
Comparative Learning: A Sample Complexity
Theory for Two Hypothesis Classes
Lunjia Hu #

Computer Science Department, Stanford University, CA, USA

Charlotte Peale #

Computer Science Department, Stanford University, CA, USA

Abstract
In many learning theory problems, a central role is played by a hypothesis class: we might assume
that the data is labeled according to a hypothesis in the class (usually referred to as the realizable
setting), or we might evaluate the learned model by comparing it with the best hypothesis in the
class (the agnostic setting). Taking a step beyond these classic setups that involve only a single
hypothesis class, we study a variety of problems that involve two hypothesis classes simultaneously.

We introduce comparative learning as a combination of the realizable and agnostic settings in
PAC learning: given two binary hypothesis classes S and B, we assume that the data is labeled
according to a hypothesis in the source class S and require the learned model to achieve an accuracy
comparable to the best hypothesis in the benchmark class B. Even when both S and B have infinite
VC dimensions, comparative learning can still have a small sample complexity. We show that the
sample complexity of comparative learning is characterized by the mutual VC dimension VC(S, B)
which we define to be the maximum size of a subset shattered by both S and B. We also show a
similar result in the online setting, where we give a regret characterization in terms of the analogous
mutual Littlestone dimension Ldim(S, B). These results also hold for partial hypotheses.

We additionally show that the insights necessary to characterize the sample complexity of
comparative learning can be applied to other tasks involving two hypothesis classes. In particular,
we characterize the sample complexity of realizable multiaccuracy and multicalibration using the
mutual fat-shattering dimension, an analogue of the mutual VC dimension for real-valued hypotheses.
This not only solves an open problem proposed by Hu, Peale, Reingold (2022), but also leads to
independently interesting results extending classic ones about regression, boosting, and covering
number to our two-hypothesis-class setting.
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1 Introduction

The seminal theoretical framework of PAC learning [75] provides a formalization of machine
learning that allows for rigorous theoretical analysis. In PAC learning, a learning algorithm
(learner) receives individual/label pairs (x, y) ∈ X × {−1, 1} as input data, drawn i.i.d. from
an unknown distribution µ. The learner’s goal is to output a model f : X → {−1, 1} that
assigns each individual in X a binary label. The performance of the model f is measured by
its classification error,
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error(f) := Pr(x,y)∼µ[f(x) ̸= y].

Because the classification error is evaluated over the entire distribution µ, a good learner
must go beyond simply memorizing the individuals and labels seen in the input data and be
able to correctly predict the labels of unseen individuals as well. This can be a difficult task,
and to make it possible to achieve a meaningfully small error given a limited amount of input
data, additional assumptions or relaxations are needed. This leads to two standard settings
of PAC learning: realizable and agnostic learning. In realizable learning, we assume that all
data points are labeled according to an unknown hypothesis h : X → {−1, 1}, i.e., y = h(x)
for every data point (x, y) drawn from µ, and we assume that h belongs to a hypothesis
class H known to the learner. Under this assumption, realizable learning requires the output
model f to achieve a low classification error (error(f) ≤ ε) with large probability. In agnostic
learning there is also a hypothesis class H known to the learner, but it does not impose
any assumption on the data. Instead, we aim for a relaxed goal specified by H: achieving
error(f) ≤ infh∈H error(h) + ε with large probability.

At a high level, both realizable and agnostic learning involve the introduction of a
hypothesis class H, but H plays a very different role in each setting. In realizable learning, H

constrains the potential source hypotheses that might determine the ground-truth labeling of
the data. In contrast, agnostic learning places no assumptions on the ground-truth labeling,
but instead uses H as a benchmark class and only requires the learner to perform well
compared to the best benchmark hypothesis in H. Thus, realizable and agnostic learning
highlight two natural ways to simplify a learning task: constrain the potential hypotheses
that the ground-truth labeling is generated from, or constrain the set of hypotheses that the
output model is compared against.

Our work originates from the observation that these two ways of simplifying a learning
task need not be mutually exclusive. Instead, they can be treated as two “knobs” that can
be simultaneously adjusted to create new hybrid learning tasks. For any two hypothesis
classes S and B, we can define a learning task by letting them play the two roles of H in the
realizable and agnostic settings, respectively. That is, we assume that there exists a source
hypothesis s ∈ S such that y = s(x) for every data point (x, y) drawn from µ, and we aim
for achieving, with large probability, an error comparable to the best benchmark hypothesis
b ∈ B: error(f) ≤ minb∈B error(b) + ε. We term this hybrid notion comparative learning.

Our research reveals that the notion of comparative learning is far more insightful than
just a thought experiment: it serves as an unexplored playground for the study of sample
complexity, and the new connections we establish to characterize the sample complexity of
comparative learning can be fruitfully applied to open questions about existing learning
tasks. Here, “sample complexity” refers to one of the key characteristics of every learning
task: the minimum number of data points needed by a learner to solve the task. VC theory
provides a thorough understanding of the sample complexity of classic PAC learning in both
the realizable and agnostic settings: in both cases it is characterized by the VC dimension of
the hypothesis class H, defined as the maximum size of a subset of X on which all possible
labelings of the individuals can be realized by some hypothesis in H (we say a set is shattered
by H when this condition holds; see Section 2 for the exact definition) [76, 17, 63]. Since then,
understanding the sample complexity of a wide variety of new and existing learning tasks
has remained an exciting area of research. These tasks include online learning [64, 13, 1, 26],
reliable and useful learning [69, 60, 59, 61], statistical query learning [53, 15], learning real-
valued hypotheses [56, 2, 11], multiclass learning [12, 19], learning partial hypotheses [66, 3],
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active learning [7, 8, 52, 43, 44, 42], property testing [30, 55, 14], differentially private learning
[4, 20, 27, 73, 50, 31], bounded-memory learning [32], and online learning in the smoothed
analysis model [38, 39]. A commonality of these learning tasks is that each of them only
explicitly involves a single hypothesis class, and thus the sample complexity is studied in
terms of complexity measures of single hypothesis classes, such as the VC dimension, the
Littlestone dimension, the statistical query dimension, the fat-shattering dimension, and
the DS dimension. To tightly characterize the sample complexity of comparative learning
where a pair of hypothesis classes S and B are involved, it is not sufficient to apply existing
complexity measures to S and B separately (see Section 1.1 for a more detailed discussion).
Instead, we must create new notions that measure the complexity of the interaction between
the two classes. We show that the correct way to measure the complexity of this interaction
in comparative learning is to look at the subsets of X that S and B both shatter, and we
define the mutual VC dimension, VC(S, B), to be the maximum size of such subsets. We
show that the mutual VC dimension gives both upper and lower bounds on the sample
complexity of comparative learning. Similarly, in an online analogue of comparative learning,
we define the mutual Littlestone dimension and prove upper and lower regret bounds.

Our sample complexity characterization for comparative learning turns out to be a
powerful tool for studying the sample complexity of other tasks involving two hypothesis
classes. In fact, our interest in comparative learning is derived in part from open questions
related to the sample complexity of realizable multiaccuracy (MA) and multicalibration
(MC) [41, 57, 48]. In these tasks, the hypothesis class H plays the same role as in realizable
learning, while the classification error error(f) is replaced with an alternative error measure
MA-errorD(f) or MC-errorD(f) specified by an additional hypothesis class D that is sometimes
called the distinguisher class.1 For example, the multiaccuracy error MA-errorD(f) is defined
as follows:

MA-errorD(f) := supd∈D|E(x,y)∼µ[(f(x) − y)d(x)]|,

where the supremum is over all the distingushers d : X → [−1, 1] in the distinguisher class
D. As demonstrated by Hu, Peale and Reingold [48], the freedom in choosing the class D

allows the error to adapt to different goals that may arise in practice.
The introduction of the distinguisher class D makes sample complexity characterization

challenging because the characterization needs to depend on both the class H in realizable
learning and the additional distinguisher class D. Hu, Peale and Reingold [48] give a sample
complexity characterization for realizable multiaccuracy using a particular metric entropy
defined for every pair (H, D) (see Section 1.2 for more details), but their characterization is
in the distribution-specific setting where the marginal distribution µ|X of x in a pair (x, y)
generated from the data distribution µ is fixed and known to the learner. In contrast, the
VC dimension characterization for PAC learning is in the distribution-free setting where the
learner has no explicit knowledge about µ|X and must perform well for every µ|X . The sample
complexity characterization for realizable multiaccuracy in the distribution-free setting is left
as an open question by Hu et al. [48].

1 The name “distinguisher class” comes from the observation that the no-access outcome indistinguishability
task studied in [48] can be equivalently framed as multiaccuracy (see Section 2.1.2 in [48]). In addition
to the difference in the error from realizable learning, realizable multiaccuracy and multicalibration
also allow the hypothesis class H and the model f to be real-valued (see Section 1.2 and Section 5).
It is also possible to replace the error in agnostic learning with MA-error and MC-error to get agnostic
multiaccuracy and agnostic multicalibration, but Hu et al. [48] show that the sample complexity of
agnostic multiaccuracy exhibits a non-monotone dependence on the complexity of the distinguisher
class D. We focus on defining multiaccuracy and multicalibration in the realizable setting throughout
the paper.
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In this work, we answer this open question by characterizing the sample complexity
of realizable multiaccuracy and multicalibration in the distribution-free setting using the
mutual fat-shattering dimension, which we define similarly to the mutual VC dimension
but for two real-valued hypothesis classes. Our results on comparative learning turn out
to be especially useful for obtaining this characterization because there is an intimate
relationship between achieving the comparative learning goal error(f) ≤ minb∈B error(b) + ε

and achieving a low multiaccuracy (or multicalibration) error: MA-errorB(f) ≤ ε. Here, the
benchmark class B in comparative learning plays the role of the distinguisher class D in
multiaccuracy and multicalibration. This relationship has been observed in [41] and [34]
in a single-hypothesis-class setting, i.e., without the assumption that the labels from the
data distribution are generated according to a hypothesis in a pre-specified source class. We
generalize this relationship to our two-hypothesis-class setting by showing a reduction from
realizable multiaccuracy and multicalibration to comparative learning while preserving the
interaction between the source and distinguisher/benchmark classes. This reduction leads to
a number of new learning tasks that also involve a pair of hypothesis classes. Specifically, the
reduction is accomplished via an intermediate task which we call correlation maximization,
and we show that with some adaptation the reduction also allows us to efficiently boost a weak
comparative learner to a strong one. Once we achieve multiaccuracy and multicalibration,
we apply the omnipredictor result of Gopalan et al. [34] to solve comparative regression, an
analogue of comparative learning but with real-valued hypotheses and general convex and
Lipschitz loss functions. We believe that there is a rich collection of learning tasks where
two or more hypothesis classes may interact in interesting ways, and our work is just a small
step towards a better understanding of a tiny fraction of these tasks.

1.1 Sample Complexity of Comparative Learning
As mentioned earlier, VC theory has provided a thorough understanding of the sample
complexities of both realizable and agnostic learning.

For any binary hypothesis class H, VC theory characterizes the sample complexity of
realizable and agnostic learning using the VC dimension VC(H) of the hypothesis class
H, a combinatorial quantity with a simple definition: the maximum size of a subset of X

shattered by H (see Section 2 for exact definition) [76, 17, 63]. Moreover, the optimal sample
complexity in both the realizable and agnostic settings can be achieved by a simple algorithm:
the empirical risk minimization algorithm (ERM), which outputs the hypothesis in H with
the minimum empirical error on the input data points.

Because our notion of comparative learning combines these two settings, it would seem
natural to use techniques from VC theory to understand its sample complexity as well.
Compared to realizable learning for S, comparative learning for (S, B) has a relaxed goal
(specified by the benchmark class B), and thus any learner solving realizable learning for S

also solves comparative learning for (S, B). This gives us a sample complexity upper bound
in terms of VC(S) for comparative learning. Similarly, any learner solving agnostic learning
for B also solves comparative learning for (S, B) because comparative learning only makes
additional assumptions on data (specified by the source class S), so we get another sample
complexity upper bound in terms of VC(B).

However, perhaps surprisingly, these sample complexity upper bounds provided by the
classic VC theory are not optimal. Even when VC(S) and VC(B) are both infinite, comparative
learning may still have a finite sample complexity. Imagine that the domain X of individuals
is partitioned into two large subsets X1 and X2. Suppose the source class S consists of all
binary hypotheses s : X → {−1, 1} satisfying s(x) = 1 for every x ∈ X1, and the benchmark
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s 2 S
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Figure 1 An example where comparative learning requires no data points when VC(S) and VC(B)
are both infinite. The left two images show examples of hypotheses in S and B, both of which are
very complex, but on disjoint portions of the domain. In this case, a learner that always outputs
the model f in the rightmost image solves comparative learning because f always achieves smaller
or equal error compared to any benchmark hypothesis b ∈ B when the ground-truth labelling is
generated by a source hypothesis s ∈ S. See in-text description for more details.

ERM for S
<latexit sha1_base64="JOpXYQNrckAwdsIv00mUl8eCT4c="></latexit>

ERM for B
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s 2 S
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data points seen by learner
<latexit sha1_base64="se6riZlleTJjPHjKs/fgaDx68fE="></latexit>

Figure 2 Empirical risk minimization (ERM) may fail to give us optimal sample complexity in
the same setting as Figure 1, where S and B are both very complex, but on disjoint domains. When
the source hypothesis s ∈ S is the constant function shown in the left image, the right two images
show examples of output models of ERM when run on S and B. Neither model is guaranteed to
achieve the low error required by comparative learning. See in-text description for more details.

class B consists of all binary hypotheses b : X → {−1, 1} satisfying b(x) = 1 for every x ∈ X2.
Both VC(S) and VC(B) can be large and even infinite, but comparative learning in this case
requires no data points: the learner can simply output the model f that maps every x ∈ X

to 1 because no benchmark hypothesis in B can achieve a smaller error than f when the
data points (x, y) ∼ µ satisfy y = s(x) for a source hypothesis s ∈ S (see Figure 1). Beyond
demonstrating that comparative learning may require far fewer samples than what our initial
naïve upper bound might suggest, this example also shows that the standard empirical risk
minimization (ERM) algorithm used for PAC learning does not give us the optimal sample
complexity for comparative learning. Assume that the source hypothesis s ∈ S maps every
x ∈ X to 1 and µ is the uniform distribution over X × {1}. In this case minb∈B error(b) = 0
and thus comparative learning requires a low classification error error(f) ≤ ε with large
probability. We have shown that this requirement can be achieved without any input data
points, but the ERM algorithm cannot achieve this requirement in general unless there
are many input data points: there can be many hypotheses in S and B that achieve zero
empirical error on the input data points, but when the data points are few, most of such
hypotheses do not achieve low classification error over the entire distribution µ (see Figure 2).

The example above shows that the VC dimensions VC(S) and VC(B) alone are not
informative enough to characterize the sample complexity of comparative learning. These VC
dimensions only tell us the complexity of S and B separately, but we also need to know the
complexity of their interaction. We measure the complexity of this interaction by defining
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the mutual VC dimension VC(S, B) to be the maximum size of a subset of X shattered by
both S and B, and we give a tight characterization for the sample complexity of comparative
learning in terms of VC(S, B).

As discussed earlier, new ideas are needed to prove this sample complexity characterization.
In particular, we need to design a learner that is different from the ERM algorithm. Our
technique is based on an interesting connection to learning partial binary hypotheses, a
learning task considered first in [9, 66] and studied more systematically in a recent work
by Alon, Hanneke, Holzman and Moran [3]. A partial binary hypothesis is a function
h : X → {−1, 1, ∗} that may assign some individuals x ∈ X the undefined label h(x) = ∗.
The notion of partial hypotheses is motivated in previous work either as an intermediate
step towards understanding real-valued hypotheses or as a way to describe data-dependent
assumptions that could not be captured by the standard PAC learning model. In this
work, we show that partial hypotheses have yet another application and can be used to
express the interaction between a source hypothesis s ∈ S and a benchmark hypothesis
b ∈ B in comparative learning: we construct an agreement hypothesis as,b which is a partial
hypothesis assigning the undefined label ∗ to an individual x whenever s(x) is different
from b(x), and giving the same label to x as s and b if s(x) equals b(x). We show that
comparative learning for (S, B) can be reduced to agnostically learning the class AS,B which
consists of all the partial hypotheses as,b for s ∈ S and b ∈ B, and conversely, we show
that realizable learning for AS,B reduces to comparative learning for (S, B). Our sample
complexity characterization for comparative learning then follows immediately from the
results by Alon et al. [3] for learning partial hypotheses. Moreover, our characterization
holds even when the source hypotheses and benchmark hypotheses themselves are partial.
We also show that this connection between comparative learning and learning the agreement
hypotheses as,b extends to the online setting, allowing us to show a regret characterization
for comparative online learning.

Our definition of the mutual VC dimension is clearly symmetric: VC(S, B) = VC(B, S),
and thus our sample complexity characterization for comparative learning reveals an intriguing
phenomenon which we call sample complexity duality: comparative learning for (S, B) and
comparative learning for (B, S) always have similar sample complexities. In other words,
swapping the roles of the source class and the benchmark class does not change the sample
complexity by much. Previously in [48], Hu et al. showed that this phenomenon holds for
realizable multiaccuracy in the distribution-specific setting, drawing an insightful connection
to a long-standing open question in convex geometry: the metric entropy duality conjecture
[68, 18, 6, 5, 67]. Our sample complexity characterizations imply that sample complexity
duality also holds in the distribution-free setting for realizable multiaccuracy as well as
multicalibration. We also show that sample complexity duality does not hold for many learning
tasks that we consider, including distribution-specific comparative learning, distribution-
specific realizable multicalibration, correlation maximization, and comparative regression.
In Table 1 we list whether sample complexity duality holds in general for every two-class
learning task we consider in this paper in both the distribution-specific and distribution-free
settings.

1.2 Multiaccuracy and Multicalibration
A direct motivation of our work is a recent paper by Hu, Peale, and Reingold [48] that studies
a learning task called multiaccuracy, which was introduced in [41] and [57] originally as a
notion of multi-group fairness. In multiaccuracy, the learned model (presumably making
predictions about people) is required to be accurate in expectation when conditioned on
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Table 1 Duality (yes) VS non-duality (no). *The sample complexity duality result in [48] for
distribution-specific multiaccuracy assumes that all hypotheses are total.

Distribution-specific Distribution-free
Comparative learning no yes
Correlation maximization no no
Realizable multiaccuracy yes* [48] yes
Realizable multicalibration no yes
Comparative regression no no

each sub-community in a rich class (possibly defined based on demographic groups and their
intersections). This ensures that the predictions made by the model are not systematically
biased in any of the sub-communities.

Taking a broad perspective beyond fairness, Hu et al. [48] view multiaccuracy as providing
a general, meaningful, and flexible performance measure for prediction models, and study
PAC learning with the usual classification error replaced by this new performance measure
from multiaccuracy. To be specific, let us consider a real-valued source hypothesis class S

consisting of source hypotheses s : X → [−1, 1]. We use S to replace the binary hypothesis
class H in realizable learning and assume that every input data point (x, y) ∈ X × [−1, 1] is
generated i.i.d. from a distribution µ satisfying E(x,y)∼µ[y|x] = s(x) for an unknown s ∈ S.
Suppose a learner which tries to learn s given the input data points produces an output
model f : X → [−1, 1]. This is a more general setting than binary classification because we
allow f(x) and s(x) to take any value in the interval [−1, 1], and accordingly, let us use the
ℓ1 error ℓ1-error(f) := Ex∼µ|X

[|f(x) − s(x)|] as a generalization of the classification error (as
in, e.g., [11]). The multiaccuracy error of f is defined to be

MA-errorµ,B(f) := supb∈B |E(x,y)∼µ[(f(x) − y)b(x)]|, (1)

where B is a distinguisher class consisting of distinguishers b : X → [−1, 1]. Here we use B

(rather than D) to denote the distinguisher class because a key idea we use in our work is to
relate the distinguisher class to the benchmark class in comparative learning. Due to our
assumption E(x,y)∼µ[y|x] = s(x), the multiaccuracy error can be written equivalently as

MA-errorµ,B(f) = supb∈B |Ex∼µ|X
[(f(x) − s(x))b(x)]|.

The multiaccuracy error is a generalization and relaxation of the ℓ1 error in that if we
choose the distinguisher class B to contain all distinguishers b : X → [−1, 1], then the two
errors are equal: MA-errorB(f) = ℓ1-error(f). The multiaccuracy error can become a more
suitable performance measure than the ℓ1 error if we customize B to reflect the goal we
want to achieve: we can choose B to consist of indicator functions of demographic groups to
achieve a fairness goal, and we can also choose B to specifically catch serious errors that we
want to avoid (see [48] for more discussions).

The sample complexity of achieving a small ℓ1-error(f) has been studied in [56], [2]
and [11], who give a characterization in the distribution-free setting using the fat-shattering
dimension of the source class S, defined as the maximum size of a subset of X fat-shattered
by S (see Section 2.1 for a precise definition). Their results are further improved in [9, 10]
and [62]. For a general distinguisher class B, the sample complexity of achieving a small
MA-errorB(f) depends on both classes S and B, and thus it becomes more challenging
to characterize. In the distribution-specific setting where µ|X is fixed and known to the
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learner, Hu et al. [48] characterize the sample complexity of achieving MA-errorB(f) ≤ ε

using log Nµ|X ,B(S, Θ(ε)): the metric entropy of S w.r.t. the dual Minkowski norm defined
based on B and µ|X . They also give an equivalent characterization using log Nµ|X ,S(B, Θ(ε))
with the roles of S and B swapped. In the distribution-free setting where µ|X is not known
to the learner, they only give a sample complexity characterization when S contains all
functions s : X → [−1, 1] using the fat-shattering dimension of B, and they leave the case of
a general source class S as an open question. In this work, we answer this open question by
giving a sample complexity characterization for arbitrary S and B in the distribution-free
setting using the mutual fat-shattering dimension of (S, B), which we define to be the largest
size of a subset of X fat-shattered by both S and B.

To prove this sample complexity characterization for distribution-free realizable multiac-
curacy, we need a lower and an upper bound on the sample complexity. While we prove the
lower bound using relatively standard techniques, the upper bound is much more challenging
to prove. We prove the upper bound by reducing multiaccuracy for (S, B) to comparative
learning for multiple pairs of binary hypothesis classes (S′, B′) with VC(S′, B′) bounded
in terms of the mutual fat-shattering dimension of (S, B). We implement this reduction
via an intermediate task which we call correlation maximization, and the main challenge
here is that our learner L solving comparative learning for (S′, B′) is limited by the source
class S′ and can only handle data points realizable by a binary hypothesis in S′. Therefore,
we must carefully transform the data points from multiaccuracy to ones acceptable by the
comparative learner L. We implement this transformation by combining a rejection sampling
technique with a non-uniform covering type of technique used in a recent work by Hopkins,
Kane, Lovett, and Mahajan [45]. The difference between the real-valued class B and the
binary class B′ also poses a challenge, which we solve by taking multiple choices of B′ and
show that, roughly speaking, the convex hull of the chosen B′ approximately includes B.

Our characterization using the mutual fat-shattering dimension holds not only for mul-
tiaccuracy, but also for a related task called multicalibration [41]. Here, we replace MA-error
by the multicalibration error:

MC-errorµ,B(f) := sup
b∈B

∑
v∈V

|E(x,y)∼µ[(f(x) − y)b(x)1(f(x) = v)]|

= sup
b∈B

∑
v∈V

|Ex∼µ|X
[(f(x) − s(x))b(x)1(f(x) = v)]|, (2)

where V is the range of f which we require to be countable. Multicalibration provides a
strong guarantee: Gopalan et al. [34] show that it implies a notion called omnipredictors,
allowing us to use our multicalibration results to show a sample complexity upper bound for
comparative regression.

Our results imply that multiaccuracy and multicalibration share the same sample com-
plexity characterization in the distribution-free realizable setting. In comparison, we show
that this is not the case in the distribution-specific setting where there is a strong sample
complexity separation between them (see details in full paper). This strong separation only
appears in our two-hypothesis-class setting: if the source class S contains all hypotheses
s : X → [−1, 1], then realizable multiaccuracy and multicalibration share the same sample
complexity characterization (the metric entropy of B in the distribution-specific setting, and
the fat-shattering dimension of B in the distribution-free setting).

1.3 Our Contributions
Below we summarize the main contributions of our paper.



L. Hu and C. Peale 72:9

1.3.1 Comparative Learning
We introduce the task of comparative learning (Definition 3) by combining realizable learning
and agnostic learning. Specifically, we define comparative learning for any pair of hypothesis
classes S and B each consisting of partial binary hypotheses h : X → {−1, 1, ∗} (denoted by
S, B ⊆ {−1, 1, ∗}X). As in realizable learning, we assume the learner receives data points
(x, y) ∈ X × {−1, 1} generated i.i.d. from a distribution µ satisfying Pr(x,y)∼µ[s(x) = y] = 1
for a source hypothesis s ∈ S (in particular, Pr(x,y)∼µ[s(x) = ∗] = 0). As in agnostic learning,
we require the learner to output a model f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε (3)

with probability at least 1 − δ.
We characterize the sample complexity of comparative learning, which we denote by

#CompL(S, B, ε, δ), using the mutual VC dimension VC(S, B) which we define as the largest
size of a subset X ′ ⊆ X shattered by both S and B (see Section 2.1 for the formal definition
of shattering). In Theorem 4, assuming ε, δ ∈ (0, 1/4) and VC(S, B) ≥ 2, we show a sample
complexity upper bound of

#CompL(S, B, ε, δ) ≤ O

(
VC(S, B)

ε2 log2
(

VC(S, B)
ε

)
+ 1

ε2 log
(

1
δ

))
, (4)

and a lower bound of

#CompL(S, B, ε, δ) ≥ Ω
(

VC(S, B)
ε

+ 1
ε

log
(

1
δ

))
. (5)

These bounds imply that the sample complexity of comparative learning is finite if and
only if the mutual VC dimension VC(S, B) is finite. We show a similar sample complexity
characterization for a learning task involving an arbitrary number of hypothesis classes in
the full version of the paper.

1.3.2 Correlation Maximization
As an intermediate step towards characterizing the sample complexity of realizable mul-
tiaccuracy and multicalbration, we extend comparative learning to real-valued hypothesis
classes by introducing correlation maximization (Definition 10). Here, the hypothesis classes
S and B can contain any partial real-valued hypotheses h : X → [−1, 1] ∪ {∗} (denoted by
S, B ⊆ ([−1, 1] ∪ {∗})X), and every data point (x, y) ∈ X × [−1, 1] can have a label y taking
any value in [−1, 1]. We assume that the data points are drawn i.i.d. from a distribution µ

over X × [−1, 1] satisfying E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S, and we require
the output model f : X → {−1, 1} to satisfy

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε

with probability at least 1 − δ. Here, we define the generalized product u1 ♢ u2 for u1 ∈ R
and u2 ∈ [−1, 1] ∪ {∗} such that u1 ♢ u2 = u1u2 if u2 ∈ [−1, 1], and u1 ♢ u2 = −|u1| if
u2 = ∗. The requirement that the output model f : X → {−1, 1} produces binary values
f(x) ∈ {−1, 1} rather than real values f(x) ∈ [−1, 1] is naturally satisfied by our learners for
correlation maximization, but it is not essential to any of our results related to correlation
maximization. In the special case where S and B are both binary, correlation maximization
and comparative learning become equivalent for values of ε differing by exactly a factor of 2,
i.e., the goal (3) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BPr(x,y)∼µ[y ♢ b(x)] − 2ε.

ITCS 2023



72:10 Comparative Learning: A Sample Complexity Theory for Two Hypothesis Classes

We give an upper bound on the sample complexity of correlation maximization using the
mutual fat-shattering dimension fatη(S, B) which we define as the largest size of a subset
X ′ ⊆ X that is η-fat shattered by both S and B (see Section 2.1 for the definition of fat
shattering). In Theorem 12, assuming ε, δ ∈ (0, 1/2), we show that the sample complexity of
correlation maximization is upper bounded by

O

( fatε/5(S, B)
ε4 log2

( fatε/5(S, B)
ε

)
log
(

1
ε

)
+ 1

ε4 log
(

1
ε

)
log
(

1
δ

))
.

We also consider a deterministic-label setting in the full version of the paper, which is a special
case of correlation maximization where the data distribution µ satisfies Pr(x,y)∼µ[y = s(x)] = 1
for a source class s ∈ S. In this case, we prove the following improved sample complexity
upper bound:

O

( fatε/5(S, B)
ε2 log2

( fatε/5(S, B)
ε

)
+ 1

ε2 log
(

1
εδ

))
.

We also show that the mutual fat-shattering dimension does not in general give a lower bound
for the sample complexity of correlation maximization. This is because sample complexity
duality does not hold for correlation maximization (see full paper for examples where duality
does not hold). In Theorem 12 we state a refined sample complexity upper bound for
correlation maximization and we leave it as an open question to determine whether there is
a matching lower bound.

1.3.3 Realizable Multiaccuracy and Multicalibration
We study multiaccuracy and multicalibration in the same setting as in [48] with a focus on the
distribution-free realizable setting (Definitions 13 and 14). As in correlation maximization,
the classes S, B ⊆ ([−1, 1] ∪ {∗})X can contain any partial real-valued hypotheses h : X →
[−1, 1] ∪ {∗}, and we assume that the data distribution µ satisfies E(x,y)∼µ[y|x] = s(x)
for a source hypothesis s ∈ S. The goal is to output a model f : X → [−1, 1] such that
MA-errorµ,B(f) ≤ ε (in multiaccuracy) or MC-errorµ,B(f) ≤ ε (in multicalibration) with
probability at least 1 − δ, where we generalize the definitions of MA-errorµ,B and MC-errorµ,B

to partial hypothesis classes B. In Theorems 15 and 17, assuming ε, δ ∈ (0, 1/2), we show
the following lower and upper bounds on the sample complexity of realizable multiaccuracy
and multicalibration (denoted by #MA(S, B, ε, δ) and #MC(S, B, ε, δ), respectively):

Ω
(
fat√

3ε(S, B)
)

− 1
≤ #MA(S, B, ε, δ)
≤ #MC(S, B, ε, δ)

≤ O

( fatε/7(S, B)
ε6 log2

( fatε/7(S, B)
ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
εδ

))
. (6)

This implies that the sample complexity of realizable multiaccuracy and multicalibration
is finite for every ε > 0 if and only if fatη(S, B) is finite for every η > 0. Also, the sample
complexity is polynomial in 1/ε if and only if fatη(S, B) is polynomial in 1/η. This answers
an open question in [48]. We also show an improved sample complexity upper bound in
Theorem 16 for the special case where S is binary.

Our sample complexity upper and lower bounds stated in Theorems 15 and 17 are actually
stronger, and they use a finer definition of the mutual fat-shattering dimension. Specifically,
if we define fatη1,η2(S, B) to be the largest size of a subset X ′ ⊆ X that is η1-fat shattered
by S and η2-fat shattered by B, then #MA(S, B, ε, δ) and #MC(S, B, ε, δ) are both finite
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if fatη1,η2(S, B) is finite for some η1, η2 satisfying 2η1 + 4η2 < ε, and #MA(S, B, ε, δ) and
#MC(S, B, ε, δ) are both infinite if fatη1,η2(S, B) is infinite for some η1, η2 satisfying η1η2 > 2ε.
An open question is whether this gap can be closed to provide an exact characterization of
the finiteness of #MA(S, B, ε, δ) and #MC(S, B, ε, δ) for every choice of (S, B, ε, δ).

1.3.4 Covering Number Bound
The sample complexity characterization for distribution-specific realizable multiaccuracy
in [48] is in terms of a covering number defined for every pair of total hypothesis classes (S, B).
A consequence of our sample complexity characterization for distribution-free realizable
multiaccuracy and multicalibration is an upper bound on this covering number in terms of
the mutual fat-shattering dimension of (S, B). This can be viewed as a generalization of a
classic upper bound on the covering number of a binary hypothesis class H in terms of its
VC dimension. Interestingly, our covering number upper bounds in the two-hypothesis-class
setting hold despite the fact that a corresponding uniform convergence bound does not hold.
See the full paper for more details.

1.3.5 Boosting
Analogous to the weak agnostic learning task considered in [51] and [25], we introduce weak
comparative learning, where the goal (3) of comparative learning is relaxed to

Pr(x,y)∼µ[f(x) ̸= y] ≤ 1/2 − γ,

under the additional assumption that

infb∈BPr(x,y)∼µ[b(x) ̸= y] ≤ 1/2 − α.

Here, α, γ ∈ (0, 1/2) are parameters of the weak comparative learning task. Extending results
in [25], we show an efficient boosting algorithm that solves (strong) comparative learning
given oracle access to a learner solving weak comparative learning. This result also applies
to correlation maximization for real-valued S and B in the deterministic-label setting. Due
to space constraints, formal results and discussion of boosting appear only in the full version
of this paper.

1.3.6 Comparative Regression
We define comparative regression by allowing the classes S and B in comparative learning to
be real-valued and replacing the classification error Pr(x,y)∼µ[f(x) ̸= y] with the expected
loss E(x,y)∼µ[ℓ(y, f(x))] for a general loss function ℓ. Specifically, we take a partial hypothesis
class S ⊆ ([−1, 1] ∪ {∗})X as the source class, and for simplicity, we take a total hypothesis
class B ⊆ [−1, 1]X as the benchmark class. Given a loss function ℓ : [−1, 1] × [−1, 1] → R,
we define the comparative regression task as follows. We assume that the data distribution µ

over X × [−1, 1] satisfies E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S, and the goal is
to output a model f : X → [−1, 1] such that the following holds with probability at least
1 − δ:

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µ[ℓ(y, b(x))] + ε.

As an application of our sample complexity characterization for realizable multicalibration
and the omnipredictors result by Gopalan et al. [34], in Theorem 19, we give a sample
complexity upper bound in terms of fatη(S, B) for a special case of comparative regression
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(Definition 18) where we assume that the label y in each data point is binary and the
loss function ℓ is convex and Lipschitz. We leave the study of other interesting settings of
comparative regression to future work.

1.3.7 Comparative Online Learning
We extend our notion of comparative learning to the online setting, where we assume that
the data points (x, y) are given sequentially, and the learner is required to predict the label
of the individual x in each data point before its true label y is shown. For binary hypothesis
classes S, B ⊆ {−1, 1, ∗}X , we introduce comparative online learning (Definition 23) where
we assume that every data point (x, y) satisfies y = s(x) for some source hypothesis s ∈ S and
we measure the performance of the learner by its regret, defined as the number of mistakes it
makes minus the minimum number of mistakes made by a benchmark hypothesis b ∈ B. The
goal of comparative online learning is to ensure that the expected regret does not exceed εn,
where n is the total number of data points given to the learner. In Section 7, we introduce the
mutual Littlestone dimension m := Ldim(S, B) and show that it characterizes the smallest ε

achievable in comparative online learning, denoted by ε∗ (Theorem 25):

min
{

1
2 ,

m

2n

}
≤ ε∗ ≤ O

(√
m

n
log 2m + n

m

)
.

To match the form of our other sample complexity bounds, we can fix ε ∈ (0, 1/2) and bound
the smallest n (denoted by n∗) for which we can ensure that the expected regret does not
exceed εn:

m

2ε
≤ n∗ ≤ O

(
m

ε2 log 1
ε

)
.

1.3.8 Sample Complexity Duality
Learning tasks involving two hypothesis classes can potentially satisfy sample complexity
duality, meaning that the sample complexity of the task changes minimally when we swap
the roles of the two hypothesis classes. Hu et al. [48] show that sample complexity duality
holds for distribution-specific realizable multiaccuracy, assuming that the source class S and
the distinguisher class B are both total. Specifically, for S, B ⊆ [−1, 1]X , ε, δ ∈ (0, 1/2) and
a distribution µX over X, defining m := #MA(µX )(S, B, ε/8, δ) to be the sample complexity
of realizable multiaccuracy with source class S and distinguisher class B in the distribution-
specific setting where the data distribution µ satisfies µ|X = µX , Hu et al. [48] show that

#MA(µX )(B, S, ε, δ) ≤ O
(

ε−2(m + log(1/δ))
)

.

Results in our work imply that sample complexity duality also holds for comparative learning
and realizable multiaccuracy/multicalibration in the distribution-free setting. Specifically, if
we define m := #CompL(S, B, ε, δ) + 1 for ε, δ ∈ (0, 1/4) and any partial binary hypothesis
classes S, B ⊆ {−1, 1, ∗}X , then the following holds by (4) and (5):

#CompL(B, S, ε, δ) ≤ O

(
m log2 m

ε
+ 1

ε2 log
(

1
δ

))
.

Similarly, if we define m := #MA(S, B, ε2/147, δ) + 1 for ε, δ ∈ (0, 1/2) and any partial
real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X , then the following holds because
of (6):
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#MA(B, S, ε, δ) ≤ O

(
m

ε6 log2
(m

ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
δ

))
,

and the same inequality holds after replacing #MA with #MC. In the full version of this
paper, we show that sample complexity duality does not hold for other learning tasks we
consider in this paper, completing Table 1.

1.4 Related Work
Motivated by multi-group/sub-group fairness, many recent papers also study learning tasks
involving two (or more) hypothesis classes. Multi-group agnostic learning, introduced in [16]
and [71], involves a subgroup class G and a benchmark class B, where each subgroup g ∈ G

is a subset of the individual set X. The goal in multi-group agnostic learning is to learn a
model such that the loss experienced by each subgroup g ∈ G is not much larger than the
minimum loss for that group achievable by a benchmark b ∈ B. Tosh and Hsu [74] show
sample complexity upper bounds for multi-group agnostic learning in terms of the individual
complexities of G and B. Thus, the upper bound does not depend on the interaction
of the two classes. In contrast, the individual complexities of the source and benchmark
(resp. distinguisher) classes are not sufficient for our sample complexity characterizations
for comparative learning (resp. realizable multiaccuracy and multicalibration). In [29], the
authors propose algorithms that can improve the loss on subgroups in the spirit of multi-group
agnostic learning based on suggestions from auditors. A constrained loss minimization task
introduced in [54] also involves a subgroup class and a benchmark class, but the subgroup
class is used to impose (fairness) constraints on the learned model and the loss/error is
evaluated over the entire population (not on each subgroup). The results in [54] assume
that the complexities of both classes are bounded, whereas our sample complexity upper
bounds (for different tasks) in this paper can be finite even when the complexities of both
classes are infinite. Motivated by the goal of learning proxies for sensitive features that can
be used to achieve fairness in downstream learning tasks, Diana et al. [22] consider a learning
task involving three hypothesis classes: a source class, a proxy class, and a downstream class.
Again, the sample complexity upper bounds in [22] are in terms of the individual complexities
of these classes. Two other recent works [72, 70] show uniform convergence bounds for
multicalibration in a two-hypothesis-class setting, but their bounds are yet again in terms of
the individual complexities of the two classes and are finite only when the complexities of
both classes are finite.

The notions of multiaccuracy and multicalibration can be viewed in the framework of
outcome indistinguishability [23, 24]. Multicalibrated predictors have been applied to solve
loss minimization for rich families of loss functions and/or under a variety of constraints,
leading to the notion of omnipredictors [34, 46, 28]. Recently, Gopalan et al. [33] show that
certain omnipredictors can be obtained from the weaker condition of calibrated multiaccuracy.
Multicalibrated predictors can also be used for statistical inference on rich families of target
distributions [58]. The notion of multicalibration has been extended to various settings in
[49, 77, 36, 35].

Many of our results in this paper are based on sample complexity characterizations of
learning partial hypotheses by Alon et al. [3]. Some of the key techniques used in [3] include
the 1-inclusion graph algorithm [40], sample compression schemes [65], sample compression
generalization bounds [37], and a reduction from agnostic learning to realizable learning [21].
▶ Note. Due to space constraints, this is an abridged version of our work. Readers are
directed to the full version of the paper for detailed proofs of all results and some extensions
of the main theorems.
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2 Preliminaries

Throughout the paper, we use X to denote a non-empty set and we refer to the elements in X

as individuals. We use the term hypothesis to refer to an arbitrary function h : X → R ∪ {∗}
assigning a label h(x) to each individual x ∈ X.

The label h(x) can be a real number or the undefined label ∗. We say a hypothesis h is
total if h(x) ̸= ∗ for every x ∈ X. When we do not require a hypothesis h to be total, we
often say h is partial to emphasize that h may or may not be total. We say a hypothesis h is
binary if h(x) ∈ {−1, 1, ∗} for every x ∈ X, and we say h is real-valued if h may or may not
be binary.

A hypothesis class H is a set consisting of hypotheses h : X → R∪{∗}, i.e., H ⊆ (R∪{∗})X

where we use BA to denote the set of all functions f : A → B for any two sets A and B. A
total hypothesis class is a set H ⊆ RX , and a binary hypothesis class is a set H ⊆ {−1, 1, ∗}X .
We say a hypothesis class H is partial if it may or may not be total, and we say H is
real-valued if it may or may not be binary.

To avoid measurability issues, all probability distributions in this paper are assumed to
be discrete, i.e., to have a countable support. For any distribution µ over X ×R, we use µ|X
to denote the marginal distribution of x with (x, y) drawn from µ.

2.1 VC and Fat-shattering Dimensions for Partial Hypothesis Classes
The VC dimension was introduced in [76] for any total binary hypothesis class. As in [9]
and [3], we consider a natural generalization of the VC dimension to all partial binary
hypothesis classes H ⊆ {−1, 1, ∗}X as follows. We say a subset X ′ ⊆ X is shattered by H if
for every total binary function ξ : X ′ → {−1, 1} there exists h ∈ H such that h(x) = ξ(x)
for every x ∈ X ′. The VC dimension of H is defined to be

VC(H) := sup{|X ′| : X ′ ⊆ X, X ′ is shattered by H}.

An analogous notion of the VC dimension for real-valued hypothesis classes is the fat-
shattering dimension introduced in [56]. The fat-shattering dimension was originally defined
for total hypothesis classes, but it is natural to generalize it to all partial hypothesis classes
in a similar fashion to the generalization of the VC dimension to partial binary classes: given
a hypothesis class H ⊆ (R ∪ {∗})X and a margin η ≥ 0, we say a subset X ′ ⊆ X is η-fat
shattered by H w.r.t. a reference function r : X ′ → R if for every total binary function
ξ : X ′ → {−1, 1}, there exists h ∈ H such that for every x ∈ X ′,

h(x) ̸= ∗ and ξ(x)(h(x) − r(x)) > η.

We sometimes omit the mention of r and say X ′ is η-fat shattered by H if such a function r

exists. The η-fat-shattering dimension of H is defined to be

fatη(H) := sup{|X ′| : X ′ ⊆ X, X ′ is η-fat shattered by H}.

2.2 An Abstract Learning Task
We study a variety of learning tasks throughout the paper, and to help define each task
concisely, we first define an abstract learning task Learn, of which each specific task we
consider is a special case.
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Let Z and F be two non-empty sets. In the abstract learning task Learn, an algorithm
(learner) takes data points in Z as input and it outputs a model in F . We choose a distribution
class P consisting of distributions µ over Z, and for each distribution µ ∈ P , we choose a
subset Fµ ⊆ F to be the admissible set. When the input data points are drawn i.i.d. from
a distribution µ ∈ P , we require the learner to output a model f in the admissible set Fµ

with large probability. Formally, for n ∈ Z≥0 and δ ∈ R≥0, we say a (possibly inefficient and
randomized) learner L solves the learning task Learnn(Z, F, P, (Fµ)µ∈P , δ) if
1. L takes n data points z1, . . . , zn ∈ Z as input;
2. L outputs a model f ∈ F ;
3. For any distribution µ ∈ P , if the data points z1, . . . , zn are drawn i.i.d. from µ, then

with probability at least 1 − δ, the output model f belongs to Fµ. The probability is over
the randomness in the data points z1, . . . , zn and the internal randomness in learner L.

By a slight abuse of notation, we also use Learnn(Z, F, P, (Fµ)µ∈P , δ) to denote the set of
all learners L that solve the learning task. Clearly, the learner set Learnn(Z, F, P, (Fµ)µ∈P , δ)
is monotone w.r.t. n: for any nonnegative integers n and n′ satisfying n ≤ n′, we have

Learnn(Z, F, P, (Fµ)µ∈P , δ) ⊆ Learnn′(Z, F, P, (Fµ)µ∈P , δ)

because when given n′ data points, a learner can choose to ignore n′ − n data points and only
use the remaining n data points. We define the sample complexity #Learn(Z, F, P, (Fµ)µ∈P , δ)
to be the smallest n for which there exists a learner in Learnn(Z, F, P, (Fµ)µ∈P , δ):

#Learn(Z, F, P, (Fµ)µ∈P , δ) := inf{n ∈ Z≥0 : Learnn(Z, F, P, (Fµ)µ∈P , δ) ̸= ∅}. (7)

2.3 Learning Partial Binary Hypotheses
We define realizable learning and agnostic learning for any partial binary hypothesis class H

as special cases of the abstract learning task Learn in Section 2.2. These learning tasks have
been studied in [9, 66, 3], and the results in these previous works are important for many of
our results throughout the paper.

▶ Definition 1 (Realizable learning (ReaL)). Given a partial binary hypothesis class H ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define ReaLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1} satisfying Pr(x,y)∼µ[h(x) =
y] = 1 for some h ∈ H, and Fµ consists of all models f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ ε.

A key assumption in realizable learning is that any data distribution µ ∈ P is consistent
with some hypothesis h ∈ H, i.e., Pr(x,y)∼µ[h(x) = y] = 1. In particular, this implies that
Pr(x,y)∼µ[h(x) = ∗] = 0 because y ∈ {−1, 1} cannot be the undefined label ∗. In agnostic
learning, we remove such assumptions on the data distribution:

▶ Definition 2 (Agnostic learning (AgnL)). Given a partial binary hypothesis class H ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define AgnLn(H, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1}, and Fµ consists of all
models f : X → {−1, 1} satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ infh∈H Pr[h(x) ̸= y] + ε. (8)
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There is no assumption on the data distributions µ ∈ P in agnostic learning: µ can be any
distribution over X × {−1, 1}. The hypothesis class H is used to relax the objective in
agnostic learning: instead of requiring the error Pr(x,y)∼µ[f(x) ̸= y] of the model f to be
at most ε, we compare the error of f with the smallest error of a hypothesis h ∈ H as in
(8). Note that for (x, y) ∈ X × {−1, 1} and h : X → {−1, 1, ∗}, we have h(x) ̸= y whenever
h(x) = ∗.

For every learning task we define throughout the paper, we also implicitly define the
corresponding sample complexity as in (7). For example, the sample complexity of realizable
learning is

#ReaL(H, ε, δ) := inf{n ∈ Z≥0 : ReaLn(H, ε, δ) ̸= ∅}.

We omit the sample complexity definitions for all other learning tasks.

2.4 Other Notation
For a statement P , we define its indicator 1(P ) such that 1(P ) = 1 if P is true, and 1(P ) = 0
if P is false. We define sign : R → {−1, 1} such that for every u ∈ R, sign(u) = 1 if u ≥ 0, and
sign(u) = −1 if u < 0. For functions f1 : U1 → U2 and f2 : U2 → U3, we use f2 ◦f1 : U1 → U3
to denote their composition, i.e., (f2 ◦ f1)(u) = f2(f1(u)) for every u ∈ U1. We use log(·) to
denote the base-2 logarithm. For u ∈ R, we define log+(u) := log(max{2, u}). For u ∈ [−1, 1],
we use Ber∗(u) to denote the distribution over {−1, 1} with mean u (by analogy with the
Bernoulli distribution over {0, 1}).

3 Sample Complexity of Comparative Learning

Given a source class S ⊆ {−1, 1, ∗}X and a benchmark class B ⊆ {−1, 1, ∗}X , we formally
define the task of comparative learning below by combining the distribution assumption in
realizable learning and the relaxed objective in agnostic learning:

▶ Definition 3 (Comparative learning (CompL)). Given two binary hypothesis classes S, B ⊆
{−1, 1, ∗}X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer
n, we define CompLn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × {−1, 1},
F = {−1, 1}X , P consists of all distributions µ over X × {−1, 1} such that Pr(x,y)∼µ[s(x) =
y] = 1 for some s ∈ S, and Fµ consists of all models f : X → {−1, 1} such that

Pr(x,y)∼µ[f(x) ̸= y] ≤ infb∈BPr(x,y)∼µ[b(x) ̸= y] + ε. (9)

The data distribution µ ∈ P in comparative learning is constrained to be consistent with a
source hypothesis s ∈ S, i.e., Pr(x,y)∼µ[s(x) = y] = 1, and the error of the output model f is
compared with the smallest error of a benchmark hypothesis b ∈ B as in (9).

In this section, we characterize the sample complexity of comparative learning for every
source class S ⊆ {−1, 1, ∗}X and every benchmark class B ⊆ {−1, 1, ∗}X according to
Theorem 4 below. Our characterization is based on the mutual VC dimension VC(S, B),
which we define as follows:

VC(S, B) := {|X ′| : X ′ ⊆ X, X ′ is shattered by both S and B}. (10)
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▶ Theorem 4. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ (0, 1/4),
the sample complexity of comparative learning satisfies the following upper bound:

#CompL(S, B, ε, δ) = O

(
VC(S, B)

ε2 log2
+

(
VC(S, B)

ε

)
+ 1

ε2 log
(

1
δ

))
. (11)

When VC(S, B) ≥ 2, we have the following lower bound:

#CompL(S, B, ε, δ) = Ω
(

VC(S, B)
ε

+ 1
ε

log
(

1
δ

))
. (12)

Our proof of Theorem 4 is based on results by Alon et al. [3] that characterize the sample
complexity of realizable and agnostic learning for a partial hypothesis class H ⊆ {−1, 1, ∗}X :

▶ Theorem 5 ([3]). Let H ⊆ {−1, 1, ∗}X be a binary hypothesis class. For any ε, δ ∈ (0, 1/4),
the sample complexity of agnostic learning satisfies

#AgnL(H, ε, δ) = O

(
VC(H)

ε2 log2
+

(
VC(H)

ε

)
+ 1

ε2 log
(

1
δ

))
. (13)

When VC(H) ≥ 2, the sample complexity of realizable learning satisfies

#ReaL(H, ε, δ) = Ω
(

VC(H)
ε

+ 1
ε

log
(

1
δ

))
. (14)

We prove the sample complexity upper bound (11) by reducing comparative learning for
a pair of binary hypothesis classes (S, B) to agnostic learning for a single partial hypothesis
class AS,B we define below.

For every pair of hypotheses s, b : X → {−1, 1, ∗}, we define an agreement hypothesis
as,b : X → {−1, 1, ∗} by

as,b(x) =


0, if s(x) = b(x) = 0;
1, if s(x) = b(x) = 1;
∗, otherwise.

For every pair of hypothesis classes S, B ⊆ {−1, 1, ∗}X , we define the agreement hypothesis
class AS,B to be {as,b : s ∈ S, b ∈ B} ⊆ {−1, 1, ∗}X .

The following claim follows immediately from the definition of as,b:

▷ Claim 6. For every (x, y) ∈ X ×{−1, 1} and every pair of hypotheses s, b : X → {−1, 1, ∗},
we have as,b(x) = y if and only if s(x) = b(x) = y.

The following claim shows that the mutual VC dimension of (S, B) is equal to the VC
dimension of AS,B :

▷ Claim 7. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. Then VC(AS,B) = VC(S, B).

Proof. A subset X ′ ⊆ X is shattered by both S and B if and only if for every ξ : X ′ → {−1, 1},
there exists s ∈ S and b ∈ B such that

s(x) = b(x) = ξ(x) for every x ∈ X ′. (15)

Similarly, by the definition of AS,B , a subset X ′ ⊆ X is shattered by AS,B if and only if for
every ξ : X ′ → {−1, 1}, there exists s ∈ S and b ∈ B such that

as,b(x) = ξ(x) for every x ∈ X ′. (16)

By Claim 6, the conditions (15) and (16) are equivalent. ◁
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We are now ready to state and prove the reduction that allows us to prove (11):

▶ Lemma 8. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and
n ∈ Z≥0, we have AgnLn(AS,B , ε, δ) ⊆ CompLn(S, B, ε, δ). In other words, any learner
solving agnostic learning for AS,B also solves comparative learning for (S, B) with the same
parameters ε and δ.

Proof. Let L be a learner in AgnLn(AS,B , ε, δ). For s ∈ S, let µ be a distribution over
X × {−1, 1} satisfying Pr(x,y)∼µ[s(x) = y] = 1. By the guarantee of L ∈ AgnLn(AS,B , ε, δ),
given n data points (x1, y1), . . . , (xn, yn) drawn i.i.d. from µ, with probability at least 1 − δ,
L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
h∈AS,B

Pr(x,y)∼µ[h(x) ̸= y] + ε

= inf
s′∈S,b∈B

Pr(x,y)∼µ[as′,b(x) ̸= y] + ε (by definition of AS,B)

≤ inf
b∈B

Pr(x,y)∼µ[as,b(x) ̸= y] + ε

= inf
b∈B

Pr(x,y)∼µ[s(x) ̸= y or b(x) ̸= y] + ε (by Claim 6)

= inf
b∈B

Pr(x,y)∼µ[b(x) ̸= y] + ε. (by Pr(x,y)∼µ[s(x) = y] = 1)

This proves that L ∈ CompLn(S, B, ε, δ), as desired. ◀

Our upper bound (11) follows immediately from Claim 7, Lemma 8, and (13). We defer the
detailed proof to the end of the section. To prove the lower bound (12), we reduce realizable
learning for AS,B to comparative learning for (S, B):

▶ Lemma 9. Let S, B ⊆ {−1, 1, ∗}X be binary hypothesis classes. For any ε, δ ∈ R≥0 and
n ∈ Z≥0, we have CompLn(S, B, ε, δ) ⊆ ReaLn(AS,B , ε, δ). In other words, any learner
solving comparative learning for (S, B) also solves realizable learning for AS,B with the same
parameters ε and δ.

Proof. Let L be a learner in CompLn(S, B, ε, δ). Let µ be a distribution over X × {−1, 1}
satisfying

Pr(x,y)∼µ[h(x) = y] = 1 for some h ∈ AS,B . (17)

By the definition of AS,B , our assumption (17) implies that Pr(x,y)∼µ[as,b(x) = y] = 1 for
some s ∈ S and b ∈ B. By Claim 6, we have Pr(x,y)∼µ[s(x) = y] = Pr(x,y)∼µ[b(x) = y] = 1.

By the guarantee of L ∈ CompLn(S, B, ε, δ), given n data points (x1, y1), . . . , (xn, yn)
drawn i.i.d. from µ, with probability at least 1 − δ, L outputs a model f satisfying

Pr(x,y)∼µ[f(x) ̸= y] ≤ inf
b′∈B

Pr(x,y)∼µ[b′(x) ̸= y] + ε = ε,

where the last equation holds because Pr(x,y)∼µ[b(x) = y] = 1. The inequality above implies
L ∈ ReaLn(AS,B , ε, δ), as desired. ◀

Proof of Theorem 4. Define m := VC(S, B). By Claim 7, we have m = VC(AS,B). Our
upper bound (11) holds because

#CompL(S, B, ε, δ) ≤ #AgnL(AS,B , ε, δ) (by Lemma 8)

≤ O

(
m

ε2 log2
+

(m

ε

)
+ 1

ε2 log
(

1
δ

))
. (by (13))
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Our lower bound (12) holds because

#CompL(S, B, ε, δ) ≥ #ReaL(AS,B , ε, δ) (by Lemma 9)

≥ Ω
(

m

ε
+ 1

ε
log
(

1
δ

))
. (by (14))

◀

4 Sample Complexity of Correlation Maximization

As we define in Section 3, the comparative learning task CompL requires the hypothesis
classes S and B to be binary. Here we introduce a natural generalization of CompL to
real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X which we call correlation maximization.

We first generalize the product u1u2 of two real numbers u1, u2 ∈ R to the case where u2
may be the undefined label ∗. Specifically, for u1 ∈ R and u2 ∈ [−1, 1] ∪ {∗}, we define their
generalized product u1 ♢ u2 to be

u1 ♢ u2 :=
{

u1u2, if u2 ∈ [−1, 1],
−|u1|, if u2 = ∗.

The idea behind the definition is that when u2 = ∗, we treat u2 as being an unknown number
u′ in [−1, 1] and define the product u1 ♢ u2 to be the smallest possible value of u1u′, i.e.,
u1 ♢ u2 = infu′∈[−1,1] u1u′ = −|u1|.

This generalized product allows us to rewrite the goal (9) of comparative learning. For
any y ∈ {−1, 1} and u ∈ {−1, 1, ∗}, it is easy to verify that

1(y ̸= u) = 1
2(1 − y ♢ u). (18)

Therefore, the goal (9) of comparative learning can be equivalently written as

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − 2ε.

This reformulation is meaningful even when we relax B to be a real-valued hypothesis
class B ⊆ ([−1, 1] ∪ {∗})X . If we also relax the source class S, we obtain the definition of
correlation maximization:

▶ Definition 10 (Correlation maximization (CorM)). Given two real-valued hypothesis classes
S, B ⊆ ([−1, 1] ∪ {∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and
a nonnegative integer n, we define CorMn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with
Z, F, P, Fµ chosen as follows. We choose Z = X×[−1, 1] and F = {−1, 1}X . The distribution
class P consists of all distributions µ over X × [−1, 1] satisfying the following property:

there exists s ∈ S such that Prx∼µ|X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y|x] = s(x). (19)

The admissible set Fµ consists of all models f : X → {−1, 1} satisfying

E(x,y)∼µ[yf(x)] ≥ supb∈BE(x,y)∼µ[y ♢ b(x)] − ε.

The name “correlation maximization” comes from viewing E(x,y)∼µ[yf(x)] as the (uncentered)
correlation between random variables y and f(x). In correlation maximization, any data
distribution µ ∈ P needs to satisfy E(x,y)∼µ[y|x] = s(x) for a source hypothesis s ∈ S. This
restricts the conditional expectation of y given x, but we allow the conditional distribution of
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y given x to be otherwise unrestricted. That is, when conditioned on x ∈ X being fixed, the
label y ∈ [−1, 1] could be deterministically equal to s(x), but y could be also be random as
long as it has conditional expectation s(x).

In this section, we show a sample complexity upper bound for correlation maximization
for any source class S ⊆ ([−1, 1] ∪ {∗})X and benchmark class B ⊆ ([−1, 1] ∪ {∗})X . Since
S and B may no longer be binary, we cannot apply the mutual VC dimension as a way to
characterize their complexity. Instead, we turn to a classic generalization of the VC dimension
for real-valued hypotheses, the fat-shattering dimension (see Section 2.1 for definition). Our
upper bound is in terms of the mutual fat-shattering dimension defined as follows, which
generalizes the mutual VC dimension to real-valued hypothesis classes.

Given a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X and a margin
η ∈ R≥0, we define the mutual fat-shattering dimension fatη(S, B) as follows:

fatη(S, B) := sup{|X ′| : X ′ ⊆ X, X ′ is η-fat shattered by both S and B}. (20)

In other words, fatη(S, B) is the largest size of a subset X ′ ⊆ X such that X ′ is η-fat
shattered by S w.r.t. a function r1 : X ′ → R and X ′ is η-fat shattered by B w.r.t. a function
r2 : X ′ → R (recall the definition of fat shattering in Section 2.1).

Another equivalent way to define the mutual fat-shattering dimension for real-valued
hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X is by transforming them into binary classes and
using the mutual VC dimension after the transformation. These transformations are also
crucial in our proof of the sample complexity upper bound for correlation maximization
in this section. Given a real-valued hypothesis h : X → [−1, 1] ∪ {∗}, a reference function
r : X → R, and a margin η ∈ R≥0, we define a binary hypothesis h

(r)
η : X → {−1, 1, ∗} such

that

h(r)
η (x) =


1, if h(x) ̸= ∗ and h(x) > r(x) + η;
−1, if h(x) ̸= ∗ and h(x) < r(x) − η;
∗, otherwise.

Given a real-valued hypothesis class H ⊆ ([−1, 1] ∪ {∗})X , we define the binary hypothesis
class H

(r)
η ⊆ {−1, 1, ∗}X as

H(r)
η = {h(r)

η : h ∈ H}.

We can now transform any real-valued hypothesis class H ⊆ ([−1, 1] ∪ {∗})X into a binary
hypothesis class H

(r)
η for every choice of η ∈ R≥0 and r : X → R. This allows us to measure

the complexity of a pair of real-valued hypothesis classes S, B ⊆ ([−1, 1] ∪ {∗})X using
the mutual VC dimensions VC(S(r1)

η1 , B
(r2)
η2 ) of the binary hypothesis classes S

(r1)
η1 , B

(r2)
η2 for

various choices of η1, η2, r1, r2. The following claim shows that the mutual fat-shattering
dimension fatη(S, B) can be defined equivalently in this way.

▷ Claim 11. Let S, B ⊆ ([−1, 1] ∪ {∗})X be real-valued hypothesis classes. For every
η ∈ R≥0, fatη(S, B) = supr1,r2 VC(S(r1)

η , B
(r2)
η ), where the supremum is over all function

pairs r1, r2 : X → R.

The claim follows from the fact that a subset X ′ ⊆ X is η-fat shattered by S if and only if
X ′ is shattered by the binary hypothesis class S

(r)
η for some r : X → R, and the same holds

with S replaced by B.
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Before we state our sample complexity upper bound for correlation maximization in
Theorem 12, we make some additional definitions to simplify the statement. Let h : X →
[−1, 1]∪{∗} be a real-valued hypothesis and H ⊆ ([−1, 1]∪{∗})X be a real-valued hypothesis
class. For every real number θ ∈ R, we use h

(θ)
η and H

(θ)
η to denote h

(r)
η and H

(r)
η with the

reference function r : X → R being the constant function satisfying r(x) = θ for every x ∈ X.

▶ Theorem 12. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For η1, η2, β, δ ∈
(0, 1/2), defining m := supθ∈R VC(S(0)

η1 , B
(θ)
η2 ), we have

#CorM(S, B, β + 2η1 + 2η2, δ)

≤ O

(
m

β4 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β4 log
(

1
η1

)
log
(

1
δ

)
+ 1

β2 log
(

1
η2

))
.

Moreover, for every ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/5, we have m ≤ fatε/5(S, B) and

#CorM(S, B, ε, δ) ≤ O

(
m

ε4 log2
+

(m

ε

)
log
(

1
ε

)
+ 1

ε4 log
(

1
ε

)
log
(

1
δ

))
.

It remains an open question whether there is a sample complexity lower bound that matches
Theorem 12, although our sample complexity characterization for multiaccuracy and mul-
ticalibration in Section 5 does not rely on such a lower bound. Qualitatively, Theorem 12
implies that #CorM(S, B, β + 2η1 + 2η2, δ) is finite if supθ∈R VC(S(0)

η1 , B
(θ)
η2 ) is finite. We thus

propose the following question about a qualitative lower bound: let S, B ⊆ ([−1, 1] ∪ {∗})X

be real-valued hypothesis classes. Suppose VC(S(0)
η1 , B

(θ)
η2 ) is infinite for some η1, η2 > 0 and

θ ∈ R. Does this imply that #CorM(S, B, ε, δ) is infinite for some ε, δ > 0?

5 Sample Complexity of Realizable Multiaccuracy and Multicalibration

In this section, we give a sample complexity characterization for realizable multiaccuracy
and multicalibration in the distribution-free setting. These tasks have been studied in [48]
for total hypothesis classes. Here we generalize their definitions to partial hypothesis classes.

Given a distribution µ over X × [−1, 1] and a model f : X → [−1, 1], we first generalize
the definition of MA-errorµ,B(f) and MC-errorµ,B(f) in (1) and (2) to partial hypothesis
classes B ⊆ [−1, 1] ∪ {∗}. It is not enough to directly use the generalized product ♢ as in
Section 4. For example, suppose we define MA-errorµ,B(f) to be

supb∈B |E(x,y)∼µ[(f(x) − y) ♢ b(x)]|.

Then MA-errorµ,B(f) is equal to the ℓ1 error E(x,y)∼µ[|f(x)−y|] even when B only contains a
single hypothesis b which assigns every individual x ∈ X the undefined label b(x) = ∗, making
it challenging to achieve a low MA-error even when B has fat-shattering dimension zero.
To avoid this issue, we note that for any u ∈ R, the absolute value |u| can be equivalently
written as supσ∈{−1,1} uσ, leading us to the following definitions:

MA-errorµ,B(f) := sup
b∈B

sup
σ∈{−1,1}

E
[(

(f(x) − y)σ
)

♢ b(x)
]
, and (21)

MC-errorµ,B(f) := sup
b∈B

∑
v∈V

sup
σ∈{−1,1}

E
[(

(f(x) − y)1(f(x) = v)σ
)

♢ b(x)
]
. (22)

In the definition of MC-error, we use V to denote the range of f which we assume to be
countable. The supremum over σ ∈ {−1, 1} is inside the sum over v ∈ V , so σ is allowed to
depend on v.
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We can now define realizable multiaccuracy and multicalibration for partial hypothesis
classes:

▶ Definition 13 (Realizable Multiaccuracy (MA)). Given two hypothesis classes S, B ⊆
([−1, 1] ∪ {∗})X , an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative
integer n, we define MAn(S, B, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) where Z = X × [−1, 1],
F = [−1, 1]X , P consists of all distributions µ over X × [−1, 1] satisfying (19), and Fµ

consists of all models f : X → [−1, 1] such that

MA-errorµ,B(f) ≤ ε. (23)

▶ Definition 14 (Realizable Multicalibration (MC)). We define MCn(S, B, ε, δ) in the same
way as we define MAn(S, B, ε, δ) in Definition 13 except that we replace (23) with

MC-errorµ,B(f) ≤ ε.

We prove the following upper bound (Theorems 15 and 16) and lower bound (Theorem 17)
on the sample complexity of realizable multiaccuracy and multicalibration in the full version
of this paper.

▶ Theorem 15. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For β, η1, η2, δ ∈
(0, 1/2), defining m := supr:X→R supθ∈R VC(S(r)

η1 , B
(θ)
η2 ), we have

#MA(S, B, β + 2η1 + 4η2, δ)
≤ #MC(S, B, β + 2η1 + 4η2, δ)

≤ O

(
m

β6 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β6 log
(

1
η1

)
log
(

1
βδ

)
+ 1

β4 log
(

1
η2

))
.

For ε ∈ (0, 1/2), choosing β = η1 = η2 = ε/7, we have m ≤ fatε/7(S, B) and

#MA(S, B, ε, δ) ≤ #MC(S, B, ε, δ) ≤ O

(
m

ε6 log2
+

(m

ε

)
log
(

1
ε

)
+ 1

ε6 log
(

1
ε

)
log
(

1
εδ

))
.

▶ Theorem 16. In the setting of Theorem 15, assume in addition that S is binary, i.e.,
S ⊆ {−1, 1, ∗}X and define m := supθ∈R VC(S, B

(θ)
η2 ). Then,

#MA(S, B, β + 4η2, δ) ≤ O

(
m

β4 log2
+

(
m

β

)
+ 1

β4 log
(

1
η2βδ

))
,

#MC(S, B, β + 4η2, δ) ≤ O

(
m

β4 log2
+

(
m

β

)
+ 1

β4 log
(

1
η2βδ

)
+ 1

β5

)
.

▶ Theorem 17. Let S, B ⊆ ([−1, 1]∪{∗})X be real-valued hypothesis classes. For η1, η2 ∈ R>0
and δ ∈ (0, 1), defining m := supr1,r2:X→R VC(S(r1)

η1 , B
(r2)
η2 ), we have

#MC(S, B, η1η2/3, δ) ≥ #MA(S, B, η1η2/3, δ) ≥ log(1 − δ) + Ω(m).

For any ε ∈ (0, 1/2), choosing η1 = η2 =
√

3ε, we have m = fat√
3ε(S, B) and

#MC(S, B, ε, δ) ≥ #MA(S, B, ε, δ) ≥ log(1 − δ) + Ω(m).

Moreover, the constant 3 in the theorem can be replaced by any absolute constant c > 2.
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6 Comparative Regression via Omnipredictors

We formally define the comparative regression task where the learning objective is to minimize
a general loss function.

▶ Definition 18 (Comparative Regression (CompR)). Given a partial hypothesis class S ⊆
([−1, 1]∪{∗})X , a total hypothesis class B ⊆ [−1, 1]X , a loss function ℓ : {−1, 1}×[−1, 1] → R,
an error bound ε ≥ 0, a failure probability bound δ ≥ 0, and a nonnegative integer n,
we define CompRn(S, B, ℓ, ε, δ) to be Learnn(Z, F, P, (Fµ)µ∈P , δ) with Z, F, P, Fµ chosen as
follows. We choose Z = X × {−1, 1} and F = [−1, 1]X . The distribution class P consists of
all distributions µ over X × {−1, 1} satisfying the following property:

there exists s ∈ S such that Prx∼µ|X
[s(x) ̸= ∗] = 1 and E(x,y)∼µ[y|x] = s(x). (24)

The admissible set Fµ consists of all models f : X → [−1, 1] such that

E(x,y)∼µ[ℓ(y, f(x))] ≤ infb∈BE(x,y)∼µE[ℓ(y, b(x))] + ε. (25)

In the definition above, we assume that the benchmark class B is total so that we do not
need to define ℓ(y, b(x)) when b(x) = ∗. We assume that the ranges of the model f and any
benchmark b ∈ B are bounded between −1 and 1, but any bounded range can be reduced
to this setting by a scaling. We also assume that the label y in a data point (x, y) ∼ µ is
binary: y ∈ {−1, 1}, and thus (24) implies that the conditional distribution of y given x

is Ber∗(s(x)). We focus on this binary-label setting because it is the main setting of the
omnipredictor result in [34], which our results are based on. There are certainly other natural
and interesting settings of comparative regression (e.g. the deterministic-label setting where
y ∈ [−1, 1] and Pr(x,y)∼µ[s(x) = y] = 1 for some s ∈ S). We leave further study of these
settings for future work.

We prove the following sample complexity upper bound for comparative regression in
terms of the mutual fat-shattering dimension:

▶ Theorem 19. Let S ⊆ ([−1, 1] ∪ {∗})X be a partial hypothesis class and B ⊆ [−1, 1]X
be a total hypothesis class. Let ℓ : {−1, 1} × [−1, 1] → R be a loss function such that
ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ {−1, 1}. For β, η1, η2, δ ∈ (0, 1/2), defining
m := supr:X→R supθ∈R VC(S(r)

η1 , B
(θ)
η2 ),

#CompR(S, B, ℓ, κ(β + 2η1 + 4η2), δ)

≤ O

(
m

β6 log2
+

(
m

β

)
log
(

1
η1

)
+ 1

β6 log
(

1
η1

)
log
(

1
βδ

)
+ 1

β4 log
(

1
η2

))
.

We prove Theorem 19 using the omnipredictor result of Gopalan et al. [34], which shows
that any model with a low MC-error w.r.t. B and a low overall calibration error can be easily
transformed to a model that achieves a low loss compared to the best benchmark in B. Here,
the overall calibration error of a model f is defined as follows:

C-errorµ(f) :=
∑
v∈V

|E(x,y)∼µ[(y − f(x))1(f(x) = v)]|, (26)

where V is the range of f which we require to be countable. The name “overall calibration
error” comes from the fact that C-errorµ(f) = MC-errorµ,B(f) when B only contains a single
hypothesis b such that b(x) = 1 for every x ∈ X.
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▶ Theorem 20 (Omnipredictor [34]). Let ℓ : {−1, 1} × [−1, 1] → R be a loss function such
that ℓ(y, ·) is convex and κ-Lipschitz for any y ∈ {−1, 1}. Define τ : [−1, 1] → [−1, 1] such
that

τ(u) ∈ arg minq∈[−1,1]Ey∼Ber∗(u)[ℓ(y, q)].

Let µ be a distribution over X × {−1, 1} and B ⊆ [−1, 1]X be a total hypothesis class. Let
f : X → [−1, 1] be a model satisfying MC-errorµ,B(f) ≤ α and C-errorµ(f) ≤ ε. Then,

E(x,y)∼µ[ℓ(y, τ(f(x)))] ≤ inf
b∈B

E(x,y)∼µ[ℓ(y, b(x))] + (α + 3ε)κ.

The authors of [34] only proved Theorem 20 in the special case where ε = 0. Since
achieving C-errorµ(f) = 0 is in general impossible with finitely many data points, it is
important to prove Theorem 20 for a general ε > 0. We include a proof of Theorem 20 in
the full version of this paper.

We prove Theorem 19 by combining Theorem 20 with our sample complexity upper
bound for realizable multicalibration in Section 5. A challenge here is that in addition to
achieving MC-errorµ,B(f) ≤ α, Theorem 20 also requires us to achieve C-errorµ(f) ≤ ε. This
is similar to the situation in boosting (Section 1.3) where we need to simultaneously achieve
a low MA-error and a low sign-C-error. We include a more detailed proof of Theorem 19 in
the full paper.

7 Comparative Online Learning

In this section, we study comparative learning in the online setting. We show that the con-
nections we make in Section 3 between comparative learning and learning partial hypotheses
can be extended to the online setting, allowing us to show regret bounds for comparative
online learning in Theorem 25.

Specifically, in the online setting, the data points (x, y) ∈ X × {−1, 1} are not given
to the learner all at once. Instead, they come one-by-one and the learner sequentially
makes predictions about the label of every individual x before the true label y is revealed.
Additionally, the data points are not assumed to be drawn i.i.d. from some distribution.
Formally, a (possibly inefficient and randomized) online learner L does the following on a
stream of data points (x1, y1), . . . , (xn, yn): for every i = 1, . . . , n, given i − 1 labeled data
points (x1, y1), . . . , (xi−1, yi−1) ∈ X × {−1, 1} and an extra unlabeled data point xi ∈ X, the
learner outputs a prediction ŷi ∈ {−1, 1}. The performance of the learner L is measured by

mistake(L; (xi, yi)n
i=1) := 1

n

n∑
i=1

Pr[ŷi ̸= yi],

where the probability is over the internal randomness in A. We also measure the performance
of a hypothesis h : X → {−1, 1, ∗} by

mistake(h; (xi, yi)n
i=1) := 1

n

n∑
i=1

1(h(xi) ̸= yi).

Researchers have studied online learning for partial binary hypothesis classes H ⊆
{−1, 1, ∗}X in the realizable and agnostic settings:
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▶ Definition 21 (Realizable online learning). Given a hypothesis class H ⊆ {−1, 1, ∗}X ,
a regret bound ε ≥ 0, and a positive integer n, we use ReaOLn(H, ε) to denote the set
of all online learners L such that for every h ∈ H and every sequence of data points
(x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} satisfying yi = h(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)n
i=1) ≤ ε.

▶ Definition 22 (Agnostic online learning). Given a hypothesis class H ⊆ {−1, 1, ∗}X , a regret
bound ε ≥ 0, and a positive integer n, we use AgnOLn(H, ε) to denote the set of all online
learners L such that for any sequence of data points (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}, it
holds that

mistake(L; (xi, yi)n
i=1) ≤ inf

h∈H
mistake(h; (xi, yi)n

i=1) + ε.

We combine the realizable and agnostic settings to define comparative online learning:

▶ Definition 23 (Comparative online learning). Given hypothesis classes S, B ⊆ {−1, 1, ∗}X ,
a regret bound ε ≥ 0, and a positive integer n, we use CompOLn(S, B, ε) to denote the
set of all online learners L such that for every s ∈ S and every sequence of data points
(x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} satisfying yi = s(xi) for every i = 1, . . . , n, it holds that

mistake(L; (xi, yi)n
i=1) ≤ inf

b∈B
mistake(b; (xi, yi)n

i=1) + ε.

Analogous to the question of sample complexity, a basic question in online learning is
to understand the optimal regret, i.e., the minimum ε for which there exists a learner that
solves the tasks above given a sequence of n data points. Given a total binary hypothesis
class H, the optimal regret in realizable and agnostic online learning has been characterized
in [64] and [13] using the Littlestone dimension, and this characterization has been extended
to partial hypothesis classes in [3]. The Littlestone dimension of a partial hypothesis class
H ⊆ {−1, 1, ∗}X is defined as follows. Given m ∈ Z≥0, suppose we associate an individual
xζ ∈ X to every binary string ζ ∈ ∪m−1

i=0 {−1, 1}i. There are 2m − 1 such strings ζ in
total, so (xζ)ζ∈∪m−1

i=0 {−1,1}i ∈ X2m−1. We say (xζ)ζ∈∪m−1
i=0 {−1,1}i is shattered by H if for every

ξ = (ξ1, . . . , ξm) ∈ {−1, 1}m, there exists h ∈ H such that h(xξ<i) = ξi for every i = 1, . . . , m,
where ξ<i ∈ {−1, 1}i−1 is the prefix of ξ of length i − 1. The Littlestone dimension of H is
defined to be

Ldim(H) := sup{m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1
i=0 {−1,1}i ∈ X2m−1 shattered by H}.

To give a regret characterization for comparative online learning, we define the mutual
Littlestone dimension for a pair of hypothesis classes S and B to be

Ldim(S, B) :=
sup{m ∈ Z≥0 : there exists (xζ)ζ∈∪m−1

i=0 {−1,1}i ∈ X2m−1 shattered by both S and B}.

Similarly to Claim 7 for the mutual VC dimension, the mutual Littlestone dimension of
(S, B) is equal to the Littlestone dimension of the agreement hypothesis class AS,B (defined
in Section 3):

▷ Claim 24. Let S, B ⊆ {−1, 1, ∗}X be partial binary hypothesis classes. We have
Ldim(S, B) = Ldim(AS,B).
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We omit the proof of the claim because the proof of Claim 7 can be applied here with only
minor changes. Our main result in this section is the following regret characterization for
comparative online learning.

▶ Theorem 25. For every S, B ⊆ {−1, 1, ∗}X and n ∈ Z>0, define m := Ldim(S, B) and

ε∗ := inf{ε ∈ R≥0 : CompOLn(S, B, ε) ̸= ∅}.

Then

min
{

1
2 ,

m

2n

}
≤ ε∗ ≤ O

(√
m

n
log 2m + n

m

)
.

Our proof of Theorem 25 uses the same strategy as in our proof of Theorem 4. Relying
on the sample complexity characterizations proved in [3] for AgnOL and ReaOL, we reduce
CompOL for (S, B) to AgnOL for AS,B , and conversely reduce ReaOL for AS,B to CompOL
for (S, B).
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