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Abstract
We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon
general-sum stochastic games. We focus on the problem of computing NE in such stochastic games
when each player is restricted to choosing a stationary policy and rewards are discounted. First, we
prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we
consider turn-based specializations of such games where at each state there is at most a single player
that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we
show that under further structural assumptions on the rewards computing NE in such turn-based
games is possible in polynomial time. Towards achieving these results we establish structural facts
about stochastic games of broader utility, including monotonicity of utilities under single-state
single-action changes and reductions to settings where each player controls a single state.
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1 Introduction

Stochastic games [24, 4] are a fundamental mathematical model for dynamic, non-cooperative
interaction between multiple players. Multi-player dynamic interaction arises naturally in a
diverse set of contexts including natural resource competition [42], monetary interaction in
markets [38], packet routing [1], and computer games [64, 63]. Such games have also been of
increased study in reinforcement learning (RL); there have been a number of successes in
transferring results from single-player RL to multiplayer RL under zero-sum and cooperative
interaction, but comparatively less success for general-sum interaction (see e.g. [72] for a
survey).
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We consider the broad class of general-sum, simultaneous, tabular, n-player stochastic
games [61, 27, 67], which we henceforth refer to as SimSGs.1 SimSGs are parameterized by
a (finite) state space S and disjoint (finite) action sets Ai,s for each player i and state s.
The players choose a joint strategy π, consisting of distributions πt

i,s over the actions Ai,s

for each player i ∈ [n] at each state s ∈ S at time-step t ≥ 0. The game then proceeds in
time-steps, where in each time-step t ≥ 0, the game is at a state st ∈ S and each player
i ∈ [n] samples independently from Ai,st according to πt

i,st . The set of actions at chosen
at time-step t then yields an immediate reward ri,s,at to each player i, and causes the next
state st+1 to be sampled from a distribution ps,at . Each player i aims to maximize her
own long-term value as a function of the rewards they receive, i.e. ri,s,at . For any fixed
strategy the states in a SimSG evolve as a Markov chain2 and the single-player specialization
of SimSGs, i.e. when n = 1, is a Markov decision processes (MDP) [5, 57].

Our focus in this paper is on computing (approximate) Nash equilibrium in the multiplayer
general-sum setting of SimSGs. The term general-sum emphasizes that we do not impose
any shared structure on the immediate reward functions across players (in contrast to the
special case of zero-sum games where n = 2 and r2 = −r1). A Nash equilibrium (NE) [51] is
defined as a joint strategy π such that no player can gain in reward by deviating (keeping
the other players’ strategies fixed). NE is a solution concept of fundamental interest and
importance in both static [50] and dynamic games [24, 4]. While NE are known to always
exist in SimSG [61, 27, 67], they are challenging to compute efficiently; current provably
efficient algorithms from computing (approximate) NE for SimSGs make strong assumptions
on the rewards [33, 43].

One setting for which the complexity of computing general-sum NE is relatively well-
understood is the finite-horizon model, where all players play up to a horizon of finite and
known length H and wish to optimize their total reward. Even with just two players, and a
single state (or multiple states but a horizon length H = 1), the problem of NE computation
in SimSG is PPAD-hard as it generalizes computing NE for a two-player normal-form game
which is known to be PPAD-complete [9, 16]. On the other hand, by leveraging stochastic
dynamic programming techniques [24], one can show that the complexity of NE computation
in finite-horizon SimSG and normal-form games is polynomial-time equivalent: in particular,
NE-computation remains PPAD-complete. This dynamic programming technique is also
broadly applicable to solution concepts that are comparatively tractable, such as correlated
equilibrium (CE) [54]. Exploiting this property, recent work [34, 65, 46] has shown that
simple decentralized RL algorithms can provably learn and converge to the set of CE’s in a
finite-horizon SimSG.

The central goal of this work is to broaden our understanding of the complexity of SimSGs.
We ask, “how brittle is the property of PPAD-completeness of finite-horizon SimSGs?”,
specifically to:

Infinite time horizon: what if players optimize rewards over an infinite time horizon?
Turn-based games: what if each state is controlled only by a single player?
Localized rewards: what if rewards are only received for a player at states they control?

1 See Section 2 for the more formal definition and description of our notational conventions.
2 This Markov structure is commonly assumed across the stochastic games literature, particularly when

stationary strategies are considered [61, 24, 12] and some recent literature [3, 34, 65] refers to SimSGs as
Markov games. There are studied generalizations of SimSGs that allow non-stationary or non-Markovian
dynamics [4], but are outside the scope of this paper.
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In this paper we systematically address these questions and provide theoretical foundations
for understanding the complexity of infinite-horizon stochastic games. Our key results include
complexity-class characterizations, algorithms, equivalences and structural results regarding
such games. For a brief summary of our main complexity characterizations, see Table 1.

Infinite time horizon. First, we consider infinite-horizon SimSGs in which each player seeks
to maximize rewards over an infinite time horizon while following a stationary strategy. A
stationary strategy is one in which action distributions are independent of the time-step
(i.e. πt1

i,s = πt2
i,s for all i ∈ [n], s ∈ S, and t1, t2 ≥ 0). We focus on the discounted-reward

model, and defer discussion of the alternative average-reward model to Appendix C in full
version. (The single-player version of such games is known as a discounted Markov decision
process (DMDP) and has been the subject of extensive study in optimization [70], operations
research [57], and machine learning [66].) Stationary strategies are especially attractive to
study owing to their succinctness in representation compared to non-stationary strategies
and the fact that stationary policies (the 1-player analog of strategies) can attain the optimal
value in single-player DMDPs [5, 57].

Despite the fact that stationary NE are always known to exist in infinite-horizon
SimSGs [27, 67], existence does not appear to directly follow from the straightforward
proof of existence in finite-horizon SimSG. In particular, the dynamic programming technique
for finite-horizon SimSGs breaks down for infinite-horizon SimSGs [73] and does not directly
imply membership in PPAD. Nevertheless, as described in Section 3.2, we show that the
stationary NE-computation problem for SimSG remains in PPAD. To prove this result we
establish a number of key properties of discounted SimSGs (and, thereby, an alternative
NE existence proof) that are crucial for several of the results in this paper and may be
independently useful for future SimSG algorithm design (see Section 3.1).

Turn-based games. We then consider turn-based variants of SimSGs, which we henceforth
refer to as TBSG. Formally, TBSGs are the specialization of SimSGs where for each state
there is at most one-player that has a non-trivial set of distinct actions to choose from.
TBSGs are common in the literature and encompass the popular instantiations of game-play
for which large-scale RL has yielded empirical success [64, 63]. Additionally, they have been
extensively studied in the case of two players and zero-sum rewards [61, 12, 23, 31, 62].

Whereas it was natural to suspect that discounted SimSGs would be PPAD-complete, the
computational complexity of computing NE for TBSGs seems less clear. The trivial proof of
PPAD-hardness for SimSGs breaks down even for the case of multiplayer TBSG – specializing
to a single-state game reduces the problem to trivial independent reward maximization
by each player, rather than a simultaneous normal-form game. More generally, TBSGs
seem to have more special structure than SimSGs owing to the restriction of a single player
controlling each state. As a quick illustration of this structure, note that non-stationary
NE for general-sum, finite-horizon TBSGs can be computed in polynomial time by a careful
application of the multi-agent dynamic programming technique. Further, in Section 7.1 of
full version, we extend this technique to show that non-stationary NE for TBSGs can be
computed in polynomial time for a polynomially bounded discount factor.

Despite this seemingly special structure of TBSGs, one of the main contributions of our
work (described in Section 3.3) is to show that computing a multiplayer stationary NE for
TBSG is PPAD-hard even for a constant discount factor γ ∈ (0, 1). This shows a surprising
and non-standard divergence between the non-stationary and stationary solution concepts
in infinite-horizon stochastic games. Moreover, it even implies the hardness of stationary

ITCS 2023
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coarse-correlated equilibrium (CCE) computation in SimSGs (owing to a stationary NE in
TBSGs being a special case), which is a relaxed notation of equilibrium that allows for more
computationally-efficient methods in two-player normal-form games (in contrast to SimSGs).
Our hardness results hold even for TBSGs for which each player controls a different state,
and each player receives a non-zero reward (allowed to be either positive or negative) at at
most 4 states, including her own.

Localized rewards. Finally, with the hardness of discounted general-sum SimSGs and TBSGs
established, we ask “under what further conditions on reward functions are there polynomial-
time algorithms for TBSGs?” As described in Section 3.4, we show that further localizing
the reward structure such that each player receives a reward of the same sign only at a single
state which she controls changes the complexity picture and leads to a polynomial-time
algorithm. We show that for these specially structured TBSGs, a pure NE always exists
and is polynomial-time computable via approximate best-response dynamics (also called
strategy iteration in the stochastic games literature [31]). These results are derived via a
connection to potential games [49] modulo a monotonic transformation of the utilities. While
the connection to potential game theory yields approximate NE, we also design a more
combinatorial, graph-theoretic algorithm that computes exact NE in polynomial-time if,
additionally, the transitions in TBSG are deterministic.

Summary and additional implications. In summary, we show that (a) stationary NE
computation for infinite-horizon SimSG′s is in PPAD, (b) stationary NE computation for
infinite-horizon TBSGs is PPAD-hard, and (c) stationary pure NE computation for infinite-
horizon TBSGs when each player receives a consistently-signed reward at one controlled state
is polynomial-time solvable.

Beyond shedding light on the complexity of infinite horizon general-sum stochastic games,
our work yields several insights and implications of additional interest. On the one hand, our
hardness result for stationary NE in infinite-horizon TBSG implies the hardness of slightly
more complex solution concepts such as stationary coarse-correlated equilibrium (CCE)
in SimSG (as the former is a special case of the latter). On the other hand, our PPAD
membership result for SimSG (which includes TBSG as a special case) is interesting as in
SimSGs the utility that a player receives is a non-convex function of her actions, and general-
sum non-convex games lie in a complexity class suspected to be harder than PPAD [60];
indeed, even the zero-sum case is PPAD-hard [18]. Further, many of the results in this paper
crucially utilize special structure that we prove (in Lemma 1 of full version) of a monotonic
change with upper and lower-bounded slope (which we refer to as pseudo-linear) on each
player’s value function when she changes her policy at only one state. This observation has
powerful consequences for many of our results and allows us to leverage several algorithmic
techniques that are normally applied only to linear and piecewise-linear utilities. As one
example, it yields a particularly simple existence proof of stationary NE in SimSG compared
to past literature [27, 67]. We hope these results facilitate the further study of infinite-horizon
stochastic games.

Paper Organization. We cover notation and fundamental definitions in Section 2, an
overview of our results and techniques in Section 3, and related work in Section 4. Main
results and technical details are provided in more detail in the full version.
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Table 1 Summary of SimSG complexity characterization. Characterizations are for computing
non-stationary NE in the finite-horizon case, and for computing stationary NE in the infinite-horizon
case.

Setting SimSG TBSG TBSG (localized rewards)

Finite-horizon PPAD Polynomial Polynomial
Infinite-horizon PPAD PPAD Polynomial

2 Preliminaries

Here we introduce notation and basic concepts for SimSGs and TBSGs we use throughout
the paper.

Simultaneous stochastic games (SimSGs). This paper focuses on computing NE of multi-
agent general-sum simultaneous stochastic games (SimSGs) in infinite-horizon settings. Unless
stated otherwise, we consider discounted infinite-horizon SimSGs and denote an instance
by tuple G = (n, S, A, p, r, γ). n denotes the number of players (agents), S denotes a finite
state space, and A denotes the finite set of actions available to the players where for player
i ∈ [n] and s ∈ S the possible actions of player i at states s are Ai,s. We say player i ∈ [n]
controls state s ∈ S if Ai,s ̸= ∅. We use Is = {i ∈ [n]|Ai,s ̸= ∅} ⊆ [n] to denote the players
controlling state s, and As to denote the joint action space of all players controlling state s,
i.e. for any as ∈ As, as = (ai,s)i∈Is

where ai,s ∈ Ai,s. We denote the action space size for
player i by Atot,i :=

∑
s∈S |Ai,s| and the joint action space size by Atot :=

∑
i∈[n] Atot,i. We

let p denote the transition probabilities, where ps,as ∈ ∆S := {x ∈ RS
≥0|
∑

s∈S xs = 1} is
a distribution over states for all s ∈ S and as ∈ As. r denotes the instantaneous rewards,
where ri,s,as with |ri,s,as | ≤ 1 is the reward of player i at state s if the players controlling it
play as ∈ As. γ ∈ (0, 1) denotes a discount factor.

SimSG notation and simplifications. Recall that we use Is = {i ∈ [n]|Ai,s ̸= ∅} ⊆ [n] to
denote the players controlling state s. Additionally, we use Si = {s ∈ S|Ai,s ̸= ∅} ⊆ S to
denote states that are controlled by player i. Without loss of generality, we assume that
for each player i there exists at least one state s ∈ S where Ai,s ̸= ∅ (i.e. |Si| ≥ 1), since
otherwise we can remove the corresponding player i from the game. Also, we assume for
each state s ∈ S there is at least a player i such that Ai,s ̸= ∅ (i.e. |Is| ≥ 1). This is because
for any s ∈ S, if Ai,s = ∅ for all i ∈ [n] and the transition from the state is ps ∈ ∆S , this is
equivalent to setting A1,s = {as} and ps,as

= ps.

SimSG model and objectives. A SimSG proceeds as follows. It starts from time step t = 0
and initial state s0 ∈ S drawn from initial distribution q. In each turn t ≥ 0 the game is
at a state st. At state st, each player i ∈ Ist plays an action at

i ∈ Ai,st . The joint action
at = (at

i)i∈Ist ∈ Ast then yields reward ri,st,at for each player i ∈ [n].The next state st+1 is
then sampled (independently) by pst,at ∈ ∆S . The goal of each player i ∈ [n] is to maximize
their expected infinite-horizon discounted reward, or known as value of the game for player
i, defined as vi = E[

∑
t≥0 γtri,st,at ].

SimSG policies and strategies. Unless stated otherwise, for each player i ∈ [n] we restrict
to considering randomized stationary policies, i.e. πi = (πi,s)s∈Si

where πi,s ∈ ∆Ai,s , and
use πi,s(a) to denote the probability of player i playing action a ∈ Ai,s at state s. We call a

ITCS 2023
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collection of policies for all players, i.e. π = (πi)i∈[n], a strategy. For a strategy π we use π−i

to denote the collection of policies of all players other than player i, i.e. π−i := (πj)j∈[n]\{i};
we do not distinguish between orders of πi,s in the set π when clear from context (e.g. see
definition of NE in (4)). Further, we use Pπ ∈ RS×S and rπ to denote the probability
transition kernel and instantaneous reward, respectively, under strategy π, where

Pπ(s, ·) :=
∑

as∈As

(∏
i∈Is

πi,s(ai,s)
)

ps,as ∈ ∆S and rπ
i (s) :=

∑
as∈As

(∏
i∈Is

πi,s(ai,s)
)

ri,s,as .

(1)

Under strategy π, we define the value function of each player i ∈ [n] at state s ∈ S to be

V π
i (s) := E

∑
t≥0

γtri,st,at |s0 = s, at
j,st ∼ πj,st for all j, t

 = e⊤
s (I − γPπ)−1rπ . (2)

The value of a strategy to player i starting at initial distribution q ∈ ∆S is defined as

vπ,q
i := Eπ

q

∑
t≥0

γtri,st,at

 = E

∑
t≥0

γtri,st,at |s0 ∼ q, at
j,st ∼ πj,st for all j, t

 = ⟨q, Vπ
i ⟩.

(3)

Nash equilibrium (NE) in SimSGs. Given any ϵ ≥ 0, we call a strategy π an ϵ-approximate
Nash Equilibrium (NE) (ϵ-NE) if for each player i ∈ [n]

ui(πi, π−i) ≥ ui(π′
i, π−i) − ϵ, for any π′

i,s ∈ ∆Ai,s . (4)

where ui(π) for all i ∈ [n] is a real value (as a function of π) referred to as utility of
player i under strategy π. For general SimSGs, unless specified otherwise, we let ui(π) :=
ui(πi, π−i) = ⟨q, Vπ

i ⟩, i.e. the value function with initial distribution q = 1
|S|eS . Further,

we call any 0-approximate NE an exact NE and when we refer to a NE we typically mean an
ϵ-NE for inverse-polynomially small ϵ. We use the term approximate NE to refer to an ϵ-NE
for constant ϵ.

Turn-based stochastic games (TBSGs). TBSGs are the class of SimSGs where each state is
controlled by at most one player (i.e. |Is| ≤ 1), or equivalently, the states controlled by each
of the players are disjoint (i.e Si ∩ Sj = ∅ for any i ̸= j, i, j ∈ [n]). Equivalently (by earlier
assumptions), a TBSG is a SimSG with |Is| = 1 for all s ∈ S; accordingly, we use Is = {is} to
denote the single player that is controlling state s in a TBSG. Since S = ∪i∈[n]Si in a TBSG
we denote an instance by G = (n, S = ∪i∈[n]Si, A, p, r, γ). Following SimSG notation, we
have A = (Ai,s)i∈[n],s∈Si

and As = Ai,s if and only if s ∈ Si as well as p = (ps,a)s∈S,as∈As

and r = (ri,s,as
)i∈[n],s∈S,as∈As

. When clear from context, we also use πs := πis,s for all
s ∈ S. Using this notation, the probability transition kernel Pπ ∈ RS×S and instantaneous
reward rπ ∈ RS under strategy π are

Pπ(s, ·) =
∑

as∈As

πis,s(as)ps,as ∈ ∆S and rπ
i (s) =

∑
as∈As

πis,s(as)ri,s,as . (5)
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Game variations. Here we briefly discuss variants of discounted SimSGs we consider.

Number of players: We focus on n-player games and our hardness results use that n

can scale with the problem size. Establishing the complexity of computing general-sum
NE for TBSGs with a constant number of players, e.g. n = 2, remains open.
Number of states each player controls: We use O-SimSG (and O-TBSG) to denote
the class of SimSGs (and TBSGs) where each player only controls one state |Si| = 1 (note
that it is possible that |Is| > 1, for some s ∈ S in an O-SimSG). For simplicity, in O-TBSG
instances we denote the state space by Si = {si} for each i ∈ [n] and thus S = ∪i∈[n]{si}
and let Ai := Asi

= Ai,si
. For O-SimSGs and O-TBSGs, we use υi(π) := V π

i (si) to
denote the value of player i under strategy π with initial distribution esi

. Unless specified
otherwise, we use υ(·) as the utility function in the definition of NE for O-SimSGs and
O-TBSGs; in Appendix B of full version we prove that these two notions of approximate
NE are equivalent up to polynomial factors.
Different types of strategies (and policies). We focus on stationary strategies in
the majority of this paper, but at times we consider non-stationary strategies where the
distribution over actions chosen at each time-step is allowed to depend on t. Further,
we call a policy πi a pure (or deterministic) policy if it maps a state to a single action
for that player, i.e. if πi,s = eai,s

for some ai,s ∈ Ai,s for each s ∈ Si and call a strategy
π = (πi)i∈[n] a pure strategy if all policies πi are pure. Some of the results in paper
restrict to consider pure strategies and we extend the definitions of NE to these cases by
restricting to such strategies in (4).

3 Overview of results and techniques

Here we provide an overview of our main results and techniques for establishing the complexity
of computing stationary NEs in discounted infinite-horizon general-sum SimSGs. First, in
Section 3.1 we cover foundational structural results regarding such SimSGs that we use
throughout the paper. In Section 3.2 we discuss how we show that the problem of computing
stationary NE in such SimSGs is in PPAD. We then consider the TBSG specialization of
this problem and discuss how we show that computing stationary NE in such TBSGs is
PPAD-hard (Section 3.3), but polynomial-time solvable under additional assumptions on
rewards (Section 3.4).

Although we focus on discounted SimSGs and TBSGs in the body of the paper, in Appendix
C of full version we extend our results to the average-reward model where the rewards are
not discounted, but instead amortized over time. We show that results analogous to our
main results hold for under the assumption of bounded mixing times. These extensions are
achieved by building upon tools established in [35] for related discounted and average-reward
MDPs.

3.1 Foundational properties
Here we introduce two types of foundational structure we demonstrate for infinite-horizon
SimSGs, which both our positive and negative complexity characterizations crucially rely on.
These structures use the fact that when fixing the strategies of all but one of the players in a
SimSG, the problem reduces to a single-agent DMDP.

The first property we observe is that when changing the action of a player at any single
state in a SimSG from one distribution to another, the utility for that player changes in a
monotonic manner, with slope that is both upper and lower-bounded. We refer to this type

ITCS 2023
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of change as pseudo-linear. This property is equivalent to showing the following theorem
that the utilities are pseudo-linear in the special class of SimSGs where each player controls
only one state, i.e. O-SimSGs.

▶ Theorem 1 (Pseudo-linear utilities in O-SimSGs, restating Corollary 1 in full version). Consider
any O-SimSG instance G = (n, S, A, P, R, γ) any initial distribution q, and some player
i ∈ [n]. Her utility function ui(πi, π−i) = vπ,q

i , when fixing other players’ strategy π−i, is
pseudo-linear in πi, i.e. for any πi, π′

i ∈ ∆Ai ordered such that ui(πi, π−i) ≤ ui(π′
i, π−i)

and any θ ∈ [0, 1], we have

(1−γ)θ(ui(π′
i, π−i)−ui(π)) ≤ ui(θπ′

i+(1−θ)πi, π−i)−ui(π) ≤ 1
1 − γ

θ(ui(π′
i, π−i)−ui(π)).

(6)

First, to see why O-SimSGs have pseudo-linear utilities, we note that when we consider a
linear combination of policies π′

i and πi for player i and fix the other players’ strategy π−i,
it is equivalent to considering a DMDP in which a single player linearly changes her policy
on a single state s between two actions a and a′. In this case, the difference in transition
matrices is of rank-1 and we can use the Sherman-Morrison formula to exactly characterize
the change in utility as

ui(θπ′
i + (1 − θ)πi, π−i) = ui(πi, π−i) + θ

q⊤Qes ·
[
(rs,a′ − rs,a) + γ(ps,a′ − ps,a)⊤Qrπ

]
1 − γθ(ps,a′ − ps,a)⊤Qes

(7)

where Q :=
(
I − γP(πi,π−i))−1. We then bound the difference in utilities arising from

changing the transitions; we show that (ps,a′ − ps,a)⊤Qes ∈ [−1/(1 − γ), 1] by utilizing
a specific Markov chain interpretation of the utilities. This implies the more fine-grained
property in (6) that the utility function is pseudo-linear with bounded slope.

Theorem 1 describes powerful structure on the utility functions of each player that we
leverage for our membership and hardness results. Although utilities for SimSGs may be
non-linear and non-convex (in fact, even under a single-state policy change, (7) may be either
convex or concave in θ depending on the sign of D and [ui(π′

i, π−i) − ui(π)]) with complex
global correlations, for any fixed player Theorem 1 shows that utilities are not too far from
linear.

This pseudo-linear structure is key to many of our subsequent proofs. For example, the
pseudo-linear property in (6) implies a distinct proof of existence of NE for O-SimSG that
is considerably simpler than the classic existence proofs for SimSGs [27, 67]. We describe
how pseudo-linearity is used in each of our proofs of membership of SimSG (Section 3.2),
hardness of TBSG (Section 3.3) and polynomial-time algorithms for pure NE in special cases
(Section 3.4).

While pseudo-linearity is useful for several of our results, it appears to tie closely with NE
in O-SimSGs3. To leverage the pseudo-linearity property more broadly for SimSGs, we make
the following important structural observation of SimSGs, which implied that computing
an approximate NE of general SimSG (TBSG) instances is polynomial-time reducible to
computing an approximate NE of some corresponding O-SimSG (O-TBSG) instances.

3 Monotonicity structure in stochastic games has been studied previously, and [45] claimed that a version
of this structure holds for all TBSGs, including ones in which one player can control multiple states.
However, it appears that the restriction to O-SimSG or (equivalently) considering the change in actions
only at a single state is key and we prove in Appendix A of full version that without this, monotonicity
may not hold.
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▶ Theorem 2 (Approximate-NE equivalences for SimSGs and O-SimSGs, restating Theorem 6
in full version). There exists a linear-time-computable mapping between the original SimSG
and a linear-time-computable corresponding O-SimSG instance, such that for any ϵ ≥ 0 a
strategy π is an ϵ-approximate mixed NE of the original SimSG if its induced policy π′ is
a ((1 − γ)ϵ/|S|)-approximate mixed NE in the corresponding O-SimSG (Definition 2 in full
version).

To prove Theorem 2, we leverage a key property of the induced single-player MDP for
player i when the other players’ policies π−i are fixed: the policy improvement property of
coordinate-wise (i.e. asynchronous) policy iteration [5, 57]. In general, Theorem 2 implies
that an algorithm applicable to all O-SimSG instances can also be adapted to solve SimSG
instances. This allows us to transfer the benefits of pseudo-linearity in the more specialized
O-SimSG classes to all infinite-horizon SimSGs, despite the absence of monotonicity structure
in the latter.

3.2 Complexity of NE in SimSGs
Here we describe how we leverage our structural results on infinite horizons SimSGs to
show that computing NE of SimSGs is in PPAD and thereby obtain a full complexity
characterization of such games (they are PPAD-complete). Our main complexity result for
SimSGs is Theorem 3.

▶ Theorem 3 (Complexity of NE in SimSG, restating Theorem 7 in full version). The problem
of computing an ϵ-approximate NE for infinite-horizon SimSG class is PPAD-complete for a
polynomially-bounded discount factor 1

1−γ = poly(Atot) and accuracy ϵ = Ω(1/poly(Atot)).

Showing hardness in Theorem 7 is relatively trivial: it follows immediately by considering
γ → 0 and noting that choosing the optimal stationary policy for one step involves computing
a NE for an arbitrary multiplayer normal-form game, which is known to be PPAD-hard [16].

The more interesting component of the proof of Theorem 7 is the proof of PPAD mem-
bership. This proof is provided in Section 6.1 of full paper and leverages the foundational
structure of SimSG discussed in Section 3.1 and additional properties of DMDPs. In particu-
lar, making use of the Brouwer fixed point argument (see, e.g. [14]) that shows the existence
of NE, we construct two different types of Brouwer functions on strategies as below:

fvalue : π → y

such that yi,a(π) = πi(a) + max(ui(ea, π−i) − ui(π), 0)
1 +

∑
a′∈Ai,s

max(ui(ea′ , π−i) − ui(π), 0) for O-SimSG, (8)

fos−Bellman : π → y

such that yi,s,a(π) =
πi,s(a) + max([ri,s,a + γp⊤

s,aVπ
i ] − V π

i (s), 0)
1 +

∑
a′∈Ai,s

max([ri,s,a + γp⊤
s,aVπ

i ] − V π
i (s), 0) for SimSG .

Both of these functions satisfy the property that f(π) = π if and only if π is a NE, and are
reminiscent of the Brouwer functions used in original PPAD-membership arguments that are
tailored to linear utilities [16]. Each function leads to a different PPAD-membership proof
and we include both due to the interesting distinct properties of SimSGs that they utilize.

Our proof based on fvalue uses both the linear-time equivalence between O-SimSG and
SimSG provided in Theorem 2, and the pseudo-linear structure of O-SimSG utilities in The-
orem 1. The most non-trivial step involves showing that approximate Brouwer fixed points
correspond to approximate NE (Lemma 5 of full paper), for which we critically use our
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established property of pseudo-linearity. This proof has two key technical steps: showing the
Brouwer function is L-Lipschitz-continuous utilizing properties of single-player DMDPs [37],
and showing that the approximate fixed points of the Brouwer function f(·) correspond to ap-
proximate NE. We also show that this proof strategy generalizes to show PPAD-membership
of any n-player-k-action game with pseudo-linear utilities (see Theorem 8 in full paper, under
other mild conditions), which we think may be of independent interest.

Our alternative proof based on fos−Bellman builds upon the structural fact that small
Bellman errors suffice to argue about approximation of NE in Equation (18) of Appendix B in
full version. Here the crucial observation is that fixing all other players’ policies, the Bellman
errors are linear in policy-space for a single player. As a consequence we can apply the more
standard analysis [16] to argue that when π is an approximate fixed point of fos−Bellman, the
Bellman update error max([ri,s,a + γps,aV π

i ] − V π
i (s) is close to 0. This in turn maps back

to an approximate NE using the sufficient conditions on Bellman-error for NE (Appendix B
in full paper).

Clarification and contextualization with recent prior work [20]: After initial drafting of
this manuscript, we were pointed to the recent work of [20], which claims to have already
shown the PPAD-membership of general SimSGs. However, we were unable to verify their
proof; in particular, we do not know how to derive the 6-th line from the 5-th line in proving
Case 2 of Lemma 4 in [20] (analogous to our Lemma 5 in the full version of our paper). Like
us, the authors of [20] also use the Brouwer function fvalue (more commonly known as Nash’s
Brouwer function and originally designed for linear utilities); however, unlike us, they do not
establish or use any special pseudo-linear structure on the value functions. In our proof of
Lemma 5 in full paper, this structure is key to establishing PPAD-membership and used for
the most non-trivial part of the proof – that the approximate fixed points of the Brouwer
function fvalue are equivalent to approximate NE.

3.3 Complexity of NE in TBSGs

Here we consider the specialization of infinite-horizon SimSGs to TBSGs. Recall that in a
TBSG, each state is controlled by only one player and, thus, players take turns in controlling
the Markov process. We ask the fundamental question, how hard is it to compute stationary
NE in TBSGs?

Unlike their non-turn-based counterparts, it is no longer clear that this problem is PPAD-
hard: the aforementioned direct encoding of NE of arbitrary two-player normal-form games
no longer applies when |S| = 1 or γ → 0. Moreover, in Sections 7.1 and 7.2 of full paper we
show that approximate NE computation for TBSG is in polynomial-time if: (a) non-stationary
NE are allowed, or (b) the number of states |S| is held to a constant; note that equilibrium
computation for SimSGs remains PPAD-hard even under these simplifications.

Though prior work on general-sum TBSGs is limited, the special case of 2-player zero-sum
TBSGs has been well studied [12, 61, 31, 62] and are known to possess additional structure
beyond SimSGs. For example, [61] showed that a pure NE always exists for zero-sum TBSGs
and [31] showed that NE is computable in strongly polynomial time when the discount
factor is constant. However, this structure does not carry over to the general-sum case and
[73] shows that there are TBSGs with only mixed NE (which hints at possible hardness).
In Section 7.3 of full paper, we prove the following theorem and establish PPAD-hardness of
computing NEs of TBSGs.
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Table 2 Instantaneous rewards of player aux, out, informal: Constant γ is the given problem
discount factor, γL ≤ ϵ2 is tiny.

sin, a1
in sin, a2

in saux, a1
aux

aux 1/2 0 0
out −1/4 −1/4 0

▶ Theorem 4 (Complexity of TBSG NEs, restating Theorem 9 in full version, informal).
Approximate NE-computation in infinite-horizon γ-discounted TBSGs with any γ ∈ [1/2, 1)
is PPAD-complete.

We prove Theorem 9 by reducing the problem of generalized approximate circuit satisfiability
(ϵ-GCircuit, formally defined in Definition 7 in full version) to O-TBSGs; ϵ-GCircuit is known to
be PPAD-hard for even sufficiently small constant ϵ > 0 [59]. This reduction is, at a high-level,
the approach taken in the first proofs of PPAD-hardness of normal-form games [9, 16] as well
as more recent literature (e.g. hardness for public goods games [52]); though it has been
predominantly applied to games with linear or piecewise linear utilities. The key ingredients
of our reduction are the implementation of certain circuit gates, i.e. G= (equal), Gα (set to
constant α), G× (multiply), G+ (sum), G− (subtraction), G> (comparison), G∧ (logic AND),
G∨ (logic OR), G¬ (logic NOT), through O-TBSG game gadgets which carefully encode these
gates in an O-TBSG.

As an illustration, here we show how to implement an approximate equal gate G= between
input and output players (corresponding to input and output states), i.e. pout ∈ [pin −ϵ, pin +ϵ]
at any approximate NE. This gadget includes 3 players (states): in (sin), out (sout) and aux
(saux). Figure 1 illustrates the transitions in the TBSG instance and Table 2 partially specifies
the instantaneous rewards. Here, the reader should think of pin as the probability of player in
choosing action a1

in and pout as the probability of player out choosing action a1
out. Our game

gadgets are crucially multiplayer in that they allow flexible choice of instant rewards for
different players (e.g. in, aux and out).

We consider the case of exact NE as a warmup; in particular, we hope to show that exact
NE necessitates πin(a1

in) = πout(a1
out). Just as in the typically implemented graphical game

gadgets [16, 9], our hope is to enforce this equality constraint through a proof-by-contradiction
argument that goes through two steps. As an illustration of the contradiction argument,
suppose that πin(a1

in) > πout(a1
out). Our optimistic hope would be to choose the rewards and

transitions so that the value function of player aux at his own state under choice of πout, πin
satisfies

V
(ea1

aux
,πin,πout)

aux = γπin(a1
in) and V

(ea2
aux

,πin,πout)
aux = γπout(a1

out). (9)

If (9) were satisfied, aux player would have to take pure strategy a1
aux at exact NE, which

would transit to state sin. As reflected in the reward table (Table 2) this would be a bad
event for player out due to the negative reward she accrues at state sin. Consequently, she
would prefer to take action a1

out as much as possible, i.e. πout(a1
out) ≈ 1, which would lead to

the desired contradiction. (A symmetric contradictory argument would work for the case
πin(a1

in) < πout(a1
out), ensuring that the system balances and necessitates πin = πout at an

exact NE.)
However, creating an equal gadget through O-TBSG is much more intricate than a

corresponding graphical game gadget due to the twin challenges of nonlinearity and common
structure in players’ utilities. For one, the pseudo-linear structure described in Section 3.1 only
ensures approximate linearity up to multiplicative constants; the more fine-grained equality
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Path of length = O( 1
1 − γ

log(1/ϵ))

Cycle of length = 

O( 1
1 − γ

log(1/ϵ))

Figure 1 Illustration of states and transitions for “equal gadget” to implement G=. The transitions
in red encode a cycle or path of length L, where L = ⌈ 4

1−γ
log(1/ϵ)⌉ for constants γ, ϵ.

required in (9) is far more difficult to achieve (and unclear whether possible). Moreover,
unlike the definitional local structure between players in graphical games [40], TBSGs have
significant global structure between players (as players represent states that transit to one
another). In other words the players’ utility functions depend on all of the other players
and not just their immediate neighbors. As a consequence of this global structure, a naive
combination of individual gadgets could sizably change the value functions and break the
local circuit operations.

We work around these two issues by creating long cycles and paths with “dummy states”
for the actions the out player takes such that the only non-zero rewards are collected
outside these dummy states. We show that this elongation of paths simultaneously induces
approximate linearity and localization to neighbors in the O-TBSG instance. When the path
has length L = O( 1

1−γ log( 1
ϵ )), we satisfy (9) in an approximate sense up to tiny poly(ϵ)

errors. Further, this almost-linear structure turns out to be robust to transitions that are
“further away” from sout. This ensures that the out player can then be used as an input for
subsequent gadgets connected in series, and enables a successful combination of the gadgets
without changing the NE conditions at each state.

It remains to translate these ideas from an exact-NE argument to an approximate-NE
argument. For this, the pseudo-linearity property that we established in Section 5.1 of full
version proves to be especially useful. In particular, when πin(a1

in) > πout(a1
out) + ϵ, we can

adapt the bounded “slope” argument in (6) and observe that

V
(e

a1
aux

,πin,πout)
aux − V

(θe
a1

aux
+(1−θ)e

a2
aux

,πin,πout)
aux ≥ (1 − θ)(1 − γ)

[
V

(e
a1

aux
,πin,πout)

aux − V
(e

a2
aux

,πin,πout)
aux

]
≥ (1 − θ)γ(1 − γ)ϵ,

which ensures that θ, i.e. the probability that player aux takes action a1
aux, must be close

enough to 1 at any approximate NE. We use this pseudo-linearity multiple times to formally
relax the exact NE argument under approximation, in order to implement G= gate for
ϵ-GCircuit.

Ultimately, our proof of this theorem sheds further light on the problem’s structure and
shows that hardness is fairly resilient in general-sum stochastic games. Even in the special
case where each player controls a single state and receives non-zero reward at at most 4 states
(or alternatively, all players have non-negative but dense reward structure), the problem is
still PPAD-hard.
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Contextualization with independent concurrent work. In independent and concurrent
work, the authors of [17] were additionally able to prove that the computation of NE of even
2-player TBSGs is PPAD-hard. We note that beyond claims of hardness in TBSGs, each of
[17] and this work contain disjoint results of independent interest. For instance, [17] provides
a polynomial-time algorithm for finding non-stationary Markov CCEs for SimSGs. On the
other hand, this work focuses exclusively on stationary equilibrium concepts. In addition
to hardness of TBSGs, we show the PPAD-membership of general games with pseudo-linear
utilities including SimSGs (see Section 3.2) and provide polynomial-time algorithms for finding
stationary NEs for TBSGs under extra assumptions on the reward structure (see Section 3.4).

3.4 Efficient algorithms for TBSGs under localized rewards
As shown above, the problem of finding an approximate NE for infinite-horizon TBSGs is
PPAD-complete even under a variety of additional structural assumptions. For example we
show that even when each player only controls one state, all transitions are deterministic,
and all players receive non-negative rewards (possibly in many states) computing a NE in a
TBSG is PPAD-hard.

Towards characterizing what features are critical to the hardness of the problem, we
specialize further and ask what happens if we further restrict each player to receive reward
only at the single state that they control. We call this class of games LocReward and consider
the class of fixed-sign LocReward O-TBSG, i.e. ri,si,· ≥ 0 (or ri,si,· ≤ 0) for all i ∈ [n] and
ri,s′,· = 0 for any s′ ̸= si.

The intuitive reason for why this special structure is helpful is that it creates a qualitative
symmetry in the players’ incentives: all of them wish to either reach (in the case of non-
negative rewards) or avoid (in the case of negative rewards) their own controlling state.
Mathematically, we observe that given a strategy π, the utility function has the following
structure

ui(π) = V π
i = e⊤

si
(I − γPπ)−1rπ = Ei(π−i)

det(π) rπi
i (si) where det(π) := det (I − γPπ) > 0

(10)

and Ei(π−i) is the determinant of the (i, i)th minor of the matrix I − γPπ. The last equality
for ui(π) in (10) used the matrix inversion formula and the fact that r

πj

i (sj) = 0 for any
j ̸= i. Consequently, the numerator of ui(π) is separable in πi and π−i and the denominator
is common to all players i ∈ [n]. This implies that, following a logarithmic transformation,
a fixed-sign LocReward O-TBSG game is equivalent to a potential game [49], with potential
function Φ(π) := log(det(π)−1∏

i∈[n] rπi
i (si)). That is, for any i ∈ [n] and πi, π′

i we have
Φ(π′

i, π−i) − Φ(π) = log V
(π′

i.π−i)
i − log V

(πi,π−i)
i .

The potential game structure of LocReward O-TBSG automatically implies the existence of
a pure NE for all fixed-sign LocReward games. Further, it follows [49] that (approximate) best
response dynamics (also known as strategy iteration in the stochastic games literature [31])
provably decrease this potential by a polynomial factor, until it achieves a pure-strategy
approximate NE. This yields a polynomial-time algorithm for computing approximate NE as
stated below.

▶ Theorem 5 (Restating Lemmas 11 and 12 and Propositions 3 and 4 in full version). Consider
a LocReward O-TBSG instance G = (n, S = ∪i∈[n]{si}, A, p, r, γ) where all rewards are
non-negative (or non-positive). Then the game has a pure NE, and given some accuracy ϵ,
approximate best-response dynamics find an ϵ-approximate pure NE in time poly(Atot,

1
1−γ , 1

ϵ ).
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Table 3 Summary of complexity characterization for O-TBSG under various reward assumptions.

Setting (O-TBSG) Localized rewards (LocReward) General rewards

Fixed-sign rewards Polynomial (pure NE) PPAD-complete
Mixed-sign rewards NP-hard (pure NE), open problem (mixed NE) PPAD-complete

We also show that under further assumptions it is possible to compute an exact NE
through a different set of algorithms inspired by graph problems. Specifically, we consider a
special sub-class of fixed-sign LocReward O-TBSG where we impose two additional structural
assumptions: (a) all transitions are deterministic, and (b) all rewards on each player’s own
state are independent of actions. Under these refinements, all players in an non-negative
LocReward instance are incentivized to go through a shortest-cycle to maximize its utility,
while all players in an non-positive LocReward instance are incentivized to go through a cycle
that is as long as possible (or, most ideally follow a path to a cycle that doesn’t return to
the player’s controlled state). Accordingly, we design graph algorithms (Algorithm 5 and
Algorithm 7 in full version) that locally, iteratively find the cycle and path structure that
corresponds to an exact NE. Our results show that best-response dynamics (i.e. strategy
iteration) and graph-based algorithms can work in general-sum TBSGs beyond zero-sum
setting [31].

Finally, note that our positive results really require both of the assumptions of (a)
reward only at a single state (b) rewards of the same sign (see Table 3 for a summary).
From Section 3.3 we already know when relaxing the first condition, finding an approximate
mixed NE is PPAD-hard. The second condition is also important, as relaxing it (i.e. allowing
both positive and negative rewards in the LocReward O-TBSG model) may preclude even the
existence of pure NE [73]. In fact, we show in Section 8.2 of full version that even determining
whether or not a pure NE exists is NP-hard via a reduction to the Hamiltonian path problem
(but whether mixed NE are polynomial-time computable under this modification remains
open). Ultimately, this gives a more complete picture of what transformations change the
problem from being PPAD-complete to being polynomial time solvable.

4 Related work

Here we highlight prior work that is most closely related to our results.

General-sum stochastic game theory. Central questions in stochastic game theory research
involve (a) the existence of equilibria and (b) the convergence and complexity of algorithms
that compute these equilibria. Existence of equilibria is known in significantly more general
formulations of stochastic games than the tabular SimSGs that are studied in our paper
(see, e.g. the classic textbooks [24, 4]). Relevant to our study, the first existence proofs of
general-sum tabular stochastic games appeared in [27, 67]. They are based on Kakutani’s fixed
point theorem, and so non-constructive in that they do not immediately yield an algorithm.
This is a departure from the zero-sum case, where Shapley’s proof of existence [61] is
constructive and directly leverages the convergence of infinite-horizon dynamic-programming.

Indeed, the recent survey paper on multi-agent RL [72] mentions the search for computa-
tionally tractable and provably convergent (to NE) algorithms for SimSG as an open problem.
Algorithms that are known to converge to NE in SimSG require strong assumptions on the
heterogeneous rewards – such as requiring the one-step equilibrium to be unique at each
iteration [33, 29], or requiring the players to satisfy a “friend-or-foe” relationship [43].
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An important negative result in the literature was the shown failure of convergence
of infinite-horizon dynamic-programming algorithms for general-sum SimSGs [73]. More
generally, they uncover a fundamental identifiability issue by showing that more than
one equilibrium value (and, thereby, more than one NE) can realize identical action-value
functions. This identifiability issue suggests that any iterative algorithm that uses action-value
functions in its update (including policy-based methods like policy iteration and two-timescale
actor-critic [41]) will fail to converge for similar reasons.

Since then, alternative algorithms that successfully asymptotically converge to NE have
been developed for general-sum SimSGs based on two-timescale approaches [56] and homotopy
methods [7, 32]. However, these algorithms are intricately coupled across players and states in
a more intricate way and, at the very least, suffer a high complexity per iteration. Finite-time
guarantees for these algorithms do not exist in the literature. A distinct approach that uses
linear programming is also proposed [21], but this algorithm also suffers from exponential
iteration complexity. Algorithms that are used for general-sum SimSG in practice are largely
heuristic and directly minimize the Bellman error of the strategy [55] (which we defined
in Appendix B of full version).

Interestingly, this picture does not significantly change for TBSGs despite their significant
structure over and above SimSGs. The counterexamples of [73] are in fact 2-player, 2-
state, and 2-action-per-state TBSGs. Our PPAD-hardness results for TBSG resolve an open
question that was posed by [73], who asked whether alternative methods (using Q-values
and equilibrium-value functions) could be used to derive stationary NE in TBSG instead.
In particular, we show that the stationary NE is not only difficult to approach via popular
dynamics, but is fundamentally hard.

Very recently, a number of positive results for finite-horizon non-stationary CCE in
SimSGs were provided [65, 34, 46]. These results even allow for independent learning by
players. A natural question is whether an infinite-horizon stationary CCE could be extracted
from these results. Since TBSG NE is a special case of SimSG CCE, our PPAD-hardness
result answers this question in the negative. In general, tools that are designed for computing
and approaching non-stationary equilibria cannot be easily leveraged to compute or approach
stationary equilibria due to the induced nonconvexity in utilities and the failure of infinite-
horizon dynamic programming. Our paper fills this gap and provides a comprehensive
characterization of complexity of computing stationary NE for infinite-horizon multi-player
SimSGs and TBSGs.

A trivial observation is that the problem of exact computation for general-sum stochastic
games is only harder than approximation; in general, exact computation for NE of stochastic
games is outside the scope of this paper and we refer readers to [26] for recent hardness result
following that thread.

The zero-sum case. There is a substantial literature on equilibrium computation, sample
complexity and learning dynamics in the case of zero-sum SimSG and TBSG. For a detailed
overview of advances in learning in zero-sum stochastic games, see the survey paper [72]. In
contrast, our results address the general-sum case. Positive results for zero-sum TBSG, such
as the property of strongly-polynomial-time computation of an exact NE with a constant
discount factor [31], leverage special structure that does not carry over to the general-sum
case. In particular, a pure NE always exists for a zero-sum TBSG owing to the convergence
of Shapley’s value iteration [61]. [73] showed that a pure NE need not exist for general-sum
TBSGs. We further show in Section 8 of full version that pure NE are NP-hard to compute
(at least in part due to their possible lack of existence). On the more positive side, we also
characterize specializations of general-sum TBSGs for which pure NE always exist and are
polynomial-time computable.

ITCS 2023
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It is crucial to note that our results only address the equilibrium computation problem
of general-sum SimSGs and TBSGs with a constant discount factor. When the rewards are
zero-sum this is known to be polynomial-time [61] and additionally strongly polynomial-time
in the case of TBSG [31]. Whether it is possible to compute an (exact or approximate) NE in
even zero-sum TBSGs with an increasing discount factor remains open [2]. This open problem
has important connections to simple stochastic games [12, 23], mean-payoff games [30, 74],
and parity games [22, 69, 36].

Algorithmic game theory for normal-form and market equilibria. The PPAD complexity
class was introduced by [53] to capture the complexity of all total search problems (i.e.
problems for which a solution is known) [47] that are polynomial-time reducible to the
problem of finding at least one unbalanced vertex on a directed graph. [16] first showed that
NE computation for n-player k-action normal-form games lies in PPAD. By definition, the
utilities of normal-form games are always linear in the mixed strategies. This is not the case
for SimSG or TBSG, whose utilities are not even convex in their argument. The membership
of nonconvex general-sum games in PPAD is not obvious. For example, [18] recently showed
PPAD-hardness of even zero-sum constrained nonconvex-nonconcave games. Moreover, the
complexity of all general-sum games satisfying a succinct representation and the property of
polynomial-time evaluation of expected utility (which includes SimSG) is believed to lie in a
strictly harder complexity class than PPAD [60]. General-sum nonlinear game classes that
are known to be in PPAD primarily involve market equilibrium [8, 68, 11, 28] and Bayes-NE
of auctions [25] and make distinct assumptions of either a) separable concave and piecewise
linear (SPLC) assumptions on the utilities or b) constant-elasticity-of-substitution (CES)
utilities [11]. They also utilize in part linearity in sufficient conditions for NE (e.g. Walras’s
law for market equilibrium). These structures, while interesting in their own right, are also
not satisfied by SimSGs or TBSGs. The pseudo-linear property of SimSGs that we uncover
in Section 5.1 of full version is key to showing PPAD-membership. Our subsequent proof
in Section 6.1 in full version is a useful generalization of the traditional proof for linear
utilities [16] to pseudo-linear utilities.

In addition to being in PPAD, general-sum normal-form games were established to be
PPAD-hard by [9, 16]. Since then, PPAD-hardness has been shown for several structured
classes of normal-form games [48, 44, 10, 19, 52] as well as for weaker objectives in normal-
form games such as constant-additive approximation [15, 58, 59] and smoothed-analysis [6].
Our approach to prove PPAD-hardness for TBSG takes inspiration from the approach to prove
PPAD-hardness for n-player graphical games [39, 40] (which was subsequently used to prove
PPAD-hardness for constant-player normal-form games by [16]). In particular we construct
game gadgets to implement real-valued arithmetic circuit operations through TBSG NE. As
summarized in Section 3.3, the details of our TBSG game gadgets are significantly more
intricate than the corresponding graphical game gadgets due to the additional challenges of
global shared structure across players and the nonlinearity of the utilities. These challenges
do not manifest in graphical games as, by definition, they only possess local structure and
satisfy linearity in utilities. Whether TBSGs are directly reducible to graphical games or
bimatrix games remains an intriguing open question.

Relation of TBSG to other game-theoretic paradigms. We conclude our overview of
related work with a brief summarization of solution concepts and paradigms that are partially
related to TBSG’s. First, the class of sequential or extensive-form games is known to lie in
PPAD [71] and is trivially PPAD-hard due to normal-form games being a special case. We
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note that computation of non-stationary equilibria in the finite-horizon SimSG and TBSG
are special cases of these. Second, the solution concept of (coarse) correlated equilibrium
(CCE) is polynomial-time computable, in contrast with NE, even for multiplayer games
with linear utilities [54]. Since TBSG involves a non-trivial action set for only one player at
each state, the solution concepts of NE and CCE all become equivalent for both stationary
and non-stationary equilibria. On the positive side, this may imply the convergence of
recently designed finite-horizon learning dynamics [65, 34, 46] to TBSG NE. On the negative
side, our PPAD-hardness of approximation of stationary NE in TBSG (Section 7.3 of full
version) implies hardness of stationary CCE equilibria in SimSGs. Finally, we contextualize
our NP-hardness results on certain decision problems (i.e. does there exist an equilibrium
with certain properties?) in Section 8.2 of full version. In normal-form games, such decision
problems are known to be NP-hard [13].
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