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Abstract
Machine learning techniques, especially deep neural networks inspired by mathematical models of
human intelligence, have reached an unprecedented success on a variety of data analysis tasks.
The reliance of critical modern technologies on machine learning, however, raises concerns on
their security, especially since powerful attacks against mainstream learning algorithms have
been demonstrated since the early 2010s. Despite a substantial body of related research, no
comprehensive theory and design methodology is currently known for the security of machine
learning. The proposed seminar aims at identifying potential research directions that could lead
to building the scientific foundation for the security of machine learning. By bringing together
researchers from machine learning and information security communities, the seminar is expected
to generate new ideas for security assessment and design in the field of machine learning.
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Overview

Modern technologies based on machine learning, including deep neural networks trained on
massive amounts of labeled data, have reported impressive performances on a variety of
application domains. These range from classical pattern recognition tasks, for example, speech
and object recognition for self-driving cars and robots, to more recent cybersecurity tasks,
such as attack and malware detection. Despite the unprecedented success of technologies
based on machine learning, it has been shown that they suffer from vulnerabilities and data
leaks. For example, several machine-learning algorithms can be easily fooled by adversarial
examples, that is, carefully-perturbed input samples aimed to thwart a correct prediction.
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These insecurities pose a severe threat in a variety of applications: the object recognition
systems used by robots and self-driving cars can be misled into seeing things that are not
there, audio signals can be modified to confound automated speech-to-text transcriptions,
and personal data may be extracted from learning models of medical diagnosis systems.

In response to these threats, the research community has investigated various defensive
methods that can be used to strengthen current machine learning approaches. Evasion attacks
can be mitigated by the use of robust optimization and game-theoretical learning frameworks,
to explicitly account for the presence of adversarial data manipulations during the learning
process. Rejection or explicit detection of adversarial attacks also provides an interesting
research direction to mitigate this threat. Poisoning attacks can be countered by applying
robust learning algorithms that natively account for the presence of poisoning samples in the
training data as well as by using ad-hoc data-sanitization techniques. Nevertheless, most
of the proposed defenses are based on heuristics and lack formal guarantees about their
performance when deployed in the real world.

Another related issue is that it becomes increasingly hard to understand whether a
complex system learns meaningful patterns from data or just spurious correlations. To
facilitate trust in predictions of learning systems, the explainability of machine learning
becomes a highly desirable property. Despite recent progress in development of explanation
techniques for machine learning, understanding how such explanations can be used to assess
the security properties of learning algorithms still remains an open and challenging problem.

This Dagstuhl Seminar aims to bring together researchers from a diverse set of backgrounds
to discuss research directions that could lead to the scientific foundation for the security of
machine learning.

Goal of the Seminar

The seminar focused on four main themes of discussion, consistently with the research
directions reported in the previous section:

Attacks against machine learning: What attacks are most likely to be seen in practice?
How do existing attacks fail to meet those requirements? In what other domains (i.e.,
not images) will attack be seen?
Defenses for machine learning: Can machine learning be secure in all settings? What
threat models are most likely to occur in practice? Can defenses be designed to be
practically useful in these settings?
Foundations of secure learning: Can we formalize “adversarial robustness”? How should
theoretical foundations of security of machine learning be built? What kind of theoretical
guarantees can be expected and how do they differ from traditional theoretical instruments
of machine learning?
Explainability of machine learning: What is the relationship between attacks and explan-
ations? Can interpretation be trusted?
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Overall Organization and Schedule

The seminar intends to combine the advantages of conventional conference formats with the
peculiarities and specific traditions of Dagstuhl events. The seminar activities were scheduled
as follows:

Schedule Activities

Day 1 Workshop presentation, short self-introductions by participants, one keynote presentation
Day 2 One keynote presentation on participant results, contributed presentations
Day 3 One keynote presentation on negative results, organization of working groups, one breakout session
Day 4 One breakout session, social event
Day 5 Keynote presentation, reporting from breakout sessions, summary of results

22281
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3 Overview of Talks

3.1 Concept Drift in Machine Learning-based Detection Systems
Fabio Pierazzi (King’s College London, UK)
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Distribution shifts causing violations of the i.i.d. assumptions are prevalent in the security
domain (e.g., malware detection), causing performance decay over time, and making it
challenging for Machine Learning (ML) models. The cybersecurity community initially
adopted best practices such as k-fold cross validation without a deep understanding of the
implications of dataset shift and temporal concept drift (e.g., malware evolution over time).

In this context, we proposed TESSERACT [1] as a framework for proper evaluations
in the presence of concept drift, and showed the impact of concept drift in the Android
malware domain. When a proper time-aware train/test split is conducted, even performance
of state-of-the-art classifiers quickly decay over time; in presence of drift, the k-fold cross
validation provides an upper bound of detection performance assuming absence of drift.

This shows that this research area is still open. To mitigate drift, we may adopt a variety
of approaches: retraining (e.g., with active learning) is one possibility, although “labeling”
in the security domain is extremely costly; classification by rejection quarantines samples
with low confidence (in this context, we propose a conformal prediction-inspired approach
for rejecting drifting samples [2]). These approaches show that it is not anymore just about
detection performance, instead systems need to be evaluated as a trade-off between accuracy,
labeling and quarantine costs.

After identifying that online learning is more challenging than we originally thought [3],
we advocate for more research into machine learning approaches robust to drift.

References
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3.2 When too good is bad: On the re-use of Datasets in ML Security
Giovanni Apruzzese (PostDoc Researcher at the University of Liechtenstein – Vaduz, LI)
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In this (very informal!) talk, I will talk about two problems that (I believe) affect the
whole community of ML security. Namely: the peer-review process, which sometimes
leads to superficial reviews; and the constant re-use of benchmark datasets (sometimes of
domains unrelated to security) which aggravates the previous problem, because reviewers
will inevitably tend to familiarize with “benchmarks” (which can be flawed), and are hence
more critical to experimental evaluations carried out on datasets they are not familiar with.

To describe such twofold problems, I will present some “stories”, derived from my own
experience as a “young researcher” in this domain. Specifically, I will highlight that many
papers (accepted in top-venues) which rely on “benchmark” datasets are provided with
very little information describing the collection and preprocessing of such data [2, 3, 4, 5,
6, 7]. Therefore, neither the authors nor the reviewers believe it necessary to include such
information, due to the high “familiarity” of researchers with such datasets. Then, I narrate
the backstory of a recently accepted paper that I authored [1], which was rejected 4 times at
top security conferences. Among the reasons for such “rejections”, one was always related
to “missing details about the datasets”. Despite being a legitimate observation, as none of
the datasets used in that paper were “benchmarks” in the ML security research domain
(although some were popular in other domains [8]), all such details were always included in
the paper – but in the Appendix, which apparently no reviewer read. Finally, I show that
even “benchmark” datasets [10] have flaws (documented by reputable works [9]), thereby
showing that relying on benchmarks – despite having some advantages – can be detrimental
for our research. Simply put, this talk aims to inspire a change in the current evaluation
protocol adopted in our research (from the perspective of both reviewers and authors).
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3.3 Where ML Security Is Broken and How to Fix It
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Machine learning security is attracting considerable interest from the research community
and industries due to its practical influence on machine learning data services that today are
becoming the cornerstone of applications. However, this interest is not sometimes repaid by
a real advancement of knowledge in the field. Partly because of the pressure exerted by the
sword of Damocles that haunts researchers today, namely “publish or perish,” research in this
area focuses more on numbers than on the actual quality of the proposed work. In this talk,
we want to show the results of our research and highlight some aspects of machine learning
security that we believe are broken and deserve special consideration. In addition, for each
issue, a new way to address the problem will be proposed, or the real obstacle that needs to
be overcome to bring further knowledge to machine learning security will be highlighted.

The first part of our talk addresses attacks at training time, namely poisoning attacks.
Poisoning attacks are staged at training time by manipulating the training data or comprom-
ising the learning process to degrade the model’s performance at test time. Among the two
scenarios, the case where data are influenced by the attacker, namely data poisoning, has
attracted increasing attention from ML stakeholders, perhaps after the incident of Tay [9],
to the point that now it is considered the largest concern for ML applications [7, 8]. We
identified three main categories of data poisoning attacks [6, 5], namely indiscriminate,
targeted, and backdoor poisoning attacks. Indiscriminate poisoning attacks are staged to
maximize the classification error of the model on the (clean) test samples. The attacker aims
to reduce the system’s availability to legitimate users who can not trust the output of the
poisoned model. Targeted poisoning attacks influence the model to cause misclassification
only for a specific set of (clean) test samples. In backdoor poisoning attacks, the training data
is manipulated by adding poisoning samples containing a specific pattern, referred to as the
backdoor trigger, and labeled with an attacker-chosen class label. This typically induces the
model to learn a strong correlation between the backdoor trigger and the attacker-chosen class
label. Accordingly, the input samples that embed the trigger are misclassified at test time as
samples of the attacker-chosen class, while the pristine samples remain correctly classified.
Although multiple poisoning attacks have been suggested to attack or test the robustness of
ML models, we observed that state-of-the-art works rely on unrealistic assumptions or do
not scale against real production systems.

The second part of our talk is dedicated to attacks at testing time [3, 4]. Rigorous testing
against such perturbations requires enumerating all possible outputs for all possible inputs,
and despite impressive results in this field, these methods remain still difficult to scale to
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modern deep learning systems. For these reasons, empirical methods are often used. These
adversarial perturbations are optimized via gradient descent, minimizing a loss function that
aims to increase the probability of misleading the model’s predictions. To understand the
sensitivity of the model to such attacks, and to counter the effects, machine-learning model
designers craft worst-case adversarial perturbations and test them against the model they
are evaluating. However, many of the proposed defenses have been shown to provide a false
sense of robustness due to failures of the attacks, rather than actual improvements in the
machine-learning models’ robustness. They have been broken indeed under more rigorous
evaluations [2, 1]. Although guidelines and best practices have been suggested to improve
current adversarial robustness evaluations, the lack of automatic testing and debugging tools
makes it difficult to apply these recommendations in a systematic and automated manner.
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3.4 Adversarial Machine Learning in Practice
Kathrin Grosse (Postdoc at University of Cagliari, IT)

License Creative Commons BY 4.0 International license
© Kathrin Grosse

Beyond media coverage, few works have attempted to understand the impact of machine
learning (ML) security in practice scientifically [3, 4]. While prior work does not exclusively
study ML security but also privacy [4] or studies ML security on a company level [3], we
present two studies that deepen our knowledge about ML security in practice: One is a study
with 15 participants in semi-structured interviews with a drawing task [1], which provides
great detail on how industrial practitioners think and approach ML security. Furthermore, our
questionnaire-based survey with 139 participants [2] enables us to get a broader understanding
of threat concern and exposure.

We find that real word ML pipelines are often more complex than their academic
counterparts [1], raising questions about the applicability of current results in practice. This
is particularly relevant in case of attack mitigations, in particular since our studies support
occurrences of direct attacks on AI systems in the wild: there are instances of both poisoning
and evasion in practice [1, 2]. While neither attack seems frequent (yet), a third of the
participants in our interview based study [1] expresses concern—yet at the same time ML
security is often marginalized, in contrast to other security measures like access control or
usage of cryptography. In terms of perception, we find that participants conflate concepts
such as ML security and security that stems from other components of the system, for
example, a circumvention of access control [1]. Another often conflated concepts are safety
and security of a system, e.g. distinguishing whether a failure was caused by an attacker with
malicious intent (security) or a benign failure, for example, due to incomplete training data
(safety) [2]. Our work [2] also highlights the influence of (self-reported) prior knowledge in
ML security, which leads to higher concern in all studied attacks. Finally, concern related to
individual attacks is highly motivated by economic, performance, and even ethical factors [2].
Another concern that was often uttered is that ML is used to support decision making within
the company, and attacks can thus alter decisions taken within a company [2].
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3.5 From Wild Patterns to Wild Networks: A New Threat Model for
Adversarial Examples in 5G Networks

Pavel Laskov (Professor at the University of Liechtenstein – Vaduz, LI)
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5G networks must support billions of heterogeneous devices while guaranteeing op Quality
of Service. Such requirements are impossible to meet with human effort alone, and Machine
Learning (ML) represents a core asset in future 5G infrastructures. ML is known to be
vulnerable to adversarial examples; however, classical threat models for adversarial attacks
are not suitable for the complex 5G ecosystem. To illustrate the potential vulnerability
of ML components in 5G infrastructures to adversarial example, we present a new threat
model [1] specifically addressing the interplay between ML and network management tasks
in the 5G infrastructures. The proposed “myopic” threat model outlines the attacker’s goals,
knowledge, capability and strategy which are specific to the application of ML in the 5G
context. The model assumes, for example, that the attacker has unlimited capability to
change the behavior of the user equipment (UE) at her disposal but limited visibility into
the archtecture of ML componets in the overall 5G infrastructure. Furthmore, a myopic
attacker does not even have an oracle access to the predictions of a ML system. The only
feedback about ML system’s decision an attacker may receive is the change in the behavior
of infrastructural components which her UE communicates, e.g., signals received over the
radio interface. We evaluate the attacks conceivable under the myopic threat model on 6
applications of ML envisioned in 5G. Such attacks may affect both the training and the
inference stages, can degrade the performance of state-of-the-art ML systems in terms of
traditional metrics, such as accuracy or mean squared error, as well as in terms of physical
quality metrics, for example, spectral efficiency. Given that myopic attacks have a lower
entry barrier in comparison with attacks using previous threat models, further investigation
of technical and operational impact of such attacks is indispensable.

References
1 Giovanni Apruzzese, Rodion Vladimirov, Aliya Tastemirova, and Pavel Laskov. “Wild

Networks: Exposure of 5G Network Infrastructures to Adversarial Examples.” IEEE Trans-
actions on Network and Service Management, 2022.

3.6 Security and Privacy in Federated learning: Challenges and Possible
Solutions

Mitrokotsa Aikaterini (Professor at the University of St. Gallen, CH)
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Mobile phones, wearables, autonomous vehicles and in general Internet of Things (IoT)
devices are just some examples of distributed networks that create a wealth of data every day.
This data is subsequently used as input in centralised machine learning models in order to
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achieve reliable user modeling and personalisation. The growing storage and computational
power of mobile devices as well as increased privacy concerns have led to an increased interest
in federated learning, which allows multiple clients to collaboratively train learning models
under the orchestration of a central server, while the data remain located on the sources.

Distributed machine learning has many significant advantages compared to centralised
machine learning, mainly regarding efficiency and privacy. However, some serious challenges
remain:

Privacy: Although only updates are sent to the server, research has shown that these
updates may still leak sensitive information, thus, providing no formal guarantee of
privacy. For instance, by having access to a gradient update and the previous model, it
might be possible to infer a training example.
Security: The central server represents a single point of failure or even a bottleneck.
How can a client be sure that the server has performed the aggregation correctly? A
“lazy” server might use a simpler model to reduce its computational load, or modify the
aggregation result to bias the model.
Heterogeneity:The federated learning process is massively parallel involving multiple
clients (up to 1010) with different resources/capabilities. Many of these devices (5% or
more) will fail or drop (being controlled by different clients), creating thus, a highly
stateless environment.

In this talk, we discuss the main security and privacy challenges in federated learning as
well as how we may guarantee and secure and private dynamic aggregation of data [1, 2]
which can be employed in the federated learning setting. More precisely, we discuss how
by relying on verifiable homomorphic secret sharing, we can achieve secure and verifiable
aggregation of multiple users’ secret data (e.g., parameters of the learning model), while
employing multiple untrusted servers. The proposed solutions compute the sum of the users’
input and provides public verifiability, i.e., anyone can be convinced about the correctness of
the aggregated sum computed from a threshold amount of servers, while no communication
between the users occurs.
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3.7 Entering the Cursed World of Explainable Machine Learning
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Machine learning is increasingly used as a building block of security systems. Unfortunately,
most learning models are hard to interpret and typically opaque to practitioners. The
machine learning community has started to address this problem by developing methods for

22281

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


52 22281 – Security of Machine Learning

explaining the predictions of learning models, often coined “explainable AI”. While several
of these approaches have been successfully applied in computer vision, their application in
security has received little attention so far.

In principle, explanation methods for machine learning promise to open the black box of
learning models. They are considered one of the key enablers for using learning in security
systems, as they allow to make the decisions of learning models transparent to practitioners.
Rumor has it, however, that explanation methods are cursed and bring dangerous spells
upon its users in computer security. In this talk, we learn that explanations are plagued by
three problems: inconsistency, infidelity, and insecurity.

First, various concepts exist for explaining learning models so that the same prediction
can be described through different, often conflicting parts of the input.
Second, several explanation methods tend to focus on properties of the data rather than
the learning models. As a result, even random models may attain seemingly reasonable
explanations.
Third, explanations open a new attack surface for adversaries. Instead of gaining trust in
a decision, we thus may be fooled twice – by a manipulated prediction and a manipulated
explanation.

In the end, the security users may know less about a learning model than they did before.
Lifting these spells is a journey yet to make and the basis for discussion at the seminar.

3.8 A semantic gap in malware analysis
Nedim Šrndić (Researcher at Huawei Technologies – München, DE)
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Applications of machine learning begin long before model training. Being based on data,
they start where the data starts: when a physical phenomenon is observed. A well-known
example are the surroundings of an autonomous robot. They can be observed using physical
sensors that capture images, audio, depth, touch, gravity, acceleration, smell, etc. In security,
specifically in malware analysis, a common scenario is the execution of programs on end-point
devices. This phenomenon is usually observed using software sensors which capture properties
of programs or their behavior, e.g., executable files or behavior traces.

Once the target phenomenon is observed, the collected data is optionally pre-processed
and then the machine learning model is applied. After optional post-processing the final
prediction is made.

But what if the observed phenomenon is just a proxy for the target phenomenon, i.e., the
one we are interested in understanding? In this talk I describe just such a situation in the
field of malware analysis. In malware detection, we are interested if a program is malware or
not. A program may be considered malware if it intentionally performs a harmful behavior
in order to take advantage of its host system. Thus, to detect malware means to observe this
harmful behavior. The harmful behavior is the target phenomenon.

In static malware analysis the observed phenomenon is the executable file. Results
in program analysis show us that the behavior of a program cannot be accurately and
comprehensively deduced from its executable file. Thus we are faced with a semantic gap
between the observation and real-world effect. Similarly, in dynamic malware analysis on a
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sandbox, we observe the behavior of the program as influenced by our sandbox at run-time.
Under such circumstances, the program may conceal its true intentions. Executed on a
legitimate endpoint, the same program may behave differently, and perform its harmful
behavior.

In the talk, I underline that the security of the entire machine learning application
crucially builds upon its first stage – data pre-processing. I show examples of the semantic
gap and compare to the computer vision domain where the gap appears much smaller.

4 Working Groups

During a match-making session taking place in day 3, all interests expressed by the participants
were consolidated into a set of working groups, addressing the following six areas:

Machine learning security in the real world;
Non-forgetting classifiers;
Explainability and security;

The topics to be discussed in the break-out sessions shall be tailored to the interests
of specific participants and will be chosen in an informal topic selection session during the
seminar. The following topics, for example, are conceivable:

Theoretical foundations. How should theoretical foundations of security of machine
learning be built? What kind of theoretical guarantees can be expected and how do they
differ from traditional theoretical instruments of machine learning?
Machine learning as a methodical instrument of security. What requirements should be
met for machine learning methods to be accepted as a reliable instrument in security
operations?
New applications. Most of research addressing security of machine learning uses computer
vision and audio signal processing tasks as underlying applications and data. What other
applications may be expected to face similar security challenges?
Benchmark datasets. The existence of large benchmark tasks (e.g., ImageNet) is in many
ways responsible for the success of deep learning. How can new benchmark datasets be
created for further development of learning methods?
Practical applications of secure learning. While there are a set of well-known examples
where robust machine learning is important (e.g., autonomous vehicles), are there other
non-security domains where robust machine learning would be useful?

4.1 Machine Learning Security in the Real World
Giovanni Apruzzese (PostDoc Researcher at the University of Liechtenstein – Vaduz, LI)
Antonio Emanuele Cinà (Ph.D. candidate at Ca’ Foscari University of Venice, IT)
Katerina Mitrokotsa (Professor at the University of St. Gallen, CH)
Vitaly Shmatikov (Professor at Cornell University – Ithaca and Cornell Tech – New York,
US)
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This working group was tasked to identify some open challenges related to the real-world
impact of research on ML security.
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4.1.1 Discussed Problems

We began our activity by identifying some areas in which ML methods are (known to be)
integrated into real-world applications. Then, we observed that most current research on ML
security focuses only on a small subset of such areas. This is a significant shortcoming of
our research: some areas (e.g., Computer Vision) are “inflated” with papers showing very
effective attacks – thereby potentially over-emphasizing the problem; whereas other areas
(which may be even more attractive for attackers, e.g., finance [1]) are under-investigated –
thereby leaving dangerous blind spots.

Then, we reasoned why our research might not have a significant impact on the real
world: indeed, several recent surveys revealed that practitioners seem not to care about the
security of their ML models (e.g., [3, 4]). Our conclusion is that this is due to research papers
making simplistic assumptions, as the evaluations are carried out mostly on “benchmarks”
(e.g., CIFAR, MNIST), which are far different from real-world deployments of ML.

4.1.2 Possible root-causes

We attempted to find explanations as to why research on ML security only focuses on
(sometimes decades-old) benchmarks. We conjectured that this is mainly due to two causes.

First, most ML systems deployed in the real world are not open, and researchers can
hardly use them – at least to the extent necessary to derive scientific publications. The
direct consequence is that researchers themselves are oblivious as to what the “attacked” ML
system is actually doing (e.g., if the attack “works”, is it because of a security issue of the
ML model or because of another faulty component of the overall system?).

Second, performing experiments on real systems may have an unfavorable “cost/bene-
fit” ratio – from a research perspective. Indeed:

(high cost) using real systems for research purposes without the explicit consent of the
developers of such systems may lead to legal problems when the researchers disseminate
their findings; or it may lead to any progress being suddenly “voided” (i.e., before the
researchers can conclude their experiments) because the ML system is naturally updated
by its developers. Conversely, acquiring permission to use such systems is incredibly hard
for researchers, as it may take months of communication with the owners of such systems
(if they respond) and signing of NDA.
(low benefit) a paper announcing a security vulnerability of a real system may not get
much attention in research (i.e., few citations, e.g., [2, 5, 6, 7]—all having less than 60
citations as of July 2022). This is because the system will be patched, thereby preventing
future works from reproducing the experiments and attempting to “outperform” the
previous attack (unless the “vulnerable” ML system is made publicly accessible).

4.1.3 Conclusions and Recommendation

Most research on the security of Machine Learning overlooks many real-world applications
of ML, and the corresponding evaluations mostly entail benchmarks. Such tunnel-visioning
leads to practitioners in ML security to be confused about the real-world value of our research.

To improve the real-world impact of research on ML security, we advocate better cooper-
ation between researchers and practitioners. Despite both sides ultimately having the same
goal (i.e., improving the security of ML systems), such a goal is difficult to achieve if they
keep working independently.
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4.2.1 Discussed Problems

For enhanced malware detection, machine-learning-based approaches are often applied to
learn from the distribution of a multitude of samples. In the everlasting cat-and-mouse
game, attackers might use blind spots of the classifier’s learned distribution to camouflage
their malware as benign. These artificial modifications cause a distribution shift of malicious
samples, causing, over time, a drop in the models’ performances. The classifier has thus to be
updated to perform well on malicious samples taken from unseen distributions. Retraining
with standard techniques is costly and requires saving all past and future data points for an
indefinite time. Fine-tuning on new data samples has been shown to make the classifier forget
about older training samples, also known as catastrophic forgetting [2]. The computational
overhead and the forgetting of old data make both alternatives not applicable for data with
a constant distribution shift [2].

An alternative approach would be continual learning, which enables learning from sequen-
tial data without forgetting samples from the past [1]. Here the explicit target is to retain
good performances on the old data and achieve good performances on the new test data
without storing all the training data points.

Existing approaches can be divided into three main categories: structural, functional,
and architectural methonds. Structural methods utilize regularization terms that ensure
the learned distribution does not shift arbitrarily while retaining knowledge on the old
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distribution [2]. In the case of functional methods, new distributions are added as new
outputs along the classifier’s lifetime and can be added at any training step without changing
the parameters of the old model [3]. Finally, architectural methods modify a model’s
architecture to learn new feature representations and outputs simultaneously [4].

4.2.2 Possible Approaches

All the proposed methods try to mitigate the issue with heuristics and are only evaluated
empirically. Additionally, the methods are more focused on the occurrence of new classes
and not on the adversarial nature of the problem, especially when focusing on applications
such as malware detection, where there might be malicious parties exploiting blind spots
in the learned distribution. All these problems open the question of whether the proposed
techniques are near-optimal when applied to tractable cases. An optimal continual learning
approach would perform equally with respect to an oracle-learning algorithm if they produce
the same model, if trained incrementally, as when learning from the full training set.

Another issue is that current continual-learning approaches only care about maximizing
or retaining average accuracy. However, this aggregate metric does not care how individual
predictions are treated. While average accuracy may improve over time, even on previous
tasks, some of the previously correctly-classified samples may be misclassified by the updated
model, introducing the problem of model regression [5]. In addition, in the case of malware
detection, it is more important to remember malicious samples, as a false negative sample
can cause much more harm than a false positive. This opens up a potential research direction
that tries to understand whether methods that mitigate model regression and methods that
avoid catastrophic forgetting might be compatible or help each other in satisfying both
conditions.

4.2.3 Conclusions

Lifetime learning for security-critical applications like malware detection requires considering
a malicious party actively trying to circumvent a trained classifier by leveraging blind
spots. Existing methods only focus on empirical methods for general classification tasks or
architectural changes that enable the classification of new classes during the model’s lifetime.
Specific security-related properties, like prioritization to prevent false negative results, are in
general not considered. Also, comparing the results with a model trained from scratch is
neglected and would enable defining an upper bound for the performances of these methods.
A continual learning system for malware classification tasks has, therefore, to be tailored to
such properties to build systems that remain reliable for future distribution shifts and attack
vectors.
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This working group focused on the relationship between literature on explainable machine
learning and cybersecurity. The emphasis was on local explainability methods, a popular
class of methods that are concerned with explaining a model’s predictions on individual
inputs rather than the entire model.

4.3.1 Discussed Problems

In the following, we outline three major research gaps that complicate the applicability of
explanations in security. Firstly, there is a semantic gap between what a human expects,
and what the machine learns. While for images it is relatively clear for a human which
pixels should be highlighted for a particular task, in the security context this becomes much
less clear. A human may expect high-level relationships instead of low-level importance
of which bytes/features contributed more to the classification. Also, there are cases when
aligning explanations to human’s expectations is not desirable: if the model uses shortcuts
(e.g., spurious features) for its prediction, then such shortcuts should be exposed by the
explanation, thereby identifying features that do not match human’s intuition.

Secondly, it remains unclear how an explanation should behave in presence of malicious
inputs (e.g., arising with evasion attacks on machine learning). On one hand, one would
expect small changes in the explanation under adversarial perturbations that lead to small
changes to the predicted class likelihoods. On the other hand, such small perturbations
are often sufficient to flip the predicted class (especially if the input is close to the decision
boundary), and hence, at it might be desirable for the explanation to change more drastically
to “expose” the successful attack. However, some classes of explainability methods have been
shown to be vulnerable to adversarial attacks as well [4] (i.e., adversarial inputs that change
the model’s decision but leave the explanation unchanged), which further complicates the
understanding of their trustworthiness.

Finally, in security and privacy, the domain has a strong influence on the desired explana-
tions. For example, assessing the trustworthiness of medical imaging tasks has very different
implications and requirements than in malware detection.
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4.3.2 Possible Approaches

To address the previously discussed issues and enable explainability for security, we suggest
the following properties which should be addressed by newly designed methods in the area.

Completeness: The method must produce an explanation for any given input and
model. Blind spots need to be eliminated.
Stability: For a given input and a given model, the method always produces the same
explanation1.
Descriptive Accuracy: It answers to the question whether the identified features are
actually important for the given task. If the important features are dropped, we should
expect also a large accuracy drop.
Class-specificity: In the security domain, benign and malicious inputs may depend on
different sets of features or explanations.
Baseline: Random data/models should generate “uniform” explanations. This property
is inspired by results from Adebayo et al. [1], who show that some explanation methods
act similarly to “edge detection” methods even in presence of untrained (i.e., randomized)
models.
Smoothness: Most work on smoothness focuses on inputs: small/large changes in
inputs has small/large change on explanations. Our idea is to have smooth explanations
with respect to the output: small/large changes in output have small/large changes on
explanations. In this way, adversarial manipulations of prediction/confidence should
become visible.

4.3.3 Conclusions

Many explainability methods are not designed with security in mind. This entails a possible
semantic gap for explanations in the security domain, possible security vulnerabilities
(e.g., adversarial examples), but also specifics of the applications domain. Hence, we
advocate for rethinking explainability properties specifically desired in the context of security
and robustness. To this end, we proposed six requirements that should be fullfilled by
explainability in security.
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This working group focused on the potential and problems for complexity measures of
adversarial attacks in robust machine learning.

4.4.1 Background

There are only a handful of model defenses that are able to evade attacks in a white-box
setting substantially better than undefended models. Even attacks against defended models,
however, still often find perturbations that are adversarial from a human point of view.

In many practical cybersecurity scenarios, however, the more relevant question is not
whether an attacker can succeed in principal if the attacker gets infinite time and access to
the model internals. Instead, in real-world settings the more relevant question is whether an
attacker can succeed with only black-box access to the system and within a certain finite
time window or cost budget.

Without a cost budget, the problem condenses down to model stealing, i.e., using black-
box queries to reconstruct the white-box model. Then the attacker can just use (typically
cheap and efficient) white-box attacks to craft adversarial examples. However, so far the
number of samples needed to reconstruct a model is very high.

The group is unaware of a closer analysis as to whether there exist defenses that are
broken in the white-box setting but are still costly to fool in a black-box setting. The general
assumption, however, was that it should be relatively straight-forward to evade decision-based
attacks by adding intrinsic noise into existing models.

In part, the question of attack complexity is yet mostly unexplored because no metric for
attack complexity exists that is commonly agreed on. There are several directions in which
costs can be measured, starting from perturbation budget, compute costs and others (see
next subsection). To provide a suitable measure of progress, however, the community needs
to agree on a common metric and setting to measure how much a certain intervention raises
the attack costs.

4.4.2 How to quantify attack complexity

There are various dimensions and considerations to take into account for measures of attack
complexity, some of which very much depend on the boundary conditions of the cyber security
setting in consideration. A major goal of this working group was to collect and shed light on
these different dimensions:

Number of queries: The average or median number of queries needed to fool a model
could serve as a simple baseline measure for attack complexity.
Cost to attack: An attacker might be able to trade queries with more local processing
(e.g., computing surrogate gradients in a local white-box model). Taking this cost into
account would be interesting to consider the overall attack costs, but there were concerns
how to quantify the attacker costs reliably.
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Cost to evade: Likewise, a defender might be able to evade attacks by certain measures,
e.g., by averaging across several noisy inputs, employing additional detector methods,
tracking inputs to evade finite-gradient methods, and others. These costs could be taken
into account, especially if they are incurred only under attack and not vanilla inputs.
Model knowledge: While in standard attack evaluations one typically only considers
white-box access, we are here interested in the more relevant black-box scenarios where
the attacker only receives partial information about the model like the final decision or the
top-5 confidence scores, but not the actual gradients. The exact amount of information
can greatly influence, e.g., the number of queries need for a successful attack, but are
subject to the specific cybersecurity scenario to be considered.
Perturbation bound: Just as in standard attack evaluations, it is important to specify
perturbation bounds under which an attacker is allowed to operate (like L-infinity bounds
for image classifiers). Typically, these bounds are chosen such that a certain function is
achieved (like keeping human classification).
Query Access: If accounts get rate-limited and/or if accounts are banned if too many
slightly perturbed versions of the same input are submitted (hinting to a finite-difference
attack), then the attacker might be forced to open many accounts to receive the necessary
amount of information to attack a model. In this case, the defence problem reduces down
to a standard fake account problem.
Attack goal: Another important consideration is the attack goal, namely whether the
attacker wants to evade the classifier for a given sample (e.g., copyright for a certain
movie file), or whether the attacker just needs to evade on some samples (e.g., to post
nude images in NSFW channels). In the first case, the mean or median complexity across
a range of given samples is relevant, while in the latter case only the complexity of a
lower percentile is the relevant metric.
Theoretical bounds: Finally, there is an open question whether theoretical bounds for
defenses can be derived with respect to the minimal costs (e.g., number of queries) for
the attacker to craft an adversarial example.

4.4.3 Conclusions

There is no universally relevant complexity measure for adversarial attacks. However, the
discussion converged to the general consensus that the number of queries an attack needs
on average/median on a given sample will be a useful measure in most scenarios. Other
potential components like the cost to evade or attack of typically hard to quantify and should
thus be avoided unless absolutely needed in a certain real-world criterion.

A suitable topic for future research is whether existing attacks with small modifications
(like some intrinsic noise, only decision-based access, maybe some memorization for nearest
neighbour inputs in the past) are already enough to make existing black-box attacks close to
impossible. The group agreed that this direction needs further investigation.
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