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Abstract
We study a setting where Bayesian agents with a common prior have private information related to
an event’s outcome and sequentially make public announcements relating to their information. Our
main result shows that when agents’ private information is independent conditioning on the event’s
outcome whenever agents have similar beliefs about the outcome, their information is aggregated.
That is, there is no false consensus.

Our main result has a short proof based on a natural information-theoretic framework. A key
ingredient of the framework is the equivalence between the sign of the “interaction information”
and a super/sub-additive property of the value of people’s information. This provides an intuitive
interpretation and an interesting application of the interaction information, which measures the
amount of information shared by three random variables.

We illustrate the power of this information-theoretic framework by reproving two additional
results within it: 1) that agents quickly agree when announcing (summaries of) beliefs in round-robin
fashion [Aaronson 2005], and 2) results from [Chen et al 2010] on when prediction market agents
should release information to maximize their payment. We also interpret the information-theoretic
framework and the above results in prediction markets by proving that the expected reward of
revealing information is the conditional mutual information of the information revealed.
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1 Introduction

Initially Alice thinks Democrats will win the next presidential election with probability 90%
and Bob thinks Democrats will win with 10%. The players then alternate announcing their
beliefs of the probability the Democrats will win the next presidential election. Alice goes
first and declares, “90%”. Bob, then updates his belief rationally based on some commonly
held information, some private information, and what he can infer from Alice’s declaration
(e.g. to 30%) and announces that, “30%”. Alice then updates her belief and announces it,
and so forth.

Formally, we have the following definition.
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▶ Definition 1 (Agreement Protocol [1]). Alice and Bob share a common prior over the three
random variables W , XA, and XB. Here W denotes the event to be predicted. Variables
XA = xA and XB = xB are Alice’s and Bob’s private information respectively, which can be
from a large set and intricately correlated with each other and W .

The agents alternate announcing their beliefs of W ’s realization.
In round 1, Alice declares her rational belief p1

A = Pr[W |XA = xA]. 1 Then Bob updates
and declares his belief p1

B = Pr[W |XB = xB ,p1
A] rationally conditioning on his private

information and what he can infer from Alice’s declaration.
Similarly, at round i, Alice announces her updated belief

piA = Pr[W |XA = xA,p1
A,p1

B , . . . ,pi−1
A ,pi−1

B ];

and subsequently, Bob updates and announces his belief

piB = Pr[W |XB = xB ,p1
A,p1

B , . . . ,pi−1
A ,pi−1

B ,piA].

This continues indefinitely.

Two fundamental questions arise from this scenario:
1. Will Alice and Bob ever agree or at least approximately agree, and if so will they

(approximately) agree in a reasonable amount of time?
2. If they (approximately) agree, will their agreement (approximately) aggregate their

information? That is, will they (approximately) agree on the posterior belief conditioning
on Alice and Bob’s private information.

Aumann [5] famously showed that rational Alice and Bob will have the same posterior
belief given that they share the same prior and their posteriors are a common knowledge. In
particular, if the agents in the agreement protocol ever stop updating their beliefs, they must
agree. While this may seem counter-intuitive, a quick explanation is that it is not rational
for Alice and Bob to both persistently believe they know more than the the other person.
This result does not fully answer the first question because the common knowledge requires
a certain amount of time to be achieved.

Both Aaronson [1] and Geanakoplos and Polemarchakis [19] answer the first question in
the affirmative. Geanakoplos and Polemarchakis [19] show that the agreement protocol will
terminate after a finite number of messages. Aaronson [1] shows that without unbounded
precision requirement, even when Alice and Bob only exchange a summary of their beliefs,
rational Alice and Bob will take at most O( 1

δϵ2 ) rounds to have (ϵ, δ)-close beliefs,2 regardless
of how much they disagree with each other initially.

Alas, it is known the second question cannot always be answered in the affirmative, and
thus agreement may not fully aggregate information.

▶ Example 2 (False consensus). Say Alice and Bob each privately and independently flip a
fair coin, and the outcome is the XOR of their results. Alice and Bob immediately agree,
both initially proclaiming the probability 0.5. However, this agreement does not aggregate
their information; pooling their information, they could determine the outcome.

1 Here and elsewhere we use the notation Pr[W ] to denote a vector whose w ∈ W th coordinate indicates
Pr[W = w].

2 Pr[|Alice’s expectation − Bob’s expectation| > ϵ] < δ
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Nonetheless, we answer the second question affirmatively for a large class of structures in
a generalized context with more than two agents that we call the Round Robin Protocol.
Notice that in the above false consensus example, Alice’s and Bob’s private information are
independent but once we condition on the outcome they are dependent. Chen et al. [8] call
this independent structure “complements” for reasons that will become clear. They also
propose another independent structure, “substitutes” where both Alice and Bob’s private
information are independent conditioning on the outcome. Chen and Waggoner [10] further
develop these concepts.

We will show that in the “substitutes” setting, i.e., when Alice and Bob’s information are
conditionally independent, (approximate) agreement implies (approximate) aggregation. We
prove the results in the n agents setting which is a natural extension of the Alice and Bob
case. Our proof is direct and short based on information-theoretic tools.

High Level Proof

First, we denote the value of an agent’s information as the mutual information between their
private information and the outcome conditioning on the public information.

The main lemma shows that the “substitute” structure implies the sub-additivity of the
values of people’s private information.

When people approximately agree with each other conditioning on the history, the
remaining marginal value of each individual’s private information is small ≤ ϵ. Under the
“substitutes” structure, the sub-additive property of the main lemma implies the total value
of information that has not been aggregated is most nϵ where n is the number of agents
(n = 2 in the Alice and Bob case). Therefore, (approximate) agreement implies (approximate)
aggregation.

To show the main lemma, a key ingredient is the equivalence between the sign of
the interaction information and the super/sub-additive property of the value of people’s
information. Interaction information is a generalized mutual information which measures
the amount of information shared by three random variables. Unlike mutual information,
interaction information can be positive or negative and thus is difficult to interpret and does
not yet have a broad applications. Our framework provides an intuitive interpretation and
an interesting application of the interaction information.

We additionally illustrate the power of this information theoretic framework by reproving
two additional results within it: 1) that agents quickly agree when announcing beliefs in a
round robin fashion [1]; and 2) results from Chen et al. [8] that to maximize their payment
in a prediction market, when signals are substitutes, agents should reveal them as soon as
possible, and when signals are complements, agents should reveal them as late as possible.
We also interpret our information theoretic framework, our main result, and our quick
convergence reproof in the context of prediction markets by proving that the expected reward
of revealing information is the conditional mutual information of the information revealed.

The reproof that agents quickly agree uses the aggregated information as a potential
function and observes that each round in which their is ϵ disagreement, the aggregated
information must increase by ϵ (or a function of ϵ in the setting when agents only announce a
summary of their beliefs). The result of when agents should reveal information in a prediction
market follows from the sub/super-additivity of mutual information in each of these cases,
which can be established using the sign of the interaction information.

ITCS 2023
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1.1 Related Work

Protocols for consensus are well-studied in many different contexts with both Bayesian and
non-Bayesian agents. Many of these are in a growing field of social learning [20].

In some sense, the Bayesian update rule, also studied in this paper, is the most canonical
and natural update rule. The social learning literature concerning Bayesian agents typically
asks questions about how Bayesian agents, each endowed with some private information,
can aggregate their information using by public declarations. When agents can only take
binary (or a small number of) actions – often conceptualized as which of two products
the agents is adopting – which depend on their beliefs, it is often discovered that agents
can herd whereupon agents collectively have enough information to take more beneficial
actions, but fail to do so [7, 6, 32]. Our setting is different, because agents can act more then
once. However, herding is essentially a false consensus concerning a beneficial action. In our
setting, we ask a similar question about when the protocol can get stuck before aggregating
the information of the agents. Other models in this literature look at agents embedded on
networks [3, 27, 16] , that only generally announce binary information. We do not consider a
network structure as is often done in these works.

As already mentioned, prediction markets have also been analyzed in the context of
Bayesian agents [8, 25, 4]. We reprove one of the results of Chen et al. [8]. Like the result
we reprove, these works study the optimal strategies for agents. Kong and Schoenebeck [25]
show that sometimes even one bit of information can behave both like complements and
substitutes: the agent would like to release part of it immediately, but part of it last.

There is also a plethora of work studying non-Bayesian update rules and when consensus
occurs or fails to occur – especially in the context of networks. In this context it is sometimes
not clear, whether agents are “learning” or just trying to arrive at a consensus (e.g. through
imitation). Typically, we think of agents as learning when there is a ground truth to which
they are attempting to converge. However, because the agents are non-Bayesian, the dynamics
typically do not depend on the existence of a ground truth, and this part of the model is
often not explicitly specified.

In these models, often the agents have a discrete state [30, 28, 18]. In such a case, to
interpret the state as a belief, one has to rule out the granular beliefs of Bayesian reasoning.
When these models have continuous states, especially when the states are the [0, 1] interval,
it is easy to interpret the state as a belief. However, the updates are based on some heuristic
instead of being Bayesian. For example, in the popular Degroot model [12], agents update
their state as a weighted average of their and their neighbors’ signals in the previous round,
and thus imitate their neighbors as opposed to the more delicate Bayesian reasoning. In
particular, this update rule implies correlation neglect [14] – agents do not reason about
how the information of their neighbors is linked. Other models introduce edge weights that
update[13, 18], stubborn agents [34, 17], and other modifications to more realistically model
certain settings both intuitively and empirically [24]. As models become more attuned to
predicting real agents, they also become more ad hoc and less canonical as the proliferation of
models illustrates. Instead, our paper operates in the most canonical model, understanding
that this an imperfect model of human behavior, but nonetheless, can shed light on what
does happen by aiding our understanding in this idealized model.
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Independent Work

Frongillo et al. [15] independently prove that agreement implies aggregation of agents’
information under similar special information structures. However, the analyses are very
different. Frongillo et al. [15] employ a very delicate analysis that allows the results to be
extended to general divergence measures. Our information-theoretic framework’s analysis
provides a direct, short, and intuitive proof.

2 Preliminaries

2.1 Complements and Substitutes
Following [8] we will be interested in two main types of signals.

▶ Definition 3 (Substitutes and Complements [8]). W denotes the event to be predicted.
Substitutes Agents’ private information X1, X2, · · · , Xn are independent conditioning on W .
Complements Agents’ private information X1, X2, · · · , Xn are independent.

2.2 Information Theory Background
This section introduces multiple concepts in information theory that we will use to analyze
the consensus protocol and, later, prediction markets.

▶ Definition 4 (Entropy [31]). We define the entropy of a random variable X as

H(X) := −
∑
x

Pr[X = x] log(Pr[X = x]).

Moreover, we define the conditional entropy of X conditioning on an additional random
variable Z = z as

H(X|Z = z) := −
∑
x

Pr[X = x|Z = z] log(Pr[X = x|Z = z])

We also define the conditional entropy of X conditioning on Z as

H(X|Z) := EZ [H(X|Z = z)].

The entropy measures the amount of uncertainty in a random variable. A useful fact is
that when we condition on an additional random variable, the entropy can only decrease.
This follows immediately from the concavity of log.

▶ Definition 5 (Mutual information [31]). We define the mutual information between two
random variables X and Y as

I(X;Y ) :=
∑
x,y

Pr[X = x, Y = y] log
(

Pr[X = x, Y = y]
Pr[X = x] Pr[Y = y]

)
Moreover, we define the conditional mutual information between random variables X and Y
conditioning on an additional random variable Z = z as

I(X;Y |Z = z) :=
∑
x,y

Pr[X = x, Y = y|Z = z] log
(

Pr[X = x, Y = y|Z = z]
Pr[X = x|Z = z] Pr[Y = y|Z = z]

)
We also define the conditional mutual information between X and Y conditioning on Z as

I(X;Y |Z) := EZI(X;Y |Z = z).

ITCS 2023
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Figure 1 Venn diagram.

▶ Fact 6 (Facts about mutual information [11]).
Symmetry: I(X;Y ) = I(Y ;X)
Relation to entropy: H(X) −H(X|Y ) = I(X;Y ), H(X|Z) −H(X|Y,Z) = I(X;Y |Z)
Non-negativity: I(X;Y ) ≥ 0
Chain rule: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)
Monotonicity: when X and Z are independent conditioning on Y , I(X,Z) ≤ I(X;Y ).

The first two facts follows immediately from the formula. The third follows from the
second, and the fact that conditioning can only decreases entropy. The first three allow one
to understand mutual information as the amount of uncertainly of one random variable that
is eliminated once knowing the other (or vice versa). The chain rule follows from the second
because I(X,Y ;Z) = H(Z) − H(Z|X,Y ) = H(Z) − H(Z|Y ) + H(Z|Y ) − H(Z|X,Y ) =
I(X;Z) + I(Y ;Z|X). The last property follows from the fact that I(X;Y,Z) = I(X;Y )
which can be proved by algebraic calculations and the chain rule which says I(X;Y, Z) =
I(X;Z) + I(X;Y |Z).

The interaction information, sometimes called co-information, is a generalization of the
mutual information for three random variables.

▶ Definition 7 (Interaction information [33]). For three random variables X, Y and Z, we
define the interaction information among them as

I(X;Y ;Z) := I(X;Y ) − I(X;Y |Z)

▶ Fact 8 (Symmetry [33]). I(X;Y ;Z) = I(Y ;X;Z) = I(X;Z;Y )

This can be verified through algebraic manipulations.

Venn Diagram

As shown in figure 1, random variables X,Y, Z can be visualized as sets H(X), H(Y ), H(Z)
where the set’s area represents the uncertainly of the random variable, and:
Mutual Information: operation “;” corresponds to intersection “∩” and is symmetric;
Joint Distribution: operation “,” corresponds to union “∪” and is symmetric;
Conditioning: operation “|” corresponds to difference “|”;
Disjoint Union: operation “+” corresponds to the disjoint untion “⊔”;
For example, H(X,Y ) = H(X) +H(Y |X) because the LHS is H(X) ∪H(Y ). Note that the
interaction information corresponds to the center of the Venn diagram in figure 1. However,
despite the intuition that area is positive, the interaction information is not always positive.



Y. Kong and G. Schoenebeck 81:7

3 Information-theoretic Consensus

We will analyze the Round Robin Protocol, a multi-agent generalization of the Agreement
Protocol, and use the information-theoretic framework to show that 1) consensus is quickly
achieved; and 2) the sub-additivity of “substitutes” guarantees that approximate consensus
implies approximate aggregation. We first introduce the general communication protocol
where agents make declarations in a round robin fashion.

▶ Definition 9 (Round Robin Protocol). Agents A = {1 . . . , n} share a common prior over
the n+ 1 random variables W , X1, X2, ..., Xn. Let W denote the event to be predicted, and
for i ∈ A, let Xi = xi denote agent i’s private message and its realization.

In each round, the agents take turns sequentially announcing additional information. In
round t, agent 1 announces ht1 and then in sequence, for i ∈ {2, . . . , n}, agent i announces
hti. The first round is round 1 and then rounds proceed indefinitely.

Let Ht
i denote the history of declarations before agent i announces hti in round t. Thus

Ht
1 = h1

1, h
1
2, . . . , h

t−1
n and for i = 2 to n, Ht

i = h1
1, h

1
2, . . . , h

t
i−1. Also, it will be convenient

to let Ht = h1
1, h

1
2, . . . , h

1
n, . . . , h

t
1, h

t
2, . . . , h

t
n denote the history of the first t rounds, and to

interpret Ht
n+1 as Ht+1

1 . Note that Ht = Ht+1
1 = Ht

n+1.
Let pti = Pr[W |Xi = xi, H

t
i ] denote the belief of agent i as she announces hti in round t.

Let qti = Pr[W |Ht
i ] denote the belief of an outside observer (who knows the common prior

but does not have any private message) as agent i announces hti in round t.
It is required that hti be well defined based on Xi and Ht

i , that is, it should be defined on
the filtration of information released up to that time.

We state an information-theoretic definition for approximate consensus. With this
definition the analysis of consensus time and false consensus becomes intuitive.

▶ Definition 10 (ϵ-MI consensus). Round t achieves ϵ-MI consensus if for all i,

I(Xi;W |Ht) ≤ ϵ.

We define the amount of information aggregated regarding W at any time as the mutual
information between W and the historical declarations, I(H;W ). The following lemma shows
two intuitive properties: 1) the amount of information aggregated is non-decreasing and 2)
the growth rate depends on the marginal value of the agent’s declaration.

▶ Lemma 11 (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,
Non-decreasing Historical Information any agent’s declaration does not decrease the amount

of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.

Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event condi-
tioning on the history, i.e.,

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

These two properties directly follow from the properties of mutual information. We defer
the detailed proof to Appendix A.

ITCS 2023
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Round t

Standard Consensus Protocol

1

3

24

h  =p  =35%t3 t3

t2 t2h  =p  =40%h  =p  =35%

t1 t1h  =p  =30%=Pr[W=1|X1=x1,Ht-1]1
W=1, D wins

W=0, R wins

History of previous t-1 roundsPrivate belief for W=1

Private information X1=x1

t4t4

Figure 2 Standard Consensus Protocol.

3.1 Two Consensus Protocols
We first introduce the natural Standard Consensus Protocol, which is the Agreement Protocol
when there are two agents. We then introduce a discretized version of the protocol.

▶ Definition 12 (Standard Consensus Protocol). The Standard Consensus Protocol is just the
Round Robin Protocol where hti = pti. That is, each agent announces her belief.

In the above protocol, agents announce their beliefs. However, the number of bits required
for belief announcement may be unbounded. Here we follow Aaronson [1] and both focus on
predicting binary events (occurs: 1; does no occur: 0) and discretize the protocol as follows:
each agent announces a summary of her current belief by comparing it to the belief of a
hypothetical outsider who shares the same prior as the agents, sees all announcements, but
does not possess any private information. The agent announces “high”, if her belief that the
probability the event will happen is far above the outsider’s current belief; “low”, if her belief
is far below the outsider’s current belief; and “medium” otherwise. Note that all the agents
have enough information to compute the outsider belief.

▶ Definition 13 ( ϵ-Discretized Consensus Protocol). Fix ϵ > 0. Let DKL(p, q) = p log p
q +

(1−p) log 1−p
1−q be the KL divergence between a Bernoulli distribution (1−p, p) and a Bernoulli

distribution (1 − q, q). We use pti to denote agent i’s belief for W = 1 as she announces at
round t and qti to denote the hypothetical outsider’s belief for W = 1 at that time. We define
qti > qti so that DKL(qti , qti) = ϵ

4 , and qti < qti so that DKL(qti , qti) = ϵ
4 . Then agent i will

announce a summary of her belief

hti =


high pti > qti

low pti < qti

medium otherwise.

Note that each agent’s output can be mapped to R by mapping high, medium, and low to 1,
0, and -1 respectively.
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Round t

Discretized Consensus Protocol

1Outsider

3

24

h  =mediumt3

t2h  =high

My prediction p   for “D wins” is much higher 
than the outsider’s current prediction q   : p      q>

h  =lowt4

th  =high1
t1

t1 t1 t1

My prediction p   for “D wins” is similar to the 
outsider’s current prediction q   : q      p      q

q     q     q

q  =Pr[W=1|Ht-1]=10%1

t3
t1 t t t1 1 1

Outsider’s belief

Low threshold High threshold

t1

t t t1 1 1

Figure 3 Discretized Consensus Protocol.

This definition has the same conceptual idea as Aaronson [1], while the qti and qti are
carefully designed so that informative private messages lead to informative declarations. We
will state this property formally in the next section.

3.2 Quick Consensus
In this section we show that both the Standard Consensus Protocol and the Discretized
Consensus Protocol quickly reach ϵ-MI consensus. This result will not hold for general
Round-Robin protocols. For example, agents might not announce any useful information.3

Lemma 11 shows that the amount of aggregated information increases and the growth
rate is the marginal value of the agent’s declaration. Disagreement implies a ≥ ϵ marginal
value of the agent’s private information. We will state Lemma 14 which shows that, in a case
like this, where some agent has valuable private information, in the two defined protocols,
this agent makes an informative declaration that will substantially increase the amount of
aggregated information. This almost immediately leads to the quick consensus result because
the total amount of aggregated information is bounded.

▶ Lemma 14 (Informative Declaration). For all i and t and all possible histories Ht
i , when

agent i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ϵ, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ;

Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥ 1

64ϵ
3 1

log 1
E−1( ϵ

2 )

where E−1(ϵ) ≤ 0.5 and is the solution of x log x+ (1 − x) log(1 − x) = −ϵ.

3 The reader has likely experienced a meeting like this.

ITCS 2023
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The above result in the Discretized Consensus Protocol requires delicate analysis (found
in Appendix A) and is mainly based on the fact that the mutual information is the expected
KL divergence.

▶ Theorem 15 (Convergence rate). The Standard Consensus Protocol achieves ϵ-MI consensus
in at most 2

ϵ rounds. The Discretized Consensus Protocol achieves ϵ-MI consensus in at most
512
ϵ3 log 1

E−1( 1
4 ϵ)

rounds.

Proof of Theorem 15. Because mutual information is monotone, the amount of information
aggregated I(Ht;W ) is a non-decreasing function with respect to t. Moreover, we will show
that when a round does not achieve ϵ-MI consensus, I(Ht;W ) will have a non-trivial growth
rate.

Formally, when a round t does not achieve ϵ-MI consensus, there exists an agent i such that
I(Xi;W |Ht) > ϵ. At round t+ 1, the expected amount of aggregated information increases
at least the marginal value of the historical declarations Ht+1

i before agent i announces at
round t+ 1, plus the marginal value of agent i’s declarations ht+1

i . This intuitively follows
from monotonicity and the chain rule, and can be derived formally as follows:

I(Ht+1;W ) − I(Ht;W ) ≥I(Ht+1
i+1 ;W ) − I(Ht;W ) (Ht+1 contains Ht+1

i+1 )
=I(ht+1

i , Ht+1
i ;W ) − I(Ht;W ) (Ht+1

i+1 = (Ht+1
i , ht+1

i ))
=I(ht+1

i , Ht+1
i ;W |Ht)

(Based on Chain Rule and the fact that Ht+1
i contains Ht)

=I(Ht+1
i ;W |Ht) + I(ht+1

i ;W |Ht+1
i )

(Again, Based on Chain Rule and the fact that Ht+1
i contains Ht)

Thus, to analyze the growth rate, we need to show that when agent i’s private information is
informative, I(Xi;W |Ht) > ϵ, either agent i’s declaration ht+1

i is informative, or the historical
declarations Ht+1

i before agent i announces at round t+ 1 is informative, conditioning the
historical declarations Ht before round t+ 1.

When I(Xi;W |Ht) > ϵ, we have I(Xi, H
t+1
i ;W |Ht) > ϵ as well. Moreover, because

I(Xi, H
t+1
i ;W |Ht) = I(Ht+1

i ;W |Ht) + I(Xi;W |Ht+1
i )

(Chain Rule), either 1) I(Ht+1
i ;W |Ht) > ϵ

2 or 2) I(Xi;W |Ht+1
i ) > ϵ

2 .
In case 1), the historical declarations Ht+1

i is informative conditioning on Ht and we
have the growth rate I(Ht+1;W ) − I(Ht;W ) ≥ I(Ht

i ;W |Ht) > ϵ
2 .

In case 2), for the Standard Consensus Protocol Lemma 14 shows that I(ht+1
i ;W |Ht+1

i ) =
I(Xi;W |Ht+1

i ) > ϵ
2 because agent i declares her Bayesian posterior as ht+1

i . This again
guarantees a > ϵ

2 growth rate. For the Discretized Consensus Protocol, Lemma 14 shows
that I(ψ(Xi);W |Ht+1

i ) ≥ 1
512ϵ

3 1
log 1

E−1( ϵ
4 )

.

Finally, for all t, I(Ht;W ) ≤ I(X1, X2, ..., Xn;W ) ≤ H(W ) ≤ log2 2 = 1. Therefore, with
at most 1

ϵ rounds, the Standard Consensus Protocol achieves ϵ-MI consensus, and with at
most 512

ϵ3 log 1
E−1( 1

4 ϵ)
rounds, the Discretized Consensus Protocol achieves ϵ-MI consensus. ◀

3.3 No False Consensus with Substitutes
We present our main result in this section: when agents’ information is substitutes, there is
no false consensus. A key ingredient is a subadditivity property for substitutes. This result
applies to general Round Robin protocols, and, in particular, is not restricted to the two
specified consensus protocols.
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In the ideal case, if we are given all agents’ private information explicitly, the amount
of information we obtain regarding W is I(X1, X2, · · · , Xn;W ). When agents follow the
protocol for t rounds, the amount of information we obtain regarding W is I(Ht;W ). We
care about the “loss”, I(X1, X2, · · · , Xn;W ) − I(Ht;W ).

In the Standard Consensus Protocol under substitutes structure complete agreement
is obtained after one round. The reason is that in such a situation, the information of
each agent can be fully integrated after previous agents all precisely report their beliefs
(see Appendix B). The following theorem shows a much more general results: under the
substitutes structure every protocol has the no false consensus property.

▶ Theorem 16 (Convergence ⇒ Aggregation). For all priors where agents’ private information
is substitutes, if agents achieve ϵ-MI consensus after t rounds, then the amount of information
that has not been aggregated I(X1, X2, · · · , Xn;W ) − I(Ht;W ) is bounded by nϵ.

We will use the following Lemma in the proof:

▶ Lemma 17 (Subadditivity for substitutes). When X and Y are independent conditioning
on Z:
Nonnegative Interaction Information I(X;Y ;Z) ≥ 0;
Conditioning Reduces Mutual Information I(Y ;Z|X) ≤ I(Y ;Z);
Subadditivity of Mutual Information I(X,Y ;Z) ≤ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≤
n∑
i=1

I(Xi;W ).

Proof of Lemma 17. Note that I(X;Y |Z) = 0 because X and Y are independent after
conditioning on Z.

Nonnegative Interaction Information follows because I(X;Y ;Z) = I(X;Y )−I(X;Y |Z) =
I(X;Y ) ≥ 0.

Next I(Y ;Z|X) ≥ I(Y ;Z) follows after adding I(Y ;Z|X) to each item in the following
derivation: 0 ≤ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z) − I(Y ;Z|X) where the inequality is by
nonnegative interaction information, the first equality is from the symmetry of interaction
information, and the second equality is from the definition of interactive information.

Next, subadditivity immediately follows because: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥
I(X;Z) + I(Y ;Z) where the equality is from the chain rule and the inequality is because
conditioning reduces mutual information.

The moreover follows by using induction and subadditivity. ◀

We require an additional observation that no history will disrupt the special information
structure.

▶ Observation 18. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn

are substitutes (complements), they are still substitutes (complements) conditioning on any
history.

We defer the proof to Appendix A. Aided by the above information-theoretic properties,
we are ready to show our direct and short proof.

Proof for Theorem 16. If after t rounds the Round Robin Protocol achieves ϵ-MI consensus,
then, by definition, for all i,

I(Xi;W |Ht) ≤ ϵ.
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After t rounds, the amount of information we have aggregated is I(Ht;W ). We can aggregate
at most I(X1, X2, ..., Xn;W ) information when all agents’ private information is revealed
explicitly. Thus, the amount of information that has not been aggregated is

I(X1, X2, ..., Xn;W ) − I(Ht;W )
=I(X1, X2, ..., Xn, H

t;W ) − I(Ht;W ) (The history Ht is a function of X1, . . . , Xn)
=I(X1, X2, ..., Xn;W |Ht) (Chain rule)

≤
∑
i

I(Xi;W |Ht) ≤ nϵ (Sub-additivity)

The inequality is from subadditivity: note that by Observation 18 because X1, . . . , Xn

are independent after conditioning on W , X1, . . . , Xn are still independent after conditioning
on H. ◀

4 Illuminating Prediction Markets with Information Theory

4.1 Prediction Market Overview
A prediction market is a place to trade information. For example, a market maker can open
a prediction market for the next presidential election with two kinds of shares, D-shares
and R-shares. If Democrats wins, each D-share pays out one dollar but R-shares are worth
nothing. If Republicans win, each R-share is worth one dollar and D-shares are worth
nothing. People reveal their information by trading those shares. For example, if an agent
believes Democrats will win with probability 0.7, he should buy D-shares as long as its price
is strictly lower than $ 0.7. If people on balance believe that the current price is less than
the probability with which the event will occur, the demand for shares (at that price) will
outstrip the supply, driving up the price. Similarly if the price is too high they will buy the
opposite share as the prices should sum to 1 since exactly one of the two will payout 1.

Hanson [22, 23] proposes a model of prediction markets that is theoretically equivalent to
the above which we describe below. Instead of buying/selling shares to change the price, the
agents simply change the market price directly. We define this formally below.

4.2 Preliminaries for Prediction Markets
We introduce prediction markets formally and relate them to the Standard Consensus
Protocol. We focus on prediction markets which measure the accuracy of a prediction using
the logarithmic scoring rule.

▶ Definition 19 (Logarithmic scoring rule [21]). Fix an outcome space Σ for a signal σ. Let
q ∈ ∆Σ be a reported distribution.

The Logarithmic Scoring Rule maps a signal and reported distribution to a payoff as
follows:

L(σ,q) = log(q(σ)).

▶ Definition 20 (Market scoring rule [22, 23, 9]). We build a market for random variable W
as follows: the market sets an initial belief p0 for W . A sequence of agents is fixed. Activity
precedes in rounds. In the ith round, the corresponding agent can change the market price
from pi to pi+1, and will be compensated L(W,pi+1) − L(W,pi) after W is revealed.
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Let the signal σ be drawn from some random process with distribution p ∈ ∆Σ.
Then the expected payoff of the Logarithmic Scoring Rule is:

Eσ←p[L(σ,q)] =
∑
σ

p(σ) log q(σ) = L(p,q) (1)

It is well known (and easily verified) that this value will be uniquely maximized if and
only if q = p. Because of this, the logarithmic scoring rule is called a strictly proper scoring
rule.

Agent Strategies

We would like to require agents to commit to rational strategies. In such a case, while agents
may hide information, they will not try to maliciously trick other agents by misreporting
their beliefs. Formally, we assume that each agent i plays a strategy of the following form:
they change the market price to Pr[W = w|Sh(Xi), H = h] where H is the history and Sh
is a possibly random function of Xi that is allowed to depend on the history. That is, she
declares the rational belief conditioning on the realization of Sh(Xi) and what she can infer
from the history.

A natural question is whether we should expect fully strategic agents to behave maliciously
rather than just hiding information. Previous work [4] studies a restricted setting and shows
that misreporting or tricking other agents does not happen in equilibrium even when agents
are allowed to.

Two additional observations: 1) the agent’s strategy might not actually reveal Sh(Xi)
because it could be that Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′i), H = h] for xi ̸= x′i.
2) If the agents’ always use Sh(Xi) = Xi, and update the market price based on their entire
message, then this essentially reduces to the Standard Consensus Protocol. In this case, the
agents are playing myopically and optimizing their payment at each step.

4.3 Expected Payment = Conditional Mutual Information
Amazingly, we show that the expected payment to an agent, is just a function of the
conditional mutual information of the random variables that he reveals. This connects the
expected payment in prediction markets and amount of information.

▶ Lemma 21 (Expected payment = conditional mutual information). In a prediction market
with the log scoring rule, the agent who changes the belief from Pr[W |H] to Pr[W |X = x,H]
for all x will be paid I(X;W |H) in expectation.

Proof of Lemma 21. Fix any history H:

EX,W |HL(W,Pr[W |H,X]) − L(W,Pr[W |H])

=
∑
W,X

Pr[W,X|H] log
(

Pr[W |H,X]
Pr[W |H]

)
= I(X;W |H) ◀

Interpretation of Previous Results

When agents participate in the market one by one and update the market price to Pr[W =
w|Sh(Xi), H = h] , the list of market prices can be interpreted as running a Standard
Consensus Protocol. The connection between the expected payment and conditional mutual
information leads to the following interpretations.
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ϵ-MI Consensus If round t achieves ϵ-MI consensus, the expected payment of any particular
agent obtained by changing the market price to her Bayesian posterior is at most ϵ.

Quick Consensus For any round t that does not achieve ϵ-MI consensus, in round t+ 1 at
least one agent will obtain at least an ϵ payment in expectation. However, Lemma 21
also implies that the total expected payment in the prediction market is bounded by
the entropy of W . Thus, at most H(W )

ϵ rounds are needed for ϵ-MI consensus in the
prediction market.

No False Consensus with Substitutes Even when the market price has noise and agents
only reveal a summary of their beliefs by participating in the markets, if round t achieves
ϵ-MI consensus, no agent has information with value greater than ϵ. Then subadditivity
implies that currently, the expected payment of all agents’ private information together
is bounded by nϵ, thus is not valuable.

4.4 Strategic Revelation
This section will use the above information-theoretic properties to provide an alternative
proof for the results proved in Chen et al. [8].

▶ Definition 22 (Alice-Bob-Alice (ABA)). Alice and Bob hold private information XA, XB

related to event W respectively. There are three stages. Alice can change the market belief at
stage 1 and stage 3. Bob can change the market belief at stage 2.

We assume that the strategic players can hide their information but not behave maliciously.
A strategy profile is a profile of the players’ strategies. Moreover, like the original paper, we
assume that an agent not only reports their belief Pr[W = w|Sh(Xi), H = h] but also reveals
their information Sh(Xi). 4

▶ Proposition 23 (ABA & Information structures [8]). In prediction market based on logar-
ithmic scoring rule,
Substitutes when Alice and Bob’s private information are substitutes, the strategy profile

where Alice reveals XA at stage 1 and Bob reveals XB at stage 2 is an equilibrium;
Complements when Alice and Bob’s private information are complements, the strategy profile

where Bob reveals XB at stage 2 and Alice reveals XA at stage 3 is an equilibrium.

We will use the following lemma, which is a direct analogue of Lemma 17

▶ Lemma 24 (Superadditivity for complements). When X and Y are independent:
Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;
Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);
Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

The proof is directly analogous to that of Lemma 17 and we defer it to Section A.

4 This addresses knife-edge situations where Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′
i), H = h] for

Sh(xi) ̸= Sh(x′
i). That is, in the XOR case, if Bob reveals his full signal, then he will not only report

the belief as 1
2 but also announce his full signal.
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Proof of Proposition 23. First, for Bob, to maximize his expected payment, it’s always
optimal to reveal XB in stage 2 because Bob is paid for his conditional mutual information
which is maximized by full revelation. It’s left to analyze Alice’s optimal strategy given that
Bob reveals XB in stage 2.

If Alice reveals all her information either at the first stage or at the third stage, we only need
to compare I(XA;W ) and I(XA;W |XB). But I(XA;W ) − I(XA;W |XB) = I(XA;XB ;W ).
Thus, the results immediately follow from the fact that the sign of the interaction information
is nonnegative/nonpositive when the information are substitutes/complements.

It’s left to consider the general strategy where Alice reveals part of her information at
stage 1, say S1(XA), and part of her information at stage 3, say S3(XA). In this case, she
will be paid I(S1(XA);W ) + I(S3(XA);W |XB , S1(XA)) according to Lemma 21.

First, it is optimal for Alice to reveal all her remaining information at the last stage
since I(S3(XA);W |XB , S1(XA)) ≤ I(XA;W |XB , S1(XA)) due to monotonicity of mutual
information. Thus, Alice will reveal S3(XA) = XA.

Under the substitutes structure, Alice’s expected payment in stage 3 is

I(XA;W |XB , S1(XA)) ≤ I(XA;W |S1(XA))

because 1) fixing any S1(XA), XB and XA are still independent conditioning on W thus are
substitutes (Observation 18) and 2) conditioning decreases mutual information for substitutes.
Therefore,

I(S1(XA);W ) + I(XA;W |XB , S1(XA))
≤I(S1(XA);W ) + I(XA;W |S1(XA)) (conditioning decreases mutual information)
=I(XA, S1(XA);W ) = I(XA;W ). (chain rule)

Thus I(XA;W ) upper bounds Alice’s total payment, but this is what she receives if she
reveals all her information in the first round.

Under complements structure, Alice’s expected payment in stage 1 is

I(S1(XA);W ) ≤ I(S1(XA);W |XB)

because 1) S1(XA) and XB are independent thus are complements and 2) conditioning
decreases mutual information for complements. Therefore,

I(S1(XA);W ) + I(XA;W |XB , S1(XA))
≤I(S1(XA);W |XB) + I(XA;W |XB , S1(XA))

(conditioning increases mutual information)
=I(XA, S1(XA);W |XB) = I(XA;W |XB) (chain rule)

Thus I(XA;W |XB) upper bounds Alice’s total payment, but this is what she receives if
she reveals all her information in the second round. ◀

5 Conclusion and Discussion

We have developed an information theoretic framework to analyze the aggregation of informa-
tion both in the Round Robin protocol and prediction markets. We showed that when agents’
private information about an event is independent conditioning on the event’s outcome, then,
when the agents are in near consensus in any Round Robin Protocol, their information is
nearly aggregated. We additionally reproved 1) the Standard/Discretized Consensus Protocol
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quickly converges [Aaronson 2005] in the information-theoretic framework; and 2) results
from Chen et al. [8] on when prediction market agents should release information to maximize
their payment.

Our analysis of the Alice Bob Alice prediction market straightforwardly extends to any
sequence of an arbitrary number of agents. By applying the same argument, it is easily
shown that: 1) every agent revealing all their information immediately is an equilibrium in
the substitutes case; and 2) every agent revealing all their information as late as possible is
an equilibrium in the complements case.

One possible extension is to study similar protocols when the agents are on networks.
This was already pioneered by Parikh and Krasucki [29] and also examined by Aaronson [1]
who used a spanning tree structure to show that a particular agreement protocol converges
quickly. Perhaps using the tools of this paper, one could analyze more general protocols.

Another possible extension is to look at generalizations of Shannon mutual information.
For example, starting with any strictly proper scoring rule one can develop a Bregman
mutual information [26] and ask whether our proofs will go through using this new mutual
information definition. When using the logarithmic scoring rule, one arrives at the standard
Shannon mutual information used in this paper. However, different scoring rules are possible
as well. All such mutual informations will still obey the chain rule and non-negativity. As
such, generalized versions of Lemma 11 will hold. However they may not be symmetric (and
similarly their interactive information may not be symmetric). Thus, our techniques cannot
be straightforwardly adjusted to reprove Theorem 16 or Proposition 23 in this manner. So
while this generalizes our framework, finding a good application remains future work.

We hope that our framework can analyze additional settings of agents aggregating
information. One example would be more inclusive classes of agent signals than in the
settings of this paper. However, perhaps our framework could also be applied to analyze
broader settings such as social learning [20] or rewards for improvements in machine learning
outcomes [2], where either individually developed machine learning predictors are eventually
combined in ensembles or the training data is augmented by individually procured training
data.

References
1 Scott Aaronson. The complexity of agreement. In Proceedings of the Thirty-Seventh Annual

ACM Symposium on Theory of Computing, pages 634–643. ACM, 2005.
2 Jacob D Abernethy and Rafael Frongillo. A collaborative mechanism for crowdsourcing

prediction problems. Advances in Neural Information Processing Systems, 24, 2011.
3 Daron Acemoglu and Asuman Ozdaglar. Opinion dynamics and learning in social networks.

Dynamic Games and Applications, 1(1):3–49, 2011.
4 Jerry Anunrojwong, Yiling Chen, Bo Waggoner, and Haifeng Xu. Computing equilibria of

prediction markets via persuasion. In International Conference on Web and Internet Economics,
pages 45–56. Springer, 2019.

5 Robert J Aumann. Agreeing to disagree. The annals of statistics, pages 1236–1239, 1976.
6 A V Banerjee. A simple model of herd behavior. Q. J. Econ., 107(3):797–817, 1992.
7 Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads, fashion, custom,

and cultural change as informational cascades. Journal of political Economy, 100(5):992–1026,
1992.

8 Yiling Chen, Stanko Dimitrov, Rahul Sami, Daniel M Reeves, David M Pennock, Robin D
Hanson, Lance Fortnow, and Rica Gonen. Gaming prediction markets: Equilibrium strategies
with a market maker. Algorithmica, 58(4):930–969, 2010.



Y. Kong and G. Schoenebeck 81:17

9 Yiling Chen and David M Pennock. A utility framework for bounded-loss market makers. In
23rd Conference on Uncertainty in Artificial Intelligence (UAI), 2007. Most recent version:
arXiv preprint arXiv:1206.5252, 2012.

10 Yiling Chen and Bo Waggoner. Informational substitutes. In Foundations of Computer Science
(FOCS), 2016 IEEE 57th Annual Symposium on, pages 239–247. IEEE, 2016.

11 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, July 2006.

12 M.H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, pages
118–121, 1974.

13 Richard Durrett, James P Gleeson, Alun L Lloyd, Peter J Mucha, Feng Shi, David Sivakoff,
Joshua ES Socolar, and Chris Varghese. Graph fission in an evolving voter model. Proceedings
of the National Academy of Sciences, 109(10):3682–3687, 2012.

14 Benjamin Enke and Florian Zimmermann. Correlation neglect in belief formation. The Review
of Economic Studies, 86(1):313–332, 2019.

15 Rafael Frongillo, Eric Neyman, and Bo Waggoner. Agreement implies accuracy for substitutable
signals. arXiv preprint arXiv:2111.03278, 2021.

16 Rafael M Frongillo, Grant Schoenebeck, and Omer Tamuz. Social learning in a changing world.
In International Workshop on Internet and Network Economics, pages 146–157. Springer,
2011.

17 Jie Gao, Bo Li, Grant Schoenebeck, and Fang-Yi Yu. Engineering agreement: The naming
game with asymmetric and heterogeneous agents. In Satinder Singh and Shaul Markovitch,
editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages 537–543. AAAI Press, 2017. URL: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14986.

18 Jie Gao, Grant Schoenebeck, and Fang-Yi Yu. The volatility of weak ties: Co-evolution of
selection and influence in social networks. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pages 619–627, 2019.

19 John D Geanakoplos and Heraklis M Polemarchakis. We can’t disagree forever. Journal of
Economic theory, 28(1):192–200, 1982.

20 Benjamin Golub and Evan Sadler. Learning in social networks. The Oxford Handbook of the
Economics of Networks, 2016.

21 I. J. Good. Rational decisions. Journal of the Royal Statistical Society: Series B (Methodolo-
gical), 14(1):107–114, 1952.

22 Robin Hanson. Combinatorial information market design. Information Systems Frontiers,
5(1):107–119, 2003.

23 Robin Hanson. Logarithmic markets coring rules for modular combinatorial information
aggregation. The Journal of Prediction Markets, 1(1):3–15, 2012.

24 Matthew O Jackson. Social and economic networks. Princeton university press, 2010.
25 Yuqing Kong and Grant Schoenebeck. Optimizing Bayesian Information Revelation Strategy

in Prediction Markets: the Alice Bob Alice Case. In 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

26 Yuqing Kong and Grant Schoenebeck. An information theoretic framework for designing
information elicitation mechanisms that reward truth-telling. ACM Trans. Econ. Comput.,
7(1):2:1–2:33, January 2019.

27 Ilan Lobel and Evan Sadler. Preferences, homophily, and social learning. Operations Research,
64(3):564–584, 2016.

28 Elchanan Mossel and Grant Schoenebeck. Arriving at consensus in social networks. In The
First Symposium on Innovations in Computer Science (ICS 2010), January 2010.

29 Rohit Parikh and Paul Krasucki. Communication, consensus, and knowledge. Journal of
Economic Theory, 52(1):178–189, 1990.

ITCS 2023

https://arxiv.org/abs/1206.5252
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14986
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14986


81:18 False Consensus, Information Theory, and Prediction Markets

30 Grant Schoenebeck and Fang-Yi Yu. Consensus of interacting particle systems on erdös-rényi
graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1945–1964. SIAM, 2018.

31 Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

32 Lones Smith and Peter Sorensen. Pathological outcomes of observational learning. Economet-
rica, 68(2):371–398, 2000.

33 Hu Kuo Ting. On the amount of information. Theory of Probability & Its Applications,
7(4):439–447, 1962.

34 Ercan Yildiz, Asuman Ozdaglar, Daron Acemoglu, Amin Saberi, and Anna Scaglione. Binary
opinion dynamics with stubborn agents. ACM Transactions on Economics and Computation
(TEAC), 1(4):1–30, 2013.

A Additional Proofs

▶ Lemma 11 (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,
Non-decreasing Historical Information any agent’s declaration does not decrease the amount

of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.

Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event condi-
tioning on the history, i.e.,

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

Proof of Lemma 11. Because the (conditional) mutual information is always non-negative,
once we have established the second property of the growth rate equaling the marginal value
the first property of non-decreasing information follows immediately. Thus, we start by
proving the second property, the growth rate equals the marginal value.

I(Ht
i+1;W ) − I(Ht

i ;W ) = I(Ht
i+1;W |Ht

i ) = I(hti;W |Ht
i ). (2)

The first equality holds due to chain rule and the fact that Ht
i+1 contains Ht

i . The second
equality holds due to the fact that Ht

i+1 = (Ht
i , h

t
i). ◀

▶ Lemma 14 (Informative Declaration). For all i and t and all possible histories Ht
i , when

agent i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ϵ, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ;

Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥ 1

64ϵ
3 1

log 1
E−1( ϵ

2 )

where E−1(ϵ) ≤ 0.5 and is the solution of x log x+ (1 − x) log(1 − x) = −ϵ.
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Proof of Lemma 14. In the Standard Consensus protocol, I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ϵ

because agent i declares her Bayesian posterior as hti = pti = Pr[W |Xi = x,Ht
i = h].

Discretized Consensus Protocol Proof Summary: We will first obvserve that if the average
over all possible histories I(Xi;W |Ht

i ) ≥ ϵ, then there must be a set of histories with non-
trivial weights such that I(Xi;W |Ht

i = h) > ϵ
2 . Fixing a history h, the summary function

maps the agent’s private information to three signals: high, low, and medium. This classifies
the expectations conditioning on the private information x into three categories: the high
set, the low set, and the medium set. We will first show that when the private information
is informative, because the medium set’s expectations are close to the outsider’s current
expectations, the medium set’s contribution to I(Xi;W |Ht

i = h) will not be significant. Thus
either the high set or the low set contributes a lot. We then prove that after compression,
the high set and the low set will still preserve a non-trivial amount of information. We will
repeatedly use the fact that the mutual information is the expected KL divergence in the
analysis.

We first show that if I(Xi;W |Ht
i ) ≥ ϵ then, Prh[I(Xi;W |Ht

i = h) > ϵ/2] ≥ ϵ/2. This
follows from Markov’s Inequality applied to 1−I(Xi;W |Ht

i = h) which is always non-negative
because I(Xi;W |Ht

i = h) ≤ H(W ) ≤ 1. Formally,

Pr
h

[I(Xi;W |Ht
i = h) ≤ ϵ/2] = Pr

h
[1 − I(Xi;W |Ht

i = h) ≥ 1 − ϵ/2]

≤1 − I(Xi;W |Ht
i )

1 − ϵ/2 (Markov’s Inequality)

≤ 1 − ϵ

1 − ϵ/2 ≤ 1 − ϵ/2

We now fix any history h where I(Xi;W |Ht
i = h) ≥ ϵ/2. We would like to show that

I(hti;W |Ht
i = h) ≥ ϵ2

32
1

− log2 E
−1( 1

2ϵ)
(3)

because then

I(hti;W |Ht
i )

≥
∑

I(Xi;W |Ht
i
=h)≥ ϵ

2

I(hti;W |Ht
i = h) · Pr[Ht

i = h]

≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) · Pr

h

[
I(Xi;W |Ht

i = h) ≥ ϵ

2

]
≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) · ϵ2

= 1
64ϵ

3 1
− log2 E

−1( ϵ2 )

and this proves the lemma.
Before showing Equation 3, for notational clarity, we define

ψ(Xi) = hti =


high pti > qti

low pti < qti

medium otherwise.

Notice that once we fix a history, ψ(Xi) = hti is a function of Xi. Recall that we have defined
qti > qti so that DKL(qti , qti) = ϵ

4 , and qti < qti so that DKL(qti , qti) = ϵ
4 .
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Additionally, let q be a shorthand for qti = Pr[W = 1|Ht
i = h]. Let px = Pr[W = 1|Ht

i =
h,Xi = x] be the Bayesian posterior for W = 1 conditioning on that agent i receives Xi = x.
Let wx = Pr[Xi = x|Ht

i = h] be the prior probability that agent receives Xi = x. Let
phi = Pr[W = 1|Ht

i = h, ψ(Xi) = high] be the Bayesian posterior for W = 1 conditioning
on that the agent i announces “high”. Let whi = Pr[ψ(Xi) = high|Ht

i = h] be the prior
probability that agent i announces “high”. Analogously, we define plo, wlo (low), pme, and
wme (medium).

Our goal in Equation 3 can then be restated as

I(ψ(Xi);W |Ht
i = h) ≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) .

Notice that:

I(Xi;W |Ht
i = h) (4)

=
∑
x

Pr[Xi = x|Ht
i = h]

∑
w

Pr[W = w|Xi = x,Ht
i = h] log2

Pr[W = w|Xi = x,Ht
i = h]

Pr[W = w|Ht
i = h]

=
∑
x

Pr[Xi = x|Ht
i = h]DKL(px, q)

=
∑
x

wxDKL(px, q) (5)

We can partition all x into three categories, ψ(x) = high, low,medium. Because when
ψ(x) = medium, DKL(px, q) ≤ ϵ

4 , when I(X;W |Ht
i = h) ≥ ϵ

2 , we have∑
ψ(x)=high,low

wxDKL(px, q) ≥ ϵ

4 .

Thus either the low set or the high set contributes ≥ ϵ
8 . Without loss of generality, we assume∑

ψ(x)=high wxDKL(px, q) ≥ ϵ
8 .

Recall our goal is to show that given Equation 5 was greater than ϵ/2 then the following
is large:

I(ψ(Xi);W |Ht
i = h) =

∑
ψ(Xi)∈{lo,me,hi}

wψ(Xi) ·DKL(pψ(Xi), q) ≥ whi ·DKL(phi, q). (6)

We can show this is large by lower-bounding both whi and DKL(phi, q).
First, we will lower bound whi by upper bounding DKL(px, q). Note that

DKL(p, q) ≤ max{log 1
q
, log 1

1 − q
} = max{− log q,− log 1 − q}

by recalling the formula DKL(p, q) = p log p
q + (1 − p) 1−p

1−q . To upper bound this, we must
show that q is not too close to 0 or 1. Because q log2

1
q + (1 − q) log2

1
1−q = I(W ;W |Ht

i =
h) ≥ I(X;W |Ht

i = h) ≥ 1
2ϵ, we have E−1( ϵ2 ) ≤ q ≤ 1 − E−1( ϵ2 ). This gives us that

DKL(px, q) ≤ − log2 E
−1( ϵ2 ).

We assumed that
∑
ψ(x)=high wx ·DKL(px, q) ≥ 1

8ϵ, so we have:

whi =
∑

ψ(x)=high

wx ≥ ϵ

8
1

− log2 E
−1( ϵ2 ) .
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Next, we lower bound DKL(phi, q). DKL(phi, q) ≥ ϵ
4 because for any x where ψ(x) =

high, we have that px ≥ q and q was defined so that DKL(q, q) = ϵ
4 and for any q′ > q,

DKL(q′, q) > ϵ
4 .

Combining with Equation 6 we are now done because

I(ψ(Xi);W |Ht
i = h) ≥ whi ·DKL(phi, q) ≥ ϵ2

32
1

− log2 E
−1( ϵ2 ) . ◀

▶ Lemma 24 (Superadditivity for complements). When X and Y are independent:
Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;
Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);
Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).
Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

Proof of Lemma 24. The proof is directly analogous to that of Lemma 17
First, I(X;Y ) = 0 because X and Y are independent.
Nonpositive Interaction Information follows because I(X;Y ;Z) = I(X;Y )−I(X;Y |Z) =

−I(X;Y |Z) ≤ 0.
Next I(Y ;Z|X) ≥ I(Y ;Z) because 0 ≥ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z) − I(Y ;Z|X)

where the inequality is by nonpostive interaction information, the first equality is from
the symmetry of interaction information, and the second equality is from the definition of
interactive information.

Third, superadditivity immediately follows because: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥
I(X;Z) + I(Y ;Z) where the equality is from the chain rule and the inequality is because
conditioning increases mutual information.

The moreover follows by using induction and superadditivity. ◀

▶ Observation 18. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn

are substitutes (complements), they are still substitutes (complements) conditioning on any
history.

Proof of Observation 18. Let D be some distribution over Σn where X1, X2, · · · , Xn are
all independent. We first observe that after any “independent” restrictions on the realizations
of X1, X2, · · · , Xn, they are still independent. That is, fix Σ1, . . . ,Σn where Σi ⊆ Σ for
all i ∈ {1, . . . , n} and let ξ ⊂ Σn be the event where xi ∈ Σi for all i ∈ {1, . . . , n}. Then
conditioning on ξ, X1, X2, · · · , Xn are independent as well.

For all (x1, x2, · · · , xn) ∈ Σ1 × Σ2 × · · · Σn,

Pr
D

[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = PrD[X1 = x1, X2 = x2, · · · , Xn = xn]
PrD[ξ]

= Πi PrD[Xi = xi]
Πi PrD[Xi ∈ Σi]

= Πi Pr
D

[Xi = xi|Xi ∈ Σi]
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Moreover, PrD[Xi = xi|Xi ∈ Σi] = PrD[Xi = xi|ξ] because

Pr
D

[Xi = xi|ξ]

= PrD[Xi = xi, ξ]
PrD[ξ]

= PrD[Xi = xi,∀j ̸= i,Xj ∈ Σi]
PrD[∀j,Xj ∈ Σj ]

= PrD[Xi = xi]Πj ̸=i PrD[Xj ∈ Σj ]
PrD[Xi ∈ Σi]Πj ̸=i PrD[Xj ∈ Σj ]

= PrD[Xi = xi]
PrD[Xi ∈ Σi]

Πj ̸=i
PrD[Xj ∈ Σj ]
PrD[Xj ∈ Σj ]

= PrD[Xi = xi]
PrD[Xi ∈ Σi]

= Pr
D

[Xi = xi|Xi ∈ Σi]

Therefore, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = Πi Pr[Xi = xi|ξ]. For all
(x1, x2, · · · , xn) /∈ Σ1 × Σ2 × · · · Σn, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = 0 =
Πi Pr[Xi = xi|ξ]. Thus conditioning on ξ, X1, X2, · · · , Xn are independent as well.

In the Round Robin Protocol, after the first agent makes her declaration h1
1 which is a

function of the prior and X1, we have a restriction for X1. The second agent’s declaration
h1

2 is a function of the prior, h1
1 and X2. For fixed h1

1, we have an independent restrictions
for X2, and so forth. Thus, for any fixed history, we will have independent restrictions for
X1, X2, ..., and Xn. Therefore, when X1, X2, ..., and Xn are independent, they are still
independent given any fixed history as well.

The same analysis shows that when X1, X2, ..., and Xn are independent conditioning any
W = w, they are still independent conditioning on both W = w and any fixed history. ◀

B Complete Agreement

▶ Observation 25. For all priors where agents’ private information are substitutes, in the
standard consensus protocol, after one round, every agent’s belief becomes Pr[W = 1|X1 =
x1, X2 = x2, · · · , Xn = xn].

The above observation shows that when agents’ private information are substitutes,
complete agreement is obtained after one round in the standard consensus protocol.

Proof. We use p0 to denote the prior Pr[W = 1]. We use ℓ0 to denote the prior likelihood
ℓ0 = Pr[W=1]

Pr[W=0]
The key observation is that there is a bijection ℓ0 = p0

1−p0
between the probability and

likelihood space. To see it is a bijection, note that p0 = ℓ
1+ℓ .

In the standard consensus protocol, at round 1, agent 1 reports p1
1 = Pr[W = 1|X1 = x1].

But, because there is a bijection between the probability and likelihood space, they might
just report the likelihood:

ℓ1
1 = Pr[W = 1|X1 = x1]

Pr[W = 0|X1 = x1] = l0 · Pr[X1 = x1|W = 1]
Pr[X1 = x1|W = 0]

The second equality follows from applying Bayes rule to the numerator and denominator.
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Similarly, because the signals are conditionally independent:

ℓ2
1 =Pr[W = 1|X1 = x1, X2 = x2]

Pr[W = 0|X1 = x1, X2 = x2]

=Pr[W = 1, X1 = x1, X2 = x2]
Pr[W = 0, X1 = x1, X2 = x2]

=Pr[W = 1] Pr[X1 = x1|W = 1] Pr[X2 = x2|W = 1]
Pr[W = 0] Pr[X1 = x1|W = 0] Pr[X2 = x2|W = 0] (Conditional independence)

=Pr[W = 1|X1 = x1] Pr[X2 = x2|W = 1]
Pr[W = 0|X1 = x1] Pr[X2 = x2|W = 0]

=ℓ1
1 · Pr[X2 = x2|W = 1]

Pr[X2 = x2|W = 0] .

Analogously, for i ≥ 3, each agent i simply updates the likelihood by multiplying by
Pr[Xi=xi|W=1]
Pr[Xi=xi|W=0] . While the are actually reporting a probability, because of the bijection, it is
equilivlent that they report a likelihood.

Notice, that the likelihood at the end of one round, captures all the agent’s information. ◀
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