can reduce the running time to almost-linear, which means the cut toggling algorithm
can still be implemented in almost-linear time.

Our result demonstrates that graph optimization algorithms and dynamic graph data
structures can – and sometimes need to – interact in more intricate fashion than optimization
in the outer loop and black-box data structure in the inner loop.

The remainder of the paper is structured as follows. In Section 1.2, we give a high-level
overview of Dual KOSZ and our implementation ideas to obtain almost linear time. Section
2 describes some notation and concepts we will use. Section 3 gives the Dual KOSZ in detail
and shows that it can be implemented in a near-linear number of cut-toggling iterations, with
each iteration running in linear time. In Section 4, we abstract the problem of toggling a cut
to a data structure problem, and show that given the OMv conjecture of [11], we cannot
implement the operations needed in sublinear time. In Section 5, we show how to overcome
this difficulty by batching the cut-toggle operations, and further speed up the algorithm
through sparsification and recursion. Some proofs are omitted due to space reasons – these
proofs are deferred to the full version of the paper.

1.2 Technical Overview
As the KOSZ algorithm maintains a flow f and implicitly tree-induced potentials x, its
natural dual is to maintain potentials x, which implicitly define a flow f .1 The Dual KOSZ
algorithm starts by choosing a low-stretch spanning tree T . It maintains a set of potentials

1 To make matters somewhat confusing, the Laplacian solver literature treats the space of potentials as
primal due to its origins in numerical analysis.
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x (initially zero), and the corresponding (infeasible) flow f implied by Ohm’s Law. In each
iteration, we sample a fundamental cut S of the tree T and perform a cut-toggling update
so that the net flow leaving S is

∑
i∈S b(i), as required in every feasible flow. Following

arguments dual to those made in Kelner et al. we show that this algorithm also performs a
near-linear number of iterations in order to find a near-optimal set of potentials x and flow f .

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

Here ∥y∥L =
√

y⊤Ly and E(f) is the energy of flow f and τ is the stretch of tree T .
However, unlike Kelner et al., we cannot show that each individual cut-toggling update

can be made to run in polylogarithmic time. If we abstract the desired cut-toggling update
step as a natural data structure problem, we show that such a data structure cannot be
implemented in O(n1−ϵ) time for any ϵ > 0 given a conjecture about the online matrix-vector
multiplication problem (OMv) made by Henzinger, Krinninger, Nanongkai and Saranurak
[11]. They have conjectured that this problem does not have any algorithm that can carry
out an online sequence of n Boolean matrix-vector multiplications in time O(n3−ϵ), and show
that if the conjecture is false, then various long-standing dynamic graph problems will have
faster algorithms. We show that a single Boolean matrix-vector multiply can be carried out
as a sequence of O(n) operations of our desired data structure. Given the conjecture, then,
we cannot implement the data structure operations in O(n1−ϵ) time. Thus there is not a
straightforward near-linear time version of the Dual KOSZ algorithm.2

In a bit more detail, the data structure we define is given as input an undirected graph
with a spanning tree T , edge resistances and a supply b(v) and a potential value(v) at every
vertex v. The data structure supports two operations: 1) additively update the value of
all the vertices in a given subtree of T , and 2) query the value of the flow induced by the
potential values across any given fundamental cut of T . We show that even if the data
structure can only decide whether the value of the flow is non-zero or not, it would refute
the OMV conjecture. Therefore, we obtain a lower bound for this data structure conditional
on the OMv conjecture [11]. This even holds if all edge resistances are 1 and all b(v) are 0.

Nevertheless, we circumvent this data structural lower bound by exploiting the fact that
the sequence of cuts to be updated can be sampled in advance and, thus, the updates can be
batched, circumventing the “online” (or “sequential”) requirement in OMv. This is possible
because both the spanning tree T and the probability distribution over cuts of T are fixed at
the beginning of the algorithm. More precisely, denote the number of iterations of Dual KOSZ
by K (which is Õ(m)). Instead of sampling the fundamental cuts one at a time, consider
sampling the next ℓ cuts that need to be updated for some ℓ≪ K. In each “block” of size
ℓ≪ K, we contract all the edges of T that do not correspond to one of the ℓ fundamental
cuts to be updated. In this way, we work with a contracted tree of size O(ℓ) in each block
(instead of the full tree, which has size O(n)). This makes the updates faster. However, the
price we pay is that at the end of each block, we need to propagate the updates we made
(which were on the contracted tree), back to the entire tree. Overall, we show that each
block takes O(ℓ2 + m) time. Since there are Õ( m

ℓ ) blocks, the total runtime is Õ(mℓ + m2

ℓ ).
Choosing ℓ =

√
m thus gives a Õ(m1.5) time algorithm.

2 In a personal communication, Sherman [18] said he also had worked out a dual version of the KOSZ
algorithm, but was unable to solve the data structure problem for the updates to potentials. Our result
explains why this might be difficult to do.
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By augmenting the batching idea with sparsification and recursion, one can further
improve the running time of Dual KOSZ to Õ(m1+δ) for any δ > 0. To do this, observe
that ℓ cut-toggling updates effectively break the spanning tree into ℓ + 1 components. After
contracting the components to get a graph H with ℓ + 1 vertices, we can show that solving
an appropriate Laplacian system on H gives a single update step that makes at least as
much progress as the sequence of ℓ updates performed by the straightforward unbatched
algorithm. A natural approach is to solve this Laplacian system by recursively calling the
algorithm. However, this by itself does not give an improved running time. Instead, we first
spectrally sparsify H and then call the algorithm recursively to solve the sparsified Laplacian
system. Here we use the original Spielman-Teng spectral sparsification [20] because it does
not require calling Laplacian solvers as a subroutine (e.g. [2]). By carefully analyzing the
error incurred by sparsification, we are able to show that the update step using sparsification
makes about as much progress as the update step without sparsification. The total running
time of the recursive algorithm is then obtained by bounding the time taken at each layer of
the recursion tree.

▶ Theorem 2. For any δ ∈ (0, 1) and ϵ > 0, Dual KOSZ with batching, sparsification, and
recursion finds x with E ∥x∗ − x∥2

L ≤ ϵ ∥x∗∥2
L in O(m1+δ(log n)O( 1

δ )(log 1
ϵ ) 1

δ ) time.

2 Notation and Problem Statement

In this section, we give some notation and define concepts we will use in our algorithm.
We are given as input an undirected graph G = (V, E), with positive resistances r ∈ RE

+.
Although our graph is undirected, it will be helpful for us notationally to direct the edges.
To that end, fix an arbitrary orientation of the edges, and denote the set of directed edges
by E⃗.

In addition to the graph G and the resistances r, we are given a supply vector b ∈ RV .
The Laplacian matrix of G with respect to the resistances r is the matrix L ∈ RV ×V

defined by

L =
∑
ij∈E

1
r(i, j) (ei − ej)(ei − ej)⊤,

where ei is the ith unit basis vector. We note then that x⊤Lx =
∑

(i,j)∈E
1

r(i,j) (x(i)− x(j))2

for any vector x.
Our goal is to solve the system of linear equations Lx = b for x. However, we will not

be able to solve Lx = b exactly, so we will solve it approximately instead. It is usual to
measure the quality of a solution x in terms of the matrix norm induced by L. In other
words, if x is the vector of potentials returned by our algorithm and x∗ is an actual solution
to Lx∗ = b, then the error of our solution x is

∥x∗ − x∥2
L := (x∗ − x) ⊤L (x∗ − x) .

Hence, our objective is to find x ∈ RV that minimizes ∥x∗ − x∥2
L. A precise statement of

this is given below.

Goal: Given ϵ > 0, find potentials x ∈ RV that satisfy ∥x∗ − x∥2
L ≤ ϵ ∥x∗∥2

L.

Of course, the algorithm does not know the actual solution x∗. The place where x∗ appears
is in the analysis.

ITCS 2023
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Equations of the form Lx = b, where L is the Laplacian matrix of a graph, are called
Laplacian systems, and are found in a wide variety of applications in computer science and
other fields. When interpreted as an optimization problem, solving a Laplacian linear system
has the following nice interpretation: it is the dual of the problem of finding an electrical
flow. The primal problem below is that of finding an electrical flow; here A is the vertex-arc
incidence matrix of (V, E⃗). The optimal solution to the primal is called the electrical flow in
G defined by the resistances r. The dual problem is equivalent to solving Lx = b; this fact
can be seen by setting the gradient of the dual objective to equal 0 since the dual is concave.

(P ) min 1
2

∑
(i,j)∈E⃗

r(i, j)f(i, j)2 (D) max b⊤x− 1
2x⊤Lx

s.t. Af = b s.t. x ∈ RV unconstrained

Let E(f) denote the primal objective and B(x) denote the dual objective. The primal
objective is sometimes referred to as the energy of the electrical flow f . Also, let f∗ denote
the optimal primal solution and let x∗ denote an optimal dual solution. Note that there
are infinitely many dual solutions, because the dual objective is invariant under adding a
constant to every component of x. By strong duality (note that Slater’s condition holds),
E(f∗) = B(x∗). Moreover, the KKT conditions give a primal-dual characterization of
optimality.

▶ Fact 3 (KKT Conditions for Electrical Flow). Consider f ∈ RE⃗ and x ∈ RV . Then f is
optimal for the primal and x is optimal for the dual if and only if the following conditions
hold:
1. f is a feasible b-flow;
2. (Ohm’s Law) f(i, j) = x(i)−x(j)

r(i,j) for all (i, j) ∈ E⃗.
Thus solving Lx = b and finding the electrical b-flow in G are equivalent: Given a solution x
to Lx = b, we can calculate the electrical flow f using f(i, j) = x(i)−x(j)

r(i,j) . On the other hand,
given the electrical flow f , we can recover corresponding potentials x by setting x(v) = 0 for
some arbitrary vertex v, and using the equation f(i, j) = x(i)−x(j)

r(i,j) to solve for the potentials
on every other vertex.

A b-flow satisfies Ohm’s Law if and only if it satisfies the Kirchoff Potential Law (KPL):
KPL states that for every directed cycle C,

∑
(i,j)∈C f(i, j)r(i, j) = 0.

Both the Kelner et al. algorithm and our algorithm use a low-stretch spanning tree T .
Given resistances r, the stretch of a tree is defined as

stT (G) =
∑

(i,j)∈E⃗

stT (i, j) =
∑

(i,j)∈E⃗

1
r(i, j)

∑
(k,ℓ)∈P (i,j)

r(k, ℓ),

where P (i, j) is the unique path from i to j in T . We can find a spanning tree T with total
stretch stT (G) = O(m log n log log n) in O(m log n log log n) time [1].

We use the notation 1 to stand for the vector of all 1s, and 1X to be the characteristic
vector of a set X that has 1s in the entries corresponding to the elements of X and 0s
elsewhere.

3 A Cut-Toggling Algorithm for Solving Laplacian Linear Systems

We present a cut-toggling algorithm for computing an approximate solution to Lx = b, and
also an approximate minimum-energy b-flow. The goal of this section is to show that the
cut-toggling algorithm converges in a near-linear number of iterations, and that each iteration
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Algorithm 1 The KOSZ algorithm for solving Lx = b.

Compute a tree T with low stretch with respect to resistances r
Find flow f0 in T satisfying supplies b
Let x0 be tree-defined potentials for f0 with respect to tree T

for t← 1 to K do
Pick an (i, j) ∈ E − T with probability Pij ; Update f t−1 to satisfy KPL on the
fundamental cycle corresponding to (i, j)

Let f t be resulting flow
Let xt be tree-defined potentials for f t

return fK , xK

runs in linear time. Later in Section 5, we will show how to speed up the algorithm to an
almost-linear total running time. Since our algorithm is dual to the cycle-toggling algorithm
of Kelner et al. [15] (which we call KOSZ in this paper), we will begin by describing the
KOSZ algorithm.

The KOSZ algorithm works by maintaining a feasible b-flow f , and iteratively updates
f along cycles to satisfy Kirchkoff’s Potential Law on the cycle. It starts by choosing a
spanning tree T that has low stretch, and computes a b-flow f0 that uses only edges in
the tree T . Then for a number of iterations K that depends on the stretch of the tree, it
chooses a non-tree edge (i, j) ∈ E − T according to a probability distribution, and for the
fundamental cycle closed by adding edge (i, j) to T , it modifies the flow f so that Kirchoff’s
Potential Law is satisfied on the cycle. The probability Pij that edge (i, j) gets chosen is
proportional to the total resistance around the cycle closed by (i, j) divided by r(i, j). Given
the tree T with root r and the current flow f t in iteration t, there is a standard way to
define a set of potentials xt (called the tree-induced or tree-defined potentials): set x(r) to 0,
and x(k) to the sum of f(i, j)r(i, j) on the path in T from k to r. We summarize KOSZ in
Algorithm 1.

Our algorithm, which we will call Dual KOSZ, works by maintaining a set of potentials
x. It iteratively samples cuts in the graph, updating potentials on one side of the cut to
satisfy flow conservation across that cut. Following KOSZ, we choose a spanning tree T of
low stretch. Then for a number of iterations K that depends on the stretch of tree T , we
repeatedly sample a fundamental cut from the spanning tree (i.e. a cut induced by removing
one of the tree edges). We update all of the potentials on one side of the cut by an amount
∆ so that the amount of flow crossing the cut via Ohm’s Law is what is required by the
supply vector. We summarize Dual KOSZ in Algorithm 2. The main result of this section is
a bound on the iteration complexity of Dual KOSZ.

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

Next we give the algorithm in somewhat more detail. Let R(C) = (
∑

(k,ℓ)∈δ(C)
1

r(k,ℓ) )−1

for C ⊂ V , where δ(C) is the set of edges with exactly one endpoint in C. Note that R(C)
has units of resistance. For every tree edge (i, j), let C(i, j) be the set of vertices on one side
of the fundamental cut defined by (i, j), such that i ∈ C(i, j) and j ̸∈ C(i, j). We set up
a probability distribution Pij on edges (i, j) in the spanning tree T , where Pij ∝ r(i,j)

R(C(i,j)) .
We initialize potentials x0(i) to 0 for all nodes i ∈ V . In each iteration, we sample edge
(i, j) ∈ T according to the probabilities Pij . Let b(C) = b⊤

1C be the total supply of the
nodes in C. Note that b(C) is also the amount of flow that should be flowing out of C in any
feasible b-flow.

ITCS 2023
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Algorithm 2 Algorithm Dual KOSZ for solving Lx = b.

Compute a spanning tree T with low stretch with respect to resistances r
Set x0(i) = 0 for all i ∈ V

for t← 1 to K do
Pick an edge (i, j) ∈ T with probability Pij ∝ r(i,j)

R(C(i,j) and let C = C(i, j)
∆t ← (b(C)− f t(C)) ·R(C)

xt+1(v)←
{

xt(v) + ∆t, if v ∈ C,
xt(v), if v ̸∈ C.

Let fK be the tree-defined flow with respect to xK and T

return xK , fK

Let f t(C) be the total amount of flow going out of C in the flow induced by xt. That is,

f t(C) =
∑
ij∈E

i∈C, j ̸∈C

xt(i)− xt(j)
r(i, j) .

Note that f t(C) can be positive or negative. In any feasible b-flow, the amount of flow
leaving C should be equal to b⊤

1C = b(C). Hence, we define ∆t = (b(C)− f t(C)) ·R(C).
Observe that ∆t is precisely the quantity by which we need to increase the potentials of every
node in C so that flow conservation is satisfied on δ(C). We then update the potentials, so
that

pt+1(v) =
{

pt(v) + ∆t, if v ∈ C,
pt(v), if v ̸∈ C.

After K iterations, we return the final potentials xK . The last step is to convert xK to a
feasible flow by taking a tree-defined flow with respect to T : fK(i, j) = xK (i)−xK (j)

r(i,j) on all
non-tree edges, and fK routes the unique flow on T to make fK a feasible b-flow.

3.1 Analysis of Dual KOSZ
Recall that E(f) = 1

2
∑

e∈E f(e)2 and B(x) = bT x − 1
2xT Lx. By convex duality, we have

B(x) ≤ E(f) for any x ∈ RV and b-flow f . Moreover, x maximizes B(x) if and only if Lx = b.
(See e.g. [21, Lemma 8.9]). Thus solving the Laplacian system Lx = b is equivalent to finding
a vector of potentials that maximizes the dual objective. In what follows, we present the
lemmas that form the bulk of the analysis. Their proofs are deferred to the full version of
the paper. These lemmas (and their proofs) are similar to their counterparts in Kelner et al.
[15], because everything that appears here is dual to what appears there.

First, we show that each iteration of the algorithm increases B(x).

▶ Lemma 4. Let x ∈ RV be a vector of potentials and let C ⊂ V . Let x′ be the potentials
obtained from x as in the algorithm (that is, by adding ∆ to the potential of every vertex in
C so that flow conservation is satisfied across δ(C)). Then

B(x′)− B(x) = ∆2

2R(C) .

The second ingredient in the analysis is to introduce an upper bound on how large the
potential bound B(x) can become. This will allow us to bound the number of iterations the
algorithm takes.
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▶ Definition 5 (Gap). Let f be a feasible b-flow and let x be any vertex potentials. Define

gap(f , x) := E(f)− B(x) = 1
2

∑
e∈E

r(e)f(e)2 −
(

b⊤x− 1
2x⊤Lx

)
.

This same notion of a gap was introduced in the analysis of the Kelner et al. algorithm,
and was also used to bound the number of iterations of the algorithm.

The electrical flow f∗ minimizes E(f) over all b-flows f , and the corresponding vertex
potentials x∗ maximize B(x∗) over all vertex potentials x. Moreover, E(f∗) = B(x∗).
Therefore, for any feasible flow f , gap(f , x) is an upper bound on optimality:

gap(f , x) ≥ B(x∗)− B(x).

The lemma below gives us another way to write gap(f , x), and will be useful to us later. This
relation is shown in Kelner et al. [15, Lemma 4.4].

▶ Lemma 6. We have gap(f , x) = 1
2

∑
(i,j)∈E⃗ r(i, j)

(
f(i, j)− x(i)−x(j)

r(i,j)

)2
.

The analysis of Kelner et al. [15] relies on measuring progress in terms of the above-defined
duality gap between primal flow energy and dual potential bound. The high-level idea of
the analysis is that one can show that the duality gap decreases by a constant factor each
iteration, which implies a linear convergence rate. In the analysis of their algorithm, they
maintain a feasible b-flow f at each iteration, and measure gap(f , x) against corresponding
tree-defined potentials x.

One difference between their algorithm and ours is that we do not maintain a feasible
b-flow at each iteration. However, for gap(f , x) to be a valid bound on distance to optimality,
we need f to be a feasible b-flow. To this end, we introduce the definition of “tree-defined
flow” below.

▶ Definition 7 (Tree-defined flow). Let T be a spanning tree, x ∈ RV vertex potentials, and
b ∈ RV satisfying 1⊤b = 0 be a supply vector. The tree-defined flow with respect to T , x
and b is the flow fT,x defined by

fT,x(i, j) = x(i)− x(j)
r(i, j) if (i, j) ̸∈ T ,

and for (i, j) ∈ T , fT,x(i, j) is the unique value such that the resulting fT,x is a feasible
b-flow. That is, for (i, j) ∈ T , if C = C(i, j) is the fundamental cut defined by (i, j) and
b(C) = b⊤

1C is the amount of flow that should be flowing out of C in a feasible b-flow, then

fT,x(i, j) = b(C)−
∑

k∈C, ℓ̸∈C
kℓ∈E−ij

fT,x(k, ℓ) = b(C)−
∑

k∈C, ℓ̸∈C
kℓ∈E−ij

x(k)− x(ℓ)
r(k, ℓ) .

In other words, fT,x is a potential-defined flow outside of the tree T , and routes the unique
flow on T to make it a feasible b-flow.

The below lemma expresses gap(fT,x, x) in a nice way.

▶ Lemma 8. Let T be a spanning tree, x vertex potentials, and b a supply vector. Let fT,x
be the associated tree-defined flow. Then

gap(fT,x, x) = 1
2

∑
(i,j)∈T

r(i, j) · ∆(C(i, j))2

R(C(i, j))2 .
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Suppose we have a probability distribution (Pij : (i, j) ∈ T ) on the edges in T . If the
algorithm samples an edge (i, j) ∈ T from this distribution, then by Lemma 4 the expected
increase in the dual objective is

E[B(x′)]− B(x) = 1
2

∑
(i,j)∈T

Pij ·∆(C(i, j))2/R(C(i, j)).

We want to set the Pij to cancel terms appropriately so that the right-hand side is a multiple
of the gap. Looking at Lemma 8, we see that an appropriate choice is to set

Pij := 1
τ
· r(i, j)

R(C(i, j)) ,

where τ :=
∑

(i,j)∈T
r(i,j)

R(C(i,j)) is the normalizing constant. For this choice of probabilities,

E[B(x′)]− B(x) = 1
2τ

∑
(i,j)∈T

r(i, j) · ∆(C(i, j))2

R(C(i, j))2 = 1
τ

gap(fT,x, x),

where fT,x is the tree-defined flow associated with potentials x. As a consequence, we have:

▶ Lemma 9. If each iteration of the algorithm samples an edge (i, j) ∈ T according to the
probabilities Pij = 1

τ ·
r(i,j)

R(C(i,j)) , then we have

B(x∗)− E[B(xt+1)] ≤
(

1− 1
τ

) (
B(x∗)− B(xt)

)
.

▶ Corollary 10. After K = τ ln( 1
ϵ ) iterations, we have B(x∗)− E[B(xK)] ≤ ϵ · B(x∗).

We now use the previous lemmas to bound the number of iterations Dual KOSZ takes.
Lemma 9 shows that the quantity B(x∗)− B(xt) decreases multiplicatively by (1− 1

τ ) each
iteration. Thus, a smaller value of τ gives faster progress. Moreover, it is not difficult to
show that τ = stT (G, r) (we defer the proof to the full version of the paper), which is why
the algorithm chooses T to be a low-stretch spanning tree.

We also need to argue that rounding xK to fK via a tree-defined flow preserves approximate
optimality. One can show that for any distribution over x such that Ex[B(x)] ≥ (1− ϵ

τ )B(x∗),
we have Ex[E(fT,x)] ≤ (1 + ϵ)E(f∗). Combining everything together, we conclude:

▶ Theorem 1. Let τ be the total stretch of T . After K = τ ln( τ
ϵ ) iterations, Dual KOSZ returns

xK ∈ RV and fK ∈ RE⃗ such that E
∥∥x∗ − xK

∥∥2
L ≤

ϵ
τ ∥x

∗∥2
L and E[E(fK)] ≤ (1 + ϵ)E(f∗),

for f∗ and x∗ optimal primal and dual solutions respectively.

We end this section with a naïve bound on the total running time of Dual KOSZ. The
details of how this running bound is obtained are in the full version of the paper – essentially,
it comes from showing that each iteration can be implemented to run in O(n) time.

▶ Lemma 11. Dual KOSZ can be implemented to run in Õ(mn log 1
ϵ ) time.

In Section 4, we argue that given a natural abstraction of the data structure problem we
use in computing f(C) and updating potentials, it appears unlikely that we can implement
each iteration in o(n1−ϵ) time, if each iteration is to be processed one-by-one in an online
fashion. In Section 5, we show how to overcome this data structure lower bound by taking
advantage of the fact that the sequence of updates that we perform can be generated in
advance.
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4 Lower Bound on the Per-Iteration Complexity of the Algorithm

Recall that each single iteration of KOSZ can be implemented in logarithmic time. In this
section we show that assuming the OMv conjecture (see below) each single iteration of
Dual KOSZ cannot be implemented in linear time. This implies that in order to speed
up our algorithm we need to “batch-up” iterations, which is the approach we use in the
next section. We first present a natural data structure, called theTreeFlow data structure,
such that each iteration of the algorithm requires only two operations of the TreeFlow data
structure and then prove that assuming the OMv conjecture [11] it is impossible to implement
the TreeFlow data structure such that each operation of the data structure takes O(n1−ϵ)
time. To simplify the reduction we reduce from a closely related problem called the Online
Vector-Matrix-Vector Multiplication Problem (OuMv).

▶ Definition 12 (Online Vector-Matrix-Vector Multiplication Problem). We are given a positive
integer n, and a Boolean n × n matrix M. At each time step t = 1, . . . , n, we are shown
a pair of Boolean vectors (ut, vt), each of length n. Our task is to output u⊤

t Mvt using
Boolean matrix-vector operations. Specifically, “addition” is replaced by the OR operation, so
that 0 + 0 = 0, and 0 + 1 = 1 + 0 = 1 + 1 = 1. Hence, u⊤

t Mvt is always either 0 or 1.

The OMv conjecture implies that no algorithm for the OuMv problem can do substantially
better than naively multiplying u⊤

t Mvt at time step t. Specifically, it says the following:

▶ Lemma 13 ([11]). Let ϵ > 0 be any constant. Assuming the OMv conjecture, there is no
algorithm for the online vector-matrix-vector multiplication problem that uses preprocessing
time O(n3−ϵ) and takes total time O(n3−ϵ) with error probability at most 1/3 in the word-RAM
model with O(log n) bit words.

Thus we will reduce the OuMv problem to the TreeFlow data structure such that
computing u⊤

t Mvt requires two operations in the TreeFlow data structure. The lower bound
then follows from Lemma 13.

4.1 The TreeFlow Data Structure
The TreeFlow data structure is given as input (1) an undirected graph G = (V, E) with
n = |V |, (2) a spanning tree T of G that is rooted at a fixed vertex x, (3) a value r(u, v)
for each edge (u, v) ∈ E (representing the resistance of (u, v)), and (4) a value b(v) for each
vertex v ∈ V (representing the supply at v). The quantities r(u, v) and b(v) are given at the
beginning and will remain unchanged throughout the operations. For any set C ⊂ V , let
b(C) :=

∑
v∈C b(v).

Furthermore, each vertex v has a non-negative value, denoted value(v), which can be seen
as the “potential” of v. It is initially 0 and can be modified. For any set C ⊂ V we define
the flow out of C to be the quantity

f(C) :=
∑

(u,v)∈E,u∈C,v ̸∈C

(value(u)− value(v)) /r(u, v).

The TreeFlow data structure supports the following operations.
addvalue(vertex v, real x): Add x to the value of every vertex in the subtree of T rooted
at v.
findflow(vertex v): Return b(C)− f(C), where C is the set of vertices in the subtree of
T rooted at v.
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The TreeFlow data structure implements exactly the operations we require for each iteration
of Dual KOSZ: The addvalue operation allows us to update the potentials on a fundamental
cut, and findflow computes b(C)− f(C), thereby allowing us to compute ∆ at each iteration.
Note that if all b(v)-values are zero, the TreeFlow data structure simply returns −f(C),
which gives it its name.

We even show the lower bound for a “relaxed” version defined as follows: In an α-
approximate TreeFlow data structure the operation addvalue remains as above and the
operation findflow(v) returns a value that is within a multiplicative factor α ≥ 1 (that
can be a function of n) of the correct answer, i.e., a value between (b(C) − f(C))/α and
(b(C)−f(C)) ·α. The hardness of approximation is interesting, because it turns out that even
an approximation of this quantity is sufficient to obtain an algorithm for Lx = b. (Albeit
with a convergence rate that deteriorates with the approximation factor.)

▶ Lemma 14. Let ϵ > 0 be any constant and let α ≥ 1 be any value. Assuming the OMv
conjecture, no implementation of the α-approximate TreeFlow data structure exists that uses
preprocessing time O(n3−ϵ) and where the two operations addvalue and findflow both take
O(n1−ϵ) time, such that over a polynomial number of operations the error probability is at
most 1/3 in the word-RAM model with O(log n) bit words. This even holds if all r(u, v)
values are 1 and if all b(v) are 0.

5 Speeding Up Dual KOSZ

We now show how to surmount the OMv lower bound by taking advantage of the fact
that the sequence of updates that Dual KOSZ performs can be generated in advance. In
Section 5.1, we show that batching the updates yields a modification of the algorithm that
runs in Õ(m1.5) time. Then in Section 5.2, we use sparsification and recursion to further
improve the runtime to Õ(m1+α) for any α > 0.

5.1 A Faster Algorithm using Batching
First, we show that it is possible to speed up the running time to Õ(m1.5) time by batching
the updates performed by Dual KOSZ. In Lemma 11, we showed that the algorithm can be
implemented to run in time Õ(mn). (Here the tilde hides a factor of log n log log n log 1

ϵ .)
This running time essentially comes from Õ(m) iterations, and O(n) time per iteration.
Recall that each iteration of Dual KOSZ involves sampling a fundamental cut C of the
low-stretch spanning tree T from a fixed probability distribution P , and then adding a
constant to the potential of every vertex in C so that the resulting potential-defined flow
satisfies flow conservation across C.

The main idea of batching is as follows. Denote the number of iterations by K (which is
Õ(m)). Instead of sampling the fundamental cuts one at a time, consider sampling the next
ℓ cuts that need to be updated for some ℓ≪ K. We can perform this sampling in advance
because both the tree T and the probability distribution over cuts of T are fixed over the
entire course of the algorithm. In each “block” of size ℓ≪ K, we contract all the edges of
T that do not correspond to one of the ℓ fundamental cuts to be updated. In this way, we
work with a contracted tree of size O(ℓ) in each block (instead of the full tree, which has
size O(n)). This makes the updates faster. However, the price we pay is that at the end of
each block, we need to propagate the updates we made (which were on the contracted tree),
back to the entire tree. We will show that by choosing ℓ =

√
m, we can balance this tradeoff

and get an improved running time of Õ(m1.5). Pseudocode for Dual KOSZ with batching is
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given in Algorithm 3. Note that the correctness of this algorithm follows directly from the
correctness of Dual KOSZ: Algorithm 3 samples cuts from exactly the same distribution as
Dual KOSZ, and if we fix the same sequence of cuts to be used by both algorithms, then the
output of the two algorithms is identical.

Algorithm 4 Dual KOSZ with batching.
1: Compute a tree T with low stretch with respect to resistances r.
2: Compute b(C) and R(C) for all fundamental cuts C of T .
3: Set x0(i) = 0 for all i ∈ V . Set f(C) = 0 for all fundamental cuts C of T .
4: for t← 1 to

⌈
K
ℓ

⌉
do

5: Sample ℓ edges (i1, j1), . . . , (iℓ, jℓ) with replacement from T , according to the
distribution P .

6: Contract all edges in T that were not sampled in step 5.
Let G̃ be the resulting graph and T̃ be the resulting tree.

7: For each 1 ≤ k ≤ ℓ, let Ck denote the fundamental cut in T determined by
edge (ik, jk). Let C̃k denote the fundamental cut in T̃ determined by (ik, jk).

8: y(ṽ)← 0 for all ṽ ∈ V (G̃).
9: for k ← 1 to ℓ do

10: Compute ∆k = (b(Ck)− f(Ck)) ·R(Ck). {Requires f(Ck) to be
already computed}

11: y(ṽ)← y(ṽ) + ∆k for all ṽ ∈ C̃k.
12: Update values of f(Cj) for all j ∈ {k + 1, . . . , ℓ}.
13: end for
14: for all i ∈ V do
15: Let ṽ(i) be the vertex in G̃ that i was contracted to.
16: xt(i)← xt−1(i) + y(ṽ(i)).
17: end for
18: Recompute f(C) for all fundamental cuts C of T .
19: end for
20: Let f ⌈K/ℓ⌉ be the tree-defined flow with respect to x⌈K/ℓ⌉ and T .
21: return x⌈K/ℓ⌉, f ⌈K/ℓ⌉

▶ Theorem 15. The running time of Dual KOSZ with batching is O(m1.5 log n log log n log 1
ϵ ).

This is achieved by choosing ℓ =
√

m.

Proof. At the beginning of the algorithm, we compute the values of b(C) (O(n) time via a
dynamic program) and R(C) (O(m log n) time via link-cut trees). The details of how to do
this are deferred to the full version of the paper.

Consider a batch of ℓ updates. Note that the contracted tree T̃ has at most ℓ + 1 vertices.
After contracting, we need to perform ℓ updates. This involves, for each k ∈ {1, 2, . . . , ℓ}:

Computing ∆k := (b(Ck)− f(Ck)) ·R(Ck),
This takes O(1) time assuming f(Ck) has already been computed. (Recall that the
values b(Ck) and R(Ck) are computed at the very beginning of the algorithm.)

Adding ∆k to y(ṽ) for every ṽ ∈ C̃k.
This takes O(ℓ) time, because the contracted tree has size O(ℓ).

Updating the values f(Ck+1), f(Ck+2), . . . , f(Cℓ) so they can be used in the later iterations
of the inner loop.

If each f(Cj) can be updated in O(1) time, this takes O(ℓ) time.
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To do this, we precompute (at the beginning of the block) an ℓ × ℓ table with a
row/column for each fundamental cut in T̃ , where the (i, j) entry is the amount by
which the flow out of Ci increases if we add 1 to the potential of every node in Cj . Let
H(Ci, Cj) denote this value. With this table, updating the value of f(Cj) reduces to a
single table lookup, which takes O(1) time. One can construct the H(Ci, Cj) table in
O(ℓ2) time using results from [13]; we defer the details to the full version of the paper.

At the end of each block, we propagate the updates we made on the contracted graph
back to the original graph. This involves

Determining the new potential of each node in G.
This takes O(n) time, because one can simply iterate over all the nodes of G.

Determining the value of f(C) for each fundamental cut determined by T . (By convention,
assume the edges of T are directed toward the root, and that the fundamental cuts we
consider are the vertex sets of the subtrees of T .)

This can be done in O(m) time using a dynamic program that works from the leaves
to the root. First, we compute f(C) at each leaf of the tree. Next, suppose we have
are at a non-leaf node v, and let C be the set of vertices in the subtree rooted at v.
Suppose we have already computed f(D1), f(D2), . . . , f(Dk), where D1, . . . , Dk are
the proper subtrees of v. Then we can compute f(C) as follows:

f(C) =
k∑

i=1
f(Di) +

∑
w:vw∈E

p(v)− p(w)
r(v, w) .

This sum correctly counts the flow leaving C. This is because any edge leaving C is
counted once. On the other hand, if an edge is between Di and Dj , then it is counted
once in the f(Di) term, and once with the opposite sign in the f(Dj) term, so it zeros
out. Similarly, if an edge is between Di and v, it also zeros out.
The running time of this dynamic program is O(m), because the time taken at each
node is proportional to its degree, and the sum of all the node degrees is equal to 2m.

To summarize, there are K iterations, divided into blocks of size ℓ. In each block, we pay
the following.

Start of block: O(m) time to contract the tree, and O(ℓ2) time to compute the H(C, C ′)
table for the cuts that will be updated in the block.
During the block: O(ℓ) time per iteration. Since each block consists of ℓ iterations,
this is O(ℓ2) in total.
End of block: O(m) time to propagate the changes from the contracted tree to the
original tree.

Hence, each block takes O(m + ℓ2) time. Multiplying by the number of blocks, which is K/ℓ,
this gives a running time of O(K( m

ℓ + ℓ)). Choosing ℓ =
√

m to minimize this quantity, we
get O(K

√
m).

The final running time is therefore O(K
√

m) plus the preprocessing time. Preprocessing
consists of finding a a low-stretch spanning tree (O(m log n log log n)), plus computing the
values of R(C) (O(m log n)), and f(C) (O(n)).

Thus, the preprocessing time is dominated by the time it takes to run the iterations. So,
the total running time is now: O(K

√
m) = O(m1.5 log n log log n log 1

ϵ ). ◀

5.2 A Still Faster Algorithm via Batching, Sparsification, and Recursion
We now show that we can further speed up the algorithm using sparsification and re-
cursion. The goal is to show that we can we can obtain a running time of the form
O(A 1

δ m1+δ(log n) B
δ (log 1

ϵ ) 1
δ ) for any δ > 0, where A and B are constants.
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Consider batching the iterations of the algorithm as follows. Pick a positive integer d,
and repeat K times:

Sample the next d updates to be performed by the algorithm. These correspond to d

edges of the spanning tree T .
Let V0, V1, . . . , Vd be the vertex sets that T is partitioned into by the d tree edges.
Add ∆(i) to every vertex in Vi. We will choose the values ∆(0), ∆(1), . . . , ∆(d) to greedily
maximize the increase in the dual bound.

Note that our original algorithm corresponds to the case when d = 1. The lemma below
quantifies the increase of the dual objective after one step of the above update.

▶ Lemma 16. Let (V0, . . . , Vd) be a partition of V . Let x ∈ RV be a vector of potentials, and
let ∆ = (∆(0), . . . , ∆(d)) be any vector in Rd+1. Let x̃ be obtained from x by adding ∆(i) to
the potential of every node in Vi. Then, the increase in the dual bound is given by the formula

B(x̃)− B(x) = bT
H∆− 1

2∆T LH∆,

where
H is the contracted graph with vertices V0, V1, . . . , Vd and resistances r(Vk, Vℓ) =(∑

ij∈δ(Vk,Vℓ)
1

r(i,j)

)−1
,

LH is the Laplacian matrix of H, and
bH(k) = b(Vk)− f(Vk) for k = 0, 1, . . . , d.

In particular, the choice of ∆ that maximizes B(x̃) − B(x) is given by the solution to
LH∆ = bH .

Proof. We write the increase in the dual potential bound. Recall that f(Vk) is the amount
of flow leaving Vk in the flow f(i, j) = x(i)−x(j)

r(i,j) . We let f(Vk, Vℓ) be the amount of flow
going from Vk to Vℓ.

2 (B(x̃) − B(x))

= (2bT x̃ − x̃T Lx̃) − (2bT x − xT Lx)

= 2
∑

k

b(Vk)∆(k) +
∑

(i,j)∈E⃗

1
r(i, j)

[
(x(i) − x(j))2 − (x̃(i) − x̃(j))2]

= 2
∑

k

b(Vk)∆(k) +
∑

(i,j)∈E⃗

1
r(i, j) [(x(i) − x(j) + x̃(i) − x̃(j))(x(i) − x(j) − x̃(i) + x̃(j))]

= 2
∑

k

b(Vk)∆(k) +
∑
k<ℓ

∑
(i,j)∈δ(Vk,Vℓ)

1
r(i, j) [(2x(i) − 2x(j) + ∆(k) − ∆(ℓ))(∆(ℓ) − ∆(k))]

= 2
∑

k

b(Vk)∆(k) + 2
∑
k<ℓ

(∆(ℓ) − ∆(k))
∑

(i,j)∈δ(Vk,Vℓ)

1
r(i, j) (x(i) − x(j))

−
∑
k<ℓ

(∆(k) − ∆(ℓ))2
∑

(i,j)∈δ(Vk,Vℓ)

1
r(i, j)

= 2
∑

k

b(Vk)∆(k) + 2
∑
k<ℓ

(∆(ℓ) − ∆(k))f(Vk, Vℓ) − ∆T LH∆

= 2
∑

k

b(Vk)∆(k) − 2
∑

k

∆(k)f(Vk) − ∆T LH∆

= 2
∑

k

(b(Vk) − f(Vk))∆(k) − ∆T LH∆

= 2bT
H∆ − ∆T LH∆
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Note that this is a concave function of ∆, because LH is positive semidefinite. Therefore,
maximizing this expression is equivalent to setting its gradient to 0. Taking its gradient and
setting to 0 yields LH∆ = bH , as claimed. ◀

▶ Remark 17. Another interpretation of the ∆ that maximizes B(x̃)− B(x) in the Lemma
above is as follows: (∆(0), . . . , ∆(d)) are the values such that if one adds ∆(i) to the potential
of every vertex in Vi, the resulting potential-induced flow satisfies the flow constraints
f(Vk) = b(Vk) for all k = 0, . . . , d.

5.3 The Sparsify and Recurse Algorithm
Next we give the algorithm with sparsification and recursion in more detail. Observe that
d cut-toggling updates effectively break the spanning tree into d + 1 components. After
contracting the components to get a graph H with d + 1 vertices, Lemma 16 shows that
solving the Laplacian system LH∆ = bH gives the update that maximizes the increase in
B(x̃)−B(x) among all updates that increment the potential of all vertices in Vi by the same
amount. In particular, the progress made by this update step is is at least as large as the
progress made by the sequence of d updates performed by the straightforward unbatched
algorithm.

A natural approach is to solve LH∆ = b recursively. However, this by itself does not
give an improved running time. Instead, we will first spectrally sparsify H to get a sparsified
approximation L̃H of LH , satisfying (1 − γ)LH ⪯ L̃H ⪯ (1 + γ)LH for an appropriate
constant γ ∈ (0, 1). Such a matrix L̃H is known as a γ-spectral sparsifier of LH . We then
call the algorithm recursively on H to solve L̃H∆̃ = bH . Thus, a main task of the analysis is
to bound the error incurred by solving the sparsified system instead of the exact one. For
the spectral sparsification, we use the original Spielman-Teng algorithm [20] because it does
not require calling Laplacian solvers as a subroutine (e.g. [2]). A variant of it with better
failure probabilities is given in Theorem 6.1 [17]: one can find a sparsifier with O(n logc n/γ2)
nonzero entries in O(m logc1 n) time, with probability at least 1− 1/n2. Here, c and c1 are
constants, and m, n are the number of edges and vertices, respectively, in the graph before
sparsifying. Pseudocode for Dual KOSZ with batching, sparsification, and recursion is given
in Algorithm 5.

The base case of the recursive algorithm is when |V | ≤ n0, where n0 is a constant that
the algorithm can choose. For the base case, we simply use Gaussian elimination to solve
LGx = b, which takes O(1) time since n0 is a constant. For every t, contracting G down to
Ht and computing the new resistances takes O(m) time.

5.4 Analysis of the Sparsify and Recurse Algorithm
We now analyze Algorithm 5. We first bound the convergence rate, then analyze the running
time. The following fact about spectral approximations will be used; its proof is deferred to
the full version of the paper.

▶ Proposition 18 (Spectral Approximations). Suppose A, B ∈ Sn
+ and (1− γ) A ⪯ B ⪯

(1 + γ) A. Let x, y, z, b ∈ Rn. Then the following hold:
1. (1− γ) ∥x∥2

A ≤ ∥x∥
2
B ≤ (1 + γ) ∥x∥2

A

2. If Ax = b and By = b, then ∥x− y∥2
A ≤ h(γ) ∥x∥2

A, where h(γ) = γ2

(1−γ)2 .

5.4.1 Error Analysis
The lemma below bounds the expected rate of convergence of xt to x∗.
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Algorithm 5 Dual KOSZ with batching, sparsification, and recursion.

1: If |V | ≤ n0, solve LGx = b using Gaussian elimination and return x.
{LG is the Laplacian matrix of G.}

2: Compute a low-stretch spanning tree T of G.
3: Initialize x0 = 0.
4: for all t = 0 to K do
5: Generate the next d updates. These correspond to d tree edges et

1, . . . , et
d ∈ T .

6: Let V t
0 , . . . , V t

d be the vertex sets of the connected components of
T − {et

1, . . . , et
d}.

7: Contract G to Ht with d + 1 vertices: Each V t
i is a vertex in Ht, and

resistances in Ht are

rHt(V t
k , V t

ℓ ) =

 ∑
ij∈δ(Vk,Vℓ)

1
r(i, j)

−1

.

8: Compute L̃Ht , a γ-spectral sparsifier of LHt , where γ ∈ (0, 1) will be
a parameter that we will determine later.

9: Let bt
G = b− LGxt.

10: Let bt
Ht ∈ RV (Ht) be defined as follows:

bt
Ht(V t

i ) =
∑

u∈V t
i

bt
G(u) for all i = 0, 1, . . . , d.

11: Call the algorithm recursively to solve the Laplacian system L̃Ht∆̃t = bt
Ht

for ∆̃t. This will return an approximate solution ∆̃t
ϵ′ that satisfies∥∥∥∆̃t

ϵ′ − ∆̃t
∥∥∥2

L̃Ht

≤ ϵ′
∥∥∥∆̃t

∥∥∥2

L̃Ht

. Here, ϵ′ is the error parameter that we will input
to the recursive call, to be determined later.

12: Update xt using ∆̃t
ϵ′ to get the next iterate xt+1. For every vertex u ∈ V ,

xt+1(u)← xt(u) + ∆̃t
ϵ′(V t

i ),

where V t
i is the set in V t

0 , . . . , V t
d such that u ∈ V t

i . In other words, we update
xt to xt+1 by
adding ∆̃t

ϵ′(V t
i ) to the potential of every vertex in V t

i .
13: If B(xt+1) ≤ B(xt), revert xt+1 ← xt.
14: end for
15: Return xK and the corresponding tree-defined flow fK .

▶ Lemma 19. For all t ≥ 0, we have E ∥x∗ − xt∥2
LG
≤

(
1− β + βe− d

τ

)t

∥x∗∥2
LG

. Here,
τ = O(m log n log log n) is the stretch of the spanning tree,
d is the number of updates in each batch,
β =

(
1− 1

n2
0

) (
1−

(
4ϵ′ · 1+γ

1−γ ·
(

1 + γ2

(1−γ)2

)
+ 2γ2

(1−γ)2

))
.

In particular, if we choose n0 = 10, γ = 1
100 , and ϵ′ = 1

100 , then β ≥ 4
5 , so that

E
∥∥x∗ − xt

∥∥2
LG
≤

(
1
5 + 4

5e− d
τ

)t

∥x∗∥2
LG

.

Proof. Define the random variable Dt := B(x∗)− B(xt). We will show in Lemma 21 that
for every possible realization xt, we have E

[
Dt+1 | xt

]
≤

(
1− β + βe−d/τ

)
E [Dt | xt] . This

implies that E[Dt+1] ≤
(
1− β + βe−d/τ

)
E [Dt] unconditionally.
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It then follows that

E
[
Dt

]
≤

(
1− β + βe−d/τ

)t

E
[
D0]

=
(

1− β + βe−d/τ
)t

B(x∗).

Thus, B(x∗)− E[B(xt)] ≤
(
1− β + βe−d/τ

)t B(x∗). ◀

As in the original analysis of Dual KOSZ, we will study the duality gap and analyze its
decrease at each step of the algorithm. Consider some iteration t of the algorithm. Recall
that xt is the iterate at the start of iteration t. For every possible sequence of et

1, . . . , et
d (the

trees edges chosen in iteration t), define the following:
Let x̂t+1 be the vector obtained from xt by adding ∆t(V t

i ) to every vertex in V t
i , where

∆t := L†
Htbt

Ht .
Let x̄t+1 be obtained from xt by applying the updates for the sequence of tree edges
et

1, . . . , et
d, one by one. (i.e. Exactly as in the original, unbatched version of Dual KOSZ

described in Section 3.)

▶ Lemma 20. Fix any choice of et
1, . . . , et

d, and assume that L̃Ht is a γ-approximate sparsifier
of LHt . Then

B(xt+1)− B(xt) ≥ (1− α)
(
B(x̂t+1)− B(xt)

)
where α = 4ϵ′ · 1+γ

1−γ ·
(

1 + γ2

(1−γ)2

)
+ 2γ2

(1−γ)2 .
If we further assume that γ ∈ (0, 1

2 ), we can simplify to get

B(xt+1)− B(xt) ≥ (1− 12ϵ′ − 8γ2 − 48ϵ′γ2)
(
B(x̂t+1)− B(xt)

)
.

Proof. To simplify notation, in this proof we will use
bH to denote bt

Ht ,
∆̃ϵ′ to denote ∆̃t

ϵ′ ,
∆̃ to denote ∆̃t

∆ to denote ∆t,
H to denote Ht,

Later in this proof, we will show that∥∥∆̃ϵ′ −∆
∥∥2

LH
≤ α ∥∆∥2

LH
, (1)

for a constant α that depends on ϵ′ and γ. Assuming (1) holds, by the definition of the
matrix norm it follows that(

∆̃ϵ′ −∆
)T LH

(
∆̃ϵ′ −∆

)
≤ α∆T LH∆.

Expanding the left-hand side and rearranging, we get

2∆̃T
ϵ′LH∆− ∆̃T

ϵ′LH∆̃ϵ′ ≥ (1− α)∆T LH∆.

Using LH∆ = bH , this becomes

2∆̃T
ϵ′bH − ∆̃T

ϵ′LH∆̃ϵ′ ≥ (1− α)∆T LH∆.

Recall that xt+1 is obtained from xt by adding ∆̃ϵ′(V t
i ) to every vertex in V t

i . Using
Lemma 16 with ∆(i) = ∆̃ϵ′(V t

i ), x = xt, x̃ = xt+1, L̃ = LH , and b̃ = bH it follows that
the left-hand side is equal to B(xt+1) − B(xt). On the other hand, B(x̂t+1) − B(xt) =
2bT

H∆ −∆T LH∆ = ∆T LH∆. (Since LH∆ = bH .) Thus, the right-hand side is equal to
(1− α)

(
B(x̂t+1)− B(xt)

)
. Thus we have
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B(xt+1)− B(xt) ≥ (1− α)
(
B(x̂t+1)− B(xt)

)
,

as claimed.
It remains to prove (1). To prove (1), note that we have

1.
∥∥∆̃ϵ′ − ∆̃

∥∥2
L̃H
≤ ϵ′

∥∥∆̃
∥∥2

L̃H
(This is the error from the recursive solve).

2.
∥∥∆̃−∆

∥∥2
LH
≤ h(γ) ∥∆∥2

LH
(Follows by part 2 of Proposition 18. This is the error from

sparsification).
The first inequality, together with (1− γ)LH ⪯ L̃H ⪯ (1 + γ)LH and part 1 of Proposition
18, implies that∥∥∆̃ϵ′ − ∆̃

∥∥2
LH
≤ 1

1− γ

∥∥∆̃ϵ′ − ∆̃
∥∥2

L̃H
≤ ϵ′

1− γ

∥∥∆̃
∥∥2

L̃H
≤ ϵ′ · 1 + γ

1− γ
·
∥∥∆̃

∥∥2
LH

.

Now, using the inequality ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 (which holds for any norm), we note
that∥∥∆̃

∥∥2
LH
≤ 2 ∥∆∥2

LH
+ 2

∥∥∆̃−∆
∥∥2

LH
≤ 2 ∥∆∥2

LH
+ 2h(γ) ∥∆∥2

LH
.

Hence,∥∥∆̃ϵ′ − ∆̃
∥∥2

LH
≤ 2ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) ∥∆∥2

LH
.

Again using ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, we have∥∥∆̃ϵ′ −∆
∥∥2

LH
≤ 2

(∥∥∆̃ϵ′ − ∆̃
∥∥2

LH
+

∥∥∆̃−∆
∥∥2

LH

)
≤ 2

(
2ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) ∥∆∥2

LH
+ h(γ) ∥∆∥2

LH

)
=

(
4ϵ′ · 1 + γ

1− γ
· (1 + h(γ)) + 2h(γ)

)
∥∆∥2

LH
.

Therefore, (1) holds with α = 4ϵ′ · 1+γ
1−γ · (1 + h(γ)) + 2h(γ). ◀

▶ Lemma 21. For any vector xt, we have

B(x∗)− E[B(xt+1)] ≤
(

1− β + βe−d/τ
) (
B(x∗)− B(xt)

)
,

where β = (1− 1
n2

0
)(1− α).

Here, the expectation is taken over the random choices of et
1, . . . , et

d, and also over the
randomness of the sparsification step. (Recall that the sparsify algorithm is randomized, and
in particular it successfully returns a γ-approximate sparsifier with probability ≥ 1− 1

|V (Ht)|2 .)

Proof. By Lemma 9, we know that

B(x∗)− E[B(x̄t+1)] ≤
(

1− 1
τ

)d (
B(x∗)− B(xt)

)
≤ e− d

τ

(
B(x∗)− B(xt)

)
.

Rearranging, this is equivalent to

E[B(x̄t+1)]− B(xt) ≥
(

1− e− d
τ

) (
B(x∗)− B(xt)

)
.
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Observe that for every realization of et
1, . . . , et

d, we have B(x̂t+1) ≥ B(x̄t+1). This is because
x̂t+1 − xt = ∆t, where ∆t by definition is the vector that maximizes the increase B(x̂t+1)−
B(xt) while subject to being incremented by the same amount on each of the components
V t

0 , . . . , V t
d . On the other hand, the vector x̄t+1−xt is also incremented by the same amount

on each of the components V t
0 , . . . , V t

d by the way our original algorithm works.
Since B(x̂t+1) ≥ B(x̄t+1) holds for every realization of et

1, . . . , et
d, it follows that

E[B(x̂t+1)] ≥ E[B(x̄t+1)], where the expectation is taken over the random choices of et
1, . . . , et

d

made by the algorithm. Hence,

E[B(x̂t+1)]− B(xt) ≥
(

1− e− d
τ

) (
B(x∗)− B(xt)

)
. (2)

To conclude, we will use Lemma 20 to translate the above inequality (which is in terms of
x̂t+1), to an inequality in terms of xt+1. We have

With probability ≥ 1− 1
n2

0
, the sparsifier is successful and by Lemma 20,

E[B(xt+1)]− B(xt) ≥ (1− α)
(
E[B(x̂t+1)]− B(xt)

)
.

With probability ≤ 1
n2

0
, the sparsifier is unsuccessful and E[B(xt+1)]− B(xt) ≥ 0. This is

because in the algorithm, we evaluate B(xt+1) and only update xt to xt+1 if B(xt+1) ≥
B(xt). Otherwise, we make xt+1 = xt.

Note that the above expectations are with respect to the random choices of et
1, . . . , et

d,
conditioned on the sparsifier being successful/unsuccessful. Now, taking another expectation
with respect to the randomness of the sparsifier, we get

E[B(xt+1)]− B(xt) ≥
(

1− 1
n2

0

)
(1− α)

(
E[B(x̂t+1)]− B(xt)

)
≥

(
1− 1

n2
0

)
(1− α)

(
1− e− d

τ

) (
B(x∗)− B(xt)

)
(by (2))

Rearranging the above inequality gives

B(x∗)− E[B(xt+1)] ≤
(

1−
(

1− 1
n2

0

)
(1− α)

(
1− e− d

τ

)) (
B(x∗)− B(xt)

)
,

as claimed. ◀

5.4.2 Running Time Analysis
The following theorem bounds the running time of the algorithm.

▶ Theorem 2. For any δ ∈ (0, 1) and ϵ > 0, Dual KOSZ with batching, sparsification, and
recursion finds x with E ∥x∗ − x∥2

L ≤ ϵ ∥x∗∥2
L in O(m1+δ(log n)O( 1

δ )(log 1
ϵ ) 1

δ ) time.

Proof. By Lemma 19, it suffices to run the algorithm for K iterations, for any K ≥
ln ϵ

ln( 1
5 + 4

5 e−d/τ ) .
Using the inequalities e−x ≤ 1− x

2 and ln(1− x) ≤ −x
2 which hold for x ∈ (0, 1), we see

that it suffices to choose K = 5τ
d ln(1/ϵ).

Recall that τ ≤ c3m log2 n, for some constant c3. Thus, we choose d = c3m̄(log2 n) ·m−δ.

Here, m̄ is the number of edges in the current iteration, while m is the number of edges
in the topmost iteration (i.e. in the original graph G). With this choice of d, we have
K = 5c3mδ ln(1/ϵ). (Note that K is the same at every level of the recursion tree.)



M. Henzinger, B. Jin, R. Peng, and D. P. Williamson 69:21

The work at one iteration consists of
Computing T ,
Doing K times

Contracting and sparsifying to a graph with d vertices and a1d logc n/γ2 edges, for
some constant a1.
Doing a recursive call.

If m is the number of edges in the graph at one level of the recursion tree, then at the next
level, the number of edges is

a1d logc n/γ2 = a1c3m̄(log2 n) ·m−δ logc n/γ2 = a1c3m̄ ·m−δ(log n)2+c/γ2

Therefore, the number of edges in a graph at level ℓ of the recursion tree is

edgesℓ = m1−ℓδ(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ.

The total work required by a node at level ℓ of the recursion tree is dominated by the
sparsifier, which takes time

workℓ = K · a2 · edgesℓ · logc1 n

for some constant a2.
Finally, the total number of recursion tree nodes at level ℓ is equal to Kℓ. This implies

that the total work required by all the nodes at level ℓ of the recursion tree is equal to

total workℓ = workℓ ·Kℓ

= K · a2 · edgesℓ · logc1 n ·Kℓ

= K · a2 ·m1−ℓδ(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ · logc1 n ·Kℓ

= 5ℓ+1cℓ+1
3 m1+δ(ln 1/ϵ)ℓ+1a2(a1c3)ℓ(log n)(2+c)ℓ/γ2ℓ · logc1 n

≤ Aℓm1+δ(log n)Bℓ(ln 1/ϵ)ℓ+1

for some constants A, B.
To conclude, we note that the total work summed across all the levels is at most a

constant factor times the total work at the maximum level, which is ℓ = 1
δ . ◀
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