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Abstract
A line of work has looked at the problem of recovering an input from distance queries. In this
setting, there is an unknown sequence s ∈ {0, 1}≤n, and one chooses a set of queries y ∈ {0, 1}O(n)

and receives d(s, y) for a distance function d. The goal is to make as few queries as possible to
recover s. Although this problem is well-studied for decomposable distances, i.e., distances of the
form d(s, y) =

∑n

i=1 f(si, yi) for some function f , which includes the important cases of Hamming
distance, ℓp-norms, and M -estimators, to the best of our knowledge this problem has not been
studied for non-decomposable distances, for which there are important special cases such as edit
distance, dynamic time warping (DTW), Fréchet distance, earth mover’s distance, and so on. We
initiate the study and develop a general framework for such distances. Interestingly, for some
distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and
so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then
becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. We
also study the role of adaptivity for a number of different distance functions. One motivation for
understanding non-adaptivity is that the query sequence can be fixed and the distances of the
input to the queries provide a non-linear embedding of the input, which can be used in downstream
applications involving, e.g., neural networks for natural language processing.
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1 Introduction

We study the problem of exact recovery of a sequence from queries to a distance oracle.
Suppose there is an unknown input sequence s with length at most n, defined on a binary
alphabet {0, 1}. Assume we have a distance oracle which returns the distance d(s, q) between

© Zhuangfei Hu, Xinda Li, David P. Woodruff, Hongyang Zhang, and Shufan Zhang;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 73; pp. 73:1–73:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhuangfei.hu@uwaterloo.ca
mailto:xinda.li@uwaterloo.ca
mailto:dwoodruf@cs.cmu.edu
mailto:hongyang.zhang@uwaterloo.ca
mailto:shufan.zhang@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ITCS.2023.73
https://arxiv.org/abs/2209.05676
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


73:2 Recovery from Non-Decomposable Distance Oracles

a query sequence q and the unknown sequence s, where the query sequence q is chosen either
adaptively or non-adaptively. The problem is to determine the sequence s with a minimal
number of queries to the distance oracle. To the best of our knowledge, this problem has
not been studied for non-decomposable distances, where the distance function cannot be
decomposed into a sum of functions of each entry. Among all non-decomposable distances,
we are particularly interested in the edit distance, (p)-Dynamic Time Warping (p-DTW),
and Fréchet distances. The edit distance measures the minimum number of edit operations
(i.e., insertions, deletions, and substitutions) for transforming one sequence to another. The
p-DTW distance (1 ≤ p < ∞) between two sequences x, y is defined to be the minimum ℓp

distance between two equal-length expansions of x, y, where the expansion of a sequence
means you can duplicate each character of each sequence an arbitrary number of times.
When p = 1, the p-DTW distance is called the DTW distance. If we consider the ℓ∞ norm
instead of the ℓp norm, we obtain the Fréchet distance.

The problem of exact recovery for decomposable distances is well-studied in the literature,
and is related to the coin-weighing problem [34, 10] and the group testing problems [21, 4, 19].
The coin-weighing problem is to identify the weight of each coin from a collection of n

coins, each being of weight either w0 or w1 (w0 and w1 are distinct). In this problem, our
only access to the coins is via weighing a subset of the coins on a spring scale. The group
testing problem has also been shown to be equivalent to the coin-weighing problem in some
settings [37]. This line of research has been extensively studied with interesting applications.
For example, the coin-weighing problem can be used in the detection problem [35], in the
problem of determining a collection [13], and in the distinguishing family problem [31].

The query complexity of the adaptive version of the problem is also related to the original
Mastermind game [26]. The Mastermind problem can be phrased as guessing an input
sequence based on Hamming distance queries. The non-adaptive version of the problem can
be shown to be equivalent to the well-studied coin-weighing problem [10]. One can then
consider other variants of the Mastermind game where the input sequence is guessed based on
other distance metrics, such as permutation-based distances [2], ℓp distances [22] and graph
distances [32, 24]. However, general distance metrics that do not decompose into coordinate
sums are less understood. In this paper, we initiate the study of this exact recovery problem
on non-decomposable distances.

One motivation of our exact recovery problem is its application to adversarially robust
learning on discrete domains. It is well-known that deep neural networks are vulnerable to
adversarial examples: test inputs that have been modified slightly in the ℓp space can lead
to problematic machine predictions. Though there exist various techniques such as Pixel-
DP [29] and randomized smoothing [18] that achieve certified robustness against ℓp-norm
perturbations in continuous domains, in many tasks such as natural language processing,
the ℓp norm is not well-defined for discrete perturbations. To resolve this issue, inputs from
a discrete domain are usually mapped to vectors in the ℓp space before being passed to a
classifier; this is also known as a word embedding. We require two properties of such a
mapping: 1) zero information loss; 2) Lipschitzness with respect to the distance metric in
the input space. We show that the exact recovery problem yields a direct construction of
such mappings: suppose the set of query sequences is {q1, . . . , qm} and s is the unknown
input sequence; the mapping for s: ϕ(s) = [d(s, q1), . . . , d(s, qm)] has Lipschitz constant at
most

√
m (in the ℓ2 norm) and maintains complete information about s. Similar to edit

distance, which can be used for describing the adversarial capability in changing sequences,
the DTW and Fréchet distances have received significant attention for their flexibility in
handling temporal sequences. The special instance of our problem on DTW and Fréchet
distances may be useful for analyzing the robustness of DTW neural networks [12].
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A distance embedding further inspires theoretical applications in functional analysis [36].
While the space of input sequences s is a metric space, it may not be a Hilbert space with a
definition of norm and inner product. Our result provides us with a tool to define a mapping
from a metric space to a Hilbert space without loss of information about the input sequences.
One can then use the norm or inner product to analyze input sequences, e.g., when two input
sequences are orthogonal and how to normalize an input sequence to have norm 1.

1.1 Our Results
Assumptions. Throughout the paper, we assume the alphabet of the unknown input
sequence s is {0,1}. We note that under this assumption, our results for DTW described
below will apply to p-DTW. To recover the sequence s, we submit adaptive or non-adaptive
query sequences to a distance oracle. As we will show in Section 1.1.1, for some distance
metrics, there exist input sequences that any sequence on a binary alphabet cannot distinguish.
Therefore, our query sequences may be allowed to utilize alphabets outside {0,1}with O(1)
extra characters to exactly recover the input sequence. We assume the maximum length of s

is n, while the exact length of s is unknown.

Extension to non-binary alphabets. Our results are presented for the binary alphabet
{0, 1}. We note that these results can be extended to any non-binary alphabet Σ by encoding
the non-binary alphabet in a binary domain. This will increase the query complexity by a
factor of |Σ| if using a one-hot encoding, or a factor of log(|Σ|) if using a binary encoding, for
example. This extension works for the results for all distance metrics shown in this paper.

We begin with a general coordinate descent framework that can help recover sequences
from a large class of distance oracles, including but not limited to earth mover’s distance
(EMD), cascaded norms (ℓp of ℓq), and A norms (a.k.a. Mahalanobis distance). We then
present improved results on three specific distance metrics: edit distance, DTW distance,
and Fréchet distance. We first provide several observations on the sequence recovery problem,
showing the existence of indistinguishable input sequences despite the fact that we can query
their DTW and Fréchet distances with all possible binary query sequences. We also prove
lower bounds on the query complexity in our distance recovery problem with respect to
DTW, edit, and Fréchet distances. Then we present our main results on recovering sequences
from edit, DTW, and Fréchet distance oracles, with adaptive and non-adaptive strategies.

1.1.1 Existence of Indistinguishable Sequences
We observe that, for some distances, there exist sequences that cannot be distinguished
by any query sequence over a binary alphabet. This can be proved by showing concrete
examples, i.e., a pair of sequences that cannot be distinguished, which we show is true for
the DTW and the Fréchet distances, as stated in the following theorem.

▶ Theorem 1 (Informal, existence of indistinguishable sequences). There exists a pair of
sequences (s, s′) such that s and s′ cannot be distinguished by any query sequence on a binary
alphabet, for the DTW distance and the Fréchet distance.

The formal proof of this theorem for the DTW distance is deferred to Theorem 24. The
analogous discussion for the Fréchet distance can be found in Section 6. Due to the existence
of indistinguishable sequences, we define the concept of an equivalence class of sequences,
which is a set of input sequences which are indistinguishable from all queries by a given
distance oracle.

ITCS 2023
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This observation suggests the scope of the distance recovery problem we study. We further
categorize the recovery guarantee into the following three levels, from strong to weak: 1)
recover the exact input sequence; 2) recover any sequence in the same equivalence class
of the input sequence, where the equivalence class is defined to be a set for which any
two input sequences in the equivalence class cannot be distinguished by calling the distance
oracle on all query sequences; 3) recover any sequence which has zero distance to the
input sequence. While the third level is the weakest one, in certain cases it can be reduced
to the first two levels – for norm-induced distance functions, the recovered sequence is exactly
the input sequence; for semi-norm-induced distance functions, the recovered sequence is in
the same equivalence class. We will show that our general coordinate descent framework can
recover sequences with the third-level guarantee.

1.1.2 General Coordinate Descent Framework for Adaptively Querying
Distance Oracles

We develop a general framework for recovering an input sequence from adaptive queries, which
models the problem as a zero-th order optimization problem and utilizes a coordinate-descent-
based algorithm to give a solution. The coordinate descent framework defines the distance
between the input sequence and the query sequence as the loss function. The objective of
the optimization is to reduce the loss function to 0, which guarantees what we call the third
level of recovery. We define a step operation to modify the query sequence. For example, in
the context of edit distance, a step operation is defined as adding/removing/substituting
a character of the query sequence. To perform coordinate descent, our algorithm performs
one step operation each time and queries the oracle to find a direction for which the loss
decreases by 1. By iteratively performing this method, the loss can be reduced to 0 and we
show that the overall complexity of this method is poly(n), given that the maximum length
of the sequence is n. For a large class of non-decomposable distance functions, such as the
earth mover’s distance (EMD), the cascaded norm (ℓp of ℓq), and the A norm, we can use
this framework to yield a solution, as stated in the following theorem.

▶ Theorem 2 (Informal, Coordinate Descent for Adaptive Distance Queries). For an arbitrary
distance oracle, a binary alphabet {0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n,
using coordinate descent can reduce the distance to the input sequence s to 0, by adaptively
querying the distance oracle between s and a set of query sequences with query complexity at
most poly(n).

Sufficient conditions for using this framework and details can be found in Theorem 15.

1.1.3 Lower Bounds on the Recovery Problem
If we study the problem of exact recovery (the first level of recovery), we can obtain an
information-theoretic lower bound of Ω̃(n) for various distance oracles, given by the following
theorem. Here f(n) = Ω̃(g(n)) if f(n) = Ω(g(n)/polylog(n)).

▶ Theorem 3 (Informal, Lower Bounds for Exact Recovery). For any input sequence s ∈ {0, 1}i

where 0 ≤ i ≤ n, if for any input sequence and query the distance oracle has poly(n) possible
output values, any algorithm which exactly recovers s by querying the distance oracle between
s and a set of query sequences requires query complexity at least Ω̃(n).

The idea behind this bound is that, there are exponentially many possible input sequences
with length at most n, while the output of each query is a distance between two sequences
which only has poly(n) possibilities. Hence, we need at least Ω̃(n) = logpoly(n)(2n+1) queries.



Z. Hu, X. Li, D. P. Woodruff, H. Zhang, and S. Zhang 73:5

We also show the same lower bound holds for any adaptive randomized query algorithm,
by a reduction to a one-way communication game called INDEX [28]. We instantiate this
theorem for the edit distance and DTW distance in Theorem 19 and Theorem 32.

We note for the DTW distance and Fréchet distance, there exist indistinguishable
sequences which lead to the recovery problem for an equivalence class. Since the total number
of equivalence classes is smaller than the number of input sequences, the previous lower
bound no longer holds. So we need a different argument, as we give in the following theorem:

▶ Theorem 4 (Informal, Lower Bounds for Equivalence Class Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, any algorithm which recovers the
sequence in the same equivalence class as s, by querying the DTW or Fréchet distance oracle
between s and a set of query sequences, requires query complexity at least Ω(n).

The formal proof is given in Theorem 31 and Theorem 40.

1.1.4 Adaptively Querying Distance Oracles, Optimally
We first answer the distance recovery problem with adaptive query strategies. Our solutions
are summarized in the theorem below.

▶ Theorem 5 (Informal, Upper Bounds for Adaptive Exact Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which
can exactly recover the input sequence s, by adaptively querying the distance oracle (for the
edit and DTW distances) between s and a set of query sequences with query complexity at
most O(n).

All results in Theorem 5 match our lower bounds on the query complexity. Without
extra character(s), using the DTW distance oracle we can only recover a sequence in the
same equivalence class. Our result in Theorem 5 for the DTW distance is achieved with the
assistance of 1 extra character outside the alphabet {0, 1}, and the proof and algorithm can
be found in Theorem 18.

For the edit distance, we have two different adaptive algorithms that can achieve the
O(n) bound. The first algorithm makes use of the property that, for two sequences, the
edit distance is equal to the difference in their lengths, if and only if one sequence is a
subsequence of the other. We construct an O(n) adaptive query set and a binary search
algorithm utilizing this property to recover the input sequence. Our second algorithm instead
queries the length of the input sequence by an empty sequence and then finds a set of O(n)
bases as the query set, from which we can reconstruct the input sequence. These are further
detailed in Theorem 16.

For the Fréchet distance, adaptive and non-adaptive strategies are essentially the same,
because we prove that 2n−1 queries are necessary and sufficient for recovering from a Fréchet
distance oracle. However, we can only recover a sequence in the equivalence class in this
setting. This result is described as a non-adaptive query strategy in Theorem 42.

1.1.5 Non-adaptively Querying Distance Oracles, Optimally
Next we describe our non-adaptive query strategies for the distance recovery problem.
Theorem 6 shows upper bounds for exact sequence recovery, while Theorem 7 summarizes
our results on the recovery problem of finding a sequence in the same equivalence class as
the input sequence.

ITCS 2023
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Table 1 Summary of our results for recovering arbitrary input sequences of length n under the
constraint that the query length is O(n). LB: Lower Bound. #EC: Number of Extra Characters.

Oracle Query Complexity LB Adaptive? #EC Level of Recovery Positions

Edit O(n) Ω̃(n) Adaptive 0 Exact sequence Theorem 16
Edit n + 1 Ω̃(n) Non-adaptive 1 Exact sequence Theorem 21
Edit n2 Ω̃(n) Non-adaptive 0 Exact sequence Theorem 23

(p-)DTW n + 1 Ω̃(n) Adaptive 1 Exact sequence Theorem 18
(p-)DTW n Ω(n) Non-adaptive 0 Equivalent class Theorem 27
(p-)DTW n2 + n Ω̃(n) Non-adaptive 1 Exact sequence Theorem 33
(p-)DTW n + 2 Ω̃(n) Non-adaptive 2* Exact sequence Theorem 34
Fréchet 2n − 1 2n − 1 N/A† 0** Equivalent class Theorem 42

Any distance poly(n) - Adaptive 0 Zero distance to input Theorem 15

† For both adaptively and non-adaptively querying the Fréchet distance oracle, the optimal bound on the
query complexity is 2n − 1.
* Increasing #EC to a larger constant cannot improve the query complexity to be better than Õ(n).
** Involving extra characters not only cannot improve the level of recovery from “equivalence class” to
“exact sequence”, but also cannot improve the query complexity (see Theorem 41).

▶ Theorem 6 (Informal, Upper Bounds for Non-adaptive Exact Recovery). For a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which
can exactly recover the input sequence s by querying the distance oracle (for the edit and
DTW distances) between s and a non-adaptive set of query sequences with query complexity
at most O(n), with the assistance of O(1) extra characters in the query sequences.

With 1 extra character, we show the construction of a set of non-adaptive queries that
can exactly recover sequences from the edit distance (Theorem 21), while with 2 extra
characters, we can exactly recover input sequences from the DTW distance (Theorem 34).
Both results match our lower bound on the query complexity, while we complement our
results with an O(n2) query complexity algorithm for the DTW distance with 1 extra
character (Theorem 33). We note that non-adaptive strategies have limited power compared
to adaptive strategies. Hence, we need to use more extra characters to construct the query
set to solve the problem. For the edit distance, introducing more than 1 extra character
cannot encode more information in the query results, because the cost between 0 (or 1) and
any other additional character is always the same.

▶ Theorem 7 (Informal, Upper Bounds for Non-adaptive Equivalence Class Recovery). For
a binary alphabet {0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists
an algorithm which can recover the sequence in the same equivalence class as the input
sequence s, by querying the distance oracle (for the DTW and Fréchet distances) between s

and a non-adaptive set of query sequences with query complexity at most O(n), without extra
characters in the query sequence.

By Theorem 7, if we are not allowed to use extra characters, we can only recover the
sequence in the same equivalence class as the input sequence for the DTW distance. Our
query construction and proof are shown in Theorem 27. We also remark that for Fréchet
distance, using extra characters cannot help to improve the results of Theorem 42, as shown
in Theorem 41.

Summary. The main technical results of this paper are summarized in Table 1.
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2 Preliminaries

We briefly introduce the definitions and notations of the distance metrics we consider, namely,
the edit distance, DTW distance, and Fréchet distance.

▶ Definition 8 (Edit Distance, Levenshtein Distance). Given two sequences x and y, the edit
distance dL(x, y) equals the minimal number of edit operations required for a sequence x to
be transformed to sequence y. Specifically, we consider the Levenshtein distance [30] which
captures the addition, deletion, and substitution of single symbols.

▶ Definition 9 (Runs and Expansion, [9]). The runs of a sequence x are the maximal substrings
consisting of a single repeated character. Any sequence obtained from x by extending x’s runs
is an expansion of x. We denote the number of runs of a sequence x by runs(x).

▶ Definition 10 (Condensed Expression). We say y is a condensed expression of x if (i) y

has the same number of runs as x, (ii) each run of y only has 1 character.

▶ Definition 11 (Subsequence and Substring). Given a sequence y, its subsequence x is derived
by deleting zero or more characters from y without changing the order of the remaining
characters. The substring x′ is a contiguous subsequence of y. We use x[a] to denote the
a-th character of the sequence x, and x[a, b] to denote a substring of x which starts from the
a-th character and ends at the b-th character.

▶ Definition 12 (DTW Distance, [9]). Consider two sequences x, y of length m1 (and m2,
respectively). A correspondence (x, y) between x and y is a pair of equal-length expansions of
x and y. The cost of a correspondence is calculated as the ℓ1 distance between x, y: ∥x − y∥1.
A correspondence between x and y is said to be optimal if it has the minimum attainable
cost, and the resulting cost is called the dynamic time warping distance dDT W (x, y), that
is dDT W (x, y) = min(x,y)∈Wx,y

∥x − y∥1, where Wx,y denotes the set of all correspondences
(x, y).

▶ Definition 13 (p-DTW Distance, [11]). By replacing the ℓ1 norm in Definition 12 with the
ℓp norm (1 ≤ p < ∞), we obtain the definition for the p-DTW distance.

▶ Definition 14 (Fréchet Distance). By replacing the ℓ1 norm in Definition 12 with the ℓ∞
norm, we obtain the definition of the Fréchet distance.

Note. The Fréchet distance in our paper is equivalent to the discrete Fréchet distance in
the prior works of [3, 7].

3 Recovery Using Adaptive Queries

3.1 General Framework of Coordinate Descent
▶ Theorem 15 (Coordinate Descent). There exists an adaptive algorithm which returns a
sequence s′ such that its distance to the input sequence s satisfies dist(s′, s) = 0 using poly(n)
queries, given that the following two conditions are true:

∀q, q′(q′ ̸= q), we can find q′′ in poly(n) queries such that dist(q, q′) > dist(q, q′′);
∀q, q′, dist(q, q′) ≤ poly(n).

Proof sketch. The two above conditions naturally imply a local search algorithm. To
recover the sequence q, we perform the following steps: 1) randomly initialize q′. 2) find
q′′ such that dist(q, q′) > dist(q, q′′). 3) set q′ to q′′ and repeat 2) to 3). The algorithm

ITCS 2023
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terminates if dist(q, q′) = 0. Since we reduce dist(q, q′) by least 1 in each iteration, and
dist(q, q′) ≤ poly(n), the algorithm terminates in at most poly(n) iterations. Therefore, the
total number of queries is O(poly(n)). Notice that the above local search algorithm can be
applied to all aforementioned distances. Specifically, the complexity for the edit distance,
DTW distance and Fréchet distance is O(n2), O(n2) and O(n), respectively. A detailed
instantiation of the algorithm on these distances can be found in Appendix A. ◀

3.2 Edit Distance
We show that a binary input sequence with maximum length n can be adaptively recovered
using at most O(n) queries to the edit distance oracle, by the following theorem.

▶ Theorem 16 (Adaptive Strategy for Edit Distance). For a binary alphabet {0, 1}, and
any input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm to
recover the input sequence s using at most n + 2 queries Q of length ≤ n and the exact
Levenshtein distance of s to each query sequence qi ∈ Q, where the query sequences use no
extra characters.

Proof. The adaptive query strategy is the following. We first use an empty sequence to
query the length ℓ ∈ [n] = {1, 2, . . . , n} of the input sequence. Then we use ℓ + 1 ≤ n + 1
queries: an e0 = 0ℓ query and a set of ei = 0i−110ℓ−i, i ∈ [ℓ] queries (all with length ℓ).

▷ Claim 17. s[i] =
{

0, if dL(s, e0) − dL(s, ei) ≤ 0;
1, if dL(s, e0) − dL(s, ei) = 1.

Proof of claim. If s[i] = 1, dL(s, e0)−dL(s, ei) = (#1’s in s) − (#1’s in s−1) = 1. If s[i] = 0,
dL(s, e0) = (#1’s in s). We show that dL(s, ei) ≥ (#1’s in s). First, dL(s, ei) ≥ (#1’s in s)
− (#1’s in ei) = #1’s in s − 1. Consider the series of transformations from s to ei: 1) If we
only perform substitutions on s, we need at least #1’s in s + 1 operations. 2) Otherwise we
show that we have at least one insertion. If we perform at least one deletion operation(s) on
s, since s and ei are of the same length, we would need at least one insertion(s) on s. Note
that insertions on s cannot reduce the difference of the number of 1’s between s and ei. Thus,
we need at least (#1’s in s −1) extra operations to reduce the difference to 0 and we have
dL(s, ei) ≥ (#1’s in s −1) +1 = #1’s in s. Combining these cases, we obtain dL(s, ei) ≥
(#1’s in s). ◁

By claim 17, we can recover the sequence s character by character. ◀

▶ Remark. We remark that we have two meaningful strategies for edit distance, for details
please refer to the full version of this paper.

3.3 DTW Distance
▶ Theorem 18 (Adaptive Strategy for DTW Distance). For a binary alphabet {0, 1}, and any
input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm to recover the
input sequence s using at most n + 1 queries Q of length ≤ n and the exact DTW distance
of s to each query sequence qi ∈ Q, where the query sequences use 1 extra character.

Proof. Using an adaptive method, for a binary alphabet {0, 1}, an input sequence s ∈ {0, 1}i

where 0 ≤ i ≤ n can be exactly recovered with at most n + 1 queries to the DTW distance
oracle. We need 1 additional character, which is the fractional character 1

2 , to construct the
set of query sequences. The details are presented as follows. Here we use q(i) to denote the
i-th query, sj to denote the j-th character in s and q

(i)
j to denote the j-th character in q(i).
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First, with a single-character query sequence q(1) = 1
2 , we can obtain the length of the

input sequence s, which is ℓ = 2dDT W (s, q(1)). We show how to recover the whole sequence
by induction.
Base case: To recover s1, we consider the query q(2) = 0 ( 1

2 )ℓ−1. Note that each 1
2 in the

q(2) corresponds to at least 1
2 cost in the query result, and we have dDT W (s, q(2)) ≥ ℓ−1

2 . If
s1 = 0, then s1 and q

(2)
1 are perfectly matched, so dDT W (s, q(2)) = ℓ−1

2 . Otherwise, the first
character 0 in q(2) would correspond to cost > 0 in the query result, so dDT W (s, q(2)) > ℓ−1

2 .
Induction step: Suppose we have recovered s1, s2, . . . , sk. We show that we can recover
sk+1 with the query sequence q(k+2) = s1s2 · · · s2

k( 1
2 )ℓ−k−1. Noting that each 1

2 in q(k+2)

corresponds to at least a 1
2 cost in the query result, we have dDT W (s, q(k+2)) ≥ ℓ−k−1

2 .
If sk+1 = sk, then s1, s2, . . . , sk, sk+1 and q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k , q

(k+2)
k+1 can be perfectly

matched, so dDT W (s, q(k+2)) = ℓ−k−1
2 . Otherwise, we claim that dDT W (s, q(k+2)) > ℓ−k−1

2 .
If the cost corresponding to q

(k+2)
k+1 > 0, we would already have dDT W (s, q(k+2)) > ℓ−k−1

2 ,
so we can assume that the cost corresponding to q

(k+2)
k+1 is 0. Since q

(k+2)
k+1 = sk ≠ sk+1, we

know that q
(k+2)
k+1 cannot be matched with sk+1. Suppose q

(k+2)
k+1 is matched with substring

su, su+1, . . . , su+t in the optimal DTW matching, where t ≥ 0 and su = su+1 = · · · =
su+t = q

(k+2)
k+1 = sk. Since k + 1 /∈ [u, u + t], we either have k + 1 > u + t or k + 1 < u. If

k + 1 > u + t, since ∀u + t < j ≤ ℓ we have sj matched to a 1
2 , the total cost would be

at least ℓ−(u+t)
2 > ℓ−k−1

2 . Otherwise if k + 1 < u, note that s1, s2, . . . , su are matched to
q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 in the optimal DTW matching. Since sk+1 ̸= sk, the number of

runs in s1, s2, . . . , sk+1 would be greater than the number of runs in q
(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1

by 1. Thus, the number of runs in s1, s2, . . . , su would be greater than the number of runs in
q

(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 by at least 1, and they cannot be perfectly matched. Therefore, the

cost corresponding to q
(k+2)
1 , q

(k+2)
2 , . . . , q

(k+2)
k+1 would be greater than 0, yielding a total cost

of greater than ℓ−k−1
2 . Therefore, we can recover the input sequence of maximum length n

with n + 1 queries. ◀

4 Recovery Using a Non-Adaptive Edit Distance Oracle

We begin with a lower bound for edit distance.

▶ Theorem 19. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n by querying the Levenshtein distance to a set of
sequences of length O(n) requires a query complexity of Ω( n

log n ).

Proof. We start with a lower bound for deterministic algorithms. For each query, the result
is an integer d = O(n), yielding O(n) possibilities. For 0 ≤ k ≤ n, the number of different
sequences of length k is 2k, and the total number of sequences of length no greater than n

would be
∑n

k=0 2k = 2n+1 − 1. Thus, to distinguish all possible sequences, one would need
at least logO(n)(2n+1) = Ω( n

log n ) queries.
Next we give a proof if one is allowed to use a randomized algorithm. To show this, we

introduce a one-way two-party communication game called INDEX.

▶ Definition 20 (INDEX Game [28]). Consider two players Alice and Bob. Alice and Bob
have access to a common public coin and their computation can depend on this. Alice
holds an n-bit string x ∈ {0, 1}n and is allowed to send a single message M to Bob (i.e.,
this is a one-way protocol). Bob has an index i ∈ [n] and his goal is to learn x[i], i.e.,
Prr[Out(M) = x[i]] ≥ 2

3 ).
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It is shown in [28] that the above problem requires |M | = Ω(n). To reduce our recovery
problem from the INDEX game, let R be an adaptive randomized recovery algorithm which
works as follows. First, Alice randomly selects a query q1 based on the first part r1 of the
shared public coin, and computes d(q1, x). Alice then adaptively selects a set of queries
qi, where each qi is chosen based on disjoint parts r1, . . . , ri of the public coin, as well as
the responses d(q1, x), . . . , d(qi−1, x) to previous queries. Alice then sends all query results
d(qi, x) to Bob as the message M .

We now show that, if the algorithm R is correct w.p. 2/3, then M contains Ω( n
log n ) query

results. Given the success probability 2/3 of R, from message M , Bob can reconstruct the
string x w.p. at least 2/3, so Bob can learn each bit of x w.p. at least 2/3. According to [28],
|M | = Ω(n) bits. Since each distance query result contains at most O(log n) bits, it follows
that Ω( n

log n ) queries are required. ◀

4.1 Exact Recovery with Extra Character(s)
We now move on to the analysis of our upper bound for edit distance with the assistance of
extra character(s).

▶ Theorem 21. For a binary alphabet {0, 1} and an input sequence s ∈ {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n) query
sequences Q of length ≤ n and the exact Levenshtein distance of s to each query sequence
qi ∈ Q, where an extra character 2 is allowed in the query sequences.

Proof. To prove Theorem 21, the following Lemma 22 gives a useful result.

▶ Lemma 22. Consider a sequence defined on a binary alphabet {0, 1} with maximum length
n, which is defined as s = [prefix]0[suffix] where the length of sequence a is ∥s∥ = n′ ≤ n and
the length of the prefix is ∥[prefix]∥ = j. Consider another sequence s′ = 1j+12n−j−1, where
2 denotes a random character not in the binary alphabet {0, 1}. Let k denote the number of
1’s in the prefix [prefix] of the sequence s. The claim is that the edit distance between s and
s′ is greater than or equal to n − k.

Due to space constraints, the proof of Lemma 22 is deferred to the full version. The
construction of the query sequences is an extension of the query sequence we present in
Lemma 22. We describe how this can be generalized to distinguish all the different input
sequence pairs by constructing a set of n + 1 query sequences. We show that using this set of
queries, any two possible input sequences s ≠ s′ can be distinguished by n + 1 non-adaptive
query results.

Query Sequence Construction. We assume the query sequences can include a character
that is not in the alphabet. The n + 1 query sequences are constructed as follows. We use
an empty sequence together with n sequences of the form 1j2n−j for j = 1, . . . , n where 2
denotes a “not-in-the-alphabet” character. We will show that any two input sequences s ̸= s′

are distinguished by this construction of query sequences.
First, it is clear that the empty sequence can distinguish two sequences with different

length, i.e., |s| ̸= |s′|. Next we need to show that, for two input sequences s ̸= s′ with the
same length n′ ≤ n, the remaining query sequences can distinguish them. Without loss of
generality, we suppose s and s′ have the same prefix with length j and first disagree on the
(j + 1)th character. That is, s = [prefix]1[ssuffix] and s′ = [prefix]0[s′

suffix] where ssuffix and
s′

suffix are not necessarily equal. Consider a query sequence qi = 1j+12n−j−1. We use the
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results from Lemma 22 and obtain dist(s′, qi) ≥ n − k where k denotes the number of 1’s in
the prefix of sequence s′. Since we also know that d(s, qi) ≤ n − k − 1, this query sequence
qi can distinguish s and s′. This finishes the proof. ◀

▶ Remark. The proof for Theorem 21 implicitly implies an exact recovery algorithm that
takes the edit distance query results as input and outputs the target sequence. We defer the
algorithm to the full version of the paper.

4.2 Exact Recovery without Extra Characters
▶ Theorem 23. For a binary alphabet {0, 1} and an input sequence s ∈ {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n2) query
sequences Q of length ≤ n and the exact Levenshtein distance of s to each query sequence
qi ∈ Q, without extra characters.

Proof. The construction can be obtained by naturally extending the query set in the proof
of Theorem 16 to all lengths ℓ ∈ [n]. This gives us

∑n
1 n = O(n2) queries. ◀

5 Recovery Using a Non-Adaptive DTW Distance Oracle

5.1 Hardness Result without Extra Characters
▶ Theorem 24. There exists a pair of input sequences s and s′ such that for any query
sequence q, dDT W (s, q) = dDT W (s′, q). That is, s and s′ cannot be distinguished by DTW
Distance Oracle queries without extra characters.

Consider the following counterexample: s = 010110 and s′ = 011010. We can argue that
this pair of input sequences cannot be distinguished by any binary sequence query q. Due
to space constraints, the proof can be found in the full version of the paper. This hardness
result shows that sequences cannot be exactly recovered using DTW queries.

5.2 Recovery without Extra Characters w.r.t. Equivalence Classes
For ease of presentation, we say that any two different input sequences s and s′ are distin-
guishable if s and s′ can be distinguished by DTW Distance Oracle queries. We categorize
mutually indistinguishable sequences into equivalence classes. In this context, using binary
queries, the best solution we can provide in this setting is to recover those input sequences
up to their equivalence class. First, we would like to characterize the set of indistinguishable
binary sequences, given a parameterized sequence length n. The equivalence class is not so
simple to describe, as can be seen from Observation 4 of [33]. However, we can propose an
optimal query strategy in this setting to distinguish all distinguishable sequences and prove
optimality by making use of the reduction between the calculation of DTW distance and the
min 1-separated sum problem [1, 33]. We introduce the necessary results from [33] below
and interpret them in our setting.

MSS Problem. The min 1-separated sum (MSS) problem takes as input a sequence seq of
m positive integers and an integer r ≥ 0. The problem is to select r integers from seq and
minimize their sum, under the constraint that any two adjacent integers cannot be selected
simultaneously. We say (seq, r) is an MSS instance.
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▶ Theorem 25 (DTW-to-MSS Reduction, [33], Theorem 2). Let x ∈ {0, 1}m and y ∈
{0, 1}n be two binary strings such that x[1] = y[1], x[m] = y[n], and |x̃| ≥ |ỹ|. Then,
the DTW distance between x and y, i.e., dDT W (x, y), equals the sum of a solution for
MSS

(
(
∣∣x(2)

∣∣ , . . . ,
∣∣x(|x̃|−1)

∣∣), (|x̃| − |ỹ|)/2
)
.

For ease of presentation, we will use MSS(x, (|x̃|−|ỹ|)/2) to represent the same MSS instance.

▶ Theorem 26 ([33], Observation 4). Let x ∈ {0, 1}m, y ∈ {0, 1}n with m′ := |x̃| ≥ n′ := |ỹ|.
Further, let a :=

∣∣x(1)
∣∣ , a′ :=

∣∣∣x(m′)
∣∣∣ , b :=

∣∣y(1)
∣∣, and b′ :=

∣∣∣y(n′)
∣∣∣. The following holds:

If x[1] ̸= y[1], then:

dDT W (x, y) =


max(a, b), m′ = n′ = 1;
a + dDT W (x[a + 1, m], y), m′ > n′ = 1;
min (a + dDT W (x[a + 1, m], y), b + dDT W (x, y[b + 1, n])) , n′ > 1.

If x[1] = y[1] and x[m] ̸= y[n], then:

dDT W (x, y) =
{

a′ + dDT W (x [1, m − a′] , y) , n′ = 1;
min (a′ + dDT W (x [1, m − a′] , y) , b′ + dDT W (x, y [1, n − b′])) , n′ > 1.

In Theorem 26, we call a, b, a′ and b′ (which are the length of first/last blocks of x or y)
offsets. Theorem 26 actually states that, for two sequences x, y with different starting and
ending characters, by removing the first/last run of x or y, calculating dDT W (x, y) can be
reduced to calculating the offset and solving a DTW sub-problem where the sub-sequences
start and end with the same character.

With these useful results at hand, now we prove the following results for recovering
sequences using the DTW distance oracle with only binary queries.

▶ Theorem 27. There exists a set Q of O(n) queries, each of which has O(n) length, such
that for any two different input sequences s and s′, s and s′ are distinguishable ⇐⇒ s and
s′ can be distinguished by Q.

Proof. First (⇐), for any given query set Q and two different input sequences s and s′, if s

and s′ can be distinguished by Q then s and s′ are distinguishable. Then we need to prove
the opposite side (⇒). To see this, we construct the following query set Q and prove the
contrapositive: if s and s′ cannot be distinguished by Q, then s and s′ are not distinguishable.

Let zi =


0n, i = 1;
0n1(01)m−10n, i = 2m + 1;
0n(10)m−11n, i = 2m,

and oi =


1n, i = 1;
1n0(10)m−11n, i = 2m + 1;
1n(01)m−10n, i = 2m,

where 1 ≤ i ≤ n and m is a positive integer. It is clear that oi’s and zi’s are of O(n)
length. Let Q = {oi|1 ≤ i ≤ n}

⋃
{zi|1 ≤ i ≤ n}. We show that given any two different

input sequences s and s′, if s and s′ cannot be distinguished by Q then s and s′ are not
distinguishable.

▷ Claim 28. Given two different input sequences s and s′, if the condensed expressions of s

and s′ are different, then s and s′ can be distinguished by Q.

Suppose s and s′ cannot be distinguished by Q. By Claim 28, we know that the condensed
expression of s and s′ are the same. Suppose the number of runs in s and s′ is k, the length
of the i-th run in s is αi, and the length of the i-th run in s′ is α′

i. We denote the length of
a sequence by len(·).



Z. Hu, X. Li, D. P. Woodruff, H. Zhang, and S. Zhang 73:13

▷ Claim 29. If s and s′ cannot be distinguished by Q, then k ≥ 3.

▷ Claim 30. If s and s′ cannot be distinguished by Q, then α1 = α′
1 and αk = α′

k.

We defer the proof of the claims 28, 29, and 30 to the full paper. We next show that s and s′

cannot be distinguished by any binary query r. Suppose the number of runs in r is l, and the
length of the i-th run in r is βi. Given s and r, we can calculate dDT W (s, r) with Theorem
26 and Theorem 25. Note that in Theorem 26, we may remove the first/last blocks of s (and
s′) or r to reduce to the case of Theorem 25. By Claim 30 we have α1 = α′

1 and αk = α′
k,

while β1 and βl are only related to r but not s and s′. Therefore, the offsets while reducing
to the case of Theorem 25 are the same. To prove that dDT W (s, r) = dDT W (s′, r), we only
need to prove that for each possible reduction, the corresponding reduced MSS instances
have the same sum of solutions.

Suppose after applying Theorem 26, s and r are reduced to sub-sequences s∗ and r∗

(where s∗ and r∗ have the same beginning and ending characters), while s′ and r are reduced
to s′∗ and r∗. Now we calculate dDT W (s∗, r∗) and dDT W (s′∗, r∗) according to Theorem 25.
Suppose s∗ and s′∗ have k∗ runs and r∗ have l∗ runs.
Case 1. If k∗ = l∗, then dDT W (s∗, r∗) = dDT W (s′∗, r∗) = 0.
Case 2. If k∗ < l∗, by Theorem 25 the generated MSS instance only depends on r∗ and k∗.

Thus, dDT W (s∗, r∗) = dDT W (s′∗, r∗).
Case 3. If k∗ > l∗, we have the MSS instances MSS(s∗, k∗−l∗

2 ) and MSS(s′∗, k∗−l∗

2 ). Note
that, we can always find a query q ∈ Q which has l∗ runs and has the same starting and
ending characters as s∗ and s′∗. Consider dDT W (s, q) and dDT W (s′, q). Note that the
first and last runs of q are both of length n and removing them would yield cost at least
n - the only possible reduction would be dDT W (s∗, q) and dDT W (s′∗, q). Since q cannot
distinguish s and s′, we have dDT W (s, q) = dDT W (s′, q), so dDT W (s∗, q) = dDT W (s′∗, q),
implying that MSS(q∗, k∗−l∗

2 ) and MSS(q′∗, k∗−l∗

2 ) have the same sum of solutions.
Therefore, dDT W (s∗, r∗) = dDT W (s′∗, r∗).

Combining the 3 cases above, we always have dDT W (s∗, r∗) = dDT W (s′∗, r∗), so dDT W (s, r) =
dDT W (s′, r), implying that s and s′ cannot be distinguished by r. This finishes the proof for
Theorem 27. ◀

We complete the study of equivalence class recovery with a lower bound on the query
complexity using binary queries.

▶ Theorem 31. For binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ, where 0 ≤ ℓ ≤ n, up to equivalence class, by querying the DTW distance
to a set of sequences, requires a query complexity of Ω(n).

Proof sketch. Note that in the query construction of Theorem 27, our constructed query set
Q∗ contains queries of all numbers of runs. The intuition for the proof of Theorem 31 is that,
for each given constant-length interval of number of runs, we can construct a certain pair of
input sequences which can only be distinguished by queries with a number of runs within
this interval. E.g., it can be proved that s1 = 013013031303130 and s2 = 0130213021303130
can only be distinguished with queries with a number of runs within [4, 10]. Thus, an Ω(n)
number of such constructed pairs of input sequences can correspond to Ω(n) disjoint intervals,
yielding an Ω(n) lower bound for this problem.

We now construct a class of pairs of input sequences (s, s′) such that s and s′ can only
be distinguished by queries q with a number of runs within [#runs(s)+c1, #runs(s)+c2]
for two constants c1 < c2. According to Theorem 25, as long as the constructed pair
of input sequences (s, s′) have the same number of runs, for a query q with more than
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#runs(s) number of runs, dDT W (q, s) and dDT W (q, s′) are only determined by the query
q and #runs(s), and thus q cannot distinguish s and s′. For a query q with fewer than
#runs(s) number of runs, dDT W (q, s) and dDT W (q, s′) are reduced to two MSS instances.
Note that for different queries q, the sequences (i.e., the first parameter) of MSS instances
remain the same, while #runs(q) determines the number of elements selected in the sequences
of MSS instances (i.e., #runs(s)−#runs(q)

2 ). We hope to construct a pair of sequences seq

and seq′ such that MSS(seq, 1) ̸= MSS(seq′, 1) and MSS(seq, x) = MSS(seq′, x) for all
x > 1: let seq and seq′ be the sequences corresponding to MSS instances of s and s′; in this
way, s and s′ would still be distinguishable because MSS(seq, x) ̸= MSS(seq′, x) for x = 1,
but any query q with fewer than #runs(s) − 4 runs cannot distinguish s and s′ because
MSS(seq, x) = MSS(seq′, x) for all x ≥ 2, where x = #runs(s)−#runs(q)

2 . ◀

5.3 Exact Recovery with Extra Character(s)
▶ Theorem 32. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}ℓ, where 0 ≤ ℓ ≤ n, by querying the DTW distance to a set of sequences
of length O(n) requires a query complexity of Ω( n

log n ).

Theorem 32 shows a lower bound on the exact recovery problem for DTW queries, which
is given by an information-theoretic argument, referring back to the proof of Theorem 19.

Before diving into the exact recovery problem, we first introduce the concept of matching
for the DTW distance. Given input sequence s and query sequence q, if we regard the
characters in s and q as two sets of vertices, a matching M between s and q is a bipartite
graph where each vertex has degree ≥ 1 and there do not exist “crossing” edges, i.e., ∄i < k

and j > l such that the edges (s[i], q[j]) and (s[k], q[l]) both exist. Fig (a) and Fig (b) in
Fig 1 are two examples of matchings. The weight of an edge (s[i], q[j]) in the matching is
∥s[i] − q[j]∥, and the cost of a matching is defined to be the sum of the weights of all edges
in the matching. The DTW distance between sequences corresponds to the smallest cost
of a matching between them. For the formal definitions of Monotonic Sequence, Matching,
DTW Matching, and Isomorphic Matching, please refer to the full version of our paper.

We show that, if we augment the ability of our oracles by introducing extra characters,
we can solve the DTW distance oracle recovery problem with optimal query complexity up
to polylogarithmic factors.

5.3.1 With O(1) Extra Characters
▶ Theorem 33. For a binary alphabet {0, 1} and an input sequence s := {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n2) query
sequences Q and the values dDT W (s, q) to each query sequence q ∈ Q, where the query
sequences are allowed to use only one extra character.

For the proof of Theorem 33, please refer to the full version of the paper.

▶ Theorem 34. For a binary alphabet {0, 1} and an input sequence s := {0, 1}ℓ where
0 ≤ ℓ ≤ n, there exists an algorithm to recover the input sequence s, given O(n) query
sequences Q of length ≤ n and the values dDT W (s, q) to each query sequence q ∈ Q, where
the query sequences are allowed to use only O(1) extra characters.

Proof sketch. We would like to construct a query set of size O(n) that can recover the input
sequence using a DTW distance oracle. A natural idea is to retrieve information about the
input sequence by differentiating (i.e., computing the difference between) the query results
of neighbouring queries (i.e., queries only differing by 1 character). To achieve this, we
construct a query set satisfying the following three properties:



Z. Hu, X. Li, D. P. Woodruff, H. Zhang, and S. Zhang 73:15

Figure 1 (a) Illustration of input-uniqueness and 0/1-uniqueness; (b) Illustration of isomorphism
and differentiation, compared to Fig (a); (c) Illustration of shifting operation.

1) Isomorphism: The matchings corresponding to neighboring queries should be isomorphic.
Fig (a) and (b) in Fig 1 is an example of an isomorphism, where only one character of the
input sequence is changed, while the structure of both optimal matchings remains identical.
With this property, we know that the difference between the query results of neighboring
queries only reflects the effects of the different characters in neighboring queries. This
property is the essence of guaranteeing the correctness of differentiation.

2) Input-uniqueness: Each character in the query sequence should be matched to exactly
1 character in the input sequence. With this property, we can use differentiation to get
the information of a single character in the input sequence with a pair of neighboring
queries. Note that if the differing character in the neighboring queries is matched to multiple
characters in the input sequence, the difference in the query results can only reflect the
sum of the costs over these characters, which makes exact recovery hard. Take Fig (a)
and Fig (b) in Fig 1 as an example. Input-uniqueness is satisfied for both Fig (a) and Fig
(b), since all characters in the query sequences of both figures have degree 1. Since Fig
(a) has cost 3(1 − a) + 2a + b while Fig (b) has cost 2(1 − a) + 2a + (1 − b) + b, we know
that Cost(Fig(a)) − Cost(Fig(b)) = b − a. By differentiation, we can infer that s[4] = 1;
otherwise, if s[4] = 0, we would have Cost(Fig(a)) − Cost(Fig(b)) = (a − 0) − (b − 0) = a − b.

Combining properties 1) and 2), we note that each character in the input sequence can
match to 1 or more characters in the query sequence, so we can obtain an expansion of
the input sequence. Based on the example, Fig (a) and Fig (b) in Fig 1, we can obtain an
expansion, 110010, of the input sequence. We can then infer that the input sequence is of
the form 1x0y10, where x, y ∈ [1, 2]. To recover the exact input sequence, we require more
information given by the following third property.

3) 0/1-uniqueness: In an optimal matching w.r.t. our constructed queries, either all 0’s
or all 1’s in the input sequence have degree 1. Using this property, we can locate the exact
position of either all 0’s or all 1’s in the input sequence, and exactly recover the input
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sequence by combining the two cases. In example Fig 1, 1-uniqueness is satisfied in Fig (a)
and Fig (b), while 0-uniqueness is not, since s[3] in both figures has degree 2. According to
1-uniqueness, we can reduce the form of the input sequence from 1x0y10 to 110y10. Similarly,
we can construct another set of queries that satisfies 0-uniqueness to locate the positions of
0’s in the input sequence, which determines y in this example.

Sequence Monotonicity → Input-uniqueness. We observe that property 2) can be obtained
from a monotonic design of the query sequences.

▶ Lemma 35. Given a monotonic sequence r = r1r2...rn where

min
i∈[n]

max{|ri − 0|, |ri − 1|} > max
i,j∈[n]

|ri − rj |, (1)

for any input sequence s with length ℓ ≤ n, given a DTW matching M for (r, s), we have
deg(ri) = 1 for all elements ri in r.

While we defer the formal proof to the full version of this work, the intuition for Lemma 35
is that, with the monotonic property and equation (1) guaranteed in our query construction,
we can ensure that there do not exist characters s[i] ∈ s and r[j] ∈ r where deg(s[i]) > 1
and deg(r[j]) > 1 are satisfied at the same time. Otherwise, for such a pair of s[i] and r[j],
we can always construct a matching with lower cost where one of their degrees is decreased
to 1. Therefore, either all characters in s or all characters in r would have degree 1. Since
len(r) = n ≥ len(s), we know that deg(ri) = 1 for all characters ri in r. Fig (a) and Fig (b)
in Fig 1 satisfy sequence monotonicity since the query sequences in both figures are monotonic
sequences of length n and mini∈[n] max{|qi − 0|, |qi − 1|} = 3

5 > ( 2
5 − 1

3 ) = maxi,j∈[n] |qi − qj |.

Sequence 0/1-preference → 0/1-uniqueness. We observe that property 3) can be guaran-
teed by the 0/1-preferred design of the query sequences. If all characters in the query sequence
are less than (or greater than) 1

2 , then we can guarantee 1-uniqueness (or 0-uniqueness) of the
input sequence. Intuitively, this would hold because, if all characters in the query sequence
are less than (or greater than) 1

2 , matching them to 0’s (or 1’s) in the input sequence yields
lower cost than matching to 1’s (or 0’s). Fig (a) and Fig (b) in Fig 1 satisfies 0-preference,
since all characters in query sequences (either a = 1

3 or b = 2
5 ) are less than 1

2 .

Query Construction. We now propose the following design of the query sequence. We
first need a single 0 query and a single 1 query to obtain the number of 1’s and 0’s in the
input sequence. Let a, b be two fractional characters that satisfy 0 < b − a < a < b < 1

2
and the denominators of a, b are co-prime. Without loss of generality, we can assume a = 1

3
and b = 2

5 . We will use a, b as the extra characters to construct the query sequences. In
particular, the rest of the query sequences (other than the 0 query and the 1 query) consist of
queries Q in the form of q(i) = an−ibi, where i = 1, . . . , n. This query construction satisfies
sequence monotonicity and sequence 0/1-preference properties. Now we need to prove it also
satisfies isomorphism.

Notation clarification. For the rest of the proof, we will use q(i) to denote the i-th query in
the query set Q and q

(i)
j the j-th character in q(i).

▶ Lemma 36. For any input sequence s, there exists an isomorphic set of matchings M,
where Mi ∈ M is optimal for query q(i) ∈ Q.
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Lemma 36 guarantees the isomorphism property of the constructed query set Q. Here we
construct an isomorphic set of matchings Mi ∈ M such that only the first 0 in the input
sequence has degree greater than 1, while all other characters in the matching are of degree 1.
Fig (a) and Fig (b) in Fig 1 are instances of M1 and M2, where the matchings in both figures
are isomorphic to each other. Note that in this construction, the structure of the matchings
is only determined by the position of the first 0 in the input sequence and the length of
both sequences. Since all query sequences in Q have the same length, an isomorphism of
constructed matchings is naturally guaranteed.

To prove the optimality of the Mi, we introduce the notion of a “shifting” operation.
Consider two 0’s in the input sequence. If any character between them has degree 1 and the
first 0 has degree greater than 1, by running the shifting operation we decrease the degree of
the first 0 by 1 and increase the degree of the last 0 by 1, while preserving the degree of all
other characters. Fig (c) in Fig 1 illustrates an example of the shifting operation.

▷ Claim 37. For our constructed query set Q, a shifting operation would not reduce the
total cost of the matching.

▷ Claim 38. Given input sequence s, query q(i) ∈ Q and any optimal matching M∗
i between

s and q(i), we can obtain M∗
i by applying a series of shifting operations to Mi.

Combining the above two claims, we can show that the Mi are always optimal, which
proves Lemma 36. So far, the constructed query set satisfies three properties – isomorphism,
input-uniqueness, and 0/1-uniqueness. Further details of our algorithm to recover the input
sequence are given in the full version. For an algorithmic sketch, see Algorithm 1. ◀

6 Recovery Using Fréchet Distance Oracle

Consider two sequences x and y (x ̸= y) defined on the binary alphabet {0, 1}. It is not
possible to distinguish any x and y under Fréchet distance, because the Fréchet distance
between x and y can be 0. To make the problem non-trivial for Fréchet distance, we first
define the concept of equivalent sequences under Fréchet distance.

▶ Definition 39 (Equivalent Sequences under Fréchet Distance). Given two sequences x and
y, we say x and y are equivalent if y is obtained by taking any bit in x and copying this bit
contiguously any number of times. For any pair of equivalent sequences, the Fréchet distance
between them is 0.

▶ Theorem 40. For a binary alphabet {0, 1}, any algorithm to recover an arbitrary input
sequence s ∈ {0, 1}i, where 0 ≤ i ≤ n, by querying its Fréchet distance to a non-adaptive set
of sequences, requires a query complexity of Ω(n).

Proof. For each length 1 ≤ i ≤ n, there exists two non-equivalent sequences under Fréchet
distance, which are 010101 . . . and 101010 . . ., yielding 2n mutually non-equivalent sequences.
As the Fréchet distance oracle returns 0 when the input sequence and the query sequence
are equivalent and 1 otherwise, we would need at least 2n − 1 queries to exactly recover the
input sequence. If the number of queries is less than 2n − 1, we can always select 2 sequences
from the 2n mutually non-equivalent sequences which are not covered by the queries, and
these two sequences cannot be distinguished by the query sequences. This yields an Ω(n)
lower bound on the query complexity. ◀

▶ Theorem 41 (Extra Characters Are Not Helpful). Given two sequences s and s′, if dF (s, s′) =
0, then any query q with extra characters cannot distinguish s and s′.
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Algorithm 1 Exact Recovery via Non-adaptive DTW Queries (with O(1) Extra Chars).

Input: Non-adaptive query sequences Q = {q(1), q(2), . . . , q(n+2)}, where q(n+1) = 0,
q(n+2) = 1 and the rest of the queries follow our construction; The DTW
query results R = {d1, d2, . . . , dn+2}.

Output: The sequence s to be recovered.
1 Function RecoveryDTW(Q, R):
2 if dn+1 = 0 then
3 return s := 0dn+2

4 if dn+2 = 0 then
5 return s := 1dn+1

6 positions:= [], coef_1 := 0
7 for i ∈ [1, n] do ▷ Corresponding queries q(i) = an−ibi

8 coef := di ∗ 15 ∗ 2 mod 5
9 if (coef - coef_1 + 5) mod 5 = 2 then

10 positions.append(0)
11 else if (coef - coef_1 + 5) mod 5 = 3 then
12 positions.append(1)
13 coef_1 := coef
14 positions.reverse()
15 sequence := [], i := 0
16 n_0 := dn+2, n_1 := dn+1
17 while positions[i] = 1 do
18 sequence.append(1)
19 i += 1
20 i += n − n_0 − n_1
21 while i < n do
22 sequence.append(positions[i])
23 i += 1
24 return s := sequence

Proof. We show that, given an optimal matching between s and any query q, we can construct
a matching between s′ and q with the same cost, and vice versa. In this way, we know that
dF (s, q) ≥ dF (s′, q) and dF (s′, q) ≥ dF (s, q), so dF (s, q) = dF (s′, q) and q cannot distinguish
s and s′. Since dF (s, s′) = 0, s and s′ have the same condensed expression. Suppose s and s′

have k runs. Let qsi denote the substring in q which is matched to the i-th run of s, where
i ∈ [k]. We can always match all qsi’s to the i-th run of s′ instead, and obtain a matching
between s′ and q with a cost of dF (s, q). This finishes the proof of Theorem 41. ◀

▶ Theorem 42. For a binary alphabet {0, 1} and two input sequences s, s′ ∈ {0, 1}i where
0 ≤ i ≤ n and s and s′ are non-equivalent sequences under Fréchet distance, there exists an
algorithm to distinguish the input sequences s and s′, given O(n) query sequences Q and the
Fréchet distance of s and s′ to each query sequence q ∈ Q.

Proof. We first show that for each length 0 ≤ i ≤ n, there are only two non-equivalent
sequences under Fréchet distance, which are 010101... and 101010... sequences, viz., we can
identify two non-equivalent sequences by specifying the sequence length i and the starting bit.
Therefore, for a maximum length n, there are only 2n mutually non-equivalent sequences.
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Given any two different sequences from this 2n-sized collection of non-equivalent sequences
under Fréchet distance, we can use O(n) query sequences to distinguish them. That is,
we can utilize the exact set of 2n non-equivalent sequences as the query sequences. If the
query sequence p is exactly the input sequence q, the Fréchet distance between p and q is
dF (p, q) = 0. If the query sequence p is not equivalent to the input sequence q, then the
Fréchet distance between p and q is dF (p, q) = 1 because it is impossible to skip over a bit
without paying cost 1. Therefore, 2n query sequences suffice to distinguish any two sequences
from the non-equivalent sequence set and this finishes the proof. ◀

This theorem shows that, if an input is in the collection of non-equivalent sequences
under Fréchet distance, we can use O(n) queries to exactly recover this sequence given the
query results under the Fréchet distance.

7 Related Work

A distance embedding [20] embeds sequences from the original distance metric space to other
distance measures (usually lp norms), such that the distance measurements in the original
space can be preserved up to a factor of D, namely the distortion rate. The sequence distance
embedding problem is related to our problem in the sense that, in our problem, we intend to
recover the input sequence from a list of query results that are in the lp space, which can be
regarded as finding a special distance embedding. Existing works on the sequence distance
embedding problem mainly focus on constructing such an embedding which can have a close
approximation (viz., low distortion rate) and reduce the computational complexity (i.e.,
cost) on the new distance space. [5] shows a lower bound of 3/2 on the distortion rate of
embedding edit distance into ℓp norm spaces. An improvement of (log n) 1

2 −o(1) on this lower
bound [25] has been further simplified and improved into Ω(log n) by [27].

Distance embeddings can be used to estimate the distance on the complex metric space
because the evaluation and computations on the new (simpler metric) space can be significantly
faster [20]. Under the asymmetric query model (when estimating the edit distance between
x and y, the algorithm has unrestricted power accessing x but limited power accessing y), [6]
proposes a (log n)O(1/ϵ) approximation algorithm that runs in n1+ϵ time. [15] considers the
alignment problem when estimating the edit distance (finding the sequence of edits between
the estimated sequences) and presents an alignment with (log n)O(1/ϵ2) approximation in
time Õ(n1+ϵ). The sequence distance embedding problem has been investigated on other
distance metrics as well, for example, the block edit distance [20] and the Ulam distance
[16]. Existing work also shows embeddings from edit distance to the Hamming space [8, 14].
However, to the best of our knowledge, there is no prior work considering the embedding
problem of the DTW distance and the exact recovery problem based on distance queries.

8 Open Problems and Research Directions

We initiate the study of an exact recovery problem of sequences using queries to a non-
decomposable distance oracle. We show recovery algorithms for edit distance, DTW distance,
and Fréchet distance, as well as a general adaptive algorithm for a wide class of distance
oracles. We envision the following directions for future work.

First, for the edit distance, there is still a quadratic gap between the non-adaptive query
complexity upper and lower bounds without extra characters. Closing this gap may require
a deeper understanding about the properties of edit distance.
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Second, for the DTW distance, it remains unclear whether 1 extra character suffices for
an O(n) non-adaptive upper bound, or we can have an Ω(n2) non-adaptive lower bound with
1 extra character (our proof uses 2 extra characters).

Lastly, it would be interesting to consider the exact sequence recovery problem using the
properties of specific distance metrics. For example, the Edit distance with Real Penalty
(ERP) distance [17] which supports local time shifting in time series by the marriage of the
ℓ1 norm and edit distance, would be of interest. One can also consider other variants of our
problem in terms of adaptive queries or approximate recovery in the presence of noise.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 59–78. IEEE, 2015.

2 Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen,
and Kurt Mehlhorn. The query complexity of a permutation-based variant of Mastermind.
Discrete Applied Mathematics, 260:28–50, 2019.

3 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449,
2014.

4 M Aldridge, O Johnson, and J Scarlett. Group testing: An information theory perspective.
Foundations and Trends in Communications and Information Theory, 15(3-4):196–392, 2019.

5 A Andoni, M Deza, A Gupta, P Indyk, and S Raskhodnikova. Lower bounds for embedding edit
distance into normed spaces. In Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 523–526, 2003.

6 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 377–386. IEEE, 2010.

7 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In European symposium on algorithms, pages 52–63. Springer,
2006.

8 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 51–60. IEEE, 2016.

9 Vladimir Braverman, Moses Charikar, William Kuszmaul, David P Woodruff, and Lin F Yang.
The one-way communication complexity of dynamic time warping distance. arXiv preprint,
2019. arXiv:1903.03520.

10 Nader H Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In
COLT, volume 2009, page 82, 2009.

11 Maike Buchin, Anne Driemel, Koen van Greevenbroek, Ioannis Psarros, and Dennis Rohde.
Approximating length-restricted means under dynamic time warping. arXiv preprint, 2021.
arXiv:2112.00408.

12 Xingyu Cai, Tingyang Xu, Jinfeng Yi, Junzhou Huang, and Sanguthevar Rajasekaran.
DTWNet: a dynamic time warping network. Advances in neural information processing
systems, 32, 2019.

13 David G Cantor and WH Mills. Determination of a subset from certain combinatorial properties.
Canadian Journal of Mathematics, 18:42–48, 1966.

14 Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for
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A Coordinate Descent Algorithm Instantiation

Now we briefly discuss how we apply our Coordinate Descent algorithm to all three distances
we consider in this paper by justifying the two conditions hold.

Edit distance. For condition 2, we know that ∀q, q′, dist(q, q′) ≤ n since the maximum
length of q and q′ is n. For condition 1, in each iteration, we consider a set Q that contains all
sequences that can be transformed from q′ by inserting, deleting or substituting one character
in q′ (edit operations). Note that |Q| cannot exceed (n + 1) + n + n = 3n + 1. We claim that
there exists a q′′ in Q such that dist(q, q′) > dist(q, q′′). Let dist(q′, q) = d. By the definition
of edit distance, there exists a chain of edit operations of length d that transforms q′ to q,
resulting in a list of intermediate sequences q1, . . . , qd−1. Note that dist(q′, q) > dist(q1, q),
otherwise dist(q1, q) ≥ d. However, the chain implies we can transform q1 to q in d − 1
edit operations, which leads to a contradiction. Since q1 ∈ Q, we can find q1 satisfying the
condition in 3n + 1 searches. Therefore, the algorithm is guaranteed to recover the input in
O(n2) steps.

DTW distance. For DTW distance, condition 2 holds since ∀q, q′, dist(q, q′) ≤ n. For
condition 1, consider the #runs(x) in q′ and q. If #runs(x) of q′ < q, then either adding
an (arbitrary length) run to the start or the end of q′ will decrease the DTW distance from q.
On the other hand, if #runs(x) of q′ > q, then either deleting a run from the start or the
end of q′ will decrease the DTW distance from q. If #runs(x) of q′ = q and dist(q′, q) ̸= 0,
we can still decrease the distance from q by either adding/deleting a run to the start/end of
the sequence. Therefore, the algorithm is guaranteed to recover the input in O(n) steps.

Fréchet distance. Condition 2 holds since ∀q, q′, dist(q, q′) ≤ 1. For condition 1, enumerat-
ing 2n non-equivalent sequences, (i.e., 010101... and 101010...) guarantees finding q′′ such
that dist(q, q′) > dist(q, q′′) = 0. Therefore, the algorithm terminates in O(n) steps.
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