26th International Conference on
Principles of Distributed Systems

OPODIS 2022, December 13-15, 2022, Brussels, Belgium

Edited by
Eshcar Hillel

Roberto Palmieri
Etienne Riviere

\\v LIPICS

LIPlcs — Vol. 253 — OPODIS 2022

www.dagstuhl.de/lipics

Editors

Eshcar Hillel
Pliops, Ramat Gan, Israel
eshcar@pliops.com

Roberto Palmieri
Lehigh University, Bethlehem, PA, USA
palmieri@lehigh.edu

Etienne Riviére
UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
etienne.riviereQuclouvain.be

ACM Classification 2012

Theory of computation — Distributed computing models; Theory of computation — Distributed al-
gorithms; Theory of computation — Concurrent algorithms; Theory of computation — Data structures
design and analysis; Networks — Mobile networks; Networks — Wireless access networks; Networks
— Ad hoc networks; Computing methodologies — Distributed algorithms; Security and privacy —
Distributed systems security; Information systems — Distributed storage; Computer systems organization
— Dependable and fault-tolerant systems and networks; Software and its engineering — Distributed
systems organizing principles

ISBN 978-3-95977-265-5

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-265-5.

Publication date
February, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.OPODIS.2022.0
ISBN 978-3-95977-265-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:eshcar@pliops.com
mailto:palmieri@lehigh.edu
mailto:etienne.riviere@uclouvain.be
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.OPODIS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

OPODIS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Eshcar Hillel, Roberto Palmieri, and Etienne Riviérecccccioviin...

Program Committee

Invited Talks

Theory Meets Practice in the Algorand Blockchain
Victor Luchangco e

Recoverable Computing
Panagiota Fatourou i

Realistic Self-Stabilization
Sébastien TITeuil e

Regular Papers

Efficient Wait-Free Queue Algorithms with Multiple Enqueuers and Multiple
Dequeuers
Colette Johnen, Adnane Khattabi, and Alessia Milani

EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation
Gali Sheffi, Pedro Ramalhete, and Erez Petrank

The Step Complexity of Multidimensional Approximate Agreement
Hagit Attiya and Faith Ellen e

Performance Anomalies in Concurrent Data Structure Microbenchmarks
Rosina F. Kharal and Trevor Brown,

Robust and Fast Blockchain State Synchronization
Enrique Fynn, Ethan Buchman, Zarko Milosevic, Robert Soulé,
and Fernando Pedone i

A Privacy-Preserving and Transparent Certification System for Digital Credentials
Rodrigo Q. Saramago, Hein Meling, and Leander N. Jehl

When Is Spring Coming? A Security Analysis of Avalanche Consensus
Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi

Computational Power of a Single Oblivious Mobile Agent in Two-Edge-Connected
Graphs
Taichi Inoue, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

0:vii

0:ix

0:xi

0:xiii

1:1-1:1

2:1-2:2

3:1-3:1

4:1-4:19

5:1-5:22

6:1-6:12

7:1-7:24

8:1-8:22

9:1-9:24

10:1-10:22

11:1-11:18

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

Line Search for an Oblivious Moving Target

Jared Coleman, FEvangelos Kranakis, Danny Krizanc, and Oscar Morales-Ponce ..

Randomized Byzantine Gathering in Rings

John Augustine, Arnhav Datar, and Nischith Shadagopan

Gathering of Mobile Robots with Defected Views
Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura,

Yoshiaki Katayama, and Toshimitsu Masuzawacccciiiiiiiiiiia...

A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with
Limited Visibility
Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann,

and Friedhelm Meyer auf der Heide

New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

Tttai Abraham and Gilad Stern

Quorum Systems in Permissionless Networks

Christian Cachin, Giuliano Losa, and Luca Zanoliniccccoviiii...

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Shir Cohen, Idit Keidar, and Alexander Spiegelman

Modeling Resources in Permissionless Longest-Chain Total-Order Broadcast

Sarah Azouvi, Christian Cachin, Duc V. Le, Marko Vukolié, and Luca Zanolini ..

Computing Power of Hybrid Models in Synchronous Networks
Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport, Martin

Rios-Wilson, and Ioan TOAINCac..ouuoiee e,

Mending Partial Solutions with Few Changes

Darya Melnyk, Jukka Suomela, and Neven Villani

The Impossibility of Approximate Agreement on a Larger Class of Graphs

ShIhao LIt

On the Hierarchy of Distributed Majority Protocols
Petra Berenbrink, Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth,

Dominik Kaaser, and Malin Rauuuuuueeii i

Communication-Efficient BFT Using Small Trusted Hardware to Tolerate
Minority Corruption

Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter

Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting
Datacenter Networks

Neta Rozen-Schiff, Klaus-Tycho Foerster, Stefan Schmid, and David Hay

A Modular Approach to Construct Signature-Free BRB Algorithms Under a
Message Adversary

Timothé Albouy, Davide Frey, Michel Raynal, and Francois Taiani

Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

Yuval Emek, Yuval Gil, and Noga Harlev iiiiiiiiiiiiaa...

Self-Stabilizing Clock Synchronization in Dynamic Networks

Bernadette Charron-Bost and Louis Penet de Monterno

12:1-12:19

13:1-13:16

14:1-14:18

15:1-15:25

16:1-16:18

17:1-17:22

18:1-18:21

19:1-19:23

20:1-20:18

21:1-21:17

22:1-22:20

23:1-23:19

24:1-24:23

25:1-25:23

26:1-26:23

27:1-27:19

28:1-28:17

Preface

The papers in this volume were presented at the 26th International Conference on Principles
of Distributed Systems (OPODIS 2022), held on December 13-15, 2022 in Brussels, Belgium.
OPODIS is an open forum for the exchange of state-of-the-art knowledge about distributed
computing. With strong roots in the theory of distributed systems, OPODIS has expanded its
scope to cover the entire range between the theoretical aspects and practical implementations
of distributed systems, as well as experimental and quantitative assessments.

All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Distributed systems, theory and practice

Blockchain, theory and practice

Cloud and data centers

Communication and mobile networks

Parallelism, concurrency, and multicore systems

Shared and transactional memory, memory management

Dependable systems, system security

Distributed graph algorithms

Middleware and Operating systems

File and storage systems

Distributed ML

Distributed data analytics

Mobile agents and robots

Self-stabilizing, self-organizing and autonomous systems

Game-theory in distributed computing

We received 76 submissions, each of which underwent a double-blind peer review process.
Overall, the quality of the submissions was very high. From the 76 submissions, 25 papers
were selected to be included in these proceedings. To emphasize the system side of distributed
computing, this year in addition to an academic forum the program committee included
representatives from 9 industrial companies. Authors of more than a quarter of the accepted
papers have an industrial affiliation.

The program committee decided to honor Hagit Attiya and Faith Ellen with the
OPODIS 2022 Best Paper Award for their work on “The Step Complexity of Multidi-
mensional Approximate Agreement”. A Best Student Paper Award was presented to Ittai
Abraham and Gilad Stern for their paper “New Dolev-Reischuk Lower Bounds Meet Block-
chain Eclipse Attacks”. In addition, the paper “Computational Power of a Single Oblivious
Mobile Agent in Two-Edge-Connected Graphs” by Taichi Inoue, Naoki Kitamura, Taisuke
Izumi, and Toshimitsu Masuzawa was recognized as a runner-up for the Best Student Paper
Award.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.

This year OPODIS had three distinguished invited keynote speakers: Panagiota Fatourou
(University of Crete), Victor Luchangco (Algorand), and Sébastien Tixeuil (Sorbonne Univer-
sity, CNRS, LIP6, Institut Universitaire de France, France). We warmly thank all the authors

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii

Preface

that submitted their work to OPODIS. We are also grateful to the Program Committee
members for their hard work reviewing papers and their active participation in the online
discussions and the Program Committee meeting. We also thank the external reviewers for
their help with the reviewing process.

The conference organization committee expresses its warmest regards to the sponsors of
the conference: Input-Output (USA), Digital Wallonia and the Walchain network (Belgium),
and the FNRS public research agency (Belgium). Organizing this event would not have been
possible without the dedication of researchers from the Cloud and Large-Scale Computing
group at UCLouvain and from support staff members of UCLouvain’s computer science
department. We also express our thanks to Steering Committee members for their valuable
advice.

November 2022

Eshcar Hillel (Pliops, Israel)
Roberto Palmieri (Lehigh University, USA)
Etienne Riviére (UCLouvain, Belgium)

Program Committee

General Chair

Etienne Riviere (UCLouvain, Belgium)

Program Chairs

Eshcar Hillel (PLIOPS, Israel)
Roberto Palmieri (Lehigh University, USA)

Program Committee

Vitaly Aksenov (ITMO University, Russia)

Emmanuelle Anceaume (CNRS, France)

Masoud Ardekani (Google, USA)

Hagit Attiya (Technion, Israel)

Amir Bar-Or (AWS, USA)

Alysson Bessani (LASIGE and FCUL, Universidade de Lisboa, Portugal)
Silvia Bonomi (Sapienza, University of Rome, Italy)

Anastasia Braginsky (Technion, Israel)

Quentin Bramas (University of Strasbourg, France)

Armando Castaneda (UNAM, Mexico)

Bapi Chatterjee (IIIT-Delhi, India)

Shir Cohen (Technion, Israel)

Antonella Del Pozzo (CEA List, France)

Stéphane Devismes (Université de Picardie Jules Verne, France)
Giuseppe Antonio Di Luna (Sapienza, University of Rome, Italy)
Liran Funaro (IBM, Israel)

Alexey Gotsman (IMDEA Software Institute, Spain)

Guy Gueta (VMware, Israel)

Ahmed Hassan (Lehigh University, USA)

Alex Kogan (Oracle, USA)

Miguel Matos (Universidade de Lisboa & INESC-ID, Portugal)
Dennis Olivetti (Gran Sasso Science Institute, Italy)

Fernando Pedone (Universita della Svizzera italiana, Switzerland)
Sebastiano Peluso (Meta, USA)

Maria Potop-Butucaru (LIP6, Sorbonne University, France)
Paolo Romano (INESC/IST, Portugal)

Valerio Schiavoni (University of Neuchatel, Switzerland)

Rana Shahout (Technion, Israel)

Alexander Spiegelman (Aptos, USA)

Ram Sriharsha (Pinecone, USA)

Pierre Sutra (Télécom SudParis, France)

Sébastien Tixeuil (Sorbonne University & Institut Universitaire de France, France)
Lewis Tseng (Boston College, USA)

Jennifer L. Welch (Texas A&M University, USA)

Haibin Zhang (Beijing Institute of Technology, China)

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Panagiota Fatourou (University of Crete, Greece)

Pascal Felber (Université de Neuchétel, Switzerland) — chair
Paola Flocchini (University of Ottawa, Canada)

Vincent Gramoli (University of Sydney, Australia)

Yannic Maus (TU Graz, Austria)

Alessia Milani (LIS, Aix-Marseille Université, France)

Paolo Romano (INESC-ID, University of Lisbon, Portugal)
Rotem Oshman (Tel-Aviv University, Israel)

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Anais Durand, LIMOS, Université Clermont Auvergne
Weiming Feng, University of Edinburgh

Rati Gelashvili, Aptos

Colette Johnen, Université de Bordeaux, LaBRI, CNRS
Yacov Manevich, IBM

Thomas Nowak, ENS Paris-Saclay

Sergio Rajsbaum, National Autonomous University of Mexico
Noa Schiller, Technion

Corentin Travers, LaBRI

Nitin Vaidya, Georgetown University

Zhuolun Xiang, Aptos

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Theory Meets Practice in the Algorand Blockchain

Victor Luchangco &
Algorand, Inc., Boston, MA, USA

—— Abstract

Robust and effective distributed systems require good theory and good engineering, not separately
but in concert: user requirements and system constraints are not merely implementation details but
often must inform the design of algorithms for such systems. Blockchains are an excellent example.
The heart of a blockchain is its (Byzantine) consensus protocol, and consensus protocols have been
extensively studied in the theory community for decades. But traditional consensus protocols are not
directly applicable to blockchains, which have, or hope to have, millions of participants. Furthermore,
public blockchains, which allow anyone to participate, must have some mechanism to guarantee the
security of the protocol, and traditional fault models do not adequately capture the assumptions of
such mechanisms. In this talk, I will discuss these and other ways in which theory and practice meet
in the context of the Algorand blockchain, and how Algorand is able to achieve high transaction
throughput with low latency.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Computer
systems organization — Dependable and fault-tolerant systems and networks

Keywords and phrases Theory and practice, Design of distributed systems, Blockchain, Consensus,
Algorand

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.1

Category Invited Talk

© Victor Luchangco;
37 licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviére; Article No. 1; pp.1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:victor.luchangco.work@gmail.com
https://doi.org/10.4230/LIPIcs.OPODIS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Recoverable Computing

Panagiota Fatourou &
Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
Department of Computer Science, University of Crete, Heraklion, Greece

—— Abstract

Non-Volatile Memory (NVM) is an emerging memory technology which aims to address the high
computational demands of modern applications and support recovery from crashes. Recovery ensures
that after a crash every executed operation is able to recover and return a correct response. This
talk will shed light on different aspects of the question “How does concurrent computing change
in systems with NVM and what will the impact of persistent memory be on the way we compute?”.
Specifically, this talk addresses the following four main challenges in NVM computing.
Challenge 1: How to appropriately model and abstract fundamental aspects of NVM computing?
The talk will provide an overview of the theoretical framework for NVM computing, including a
discussion of correctness conditions, progress guarantees, failure types, etc.
Challenge 2: How to compute in a recoverable way at no significant cost? The talk will
summarize state-of-the-art generic approaches for deriving recoverable synchronization algorithms,
as well as recoverable implementations of many widely-used concurrent data structures on top
of them. The collection of data structures includes fundamental structures, such as stacks and
queues, but also more complex structures that implement sets, such as linked-lists and trees.
Challenge 3: How to analyze the cost of recoverable algorithms? The talk will present a way of
analyzing the cost of persistence instructions, not by simply counting them but by separating
them into categories based on the impact they have on the performance. This analysis reveals
that understanding the actual persistence cost of an algorithm in machines with NVM, is more
complicated than previously thought, and requires a thorough evaluation, since the performance
impact of different persistence instructions may greatly vary.
Challenge 4: When is Recoverable Consensus Harder Than Consensus? The talk will briefly
discuss the ability of different shared object types to solve recoverable consensus using NVM when
processes crash and recover, and it will compare the difficulty of solving recoverable consensus
to the difficulty of solving the standard consensus problem in a system with halting failures.
For each of the above challenges, the talk will present main results, provide some of the details of
the best-performing techniques, and discuss open problems and directions for further research. Some
of the results that will be discussed in detail have appeared in [1, 2, 3].

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Concurrent algorithms; Theory of computation — Data structures design and
analysis

Keywords and phrases non-volatile memory, persistence, detectability, durability, recoverable al-
gorithms, recoverable data structures, persistent objects, stacks, queues, heaps, synchronization,
universal constructions, software combining, lock-freedom, wait-freedom, persistence cost analysis

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.2
Category Invited Talk

Supplementary Material Text (Slides of the Talk): https://sites.uclouvain.be/0PODIS2022/

© Panagiota Fatourou;

oY licensed under Creative Commons License CC-BY 4.0
26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviére; Article No. 2; pp. 2:1-2:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:faturu@ics.forth.gr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.2
https://sites.uclouvain.be/OPODIS2022/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Recoverable Computing

—— References

1

H. Attiya, O. Ben-Baruch, P. Fatourou, D. Hendler, and E. Kosmas. Detectable recovery of
lock-free data structures. In Proc. of the 2022 PPoPP, pages 262-277, 2022.

C. Delporte-Gallet, P. Fatourou, H. Fauconnier, and E. Ruppert. When is recoverable consensus
harder than consensus? In Proc. of the 2022 PODC, pages 198208, 2022.

P. Fatourou, N. D. Kallimanis, and E. Kosmas. The performance power of software combining
in persistence. In Proc. of the 2022 PPoPP, pages 337-352, 2022 (Best Paper Award).

Realistic Self-Stabilization

Sébastien Tixeuil &
Sorbonne University, CNRS, LIP6, Institut Universitaire de France, Paris, France

—— Abstract

It is almost fifty years since Dijkstra coined the term “self-stabilization” to denote a distributed

system able to recover correct behavior starting from any arbitrary (even unreachable) configuration.
His seminal paper triggered many works since then, exploring over the years new variants of the
original concept, new application domains, and new complexity results. While the huge majority of
those contributions relates to theory, considering computability and worst case complexity issues,
this talk revisits old and recent contributions from the prism of “realistic” distributed systems,
aiming to address the following question: is self-stabilization relevant in practice for distributed
systems?

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Distributed algorithms; Networks — Mobile networks; Computing methodologies
— Distributed algorithms; Security and privacy — Distributed systems security; Computer systems
organization — Dependable and fault-tolerant systems and networks

Keywords and phrases Self-stabilization, Distributed systems, Probable stabilization, Performance
evaluation, Asynchronous message passing, Multi-tolerance

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.3

Category Invited Talk

© Sébastien Tixeuil;
37 licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviére; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Sebastien.Tixeuil@lip6.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Efficient Wait-Free Queue Algorithms with
Multiple Enqueuers and Multiple Dequeuers
Colette Johnen =

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR, 5800, Talence, France

Adnane Khattabi =
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Alessia Milani =
Aix Marseille Univ, CNRS, LIS, UMR 7020, Marseille, France

—— Abstract

Despite the widespread usage of FIFO queues in distributed applications, designing efficient wait-free

implementations of queues remains a challenge. The majority of wait-free queue implementations
restrict either the number of dequeuers or the number of enqueuers that can operate on the queue,
even when they use strong synchronization primitives, like the Compare&Swap. If we do not
limit the number of processes that can perform enqueue and dequeue operations, the best-known
upper bound on the worst case step complexity for a wait-free queue is given by Khanchandani and
Wattenhofer [10]. In particular, they present an implementation of a multiple dequeuer multiple
enqueuer wait-free queue whose worst case step complexity is in O(y/n), where n is the number of
processes. In this work, we investigate whether it is possible to improve this bound. In particular, we
present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where
the worst case step complexity of an Enqueue operation is in O(logn) and of a Dequeue operation
is in O(klogn).

Then, we show that if the semantics of the queue can be relaxed, by allowing concurrent Dequeue
operations to retrieve the same element, then we can achieve O(logn) worst-case step complexity
for both the Enqueue and Dequeue operations.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Distributed algorithms; Theory of computation — Proof complexity

Keywords and phrases Distributed computing, distributed algorithms, FIFO queue, shared memory,
fault tolerance, concurrent data structures, relaxed specifications, complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.4

Funding Adnane Khattabi: Adnane Khattabi is supported by UMI Relax.

1 Introduction

1.1 Context

Shared FIFO queues are an important building block for the design of many concurrent
applications. Many implementations of concurrent FIFO queues have been proposed using
shared objects provided by multiprocessor architectures, e.g. Compare&Swap, registers,
Fetch& Add, and so on. In this paper, we are interested in wait-free implementations of
shared queues where any operation by a correct process is guaranteed to terminate after a
finite number of steps.

The design of efficient wait-free and linearizable concurrent queues is a difficult task
even if the implementation is allowed to rely on strong synchronization primitives like
Compare&Swap. Most implementations limit either the number of enqueuers or the number
of dequeuers. In particular, David [3] presents a wait-free linearizable queue with a single
enqueuer and multiple dequeuers with constant step complexity. Jayanti and Petrovic [9]

© Colette Johnen, Adnane Khattabi, and Alessia Milani;

oY licensed under Creative Commons License CC-BY 4.0
26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Riviere; Article No. 4; pp. 4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:colette.johnen@u-bordeaux.fr
mailto:adnane.khattabi-riffi@u-bordeaux.fr
mailto:alessia.milani@univ-amu.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Queue Algorithms with Multiple Enqueuers and Dequeuers

provide an implementation of a multiple enqueuer, single dequeuer queue with O(logn)
worst-case step complexity, where n is the number of processes. More recently, Khanchandani
and Wattenhofer proposed a multiple enqueuer and multiple dequeuer wait-free queue
implementation where both the enqueue and the dequeue operations have a worst-case step
complexity of O(y/n). In this paper, we investigate if this complexity represents the cost
necessary in order to not limit the number of processes that can apply enqueue and dequeue
operations on the concurrent queue.

By extension of algorithmic ideas from [9], we first show that a better complexity can be
achieved even with multiple enqueuers and multiple dequeuers. In particular, we present
a wait-free linearizable concurrent queue for n processes from which all n are enqueuers
and k£ < n are dequeuers. In our implementation, the step complexity of an Enqueue
operation is in O(logn), while the complexity of a Dequeue operation is in O(klogn). Our
implementation has logarithmic complexity as long as k is a constant. Also, it improves on
the implementation by Khanchandani and Wattenhofer solution as long as k € O(l(;{jn).

Then, we show that both Enqueue and Dequeue operations can have worst-case step
complexity in O(logn), if we allow concurrent Dequeue operations to return the same element.

This relaxed semantic denoted multiplicity has been formalized and introduced for the FIFO
queue in [1]. Table 1 summarizes the state of the art and compares it to the contributions in
this work.

Table 1 Comparing the contributions to state-of-the-art queue implementations (n is the number
of processes and m is the number of enqueued elements).

. . - CAS - | Fetch&Inc -
Step complexity Space complexity Concurrency limit LL/SC Swap
Khanchandani and O(nm) of

Wattenhofer [10] OVn) O(mazx(logn,logm)) registers None Y Y
David [3] o(1) Unbounded Single enqueuer N Y

Jayanti and X
Petrovic [9] O(logn) O(n+m) Single dequeuer Y N
Li [13] O(m) Unbounded 2 dequeuers N Y
Eisenstat [4] O(m) Unbounded 2 enqueuers N Y

Exact queue O(logn) for Enq
(this work) O(klogn) for Deq Unbounded k dequeuers Y Y
Relaxed queue

(this work) O(logn) Unbounded None Y Y

1.2 Other Related Work

Several papers propose wait-free linearizable shared queue implementations that only use
registers and Common2 objects (a particular set of base objects with consensus number 2).
All of them limit the concurrency. In particular, there are queues shared by one or two
dequeuers and any number of enqueuers [8,13] and a queue with a single enqueuer and
any number of dequeuers [3]. In fact, it is a long-standing open problem if it is possible to
implement a wait-free linearizable queue that supports at least three enqueuers and three
dequeuers based only on registers and consensus 2 objects. Among all the aforementioned
queue implementations, only the one by David [3] has sublinear step complexity.

Using Compare&Swap, some practical wait-free queue implementations that support
multiple enqueuers and multiple dequeuers have been proposed [5,12,14,16]. Some of these
implementations are wait-free [5,12,16]; while some are only lock-free [14]. All these solutions
have been evaluated empirically and do not have formal complexity analysis. Nonetheless,
the worst-case step complexity of either the Enqueue or of the Dequeue operation is not
sublinear.

C. Johnen, A. Khattabi, and A. Milani

More recently, relaxed queues have been proposed to overcome the complexity of im-
plementing queues. For instance, in [6], Henzinger et al. formalize the definition of the
c-out-of-order queue where an element at a distance up to ¢ — 1 from the element in the
head of the queue, is allowed to be dequeued. A linearizable and lock-free c-out-of-order
queue with no concurrency constraints is implemented in [11] using the C'AS primitive.
In [1], a lock-free implementation of a queue with multiplicity where only concurrent
Dequeue operations can return the same element, is given under the coherence condition
of set-linearizability. This implementation has no concurrency constraint and uses only
Read/Write primitives. In both these implementations, the Dequeue operation’s worst-case
step complexity is unbounded since it depends on the number of Enqueue operations ex-
ecuted. Regarding practical applications, [2] discusses possible applications of the multiplicity
relaxation such as relaxed work-stealing for parallel SAT solvers.

Simply by considering an execution where a process only executes Enqueue operations,
we can show a lower bound on space complexity in the number of elements present in the
queue. However, besides this space requirement, there has been some work in optimizing the
space complexity of queue implementations using memory reclamation (e.g. [3,16]). We do
not consider the issue of optimizing the space complexity and leave the question for future
work.

Paper organization. In Section 2 we present the model. In Section 3, we describe our
linearizable wait-free multiple enqueuer multiple dequeuer queue implementation together
with its correctness proof. Finally, we present the relaxed queue implementation with
multiplicity in Section 4.

2 Preliminaries

We consider a standard asynchronous shared memory model, consisting of a set P of n
crash-prone processes with unique ids, where all n processes can be enqueuers and k£ < n can
be dequeuers. We also refer to this set of processes as a set of n enqueuers and k dequeuers.

Processes communicate by applying primitive operations to shared base objects. In
particular, we consider registers, Fetch&Inc, CompareéSwap, and Max registers. A register
provides atomic Read/Write primitives. The Fetch&Inc object provides a Fetch&Inc
primitive that increments the value of the object by 1 and returns the previous value. The
Compare& Swap object supports the Read and the CAS primitives. The Read simply
returns the value of the object. The call to C' AS(old, new) writes new into the object only if
the current value of the object is equal to old and in that case, it returns True, otherwise, it
returns False.

The maz register supports two primitives : MaxWrite(v) that writes the value v into the
register, and MazRead() that returns the largest value written so far. Modern architectures
do not implement the max register object. However, our algorithm uses max registers in a
restricted way (essentially, each new value written increments the previous value by one),
thus we can easily implement the MaxWrite(v) and MaxRead() operations by applying a
constant number of primitives on C'AS objects.

The FIFO queue provides the two high-level operations Enqueue(v) and Dequeue(). An
Engueue(v) operation adds the element v at the tail of the queue, while the Dequeue()
operation removes the element at the head of the queue and returns its value, if the queue is
not empty, otherwise it returns a special value e.

4:3

OPODIS 2022

4:4

Queue Algorithms with Multiple Enqueuers and Dequeuers

An implementation of a shared object provides a specific data-representation for the
object from a set of base objects, each of which is assigned an initial value; the implementation
also provides algorithms for each process in P to apply each operation to the object being
implemented. To avoid confusion, we call operations on the base objects primitives and
reserve the term operations for the FIFO queue object being implemented.

An ezxecution of an implementation of a shared object is a sequence of steps (possibly
infinite), where a step is either the application of a primitive operation on a base object or
an invocation/response of an operation of the high-level implemented object. An execution
is well-formed if each process is sequential and if it invokes a new high-level operation only
after it has completed the current one. The steps taken by a process during the execution of
a high-level operation are defined by the algorithms provided by the implementation of the
shared object.

If an operation op; returns before another operation ops is invoked, we say that op;
precedes ops in real-time order, denoted op; <, ops.

Roughly speaking, an implementation is linearizable [8] if each operation appears to take
effect atomically at some point between its invocation and response; it is wait-free [7] if each
process completes its operation if it performs a sufficiently large number of steps.

To define the relaxed FIFO queue, we consider the formalism of set-linearizability provided
n [15]. Roughly speaking, set-linearizability allows for multiple concurrent operations to
be linearized at the same point. Such a linearization point would fall within the execution
interval of all the concurrent operations. The set-linearization of an execution F is defined by
ordering different sets of the operations in F, such that the operations in a set are executed
concurrently. The FIFO queue with multiplicity [1] is a relaxed FIFO queue such that its
specification allows multiple concurrent Dequeue() operations to return the same value.

3 Wait-Free Linearizable Queue

3.1 Algorithm overview

We present hereafter a conceptual overview of the algorithm implementing the k-dequeuer
n-enqueuer concurrent queue.

As depicted in Figure 1, the queue object can be seen as n different sub-queues such
that when an Enqueue(v) operation is invoked by an enqueuer process p, the element v is
enqueued in the corresponding p-th sub-queue. Each enqueued element is associated with a
unique timestamp, used by the dequeuers to select the element to be returned (if any).

In particular, each enqueued element is associated to a pair (st, p) where st is the value
of a shared counter, and p is the id of the process that invoked the corresponding Enqueue
operation. Two processes executing concurrent Enqueue(v) operations can retrieve the same
value from the shared counter, but the process id makes each timestamp unique. Timestamps
are totally ordered according to the lexicographical order. The timestamps associated with
the elements in a given sub-queue reflect the real-time order of Enqueue() operations by the
same process. In particular, if an element e is enqueued in a sub-queue p before another
element €', then e is associated with a smaller timestamp than e’. This also means that the
head of the sub-queue has the smallest timestamp among the other elements in the same
sub-queue.

For the sake of complexity, the timestamps are organized in a tree structure where the
n leaves correspond to the timestamps of the elements at the head of the corresponding n
sub-queues, and the root stores the smallest timestamp among the ones in the leaves. Our
construction is similar to the one proposed by Jayanti et al. in [9].

C. Johnen, A. Khattabi, and A. Milani

weee 1] 0 [0 1 IO | O

head[p] tail[p]

Figure 1 Data structure for the k-dequeuer n-enqueuer queue implementation.

Thus, a Dequeue operation simply reads the root of the tree and returns the corresponding
element in the appropriate sub-queue in the same manner that this is done in the single
dequeuer queue in [9]. However, to support k different dequeuer processes, we need to
manage the concurrency between their operations. This is done by introducing a helping
mechanism for the Dequeue operation. In particular, each Dequeue operation has a unique
sequence number. Before executing its instance of Dequeue operation, a process will first
ensure that the instances with smaller sequence numbers are not more pending. If they are,
the process will execute the steps necessary for them to finish, and it will update the tree
before executing its own instance of Dequeue. Since there are k dequeuer processes, during
an instance of Dequeue, there could be at most £ — 1 other processes executing a Dequeue
operation concurrently.

3.2 Algorithm Pseudocode

In the implementation of the multiple dequeuer and multiple enqueuer queue in Algorithms 1—
2, we use two main data structures: a two-dimensional array of registers, called items, where
each row p together with two integers head[p] and tail[p] represents the sub-queue of process
p; and a balanced binary tree T with n leaves where each node is a CAS object used to
stores the timestamps of enqueued elements.

The sub-queue p contains the elements enqueued by process p that have not been dequeued,
i.e. the current sub-queue p is defined by its values h and t of the max register head[p] and
the register tail[p| respectively. If h = t, the sub-queue p is empty. Otherwise, it is the
ordered list of ¢t — h elements : items|[p][h],-- - ,items[p][t — 1].

Fach Enqueue operation executed by process p is associated with a unique timestamp
(st,p) where st is an integer obtained from the counter engCounter, and p is the process id.
The empty queue is associated with a special timestamp (e, —1), and we consider that € > 4
Vi € N. items[p|[i]| = (val, (st,p)) means that the i-th Enqueue operation by p has enqueued
the value val, and that this Enqueue has the timestamp (st,p).

The smallest timestamp of a sub-queue p is the timestamp value of itemns[p][h] where h
is the current value of the head of the sub-queue. This timestamp is stored in the p-th leaf
of the tree T associated with p, called p-leaf. The following details the different functions of
the implementation in Algorithms 1-2.

Enqueue(v): when process p calls an instance of Enqueue(v), it starts by constructing the

corresponding timestamp (st,p) by reading the value of engCounter. Process p will then

write (v, (st,p)) to item[p][t] where ¢ is the value of tail[p]. Then, it updates the value of
tail[p] to t + 1. Afterward, the value st + 1 is written to the max register engCounter to

4:5

OPODIS 2022

4:6 Queue Algorithms with Multiple Enqueuers and Dequeuers

Algorithm 1 Wait-free queue implementation (pseudo-code for process p).

Shared variables
engCounter : Max register object, initially 0.
deqCounter :Fetch&Inc object, initially 1.
head[n] : Array of Max register objects, initially O.
tail[n] : Array of registers where each register contains an integer, initially 0.
items[n][- - -] : Two dimensional array of registers, each register contains the uplet
(val, (st,dt)) initially (L, (L, L1)).
7 T : binary tree of CAS objects with n leaves, each node contains the pair (st,id), all
initially (e, —1).
8 deqOpsl---] : Array of CAS objects, initially (L, L). deqOps[j] = (i,id) means that
the j-th Dequeue operation returns items[id][i].val if id # —1, otherwise the
operation returns e.

(=22, S N R I

9 Function Enqgueue(v)
10 st + enqCounter.MaxRead)()
11 t < taillp]
12 items[pl [t] + (v, (st,p))
13 tail[p] < taillp] +1
14 enqCounter.MaxWrite(st + 1)
15 Propagate(p)
16 return True

17 Function Dequeue()
18 num < deqCounter.Fetch&Inc()
19 for (i < max(l,num —k + 1);i < num; i+ +) do

20 if deqOps[i].Read() = (L, L) then
21 if ¢ > 1 then

22 ‘ UpdateTree(i — 1)

23 FinishDeq(1)

24 (j,id) + deqOps [num].Read()
25 if id = —1 then

26 ‘ return €

27 else

28 (ret,—) < items[id] [j]
29 return ret

ensure that all subsequent Enqueue operations will have a greater timestamp than (st,p).
Finally, process p calls Propagate(p) to update the timestamps in the nodes of the tree T
from the p-leaf to the root, if necessary.

Refresh(node, isLeaf): this function is invoked during the execution of an instance of
Propagate to reset the timestamp stored in a node. If the boolean isLea f is equal to True,
the current node represents a leaf of the tree T'. In this case, the operation computes
the minimum timestamp in the corresponding sub-queue. This value is either (1) (e, —1)
if the sub-queue is empty (line 16 of Algorithm 2); or a timestamp (2) (st’,¢)(line 18
of Algorithm 2). If isLeaf = False then node is not a leaf; the operation reads the

C.

Johnen, A. Khattabi, and A. Milani

Algorithm 2 Auxiliary functions to the queue implementation.

1

© o N O U N W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30

31
32
33
34
35

Function Propagate(id)

currentNode <+ leaf(T,id)

if |Refresh(currentNode, True) then

‘ Refresh(currentNode, True)

do
currentNode < parent(currentNode)
if |Refresh(currentNode, False) then

‘ Refresh(currentNode, False)
while currentNode # root(T)

Function Refresh(node,isLeaf)
(st,id) < node.Read|()

if isLeaf then

h < head[id].MazRead()

t + tail[id]
if h =t then
‘ ret <— node.C AS((st,id), (e, —1))
else
(—, (st',—)) «+ items[id] [h]
ret < node.CAS((st,id), (st',id))
return ret
else

(min__st,min__id) <read minimum timestamp in current node’s children
return node.CAS((st,id), (min__st,min_id))

Function FinishDeq(num)
(—,id) < root(T).Read()
if id = —1 then

| deqOps[num].CAS((L, 1), (e, —1))
else
h + head[id].MazRead)()
deqOps [num] .CAS((L, 1), (h,id))

Function UpdateTree(num)
(j,id) < deqOps [num].Read()
if id # —1 then
head[id].MaxWrite(j + 1)
Propagate(id)

timestamps stored in the children of the current node to compute the minimal timestamp.

Then, in both cases, the operation executes the C'AS primitive on node to write the
timestamp and returns the resulting boolean.

Propagate(id): updates the nodes of the tree T' in the path from the id-leaf node to
the root. Specifically, the function relies on calls to Refresh while traversing the path
to update each individual node. To ensure that the value written into a node is up to
date, the call to the function Refresh(node, —) is repeated if the first call fails because a

4:7

OPODIS 2022

4:8

Queue Algorithms with Multiple Enqueuers and Dequeuers

concurrent instance 7 of Refresh(node, —) might have written an outdated value since rq
started before the call to Refresh(node, —) in Propagate(id). However, after the second
call to Refresh(node,—), we are certain that the value written is up to date because it
can only be written by an instance invoked after Propagate(id). This technique is used
in the implementation of the single dequeuer multiple enqueuer queue in [9].

Dequeue: First, an instance of the Dequeue operation executed by a process p, computes
its unique sequence number num by applying a Fetch&Inc primitive on deqCounter.
Then, p executes the helping mechanism to assist any pending Dequeue operation with
a sequence number ¢ € [maz(l,num — k + 1),num]) in increasing order of i. If the
operation with the index i is still pending (i.e. deqOps]i] is still set to its initial value),
p executes UpdateTree(i — 1) if ¢ > 1, to ensure that the root of the tree is updated to
an accurate value. Then, p executes FinishDeq(i) to decide on the operation’s return
value in deqOps[i]. After the return values have been decided for all Dequeue operations
with indexes in [max (1, num — k + 1), num]), p reads deqOps[num| = (i,j) and returns
items|[j][i].val, otherwise p returns e.

FinishDeq(num): The array DeqOps stores the information regarding the return values
of each Dequeue operation. A call to FinishDeq with the parameter num decides a value
and attempts to write it to DegOps[num] using a C'AS primitive.FinishDeq(num) reads
the timestamp at the root of the tree T : (—,id). And if id = —1 (i.e. the queue is
empty), then (e, —1) is written to DeqOps[num]|. Otherwise, the value (h,id) is written to
DeqOps[num] where h is the value of the head of the sub-queue id. In either scenario, if
the C'AS instruction fails, another process has succeeded in executing a C'AS instruction
on DeqOps|[num| and the return value for the corresponding Dequeue has been decided.
UpdateTree(num): A simple function call that encapsulates the steps necessary before
executing the Dequeue operation with the sequence number num + 1. If the Dequeue
operation with the sequence number num returns e, then there are no additional steps
necessary. Otherwise, it is necessary to update the head of the sub-queue id from which
the return value was retrieved; followed by a call to the function Propagate(id) to update
the tree accordingly.

3.3 Proof

In this section, we establish that Algorithms 1-2 are a wait-free implementation of a k-
dequeuer multi-enqueuer queue. We also establish that an Enqueue operation has a worst-case
step complexity of O(logn) and a Dequeue operation has a worst-case step complexity of
O(klogn).

3.3.1 Algorithm properties

Each Degueue operation is associated with a unique sequence number that is the value
obtained by applying the Fetch&Inc primitive on deqCounter at line 18 of Algorithm 1.

» Lemma 1. A total order between Dequeue operations is provided by their sequence number.
This order respects the real-time order.

Proof. Let deq; and degs be two Dequeue operations by process p; and ps respectively. Let
seqp be the sequence number of deq; and seqo be the sequence number of degs. We prove
that if deqy precedes deqs in real-time order, then seq; < seqs.

deq, completes before deqo is invoked, thus p; executes line 18 of Algorithm 1 before the
invocation of degs by ps. The proof follows from the fact that deqCounter is a linearizable
Fetch&Inc object. <

C. Johnen, A. Khattabi, and A. Milani

The Dequeue operation with the sequence number 7 is complete at a given configuration C' if
DeqOpsli] # (L, 1) (i.e.; the value of DeqOpsi] at C is not the initial value). Otherwise, it
is incomplete at C.

» Observation 2. Let deq denote a Dequeue operation with the sequence number i. Any call
to FinishDeq(i) is executed after the invocation of deq.

» Lemma 3. Fiz an execution E and let C be any configuration of E. Yh > 0 and Vi > 1, if
the h+i-th Dequeue operation exists and it is complete at C, then the i-th Dequeue operation
is complete at C'.

Proof. Consider the first configuration C where the h + i-th Dequeue operation is complete,
i.e.; deqOps|i + h] # (L, L). Assume by contradiction that deqOps[i] has its initial value
at C.

The value of deqOpsli] is only set during the execution of FinishDeq(i) at line 30 or 27
of Algorithm 2. According to the condition in the for-loop (line 19 of Algorithm 1), only a
Dequeue operation with a sequence number i +h <[<1i+ h+ k — 1 may change the value
of deqOpsli + h].

According to Lemma 1, the Dequeue operations with a sequence number smaller than or
equal to [, and in particular € [i,1], have started at the configuration immediately before
the value of deqOps[i + h] is changed by the I-th Dequeue operation. Also, the Dequeue
operations with a sequence number num € [i,i+k— 1] could not have returned at C' otherwise

deqOpsl[i] # (L, 1) at C (contradicting our assumption). This is trivially true for num = i.

For num € [i + 1,7+ k — 1], and since the condition at line 20 of Algorithm 1 is true for
deqOpsli], the Dequeue operation with sequence number num will execute the FinishDeq(i)
function and set deqOpsli] # (L, L) before it returns.

Thus, [should be greater than i + k& — 1. But this means that there are k + 1 pending
Dequeue operations, which contradicts the fact that we can have at most k& pending Dequeue
operations. There is a contradiction. |

As deqOps[num] is updated only during the execution of the function FinishDeg(num); the
following observation is a consequence of Lemma 3.

» Observation 4. Before the first execution of FinishDeq(i + h), FinishDeq(i) has been
ezecuted.

Each Enqueue operation op has a unique timestamp composed of an integer obtained
by reading the Max register enqCounter during the execution of line 10, and the ¢d of the
process that executed the operation op.

» Observation 5. For each p, the timestamps of the elements written in the sub-array
items[p] are monotonically increasing in accordance with their index in the array. In other
terms, we have items[p|[i].ts < items[p][i + 1].ts.

At any given configuration, the sub-queue of process p is the sub-array of items[p] in the
range items|p|[head[p]. M axRead()], ..., items[p|[tail[p] — 1].

» Lemma 6. Let eng; and engs be two Enqueue operations such that engy ends before engs
is invoked. Let (st1,idy) be the timestamp of engy and (st2,ids) be the time stamp of engs.
We have st < sto.

Proof. After the execution of line 14 of Algorithm 1 during eng;, any value returned by a
engCounter.Mazx Read is greater or equal to st; + 1. The claim follows from the fact that
engs executes line 10 of Algorithm 1 after eng; returned. <

4:9

OPODIS 2022

4:10

Queue Algorithms with Multiple Enqueuers and Dequeuers

We say that the i-th Enqueue operation by a process p matches the Dequeue operation with
sequence number j, if deqOps[j] = (i,p) at some point in the execution.

Meaning, if the Dequeue operation returns, it returns the element enqueued by the i-th
Engqueue operation of process p (i.e. items[p] [i]).

» Lemma 7. An Enqueue operation has at most a single matching Dequeue operation.

Proof. Let eng be the i-th Enqueue operation by a process p. Assume by contradiction that
there are two Dequeue operations, deq; and degy that match enq. Let j; and jo be their
corresponding sequence numbers. Then, deqOps[j;| = deqOps[je] = (i,p). By Lemma 1 and
without loss of generality, let j; < ja. Because of the Observation 4, FinishDeg(j1) returned
before FinishDeq(jz2) is invoked. According to lines 22 to 23 of Algorithm 1, UpdateTree(j1)
is executed before FinishDeq(j1 + 1). This means that the value ¢ 4+ 1 is written in the Max
register head[p] at line 34 before that a process read it during the FinishDeq(j; +1). And
since jo > j; + 1, the claim follows. <

» Lemma 8. Let eng denote the i-th Enqueue operation by a process p. Let ts = (st,p) be
the timestamp of enq. Let s be any node in the tree T in the path from the p-th leaf to the
root of the tree. At any configuration C after enq ends and such that deqOps[j] # (i,p) for
each j > 0, we have that the timestamyp stored at s is smaller than or equal to ts at C.

Proof. After eng, we have that tail[p] > i + 1, because engq is the i-th Enqueue operation
executed by p.

We first prove that after eng, head[p] is smaller than or equal to i as long as deqOps|l] #
(4,p) for any I > 0.

The value of head[p] is updated only during the execution of the function UpdateTree
(line 34 of Algorithm 2). In particular, the value of head[p] is set to a value j + 1 where
j is the value read from some deqOps[num]| at line 32. Also, the value of deqOps[num)] is
updated only during the execution of the function FinishDeq(num) with a value read from
head[p] (lines 29 and 30). We prove by induction on j that if the value written in head[p] is
Jj then, all values 0, ...j — 1 have been previously written in head[p] (in increasing order)
and to some deqOps[num]. The base case is for j = 1. Consider the first MaxWrite() that
writes 1 to head[p] and let ¢ be the process applying this primitive. According to line 34, ¢
has read the value (0,p) from some deqOps[num], which has been updated with a value read
from head[p]. The claim follows.

Suppose this is true for a value j, we show that the claim holds for 7 + 1. Consider
the first process, denoted ¢, that writes j + 1 into head[p]. ¢ has read (j,p) from some
deqOps[num] at line 32. By inductive hypothesis, and by the linearizability of head[p] all the
values 0, ... j have been written in head[p] and all the values 0,...j — 1 have been written in
some deqOps[num]. The claim follows.

Hence, head[p] < i as long as for any [> 0, we have deqOps[l] # (i,p). This is because
to write the value ¢ 4+ 1 (and then any greater value), a process has to read deqOps[l] = (i, p)
for some [.

Base case kK = 0. s is the p-th leaf. Since eng completes, there is at least one instance of
Propagate(p) performed after that process p has written the value 4 in tail[p]. The value of
head|[p] is smaller than or equal to i, so any instance of Propagate(p) that changes the value
of s before C, will write a timestamp read in items[p][j] for some j > i. By Observation 5,
the timestamp read is smaller than or equal to ts = (st, p).

C. Johnen, A. Khattabi, and A. Milani

It remains to prove that after an instance of Propagate(p) completes, denoted prop, a
value smaller than or equal to ¢ has been written in the leaf corresponding to p. An instance
of Propagate(p) performs two Refresh(s). Each Refresh(s) reads the state of s, th