
26th International Conference on
Principles of Distributed Systems

OPODIS 2022, December 13–15, 2022, Brussels, Belgium

Edited by

Eshcar Hillel
Roberto Palmieri
Etienne Rivière

LIPIcs – Vo l . 253 – OPODIS 2022 www.dagstuh l .de/ l ip i c s

Editors

Eshcar Hillel
Pliops, Ramat Gan, Israel
eshcar@pliops.com

Roberto Palmieri
Lehigh University, Bethlehem, PA, USA
palmieri@lehigh.edu

Etienne Rivière
UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
etienne.riviere@uclouvain.be

ACM Classification 2012
Theory of computation → Distributed computing models; Theory of computation → Distributed al-
gorithms; Theory of computation → Concurrent algorithms; Theory of computation → Data structures
design and analysis; Networks → Mobile networks; Networks → Wireless access networks; Networks
→ Ad hoc networks; Computing methodologies → Distributed algorithms; Security and privacy →
Distributed systems security; Information systems → Distributed storage; Computer systems organization
→ Dependable and fault-tolerant systems and networks; Software and its engineering → Distributed
systems organizing principles

ISBN 978-3-95977-265-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-265-5.

Publication date
February, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.OPODIS.2022.0
ISBN 978-3-95977-265-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:eshcar@pliops.com
mailto:palmieri@lehigh.edu
mailto:etienne.riviere@uclouvain.be
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.OPODIS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-265-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

OPODIS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Eshcar Hillel, Roberto Palmieri, and Etienne Rivière . 0:vii

Program Committee
. 0:ix

Steering Committee
. 0:xi

External Reviewers
. 0:xiii

Invited Talks

Theory Meets Practice in the Algorand Blockchain
Victor Luchangco . 1:1–1:1

Recoverable Computing
Panagiota Fatourou . 2:1–2:2

Realistic Self-Stabilization
Sébastien Tixeuil . 3:1–3:1

Regular Papers

Efficient Wait-Free Queue Algorithms with Multiple Enqueuers and Multiple
Dequeuers

Colette Johnen, Adnane Khattabi, and Alessia Milani . 4:1–4:19

EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation
Gali Sheffi, Pedro Ramalhete, and Erez Petrank . 5:1–5:22

The Step Complexity of Multidimensional Approximate Agreement
Hagit Attiya and Faith Ellen . 6:1–6:12

Performance Anomalies in Concurrent Data Structure Microbenchmarks
Rosina F. Kharal and Trevor Brown . 7:1–7:24

Robust and Fast Blockchain State Synchronization
Enrique Fynn, Ethan Buchman, Zarko Milosevic, Robert Soulé,
and Fernando Pedone . 8:1–8:22

A Privacy-Preserving and Transparent Certification System for Digital Credentials
Rodrigo Q. Saramago, Hein Meling, and Leander N. Jehl . 9:1–9:24

When Is Spring Coming? A Security Analysis of Avalanche Consensus
Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi 10:1–10:22

Computational Power of a Single Oblivious Mobile Agent in Two-Edge-Connected
Graphs

Taichi Inoue, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa 11:1–11:18
26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Line Search for an Oblivious Moving Target
Jared Coleman, Evangelos Kranakis, Danny Krizanc, and Oscar Morales-Ponce . . 12:1–12:19

Randomized Byzantine Gathering in Rings
John Augustine, Arnhav Datar, and Nischith Shadagopan . 13:1–13:16

Gathering of Mobile Robots with Defected Views
Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura,
Yoshiaki Katayama, and Toshimitsu Masuzawa . 14:1–14:18

A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with
Limited Visibility

Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann,
and Friedhelm Meyer auf der Heide . 15:1–15:25

New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks
Ittai Abraham and Gilad Stern . 16:1–16:18

Quorum Systems in Permissionless Networks
Christian Cachin, Giuliano Losa, and Luca Zanolini . 17:1–17:22

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words
Shir Cohen, Idit Keidar, and Alexander Spiegelman . 18:1–18:21

Modeling Resources in Permissionless Longest-Chain Total-Order Broadcast
Sarah Azouvi, Christian Cachin, Duc V. Le, Marko Vukolić, and Luca Zanolini . . 19:1–19:23

Computing Power of Hybrid Models in Synchronous Networks
Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport, Martín
Ríos-Wilson, and Ioan Todinca . 20:1–20:18

Mending Partial Solutions with Few Changes
Darya Melnyk, Jukka Suomela, and Neven Villani . 21:1–21:17

The Impossibility of Approximate Agreement on a Larger Class of Graphs
Shihao Liu . 22:1–22:20

On the Hierarchy of Distributed Majority Protocols
Petra Berenbrink, Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth,
Dominik Kaaser, and Malin Rau . 23:1–23:19

Communication-Efficient BFT Using Small Trusted Hardware to Tolerate
Minority Corruption

Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter 24:1–24:23

Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting
Datacenter Networks

Neta Rozen-Schiff, Klaus-Tycho Foerster, Stefan Schmid, and David Hay 25:1–25:23

A Modular Approach to Construct Signature-Free BRB Algorithms Under a
Message Adversary

Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani 26:1–26:23

Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach
Yuval Emek, Yuval Gil, and Noga Harlev . 27:1–27:19

Self-Stabilizing Clock Synchronization in Dynamic Networks
Bernadette Charron-Bost and Louis Penet de Monterno . 28:1–28:17

Preface

The papers in this volume were presented at the 26th International Conference on Principles
of Distributed Systems (OPODIS 2022), held on December 13–15, 2022 in Brussels, Belgium.
OPODIS is an open forum for the exchange of state-of-the-art knowledge about distributed
computing. With strong roots in the theory of distributed systems, OPODIS has expanded its
scope to cover the entire range between the theoretical aspects and practical implementations
of distributed systems, as well as experimental and quantitative assessments.

All aspects of distributed systems are within the scope of OPODIS: theory, specification,
design, performance, and system building. Specifically, this year, the topics of interest at
OPODIS included:

Distributed systems, theory and practice
Blockchain, theory and practice
Cloud and data centers
Communication and mobile networks
Parallelism, concurrency, and multicore systems
Shared and transactional memory, memory management
Dependable systems, system security
Distributed graph algorithms
Middleware and Operating systems
File and storage systems
Distributed ML
Distributed data analytics
Mobile agents and robots
Self-stabilizing, self-organizing and autonomous systems
Game-theory in distributed computing

We received 76 submissions, each of which underwent a double-blind peer review process.
Overall, the quality of the submissions was very high. From the 76 submissions, 25 papers
were selected to be included in these proceedings. To emphasize the system side of distributed
computing, this year in addition to an academic forum the program committee included
representatives from 9 industrial companies. Authors of more than a quarter of the accepted
papers have an industrial affiliation.

The program committee decided to honor Hagit Attiya and Faith Ellen with the
OPODIS 2022 Best Paper Award for their work on “The Step Complexity of Multidi-
mensional Approximate Agreement”. A Best Student Paper Award was presented to Ittai
Abraham and Gilad Stern for their paper “New Dolev-Reischuk Lower Bounds Meet Block-
chain Eclipse Attacks”. In addition, the paper “Computational Power of a Single Oblivious
Mobile Agent in Two-Edge-Connected Graphs” by Taichi Inoue, Naoki Kitamura, Taisuke
Izumi, and Toshimitsu Masuzawa was recognized as a runner-up for the Best Student Paper
Award.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget.

This year OPODIS had three distinguished invited keynote speakers: Panagiota Fatourou
(University of Crete), Victor Luchangco (Algorand), and Sébastien Tixeuil (Sorbonne Univer-
sity, CNRS, LIP6, Institut Universitaire de France, France). We warmly thank all the authors
26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

that submitted their work to OPODIS. We are also grateful to the Program Committee
members for their hard work reviewing papers and their active participation in the online
discussions and the Program Committee meeting. We also thank the external reviewers for
their help with the reviewing process.

The conference organization committee expresses its warmest regards to the sponsors of
the conference: Input-Output (USA), Digital Wallonia and the Walchain network (Belgium),
and the FNRS public research agency (Belgium). Organizing this event would not have been
possible without the dedication of researchers from the Cloud and Large-Scale Computing
group at UCLouvain and from support staff members of UCLouvain’s computer science
department. We also express our thanks to Steering Committee members for their valuable
advice.

November 2022

Eshcar Hillel (Pliops, Israel)
Roberto Palmieri (Lehigh University, USA)
Etienne Rivière (UCLouvain, Belgium)

Program Committee

General Chair
Etienne Rivière (UCLouvain, Belgium)

Program Chairs
Eshcar Hillel (PLIOPS, Israel)
Roberto Palmieri (Lehigh University, USA)

Program Committee
Vitaly Aksenov (ITMO University, Russia)
Emmanuelle Anceaume (CNRS, France)
Masoud Ardekani (Google, USA)
Hagit Attiya (Technion, Israel)
Amir Bar-Or (AWS, USA)
Alysson Bessani (LASIGE and FCUL, Universidade de Lisboa, Portugal)
Silvia Bonomi (Sapienza, University of Rome, Italy)
Anastasia Braginsky (Technion, Israel)
Quentin Bramas (University of Strasbourg, France)
Armando Castaneda (UNAM, Mexico)
Bapi Chatterjee (IIIT-Delhi, India)
Shir Cohen (Technion, Israel)
Antonella Del Pozzo (CEA List, France)
Stéphane Devismes (Université de Picardie Jules Verne, France)
Giuseppe Antonio Di Luna (Sapienza, University of Rome, Italy)
Liran Funaro (IBM, Israel)
Alexey Gotsman (IMDEA Software Institute, Spain)
Guy Gueta (VMware, Israel)
Ahmed Hassan (Lehigh University, USA)
Alex Kogan (Oracle, USA)
Miguel Matos (Universidade de Lisboa & INESC-ID, Portugal)
Dennis Olivetti (Gran Sasso Science Institute, Italy)
Fernando Pedone (Università della Svizzera italiana, Switzerland)
Sebastiano Peluso (Meta, USA)
Maria Potop-Butucaru (LIP6, Sorbonne University, France)
Paolo Romano (INESC/IST, Portugal)
Valerio Schiavoni (University of Neuchâtel, Switzerland)
Rana Shahout (Technion, Israel)
Alexander Spiegelman (Aptos, USA)
Ram Sriharsha (Pinecone, USA)
Pierre Sutra (Télécom SudParis, France)
Sébastien Tixeuil (Sorbonne University & Institut Universitaire de France, France)
Lewis Tseng (Boston College, USA)
Jennifer L. Welch (Texas A&M University, USA)
Haibin Zhang (Beijing Institute of Technology, China)

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Panagiota Fatourou (University of Crete, Greece)
Pascal Felber (Université de Neuchâtel, Switzerland) – chair
Paola Flocchini (University of Ottawa, Canada)
Vincent Gramoli (University of Sydney, Australia)
Yannic Maus (TU Graz, Austria)
Alessia Milani (LIS, Aix-Marseille Université, France)
Paolo Romano (INESC-ID, University of Lisbon, Portugal)
Rotem Oshman (Tel-Aviv University, Israel)

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Anaïs Durand, LIMOS, Université Clermont Auvergne
Weiming Feng, University of Edinburgh
Rati Gelashvili, Aptos
Colette Johnen, Université de Bordeaux, LaBRI, CNRS
Yacov Manevich, IBM
Thomas Nowak, ENS Paris-Saclay
Sergio Rajsbaum, National Autonomous University of Mexico
Noa Schiller, Technion
Corentin Travers, LaBRI
Nitin Vaidya, Georgetown University
Zhuolun Xiang, Aptos

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Theory Meets Practice in the Algorand Blockchain
Victor Luchangco !

Algorand, Inc., Boston, MA, USA

Abstract
Robust and effective distributed systems require good theory and good engineering, not separately
but in concert: user requirements and system constraints are not merely implementation details but
often must inform the design of algorithms for such systems. Blockchains are an excellent example.
The heart of a blockchain is its (Byzantine) consensus protocol, and consensus protocols have been
extensively studied in the theory community for decades. But traditional consensus protocols are not
directly applicable to blockchains, which have, or hope to have, millions of participants. Furthermore,
public blockchains, which allow anyone to participate, must have some mechanism to guarantee the
security of the protocol, and traditional fault models do not adequately capture the assumptions of
such mechanisms. In this talk, I will discuss these and other ways in which theory and practice meet
in the context of the Algorand blockchain, and how Algorand is able to achieve high transaction
throughput with low latency.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computer
systems organization → Dependable and fault-tolerant systems and networks

Keywords and phrases Theory and practice, Design of distributed systems, Blockchain, Consensus,
Algorand

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.1

Category Invited Talk

© Victor Luchangco;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.luchangco.work@gmail.com
https://doi.org/10.4230/LIPIcs.OPODIS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Recoverable Computing
Panagiota Fatourou !

Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
Department of Computer Science, University of Crete, Heraklion, Greece

Abstract
Non-Volatile Memory (NVM) is an emerging memory technology which aims to address the high
computational demands of modern applications and support recovery from crashes. Recovery ensures
that after a crash every executed operation is able to recover and return a correct response. This
talk will shed light on different aspects of the question “How does concurrent computing change
in systems with NVM and what will the impact of persistent memory be on the way we compute?”.
Specifically, this talk addresses the following four main challenges in NVM computing.

Challenge 1: How to appropriately model and abstract fundamental aspects of NVM computing?
The talk will provide an overview of the theoretical framework for NVM computing, including a
discussion of correctness conditions, progress guarantees, failure types, etc.
Challenge 2: How to compute in a recoverable way at no significant cost? The talk will
summarize state-of-the-art generic approaches for deriving recoverable synchronization algorithms,
as well as recoverable implementations of many widely-used concurrent data structures on top
of them. The collection of data structures includes fundamental structures, such as stacks and
queues, but also more complex structures that implement sets, such as linked-lists and trees.
Challenge 3: How to analyze the cost of recoverable algorithms? The talk will present a way of
analyzing the cost of persistence instructions, not by simply counting them but by separating
them into categories based on the impact they have on the performance. This analysis reveals
that understanding the actual persistence cost of an algorithm in machines with NVM, is more
complicated than previously thought, and requires a thorough evaluation, since the performance
impact of different persistence instructions may greatly vary.
Challenge 4: When is Recoverable Consensus Harder Than Consensus? The talk will briefly
discuss the ability of different shared object types to solve recoverable consensus using NVM when
processes crash and recover, and it will compare the difficulty of solving recoverable consensus
to the difficulty of solving the standard consensus problem in a system with halting failures.

For each of the above challenges, the talk will present main results, provide some of the details of
the best-performing techniques, and discuss open problems and directions for further research. Some
of the results that will be discussed in detail have appeared in [1, 2, 3].

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Concurrent algorithms; Theory of computation → Data structures design and
analysis

Keywords and phrases non-volatile memory, persistence, detectability, durability, recoverable al-
gorithms, recoverable data structures, persistent objects, stacks, queues, heaps, synchronization,
universal constructions, software combining, lock-freedom, wait-freedom, persistence cost analysis

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.2

Category Invited Talk

Supplementary Material Text (Slides of the Talk): https://sites.uclouvain.be/OPODIS2022/

© Panagiota Fatourou;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faturu@ics.forth.gr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.2
https://sites.uclouvain.be/OPODIS2022/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Recoverable Computing

References
1 H. Attiya, O. Ben-Baruch, P. Fatourou, D. Hendler, and E. Kosmas. Detectable recovery of

lock-free data structures. In Proc. of the 2022 PPoPP, pages 262–277, 2022.
2 C. Delporte-Gallet, P. Fatourou, H. Fauconnier, and E. Ruppert. When is recoverable consensus

harder than consensus? In Proc. of the 2022 PODC, pages 198–208, 2022.
3 P. Fatourou, N. D. Kallimanis, and E. Kosmas. The performance power of software combining

in persistence. In Proc. of the 2022 PPoPP, pages 337–352, 2022 (Best Paper Award).

Realistic Self-Stabilization
Sébastien Tixeuil #

Sorbonne University, CNRS, LIP6, Institut Universitaire de France, Paris, France

Abstract
It is almost fifty years since Dijkstra coined the term “self-stabilization” to denote a distributed
system able to recover correct behavior starting from any arbitrary (even unreachable) configuration.
His seminal paper triggered many works since then, exploring over the years new variants of the
original concept, new application domains, and new complexity results. While the huge majority of
those contributions relates to theory, considering computability and worst case complexity issues,
this talk revisits old and recent contributions from the prism of “realistic” distributed systems,
aiming to address the following question: is self-stabilization relevant in practice for distributed
systems?

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms; Networks → Mobile networks; Computing methodologies
→ Distributed algorithms; Security and privacy → Distributed systems security; Computer systems
organization → Dependable and fault-tolerant systems and networks

Keywords and phrases Self-stabilization, Distributed systems, Probable stabilization, Performance
evaluation, Asynchronous message passing, Multi-tolerance

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.3

Category Invited Talk

© Sébastien Tixeuil;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Sebastien.Tixeuil@lip6.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Efficient Wait-Free Queue Algorithms with
Multiple Enqueuers and Multiple Dequeuers
Colette Johnen !

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Adnane Khattabi !

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, France

Alessia Milani !

Aix Marseille Univ, CNRS, LIS, UMR 7020, Marseille, France

Abstract
Despite the widespread usage of FIFO queues in distributed applications, designing efficient wait-free
implementations of queues remains a challenge. The majority of wait-free queue implementations
restrict either the number of dequeuers or the number of enqueuers that can operate on the queue,
even when they use strong synchronization primitives, like the Compare&Swap. If we do not
limit the number of processes that can perform enqueue and dequeue operations, the best-known
upper bound on the worst case step complexity for a wait-free queue is given by Khanchandani and
Wattenhofer [10]. In particular, they present an implementation of a multiple dequeuer multiple
enqueuer wait-free queue whose worst case step complexity is in O(

√
n), where n is the number of

processes. In this work, we investigate whether it is possible to improve this bound. In particular, we
present a wait-free FIFO queue implementation that supports n enqueuers and k dequeuers where
the worst case step complexity of an Enqueue operation is in O(log n) and of a Dequeue operation
is in O(k log n).

Then, we show that if the semantics of the queue can be relaxed, by allowing concurrent Dequeue
operations to retrieve the same element, then we can achieve O(log n) worst-case step complexity
for both the Enqueue and Dequeue operations.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms; Theory of computation → Proof complexity

Keywords and phrases Distributed computing, distributed algorithms, FIFO queue, shared memory,
fault tolerance, concurrent data structures, relaxed specifications, complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.4

Funding Adnane Khattabi: Adnane Khattabi is supported by UMI Relax.

1 Introduction

1.1 Context
Shared FIFO queues are an important building block for the design of many concurrent
applications. Many implementations of concurrent FIFO queues have been proposed using
shared objects provided by multiprocessor architectures, e.g. Compare&Swap, registers,
Fetch&Add, and so on. In this paper, we are interested in wait-free implementations of
shared queues where any operation by a correct process is guaranteed to terminate after a
finite number of steps.

The design of efficient wait-free and linearizable concurrent queues is a difficult task
even if the implementation is allowed to rely on strong synchronization primitives like
Compare&Swap. Most implementations limit either the number of enqueuers or the number
of dequeuers. In particular, David [3] presents a wait-free linearizable queue with a single
enqueuer and multiple dequeuers with constant step complexity. Jayanti and Petrovic [9]

© Colette Johnen, Adnane Khattabi, and Alessia Milani;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:colette.johnen@u-bordeaux.fr
mailto:adnane.khattabi-riffi@u-bordeaux.fr
mailto:alessia.milani@univ-amu.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Queue Algorithms with Multiple Enqueuers and Dequeuers

provide an implementation of a multiple enqueuer, single dequeuer queue with O(log n)
worst-case step complexity, where n is the number of processes. More recently, Khanchandani
and Wattenhofer proposed a multiple enqueuer and multiple dequeuer wait-free queue
implementation where both the enqueue and the dequeue operations have a worst-case step
complexity of O(

√
n). In this paper, we investigate if this complexity represents the cost

necessary in order to not limit the number of processes that can apply enqueue and dequeue
operations on the concurrent queue.

By extension of algorithmic ideas from [9], we first show that a better complexity can be
achieved even with multiple enqueuers and multiple dequeuers. In particular, we present
a wait-free linearizable concurrent queue for n processes from which all n are enqueuers
and k ≤ n are dequeuers. In our implementation, the step complexity of an Enqueue
operation is in O(log n), while the complexity of a Dequeue operation is in O(k log n). Our
implementation has logarithmic complexity as long as k is a constant. Also, it improves on
the implementation by Khanchandani and Wattenhofer solution as long as k ∈ O(

√
n

log n).
Then, we show that both Enqueue and Dequeue operations can have worst-case step

complexity in O(log n), if we allow concurrent Dequeue operations to return the same element.
This relaxed semantic denoted multiplicity has been formalized and introduced for the FIFO
queue in [1]. Table 1 summarizes the state of the art and compares it to the contributions in
this work.

Table 1 Comparing the contributions to state-of-the-art queue implementations (n is the number
of processes and m is the number of enqueued elements).

Step complexity Space complexity Concurrency limit CAS -
LL/SC

Fetch&Inc -
Swap

Khanchandani and
Wattenhofer [10] O(

√
n) O(nm) of

O(max(log n, log m)) registers None Y Y

David [3] O(1) Unbounded Single enqueuer N Y
Jayanti and
Petrovic [9] O(log n) O(n + m) Single dequeuer Y N

Li [13] O(m) Unbounded 2 dequeuers N Y
Eisenstat [4] O(m) Unbounded 2 enqueuers N Y
Exact queue
(this work)

O(log n) for Enq
O(k log n) for Deq Unbounded k dequeuers Y Y

Relaxed queue
(this work) O(log n) Unbounded None Y Y

1.2 Other Related Work
Several papers propose wait-free linearizable shared queue implementations that only use
registers and Common2 objects (a particular set of base objects with consensus number 2).
All of them limit the concurrency. In particular, there are queues shared by one or two
dequeuers and any number of enqueuers [8, 13] and a queue with a single enqueuer and
any number of dequeuers [3]. In fact, it is a long-standing open problem if it is possible to
implement a wait-free linearizable queue that supports at least three enqueuers and three
dequeuers based only on registers and consensus 2 objects. Among all the aforementioned
queue implementations, only the one by David [3] has sublinear step complexity.

Using Compare&Swap, some practical wait-free queue implementations that support
multiple enqueuers and multiple dequeuers have been proposed [5, 12, 14, 16]. Some of these
implementations are wait-free [5,12,16]; while some are only lock-free [14]. All these solutions
have been evaluated empirically and do not have formal complexity analysis. Nonetheless,
the worst-case step complexity of either the Enqueue or of the Dequeue operation is not
sublinear.

C. Johnen, A. Khattabi, and A. Milani 4:3

More recently, relaxed queues have been proposed to overcome the complexity of im-
plementing queues. For instance, in [6], Henzinger et al. formalize the definition of the
c-out-of-order queue where an element at a distance up to c− 1 from the element in the
head of the queue, is allowed to be dequeued. A linearizable and lock-free c-out-of-order
queue with no concurrency constraints is implemented in [11] using the CAS primitive.
In [1], a lock-free implementation of a queue with multiplicity where only concurrent
Dequeue operations can return the same element, is given under the coherence condition
of set-linearizability. This implementation has no concurrency constraint and uses only
Read/Write primitives. In both these implementations, the Dequeue operation’s worst-case
step complexity is unbounded since it depends on the number of Enqueue operations ex-
ecuted. Regarding practical applications, [2] discusses possible applications of the multiplicity
relaxation such as relaxed work-stealing for parallel SAT solvers.

Simply by considering an execution where a process only executes Enqueue operations,
we can show a lower bound on space complexity in the number of elements present in the
queue. However, besides this space requirement, there has been some work in optimizing the
space complexity of queue implementations using memory reclamation (e.g. [3, 16]). We do
not consider the issue of optimizing the space complexity and leave the question for future
work.

Paper organization. In Section 2 we present the model. In Section 3, we describe our
linearizable wait-free multiple enqueuer multiple dequeuer queue implementation together
with its correctness proof. Finally, we present the relaxed queue implementation with
multiplicity in Section 4.

2 Preliminaries

We consider a standard asynchronous shared memory model, consisting of a set P of n

crash-prone processes with unique ids, where all n processes can be enqueuers and k ≤ n can
be dequeuers. We also refer to this set of processes as a set of n enqueuers and k dequeuers.

Processes communicate by applying primitive operations to shared base objects. In
particular, we consider registers, Fetch&Inc, Compare&Swap, and Max registers. A register
provides atomic Read/Write primitives. The Fetch&Inc object provides a Fetch&Inc

primitive that increments the value of the object by 1 and returns the previous value. The
Compare&Swap object supports the Read and the CAS primitives. The Read simply
returns the value of the object. The call to CAS(old, new) writes new into the object only if
the current value of the object is equal to old and in that case, it returns True, otherwise, it
returns False.

The max register supports two primitives : MaxWrite(v) that writes the value v into the
register, and MaxRead() that returns the largest value written so far. Modern architectures
do not implement the max register object. However, our algorithm uses max registers in a
restricted way (essentially, each new value written increments the previous value by one),
thus we can easily implement the MaxWrite(v) and MaxRead() operations by applying a
constant number of primitives on CAS objects.

The FIFO queue provides the two high-level operations Enqueue(v) and Dequeue(). An
Enqueue(v) operation adds the element v at the tail of the queue, while the Dequeue()
operation removes the element at the head of the queue and returns its value, if the queue is
not empty, otherwise it returns a special value ϵ.

OPODIS 2022

4:4 Queue Algorithms with Multiple Enqueuers and Dequeuers

An implementation of a shared object provides a specific data-representation for the
object from a set of base objects, each of which is assigned an initial value; the implementation
also provides algorithms for each process in P to apply each operation to the object being
implemented. To avoid confusion, we call operations on the base objects primitives and
reserve the term operations for the FIFO queue object being implemented.

An execution of an implementation of a shared object is a sequence of steps (possibly
infinite), where a step is either the application of a primitive operation on a base object or
an invocation/response of an operation of the high-level implemented object. An execution
is well-formed if each process is sequential and if it invokes a new high-level operation only
after it has completed the current one. The steps taken by a process during the execution of
a high-level operation are defined by the algorithms provided by the implementation of the
shared object.

If an operation op1 returns before another operation op2 is invoked, we say that op1
precedes op2 in real-time order, denoted op1 <ro op2.

Roughly speaking, an implementation is linearizable [8] if each operation appears to take
effect atomically at some point between its invocation and response; it is wait-free [7] if each
process completes its operation if it performs a sufficiently large number of steps.

To define the relaxed FIFO queue, we consider the formalism of set-linearizability provided
in [15]. Roughly speaking, set-linearizability allows for multiple concurrent operations to
be linearized at the same point. Such a linearization point would fall within the execution
interval of all the concurrent operations. The set-linearization of an execution E is defined by
ordering different sets of the operations in E, such that the operations in a set are executed
concurrently. The FIFO queue with multiplicity [1] is a relaxed FIFO queue such that its
specification allows multiple concurrent Dequeue() operations to return the same value.

3 Wait-Free Linearizable Queue

3.1 Algorithm overview
We present hereafter a conceptual overview of the algorithm implementing the k-dequeuer
n-enqueuer concurrent queue.

As depicted in Figure 1, the queue object can be seen as n different sub-queues such
that when an Enqueue(v) operation is invoked by an enqueuer process p, the element v is
enqueued in the corresponding p-th sub-queue. Each enqueued element is associated with a
unique timestamp, used by the dequeuers to select the element to be returned (if any).

In particular, each enqueued element is associated to a pair (st, p) where st is the value
of a shared counter, and p is the id of the process that invoked the corresponding Enqueue
operation. Two processes executing concurrent Enqueue(v) operations can retrieve the same
value from the shared counter, but the process id makes each timestamp unique. Timestamps
are totally ordered according to the lexicographical order. The timestamps associated with
the elements in a given sub-queue reflect the real-time order of Enqueue() operations by the
same process. In particular, if an element e is enqueued in a sub-queue p before another
element e′, then e is associated with a smaller timestamp than e′. This also means that the
head of the sub-queue has the smallest timestamp among the other elements in the same
sub-queue.

For the sake of complexity, the timestamps are organized in a tree structure where the
n leaves correspond to the timestamps of the elements at the head of the corresponding n

sub-queues, and the root stores the smallest timestamp among the ones in the leaves. Our
construction is similar to the one proposed by Jayanti et al. in [9].

C. Johnen, A. Khattabi, and A. Milani 4:5

Figure 1 Data structure for the k-dequeuer n-enqueuer queue implementation.

Thus, a Dequeue operation simply reads the root of the tree and returns the corresponding
element in the appropriate sub-queue in the same manner that this is done in the single
dequeuer queue in [9]. However, to support k different dequeuer processes, we need to
manage the concurrency between their operations. This is done by introducing a helping
mechanism for the Dequeue operation. In particular, each Dequeue operation has a unique
sequence number. Before executing its instance of Dequeue operation, a process will first
ensure that the instances with smaller sequence numbers are not more pending. If they are,
the process will execute the steps necessary for them to finish, and it will update the tree
before executing its own instance of Dequeue. Since there are k dequeuer processes, during
an instance of Dequeue, there could be at most k − 1 other processes executing a Dequeue
operation concurrently.

3.2 Algorithm Pseudocode
In the implementation of the multiple dequeuer and multiple enqueuer queue in Algorithms 1–
2, we use two main data structures: a two-dimensional array of registers, called items, where
each row p together with two integers head[p] and tail[p] represents the sub-queue of process
p; and a balanced binary tree T with n leaves where each node is a CAS object used to
stores the timestamps of enqueued elements.

The sub-queue p contains the elements enqueued by process p that have not been dequeued,
i.e. the current sub-queue p is defined by its values h and t of the max register head[p] and
the register tail[p] respectively. If h = t, the sub-queue p is empty. Otherwise, it is the
ordered list of t− h elements : items[p][h], · · · , items[p][t− 1].

Each Enqueue operation executed by process p is associated with a unique timestamp
(st, p) where st is an integer obtained from the counter enqCounter, and p is the process id.
The empty queue is associated with a special timestamp (ϵ,−1), and we consider that ϵ > i

∀i ∈ N. items[p][i] = (val, (st, p)) means that the i-th Enqueue operation by p has enqueued
the value val, and that this Enqueue has the timestamp (st, p).

The smallest timestamp of a sub-queue p is the timestamp value of items[p][h] where h

is the current value of the head of the sub-queue. This timestamp is stored in the p-th leaf
of the tree T associated with p, called p-leaf. The following details the different functions of
the implementation in Algorithms 1–2.

Enqueue(v): when process p calls an instance of Enqueue(v), it starts by constructing the
corresponding timestamp (st, p) by reading the value of enqCounter. Process p will then
write (v, (st, p)) to item[p][t] where t is the value of tail[p]. Then, it updates the value of
tail[p] to t + 1. Afterward, the value st + 1 is written to the max register enqCounter to

OPODIS 2022

4:6 Queue Algorithms with Multiple Enqueuers and Dequeuers

Algorithm 1 Wait-free queue implementation (pseudo-code for process p).

1 Shared variables
2 enqCounter : Max register object, initially 0.
3 deqCounter :Fetch&Inc object, initially 1.
4 head[n] : Array of Max register objects, initially 0.
5 tail[n] : Array of registers where each register contains an integer, initially 0.
6 items[n][· · ·] : Two dimensional array of registers, each register contains the uplet

(val, (st, it)) initially (⊥, (⊥,⊥)).
7 T : binary tree of CAS objects with n leaves, each node contains the pair (st, id), all

initially (ϵ,−1).
8 deqOps[· · ·] : Array of CAS objects, initially (⊥,⊥). deqOps[j] = (i, id) means that

the j-th Dequeue operation returns items[id][i].val if id ̸= −1, otherwise the
operation returns ϵ.

9 Function Enqueue(v)
10 st← enqCounter.MaxRead()
11 t← tail[p]
12 items[p][t]← (v, (st, p))
13 tail[p]← tail[p] + 1
14 enqCounter.MaxWrite(st + 1)
15 Propagate(p)
16 return True

17 Function Dequeue()
18 num← deqCounter.F etch&Inc()
19 for (i← max(1, num− k + 1); i ≤ num; i + +) do
20 if deqOps[i].Read() = (⊥,⊥) then
21 if i > 1 then
22 UpdateTree(i− 1)
23 FinishDeq(i)
24 (j, id)← deqOps[num].Read()
25 if id = −1 then
26 return ϵ

27 else
28 (ret,−)← items[id][j]
29 return ret

ensure that all subsequent Enqueue operations will have a greater timestamp than (st, p).
Finally, process p calls Propagate(p) to update the timestamps in the nodes of the tree T

from the p-leaf to the root, if necessary.
Refresh(node, isLeaf): this function is invoked during the execution of an instance of
Propagate to reset the timestamp stored in a node. If the boolean isLeaf is equal to True,
the current node represents a leaf of the tree T . In this case, the operation computes
the minimum timestamp in the corresponding sub-queue. This value is either (1) (ϵ,−1)
if the sub-queue is empty (line 16 of Algorithm 2); or a timestamp (2) (st′, i)(line 18
of Algorithm 2). If isLeaf = False then node is not a leaf; the operation reads the

C. Johnen, A. Khattabi, and A. Milani 4:7

Algorithm 2 Auxiliary functions to the queue implementation.

1 Function Propagate(id)
2 currentNode← leaf(T, id)
3 if !Refresh(currentNode, True) then
4 Refresh(currentNode, True)
5 do
6 currentNode← parent(currentNode)
7 if !Refresh(currentNode, False) then
8 Refresh(currentNode, False)
9 while currentNode ̸= root(T)

10 Function Refresh(node, isLeaf)
11 (st, id)← node.Read()
12 if isLeaf then
13 h← head[id].MaxRead()
14 t← tail[id]
15 if h = t then
16 ret← node.CAS((st, id), (ϵ,−1))
17 else
18 (−, (st′,−))← items[id][h]
19 ret← node.CAS((st, id), (st′, id))
20 return ret

21 else
22 (min_st, min_id)←read minimum timestamp in current node’s children
23 return node.CAS((st, id), (min_st, min_id))

24 Function FinishDeq(num)
25 (−, id)← root(T).Read()
26 if id = −1 then
27 deqOps[num].CAS((⊥,⊥), (ϵ,−1))
28 else
29 h← head[id].MaxRead()
30 deqOps[num].CAS((⊥,⊥), (h, id))

31 Function UpdateTree(num)
32 (j, id)← deqOps[num].Read()
33 if id ̸= −1 then
34 head[id].MaxWrite(j + 1)
35 Propagate(id)

timestamps stored in the children of the current node to compute the minimal timestamp.
Then, in both cases, the operation executes the CAS primitive on node to write the
timestamp and returns the resulting boolean.
Propagate(id): updates the nodes of the tree T in the path from the id-leaf node to
the root. Specifically, the function relies on calls to Refresh while traversing the path
to update each individual node. To ensure that the value written into a node is up to
date, the call to the function Refresh(node,−) is repeated if the first call fails because a

OPODIS 2022

4:8 Queue Algorithms with Multiple Enqueuers and Dequeuers

concurrent instance r1 of Refresh(node,−) might have written an outdated value since r1
started before the call to Refresh(node,−) in Propagate(id). However, after the second
call to Refresh(node,−), we are certain that the value written is up to date because it
can only be written by an instance invoked after Propagate(id). This technique is used
in the implementation of the single dequeuer multiple enqueuer queue in [9].
Dequeue: First, an instance of the Dequeue operation executed by a process p, computes
its unique sequence number num by applying a Fetch&Inc primitive on deqCounter.
Then, p executes the helping mechanism to assist any pending Dequeue operation with
a sequence number i ∈ [max(1, num − k + 1), num]) in increasing order of i. If the
operation with the index i is still pending (i.e. deqOps[i] is still set to its initial value),
p executes UpdateTree(i− 1) if i > 1, to ensure that the root of the tree is updated to
an accurate value. Then, p executes FinishDeq(i) to decide on the operation’s return
value in deqOps[i]. After the return values have been decided for all Dequeue operations
with indexes in [max(1, num− k + 1), num]), p reads deqOps[num] = (i, j) and returns
items[j][i].val, otherwise p returns ϵ.
FinishDeq(num): The array DeqOps stores the information regarding the return values
of each Dequeue operation. A call to FinishDeq with the parameter num decides a value
and attempts to write it to DeqOps[num] using a CAS primitive.FinishDeq(num) reads
the timestamp at the root of the tree T : (−, id). And if id = −1 (i.e. the queue is
empty), then (ϵ,−1) is written to DeqOps[num]. Otherwise, the value (h, id) is written to
DeqOps[num] where h is the value of the head of the sub-queue id. In either scenario, if
the CAS instruction fails, another process has succeeded in executing a CAS instruction
on DeqOps[num] and the return value for the corresponding Dequeue has been decided.
UpdateTree(num): A simple function call that encapsulates the steps necessary before
executing the Dequeue operation with the sequence number num + 1. If the Dequeue
operation with the sequence number num returns ϵ, then there are no additional steps
necessary. Otherwise, it is necessary to update the head of the sub-queue id from which
the return value was retrieved; followed by a call to the function Propagate(id) to update
the tree accordingly.

3.3 Proof
In this section, we establish that Algorithms 1–2 are a wait-free implementation of a k-
dequeuer multi-enqueuer queue. We also establish that an Enqueue operation has a worst-case
step complexity of O(log n) and a Dequeue operation has a worst-case step complexity of
O(k log n).

3.3.1 Algorithm properties
Each Dequeue operation is associated with a unique sequence number that is the value
obtained by applying the Fetch&Inc primitive on deqCounter at line 18 of Algorithm 1.
▶ Lemma 1. A total order between Dequeue operations is provided by their sequence number.
This order respects the real-time order.
Proof. Let deq1 and deq2 be two Dequeue operations by process p1 and p2 respectively. Let
seq1 be the sequence number of deq1 and seq2 be the sequence number of deq2. We prove
that if deq1 precedes deq2 in real-time order, then seq1 < seq2.

deq1 completes before deq2 is invoked, thus p1 executes line 18 of Algorithm 1 before the
invocation of deq2 by p2. The proof follows from the fact that deqCounter is a linearizable
Fetch&Inc object. ◀

C. Johnen, A. Khattabi, and A. Milani 4:9

The Dequeue operation with the sequence number i is complete at a given configuration C if
DeqOps[i] ̸= (⊥,⊥) (i.e.; the value of DeqOps[i] at C is not the initial value). Otherwise, it
is incomplete at C.

▶ Observation 2. Let deq denote a Dequeue operation with the sequence number i. Any call
to FinishDeq(i) is executed after the invocation of deq.

▶ Lemma 3. Fix an execution E and let C be any configuration of E. ∀h > 0 and ∀i ≥ 1, if
the h + i-th Dequeue operation exists and it is complete at C, then the i-th Dequeue operation
is complete at C.

Proof. Consider the first configuration C where the h + i-th Dequeue operation is complete,
i.e.; deqOps[i + h] ̸= (⊥,⊥). Assume by contradiction that deqOps[i] has its initial value
at C.

The value of deqOps[i] is only set during the execution of FinishDeq(i) at line 30 or 27
of Algorithm 2. According to the condition in the for-loop (line 19 of Algorithm 1), only a
Dequeue operation with a sequence number i + h ≤ l ≤ i + h + k − 1 may change the value
of deqOps[i + h].

According to Lemma 1, the Dequeue operations with a sequence number smaller than or
equal to l, and in particular ∈ [i, l], have started at the configuration immediately before
the value of deqOps[i + h] is changed by the l-th Dequeue operation. Also, the Dequeue
operations with a sequence number num ∈ [i, i+k−1] could not have returned at C otherwise
deqOps[i] ̸= (⊥,⊥) at C (contradicting our assumption). This is trivially true for num = i.
For num ∈ [i + 1, i + k − 1], and since the condition at line 20 of Algorithm 1 is true for
deqOps[i], the Dequeue operation with sequence number num will execute the FinishDeq(i)
function and set deqOps[i] ̸= (⊥,⊥) before it returns.

Thus, l should be greater than i + k − 1. But this means that there are k + 1 pending
Dequeue operations, which contradicts the fact that we can have at most k pending Dequeue
operations. There is a contradiction. ◀

As deqOps[num] is updated only during the execution of the function FinishDeq(num); the
following observation is a consequence of Lemma 3.

▶ Observation 4. Before the first execution of FinishDeq(i + h), FinishDeq(i) has been
executed.

Each Enqueue operation op has a unique timestamp composed of an integer obtained
by reading the Max register enqCounter during the execution of line 10, and the id of the
process that executed the operation op.

▶ Observation 5. For each p, the timestamps of the elements written in the sub-array
items[p] are monotonically increasing in accordance with their index in the array. In other
terms, we have items[p][i].ts < items[p][i + 1].ts.

At any given configuration, the sub-queue of process p is the sub-array of items[p] in the
range items[p][head[p].MaxRead()], ..., items[p][tail[p]− 1].

▶ Lemma 6. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before enq2
is invoked. Let (st1, id1) be the timestamp of enq1 and (st2, id2) be the time stamp of enq2.
We have st1 < st2.

Proof. After the execution of line 14 of Algorithm 1 during enq1, any value returned by a
enqCounter.MaxRead is greater or equal to st1 + 1. The claim follows from the fact that
enq2 executes line 10 of Algorithm 1 after enq1 returned. ◀

OPODIS 2022

4:10 Queue Algorithms with Multiple Enqueuers and Dequeuers

We say that the i-th Enqueue operation by a process p matches the Dequeue operation with
sequence number j, if deqOps[j] = (i, p) at some point in the execution.

Meaning, if the Dequeue operation returns, it returns the element enqueued by the i-th
Enqueue operation of process p (i.e. items[p][i]).

▶ Lemma 7. An Enqueue operation has at most a single matching Dequeue operation.

Proof. Let enq be the i-th Enqueue operation by a process p. Assume by contradiction that
there are two Dequeue operations, deq1 and deq2 that match enq. Let j1 and j2 be their
corresponding sequence numbers. Then, deqOps[j1] = deqOps[j2] = (i, p). By Lemma 1 and
without loss of generality, let j1 < j2. Because of the Observation 4, FinishDeq(j1) returned
before FinishDeq(j2) is invoked. According to lines 22 to 23 of Algorithm 1, UpdateTree(j1)
is executed before FinishDeq(j1 + 1). This means that the value i + 1 is written in the Max
register head[p] at line 34 before that a process read it during the FinishDeq(j1 + 1). And
since j2 ≥ j1 + 1, the claim follows. ◀

▶ Lemma 8. Let enq denote the i-th Enqueue operation by a process p. Let ts = (st, p) be
the timestamp of enq. Let s be any node in the tree T in the path from the p-th leaf to the
root of the tree. At any configuration C after enq ends and such that deqOps[j] ̸= (i, p) for
each j ≥ 0, we have that the timestamp stored at s is smaller than or equal to ts at C.

Proof. After enq, we have that tail[p] ≥ i + 1, because enq is the i-th Enqueue operation
executed by p.

We first prove that after enq, head[p] is smaller than or equal to i as long as deqOps[l] ̸=
(i, p) for any l ≥ 0.

The value of head[p] is updated only during the execution of the function UpdateTree

(line 34 of Algorithm 2). In particular, the value of head[p] is set to a value j + 1 where
j is the value read from some deqOps[num] at line 32. Also, the value of deqOps[num] is
updated only during the execution of the function FinishDeq(num) with a value read from
head[p] (lines 29 and 30). We prove by induction on j that if the value written in head[p] is
j then, all values 0, . . . j − 1 have been previously written in head[p] (in increasing order)
and to some deqOps[num]. The base case is for j = 1. Consider the first MaxWrite() that
writes 1 to head[p] and let q be the process applying this primitive. According to line 34, q

has read the value (0, p) from some deqOps[num], which has been updated with a value read
from head[p]. The claim follows.

Suppose this is true for a value j, we show that the claim holds for j + 1. Consider
the first process, denoted q, that writes j + 1 into head[p]. q has read (j, p) from some
deqOps[num] at line 32. By inductive hypothesis, and by the linearizability of head[p] all the
values 0, . . . j have been written in head[p] and all the values 0, . . . j − 1 have been written in
some deqOps[num]. The claim follows.

Hence, head[p] ≤ i as long as for any l ≥ 0, we have deqOps[l] ̸= (i, p). This is because
to write the value i + 1 (and then any greater value), a process has to read deqOps[l] = (i, p)
for some l.

Base case k = 0. s is the p-th leaf. Since enq completes, there is at least one instance of
Propagate(p) performed after that process p has written the value i in tail[p]. The value of
head[p] is smaller than or equal to i, so any instance of Propagate(p) that changes the value
of s before C, will write a timestamp read in items[p][j] for some j ≥ i. By Observation 5,
the timestamp read is smaller than or equal to ts = (st, p).

C. Johnen, A. Khattabi, and A. Milani 4:11

It remains to prove that after an instance of Propagate(p) completes, denoted prop, a
value smaller than or equal to i has been written in the leaf corresponding to p. An instance
of Propagate(p) performs two Refresh(s). Each Refresh(s) reads the state of s, then the
head[p] and the corresponding timestamp ts and then applies a CAS to s to modify its value
with ts. Suppose that both Refresh(s) fail (and in particular the second one), otherwise the
claim is trivial. The second Refresh(s) fails because another an instance of Propagate(p),
denoted prop′ successfully applied a CAS on s. But prop′ has read head[p] after tail[p] is
set to i. Meaning that it has read a value smaller than or equal to i and it writes in s the
corresponding timestamp that is smaller than or equal to ts.

Induction case k + 1 ≤ log n. Suppose that the claim holds for j ≤ log n : the timestamp
stored at sj is smaller than or equal to ts where sj is in the path from the p-th leaf to the
root at a height of j ≤ k. We prove that the claim holds for the parent of sj , denoted sj+1.

Any instance of Propagate(p) updates the nodes in the path from the p-th leaf to the
root, one by one, starting from the leaf and following the path to the root. Also, immediately
after enq completes, there is at least one Propagate(p) instance that passed through all the
nodes in this path. Consider, the first Propagate(p) that updated node sj+1 after sj has
been updated, denoted prop.

Observe that any process that executes the Refresh function on node sj+1 writes the
minimum timestamp it reads from the children of sj+1. And that the second Refresh(sj+1)
fails only if another Propagate(p) has modified the state of this node with a value smaller
than or equal to the value at sj read by prop. ◀

▶ Lemma 9. Let enq be an Enqueue operation with the timestamp ts that enqueued items[p][i].
If (i, p) was written to deqOps[j] by a process q, then the execution of line 25 of Algorithm 2
to read ts by q was executed after the invocation of enq.

Proof. enq is the i-th enqueue operation by p. Let deq be the Dequeue operation executed
by q that retrieves ts from the root of the tree (Line 25 of Algorithm 2) before writing (i, p)
to deqOps[j]. enq must execute the line 13 of Algorithm 1 before ts can be propagated in
the tree according to the code of function Refresh. The claim follows. ◀

▶ Lemma 10. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before enq2
is invoked. If enq2 has a matching Dequeue operation deq2, then enq1 also has a matching
Dequeue operation deq1.

Proof. By contradiction, we suppose that deq2 exists and deq1 does not. We denote ts1
and ts2 the timestamps associated with enq1 and enq2 respectively and num2 the sequence
number of deq2. From Lemma 6, ts1 < ts2 because enq1 ends before enq2 begins.

And since enq1 does not have a matching Dequeue, there is no j ≥ 0 such that deqOps[j] =
(i, p) where items[i][p] is enqueued by enq1. Therefore, from Lemma 8, for any node s in the
path in T from the p-th leaf to the root, the timestamp stored at s is smaller than or equal
to ts1. In particular, for the root of the tree, the timestamp stored is smaller or equal to
ts1. From Lemma 9, the step of line 25 of Algorithm 2 to read the root of the tree before
writing deqOps[num2] is executed after the invocation of enq2 which is after the invocation
of enq1. Meaning that during this step, the timestamp at the root was smaller or equal to
ts1 contradicting the fact that ts1 < ts2. ◀

▶ Lemma 11. Let enq1 and enq2 be two Enqueue operations such that enq1 ends before
enq2 is invoked and let deq1 and deq2 be the matching Dequeue operations to enq1 and enq2
respectively. We have that deq1 has a lower sequence number than deq2.

OPODIS 2022

4:12 Queue Algorithms with Multiple Enqueuers and Dequeuers

Proof. We denote num1 and num2 the sequence numbers of deq1 and deq2 respectively, and
ts1 and ts2 the timestamps of enq1 and enq2 respectively. By contradiction, we suppose that
num1 > num2. Since enq1 ends before enq2 begins we have that ts1 < ts2 (Lemma 6).

And since deqOps[i] are written in an increasing order of i according to Lemma 3, we
have that deqOps[num2] is written before deqOps[num1]. However, from Lemma 8, as long
as deqOps[num1] has its initial value, then the timestamp stored at the root is smaller than
or equal to ts1. At the execution of line 25 of Algorithm 2 to compute the final value of
deqOps[num2] , the root has a timestamp smaller or equal to ts1; contradicting the fact that
ts1 < ts2. ◀

▶ Lemma 12. Let deq be a Dequeue operation and let enq be an Enqueue operation that ends
before deq is complete. Let C be a configuration of E where enq does not have a matching
Dequeue operation deq′ or deq′ is not complete at C. If deq is complete at C, then deq does
not return ϵ.

Proof. By contradiction, we suppose that deq returns ϵ. Let i denote the sequence number
of deq and ts denote the timestamp of enq. Since deq returns ϵ, deq reads the value (ϵ,−1)
in deqOps[i] at line 24 of Algorithm 1. Therefore, during the execution of FinishDeq(i),
the process that writes deqOps[i], reads (ϵ,−1) at the root of the tree (line 27 of Algorithm
2). However, By Lemma 8, the timestamp at the root of the tree after the end of enq is
smaller than or equal to ts. Meaning that during the execution of line 25 of Algorithm 2
during the instance FinishDeq(i) that writes deqOps[i], the timestamp at the root of the
tree was smaller than or equal to ts. We reach a contradiction because (ϵ,−1) is larger than
any timestamp (h,−) ∀h ∈ N. ◀

3.3.2 Linearizability
First, we construct a permutation L of some of the Dequeue() and Enqueue() operations
invoked such that L contains all operations that have terminated. Then, we prove that L

preserves the real order as well as the semantics of a queue.

3.3.2.1 Linearization definition

Let E denote a given execution of the wait-free queue implemented in Algorithm 1 and
Algorithm 2. We classify every Dequeue() operation deq that appears in E to exactly one of
the following types :
1. deq does not execute line 18 of Algorithm 1 in E. Thus deq is not attributed a sequence

number.
2. deq executes line 18 of Algorithm 1 in E, its sequence number is j and deqOps[j] has

the initial value (⊥,⊥) in E.
3. deq executes line 18 of Algorithm 1 in E, its sequence number is j and deqOps[j] ̸= (⊥,⊥)

in E.

We remove from E, any Dequeue() operation of type 1 and 2. We denote DEQ the set
of Dequeue() operations of type 3. Each operation in DEQ is associated with a unique
sequence number j ∈ N0. We totally order all the operations in DEQ according to their
sequence number. Also, let deq be any incomplete Dequeue() operation in DEQ and let j

be its sequence number. We complete deq by returning the value v if deqOps[j] = (i, id) in
E and items[id][i] = (v,−). Otherwise, we complete deq by returning the empty queue
value ϵ.

C. Johnen, A. Khattabi, and A. Milani 4:13

We remove every Enqueue() operation that does not execute line 13 of Algorithm 1 in
E. We denote ENQ the set of Enqueue() operations that appear in E and that we do
not remove. Every Enqueue() operation enq in ENQ is uniquely identified by a pair (i, id)
meaning that enq is the i-th Enqueue() operation performed by the process id. We associate
the Dequeue() operation in DEQ with sequence number i with the Enqueue() operation
(j, id) such that deqOps[i] = (j, id).

Let ENQd denote the Enqueue() operations in ENQ that have an associated Dequeue()
operation in DEQ. We associate each Enqueue() operations in ENQd with the sequence
number of the corresponding Dequeue(). Thus, Enqueue() operations in ENQd are totally
ordered according to the given sequence number.

We construct the linearization L of the operations in E as follows:
1. First we insert the Enqueue() operations in ENQd one by one and according to their

total order, denoted enqi1 , enqi2 . . . in L. Notice that enqih
is the Enqueue() operation

associated with the Dequeue() operation having the sequence number ih. Assuming that
enqih+1 exists, we have ih < ih+1 ; and all the Dequeue() operations having a sequence
number i ∈ [ih + 1, ih+1 − 1] return the value ϵ.

2. Then, we insert the Dequeue() operations one by one according to their the sequence
number. For any sequence number k, If deqk returns ϵ it is inserted immediately after
deqk−1 if it exists, or at the beginning otherwise. In the case where deqk does not return
ϵ, it is linearized immediately after the furthest point in L following: (i) the previous
deqk−1, (ii) the matching Enqueue operation enqil

with il = k, and (iii) the last Enqueue
operation that ends before the invocation of deqk.

3. Let enq denote an Enqueue operation from the remaining Enqueue() operations with no
matching Dequeue operations (i.e. ENQ\ENQd). We insert enq after the last operation
in ENQd and before the first Dequeue() operation that starts after enq ends (or at the
end of L if such Dequeue() does not exist). If multiple operations from ENQ \ ENQd

are linearized at the same point, then they are ordered according to their real-time order.

For two operations op1 and op2, we denote op1 <L op2 when op1 precedes op2 in the
linearization L.

3.3.2.2 Linearization and real-time order

We show that the linearization defined in the previous section respects the real-time execution
order.

▶ Lemma 13. Let op1 and op2 be two Enqueue operations in E such that op1 ends before
op2 is invoked. op1 precedes op2 in L.

Proof. First, consider the case where both operations do not have matching Dequeue()
operations. From linearization rule 3, an Enqueue operation that does not have a matching
Dequeue operation is linearized before the first Dequeue operation that starts after it ends
or at the end of L if such Dequeue operation does not exist. If op1 is linearized at the
end of L, then op2 is also linearized at the end of L after op1, because op2 starts after op1
ends and there is no Dequeue operation that starts after op1 ends. We suppose that there
exists a Dequeue operation deq1 such that op1 is linearized immediately before deq1. If op2
is linearized at the end of L, the claim is trivial. So let deq2 be a Dequeue operation such
that op2 is linearized immediately before deq2. We have op1 <ro op2 <ro deq2. Meaning that
deq2 = deq1 or deq1 <L deq2, because both operations start after op1 ends, and deq1 is the
first such operation in L. Therefore, op1 <L op2 according to their real time execution order
following linearization rule 3.

OPODIS 2022

4:14 Queue Algorithms with Multiple Enqueuers and Dequeuers

Next, if op1 has a matching Dequeue() operation but op2 does not, we have that op2
is linearized after the last linearized Enqueue() operation that has a matching Dequeue()
operation. The case where op1 does not have a matching Dequeue() operation but op2 does,
is impossible according to Lemma 10. We suppose that both op1 and op2 have matching
Dequeue() operations, named respectively deq1 and deq2. From Lemma 11, we have that
deq1 has a smaller sequence number than deq2. Therefore, from linearization rule 1, op1 is
linearized before op2. ◀

▶ Lemma 14. Let deq be a Dequeue operation with the sequence number j and let enq be an
Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq′,
then the sequence number of deq′ is greater than j.

Proof. We denote i the sequence number of deq′. By contradiction we suppose that j > i.
We consider the configuration C where deq completes. According to Lemma 3, deq′ also has
been completed at C. Meaning that deqOps[i] ̸= (⊥,⊥) at C. However, from the hypothesis,
enq has not started at C, as enq is not invoked until deq finishes. According to Lemma 9,
deq′ cannot match enq. The claim follows. ◀

▶ Lemma 15. Let deq be a Dequeue operation with the sequence number j and let enq be an
Enqueue operation invoked after deq returns. If enq has a matching Dequeue operation deq′,
then any Dequeue operation with a sequence number l < j is linearized before enq.

Proof. By contradiction, we suppose that there exists Dequeue operations with sequence
numbers strictly smaller than j that are linearized after enq, and let deql be the first of these
operations in L. Thus , if deql−1 exists, we have that deql−1 <L enq.

If deql returns ϵ, from linearization rule 2, deql is linearized immediately after deql−1 if it
exits, or at the beginning of L. Therefore, deql <L enq. There is a contradiction.

Otherwise, deql has a matching Enqueue operation denoted enql. We denote i the sequence
number of deq′. From Lemma 14, we have that j < i. Therefore, l < j < i. Thus, enql <L enq

from linearization rule 1. Furthermore, we have deql−1 <L enq (if it exists). Therefore,
since enql <L enq and deql−1 <L enq, according to linearization rule 2, enq <L deql because
enq <ro deql (rule 2.3 of linearization) . Consequently, deqj <ro enq <ro deql. Contradicting
the fact that l < j (Lemma 1). ◀

▶ Theorem 16. Let op1 and op2 be two operations in E such that op1 ends before op2 is
invoked. Then, op1 precedes op2 in L.

Proof. Four cases have to be studied according to the type of operations.
1. op1 and op2 are two Dequeue() operations. Since op1 ends before op2 begins, the sequence

number i1 of op1 is strictly smaller than the sequence number i2 of op2 (Lemma 1). From
linearization rule 2, we have op1 is before op2 in L.

2. The case where op1 and op2 are Enqueue() operations is proved by Lemma 13.
3. op1 is an Enqueue operation and op2 is a Dequeue() operation. First, consider the case

that op2 does not return ϵ. If op1 ∈ ENQd, then from linearization rule 2, op2 is linearized
after op1 because op2 is inserted after the last Enqueue operation that ends before op2
starts. Otherwise, If op1 ̸∈ ENQd, from linearization rule 3, it is linearized before the
first Dequeue operation that starts after op1 ends. Thus op1 is linearized before op2.
Next, consider the case where op2 returns ϵ, and let i denote its sequence number. By
Observation 2 and Lemma 12, op1 has a matching Dequeue operation deq, and deq is
complete before op2 is complete.

C. Johnen, A. Khattabi, and A. Milani 4:15

Let j is the sequence number of deq. Since deq is complete before op2 is complete, by
Lemma 3, we have that j < i. Therefore, from linearization rule 2, deq is linearized before
op2. Thus, from linearization rule 1, op1 <L deq <L op2. The claim follows.

4. Finally, we suppose that op1 is a Dequeue operation and that op2 is an Enqueue operation.
If op2 does not have a matching Dequeue operation, from linearization rule 3, it is
linearized before the first Dequeue operation that starts after op2 ends or at the end of L

if such operation does not exist. Thus, op2 is linearized after op1 because op1 ends before
op2 starts.
So consider that op2 has a matching Dequeue operation deq and let i be its sequence
number and j be the sequence number of op1.
If op1 returns ϵ, from the linearization rule 2, we have op1 = deqj is linearized immediately
after deqj−1 (or beginning of L if it does not exist). And from Lemma 15, for each l < j,
we have that deql is linearized before op2. In particular, we have that deqj−1 is linearized
before op2. Therefore, op1 is linearized before op2.
Otherwise, consider enqj the matching operation of op1. From linearization rule 2, op1 is
linearized after (i) deqj−1, (ii) enqj and after (iii) the last Enqueue enq′ that ends before
op1 starts. We show that op2 is linearized after all these three operations. From Lemma
15, we have that deqj−1 is linearized before op2 (i). From Lemma 14, we have that j < i

meaning that enqj is linearized before op2 according to the total order of the sequence
numbers of their matching Dequeue operations (ii). And since op1 ends before op2 starts,
enq′ <ro op2. Therefore, enq′ <L op2 because we have shown that the linearization of
the Enqueue operations respects the real time execution order (Lemma 13) (iii). The
claim follows. ◀

3.3.2.3 Linearization and the Queue Sequential Specification

▶ Lemma 17. Let deq be a Dequeue operation that returns v ̸= ϵ. There exists an Enqueue(v)
denoted enq that such that enq is linearized before deq and there is no Dequeue operation
deq′ ̸= deq that also returns v.

Proof. First, we prove that enq exists. Since deq returns v ≠ ϵ, it has read a value (j, p)
in deqOps[i] where i is the sequence number of deq (line 24 of Algorithm 1). Meaning that
items[p][j] = v and the Enqueue operation that enqueued v denoted enq, is the j-th instance
of Enqueue by process p. By linearization rule 2, deq is linearized after enq. And we have
shown in Lemma 7 that each Enqueue operation has at most a single matching Dequeue
operation. The claim follows. ◀

▶ Lemma 18. Let enq1 and enq2 be two Enqueue operations such that enq1 <L enq2. If enq2
has a matching Dequeue deq2, then enq1 has a matching Dequeue deq1 and deq1 <L deq2.

Proof. By contradiction, we suppose that enq1 does not have a matching Dequeue operation.
From linearization rule 3, enq1 is linearized after all Enqueue operations in ENQd. Especially,
enq1 is linearized after enq2. There is a contradiction. And from linearization rule 1, enq1
and enq2 are linearized according to the total order of the sequence numbers of their matching
Dequeue operations. The claim follows. ◀

From the two previous Lemmas 17–18, we have the following theorem.

▶ Theorem 19. Let deq be a Dequeue operation in L. If deq does not return ϵ, then it returns
the element enqueued by the first Enqueue operation in L that does not have a matching
Dequeue operation linearized before deq.

OPODIS 2022

4:16 Queue Algorithms with Multiple Enqueuers and Dequeuers

▶ Lemma 20. Let deqϵ be a Dequeue operation that returns ϵ. And let enq be an Enqueue
operation linearized before deqϵ. We have that enq has a matching Dequeue operation deq

that is also linearized before deqϵ.

Proof. First, we show that enq has a matching Dequeue operation deq. By contradiction,
we suppose that enq is in ENQ \ ENQd. From linearization rule 3, enq is inserted before
the first Dequeue operation deq′ that starts after enq ends or at the end of L if deq’ does
not exist. The case where enq is linearized at the end of L is trivial because it contradicts
the fact that enq is linearized before deqϵ. So deq′ exists. By lemma 12 deq′ does not return
ϵ. Since enq <L deqϵ, we have deq′ <L deqϵ Hence, deqϵ has a greater sequence number than
deq′ from linearization rule 2. Thus, deqϵ is complete after deq′ is complete (Lemma 3). We
conclude by lemma 12, that deqϵ does not return ϵ. There is a contradiction. Thus, enq has
a matching Dequeue operation denoted deq.

In the following, we establish that deq is linearized before deqϵ. Let i denote the sequence
number of deqϵ and let j be the sequence number of deq. By contradiction, we assume that
i < j (i.e. deq is linearized after deqϵ). Let deqk be the first Dequeue operation linearized
after enq with k its sequence number. Such an operation exists as enq <L deqϵ. We have
k ≤ i, according to the linearization rule 2. Assume that deqk returns ϵ. If k = 0 then
no operation is linearized before deqk; in this case, there is a contradiction. Otherwise
(k ≥ 1), there is no Enqueue operation linearized after deqk−1 and before deqk because deqk

is linearized immediately after deqk−1 (linearization rule 2). This contradicts the fact that
deqk is the first Dequeue operation linearized after enq. Hence deqk does not return ϵ. We
conclude that k < i. Therefore, deqk is complete before deqϵ is complete (Lemma 3). deqk

does not match enq as we assume that deq is linearized after deqϵ. From linearization rule 2,
deqk can only be linearized after enq because enq terminates before the invocation of deqk.
Thus, by Lemma 12, deqϵ cannot return ϵ if j > i. There is a contradiction. ◀

3.3.3 Step Complexity
We show that the worst-case step complexity of an Enqueue and Dequeue operation is
O(log n) and O(k log n), respectively. To do so, we establish the following Lemma but omit
the detailed proof because of space limitations. The main intuition is that while propagating
the timestamp, the process has to read a constant number of nodes per level going from a
leaf to the root. Since there are n leaves, the height of the tree is in O(log n).

▶ Lemma 21. A process executes O(log n) steps during a call to the function Propagate(id).

During the execution of an Enqueue operation there are no loops or function calls aside
from a call to the function Propagate(id). And during a Dequeue operation, a process
executes at most k instances of Propagate(id). The following corollary ensues.

▶ Corollary 22. A process executes O(log n) steps during the execution of an Enqueue
operation and O(k log n) steps during the execution of a Dequeue operation.

4 Set Linearizable Wait-free Queue Algorithm with multiplicity

In this section, we propose an implementation of the relaxed queue with multiplicity where
the operations have a step complexity of O(log n). For the relaxed queue with multiplicity,
concurrent Dequeue operations are allowed to return the same element from the queue (Figure
2 illustrates such an execution).

C. Johnen, A. Khattabi, and A. Milani 4:17

Algorithm 3 Relaxed-Queue: implementation of the wait-free queue with multiplicity
(Dequeue pseudo-code for process p).

1 Function Dequeue()
2 num← deqCounter.MaxRead()
3 if deqOps[num].Read() ̸= (⊥,⊥) then
4 deqCounter.MaxWrite(num + 1)
5 num← num + 1
6 if num ≥ 1 then
7 UpdateTree(num− 1)
8 FinishDeq(num)
9 (h, id)← deqOps[num].Read()

10 if id = ⊥ then
11 return ϵ

12 else
13 (ret,−)← items[id][h]
14 return ret

Figure 2 Example of a set-linearizable execution of the relaxed queue with multiplicity.

Only the algorithm of the Dequeue operation is different from the Algorithm in Section 3.
In the implementation of the relaxed queue, we do not require the unicity of the sequence
numbers of the Dequeue operations. Therefore, we use a max register object for deqCounter

instead of the previously used Fetch&Inc. Multiple concurrent Dequeue operations retrieve
the same sequence number num from deqCounter as long as deqOps[num] remains unchanged.
A Dequeue operation takes the sequence number num + 1 only after the Dequeue operations
with the sequence number num are completed (i.e. deqOps[num] ̸= (⊥,⊥)). Thus, we
relinquish the need for a helping mechanism for slow Dequeue operations since an operation
with the same sequence number will need to finish and write to deqOps before the next
sequence number is assigned.

If the value of deqCounter changes between the step a Dequeue operation retrieves the
value num and the step it reads deqops[num], the operation writes num + 1 to deqCounter

and assigns it as its sequence number. Similarly to Algorithm 1, the operation then executes
the necessary steps to write deqOps[seq] where seq ∈ {num, num+1} is the sequence number
of the operation. Meaning that the process executes UpdateTree(seq − 1) if the Dequeue
operation with the sequence number seq − 1 exists, to ensure that the root of the tree has
an accurate value. Then, the process executes FinishDeq(seq), after which deqOps[seq] is
set to a value different than its initial value. If DeqOps[seq] = (i, p) the Dequeue operation
returns items[p][i].val, otherwise it returns ϵ. Several Dequeue operations may have the

OPODIS 2022

4:18 Queue Algorithms with Multiple Enqueuers and Dequeuers

same sequence number, and thus return the same value. The design of the algorithm ensures
that two Dequeue operations can have the same sequence number only if they are concurrent.
The full proof of correctness of the relaxed queue implementation is omitted because of space
limitations but uses similar techniques as the previous sections.

5 Discussion

We have presented a wait-free implementation of a k-multiple dequeuer n-multiple enqueuer
FIFO queue. The worst case step complexity of the Enqueue operation is in O(log n) and
the Dequeue operation is in O(k log n). Meaning, that as long as the number k of dequeuer
processes is constant, our implementation has logarithmic step complexity, which improves
on the previous upper bound of O(

√
n). While we focused on theoretical evaluations of step

complexity, it could also be of interest to compare the algorithm empirically to other FIFO
implementations to gauge its applicative relevance.

Then, to the best of our knowledge, we presented the first relaxed FIFO queue with
logarithmic step complexity where every process can perform both Enqueue(v) and Dequeue()
operations. It remains an open question whether it is possible to implement an exact wait-free
linearizable FIFO queue with worst-case logarithmic step complexity without restriction on
the number of enqueuers and dequeuers or to implement a relaxed FIFO queue in constant
or near-constant step complexity.

References
1 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Relaxed queues and stacks from

read/write operations. In 24th International Conference on Principles of Distributed Systems,
OPODIS 2020„ pages 13:1–13:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.OPODIS.2020.13.

2 Armando Castañeda and Miguel Piña. Fully read/write fence-free work-stealing with multipli-
city, 2020. doi:10.48550/arXiv.2008.04424.

3 Matei David. A single-enqueuer wait-free queue implementation. In Proceedings of 18th
International Conference Distributed Computing, DISC 2004, pages 132–143, Berlin, Heidelberg,
2004. Springer-Verlag. doi:10.1007/978-3-540-30186-8_10.

4 David Eisenstat. Two-enqueuer queue in common2, 2008.
5 Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free synchronization.

Theor. Comp. Sys., 55(3):475–520, October 2014. doi:10.1007/s00224-013-9491-y.
6 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.

Quantitative relaxation of concurrent data structures. SIGPLAN Not., 48(1):317–328, January
2013. doi:10.1145/2480359.2429109.

7 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. doi:10.1145/114005.102808.

8 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

9 Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple inserter wait-free
queues and stacks. In Proceedings of the 25th International Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS ’05, pages 408–419, Berlin,
Heidelberg, 2005. Springer-Verlag. doi:10.1007/11590156_33.

10 Pankaj Khanchandani and Roger Wattenhofer. On the importance of synchronization prim-
itives with low consensus numbers. In Proceedings of the 19th International Conference on
Distributed Computing and Networking, ICDCN ’18, pages 18:1–18:10, New York, NY, USA,
2018. Association for Computing Machinery. doi:10.1145/3154273.3154306.

https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.48550/arXiv.2008.04424
https://doi.org/10.1007/978-3-540-30186-8_10
https://doi.org/10.1007/s00224-013-9491-y
https://doi.org/10.1145/2480359.2429109
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/11590156_33
https://doi.org/10.1145/3154273.3154306

C. Johnen, A. Khattabi, and A. Milani 4:19

11 Christoph M. Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable, lock-
free k-fifo queues. In Proceedings of 12th International Conferenc Parallel Computing
Technologies, PaCT’13, pages 208–223, Berlin, Heidelberg, 2013. Springer-Verlag. doi:
10.1007/978-3-642-39958-9_18.

12 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers.
SIGPLAN Not., 46(8):223–234, February 2011. doi:10.1145/2038037.1941585.

13 Zongpeng Li. Non-blocking implementations of queues in asynchronous distributed shared-
memory systems. Master’s thesis, Univ. of Toronto, January 2001.

14 Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 103–112, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2442516.2442527.

15 Gil Neiger. Set-linearizability. In Proceedings of the Thirteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’94, page 396, New York, NY, USA, 1994.
Association for Computing Machinery. doi:10.1145/197917.198176.

16 Chaoran Yang and John Mellor-Crummey. A wait-free queue as fast as fetch-and-add.
SIGPLAN Notices, 51(8):1–13, February 2016. doi:10.1145/3016078.2851168.

OPODIS 2022

https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1007/978-3-642-39958-9_18
https://doi.org/10.1145/2038037.1941585
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/3016078.2851168

EEMARQ: Efficient Lock-Free Range Queries with
Memory Reclamation
Gali Sheffi !

Department of Computer Science, Technion, Haifa, Israel

Pedro Ramalhete !

Cisco Systems, Zürich, Switzerland

Erez Petrank !

Department of Computer Science, Technion, Haifa, Israel

Abstract
Multi-Version Concurrency Control (MVCC) is a common mechanism for achieving linearizable range
queries in database systems and concurrent data-structures. The core idea is to keep previous versions
of nodes to serve range queries, while still providing atomic reads and updates. Existing concurrent
data-structure implementations, that support linearizable range queries, are either slow, use locks,
or rely on blocking reclamation schemes. We present EEMARQ, the first scheme that uses MVCC
with lock-free memory reclamation to obtain a fully lock-free data-structure supporting linearizable
inserts, deletes, contains, and range queries. Evaluation shows that EEMARQ outperforms existing
solutions across most workloads, with lower space overhead and while providing full lock freedom.

2012 ACM Subject Classification Software and its engineering → Memory management; Theory of
computation → Concurrency

Keywords and phrases safe memory reclamation, lock-freedom, snapshot, concurrency, range query

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.5

Related Version Full Version: https://arxiv.org/abs/2210.17086

Supplementary Material Software (Source Code): https://github.com/galisheffi/EEMARQ
archived at swh:1:dir:4e0ee7f41e81d100392b41c7af384a7896ee9760

Funding This work was supported by the Israel Science Foundation Grant No. 1102/21.

1 Introduction

Online Analytical Processing (OLAP) transactions are typically long and may read data
from a large subset of the records in a database [51, 56]. As such, analytical workloads pose
a significant challenge in the design and implementation of efficient concurrency controls for
database management systems (DBMS). Two-Phase Locking (2PL) [64] is sometimes used,
but locking each record before it is read implies a high synchronization cost and, moreover,
the inability to modify these records over long periods. Another way to deal with OLAP
queries is to use Optimistic Concurrency Controls [25], where the records are not locked, but
they need to be validated at commit time to guarantee serializability [46]. If during the time
that the analytical transaction executes, there is any modification to one of these records,
the analytical query will have to abort and restart. Aborting can prevent long read-only
queries from ever completing.

DBMS designers typically address these obstacles using Multi-Version Concurrency
Control (MVCC). MVCC’s core idea is to keep previous versions of a record, allowing
transactions to read data from a fixed point in time. For managing the older versions, each
record is associated with its list of older records. Each version record contains a copy of an
older version, and its respective time stamp, indicating its commit time. Each update of the
record’s values adds a new version record to the top of the version list, and every read of an
older version is done by traversing the version list, until the relevant timestamp is reached.

© Gali Sheffi, Pedro Ramalhete, and Erez Petrank;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sheffiga@gmail.com
mailto:pramalhe@gmail.com
mailto:erez@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.OPODIS.2022.5
https://arxiv.org/abs/2210.17086
https://github.com/galisheffi/EEMARQ
https://archive.softwareheritage.org/swh:1:dir:4e0ee7f41e81d100392b41c7af384a7896ee9760;origin=https://github.com/galisheffi/EEMARQ;visit=swh:1:snp:8a27399486d69b4c48bb8be4a16ef084cd8b6ffd;anchor=swh:1:rev:eb016e508308384b62fb2b071ed1dd8d88386169
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

Keeping the version lists relatively short is fundamental for high performance and low
memory footprint [11,19,33,34,36]. However, the version lists should be carefully pruned, as
a missing version record can be harmful to an ongoing range query. In the Database setting,
the common approach is to garbage collect old versions once the version list lengths exceed a
certain threshold [11,36,52]. During garbage collection, the entire database is scanned for
record instances with versions that are not required for future scanners. However, garbage
collecting old versions with update-intensive workloads considerably slows down the entire
system. An alternative approach is to use transactions and associate each scan operation
with an undo-log [6,41]. But this requires allocating memory for storing the undo logs and a
safe memory reclamation scheme to recycle log entries.

In contrast to the DBMS approach, many concurrent in-memory data-structures imple-
mentations do not provide an MVCC mechanism, and simply give up on range queries. Many
map-based data-structures provide linearizable [29] insertions, deletions and membership
queries of single items. Most data-structures that do provide range queries are blocking.
They either use blocking MVCC mechanisms [3,12,43], or rely on the garbage collector of
managed programming languages [7, 22, 50, 67] which is blocking. It may seem like lock-free
data-structures can simply employ a lock-free reclamation scheme with an MVCC mechanism
to obtain full lock-freedom, but interestingly this poses a whole new challenge.

Safe manual reclamation (SMR) [40,55,58,61,66] algorithms rely on retire() invocations by
the program, announcing that a certain object has been unlinked from a data-structure. The
task of the SMR mechanism is to decide which retired objects can be safely reclaimed, making
their memory space available for re-allocation. Most SMR techniques [40,55,61,66] heavily
rely on the fact that retired objects are no longer reachable for threads that concurrently
traverse the data structure. Typically, objects are retired when deleted from the data-
structure. However, when using version lists, if we retire objects when they are deleted from
the current version of the data-structure, they would still be reachable by range queries via
the version list links. Therefore, it is not safe to recycle old objects with existing memory
reclamation schemes. Epoch-based reclamation (EBR) [15, 24] is an exception to the rule
because it only requires that an operation does not access nodes that were retired before
the operation started. Namely, an existing range query prohibits reclamation of any deleted
node, and subsequent range queries do not access these nodes, so they can be deleted safely.
Therefore, EBR can be used without making any MVCC-specific adjustments, and indeed
EBR is used in many in-memory solutions [3, 43, 65]. However, EBR is not robust [58, 61, 66].
I.e., a slow executing thread may prevent the reclamation of an unbounded number of retired
objects, which may affect performance, and theoretically block all new allocations.

One lock-free memory reclamation scheme that can be adopted to provide lock-free
support for MVCC is the VBR optimistic memory reclamation scheme [58,59]. VBR allows
a program to access reclaimed space, but it raises a warning when accessed data has been
re-allocated. This allows the program to retry the access with refreshed data. The main
advantages of VBR are that it is lock-free, it is fast, and it has very low memory footprint.
Any retired object can be immediately reclaimed safely. The main drawback1 is that reclaimed
memory cannot be returned to the operating system, but must be kept for subsequent node
allocations, as program threads may still access reclaimed nodes. Similarly to other schemes,
the correctness of VBR depends on the inability of operations to visit previously retired

1 VBR also necessitates type-preservation. However, this does not constitute a problem in our setting, as
all allocated memory objects are of the same type. For more details, see Section 3.

G. Sheffi, P. Ramalhete, and E. Petrank 5:3

objects. In data structures that do not use multi versions, the deleting thread adequately
retires a node after disconnecting it from the data structure. But in the MVCC setting,
disconnected nodes remain connected via the version list, foiling correctness of VBR.

In this paper we modify VBR to work correctly in the MVCC setting. It turns out that
for the specific case of old nodes in the version list, correctness can be obtained. VBR keeps
a slow-ticking epoch clock and it maintains a birth epoch field for each node. Interestingly,
this birth epoch can be used to tell whether a retired node in the version list has been
re-allocated. As we show in this paper, an invariant of nodes in the version list is that
they have non-increasing birth-epoch numbers. Moreover, if one of the nodes in the version
list is re-allocated, then this node must foil the invariant. Therefore, when a range query
traverses a version list to locate the version to use for its traversal, it can easily detect a
node that has been re-allocated and whose data is irrelevant. When a range query detects
such re-allocation, it restarts. As shown in the evaluation, restarting happens infrequently
with VBR and the obtained performance is the best among existing schemes in the literature.
Using the modified VBR in the MVCC setting, a thread can delete a node and retire it
after disconnecting it from the data structure (and while it is still reachable via version list
pointers).

Two recent papers [43,65] presented efficient MVCC-based key-value stores. The main
new idea is to track and keep a version list of modified fields only and not of entire nodes.
For many data-structures, all fields are immutable except for one or two pointer fields. For
such data-structures, it is enough to keep a version list of pointers only. The first paper
proposed a lock-free mechanism, based on versioned CAS objects (vCAS) [65], and the second
proposed a blocking mechanism, based on Bundle objects (Bundles) [43]. While copying
one field instead of the entire node reduces the space overhead, the resulting indirection is
harmful for performance: to dereference a pointer during a traversal, one must first move to
the top node of the version list, and then use its pointer to continue with the traversal. As
we show in Section 4, this indirection suffers from high overheads in read-intensive workloads.
Bundles ameliorate this overhead by caching the most recent pointer in the node to allow
quick access for traversals that do not use older versions. However, range queries still need to
dereference twice as many references during a traversal. The vCAS approach presents a more
complicated optimization that completely eliminates indirection (which we further discuss in
Section 3). However, its applicability depends on assumptions on the original data-structure
that many data structures do not satisfy. Therefore, it is unclear how it can be integrated
into general state-of-the-art concurrent data-structures. In terms of memory reclamation,
both schemes use the EBR technique (that may block in theory, due to allocation heap
exhaustion). This means that even vCAS does not provide a lock-free range query mechanism.
A subsequent paper on MVCC-specific garbage collectors [8], provides a robust memory
reclamation method for collecting the version records, but it does not deal with the actual
data-structure nodes.

In this paper we present EEMARQ (End-to-End lock-free MAp with Range Queries), a
design for a lock-free in-memory map with MVCC and a robust lock-free memory management
scheme. EEMARQ provides linearizable and high-performance inserts, deletes, searches, and
range queries.

The design starts by applying vCAS to a linked-list. The linked-list is simple, and so
it allows applying vCAS easily. However, the linked-list does not satisfy the optimization
assumptions required by [65], and so a (non-trivial) extension is required to fit the linked-list.
In the unoptimized variant, there is a version node for each of the updates (insert or delete)
and this node is used to route the scans in the adequate timestamp. But this is costly, because

OPODIS 2022

5:4 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

traversals end up accessing twice the number of the original nodes. A natural extension is
to associate the list nodes with the data that is originally kept in the version nodes. We
augment the linked-list construction to allow the optimization of [65] for it. They use a clever
mapping from the original version nodes to existing list nodes, that allows moving the data
from version nodes to list nodes, and then elide the version nodes. Now traversals need no
extra memory accesses to version nodes. This method is explained in Section 3.2.

Second, we extend VBR by adding support for reachable retired nodes on the version
list. The extended VBR allows keeping retired reachable version nodes in the data structure
(which the original VBR forbids) while maintaining high performance, lock-freedom, and
robustness.

Finally, we deal with the inefficiency of a linked-list by adding a fast indexing to the
linked-list nodes. A fast index can be obtained from a binary search tree or a skip list. But
the advantage we get from separating the linked-list from the indexing mechanism is that
we do not have to maintain versions for the index (e.g., for the binary search tree or the
skip list), but only for the underlying linked-list. This separation between the design of the
versioned linked-list and the non-versioned index, simplifies each of the sub-designs, and also
obtains high performance, because operations on the index do not need to maintain versions.
Previous work uses this separation idea between the lower level of the skip list or leaves of
the tree from the rest for various goals (e.g., [43, 69]).

The combination of all these three ideas, i.e., optimized versioned linked-list, extended
VBR, and independent indexing, yields a highly performant data structure design with
range queries. Evaluation shows that EEMARQ outperforms both vCAS and Bundles (while
providing full lock-freedom).

2 Related Work

Existing work on linearizable range queries in the shared-memory setting includes many
solutions which are not based on MVCC techniques. Some data-structure interfaces originally
include a tailor-made range query operation. E.g., there are trees [12,13,22,67], hash tries [54],
queues [44,45,53], skip lists [5] and graphs [30] with a built-in range query mechanism. Other
and more general solutions execute range queries by explicitly taking a snapshot of the
whole data-structure, followed by collecting the set of keys in the given range [1, 4]. The
Snapcollector [50] forces the cooperation of all executing threads while a certain thread is
scanning the data-structure. Despite being lock-free and general, the Snapcollector’s memory
and performance overheads are high. The Snapcollector was enhanced to support range
queries that do not force a snapshot of the whole data-structure [16]. However, this solution
still suffers from major time and space overheads.

Another way to implement range queries is to use transactional memory [23,31,48,49].
Transactions can either be implemented in software or in hardware, allowing range queries to
take effect atomically. Although transactions may seem as ideal candidates for long queries,
software transactions incur high performance overheads and hardware transactions frequently
abort when accessing big memory chunks. Read-log-update (RLU) [38] borrows software
transaction techniques and extends read-copy-update (RCU) [39] to support multiple updates.
RLU yields relatively simple implementations, but its integration involves re-designing the
entire data-structure. In addition, similarly to RCU, it suffers from high overheads in
write-extensive workloads.

Arbel-Raviv and Brown exploited the EBR manual reclamation to support range queries [3].
Their technique uses EBR’s global epoch clock for associating data-structure items with
their insertion and deletion timestamps. EEMARQ uses a similar technique for associating

G. Sheffi, P. Ramalhete, and E. Petrank 5:5

data-structure modifications with respective timestamps. They also took advantage of EBR’s
retire-lists, in order to locate nodes that were deleted during a range query scan. However,
while their solution indeed avoids extensive scanning helping when deleting an item from
the data-structure (as imposed by the Snapcollector [50]), it may still impose significant
performance overheads (as shown in Section 4). EEMARQ minimizes these overheads by
keeping a reachable path to deleted nodes (for more details, see Section 3.2).

Multi-Version Concurrency Control. MVCC easily provides isolation between concurrent
reads and updates. I.e., range queries can work on a consistent view of the data, while not
interfering with update operations. This powerful technique is widely used in commercial
systems [19,21], as well as in research-oriented DBMS [32,52], in-memory shared environ-
ments [43,65] and transactional memory [23,31,35,48,49]. MVCC has been investigated in
the DBMS setting for the last four decades, both from a theoretical [9, 10,34,47,68] and a
practical [19, 32,36, 41,52] point of view. A lot of effort has been put in designing MVCC
implementations and addressing the unwanted side-effects of long version lists. This issue
is crucial both for accelerating version list scans and for reducing the contention between
updates and garbage collection. Accelerating DBMS version list scans (independently of
the constant need to prune them) has been investigated in [34]. Most DBMS-related work
that focuses on this issue, tries to minimize the problem by eagerly collecting unnecessary
versions [2, 11,21,33,37,41,52].

Safe Memory Reclamation. Most existing in-memory environments that enable linearizable
range queries, avoid managing their memory, by relying on automatic (and blocking) garbage
collection of old versions [7, 22,50,67]. Solutions that do manually manage their allocated
memory [3, 43, 65], use EBR for safe reclamation. In EBR, a shared epoch counter is
incremented periodically, and upon each operation invocation, the threads announce their
observed epoch. The epoch clock can be advanced when no executing thread has an
announcement with a previous epoch. During reclamation, only nodes that had been retired
at least two epochs ago are reclaimed. EBR is safe for MVCC because a running scan prevents
the advance of the epoch clock, and also the reclamation of any node in the data-structure
that was not deleted before the scan.

The MVCC-oriented garbage collector from [8] incorporates reference counting (RC) [17,
18,27], in order to maintain lock-freedom while safely reclaiming old versions. Any object can
be immediately reclaimed once its reference count reaches zero, without the need in invoking
explicit retire() calls. While RC simplifies reclamation, it incurs high performance overheads
and does not guarantee a tight bound on unreclaimed garbage (i.e., it is not robust).

Other reclamation schemes were also considered when designing EEMARQ. NBR [61]
was one of the strongest candidates, as it is fast and lock-free (under some hardware
assumptions). However, it is not clear whether NBR can be integrated into a skip list
implementation (which serves as one of our fast indexes). Pointer–based reclamation methods
(e.g., Hazard Pointers [40]) allow threads to protect specific objects (i.e., temporarily prevent
their reclamation), by announcing their future access to these objects, or publishing an
announcement indicating the protection of a bigger set of objects (e.g., Hazard Eras [55],
Interval-Based Reclamation [66], Margin Pointers [62]). Although these schemes are robust
(as opposed to EBR), it is unclear how they can be used in MVCC environments. They
require that reaching a reclaimed node from a protected one would be impossible (even if
the protected node is already retired). I.e., they require an explicit unlinking of old versions
before retiring them. Besides the obvious performance overheads, it may affect robustness

OPODIS 2022

5:6 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

Figure 1 Removing nodes 23 and 48 from the linked-list. At stages 1–4, the list logically contains
5 nodes and at stage 5, it logically contains 3 nodes. The logical deletions of nodes 23 and 48 are
executed via marking them (stages 2 and 3, respectively), flagging node 57 (stage 4) and inserting a
new 57 representative instead of the three of them (stage 5). Nodes 23, 48, and the flagged 57 are
then retired.

(as very old versions would not be reclaimed). The garbage collector from [8] uses Hazard
Eras for unlinking old versions (to be eventually collected using an RC-based strategy), but
it has not been evaluated in practice.

3 The Algorithm

In this Section we present EEMARQ’s design. We start by introducing a new lock-free
linearizable linked-list implementation in Section 3.1. The list implementation is based on
Harris’s lock-free linked-list [26], and includes the standard insert(), remove() and contains()
operations. In Section 3.2 we explain how to add a linearizable and efficient range query
operation. We describe the integration of the designated robust SMR algorithm in Section 3.3,
and explain how to improve performance by adding an external index in Section 3.4. A full
linearizability and lock-freedom proof for our implementation (including the range queries
mechanism and the SMR and fast indexing integration) appears in the full version of this
paper [60].

As discussed in [65], node-associated version lists introduce an extra level of indirection per
node access. Methods that use designated version objects for recording updates, suffer from
high overheads, especially in read-intensive workloads. For avoiding this level of indirection,
we introduce a new variant of Harris’s linked-list. In our new variant, there is no need to
store any update-related data in designated version records, since it can be stored directly
inside nodes, in a well-defined manner. Associating each node with a single data-structure
update (i.e., an insertion or a removal) is challenging. Typically, an insert operation includes
a single update, physically inserting a node into the list. A remove operation involves a
marking of the target node’s next pointer (serving as its logical deletion, and the operation’s
linearization point in many existing implementations) and a following physical removal from
the list. In other words, each node may be associated with multiple list updates. Since the
target node’s physical deletion is not the linearization point of any operation, there is no
need to record this update. However, each node may still be associated with either one or
two updates throughout an execution (i.e., its logical insertion and deletion).

G. Sheffi, P. Ramalhete, and E. Petrank 5:7

In our linked-list implementation, some new node is inserted into the list during every
physical update of the list (either a physical insertion or deletion), which obviously yields
the desirable association between nodes and data-structure updates (each node is associated
with the update that involved its insertion into the list). The node inserted during a physical
insertion is simply the inserted node, logically inserted into the list. The node inserted during
a physical removal is a designated new node that replaces the deleted node’s successor, and
is physically inserted together with the physical removal of the deleted node 2.

Figure 1 shows an example for inserting a new node during deletion. This list illustration
shows the list layout throughout the deletion procedure of two nodes. At the first stage, the
list contains five nodes, ordered by their keys (together with the head and tail sentinels).
Then, some thread marks node 23 for deletion. At this point, before physically removing it,
some other thread marks node 48 for deletion. I.e., both nodes must be physically unlinked
together, as successive marked nodes. In order to remove the marked nodes, node 57 is
flagged, as it is the successor of the last marked node in the sequence. Node 57 is flagged for
making sure that its next pointer does not change. Finally, all three nodes are physically
unlinked from the list, together with the physical insertion of a new node, representing the
old flagged one. I.e., although all three nodes were physically removed from the list, node 57
was not logically removed, as it was replaced by a new node with the same key. After the
physical deletion at stage 5, the three nodes are retired (for more details, see Section 3.3).
As opposed to Harris’s implementation, the linearization point of both deletions is this
physical removal, which atomically inserts the new representative into the list. Our mapping
from modifications to nodes, maps this deletion to the new node, inserted at stage 5 (which
represents the deletion of both nodes). In Section 3.2 we explain how this mapping is used
for executing range queries.

3.1 The Linked-List Implementation
Our linked-list implementation, together with the list node class, is presented in Algorithm 1.
The simple pointer access methods implementation (e.g., mark() in line 23 and getRef() in
line 40) appear in Appendix A. In a similar way to Harris’s list, the API includes the insert(),
remove() and contains() operations 3. The insert() operation (lines 7–17) receives a key and
a value. If there already exists a node with the given key in the list, it returns its value
(line 11). Otherwise, it adds a new node with the given key and value to the list, and returns
a designated NO_VAL answer (line 17). The remove() operation (lines 18–25) receives a
key. If there exists a node with the given key in the list, it removes it and returns its value
(line 25). Otherwise, it returns NO_VAL (line 22). The contains() operation (lines 26–30)
receives a key. If there exists a node with the given key in the list, it returns its value
(line 30). Otherwise, it returns NO_VAL (line 29).

All three API operations use the find() auxiliary method (lines 31-58), which receives a
key and returns pointers to two nodes, pred and curr (line 58). As in Harris’s implementation,
it is guaranteed that at some point during the method execution, both nodes are consecutive
reachable nodes in the list, pred’s key is strictly smaller than the input key, and curr ’s
key is equal or bigger than the given key. I.e., if curr ’s key is strictly bigger than the
input key, it is guaranteed that there is no node with the given input key in the list at
this point. The method traverses the list, starting from the head sentinel node (line 33),

2 When multiple nodes are physically removed together, it replaces the successor of the last node in the
sequence of deleted nodes.

3 The rangeQuery() operation is added in Section 3.2. In addition, lines marked in blue in Algorithm 1
can be ignored at this point. They will also be discussed in Section 3.2

OPODIS 2022

5:8 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

Algorithm 1 Our Linked-List Implementation.

1: class Node
2: Long ts
3: K key
4: V value
5: Node* next
6: Node* prior
7: procedure insert(key, val)
8: while (true) do
9: pred, curr ← FIND(key)

10: if (curr → key == key)
11: return curr → val
12: n := alloc(key, val, ⊥)
13: n → next := curr
14: n → prior := curr
15: if (CAS(&pred → next, curr, n))
16: CAS(&n → ts, ⊥, getTS())
17: return NO_VAL
18: procedure remove(key)
19: while (true) do
20: pred, curr ← FIND(key)
21: if (curr → key ̸= key)
22: return NO_VAL
23: if (!mark(curr)) continue
24: FIND(key) ▷ physical deletion
25: return curr → val
26: procedure contains(key)
27: pred, curr ← FIND(key)
28: if (curr → key ̸= key)
29: return NO_VAL
30: else return curr → val
31: procedure find(key)
32: retry:
33: pred := head
34: pNext := pred → next
35: curr := getRef(pNext)
36: while (true) do
37: while(isMarkdOrFlagged(curr →

next))
38: if (!getRef (curr → next))
39: break

40: curr := getRef(curr → next)
41: if (curr → key ≥ key) break
42: pred := curr
43: pNext := pred → next
44: if (isMarkdOrFlagged(pNext))
45: goto retry
46: curr := getRef(pNext)
47: CAS(&pred → ts, ⊥, getTS())
48: if (pNext ̸= curr)
49: if (!TRIM(pred, getRef(pNext)))
50: goto retry
51: pNext := pred → next
52: if (isMarkdOrFlagged(pNext))
53: goto retry
54: curr := pNext
55: if (isMarkedOrFlagged(curr →

next) ∨ curr → key < key)
56: goto retry
57: CAS(&curr → ts, ⊥, getTS())
58: return pred, curr
59: procedure trim(pred, victim)
60: curr := victim
61: while (isMarked(curr → next)) do
62: curr := getRef(curr → next)
63: CAS(&curr → ts, ⊥, getTS())
64: if (!flag(curr) ∧ !isFlagged(curr →

next))
65: return false
66: succ := getRef(curr → next)
67: if (succ) CAS(&succ → ts, ⊥, getTS())
68: newCurr := alloc(curr → key, curr → val,
⊥)

69: newCurr → next := succ
70: newCurr → prior := victim
71: if (CAS(&pred → next, victim,

newCurr))
72: CAS(&newCurr → ts, ⊥, getTS())
73: return true
74: return false

and until it gets to an unmarked and unflagged node with a key which is at least the input
key (line 41). Recall that the two output variables are guaranteed to have been reachable,
adjacent, unmarked and not flagged at some point during the method execution. Therefore,
as long as the current traversed node is either marked or flagged (checked in line 37), the
traversal continues, regardless of the current key (lines 37-40). Once the traversal terminates
(either in line 38 or 41), if the current two nodes, saved in the pred and curr variables, are
adjacent (the condition checked in line 48 does not hold), then the method returns them in
line 58. Otherwise, similarly to the original implementation, the method is also in charge of
physically removing marked nodes from the list.

G. Sheffi, P. Ramalhete, and E. Petrank 5:9

As we are going to discuss next, our physical removal procedure, as depicted in Figure 1,
is slightly different from the original one [26]. Physical deletions are executed via the
trim() auxiliary method (lines 59–74). Although nodes are still marked for deletion in our
implementation (line 23), their successful marking does not serve as the removal linearization
point. I.e., reachable marked nodes are still considered as list members. The trim() method
receives two nodes as its input parameters, pred and victim. victim is the physical removal
candidate, and is assumed to already be marked. pred is assumed to be victim’s predecessor
in the list, and to be neither marked nor flagged. As depicted in Figure 1, consecutive marked
nodes are removed together. Therefore, the method traverses the list, starting from victim,
for locating the first node which is not marked (lines 61–62). When such a node is found,
the method tries to flag its next pointer, for freezing it until the removal procedure is done.
In general, pointers are marked and flagged using their two least significant bits (which are
practically redundant when reading node address aligned to a word). Both marked and
flagged pointers are immutable, and a pointer cannot be both marked and flagged. Therefore,
the flagging trial in line 64 fails if curr ’s next pointer is either marked or flagged. If the
flagging trial is unsuccessful, and not because some other thread has already flagged curr ’s
next pointer, the method returns in line 65. Otherwise, a new node is created in order to
replace the flagged one (lines 68–70). Note that since this node’s next pointer is flagged (i.e.,
immutable), it is guaranteed that the new node points to the original one’s current successor.
The actual trimming is executed in line 71. If the compare-and-swap (CAS) is successful,
then the sequence of marked nodes, together with the single flagged one (at the end of the
sequence), are atomically removed from the list, together with the insertion of the new copy
of the flagged node (the new copy is neither flagged nor marked).

As the physical removal is necessary for linearizing the removal (as will be further discussed
in Section 3.2), a remover must physically remove the deleted node before it returns from a
remove() call. The marking of a node in line 23 only determines the remover’s identity and
announces its intention to delete the marked node. Therefore, the remover must additionally
ensure that the node is indeed unlinked, by calling the find() method in line 24. In the
full version of this paper [60] we formally prove that the list implementation, presented in
Algorithm 1, is linearizable and lock-free.

3.2 Adding Range Queries
Given Algorithm 1, adding a linearizable range queries mechanism is relatively straight
forward. We use a method which is similar to the vCAS technique [65]. As discussed in
Section 1, the vCAS scheme introduces an extra level of indirection for the linked-list per
node access. Indeed, we show in Section 4 that the vCAS implementation suffers from high
overheads. The original vCAS paper provides a technique for avoiding this level of indirection.
The suggested optimization relies on the following (very specific) assumption: a certain node
can be the third input parameter to a successful CAS operation only once throughout the
entire execution. That successful CAS is considered as the recording of this node, and the
property is referred to as recorded-once in [65].

Although the recorded-once property yields a linearizable solution, which reduces memory
and time overheads, this assumption does not hold in the presence of physical deletions, as
they usually set the deleted node’s predecessor to point to the deleted node’s successor [26],
or to another, already reachable node [14, 42], and then, this reachable node is recorded
more than once. This makes the suggested technique inapplicable to Harris’s linked-list [26]
and most other concurrent data-structures (e.g., [12, 28, 42]). The original vCAS paper
implemented a recorded-once binary search tree, based on [20], which we compare against in

OPODIS 2022

5:10 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

Section 4. We extend the recorded-once condition and make it fit for the linked-list and other
data-structures. We claim that associating each node with the data of a single data-structure
update (as provided by our list) is enough for avoiding indirection in this setting. Given such
an association, there is no need to store update-related data in designated version records,
since it can be stored directly inside nodes, in a well-defined manner.

First, in a similar way to [3,43,65], we add a shared clock, for associating each node with
a timestamp. The shared clock is read and updated using the getTS() and fetchAddTS()
methods, respectively (see Appendix A). The shared clock is incremented whenever a range
query is executed (e.g., see line 2 in Algorithm 2), and is read before setting a new node’s
timestamp (e.g, see lines 16, 47, 57, 63, 67 and 72 in Algorithm 1). Next, we change the
nodes layout (see our node class description in Algorithm 1). On top of the standard fields
(i.e., key, value and next pointer), we add two extra fields to each node. The first field is the
node’s timestamp (denoted as ts), representing its insertion into the list. Nodes’ ts fields are
always initialized with a special ⊥ value (see lines 12 and 68 in Algorithm 1), to be given
an actual timestamp after being inserted into the list. The second field, prior, points to
the previous successor of this node’s first predecessor in the list (its predecessor when being
inserted into the list). Both fields are set once and then remain immutable. E.g., consider
the new node, inserted into the list at stage 5 in Figure 1. Its prior field points to the node
whose key is 23, as this is the former successor of the node whose key is 9, which is the
first predecessor of the newly inserted node. By its specification, once the prior field is set
(see line 14 and 70 in Algorithm 1), it is immutable. These two new fields are not used
during the list operations from Algorithm 1, but we do specify their proper initialization,
in order to support linearizable range queries. Moreover (and in a similar way to [3, 65]),
list inserts and deletes are linearized during the execution of the getTS() method, as follows.
Let n be the node inserted into the list in line 15, during a successful insert() operation.
n’s timestamp is set at some point, not later than the CAS in line 16 (it may be updated
earlier, by a different thread). The getTS() invocation that precedes the successful update of
n’s timestamp is the operation’s linearization point. In a similar way, consider a successful
remove() operation. The removed node is unlinked from the list during a successful trim()
execution. Let newCurr be the node successfully inserted into the list in line 71, during this
successful trim() execution. newCurr ’s timestamp is set at some point, not later than the
CAS in line 72 (it may be updated earlier, by a different thread). The getTS() invocation
that precedes the successful update of newCurr ’s timestamp is the operation’s linearization
point.

Our range queries mechanism is presented in Algorithm 2. The rangeQuery() operation
receives three input parameters (see line 1): the lowest and highest keys in the range, and an
output array for returning the actual keys and associated values in the range. In addition to
filling this array, it also returns its accumulated size in the count variable. The operation
starts by fetching and incrementing the global timestamp counter (line 2), which serves as
the range query’s linearization point. I.e., the former timestamp is the one associated with
the range query. This way, the range query is indeed linearized between its invocation and
response, along with guaranteeing that the respective view is immutable during the operation
(as new updates will be associated with the new timestamp).

After incrementing the global timestamp counter, the operation uses the find() auxiliary
method in order to locate the first node in range (lines 4–12). As opposed to the vCAS
mechanism [65], and in a similar way to the Bundles mechanism [43], we observe that until
the traversal reaches the target range, there is no need to take timestamps into consideration.
This observation is crucial for performance, as there is no need to traverse nodes via the

G. Sheffi, P. Ramalhete, and E. Petrank 5:11

Algorithm 2 The Range Queries Mechanism.

1: procedure rangeQuery(low, high,
*arr)

2: ts := fetchAddTS()
3: currKey := low
4: while (true) do
5: pred, curr ← FIND(currKey)
6: currKey := pred → key
7: while (pred → ts > ts) do
8: pred := pred → prior
9: if (pred → key ≤ low)

10: curr := pred
11: break
12: ts := getTS() - 1
13: while (curr → key < low) do
14: succ := getRef(curr → next)
15: CAS(&succ → ts, ⊥, getTS())

16: while (succ → ts > ts) do
17: succ := succ → prior
18: curr := succ
19: count := 0
20: while (curr → key ≤ high) do
21: arr[count] → key := curr → key
22: arr[count]→ value := curr→ value

23: count := count + 1
24: succ := getRef(curr → next)
25: CAS(&succ → ts, ⊥, getTS())
26: while (succ → ts > ts) do
27: succ := succ → prior
28: curr := succ
29: return count

prior fields (which produce longer traversals in practice). In addition, it enables using the
fast index (described in Section 3.4) for enhancing the search. During each loop iteration, we
first find a node with a key which is smaller than the lowest key in the range (saved as the
pred variable in line 5). Then, we optimistically try to find a relatively close node, following
prior pointers, until we get to a small enough timestamp (lines 7–8). Since this search may
result in a node with a bigger key (e.g., see line 14 in Algorithm 1), the next iteration sends
a smaller key as input to the find() execution in line 5. Note that in the worst case scenario,
the loop in lines 4–12 stops after the find() execution in line 5 outputs the head sentinel
node (as its timestamp is necessarily smaller than ts). Therefore, it never runs infinitely.
The purpose of updating ts in line 12 will be clarified in Section 3.3, as it is related to the
VBR mechanism. Note that in any case, this update does not foil correctness, since it is
still guaranteed that the range query is linearized between the operation’s invocation and
response.

When pred has a key which is smaller than the range lower bound, the operation moves
on to the next step (the loop breaks in line 11). At this point, the traversal continues
according to the respective timestamp4, until getting to a node with a key which is at least
the range lower bound (lines 13–18). Once a node with a big enough key is found, the
traversal continues in lines 20–28. At this stage, the count output variable and the output
array are updated according to the data accumulated during the range traversal. Finally, the
count output variable, indicating the total number of keys in range, is returned in line 29.
Note that throughout the traversals in lines 16–17 and lines 26–27, there is no need to update
succ’s timestamp (as done in lines 15 and 25), since it serves as a node’s prior and thus, is
guaranteed to already have an updated timestamp (for more details, see the full version of
this paper [60]).

4 In the full version of this paper [60] we prove that a node’s successor at timestamp T can be found
by starting from its current successor and then following prior references until reaching a node with a
timestamp which is not greater than T .

OPODIS 2022

5:12 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

3.3 Adding A Safe Memory Reclamation Mechanism

Before integrating our list with a manual memory reclamation mechanism, we must first
install retire() invocations, for announcing that a node’s memory space is available for
re-allocation. Naturally, nodes are retired after unsuccessful insertions, or after they are
unlinked from the list. I.e., n is retired if the CAS in line 15 is unsuccessful, newCurr is
retired if the CAS in line 71 is unsuccessful, and upon a successful trimming in line 71, the
unlinked nodes are retired, starting from victim. The last retired node is curr, which is
replaced by its new representative in the list, newCurr. Note that we do not handle physical
removals of prior links. Handling them is unnecessary, and might cause significant overheads,
both to the list operations and to the reclamation procedure. Therefore, retired nodes are
still reachable from the list head during retirement: newCurr ’s prior field points to victim,
making all of the unlinked nodes reachable via this pointer (and their next pointers).

To add a safe memory reclamation mechanism to our list, we use an improved variant of
Version Based Reclamation (VBR) [58]. VBR cannot be integrated as is. Similarly to most
safe memory reclamation techniques, it assumes that retired objects are not reachable via
the data-structure links. This assumption is crucial to the correctness of VBR, as retired
objects may be immediately reclaimed. In addition, VBR uses a slow ticking epoch clock,
and ensures that the clock ticks at least once between the retirement and future re-allocation
of the same node. During execution, the operating threads constantly check that the global
epoch clock has not changed. Upon a clock tick, they conservatively treat all data read from
shared memory as stale, and move control to an adequate previous point in the code in order
to read a fresh value. As long as the clock does not tick, threads may continue executing
without worrying about use-after-free issues. The intuition is that if a node is accessed during
a certain epoch, then it must have been reachable during this epoch. I.e., even if this node
has already been retired, its retirement was during the current epoch, which means that it
has not been re-allocated yet (as the clock has not ticked yet).

Our list implementation poses a new challenge in this context. Suppose that the current
epoch is E, and that a certain node, n, is currently in the list (i.e., it has not been unlinked
using the trim() method yet). In addition, suppose that n’s prior field points to another
node, m, that has been retired during an earlier epoch. Then m may be reclaimed and
re-allocated during E. A traversing thread may access n’s prior field during E, without
getting any indication to the fact that the referenced node is a stale value. Another problem,
which does not affect correctness, but may cause frequent thread starvations, is that the
global epoch clock is likely to tick during a long range query. In the original VBR scheme, a
clock tick forces the executing thread to start its traversal from scratch, even if it has not
encountered any reclaimed node in practice.

In order to overcome the above problems, we made some small adjustments to the original
VBR scheme. First, we kept the global epoch clock of VBR and the timestamp clock of the
range queries separated. We separated the two, as VBR works best with a (very) slow ticking
clock. Read-intensive workloads (in which range queries dominate the execution) incur high
overheads when combining the two clocks. The separation of the two independent clocks
helps overcome the potential aborts. The second step was to modify the nodes’ layout (The
VBR-integrated node layout appears in the full version of this paper [60]). Recall that the
VBR scheme adds a birth epoch to every node, along with a version per mutable field. Non-
pointer mutable fields are associated with the node’s birth epoch, and pointers are associated
with a version which is the maximum between the birth epoch of the node and the birth
epoch of its successor. Our list nodes have two mutable fields, their timestamp ts (changes
only once), and their next pointer. The prior pointers are immutable. Accordingly, we

G. Sheffi, P. Ramalhete, and E. Petrank 5:13

associated the node’s timestamp with its VBR-integrated birth epoch, serving as its version
(there was no need to add an extra ts version), and added a designated next pointer version.
Writes to the mutable fields are handled exactly as in the original VBR scheme. Accordingly,
upon allocation, a node’s timestamp is initialized to ⊥, along with the current VBR epoch
as its associated birth epoch. When the timestamp is updated (see line 16, 47, 57, 63, 67
and 72 in Algorithm 1, or lines 15 and 25 in Algorithm 2), the birth epoch (also serving
as the timestamp’s version) does not change, as the two fields are accessed together, via a
wide-compare-and-swap (WCAS) instruction. Similarly, next pointers are associated with
the maximum between the two respective birth epochs, and are also updated using WCAS.

Reads are handled in a different manner from the original VBR, as the problems we
mentioned above must be treated with special care. The original VBR repeatedly reads the
global epoch in order to make sure that it has not changed. In our extended VBR variant,
it is read once. After reading the global epoch, and as long as the executing thread does
not encounter a birth epoch or a version which is bigger then this epoch, it may continue
executing its code. The motivation behind this behavior is that even if a certain node in
the system has meanwhile been reclaimed, this node does not pose a problem as long as the
current thread does not encounter it. Therefore, traversing threads follow three guidelines:
(1) a node’s birth epoch is read again after each read of another field, (2) after dereferencing
a next pointer, the reader additionally makes sure that the successor’s birth epoch is not
greater than the pointer’s version, and (3) after dereferencing a prior pointer (which is not
associated with a version), the reader additionally makes sure that the successor’s birth
epoch is not greater than the predecessor’s birth epoch. If any of these conditions does not
hold, then the reader needs to proceed according to the original VBR’s protocol. In the full
version of this paper [60] we prove that these three guidelines are sufficient for maintaining
correctness. Upon an epoch change, the original VBR enforces a rollback to a predefined
checkpoint in the code. Accordingly, we install code checkpoints. Whenever a check that
our guidelines impose fails, the executing thread rolls-back to the respective checkpoint.
Checkpoints are installed in the beginning of each API operation (i.e., insert(), remove(),
contains() and rangeQuery()). Another checkpoint is installed after a successful marking
in line 23 of Algorithm 1, as the identity of the marking thread affects linearizability (and
therefore, a rollback to the beginning of the operation would foil linearizability). Note that a
successful insertion in line 15 does not force a checkpoint (although it affects linearizability,
by setting the inserter identity), as it is not followed by any reads of potentially reclaimed
memory.

Another issue that needs to be dealt with is the guarantee that life-cycles of nodes,
allocated from the same memory address, do not overlap. The original VBR scheme does so
by associating each node with a retire epoch. A node’s retire epoch is set upon retirement.
During re-allocation, if the current global epoch is equal to the node’s retire epoch, then
the global epoch is incremented before re-allocation. We chose to optimize over the original
VBR, discarding the retire epoch field, as it adds an extra field per allocated node. Instead,
each retire list is associated with the epoch, recorded once it is full (right before it is returned
to the global pool of nodes). Upon pulling such a list from the global pool, if its associated
epoch is equal to the current one, then the global epoch is incremented.

Finally, consider the following scenario. Suppose that a thread T1 is running a range
query, the current epoch is E and the current global timestamp is t. Next, suppose that
another thread, T2, reclaims a node n that has been retired during E, and that is relevant for
T1’s range query. Starting from this point, whenever T1 accesses the newly allocated node, it
rolls back and starts its traversal from scratch (as the new node has a birth epoch which is

OPODIS 2022

5:14 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

greater then its predecessor through the prior pointer, foiling guideline 3). As long as T1’s ts

variable does not change, T1 will infinitely get to the new allocated node and then roll-back
to the beginning. We reduce the probability of such scenarios in practice, by updating the ts

variable in line 12 of Algorithm 2. We further ensure that the current global timestamp is
up-to-date by incrementing it upon each re-allocation, if necessary.

3.4 Adding A Fast Index

Our linked-list implementation encapsulates the key-value pairs and enables the timestamps
mechanism. However, when key ranges are large, the linked-list does not perform as good as
other concurrent data-structures. It forces a linear traversal per operation, as opposed to
skip lists [24, 28] and binary search trees [14, 42]. We observe that the index links in such
data-structures (e.g., the links connecting the upper levels in a skip list or the inner levels in
a tree) are only required for fast access. The actual data exists only in the lowest level of
the skip list (or the leaves of an external tree). Therefore, we allow a simple integration of
an external index, enabling fast access instead of long traversals. The index should provide
an insert(key, node) operation, receiving a key and a node pointer as its associated value.
It additionally should provide a remove(key) operation. Finally, instead of providing a
contains(key) operation, it should provide a findPred(key) operation, receiving a key and
returning a pointer to the node associated with some key which is smaller than the given one.

The findPred(key) can be naively implemented by calling the data-structure search method
(there usually exists such method. E.g., [26, 28, 42]) with a smaller key as input. I.e., it is
possible to search for key minus 2 or minus 10. Obviously, this does not guarantee that
a suitable node will indeed be returned. However, if the selected smaller key is not small
enough, it is possible to start a new trial and search for a smaller key. Our experiments
showed that limiting the number of such trials per search to a small constant (e.g., 5 in
our experiments) is negligible in terms of performance, and is usually enough for locating a
relevant node. In addition, the index is used only for fast access, so correctness is not affected
even if all trials fail. Specifically, the findPred(key) operation can be easily implemented for
a skip list, using its built-in search auxiliary method [24,28] (as it returns a predecessor with
a smaller key). Examples for using a skip list as a fast index have already been introduced
for linearizable data-structures [57] and in the transactional memory setting [63]. The
findPred(key) operation can also be implemented for some binary search trees, by traversing
the left child, instead of the right child, at some point during the search path. We applied
this method when implementing our tree index, based on Natarajan and Mittal’s BST [42].

Algorithm 3 Starting a new traversal using the index.

1: currKey := key
2: attempts := MAX_ATTEMPTS
3: while (attempts ̸= 0) do
4: attempts−−
5: pred := index → findPred(currKey)
6: predTS := pred → timestamp
7: predNext := pred → next
8: predKey := pred → key
9: if (pred → birth > currEpoch)

10: rollback

11: else if (predKey ≥ key ∨
predTS == ⊥)

12: continue
13: else if (isMarkedOrFlagged(

predNext))
14: currKey := predKey
15: else break
16: if (attempts == 0)
17: pred := head
18: predNext := pred → next

G. Sheffi, P. Ramalhete, and E. Petrank 5:15

We update the fast index as follows: New Nodes are inserted into the index after being
inserted into the list (i.e., right before the insert() operation returns in line 17 of Algorithm 1).
Nodes are removed from the index after being removed from the list, and right before being
retired (see Section 3.3). Note that the curr node, replaced by newCurr via the CAS in
line 71, should be removed from the index, followed by an insertion of newCurr. In our
implemented index, we have implemented an update() operation instead. This operation
receives as input a node reference, and uses it to replace a node with the same key in the
index5. In case the external index does not provide an update() operation, this also may be
executed via the standard remove() operation, followed by a respective insert() operation.
The index is read only during the find() auxiliary method. Instead of starting each list
traversal from the head sentinel node (see line 33 in Algorithm 1), the traversing thread tries
to shorten the traversal by accessing the fast index. I.e., instead of executing the code in
lines 33-34 of Algorithm 1, each thread executes the code from Algorithm 3. It starts by
initializing the searched key to the input key (received as input in line 31 of Algorithm 1).
Then, after finding the alleged predecessor, using the findPred() operation (line 5), if its
birth epoch is bigger than the last recorded one, the executing thread rolls-back to its last
recorded checkpoint (see Section 3.3). Otherwise, if pred’s key is not smaller than the given
input key, or its timestamp is not initialized yet, the thread starts another trial, with the
same key. Otherwise, if pred is either marked or flagged (line 13), the thread starts another
trial, with a smaller key. Otherwise, it is guaranteed that pred and predNext hold a valid
node and its (unmarked and unflagged) next pointer, respectively, and the thread may start
its list traversal from line 35 of Algorithm 1. Note that the code presented in Algorithm 3
always terminates, as in the worst case scenario, the loop breaks after a predefined number
of attempts.

4 Evaluation

For evaluating throughput of EEMARQ, we implemented6 the linked-list presented in
Section 37, including the extended VBR variant, as described in Section 3.3. In addition,
we implemented the lock-free skip list from [24] and the lock-free BST from [42]. Both the
skip list and the tree were used on top of the linked list, and served as fast indexes, as
described in Section 3.4. Deleted nodes from both indexes were manually reclaimed, using
the original VBR scheme, according to the integration guidelines from [58] (without the
adjustments described in Section 3.3). Each data-structure had its own objects pool (as
VBR forces type preservation). Retire lists had 64 entries. Since VBR allows the immediate
reclamation of retired nodes, retire lists were reclaimed as a whole every time they contained
64 nodes. I.e., at most 8192 (64 retired nodes X 128 threads) objects were over-provisioned
per data-structure at any given moment.

We compared EEMARQ against four competitors, all using epoch-based reclamation.
EBR-RQ is the lock-free epoch-based range queries technique by Arbel-Raviv and Brown [3],
vCAS is the lock-free technique by Wei et al. [65], Bundles is the lock-based bundled references
technique by Nelson et al. [43], and Unsafe uses a naive non-linearizable scan of the nodes
in the range without synchronizing with concurrent updates (used as our baseline). We

5 The implemented update() operation also takes the node’s birth epoch into account, and does not replace
a node with a reclaimed node or with a node with a smaller birth epoch

6 The code is available here.
7 For avoiding unnecessary accesses to the global timestamps clock, the ts field updates from Algoritm 1

and Algorithm 2 were executed only after the ts field was read, and only if it was still equal to ⊥.

OPODIS 2022

https://github.com/galisheffi/EEMARQ.git

5:16 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

(a) SL. Lookup-heavy:
0%U-90%C-10%RQ.

(b) SL. Mixed Workload:
50%U-40%C-10%RQ.

(c) SL. Update-heavy:
90%U-0%C-10%RQ.

(d) SL. 64
threads:50%U-50%C, 64
RQ threads.

(e) BST. Lookup-heavy:
0%U-90%C-10%RQ.

(f) BST. Mixed work-
load:
50%U-40%C-10%RQ.

(g) BST. Update-heavy:
90%U-0%C-10%RQ.

(h) BST. 64
threads:50%U-50%C, 64
RQ threads.

Figure 2 Throughput evaluation under various workloads for the skip list (2a–2d) and the tree
(2e–2h). The key range is 1M. In Figures 2a-2c and 2e-2g, the range query size is 1000. Y axis:
throughput in million operations per second. X axis: #threads in Figures 2a–2c and 2e–2g, and
range query size in Figures 2d and 2h.

did not compare EEMARQ against RLU [38], as its mechanism is not linearizable, and
it was also shown to be slower than our competitors [43]. For EBR-RQ and Bundles, we
used the implementation provided by the authors. The Unsafe code was provided by the
EBR-RQ authors. The vCAS authors provided a vCAS-based lock-free BST, including
their optimization for avoiding indirection (see Section 3.2 for more details). Since there
does not exist any respective skip list implementation, we implemented a vCAS-based skip
list according to the guidelines from [65]. The vCAS-based skip list was not optimized,
as the optimization technique, suggested in [65], does not fit to this data-structure. For
our competitors’ memory reclamation, we used the original implementations, provided
by [3, 43, 65], without any code or object pools usage changes. In particular, memory was
not returned to the operating system. I.e., all implementations used pre-allocated object
pools [58,61] for reclaiming memory.

Setup. We conducted our experiments on a machine running Linux (Ubuntu 20.04.4),
equipped with 2 Intel Xeon Gold 6338 2.0GHz processors. Each processor had 32 cores,
each capable of running 2 hyper-threads to a total of 128 threads overall. The machine
used 256GB RAM, an L1 data cache of 3MB and an L1 instruction cache of 2MB, an L2
unified cache of 80MB, and an L3 unified cache of 96MB. The code was written in C++ and
compiled using the GCC compiler version 9.4.0 with -std=c++11 -O3 -mcx16. Each test
was a fixed-time micro benchmark in which threads randomly call the insert(), remove(),
contains() and rangeQuery() operations according to different workload profiles. We ran the
experiments with a range of 1M keys. Each execution started by pre-filling the data-structure
to half of its range size, and lasted 10 seconds (longer experiments showed similar results).
Each experiment was executed 10 times, and the average throughput across all executions

G. Sheffi, P. Ramalhete, and E. Petrank 5:17

is reported. Figure 2 shows the skip list and tree scalability under various workloads. The
updates (half insert() and half remove()), contains() and rangeQuery() percentiles appear
under each graph. Figures 2a-2c and 2e-2g show the skip list and tree scalability as a function
of the number of executing threads, under a variety of workloads. All queries have a fixed
range of 1K keys (following [65]). Figures 2d and 2h show the effect of varying range query
size on the skip list and tree performance. In these experiments, 64 threads perform 25%
insert(), 25% remove() and 50% contains(), and 64 threads perform range queries only. In the
full version of this paper [60] we present the respective range queries and updates throughput
for Figures 2d and 2h, along with additional results for other workloads.

Discussion. The EEMARQ skip list surpasses the next best algorithm, EBR-RQ, by up
to 65% in the lookup-heavy workload (Figure 2a), by up to 50% in the mixed workload
(Figure 2b), and by up to 70% in the update-heavy workload (Figure 2c). The EEMARQ
tree surpasses its next best algorithm, vCAS, by up to 75% in the lookup-heavy workload
(Figure 2e), by up to 65% in the mixed workload (Figure 2f), and by up to 70% in the
update-heavy workload (Figure 2g).

The results show that avoiding indirection is crucial to performance. In particular,
EEMARQ outperforms its competitors in the lookup-heavy workloads (Figures 2a and 2e),
in which memory is never reclaimed. I.e., its range query mechanism, which completely
avoids traversing separate version nodes, has a significant advantage under such workloads.
It can also be seen when examining EEMARQ’s competitors. While the vCAS-based tree
(which avoids indirection) is EEMARQ’s next best competitor, the vCAS-based skip list
(that involves the traversal of designated version nodes) is the weakest among the skip
list implementations. In addition, the Bundles technique, which employs such a level of
indirection when range queries are executed, also performs worse than most competitors,
under most workloads.

Under update-dominated workloads, EEMARQ is faster also thanks to its efficient memory
reclamation method. While all other algorithms use EBR as their memory reclamation
scheme, EEMARQ enjoys VBR’s inherent locality and fast reclamation process. Moreover,
EEMARQ avoids the original VBR’s frequent accesses to the global epoch clock, as described
in Section 3.3. Although using VBR forces rollbacks when accessing reclaimed nodes, our
fast index mechanism allows a fast retry, which makes the impact of rollbacks small. Indeed,
experiments with longer retire lists (i.e., fewer rollbacks) showed similar results. This is
clearly shown in Figures 2d and 2h: EEMARQ outperforms its competitors when the query
ranges are big (10% of the data-structure range). I.e., possible frequent rollbacks do not
prevent EEMARQ from outperforming all other competitors.

5 Conclusion

We presented EEMARQ, a design for a lock-free data-structure that supports linearizable
inserts, deletes, contains, and range queries. Our design starts from a linked-list, which is
easier to use with MVCC for fast range queries. We add lock-free memory reclamation to
obtain full lock-freedom. Finally, we facilitate an easy integration of a fast external index
to speed up the execution, while still providing full linearizability and lock-freedom. As
the external index does not require version maintenance, it can remain simple and fast.
We implemented the design with a skip list and a binary search tree as two possible fast
indexes, and evaluated their performance against state-of-the-art solutions. Evaluation shows
that EEMARQ outperforms existing solutions across read-intensive and update-intensive

OPODIS 2022

5:18 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

workloads, and for varying range query sizes. In addition, EEMARQ’s memory footprint is
relatively low, thanks to its tailored reclamation scheme, enabling the immediate reclamation
of deleted objects. EEMARQ is the only technique that provides lock-freedom, as other
existing methods use blocking memory reclamation schemes.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993.
2 Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu, Raghavendra Thallam

Kodandaramaih, Hanuma Kodavalla, Prashanth Purnananda, Adrian-Leonard Radu, Chai-
tanya Sreenivas Ravella, and Girish Mittur Venkataramanappa. Constant time recovery in
azure sql database. Proceedings of the VLDB Endowment, 12(12):2143–2154, 2019.

3 Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient range
queries. ACM SIGPLAN Notices, 53(1):14–27, 2018.

4 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings of
the twentieth annual symposium on Parallelism in algorithms and architectures, pages 336–343,
2008.

5 Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist: lessons learned in designing tm-supported
range queries. In Proceedings of the 2013 ACM symposium on Principles of distributed
computing, pages 299–308, 2013.

6 Daniel Bartholomew. MariaDB cookbook. Packt Publishing Ltd, 2014.
7 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,

Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. In
Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 357–369, 2017.

8 Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, and
Yuanhao Wei. Space and time bounded multiversion garbage collection. arXiv preprint
arXiv:2108.02775, 2021.

9 Philip A Bernstein and Nathan Goodman. Concurrency control algorithms for multiversion
database systems. In Proceedings of the first ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pages 209–215, 1982.

10 Philip A Bernstein and Nathan Goodman. Multiversion concurrency control—theory and
algorithms. ACM Transactions on Database Systems (TODS), 8(4):465–483, 1983.

11 Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. Scalable garbage collection
for in-memory mvcc systems. Proceedings of the VLDB Endowment, 13(2):128–141, 2019.

12 Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical concurrent
binary search tree. ACM Sigplan Notices, 45(5):257–268, 2010.

13 Trevor Brown and Hillel Avni. Range queries in non-blocking k-ary search trees. In International
Conference On Principles Of Distributed Systems, pages 31–45. Springer, 2012.

14 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 329–342, 2014.

15 Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has to
be a better way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 261–270, 2015.

16 Bapi Chatterjee. Lock-free linearizable 1-dimensional range queries. In Proceedings of the 18th
International Conference on Distributed Computing and Networking, pages 1–10, 2017.

17 Andreia Correia, Pedro Ramalhete, and Pascal Felber. Orcgc: automatic lock-free memory
reclamation. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 205–218, 2021.

G. Sheffi, P. Ramalhete, and E. Petrank 5:19

18 David L Detlefs, Paul A Martin, Mark Moir, and Guy L Steele Jr. Lock-free reference counting.
Distributed Computing, 15(4):255–271, 2002.

19 Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stoneci-
pher, Nitin Verma, and Mike Zwilling. Hekaton: Sql server’s memory-optimized oltp engine.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,
pages 1243–1254, 2013.

20 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary
search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 131–140, 2010.

21 Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. The sap hana database–an architecture overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

22 Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. Persistent non-blocking binary
search trees supporting wait-free range queries. In The 31st ACM Symposium on Parallelism
in Algorithms and Architectures, pages 275–286, 2019.

23 Sérgio Miguel Fernandes and Joao Cachopo. Lock-free and scalable multi-version software
transactional memory. ACM SIGPLAN Notices, 46(8):179–188, 2011.

24 Keir Fraser. Practical lock-freedom. Technical report, University of Cambridge, Computer
Laboratory, 2004.

25 Theo Härder. Observations on optimistic concurrency control schemes. Information Systems,
9(2):111–120, 1984.

26 Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In International
Symposium on Distributed Computing, pages 300–314. Springer, 2001.

27 Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Nonblocking memory
management support for dynamic-sized data structures. ACM Transactions on Computer
Systems (TOCS), 23(2):146–196, 2005.

28 Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multiprocessor
programming. Newnes, 2020.

29 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

30 Nikolaos D Kallimanis and Eleni Kanellou. Wait-free concurrent graph objects with dynamic
traversals. In 19th International Conference on Principles of Distributed Systems (OPODIS
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

31 Idit Keidar and Dmitri Perelman. Multi-versioning in transactional memory. In Transactional
Memory. Foundations, Algorithms, Tools, and Applications, pages 150–165. Springer, 2015.

32 Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In 2011 IEEE 27th International Conference on
Data Engineering, pages 195–206. IEEE, 2011.

33 Jongbin Kim, Hyunsoo Cho, Kihwang Kim, Jaeseon Yu, Sooyong Kang, and Hyungsoo
Jung. Long-lived transactions made less harmful. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 495–510, 2020.

34 Jongbin Kim, Kihwang Kim, Hyunsoo Cho, Jaeseon Yu, Sooyong Kang, and Hyungsoo Jung.
Rethink the scan in mvcc databases. In Proceedings of the 2021 International Conference on
Management of Data, pages 938–950, 2021.

35 Priyanka Kumar, Sathya Peri, and K Vidyasankar. A timestamp based multi-version stm
algorithm. In International Conference on Distributed Computing and Networking, pages
212–226. Springer, 2014.

36 Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh, Yongjae Chuh,
Wolfgang Stephan, and Wook-Shin Han. Hybrid garbage collection for multi-version concur-
rency control in sap hana. In Proceedings of the 2016 International Conference on Management
of Data, pages 1307–1318, 2016.

OPODIS 2022

5:20 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

37 Li Lu and Michael L Scott. Generic multiversion stm. In International Symposium on
Distributed Computing, pages 134–148. Springer, 2013.

38 Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-log-update: a
lightweight synchronization mechanism for concurrent programming. In Proceedings of the
25th Symposium on Operating Systems Principles, pages 168–183, 2015.

39 Paul E McKenney and John D Slingwine. Read-copy update: Using execution history to solve
concurrency problems. In Parallel and Distributed Computing and Systems, volume 509518,
1998.

40 Maged M Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems, 15(6):491–504, 2004.

41 AB MySQL. Mysql, 2001.
42 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In

Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 317–328, 2014.

43 Jacob Nelson-Slivon, Ahmed Hassan, and Roberto Palmieri. Bundling linked data structures
for linearizable range queries. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 368–384, 2022.

44 Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas. A
consistency framework for iteration operations in concurrent data structures. In 2015 IEEE
International Parallel and Distributed Processing Symposium, pages 239–248. IEEE, 2015.

45 Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas. Of
concurrent data structures and iterations. In Algorithms, Probability, Networks, and Games,
pages 358–369. Springer, 2015.

46 Christos H Papadimitriou. The serializability of concurrent database updates. Journal of the
ACM (JACM), 26(4):631–653, 1979.

47 Christos H Papadimitriou and Paris C Kanellakis. On concurrency control by multiple versions.
ACM Transactions on Database Systems (TODS), 9(1):89–99, 1984.

48 Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. Smv: Selective
multi-versioning stm. In International Symposium on Distributed Computing, pages 125–140.
Springer, 2011.

49 Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in stm. In
Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 16–25, 2010.

50 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In International
Symposium on Distributed Computing, pages 224–238. Springer, 2013.

51 Hasso Plattner. A common database approach for oltp and olap using an in-memory column
database. In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, pages 1–2, 2009.

52 Behandelt PostgreSQL. Postgresql. Web resource: http://www. PostgreSQL. org/about, 1996.
53 Aleksandar Prokopec. Snapqueue: lock-free queue with constant time snapshots. In Proceedings

of the 6th ACM SIGPLAN Symposium on Scala, pages 1–12, 2015.
54 Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky. Concurrent

tries with efficient non-blocking snapshots. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 151–160, 2012.

55 Pedro Ramalhete and Andreia Correia. Brief announcement: Hazard eras-non-blocking memory
reclamation. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 367–369, 2017.

56 G Satyanarayana Reddy, Rallabandi Srinivasu, M Poorna Chander Rao, and Srikanth Reddy
Rikkula. Data warehousing, data mining, olap and oltp technologies are essential elements to
support decision-making process in industries. International Journal on Computer Science
and Engineering, 2(9):2865–2873, 2010.

G. Sheffi, P. Ramalhete, and E. Petrank 5:21

57 Gali Sheffi, Guy Golan-Gueta, and Erez Petrank. A scalable linearizable multi-index table. In
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pages
200–211. IEEE, 2018.

58 Gali Sheffi, Maurice Herlihy, and Erez Petrank. VBR: Version Based Reclamation. In Seth
Gilbert, editor, 35th International Symposium on Distributed Computing (DISC 2021), volume
209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:18, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
DISC.2021.35.

59 Gali Sheffi, Maurice Herlihy, and Erez Petrank. Vbr: Version based reclamation. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 443–445,
2021.

60 Gali Sheffi, Pedro Ramalhete, and Erez Petrank. Eemarq: Efficient lock-free range queries
with memory reclamation. arXiv preprint arXiv:2210.17086, 2022.

61 Ajay Singh, Trevor Brown, and Ali Mashtizadeh. Nbr: neutralization based reclamation. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 175–190, 2021.

62 Daniel Solomon and Adam Morrison. Efficiently reclaiming memory in concurrent search
data structures while bounding wasted memory. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 191–204, 2021.

63 Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. Transactional data structure
libraries. ACM SIGPLAN Notices, 51(6):682–696, 2016.

64 Alexander Thomasian and In Kyung Ryu. Performance analysis of two-phase locking. IEEE
Transactions on Software Engineering, 17(5):386, 1991.

65 Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 31–46, 2021.

66 Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L Scott. Interval-
based memory reclamation. ACM SIGPLAN Notices, 53(1):1–13, 2018.

67 Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson. Lock-free contention adapting
search trees. ACM Transactions on Parallel Computing (TOPC), 8(2):1–38, 2021.

68 Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical evaluation
of in-memory multi-version concurrency control. Proceedings of the VLDB Endowment,
10(7):781–792, 2017.

69 Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. Efficient
lock-free durable sets. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–26,
2019.

A Auxiliary Methods and Initialization

As described in Section 3.1 and Algorithm 1 and 2, the linked-list represents a map of
key-value pairs. Each pair is represented by a node, consisting of five fields: the mutable
ts field represents its associated timestamp, the immutable key and value fields represent
the pair’s key and value, respectively, the mutable next field holds a pointer to the node’s
successor in the list, and the immutable prior field points to the previous successor of its
first predecessor in the list.

The list is initialized as follows: The global timestamps clock is initialized to 2, and
the ⊥ constant, representing an uninitialized timestamp, is set to 1. The list has a single
entry point, which is a pointer to the head sentinel node. head’s key is the minimal key in
the key range (denoted as −∞). Its timestamp is set to the initial system timestamp (2
in our implementation) and its next pointer points to the tail sentinel node. tail’s key is

OPODIS 2022

https://doi.org/10.4230/LIPIcs.DISC.2021.35
https://doi.org/10.4230/LIPIcs.DISC.2021.35

5:22 EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

the maximal key in the key range (denoted as ∞), its timestamp is equal to head’s, and its
next pointer points to null. Both prior fields point to null, as head has no predecessor, and
tail’s predecessor (which is head) has no previous successor. After initialization, the list is
considered as empty (the sentinel nodes do not represent map items).

Algorithm 4 Our Auxiliary Methods Implementation.

1: getTS()
2: return globalTS.load()
3: fetchAddTS()
4: return globalTS.fetch&add()
5: MARK_MASK := 0x1
6: FLAG_MASK := 0x2
7: AUX_MASK := 0x3
8: isMarked(ptr)
9: if (ptr ∧ MARK_MASK) return true

10: return false
11: isFlagged(ptr)
12: if (ptr ∧ FLAG_MASK) return true
13: return false
14: isMarkedOrFlagged(ptr)
15: if (ptr ∧ AUX_MASK) return true
16: return false

17: getRef(ptr)
18: return ptr ∧ ¬ AUX_MASK
19: mark(node)
20: ptr := node → next
21: if (isMarkedOrFlagged(ptr)) return

false
22: markedPtr := ptr ∨ MARK_MASK
23: return CAS(&node → next, ptr,

markedPtr)
24: flag(node)
25: ptr := node → next
26: if (isMarkedOrFlagged(ptr)) return

false
27: flaggeddPtr := ptr ∨ FLAG_MASK
28: return CAS(&node → next, ptr, flagged-

dPtr)

The pseudo code for the global timestamps clock and node pointers access auxiliary
methods appears in Algorithm 4. The getTS() method (lines 1-2) is used to atomically read
the global timestamps clock, and the fetchAddTS() method (lines 3-4) is used to atomically
update it.

We use the pointer’s two least significant bits for encapsulating the mark and flag bits (see
lines 5-7). The isMarked() (lines 8-10), isFlagged() (lines 11-13), and isMarkedOrFlagged()
(lines 14-16) methods receive a pointer and return an answer using the relevant bit mask.
The getRef() method (lines 17-18) receives a (potentially marked or flagged) pointer and
returns the actual reference, ignoring the mark and flag bits. The mark() (lines 19-23)
and flag() (lines 24-28) methods receive a node reference (the input pointer is assumed
to be unmarked and unflagged), dereference it, and mark or flag the node’s next pointer
(respectively), assuming it is neither marked nor flagged.

The Step Complexity of Multidimensional
Approximate Agreement
Hagit Attiya !

Department of Computer Science, Technion, Israel

Faith Ellen !

Department of Computer Science, University of Toronto, Canada

Abstract
Approximate agreement allows a set of n processes to obtain outputs that are within a specified
distance ϵ > 0 of one another and within the convex hull of the inputs.

When the inputs are real numbers, there is a wait-free shared-memory approximate agreement
algorithm [16] whose step complexity is in O(n log(S/ϵ)), where S, the spread of the inputs, is
the maximal distance between inputs. There is another wait-free algorithm [17] that avoids the
dependence on n and achieves O(log(M/ϵ)) step complexity where M , the magnitude of the inputs,
is the absolute value of the maximal input.

This paper considers whether it is possible to obtain an approximate agreement algorithm whose
step complexity depends on neither n nor the magnitude of the inputs, which can be much larger
than their spread. On the negative side, we prove that Ω

(
min

{
log M

log log M
,

√
log n

log log n

})
is a lower bound

on the step complexity of approximate agreement, even when the inputs are real numbers. On
the positive side, we prove that a polylogarithmic dependence on n and S/ϵ can be achieved, by
presenting an approximate agreement algorithm with O(log n(log n + log(S/ϵ))) step complexity.
Our algorithm works for multidimensional domains. The step complexity can be further restricted
to be in O(min{log n(log n + log(S/ϵ)), log(M/ϵ)}) when the inputs are real numbers.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Theory of
computation → Distributed algorithms

Keywords and phrases approximate agreement, conflict detection, shared memory, wait-freedom,
step complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.6

Funding Hagit Attiya: Supported by the Israel Science Foundation (grants 380/18 and 1425/22).
Faith Ellen: Supported by the Natural Science and Engineering Research Council of Canada (grant
RGPIN-2020-04178).

Acknowledgements We thank Sasho Nikolov for useful discussion. We also appreciate the helpful
comments of the anonymous reviewers.

1 Introduction

Approximate agreement allows a set of n processes, each starting with an input from a domain,
to obtain outputs (in the same domain) that are close to each other and in the convex hull
of the inputs. A parameter ϵ represents an upper bound on how close the outputs are.
Originally, Dolev, Lynch, Pinter, Stark and Weihl [7] considered the one-dimensional case,
where the domain is R, the real numbers, and motivated the problem by clock synchronization
and the stabilization of inputs from sensors. More recently, Mendes, Herlihy, Vaidya, and
Garg [14, 15, 18] considered multidimensional approximate agreement, also called approximate
vector consensus, where the domain of inputs and outputs is Rk, for some integer k ≥ 2. The
multidimensional variant was motivated by distributed algorithms for optimization problems.

© Hagit Attiya and Faith Ellen;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 6; pp. 6:1–6:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:faith@cs.toronto.edu
https://orcid.org/0000-0003-4473-931X
https://doi.org/10.4230/LIPIcs.OPODIS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Step Complexity of Multidimensional Approximate Agreement

Wait-free shared-memory algorithms to reach approximate agreement for asynchronous
processes that may fail by crashing are evaluated by their (individual) step complexity, that
is, the maximum number of reads and writes to shared memory a process performs until it
obtains an output. There is a wait-free one-dimensional approximate agreement algorithm
with O(log(S/ϵ)) iterations due to Moran [16], where S, the spread of the inputs, is the
maximum distance between any two inputs. Each iteration requires one update and one scan
of an atomic snapshot object [2]. Using Attiya and Rachman’s implementation of a snapshot
object from single-writer registers [6], this leads to O(n log n log(S/ϵ)) step complexity and,
using Inoue, Masuzawa, Chen, and Tokura’s implementation from multi-writer registers [13],
this leads to O(n log(S/ϵ)) step complexity.

A simple argument shows that Ω(n) is a lower bound on the step complexity of approximate
agreement using single-writer registers [4]. The dependence on n can be avoided by using
multi-writer registers: An algorithm by Schenk [17] for inputs in R achieves O(log(M/ϵ))
step complexity, where M , the magnitude of the inputs, is the largest of the absolute values
of the inputs.

The spread, S, of a set of inputs is at most twice its magnitude, M , but the magnitude
might be significantly larger than the spread. This raises the challenge, addressed in this
paper, of obtaining a wait-free approximate agreement algorithm whose step complexity
depends on S, but not on n or M . If the same upper and lower bounds on the domain of the
input values are known to all processes, then the bounded version of Schenk’s algorithm has
O(log(R/ϵ)) step complexity, where R is the difference between these two bounds. However,
R can also be much larger than the spread of the inputs.

This paper provides both negative and positive answers. On the negative side, we prove

that Ω
(

min
{

log M
log log M ,

√
log n

log log n

})
is a lower bound on the step complexity of approximate

agreement, even using multi-writer registers. Thus, for values of M that are larger than n

(actually, even for M ∈ 2Ω(
√

log n)), step complexity that depends on n cannot be avoided.
This lower bound is proved by reduction from the conflict detection problem [3]. We also prove
a lower bound of 1

2 log√
2+1(S/ϵ) on the step complexity of multidimensional approximate

agreement using multi-writer registers. This extends and improves Herlihy’s lower bound for
one-dimensional approximate agreement among two or more processes using single-writer
registers [11]. Related lower bounds were proved by Attiya, Lynch and Shavit [5] and Hoest
and Shavit [12]. Ellen, Gelashvili, and Zhu [8] gave a lower bound on the number of registers
needed to solve approximate agreement from a lower bound on its wait-free step complexity.

On the positive side, we prove that a polylogarithmic dependence on n can be achieved,
by presenting a multidimensional approximate agreement algorithm with O(log n(log n +
log(S/ϵ))) step complexity. The algorithm repeatedly solves two group approximate agreement:
combining one group of processes whose values are close together with another such group
to form a larger group whose values can be slightly further apart. Two group approximate
agreement is solved with a variant of approximate agreement, where processes may know
slightly different domains for their inputs. A key step is showing how to solve this subproblem
using Schenk’s approximate agreement algorithm for inputs in [0,1].

In the one-dimensional case, we can run Schenk’s algorithm in parallel with our new
algorithm to achieve the best of both algorithms: an approximate agreement algorithm whose
step complexity is O(min{log n(log n + log(S/ϵ)), log(M/ϵ)}).

The one-dimensional problem was initially studied in message-passing systems [7]. Many
different approximate agreement algorithms were subsequently developed for these models.
Most of these algorithms are asynchronous and tolerate Byzantine failures. A good example
is an approximate agreement algorithm that tolerates f Byzantine failures, when n > 3f [1].

H. Attiya and F. Ellen 6:3

This algorithm works in O(log(S/ϵ)) (asynchronous) rounds. In each round, each process
obtains information from n− f processes. In the shared-memory model, this would translate
into an algorithm with O(n log(S/ϵ)) step complexity.

Multidimensional approximate agreement was previously studied only in message-passing
systems. The first algorithm for this problem in Rd uses O(d log(dS/ϵ)) rounds [15]. Later,
dependency on d was eliminated: there is an algorithm by Függer and Nowak [9] that uses
O(log(S/ϵ)) rounds. As with one-dimensional approximate agreement, this would translate
into O(n log(S/ϵ)) step complexity. Results of Függer, Nowak and Schwarz [10] imply a lower
bound of Ω(log(S/ϵ)) on the number of rounds for solving multidimensional approximate
agreement among two processes. Note that, like all prior lower bounds, their lower bound
does not depend on the magnitude of the inputs, but only on their spread.

2 Model

We consider a system where n deterministic asynchronous processes, p0, . . . , pn−1, commu-
nicate by reading and writing to shared multi-reader, multi-writer registers. In this model,
all processes can read from and write to all registers. A configuration consists of the state
of every process and the value of every shared register. In an initial configuration, each
process starts in an initial state, which includes its input value, and all registers contain an
initial value. Each process can be modelled as a deterministic state machine, specifying an
algorithm that the process follows until it outputs a value.

Two configurations C and C ′ are indistinguishable to process pi if pi has the same state
and all shared registers have the same values in both configurations.

A process pi is active in configuration C if process pi has not yet output a value. In this
case, configuration Cpi is the configuration reached from C when pi performs the next step
of its algorithm.

A schedule is a (finite or infinite) sequence of processes, specifying the order in which
processes take steps. A non-empty schedule σ = pi1pi2 · · · is applicable to a configuration C

if process pi1 is active in C and, for every prefix pi1 · · · pik
of σ of length k ≥ 2, process pik

is active in configuration Ck−1 = Cpi1 · · · pik−1 . Suppose σ is a schedule that is applicable
to configuration C. If σ has length k, then C, pi1 , C1, . . . , pik

, Ck is the execution from C

induced by σ, where Ck = Cpi1 · · · pik
. If σ is an infinite schedule, then C, pi1 , C1, . . . is the

execution from C induced by σ. The solo execution of process pi from C is the execution
induced by the longest schedule containing only process pi that is applicable to C.

We assume each process pi starts with an input value xi ∈ Rd and, after performing some
number of steps according to its algorithm, produces an output value yi ∈ Rd. An algorithm
(or, more precisely, an algorithm for each process) solves multidimensional approximate
agreement with parameter ϵ if (a) the distance between output values is at most ϵ, and (b)
the output values are in the convex hull of the input values. An algorithm is wait-free if it
ensures that every process that does not crash terminates within a finite number of its own
steps.

The (individual) step complexity of an algorithm is the maximum number of steps taken
by any one process in any possible execution of the algorithm.

3 A Multidimensional Approximate Agreement Algorithm

In our multidimensional approximate agreement algorithm, described in Section 3.4, processes
repeatedly solve instances with increasing values of the accuracy parameter among increasingly

OPODIS 2022

6:4 The Step Complexity of Multidimensional Approximate Agreement

many processes, using their output from one instance as their input to the next instance. The
algorithm begins by solving instances among pairs of of processes. This produces groups of
(two) processes whose inputs are close to one another. These groups are repeatedly combined,
two at a time, in a tree-like manner, creating larger groups whose inputs can be slightly
further apart.

The subproblem of combining two groups (where, in each group, the inputs are close
together) is a restricted version of multidimensional approximate agreement, which we call two
group approximate agreement. In Section 3.3, we show how to solve two group approximate
agreement using another variant of multidimensional approximate agreement, which we call
approximate agreement with domain uncertainty. This problem is defined in Section 3.2.
There, we reduce it to a variant of approximate agreement for inputs in [0, 1], which was
introduced and efficiently solved by Schenk [17] and is described in Section 3.1.

3.1 Schenk’s Algorithm
Schenk’s wait-free approximate agreement algorithm r-agree(x, ϵ) [17] assumes that each
process pi has an input xi ∈ [0, 1] and all processes have a common accuracy parameter ϵ > 0.
It ensures that each non-faulty process outputs a value yi such that min{x1, . . . , xn} ≤ yi ≤
max{x1, . . . , xn} and all outputs are within distance ϵ of one another.

When ϵ = 1/2, r-agree uses two single-bit multi-writer registers, which are both initially
0. Processes with inputs in the interval [0,1/2] write 1 to one of these registers and processes
with inputs in the interval [1/2,1] write 1 to the other register. Processes with input 1/2
output 1/2. A process with any other input reads the register it didn’t write to and, if it
sees 1, it also outputs 1/2. Otherwise it outputs its input. All outputs will lie in the interval
of size 1/2 corresponding to the register that is written to first.

When ϵ = 1/4, the same approach can be applied to this interval, using the outputs
as inputs, to obtain new outputs in a subinterval of size 1/4. The only difficulty is that
processes with output 1/2, which is on the boundary between both intervals [0,1/2] and
[1/2,1], don’t know which interval this is. The solution is for these processes to participate
in the subproblems for both these intervals. In at least one of these two subproblems, it
will output 1/2, so it can use its output from the other subproblem. When ϵ = 1/2k, where
k > 1, this is done k times, each time reducing the size of the interval containing the inputs
by a factor of 2. More generally, this is done ⌈log2(1/ϵ)⌉ times.

A useful generalization of approximate agreement is to allow each process pi to have
a different value ϵi > 0 for its accuracy parameter. For this problem, which is called
ϵ-unknown approximate agreement, all non-faulty processes must output a value within
distance max{ϵ1, . . . , ϵn} of each other. As in approximate agreement, each output must lie
between the smallest and largest inputs. This problem can also be solved using r-agree with
O(log(max{1/ϵ1, . . . , 1/ϵn})) step complexity.

Schenk used ϵ-unknown approximate agreement to solve approximate agreement for any
real valued inputs x1, . . . , xn with O(log(max{|x1|, . . . , |xn|}/ϵ)) step complexity: First, each
process pi finds a value ri such that (1) the interval [−ri, ri] contains at least one of the
original inputs and (2) these values differ from one another by at most a factor of 2. Then
the processes solve this bounded version of approximate agreement by mapping their inputs
to [0, 1] and solving approximate agreement within this interval using accuracy parameters
that can differ by at most a factor of 2.

H. Attiya and F. Ellen 6:5

3.2 Approximate Agreement with Domain Uncertainty
We consider a closely related problem, approximate agreement with domain uncertainty. In
this problem, each process pi has two points ui, vi ∈ Rk and a point xi ∈ Rk on the line
segment between them, expressed as xi = ui + ti(vi − ui), where ti ∈ [0, 1]. We call this
line segment the domain for process pi. The domains of all processes are assumed to be
close to one another. Specifically, there exists a constant δ > 0 known to all processes such
that ||ui − uj || ≤ δ and ||vi − vj || ≤ δ for all processes pi and pj . Each process pi that does
not crash must produce an output yi = ui + t′

i(vi − ui) on the line between ui and vi such
that min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} and the difference between any two outputs is
at most ϵ, which is known to all processes.

Algorithm 1 solves approximate agreement with domain uncertainty for ϵ ≥ 5δ. If the
size of the domain of process pi is small, then it simply sets yi = xi. Otherwise, it uses
r-agree to solve approximate agreement with input ti and uses the result t′

i to determine its
output yi = ui + t′

i(vi − ui).

Algorithm 1 Code for a process with inputs u, v ∈ Rk, t ∈ [0, 1], and parameters ϵ and δ.

ApproxAgreeDU(u, v, t, ϵ, δ)
1: s← ||v − u||
2: if s ≤ 2δ then return u + t(v − u)
3: ϵ′ ← ϵ/5s

4: t′ ← r-agree(t, ϵ′)
5: return u + t′(v − u)

Consider an execution where process pi calls ApproxAgreeDU(ui, vi, ti, ϵ, δ) with ti ∈ [0, 1]
for 1 ≤ i ≤ n. If pi outputs yi = ui + ti(vi − ui) ∈ Rk on line 2, then ti lies between
min{t1, . . . , tn} and max{t1, . . . , tn} and yi is a point on the line segment between ui and
vi. If pi outputs the point yi = ui + t′

i(vi − ui) ∈ Rk on line 5, then t′
i is the value output

by r-agree on line 4. The specifications of ϵ-unknown approximate agreement ensure that
0 ≤ min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} ≤ 1, so yi is a point on the line segment between
ui and vi.

To prove that ApproxAgreeDU is correct, it remains to show that all outputs are within
ϵ of one another.

▶ Lemma 1. For 1 ≤ i, j ≤ n, if process pi outputs yi = ui + t′
i(vi − ui) and process pj

outputs yj = uj + t′
j(vj − uj), then ||yi − yj || ≤ ϵ.

Proof. For 1 ≤ i ≤ n, let si = ||ui − vi|| be the size of the domain of process pi. Since
||ui−uj || ≤ δ and ||vi− vj || ≤ δ, it follows from the triangle inequality that si = ||ui− vi|| =
||ui − uj + uj − vj + vj − vi|| ≤ ||ui − uj ||+ ||uj − vj ||+ ||vj − vi|| ≤ 2δ + sj . By the triangle
inequality,

||yi − yj || = ||ui + t′
i(vi − ui)− uj − t′

j(vj − uj)||
= ||ui − uj + t′

ivi − t′
ivj + t′

ivj − t′
jvj + t′

juj − t′
iuj + t′

iuj − t′
iui||

≤ ||ui − uj ||+ t′
i · ||vi − vj ||+ |t′

i − t′
j | · ||vj − uj ||+ t′

i · ||uj − ui||
≤ δ + 1 · δ + |t′

i − t′
j | · ||vj − uj ||+ 1 · δ

= 3δ + |t′
i − t′

j | · sj .

OPODIS 2022

6:6 The Step Complexity of Multidimensional Approximate Agreement

Let I ⊆ {1, . . . , n} be the set of identifiers of processes that perform line 4 and let
s′ = min{sm | m ∈ I}. Note that, by the test on line 2, if I ̸= ϕ, then s′ > 2δ. Hence
sm ≤ s′ + 2δ < 2s′ for all m ∈ I. For each m ∈ I, let ϵ′

m = ϵ/5sm, so max{ϵ′
m | m ∈ I} =

max{ϵ/5sm | m ∈ I} = ϵ/5 min{sm | m ∈ I} = ϵ/5s′.
First consider the case when i, j ∈ I. From the specifications of ϵ-unknown approximate

agreement, |t′
i − t′

j | ≤ max{ϵ′
m | m ∈ I} = ϵ/5s′. Then ||yi − yj || ≤ 3δ + |t′

i − t′
j | · sj ≤

3ϵ/5 + (ϵ/5s′) · 2s′ = ϵ.
Otherwise, without loss of generality, suppose j ̸∈ I. Then sj ≤ 2δ and ||yi − yj || ≤

3δ + |t′
i − t′

j | · sj ≤ 3δ + 1 · 2δ = 5δ = ϵ. ◀

If t1 = · · · = tn = t, then each nonfaulty process pi outputs ui + t(vi − ui) since
t = min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} = t. In particular, if t = 0, then each nonfaulty
process outputs its first argument and, if t = 1, then each nonfaulty process outputs its
second argument.

3.3 Two Group Approximate Agreement
The two group approximate agreement problem is a restricted version of the approximate
agreement problem in which the processes are divided into two groups, 0 and 1, such that,
within each group, the inputs of the processes are guaranteed to be points in Rk that are
within distance ϵ/5 of one another. We will use ApproxAgreeDU (Algorithm 1) to solve this
problem.

TwoGroupApproxAgree (Algorithm 2) uses two arrays of multi-writer registers A[0..1]
and B[0..1], each with two components. The components of A are initially ⊥ and can store
any point in Rk. The components of B are single bits and are initially 0. Only processes in
group g write to component g of these arrays.

As in Schenk’s approximate agreement algorithm, each process writes to one register
(A[g], where g is the group to which it belongs) and reads from the other register (A[1− g]).
If a process in group g sees that A[1− g] has not yet been written to, it informs the processes
in group 1− g of this fact by writing 1 into B[g] and reads from A[1− g] again. If it sees
that A[1− g] has still not been written to, the process outputs its input.

Otherwise, the process participates in an instance of ApproxAgreeDU, using its input as
one endpoint of its domain and the point it read as the other endpoint. The endpoints are
ordered so that an input from group 0 is the first endpoint and an input from group 1 is the
second point. Then the preconditions ensure that the domains of all processes are close to
one another.

If a process in group g saw that A[1− g] was first written to between its first and second
reads, it uses its input for two group approximate agreement as its input point in this domain.
However, if the process saw that A[1− g] had been written to before its first read, it checks
the bit B[1− g]. If it is 0, processes in the other group will participate in the instance of
ApproxAgreeDU and the process also uses its input for two group approximate agreement
as its input point in this domain. If it is 1, some processes in the other group may simply
output their inputs. In this case, the process uses the other endpoint of its domain as its
input point.

Consider an execution where TwoGroupApproxAgree(gi, xi, ϵ) is called by process pi in
group gi ∈ {0, 1}, for 1 ≤ i ≤ n. Furthermore, suppose ||xi − xj || ≤ ϵ/5 for every pair of
processes pi and pj that are in the same group.

H. Attiya and F. Ellen 6:7

Algorithm 2 Code for a process in group Gg with input x.

TwoGroupApproxAgree(g, x, ϵ)
1: a[g]← x

2: A[g]← write(a[g])
3: a[1− g]← read(A[1− g])
4: if a[1− g] = ⊥ then
5: B[g]← write(1)
6: a[1− g]← read(A[1− g])
7: if a[1− g] = ⊥ then
8: return x

9: else
10: return ApproxAgreeDU(a[0], a[1], g, ϵ, ϵ/5)
11: else
12: b← read(B[1− g])
13: if b = 0 then
14: return ApproxAgreeDU(a[0], a[1], g, ϵ, ϵ/5)
15: else
16: return ApproxAgreeDU(a[0], a[1], 1− g, ϵ, ϵ/5)

▶ Observation 2. The value 1 is written to most one component of B.

Proof. Suppose the first step of the execution is by a process in group 1− g. Then when
any process from group g performs line 3, it does not see ⊥ in A[1− g] and, hence, it does
not write 1 to B[g] on line 5. ◀

Next, we show that the outputs are within the convex hull of the inputs.

▶ Lemma 3. If process pi outputs yi, then yi is in the convex hull of {x1, . . . , xn}.

Proof. If process pi returns yi = xi on line 8, the claim is true since xi is in the convex hull
of {x1, . . . , xn}. Otherwise, yi is the point returned by ApproxAgreeDU(ai[0], ai[1], ti, ϵ, ϵ/5),
where ti ∈ {0, 1}, gi is the group to which pi belongs, ai[gi] = xi, and ai[1− gi] ̸= ⊥ is the
value it read from A[1− gi] on line 3 or 6.

The only points written to A[1 − gi] are elements of {x1, . . . , xn}, so ai[1 − gi] ∈
{x1, . . . , xn}. From the specifications of ApproxAgreeDU, yi is on the line segment between
ai[0] and ai[1]. Hence yi is in the convex hull of {x1, . . . , xn}. ◀

Finally, we show that all the outputs are sufficiently close to one another.

▶ Lemma 4. Suppose that the inputs to all processes in group g are within ϵ/5 of one another,
for all g ∈ {0, 1}. For 1 ≤ i, j ≤ n, if process pi outputs the point yi and process pj outputs
the point yj, then ||yi − yj || ≤ ϵ.

Proof. First consider the processes that return on lines 10, 14, or 16. Each such process pi

returns the result from ApproxAgreeDU(ai[0], ai[1], ti, ϵ, ϵ/5), where ti ∈ {0, 1}. Note that
ai[gi] is the input of a process in group gi and only processes in group 1−gi write to A[1−gi].
Hence ai[0] is the input of a process in group 0 and ai[1] is the input of a process in group 1.
Since the inputs of all processes in the same group are within ϵ/5 of one another, Lemma 1
implies that all these output points differ from one another by at most ϵ.

Now suppose that some process in group g returns its input on line 8. Since this process
returns on line 8 only after writing 1 to B[g], Observation 2 implies that no process writes 1
to B[g − 1]. This implies that no processes in group 1− g return on line 8.

OPODIS 2022

6:8 The Step Complexity of Multidimensional Approximate Agreement

Let C be the configuration immediately following the first write to B[g]. Any process
that returns on line 8 read ⊥ from A[1− g] on line 6 following its write to B[g]. Thus, the
first write to A[1− g] occurs after configuration C. Let C ′ be the configuration immediately
following the first write to A[1− g]. Note that the first step of every process in group g is a
write to A[g], so A[g] ̸= ⊥ in configuration C and all subsequent configurations. Thus, each
process pj in group 1−g reads aj [g] ̸= ⊥ from A[g] on line 3 and reads 1 from B[g] on line 12.
Hence, it will call ApproxAgreeDU(aj [0], aj [1], g, ϵ, ϵ/5) on line 16 with aj [1− g] = xj .

Each process pi in group g that returns on line 10 performs its read of A[1 − g] on
line 3 prior to C ′ and its read on line 6 after C ′. Each process pi in group g that returns
on line 14 performs its read of A[1 − g] on line 3 after C ′. In either case, it will call
ApproxAgreeDU(ai[0], ai[1], g, ϵ, ϵ/5) with ai[g] = xi.

Hence, in all calls to ApproxAgreeDU, the first argument is an input of a process in group
0, the second argument is an input of a process in group 1, and the third argument is g ∈ {0, 1}.
Every process pi that returns on line 10, 14, or 16 outputs ai[0] + g(ai[1] − ai[0]) = ai[g],
which is an input of a process in group g. If process pi returns on line 8, it is in group g and
it returns its own input. By assumption, the inputs of all processes in group g differ from one
another by at most ϵ/5. Hence, all outputs differ from one another by at most ϵ/5 < ϵ. ◀

Note that, if there are only two processes, then TwoGroupApproxAgree can be used
to solve approximate agreement with O(log(S/ϵ)) step complexity using 1-bit multiwriter
registers plus two single-writer registers to which the processes write their inputs.

3.4 Putting the Pieces Together
We can construct an algorithm for approximate agreement in Rk, where the accuracy
parameter ϵ is known by all processes and each process has no information about the inputs
of the other processes. The step complexity of our algorithm depends on (log n and) the
spread, the maximum distance between any two inputs, rather than the input with the largest
magnitude, as in Schenk’s algorithm. The idea is to use a binary tree of height ⌈log2 n⌉, with
one leaf for each process and with a separate instance of two group approximate agreement
at every other node. The accuracy parameter is ϵ at the root and ϵ/5d at internal nodes of
depth d. Each process pi traverses a path from its leaf to the root, using its input xi as its
input to the first instance of two group approximate agreement and, for each subsequent
instance, using its output from the previous instance as its input. If its leaf is in the left
subtree of a node, a process will be in group 0 of the instance of two group approximate
agreement at the node and, if its leaf is in the right subtree, it will be in group 1.

We show that the input requirements for each instance of two group approximate agreement
is satisfied.

▶ Lemma 5. For 0 ≤ d < ⌈log2 n⌉, for each instance of two group approximate agreement
at each node of depth d and in each group, the inputs of the processes are within distance
ϵ/5d+1 of one another.

Proof. First, consider any node with a leaf as a child. Since the group corresponding to that
child consists of only one process, the inputs of the processes in this group are all equal to
one another and, hence, within distance 0 of one another.

Now consider any node which has at least one child that is not a leaf and assume the
claim is true for those children. Let d be the depth of the node, so its children are at depth
d + 1. For each child that is not a leaf and for each group of that child, the inputs in the
group are within distance ϵ/5d+2 of one another. By Lemma 4, the outputs of the instance

H. Attiya and F. Ellen 6:9

at this child are within distance ϵ/5d+1 of one another. Hence the inputs to the instance
at the node from the group corresponding to this child are within distance ϵ/5d+1 of one
another. ◀

▶ Theorem 6. The algorithm described above solves ϵ-unknown approximate agreement with
O(log n(log n + log(S/ϵ)) step complexity among n processes, where S is the spread of the
inputs.

Proof. By Lemma 5, for the instance of two group approximate agreement at the root, the
inputs in each group are within distance ϵ/5 of one another. By Lemma 4, the outputs of
the instance at the root and, hence, the algorithm are within distance ϵ of one another.

By Lemma 3, the outputs of any instance of two group approximate agreement are in the
convex hull of its inputs. Thus, it follows by induction that the outputs of the algorithm are
in the convex hull of {x1, . . . , xn}.

Each process participates in at most one instance of two group approximate agreement at
depth d for 0 ≤ d < ⌈log2 n⌉. Since the inputs to this instance are all within the convex hull
of {x1, . . . , xn}, they are within distance S of one another. At level d, the accuracy parameter
for TwoGroupApproxAgree is ϵ/5d. It involves at most one call to ApproxAgreeDU with
accuracy parameter ϵ/5d, which, in turn, involves at most one call to r-agree with accuracy
parameter at least ϵ/5d+1S. Each such call to r-agree takes O(log(S5d+1/ϵ) = O(d+log(S/ϵ))
steps. Thus, the total step complexity is O(log n(log n + log(S/ϵ)). ◀

The step complexity of Schenk’s algorithm for domain R depends only on the magnitude
of the inputs, whereas the step complexity of our algorithm depends on the spread of the
inputs and the number of processes. To get the best of both worlds with domain R, one
can run Schenk’s algorithm and our algorithm in parallel, both with accuracy parameter
ϵ/5. Specifically, a separate part of shared memory is used for each algorithm and each
process alternately performs steps of the two algorithms. If a process first completes Schenk’s
algorithm with output y, then it performs TwoGroupApproxAgree(0,y,ϵ). If it first completes
our algorithm with output y, then it performs TwoGroupApproxAgree(1,y,ϵ). In either case,
it returns the output it obtains from TwoGroupApproxAgree.

Note that, from the output specifications of Schenk’s algorithm and our algorithm, in
each group, all processes have inputs that are within distance ϵ/5 of one another. Hence,
from the output specifications of TwoGroupApproxAgree, all outputs will be within distance
ϵ of one another. Since all three algorithms satisfy validity, the resulting algorithm also
satisfies validity.

4 Lower bound on the Step Complexity as a Function of the
Magnitude and the Number of Processes

In the conflict detection problem, each process pi has an input xi ∈ {1, . . . , m}. If a process
doesn’t crash, it must output either true or false. If two processes have different input values
and neither crashes, at least one of them returns true, indicating that there is a conflict. If
all processes have the same input value, they must all output false, indicating no conflict.
Aspnes and Ellen [3] proved that the step complexity of this problem when implemented

using only registers is Ω
(

min
{

log m
log log m ,

√
log n

log log n

})
, where n is the number of processes.

There is a simple reduction from conflict detection to approximate agreement, where each
process has an input in {1, . . . , m} and ϵ = 1/2. Specifically, given inputs xi ∈ {1, . . . , m}, the
processes perform approximate agreement to determine outputs yi. If yi = xi, then process

OPODIS 2022

6:10 The Step Complexity of Multidimensional Approximate Agreement

pi outputs false and, if yi ̸= xi, then process pi outputs true. If all the inputs have the same
value, then, by validity, all the yi’s have this value and all processes output false, as required.
However, if xi ̸= xj , then either yi ̸= xi or yj ̸= xj , since |yi − yj | ≤ ϵ < 1 ≤ |xi − xj |. In
this case, either pi outputs true or pj outputs true, as required. It follows that the step
complexity of approximate agreement among n processes with inputs in {1, . . . , m} and

ϵ = 1/2 is Ω
(

min
{

log m
log log m ,

√
log n

log log n

})
.

5 Lower Bound on the Step Complexity as a Function of the Spread

Consider a wait-free algorithm for approximate agreement. For any reachable configuration
C and any process pi active in C, let mi(C) denote the value that process pi outputs in its
solo execution starting from configuration C. If pi has already decided in configuration C,
then mi(C) denotes the value that pi decided.

▶ Observation 7. If pi is active in C, then mi(C) = mi(Cpi).

▶ Observation 8. If C and C ′ are indistinguishable to process pi, then mi(C) = mi(C ′).

Herlihy [11] proved a lower bound for approximate agreement among 2 or more processes
that communicate using single-writer registers. We present a corrected version of his proof,
together with an extension to multi-writer registers. We begin with a technical lemma.

▶ Lemma 9. If processes p0 and p1 are active in configuration C, then there exists σ ∈
{p0, p1, p0p1, p1p0} such that ||m0(Cσ)−m1(Cσ)|| ≥ (

√
2− 1)|σ|||m0(C)−m1(C)||.

Proof. We consider different cases depending on the operations p0 and p1 are poised to
perform.

If p0 is poised to perform a read, then configurations C and Cp0 are indistinguishable to
p1, so, by Observation 8, m1(Cp0) = m1(C). By Observation 7, m0(Cp0) = m0(C). Thus
||m0(Cp0)−m1(Cp0)|| = ||m0(C)−m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

Similarly, if p1 is poised to perform a read, then ||m0(Cp1) −m1(Cp1)|| = ||m0(C) −
m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

If p0 and p1 are poised to perform writes to the same location, then Cp0p1 and Cp1 are
indistinguishable to process p1, so Observation 8 implies that m1(Cp0p1) = m1(Cp1). By
Observation 7, m1(Cp0p1) = m1(Cp0) and m1(Cp1) = m1(C). Thus m1(Cp0) = m1(C).
However, by Observation 7, m0(Cp0) = m0(C). Hence, we get ||m0(Cp0) −m1(Cp0)|| =
||m0(C)−m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

If p0 and p1 are poised to perform writes to different locations, then Cp0p1 = Cp1p0. By
the triangle inequality,

||m0(C) − m1(C)|| = ||m0(C) − m1(Cp0) + m1(Cp0) − m0(Cp1) + m0(Cp1) − m1(C)||
≤ ||m0(C) − m1(Cp0)|| + ||m1(Cp0) − m0(Cp1)|| + ||m0(Cp1) − m1(C)||.

Since (
√

2− 1) + (
√

2− 1) + (
√

2− 1)2 = 1, it follows that either

||m0(C)−m1(Cp0)|| ≥ (
√

2− 1)||m0(C)−m1(C)||,

||m0(Cp1)−m1(C)|| ≥ (
√

2− 1)||m0(C)−m1(C)||, or

||m1(Cp0)−m0(Cp1)|| ≥ (
√

2− 1)2||m0(C)−m1(C)||

In the first case, m0(Cp0) = m0(C) by Observation 7, so ||m0(Cp0) − m1(Cp0)|| ≥
(
√

2− 1)1||m0(C)−m1(C)||.
Similarly, in the second case, ||m0(Cp1)−m1(Cp1)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

H. Attiya and F. Ellen 6:11

In the third case, by Observation 7, m0(Cp1p0) = m0(Cp1) and m1(Cp0p1) = m1(Cp0).
Since Cp1p0 = Cp0p1, it follows that ||m0(Cp1p0)−m1(Cp1p0)|| = ||m1(Cp0)−m0(Cp1)|| ≥
(
√

2− 1)2||m0(C)−m1(C)||. ◀

▶ Theorem 10. Any approximate agreement algorithm for two or more processes and accuracy
ϵ has step complexity at least 1

2 log√
2+1(S/ϵ), where S is the spread of the inputs.

Proof. Consider an initial configuration C0 in which process p0 has input x0, process p1 has
input x1, and S = ||x0 − x1||. Suppose an adversary schedules steps of processes p0 and
p1 by repeatedly choosing schedules that satisfy Lemma 9 until both have output values.
Let σ′ be the resulting schedule, let C ′ = Cσ′, and let t = |σ|. Then ||m0(C ′)−m1(C ′)|| ≥
(
√

2 − 1)t||m0(C0) −m1(C0)||. To satisfy agreement, ||m0(C ′) −m1(C ′)|| ≤ ϵ. To satisfy
validity, m0(C0) = x0 and m1(C0) = x1, so ||m0(C0) −m1(C0)|| = ||x0 − x1|| = S. Hence
t ≥ log1/(

√
2−1)(S/ϵ). This is equal to log√

2+1(S/ϵ), since 1/(
√

2− 1) =
√

2 + 1. There are
only two processes taking steps, so at least one of them must take at least t/2 steps. ◀

6 Conclusion

This paper studies wait-free multidimensional approximate agreement in the shared memory
model, using only read and write operations. The step complexities of our algorithms have
poly-logarithmic dependency on S/ϵ and n, where S is the maximum distance between inputs,
ϵ is a parameter bounding the distance between outputs, and n is the number of processes.

There is still a gap between our upper and lower bounds, and it would be interesting to
bring them closer together. In particular, it might be possible to increase the lower bound
for the conflict detection problem.

Another possible avenue for future research is to explore whether our ideas can be applied
in other models, in particular, to obtain approximate agreement algorithms for asynchronous
message-passing systems.

References
1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate

agreement. In Proceedings of the 8th International Conference On Principles Of Distributed
Systems (OPODIS), pages 229–239, 2004.

2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.

3 James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory of Computing
Systems, 55(3):451–474, 2014.

4 Hagit Attiya and Faith Ellen. Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2014.

5 Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast? Journal of the
ACM, 41(4):725–763, 1994.

6 Hagit Attiya and Ophir Rachman. Atomic snapshots in o(n log n) operations. SIAM Journal
on Computing, 27(2):319–340, 1998.

7 Danny Dolev, Nancy Lynch, Shlomit Pinter, Eugene Stark, and William Weihl. Reaching
approximate agreement in the presence of faults. Journal of the ACM, 33(3):499–516, 1986.

8 Faith Ellen, Rati Gelashvili, and Leqi Zhu. Revisionist simulations: A new approach to proving
space lower bounds. In Proceedings of the 37th ACM Symposium on Principles of Distributed
Computing (PODC), pages 61–70, 2018.

9 Matthias Függer and Thomas Nowak. Fast multidimensional asymptotic and approximate
consensus. In Proceedings of the 32nd International Symposium on DIStributed Computing
(DISC), pages 27:1–27:16, 2018.

OPODIS 2022

6:12 The Step Complexity of Multidimensional Approximate Agreement

10 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. Journal of the ACM, 68(6):46:1–46:35, 2021.

11 Maurice Herlihy. Impossibility results for asynchronous PRAM. In Proceedings of the 3rd
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 327–336,
1991.

12 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM Journal on Computing, 36(2):457–497, 2006.

13 Michiko Inoue, Toshimitsu Masuzawa, Wei Chen, and Nobuki Tokura. Linear-time snapshot
using multi-writer multi-reader registers. In Proceedings of the 8th International Workshop on
Distributed Algorithms (WDAG), pages 130–140, 1994.

14 Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
Byzantine asynchronous systems. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing (STOC), pages 391–400, 2013.

15 Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidimensional
agreement in Byzantine systems. Distributed Computing, 28(6):423–441, 2015.

16 Shlomo Moran. Using approximate agreement to obtain complete disagreement: The output
structure of input-free asynchronous computations. In Proceedings of the 3rd Israel Symposium
on the Theory of Computing and Systems (ISTCS), pages 251–257, 1995.

17 Eric Schenk. Faster approximate agreement with multi-writer registers. In Proceedings of the
36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 714–723,
1995.

18 Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in complete graphs. In
Proceedings of the 32nd Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 65–73, 2013.

Performance Anomalies in Concurrent Data
Structure Microbenchmarks
Rosina F. Kharal ! Ï

University of Waterloo, Canada

Trevor Brown ! Ï

University of Waterloo, Canada

Abstract
Recent decades have witnessed a surge in the development of concurrent data structures with an
increasing interest in data structures implementing concurrent sets (CSets). Microbenchmarking
tools are frequently utilized to evaluate and compare the performance differences across concurrent
data structures. The underlying structure and design of the microbenchmarks themselves can
play a hidden but influential role in performance results. However, the impact of microbenchmark
design has not been well investigated. In this work, we illustrate instances where concurrent data
structure performance results reported by a microbenchmark can vary 10-100x depending on the
microbenchmark implementation details. We investigate factors leading to performance variance
across three popular microbenchmarks and outline cases in which flawed microbenchmark design can
lead to an inversion of performance results between two concurrent data structure implementations.
We further derive a set of recommendations for best practices in the design and usage of concurrent
data structure microbenchmarks and explore advanced features in the Setbench microbenchmark.

2012 ACM Subject Classification Computing methodologies → Concurrent computing methodolo-
gies; Theory of computation → Concurrency; Computing methodologies → Massively parallel and
high-performance simulations

Keywords and phrases concurrent microbenchmarks, concurrent data structures, concurrent per-
formance evaluation, PRNGs, parallel computing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.7

Related Version Full Version: https://arxiv.org/abs/2208.08469

Supplementary Material
InteractiveResource (Website): https://cs.uwaterloo.ca/~t35brown/setbench_example_www/
Software (Repository): https://github.com/rkharal/prng_experiments, archived at swh:1:dir:
3c60f562296ce0d0636dab4ff6e8493553f4c601

Funding This work was supported by: the Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery Program grant: RGPIN-2019-04227, the Canada Foundation for
Innovation John R. Evans Leaders Fund with equal support from the Ontario Research Fund CFI
Leaders Opportunity Fund: 38512, NSERC Discovery Launch Supplement: DGECR-2019-00048,
and the University of Waterloo.

Acknowledgements We thank the reviewers for their helpful comments and suggestions.

1 Introduction

The execution efficiency of highly parallelizable data structures for concurrent access has
received significant attention over the past decade. An extensive variety of data structures
have appeared, with a particular focus on data structures implementing concurrent sets
(CSets) [8, 11, 21, 37, 51]. CSets have applications in many areas including distributed
systems, database design, and multicore computing. A CSet is an abstract data type (ADT)
which stores keys and provides three primary operations on keys: search, insert, and delete.
Insert and delete operations modify the CSet and are called update operations. There are
numerous concurrent data structures that can be used to implement CSets, including trees,

© Rosina F. Kharal and Trevor Brown;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rkharal@uwaterloo.ca
https://mc.uwaterloo.ca/people.html
mailto:trevor.brown@uwaterloo.ca
http://tbrown.pro
https://doi.org/10.4230/LIPIcs.OPODIS.2022.7
https://arxiv.org/abs/2208.08469
https://cs.uwaterloo.ca/~t35brown/setbench_example_www/
https://github.com/rkharal/prng_experiments
https://archive.softwareheritage.org/swh:1:dir:3c60f562296ce0d0636dab4ff6e8493553f4c601;origin=https://github.com/rkharal/prng_experiments;visit=swh:1:snp:102237155a3635279ffd5b85924fc684ed34bcb6;anchor=swh:1:rev:30415af93a12e5b601588c2b8cca2cc438694481
https://archive.softwareheritage.org/swh:1:dir:3c60f562296ce0d0636dab4ff6e8493553f4c601;origin=https://github.com/rkharal/prng_experiments;visit=swh:1:snp:102237155a3635279ffd5b85924fc684ed34bcb6;anchor=swh:1:rev:30415af93a12e5b601588c2b8cca2cc438694481
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Performance Anomalies in Concurrent Data Structure Microbenchmarks

skip-lists, and linked-lists. A CSet data structure refers to the implementation of a CSet.
Microbenchmarks are commonly used to evaluate the performance of CSet data structures,
essentially performing a stress test on the CSet across varying search/update workloads
and thread counts. A typical microbenchmark runs an experimental loop bombarding the
CSet with randomized operations performed by threads until the duration of the experiment
expires. Throughput, number of operations performed by a CSet, is a key performance metric.
Multiple platforms for microbenchmarking exist to support CSet research. The accuracy and
reliability of performance results generated from microbenchmark experiments is fundamental
to concurrent data structure research. Researchers must be able to assess the performance
benefit vs loss of varying concurrent implementation strategies and their overall impact on
performance. Microbenchmarks are also an important tool for comparative performance
analysis between different implementations of CSets. While CSet implementations have
been well studied [3, 8, 11, 37], the popular microbenchmarks used to evaluate them have
not been scrutinized to the same degree. Microbenchmarking idiosyncrasies exist that can
significantly distort performance results. The goal of our work is to better understand the role
of microbenchmark design in performance results and attempt to minimize factors present
within the microbenchmark that misrepresent performance.

When testing a CSet implementation on three different microbenchmarks with identical
parameters, one would expect to observe similar performance results within a reasonable
margin of error. However, we found 10-100x performance differences on the same CSet data
structure tested across the Ascylib [11], Setbench [7], and Synchrobench [14] microbenchmarks.
These microbenchmarks are often employed for evaluation of high performance CSets. In
Figure 1(a) we observe a range of varying performance results on the popular lock-free BST
by Natarajan et al. [37] across the three microbenchmarks displayed using a logarithmic
y-axis in order to capture wide performance gaps on a single scale. We performed a systematic
review of the design intricacies within each microbenchmark. We found discrepancies in
microbenchmark implementation leading to CSet data structures underperforming in one
microbenchmark and over performing in another. We found one popular microbenchmark
duplicating the entire benchmark code for each CSet implementation. This renders the
code highly prone to errors related to updates or modifications to the benchmark, and
may inevitably result in reporting skewed experimental results. Our investigations led to
the discovery that seemingly minor differences in the architecture and experimental design
of a microbenchmark can cause a 10-100x performance boost, erroneously indicating high
performance of the data structure when the underlying cause is the microbenchmark itself.
We performed successive updates to two of the microbenchmarks, adjusting where errors or
discrepancies were discovered, until performance is approximately equalized (Figure 1(b)). In
this work, we discuss the primary factors leading to microbenchmark performance variance
and provide a set of recommended best practices for microbenchmark experiment design.

Microbenchmarks rely heavily on pseudo random number generators (PRNGs) to generate
randomized keys and/or select randomized operations on a CSet. In this work, in addition
to investigating microbenchmark design differences, we delve into a deeper investigation
of PRNG usage in microbenchmarks. Deleterious interactions between a PRNG and a
microbenchmark that uses it can go undetected for years. We present examples where
(mis)use of PRNGs can cause substantial performance anomalies and generate misleading
results. We illustrate how using a problematic PRNG can lead to an inversion of throughput
results on pairs of CSet data structures. We discuss the pitfalls of common PRNG usage in
microbenchmark experiments. Our experiments are limited to concurrent tree data structures
that were present in the three microbenchmarks in our study. We believe the lessons learned

R. F. Kharal and T. Brown 7:3

(a) Initial Microbenchmark Results (b) Final Microbenchmark Results

T
hr

ou
gh

pu
t

Figure 1 Throughput results across three microbenchmarks, Ascylib, Synchrobench and Setbench
executing on a 256-core system testing the lock-free BST [37]. Thread count is displayed on the
x-axis, y-axis is a logarithmic scale. Figure (a) results from unmodified microbenchmarks (as written
by their authors). Figure (b) results for modified versions of Synchrobench and Ascylib correcting
for pitfalls in microbenchmark design.

in our investigations related to microbenchmark design apply broadly to the experimental
process and are not limited to specific CSet implementations. We leave the investigation of
microbenchmark performance on varying CSet implementations for future work.

Contributions. In this work, we perform the first rigorous comparative analysis of three
widely used microbenchmarks for CSet performance evaluation. We present an overview of
related work in Section 3. The three microbenchmarks evaluated in our work are described
in detail in Section 4. We investigate the source of performance differences reported by each
microbenchmark when testing equivalent tree-based data structures in Sections 4 and 5. We
study the role of memory reclamation and its impact on CSet performance in Section 5. In
Section 6 we investigate commonly employed methods of fast random number generation
and the pitfalls of each. We describe a set of derived recommendations for best practice in
microbenchmark design at the ends of Sections 4, 5 and 6. Additional recommendations
for further improvements in microbenchmark design are discussed in Section 7. Advanced
features of the Setbench microbenchmark are described in Section 7.2 followed by concluding
remarks in Section 8. In the next section, we begin with a background on the principles of
microbenchmark design with concrete examples from the Setbench microbenchmark.

2 Background

In this work we test three concurrent synthetic microbenchmarks, Setbench [7], Ascylib [11],
and Synchrobench [14] for high speed CSet analysis. The key properties of each microbench-
mark are summarized in Table 1. The microbenchmarks report the total operations per
second performed on the CSet by n threads based on a specified workload. In particular, we
study data structures that implement sets of keys and provide operations to search, insert
or delete a key. The microbenchmarks allow users to specify parameters that include the
number of threads (t), the experiment duration (d), the update rate (u), and the key range
(r) contained within the set (i.e. [1, 200,000]).

Evaluating performance operations on an initially empty data structure will generate
results that are misleading and not representative of average performance on a non-empty
CSet. Therefore, microbenchmarks typically prefill the CSet before the experiment begins to
contain a subset of keys less than or equal to the total range. The prefill size may be specified

OPODIS 2022

7:4 Performance Anomalies in Concurrent Data Structure Microbenchmarks

Table 1 Summary of properties within each microbenchmark. 1: steady state depends on
experiment parameters. Setbench allows varying insert and delete ratios; this determines what the
data structure will fill to in steady state. (*2: performance tracking. *3: statistics tracking, performance
recording, automated graph generation, range query searches, varying distributions of keys/operations are
possible, independent insert and delete rates possible. *4: track effective updates, alternating updates
possible).

Benchmark Prefill Size Threads used Prefill PRNG for key PRNG for
Properties to Prefill Ops generation update choice

Ascylib half-full single/n inserts ✓ ✓

Setbench steady state1 n ins/dels ✓ ✓

Synchrobench half-full single inserts ✓

Benchmark Centralized Test file Range Queries Effective Upd Thread Unique
Properties Test loop per DS Available Option Pinning Features

Ascylib ✓ ✓ ✓ ✓ *2
Setbench ✓ ✓ ✓ *3

Synchrobench ✓ ✓ ✓ *4

by the user as the initial (i) prefill amount, or the microbenchmark may decide the prefill
size using its own algorithm. For a duration d, a microbenchmark runs in an experiment loop
where n threads are assigned keys from the specified key range based on a random uniform
distribution, though other distributions are also possible. Threads perform a combination of
search or update operations based on experimental parameters. For example, if the specified
update rate (u) is 10%, the search rate is 90%. The microbenchmark either randomly splits
the update rate across insert and delete operations, or employs its own algorithm to attempt
to divide insert and delete operations equally. Microbenchmarks may offer the ability to
specify independent insert and delete rates. This is discussed further in Section 4.3.

2.1 Microbenchmark Setup
We use the Setbench microbenchmark as a case study to explain some underlying design
principles in concurrent microbenchmarks. A typical Setbench experiment involves n threads
accessing a CSet for a fixed duration. During this time, each thread performs search or
update operations that are chosen according to a specified probability distribution on keys
randomly drawn from another probability distribution over a fixed key range. For example,
threads might choose an operation to perform uniformly (1/3rd insert, 1/3rd delete and
1/3rd search operations), and then choose a key to insert, delete or search for from a Zipfian
distribution. Each thread has a PRNG object, and the same object is used to select a random
operation and generate random keys.

To ensure that an experiment measures performance as it would in the steady state (after
the experiment has been running for a sufficiently long time), performance measurements are
not taken until the data structure is warmed up by performing insertions and deletions until
the CSet converges to approximately its steady state. This step is called prefilling. If the key
range is [1, 106], and threads do 50% insertions and 50% deletions, then the size of the CSet
in steady state will be approximately 500,000 (half full). Different microbenchmarks will
employ varying methods of prefilling the data structure prior to experimental evaluation.
This is discussed in the next section. In this work, we evaluate performance results across
three microbenchmarks and analyse the underlying subtleties in microbenchmark design
which lead to varying performance on equivalent CSet data structures. An example of this is

R. F. Kharal and T. Brown 7:5

illustrated in Figure 1(a) where microbenchmark experiments are performed on the lock-free
BST by Natarajan et al. [37]. The initial comparative throughput results are very different.
We apply successive modifications to the microbenchmarks where required in an attempt to
minimize large performance gaps. This process is outlined step-by-step in Section 4.

Experiments performed in this work execute on a dual socket, AMD EPYC 7662 processor
with 256 logical cores and 256 GB of RAM. DRAM is equally divided across two NUMA
nodes. We use a scalable memory allocator, jemalloc [13], to prevent memory allocation
bottlenecks. Each microbenchmark employs its own PRNG for generating random numbers
during the experiment loop. This is discussed further in Section 4. We test key ranges
between 2000 and 2 million keys using thread counts of up to 512, which gives an indication
of the effects of oversubscribing the cores. All figures in Sections 4 and 5 in this work are
displayed using a logarithmic y-axis in order to allow visual comparison between algorithms
with large differences.

3 Related Work

There are previous efforts in the literature to better understand the underlying structure
and design of benchmarks used to evaluate concurrent applications. In their work on the
comparative evaluation of transactional memory (TM) systems, Nguyen et al. discuss the
unexpected low performance results observed when using benchmarks to evaluate various
hardware transactional memory (HTM) and software transactional memory (STM) sys-
tems [38]. They argue that the observed limited performance results are a consequence of
the programming model and data structure design used within the benchmarks and are not
necessarily indicative of true performance results of the TM systems themselves. In related
work by Ruan et al. [41], the STAMP benchmark suite [33] used for evaluating transactional
memory was identified as being out-of-date. The authors present several suggested modifica-
tions to the benchmark suite to boost the reliability of performance results for more accurate
TM evaluation. McSherry et al. discuss the COST (Configuration that Outperforms a Single
Thread) [32] associated with scaling applications to support multi-threaded execution, and
the need to measure performance gains without rewarding the substantial overhead costs of
parallelization.

Recent microbenchmarks exist that were not tested in our work, such as the Synch
framework [21] for concurrent data structures evaluation. We leave this for future study.
There has been some prior investigation of microbenchmark design for concurrent data
structure performance evaluation. Microbenchmark experiments executing a search-only
workload on CSets have been tested in previous work by Arbel et al. [3]. They considered
differences in concurrent tree implementations of CSets and their impact on performance.
It was discovered that subtle differences in concurrent tree implementations can play a
pivotal role in microbenchmark performance results. Our work concentrates on the impact of
microbenchmark implementation differences on CSet data structure performance for workloads
that include updates. Mytkowicz et al. in their work, “Producing Wrong Data Without Doing
Anything Obviously Wrong!” [34], illustrate how subtle changes to an experiment’s setup
can lead to enormous performance differences and ultimately to incorrect conclusions. Tim
Harris’ presentation, “Benchmarking Concurrent Data Structures” [17], is closely related
to our work. Harris explains the need for sound experimental methodology in performance
evaluation tools and discusses some noted pitfalls in the Synchrobench microbenchmark
in [18]. Important considerations in the design of good concurrent data structure experiments
have been previously discussed in seminars presented by Trevor Brown [6]. Brown discusses

OPODIS 2022

7:6 Performance Anomalies in Concurrent Data Structure Microbenchmarks

(a) 0% Updates (b) 20% Updates (c) 100% Updates
T

hr
ou

gh
pu

t

Figure 2 Initial throughput comparisons across three unmodified microbenchmarks testing the
lock-free BST [37] on varying update rates.

subtle aspects of microbenchmark testing configurations and underlying memory and thread
distributions that can play a crucial role in performance results. This is discussed further in
Section 7.1. In our work, we provide an investigative approach to microbenchmark design by
comparing design strategies employed in three popular microbenchmarks.

4 Comparison Lock-Free Binary Search Tree

As mentioned above, a key performance indicator in the evaluation of CSet data structure
performance is the total number of operations per second (throughput). This is computed by
summing the total number of operations performed per thread and dividing by the duration
of the experiment. A key indicator of memory reclamation efficiency is the maximum resident
memory occupied in RAM by the microbenchmark program during the duration of the
experiment. We use this measure to evaluate the memory reclamation capabilities of each
microbenchmark in Section 5. We perform a comparative study on the lock-free BST data
structure by Natarajan et al. [37] which implements a CSet. The lock-free BST stores keys
in leaf nodes; internal nodes contain repeated leaf values to provide direction for searches.
Not all microbenchmarks implement the lock-free BST with memory reclamation. Therefore,
our initial comparisons turn memory reclamation off. Table 1 describes the properties of
each microbenchmark tested in this work.

4.1 Synchrobench
The Synchrobench synthetic microbenchmark allows the evaluation of popular C++ and
Java-based CSet implementations. Synchrobench is a popular microbenchmark used for
performance evaluation of CSet data structures [5, 11, 14, 16, 47, 48, 50]. Synchrobench
allows users to specify an alternate option (-A) or an effective option (-f) as input parameters
to the microbenchmark. The -A option can be used to force threads to alternate between
a key being inserted and the same key being deleted. The -f option sets total throughput
calculations to count failed update operations as search operations and not as update
operations. We do not use either of these options in our experiments. Synchrobench performs
single threaded prefilling with insert-only operations. Each data structure directory contains
a test file (test.c) that runs the basic test loop of the microbenchmark, performing a timed
search/update workload on the CSet. In our evaluation of Synchrobench, we found the
repetition of the test.c file in each data structure directory. This is discussed further in
Section 4.5.1. Synchrobench allows users to specify a single update rate that is divided
between insert and delete operations, though the division is not necessarily equal. This is
discussed further in Section 4.5.4.

R. F. Kharal and T. Brown 7:7

Table 2 Summary of Synchrobench and Ascylib modifications tested in this work. Ascylib
required fewer changes, Setbench did not require any modifications for the comparative experiments
performed in Section 4. The original installed implementations are labelled Synchro and Ascylib
without a version number. Ascylib’ and Synchro’ are versions of each microbenchmark where only
the lock-free BST implementation is modified (imported from Setbench).

Synchro Version Synchro Synchro1 Synchro2 Synchro3 Synchro4 Synchro5 Synchro’
insert & delete ✓ ✓ ✓ ✓ ✓

random seeds/thread ✓ ✓ ✓ ✓

MM3 RNG ✓ ✓ ✓

randomized updates ✓ ✓

common DS impl ✓ ✓

Ascylib Version Ascylib Ascylib1 Ascylib2 Ascylib3 Ascylib’
disable thread pin ✓ ✓ ✓

MM3 RNG ✓ ✓

common DS impl ✓ ✓

4.2 Ascylib
The Ascylib synthetic microbenchmark is another microbenchmark used to compare per-
formance of concurrent data structures [3, 11, 12, 14, 23, 40, 54]. Ascylib also performs an
initial prefilling step using single threaded insert-only operations. However, Ascylib has a
setting to allow multi-threaded prefilling using insert-only operations. The range and initial
values are updated to the closest power of two. This is a necessary condition for the Ascylib
test algorithm to generate randomly distributed keys. The experiment testing algorithm
(test_simple.c) is also repeated in each data structure directory. However, the main test
loop is implemented in one common macro and is shared across each CSet data structure
implemented in Ascylib. The update rate is randomly distributed among insert and delete
operations and updates are not required to be effective. Ascylib allows additional user inputs
to define profiling parameters which are not tested in this work. Additional properties of
Ascylib can be seen in Table 1.

4.3 Setbench
The Setbench synthetic microbenchmark is another benchmarking tool employed in concurrent
data structure literature [3, 7, 8, 9, 24, 42]. Setbench employs a directory structure per CSet
implementation. However, each CSet utilizes a single experiment test loop via an adapter
class which imports each specific CSet implementation into the main experimental algorithm.
This allows a single point of update for the testing algorithm and avoids software update
errors. Setbench allows specification of independent insert and delete rates. Setbench uses
per thread PRNGs initialized with unique seeds. Although Setbench has multiple choices of
PRNGs, we employed the murmurhash3 (MM3) [1] PRNG for comparative microbenchmark
experiments in this section of our work. Setbench employs multi-threaded prefilling using
randomized insert and delete operations. The benefits of this are discussed in Section 4.8.
We delve into further details regarding the Setbench microbenchmark in Section 7.2.

4.4 Throughput Comparisons
We test the initial installed implementations of the three aforementioned microbenchmarks
in order to compare performance results on the lock-free BST data structure. To standardize
experiments across the three microbenchmarks, we performed single threaded prefilling

OPODIS 2022

7:8 Performance Anomalies in Concurrent Data Structure Microbenchmarks

(a) Synchro 50% (b) Synchro 100% (c) Ascylib Updates
T

hr
ou

gh
pu

t

Figure 3 Throughput results for successive modifications to Synchrobench (a), (b) and successive
modifications to Ascylib (c). Synchro1 to Synchro4 involve updates to the Synchrobench microbench-
mark design. Synchro5 updates the data structure implementation to that of Setbench. Figure (a)
uses a key range of 2 million. Figure (b) uses a key range of 20,000 keys and displays the impact of
successive modifications to Synchrobench at a 100% update rate.

using insert-only operations to reach a start state where the data structure contains exactly
half of the keys from the specified input range. Memory reclamation was turned off in
all microbenchmarks. Attempted updates and effective updates are both counted towards
the total operation throughput. We examine throughput results for experiments running
for 20 seconds with update rates varying from 0% to 100% and a specified range of 2
million keys unless stated otherwise. Enforcing the range to a power of 2 is turned off
in Ascylib experiments to match the other microbenchmarks. Initial results across the
three microbenchmarks can be seen in Figure 2 where throughput values are displayed on
a logarithmic y-axis. We observe a range of varying performance results on the lock-free
BST across the three microbenchmarks. In particular, across all experiments, Synchrobench
throughput results are one to two orders of magnitude higher than Setbench or Ascylib.
Ascylib results are notably lower than those of Setbench and Synchrobench. We also observe
that Ascylib throughput results tend to plateau at about 128 threads and do not indicate
growth as is expected and seen with Setbench and Synchrobench. We investigate further to
understand the role of individual microbenchmark design on performance results.

4.5 Performance Factors: Synchrobench
Further investigation is required to understand the underlying causes of comparatively
spiked performance results from the Synchrobench microbenchmark seen in Figure 2. In
the following set of experiments we aim to equalize the performance results of Setbench
and Synchrobench through various adjustments made to Synchrobench where errors or bugs
were discovered. We modify the original installation of Synchrobench and title each updated
version as SynchroX, where X is the adjustment number. With each successive modification,
for both Ascylib and Synchrobench, all previous modifications are maintained unless stated
otherwise. A summary of modifications performed in our work are listed in Table 2.

4.5.1 Missing Insertions
Synchrobench utilizes a file (test.c) in each data structure implementation in order to run
the microbenchmark experiment loop. Each thread executes in the loop for the duration of
the experiment, and all threads are joined prior to termination. Insert operations occur only
following a successful delete operation which indicates success by setting a variable last to
−1. This value is checked on the next update operation; if last is negative an insert operation

R. F. Kharal and T. Brown 7:9

(a) Results Compare Final (b) Add DS Common (c) Only DS Common
T

hr
ou

gh
pu

t

Figure 4 (a) Throughput results display the final comparison across three microbenchmarks with
all successive modifications (Synchro4 and Ascylib2). Figure (b) tests Synchro5 and Ascylib3 which
maintain all microbenchmark changes and also update the data structure (DS) implementation to
that of Setbench. Figure (c) tests Ascylib’ and Synchro’ which do not contain any modifications to
the microbenchmarks and only equalize the DS implementation.

will proceed. However, the test.c file in the lock-free BST directory contained a bug in
which last was an unsigned type and could never take on negative values. As a result, all
experiments on the lock-free BST were performing update operations comprised of deletions
and never insertions. The data structure is initially prefilled to half of the specified range,
but following prefilling, insert operations never take place due to this particular bug in the
experiment loop. Delete-only update operations generate notably higher throughput results
since the data structure becomes empty very quickly; essentially all operations reduce to
searches as the duration of the experiment increases. Upon correction of this bug, throughput
results lowered significantly. Performance results of progressive adjustments to Synchrobench
are illustrated in Figure 3. This adjustment was the first of a series of modifications made to
the original version of Synchrobench for the lock-free BST and is labelled Synchro1 in the
figure. There is a drop in throughput from the original installation of Synchro to Synchro1.
We note that missing insert operations in the experiment loop was not a common occurrence
in other data structure directories of Synchrobench.

4.5.2 Thread PRNG seeds

The test algorithm (test.c) for the lock-free BST data structure did not assign each thread
a unique initialization seed for use in the PRNG employed to generate random keys. Having
a PRNG initialized with the same seed per thread resulted in threads utilizing the same
set of keys for search/update operations, resulting in an overall high throughput. As the
duration of the experiment and the number of threads increase, updates are again essentially
reduced to search operations due to other threads having previously completed the requested
operation on the given key. Inserts fail because the key is already there, deletes fail because
the key was removed by another thread. With Synchro2 we correct this problem with the
addition of randomly generated seeds to initialize each thread’s PRNG. The impact of this
update can be seen more prominently in Figure 3(b) where there is a drop in throughput with
Synchro2 on 100% updates operating on a 20,000 key range. This is not so visible when the
key range is much larger. At a key range of 2 million, the dominant overhead in operations
is traversing a large tree; therefore, we see less variation in throughput from Synchro2 to
Synchro5 in Figure 3(a). The probability of contention on the same set of keys is lower at 2
million keys, therefore, the impact of Synchro2 is more prominent in smaller key ranges.

OPODIS 2022

7:10 Performance Anomalies in Concurrent Data Structure Microbenchmarks

4.5.3 Standardized PRNG
As discussed earlier, Synchrobench utilizes a standard built in C++ PRNG, rand() to
supply randomly generated keys. Setbench and Ascylib use XOR-shift based PRNGs.
The Synchrobench microbenchmark is adapted to support the XOR-shift based PRNG
employed in Setbench (MM3). This adjustment is labeled Synchro3 in Figure 3. The
adjustment does reduce overall throughput as MM3 uses a more complicated random number
generation algorithm, using multiply and XOR-shifts, than what was previously employed in
Synchrobench.

4.5.4 Effective Insert and Delete Operations
In attempt to equally distribute insert and delete operations across threads, Synchrobench
uses an effective update strategy. Effective updates require threads to perform one type of
update successfully before the other type of update is attempted. For example, a thread
must perform and insert operation that successfully modifies the data structure before it can
attempt a delete operation. This is considered an effective update, an approach we found to
offer no tangible benefit and can be unforgiving of data structure specific bugs. Effective
updates should not be confused with the -f (effective) option. The -f option in Synchrobench
controls only how failed update operations will count towards total throughput, but an
effective update strategy for insertions and deletions is used regardless.

Enforcing effective updates is problematic because, for example, in an almost full data
structure, to perform an effective insert, one may need to repeatedly attempt to insert many
random keys until one succeeds. Essentially, a number of search operations are inserted
in between insert and delete operations, thereby inflating the total number of operations.
The implementation of the lock-free BST in Synchrobench has a known concurrency bug
contained in the original algorithm [3]; modified nodes are not always correctly updated in
the tree. The requirement for effective updates in the experiment can generate results which
erroneously indicate performance gains in the presence of errors in the implementation. The
approach followed in Setbench is to randomize insert and delete operations using per thread
PRNGs. This will generate more accurate performance results in spite of possible errors in
the implementation. This adjustment is added to Synchrobench and is labelled Synchro4.

It may also be noted that a checksum validation step would prove beneficial in Syn-
chrobench to catch data structure related concurrency bugs. A checksum validation verifies
that the sum of keys inserted minus the sum of keys deleted into the CSet during an exper-
iment should equal the final sum of keys contained in the CSet following the experiment.
Incidentally, the implementation of the lock-free BST in Synchrobench was failing checksum
validation. Synchro4 is the final correction to the Synchrobench microbenchmark design.
The data structure specific concurrency bug is updated in the next modification.

4.5.5 Equalizing the Lock-Free BST Implementation
The final update to Synchrobench is a modification of the data structure implementation
and equalizing the three microbenchmarks to use the lock-free BST implementation provided
in Setbench. The Setbench implementation corrects the concurrency bug and adds checksum
validation, which does not exist in the other microbenchmarks. This adjustment is labeled
Synchro5. We do not see a large difference in performance from Synchro4 to Synchro5
in Figure 3(b), which highlights the need for randomized insert and delete operations in
concurrent microbenchmark experiments. By employing a randomized update operation
assignment, we mitigate the impact of concurrency bugs on overall CSet data structure

R. F. Kharal and T. Brown 7:11

performance. We also assess an implementation of Synchrobench, Synchro’(Synchro prime),
with the imported lock-free BST implementation from Setbench which does not include any
modifications to the Synchrobench microbenchmark given in Synchro1 to Synchro4. This
comparison is given in Figure 4.

4.6 Performance Factors: Ascylib
The Ascylib microbenchmark test algorithm and underlying default settings lead to a few
factors that impact performance results on the lock-free BST. Each successive modification
to Ascylib is labeled AscylibX.

4.6.1 Thread Pinning
The Ascylib general installation enables thread pinning by default. With further investigation,
we found that built-in thread pinning settings were under utilizing the 256 available cores
during experimentation. Ascylib captures the underlying core and NUMA node count at
compile time; we updated build settings to ensure the correct number of cores were detected.
Although the Ascylib build displays that the correct number of cores have been detected, we
found the Ascylib throughput results in Figure 2 were based on under 50% core utilization.
The default settings were unable to utilize the full set of cores. To remove the underlying
thread pinning settings, and disable thread pinning entirely, we recompiled with SET_CPU=0.
This adjustment is labelled Ascylib1. Results for Ascylib1 indicate full core utilization
and improve performance in Figure 3(c). A user that is unaware of Ascylib’s default setting
may unknowingly generate misleading results. Rather than modifying the three benchmarks
to perform identical thread pinning, we disabled thread pinning in all three for consistency.
This is perhaps not ideal for microbenchmark experiments. Recommendations for thread
pinning in microbenchmark experiments are discussed further in Section 7.

4.6.2 Standardized PRNG
As was the case with the Synchrobench microbenchmark, we use the same PRNG across
all three microbenchmarks. Ascylib is updated to use the MM3 PRNG employed in Set-
bench. The update is labelled Ascylib2. We do not see a significant observable change in
performance on a logarithmic scale between Ascylib1 and Ascylib2. The MM3 algorithm is
a more complicated PRNG (multiply, XOR-shifts) than what was previously used in Ascylib
(Marsaglia XOR-shift [30]). Additional testing reveals a slight drop in performance when
switching the PRNG to MM3.

4.6.3 Equalizing the Lock-Free BST Implementation
Last, for a comparison that evaluates a standard data structure implementation on each
microbenchmark, we implement the lock-free BST implementation from Setbench into Ascylib.
This is labelled Ascylib3. Ascylib3 maintains all previous benchmark adjustments whereas
Ascylib’ only updates the common data structure implementation from Setbench into the
original installation of Ascylib (Table 2).

4.7 Final Comparisons
The final comparative results following successive modifications to Ascylib and Synchrobench
are given in Figure 4(a), which tests Ascylib2, Synchro4 and the original Setbench im-
plementation. These implementations use the built in data structures of each microbench-

OPODIS 2022

7:12 Performance Anomalies in Concurrent Data Structure Microbenchmarks

mark while adjusting for microbenchmark design differences in an attempt to equalize the
throughput results. We have achieved throughput results that are fairly consistent across
microbenchmarks. There are slight discrepancies in throughput results, but these are not
nearly as drastic as the performance differences across the original implementations of Ascylib
and Synchrobench in Figure 2. Additional final comparisons are provided in Figure 4(b) and
(c), which also equalize the lock-free BST implementation across all microbenchmarks on
a 100% update workload across 2 million keys. Figure 4(b) includes all microbenchmark
modifications for both Synchrobench and Ascylib, whereas Figure 4(c) does not include
any microbenchmark modifications from the original installed versions of Synchrobench and
Ascylib. The results in Figure 4(c) illustrate the variations in throughput that occur on
account of microbenchmark implementation differences. We see that once microbenchmark
idiosyncrasies have been ironed out in (a) and (b), the performance results are much more
consistent. This highlights again the crucial role of microbenchmark design in the performance
of CSet data structures.

4.8 Microbenchmark Design Considerations
In this section we investigated microbenchmark idiosyncrasies between three microbench-
marks. We performed successive modifications to two of the microbenchmarks to account for
design differences. During our experiments, we discovered the following factors in microbench-
mark design which lead to the greatest impact on performance: (1) Repeated benchmark code
is prone to error. In Synchrobench where the algorithm running performance experiments
is duplicated for each data structure, errors in the algorithm led Synchrobench results to
exceed other microbenchmarks by 100x. The microbenchmark testing algorithm should
exist in one centralized location and provide easy adaptation to new data structures. (2)
Microbenchmarks use a variety of techniques for splitting the update rate between insert
and delete operations. Recommended practice is to randomly distribute update operations
between inserts and deletes using per thread PRNGs. (3) Synchrobench introduced a setting
to enforce effective updates. We note in Section 4.5.4, effective updates unnecessarily inflate
throughput results and are not recommended. (4) Our recommended best practice for mi-
crobenchmark design includes strategies to detect and mitigate errors in the microbenchmark.
We certainly recommend a checksum validation in microbenchmark experiments. In our
work, adding checksum validation assisted in discovering microbenchmark and data structure
implementation errors.

Prefilling a CSet prior to running the microbenchmark experiment is also an important
design consideration. Although experiments in this section used insert-only prefilling, we
recommend against this for CSet microbenchmark experiments. (5) Data structure prefilling
should occur through (a) randomized insert and delete operations, and (b) using the same n
threads that will be employed during the measured portion of experiments. This will generate
a more realistic configuration of a concurrent data structure in steady state as opposed
to a data structure prefilled using single-threaded insert-only operations. Single-threaded
prefilling will result in memory allocation specific to one thread’s NUMA node. This will
results in memory access latency for threads on different NUMA nodes during the measured
portion of experiments. Using n threads to perform prefilling will disperse memory allocation
across additional NUMA nodes. N-threaded prefilling with randomized insert and delete
operations is used in Setbench as mentioned previously. We discuss additional considerations
in microbenchmark design and provide further recommendations in Section 7. In the next
section, we experiment with memory reclamation in microbenchmarks and evaluate its impact
on performance.

R. F. Kharal and T. Brown 7:13

(a) Max Resident (b) Throughput

(c) Max Resident (d) Throughput

Figure 5 Maximum Resident Memory and Throughput results for Ascylib and Setbench on the
lock-free BST ((a), (b)) and BST-TK ((c), (d)). Ascylib implementation contains microbenchmark
updates contained in Ascylib2 (Section 4.2).

5 Memory Reclamation

A key measure of memory usage for an executing program is the maximum resident memory
occupied in RAM by the program during the duration of its execution. The lock-free BST
as described by Natarajan et al. [37] does not provide a complete algorithm for memory
reclamation during execution. The partial algorithm suggests removing an unbounded
number of nodes that are nearby neighbours in the tree pending deletion. Any given thread
may proceed to delete and free (unlink) n nodes that are in close proximity within the
tree. However, the original implementation was leaking memory. Synchrobench does not
implement any memory reclamation in its implementation, whereas Ascylib has an added
option for garbage collection (GC). The authors of the lock-free BST suggest adding epoch
based memory reclamation, but it was not so simple. The memory reclamation algorithm
from the original work is updated in the Setbench implementation to correctly reclaim
memory [3]. We first compare the memory reclamation implementations in Setbench and
Ascylib by setting Ascylib’s GC setting to true, and Setbench epoch based reclamation is
turned on. We show comparative analysis of results across each microbenchmark in Figure
5(a) and (b). The Ascylib microbenchmark has been updated to Ascylib2 in order to
disable thread pinning and equalize the PRNG utilized in both microbenchmarks. We have
ensured all 256 cores are being utilized by Ascylib. Figure 5(a) illustrates differences in each
microbenchmark’s ability to reclaim memory as the thread count increases and cores are
oversubscribed. Ascylib’s memory usage surpasses that of Setbench by over one order of
magnitude, particularly as the thread count increases. Throughput results (Figure 5(b)) are
relatively equal, however, the high maximum resident memory values may render Ascylib
experiments unfeasible in some settings. We further consider microbenchmark comparisons
on the equalized lock-free BST implementation with memory reclamation turned on. We

OPODIS 2022

7:14 Performance Anomalies in Concurrent Data Structure Microbenchmarks

Figure 6 Array Based Pre-generated PRNG vs Non Array based PRNG on a key range of 20 000.
(a) Total Instructions per operation (b) Total Cycles per operation (c) Total Throughput per second

discover similar performance discrepancies to those discussed in Section 4, although the data
structure implementation and memory reclamation algorithms are identical across the three
microbenchmarks. Performance results continue to show variance until microbenchmark
idiosyncrasies are accounted for. Results for these additional experiments can be seen in
Appendix A of the full paper [22].

5.1 Setbench/Ascylib BST Ticket
In Section 4 of this work, we examined performance factors for the lock-free BST on three
concurrent synthetic microbenchmarks. We noted substantial impacts on performance
as a result of microbenchmark implementation intricacies. In this section we investigate
performance differences across the BST ticket (BST-TK) CSet data structure as implemented
in the Setbench and Ascylib microbenchmarks. The ticket based binary search tree by
Guerraoui et al. [11] appears in both Setbench and Ascylib microbenchmarks; however, it
is not implemented in Synchrobench. The BST-TK is an external binary tree where leaf
nodes contain the set of keys contained within the data structure. Internal nodes are used
for routing and contain locks and a version number. This allows optimistic searches on the
tree where concurrency can be verified by the correct version number. Both Ascylib and
Setbench implement the BST-TK with memory reclamation. Ascylib has garbage collection
(GC) turned on, Setbench performs epoch based reclamation. We observe in Figure 5(d) that
throughput results from both microbenchmarks are similar on the BST-TK data structure.
In Figure 5(c), we see again the Ascylib microbenchmark has higher memory usage, a greater
than one order of magnitude increase over Setbench. This may render Ascylib experiments
impractical in some settings and indicates memory is leaking at higher thread counts.

We have seen microbenchmarks can vary greatly in performance and memory usage across
two different concurrent data structure implementations. We recommend microbenchmark
users investigate overall memory usage in parallel with throughput results in order to get
a clear understanding of the role of memory reclamation on the performance of a CSets.
Memory may not be leaking necessarily; if the memory reclamation algorithm is simply slow
or inefficient, there maybe a tangible impediment on performance.

6 Randomness in Concurrent Microbenchmark Experiments

As we have seen in previous sections, concurrent microbenchmarks rely heavily on PRNGs to
generate randomized keys and randomized operations for high performance CSets that can
perform potentially billions of operations per second. A fast PRNG is key. In this section we
draw our attention to best practices of PRNG usage in concurrent microbenchmark experi-
ments. We limit our attention to non-cryptographic PRNGs due to the speed requirement.

R. F. Kharal and T. Brown 7:15

It is desirable to utilize a PRNG with low overhead costs to the running experiment. Some
microbenchmarks may choose a custom built PRNG, while others may opt for a standard
built-in PRNG such as rand() used in Synchrobench. Some will pregenerate an array of
random numbers (RNs); this allows fast, direct access to a list of RNs and avoids in-place
generation costs. If properties of high quality randomness are desired, one may use an archi-
tecture specific hardware RNG. We explore the practicality and benefit of these approaches
in subsequent sections. The PRNGs tested in this work include commonly used software
PRNGs: murmurhash2 (MM2) [45], murmurhash3 (MM3) [1], Mersenne Twister (MT) [31],
MRG [36], and an implementation of the Marsaglia XOR-shift PRNG (XOR-SH*) [10, 30].
We describe custom hash functions and hardware RNGs in subsequent sections. Experiments
in this section were run for durations of 3-5 seconds.

6.1 Pre-Generated Array of Random Numbers
One might be tempted to think that the best way to obtain fast, high quality randomness
would be to pre-generate a large array of RNs (or one array per thread) before running an
experiment. Then, one could employ hardware randomness, or a cryptographic hash function,
and push the high cost of generating random numbers into the unmeasured setup phase of
the experiment. We tested this method in Setbench with per thread arrays of pre-generated
RNs using the XOR-SH* and MT PRNGs versus in-place RN generation with each algorithm.
It is important to note that the pre-generated array approach eliminates the cost of in-place
random number generation; during an experiment it is simply a matter of requesting an
index into an array to generate the next random. A limitation of an array-based approach
is, of course, the array size. It is undesirable to have frequent repetition of RNs during
experimentation. We use array sizes of 10 million to generate a large set of RNs. Results
in Figure 6(c) indicate the XOR-SH*_Array employed during experiments was notably
slower than using the XOR-SH* algorithm in-place. This is due to the fact that accessing
a large array of 10 million will lead to additional clock cycles generated by cache misses.
An algorithm that is relatively fast, such as the XOR-SH* PRNG, will not benefit from
taking a pre-generated array-based approach. However, a slightly more complex algorithm
such as MT, which requires more instructions (Figure 6(a)), can benefit from an array-based
approach. The MT_Array generates slightly higher throughput results than using MT alone
as indicated in Figure 6(c). However, the benefit is not as striking as one may expect with
an array-based PRNG approach. There may be use cases for an array-based PRNG such as
requiring a more complicated (exotic) distribution of RNs. In this case, pre-generating RNs
in an array may be an effective approach to limiting the overhead of a complex algorithm.

6.2 PRNG Associated Experimental Anomalies
In the search for high-speed generation of RNs, researchers may choose to implement
their own PRNGs or use a custom hash function that may not have been well tested
for properties consistent with high-quality PRNGs. Prior to this work, the PRNG used
in Setbench was FNV1a [26], a fast, non-cryptographic 64-bit hash function. FNV1a is
recommended by Lessley et al. as a hash function with “consistently good performance
over all configurations” [26]. Setbench employed an FNV1a based PRNG that was used to
generate both random operations and random keys. However, upon testing single threaded
experiments, we noticed that the data structure prefilling step was failing to converge (i.e., it
was non-terminating). Upon further investigation, we found that the FNV1a based PRNG
was generating RNs that followed a strict odd-even pattern. That is, after generating an
even number, the next number would always be odd, and vice versa. (The initial seed

OPODIS 2022

7:16 Performance Anomalies in Concurrent Data Structure Microbenchmarks

Figure 7 (a) Throughput results comparing FNV1a to other PRNGs; FNV1a algorithm does not
indicate any detectable performance anomalies in throughput. Figure (b) on a smaller key range
(4096), illustrates the subtle effects of a PRNG. There exists a performance inversion when using
the FNV1a PRNG vs XOR-SH*.

determined whether the first number was even or odd.) During prefilling, a thread uses
the first RN to determine the key and the second RN to determine the operation. In this
case, the set of keys were always either all odd or all even, leading to an infinite loop when
attempting to prefill the data structure to half full. Recall that Setbench employs both
insertions and deletions to prefill the CSet to steady state (half-full in this case). This
odd-even pattern can easily be missed in overall data structure performance results. Figure
7(a) illustrates throughput results comparing various PRNGs tested in Setbench. There
is no notable indication of threads generating all even or all odd keys from the FNV1a
algorithm. Some threads are generating all even keys, while others are generating all odd
keys. Setbench prefilling occurs with n threads, so as soon as the thread count increases from
1, the probability of convergence increases. One could imagine this kind of error remaining
undetected and having a subtle effect on performance; limiting the set of keys per thread will
affect which other threads it could contend with. In addition, it is not sound experimental
methodology for a microbenchmark to generate keys based on this pattern. Second, this
undesirable behaviour found in FNV1a can lead to performance inversions when evaluating
CSets in a microbenchmark. The impact of the FNV1a based PRNG is more clearly displayed
in the results of Figure 7(b) where, given a high insert workload, FNV1a can lead to a
performance inversion of experimental results. The experiment illustrates that the lock-free
BST (Natarajan et al.) [37] throughput results are 1.12 times higher than that of the BST-TK
(Guerraoui et al.) [11] when Setbench is using FNV1a as its PRNG. However, using another
PRNG, such as XOR-SH*, we see the results indicate the lock-free BST underperforms by a
factor of 0.96. This is an approximately 16% performance error leading to an inversion of
results that could possibly remain undetected when one concurrent microbenchmark employs
a problematic PRNG algorithm such as FNV1a. Incidentally, FNV1a also illustrated periodic
behaviour in higher order bits. We implement a tool, the N th − bit summation result, to
assess bitwise randomness in RNs generated by a PRNG (Appendix B of full paper [22]).

6.3 Hardware RNG
A search for a high-quality 64-bit PRNG with its own source of entropy led us to an Intel
Secure Key instruction, RDRAND, available on Ivy Bridge processors [19]. The RDRAND
instruction returns an RN from Intel on-chip RNG hardware. We compare RDRAND with
the software based PRNGs to evaluate the suitability of a hardware based PRNG for use
in synthetic microbenchmarks. We have illustrated throughput results in experiments with

R. F. Kharal and T. Brown 7:17

Figure 8 Hardware vs Software PRNGs: Figure (a) RDRAND throughput compared to software
PRNGs. RDRAND has the lowest throughput values. In Figure (b) Reseeding XOR-SH* with
RDSEED (or RDRAND) every 1 million random numbers indicates no strong penalty for reseeding
a software PRNG with a hardware RNG.

various PRNGs in Figure 8(a). We can see that the experimental throughput of RDRAND
is significantly less compared to software PRNGs. A smaller key range of 2000 keys was
necessary to visually illustrate the low throughput results generated when RDRAND is
employed in Setbench. The overhead costs of hardware entropy greatly impede the overall
performance of an experiment which aims to maximize throughput results. Algorithms
such as XOR-SH* and MM3 that are computationally fast in nature have much higher
throughput results. For concurrent microbenchmark experiments, it is not recommended to
use a hardware PRNG alone. During our experimentation, we found that because RDRAND
is a significant bottleneck in the benchmark experimental loop, results can appear equal
for two CSet data structures that otherwise behave very differently. Although RDRAND
is slow, it can be useful as a source of entropy for faster software PRNGs. The idea of
periodically reseeding to introduce additional randomness into a PRNG is discussed by
Manssen et al. [28] and Dammertz [20]. RDSEED is an Intel Secure Key instruction that
complements RDRAND and is used to generate high quality random seeds for seeding
PRNGs [44]. RDSEED is slower than RDRAND but is recommended to use for reseeding
PRNGs. We tested a hybrid PRNG solution on the XOR-SH* algorithm where RDSEED is
used for reseeding at intervals of every 1 million RNs (XOR-SH*_RDSEED). The results in
Figure 8(b) indicate comparable throughput results to purely software based PRNGs without
reseeding. We compared XOR-SH* reseeding with RDSEED to XOR-SH* reseeding with
RDRAND (XOR-SH*_RDRAND), and there is a small drop in performance with RDSEED.

6.4 PRNG Recommendations

Massively parallel, high throughput experiments require billions of random numbers to be
generated per second, which pushes the limits on PRNGs of our time. Some important
points to consider for PRNG usage in microbenchmarks: (1) Hardware RNGs provide an
external source of entropy, however, they are impractical for use in high speed concurrent mi-
crobenchmark experiments as the performance results are greatly impeded by RN generation
time. (2) A pre-generated array of RNs is also counterproductive due to penalties associated
with cache access. A pre-generated array of RNs may be useful if the PRNG algorithm is
complex and in-place RN generation is too expensive. (3) For synthetic microbenchmark
experiments we recommend two PRNG instances per thread; one for generating random
values during the experiment and one for injecting new entropy into the first PRNG (periodic
reseeding). If periodic reseeding is used every 1 million keys, there is a low, intangible
impact on performance. If RDSEED or RDRAND are not available, we recommend using a

OPODIS 2022

7:18 Performance Anomalies in Concurrent Data Structure Microbenchmarks

high quality cryptographic PRNG for the 2nd PRNG. (4) Experiments that rely on bitwise
randomness in bits should first examine the set of generated random numbers for periodic
behaviour in bits. (5) Last, in an era where data structures are performing billions of
operations per second, we also think it’s important to use PRNGs with at least 64 bits of
state to avoid repeating the same sequence of generated keys on a time scale of seconds.

7 Towards Better Microbenchmarks

In Section 4.8, 5.1 and 6.4 we gave some recommendations for good benchmark design that
were informed by our study of Ascylib, Setbench and Synchrobench. Setbench was designed
with many of those recommendations in mind, and underwent relatively few changes as a
result of our study. In this section, we give some additional recommendations and highlight
features of Setbench that promote high quality experiments.

7.1 Additional Recommendations
More expressive ADTs

Today, many CSet data structures support range query operations and other interesting
operations such as clone and size, and benchmarks should consider including support for
them. It is not necessary for every operation to be implemented by every data structure,
but providing a framework for additional operations to be included in experiments may
encourage research in this direction.

Similarly, we encourage support for maps (also called dictionaries), which associate a
value with each key, and support for large and/or variable-sized keys and values. This
could encourage evaluations that span data structures published in distributed computing
venues and those published in database and data management venues (e.g., [4, 25, 27, 29]) –
evaluations that are desperately needed in our opinion.

Starvation-aware experiments

Note, however, that some care is needed in experimenting with range queries, and any other
types of long-running operations that are prone to starvation. Consider a workload where
threads perform, say, 49% insert, 49% delete and 2% range queries spanning the entire
range of keys contained in the data structure. One would expect such range queries to be
starved by updates, but in practice we find they are not! The trick is that each thread will
perform only so many updates before performing a range query. So, if all range queries are
perpetually starved, while updates succeed, eventually all threads will be executing range
queries, and they will all succeed in a batch. This behaviour makes starvation seem like less
of a problem than it might be in the real world, where there might never be a time when
there are no updates in progress. Experiments involving starvation prone operations should
expose the effects of starvation, possibly by allowing groups of threads to be dedicated to
starvation-prone and non-starvation-prone operations respectively (see, e.g., [2]).

Pinning threads

In Section 4.6.1, we disabled thread pinning in all microbenchmarks in order to have
consistency across all experiments. We recommend pinning threads to improve consistency
of experiments, so for example, when you run 48 threads on a system with four 48-thread
sockets, your threads run on a predictable set of cores, rather than, e.g., being clustered on
one socket in one execution, and spread across three sockets in another. Additionally, thread

R. F. Kharal and T. Brown 7:19

pinning should be used to clearly expose the performance impact of hyper threading and
the effects on non-uniform memory architectures in performance graphs. Thread pinning in
benchmarks has been discussed in more detail by Gramoli et al. [14, 15] and Brown [6].

Non-uniform key distributions

Benchmarks should also consider incorporating various distribution generators for keys and
values, rather than limiting experiments to uniform randomness. Researchers should consider
using Zipfian, binomial, exponential or other skewed distributions in their experiments [35].
Distribution generators should be implemented efficiently, and sanity checks should be
performed to ensure that the rate of key/value generation is not a bottleneck.

Uniform memory reclamation

Research in safe memory reclamation for CSets has consistently demonstrated that CSet
performance can depend heavily on the algorithm for reclaiming memory (see, e.g., [9, 39,
43, 46, 52]). For this reason, memory should be reclaimed similarly across all data structures
evaluated. In some cases, ad-hoc memory reclamation is tightly integrated in a CSet, but
benchmarks should offer a fast, easy-to-use memory reclamation algorithm to promote
uniformity wherever possible.

Performance tools

Benchmarks should make a best effort attempt to automatically gather lightweight systems-
level performance data, such as cache misses per operation, total cycles per operation, and
peak memory usage. We suggest incorporating a library for performance monitoring such
as the Performance Application Programming Interface (PAPI) [49]. We think it is crucial
that these measurements are not only automatically gathered, but automatically visualized.
Ideally, graphs for CSet throughput results and for systems level performance monitoring
would be produced by default, at the same time, and would be visible in the same place.
“Easy to check” is good. “Difficult to ignore” is better.

7.2 Benchmarking Advances in Setbench
Setbench was specifically designed to address all of the recommendations above, featuring a
256-bit PRNG, range query support (with support for independent range query threads and
update threads), the ability to specify thread pinning policies at the command line, fast Zipfian
and Uniform key distributions, uniform epoch based memory reclamation, and integration
with a rudimentary implementation [53] of TPC-C and YCSB application benchmarks. It
also includes a large collection of powerful tools for debugging, running experiments and
analyzing performance, as well as automatic containerization for artifact evaluation.

Collecting user defined statistics

Debugging and performance analysis are extremely time consuming, and often researchers
are limited in how much investigation they can do by the time it takes to modify their code
to record specific events in their data structure. These events can be quite varied.

For example, one might want to answer a simple question like: in a lock-free algorithm,
how often do threads help complete other threads’ operations? Or, in an algorithm that uses
epoch based memory reclamation, where objects are reclaimed in batches, one might want to

OPODIS 2022

7:20 Performance Anomalies in Concurrent Data Structure Microbenchmarks

answer a much more complex question – how to produce a logarithmic histogram showing the
distribution of the sizes of the first 10,000 batches reclaimed by each thread in an execution.
Setbench’s global stats library (gstats) makes it fast and easy to explore such questions.
To emphasize how easy gstats makes this, to implement the latter, one would first create a
gstats statistic that is accessible globally (throughout all files in the entire benchmark), by
adding the following code to a file in Setbench called define_global_statistics.h:

gstats_handle_stat(LONG_LONG, epoch_batch_size, 10000, \
{ gstats_output_item(PRINT_HISTOGRAM_LOG, NONE, FULL_DATA) }) \

In essence, this efficiently allocates global per-thread arrays of 10,000 elements, and specifies
that their contents should be used to build a logarithmic histogram. Whenever a thread T
reclaims a batch of size n, it can append the batch size n to its array by invoking:

GSTATS_APPEND(T, epoch_batch_size, n);

These simple modifications result in the following new output when the benchmark is run:

log_histogram_of_none_epoch_batch_size_full_data=[...]
[2^00, 2^01]: 71905
(2^01, 2^02]: 206257
(2^02, 2^03]: 307829
(2^03, 2^04]: 469972
[...] // output truncated to save space

Furthermore, scripts are included to plot bar graphs and line graphs from any data collected
with gstats. In this case, assuming the output above is in data.txt, one would simply run:
trial_to_plot.sh data.txt epoch_batch_size, which would create a PNG file.

Running Experiments and Plotting Results

Setbench also offers a powerful suite of Python scripts for running experiments and auto-
matically plotting their results. Example run scripts that are suitable for CSet research
are included. They produce MatPlotLib graphs of throughput and many systems level
performance metrics, such as L3 cache misses per CSet operation, cycles per operation, and
peak memory usage. Scripts are also available for several papers published by our group.
The development of these scripts focused on conciseness, expressiveness and flexibility, and
the scripts could be adapted to drive completely different benchmarks in different domains.

At a high level, to use these scripts, one defines a sequence of experimental parameters,
and for each parameter, one specifies a list of values the parameter should take on. One then
specifies a run command for the benchmark, and specifies how the parameters should be
supplied to the run command. The command is run for each combination of parameters,
and the output of each run is stored in an individual file. The scripts then process each
file, and extract lines of the form “NAME=DATA” to produce columns in a sqlite data-
base. As part of this process, data is validated according to user specified rules such as
(‘total_throughput’, is_positive) or (‘validate_result’, is_equal(‘success’)).
Failed validation causes (colourful!) warnings to be emitted, and warnings can also be queried
later from the sqlite database.

The scripts expose functions for easily producing plots (bars, lines, histograms and
heatmaps) from the sqlite database simply by specifying which columns of data should be
used for the x-axis and y-axis. Additional columns can be specified and graphs will be
produced for every combination of values in these columns. Filters can also be specified to
add to the SQL WHERE clauses in the queries that underpin plot generation.

R. F. Kharal and T. Brown 7:21

In short, a single command run_experiment.py [your_experiment.py], depending on
its arguments, can compile (-c), run (-r), create the sqlite database (-d), produce graphs
(-g) and create an HTML website (-w) organizing them into sections for convenient viewing.
Clicking a graph on the website drills down to the rows of data the graph was built from,
and clicking a row shows the raw text output for that run. A generated example website can
be viewed at: https://cs.uwaterloo.ca/~t35brown/setbench_example_www. Results in
the sqlite database can also be queried conveniently from the command line using SQL (e.g.,
run_experiment.py your_experiment.py -q “select * from data”). A wide range of
additional capabilities are documented in extensive Jupyter notebook tutorials.

8 Conclusions

We hope this work encourages further research into how best to design benchmarks for
concurrent data structures. Setbench was carefully designed to mitigate many of the problems
we are aware of, but there are surely more benchmarking pitfalls yet to be discovered in this
area. We also encourage researchers to try using Setbench for their own experiments, because
its features make it much easier to drill down to the root causes of performance anomalies.
After designing an algorithm, proving correctness, and implementing it, there is often little
time left to do systems level performance analysis. Our hope is that by improving tools and
automating the collection and graphing of key performance metrics, we can improve the
quality of experiments without unduly burdening researchers in this area.

References
1 Austin Appleby. Murmurhash3, 2012. URL: https://github.com/aappleby/smhasher/wiki/

MurmurHash3.
2 Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient range

queries. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’18, pages 14–27, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3178487.3178489.

3 Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. Getting to the root of concurrent
binary search tree performance. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 295–306, 2018.

4 Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. Bztree: A
high-performance latch-free range index for non-volatile memory. Proceedings of the VLDB
Endowment, 11(5):553–565, 2018.

5 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,
Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. In
Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 357–369, 2017.

6 Trevor Brown. Good data structure experiments are r.a.r.e, 2017. URL: https://www.youtube.
com/watch?v=x6HaBcRJHFY.

7 Trevor Brown. Powerful tools for data structure experiments in c++, 2021. URL: https:
//gitlab.com/trbot86/setbench.

8 Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. Non-blocking interpolation search
trees with doubly-logarithmic running time. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 276–291, 2020.

9 Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has to
be a better way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 261–270, 2015.

10 Wikipedia contributors. Xorshift. 2022. URL: https://en.wikipedia.org/wiki/Xorshift.

OPODIS 2022

https://cs.uwaterloo.ca/~t35brown/setbench_example_www
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1145/3178487.3178489
https://www.youtube.com/watch?v=x6HaBcRJHFY
https://www.youtube.com/watch?v=x6HaBcRJHFY
https://gitlab.com/trbot86/setbench
https://gitlab.com/trbot86/setbench
https://en.wikipedia.org/wiki/Xorshift

7:22 Performance Anomalies in Concurrent Data Structure Microbenchmarks

11 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency: The
secret to scaling concurrent search data structures. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 631–644, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2694344.2694359.

12 Tudor Alexandru David, Rachid Guerraoui, Tong Che, and Vasileios Trigonakis. Designing
ascy-compliant concurrent search data structures. Technical report, EPFL Infoscience, 2014.

13 J. Evans. Scalable memory allocation using jemalloc, 2011. URL: https://www.facebook.
com/notes/10158791475077200/.

14 Vincent Gramoli. More than you ever wanted to know about synchronization: Synchrobench,
measuring the impact of the synchronization on concurrent algorithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
1–10, 2015.

15 Vincent Gramoli. The information needed for reproducing shared memory experiments. In
European conference on parallel processing, pages 596–608. Springer, 2016.

16 Rachid Guerraoui and Vasileios Trigonakis. Optimistic concurrency with optik. ACM SIGPLAN
Notices, 51(8):1–12, 2016.

17 Tim Harris. Benchmarking concurrent data structures, 2016. URL: https://timharris.uk/
misc/2017-tpc.pdf.

18 Tim Harris. Do not believe everything you read in the papers, 2016. URL: https://timharris.
uk/misc/2016-nicta.pdf.

19 Gael Hofemeier and Robert Chesebrough. Introduction to intel aes-ni and intel secure key
instructions. Intel, White Paper, 62, 2012.

20 John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. Random number generators for
massively parallel simulations on gpu, 1975. doi:10.1109/SFCS.1975.23.

21 Nikolaos D Kallimanis. Synch: A framework for concurrent data-structures and benchmarks.
arXiv preprint arXiv:2103.16182, 2021.

22 Rosina Kharal and Trevor Brown. Performance anomalies in concurrent data structure
microbenchmarks, 2022. doi:10.48550/ARXIV.2208.08469.

23 Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous memory access chaining.
Proceedings of the VLDB Endowment, 9(4):252–263, 2015.

24 Petr Kuznetsov and LTCI INFRES. Refining concurrency for perfomance, 2017.
25 Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree: Artful indexing

for main-memory databases. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 38–49. IEEE, 2013.

26 Brenton Lessley, Kenneth Moreland, Matthew Larsen, and Hank Childs. Techniques for
data-parallel searching for duplicate elements. In 2017 IEEE 7th Symposium on Large Data
Analysis and Visualization (LDAV), pages 1–5, 2017. doi:10.1109/LDAV.2017.8231845.

27 Justin J Levandoski, David B Lomet, and Sudipta Sengupta. The bw-tree: A b-tree for
new hardware platforms. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 302–313. IEEE, 2013.

28 M. Manssen, M. Weigel, and A. K. Hartmann. Random number generators for massively
parallel simulations on gpu. The European Physical Journal Special Topics, 210(1):53–71,
August 2012. doi:10.1140/epjst/e2012-01637-8.

29 Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast multicore
key-value storage. In Proceedings of the 7th ACM european conference on Computer Systems,
pages 183–196, 2012.

30 George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8:1–6, 2003.
31 Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidistrib-

uted uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30,
January 1998. doi:10.1145/272991.272995.

https://doi.org/10.1145/2694344.2694359
https://www.facebook.com/notes/10158791475077200/
https://www.facebook.com/notes/10158791475077200/
https://timharris.uk/misc/2017-tpc.pdf
https://timharris.uk/misc/2017-tpc.pdf
https://timharris.uk/misc/2016-nicta.pdf
https://timharris.uk/misc/2016-nicta.pdf
https://doi.org/10.1109/SFCS.1975.23
https://doi.org/10.48550/ARXIV.2208.08469
https://doi.org/10.1109/LDAV.2017.8231845
https://doi.org/10.1140/epjst/e2012-01637-8
https://doi.org/10.1145/272991.272995

R. F. Kharal and T. Brown 7:23

32 Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what {COST}? In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

33 Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. Stamp: Stanford
transactional applications for multi-processing. In 2008 IEEE International Symposium on
Workload Characterization, pages 35–46. IEEE, 2008.

34 Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. Producing wrong
data without doing anything obviously wrong! ACM Sigplan Notices, 44(3):265–276, 2009.

35 N. Unnikrishnan Nair, P.G. Sankaran, and N. Balakrishnan. Chapter 3 - discrete lifetime
models. In N. Unnikrishnan Nair, P.G. Sankaran, and N. Balakrishnan, editors, Reliability
Modelling and Analysis in Discrete Time, pages 107–173. Academic Press, Boston, 2018.
doi:10.1016/B978-0-12-801913-9.00003-8.

36 Morita Naoyuki. Pseudo random number generator with mrg (multiple recursive generator),
2020. URL: https://www.schneier.com/blog/archives/2008/05/random_number_b.html.

37 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 317–328, 2014. doi:10.1145/2555243.2555256.

38 Donald Nguyen and Keshav Pingali. What scalable programs need from transactional memory.
SIGPLAN Not., 52(4):105–118, April 2017. doi:10.1145/3093336.3037750.

39 Ruslan Nikolaev and Binoy Ravindran. Brief Announcement: Crystalline: Fast and Memory
Efficient Wait-Free Reclamation. In 35th International Symposium on Distributed Computing
(DISC 2021), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages
60:1–60:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
DISC.2021.60.

40 Javier Picorel, Djordje Jevdjic, and Babak Falsafi. Near-memory address translation. In 2017
26th International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 303–317. Ieee, 2017.

41 Wenjia Ruan, Yujie Liu, and Michael Spear. Stamp need not be considered harmful. In Ninth
ACM SIGPLAN Workshop on Transactional Computing, 2014.

42 Tomer Shanny and Adam Morrison. Occualizer: Optimistic concurrent search trees from
sequential code. In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), pages 321–337, 2022.

43 Gali Sheffi, Maurice Herlihy, and Erez Petrank. Vbr: Version based reclamation. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 443–445,
2021.

44 Thomas Shrimpton and R Seth Terashima. A provable-security analysis of intel’s secure key
rng. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 77–100. Springer, 2015.

45 Hardy-Francis Simon. Murmurhash2, 2010, 2010. URL: https://simonhf.wordpress.com/
2010/09/25/murmurhash160/.

46 Ajay Singh, Trevor Brown, and Ali Mashtizadeh. Nbr: neutralization based reclamation. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 175–190, 2021.

47 Ajay Singh and Sathya Peri. Efficient means of Achieving Composability using Transactional
Memory. PhD thesis, Indian Institute of Technology Hyderabad, 2017.

48 Ajay Singh, Sathya Peri, G Monika, and Anila Kumari. Performance comparison of various stm
concurrency control protocols using synchrobench. In 2017 National Conference on Parallel
Computing Technologies (PARCOMPTECH), pages 1–7. IEEE, 2017.

49 Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data
with papi-c. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E.
Nagel, editors, Tools for High Performance Computing 2009, pages 157–173, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

OPODIS 2022

https://doi.org/10.1016/B978-0-12-801913-9.00003-8
https://www.schneier.com/blog/archives/2008/05/random_number_b.html
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3093336.3037750
https://doi.org/10.4230/LIPIcs.DISC.2021.60
https://doi.org/10.4230/LIPIcs.DISC.2021.60
https://simonhf.wordpress.com/2010/09/25/murmurhash160/
https://simonhf.wordpress.com/2010/09/25/murmurhash160/

7:24 Performance Anomalies in Concurrent Data Structure Microbenchmarks

50 Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kaminsky,
and David G Andersen. Building a bw-tree takes more than just buzz words. In Proceedings
of the 2018 International Conference on Management of Data, pages 473–488, 2018.

51 Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L Scott. Interval-
based memory reclamation. ACM SIGPLAN Notices, 53(1):1–13, 2018.

52 Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L Scott. Interval-
based memory reclamation. ACM SIGPLAN Notices, 53(1):1–13, 2018.

53 Xiangyao Yu. An evaluation of concurrency control with one thousand cores. PhD thesis,
Massachusetts Institute of Technology, 2015.

54 Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. Efficient
lock-free durable sets. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–26,
2019.

Robust and Fast Blockchain State Synchronization
Enrique Fynn #

Università della Svizzera italiana (USI), Lugano, Switzerland

Ethan Buchman #

Informal Systems, Guelph, Canada

Zarko Milosevic #

Informal Systems, Guelph, Canada

Robert Soulé #

Yale University, New Haven, CT, USA

Fernando Pedone #

Università della Svizzera italiana (USI), Lugano, Switzerland

Abstract
State synchronization, the process by which a new or recovering peer catches up with the state of
other operational peers, is critical to the operation of blockchain-based systems. Existing approaches
to state synchronization typically involve downloading snapshots of system state. Such approaches
introduce an attack vector from malicious peers that can significantly degrade performance. Moreover,
the process of creating snapshots leads to performance hiccups. This paper presents a technique for
peers to catch up with operational peers without trusting any particular peer and gracefully recover
from misbehavior during the process. We have integrated our design into a production blockchain
middleware. Our evaluation shows that during operation, the transaction throughput is consistently
higher without pauses for snapshot construction. Moreover, the time it takes for a new peer to join
the blockchain is halved, while at the same time tolerating Byzantine peers.

2012 ACM Subject Classification Computer systems organization → Reliability; Computer sys-
tems organization → Availability; Computer systems organization → Redundancy; Computing
methodologies → Distributed algorithms

Keywords and phrases state synchronization, replication, blockchain

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.8

Funding This work was supported in part by the Swiss National Science Foundation (grant 175717)
and NSF FMitF (grant 2019285).

1 Introduction

Intuitively, a blockchain provides an append-only log of transactions implemented by geo-
graphically distributed peers. The execution of these transactions determines the system
state. Each peer stores the system state in a Merkle tree [23], or similar data structures (e.g.,
Merkle-Patricia-tree [26]). Executing a transaction involves performing operations on the
tree. By executing the log of transactions in the same order, each peer transitions through
the same state changes (i.e., state machine replication model [22]). The fact that the state is
stored in a Merkle tree allows a peer to validate the consistency of the state by computing
a hash on the reconstructed tree. A Merkle-tree is a tree in which every leaf node stores
a cryptographic hash of its value, and every non-leaf node stores the hash of its children.
Every block header in the blockchain stores the hash of the tree root constructed by the
transactions in a previous block (e.g., block n contains the hash of the tree root computed
with transactions in block n − 1).

© Enrique Fynn, Ethan Buchman, Zarko Milosevic, Robert Soulé, and Fernando Pedone;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:enrique.fynn@usi.ch
mailto:ethan@informal.systems
mailto:zarko@informal.systems
mailto:robert.soule@yale.edu
mailto:fernando.pedone@usi.ch
https://doi.org/10.4230/LIPIcs.OPODIS.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Robust and Fast Blockchain State Synchronization

In theory, a new peer joining the network (or a recovering peer) could download the
transactions it misses, possibly the entire blockchain, and reconstruct the state by re-executing
every missing transaction. However, this is impractical, since the number of transactions
grows too large over time. Therefore, existing blockchain-based systems (e.g., [2, 26]) rely on
periodic snapshots of the system state. The snapshot is a serialized representation of the tree
data structure. When a new peer joins the blockchain (or a failed peer recovers), it downloads
the blockchain blocks with transactions (or block headers, with a summary of the block)
and the snapshot. The peer then installs the snapshot and replays all transactions since the
snapshot was taken, to reconstruct the current system state. To validate a snapshot, a peer
simply computes the hash on its tree and compares the computed value with the value stored
in the trusted block header. To further decrease the time it takes for a new peer to join the
blockchain, a snapshot can be divided into chunks, each one containing multiple nodes of the
tree. This allows new peers to download chunks from many peers concurrently. A natural
strategy to assign tree nodes to chunks is to traverse the tree (e.g., using depth-first search)
and build fixed-sized chunks [3].

Unfortunately, this approach to state synchronization suffers from two subtle, but import-
ant problems. The first problem is due to the relationship between chunks and validation. If
nodes of the state tree are assigned to chunks in a naïve way, as described above, then the
chunks cannot be validated independently. Instead, a peer must download the entire tree
before it can compute the hash. This introduces an effective attack vector for misbehaving
peers. If a single malicious peer shares an invalid chunk, the new peer cannot identify the
problem until it has downloaded all of the chunks. This wastes network and disk resources
of both the sender and the receiver, and can significantly prolong the time it takes for a
new peer to join the blockchain. The second problem is with performance. When a peer
computes a snapshot, it needs to search the tree, serialize all nodes, build chunks, and save
them to local storage. We show in the paper that existing blockchain-based systems based
on this approach experience periodic hiccups, dropping transaction throughput.

In this paper, we provide data structures and algorithms for robust and fast blockchain
state synchronization. By robust, we mean that our solution can tolerate Byzantine failures.
By fast, we mean that (i) validation and state reconstruction can be performed quickly, and
(ii) peers do not have to pause operation in order to compute a snapshot. The key component
of our solution is the design of a novel data structure targeted specifically to the state
synchronization use case. This data structure, which we call an AVL* tree, is a Merklized
AVL tree in which the tree leaves are organized into chunks. However, the assignment of
nodes to chunks ensures that each chunk always contains a sub-tree of the system state. This
enables batches of leaves to be securely and efficiently downloaded concurrently, while also
permitting chunks to be verified for integrity using a compact proof. Finally, the structure of
the tree is such that after a transaction is executed, a peer needs only to recompute the hash
of the affected chunk, and propagate the hash up the tree to the root. It does not need to
recompute the entire snapshot. Thus, during normal operation, the peer never has to pause
transaction processing.

Incorporating leaf batching into a Merkle-ized AVL tree might seem straightforward.
In reality, the problem introduces several challenges. First among these is identifying the
proper invariants that must be maintained so that the integrity of the chunks can be checked
independently. Second is designing the non-trivial changes to the AVL tree’s operation
methods to preserve the invariants. Third, during state transfer, peers will download different
chunks in parallel, and can start reconstructing the tree. In general, inserting the data into a
tree can result in different trees. To ensure correctness, we need to guarantee that the tree
construction algorithm deterministically builds the same tree on different peers.

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:3

We have implemented the AVL* tree data structure and integrated it into the Tendermint
blockchain middleware. We show that the time it takes for a new peer to join the blockchain
using AVL* is halved, while at the same time tolerating Byzantine peers. Moreover, the
improvements in the performance of state synchronization do not degrade the performance of
steady execution. In fact, AVL* slightly increases throughput and reduces latency. Finally,
we show that these improvements increase with the system size.

The rest of this paper is organized as follows. We first provide the necessary background
(§2). We then describe the basic structure and operations of our AVL* tree (§3), followed
by algorithms that enable fast state synchronization (§4). We then provide a thorough
evaluation of AVL* trees, comparing to an AVL tree (§5). Finally, we present related work
(§6) and conclude (§7). The Appendix contains a correctness argument for tree operations
and state synchronization, and the detailed algorithms proposed in the paper.

2 Background

2.1 Blockchain
A blockchain is a distributed ledger, an append-only log of transactions implemented by
geographically distributed peers. Clients submit transactions to the blockchain, which are
appended to the log and executed by peers. Clients and peers may be honest, if they follow
the protocol specification, or malicious (Byzantine), if nothing can be assumed about their
behavior. The blockchain behaves correctly if a fraction of the peers, typically more than
two-thirds, is honest [20].

The append-only log is structured as a linked-list of blocks, each block divided into a
header and a body. The header contains, among other information, a cryptographic link
to the previous block and a hash of the state. The body contains a list of transactions,
each transaction cryptographically signed by the client that submitted it. Some blockchain
systems (e.g., [24, 26]) allow the chain of blocks to momentarily fork, a situation in which
multiple blocks are linked to a previous block. An alternative design is to ensure a total
order on linked blocks (e.g., [15]). In this case, peers must agree on the next block to be
appended by means of a byzantine fault-tolerant consensus protocol (e.g., [16, 21]).

2.2 Merkle trees
Generally, the state of a blockchain is stored locally by each peer in a key-value store
structured as a Merkle-tree [25], or similar data structure (e.g., Merkle-Patricia-tree [26]). In
a Merkle-tree, each leaf holds the value and its hash, and each inner node holds the hash of
its children. The hash of the tree’s root (Merkle-root) is stored in the blockchain header,
which ensures its integrity. The key function of Merkle-trees is to provide succinct proofs of
data integrity of any node of the tree. One can prove in logarithmic time and space that a
leaf v belongs to the tree by providing the hash of the siblings of the tree nodes in the path
from v to the Merkle-root m. In Figure 1, these hashes are h0 and h3. One can verify that v

belongs to the tree by recalculating h2, h1 and m, and then verifying that the recalculated
m is equal to the known trusted Merkle-root hash, stored in the blockchain.

The Merkle-tree of a blockchain is multi-version: a new tree is created for every new
blockchain block, typically implemented with copy-on-write for performance reasons. When a
new version of the tree is instantiated, the Merkle-root from the current version is copied to a
new Merkle-root and made the Merkle-root of the new version. Modified nodes are duplicated
and saved under the new tree. Although it is not common for peers to navigate on older

OPODIS 2022

8:4 Robust and Fast Blockchain State Synchronization

b0 b1 b2 bn
. . .

m : H(h0, h1)

h1 : H(h2, h3)h0

h3h2 : H(v)

v

Figure 1 Blockchain b0, ..., bn and Merkle-proof h0;h3 of v. Hashes m, h1 and h2 are computed
from v, h0, and h3, and hash function H(); v is valid if m matches the value stored in block b1.

versions of the tree, it is required for certain inter-blockchain communication protocols [6],
where peers serve as relayers between blockchains, allowing one blockchain to verify state
proofs from another at a recent block.

2.3 State synchronization problem

A new (or recovering) blockchain peer needs to retrieve and execute transactions from all
the blocks it has missed in order to catch up with operational peers. Merkle-trees enable
fast catch up techniques based on traditional state machine replication [16]: Instead of
re-executing all missing transactions, the peer retrieves a recent version of the Merkle-tree
(i.e., a snapshot) from other peers and applies only the transactions in blocks that succeed
the retrieved Merkle-tree. This technique has been implemented in popular blockchain clients
(e.g., Geth [7], Ethereum’s main client).

The obvious question, though, is how should a peer download the snapshot? On the one
hand, since a snapshot can be large, the download process can be accelerated by partitioning
the tree into chunks, and downloading chunks from several peers in parallel. On the other
hand, in blockchain systems, leaf sizes tend to be small (e.g., a hundred bytes), and the
number of leaves quite large, creating significant I/O overhead if one were to serve each leaf
independently. It makes sense to batch leaves together to reduce the I/O overhead.

Existing systems choose a fixed-size chunk and assign nodes to the chunk until it is full [2].
A natural implementation strategy is to perform a traversal of the tree (e.g., in depth-first
order) and assign nodes to chunks. However, this approach fails to capitalize on the key
property of Merkle-trees: that subtrees can be validated independently. Consequently, the
snapshot cannot be validated until a peer has downloaded the complete state. Put another
way, the peer must download all chunks before it can check if they are valid. Consequently, a
single misbehaving peer serving an invalid chunk can initiate a type of “denial of service”
attack, significantly prolonging the time it takes for a new peer to join the blockchain.

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:5

20 30

10

20

30

30

10

20

30

20

10

20

25

25

30

25

20 25

#0

#1

#1

#0

#2

25

30

30

#0

#1

#2#3

20

10

#0

20

#1

25

#3

30

#2

(a) (b) (c) (d)

right
rotation

left
rotation

Figure 2 Insertion and rotations in AVL* (white square: inner node; white circle: leaf; gray
rectangle: chunk with chunk id; bold square/leaf: chunk root). (a) a balanced AVL tree, (b) an
imbalanced AVL tree after the insertion of 25, (c) an imbalanced AVL tree after right rotation of
previous tree at inner node 30, (d) a balanced AVL tree after left rotation of previous tree at pivot
(inner node 20).

3 The AVL* chunked tree

The AVL* tree is a Merkle-ized, balanced binary search tree. As an AVL+ tree (§3.1), it
preserves the same invariant: the height difference between its left and right children is
at most 1. The key difference between the two is that the leaf nodes in an AVL* tree are
organized into chunks, or batches (§3.2), and each AVL* chunk can be validated individually.
The AVL* tree requires new data structures (§3.3), and algorithms for searching (§3.4),
inserting (§3.5), and deleting (§3.6) nodes. Moreover, organizing the tree in chunks has
implications on re-balancing (§3.7), multi-versioning (§3.8), and the correctness of the tree
(discussed in the Appendix). A chunked AVL* tree can be downloaded in parallel during
state synchronization, and independently checked for integrity.

3.1 AVL+ trees

While the techniques described in the paper could be used with any Merkle-ized trees, we
focus the discussion on AVL trees [12, 5]. An AVL+ tree is a self-balanced ordered binary
tree that implements a key-value storage API, where all values are stored in leaves and inner
nodes store keys, used to keep the tree ordered. Leaves store the hash of values, and inner
nodes the hash of their children and keys. As an immutable data structure, all updates are
performed using copy-on-write. To add a key-value pair, the tree is traversed from its root
until a leaf is found. Then, a new inner node is created, from which the found leaf and the
new leaf (with the key-value to be included) will descend.

When the height difference between the left and right subtrees of an inner node is greater
than one, the tree is said to be imbalanced. To re-balance the tree, one or two rotations are
needed involving the lowest imbalanced subtree, whose root is called pivot node. Figures 2
(b) and (c) show imbalanced trees with inner node 20 as pivot. A left rotation at the pivot is
enough if the subtree on the right of the pivot is higher than the subtree on the left of the
pivot (Figure 2 (c)). But a right rotation at the right child of the pivot must happen first, if
the left side of the pivot’s right child is higher than the right side of the pivot’s right child.
This is what happens in Figure 2 (b) since the left side of inner node 30, on the right of pivot
20, is higher than its right side. The cases for right and left-right rotations are symmetric.

OPODIS 2022

8:6 Robust and Fast Blockchain State Synchronization

3.2 Chunks
A chunk is a set of nodes that are grouped together, and serves as the unit of access for the
persistent store, communication, and integrity check. Grouping the nodes of the tree into
batches facilitates parallel downloads. But, the assignment of nodes to chunks is important.
If done incorrectly, it would not allow individual chunks to be checked for integrity. Each
chunk has a root which is defined as follows:

▶ Definition 1. The root of a chunk C, root(C), is the lowest (i.e. deepest) node that has
all the nodes in C as descendants.

Given this definition, the important invariant preserved by AVL* when assigning nodes to
chunks is as follows:

▶ Property 1. For any chunks Ca and Cb, neither root(Ca) is a descendant of root(Cb) nor
root(Cb) is a descendant of root(Ca).

Property 1 ensures an overall minimal proof size for checking the integrity of a chunk. A
client peer can check the integrity of chunk C with C and the proof that root(C) is a valid
node. If root(C) is valid (see §2.2) then all data it stores is valid, including the hash of its
subtree. The client peer then computes the hash that should be stored in root(C) from the
leaves in C all the way up to root(C) and then checks whether the computed hash matches
the hash stored in root(C).

Trivially, we see that this property would be satisfied if we were to assign every node to
the same chunk, or assign each node to its own chunk, begging the question of how big a
chunk should be? There is a trade-off: if a chunk is too large, then we lose the ability to
download multiple chunks concurrently, but if a chunk is too small, we lose the benefits of
batching. The chunk size is a constant set when the tree is instantiated. In our experiments,
we empirically evaluate different chunk sizes.

The key challenge in designing the AVL* tree is updating the insertion and delete
algorithms of the AVL+ tree to respect this invariant, despite tree rotations.

3.3 Data structures
In an AVL* tree, inner nodes are stored in volatile memory only (DRAM); leaves are
embedded in chunks, which are stored in volatile memory and in a persistent store. Table 1
details the structure of inner nodes, leaf nodes, and chunks.

An inner node contains a key, used to search the tree; a pointer to a chunk, if the key
is the root of the chunk; pointers to left and right nodes (inner or leaf); the height of the
node; a hash, discussed below; and a boolean is_leaf that asserts that a pointer to the node
references an inner node.1

A leaf node contains a key-value pair; a pointer to a chunk, if the key is the root of the
chunk; an i_node pointer to an inner node, if the leaf’s key is also an inner node; the height
of the node, which is zero if the key is not stored as an inner node or the height of the inner
node that stores the same key as the leaf; a hash; and a constant boolean is_leaf.

A chunk contains a unique chunk identifier cid, a number in 0..(m − 1), where m is the
number of chunks; the version of the chunk, the number of leaves stored in the chunk, size;
a pointer to the chunk root, which can be an inner node or a leaf; and a set leaf with all the
leaves stored in the chunk. A chunk can store up to Cp leaves, a parameter of the system.

1 For simplicity, we assume that pointers can reference either inner nodes or leaves.

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:7

Table 1 The data structures used in the AVL*.

Inner node
key unique item identifier
chunk pointer to chunk, if chunk root
left pointer to the left node, inner or leaf
right pointer to the right node, inner or leaf
height the height of the node
hash needed by the Merkle-ized tree
is_leaf false

Leaf node
key unique item identifier
value arbitrary data held in the node
chunk pointer to chunk, if chunk root
i_node pointer to matching inner node, if any
height 0 or i_node height (when sending chunk)
hash needed by the Merkle-ized tree
is_leaf true

Chunk
cid unique chunk id, starting in 0
version version number of the chunk
size number of leaves in the chunk
root pointer to the chunk root, inner or leaf
leaf[0..(Cp − 1)] set of leaf nodes in the chunk

Hashes are computed after all changes in the tree have been performed, that is, the
blockchain block the tree corresponds to has been fully processed. The hash of a leaf takes
as input the key, value, height of the tree, and the chunk id and version, if the leaf is the
chunk root. The hash of an inner node includes the key, the hashes of its children, and the
chunk id and version, if the leaf is the chunk root.

3.4 Search
Searching for a key in the AVL* tree is just like a search in a regular AVL tree. The only
difference is that if the search traverses a part of the tree that is not stored in main memory,
then the corresponding chunk is read from disk and its entire subtree is stored in main
memory.

3.5 Insertion
The insertion starts by searching down the tree for a leaf with a key that is immediately
smaller or bigger than the key to be inserted. This will determine the position of the new
leaf, either left or right of the found leaf, with the key-value element to be inserted. When
searching down the tree, the root of a chunk is eventually found. From Property 1 (see §3.2),
only one root chunk is traversed when inserting an element in the tree. If the root chunk
points to a full chunk, before searching further, the chunk is split. The split, detailed next,
does not change the structure of the tree but ensures that there is an available position in the
chunk to accommodate the new leaf. To insert the new element, one inner node is created,
pointing to the found leaf and the new leaf. When unrolling the recursion that leads to the
insertion of an element, the height of every visited tree node is recomputed. If the subtree
rooted at the visited node becomes imbalanced, a rotation is executed.

For example, in Figure 2 we add a node with key 25 in the tree depicted in (a), which
has two chunks. Chunk #0 has one leaf and chunk #1 is full with two leaves. The insertion
starts from the tree root and traverses to the right child at node 30, the chunk root of chunk

OPODIS 2022

8:8 Robust and Fast Blockchain State Synchronization

#1, which is at maximum capacity, and splits it, creating chunk #2. The algorithm continues
traversing the tree until leaf 20 is reached. Since the new key is bigger than the leaf’s key,
a new inner node is added copying the value of the new key and rearranging the leaves
accordingly, resulting in the tree (b) before balancing is done.

To split a chunk, we create two new chunks and run a depth-first search (DFS) from the
left and right children of the chunk root to be split. Each call to DFS builds a new chunk
that is assigned to the left and right children of the old chunk root. At the end of the split
the old chunk is deallocated and its chunk root set to nil.

3.6 Deletion
Deleting a node from the AVL* tree is similar to deleting a node from an AVL tree. We
discuss next the basic procedure and then two extensions that account for chunks.

To delete key k, we start by searching the tree to find a pivot node p such that (i) p’s left
node is a leaf, or (ii) p is an inner node with key k. Then, there are four cases to consider:

Case (a): p’s left child is the leaf with key k. In this scenario, p’s left node is deleted,
p’s right node takes the place of the pivot, and the original pivot is deleted. This case
happens when we want to remove key 10 in Figure 2 (a), where the pivot is inner node 20.
Case (b): p’s right child is the leaf with key k. In this case, p is necessarily the inner node
with the key to be deleted. Both p and its right child are deleted and p’s left child takes
the place of the pivot. This case happens when we want to remove key 30 in Figure 2 (a),
where the pivot is inner node 30.
Case (c): The left child of p’s right child is the leaf with key k. The leaf with k is deleted,
p is replaced with p’s right child, and the original pivot is deleted. For this case, consider
the deletion of key 20 in Figure 2 (a), where the pivot is inner node 20.
Case (d): Otherwise, we find the inner node x with the lowest value at the sub-tree on
the right of p, delete x’s left leaf, replace pivot p with x, and delete the inner node p. We
illustrate this case with the deletion of key 20 in Figure 2 (b), where the pivot is inner
node 20 and x is inner node 25.

Akin to the AVL-tree deletion, when unrolling from the recursion that found pivot p, the
nodes involved in the deletion have their heights updated and possibly rotated. Differently
from the insertion, a deletion may involve rotations at all nodes in the way up to the root.

Deletion of a node in an AVL* tree differ from deletion in an AVL tree in two aspects.
First, in cases (c) and (d) above, when an inner node x replaces a deleted inner node (i.e.,
the pivot). If x is a chunk root, then it will no longer be root, and the root of the chunk it
referred to will be a node that descends from x.

Second, when deleting a leaf, it may happen that a chunk ends up with no leaves. This
situation requires attention since the validity of a chunk is attested by the chunk root
(discussed in §4), and an empty chunk has no root. To handle this case, when a chunk
becomes empty, we take the chunk with the current largest unique id, assign to this chunk
the id of the empty chunk, and decrement by one the number m of existing chunks (see §3.3).
This ensures that every chunk with id in 0..(m − 1) has at least one node, and therefore a
chunk root.

3.7 Re-balancing
If, as a result of an insertion or a deletion, there is a height difference between two child
subtrees, then the parent tree must be re-balanced. Similar to the AVL tree, a rotation in
an AVL* tree happens if the height difference from the children of a node is greater than

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:9

one. There can be four types of rotations: left, right-left, right, and left-right. Left and right
rotations happen with a single rotation to the left or right, respectively. When rotating to
the left on a pivot, the right child of the pivot takes the place of the pivot (called new pivot),
the right child of the old pivot becomes the left child of the new pivot, and the left child
of the new pivot becomes the old pivot. For the right-left rotation, first the right child of
the pivot is rotated to the right and finally the pivot is rotated to the left. The right and
left-right rotations are symmetrical to the cases explained before. The tree can be balanced
with at most two rotations after an insertion.

If the rotation involves a chunk root, then there are two cases to consider. First, if the
root of the chunk is the pivot of the rotation, then the node that takes the position of the
pivot becomes the new chunk root. Second, if the pivot of the rotation is not the root of a
chunk, but the node that takes the position of the pivot is the root of a chunk, then we split
the chunk before doing the rotation. This is done to ensure Property 1. As a consequence,
there will be extra splits even when a chunk is not full; in our experimental evaluation these
splits amount for around 4% of the total number of splits.

Continuing from the example in Figure 2, the tree (b) is imbalanced after the insertion.
Since the height of the root’s right child is greater than the height of the root’s left child,
it triggers a left or a right-left rotation. Since the root’s right child has a higher height on
its left child than the right one we do a right-left rotation. First we rotate inner node 30
to the right and then rotate the inner node 20 (root) to the left. When rotating the inner
node 30 to the right, we observe that its left child is a chunk root and split the chunk before
continuing with the rotation. After this step, the tree is depicted in (c); observe that the tree
has an extra chunk #3 created by the split and still is imbalanced. After the final rotation
to the left, the tree is finally balanced as shown in (d).

3.8 Multi-versioning
An AVL* tree is multi-versioned, and a new version of the tree is created for every new
blockchain block. For performance, a new tree is created using copy-on-write. Differently
from an AVL+ tree, in the AVL* tree the unit of allocation is a chunk. This means that
when a node is modified in the new version of the tree, the complete chunk that contains
the node is copied. This chunk-based allocation suggests a tradeoff: small chunks reduce
the overhead of creating the new tree, but increase the number of chunks that need to be
propagated upon state synchronization. We experimentally evaluate this tradeoff in §5.

3.9 Correctness of tree operations
We initially argue that, in the absence of rotations, the insertion and deletion algorithms
preserve Property 1.

In the case of an insertion, the property could only be invalidated when creating new
chunks. When splitting a chunk, two new disjoint chunks are created and assigned to the
left and right subtrees as the original chunk is extinguished. These steps do not violate
Property 1 since they do not create descendants below or above each chunk root.

To see why deletion preserves Property 1, assume node x replaces the pivot, and x is root
of its chunk. From the protocol, a descendant y of x becomes chunk root in place of x. Since
x was chunk root, none of the nodes in its subtree are chunk root, and thus, no descendant
of y is a chunk root.

We now argue that a right rotation preserves Property 1; the same reasoning applies for a
left rotation. When rotating a node x to the right, x’s left child is assigned as the right child
of x’s original left child. The only case a rotation would lead to a violation of Property 1 is

OPODIS 2022

8:10 Robust and Fast Blockchain State Synchronization

when there are chunk roots in x’s siblings. To deal with this case, before the assignment, we
split the left chunk root in case of a right rotation (and right chunk root in case of a left
rotation). After the split, the assigned node is a chunk root and can be safely moved to the
opposite part of the tree.

4 Robust state synchronization

In general, there may be many ways to build a balanced binary tree from the same data.
To be correct, we must ensure that all peers build the same tree. This is ensured if a peer
collects all chunks that make up a tree, these chunks are valid, and the re-construction of the
tree is deterministic. More formally, the tree reconstruction algorithm ensures the following
two properties:

▶ Property 2. Let T be the AVL* tree built by a honest peer after executing the n-th block
of the blockchain, and CT = {C0, ..., Cm−1} the chunks of T . Upon receiving chunk Ck from
a peer, a client peer can check whether Ck is valid (i.e., Ck ∈ CT) before receiving any other
chunks in CT .

▶ Property 3. Let T and T ′ be two AVL* trees with the same nodes. If we build T ′ by
inserting node by node following their order of height in T , then T and T ′ are isomorphic.

We now describe a procedure to reconstruct the tree that satisfies Properties 2 and 3. To
check that T is valid, the client needs the trusted Merkle-root hash of T and the number
m of chunks in this tree. Both the Merkle-root hash and the number of chunks in the tree
must be included in the block headers of the blockchain to ensure that they are trusted. In
a blockchain, this information is available in the headers of a block that succeeds the n-th
block (e.g., in the (n + 1)-th block).

A client peer requests a chunk by its identifier (i.e., a value in 0..(m − 1)) and receives as
a response the requested chunk with the proof of inclusion of the chunk’s root. The peer
then rebuilds the subtree rooted at the chunk’s root with all the nodes in the chunk. The
procedure that checks the validity of the chunk (Property 2) proceeds in two steps. In the
first step, the peer verifies the proof’s validity by reconstructing the path from the chunk’s
root until the Merkle-root based on the hashes provided in the proof. The proof is valid if
and only if the reconstructed Merkle-root matches the trusted one. In the second step, the
peer recomputes the hashes of the subtree from the leaves up to the chunk root. The chunk
is valid if the computed hash of the chunk root matches the hash provided, known to be
valid from the first step.

To ensure that the client peer builds a proper subtree with the leaves in a chunk
(Property 3), the peer first sorts all leaves by height. Recall from §3.3 that the height stored
in a leaf is either 0, if the leaf’s key is not an inner node, or the inner node’s height in the
tree. Then, the peer builds the tree by adding one node at a time, in descending order of
the node height (i.e., root first). Multiple subtrees can be built in parallel to speed up the
process. When the last chunk is built, the peer links all the chunk subtrees: The peer sorts
all subtrees in descending order of their root node height, at which point the tree’s root lies
necessarily in the first position of the array. Each subtree is then added sequentially in the
tree. When the last element is added the tree is complete. The correctness of this procedure
is shown below. After the tree is built, the peer recomputes all the hashes.

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:11

4.1 Correctness state synchronization
We initially consider Property 2. The first step of the protocol checks the validity of the
chunk root using the proof of integrity of a single node of the tree. This follows immediately
from the properties of Merkle trees (§2.2). A valid chunk root provides a trusted hash of its
subtree. Then, in the second step, we compute the hashes from the leaves all the way up to
the chunk root. If the trusted and the computed hash match, then the chunk is valid.

We now consider Property 3. Let h be the height of T , and T (n) be a subtree of T that
contains nodes from height h down to height n. The proof is by backwards induction on n.

Base step. Trivially true for n = h since there is a single node with height h in subtrees
T (h) and T ′(h), the root.

Inductive step. We assume that T (n + 1) and T ′(n + 1) are isomorphic and show that
T (n) and T ′(n) are isomorphic too, for 0 ≤ n < h. Let k be a node in T (n) that is not in
T (n + 1). Since T is a binary search tree, there is only one path in T (n + 1) that leads to k.
From the inductive hypothesis, T (n + 1) and T ′(n + 1) are isomorphic, thus, k will end up in
the same location in T ′(n). Since T (0) = T and T ′(0) = T ′, we conclude that T and T ′ are
isomorphic.

5 Evaluation

10k 100k 1M 10M
Number of key/value pairs

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

0.1s 1.0s 13.1s 101.9s

0.04s
0.5s 5.7s 45.8s

IAVL+
AVL*

(a) 10 peers.

10k 100k 1M 10M
Number of key/value pairs

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

0.1s 1.0s 16.3s 102.6s

0.04s
0.5s

3.9s

41.0s

IAVL+
AVL*

(b) 80 peers.

Figure 3 Time for a peer to recover from scratch, 100k chunks, varying number of key/value
pairs.

5.1 Implementation and environment
To evaluate the behavior of our data structure and algorithms, we integrated them into
Tendermint and conducted experiments under different conditions. Tendermint is a blockchain
middleware that supports the replication of arbitrary applications. Tendermint provides
applications with an AVL+ tree to manage state, called IAVL+. Peers can join the network
by fetching a snapshot of the system state. To speed up the process, a peer can fetch a
snapshot in chunks of fixed size.

All tests were conducted in a wide-area network (WAN) using Amazon’s Elastic Computing
(EC2) platform. We evaluated the system with 10 peers (small setup) and 80 peers (large
setup). Our large setup is a fair approximation of Cosmos/Tendermint’s current production
system, with 125 peers. Peers were deployed in datacenters in seven Amazon regions: three
datacenters in North America (Oregon, Ohio, Canada Central), two in Asia (Tokyo, Hong

OPODIS 2022

8:12 Robust and Fast Blockchain State Synchronization

Kong), three in Europe (Paris, Frankfurt, and London), one in South America (Sao Paulo),
one in the Middle East (Bahrain), and one in Africa (South Africa). We used t3.xlarge and
r5.xlarge instances.

We used most of Tendermint’s default parameters, and set the mempool cache with 50k
transactions, and block interval of 1 second for executions with 10 peers and 5 seconds for
for executions with 80 peers. These parameters led to the best results for throughput and
latency for both the IAVL+ and the AVL* experiments. In the setup with 10 peers, each
peer is connected to every other peer; in the setup with 80 peers, each peer is connected to
25 random peers.

We developed a key-value store application using Tendermint and benchmarked the
application using the IAVL+ tree and the AVL* tree. Clients submit transactions that add
new key-value pairs to the store. A key contains 20 bytes and a value contains 100 bytes,
both generated randomly by clients. We evaluated the IAVL+ and the AVL* trees with
chunks that can contain up to 10k and 100k key-value pairs, amounting to roughly 1MB and
10MB chunks, respectively. We considered executions in which clients include 10k, 100k, 1M
and 10M key-value entries to the store.

5.2 State synchronization
The first set of experiments evaluates the performance of the state synchronization operation.
The main metric of concern is the time it takes to perform synchronization for a new peer
joining the blockchain.

In these experiments, all peers but one are pre-initialized with a full tree. When the
experiment begins, the new peer recovers the state by downloading chunks in parallel from
the operational peers. We vary three parameters: (i) the size of the tree, (ii) the number of
validators (10 and 80), and (iii) the size of the chunks (10k and 100k).

Figure 3 shows the state synchronization times for IAVL+ and AVL*. The results for 10k
chunks and 100k chunks are similar; thus, we show results for 100k chunks only. We report
the results as a ratio, with the absolute time printed at the top of each column. There are
two important features to note. First, for both IAVL+ and AVL*, the synchronization time
increases linearly with the size of the tree, and it does not depend on the size of the system.
Second, the synchronization time for AVL* is roughly half the time required by IAVL+. This
happens because in the AVL*, when a chunk is received, it can be validated individually
and, if valid, the subtree it contains can be built before all chunks are received.

Table 2 Throughput and latency for IAVL+ and AVL* in different configurations.

10 peers
10k chunks 100k chunks

Throughput (tx/s) Latency (s) Throughput (tx/s) Latency (s)
average std. average std. average std. average std.

IAVL+ 2373.86 764.03 4.18 1.1 2362.76 713.46 4.16 1.02
AVL* 2538.63 798.46 3.85 0.94 2491.69 802.94 3.96 0.99

variation +7% -8% +5% -5%
80 peers

10k chunks 100k chunks
Throughput (tx/s) Latency (s) Throughput (tx/s) Latency (s)
average std. average std. average std. average std.

IAVL+ 893.28 218.33 8.63 2.27 892.82 235.59 8.71 2.6
AVL* 988.42 124.39 7.64 1.53 1001.25 131.8 7.54 1.55

variation +11% -11% +12% -13%

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:13

0 50 100 150 200
block

0

1000

2000

3000

4000

5000
tx

/s

0 2 4 6 8 10
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(a) IAVL+ with 10k chunks.

0 50 100 150 200
block

0

1000

2000

3000

4000

5000

tx
/s

0 2 4 6 8 10
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(b) AVL* with 10k chunks.

0 50 100 150 200
block

0

1000

2000

3000

4000

tx
/s

0 2 4 6 8
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(c) IAVL+ with 100k chunks.

0 50 100 150 200
block

0

1000

2000

3000

4000

tx
/s

0 2 4 6 8
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(d) AVL* with 100k chunks.

Figure 4 Throughput and latency of transaction execution, 10 peers, 1M key/value pairs.

We do note one detail. Recall that the AVL* does not guarantee fixed-sized chunks. So,
in these experiments, the AVL* chunks tend to be smaller than those made by snapshots in
the IAVL+. Snapshots from the AVL* have around 16% more chunks than the IAVL+ tree.
However, although there are more chunks in the application using the AVL* tree, the data
stored in each chunk is increased, since it includes the proofs of inclusion for each chunk.

Overall, the state synchronization time when using the AVL* is on average 58% faster
compared to the IAVL+ tree, despite having to download more chunks.

5.3 Steady-state operation

In the second set of experiments, we compare transaction throughput and latency of Tender-
mint using an AVL* and an IAVL+ tree. One distinctive aspect of AVL* is that peers do
not need to periodically build state snapshots. To understand the overhead of IAVL+, we
measure the time it takes to compute a snapshot. Finally, we assess AVL* space utilization.

In all the experiments, clients operate in a closed-loop, meaning a client only submits a
new transaction after it receives the response for the previously submitted transaction. The
client subscribes to the blockchain and delivers the blockchain blocks. Latency is computed
as the time it takes for a transaction to be included in a block. Throughput is the number of
transactions in a block divided by the time it took for the block to be ordered (i.e., interval
between the current block and the previous one). In the experiments with the IAVL+ tree,
snapshots are built every ten blocks.

OPODIS 2022

8:14 Robust and Fast Blockchain State Synchronization

0 20 40 60 80 100 120 140 160
block

0

200

400

600

800

1000

1200

tx
/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(a) IAVL+ with 10k chunks.

0 20 40 60 80 100 120 140 160
block

0

200

400

600

800

1000

1200

tx
/s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(b) AVL* with 10k chunks.

0 20 40 60 80 100 120 140 160
block

0

200

400

600

800

1000

1200

tx
/s

0 5 10 15 20 25
seconds

0.0

0.2

0.4

0.6

0.8

1.0

%

(c) IAVL+ with 100k chunks.

0 20 40 60 80 100 120 140 160
block

0

200

400

600

800

1000

1200

tx
/s

0 5 10 15 20 25
seconds

0.0

0.2

0.4

0.6

0.8

1.0
%

(d) AVL* with 100k chunks.

Figure 5 Throughput and latency of transaction execution, 80 peers, 1M key/value pairs.

5.3.1 Steady-state performance

We show the throughput as a time series and the latency CDF for Tendermint using both
IAVL+ and AVL*. Figure 4 presents the results for a blockchain with 10 peers. Figure 4 (a)
and (b) report the results for chunks of size 10k, and Figure 4 (c) and (d) report results for
chunks of size 100k. Figures 5 shows the results for the same set of experiments when the
number of peers is increased to 80.

The graphs show that using the AVL* tree results in more predictable performance.
One of the reasons for the volatility of the IAVL+ tree is that there are periodic drops in
performance that occur during a snapshot operation. In the graph, the dashed-red lines
indicate the time that a snapshot occurs.

Although it is somewhat difficult to tell from the graphs, the performance of AVL* is not
only more predictable, but it is also better, on average, than the IAVL+. Table 2 shows the
mean values, the corresponding standard deviation, and the relative improvement of AVL*
over IAVL+ for all these experiments.

In a blockchain with 10 validators, AVL* increases the throughput and reduces the latency
by at least 5% when compared to the IAVL+ tree. These improvements increase with the
size of the blockchain: with 80 validators, the improvements in throughput and latency are
at least 11%.

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:15

5.3.2 Time for a snapshot
One of the major differences between IAVL+ and AVL* is that AVL* trees do not need to
pause execution to compute a snapshot. This happens because in AVL* trees, chunks are an
integral part of the tree data structure. In IAVL+, chunks are built from tree snapshots.
Because snapshot computation has a significant impact on the IAVL+ performance, we
wanted to quantify the overhead.

Figure 6 shows the time it takes to compute a snapshot with IAVL+ trees as the number
of tree leaves (i.e., key-value pairs) is increased, varying from 0 to one million leaves. As the
tree gets bigger, snapshots take more time to complete. That happens because each snapshot
has to serialize the whole tree. Changing the chunk sizes does not have a significant impact
on the experiment’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
Number of key/value pairs 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(s

)

10 peers 10k chunks
80 peers 10k chunks
10 peers 100k chunks
80 peers 100k chunks

Figure 6 Time for an IAVL+ snapshot.

5.3.3 Space efficiency
The trade-off for using an AVL* is space efficiency, as the algorithm may fill chunks up to
their capacity. We define space efficiency as the number of chunks in the AVL* divided by
the ideal number of chunks (ceiling of elements divided by chunk size). For instance, if the
space efficiency were 2, it would mean that the AVL* uses twice as much chunks as the ideal
scenario. Note that when creating snapshot for the IAVL+, the space efficiency is always 1,
because the serialization process always serializes the tree from scratch. We evaluated the
space efficiency of the AVL* tree as we insert one million random keys into an empty AVL*
tree. The space efficiency stabilizes at around 1.4 for random data, which we believe is an
acceptable overhead.

5.4 State synchronization under attack
A key benefit of an AVL* tree over the IAVL+ tree is that it can gracefully recover from
Byzantine or malicious behavior from peers. An IAVL+ cannot be checked for validity until
the entire tree has been downloaded and reconstructed. If, after reconstructing the tree, the
tree’s root hash is different from the one in the trusted block header, then the client peer
must refetch all chunks again. In contrast, the AVL* tree allows the client peer to detect
invalid chunks easily, and remove misbehaving peers from their peer list.

To quantify the performance of AVL* in the presence of malicious peers, we again
performed the state synchronization experiment, but introduced malicious peers that respond
with invalid chunks. In these experiments, we used a fixed number of 80 peers and a tree with

OPODIS 2022

8:16 Robust and Fast Blockchain State Synchronization

one million entries. We varied the number of malicious peers from 1 to 26. We performed
the experiment five times, and report mean synchronization time, as well as the maximums
and minimums in bars and whiskers. Figure 7 shows the results.

In Figure 7 (a), we see that, as expected, the presence of malicious peers degrades the
state synchronization time. The state synchronization time grows linearly with the number
of malicious peers. Because a peer can respond to multiple requests for chunks in parallel
before they are verified, the number of invalid chunks sent by peers can vary. In Figure 7 (b)
we see that the number of chunks that need to be re-fetched is proportional to the state
synchronization time.

From §5.2, we know that without any byzantine peers, it takes 16.3 seconds for a client
peer using IAVL+ to complete state synchronization (with 80 peers, 100k chunks and 1M
key-value pairs). With one byzantine peer, this time would double since the client peer would
have to start from scratch. And even after retrying, there is no guarantee that the second
attempt would succeed. Thus, a coordinated attack could substantially increase state sync
time of IAVL+. AVL* outperforms IAVL+ even under attack by 20 byzantine peers.

0 5 10 15 20 25
Number of byzantine peers

0

5

10

15

20

Ti
m

e
(s

)

(a) Time for state synchronization.

0 5 10 15 20 25
Number of byzantine peers

0

5

10

15

20

25
N

um
be

r o
f r

e-
fe

tc
he

d
ch

un
ks

(b) Number of re-fetched chunks.

Figure 7 State sync with byzantine peers, 100k chunks, 1M key/value pairs.

6 Related work

Many systems for state machine replication with byzantine actors have addressed the problem
of fast state synchronization without executing the entire transaction log. This is typically
done by taking snapshots of the state, often called checkpoints. Such checkpoints can then be
downloaded by new or recovering peers. While PBFT [17] proposed the use of a Merkle tree
for its checkpoints, the Upright [18] and BFT-SMaRt [13] systems consider Merkle trees and
copy-on-write semantics to be too invasive in general to the application developer. Upright
outlines three simple approaches to state transfer [18], and BFT-SMaRt [13] describes a
detailed Collaborative State Transfer protocol, where the full state is downloaded from a
single peer and verified against hashes from other peers. In PBFT, a binary Merkle-tree is
built at each checkpoint by partitioning the application state in 4KB pages. The pages are
stored as leaves of the Merkle-tree using copy-on-write to only persist pages that have been
modified since the previous checkpoint. This approach is not efficient to encode a key-value
storage, since operations on the key space (e.g., searches) do not have logarithmic complexity.

Unlike SMR systems, which either consider Merkle-trees too expensive [18, 13], or
construct them only for state synchronization at periodic checkpoints [17], many blockchain
systems already use Merkle-ized data structures to store the state. The primary use case for
such Merkle-trees is to facilitate light clients, who can efficiently query for particular leaves

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:17

of the tree and verify their integrity, without ever downloading the entire state or transaction
history. The use of Merkle-trees for state synchronization has received much less attention,
but as the state of blockchain systems grow, synchronizing it becomes more expensive.

In Geth [7], state synchronization is performed by requesting individual nodes of the tree.
Peers do not have a way of knowing how long the state synchronization will last, because they
do not know the total number of nodes [4]. Since the Merkle-tree is part of the consensus
rules (i.e., Merkle-roots are stored in block headers), peers can verify that a received node
from the tree is correct. However, given the small size of nodes (less than one KB), their
randomized distribution in the underlying database, and the large size of the state (tens of
GBs), requesting nodes individually leads to performance degradation for peers requesting
and providing nodes. Batching nodes is a promising solution, however, it is challenging to
batch nodes in a manner that can be securely verified by peers, and limits attacks on honest
peers. For instance, in OpenEthereum [8], snapshots are taken periodically by serializing
the entire state, and dividing it in large chunks. The hashes of each chunk are published
in a manifest file. Since the manifest is not part of the consensus process, there is no way
to verify that a chunk is correct before downloading all of them. Successfully completing
the state synchronization in such a system thus depends on retrieving a correct manifest,
which requires strong assumptions, for instance, that a particular peer can be trusted or that
a majority of connected peers are correct. This is stronger than the usual assumption of a
single (though unspecified) correct peer commonly used in blockchain systems.

Other blockchain systems have proposed to take snapshots of the Merkle-tree by period-
ically dividing it in chunks. In Codechain snapshots [9], chunks are built from nodes within
a certain depth from a common root, and the hash of the snapshot is included in the block
header so chunks can be verified incrementally by peers. Chunks may contain entire sub-trees,
or may be limitted to the upper nodes in a sub-tree. In Tendermint IAVL+ snapshots, tree
nodes are serialized in order and assembled into chunks of a given size [1]. However, since
Tendermint’s block header does not currently support snapshot hashes, chunks cannot be
incrementally verified by peers. Hence the need for a tree that incorporates chunking directly
into its structure.

Motivated by their use in the blockchain context, numerous Merkle-tree designs have
been proposed lately. TurboGeth [10] separates the key-value storage from the Merkle
tree structure, and batches Merkle tree nodes in chunks to reduce the number of lookups
during Merkle operations. This has the effect of greatly improving performance without
changing the structure of the hash tree itself. Sparse Merkle-trees [19] have been adopted
by other blockchain projects [11]. Recent advances in cryptography have even offered a
glimpse into generalizations of Merkle trees called accumulators, which enable O(1) proofs of
set-membership and state-less blockchain clients [14]. While there has been a wide diversity
of proposed and implemented tree designs, the AVL* is the only known tree to target both
the light client and state synchronization use cases found in blockchain systems.

7 Conclusion

State synchronization is a significant bottleneck for blockchain-based systems. In this paper,
we have presented a novel extension to Merkle-ized AVL+ trees that incorporates chunks. This
extension allows peers to download portions of the state in parallel, and validate each chunk
independently. We have also described an algorithm for deterministic tree reconstruction,
ensuring that all peers have the same state. We have extensively tested our algorithms in
a geo-distributed environment that show the benefits when reconstructing the state from
snapshots and gracefully coping with byzantine failures.

OPODIS 2022

8:18 Robust and Fast Blockchain State Synchronization

References
1 Adr 053: State sync prototype. https://github.com/tendermint/tendermint/blob/master/

docs/architecture/adr-053-state-sync-prototype.md.
2 Cosmos network. https://cosmos.network/.
3 Cosmos sdk. https://github.com/cosmos/cosmos-sdk.
4 Go ethereum faq. https://geth.ethereum.org/docs/faq.
5 Iavl+ implementation. https://github.com/tendermint/iavl.
6 The interblockchain communication protocol. https://github.com/cosmos/ics/blob/

master/spec.pdf.
7 Official go implementation of the ethereum protocol. https://github.com/ethereum/

go-ethereum.
8 Openethereum warpsync. https://openethereum.github.io/wiki/Warp-Sync.
9 Snapshot sync proposal. https://research.codechain.io/t/snapshot-sync-proposal/21.

10 Turbo-geth programmer’s guide. https://github.com/ledgerwatch/turbo-geth/blob/
master/docs/programmers_guide/guide.md.

11 Urkel tree implementation. https://github.com/handshake-org/urkel.
12 George M Adel’son-Vel’skii and Evgenii Mikhailovich Landis. An algorithm for organization

of information. In Doklady Akademii Nauk, volume 146, pages 263–266. Russian Academy of
Sciences, 1962.

13 Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia. On the efficiency
of durable state machine replication. In Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 169–180, 2013.

14 Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to iops and stateless blockchains. In Annual International Cryptology Conference,
pages 561–586. Springer, 2019.

15 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938, 2018. arXiv:1807.04938.

16 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, November 2002. doi:10.1145/571637.571640.

17 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

18 Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin, and
Taylor Riche. Upright cluster services. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 277–290, 2009.

19 Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse merkle trees. In Nordic
Conference on Secure IT Systems, pages 199–215. Springer, 2016.

20 Ittay Eyal and Emin Gün Sirer. Majority is not enough: bitcoin mining is vulnerable. Commun.
ACM, 61(7):95–102, 2018.

21 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, pages 45–58, 2007. doi:10.1145/1294261.1294267.

22 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, July 1978.

23 Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20,
1987, Proceedings, volume 293 of Lecture Notes in Computer Science, pages 369–378, 1987.
doi:10.1007/3-540-48184-2_32.

24 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, bitcoin,
2008.

25 Michael Szydlo. Merkle tree traversal in log space and time. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 541–554. Springer, 2004.

26 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-053-state-sync-prototype.md
https://github.com/tendermint/tendermint/blob/master/docs/architecture/adr-053-state-sync-prototype.md
https://cosmos.network/
https://github.com/cosmos/cosmos-sdk
https://geth.ethereum.org/docs/faq
https://github.com/tendermint/iavl
https://github.com/cosmos/ics/blob/master/spec.pdf
https://github.com/cosmos/ics/blob/master/spec.pdf
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://openethereum.github.io/wiki/Warp-Sync
https://research.codechain.io/t/snapshot-sync-proposal/21
https://github.com/ledgerwatch/turbo-geth/blob/master/docs/programmers_guide/guide.md
https://github.com/ledgerwatch/turbo-geth/blob/master/docs/programmers_guide/guide.md
https://github.com/handshake-org/urkel
http://arxiv.org/abs/1807.04938
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1007/3-540-48184-2_32

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:19

A Appendix: Algorithms

Algorithm 1 Insert.

1: next_cid := 0 ▷ next chunk identifier
2: procedure insert(node, key, val) ▷ node is a pointer to root
3: return insert_aux(node, key, val, ϵ) ▷ return ptr to new node
4: procedure insert_aux(node, key, val, last_chunk)
5: if node = ϵ then ▷ if the tree is empty:
6: chunk := new_chunk(next_cid) ▷ first chunk
7: node := insert_in_chunk(chunk, key, val)
8: node→chunk := chunk ▷ node becomes chunk root
9: chunk→root :=node ▷ ditto

10: return node
11: if node→chunk ̸= ϵ then ▷ if node is the chunk root:
12: c := node→chunk ▷ let c be this chunk
13: if c →size = Cp then ▷ if c is a full chunk:
14: split_chunk(node) ▷ split node (i.e., c’s root)
15: else
16: c := last_chunk ▷ chunk root is a higher node
17: if node→is_leaf then ▷ if node is a leaf:
18: node_chunk := node→chunk ▷ keep its chunk, if any
19: node→chunk := ϵ ▷ node can’t be chunk root
20: if key < node→key then ▷ normal AVL left insert
21: left := insert_in_chunk(c, key, val)
22: node := new_inner(node→key, left, node, 1)
23: else ▷ normal AVL right insert
24: right := insert_in_chunk(c, key, val)
25: node := new_inner(key, node, right, 1)
26: node→right→inner_node := node ▷ leaf points to its inner
27: node→chunk := node_chunk ▷ inner gets kept chunk
28: if node→chunk ̸= ϵ then
29: c→root := node
30: else ▷ if node is an inner node:
31: if key < node→key then ▷ go down left or...
32: node→left := insert_aux(node→left, key, val, c)
33: else ▷ ...go down right...
34: node→right := insert_aux(node→right,key,val,c)
35: update_height(node) ▷ new height from children heights
36: return balance(node) ▷ if needed, rotate to keep balance
37: procedure update_height(node)
38: node→height := ▷ height gets max children height plus one
39: max(node→left→height,node→right→height) + 1
40: procedure balance(node)
41: h := node→left→height - node→right→height
42: if h < -1 then ▷ if right branch is bigger than left branch:
43: return rotate_rl(node) ▷ rotate [right] left
44: if h > 1 then ▷ if left branch is bigger than right branch:
45: return rotate_lr(node) ▷ rotate [left] right
46: return node

OPODIS 2022

8:20 Robust and Fast Blockchain State Synchronization

Algorithm 2 Auxiliary procedures.

1: procedure new_inner(key, ln, rn, ht) ▷ create inner node
2: new_inode := allocate new inner node
3: new_inode→key := key
4: new_inode→left := ln
5: new_inode→right := rn
6: new_inode→height := ht
7: return new_inode
8: procedure new_chunk(cid) ▷ create chunk
9: new_c := allocate new chunk

10: new_c→cid := cid
11: new_c→size := 0
12: new_c→root := ϵ
13: return new_c
14: procedure insert_in_chunk(c, key, val) ▷ insert key,val
15: c→leaf[c→size].key := key
16: c→leaf[c→size].value := val
17: node_addr := pointer to c→leaf[c→size]
18: c→size := c→size + 1
19: return node_addr
20: procedure delete_from_chunk(c, key)
21: for node in c→leaf do
22: if node.key = key then ▷ found leaf
23: swap(node, c→leaf[c→size]) ▷ swap with the last
24: deallocate c→leaf[c→size] ▷ free last leaf
25: c→size := c→size - 1 ▷ decrement number of leaves
26: if c→size = 0 then ▷ chunk is empty
27: next_cid := next_cid - 1 ▷ decrement number of chunks
28: last_chunk := get_chunk(next_cid) ▷ get chunk with highest id
29: last_chunk→cid := c→cid ▷ replace chunk’s id
30: deallocate c ▷ free empty chunk
31: procedure split_chunk(node) ▷ split chunk rooted at node
32: new_c := new_chunk(node→chunk→cid)
33: DFS(node→left, node, new_c)
34: node→left→chunk := new_c
35: new_c→root := node→left ▷ assign left chunk
36: next_cid := next_cid + 1
37: new_c := new_chunk(next_cid)
38: DFS(node→right, node, new_c)
39: new_c→root := node→right ▷ assign right chunk
40: node→right→chunk := new_c
41: deallocate node→chunk
42: node→chunk := ϵ ▷ x is no longer chunk root
43: return
44: procedure DFS(ptr, pnt, c)
45: if ptr→is_leaf then
46: c→leaf[c→size].key := ptr→key
47: c→leaf[c→size].value := ptr→value
48: c→leaf[c→size].i_node := ptr→i_node
49: if ptr→key < pnt→key then ▷ assign parent
50: pnt→left := pointer to chunk→leaf[c→size]
51: else
52: pnt→right := pointer to chunk→leaf[c→size]
53: c→size := c→size + 1 ▷ one more leaf in chunk
54: else
55: DFS(ptr→left, ptr, c)
56: DFS(ptr→right, ptr, c)
57: return

E. Fynn, E. Buchman, Z. Milosevic, R. Soulé, and F. Pedone 8:21

Algorithm 3 Delete.

1: procedure delete(node, key)
2: if node.key = key and node.is_leaf then ▷ only one node
3: delete_from_chunk(node.chunk, key)
4: return ϵ
5: return delete_aux(ϵ, node, key, ϵ) ▷ return ptr to new node
6: procedure delete_aux(node, key, last_chunk)
7: if node→chunk ̸= ϵ then ▷ if node is the chunk root:
8: c := node→chunk ▷ let c be this chunk
9: else

10: c := last_chunk ▷ chunk root is a higher node
11: if node→left→key = key and node→left→is_leaf then
12: if c = ϵ then ▷ chunk is necessarily on the left
13: c := node→left→chunk
14: delete_from_chunk(c, key)
15: promoted := node→right
16: if node→chunk ̸= ϵ then
17: promoted→chunk := node→chunk ▷ node is a chunk root
18: deallocate node ▷ no need for inner-node
19: return promoted
20: if node→key = key and node→right→is_leaf then
21: if c = ϵ then ▷ chunk is necessarily on the right
22: c := node→right→chunk
23: delete_from_chunk(c, key)
24: promoted := node→left
25: if node→chunk ̸= ϵ then
26: promoted→chunk := node→chunk ▷ node is a chunk root
27: deallocate node ▷ no need for inner-node
28: return promoted
29: if node→key = key and node→right→left→is_leaf then
30: if c = ϵ then ▷ chunk is lower
31: if node→right→chunk ̸= ϵ then ▷ chunk on right
32: c := node→right→chunk
33: node→rightNode→rightNode→chunk = c
34: node→chunk = ϵ
35: else
36: c := node→right→left→chunk ▷ chunk on the left
37: delete_from_chunk(c, key)
38: aux := node→right
39: node→key := aux→key
40: node→right := aux→right
41: deallocate aux
42: return node
43: if node→key = key then
44: n, p := delete_leaf(node→right, c)
45: node→key = n→key
46: node→right := p
47: deallocate n
48: else
49: if key < node→key then
50: node→left := delete_aux(node→left, key, c)
51: else
52: node→right := delete_aux(node→right, key, c)
53: update_height(node) ▷ new height from children heights
54: return balance(node) ▷ if needed, rotate to keep balance

OPODIS 2022

8:22 Robust and Fast Blockchain State Synchronization

Algorithm 4 Rotations.

1: procedure rotate_rl(node) ▷ normal AVL [right] left rotation
2: rl_height := node→right→left→height
3: rr_height := node→right→right→height
4: if rl_height > rr_height then
5: node→right := rotate_r(node→right)
6: update_height(node)
7: return rotate_l(node)
8: procedure rotate_lr(node) ▷ normal AVL [left] right rotation
9: ll_height := node→left→left→height

10: lr_height := node→left→right→height
11: if ll_height < lr_height then
12: node→left := rotate_l(node→left)
13: update_height(node)
14: return rotate_r(node)
15: procedure rotate_l(node) ▷ node is the pivot
16: if node→chunk ̸= ϵ then ▷ if subtree rooted at node in a chunk:
17: node→chunk→root := node→right
18: node→right→chunk := node→chunk ▷ node’s right child...
19: node→chunk := ϵ ▷ ...becomes new chunk root
20: else ▷ else, rotation may involve two chunks
21: if node→right→chunk ̸= ϵ then ▷ if r child is chunk root:
22: split_chunk(node→right)
23: new_pivot := node→right ▷ rotation in three steps: one, ...
24: node→right := new_pivot→left ▷ ...two, and...
25: new_pivot→left := node ▷ ...three!
26: update_height(node) ▷ update moved node height
27: update_height(new_pivot) ▷ update moved node height
28: return new_pivot
29: procedure rotate_r(node) ▷ node is the pivot
30: if node→chunk ̸= ϵ then ▷ if subtree rooted at node in a chunk:
31: node→left→chunk := node→chunk ▷ node’s left child...
32: node→chunk := ϵ ▷ ...becomes new chunk root
33: else ▷ else, rotation may involve two chunks
34: if node→left→chunk ̸= ϵ then ▷ if l child is chunk root:
35: split_chunk(node→left)
36: new_pivot := node→left ▷ rotation in three steps: one, ...
37: node→left := new_pivot→right ▷ ...two, and...
38: new_pivot→right := node ▷ ...three!
39: update_height(node) ▷ update moved node height
40: update_height(new_pivot) ▷ update moved node height
41: return new_pivot

A Privacy-Preserving and Transparent Certification
System for Digital Credentials
Rodrigo Q. Saramago !

University of Stavanger, Norway

Hein Meling !

University of Stavanger, Norway

Leander N. Jehl !

University of Stavanger, Norway

Abstract
A certification system is responsible for issuing digital credentials, which attest claims about a
subject, e.g., an academic diploma. Such credentials are valuable for individuals and society, and
widespread adoption requires a trusted certification system. Trust can be gained by being transparent
when issuing and verifying digital credentials. However, there is a fundamental tradeoff between
privacy and transparency. For instance, admitting a student to an academic program must preserve
the student’s privacy, i.e., the student’s grades must not be revealed to unauthorized parties. At the
same time, other applicants may demand transparency to ensure fairness in the admission process.
Thus, building a certification system with the right balance between privacy and transparency is
challenging.

This paper proposes a novel design for a certification system that provides sufficient transparency
and preserves privacy through selective disclosure of claims such that authorized parties can verify
them. Moreover, unauthorized parties can also verify the correctness of the certification process
without compromising privacy. We achieve this using an incremental Merkle tree of cryptographic
commitments to users’ credentials. The commitments are added to the tree based on verifying
zero-knowledge issuance proofs. Users store credentials off-chain and can prove the ownership and
authenticity of credentials without revealing their commitments. Further, our approach enables users
to prove statements about the credential’s claims in zero-knowledge. Our design offers a cost-efficient
solution, reducing the amount of linkable on-chain data by up to 79 % per credential compared to
prior work, while maintaining transparency.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols; Security
and privacy → Pseudonymity, anonymity and untraceability; Information systems → Extraction,
transformation and loading

Keywords and phrases verifiable credentials, privacy-preserving, zero-knowledge, blockchain

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.9

Supplementary Material Software (Source Code): https://github.com/r0qs/zkcertree
archived at swh:1:dir:491b29c170a47c1c5697bfe504075848d19a27bf

Funding This work is partially funded by the BBChain and Credence projects under grants 274451
and 288126 from the Research Council of Norway.

1 Introduction

Smart contract-based issuing of digital credentials can increase transparency and thus help
to detect fraud. This is especially important for academic credentials, which should be the
result of a long learning and evaluation process. Fraud has been shown within educational
institutions [13], but more importantly, fraudulent organizations, known as degree mills
which give out credentials with no or dubious processes [2, 15]. Transparency standards of
the evaluation and issuance process could significantly simplify the detection and blacklisting

© Rodrigo Q. Saramago, Hein Meling, and Leander N. Jehl;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 9; pp. 9:1–9:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rodrigo.saramago@proton.me
mailto:hein.meling@uis.no
mailto:leander.jehl@uis.no
https://doi.org/10.4230/LIPIcs.OPODIS.2022.9
https://github.com/r0qs/zkcertree
https://archive.softwareheritage.org/swh:1:dir:491b29c170a47c1c5697bfe504075848d19a27bf;origin=https://github.com/r0qs/zkcertree;visit=swh:1:snp:0d763de0288946ef4b3fb9cef8dde29205e183cb;anchor=swh:1:rev:cc8a8d5e15b67c0e72ea9be3e51b64754fb79c0a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Privacy-Preserving and Transparent Certification System for Digital Credentials

of such organizations. Further, unlike purely signature-based approaches, blockchain-based
credentials allow long-term validity and revocation. However, in existing solutions [9, 29, 36],
transparency of the issuance process is achieved only at the cost of users’ privacy.

Saramago et al. [29] propose to issue credentials for individual certification steps, such
as courses completed towards a degree. Their protocol allows authenticity checks of these
individual credentials through metadata logged to a blockchain. Presenting individual
certification steps provides transparency to the issuance process and enables verification of the
issuance process, e.g., the time frame of the credentials’ creation. Such properties guarantee
that the issued credentials represent achievements acquired over a specific trusted time
frame. Additionally, the metadata logged on-chain gives transparency of the issuers’ overall
processes, e.g., how many credentials are created during which periods. This transparency of
the overall issuing process is useful for accreditation purposes and simplifies the detection of
degree mills. They present an implementation of the above process using smart contracts
running in an EVM-compatible blockchain. However, this implementation allows one to track
all users’ credentials and related activities based on the on-chain data. This is possible since
the user’s address (hash of its public key) is contained in the metadata for all its credentials.
In the case of academic diplomas, this traceability may, for example, expose a user’s failed or
unfinished courses, even though irrelevant for their final certification.

This paper presents zkCert, a novel certification system design that allows transparency
for an issuer’s process while maintaining the users’ privacy. zkCert enables users to commit
to a set of credentials issued to them and prove the ownership and authenticity of such
credentials in zero knowledge. Moreover, users can disclose a partial set of credentials to
authorized parties for verification. Our approach reduces the amount of traceable information
published on-chain while preserving the transparent and accountable certification process.

Besides the privacy and scalability concerns, a key challenge with implementing a certifi-
cation system on an EVM-based platform is the high deployment, transaction, and storage
costs. This demands that contracts are carefully designed to manage their resource use.
Specifically, a contract must be deployed sparingly, it must utilize its storage efficiently, and
transactions must be carefully managed.

We have implemented zkCert as a smart contract, called Notary, that acts on behalf of
an issuer. Additionally, we implemented several applications based on zkSNARK circuits
in the Circom [21] language to enable users to proof statements about their Notary issued
credentials in zero-knowledge.

Our Notary contract allows educational institutions to automate a large portion of
their issuing processes of digital credentials. National authorization agencies responsible
for institutions can conduct audits without violating users’ privacy. Users can apply to
study programs or jobs by selectively disclosing only relevant credentials to the educational
institution or employer, which would be designated as verifiers. Hence, a verifier could rank
candidates based on their grades without actually knowing the grades. These are just some
applications that zkCert can support via zkSNARK circuits and Notary issued credentials.

Our contributions include: (1) zkCert, a novel certification system design, combining
an incremental Merkle tree for scalability with zkSNARKs for privacy, (2) a Notary smart
contract implementation of zkCert, (3) a set of circuits demonstrating the capabilities of
Notary issued credentials, and (4) our evaluation shows that zkCert is cost-efficient, scales
well, and outperforms prior work despite stronger privacy guarantees.

R. Q. Saramago, H. Meling, and L. N. Jehl 9:3

2 Background

Credentials are certificates that attest a statement about a subject. The W3C data model
defines a verifiable credential as a digital representation of a physical certificate in a cryp-
tographically secure and machine-verifiable form [12]. For example, an academic diploma
is a credential attesting the proficiency of a student and the authenticity of its digital
representation can be verified through the use of digital signatures.

Compared to paper-based certificates, digital certificates offer a more secure and scalable
alternative, being easy to create, revoke and verify, and further enabling a certification
system that is less prone to human errors. The use of digital signatures, however, requires
that a verifier can check if specific cryptographic keys belong to issuing authorities and
individuals [10]. The security of the system relies on keeping the signing keys secret and
compromised keys of issuing authorities may allow arbitrary creation of authentic credentials.

2.1 Blockchain Data Registries
Certificate authorities have a long history of security and privacy issues affecting trust in such
systems, limiting mass adoption [18, 22]. On the other hand, blockchain technologies provide
a decentralized and transparent database infrastructure that can improve how certificates
are issued and managed.

Data written on the blockchain is timestamped and tamper-resistant, forming a secure,
consistent, and append-only log of transactions shared across peers in the blockchain network.
Further, some blockchains can also execute code as part of a state transition, i.e., smart
contracts. However, this level of transparency, where anyone can verify transactions, limits its
use for applications that require a higher degree of privacy. For instance, popular blockchain
technologies commonly offer pseudo-anonymity, where entities are represented by pseudonyms
corresponding to public keys. Thus, naively using built-in transaction methods leaves a
trail of all entities’ activities. Consequently, the knowledge of identities with whom the
pseudonyms are associated puts privacy at risk.

Hence, a fundamental tension exists between transparency and privacy in a blockchain.
However, zero-knowledge proofs applied to blockchain state transitions [8,20] offer a promising
solution to balance this tradeoff.

2.2 zkSNARKs
Zero-knowledge succinct, non-interactive arguments of knowledge (zkSNARK) [5] is a crypto-
graphic proof construction where one can prove the knowledge of a secret while only revealing
its validity and no other information. The proof satisfies an NP relation (nondeterministic
polynomial time), and some zkSNARKs can prove any relation within a bounded-size arith-
metic circuit [6,24]. Anyone can verify a proof, and the proof length and the verification time
are sublinear in the circuit size. However, proof generation is expensive; typically, orders of
magnitude slower than checking the relation directly [16,24].

To prove a program’s computation using zkSNARKs, the program must be expressed
as a set of quadratic constraints. Thus, in simple terms, proving a computation requires
converting the program to a polynomial and evaluating it for a set of inputs. The first step
is transforming a program from a domain-specific language to an arithmetic circuit [21].

An arithmetic circuit is a directed acyclic graph over a finite prime field such that the
vertices are called gates, and the edges are called wires [6]. Wires can represent inputs or
outputs. Input wires can be public or private, and outputs are always public. Private inputs

OPODIS 2022

9:4 A Privacy-Preserving and Transparent Certification System for Digital Credentials

compose the witness, or the secret data, that must not be revealed to ensure zero knowledge.
Gates take two inputs and perform multiplication or addition in the field [24]. Arithmetic
circuits are closely related to circuits of logical gates but with arithmetic gates instead.

The circuit is then converted into a system of equations that express the arithmetic circuit
satisfiability, i.e., a constraint system. The rank-1 constraint system (R1CS) is one such
system and is used in many state-of-the-art zero-knowledge-proof systems [24]. However,
since the number of constraints can be huge and, thus, inefficient for real programs, the
R1CS representation is usually encoded as a single polynomial in the form of a Quadratic
Arithmetic Program (QAP) [19]. QAP is a way to efficiently compute arithmetic programs
over large finite fields using polynomials to represent the circuit constraints rather than
numbers.

To be non-interactive, zero-knowledge protocols usually require a trusted setup. A trusted
setup defines the parameters used to construct and verify proofs. These parameters are a
set of random numbers that generate the proving and verifying keys in the system. Thus, if
a single party knows all the parameters, that party could produce fraudulent proofs. One
approach to avoid this problem is establishing a distributed ceremony with multiple unknown
parties that derive their own private random data and collaborate through a Multi-Party
Computation protocol to combine their shares for the final set of parameters [24]. As a
result, the setup can be trusted, assuming at least one of the participating parties deletes
their private data, as all parties would need to collude to put the construction at risk.

Some zkSNARK constructions require a trusted setup for each new program, i.e., the
setup requires application-specific circuits [3]. However, recent works introduced the concept
of universal setup. PLONK [16] is one such construction that allows multiple programs to
reuse a single trusted setup within a bounded circuit size.

2.3 Incremental Merkle Tree

A Merkle tree is a (binary) tree data structure where leaf nodes are labeled with the hash of
the data, and non-leaf nodes are the result of the hash of their children [23]. Merkle trees
provide an efficient way to verify the membership of a leaf without requiring the verifier to
know all the leaves by using Merkle proofs.

A Merkle proof consists of the leaf data to be proven, the tree’s root hash, and a branch
consisting of all siblings of the nodes in the path from the data to the root. For instance,
suppose that a large database is stored as a Merkle tree and that the root is publicly known
and trusted, e.g., digitally signed. A verifier can perform a lookup in such a database by
verifying a Merkle proof of the data without requiring access to the whole database. Thus,
Merkle trees can be used as tamper-resistant and authenticated data structures, allowing
public audits.

However, naively updating a Merkle tree, e.g., adding a leaf, incur recomputing all
intermediary nodes up to the new root. Since the size of Merkle trees can be huge, it is often
impractical to reconstruct the whole tree every time a new leaf is added.

An incremental Merkle tree is an optimization that reduces time and space complexity
by initializing the tree with empty nodes (filled with zeros) and keeping a partial Merkle tree
for data updates [25]. A leaf node in such a tree is incrementally added (from left to right),
updating the partial Merkle tree by replacing an empty node. Therefore, only the hashes of
the nodes on the path from the new leaf to the root need to be recomputed.

R. Q. Saramago, H. Meling, and L. N. Jehl 9:5

2.4 Cryptographic Commitments
Cryptographic commitments allow one to commit to a value while keeping it secret from
others and subsequently making the commitment public. Once committed, the scheme
ensures that the value was not changed before disclosure [26].

Commitment schemes have two main properties, namely hiding and binding. Hiding
ensures that no one can learn the value until it is revealed, even with access to the commitment,
e.g., the hash of a preimage. When a commitment is opened, e.g., the preimage is revealed,
the binding assures that it is infeasible to replace the value with something else.

Poseidon hash [17] is an elliptic curve hashing algorithm that compresses values into
points on the curve, which can be produced and verified efficiently within arithmetic circuits,
requiring fewer constraints per round. Poseidon is tailored to work on finite fields used in
zero-knowledge proof systems and is currently one of the most efficient hashing functions
for zero-knowledge applications. Poseidon can also be used for signature and commitment
schemes where the knowledge of the committed value is proven in zero knowledge and is
faster than previous methods like Pedersen commitments [17,26].

2.5 Related Works
Semaphore [33] is a zero-knowledge protocol that allows users to vote by casting a signal, and
only one, as a member of some group of entities without revealing their identity. Users in their
system can participate in anonymous polls and Decentralized Autonomous Organizations
(DAOs) and prove their participation on-chain. Their system provides a high level of privacy
but was designed for a different use case, i.e., private voting, despite sharing similarities with
the commitment-reveal scheme used in our work.

Tornado Cash [34] is another application that makes use of zero-knowledge proofs to
provide anonymous payments through a mixing service. Users of tornado cash make deposits
by committing to some amount of a cryptocurrency, e.g., ETH, and can later withdraw the
deposited amount by providing a zkSNARK proof of the commitment within a Merkle tree
and a nullifier. The nullifier is revealed in the withdrawal and used to prevent double-spending
on a commitment. Tornado cash enables anonymity by grouping all deposits to the tornado
contract in an anonymity set. The smaller the anonymity set, the worst the privacy of
the system since it becomes easy to analyze the on-chain data and infer relations between
deposits and withdraws. zkCert was also inspired by Tornado Cash adapting their solution
to the verifiable credentials scenario.

Iden3 [31] is a Self-Sovereign Identity (SSI) platform that allows users to provide zero-
knowledge proofs of membership and non-membership of claims on-chain. Their solution for
verifiable credentials also allows on-chain revocations. In their system, identities sign the
root of a claim tree of other identity creating a chain of signed trees that resembles web of
trust. Each identity act as an issuer and claims are cryptographically proved and verified.

Certree [29] is a certification protocol that provides a transparent log of the issuer’s
actions by establishing an on-chain tree data structure of smart contracts and credentials.
Each credential hash is stored on the blockchain as leaves of the tree-like structure and is
identified by the subject’s unique address. Their tree of smart contracts models the issuer’s
certification processes and defines authorization rules and scopes of each credential created
by the issuer. However, all operations and identifiable metadata of credentials can be linked
to the subject’s address. This is a consequence of the proposed progressive construction
of their credential tree. We propose zkCert, providing the same level of transparency as
Certree, but significantly improve privacy due to our use of zero-knowledge proofs. zkCert

OPODIS 2022

9:6 A Privacy-Preserving and Transparent Certification System for Digital Credentials

uses PLONK and provides a progressive certification process in the form of an incremental
Merkle tree, enabling improved on-chain storage utilization and lower monetary costs to
produce credentials.

3 System Model

We aim to design a certification system that delivers strong privacy guarantees to subjects
while providing transparency of the entire process. As such, we assume a certification
ecosystem consisting of four main parties defined by the W3C verifiable credentials data
model [12]: issuers, subjects, verifiers, and a verifiable data registry. For convenience, we
assume the subject to be the same as the holder defined by the W3C specification.

The purpose of a certification system is to issue credentials and provide sufficient infor-
mation to third-party entities to verify the authenticity of credentials. A credential is often
an official document that attests to a particular fact. In our model, a credential is a digital
document that stores data as a claim, i.e., a statement about a subject.

Subjects, in a nutshell, are entities about which claims are made. Issuers are responsible
for executing the certification process and asserting claims about subjects in the form of
credentials. They are typically represented by a group of individuals that act on behalf of
the issuer organization. A verifier is any entity that evaluates whether credential claims are
authentic and meet specific criteria. Last but not least, a verifiable data registry facilitates
the creation and validation of keys, identifiers, and other pertinent data [12].

3.1 System Properties
The goal of this work is to provide a certification system with the following properties.
Transparency. It should be able to demonstrate the process by which the issuer used to

arrive at the conclusions stated in the claims [18].
Privacy. It should minimize exposure of linkable information to preserve users’ privacy.
Integrity. It should prevent manipulation of a credential’s content, once issued.
Trusted Timestamping. It should prevent manipulation of an issued credential’s issuing

time.
Authenticity. Is should allow anyone to verify the authenticity of a presented credential.
Data and Service Availability. Subjects should have ownership of their credentials’ data

and should not depend on the issuer for verification. Credentials should remain valid and
be verifiable even though the issuer becomes unavailable, e.g., goes out of business.

Revocability. Issuers and subjects should be able to revoke previously issued credentials,
and anyone should be able to verify the change in a credential’s status.

Agreement. Subjects can receive credentials from any issuer and must be able to accept or
deny the issuance of a credential to him.

In Section 4.4 we briefly discuss how our system implements those properties.

3.2 System Assumptions
We assume that one or more cryptographic key pairs represent the entities in the system and
that cryptographic primitives cannot be easily circumvented. System entities should be able
to exchange sensitive data over a secure communication channel.

We assume that issuers can confirm the identity of subjects and that verifiers can identify
issuers using mechanisms like decentralized identifiers [11]. Thus, we consider the existence
of a registry for verifying the system entities’ public keys, e.g., DPKI [1].

R. Q. Saramago, H. Meling, and L. N. Jehl 9:7

Moreover, we assume the existence of a blockchain-based verifiable data registry, with
support for smart contracts, that gives write access to issuers and subjects and read-only
access to verifiers. Additionally, the entities in the system are not able to trivially bypass
the blockchain’s security, timestamping, safety, and append-only properties.

3.3 Threat Model
Our system contains issuers, subjects, and verifiers, each of which may attack the system
in different ways. A corrupt issuer may try to create or gain control over credentials with
a correct timeframe. Creating credentials with a correct timeframe may take several years.
Corrupted issuers may therefore attempt to alter or gain control over previously issued
credentials. A corrupt subject may try to receive (from the issuer) or present (to a verifier)
false credentials. The subject may also try to prevent revocation or falsely present revoked
credentials as valid. Finally, a corrupt verifier may attempt to extract additional information
about a subject’s credentials from public information.

4 Privacy-Preserving Credentials

In this section, we describe our protocol, zkCert, for a privacy-preserving certification system.
zkCert builds on a blockchain that supports smart contracts. The blockchain acts as a
verifiable data registry for certification processes with strong timestamping properties. The
certification processes are managed by a set of smart contracts, collectively named Notary,
that encode the certification logic.

The contracts keep track of all issued credentials using an efficient Merkle tree data
structure that can be augmented incrementally. The Merkle tree stores cryptographic
commitments to subjects’ credentials. Subjects can prove ownership of commitments in the
tree without revealing which commitments they own. We cover this mechanism in detail in
Section 4.2. First, however, we introduce the credential document format we use to prove,
in zero knowledge, the existence of individual fields of a credential. This format allows
individual fields to be selectively disclosed. Lastly, in Section 4.3 we describe how credentials
can be verified and give some example use cases.

4.1 Credential Document File Format
An issuer creates a credential by grouping claims about a subject in a document. In zkCert,
this document is a JSON file following an issuer-defined schema. The schema may be aligned
with the W3C verifiable credentials data model [12], which specifies mechanisms to express
secure and machine-verifiable digital credentials.

According to the W3C specification, a verifiable credential is composed of three core
elements:
(W3C1) Claims;
(W3C2) Credential’s metadata;
(W3C3) Proof mechanisms.

Claims are a sequence of assertions made by an issuer about a subject. A credential’s
metadata describe properties that can be used for verification, as well as expiration dates
and revocation mechanisms. Lastly, the proof mechanisms are used to verify a credential’s
authorship, prove its claims, and detect tampering.

OPODIS 2022

9:8 A Privacy-Preserving and Transparent Certification System for Digital Credentials

The specification does not dictate a particular proof mechanism or file format. To
facilitate a transparent and privacy-preserving certification process, we decouple the three
elements of a verifiable credential into on-chain and off-chain data. We explain the rationale
for this decoupling in the rest of the paper.

4.1.1 Merkle Tree of Claims
In our protocol, the claims (W3C1) are represented as fields of a JSON document. When
issuing a credential, the document is augmented with a Merkle tree called credential tree.
This tree is constructed deterministically from individual fields of the original document.
The credential tree enables subjects to selectively disclose parts of the document and to
prove that these parts belong to the original document using Merkle proofs. For instance, a
student could reveal the field corresponding to his grades for a set of credentials without
revealing other information about the credential besides the grades.

Our certification system requires that issuers use a predefined schema to create credentials.
Otherwise, claims about specific fields may be deceiving. For instance, a credential could
have fields for approval and revocation dates. In this scenario, a Merkle proof for the approval
date alone would be insufficient to determine if the approval has been revoked.

The credential documents’ fields form the leaves of the credential tree, constructed using
Equation (1), where key is the SHA256 hash of the field’s canonical property name modulo
the SNARK prime field. The leaf F is the Poseidon hash of the concatenation of the key,
the field’s value, and a random salt.

F = Poseidon(key∥value∥salt) (1)

As each field expresses a claim, the combination of fields can be used to compose an
information graph about the subject. This, in turn, can be used to prove statements about
the subject’s credentials in zero knowledge. For example, the subject’s grade for a course is
greater than a given value. Figure 1 shows an example document and its credential tree.

The credential tree encoding enables more sophisticated computations over a credential’s
fields without revealing them. For example, we can prove that a set of credentials were
issued in a specific period, and we can compute the weighted sum of a set of fields. These
are relevant use cases for proving the duration of a bachelor’s degree and a student’s GPA.
Appendix A provide details of how these examples are implemented in zkCert.

{
 Grade: X,
 Tag: Y,
 Subject: Z,
 Issuer: W,
 Reference: U,
 Timestamp: V,

 ...

}

Credential
Root

Ph(AB)

Ph(A) Ph(B)

Ph(CD)

Ph(ABCD) Ph(EFGH)

A = SHA256("grade") || X || salt

Figure 1 The encoding of a credential into a credential tree. P h is the Poseidon hash function.
Each field of the credential document is encoded as a leaf of the credential tree using Equation (1)
over the field’s key, value, and salt. In the example, A represents the encoding for the property
“grade” and value “X”.

R. Q. Saramago, H. Meling, and L. N. Jehl 9:9

4.2 Certification Tree

In this section we explain the certification tree, which is used to store credential commitments
for all users. The certification tree is dynamically extended and keeps track of the issuer’s
actions for transparency.

In our protocol, credentials hold claims data (W3C1) in the form of a credential tree, and
is stored off-chain by the subject. Proofs (W3C3) are generated on-demand by the subject,
which can be verified by on-chain and off-chain mechanisms during certification. Finally, the
credentials’ metadata (W3C2) is stored on-chain in the Notary’s state.

The metadata is mainly used to verify and manage the credentials created by the Notary
in the data registry. For instance, the metadata of a credential contains its current status,
i.e., issued, revoked, or expired. Thus, the status can be changed or verified when the issuer
revokes a credential without relying on the issuer’s servers.

Storing metadata on-chain increases the availability of verification services and can help
to prevent censorship. However, it also imposes a challenge since it requires using a unique
public identifier per credential to verify its metadata. Moreover, such identifiers could
potentially be used to track credential owners.

To overcome this problem, we have designed a mechanism to prove the credential’s
ownership in zero-knowledge. Our mechanism effectively breaks the link between subjects
and their credentials, while maintaining the credential’s on-chain state for public verifiability
and uses techniques that are already well-known in privacy preserving solutions using
blockchains [20,31,33,34].

The process of issuing credentials comprises two phases: Registration and Approval. A
credential is considered valid if, and only if, registered by the issuer, approved by the subject,
and it is not revoked or expired. Both phases use the PLONK [16] SNARK construction
to generate the zkSNARK proofs in zkCert. Due to its upgradable and universal setup
process, PLONK allows the issuer to create custom circuits up to a bounded size defined
during trusted setup, enabling verification of a variety of credential’s information when
used in conjunction with the credential and certification tree. We describe these phases in
Sections 4.2.2 and 4.2.3. But first we explain the basic structure of the certification tree.

4.2.1 On-chain Credential Registry

When creating a credential, the issuer records a cryptographic commitment to the credential
in the Notary contract. Our protocol never reveals the preimage of the commitment. This is
achieved by proving the commitment binding within the zero-knowledge circuit.

Commitments are created using the Poseidon hash function, which is efficient in zero-
knowledge circuits [17]. Thus, the commitment C in Equation (2) is simply a point on the
bn128 elliptic curve. The bn128 curve is natively supported on the EVM, enabling contracts
to perform efficient zkSNARKs verification as well [28]. The secret is a random number, e.g.,
the subject’s EdDSA private key, and sub is the hash of the subject’s EdDSA public key.

C = Poseidon(cdr , secret, sub) (2)

The credential root cdr is obtained by formatting the credential document as a Merkle tree,
as described in Section 4.1, and retrieving the tree’s root. Subjects only disclose the hash
of their credential root Hcdr when claiming ownership of credentials, i.e., approving the
credential issuance, as described in Section 4.2.3. Such hash represents a unique ID for every
issued credential.

OPODIS 2022

9:10 A Privacy-Preserving and Transparent Certification System for Digital Credentials

The commitments are stored in the leaves of an incremental Merkle tree in the issuer’s
Notary contract. We call this a certification tree, and its construction is shown in Figure 2.
The tree is initialized with a fixed size in the Notary deployment, and all leaves are initially
filled with zeros. Consequently, considering a perfect binary Merkle tree, the maximum
number of credentials a Notary can register is 2h, where h is the tree’s height. This tree
construction results in a Merkle tree whose hash values are in the bn128 elliptic curve,
allowing efficient computation in the circuit [34].

Certification Root

C1

Cdr1

...

F1

key value salt

F2

...

C2

Cdr2

...
...

Fn

0 0Commitment

Credential
Root

Credential
Field

on-chain

off-chain

Credential
Tree

Figure 2 Incremental certification tree and its credentials’ trees.

The incremental certification tree is responsible for keeping track of all credentials issued,
preserving a progressive issuance process and a cryptographically immutable log of issuers’
actions while increasing privacy and optimizing the on-chain storage and execution cost.

For instance, a naive Merkle tree algorithm would require O(2h) time and space complexity
to add new leaves. The incremental Merkle Tree, on the other hand, reduces the computational
cost when adding a new leaf, i.e., replacing a zero leaf, requiring only O(h) time and space
complexity to update the Merkle tree’s root [25]. Leaves are added in the tree from the
leftmost to the rightmost leaf, replacing the zero data with the credential commitment and
updating the Merkle path to the new root.

Before creating any credential in zkCert, a trusted setup must be performed for the
PLONK zkSNARK construction. The parties involved in the trusted setup in zkCert are
arbitrary and defined by the issuer and trusted third parties, e.g., universities and national
accreditation bodies. The subjects and verifiers do not need to participate in such a setup.
Protocols like the scalable two-phase multi-party computation protocol MMORPG proposed
by [7] can be used to generate the setup parameters. These parameters create the proving
and verification keys used by zkCert to generate and verify proofs.

4.2.2 Registration Phase
To create a credential, an issuer first formats the claims about a subject in the form of a
credential tree, as defined in Section 4.1. The issuer then sends the credential document to
the subject over an encrypted channel. This phase is visualized in Figure 3. After verifying
the credential’s claims, the subject computes the credential root and generates an issuance

R. Q. Saramago, H. Meling, and L. N. Jehl 9:11

Subject Issuer zkCert Contract

Figure 3 Registration phase: An issuer creates a credential to a subject and appends the
commitment C to such credential in the Notary certification tree.

proof in zero knowledge using Circuit 1. The issuance proof attests to the issuer that the
commitment is well-formed, i.e., used the expected credential root, and was created by the
correct subject, i.e., the owner of the enrolled public key representing the subject’s identity.
This proof is used to justify the inclusion of the commitment into the Notary certification
tree by the issuer and can be used for internal audits.

Circuit 1 Issuance proof.

1 IssuanceCircuit():
2 Public Inputs:
3 comm ▷ The credential commitment
4 cdr ▷ The credential root
5 pk ▷ The subject’s EdDSA public key
6 Private Inputs::
7 secret ▷ The subject’s secret
8 sig ▷ The commitment signature
9 sub← Subject(pk)

10 Assert: comm ̸= 0
11 c← Commitment(cdr, sub, secret)
12 Verify: c = comm

13 v ← EdDSAPoseidonV erifier(c, pk, sig)
14 Verify: v = true

The subject then sends, through an off-chain channel, the issuance proof and the commit-
ment to the issuer. Upon receiving the subject’s message, the issuer verifies the proof and, if
valid, adds the commitment to the certification tree. We assume that the issuer can verify
the subject’s identity using its public key, e.g., through a PKI.

OPODIS 2022

9:12 A Privacy-Preserving and Transparent Certification System for Digital Credentials

It is important to note that the issuer is the one who creates a credential and consequently
shares management rights, e.g., revocation. As a result, the issuer should already know
the subject’s identity, the content of the credential, and its commitment. On the other
hand, the subject creates the commitment using Equation (2) and is the credential owner.
Consequently, nobody other than the subject can demonstrate knowledge of the preimage to
such commitment without knowing the subject’s secret inputs. Nevertheless, as explained in
Section 4.3, the commitments are not revealed during presentations to third parties, and the
subject can selectively disclose the credential’s data as needed.

4.2.3 Approval Phase
The approval phase ensures that whoever was the subject of a registered credential agreed
with its claims and could provide proof claiming its ownership. The phase represents a public
consent of a subject within the credential without exposing the subject’s identity and enables
verification by third parties of the authenticity of future credential presentations.

This phase is visualized in Figure 4. After the issuer registers a commitment, the
correspondent subject can, at any later point in time, call the Notary contract to approve
the credential by revealing the Hcdr.

Subject zkCert Contract

Figure 4 Approval phase: The subject reconstructs the certification tree locally based on the
Notary events and generates a zkSNARK proof to approve a credential. The proof is then submitted
to the contract by the sender, i.e., the contract’s caller, and upon verification, updates the credential’s
state.

To generate an authenticity proof, a subject first retrieves the last certification root
from the Notary contract and queries the necessary CredentialCreated events emitted by the
contract in order to construct the Merkle proof of his commitments within the tree. This

R. Q. Saramago, H. Meling, and L. N. Jehl 9:13

process is needed since the certification tree is constantly being updated, and to be able to
produce proofs for the most recent root, new data need to be retrieved from the blockchain.
Of course, the data can be cached, and the issuer or third parties can provide services to
speed up the data retrieval.

The subject generates an approval proof by executing Circuit 2, verified on-chain by
the Notary contract. It attests that the subject not only has knowledge of a preimage to a
commitment within the tree, but also knows the Merkle path to such commitment without
revealing it. This attestation breaks the link between a credential’s commitment from its
presentation to an external verifier, which only needs to know the Hcdr to verify the status
of the credential on-chain.

Circuit 2 Approval proof.

1 ApprovalCircuit():
2 Public Inputs:
3 ctr ▷ The certification tree root
4 Hcdr ▷ The hash of the credential root
5 Private Inputs::
6 cdr ▷ The credential root
7 subject ▷ The subject ID
8 secret ▷ The subject’s secret
9 MtProofcomm ▷ The commitment’s merkle proof

10 c← Commitment(cdr, subject, secret)
11 Verify: Poseidon(cdr) = Hcdr

12 r ← V erifyMerkleProof(c, MtProofcomm)
13 Verify: r = ctr

The contract records the Hcdr hashes already approved, so a credential cannot be issued
twice by the same Notary contract. The existence of the Hcdr on-chain also eases the
management of issued credentials. Further, the proof contains a sender address of an entity
authorized by the subject to call the contract in his behalf. This allows subjects to delegate
the approval to third parties, which could also be the issuer. Note, however, that the issuer
or any delegated third party cannot produce a valid proof on behalf of the subject, since
only the subject knows the entire preimage data and his private key.

4.3 Verifying Credentials

The W3C verifiable credentials data model [12] defines a verifiable presentation as a mechanism
to express data derived from credentials in which the authorship can be verifiable. In our
protocol, a subject can prove the authorship of a credential without revealing all credentials
they own from a specific issuer. Combined with the credential tree format described in
Section 4.1, it is also possible to prove the existence of a field in the credential within the
certification tree root and, consequently, the existence of a commitment to such credential on-
chain. As writing data on-chain requires signing a transaction, such proofs enable authenticity
checks of issued credentials while keeping the underlying data private.

OPODIS 2022

9:14 A Privacy-Preserving and Transparent Certification System for Digital Credentials

As mentioned in Section 4.2, zkCert relies on the PLONK zkSNARK construction. Thus
after the issuer has performed the setup, it can make available the proving and verification
keys, and the supported circuits, to users and developers. We provide a set of circuits for the
use cases covered in this paper, along with our companion source code1.

Our design combines on-chain authenticity and validity checks, performed by Notary
contracts, with off-chain claims verification based on zero-knowledge proofs provided during
the presentation of credentials. A third-party verifier can, without any interaction with the
issuer, check:
(a) The authenticity of credentials and its current status (e.g. revocation, expiration date);
(b) If the values in the credential’s fields met certain conditional criteria (e.g. all grades are

greater than B);
(c) The result of an arithmetic computation over a set of credentials (e.g. the GPA of a

student);
(d) The time-frame in which the presented credentials were issued (e.g. if all credentials of a

subject were issued in a three years period);
Note that the items listed above do not constitute an exhaustive list, and all can be verified
in zero-knowledge, thus without exposing any underlying private values.

Item (a) is verified by requesting zero-knowledge proof for the credentials being presented
and cross-checking the hashes Hcdr of these credentials in the Notary regarding their current
status. It is important to note that such verification reveals the Hcdr to the verifier since
it is required to check the credential status, e.g., revocation, but an external observer to
the blockchain cannot track such activity. Nevertheless, the correspondent commitment and
credential’s data remain secret to the verifier, and it is infeasible to recover such information
from a given Hcdr. However, it may be possible to de-anonymize users with statistical
analysis of on-chain transaction patterns. The complete flow of this process is included in
Appendix A.

Further, due to the way that our credentials are built (see Figure 2), Item (a) can also
be extended to verify the authenticity of specific fields of credentials or perform simple
arithmetic computation over it. In Appendix A we give an example of a circuit that computes
the weighted sum of a set of authenticated integers using our approach.

Subjects can also select specific fields of a set of credential trees they own to present to a
verifier in zero-knowledge, this enables checks as described in Item (b). However, a naive
implementation would require that the subject create one Merkle proof for each field to be
proven.

To reduce the number of Merkle proofs required to proof Items (b)-(d), we added support
for Merkle multi-proofs [27], which reduces the number of Merkle proofs required to prove
the inclusion of multiple leaves to a single proof. This improvement allows the creation
of Merkle multi-proofs for multiple credentials and multiple fields of credentials. We also
provide a circuit implementation in Circom [21] of the Merkle multi-proof algorithm, enabling
membership proofs in zero knowledge.

4.4 Design Properties Analysis
As mentioned in Section 4, zkCert uses the blockchain to guarantee a trusted timestamping
of issued credentials. Timestamp information is added to the credential JSON document and
consequently to its credential tree representation. This information can be verified off-chain

1 https://github.com/r0qs/zkcertree

https://github.com/r0qs/zkcertree

R. Q. Saramago, H. Meling, and L. N. Jehl 9:15

at the circuit level, as exemplified in Appendix A.4, and cross-checked against its on-chain
registration and approval metadata in the certification tree, considering a time threshold.
This characteristic can help to detect fraudulent patterns in the issuance process.

The blockchain also ensures integrity, authenticity, and service availability while guar-
anteeing that the metadata stored on-chain are valid and always accessible for verification.
Although we do not address the off-chain storage of credentials in this work but assume its
existence, we acknowledge that it is an essential part of a certification system. The use of
content-addressing storage like IPFS [4] or Swarm [35] can improve censorship resistance
and availability of proving data as well, i.e., credential documents.

The certification tree provides transparency in the certification process through its
incremental tamper-resistant event log, and combined with identity mechanisms like DIDs [11]
and DPKI [1], can ensure the authenticity of an issuer’s actions and issued credentials. It
can further provide non-repudiation through subject approvals, helping auditing processes.

The approval phase in Section 4.2.3 may not be suitable for all use cases, e.g., issuance of
criminal records. However, it is a feature of our protocol to register a public agreement of all
signing parties of a certificate, i.e., the issuer and the subject. The approval phase can safely
be omitted when the registration phase is sufficient to meet the use case’s requirements.

The certification tree also enables the revocation of credentials without relying on a
central server. The revocation permissions can be configured through an access control list
of authorized issuer’s personnel.

Finally, using zkSNARK to prove statements about credentials adds a privacy layer to
our certification system, preventing unauthorized entities monitoring blockchain events from
tracking user activities, while preserving the transparency properties of the protocol.

5 Evaluation

In this section, we present our evaluation of zkCert. We first evaluate the monetary cost of
issuing diplomas on various blockchains. Then we assess the performance of proving and
verification time of the zkSNARK construction.

For the monetary cost analysis, we compare the cost of the operations performed by
zkCert with Certree’s costs [29]. The cost is expressed in dollars instead of gas units [14]
since it reflects the storage and computational cost of smart contracts operations in the
analyzed blockchains. We also analyzed the on-chain storage usage of both approaches. Our
results are shown in Table 1 and include updated costs for Certree based on recent exchange
rates for three mainstream blockchains: Ethereum [14], Avalanche [30] and Polygon [32].

An Exam cert in Table 1 represents one issued credential and does not consider the cost
or storage space of the contract deployed. Other lines show complete cost for a certificate
composed of multiple credentials. For instance, a course certificate (Course cert) in our
example is composed of five exam certificates issued to the same subject. As in [29], we
assume that courses correspond to 10 ECTS and a semester to 30 ECTS.

The table includes both costs of issuing and approving credentials. In Certree [29], the
approval cost must be borne by the subject, the credential’s owner. In zkCert, however,
this cost can be offloaded to a third party, e.g., the issuer. This is possible since approval
is not linked to the subject’s on-chain identity; instead, the subject’s approval is linked
via a zero-knowledge proof. Further, in Certree, a contract must be deployed for each
course, adding progressive deployment costs, while in zkCert, the Notary contract is only
deployed once. Thus, zkCert adds a fixed initial storage cost of 8.39 Kb for initializing the
incremental certification tree as part of the Notary contract. As described in Section 4.2,
issuers can update the Notary contract incrementally as new credentials are issued. It is

OPODIS 2022

9:16 A Privacy-Preserving and Transparent Certification System for Digital Credentials

Table 1 Monetary cost and on-chain storage utilization comparison of zkCert and Certree for a
hypothetical scenario issuing Bachelor’s and Master’s credentials for one student.

Protocol ECTS Cred.
Issued

Contracts
Deployed

On-chain
Storage

Cost
ETH/
USD∗

Cost
AVAX/
USD◁

Cost
MATIC/

USD†

Certree Exam cert 1 0 321 b 20.01 0.22 0.01

Course cert 10 5 1 1.60 Kb 297.82 3.27 0.15

Semester cert 30 16 3 5.33 Kb 1106.23 12.15 0.56

Bachelor’s diploma 180 97 18 32.67 Kb 6881.09 75.59 3.49

Master’s diploma 120 65 12 21.89 Kb 4658.32 51.17 2.36

zkCert Exam cert 1 0 66 b 39.18 0.43 0.02

Course cert 10 5 1 8.72 Kb 195.92 2.15 0.10

Semester cert 30 16 1 9.38 Kb 587.77 6.46 0.30

Bachelor’s diploma 180 97 1 22.72 Kb 3618.83 39.75 1.84

Master’s diploma 120 65 1 20.74 Kb 2443.30 26.84 1.24

∗ Gas price = 33 Gwei and ETH 1 = 1634.53 USD at 2022-08-20.
◁ Gas price = 26 nAVAX and AVAX = 22.79 USD at 2022-08-20.
† Gas price = 34.4 Gwei and MATIC = 0.796 USD at 2022-08-20.

also worth noting that the cost of zkCert considers a partial binary Merkle tree of height up
to 31. Table 1 shows the combined cost of deploying contracts and creating and approving
credentials.

Table 1 shows that the cost of issuing a single credential increased by almost 49 % with
zkCert compared to Certree. This increase is due to adding a new leaf in the Notary’s tree
during registration and on-chain verification of a zkSNARK proof during approval. However,
this initial cost is amortized as more credentials are created since no new contracts must be
deployed. In Certree, however, each new leaf or intermediary node in their tree adds a fixed
contract deployment cost. For instance, to issue a Bachelor’s diploma over three years, there
is an aggregate cost reduction of 47 % compared to Certree. Further, using zero-knowledge
proofs, we reduced the on-chain space requirement per credential by more than 79 %.

We next evaluate the computation time to generate an approval proof and the correspond-
ing time to verify an approval. The approval circuit has 3379 constraints. The experiment
run in a machine with Archlinux installed with 16 GB RAM, processor Intel Core i7-8550U
1.80 GHz and 500 GB SSD.

As shown in Figure 5, the time to generate an approval proof follows a step-function over
the tree’s height. The tree’s maximum size, decided during deployment, dictates the time it
takes to generate an approval. We observe, however, that the generation and verification
time is unaffected by the number of credentials already issued. Thus, the proving time using
a tree of height 21, which can hold 221 elements, will be around 30 seconds, irrespective of the
number of elements in the tree. This is because generating a Merkle proof for an incremental
Merkle tree has linear time complexity [25]. The verification time of the approval proof is
polylogarithmic in the circuit size [16].

R. Q. Saramago, H. Meling, and L. N. Jehl 9:17

Figure 5 Time to generate and verify approval proofs per the certification tree’s height.

6 Conclusion

We have presented zkCert, a certification system for digital credentials that ensures trans-
parency of the issuer’s processes and preserves privacy for its users. zkCert is implemented
using smart contracts, where an incremental Merkle tree enables scalability, and zkSNARKs
provide privacy to users.

Our evaluation shows that zkCert provide significant improvement over prior art, both in
on-chain storage utilization and lower monetary costs to produce credentials over time. For
deployments that can support up to 231 credentials, it takes less than a minute to generate a
credential while maintaining transparency.

Although we focused our work on a specific use case of academic credentials, our design
can be used in various use cases that can benefit from a transparent and progressive history of
issuance activities while ensuring a high level of privacy for their users, e.g., driver’s licenses,
supply chain, and fair trade.

References
1 Christopher Allen, Arthur Brock, Vitalik Buterin, Jon Callas, Duke Dorje, Christian Lundkvist,

Pavel Kravchenko, Jude Nelson, Drummond Reed, Markus Sabadello, Greg Slepak, Noah
Thorp, and Harlan T. Wood. Decentralized public key infrastructure, 2015. URL: https:
//www.weboftrust.info/downloads/dpki.pdf.

2 Philip G. Altbach, Liz Reisberg, and Laura E. Rumbley. Trends in global higher education:
Tracking an academic revolution. Technical report, United Nations Educational, Scientific and
Cultural Organization (UNESCO), January 2009. URL: https://www.cep.edu.rs/public/
Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf.

3 Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT
2012, pages 263–280, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

4 Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR, abs/1407.3561,
2014. arXiv:1407.3561.

5 Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the snark. Cryptology ePrint Archive, Paper 2014/580,
2014. URL: https://eprint.iacr.org/2014/580.

6 Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages
327–357, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

OPODIS 2022

https://www.weboftrust.info/downloads/dpki.pdf
https://www.weboftrust.info/downloads/dpki.pdf
https://www.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
https://www.cep.edu.rs/public/Altbach,_Reisberg,_Rumbley_Tracking_an_Academic_Revolution,_UNESCO_2009.pdf
http://arxiv.org/abs/1407.3561
https://eprint.iacr.org/2014/580

9:18 A Privacy-Preserving and Transparent Certification System for Digital Credentials

7 Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive, Paper 2017/1050, 2017.
URL: https://eprint.iacr.org/2017/1050.

8 Vitalik Buterin. An approximate introduction to how zk-snarks are possible. Accessed:
September 2022. URL: https://vitalik.ca/general/2021/01/26/snarks.html.

9 Guang Chen, Bing Xu, Manli Lu, and Nian-Shing Chen. Exploring blockchain technology
and its potential applications for education. Smart Learning Environments, 5, December 2018.
doi:10.1186/s40561-017-0050-x.

10 Santosh Chokhani, Warwick Ford, Randy V. Sabett, Charles (Chas) R. Merrill, and Stephen S.
Wu. Internet x.509 public key infrastructure certificate policy and certification practices
framework. RFC 3647, RFC Editor, November 2003. URL: https://www.rfc-editor.org/
rfc/rfc3647.

11 World Wide Web Consortium. Decentralized identifiers (dids), 2017. Accessed: August 2022.
URL: https://w3c.github.io/did-core/.

12 World Wide Web Consortium. Proposal specification of verifiable credentials, 2019. Accessed:
August 2022. URL: https://www.w3.org/TR/vc-data-model.

13 Wikipedia contributors. Varsity Blues scandal, March 2019. Accessed: September 2022. URL:
https://en.wikipedia.org/wiki/Varsity_Blues_scandal.

14 Vitalik Buterin et al. A next-generation smart contract and decentralized application platform,
2014. Accessed: August 2022. URL: https://ethereum.org/en/whitepaper.

15 Council for Higher Education Accreditation, Scientific United Nations Educational, and
Cultural Organization. Toward effective practice: Discouraging degree mills in higher education,
2009. URL: https://unesdoc.unesco.org/ark:/48223/pf0000183247.

16 Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953, 2019. URL: https://eprint.iacr.org/2019/953.

17 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for zero-knowledge proof systems. Cryptology ePrint
Archive, Paper 2019/458, 2019. URL: https://eprint.iacr.org/2019/458.

18 Alex Grech and Anthony F. Camilleri. Blockchain in education, 2017. EUR 28778 EN.
doi:10.2760/60649.

19 Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 581–612, Cham, 2017. Springer International Publishing.

20 Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification,
version 2022.3.6, 2022. Accessed: September 2022.

21 Iden3. Circom: Circuit compiler. Accessed: September 2022. URL: https://docs.circom.io/.
22 Ben Laurie and Adam Langley. Certificate transparency, 2013. Accessed: August 2022. URL:

https://www.certificate-transparency.org/.
23 Ralph C. Merkle. Protocols for public key cryptosystems. 1980 IEEE Symposium on Security

and Privacy, pages 122–122, 1980.
24 Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-snarks: Zero-knowledge

proofs for distributed secrets. Cryptology ePrint Archive, Paper 2021/1530, 2021. URL:
https://eprint.iacr.org/2021/1530.

25 Daejun Park, Yi Zhang, and Grigore Rosu. End-to-end formal verification of ethereum 2.0
deposit smart contract. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided
Verification, pages 151–164, Cham, 2020. Springer International Publishing.

26 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

27 Lum Ramabaja and Arber Avdullahu. Compact merkle multiproofs, 2020. doi:10.48550/
arXiv.2002.07648.

https://eprint.iacr.org/2017/1050
https://vitalik.ca/general/2021/01/26/snarks.html
https://doi.org/10.1186/s40561-017-0050-x
https://www.rfc-editor.org/rfc/rfc3647
https://www.rfc-editor.org/rfc/rfc3647
https://w3c.github.io/did-core/
https://www.w3.org/TR/vc-data-model
https://en.wikipedia.org/wiki/Varsity_Blues_scandal
https://ethereum.org/en/whitepaper
https://unesdoc.unesco.org/ark:/48223/pf0000183247
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/458
https://doi.org/10.2760/60649
https://docs.circom.io/
https://www.certificate-transparency.org/
https://eprint.iacr.org/2021/1530
https://doi.org/10.48550/arXiv.2002.07648
https://doi.org/10.48550/arXiv.2002.07648

R. Q. Saramago, H. Meling, and L. N. Jehl 9:19

28 Christian Reitwiessner. Precompiled contracts for addition and scalar multiplication on the
elliptic curve alt-bn128. Accessed: September 2022. URL: https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-196.md.

29 Rodrigo Q. Saramago, Leander Jehl, Hein Meling, and Vero Estrada-Galiñanes. A tree-based
construction for verifiable diplomas with issuer transparency. In 2021 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPPS), pages 101–110, 2021.
doi:10.1109/DAPPS52256.2021.00017.

30 Avalanche Team. Avalanche. Accessed: September 2022. URL: https://www.avax.network/.
31 Iden3 Team. Identity protocol. Accessed: September 2022. URL: https://iden3.io/.
32 Polygon Team. Polygon. Accessed: September 2022. URL: https://polygon.technology/.
33 Semaphore Team. Signal anonymously. Accessed: September 2022. URL: https://semaphore.

appliedzkp.org/.
34 Tornado Cash Team. Tornado cash documentation. Accessed: September 2022. URL: https:

//web.archive.org/web/20220624094748/https://docs.tornado.cash/general/readme.
35 Viktor Trón. The book of swarm - storage and communication infrastructure for self-sovereign

digital society, 2020. URL: https://swarm-gateways.net/bzz:/latest.bookofswarm.eth/.
36 M. Turkanović, M. Hölbl, K. Košič, M. Heričko, and A. Kamišalić. Eductx: A blockchain-based

higher education credit platform. IEEE Access, 6:5112–5127, 2018. doi:10.1109/ACCESS.
2018.2789929.

A Verifiable Presentations

In this section, we present some potential use cases for our protocol. All verification flows
presented in this section do not require that the subject share the entire credential document
or reveal the values of the underline credential’s fields being proved.

A.1 Authentication Proof

For the verification of Item (a) in Section 4.3, consider Figure 6, that shows how a subject
can proof the authenticity of a credential by creating a presentation zkSNARK proof.

Like with the approval mechanism, the subject first reconstructs the latest state of the
certification tree locally based on the Notary events on chain. After retrieving the necessary
data, the subject generates the proof using the proving key and the private and public inputs,
and send it to the verifier with the Hcdr, the latest certification root, and his EdDSA public
key.

The verifier then checks whether the received certification root exists in the root history
of the contract, and if so, verify the proof running the circuit with the received public inputs
and the verification key. This verification attests that:

The subject knows the preimage of a commitment for the presented credential;
The commitment exists in the contract’s merkle tree for the given root;
The given root is one of the latest roots in the contract;
The credential was issued to the subject (i.e. he has knowledge of the EdDSA private key
used to sign the commitment);
The subject consent with the claims within the credential (i.e. the credential was approved
by the subject);

OPODIS 2022

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://doi.org/10.1109/DAPPS52256.2021.00017
https://www.avax.network/
https://iden3.io/
https://polygon.technology/
https://semaphore.appliedzkp.org/
https://semaphore.appliedzkp.org/
https://web.archive.org/web/20220624094748/https://docs.tornado.cash/general/readme
https://web.archive.org/web/20220624094748/https://docs.tornado.cash/general/readme
https://swarm-gateways.net/bzz:/latest.bookofswarm.eth/
https://doi.org/10.1109/ACCESS.2018.2789929
https://doi.org/10.1109/ACCESS.2018.2789929

9:20 A Privacy-Preserving and Transparent Certification System for Digital Credentials

Subject zkCert Contract Verifier

a lt [Successful case]

[Failure]

Credential is valid (not revoked or expired)

Credential is not valid

Figure 6 Steps to verify the authenticity of a credential presentation.

A.2 Conditional Proof

For the verification of Item (b) in Section 4.3 consider the case where a student needs to
prove that pass in an exam by achieving a grade higher than 60 on a scale of 0 to 100.

The student can choose the specific field of the document by its key, i.e., hash value, to be
proven from his credential and create a zkSNARK proof for the field, criterion, and operator
challenged by the verifier. The operator is a bitmap representing the conditional operator to
be used, e.g., greater or equal. In our example, the criterion is the minimum grade required
to pass the exam, i.e., 60. If the key is mismatched, the proof generation will fail. Proof
generation also fails if the criterion is not satisfied.

A.3 Score Proof

For the verification of Item (c) in Section 4.3 consider the case where a student would like to
apply to a study loan which requires a certain score measured based on the grades of the
applicants.

R. Q. Saramago, H. Meling, and L. N. Jehl 9:21

Usually, such a scenario would require that each applicant share all their grades with
the loan agency, e.g., by sharing their transcript of records. The loan agency would need
to verify the authenticity of each application with different issuers, e.g., universities, and
perform some score function to select the best candidates.

Ignoring any personal interview that may be required, the initial triage of the candidates
could be automated. However, such automation may not be possible in many current systems.
Further, the process may reveal more information than necessary for a triage phase, and the
computation of the scores must be performed transparently to represent a fair selection of
the candidates.

Thus, a naive solution to the problem may compromise the applicants’ privacy. On
the other hand, our solution provides an alternative to guarantee the correctness of the
computation over authenticated grades while enabling automation of the verification process.
Figure 7 illustrate such example in zkCert.

Ti represents a tag or ID for a course that the loan agency considered required to apply
to the study program, and Wi is the correspondent weight of such a course. Let’s consider
that the score function is simply the weighted sum of all grades required. The loan agency
would select the candidates with higher scores.

Each candidate can retrieve the information necessary to construct their proof, as described
in Section 4.3, compute their score, and send the zkSNARK proof and the public inputs to
the verifier.

Further, the verification of the results can be performed by anyone. For instance, a
smart contract could check each applicant’s zkSNARK proof and determine which of the
candidates satisfies the minimum score to pass to the next phase of the admission process. It
is important to note that verifying the score, sc, does not reveal the student’s grades.

A.4 Time-frame Proof
For the verification of Item (d) in Section 4.3 consider the case where a bachelor’s student
would like to apply for a masters program. The main requirement of such program is that
the student has a valid bachelor’s degree, which is usually verified by requesting a diploma,
i.e., the student’s academic credential.

However, when verifying such credential, usually, only the authenticity of the signatures
on the diploma is taken in consideration, which does not easily detect fake diplomas produced
by Degree Mills [15].

zkCert can be used in such a scenario to prove that a diploma is composed of credentials
that fit a specific trustful time range. As the issuer timestamps each credential on creation
as well by the Notary contract on approval, neither the student nor the issuer can tamper
with the period in which all the credentials that compose a diploma were issued. Figure 8
illustrate such scenario.

Thus, a verifier can require a time-frame proof from the student challenging him to
prove that his diploma was issued over a period greater than three years. The proof can be
generated and verified using the Circuit 3. The bitmap comparison operator OP is three
bits bitmap that defines the currently supported operators in our implementation. For the
example above, the operator would be 011, which translates to ≥. Our source code2 contains
more details of the currently supported operators.

The verifier can check if the issuance period was indeed greater than three years and the
Circuit 3 ensures that a valid proof does not violate the incremental timestamp invariant for
the provided credentials without requiring share the credentials documents with the verifier.

2 https://github.com/r0qs/zkcertree

OPODIS 2022

https://github.com/r0qs/zkcertree

9:22 A Privacy-Preserving and Transparent Certification System for Digital Credentials

Subject zkCert Contract Verifier

loop [n times]

Figure 7 Verify a score function over a set of student’s credentials.

R. Q. Saramago, H. Meling, and L. N. Jehl 9:23

Subject zkCert Contract Verifier

loop [n times]

loop [n times]

a lt [Successful case]

[Failure]

Credential is valid (not revoked or expired)

Credential is not valid

Figure 8 Verify issuance period of a set of credentials.

OPODIS 2022

9:24 A Privacy-Preserving and Transparent Certification System for Digital Credentials

Circuit 3 Verify issuance period of a set of credentials.
1 TimeframeProofCircuit(n):

▷ n is the number of credentials in the certree
2 Public Inputs:
3 ctr ▷ The latest certree root
4 NH[n] ▷ List of n nullifier hashes sorted by their credential’s timestamp
5 tsk ▷ The timestamp field key
6 period ▷ The duration to be checked
7 OP ▷ The bitmap comparison operator
8 Private Inputs::
9 ts[n][3] ▷ Timestamp field of each credential

10 MtP rooffld[n] ▷ Field merkle proofs
11 nullifiers[n] ▷ The list of credential roots
12 subjects[n] ▷ The list of subjects
13 secrets[n] ▷ The list of secrets
14 MtP roofcomm[n] ▷ The commitment’s merkle proofs
15 for i← 0 to n do
16 v ← V erifyCredentialF ieldCircuit(tsk, ts[i], MtP rooffld[i],

nullifiers[i], subjects[i], secrets[i], MtP roofcomm[i])
17 Verify: v == true
18 end
19 d← ComputeT otalDuration()
20 Assert:

∑n−1
i=0 (ts[i + 1]− ts[i] = di ∧ di > 0)

21 Verify: dtotal == ts[n− 1]− ts[0]
22 Verify: (dtotal OP period) == true
23 out← dtotal

When Is Spring Coming? A Security Analysis of
Avalanche Consensus
Ignacio Amores-Sesar #

University of Bern, Switzerland

Christian Cachin #

University of Bern, Switzerland

Enrico Tedeschi #

The Arctic University of Norway, Tromsø, Norway

Abstract
Avalanche is a blockchain consensus protocol with exceptionally low latency and high throughput.
This has swiftly established the corresponding token as a top-tier cryptocurrency. Avalanche achieves
such remarkable metrics by substituting proof of work with a random sampling mechanism. The
protocol also differs from Bitcoin, Ethereum, and many others by forming a directed acyclic graph
(DAG) instead of a chain. It does not totally order all transactions, establishes a partial order
among them, and accepts transactions in the DAG that satisfy specific properties. Such parallelism
is widely regarded as a technique that increases the efficiency of consensus.

Despite its success, Avalanche consensus lacks a complete abstract specification and a matching
formal analysis. To address this drawback, this work provides first a detailed formulation of Avalanche
through pseudocode. This includes features that are omitted from the original whitepaper or are
only vaguely explained in the documentation. Second, the paper gives an analysis of the formal
properties fulfilled by Avalanche in the sense of a generic broadcast protocol that only orders related
transactions. Last but not least, the analysis reveals a vulnerability that affects the liveness of the
protocol. A possible solution that addresses the problem is also proposed.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Software and
its engineering → Distributed systems organizing principles

Keywords and phrases Avalanche, security analysis, generic broadcast

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.10

Related Version Full Version: https://arxiv.org/abs/2210.03423

Funding This work has been funded by the Swiss National Science Foundation (SNSF) under grant
agreement Nr. 200021_188443 (Advanced Consensus Protocols).

1 Introduction

The Avalanche blockchain with its fast and scalable consensus protocol is one of the most
prominent alternatives to first-generation networks like Bitcoin and Ethereum that consume
huge amounts of energy. Its AVAX token is ranked 14th according to market capitalization
in August 2022 [9]. Avalanche offers a protocol with high throughput, low latency, excellent
scalability, and a lightweight client. In contrast to many well-established distributed ledgers,
Avalanche is not backed by proof of work. Instead, Avalanche bases its security on a
deliberately metastable mechanism that operates by repeatedly sampling the network, guiding
the honest parties to a common output. This allows Avalanche to reach a peak throughput
of up to 20’000 transactions per second with a latency of less than half a second [29].

This novel mechanism imposes stricter security constraints on Avalanche compared to
other networks. Traditional Byzantine fault-tolerant consensus tolerates up to a third of
the parties to be corrupted [24] and proof-of-work protocols make similar assumptions in

© Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ignacio.amores@unibe.ch
https://orcid.org/0000-0002-1751-1515
mailto:christian.cachin@unibe.ch
https://orcid.org/0000-0001-8967-9213
mailto:enrico.tedeschi@uit.no
https://orcid.org/0000-0003-3856-4568
https://doi.org/10.4230/LIPIcs.OPODIS.2022.10
https://arxiv.org/abs/2210.03423
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 When Is Spring Coming? A Security Analysis of Avalanche Consensus

terms of mining power [13, 12]. Avalanche, however, can tolerate only up to O(
√

n) malicious
parties. Furthermore, the transactions in the “exchange chain” of Avalanche (see below) are
not totally ordered, in contrast to most other cryptocurrencies, which implement a form of
atomic broadcast [6]. As the protocol is structured around a directed acyclic graph (DAG)
instead of a chain, it permits some parallelism. Thus, the parties may output the same
transactions in a different order, unless these transactions causally depend on each other.
Only the latter must be ordered in the same way.

The consensus protocol of a blockchain is of crucial importance for its security and
for the stability of the corresponding digital assets. Analyzing such protocols has become
an important topic in current research. Although Bitcoin appeared first without formal
arguments, its security has been widely understood and analyzed meanwhile. The importance
of proving the properties of blockchain protocols has been recognized for a long time [8].

However, there are still protocols released today without the backing of formal security
arguments. The Avalanche whitepaper [29] introduces a family of consensus protocols and
offers rigorous security proofs for some of them. Yet the Avalanche protocol itself and the
related Snowman protocol, which power the platform, are not analyzed. Besides, several key
features of this protocol are either omitted or described only vaguely.

In this paper, we explain the Avalanche consensus protocol in detail. We describe
it abstractly through pseudocode and highlight features that may be overlooked in the
whitepaper (Sections 3–4). Furthermore, we use our insights to formally establish safety
properties of Avalanche. Per contra, we also identify a weakness that affects its liveness. In
particular, Avalanche suffers from a vulnerability in how it accepts transactions that allows
an adversary to delay targeted transactions by several orders of magnitude (Section 5), which
may render the protocol useless in practice. The problem results from dependencies that
exist among the votes on different transactions issued by honest parties; the whitepaper does
not address them. The attack may be mounted by a single malicious party with some insight
into the network topology. Finally, we suggest a modification to the Avalanche protocol
that would prevent our attacks from succeeding and reinstantiate liveness of the protocol
(Section 6). This version, which we call Glacier, restricts the sampling choices in order to
break the dependencies, but also eliminates the parallelism featured by Avalanche.

The vulnerability has been acknowledged by the Avalanche developers. However, the
deployed version of the protocol implements another measure that prevents the problem.

2 Related work

Despite Avalanche’s tremendous success, there is no independent research on its security.
Recall that Avalanche introduces the “snow family” of consensus protocols based on sam-
pling [29, 4]: Slush, Snowflake, and Snowball. Detailed proofs about liveness and safety for
the snow-family of algorithms are given. The Avalanche protocol for asset exchange, however,
lacks such a meticulous analysis. The dissertation of Yin [32] describes Avalanche as well,
but does not analyze its security in more detail either.

Recall that Nakamoto introduced Bitcoin [23] without any formal analysis. This has been
corrected by a long line of research, which established the conditions under which it is secure
(e.g., by Garay, Kiayias, and Leonardos [13, 14] and by Eyal and Sirer [12]).

The consensus mechanisms that stand behind the best-known cryptocurrencies are mean-
while properly understood. Some of them, like the proof-of-stake protocols of Algorand [15]
and the Ouroboros family that powers the Cardano blockchain [17, 10], did apply sound
design principles by first introducing and analyzing the protocols and only later implementing
them.

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:3

Many others, however, have still followed the heuristic approach: they released code first
and were confronted with concerns about their security later. This includes Ripple [3, 1]
and NEO [31], in which several vulnerabilities have been found, or Solana, which halted
multiple times in 2021–2022. Stellar comes with a formal model [21], but it has also been
criticized [18].

Protocols based on DAGs have potentially higher throughput than those based on chains.
Notable examples include PHANTOM and GHOSTDAG [27], the Tangle of IOTA (www.
iota.org), Conflux [20], and others [16]. However, they are also more complex to understand
and susceptible to a wider range of attacks than those that use a chain. Relevant examples
of this kind are the IOTA protocol [22], which has also failed repeatedly in practice [30] and
PHANTOM [27], for which a vulnerability has been shown [19] in an early version of the
protocol.

3 Model

3.1 Avalanche platform
We briefly review the architecture of the Avalanche platform [4]. It consists of three separate
built-in blockchains, the exchange or X-Chain, the platform or P-Chain, and the contract or
C-Chain. Additionally there are a number of subnets. In order to participate in the protocols
and validate transactions, a party needs to stake at least 2’000 AVAX (about 50’000 USD in
August 2022 [9]).

The exchange chain or X-Chain secures and stores transactions that trade digital assets,
such as the native AVAX token. This chain implements a variant of the Avalanche consensus
protocol that only partially orders the transactions and that is the focus of this work. All
information given here refers to the original specification of Avalanche [29].

The platform chain or P-Chain secures platform primitives; it manages all other chains,
allows parties to join the network, designates parties to become validators or removes them
again from the validator list, and creates or deletes wallets. The P-Chain implements the
Snowman consensus protocol: this is a special case of Avalanche consensus that always
provides total order, like traditional blockchains. It is not explained in the whitepaper and
we do not describe it further here.

The C-Chain hosts smart contracts and runs transactions on an Ethereum Virtual Machine
(EVM). It also implements the Snowman consensus protocol of Avalanche and totally orders
all transactions and blocks.

3.2 Communication and adversary
We now abstract the Avalanche consensus protocol and consider a static network of n parties
N = {p, q, . . . } that communicate with each other by sending messages. An adversary
may corrupt up to f of these parties and cause them to behave maliciously and diverge
arbitrarily from the protocol. Non-corrupted parties are known as honest, messages and
transactions sent by them are referred to as honest. Analogously, corrupted parties send
malicious transactions and messages. The parties may access a low-level functionality for
sending messages over authenticated point-to-point links between each pair of parties. In the
protocol, this functionality is accessed by two events send and receive. Parties may also access
a second low-level functionality for broadcasting messages through the network by gossiping,
accessed by the two events gossip and hear in the protocol. Both primitives are subject to
network and timing assumptions. We assume the same network model as in the original

OPODIS 2022

www.iota.org
www.iota.org

10:4 When Is Spring Coming? A Security Analysis of Avalanche Consensus

Avalanche whitepaper [29]. Messages are delivered according to an exponential distribution,
that is, the amount of time between the sending and the receiving of a message follows an
exponential distribution with unknown parameter to the parties. However, messages from
corrupted parties are not affected by this delay and will be delivered as fast as the adversary
decides. This model differs from traditional assumptions like partial synchrony [11], because
the adversary does not possess the ability to delay honest messages as it pleases.

3.3 Abstractions
The payload transactions of Avalanche are submitted by users and built according to the
unspent transaction output (UTXO) model of Bitcoin [23]. A payload transaction tx contains
a set of inputs, a set of outputs, and a number of digital signatures. Every input refers to
a position in the output of a transaction executed earlier; this output is thereby spent (or
consumed) and distributed among the outputs of tx. The balance of a user is given by the set
of unspent outputs of all transactions (UTXOs) executed by the user (i.e., assigned to public
keys controlled by that user). A payload transaction is valid if it is properly authenticated
and none of the inputs that it consumes has been consumed yet (according to the view of
the party executing the validation).

Blockchain protocols are generally formalized as atomic broadcast, since every party
running the protocol outputs the same ordered list of transactions. However, the transaction
sequences output by two different parties running Avalanche may not be exactly the same
because Avalanche allows more flexibility and does not require a total order. Avalanche only
orders transactions that causally depend on each other. Thus, we abstract Avalanche as a
generic broadcast according to Pedone and Schiper [25], in which the total-order property
holds only for related transactions as follows.

▶ Definition 3.1. Two payloads tx and tx′ are said to be related, denoted by tx ∼ tx′, if tx
consumes an output of tx′ or vice versa.

Our generic broadcast primitive is accessed through the two events broadcast(tx) and
deliver(tx). Similar to other blockchain consensus protocols, it defines an “external” validity
property and introduces a predicate V that determines whether a transaction is valid [7].

▶ Definition 3.2. A payload tx satisfies the validity predicate of Avalanche if all the crypto-
graphic requirements are fulfilled and there is no other delivered payload with any input in
common with tx.

For the remainder of this work, we fix the external validation predicate V to check the
validity of payloads according to the logic of UTXO mentioned before.

Since Avalanche is a randomized protocol, the properties of our broadcast abstraction
need to be fulfilled only with all but negligible probability.

▶ Definition 3.3. A protocol solves validated generic broadcast with validity predicate V and
relation ∼ if it satisfies the following conditions, except with negligible probability:
Validity. If a honest party broadcasts a payload transaction tx, then it eventually delivers tx.
Agreement. If a honest party delivers a payload transaction tx, then all honest parties

eventually deliver tx.
Integrity. For any payload transaction tx, every honest party delivers tx at most once, and

only if tx was previously broadcast by some party.
Partial order. If honest parties p and q both deliver payload transactions tx and tx′ such that

tx ∼ tx′, then p delivers tx before tx′ if and only if q delivers tx before tx′.
External validity. If a honest party delivers a payload transaction tx, then V (tx) = true.

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:5

Note that different instantiations of the relation ∼ transform the generic broadcast
primitive into well-known primitives. For instance, when no pair of transactions are related,
generic broadcast degenerates to reliable broadcast. Whereas when every two transactions
are related, generic broadcast transforms into atomic broadcast. In our context, broadcast-
ing corresponds to submitting a payload transaction to the network, whereas delivering
corresponds to accepting a payload and appending it to the ledger.

The Avalanche protocol augments payload transactions to protocol transactions. A
protocol transaction additionally contains a set of references to previously executed protocol
transactions, together with further attributes regarding the execution. A protocol transaction
in the implementation contains a batch of payload transactions, but this feature of Avalanche
is ignored here, since it affects only efficiency. Throughout this paper, transaction refers to a
protocol transaction, unless the opposite is indicated, and payload means simply a payload
transaction.

A transaction references one or multiple previous transactions, unlike longest-chain
protocols, in which each transaction has a unique parent [23]. An execution of the Avalanche
protocol will therefore create a directed acyclic graph (DAG) that forms its ledger data
structure.

Given a protocol transaction T , all transactions that it references are called the parents of
T and denoted by parents(T). The parents of T together with the parents of those, recursively,
are called the ancestors of T , denoted by ancestors(T). Analogously, the transactions that
have T as parent are called the children of T and are denoted by children(T). Finally, the
children of T together with their recursive set of children are called the descendants of T ,
denoted by descendants(T).

Note that two payload transactions tx1 and tx2 in Avalanche that consume the same input
are not related, unless the condition of Definition 3.1 is fulfilled. However, two Avalanche
payloads consuming the same output conflict. For each transaction T , Avalanche maintains
a set conflictSet[T] of transactions that conflict with T .

4 A description of the Avalanche protocol

Avalanche’s best-known quality is its efficiency. Permissionless consensus protocols, such
as those of Bitcoin and Ethereum, are traditionally slow, suffer from low throughput and
high latency, and consume large amounts of energy, due to their use of proof-of-work (PoW).
Avalanche substitutes PoW with a random sampling mechanism that runs at network speed
and that has every party adjust its preference to that of a (perceived) majority in the system.
Avalanche also differs from more traditional blockchains by forming a DAG of transactions
instead of a chain.

4.1 Overview

Avalanche is structured around its polling mechanism. In a nutshell, party u repeatedly selects
a transaction T and sends a query about it to k randomly selected parties in the network.
If a majority of them send a positive reply, the query is successful and the transaction
contributes to the security of other transactions. Otherwise, the transaction is still processed
but does not contribute to the security of any other transactions. Then the party selects a
new transaction and repeats the procedure. A bounded number of such polls may execute
concurrently. Throughout this work the terms “poll” and “query” are interchangeable.

OPODIS 2022

10:6 When Is Spring Coming? A Security Analysis of Avalanche Consensus

T1

T2 T3

T4 T5 T6

T7 T8

u1
 u2

u3

u7

u6

u8

u3

u10

u9

u11

u13

u15

u19

u20

u12

u13 u21

u9

u12

u5

u16

u17

u18

u2
 u3
 u4
 u5

Input OutputTag

Figure 1 The UTXO model, conflicting transactions, and related transactions in Avalanche. The
eight transactions are labeled T1, ..., T8. Each transaction is divided into three parts: the left part
is a tag Ti to identify the transaction, the middle part is its set of inputs, and the right part is
its set of outputs. The solid arrows indicate the references added by the protocol, showing the
parents of each transaction. For instance, T5 references T2 and T3 and has them as parents. The
dashed double-arrows indicate related transactions. For example, T5 and T2 are related because
u3 is created by T2 and consumed by T5. The conflict sets are denoted by the shaded (red)
rectangles. As illustrated, conflict sets can be symmetric, as for T4 and T5, where the conflict
sets are identical (conflictSet[T4] = conflictSet[T5]) or asymmetric, as for T6, T7, and T8 where
conflictSet[T6] ∪ conflictSet[T7] = conflictSet[T8].

In more detail, the protocol operates like this. Through the gossip functionality, every
party is aware of the network membership N . A party locally stores all those transactions
processed by the network that it knows. The transactions form a DAG through their
references as described in the previous section.

Whenever a user submits a payload transaction tx to the network, the user actually
submits it through a party u. Then, u randomly selects a number of leaf nodes from a part
of the DAG known as the virtuous frontier ; these are the leaf nodes that are not part of any
conflicting set. Party u then extends tx with references to the selected nodes and thereby
creates a transaction T from the payload transaction tx. Next, u sends a Query message
with T to k randomly, according to stake, chosen parties in the network and waits for their
replies in the form of Vote messages. When a party receives a query for T and if T and
its ancestors are preferred, then the party replies with a positive vote. The answer to this
query depends exclusively on the status of T and its ancestors according to the local view
of the party that replies. Moreover, the definition of preferred is non-trivial and will be
explained further below. If the polling party receives more than α > k

2 positive votes, the
poll is defined to be successful.

Every party u running the Avalanche protocol sorts transactions of its DAG into conflict
sets.

▶ Definition 4.1. The conflict set conflictSet[T] of a given transaction T is the set of
transactions that have an input in common with T (including T itself).

Note that even if two transaction T and T ′ consume one common transaction output and
thus conflict, their conflict sets conflictSet[T] and conflictSet[T ′] can differ, since T may
consume outputs of further transactions. (In Figure 1, for example, T8 conflicts with T6 and
T7, although T7 conflicts with T8 but not with T6.)

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:7

Decisions on accepting transactions are made as follows. For each of its conflict sets, a
party selects one transaction and designates it as preferred. This designation is parametrized
by a confidence value d[T] of T , which is updated after each transaction query. If the
confidence value of some conflicting transaction T ∗ surpasses d[T], then T ∗ becomes the
preferred transaction in the conflict set.

It has been shown [28, 29] that regardless of the initial distribution of such confidence
values and preferences of transactions, this mechanism converges. For the transactions of
one conflict set considered in isolation, this implies that all honest parties eventually prefer
the same transaction from their local conflict sets. (The actual protocol has to respect also
dependencies among the transactions; we return to this later.)

To illustrate this phenomenon, assume that there exist only two transactions T and T ′

and that half of the parties prefer T , whereas the other half prefers T ′. This is the worst-case
scenario. Randomness in sampling breaks the tie. Without loss of generality, assume that
parties with preferred transaction T are queried more often. Hence, more parties consider T

as preferred as a consequence. Furthermore, the next time when a party samples again, the
probability of hitting a party that prefers T is higher than hitting one that prefers T ′. This is
the “snowball” effect that leads to ever more parties preferring T until every party prefers T .

This preferred transaction is the candidate for acceptance and incorporation into the
ledger. The procedure is parametrized by a confidence counter for each conflict set, which
reflects the probability that T is the preferred transaction in the local view of the party. The
party increments the confidence counter whenever it receives a positive vote to a query on a
descendant of T ; the counter is reset to zero whenever such a query obtains a negative vote.
When this counter overcomes a given threshold, T is accepted and its payload is added to the
ledger. We now present a detailed description of the protocol and refer to the pseudocode in
Algorithm 1–4.

4.2 Data structures
The information presented here has been taken from the whitepaper [29], the source code [5],
or the official documentation [4].

Notation. We introduce the notation used in the remaining sections including the pseu-
docode. For a variable a and a set S, the notation a

R← S denotes sampling a uniformly at
random from S. We frequently use hashmap data structures: A hashmap associates keys
in a set K with values in V and is denoted by HashMap[K → V]. For a hashmap F , the
notation F [K] returns the entry stored under key K ∈ K; referencing an unassigned key
gives a special value ⊥.

We make use of timers throughout the protocol description. Timers are created in a
stopped state. When a timer has been started, it produces a timeout event once after a given
duration has expired and then stops. A timer can be (re)started arbitrarily many times.
Stopping a timer is idempotent.

Global parameters. We recall that we model Avalanche as run by an immutable set of
parties N of size n. There are more three global parameters: the number k of parties queried
in every poll, the majority threshold α > k

2 for each poll, the acceptance parameters β1 and
β2, and the maximum number maxPoll of concurrent polls.

Local variables. Queried transactions are stored in a set Q, the subset R ⊂ Q is defined to
be the set of repollable transactions, a feature that is not explained in the original paper [29].
The number of active polls is tracked in a variable conPoll. The parents of a transaction are

OPODIS 2022

10:8 When Is Spring Coming? A Security Analysis of Avalanche Consensus

selected from the virtuous frontier, VF , defined as the set of all non-conflicting transactions
that have no known descendant and whose ancestors are preferred in their respective conflict
sets. A transaction is non-conflicting if there is no transaction in the local DAG spending
any of its inputs. For completeness, we recall that conflicting transactions are sorted in
conflictSet[T] formed by transactions that conflict with T , i.e., transactions which have some
input in common with T .

Transactions bear several attributes related to queries and transaction preference. A
confidence value d[T] is defined to be the number of positive queries of T and its descendants.
Given a conflict set conflictSet[T], the variable pref[conflictSet[T]], called preferred transac-
tion, stores the transaction with the highest confidence value in conflictSet[T]. The variable
last[conflictSet[T]] denotes which transaction was the preferred one in conflictSet[T] after
the most recent update of the preferences. The preferred transaction is the candidate for
acceptance in each conflict set, the acceptance is modeled by a counter cnt[conflictSet[T]].
Once accepted, a transaction remains the preferred one in its conflict set forever.

4.3 Detailed description

Each transaction goes through three phases during the consensus protocol: query of transac-
tions, reply to queries, and update of preferences. All of the previous phases call the same
set of functions.

Functions. The function updateDAG(T) sorts the transactions in the corresponding conflict
sets. The function preferred(T) (L 98) outputs true if T is the preferred transaction in its
conflict set and false otherwise. The function stronglyPreferred(T) (L 100) outputs true
if and only if T , and everyone of its ancestors is the preferred transaction in its respective
conflict set.

The function acceptable(T) (L 102) determines whether T can be accepted and its
payload added to the ledger or not. Transaction T is considered accepted when one of the
two following conditions is fulfilled:

T is the unique transaction in its conflict set, all the transactions referenced by T are
considered accepted, and cnt[conflictSet[T]] is greater or equal than β1.
cnt[conflictSet[T]] is greater or equal than β2.

Finally, the function updateRepollable() (L 106) updates the set of repollable transactions. A
transaction T is repollable if T has already been accepted; or all its ancestors are preferred, a
transaction in its conflict set has not already been accepted, and no parent has been rejected

Transaction query. A party in Avalanche progresses only by querying transactions. In
each of these queries, party u selects a random transaction T (L 38), from the set of
transactions that u has not previously queried by u. Then, it samples a random subset
S[T] ⊂ N of k parties from the set of parties running the Avalanche protocol and sends
each a [query, T] message. In the implementation of the protocol, party u performs up
to maxPoll simultaneous queries. The repoll functionality (L 33–48) consists of performing
several simultaneous transactions. When u does not know of any transaction that has not
been queried, u queries a transaction that has not been accepted yet. The main idea behind
this functionality is to utilize the network when this is not saturated. The repoll functionality
(L 33–48) constitutes one of the most notable changes from Avalanche’s whitepaper [29].

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:9

Query reply. Whenever u receives a query message with transaction T , it replies with
a message [vote, u, T, stronglyPreferred(T)] containing the output of the binary function
stronglyPreferred(T) according to its local view (L 100).

Update of preferences. Party u collects the replies [vote, v, T, stronglyPreferred(T)], and
counts the number of positive votes. On the one hand, if the number of positive votes
overcomes the threshold α (L 53), the query is considered successful. In this case party u

loops over T and all its ancestors T ′, increasing the confidence level d[T ′] by one. If T ′ is the
preferred transaction in its conflict set, then party u increases the counter for transaction
cnt[conflictSet[T ′]] by one. Subsequently, u checks whether T ′ has also previously been
the preferred transaction in its conflict set. And when T ′ is not the preferred transaction
according to the most recent query, party u will set the counter to one (L 53–67), in order to
ensure that cnt[conflictSet[T ′]] correctly reflects the number of consecutive successful queries
of descendants of T ′.

On the other hand, if u receives more than k − α negative votes, party u loops also over
T and its ancestors, and sets their counters cnt[conflictSet[T ′]] to zero as if to indicate that
T ′ and the other transactions should not be accepted yet. (L 68–73). Party u only waits
until α positive votes or k − α votes in total are received, since u can then determine the
outcome of the query.

Acceptance of transactions. Party u accepts T when its counter cnt[conflictSet[T]] reaches
a certain threshold β1 or β2. If T is the only transaction in its conflicting set and all its
parents have already been accepted, then u accepts T if cnt[conflictSet[T]] ≥ β1, otherwise u

waits until the counter overcomes a higher value β2.

No-op transactions. The local DAG is modified whenever a poll is finalized. In particular,
only the queried transaction and its ancestors are modified. Avalanche makes use of no-op
transactions to modify all the transactions in the DAG. After finalizing a poll, party u

queries the network with all the transactions in the virtuous frontier whose state has not
been modified, in a sequential manner.

4.4 Life of a transaction
We follow an honest transaction T through the protocol. The user submits the payload
transaction tx to some party u, then u adds references refs to the payload transaction,
creating a transaction T = (tx, refs). These references point to transactions in the virtuous
frontier VF . Transaction T is then gossiped through the network and added to the set of
known transactions T (L 22–28). Party u may also hear about new transactions through this
gossip functionality. Whenever this is the case, u add the transaction to its set of known
transactions T (L 29–32).

Party u eventually selects T to be processed. When this happens, u samples k random
parties from the network and stores them in S[T]. Party u queries parties in S[T] with T

and starts a timer timeout[T]. T is added to Q (L 33–48).
Parties queried with T reply with the value of the function stronglyPreferred(T) (L 100).

This function answers positively (true) if T is strongly preferred, i.e., if T and all of its
ancestors are the preferred transaction inside each respective conflict set. A negative answer
(false) is returned if either T or any of its ancestors fail to satisfy these conditions.

Party u then stores the answer from party v to the query in the variable votes[T][v] and
proceeds according to them.

OPODIS 2022

10:10 When Is Spring Coming? A Security Analysis of Avalanche Consensus

Algorithm 1 Avalanche (party u), state.

Global parameters and state
1: N // set of parties
2: maxPoll ∈ N // maximum number of concurrent polls, default value 4
3: k ∈ N // number of parties queried in each poll, default value 20
4: α ∈ {⌈k+1

2 ⌉, ..., k} // majority threshold for queries, default value 15
5: β1 ∈ N // threshold for early acceptance, default value 15
6: β2 ∈ N // threshold for acceptance, default value 150
7: T ← ∅ // set of known transactions
8: Q ⊂ T ← ∅ // set of queried transactions
9: R ⊂ Q ← ∅ // set of repollable transactions

10: D ⊂ T ← ∅ // set of no-op transactions to be queried
11: VF ⊂ Q ← ∅ // set of transactions in the virtuous frontier
12: conPoll ∈ N← 0 // number of concurrent polls performed
13: conflictSet : HashMap[T → 2T] // conflict set
14: S : HashMap[T → N] // set of sampled parties to be queried with a transaction
15: votes : HashMap[T × N → {false, true}] // variable to store the replies of queries
16: d : HashMap[T → N] // confidence value of a transaction
17: pref : HashMap[2T → T] // preferred transaction in the conflict set
18: last : HashMap[2T → T] // preferred transaction in the last query
19: cnt : HashMap[2T → N] // counter for acceptance of the conflict set
20: accepted : HashMap[T → {false, true}] // indicator that a transaction is accepted
21: timer : HashMap[T → {timers}] // timer for the query of transactions

If u receives more than α positive votes, u runs over all the ancestors of T . If the ancestor
T ′ was the most recent (or “last”) preferred transaction in its conflict set, its counter is
increased by one. Otherwise, T ′ becomes the most recent preferred transaction and its
counter is reset to one (L 53–67).

If u receives at least k − α false votes, u resets the counter for acceptance of all its
ancestors cnt[T ′]← 0 (L 68–73).

If timer timeout[T] is triggered before the query is completed, the query is aborted instead.
The votes are reset and every party is removed from the set S[T], so no later reply can
be considered (L 80–83).

In parallel to the previous procedure, party u may perform up to conPoll concurrent queries
of different transactions.

Once T has been queried, it awaits in the local view of party u to be accepted. Since by
assumption T is honest, conflictSet[T] = {T}. Hence T is accepted when cnt

[
conflictSet[T]

]
reaches β1, if its ancestors are already accepted, or β2 otherwise (L 102–104). We recall that
cnt[conflictSet[T]] is incremented whenever a query involving a descendant of T is successful.
However, when a non-descendant of T is queried, it may trigger a no-op transaction (L 35)
that is a descendant of T .

If there is no new transaction waiting to be queried, i.e., T \ Q is empty, the party
proceeds with a repollable transaction (L 40–42). A repollable transaction is one that has not
been previously accepted but it is a candidate to be accepted (L 106–110).

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:11

Algorithm 2 Avalanche (party u), part 1.

22: upon broadcast(tx) do
23: if V (tx) then
24: T ← (tx,VF) // up to a maximum number of parents
25: T ← T ∪ {T}
26: accepted[T]← false
27: updateDAG(T)
28: gossip message [broadcast, T]

29: upon hearing message [broadcast, T] do
30: if T ̸∈ T do
31: T ← T ∪ {T}
32: accepted[T]← false

33: upon conPoll < maxPoll do
34: conPoll← conPoll + 1
35: if D ̸= ∅ then // prefer no-op transactions
36: T ← least recent transaction in D
37: else if T \ Q ̸= ∅ then // take any not yet queried transaction
38: T

R← T \ Q
39: d[T]← 0
40: else // all transaction queried already, take one of them
41: updateRepollable()
42: T

R← R
43: S[T]← sample(N \ {u}, k) // sample k parties randomly according to stake
44: send message [Query, T] to all parties v ∈ S[T]
45: D ← D ∪ {(⊥,VF \ {T})} // create a no-op transaction
46: start timer[T] // duration ∆query
47: Q ← Q∪ {T}
48: updateDAG(T)

49: upon receiving message [Query, T] from party v do
50: send message [Vote, u, T, stronglyPreferred(T)] to party v

51: upon receiving message [Vote, v, T, w] such that v ∈ S[T] do // w is the vote
52: votes[T, v]← w // w ∈ {false, true}

5 Security analysis

Avalanche deviates from the established PoW protocols and uses a different structure. Its
security guarantees must be assessed differently. The bedrock of security for Avalanche is
random sampling.

5.1 From Snowball to Avalanche
The Avalanche protocol family includes Slush, Snowflake, and Snowball [29] that implement
single-decision Byzantine consensus. Every party proposes a value and every party must
eventually decide the same value for an instance. The Avalanche protocol itself provides a
“payment system” [29, Sec. V]; we model it here as generic broadcast.

OPODIS 2022

10:12 When Is Spring Coming? A Security Analysis of Avalanche Consensus

Algorithm 3 Avalanche (party u), part 2.

53: upon ∃T ∈ T such that
∣∣{v ∈ S[T] | votes[T, v] = true}

∣∣ ≥ α do // query successful
54: stop timer[T]
55: votes[T, ∗]← ⊥ // remove all entries in votes for T

56: S[T]← [] // reset S for T

57: d[T]← d[T] + 1
58: for T ′ ∈ ancestors(T) do // all ancestors of T

59: d[T ′]← d[T ′] + 1
60: if d[T ′] > d[pref[conflictSet[T ′]]] then
61: pref[conflictSet[T ′]]← T ′

62: if T ′ ̸= last[conflictSet[T ′]] then
63: last[conflictSet[T ′]]← T ′

64: cnt[conflictSet[T ′]]← 1
65: else
66: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
67: conPoll← conPoll− 1

68: upon ∃T ∈ T such that
∣∣{v ∈ S[T] | votes[T, v] = false}

∣∣ > k − α do// query failed
69: stop timer[T]
70: votes[T, ∗]← ⊥ // remove all entries in votes for T

71: S[T]← [] // reset S for T

72: for T ′ ∈ ancestors(T) do // all ancestors of T

73: cnt[conflictSet[T ′]]← 0

74: upon ∃T ∈ T such that acceptable(T) ∧ ¬accepted[T] do // T can be accepted
75: (tx, parents)← T

76: if V (tx) then
77: accepted[T]← true
78: deliver tx

80: upon timeout from timer[T] do // not enough votes on T received
81: Q ← Q \ {T}
82: votes[T, ∗]← ⊥ // remove all entries in votes for T

83: S[T]← [] // do not consider more votes from this query

The whitepaper [29] meticulously analyzes the three consensus protocols. It shows that
as long as f = O(

√
n), the consensus protocols are live and safe [29] based on the analysis

of random sampling [26]. On the other hand, an adversary controlling more than Θ(
√

n)
parties may have the ability to keep the network in a bivalent state. For the remainder of
this section we assume f = O(

√
n).

However, the Avalanche protocol itself is introduced without a rigorous analysis. The
most precise statement about its is that “it is easy to see that, at worst, Avalanche will
degenerate into separate instances of Snowball, and thus provide the same liveness guarantee
for virtuous transactions” [29, p. 9]. In fact, it is easy to see that this is wrong because every
vote on a transaction in Avalanche is linked to the vote on its ancestors. The vote on a
descendant T ′ of T depends on the state of T .

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:13

Algorithm 4 Avalanche, auxiliary functions.

84: function updateDAG(T)
85: VF ← set of non-conflicting leaves in the DAG
86: conflictSet[T]← ∅
87: for T ′ ∈ T such that T ′ ̸= T and T ′ has a common input with T do
88: conflictSet[T]← conflictSet[T] ∪ {T ′}
89: conflictSet[T ′]← conflictSet[T ′] ∪ {T}
90: if conflictSet[T] = ∅ then // T is non-conflicting
91: pref[conflictSet[T]]← T

92: last[conflictSet[T]]← T

93: cnt[conflictSet[T]]← 0
94: conflictSet[T]← conflictSet[T] ∪ {T}

95: function getParents(T)
96: (tx, parents)← T

97: return parents // set of parents stored in T

98: function preferred(T)
99: return T

?= pref[conflictSet[T]]

100: function stronglyPreferred(T)
101: return

∧
T ′∈ancestors(T)

preferred(T ′)

102: function acceptable(T)
103: return

(∣∣conflictSet[T]
∣∣ = 1 ∧ cnt

[
conflictSet[T]

]
≥ β1

)
∧

∧
T ′∈ parents(T)

acceptable(T ′)

104: ∨ cnt
[
conflictSet[T]

]
≥ β2

105: function isRejected(T)
return ∃T ′ ∈ T such that ∀T ′ ∈ conflictSet[T] \ {T} : acceptable(T ′)

106: function updateRepollable()
107: R ← ∅
108: for T ∈ T do
109: if acceptable(T) ∨

∧
T ′∈ parents(T)

stronglyPreferred(T ′) ∧ ¬isRejected(T ′) then

110: R ← R∪ {T}

However, we can isolate single executions of Snowball that occur inside Avalanche. For an
execution of Avalanche and a transaction T , we define an equivalent execution of Snowball
consensus as the execution in which a party u proposes 1 if it locally prefers T in the
Avalanche execution, proposes 0 if u prefers some other transaction, and does not propose
otherwise. Every party also selects the same parties in each round of snowball and for a
query with T , for a query with a transaction that conflicts with T , or for any query with a
descendant of these two. A formal description of Snowball is provided in the full version [2].

▶ Lemma 5.1. If party u delivers an honest transaction in Avalanche, then u decided 1 in
the equivalent execution of Snowball with threshold β1. Furthermore, u delivers a conflicting
transaction in Avalanche, then u decides 1 in Snowball with threshold β2.

Proof. By construction of the Avalanche and Snowball protocols [29], the counter for ac-
ceptance of value 1 in Snowball is always greater or equal than the counter for acceptance
in Avalanche. Since a successful query in Avalanche implies a successful query in Snowball,

OPODIS 2022

10:14 When Is Spring Coming? A Security Analysis of Avalanche Consensus

if an honest transaction in Avalanche is delivered, the counter in the equivalent Snowball
instance is at least β1. Analogously, if a conflicting transaction in Avalanche is delivered,
then the counter in Snowball is at least β2. Hence, a party in Snowball would decide 1 with
the respective thresholds. ◀

Looking ahead, we will introduce a modification of Avalanche that ensures the complete
equivalence between Snowball and Avalanche. We first assert some safety properties of the
Avalanche protocol.

▶ Theorem 5.2. Avalanche satisfies integrity, partial order, and external validity of a generic
broadcast for payload transactions under relation ∼ and UTXO-validity.

Proof. The proof is structured by property:
Integrity. We show that every payload is delivered at most once. A payload tx may
potentially be delivered multiple times in two ways: different protocol transactions that
both carry tx may be accepted or tx is delivered multiple times as payload of the same
protocol transaction.
First, we consider the possibility of accepting two different transactions T1 and T2
carrying tx. Assume that party u accepts transaction T1 and party v accepts transaction
T2. By definition, T1 and T2 are conflicting because they spend the same inputs. Using
Lemma 5.1, party u and v decide differently in the equivalent execution in Snowball,
which contradicts agreement property of the Snowball consensus [29].
The second option is that one protocol transaction T that contains tx is accepted
multiple times. However, this is not possible either because tx is delivered only if
accepted[T] = false; variable accepted[T] is set to true when transaction T is accepted
(L 74–78).
Partial order. Avalanches satisfies partial order because no payload is valid unless all
payloads creating its inputs have been delivered (L 74–78). Transactions T and T ′ are
related according to Definition 3.1 if and only if T has as input (i.e., spends) at least one
output of T ′, or vice versa. This implies that related transactions are delivered in the
same order for any party.
External validity. The external validity property follows from L 74, as a payload
transaction can only be delivered if it is valid, i.e., its inputs have not been previously
spent and the cryptographic requirements are satisfied. ◀

Theorem 5.2 shows that Avalanche satisfies the safety properties of a generic broadcast in
the presence of an adversary controlling O(

√
n) parties. A hypothetical adversary controlling

substantially more parties could violate safety. It is not completely obvious how an adversary
could achieve that. Such an adversary would broadcast two conflicting transactions T1 and
T2. As we already discussed, and also explained in the whitepaper of Avalanche [29], such
an adversary can keep the network in a bivalent state, so the adversary keeps the network
divided into two parts: parties in part P1 consider T1 preferred, and parties in part P2 prefer
T2. The adversary behaves as preferring T1 when communicating with parties is P1 and as
preferring T2 when communicating with parties in P2. Eventually, a party u ∈ P1 will query
only parties in P1 or queries the adversary β2 times in a row. Thus, u will accept transaction
T1. Similarly, a party v ∈ P2 will eventually accept transaction T2. Party u will deliver the
payload contained in T1 and v the payload contained in T2, hence violating agreement. An
adversary controlling at most O(

√
n) can also violate agreement, but the required behavior

is more sophisticated, as we explain next.

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:15

5.2 Delaying transaction acceptance
An adversary aims to prevent that a party u accepts an honest transaction T . A necessary pre-
condition for this is cnt[conflictSet[T]] ≥ β1. Note that whenever a descendant of T is queried,
cnt[conflictSet[T]] is modified. If the query is successful (L 53), then cnt[conflictSet[T]] is
incremented by one. If the query is unsuccessful, cnt[conflictSet[T]] is reset to zero. Remark,
however, cnt[conflictSet[T]] cannot be reset to one as a result of another transaction becom-
ing the preferred in conflictSet[T] (L 62) because T is honest, as there exist no transaction
conflicting with T .

Furthermore, a naive adversary that aims to delay transactions by not answering the query
of a transaction T ′ would not succeed because the timers timeout[T ′] would be triggered and
the query would be aborted. Thus, the honest party would select new k parties to query and
proceed in the protocol.

Our adversary proceeds by sending to u a series of cleverly generated transactions that
reference T . We describe the steps that will delay the acceptance of T (see also Algorithm 5):
1. Preparation phase. The adversary submits conflicting transactions T1 and T2. For

simplicity, we assume that she submits first T1 and then T2, so the preferred transaction
in both conflict sets will be T1. The adversary then waits until the target transaction T

is submitted.
2. Main phase. The adversary repeatedly sends malicious transactions referencing the

target T and T2 to u. These transactions are valid but they reference a particular set of
transactions.

3. Searching phase. Concurrently to the main phase, the adversary looks for transactions
containing the same payload as T . If some are found, she references them as well from
the newly generated transactions.

Algorithm 5 Liveness attack: Delaying transaction T .

Initialization
111: create two conflicting transactions T1 and T2
112: gossip two messages [broadcast, T1] and [broadcast, T2]
113: A ← ∅

114: upon hearing message [broadcast, T] do // target transaction
115: A ← {T}

116: upon cnt[conflictSet[T]] = ⌊β1
2 ⌋ in the local view of u do

117: create T̂ such that T2 ∈ ancestors(T̂) and for all T ′ ∈ A, also T ′ ∈ ancestors(T̂)
118: send message [broadcast, T̂] to party u // pretend to gossip the message

119: upon hearing message [broadcast, T̃] such T̃ and T contain the same payload do
120: A ← A∪ {T̃}

For simplicity, we assume that the adversary knows the acceptance counter of T at u,
so she can send a malicious transaction whenever T is close to being accepted. In practice,
she can guess this only with a certain probability, which will degrade the success rate of the
attack. We also assume that the query of an honest transaction is always successful, which is
the worst case for the adversary.

OPODIS 2022

10:16 When Is Spring Coming? A Security Analysis of Avalanche Consensus

After u submits T , the adversary starts the main phase of the attack. If u queries an
honest transaction T̂ , and if T̂ references a descendant of T , then cnt[conflictSet[T]] increases
by one. If it does not, then T̂ may cause u to submit a no-op transaction referencing a
descendant of T . Hence, honest transactions always increase cnt[conflictSet[T]] by one, this
is the worst case for an adversary aiming to delay the acceptance of T .

If u queries a malicious transaction T̂ , then honest parties compute stronglyPreferred(T̂)
and reply with this value. Since T2 is an ancestor of T̂ and not the preferred transaction
in its conflict set (as we have assumed that T1 is preferred), all queried parties return
false. Thus, u sets acceptance counter of every ancestor of T̂ to zero (L 68), in particular,
cnt[conflictSet[T]]← 0. However, since T̂ does not reference the virtuous frontier, u submits
a no-op transaction that references a descendant of T , thus increasing cnt[conflictSet[T]] to
one.

We show that when the number of transactions is low, in particular when |T \ Q| ≤ 1 for
every party, then Avalanche may lose liveness.

▶ Theorem 5.3. Avalanche does not satisfy validity nor agreement of generic broadcast with
relation ∼ with one single malicious party if |T \ Q| ≤ 1 for every party.

Proof. We consider again the adversary described above that targets T and u.
Validity. Whenever cnt[conflictSet[T]] in the local view of u reaches ⌊β1

2 ⌋, the adversary
sends a malicious transaction to party u, who immediately queries it (since |T \ Q| ≤ 1).
It follows that u sets cnt[conflictSet[T]] to zero and increases it intermediately afterwards,
due to a no-op transaction. This process repeats indefinitely over time and prevents u

from delivering the payload in T .
Agreement. Assume that an honest party broadcasts the payload contained in T . The
adversary forces a violation of agreement by finding honest parties u and v such that
cnt[conflictSet[T]] = β1 − 1 at v and cnt[conflictSet[T]] < β1 − 1 at u (such parties exist
because in the absence of an adversary, as cnt[conflictSet[T]] increases monotonically over
time). The adversary then sends an honest transaction Th that references T to v and a
malicious transaction Tm, as described before, to u. On the one hand, party v queries Th,
increments cnt[conflictSet[T]] to β1, accepts transaction T , and delivers the payload. On
the other hand, party u queries Tm and sets cnt[conflictSet[T]] to one. After that, the
adversary behaves as discussed before. Notice that v has delivered the payload within T

but u will never do so. ◀
An adversary may thus cause Avalanche to violate validity and agreement. For this attack,
however, the number of transactions in the network must be low, in particular, |T \ Q| ≤ 1.
In July 2022, the Avalanche network processed an average of 647238 transactions per
day (https://subnets.avax.network/stats/network). Assuming two seconds per query,
four times the value observed in our local implementation, the recommended values of 30
transactions per batch, and four concurrent polls, the condition |T \Q| ≤ 1 is satisfied 88% of
the time. However, the adversary still needs to know the value of the counter for acceptance
of the different parties.

5.3 A more general attack
We may relax the assumption of knowing the acceptance counters and also send the malicious
transaction to more parties through gossip. After selecting a target transaction, the adversary
continuously gossips malicious transactions to the network instead of sending them only to
one party as in Algorithm 5. For analyzing the performance of this attack, our figure of
merit will be the number of transactions to be queried by an honest party (not counting

https://subnets.avax.network/stats/network

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:17

no-ops) for confirming the target transaction T . The larger this number becomes, the longer
it will take the party until it may accept T . We assume that T \Q ̸= ∅ and that a fraction γ

of those transactions are malicious at any point in time1. A non-obvious implication is that
the repoll function never queries the same transaction twice.

▶ Lemma 5.4. Avalanche requires every party to query at least β1 transactions before
accepting transaction T in the absence of an adversary.

Proof. The absence of an adversary carries several simplifications. Firstly, there are no
conflicting transactions, thus every transaction is the preferred one in its respecting conflict
set and every query is successful. Secondly, due to the no-op transactions, the counter for
acceptance of every transaction in the DAG is incremented by one after each query. Finally,
a transaction T is accepted when its counter for acceptance reaches β1, since the counter of
the parent of any transaction reaches β1 strictly before T (L 102). ◀

▶ Lemma 5.5. The average number of queried transactions before accepting transaction T

in the presence of the adversary, as described in the text, is at least

β1 + 1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)
γ(1− γ)β1(1− (1− γ)β1) .

Proof. We recall that in the worst-case scenario for the adversary, the query of an honest
transaction increments the counter for acceptance of the target transaction T by one, while
the query of a malicious transaction, effectively, resets the counter for acceptance to one, as
a result of a no-op transaction.

Let a random variable W denote the number of transactions queried by u until T is
accepted, and let X ∈ {0, 1} model the outcome of the following experiment. Party u samples
transactions until it picks a malicious transaction or until it has sampled β1 − 1 honest
transactions. In the first case, X takes the value zero, and otherwise, X takes the value
one. By definition, X is a Bernoulli variable with parameter p = (1− γ)(β1−1). Thus, the
number of attempts until X returns one is a random variable Y with geometric distribution,
Y ∼ G(p), with the same parameter p. We let Wa be the random variable denoting the
number of queried transactions per attempt of this experiment. The expected number of
failed attempts is E[Y] = 1

(1−γ)β1 . Furthermore, the probability that an attempt fails after
sampling exactly k transactions, for k ≤ β1, is

P[Wa = k|X = 0] = γ(1− γ)k−1

1− (1− γ)β1
.

Thus, the expected number of transactions per failed attempt can be expressed as

E[W |X = 0] = 1− (1− γ)β
1 (1 + β1γ)

γ(1− (1− γ)β1) . (1)

The expected number of transaction queried during a successful attempt is at least β1 by
Lemma 5.4. Finally, the total expected number of queried transactions can be written as the
expected number of transaction per failed attempt multiplied by the expected number of
failed attempts plus the expected number of transactions in the successful attempt,

E[W] = E[Wa|X = 0] · (E[Y]− 1) + E[Wa|X = 1] · 1. (2)

1 Avalanche may impose a transaction fee for processing transactions. However, since the malicious
transactions cannot be delivered, this mechanism does not prevent the adversary from submitting a
large number of transactions.

OPODIS 2022

10:18 When Is Spring Coming? A Security Analysis of Avalanche Consensus

From equations (1) and (2) and basic algebra, we obtain

E[W] = β1 + 1 + (2 + β1γ)(1− γ)β1 − (1− γ)2β1(1 + β1γ)
γ(1− γ)β1(1− (1− γ)β1) . ◀

This expression is complex to analyze. Hence, a graphical representation of this bound is
given in Figure 2. It shows the expected smallest number of transactions to be queried by
an honest party (not counting no-ops) until it can confirm the target transaction T . The
larger this gets, the more the protocol loses liveness. It is relevant that this bound grows
proportional to 1

(1−γ)β1 , i.e., exponential in acceptance threshold β1 since (1− γ) < 1.

Figure 2 Expected delay in number of transactions needed to confirm a given transaction with
acceptance threshold β1 = 15, the recommended value [4], and assuming that the queries of honest
transactions are successful. The (green) horizontal line shows β1, the expected delay without attacker.
The (blue) dotted line represents the expected confirmation delay in Avalanche depending on the
fraction of malicious transactions. The (orange) squared line denotes the delay in Glacier (Section 6).

The Avalanche team has acknowledged our findings and the vulnerability. The protocol
deployed in the actual network, however, differs from our formalization in a way that should
prevent the problem.

6 Fixing liveness with Glacier

The adversary is able to delay the acceptance of an honest transaction T because T is directly
influenced by the queries of its descendants. Note the issuer of T has no control over its
descendants according to the protocol. A unsuccessful query of a descendant of T carries a
negative consequence for the acceptance of T , regardless of the status of T inside its conflict
set. This influence is the root of the problem described earlier. An immediate, but inefficient
remedy might be to run one Snowball consensus instance for each transaction. However,
this would greatly degrade the throughput and increase the latency of the protocol, as many
more messages would be exchanged.

We propose here a modification, called Glacier, in which an unsuccessful query of a
transaction T carries negative consequences only for those of its ancestors that led to negative
votes and caused the query to be unsuccessful. Our protocol is shown in Algorithm 6. It

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:19

specifically modifies the voting protocol and adds to each vote message for T a list L with
all ancestors of T that are not preferred in their respective conflict sets (L 123–127). When
party u receives a negative vote like [Vote, v, T, false, L], it performs the same actions as
before. Additionally, it increments a counter for each ancestor T ∗ of T to denote how many
parties have reported T ∗ as not preferred while accepting T (L 135). If u receives a positive
vote, the protocol remains unchanged.

If the query is successful because u receives at least α positive votes on T , then it
proceeds as before (Algorithm 3, L 53). But before u declares the query to be unsuccessful,
it furthermore waits until having received a vote on T from all k parties sampled in the
query (L 137). When this is the case, u only resets the counter for acceptance of those
ancestors T ∗ of T that have been reported as non-preferred by more than k − α queried
parties (L 141–143). If T ∗ is preferred by at least α parties, however, then u increments its
confidence level as before (L 145).

Algorithm 6 Modifications to Avalanche (Algorithm 1–4) for Glacier (party u).

State
121: nonpref : HashMap[T × T → N] // votes on T saying T ′ is not preferred

122: upon receiving message [Query, T] from party v do // replaces L 49
123: L← [] // contains the non-preferred ancestors of T

124: for T ′ ∈ ancestors(T) do
125: if ¬preferred(T ′) then
126: append T ′ to L

127: send message [Vote, v, T, stronglyPreferred(T), L] to party v

128: // replaces code at L 51
129: upon receiving message [Vote, v, T, w, L] from a party v ∈ S[T] do // w is the vote
130: votes[T, v]← w

131: for T ′ ∈ L do
132: if nonpref[T, T ′] =⊥ then
133: nonpref[T, T ′]← 1
134: else
135: nonpref[T, T ′]← nonpref[T, T ′] + 1

136: // replaces code at L 68
137: upon ∃T ∈ T such that

∣∣votes[T, v]
∣∣ = k ∧

∣∣∣{v ∈ S[T] | votes[T, v] = false
}∣∣∣ > k − α do

138: stop timer[T]
139: votes[T, ∗]← ⊥ // remove all entries in votes for T

140: S[T]← [] // reset the HashMap S

141: for T ′ such that nonpref[T, T ′] ̸= ⊥ do // all ancestors of T

142: if nonpref[T, T ′] > k − α then
143: cnt[conflictSet[T ′]]← 0
144: else // nonpref[T, T ′] ≤ α

145: cnt[conflictSet[T ′]]← cnt[conflictSet[T ′]] + 1
146: nonpref[T, ∗]← ⊥

Considering the adversary introduced in Section 5.3, a negative reply to the query of
a descendant of the target transaction T does not carry any negative consequence for the
acceptance of T here. In particular, the counter for acceptance of transaction T is never
reset, even when a query is unsuccessful, because T is the only transaction in its conflicting
set, then always preferred. Thus, transaction T will be accepted after β1 successful queries,
if all its parents are accepted, or β2 successful queries if they are not accepted. Assuming
that queries of honest transactions are successful, on average β

1−p transactions are required

OPODIS 2022

10:20 When Is Spring Coming? A Security Analysis of Avalanche Consensus

to accept T for β ∈ [β1, β2] depending on the state of the parents of T . For simplicity we
assume that the parents are accepted, thus, the counter needs to achieve the value β1. If this
were not the case, then it is sufficient to substitute β1 with β in the upcoming expression.
Avalanche requires on average β1 + 1+(2+β1γ)(1−γ)β1 −(1−γ)2β1 (1+β1γ)

γ(1−γ)β1 (1−(1−γ)β1) transactions to accept
T by Lemma 5.5. The assumption that the query of honest transactions is always successful
is more beneficial to Avalanche than to Glacier, since in Avalanche such a query resets the
counter for acceptance of T . But in Glacier, the query simply leaves the counter as it is. The
value of the acceptance threshold β1 is also more beneficial for Avalanche since the number of
required transactions increases linearly in Glacier and exponentially in Avalanche. Figure 2
shows a comparison of both expressions.

In Glacier, the vote for a transaction is independent of the vote of its descendant and
ancestors, even if a query of a transaction carries an implicit query of all its ancestors. Thus,
Lemma 5.1 can be extended.

▶ Lemma 6.1. Party u delivers a transaction T with counter for acceptance with value
cnt[conflictSet[T]] ≥ β1 in Glacier if and only if u decides 1 in the equivalent execution of
Snowball with threshold cnt[conflictSet[T]].

Proof. Consider a transaction T in the equivalent execution of Snowball. The counter for
acceptance of the value 1 in Snowball is always the same as the counter for acceptance of
transaction T in Glacier because of the modifications introduced by Glacier. Thus, following
the same argument as in Lemma 5.1, transaction T is accepted in Glacier with counter
cnt[conflictSet[T]] if and only if 1 is decided with counter cnt[conflictSet[T]] in the equivalent
execution of Snowball. ◀

▶ Theorem 6.2. The Glacier algorithm satisfies the properties of generic broadcast in the
presence of an adversary that controls up to O(

√
n) parties.

Proof. Lemma 5.1 is a a special case of Lemma 6.1. Theorem 5.2 shows that Lemma 5.1
and the properties of Snowball [2] guarantee that Avalanche satisfies integrity, partial order,
and external validity. In the same way, Lemma 6.1 guarantees that Glacier satisfies these
same properties. Thus, it is sufficient to prove that Glacier satisfies validity and agreement.

Validity. Assume that an honest party broadcasts a payload tx. Because the party is
honest, the transaction T containing tx is valid and non-conflicting. In the equivalent
execution of Snowball, every honest party that proposes a value proposes 1. Hence, using
the validity and termination properties of Snowball, every honest party eventually decides
1. Using Lemma 6.1, every honest party eventually delivers tx.
Agreement. Assume that an honest party delivers a payload transaction tx contained in
transaction T . Using Lemma 6.1, an honest party decides 1 in the equivalent execution
of Snowball. Because of the termination and agreement properties of Snowball, every
honest party decides 1. Using Lemma 6.1 again, every honest party eventually delivers
payload tx

We conclude that Glacier satisfies the properties of generic broadcast. ◀

With the modification to Glacier, Avalanche can be safely used as the basis for a payment
system. Notice that the sample mechanism is not modified, thus remains the same as
in the original protocol. The only possible concern with Glacier could be a decrease in
performance compared to Avalanche. However, Glacier does not reduce the performance but
rather improves it. Glacier only modifies the update in the local state of party u after a
query has been unsuccessful. The counter of acceptance of a given transaction T in Glacier
implementation is always greater or equal than its counterpart in Avalanche. This follows

I. Amores-Sesar, C. Cachin, and E. Tedeschi 10:21

because a reset of cnt[conflictSet[T]] in Glacier implies the same reset in Avalanche. Such
a reset in Glacier occurs if the query of a descendant of T fails and T was reported as
non-preferred by more than k − α parties, whereas in Avalanche it is enough if the query
of the descendant failed. In Avalanche, cnt[conflictSet[T]] is incremented if the query of
a descendant of T succeeds, and the same occurs in Glacier. Thus, cnt[conflictSet[T]] in
Glacier is at least as large as in Avalanche. We recall that a transaction is accepted when
cnt[conflictSet[T]] reaches a threshold depending on some conditions of the local view of the
DAG, but these are identical for Glacier and Avalanche. Hence, every transaction that is
accepted in Avalanche is accepted in Glacier with equal or smaller latency. This implies not
only that the latency of Glacier is smaller than the latency of Avalanche, but also that the
throughput of Glacier is at least as good as the throughput of Avalanche.

7 Conclusion

Avalanche is well-known for its remarkable throughput and latency that are achieved through
a metastable sampling technique. Our pseudocode captures in a compact and relatively simple
manner the intricacies of the protocol. We show that Avalanche, as originally introduced,
possesses a vulnerability allowing an adversary to delay transactions arbitrarily. We also
address such vulnerability with a modification of the protocol, Glacier, that allows Avalanche
to satisfy both safety and liveness.

The developers of Avalanche have acknowledged the vulnerability, and the actual imple-
mentation does not suffer from it due to an alternative fix. Understanding this variant of
Avalanche remains open and is subject of future work.

References
1 Ignacio Amores-Sesar, Christian Cachin, and Jovana Micic. Security analysis of ripple consensus.

In OPODIS, volume 184 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

2 Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi. When is spring coming? A
security analysis of avalanche consensus. CoRR, abs/2210.03423, 2022. arXiv:2210.03423.

3 Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal, Franck Youssef, and Erik Zenner.
Ripple: Overview and outlook. In TRUST, volume 9229 of Lecture Notes in Computer Science,
pages 163–180. Springer, 2015.

4 Ava Labs, Inc. Avalanche documentation. https://docs.avax.network/.
5 Ava Labs, Inc. Node implementation for the Avalanche network. https://github.com/

ava-labs/avalanchego.
6 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and

Secure Distributed Programming (2. ed.). Springer, 2011.
7 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient

asynchronous broadcast protocols. In CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 524–541. Springer, 2001.

8 Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild (keynote
talk). In DISC, volume 91 of LIPIcs, pages 1:1–1:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

9 Coinmarketcap: Today’s cryptocurrency prices by market cap. https://coinmarketcap.com/,
2022.

10 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66–98. Springer, 2018.

OPODIS 2022

http://arxiv.org/abs/2210.03423
https://docs.avax.network/
https://github.com/ava-labs/avalanchego
https://github.com/ava-labs/avalanchego
https://coinmarketcap.com/

10:22 When Is Spring Coming? A Security Analysis of Avalanche Consensus

11 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

12 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography, volume 8437 of Lecture Notes in Computer Science, pages 436–454.
Springer, 2014.

13 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT (2), volume 9057 of Lecture Notes in Computer Science,
pages 281–310. Springer, 2015.

14 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In CRYPTO (1), volume 10401 of Lecture Notes in Computer
Science, pages 291–323. Springer, 2017.

15 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–68. ACM, 2017.

16 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In PODC, pages 165–175. ACM, 2021.

17 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of Lecture
Notes in Computer Science, pages 357–388. Springer, 2017.

18 Minjeong Kim, Yujin Kwon, and Yongdae Kim. Is stellar as secure as you think? In EuroS&P
Workshops, pages 377–385. IEEE, 2019.

19 Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih Yao. Scaling nakamoto
consensus to thousands of transactions per second. CoRR, abs/1805.03870, 2018. arXiv:
1805.03870.

20 Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei Xu, Fan Long, and
Andrew Chi-Chih Yao. A decentralized blockchain with high throughput and fast confirmation.
In USENIX Annual Technical Conference, pages 515–528. USENIX Association, 2020.

21 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafal Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In SOSP, pages 80–96. ACM, 2019.

22 Hamed Mamache, Gabin Mazué, Osama Rashid, Gewu Bu, and Maria Potop-Butucaru.
Resilience of IOTA consensus. CoRR, abs/2111.07805, 2021. arXiv:2111.07805.

23 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Whitepaper, https:
//bitcoin.org/bitcoin.pdf, 2009.

24 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

25 Fernando Pedone and André Schiper. Generic broadcast. In DISC, volume 1693 of Lecture
Notes in Computer Science, pages 94–108. Springer, 1999.

26 Sheldon Ross. Stochastic Processes. Wiley, second edition, 1996.
27 Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM GHOSTDAG: a scalable

generalization of nakamoto consensus: September 2, 2021. In AFT, pages 57–70. ACM, 2021.
28 W. Y. Tan. On the absorption probabilities and absorption times of finite homogeneous

birth-death processes. Biometrics, 32(4):745–752, 1976.
29 Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer. Scalable

and probabilistic leaderless BFT consensus through metastability. e-print, arXiv:1906.08936
[cs.CR], 2019.

30 Bozhi Wang, Qin Wang, Shiping Chen, and Yang Xiang. Security analysis on tangle-based
blockchain through simulation. CoRR, abs/2008.04863, 2020. arXiv:2008.04863.

31 Qin Wang, Jiangshan Yu, Zhiniang Peng, Van Cuong Bui, Shiping Chen, Yong Ding, and
Yang Xiang. Security analysis on dbft protocol of NEO. In Financial Cryptography, volume
12059 of Lecture Notes in Computer Science, pages 20–31. Springer, 2020.

32 Maofan Yin. Scaling the Infrastructure of Practical Blockchain Systems. PhD thesis, Cornell
University, USA, 2021.

http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/2111.07805
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/2008.04863

Computational Power of a Single Oblivious Mobile
Agent in Two-Edge-Connected Graphs
Taichi Inoue #

Osaka University, Japan

Naoki Kitamura #

Osaka University, Japan

Taisuke Izumi #

Osaka University, Japan

Toshimitsu Masuzawa #

Osaka University, Japan

Abstract
We investigated the computational power of a single mobile agent in an n-node graph with storage
(i.e., node memory). Generally, a system with one-bit agent memory and O(1)-bit storage is as
powerful as that with O(n)-bit agent memory and O(1)-bit storage. Thus, we focus on the difference
between one-bit memory and oblivious (i.e., zero-bit memory) agents. Although their computational
powers are not equivalent, all the known results exhibiting such a difference rely on the fact that
oblivious agents cannot transfer any information from one side to the other across the bridge edge.
Hence, our main question is as follows: Are the computational powers of one-bit memory and
oblivious agents equivalent in 2-edge-connected graphs or not? The main contribution of this study is
to answer this question under the relaxed assumption that each node has O(log ∆)-bit storage (where
∆ is the maximum degree of the graph). We present an algorithm for simulating any algorithm for a
single one-bit memory agent using an oblivious agent with O(n2)-time overhead per round. Our
results imply that the topological structure of graphs differentiating the computational powers of
oblivious and non-oblivious agents is completely characterized by the existence of bridge edges.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases mobile agent, depth-first search, space complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.11

Funding This work was supported by JSPS KAKENHI Grant Number JP22K21277, JP19H04085,
JP20KK0232, JP20H04140, and JP21H05854.

Acknowledgements This study was initiated by the discussion with Prof. Shantanu Das when he
visited the third author (Taisuke Izumi) in 2018. We greately appreciate his valuable comments at
the discussion.

1 Introduction

1.1 Background and Our Result
A mobile agent (hereinafter called an agent) is an individual entity that performs a given task
by autonomously moving in a graph (or network). This is one of the main computational
paradigms of distributed algorithms. In the theory of mobile agent systems, there exist
various models that differ in memory resources, asynchrony, observation capability of the
system, and so on. Revealing the computational power of each model is recognized as a
central question in this research field. This study focuses on the computational power of a
system with a single agent, despite that it is fairly commonplace to consider the cooperation
of multiple agents.

© Taichi Inoue, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ta-inoue@ist.osaka-u.ac.jp
mailto:n-kitamura@ist.osaka-u.ac.jp
mailto:t-izumi@ist.osaka-u.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.4230/LIPIcs.OPODIS.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Computational Power of a Single Oblivious Mobile Agent

In single-agent systems, the amount of (persistent) memory held by the agent and nodes
is a major quantitative parameter of their computational capability. The computational cost
is measured by rounds (i.e., the number of movements by the agent). Throughout this paper,
we refer to the memory of the agent as memory and that of each node as storage. It is almost
evident that an agent with sufficiently large memory can simulate any centralized algorithm.
That is, any computable problem can be solved. Hence, theoretical interest lies in problem
solvability when the amount of memory is limited. For example, the graph exploration
problem, which requires the agent to visit all nodes in the graph, is a fundamental problem
Generally, Θ(log n)-bit memory is necessary and sufficient to solve this problem when the
nodes have no storage [5, 10]. It is also proved that the system with O(1)-bit memory and
O(1)-bit storage can solve the graph exploration problem [1].

In this study, we investigated the effect of the amount of memory on problem solvability.
A known result on this research line is that, in any n-node graph with O(1)-bit storage
per node, the agent with one-bit memory is as powerful as that with O(n)-bit memory [6].
More precisely, any property of the graph G decidable by the O(n)-bit memory agent within
polynomial movements and polynomial-time local computation is also decidable by the
one-bit memory agent within polynomial movements and polynomial-time local computation.
This result is not limited to decision problems, but actually provides a general technique
for simulating the execution of any O(n)-bit memory agent using a one-bit memory agent
with a polynomial-time multiplicative overhead per round. It has also been shown that
the computational powers of the one-bit and zero-bit (i.e., oblivious) memory agents are
inherently different regardless of the amount of available storage. Thus, our question is
already closed in general settings. However, whether the separation between the one-bit
memory and oblivious agents is exhibited in a restricted graph class remains unclear. All
known results exhibiting such a separation [1, 6] rely on the existence of a bridge edge (i.e.,
a single edge such that its removal disconnects the graph) in the graph. More precisely, they
are derived from the fact that the oblivious agent cannot transfer any information from
one side to the other side across the bridge edge, whereas the one-bit memory agent can.
Therefore, our central question is then rephrased as: Are the computational powers of the
one-bit memory and oblivious agents equivalent in 2-edge-connected graphs or not? The main
contribution of this study is to answer this question positively. We focus on 2-edge-connected
graphs with a maximum degree ∆ and relax the constraint on the amount of storage from
O(1) bits to O(log ∆) bits. In this setting, we present a polynomial-time overhead algorithm
that simulates the execution of a single one-bit memory agent by an oblivious agent. By
combining the results of [6], we can deduce the equivalence between an O(n)-bit memory
agent and an oblivious agent in 2-edge-connected graphs. This implies that the topological
structure of graphs differentiating the computational powers of oblivious and non-oblivious
agents is completely characterized by the existence of bridge edges. The authors believe
that this result provides a sharp insight into the computational complexity theory of mobile
agents.

1.2 Technical Idea
The model considered in this study follows the standard assumptions on mobile agent systems.
The graph G is anonymous (i.e., the agent cannot refer to the unique IDs of nodes), and the
neighbors of a node are identified by the local port numbers assigned to the edges incident to
the node. When an agent enters a node, it recognizes the entry port number (assigned to the
edge used to visit the current node). In one round, the agent performs local computation,
which includes updating the information stored in its own memory and the storage at the
current node, and decides the outgoing port number (assigned to the edge used to leave the
node).

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:3

s t1
1

00

1
2

1
0

2
3
1

0
0

1

0

Transfer 0
Transfer 1

Figure 1 Example of the construction of an ITC (drawn by bold lines) on a DFS tree and
imitative transmission of one-bit data. Arrows are moving directions of the agent. Some local port
numbers are omitted.

The main technical issue in simulating a one-bit memory agent is how we can transfer
the information to an oblivious agent. We resolve this by utilizing information on entry port
numbers. To clarify our idea, we first consider the simple case in which the graph is an oriented
cycle and assume that the agent at a node s wants to transfer one-bit information to the
neighbor t of s. There are two distinct paths from s to t (i.e., clockwise and counterclockwise,
specified by the orientation), which result in different entry port numbers for t. The agent
can transfer an information bit b ∈ {0, 1} from s to t using the path ending up with port
number b.

When the graph topology is arbitrary, the simulation algorithm becomes more complicated;
however, the fundamental idea is the same. The algorithm first finds a cycle C of G containing
edge (s, t), which we refer to as the information transfer cycle (ITC), to transfer one-bit
information from node s to its neighbor t. The algorithm provides a consistent orientation to
the ITC and applies the algorithm above for oriented cycles to the ITC. Because we assume
that G is 2-edge-connected, there necessarily exists an ITC for any edge (s, t) in G.

Our algorithm runs a depth-first search (DFS) to compute ITC. The agent starts DFS
from s with the choice of (s, t) as the first traversal edge. Because G is 2-edge-connected,
the agent eventually reaches s again through edge e different from (s, t). Figure 1 shows an
example of transmission on an ITC. Let Ps,t be the path from s to t managed by the DFS
algorithm. Then, the algorithm obtains the ITC Ps,t +e. The agent must reset all information
because the garbage information is left at the nodes that are traversed by the DFS process
but not contained in the constructed ITC. It is implemented by careful re-execution of the
DFS starting from s with the first traversal edge (s, t).

We emphasize that its implementation is far from triviality, although the intuition of our
algorithm stated above is simple and easy to follow. A technical hurdle is that the agent
itself is oblivious. The agent cannot memorize the subtask currently executed despite our
algorithmic idea being constituted of several subtasks. Our algorithm conducts the sequential
phase-by-phase composition of all subtasks carefully, using only node storage. Details of the
design are presented in Section 3.

1.3 Related Work
To the best of our knowledge, the authors’ prior work [6] is the first to consider the effect of
memory size on the solvability of general tasks in graphs with storage, but several studies
have been conducted on specific problems. One benchmark problem is the graph exploration

OPODIS 2022

11:4 Computational Power of a Single Oblivious Mobile Agent

problem. In the case where nodes have no storage, it has been shown that Θ(log n)-bit
memory is necessary and sufficient to solve it within polynomial time [5, 10]. When allowing
nodes to be stored, the graph exploration algorithm can be solved by an oblivious agent using
O(log ∆)-bit storage per node (where ∆ is the maximum degree of the graph) [11]. Minimizing
the storage size, there exists a graph exploration algorithm for an O(1)-bit memory agent
using O(1)-bit storage [1]. It also shows that exploration using a single oblivious agent is
impossible if the storage size is O(1) bits. Note that the topology used in their impossibility
proof has a bridge edge; that is, it is not 2-edge-connected. An interesting open problem
inspired by our result is whether an oblivious agent with O(1)-bit storage can solve the
graph exploration problem for 2-edge-connected graphs or not. It is possible to explore
2-edge-connected graphs if one can construct the ITC using only O(1)-bit storage because
our simulation algorithm requires ω(1)-bit storage only during the construction of the ITC.
There also exists a model in which the agent uses a “pebble” device that can be put on and
picked up from nodes by the agent. Disser et al. [4] showed that n-node graph exploration
can be solved using Θ(log log n) pebbles. However, this method has the disadvantage of
being time inefficient since it takes nO(log log n) rounds to complete the exploration. Although
it is a crucial assumption in our simulation algorithm that the agent knows the entry port
number, there is a weaker model called the myopic robot, in which the entry port number is
undetectable by agents [2, 7, 8, 9]. Although no formal proof is given, it is almost trivial
that such a weaker agent cannot simulate the agent memory as in our result, even under the
assumption of 2-edge-connectivity. While the model and problem are significantly different,
Dieudonne et al. [3] presented a solution based on an approach similar to ours. In that
study, the authors considered the information transfer between the robots in the 2D plane,
which cannot have an explicit communication channel. In their approach, the transferred
information is not embedded into movement patterns as in our approach but is embedded
into the (real-value) distance between two robots.

2 Preliminaries

2.1 Graph

We used [a, b] to denote the set of integers at least a and at most b. Let G be a graph with
n nodes. This is formally defined as a port-numbered graph G = (V, E, Π), where V is the
set of nodes, E is the set of edges, and Π is the set of port-numbering functions (explained
later). Throughout this paper, we assume that G is simple, undirected, and 2-edge-connected.
Each node in G is identified by a non-negative integer i (0 ≤ i ≤ n − 1). However, the
agent operating in G cannot see those values, that is, G is anonymous (the behavior of the
agent is formally defined in Section 2.2). For e ∈ E, we define G − e as a graph obtained
by removing e from G. Note that G− e is always connected because we assume that G is
2-edge-connected. The edges incident on each node i are distinguished by local port numbers.
The port numbering function at node i is defined as πi : [0, ∆i − 1]→ Ni, where ∆i is the
degree of node i and Ni is the set of neighbors of i. The maximum degree of G is defined as
∆. Note that ∆i is necessarily greater than one because G is 2-edge-connected. We define
π−1

i as the inverse function of πi. The set Π consists of port-numbering functions for all
the nodes in V . Each node in G has storage (i.e., node memory) that keeps the stored
information even after the agent leaves the node.

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:5

M
1

0

store the entry port number 2
and the degree 3 to
temporary memory

2

update memory and storage
in local computation;

let the outgoing port number be 1

M'
1

0

2

traverse the edge
with port number 1

(temporary memory is reset)

M'
1

0

2

0
2,3

temporary
memory

memory 2,3
1 1

0,0

Figure 2 Workflow of one-round operation (where M and M ′ mean the storage value of the
node).

2.2 Mobile Agent

We consider a single-agent model in which one mobile agent moves in graph G. A mobile agent
has two distinct memory spaces: temporary memory and persistent memory. Temporary
memory is a working space used for computation at each node, but the stored information is
completely reset when the agent leaves the node. In contrast, persistent memory space retains
the stored information even when the agent moves from one node to another. In the following
argument, we use the terminology “(agent) memory” to refer to persistent memory and
measure the space complexity of the agent by the amount of persistent memory. Although the
size of the available temporary memory is unbounded, O(log ∆) bits of temporary memory
are sufficient to implement our algorithm. In this study, we focus on the oblivious agent (or
the agent with zero-bit memory) and one-bit agent (or the agent with one-bit memory).

The execution of the agent follows discrete rounds t = 0, 1, · · · . In each round, the agent
performed the following two computational steps:
1. Let i be the node where the agent currently stays. First, the agent starts the local

computation specified by the algorithm. At the beginning of the local computation, the
local port number corresponding to the edge through which it has entered the current
node i (i.e., entry port number) and the degree ∆i of i are stored in the temporary
memory. Note that the entry port number can be arbitrary at the beginning of the
execution. Following the information stored in the temporary memory, persistent memory,
and storage of i, the agent updates the storage of i and its own persistent memory. It
also determines the port number corresponding to the edge through which it leaves the
node i (i.e., outgoing port number).

2. The agent moves to the neighbor of i specified by the outgoing port number. Note that
the agent is guaranteed to arrive at the neighbor within the current round.

Figure 2 illustrated the behavior of a single round. An algorithm A for a one-bit agent is
defined as A = (m, M, M ′, l, ϕ), a 5-tuple of an initial memory value m, an initial storage
value M for each node, an initial storage value M ′ for the initial location of the agent, an
initial location l of the agent, and a transition function ϕ. Note that the special initialization
value M ′ is crucial for implementing the simulation because a symmetry-breaking mechanism
is required to distinguish the initial location of the simulated agent from other nodes. The
transition function ϕ for a one-bit agent is defined as ϕ : N × Z≥−1 × {0, 1}∗ × {0, 1} →
Z≥−1 × {0, 1}∗ × {0, 1}, where Z≥−1 is a set of integers greater than or equal to -1. The

OPODIS 2022

11:6 Computational Power of a Single Oblivious Mobile Agent

arguments given to ϕ are the degree of the node, entry port number, storage value of the
current node, and memory value. Note that the bit length of the storage is not fixed by the
algorithm because our model allows the storage size to depend on the parameters of graph
G. The returned values are the outgoing port number, storage value to be left at the current
node, and memory value after local computation. Outgoing port number -1 implies that the
agent terminates the execution of the algorithm and stays at the same node. For convenience,
we consider an algorithm for an oblivious agent such that the memory value given to and
returned by ϕ is always 0. Note that ϕ does not consider the identifier of the current node as
an argument because we assume anonymous graphs.

Next, we define the system configuration and execution.

▶ Definition 1 (configuration). A configuration C of the system is represented as C =
((M0, M1, . . . , Mn−1), m, p, l) ∈ {{0, 1}∗}n × {0, 1} × Z≥−1 × [0, n − 1], where Mi is the
storage value of node i, m is the memory value of the agent, p is the entry port number, and
l is the location of the agent. A valid configuration in G is such that the value of the entry
port number is in the range [−1, ∆l − 1].

▶ Definition 2 (execution). Let A = (m, M, M ′, l, ϕ) be an algorithm. Given two valid
configurations, Ct = ((M0,t, . . . , Mn−1,t), mt, pt, lt) and Ct+1 = ((M0,t+1, . . . , Mn−1,t+1),
mt+1, pt+1, lt+1), we consider that they follow the transition function ϕ of A in G, denoted
by Ct

ϕ,G−−→ Ct+1, if the following three conditions are satisfied:
ϕ(∆lt

, pt, Mlt,t, mt) =
(
π−1

lt
(lt+1), Mlt,t+1, mt+1

)
Mi,t+1 = Mi,t for all i ̸= lt
pt+1 = π−1

lt+1
(lt)

Let C be any valid configuration on G such that the initial value of the memory is m, the
location of the agent is l, the initial storage value for node i ̸= l is M and M ′ for node l.
The execution E(G, C, A) of the system is defined as an infinite sequence of configurations
(Ct)t≥0 such that C0 = C and Ct

ϕ,G−−→ Ct+1 holds for any t ≥ 0.

In Definition 2, any execution is defined as an infinite sequence; however, if the algorithm
terminates in a finite round, then the execution is defined as an infinite sequence such that
Ct = Ct+1 = . . . holds for the termination round t. As the transition function ϕ is assumed
to be deterministic, the execution of the algorithm is uniquely defined from the initial
configuration C0 = C. That is, E(G, C, A) is uniquely defined. In addition, throughout this
study, we only consider algorithms that do not depend on the initial entry port number.
Then, execution E(G, C, A) is determined only by algorithm A, graph G, and initial location
l of the agent. Hence, we refer to the execution E(G, C, A) as E(G, v, A) with the initial
location v ∈ V of the agent.

2.3 Simulation
Let A(k, λ) be the set of all algorithms that utilize k-bit memory and λ-bit storage. Note
that k and λ are not necessarily constant values, but might be functions that depend on the
parameters of the graph. The goal of this study was to design an algorithm A ∈ A(0, λ) that
simulates any algorithm A∗ ∈ A(1, λ∗), where λ and λ∗ represent the storage sizes of the
simulator and simulated algorithms, respectively. To this end, we provide a formal definition
for the simulation of the algorithm. First, we present the notion of γ-configurations.

▶ Definition 3 (γ-configuration). Let γ = (γM , γA) be a pair of mappings, γM : {0, 1}λ →
{0, 1}λ∗ and γA : {0, 1}λ → {0, 1} × N. The γ-configuration γ(C) is defined as γ(C) =
((γM (M0), γM (M1), . . . , γM (Mn−1)) , γA(Ml), l) for configuration C = ((M0, M1, . . . , Mn−1),
m, p, l).

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:7

Intuitively, the functions γM and γA work as the “interpreter,” which transforms a valid
configuration of A into that of A∗ under the assumption that the simulated agent executing
A∗ stays at the same location as the simulator agent executing A. The γ-configuration γ(C)
is the configuration of A∗ obtained by interpretation. It may seem unusual that γ(C) does
not explicitly depend on the value m of the agent memory. However, it is indispensable that
algorithm A stores the value of the agent memory of A∗ into the storage of the current node
of A to simulate the behavior of the simulated agent running A∗ by an oblivious agent. The
simulation algorithm is defined as follows:

▶ Definition 4 (simulation of algorithm). Let A∗ ∈ A(1, λ∗) be an algorithm. We consider that
an algorithm A ∈ A(0, λ) simulates A∗ in G, if there exists a pair of mappings γ = (γM , γA)
of Definition 3 that satisfy the following condition:

Let v be any node of G, E(G, v, A) = (Ct)t≥0, and E(G, v, A∗) = (C∗
t)t≥0. There

uniquely exists the monotonically increasing sequence of round numbers T (0), T (1),
T (2), . . . such that T (0) = 0 holds and γ

(
CT (t)

)
= C∗

t holds for each t ≥ 0. That is,
E (G, v, A∗) = γ

(
CT (0)

)
, γ

(
CT (1)

)
, γ

(
CT (2)

)
, . . . holds.

Finally, we defined the round complexity of the simulation as follows:

▶ Definition 5. Let A ∈ A(0, λ) be the algorithm that simulates A∗ ∈ A(1, λ∗). Then, the time
required to simulate round t is defined as T (t+1)−T (t). If maxt≥0 (T (t + 1)− T (t)) = poly(n)
holds for any t ≥ 0, we consider that A is a polynomial-time simulator of A∗ in G.

3 Our Algorithm

We show a polynomial-time simulator A ∈ A(0, λ) that simulates any one-bit agent algorithm
A∗ ∈ A(1, λ∗) in any 2-edge-connected graph G. In the following argument, we denote the
oblivious agent executing A by the symbol a and the one-bit simulated agent executing A∗ by
a∗. We also denote A∗ = (m∗, M∗, (M ′)∗, l∗, ϕ∗). The storage size of algorithm A is denoted
by λ, which satisfies λ = λ∗ + O(log ∆).

3.1 Mappings and Variables on Storage
We first introduce all the variables stored in the storage of each node in Table 1. Each variable
is referred to with an additional subscript to clarify the node that stores it. For example,
sloci denotes the variable sloc stored in node i. For a tuple of variables (X, Y) (where X and
Y are the names of some variables), we also use the notation (X, Y)i to represent (Xi, Yi).

To formalize the correctness criteria of our simulation algorithm, we introduce legal
configurations, defined as those satisfying (dfsstat, sim, smemupd)i = (0, 0, 0) for all nodes
i ∈ V , slocv = 1 for the current location v of a, and sloci = 0 for all other nodes i ̸= v. Our
algorithm satisfies the condition that the sequence of all legal configurations appearing during
the execution of A forms the simulated execution of A∗. More precisely, let E(G, v, A) =
(Ct)t≥0 and t0, t1, t2, . . . be the maximal sequence of the round numbers such that Cti

is
legal. Then, our simulation algorithm is correct with respect to T (i) = ti and γ = (γM , γA)
such that γM (Mi) = svarsi and γA(Mi) = (smemi, spini) hold.

Let C be a set of all valid legal configurations. Our algorithm starts from any configuration
C ∈ C and guarantees that the legal configuration C ′ ∈ C satisfies γ(C) ϕ∗,G−−−→ γ(C ′) without
explicit termination. Evidently, this algorithm provides simulated execution E(G, v, A∗):
Following the definition of the initial values specified in Table 1, the initial configuration
C0 = Ct0 of the corresponding execution E(G, v, A) for any v ∈ V is legal, and γ(C0) becomes

OPODIS 2022

11:8 Computational Power of a Single Oblivious Mobile Agent

Table 1 Variables used in our simulation algorithm. The initial location of a (and a∗) is referred
to as v ∈ V .

Name Role
sloc The binary flag representing the current location of a∗, i.e., sloci = 1 implies that the

simulated agent a∗ is currently at node i. At any time, at most one node i satisfies
sloci = 1. When sloci = 0 holds for every node i, the algorithm is simulating the
movement of a∗. Initially, slocv = 1 for the initial location v ∈ V of a and a∗, and
slocj = 0 for any j ̸= v.

smem The variable storing the current memory value of a∗ at the current node of a∗. It
can store an arbitrary value at any other node.

smemupd The flag indicating the completion of the information transfer along the constructed
ITC. At the beginning of the one-round simulation of A∗, the value is 0 for all nodes.
When a propagates a binary memory value m′ of a∗ along the ITC, the node i that
has already received m′ sets smemupdi = 1. The initial value is zero for all nodes.

spin The entry port number of a∗ at the current node. It can store an arbitrary value at
any other node. Initially, an arbitrary value is stored.

spout The variable for storing the computed outgoing port number of a∗ at the current
node. It can store an arbitrary value at any other node.

svars The storage for the simulated algorithm A∗. The initial value is the one specified by
the algorithm A∗.

dfsstat The three-state variable used inside the DFS subroutine for constructing the ITC.
If the agent a does not execute the DFS subroutine, the value zero is stored at all
nodes. The condition dfsstati = 1 implies that the agent a has visited i, but i still
has the ports not probed yet, and dfsstati = 2 implies that all the ports of i have
been probed. The initial value is zero at all nodes.

par The variable storing the port number to the parent of the DFS tree. After the
construction of an ITC, this variable represents the predecessor of the ITC. The
initial value is arbitrary.

cld The counter indicating the ports that have been already probed: cldi = x implies
that up to the (x − 1)-th port of the node i has been probed. After the construction
of an ITC, this variable represents the successor in the ITC. The initial value is zero
for all nodes.

sim The flag indicating the subtask in which the agent a is engaged. If simi = 0 holds
for all nodes i, the agent is executing the DFS subroutine for constructing an ITC.
Once an ITC is constructed, simi = 1 holds if and only if i is contained in the
constructed ITC.

lastin/out In execution of the DFS subroutine, these variables manage the latest entry/outgoing
port numbers at each node. The stored information is used for deleting the “garbage”
information in the storage left by the DFS subtask.

the initial configuration of E(G, v, A∗). The algorithm then generates the configuration Ct1

such that γ(Ct0) ϕ∗,G−−−→ γ(Ct1) holds. The algorithm immediately starts the next round of
simulations, which generates Ct2 because Ct1 is also legal. A simulates the execution of
E(G, v, A∗) by repeating this process.

3.2 Overviews of Our Algorithm
First, we explain the high-level structure of the proposed algorithm. The simulator algorithm
consists of five subtasks: local computation, DFS, clean-up, memory transfer, and move-
and-reset phases. We denote by s the node where agent a remains at the beginning of the
one-round simulation. Because the configuration at the beginning is legal, the simulated
agent a∗ also stays at s by definition. We present an outline of each phase as follows:

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:9

Algorithm 1 Main Part and LocalComp().

1: pin ← (entry port number)
2: ∆i ← (the degree of the node i)
3: if smemupdi = 1 then
4: MoveReset()
5: else if dfsstati > 0 then
6: if simi = 1 ∨ pin = pari ∨ sloci = 1 then
7: CleanUp()
8: else
9: DFS()

10: else if simi = 1 then
11: TransMem()
12: else
13: if sloci = 1 then ▷ LocalComp()
14: (spout, svars, smem)i ← ϕ∗(∆i, spini, svarsi, smemi)
15: DFS()

Local Computation Phase: This phase was executed once at the beginning of the one-round
simulation of A∗. The simulator agent locally simulates the local computation of A∗ at
node s (i.e., the location of a∗) and then updates the corresponding storage variables.
After finishing the local computation phase, agent a immediately proceeds to the DFS
phase.

DFS Phase: Let t be the node to which the simulated agent a∗ moves. Agent a executes
the DFS from s with the first traversal edge (s, t) until it revisits s (i.e., the node such
that the variable sloc stores one). This determines a cycle containing edge (s, t), which
becomes the ITC.

Clean-up Phase: The agent repeats the same DFS traversal again from s (with the first
traversal edge (s, t)) to revisit s to reset the storage values left in the DFS phase, except
for the one necessary to recognize the ITC.

Memory Transfer Phase: The agent circulates the ITC in the direction based on the memory
value smems of simulated agent a∗.

Move-and-Reset Phase: The agent moves simulated agent a∗ from s to t by setting slocs = 0
and sloct = 1. It then resets the storage of all nodes in the ITC to recover the legality of
the configurations.

The agent determines the phase in which it is currently running based on the storage values
(dfsstat, sim, smemupd, sloc, par) of the current location and the current value of pin. The
details of this are explained in the following section.

3.3 Details of Our Algorithm
In this subsection, we present the details of each phase. Pseudocodes are presented in
Algorithms 1–5. Algorithm 1 presents the main part, including the local computation phase.
We denote the procedures of the five phases above as LocalComp(), DFS(), CleanUp(),
TransMem(), and MoveReset(), respectively. The procedure LocalComp() is described in line
14 of Algorithm 1 (see the comment in the pseudocode), and all other phases are separately
described in Algorithms 2–5. Hereinafter, we refer to a line Y or lines Y -Z of Algorithm X

OPODIS 2022

11:10 Computational Power of a Single Oblivious Mobile Agent

Algorithm 2 DFS().

1: lastini ← pin

2: if sloci = 1 then
3: (dfsstat, cld, lastout)i ← (1, spouti, spouti)
4: else if dfsstati = 0 then ▷ visiting by forward
5: (dfsstat, par)i ← (1, pin)
6: if pari = 0 then ▷ skip the parent port
7: (cld, lastout)i ← (1, 1)
8: else
9: (cld, lastout)i ← (0, 0)

10: else if dfsstati = 1 ∧ pin = cldi then ▷ visiting by backtrack
11: if pari = pin + 1 then ▷ skip the parent port
12: cldi ← pin + 2
13: else
14: cldi ← pin + 1
15: if cldi < ∆i then ▷ unprobed ports exist
16: lastouti ← cldi

17: else ▷ no unprobed port exists
18: (lastout, dfsstat)i ← (pari, 2)
19: else ▷ invoking backtrack
20: lastouti ← pin

21: Move to πi(lastouti)

as (X, Y) or (X, Y -Z). In all the pseudocodes, the current location of agent a is referred to
as i. As in Section 3.2, we denote the initial location and destination of a∗ in the simulated
round by s and t, respectively.

Main part and local computation phase

The main part shown in Algorithm 1 calls for an appropriate procedure according to the local
storage value of node i. The local computation phase is executed if (dfsstat, sim, smemupd,

sloc)i = (0, 0, 0, 1) holds. As the initial configuration is legal, every node i satisfies
(dfsstat, sim, smemupd)i = (0, 0, 0). We also have slocs = 1 and sloci = 0 for all i ≠ s

based on the constraint of the variable sloc. According to the definition of sloc, the current
location of a∗ is also at s, and smems, spins, and svarss store the situation of agent a∗ in
the simulated execution. The simulator agent a locally simulates the local computation of
A∗ by a∗ at node s and stores the computed results in spouts, svarss, and smems (1,14).
The DFS phase was invoked immediately after the local computation phase (1,15).

DFS phase

We show the pseudocode for the DFS phase in Algorithm 2. This phase is executed if one of
the following conditions is satisfied:

(dfsstat, sim, smemupd, sloc)i = (0, 0, 0, 0) or immediately after the local computation
phase (1,15),
dfsstati > 0, (sim, smemupd, sloc)i = (0, 0, 0), and pin ̸= pari (1,9).

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:11

Intuitively, the first and second conditions are applied to the cases in which the agent visits
i first and re-visits i. Lines (2,2-3) are for the exceptional behavior of the first invocation
of DFS() immediately after the local computation phase. Then, the choice of the probed
port must correspond to edge (s, t), that is, the port stored in spouti. Note that, when
the agent visits node i = s again, dfsstati > 0 and sloci = 1 are satisfied, and (2,2-3) are
not executed because the main routine invokes CleanUp() in (1,7). Because the simulation
starts from a legal configuration, the variables simi, smemupdi, and sloci for any i ̸= s

store 0 at the beginning of the DFS phase and are not modified in the subroutine DFS().
Consequently, the DFS phase continues if the agent visits nodes other than s. Throughout
the DFS phase, the agent visiting node i stores the entry and outgoing port numbers in
lastin and lastout, respectively. Line (2,1) is for storing the entry port number. To store
the outgoing port number, the agent first writes the port number to which the agent will
move into lastouti (lines 3, 7, 9, 16, 18, and 20) and finally moves to the port indicated
by lastouti (2,21). The information of lastin and lastout is used in procedure CleanUp().
During the DFS phase, the agent explored G following the standard DFS. Specifically, it
probes the ports of the visited node individually in ascending order, which enables the agent
to recognize the ports already probed by storing only one port number. The latest probed
port number was stored in cldi. When the agent returns to the current node i through
an edge with port number cldi by backtrack, cldi is incremented. If cldi + 1 is the port
indicating the parent of the DFS tree, then it is skipped (2,6 and 2,11). 1 If the value of
cldi after the increment exceeds ∆i − 1, the agent has no neighbor of i to be checked and
thus performs the backtrack with setting dfsstati = 2 (2,18). When the agent visits i more
than once, the variable dfsstati stores a nonzero value at the second or later visit. Then,
the condition (dfsstat, sim, smemupd)i = (1, 0, 0) is satisfied, and the entry port number is
necessarily different from pari because, in such a case, the agent traverses a non-DFS-tree
edge or performs the backtrack. Consequently, the agent can distinguish whether it visits i

by forward or non-forward movement under conditions dfsstati = 1 and pin ̸= pari (2,10).

Clean-up Phase

We show the pseudocode of the clean-up phase in Algorithm 3. This phase is executed
if dfsstati > 0 holds, and either simi = 1, pin = pari, or sloci = 1 is satisfied (1,5-6).
This phase begins immediately after the agent returns to s during the DFS phase. At the
beginning of this phase, the set of nodes that satisfy dfsstat = 1 forms an ITC. It first
updates pari(= pars) by pin, resulting in consistent orientation of the ITC by the variable
par. In addition, the variable cld for all nodes in the ITC presents the inverse orientation.
The goal of this phase is to reset all the nodes i with dfsstati > 0 by setting dfsstati = 0 and
marking the nodes i in the ITC with simi = 1. The agent in the clean-up phase performs
DFS up to the first revisit of s similar to the DFS phase. Every node i visited in the clean-up
phase must satisfy dfsstati > 0 (every node i satisfying dfsstati > 0 is necessarily visited)
because the DFS traversal in this phase is the same as that in the DFS phase. The main
technical challenge is to make the agent distinguish between the DFS and clean-up phases,
particularly at the first visit of i. This issue was resolved as follows: In the DFS phase, the

1 Since the standard (centralized) DFS always moves to a neighboring unvisited node, agent-based
algorithms cannot identify whether a neighbor is already visited. Hence, the agent must check all
the neighbors. Then, the following case can occur: the agent exits from i through port p, but the
destination is already visited. Thus, it returns immediately to i. In our algorithm, this case is treated
as a backtrack.

OPODIS 2022

11:12 Computational Power of a Single Oblivious Mobile Agent

Algorithm 3 CleanUp().

1: if simi = 0 then
2: if (dfsstat, sloc)i = (1, 1) then
3: (par, dfsstat, sim)i ← (pin, 0, 1)
4: Move to πi(cldi)
5: else
6: simi ← 1
7: if pari = 0 then ▷ skip the parent port
8: cldi ← 1
9: else

10: cldi ← 0
11: if (dfsstat, lastin, lastout)i = (1, pin, cldi) then
12: dfsstati ← 0 ▷ initialization
13: Move to πi(cldi)
14: else if pin = cldi then ▷ visiting by backtrack
15: if pari = pin + 1 then ▷ skip the parent port
16: cldi ← cldi + 2
17: else
18: cld← cldi + 1
19: if dfsstati = 1 then
20: if (lastin, lastout)i = (pin, cldi) then
21: dfsstati ← 0 ▷ initialization
22: Move to πi(cldi)
23: else if cldi < ∆i then ▷ unprobed ports exist
24: Move to πi(cldi)
25: else ▷ no unprobed port exists
26: if (lastin, lastout)i = (pin, pari) then
27: (dfsstat, sim)i ← (0, 0) ▷ initialization
28: Move to πi(pari)
29: else ▷ invoking backtrack
30: if (lastin, lastout)i = (pin, pin) then
31: if dfsstati = 1 then
32: dfsstati ← 0 ▷ initialization
33: else
34: (dfsstat, sim)i ← (0, 0) ▷ initialization
35: Move to πi(pin)

agent never enters node i with dfsstati > 0 (i.e., the second or later visit of i) through the
edge with port number pari. Hence, if pin = pari and dfsstati > 0 holds in the clean-up
phase, agent a correctly recognizes that it enters i by the forward movement of the DFS in the
clean-up phase. The value update of simi from zero to one occurs when the agent visits i first
in the clean-up phase (3,6), which enables the agent to distinguish between the clean-up and
DFS phases when revisiting i. During the execution, the agent must initialize the information
of the storages written in the DFS phase, except for the information for the ITC (i.e., the
information of simi = 1 for i in the ITC). However, resetting dfsstati can result in the loss

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:13

Algorithm 4 TransMem().

1: if sloci = 1 then
2: smemupdi ← 1
3: if smemi = 0 then ▷ transfer 0 (pin = pari)
4: Move to πi(cldi)
5: else ▷ transfer 1 (pin = cldi)
6: Move to πi(pari)
7: else ▷ receive the transferred value
8: smemupdi ← 1
9: if pin = pari then ▷ transfer 0

10: smemi ← 0
11: Move to πi(cldi)
12: else ▷ transfer 1
13: smemi ← 1
14: Move to πi(pari)

of recognition in the current phase when the agent visits i again in the subsequent execution
of the clean-up. To avoid this, the agent checks whether the current visit of i is the final
one by comparing the number of entry and outgoing ports to the values of (lastin, lastout)i

left in the DFS phase. One can show that the agent never visits i again in the subsequent
execution of the clean-up phase if they are the same (formally proved as Claim 9). Finally,
when the agent returns to s, all unnecessary information is reset, and the agent proceeds to
the memory transfer phase under the condition (dfsstat, sim, smemupd)s = (0, 1, 0) (1,10).
It is noteworthy that simj = 1 holds if and only if j is contained in the constructed ITC.

Memory Transfer Phase

We show the pseudocode of the memory transfer phase in Algorithm 4. In this phase, the agent
circulates ITC. Recall that node i in the ITC is identified by condition simi = 1. The agent
recognizes that the current round is in the memory transfer phase if (sim, dfsstat)i = (1, 0)
holds (1,10-11). It sets smemupdi = 1 and moves to one of i’s neighbors in the ITC, specified
by the value of smemi. As stated above, the variables par and cld at the nodes in the
ITC present two opposite orientations of the ITC; thus, we observe that agent a transfers
0 if pin = pari and 1 otherwise. The transferred value is written for all nodes in the ITC
(4,10 and 4,13). If smemupdi = 1 at the visited node, the agent detects the termination of
circulating the ITC, which triggers the following move-and-reset phase (1,3-4).

Move-and-Reset Phase

We show the pseudocode for the move-and-reset phases in Algorithm 5. This phase is
executed when smemupdi = 1 (1,3). First, agent a sets slocs = 0 at node s, which implies
that a∗ leaves s and moves to πs(spouts) = t. At node t, the agent updates sloct and spint

by 1 and pin, respectively (5,5). The one-round simulation of a∗ finishes because smemt is
already updated by the memory transfer phase. The remaining task is to reset the expired
information of variables sim and smemupd left in the ITC. To reset this, the agent circulates
the ITC following the orientation by cld. The requirement for the orientation is to make the

OPODIS 2022

11:14 Computational Power of a Single Oblivious Mobile Agent

Algorithm 5 MoveReset().

1: if sloci = 1 then ▷ leave from s

2: sloci ← 0
3: Move to πi(spouti)
4: else if pin = pari then ▷ reach to t

5: (sloc, spin, sim, smemupd)i ← (1, pin, 0, 0)
6: Move to πi(pari)
7: else ▷ initialization
8: (sim, smemupd)i ← (0, 0)
9: Move to πi(pari)

agent distinguish the first movement (for updating sloc and spin) from the following reset
movement. Since the port number of the edge (s, t) at t is part, if the agent visits t with
pin = part, it can recognize that the current round is for updating sloc and spin (5,4), in
contrast with the fact that pin = cldt always holds in the reset circulation. If sloci = 1 holds
in the reset circulation, this implies that i = t, and (dfsstat, sim, smemupd)i = (0, 0, 0) also
holds for all i. The configuration becomes legal since all nodes not in the ITC have been
reset correctly in the clean-up phase.

3.4 Correctness

In this section, we prove that each procedure correctly executes the corresponding phase and
bound their running times. To prove this, we first introduce the standard (centralized) DFS
process under the following conditions:
1. Initially, the search head points at s and moves to t at the first neighborhood search.
2. When visiting i ̸= s, the search head sequentially probes its neighbors along the order of

the corresponding port numberings.
3. If the search head moves to a node i already searched, it immediately goes back to the

previous node.
4. The search process terminates when the search head reaches s again.
where s and t denote the nodes defined in the previous section. We define Vdfs as the set of
all nodes reached by the search head in this process and S = i0, i1, . . . iM as the trajectory
of the search head. Note that, in this sequence, one node can appear more than once. In
addition, for node s′ visited immediately before re-vising s, we define VIT C as the set of nodes
on the path from s to s′ in the DFS tree. All Vdfs, S, and VIT C are uniquely determined
only by nodes s and t, graph G, and its port numbering functions Π.

For any phase X, if the agent invokes the procedure corresponding to X in round r, we
say that round r is of phase X. To make it well-defined, we slightly modified our algorithm
by separating the round executing LocalComp() and executing DFS(). That is, after the
local computation phase, the agent finishes the current round with no movement, and in
the next round, it invokes DFS(). Trivially, the correctness of the modified algorithm was
lower than that of the original algorithm. Let rX be the first round of phase X during the
execution. The sub-execution of phase X is defined as the maximal period from rX in which
every round is of phase X. For the final round r′ of the sub-execution of X, the configuration
at the beginning of round r′ + 1 is called the resultant configuration of X.

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:15

A node i is called legal if it satisfies (dfsstat, sim, smemupd)i = (0, 0, 0). First, we present
the correctness criteria for each phase.

▶ Definition 6 (correctness of phases). Each phase is called correct if the sub-execution of
the phase satisfies the following condition:
Local Computation Phase Starting from any valid legal configuration C ∈ C, the resultant

configuration C ′ satisfies (spout, svars, smem)s = ϕ∗(∆l∗ , p∗
in, M∗

l∗ , m∗) and C ′ ∈ C.
DFS Phase Starting from the resultant configuration of any correct local computation phase,

the sub-execution reaches the resultant configuration satisfying as follows:
1. For any u ∈ V , (sim, smemupd)u = (0, 0) holds.
2. For any u ∈ V , dfsstatu = 1 holds if u ∈ VIT C , dfsstatu = 2 holds if u ∈ Vdfs \ VIT C ,

or dfsstatu = 0 holds otherwise.
3. The variables (spout, svars, smem)s store the same values as the starting configuration.

Clean-up Phase Starting from the resultant configuration of any correct DFS phase, the
sub-execution reaches the resultant configuration satisfying as follows:
1. For each u ∈ VIT C , (dfsstat, sim, smemupd)u = (0, 1, 0) holds.
2. For each u ∈ VIT C , πu(paru) and πu(cldu) are also contained in VIT C , and letting

πu(paru) = x, πx(cldx) = u is satisfied.
3. Any node u /∈ VIT C is legal, and (spout, svars, smem)s store the same values as the

starting configuration.
Memory Transfer Phase Starting from the resultant configuration of any correct clean-up

phase, the sub-execution reaches the resultant configuration satisfying as follows:
1. For any u ∈ VIT C , (dfsstat, sim, smemupd)u = (0, 1, 1) and smemu = smems holds.
2. Any node w /∈ VIT C is legal, and (spout, svars, smem)s store the same values as the

starting configuration.
Move-and-Reset Phase Starting from the resultant configuration of any correct memory

transfer phase, the sub-execution reaches the resultant configuration satisfying as follows:
1. Any node i ∈ V is legal, and sloct = 1 holds only for t.
2. The variable spint stores π−1

t (s) (i.e., the entry port number of a∗).
3. smemt = smems.

It is easy to verify that the resultant configuration of the phase triggers the subsequent phase.
Hence, one can trivially deduce the correctness of our algorithm based on the correctness
of all phases. We focus on the correctness of the remaining four phases because procedure
LocalComp() is trivially correct.

▶ Lemma 7. The DFS phase is correct.

Proof. Procedure DFS() does not modify sim or smemupd. Because we assume that the
initial configuration is legal, this proof does not consider the conditions of sim and smemupd,
but focuses on the conditions of variable dfsstat. We first show that the agent moves along
the trajectory i0, i1, . . . , iM during the sub-execution of the DFS phase. If the procedure
DFS() is invoked in some rounds, it chooses the next visited node in the same way as the
centralized DFS explained above. Hence, it suffices to show that the DFS phase continues
until the round when the agent visits s. If dfsstati = 0 holds, procedure DFS() is necessarily
executed (1,12 and 1,15). In addition, during the DFS phase, simi = 0 and pin ̸= pari

hold for any i ∈ V such that dfsstati > 0 because dfsstati > 0 implies that i is already
visited in the DFS phase. Thus, pari appropriately points to the parent of i in the DFS tree
(evidently, the DFS search never visits node i twice through the edge from the parent). Thus,
the sub-execution of the DFS phase terminates if and only if sloci = 1 and dfsstati > 0
hold (1,5-7). When agent a revisits s, dfsstats = 1 and slocs = 1 hold. Hence, the DFS

OPODIS 2022

11:16 Computational Power of a Single Oblivious Mobile Agent

phase continues until node s has been revisited. We show that the resultant configuration
satisfies the condition of Definition 6. Let s′ be the last newly visited node in the DFS phase
(i.e., the node immediately before the revisit of s). Variable dfsstati is set to 2 (and the
agent backtracks) if and only if all ports except that pari are probed. According to the
definition of VIT C , the agent does not backtrack at any node in VIT C . That is, at any node
u ∈ VIT C , the agent does not return to u through the edge indicated by cldu. This implies
that dfsstatu = 1 holds and the condition of Definition 6 is satisfied at any u ∈ VIT C . ◀

The proof of the clean-up phase contains a slight technical non-triviality in the distinction
of the DFS phase.

▶ Lemma 8. The clean-up phase is correct.

Proof. As a proof of Lemma 7, we do not consider the condition of the variable smemupd.
In this phase, the agent traces the same route as in the DFS phase if resetting dfsstat and
sim at node i occurs correctly at the last visit of i. We prove this by inducing the indices
of trajectory i0, i1, . . . iM . Let c0, c1, . . . cM ′ be the trajectory of the agent in the clean-up
phase. We show that ck = ik holds and ck satisfies the conditions for executing the clean-up
phase for any k. Because this phase starts at node s, c0 = i0 and the condition for executing
the clean-up phase is satisfied. Then, as the induction hypothesis, we assume that ck = ik is
satisfied for each k ∈ [0, j] and the condition for executing the clean-up phase is satisfied at
cj . Because the method of deciding the next probed neighbor is the same as the DFS phase,
cj+1 = ij+1 is satisfied. Now, we have to show that the condition for executing the clean-up
phase is satisfied at cj+1. If cj+1 is visited for the first time in this phase, pin = parcj+1 holds,
and the agent sets simcj+1 = 1. Otherwise, the proof is performed if simcj+1 = 1 holds; that
is, cj+1 is not reset up to round j. As we have already shown in Lemma 7 that i0, i1, . . . , iM

is also the trajectory of the agent in the DFS phase, the agent stores the entry/outgoing port
numbers in the variables lastin and lastout of node ik in the k-th round of the DFS phase.
Let Lk be a pair of values stored in (lastin, lastout)ik

when visiting ik. Then, we have the
following claim.

▷ Claim 9. For any k′, k ∈ [0, M], Lk′ ̸= Lk holds, if ik = ik′ holds.

Proof. Assume k′ < k without loss of generality, and let u = ik′ for short. We denote the
values of lastin and lastout in Lx as lastin(x) and lastout(x) respectively. First, consider the
case in which round k′ is the first visit of u in the DFS process. Subsequently, lastin(k′) =
paru holds. Because the agent visits u from its parent only at the first visit, we have
lastin(k) ̸= paru, and thus the claim holds. Next, consider the case in which round k′ is
not the first visit of u. If lastin(k′) = lastin(k) holds, then the agent visits u in rounds k′

and k through the same edge (w, u). There exist two scenarios in which the agent traverses
edge (w, u) in the second or later visit of u: In the first scenario, the agent moves forward
from u to w, but w has already been visited and thus returns to u by backtracking. Second,
the agent moves forward from w to u. These two are all possible scenarios, and thus they
occur at rounds k′ − 1 and k − 1, respectively. While the agent leaves from u with the port
necessarily different from π−1

u (w) in the first scenario, it leaves with the edge to w in the
second scenario (because the next movement is backtracked to w). That is, the two scenarios
choose different numbers of outgoing ports to leave u. Thus, lastout(k′) ̸= lastout(k) holds.
The claim holds. ◁

Suppose that, for contradiction, cj+1 is reset in round k ≤ j. Because cj+1 = ij+1 holds,
round k is not the last visit of ck = cj+1. Let ck′ be the last visit of cj+1(k′ > k), and
Claim 9 implies that Lk′ ̸= Lk. This contradicts the assumption that cj+1 is reset to the

T. Inoue, N. Kitamura, T. Izumi, and T. Masuzawa 11:17

round k. Consequently, cj+1 is not reset to round j and it can be concluded that the trace
of the agent is the same as that of the DFS phase. In addition, it has been proven that reset
at node i occurs at the last visit of i. From these two facts, it is easy to verify that the
resultant configuration satisfies the condition of Definition 6. The lemma is proved. ◀

The correctness of the memory transfer and the move-and-reset phases is relatively
straightforward.

▶ Lemma 10. The memory transfer phase is correct.

Proof. Under the condition of the initial configuration, the nodes i with simi = 1 induce
ITC, and variables par and cld provide two opposite orientations. Hence, evidently, the
agent correctly circulates the ITC in the memory transfer phase and terminates at the initial
position s (note that, at the beginning of the phase, the agent sets smemupds = 1; thus,
when it returns to s, the memory transfer phase necessarily terminates). Assuming that
variables par and cld provide two opposite orientations if the agent leaves s through port
pars, it enters the next node x through port cldx and vice versa. This observation implies
that the simulated memory value smems is correctly transferred to all nodes in the ITC,
and the condition of the resultant configuration in Definition 6 is satisfied. ◀

▶ Lemma 11. The move-and-reset phase is correct.

Proof. Under the condition of the initial configuration, all nodes not in VIT C have already
been legal (i.e., (dfsstat, sim, smemupd) = (0, 0, 0)). As explained in Section 3.3, the agent
correctly circulates the ITC along the orientation using cld and resets sim and smemupd.
Because dfsstat is already zero, we can conclude that the resulting configuration is legal.
The remaining issue is to show that it is the configuration interpreted as that for A∗ after
a one-round simulation. It has already been shown that the memory value is transferred
correctly and svarss is updated correctly in the local computation phase. In addition, the
agent updates spint by pin at the first movement from s to t in the move-and-reset phase;
that is, spint stores the port number of edge (s, t). Because a∗ moves from s to t in this
round, spint is equal to the entry port number of a∗ in the next simulated round. ◀

By combining all of the lemmas above, we obtain the main theorem.

▶ Theorem 12. Algorithm A shown in Algorithm 1 correctly simulates A∗ in any 2-edge-
connected graph G. The round complexity of the algorithm to simulate one round of A∗ is
O(n2). The required storage size is O(λ∗ + log ∆) bits per node.

Proof. The correctness clearly follows Definition 6, and all phases are correct. To limit time
complexity, we bound the running time of each phase. The first two phases (i.e., DFS and
clean-up) depend on the running time of DFS. To execute DFS for the graph such that the
number of nodes and edges are |V | and |E|, respectively, it needs O(|E|) = O(n2) rounds.
The running time of the remaining two phases was bounded by O (|VIT C |) = O(n) rounds.
Hence, the total running time (per round of simulation) is O(n2).

The storage size consumes λ∗ bits for svars, which corresponds to the storage of A∗. The
sizes of the other variables are bounded by O(log ∆). The storage size was O(λ∗ + log ∆)
bits per node. ◀

OPODIS 2022

11:18 Computational Power of a Single Oblivious Mobile Agent

4 Conclusion

In this study, we demonstrated the equivalence of the computational power of a single oblivious
agent and a single one-bit memory agent in a 2-edge-connected graph with O(log ∆)-bit
storage by presenting the algorithm A ∈ A(0, λ) that simulates any A∗ ∈ A(1, λ∗) on
2-edge-connected graphs with λ = λ∗ + O(log ∆). The time overhead of our simulation
algorithm was O(n2) per round. That is, if the original algorithm A∗ runs in polynomial
time, then our simulator also works in polynomial time. Finally, we conclude this study
by explaining the open problem. The primary open problem deduced from our results is
whether an oblivious agent can simulate any one-bit agent on 2-edge-connected graphs under
the assumption that only O(1)-bit storage per node is available. As a weaker form of this
problem, 2-edge-connected graphs with O(1)-bit storage per node can be also explored.

References
1 Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg. Label-

guided graph exploration by a finite automaton. ACM Trans. Algorithms, 4(4):42:1–42:18,
2008. doi:10.1145/1383369.1383373.

2 Ajoy Kumar Datta, Anissa Lamani, Lawrence L. Larmore, and Franck Petit. Enabling ring
exploration with myopic oblivious robots. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015, pages
490–499. IEEE Computer Society, 2015. doi:10.1109/IPDPSW.2015.137.

3 Yoann Dieudonné, Shlomi Dolev, Franck Petit, and Michael Segal. Explicit communication
among stigmergic robots. Int. J. Found. Comput. Sci., 30(2):315–332, 2019. doi:10.1142/
S0129054119500072.

4 Yann Disser, Jan Hackfeld, and Max Klimm. Undirected graph exploration with ⊖(log log n)
pebbles. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 25–39. SIAM, 2016. doi:10.1137/1.9781611974331.ch3.

5 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theor. Comput. Sci., 345(2-3):331–344, 2005. doi:10.1016/j.tcs.
2005.07.014.

6 Taisuke Izumi, Kazuki Kakizawa, Yuya Kawabata, Naoki Kitamura, and Toshimitsu Masuzawa.
Deciding a graph property by a single mobile agent: One-bit memory suffices, 2022. doi:
10.48550/arXiv.2209.01906.

7 Sayaka Kamei. Autonomous distributed systems of myopic mobile robots with lights. In
ICDCN ’21: International Conference on Distributed Computing and Networking, Virtual
Event, Nara, Japan, January 5-8, 2021, page 5. ACM, 2021. doi:10.1145/3427796.3432715.

8 Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada.
Gathering on rings for myopic asynchronous robots with lights. In Pascal Felber, Roy
Friedman, Seth Gilbert, and Avery Miller, editors, 23rd International Conference on Principles
of Distributed Systems, OPODIS 2019, December 17-19, 2019, Neuchâtel, Switzerland, volume
153 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.OPODIS.2019.27.

9 Fukuhito Ooshita and Sébastien Tixeuil. Ring exploration with myopic luminous robots. Inf.
Comput., 285(Part):104702, 2022. doi:10.1016/j.ic.2021.104702.

10 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

11 Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. A single agent exploration in unknown undirected graphs with
whiteboards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 98-A(10):2117–2128,
2015. doi:10.1587/transfun.E98.A.2117.

https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1109/IPDPSW.2015.137
https://doi.org/10.1142/S0129054119500072
https://doi.org/10.1142/S0129054119500072
https://doi.org/10.1137/1.9781611974331.ch3
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.48550/arXiv.2209.01906
https://doi.org/10.48550/arXiv.2209.01906
https://doi.org/10.1145/3427796.3432715
https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
https://doi.org/10.1016/j.ic.2021.104702
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1587/transfun.E98.A.2117

Line Search for an Oblivious Moving Target
Jared Coleman # Ñ

University of Southern California, Los Angeles, CA, USA

Evangelos Kranakis # Ñ

Carleton University, Ottawa, Canada

Danny Krizanc # Ñ

Wesleyan University, Middletown, CT, USA

Oscar Morales-Ponce # Ñ

California State University, Long Beach, CA, USA

Abstract
Consider search on an infinite line involving an autonomous robot starting at the origin of the line
and an oblivious moving target at initial distance d ≥ 1 from it. The robot can change direction
and move anywhere on the line with constant maximum speed 1 while the target is also moving on
the line with constant speed v > 0 but is unable to change its speed or direction. The goal is for the
robot to catch up to the target in as little time as possible.

The classic case where v = 0 and the target’s initial distance d is unknown to the robot is the
well-studied “cow-path problem”. Alpert and Gal [2] gave an optimal algorithm for the case where a
target with unknown initial distance d is moving away from the robot with a known speed v < 1. In
this paper we design and analyze search algorithms for the remaining possible knowledge situations,
namely, when d and v are known, when v is known but d is unknown, when d is known but v is
unknown, and when both v and d are unknown. Furthermore, for each of these knowledge models
we consider separately the case where the target is moving away from the origin and the case where
it is moving toward the origin. We design algorithms and analyze competitive ratios for all eight
cases above. The resulting competitive ratios are shown to be optimal when the target is moving
towards the origin as well as when v is known and the target is moving away from the origin.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Adversary models

Keywords and phrases Infinite Line, Knowledge, Oblivious, Robot, Search, Search-Time, Speed,
Target

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.12

Related Version arXiv Version: https://doi.org/10.48550/arXiv.2211.03686 [7]

Funding Evangelos Kranakis: Research supported in part by NSERC Discovery grant.

1 Introduction

Search is important to many areas of computer science and mathematics and has received
the attention of numerous studies. In the simplest search scenario, one is interested in the
optimal trajectory of a single autonomous mobile agent (also referred to simply as a robot)
tasked with finding a target placed at an unknown location on the infinite line. The line
search problem is to give an algorithm for the agent so as to minimize the competitive ratio
defined as the supremum over all possible target locations of the ratio of the time the agent
takes to find the target and the time it would take if the target’s initial position was known
to the robot ahead of time. This classic problem has led to many variations (see [2] for more
on its history).

© Jared Coleman, Evangelos Kranakis, Danny Krizanc, and Oscar Morales-Ponce;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaredcol@usc.edu
https://jaredraycoleman.com
https://orcid.org/0000-0003-1227-2962
mailto:kranakis@scs.carleton.ca
https://people.scs.carleton.ca/~kranakis/
https://orcid.org/0000-0002-8959-4428
mailto:dkrizanc@wesleyan.edu
http://dkrizanc.web.wesleyan.edu/
mailto:Oscar.MoralesPonce@csulb.edu
https://home.csulb.edu/~omorales/
https://orcid.org/0000-0002-9645-1257
https://doi.org/10.4230/LIPIcs.OPODIS.2022.12
https://doi.org/10.48550/arXiv.2211.03686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Line Search for an Oblivious Moving Target

In this paper we consider an extension of the line search problem involving an autonomous
robot and an oblivious moving target. The search is again performed on an infinite line
and concerns an autonomous robot starting at the origin of the line but differs from the
previously studied case in that the search is for a moving target whose speed and direction
are not necessarily known to the searching robot. The robot starts at the origin and the
target at an arbitrary distance d from the origin. The target is moving with constant speed
and is oblivious in that it cannot change its speed and/or direction of movement. We consider
and analyze several alternative knowledge-based scenarios in which the target’s speed and
initial distance from the origin may be known or unknown to the searching robot. The case
where a target with unknown initial distance from the origin is moving away from the origin
was solved by Alpern and Gal [2]. As far as we are aware, these are the first results for the
remaining cases.

1.1 Notation and terminology

On the infinite real line, consider an autonomous robot which is initially placed at the origin
whose maximum speed is 1 and an oblivious robot (also referred to as the moving target)
initially placed at a distance d to the right or left of the origin and moving with constant
speed v > 0. As is usually done in linear search and in order to avoid trivial considerations on
the competitive ratio by adversarially placing the target very close to the robot, we assume
that d is not smaller than the unit distance, i.e., d ≥ 1.

The target may be moving away from or toward the origin. If it is moving away, we
assume its speed is strictly less than 1 as otherwise the problem can not be solved. Further,
we assume that the autonomous robot knows the direction the target is moving (away from
or toward the origin). The search is completed as soon as the robot and target are co-located.

The movement of the autonomous robot is determined by a trajectory which is defined
as a continuous function t → f(t), with f(t) denoting the location of the robot at time t.
Moreover, it is true that |f(t) − f(t′)| ≤ u|t − t′|, for all t, t′, where u is the speed of the
agent (be that the searching robot or the oblivious target). The autonomous robot can move
with its own constant speed and during the traversal of its trajectory it may stop and/or
change direction instantaneously and at any time as specified by the search algorithm.

A search strategy is a sequence of movements followed by the robot. The competitive
ratio of a search strategy X, denoted CRX , is defined as the supremum over all possible
initial target locations and speeds of the ratio of the time the agent takes to find the target
and the time it would take if the target’s initial position was known to the robot ahead of
time. The competitive ratio of a certain type of search problem is the infimum of CRX taken
over all possible strategies X for this problem. By abuse of notation we may drop mention
of X when this is easily implied from the context.

Our goal in this paper is to prove bounds on the competitive ratios of algorithms under
four different knowledge models:
1. FullKnowledge: The robot knows both the target’s speed v and its initial distance d.
2. NoDistance: The robot knows the target’s speed v but not its initial distance d.
3. NoSpeed: The robot knows the target’s initial distance d, but not its speed v.
4. NoKnowledge: The robot knows neither the target’s speed v nor its initial distance d.
For all knowledge models, the robot does not know the target’s initial position. We study
each of the above knowledge models for the case where the target is moving toward the origin
(Toward) and where it is moving away (Away) from the origin. In each case, we assume the
robot knows the direction of travel of the target.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:3

1.2 Related Work
Several research papers have considered the search problem for a robot searching for a static
(fixed) target placed at an unknown location on the real line, see [3, 14]. The problem was
first independently considered in a stochastic setting by Bellman and Beck in the 1960’s
(cf. [4, 5] as well as [3, 14]). In a deterministic setting it is now well known that the optimal
trajectory for this single agent search uses a doubling strategy whose trajectory attains a
competitive ratio of 9. Linear search has attracted much attention and been the focus of
books including [1, 2, 15].

The case of a moving target appears to have been first considered by McCabe [13]. In
that paper, the problem of searching for an oblivious target that follows a Bernoulli random
walk on the integers is considered. For the case of a deterministic oblivious searcher, the only
result we are aware of us is found in Alpern and Gal [2]. There they consider the case where
the target is moving away from the origin at a constant speed v < 1 which is known to the
searching robot. Only the initial distance of the target is unknown. They give an algorithm
with optimal competitive ratio for this case.

Our problem is reminiscent of the problem of catching a fugitive in a given domain which
is generally referred to as the cops and robbers problem [6]. The main difference is that in
those problems, the target (robber) is itself an autonomous agent. As a result, the techniques
considered there do not apply to our case.

Our problem is also related to rendezvous (of two robots) on an infinite line but it differs
because in our case only one of the robots is autonomous while the other is oblivious. Related
studies on the infinite line include rendezvous with asymmetric clocks [9] and asynchrnous
deterministic rendezvous [12]. More recent work on linear search concerns searching for
a static target by a group of cooperating robots, some of which may have suffered either
crash [10] or Byzantine [8] faults.

1.3 Results of the paper
In all situations considered it is unknown to the robot whether the target is initially to
the left or to the right of the origin. We analyze the competitive ratio in four situations
which reflect what knowledge the robot has about the target. We present results on the
FullKnowledge model (the robot knows v and d) in Section 2, the NoDistance model (the
robot knows v but not d) in Section 3, the NoSpeed model (the robot knows d but not v)
in Section 4, and the NoKnowledge model (the robot knows neither v nor d) in Section 5.
For each of these models we study separately the case when the target is moving away or
toward the origin (this knowledge being available to the robot). The results are summarized
in Table 1. We conclude with a summary and additional open problems.

2 The FullKnowledge Model

We first study the model where the robot knows the target’s speed v and its initial distance
from the origin d.

2.1 The FullKnowledge/Away Model
For the case when the target is moving away from the origin, clearly if v ≥ 1 then the robot
can never catch the target. Thus, for this model (and all other Away models), we assume
v < 1. In this section, we will analyze an algorithm where the robot chooses a direction and
moves for time d

1−v . If the robot does not find the target after moving for time d
1−v in one

direction, then it changes direction and continues moving until it does.

OPODIS 2022

12:4 Line Search for an Oblivious Moving Target

Table 1 Table of competitive ratio bounds proven for each knowledge model for cases with the
target moving away from or towards the origin with speed v and initial distance d from the robot
which is moving with speed 1. Equalities indicate that tight upper and lower bounds are proven.

Knowledge Movement Competitive Ratio Section

v, d
Away CR = 1 + 2

1−v
2.1

Toward
CR = 1 + 2

1+v
if v < 1

CR = 1 + 1
v

otherwise 2.2

v
Away CR = 1 + 8 1+v

(1−v)2 3.1 [2]

Toward
CR = 1 + 1

v
if v ≥ 1

3
CR = 1 + 8 1−v

(1+v)2 otherwise 3.2

d
Away

CR ≤ 5 if v ≤ 1
2

CR ≤ 1 + 16(log 1
1−v)2

(1−v)4 otherwise
4.1

Toward CR = 3 4.2

∅
Away

CR ≤ 1 + 16
d

[
log log

(
max

(
d, 1

1−v

))
+ 3
]

· max
(
d, 1

1−v

)8 · log2 [max
(
d, 1

1−v

)] 5.1

Toward CR = 1 + 1
v

5.2

Algorithm 1 Online Algorithm for FullKnowledge/Away Model.

1: input: target speed v and initial distance d

2: choose any direction and go for time d
1−v

3: if target not found then
4: change direction and go until target is found

▶ Theorem 1. For the FullKnowledge/Away model, Algorithm 1 has an optimal competitive
ratio of

1 + 2
1− v

. (1)

Proof. By Algorithm 1, the robot goes in one direction for a time d
1−v . Observe that if the

robot does not encounter the target after this amount of time, it must be on the opposite side
of the origin (in the other direction). At the time the robot changes direction, its distance to
the target will be equal to d

1−v + d + dv
1−v = 2d

1−v . Thus, the total time required until the
robot catches up to the target is at most

d

1− v
+ 2d

(1− v)2 .

Clearly then, the competitive ratio is at most
d

1−v + 2d
(1−v)2

d
1−v

= 1 + 2
1− v

which is as claimed in Equation (1) above.
Optimality follows from the fact that regardless of which direction the robot chooses

to travel, the adversary can place the target in the opposite direction. Moreover, for the
robot to catch up to the target it must visit one of the points ± d

1−v . If the robot visits
location d

1−v to the right (resp. left) the adversary places the target on the left (resp. right).
Therefore the completion time will be at least d

1−v + 2d
(1−v)2 . This shows the upper bound is

tight and completes the proof of Theorem 1. ◀

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:5

2.2 The FullKnowledge/Toward Model
Consider the following algorithm which is similar to Algorithm 1.

Algorithm 2 Online Algorithm for the FullKnowledge/Toward Model.

1: input: target speed v and initial distance d

2: choose any direction and go for time d
1+v

3: if target not found then
4: change direction and go until target is found

▶ Theorem 2. For the FullKnowledge/Toward model, Algorithm 2 has competitive ratio at
most

1 + 2
1 + v

. (2)

Proof. The robot goes in one direction for a time d
1+v . If the robot finds the target in this

time, the algorithm is clearly optimal. If, however, the robot does not find the target, then it
must be on the opposite side of the origin (in the other direction). If this is the case, then
by time d

1+v the target has moved a distance dv
1+v and is at distance d − dv

1+v = d
1+v from

the origin. Therefore at the time the robot changes direction, the distance between robot
and target is 2d

1+v . Thus, the robot will encounter the target in additional time 2d
(1+v)2 . It

follows that the total time required for the robot to meet the target is d
1+v + 2d

(1+v)2 and the
resulting competitive ratio satisfies

CR ≤
d

1+v + 2d
(1+v)2

d
v+1

= 1 + 2
1 + v

.

This completes the proof of Theorem 2. ◀

▶ Theorem 3. For the FullKnowledge/Toward model, the competitive ratio of any online
algorithm is at least 1 + 2

1+v , provided that v < 1. In particular, Algorithm 2 is optimal for
v < 1.

Proof. Consider any algorithm for a robot starting at the origin to meet a target initially
placed at an unknown location distance d from the origin. For any point at distance a from
the origin, the target takes exactly d−a

v time to reach a. Then, let t denote the time the robot
first passes through a point at distance a from the origin. If t < d−a

v , then the robot cannot
know whether the target is on the same or opposite side of the origin. On the other hand,
if t ≥ d−a

v and it has not encountered the target, then the target must be on the opposite
side of the origin. Thus, given a trajectory, let ±a be the first point such that the robot
is at position ±a at time exactly d−a

v . Clearly such a point must exist for any trajectory
since the target is moving toward the origin. Then whichever side of the origin the robot is
on, consider the instance where the target started on the opposite side. Clearly then, the
robot takes an additional time at least 2a

1+v to reach the target. Thus, the competitive ratio
is given by:

d−a
v + 2a

1+v
d

1+v

= (d− a)(1 + v) + 2av

vd
= 1 + 1

v
+ a(v − 1)

dv
. (3)

Observe that whenever v < 1, the right-hand side of Equation (3) satisfies

1 + 1
v

+ a(v − 1)
dv

≥ 1 + 1
v

+
d

1+v (v − 1)
dv

= 1 + 2
1 + v

which completes the proof of Theorem 3. ◀

OPODIS 2022

12:6 Line Search for an Oblivious Moving Target

With Theorem 3 proved, we know Algorithm 2 is optimal for any value of v between
0 and 1, but what about when v > 1? In this case, we’ll prove the following algorithm is
optimal: the robot waits at the origin forever. We call this algorithm “the waiting algorithm”.

▶ Theorem 4. Whenever the target is moving toward the origin with speed v ≥ 1, the waiting
algorithm has an optimal competitive ratio of 1 + 1

v .

Proof. Clearly the algorithm takes exactly time d/v to complete and so the upper bound
follows trivially. For the lower bound, we build upon the proof of Theorem 3. It simply
remains to consider Equation (3) for v > 1. In this case, the right-hand side of Equation (3)
is increasing with respect to a ≥ 0, so

1 + 1
v

+ a(v − 1)
dv

≥ 1 + 1
v

.

This completes the proof of Theorem 4. ◀

▶ Remark 5. Observe that the waiting algorithm makes no use of the target’s speed or initial
distance and therefore, as long as the target is moving toward the origin, applies directly to
the other knowledge models.

3 The NoDistance Model

In this section we assume that the robot knows v but not d. Consider the following zig-zag
algorithm with “expansion ratio” a > 0 (with the value of a to be determined).

Algorithm 3 Online Algorithm for NoDistance/Away and NoDistance/Toward Models.

1: input: target speed v and expansion ratio a

2: i← 0
3: while target not found do
4: if at origin then
5: d← (−a)i

6: i← i + 1
7: else if at d then
8: d← 0
9: move toward d

3.1 The NoDistance/Away Model
The following result was shown by Alpern and Gal [2].

▶ Theorem 6. For the NoDistance/Away model, Algorithm 3 with a = 2 1+v
1−v has an optimal

competitive ratio of

1 + 8 1 + v

(1− v)2 .

3.2 The NoDistance/Toward Model

Recall first the statement made in Remark 5, that the optimality of the waiting algorithm
(which makes no use of any knowledge of d) holds for any d as long as v ≥ 1. Thus, we need
only consider scenarios where 0 ≤ v < 1. As we will see, however, when the target is moving

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:7

toward the origin, the waiting algorithm is optimal for far slower targets! In general, since
the target is moving toward the origin, the robot need not search ever-increasing distances
away from the origin (i.e. execute Algorithm 3 with an expansion ratio a > 1). We call any
algorithm which involves the robot never traveling further than some finite distance from
the origin (in one or both directions) a contracting algorithm. Note that Algorithm 3 for
0 < a ≤ 1 is a contracting algorithm and a = 0 is exactly the waiting algorithm. We’ll start
by showing that any contracting algorithm cannot have a better competitive ratio than the
waiting algorithm:

▶ Theorem 7. The competitive ratio of Algorithm 3 for any 0 ≤ a ≤ 1 is 1 + 1
v .

Proof. Let d′ be the finite distance further than which the robot will never travel in at
least one direction. Then consider the scenario where the target is initially a distance
d = c · d′ >> d′ from the origin in the same direction. Then the competitive ratio is at least

sup
c

cd′−d′

v
cd′

v+1
= sup

c

c− 1
c

1 + v

v
= lim

c→∞

c− 1
c

(
1 + 1

v

)
= 1 + 1

v

which proves Theorem 7. ◀

By Theorem 7, any algorithm which hopes to out-perform the waiting algorithm must be
expanding. Now we show that the following hybrid algorithm, Algorithm 4, is optimal.

Algorithm 4 Wait or Zig-Zag Search Algorithm for NoDistance/Toward model.

1: input: target speed v

2: if v ≥ 1
3 then

3: execute waiting algorithm
4: else
5: execute Algorithm 3 with a = 2 1−v

1+v

▶ Theorem 8. For the NoDistance/Toward model, the competitive ratio of Algorithm 4 is
at most{

1 + 1
v if v ≥ 1

3

1 + 8 1−v
(1+v)2 if v < 1

3
(4)

Proof. The first case is trivial: the competitive ratio of the waiting algorithm is exactly
1 + 1

v by Theorem 4. The second case, however, is a bit more complicated. First, observe
that if v < 1

3 then a must be less than 3. Indeed, consider the scenario where the robot “just
misses” the target on the very first round of the algorithm (after traveling a distance 1 in
some direction and then turning around). Then the competitive ratio of the algorithm is

1 + 2a + 2
1 + v

which is greater than 1 + 8 1−v
(1+v)2 for any a > 3 and v > 0:

1 + 2a + 2
1 + v

> 1 + 8
1 + v

> 1 + 8
1 + v

· 1− v

1 + v

since 1−v
1+v < 1.

OPODIS 2022

12:8 Line Search for an Oblivious Moving Target

Now, consider the round k when the robot catches up to the target and observe that

ak−2 < d−

(
2

k−3∑
i=0

ai + ak−2

)
v = d−

(
2ak−2 − 1

a− 1 + ak−2
)

v

since otherwise, the robot would have caught up to the target in round k − 2. This yields
the following inequality which will prove useful in analyzing the competitive ratio below:

ak−2 < d−
(

2 ak−2

a− 1 + ak−2
)

v

≤ d
a− 1

a− 1 + v(a + 1) + v

a− 1 + v(a + 1)

≤ d
a− 1

a− 1 + v(a + 1) + 1
4a− 2 (5)

Observe the worst competitive ratio, then, is given by the situation where the robot “just
misses” the target on the (k − 2)th round and catches up to it only on round k. It follows
the competitive ratio of Algorithm 4 is

2
∑k−3

i=0 ai + ak−2 + 2(ak−2+ak−1)
1+v

d
1−v

≤
2 ak−2−1

a−1 + ak−2 + 2(ak−2+ak−1)
1+v

d
1−v

which, by Inequality (5) (and by substituting each ak−2 with the right-hand side of Inequal-
ity (5)), is less than or equal to

CR ≤ 1 + 1
2

[
1
d

(
a− 3
a− 1 ·

v(5− 7a)
1− 3a + 2a2

)
+ 4a2

(a− 1) + v(a + 1)

]
(6)

≤ lim
d→∞

1 + 1
2

[
1
d

(
a− 3
a− 1 ·

v(5− 7a)
1− 3a + 2a2

)
+ 4a2

(a− 1) + v(a + 1)

]
= 1 + 2a2

(a− 1) + v(a + 1) (7)

which follows since the right-hand side of Inequality (6) is increasing with respect to d on
1 < a ≤ 3. Finally, the right-hand side of Inequality (7) is minimized at a = 2 v−1

v+1 with a
value of 1 + 8 1−v

(1+v)2 , which proves Theorem 8. ◀

Now we show that Algorithm 4 is optimal by proving a tight lower bound on the
competitive ratio for any online algorithm. Our proof is based on techniques developed
in [11]. Let X(t) denote be the robot’s position at time t according to a given strategy.

▶ Theorem 9. For the NoDistance/Toward model, any strategy X has a competitive ratio
of at least{

1 + 1
v if v ≥ 1

3

1 + 8 1−v
(1+v)2 otherwise

Proof. Let βt = inft′>t
t′

|X(t′)| . Clearly, then, if t1 ≤ t2 then βt1 ≤ βt2 . Furthermore, βt ≥ 1
for all t since the maximum speed of the robot is 1. Now let β = limt→∞ βt. By definition
of the limit infimum, there must exist a finite time t such that β ≤ t′

|X(t′)| for all t′ ≥ t and
thus there must exist a time t1 > β(β+1)

β−1 t such that the robot reaches a point (without loss
of generality, on the right side of the origin) X(t1) = t1

β+ϵ1
for any arbitrarily small ϵ1 > 0.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:9

(X(t1), t1)

t = −βx t = βx

0p

(x0, t0)

earliest meeting point

t = 1
v (x− p)

time

x

t

Figure 1 The cone-bounded trajectory of the robot and worst-case placement p of the target.
The small gray triangle is to remind the reader that, by the definition of β, the robot trajectory is
only guaranteed to be contained by the cone after some finite time t. Thus, in order to maximize
the competitive ratio, we (as the adversary) should place the target so that its trajectory does not
intersect (x0, t0) or the gray triangle.

Consider such a time and observe that, by construction, the robot could not have reached any
point to the left of x0 = − t1−X(t1)

1+β after time t0 = β(t1−X(t1))
1+β since x0 ≤ −t and t0 > t (see

Figure 1). Now, consider a target starting at initial positon p (to be determined) moving at
speed v > 0 toward a robot which starts at the origin and has a speed of 1. Thus, by placing
the target at a starting location so that the farthest right the robot could have reached is
x0 − ϵ0 for any arbitrarily small ϵ0, the robot can not have reached the target by time t1.
Such a target has an initial position of

p = − (1 + βv)(t1 −X(t1))
1 + β

− ϵ0

and follows the trajectory

Xtarget(t) = vt + p (8)

where Xtarget(t) denotes the robot’s position at time t. Observe also, if the robot moves
directly toward the target after t1, then its trajectory after time t1 is given by

X(t) = X(t1) + t1 − t (9)

Thus, the earliest time the robot could possibly encounter the target can be computed
by finding the intersection between the robot trajectory (Equation (9)) and the target’s
trajectory (Equation (8)) and solving for t:

vt + p = X(t1) + t1 − t

t = X(t1) + t1 − p

1 + v
. (10)

OPODIS 2022

12:10 Line Search for an Oblivious Moving Target

Then the competitive ratio (Equation (10) divided by −p/(1 + v), the optimal search
time) is

CR ≥ sup
ϵ0,ϵ1

(X(t1) + t1 − p)/(1 + v)
−p/(1 + v) = sup

ϵ0,ϵ1

X(t1) + t1 − p

−p
= sup

ϵ0,ϵ1

[
1− X(t1) + t1

p

]
= sup

ϵ1

[
1 + (1 + β)(t1 + X(t1))

(1 + βv)(t1 −X(t1))

]
(11)

= 1 + (1 + β)2

(1 + βv)(β − 1) (12)

where Inequality (11) follows since p = − (1+βv)(t1−X(t1))
1+β − ϵ0 for arbitrarily small ϵ0 > 0

and Inequality (12) follows since X(t1) = t1
β+ϵ1

for arbitrarily small ϵ1 > 0. Finally, observe
that if v < 1

3 , then the right-hand side of Equality (12) has a single minimum of 1 + 8 1−v
(1+v)2

at β = v−3
3v−1 . On the other hand, if v ≥ 1

3 , then the right-hand side of Equality (12) is
decreasing with respect to β and thus the competitive ratio satisfies

CR ≥ lim
β→∞

[
1 + (1 + β)2

(1 + βv)(β − 1)

]
= 1 + 1

v
. ◀

4 The NoSpeed Model

In this section we assume that the robot knows d but not v.

4.1 The NoSpeed/Away

For this model, it is clear that the robot cannot execute an algorithm like Algorithm 1 since
no upper bound on the target’s speed is known. Note that, if any upper bound v̂ < 1 on
the target’s speed were known, the robot could execute Algorithm 1 by assuming the target
speed to be equal to v̂, resulting in a competitive ratio of at most 1 + 2

1−v̂ . Since the target
speed v is unknown (and potentially very close to 1), however, we propose another strategy.
Consider a monotone increasing non-negative integer sequence {fi : i ≥ 0} such that f0 = 1
and fi < fi+1, for all i ≥ 0. The idea of the algorithm is to search for the target by making a
guess about its speed in rounds as follows. We start from the origin and alternate searching
right and left. On the i-th round, we use the guess vi = 1− 2−fi and search the necessary
distance away from the origin such that, if the target’s speed is less than or equal to vi and
the target’s initial position is in the same direction from the origin that the robot moves in
round i, then the target will be found in round i. Otherwise, we can conclude that either
the target is moving with a speed greater than vi or else it is on the opposite side of the
origin. In this case the robot returns to the origin and repeats the algorithm in the opposite
direction.

Later in the analysis we will show how to select the integer sequence {fi : i ≥ 0} so as
to obtain bounds on the competitive ratio. The algorithm explained above is formalized as
Algorithm 5.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:11

Algorithm 5 Online Algorithm for NoSpeed/Away Model.

1: input: target initial distance d

2: integer sequence {fi : i ≥ 0} such that fi < fi+1, for i ≥ 0 and f0 = 1;
3: t← 0
4: for i← 0, 1, 2, . . . until target found do
5: vi ← 1− 2−fi

6: xi ← (−1)i · d+tvi

1−vi

7: move to xi and back to the origin
8: t← t + |xi|

To compensate for the fact that the starting speed of the robot in the algorithm is
v0 = 1− 2−1 = 1/2 we first need to consider the case v ≤ 1

2 .

▶ Lemma 10. For the NoSpeed/Away model, if the unknown speed v of the target is less
than or equal to 1

2 then the competitive ratio of Algorithm 5 is at most 5.

Proof. According to Algorithm 5 and since v < 1/2, the robot will find the target either on
its first trip away from the origin, after time at most 2d, or after the first time it changes
direction of movement. In the worst case it will spend time 2d in one direction and then
additional time 2d+d+2dv

1−v . It follows that the competitive ratio is at most

2d + 2d+d+2dv
1−v

d
1−v

= 5

which proves Lemma 10. ◀

Next we analyze the competitive ratio of the algorithm for v > 1
2 .

▶ Lemma 11. For the NoSpeed/Away model, if the unknown speed v of the target is greater
than 1

2 then the competitive ratio of Algorithm 5 is at most 1 + 21+
∑k

j=0
fj · 4k+1 where k is

the first k such that vk ≥ v.

Proof. Let di be the distance from the origin the target would be if its speed was equal to
vi, where vi = 1 − 2−fi at time

∑i−1
j=0

(
1− 2−fi

)
. In other words, if vi ≥ v, then di is the

maximum distance of the target from the origin (and thus, the robot) at the beginning of
round i of the algorithm. Thus, if the speed of the target is less than or equal to vi and the
robot moves toward it in round i, then it would take at most xi = di

1−vi
= 2fidi additional

time for the robot to catch up to the target, for i ≥ 0. Recall the algorithm involves the
robot moving a distance xi (in time xi, since the robot’s speed is 1) away from the origin
and back in round i. Observe then that d0 = d, v0 = 1/2, and

di = d + 2vi

i−1∑
j=0

xj . (13)

Therefore, it follows from the definition of xi that

xi = 2fi

d + 2vi

i−1∑
j=0

xj

 . (14)

OPODIS 2022

12:12 Line Search for an Oblivious Moving Target

As a consequence

i−1∑
j=0

xj = xi − 2fid

2fi · 2 · vi
(15)

Similarly, if we replace i with i + 1 we have that

i∑
j=0

xj = xi+1 − 2fi+1d

2fi+1 · 2 · vi+1
(16)

Subtracting Equation (15) from Equation (16), we derive the recurrence

xi = xi+1 − 2fi+1d

2fi+1 · 2 · vi+1
− xi − 2fid

2fi · 2 · vi
(17)

Collecting similar terms and simplifying Equation (17) yields

xi+1

2fi+1 · 2 · vi+1
=
(

1 + 1
2fi · 2 · vi

)
xi +

(
2fi+1

2fi+1 · 2 · vi+1
− 2fi

2fi · 2 · vi

)
d

= xi

(
1 + 1

2f
i · 2 · vi

)
+ d

2vi+1
− d

2vi
(18)

≤
(

1 + 1
2fi · 2 · vi

)
xi (19)

following from the fact the sum of the last two terms in Inequality 18 is less than or equal
to 0.

If we simplify the right-hand side of Equation (19), we derive the following recursive
inequalities

xi+1 ≤ 2fi+1 · 2 · vi+1

(
1 + 1

2fi · 2 · vi

)
xi

≤ 2fi+1 · 2 ·
(

1 + 1
2fi

)
xi

≤
(
2 · 2fi+1 + 2 · 2fi+1−fi

)
xi

≤ 2fi+1 · 4 · xi, (20)

which follows since 1
2 ≤ vi < 1 and fi < fi+1 for all i.

By repeated application of the last Recurrence (20) above and using the fact that by
definition x0 = 2f0d, it follows easily by induction that

xi+1 ≤ 2fi+1 · 4 · xi

≤ 2fi+1+fi · 42 · xi−1

...
≤ 2fi+1+fi+fi−1+···+f1 · 4i+1 · x0

≤ 2
∑i+1

j=0
fj · 4i+1 · d (21)

Consider the first i such that vi ≥ v. It follows that and vi−1 < v which yields
1 − v < 1 − vi−1 = 2−fi−1 and implies that 2fi−1 < 1

1−v . Note that although vi ≥ v, the
robot may not find the target in round i because it is located in the opposite direction. It is

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:13

guaranteed, however, to find the target by round i + 1. Moreover the total time that has
elapsed from the start until round i is 2

∑i
j=0 xj at which time the target is at distance

d + v2
∑i

j=0 xj from the origin.
As a consequence the competitive ratio of Algorithm 5 is at most

2
∑i

j=0 xj +
d+2v

∑i

j=0
xj

1−v
d

1−v

= 1 + 2(v + 1− v)
d

i∑
j=0

xj

= 1 + xi+1 − 2fi+1d

d
· 2

2fi+1 · 2 · vi+1
(By (16))

≤ 1 + xi+1

d
· 2

2fi+1 · 2 · vi+1

≤ 1 + 1
vi+1

2
∑i

j=0
fj · 4i+1 (By (21))

Since vi+1 ≥ 1/2 we conclude with an upper bound on the competitive ratio of Algorithm 5
of

1 + 21+
∑i

j=0
fj · 4i+1 (22)

which proves Lemma 11. ◀

We are now ready to prove the main theorem about the competitive ratio of Algorithm 5.

▶ Theorem 12. For the NoSpeed/Away model, the competitive ratio of Algorithm 5 when
applied to the sequence fj = 2j, for all j ≥ 0, is at most5 if v ≤ 1

2

1 + 16(log 1
1−v)2

(1−v)4 otherwise

where log is the base-2 logarithm.

Proof. Consider the first index i such that vi ≥ v. It follows that and vi−1 < v, and so

1− 2−2i−1
< v ⇒ 22i−1

<
1

1− v
.

Then, by Lemma 11, the competitive ratio of is at most

1 + 21+
∑i

j=0
fj · 4i+1 = 1 + 21+

∑i

j=0
2j

· 4i+1

= 1 + 22i+1
· 4i+1 ≤ 1 +

(
1

1− v

)4
·
(

4 · log
(

1
1− v

))2

≤ 1 +
16
(

log 1
1−v

)2

(1− v)4

This proves Theorem 12. ◀

▶ Remark 13. By Theorem 1, 1 + 2
1−v is a lower bound on any algorithm when both v, d are

known. As a consequence it must also be a lower bound when d is known but v is not.

OPODIS 2022

12:14 Line Search for an Oblivious Moving Target

4.2 The NoSpeed/Toward Model
Now we consider the case where the target is moving toward the origin.

Algorithm 6 Online Algorithm for NoSpeed/Toward Model.

1: input: target initial distance d

2: choose any direction and go for time d

3: if target not found then
4: change direction and go until target is found

▶ Theorem 14. For the NoSpeed/Toward model, Algorithm 6 achieves an optimal competitive
ratio at most 3.

Proof. The robot chooses a direction (without loss of generality, say to the right) and goes
for a time d (this is where the robot makes use of its knowledge of the distance d). If it does
not find the target it changes direction. In the meantime the target has moved for a distance
dv and now must be at location −d + dv. Therefore at the time the robot changes direction
the distance between robot and target is equal to d− (−d + dv) = 2d− dv, and hence the
meeting will take place in additional time 2d−dv

1+v . It follows that the total time required for
the robot to meet the target must be equal to d + 2d−dv

1+v . The resulting competitive ratio
satisfies

CR ≤
d + 2d−dv

1+v
d

v+1
= 3.

This proves the upper bound.
To prove the lower bound we argue as follows. If the searcher never visits either of the

points ±d then the competitive ratio is arbitrarily large for very small values of v. Let ϵ > 0
be sufficiently small and let the speed of the target be v = ϵ/3. Consider the first time, say t,
that the robot reaches one of the points ±(d− ϵ). Without loss of generality let this point
be d − ϵ and suppose the target is adversarially placed at −d. Then at time t it will be
located at −d + tv. Therefore the distance between the robot and the target at time t will
be d− ϵ− (−d + tv) = 2d− tv − ϵ. The time it takes for robot to find the target, then, is at
least d− ϵ + 2d−tv−ϵ

1+v and the competitive ratio is at least

d− ϵ + 2d−tv−ϵ
1+v

d
1+v

≥ 3− 2ϵ + (t + ϵ)v
d

It follows easily that if t ≥ 3d − ϵ then CR ≥ t
d/(1+v) ≥ 3 − 3ϵ. However, if t ≤ 3d − ϵ

then 2ϵ+(t+ϵ)v
d ≤ 2ϵ + 3v ≤ 3ϵ, since by assumption v = ϵ/3. Therefore again CR ≥ 3− 3ϵ.

This completes the proof of Theorem 14. ◀

5 The NoKnowledge Model

In this section we assume that neither the initial distance d nor the speed v of the target is
known to the robot.

5.1 The NoKnowledge/Away Model
We now describe an approximation strategy resembling that described in Section 4.1. For
this strategy though, the robot will need to guess both the target’s speed and its initial
distance.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:15

Consider the situation where neither the distance d to the target nor its speed v < 1 is
known to the robot. Also consider two monotone increasing non-negative integer sequences
{fi, gi : i ≥ 0} such that f0 = 1 and g0 = 0 and fi < fi+1 and gi < gi+1, for all i ≥ 0. The
idea of the algorithm is to search for the target by making a guess for its speed and starting
distance in rounds as follows. The robot, starting from the origin, alternates searching to
the right and left. On the i-th round, it guesses that the target’s speed does not exceed
vi = 1− 2−fi and that it’s initial distance from the origin does not exceed 2gi . Using these
guesses, the robot searches exactly the distance required (which we will later denote di) to
catch the target, given its guesses are correct and that the target is in the direction the robot
searches in round i. If robot does not find the target after searching this distance, it returns
to the origin and begins the next round. Later in the analysis we will show how to select
the integer sequences {fi, gi : i ≥ 0} so as to obtain bounds on the competitive ratio. We
formalize the algorithm described above as Algorithm 7.

Algorithm 7 Online Algorithm for NoKnowledge/Away Model.

1: Inputs; Integer sequences {fi, gi : i ≥ 0} such that fi < fi+1 and gi < gi+1, for i ≥ 0
and f0 = 1 and g0 = 0;

2: t← 0
3: for i← 0, 1, 2, . . . until target found do
4: di ← 2gi

5: vi ← 1− 2−fi

6: xi ← (−1)i · di+tvi

1−vi

7: move to xi and back to the origin
8: t← t + |xi|

Since there is always an integer i ≥ 1 such that both vi = 1− 2−fi ≥ v and 2gi ≥ d, it
is clear that the robot will eventually succeed in catching the target. Next we analyze the
competitive ratio of the algorithm.

▶ Lemma 15. For the NoKnowledge/Away model, if Algorithm 7 terminates successfully in
round i + 1 then its competitive ratio must satisfy

CR ≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1. (23)

Proof. We call each iteration of the loop in Algorithm 7 a round. For any round i, let
di be the distance from the origin to where the target would be if its speed was equal to
vi = 1 − 2−fi and its starting position 2gi . Recall that during the first i − 1 unsuccessful
rounds, the taret is moving further and further away from the origin. If the robot is at the
origin and the speed of the target is vi then it takes time at most xi = di

1−vi
= 2fidi for the

robot to catch up to the target, for i ≥ 0. Observe from the algorithm that d0 = 1 and
v0 = 1/2 and

di = 2gi + 2vi

i−1∑
j=0

xj . (24)

Therefore, it follows from the definition of xi that

xi = 2fi

2gi + 2vi

i−1∑
j=9

xj

 . (25)

OPODIS 2022

12:16 Line Search for an Oblivious Moving Target

As a consequence

i−1∑
j=0

xj = xi − 2fi+gi

2fi · 2 · vi
(26)

Similarly, if we replace i with i + 1 we have that

i∑
j=0

xj = xi+1 − 2fi+1+gi+1

2fi+1 · 2 · vi+1
. (27)

Subtracting Equation (26) from Equation (27) we derive the recurrence

xi = xi+1 − 2fi+1+gi+1

2fi+1 · 2 · vi+1
− xi − 2fi+gi

2fi · 2 · vi
(28)

Collecting similar terms and simplifying Equation (28) yields

xi+1

2fi+1 · 2 · vi+1
=
(

1 + 1
2fi · 2 · vi

)
xi +

(
2fi+1+gi+1

2fi+1 · 2 · vi+1
− 2fi+gi

2fi · 2 · vi

)
=
(

1 + 1
2fi · 2 · vi

)
xi + 2gi+1−1

(
1

vi+1
− 2gi

2gi+1 · vi

)
≤
(

1 + 1
2fi · 2 · vi

)
xi + 2gi+1−1 (29)

where Inequality (29) follows since 1
vi+1
− 2gi

2gi+1 ·vi
≤ 1.

If we multiply out with the denominator in the lefthand side of Inequality (29) and
simplify the righthand side we derive the following recursive inequalities

xi+1 ≤ 2fi+1 · 2 · vi+1

(
1 + 1

2fi · 2 · vi

)
xi + 2fi+1+gi+1vi+1

≤
(

2(2fi+1 − 1) + 2fi+1−fi · vi+1

vi

)
xi + 2fi+1+gi+1 (30)

≤ 2fi+1 · 4 · xi + 2fi+1+gi+1 , (31)

where in the derivation of Inequality (31) from the previous Inequality (30) we used the fact
that vi+1

vi
≤ 2.

By repeated application of the last Recurrence (31) above and using the fact that by
definition x0 = 2f0d, it follows easily by induction that

xi+1 ≤ 2fi+1 · 4 · xi + 2fi+1+gi+1

≤ 2fi+1+fi · 42 · xi−1 + 2fi+1+fi+gi · 41 + 2fi+1+gi+1

...

≤ 2g0+
∑i+1

j=0
fj · 4i+1 · x0 + 2g1+

∑i+1
j=1

fj · 4i + 2g2+
∑i+1

j=2
fj · 4i−1

+ · · ·+ 2fi+1+gi+1

=
i+1∑
k=0

2gk+
∑i+1

j=k
fj · 4i−k+1 (32)

since x0 = 1.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:17

The total time that has elapsed from the start until the beginning of last round i (when
the robot visits the origin for the last time before catching the target) will be

∑i
j=0 2xj at

which time the target is at distance d + v
∑i

j=0 2xj from the origin. As a consequence the
competitive ratio of Algorithm 7 must satisfy the inequality

CR ≤
2
∑i

j=0 xj +
d+2v

∑i

j=0
xj

1−v
d

1−v

. (33)

Simplifying the righthand side of Inequality (33) and using Identity (26) yields

CR ≤ 1 + 2
d

i∑
j=0

xj

≤ 1 + xi+1

d
· 1

2fi+1 · vi+1
(Use Equation (26))

≤ 1 + 1
vi+1d2fi+1

i+1∑
k=0

2gk+
∑i+1

j=k
fj · 4i−k+1 (Use Equation (32))

≤ 1 + 1
vi+1d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1.

Since vi+1 ≥ 1/2 we conclude with

CR ≤ 1 + 2
d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1

≤ 1 + 2
d

i+1∑
k=0

2gk+
∑i

j=k
fj · 4i−k+1

≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1 (34)

This completes the proof of Lemma 15. ◀

We now prove the following theorem.

▶ Theorem 16. For the NoKnowledge/Away model, Algorithm 7 with the sequences gi =
fi = 2i has a competitive ratio of at most

1 + 16
d

[
log log max

(
d,

1
1− v

)
+ 3
]
·max

(
d,

1
1− v

)8
· log2 max

(
d,

1
1− v

)
where log is the base-2 logarithm.

Proof. Observe that if the robot finds the target in round i + 1, then by design, one or
both of the robot’s round i− 1 guesses for the target’s speed (1 − 2−2i−1) or initial distance
(22i−1) must have been too low, otherwise the robot would have found the target in an
earlier round. In other words, either 1 − 2−2i−1

< v or 22i−1
< d. It follows, then that

i− 1 < log log max
(

d, 1
1−v

)
. Then by Lemma 15, an upper bound on the competitive ratio

is given by

OPODIS 2022

12:18 Line Search for an Oblivious Moving Target

CR ≤ 1 + 2(i + 2)
d

· 2gi+1 · 2
∑i

j=0
fj · 4i+1

= 1 + 2(i + 2)
d

· 22i+1
· 22i+1−1 · 4i+1

= 1 + (i− 1) + 3
d

·
(

22i−1
)8
· 16

(
2i−1)2

= 1 + 16
d

[
log log max

(
d,

1
1− v

)
+ 3
]
·max

(
d,

1
1− v

)8
· log2 max

(
d,

1
1− v

)
which proves Theorem 16. ◀

▶ Remark 17. Observe that a lower bound of 1 + 8 1+v
(1−v)2 follows directly from the

NoDistance/Away model.

5.2 The NoKnowledge/Toward Model
We can prove the following theorem.

▶ Theorem 18. The optimal competitive ratio is 1 + 1
v and is given by the waiting Algorithm.

Proof. The upper bound follows directly from Theorem 4. For the lower bound, consider an
algorithm where the robot does not wait forever and instead moves a distance d′ > 0 to the
right (without loss of generality – a symmetric argument for the case where the robot moves
to the left follows trivially) after waiting at the origin for time t ≥ 0. Then consider the
scenario where the target with speed v = d

t+d′ is initially at −d for any distance d ≥ 1. Thus,
the target reaches the origin at exactly the time the robot reaches d′ and so their earliest
possible meeting time is

t + d′ + d′

1 + v
= d

v
+ d′

1 + v
≥ d

v

Thus, the competitive ratio is at least

d/v

d/(1 + v) = 1 + 1
v

This proves Theorem 18. ◀

6 Conclusion

We considered linear search for an autonomous robot searching for an oblivious moving target
on an infinite line. Two scenarios were analyzed depending on whether the target is moving
towards or away from the origin (and this is known to the robot). In either of these two
scenarios we considered the knowledge the robot has about the speed and starting distance
of the target. For each scenario we gave search algorithms and analyzed their competitive
ratio for the four possible cases arising. Our bounds are tight in all cases when the target
is moving towards the origin. They are also shown to be tight when the target is moving
away from the origin and its speed 0 < v < 1 is known to the robot; for this scenario we also
obtain upper bounds when v is not known to the robot. It remains an open problem to prove
tight bounds for the case when v is unknown to the robot and the target is moving away
from the origin. It also remains open to find tight bounds for the case where the direction of
movement of the target is unknown.

J. Coleman, E. Kranakis, D. Krizanc, and O. Morales-Ponce 12:19

References
1 R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.
2 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of

International series in operations research and management science. Kluwer, 2003.
3 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in the

plane. Inf. Comput., 106(2):234–252, 1993. doi:10.1006/inco.1993.1054.
4 A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–228, 1964.
5 R. Bellman. An optimal search. Siam Review, 5(3):274–274, 1963.
6 A. Bonato and R. Nowakowski. The game of cops and robbers on graphs. American Mathem-

atical Soc., 2011.
7 Jared Coleman, Evangelos Kranakis, Danny Krizanc, and Oscar Morales-Ponce. Line search

for an oblivious moving target, 2022. doi:10.48550/arXiv.2211.03686.
8 Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata Narayanan,

Jaroslav Opatrny, and Sunil M. Shende. Search on a line by byzantine robots. Int. J. Found.
Comput. Sci., 32(4):369–387, 2021. doi:10.1142/S0129054121500209.

9 Jurek Czyzowicz, Ryan Killick, and Evangelos Kranakis. Linear rendezvous with asymmetric
clocks. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira, editors, 22nd
International Conference on Principles of Distributed Systems, OPODIS 2018, December
17-19, 2018, Hong Kong, China, volume 125 of LIPIcs, pages 25:1–25:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.OPODIS.2018.25.

10 Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, and Jaroslav Opatrny.
Search on a line with faulty robots. Distributed Comput., 32(6):493–504, 2019. doi:10.1007/
s00446-017-0296-0.

11 Ryan Killick. Lower bound for linear search. Unpublished Manuscript, 2022.
12 Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc,

and Ugo Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci.,
355(3):315–326, 2006. doi:10.1016/j.tcs.2005.12.016.

13 B. J. McCabe. Searching for a one-dimensional random walker. J. Applied Probability, pages
86–93, 1974.

14 Sven Schuierer. Lower bounds in on-line geometric searching. Comput. Geom., 18(1):37–53,
2001. doi:10.1016/S0925-7721(00)00030-4.

15 L. Stone. Theory of optimal search. Academic Press New York, 1975.

OPODIS 2022

https://doi.org/10.1006/inco.1993.1054
https://doi.org/10.48550/arXiv.2211.03686
https://doi.org/10.1142/S0129054121500209
https://doi.org/10.4230/LIPIcs.OPODIS.2018.25
https://doi.org/10.1007/s00446-017-0296-0
https://doi.org/10.1007/s00446-017-0296-0
https://doi.org/10.1016/j.tcs.2005.12.016
https://doi.org/10.1016/S0925-7721(00)00030-4

Randomized Byzantine Gathering in Rings∗

John Augustine !

Indian Institute of Technology Madras, India

Arnhav Datar !

Indian Institute of Technology Madras, India
Carnegie Mellon University, Pittsburgh, PA, USA

Nischith Shadagopan !

Indian Institute of Technology Madras, India

Abstract
We study the problem of gathering k anonymous mobile agents on a ring with n nodes. Importantly,
f out of the k anonymous agents are Byzantine. The agents operate synchronously and in an
autonomous fashion. In each round, each agent can communicate with other agents co-located with
it by broadcasting a message. After receiving all the messages, each agent decides to either move to
a neighbouring node or stay put. We begin with the k agents placed arbitrarily on the ring, and the
task is to gather all the good agents in a single node. The task is made harder by the presence of
Byzantine agents, which are controlled by a single Byzantine adversary. Byzantine agents can deviate
arbitrarily from the protocol. The Byzantine adversary is computationally unbounded. Additionally,
the Byzantine adversary is adaptive in the sense that it can capitalize on information gained over
time (including the current round) to choreograph the actions of Byzantine agents. Specifically,
the entire state of the system, which includes messages sent by all the agents and any random bits
generated by the agents, is known to the Byzantine adversary before all the agents move. Thus the
Byzantine adversary can compute the positioning of good agents across the ring and choreograph
the movement of Byzantine agents accordingly. Moreover, we consider two settings: standard and
visual tracking setting. With visual tracking, agents have the ability to track other agents that are
moving along with them. In the standard setting, agents do not have such an ability.

In the standard setting we can achieve gathering in O(n log n log k) rounds with high probability1

and can handle O
(

k
log k

)
number of Byzantine agents. With visual tracking, we can achieve gathering

faster in O(n log n) rounds whp and can handle any constant fraction of the total number of agents
being Byzantine.

2012 ACM Subject Classification Computing methodologies → Self-organization; Theory of compu-
tation → Self-organization

Keywords and phrases Mobile agents and robots

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.13

Funding John Augustine: Supported by the Cybersecurity Research Centre under the IIT Madras
Institute of Eminence scheme.
Nischith Shadagopan: Supported by the Young Research Fellowship 2020, IIT Madras.

1 Introduction

Swarm robotics envisage swarms of mobile robots or agents as they are sometimes called,
self-organizing and collaborating to achieve shared goals. These smaller agents have various
advantages such as robustness, scalability, and efficiency [16, 20]. Significant research has been

∗ Author names are listed alphabetically. All authors contributed equally to this work.
1 Throughout this paper,“with high probability” or “whp” in short means with probability at least 1−1/nc

for some constant c ≥ 1

© John Augustine, Arnhav Datar, and Nischith Shadagopan;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustine@cse.iitm.ac.in
https://orcid.org/0000-0003-0948-3961
mailto:adatar@andrew.cmu.edu
https://orcid.org/0000-0002-4440-4889
mailto:nischith.shadagopan@gmail.com
https://orcid.org/0000-0001-7180-1399
https://doi.org/10.4230/LIPIcs.OPODIS.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Randomized Byzantine Gathering in Rings

conducted in the areas of gathering [1, 21], flocking [23], scattering [30], and exploring [11, 25].
Some research has also been conducted considering that the agents are deployed in adverse
environments [12].

We focus on the problem of gathering in a ring against Byzantine agents. Although
a ring is a simple structure, the nodes are all symmetric. It is therefore no surprise that
fundamental symmetry-breaking problems like leader election [19] were first studied in the
context of rings with insights then influencing the development of more general algorithms.
It is quite easy to note that Ω(n) rounds are required for gathering any number of agents in
a ring. Our goal is to design algorithms with running times that are close to linear in n.

Initially, k anonymous agents are positioned arbitrarily across the ring. Notably, f out of
the k agents are Byzantine. The task is to gather all the good agents in a single node of
the ring. The agents cannot distinguish between the nodes of the graph. Each agent can
communicate with other agents in the same node through a local broadcast. The agents
operate synchronously and can either stay or move to a neighbouring node in each round. A
single adversary controls the Byzantine agents. The adversary has complete knowledge of
the graph and the states of all the agents. The adversary can deviate arbitrarily from the
protocol to prevent gathering. The adversary is also adaptive in the sense that it can make
decisions based on continual learning. Further, we consider the visual tracking setting where
agents have the ability to track other agents moving along with them.

1.1 Related works
Gathering of mobile agents with unique IDs in the presence of Byzantine agents was first
considered by Dieudonné et al. [13]. They focus on finding the minimum number of good
agents required to gather successfully. They prove that at least k = 2f + 1 agents are
required to achieve gathering and also show that it is not possible to deterministically gather
k = 2f agents in a ring of known size. They also provide an algorithm to gather k ≥ 3f + 1
agents in a network of known size. Bouchard et al. [6] provide a deterministic algorithm for
gathering k = 2f + 1 agents, which is the minimum number of agents required to gather
when the size of the network is known. They also prove that k = 2f + 2 agents are required
to gather when the size of the network is unknown, a slight increase from before. Regrettably,
both the aforementioned algorithms from [13, 6] have exponential running times and are
hence not practical. Thereafter, Bouchard et al. [7] improved the running time by providing
a polynomial-time algorithm that uses a piece of global knowledge of size O(log log log n)
and achieves gathering when k ≥ 5f2 + 6f + 2. Hirose et al. [18] provided polynomial-
time algorithms with a similar number of Byzantine agents but consider the case when the
Byzantine agents cannot change their ID. Their algorithms run in O((f + Λall) ·X(n)) time,
where Λall represents the length of the maximum ID of all agents and X(n) is the number of
rounds to explore a network of size n.

Sudo et al. [31] introduce a new communication model where each node contains a
whiteboard where agents can leave information. Gathering in this model is trivial. Each agent
can leave its ID in its starting node, and the agents can move to the node containing the
smallest ID to achieve gathering in O(m) time, where m is the number of edges. Tsuchida et
al. [33] extend this by allowing each node to have an authenticated whiteboard. Authenticated
whiteboards allow agents to store information along with their signatures. Their algorithm
deterministically achieves gathering in O(fm) time. But authenticated whiteboards is quite
an advanced feature when considering mobile agents with basic functionality.

The (non-Byzantine) gathering problem has been researched extensively in rings [9, 22,
10, 24]. Klasing et al. [24] provided deterministic algorithms for rings in an asynchronous
model by only using global weak-multiplicity detection. Izumi et al. [22] provided an optimal

J. Augustine, A. Datar, and N. Shadagopan 13:3

O(n) time algorithm for rings for some configurations when the agents only had local weak-
multiplicity detection. Subsequently, D’Angelo et al. [9, 10] designed gathering algorithms
for rings using global or local-weak multiplicity detection, provided the agents can take a
snapshot of the ring at all occupied nodes.

Research on randomized algorithms for gathering and other search problems has been
ongoing for a few years now and is summarised by Alpern and Gal [3]. Alpern et al. [2]
provided an algorithm for rendezvous of two agents in a ring that runs in expected O(n)
rounds. Ooshita et al. [28] consider the problem of gathering agents in an anonymous
unidirectional ring under the constraint the agents are unaware of the number of agents
and the number of nodes. Furthermore, their communication model employs whiteboards.
They prove that there cannot exist randomized algorithms for this problem with termination
detection. In our model, the agents can move in both directions and are aware of the number
of nodes. Therefore their results do not apply in our context. A relevant result in our context
is given by Cooper et al. [8] who introduce coalescing random walks. Here, particles perform
independent random walks on the graph. Whenever two particles meet at a node, they
combine and continue the random walk. The paper explores the time required to combine all
the particles in the graph with such an algorithm. This algorithm can be trivially adapted
to our model. The combining of particles is enabled in our context by co-located agents
generating common random bits. This allows co-located agents to continue the random walk
together. Such an algorithm takes Õ(n2) time in expectation to gather all the agents in
a ring, which is quite slow. Notably, this algorithm can handle any number of Byzantine
agents. Eguchi et al. [14] provide some results on fast randomized gathering but consider the
case when there are only two agents which are placed on adjacent nodes initially.

With this paper, we aim to kick off research on fast randomized algorithms with anonymous
agents despite the presence of Byzantine agents. Both our results in this paper are log factors
away from being linear in n. Our algorithms rely on the vital ability of agents to produce
uniform and independent random bits. This integrated with synchronous operation of agents
and local broadcast-based model of communication gives co-located agents the ability to
generate common random bits. This can be done in the following way
1. Each agent generates a uniform and independently random string of s bits
2. Each agent broadcasts this string to other co-located agents, including itself
3. Each agent computes the XOR of all the strings received.
This procedure allows co-located agents to generate a common random string of arbitrary
length as long as there is at least one good agent. We believe that this is a reasonable
abstraction for the following two reasons. Firstly, this is an important abstraction which
allows us to provide more scalable, faster and more secure (resilience to Byzantine agents)
algorithms. Secondly, such an abstraction is easy to realise using existing technological
capabilities. At a physical level, there are several results that allow agents to arrange
themselves in the form of a circle [34, 17] or other patterns [32]. Once the agents arrange
themselves in a fitting pattern, they can be forced to simultaneously broadcast their random
bit through physical means like lights. Algorithmically also, there are several results which
enable common coin tossing [5, 29, 26, 4, 15]. Regardless of the technology that is employed,
we believe that common random bits will be beneficial for a range of robot coordination
problems.

1.2 Our Model
We consider the problem of gathering k agents placed arbitrarily on a ring G = (V, E). We
denote the number of nodes in the graph G by n = |V |. The nodes of the graph do not have
any facility to compute, store or communicate any information. The nodes of the graph can

OPODIS 2022

13:4 Randomized Byzantine Gathering in Rings

be viewed as just a container for agents. Each node v ∈ V in G has degree 2 and has two
labelled ports corresponding to each incident edge. This port labelling is common to all
agents. An edge e = (u, v) ∈ E indicates that an agent can move bidirectionally between
node u and node v in one step. The agents cannot distinguish between the nodes of the ring.
The agents also do not have a common clockwise/counterclockwise orientation. An agent
can fix a particular orientation and remember the number of steps taken to keep track of its
position relative to some node.

The agents operate synchronously. Each agent has the ability to compute and store
information. Each agent can also communicate with all other co-located agents using local
broadcast. In the visual tracking setting, the agents also have the ability to identify other
agents that are co-located for at least two consecutive rounds. The agents are aware of the
number of nodes n. In the standard setting, the agents are also aware of an upper-bound
on the number of Byzantine agents f . The agents have a fixed orientation of direction
(clockwise/counterclockwise) but this orientation is not common across all the agents.

Computation is defined by a finite state machine coupled with the ability to generate
random bits and communicate messages. At each round r > 0, each good agent:
1. broadcasts (to all other co-located agents) a message that is a function of its state and

includes public random bits,
2. receives messages broadcasted by other agents in its current node,
3. transitions to a new state as a function of the current state, messages received, and

random bits,
4. chooses to either stay in the current location or move through one of the ports (based on

the chosen state),
5. and finally updates the state with the direction (clockwise/counterclockwise) in which it

moved.
All agents must broadcast a message at the start of each round. Note that this is not a
limitation because agents can send an empty ⊥ message if they have nothing to send.

f of the k anonymous agents are Byzantine, and all these agents are controlled by a
single adversary. The remaining k − f agents are called good agents. The adversary is
computationally unbounded and can deviate arbitrarily from the protocol. The adversary
can distinguish between the nodes of G and is also aware of the starting positions of all
the good agents. Additionally, the adversary is strongly adaptive in the sense that it can
capitalize on information gained over time (including the current round) to choreograph
the actions of Byzantine agents. Specifically, the entire state of the system, which includes
messages sent by all the agents and any random bits generated by the agents, is known to
the adversary at the beginning of the subsequent step in the round. Thus the adversary can
compute the positioning of good agents across the ring and choreograph the movement of
Byzantine agents accordingly.

1.3 Our Techniques and Contributions
Being sparse and symmetric, rings present a significant challenge. We present algorithms for
two settings:
(a) the standard setting and
(b) the setting where agents have visual tracking capability.
In the standard setting we can achieve gathering in O(n log n log k) rounds and can handle
O

(
k

log k

)
number of Byzantine agents. The algorithm splits the groups into leaders and

followers. The leader groups just go around the ring and the follower group merges with the

J. Augustine, A. Datar, and N. Shadagopan 13:5

Table 1 Known results on randomized gathering protocols including those inferred from the
literature on coalescing random walks. The Õ notation is used to hide polylog(n) factors.

Setting Time Complexity Max. Byz. Agents

Coalescing random walks [8] Õ(n2) f < k

With No Byzantine Agents O(n) (on exp.) f = 0

Standard setting O(n log n log k) f(35 + 34 log2(f + 1)) + 2 < k

With visual tracking O(n log n) f = αk, 0 ≤ α < 1

Lower bound Ω(n) f = 0

first leader group that it meets. With visual tracking capability, i.e., the ability to identify
which co-located agents were also co-located with them in the previous round, we can achieve
gathering faster in O(n log n) rounds as long as the number of Byzantine agents is some
constant fraction of the total number of agents. The difference here is that the follower groups
make note of all the leader groups that it meets and chooses one of them to merge with
probability proportional to the leader group’s size. We can see that both these algorithms
follow a common paradigm of splitting into leaders and followers. In the former algorithm,
the follower groups merge with the first leader group that they meet but in the latter they
take their time to evaluate all the leader groups and then decide to merge with one of them.

The summary of our results can be found in Table 1.

2 Algorithms

We present three algorithms. The first is a warm up that works only when all agents are
good and requires an expected O(n) rounds for all agents to gather. The second algorithm is
for the standard gathering of anonymous agents setting wherein agents are indistinguishable
from round to round. This algorithm takes O(n log n log k) rounds and is resilient against up
to a suitable O(k/ log k) Byzantine agents. Subsequently, we study the variant where agents
can visually track others that are moving along with them and provide an algorithm that can
handle an f < k Byzantine failures. For simplicity we first present our algorithms assuming
that all the agents have a common orientation of the ring and discuss briefly how to adapt
them to the situation where there is no common orientation.

2.1 Warmup: No Byzantine Agents
We now present a simple warmup gathering algorithm inspired by Alpern et al. [2]. Their
work is limited to gathering two agents in a ring whereas ours is more general. Our algorithm
runs in expected O(1) stages. We use the term committee to refer to a set of agents; members
of the committee know they are in the committee and those not in the committee know that
they are not. A committee is good if it is neither empty nor the full set of agents, i.e., there
must be at least one agent in the committee and one that isn’t. At each stage, the agents
perform the following steps.

Step 1: Committee Election. The agents attempt a committee election that will result in
a good committee members with probability at least a constant. We achieve this simply by
allowing each agent to self-sample itself with probability 1/k.

▶ Lemma 1. Assuming k ≥ 2, the elected committee will be good with probability at least a
constant.

OPODIS 2022

13:6 Randomized Byzantine Gathering in Rings

Proof. The two bad events are either that the committee is empty (which can occur with
probability p1 = (1− 1/k)k) or that all agents are in the committee (which can occur with
probability at most p2 = (1/k)k. Since 1− p1 − p2 is bounded from below by a constant, the
lemma holds. ◀

The elected committee members furthermore choose a random ID – a bit string of a
suitable length that is at least Ω(log k). This will ensure that the IDs are unique with
constant probability.

Step 2: Leader Election. The committee members go around the ring twice in a direction
of their choosing. As they go around, they broadcast their ID in all nodes along the way.
The agents on the other hand broadcast the smallest ID they have learned about thus far
(with a special symbol say ⊥ dedicated for the case where they have not yet learned an ID).
Clearly, once the committee members go around twice, all agents will know the smallest ID
(i.e., the leader) assuming the committee is good and committee members have distinct IDs
(both occurring with constant probability).

Step 3: Gathering. In this step, the leader stays put for n rounds (but keeps broadcasting
its ID). All other agents go around the ring (in a direction of their choosing) and stop when
they reach the leader.

Step 4: Verification. If all k agents gather, the procedure stops. Otherwise, we repeat
from step 1 onward.

The following theorem follows immediately.

▶ Theorem 2. As long as k ≥ 2 and n ≥ 1, all k agents will gather in expected O(n) rounds.

We conclude this warmup with a few observations. Firstly, we observe that the algorithm
does not require common coin tosses amongst agents within a node. Individual random bits
generated by agents suffice. Secondly, we note that it is a Las Vegas algorithm that will
terminate only when all agents have gathered (and are aware that gathering has terminated).
However, in situations where we prefer that the algorithm runs for a predetermined number
of rounds, we can run Θ(log 1/δ) stages and obtain the guarantee that the algorithm gathers
all agents with probability at least 1− δ. Finally, if k ∈ Ω(log n) is sufficiently large, we can
elect a good committee with high probability in one shot. Each agent can self-sample itself
into the committee with probability p = Θ(log n/k). Such a self-sampled committee can be
shown to be good whp by applying a standard Chernoff bound (for example, Corollary 4.6
from [27]). Thus, the whole algorithm can complete in one stage whp.

2.2 Standard Gathering
The algorithm runs in O(log k) stages with stages numbered from j = 0 to ⌈log2(f + 1)⌉ − 1.
Each stage has ⌈2 log8/7 n⌉ phases. At the starting of each stage, all groups below a threshold
of 2j become inactive for this stage. Inactive agents don’t do anything for that stage. In
each phase, each group decides to be either a leader or a follower (with probability 1/2 each).
The role of the leader group is quite simple, it just moves clockwise for ⌊n

2 ⌋ rounds (out of
which one round is set aside for randomizing the parity of its position). The follower group
moves counterclockwise till it meets a leader group having number of agents greater than a
threshold of 2j for the first time (or up to ⌊n

2 ⌋ rounds, whichever is sooner). After meeting
such a leader group, the follower group starts moving in the clockwise direction and behaves
exactly like a leader group till the phase ends. The last stage is similar to the earlier stages
except all agents are active. Algorithm 1 presents the pseudocode.

J. Augustine, A. Datar, and N. Shadagopan 13:7

Algorithm 1 Gathering in standard setting.

1: function leader
2: random← 1 with probability 1

2 ▷ This decision is made as a group
3: Move one step clockwise if random = 1 ▷ Randomize the parity of the group’s

position
4: Move one step clockwise and broadcast “I am a leader” message for ⌊n

2 ⌋ -1 rounds
5: end function
6: function follower(j)
7: flag← 1
8: for ⌊n

2 ⌋ rounds do
9: If flag = 1, go one step counterclockwise else go one step clockwise and broadcast

“I am a leader” message
10: Count the number d of leader agents in the node based on the number of “I am a

leader” messages received
11: if d ≥ 2j and flag = 1 then ▷ 2j is the threshold
12: flag← 0 ▷ At this point, the follower group has essentially coalesced with the

leader group
13: end if
14: end for
15: end function
16: for j = 0 to ⌈log2(f + 1)⌉− 1 stages do ▷ If f is not known, an upper bound can be used
17: Each good agent forms a group with other agents co-located with it.
18: if the number of agents in the group ≥ 2j then ▷ These are active agents
19: for ⌈2 log8/7 n⌉ phases do
20: Each good agent forms a group with other agents co-located with it.
21: Decide to be a leader group or follower group with equal probability ▷ this

decision is made as a group
22: Leaders call leader(), followers call follower(j)
23: end for
24: end if
25: end for
26: for ⌈2 log8/7 n⌉ phases do ▷ last stage
27: Each good agent forms a group with other agents co-located with it.
28: Decide to be a leader group or follower group with equal probability ▷ this decision is

made as a group
29: Leaders call leader(), followers call follower(⌈log2(f + 1)⌉)
30: end for

We define a good group as a group having at least one good agent. Define all the groups
that have number of agents ≥ the threshold at the start of a stage as active groups. Groups
below the threshold are said to be inactive. We can classify active groups into two types :
true and fake. True active groups have number of good agents greater than or equal to the
threshold whereas fake active groups have number of good agents less than the threshold.
An agent is said to be active if it is part of an active group and otherwise called an inactive
agent. Two groups are said to be of the same parity if in that phase the number of edges
between the nodes in which the two groups are present, is even. In this setup, it is important
to note that a leader group meets a follower group only if they are of same parity. This is
because if the number of edges between them is odd, then they will cross each other while

OPODIS 2022

13:8 Randomized Byzantine Gathering in Rings

going across an edge and not realise this. Note that in this algorithm once two good agents
become members of the same group, they will never separate. So the number of good groups
never increases.

There is not much use for the Byzantine agents to behave as a follower group because the
leader groups are quite simple and are not affected by follower groups. But the Byzantine
agents can form a leader group and then present itself to a follower group. Then the follower
group thinks that it has successfully merged with another group.

Suppose a set of Byzantine agents get together and form a leader group b1. Suppose
they meet an active follower group g1. Group g1 will think that it has merged with another
group and will start behaving like a leader group for the rest of the stage. Group b1 is now
free to do whatever it wants. Group b1 cannot catch up to any follower group by moving
in the counterclockwise direction, it has to move in the clockwise direction to do so. But
since g1 starts moving clockwise from the next round after meeting b1, any other follower
group will always meet g1 no later than when it meets any agent in b1. Therefore any other
follower group will merge with the active g1 and the Byzantine adversary cannot do anything
about this. Only thing agents in b1 can do is form leader groups and merge with a group of
parity different from g1 as that group will never meet g1 due to parity difference. Therefore
a Byzantine agent can be part of two groups of Byzantine agents that merge with at most 2
active groups of different parity in any phase.

▶ Lemma 3. In the first ⌈log2(f + 1)⌉ stages of the algorithm, the number of good agents
that are not active at the beginning of the jth stage is at most 34fj, 0 ≤ j ≤ ⌈log2(f + 1)⌉
whp. Also at the beginning of the jth stage there is at least one true active group whp.

Proof. Our proof is by the Principle of Mathematical Induction on j. When j = 0, the
threshold for this stage is 2j = 1. All good groups have size ≥ 1, therefore the number of
good agents that are not active at the beginning of the 0th stage is 0. Also since there is at
least one good agent, there is at least one true active group, thereby establishing the base
case.

Induction Hypothesis: The number of good agents that are not active at the beginning of
the tth stage is at most 34ft whp. Also at the beginning of the tth stage there is at least one
true active group whp.

Inductive Step: Let us now focus on the start of the j = (t + 1)th stage (or equivalently,
the end of the tth stage). We will now analyze what happens during the tth stage. At the
beginning of the tth stage we know that the number of good agents that are not active is at
most 34ft from induction hypothesis. Consider the groups that are active at the beginning
of the tth stage, we need to see how many of these good agents become inactive at the start
of the (t + 1)th stage, say x. Then we can bound the total number of good agents not active
at the beginning of (t + 1)th stage as 34ft + x. This is because for the sake of upper bound
we are assuming that agents that were inactive in the beginning of the tth stage are inactive
at the beginning of the t + 1th stage and we only need to count the number of agents that
were active at the beginning of the tth stage but are inactive at the beginning of the t + 1th

stage (call it x).
By the Induction Hypothesis, there is at least one true active group at the beginning of

tth stage. Consider any such group g. Then for any other active group g1, if g is a leader
and g1 is a follower and the two groups are of same parity then these two groups will merge
(ignoring Byzantine influence for now). Each of these are independent events with probability
1
2 . Therefore ignoring the Byzantine influence, there is a constant probability of at least 1

8
with which a group merges in every phase.

J. Augustine, A. Datar, and N. Shadagopan 13:9

The adversary needs to form a group with at least 2t agents to cross the threshold. We
know that such a group can merge with at most two good active groups. Therefore in one
phase the Byzantine adversary can cause at most f

2t−1 false merges with good active groups.
We call it a false merge as in such a merge the number of active groups doesn’t decrease.
The other thing the adversary can do is combine with a few good agents to form a group
with at least 2t agents. But to do this, the good agents have to be active and therefore in
such a merge the number of active groups decreases. Therefore it is not beneficial for the
adversary to do this.

Let Gj,i denote the number of active groups in the ith phase of the jth stage. For any
group, let the probability of choosing a good leader group (also active) to merge with be Pi.
We have seen that Pi ≥ 1

8 . Let Ci be the number of merges between good groups and let Bi

be the number of merges with Byzantine groups.
We have

Gt,i+1 = Gt,i − Ci (1)
E[Gt,i+1|Gt,i] = Gt,i − E[Ci|Gt,i] (2)

E[Gt,i+1|Gt,i] = Gt,i −
(

Gt,i − 1
8 −Bi

)
(3)

E[Gt,i+1|Gt,i] ≤ Gt,i −
(

Gt,i − 1
8 − f

2t−1

)
(4)

E[Gt,i+1] ≤ 7
8 E[Gt,i] +

(
1
8 + f

2t−1

)
(5)

Solving this recurrence relation we get

E[Gt,i] ≤
(

Gt,0 − 1− 8f

2t−1

) (
7
8

)i

+
(

8f

2t−1 + 1
)

Since there are 2 log8/7 n phases in each stage, setting i to log8/7 n2 = i∗

E[Gt,i∗] ≤
Gt,0 − 1− 8f

2t−1

n2 +
(

8f

2t−1 + 1
)

using Markov’s inequality

P

(
Gt,i∗ −

(
8f

2t−1 + 1
)
≥ 1

)
≤ E

[
Gt,i∗ −

(
8f

2t−1 + 1
)]

P

(
Gt,i∗ −

(
8f

2t−1 + 1
)
≥ 1

)
≤ E[Gt,i∗]−

(
8f

2t−1 + 1
)

P

(
Gt,i∗ −

(
8f

2t−1 + 1
)
≥ 1

)
≤

Gt,0 − 1− 8f
2t−1

n2 ≤ Gt,0

n2 ≤
1
n

Therefore at the end of tth stage there are 8f
2t−1 +1 active groups whp. Suppose all these active

groups become inactive at the beginning of t + 1th stage, then x ≤
(

8f
2t−1 + 1

)
· (2t+1 − 1) as

if they are inactive at the beginning of t + 1th stage then the number of agents in that group
is less than 2t+1.

x ≤
(

8f

2t−1 + 1
)
× (2t+1 − 1) = 32f + 2t+1 − 1− 8f

2t−1

OPODIS 2022

13:10 Randomized Byzantine Gathering in Rings

since we are in the first part of the algorithm t + 1 ≤ ⌈log2(f + 1)⌉

x ≤ 32f + 2t+1 − 1− 8f

2t−1 ≤ 32f + 2f + 2− 1− 16

x ≤ 34f

Therefore the number of good agents that are not active at the beginning of the t + 1th stage
is at most 34ft + 34f = 34(t + 1)f .
Let us count the number of good active agents at the beginning of tth stage. The algorithm
starts with k − f good agents. At the beginning of the tth stage there are atmost 34ft good
agents that are inactive. Therefore there are at least k − f − 34ft good agents that are
active at the beginning of the tth stage. At the end of the tth stage these good active agents
are distributed among 8f/2t−1 + 1 groups. Therefore by Pigeon Hole Principle, at least one
group has k−f−34ft

8f

2t−1 +1
= 2t−1 × k−f−34ft

8f+2t−1 good active agents. Since t ≤ ⌈log2(f + 1)⌉ − 1 and

k − f > 34f(1 + log2(f + 1)) + 2, we get that k−f−34ft
8f+2t−1 ≥ 4. Therefore at the end of the tth

stage there is at least one group having 2t+1 good agents. Therefore at the beginning of the
(t + 1)th stage there is at least one true active group, thereby completing the proof. ◀

Note here that since there are only O(log k) stages, the whp assumption holds in induction.
Consider the j∗ = ⌈log2(f +1)⌉th stage. The threshold in this stage is 2⌈log2(f+1)⌉ ≥ f +1.

From Lemma 3 there is at least one true active group at the beginning of this stage. Consider
any such group g. Then for any other group g1, if g is a leader and g1 is a follower and
the two groups are of same parity then these two groups will merge. Each of these are
independent events with probability 1

2 . Therefore there is a constant probability of at least
1
8 with which a group merges in every phase.

In this stage, the threshold is greater than f , therefore the Byzantine agents cannot cause
any false merges.

Let Gi denote the number of groups with at least one good agent in the ith phase of this
stage. Note that Gi denotes the number of good groups, not necessarily active. For any
group, let the probability of choosing a good leader group to merge with be Pi ≥ 1

8 . Let Ci

denote the number of merges between good groups. Then Gi+1 = Gi − Ci and we have

E[Gi+1|Gi] = Gi − E[Ci|Gi] = Gi −
(

Gi − 1
8

)
E[Gi+1] ≤ 7

8 E[Gi] + 1
8

E[Gi] ≤ (G0 − 1)
(

7
8

)i

+ 1 (Solving the above recurrence relation)

E[Gi∗] ≤ G0 − 1
n2 + 1 (Setting i to log8/7 n2 = i∗ which is the number of phases)

Using Markov’s inequality, we get P (Gi∗−1 ≥ 1) ≤ G0−1
n2 . Therefore at the end of Algorithm

1, there is one group whp. Thus,

▶ Theorem 4. Given k agents placed arbitrarily on a graph G of n nodes, there exists a
randomized gathering protocol that is resilient to a strongly-adaptive Byzantine adversary
that can whp gather all good agents in O(n log n log k) rounds as long as k is greater than
f(35 + 34 log2(f + 1)) + 2 where f is the number of Byzantine agents.

J. Augustine, A. Datar, and N. Shadagopan 13:11

Extension: No common orientation

Since there are only two possible orientations, by Pigeon Hole Principle, at least k−f
2 agents

will have the same orientation. Therefore running Algorithm 1 and ensuring that only agents
with same orientation interact, we can ensure gathering of at least k−f

2 agents. Due to
the common port numbering of the graph, the agents can communicate their orientation
and ensure they interact only with agents having same orientation as themselves. The
restriction on the number of Byzantine agents will change slightly as essentially we now
have half the number of good agents than we used to. The new constraint will be k−f

2 >

34f(1 + log2(f + 1)) + 2. After gathering k−f
2 > f agents by running Algorithm 1, we can

achieve gathering in another O(n log n) phases by running the following algorithm:
All groups choose one of the two orientations with probability 1

2 . The groups also choose
whether to be leader or follower with equal probability.
The follower groups go clockwise and make note of the largest leader group that they
meet (ties are broken arbitrarily)
The follower groups merge with the largest leader group that it met. This is possible as
the location of leader groups is predictable

We know there is a group with k−f
2 > f number of good agents. So the largest group will be

of size greater than f . Therefore in each phase there is a constant probability with which a
group merges with the group with size at least k−f

2 and therefore gathering is achieved in
O(n log n) rounds whp.

2.3 With visual tracking

One significant drawback in the standard setting is that it limits f ∈ O(k/ log k), so a natural
question we ask is whether we can relax the model in some reasonable manner to avoid this
restriction on f . In this regard, we consider endowing agents with the ability to visually
track other agents that are moving along with them. Consider two agents a and b that have
been co-located from round r − δ to r (for some δ ≥ 0) but not in round r − δ − 1. With
visual tracking, we assume that a and b know at round r that they have been co-located for
δ rounds, but apart from that, don’t have any memory of prior encounters. This leverages
the common ability of mobile agents to be able to visually see the other objects that are
moving along with them.

The algorithm runs in ⌈4 log 4(1+α)
3+4α

n⌉ phases. In each phase, each group decides to be
either a leader group or a follower group. The leader group goes clockwise for some specified
number of rounds. The follower group goes counterclockwise (after randomizing the parity
of its position) and decides to merge with any one leader group that it meets. Again here a
follower group meets a leader group only if they are of same parity. The probability with
which a follower group chooses a leader group is in proportion to the number of agents in the
leader group, which is achieved via reservoir sampling. Algorithm 2 presents the pseudocode.

Similar to before, there is no value for the Byzantine agents to behave as a follower group,
but they can form leader groups and present themselves to follower groups. Note that if
Byzantine agents tag along with a follower group and repeatedly behaves like a leader group
in consecutive rounds, then the follower group can detect this due to visual tracking. Also
note that if the Byzantine agent stops tagging along, then it can never catch up with that
follower group again in that phase. Therefore a Byzantine agent can act as a leader agent to
a good agent only twice in a phase (once for each orientation).

OPODIS 2022

13:12 Randomized Byzantine Gathering in Rings

Algorithm 2 Gathering with visual tracking enabled.

1: function selectLeader(counter)
2: Count the number d of leader agents in the node based on the number of “I am a

leader” messages received
3: if d > 0 then
4: temp← counter ; counter← counter + d
5: Choose this leader group with probability

(
1− temp

counter
)

▷ reservoir sampling
6: end if
7: end function
8: function follower
9: counter← 0

10: go one step counterclockwise with probability 1
2 ▷ group decision to randomize parity

of position
11: Call selectLeader(counter)
12: go one step counterclockwise and call selectLeader(counter) for ⌊n

2 ⌋ -1 rounds
13: Move to the chosen leader group (its position is predictable)
14: end function
15: for ⌈4 log 4(1+α)

3+4α

n⌉ phases do
16: Each good agent forms a group with other agents co-located with it.
17: Decide to be a leader group or follower group with equal probability ▷ this decision is

made as a group
18: Leaders go clockwise and broadcast “I am a leader” message for ⌊n

2 ⌋ rounds, followers
call follower()

19: end for

Time complexity analysis

Suppose in phase i, there are Gi number of good groups and Hi number of leader groups.
We let f = αk for some α. The number of good agents is k − f and out of them let Li be
leader agents. Let Ci be the number of merges between good groups. For any follower group,
let the probability of choosing a good leader group to merge with be Pi. Since a Byzantine
agent can appear as a leader group only once to a good follower group, we can lower bound
Pi as, Pi ≥ Li

Li+f . First lets prove a useful lemma

▶ Lemma 5. E
[

Li

Li+f · (Gi −Hi)|Gi

]
≥ (1−α)(Gi−1)

4 (with expectation taken over different
combinations of leader groups)

Proof. At the start of phase i let the sizes of the Gi groups be s1, s2, s3, ..., sGi excluding
the Byzantine agents. Out of these let the sizes of the groups which choose to be leader
groups be st1 , st2 , st3 , ...stHi

.

Define the set Im as {(i1, i2, ...im) | i1 < i2 < ... < im and 1 ≤ il ≤ Gi ∀ 1 ≤ l ≤ m} for
all 1 ≤ j ≤ Gi. The set Im denotes the set of possible combinations of choosing m leader
groups from the Gi groups. Let I = I1 ∪ I2 ∪ · · · ∪ IGi . The probability of exactly those
groups becoming leader groups, for any element in I is 1

2Gi
.

J. Augustine, A. Datar, and N. Shadagopan 13:13

E
[

Li

Li + f
× (Gi −Hi)|Gi

]
=

∑
e∈I

1
2Gi
× (Gi − |e|)×

∑
ij∈e

(∑
sij∑

sij + f

)

E
[

Li

Li + f
× (Gi −Hi)|Gi

]
=

Gi∑
m=1

∑
e∈Im

1
2Gi
× (Gi −m)×

∑
ij∈e

(∑
sij∑

sij
+ f

)
Now∑

e∈Im

1
2Gi
× (Gi −m)×

∑
ij∈e

(∑
sij∑

sij
+ f

)
≥

∑
e∈Im

1
2Gi
× (Gi −m)×

∑
ij∈e

(∑
sij

k

)

= 1
2Gi
× (Gi −m)× k − f

k
×

(
Gi − 1
m− 1

)
Therefore

E
[

Li

Li + f
× (Gi −Hi)|Gi

]
≥

Gi∑
m=1

1
2Gi
× (Gi −m)× k − f

k
×

(
Gi − 1
m− 1

)

≥ 1
2Gi
× k − f

k
×

Gi∑
m=1

(Gi −m)×
(

Gi − 1
m− 1

)
Using a standard result from binomial mathematics, we know

∑Gi

m=1(Gi −m)×
(

Gi−1
m−1

)
=

2Gi−2(Gi − 1). Therefore

E
[

Li

Li + f
· (Gi −Hi) | Gi

]
≥ (k − f)(Gi − 1)

4k

Also since f = αk

E
[

Li

Li + f
· (Gi −Hi)|Gi

]
≥ (1− α)(Gi − 1)

4 ◀

Now lets analyze how the number of good groups varies

E[Gi+1|Gi] = Gi − E[Ci|Gi] = Gi − E[Pi × (Gi −Hi)|Gi]

E[Gi+1|Gi] ≤ Gi − E
[

Li

Li + f
× (Gi −Hi)|Gi

]
E[Gi+1|Gi] ≤ Gi −

(1− α)(Gi − 1)
4 ≤ Gi ×

(
3 + α

4

)
+ 1− α

4 (Using Lemma 5)

E[Gi] ≤ G0

(
3 + α

4

)i

+ 1 (Solving the recurrence relation)

E[Gi∗] ≤ 1
n2 + 1 (Setting i to log 4

3+α
G0n2 = i∗)

Using Markov’s inequality, we get P (Gi∗ − 1 ≥ 1) ≤ 1
n2 . Therefore after log 4

3+α
G0n2

phases, the number of groups is 1 whp i.e. the algorithm terminates in log 4
3+α

G0n2 phases
whp. Thus,

▶ Theorem 6. Given k agents capable of visual tracking placed arbitrarily on a graph G of n

nodes, there exists a randomized gathering protocol that is resilient to a strongly-adaptive
Byzantine adversary that can whp gather all good agents in O(n log n

log(4/(3+α))) rounds as long as
k is greater than f where f is the number of Byzantine agents.

OPODIS 2022

13:14 Randomized Byzantine Gathering in Rings

Extension: No common orientation

Let g = k − f denote the number of good agents. For simplicity we assume g is Ω(log n). At
the beginning, each agent chooses one of the two possible orientations with equal probability.
Let C denote the number of good agents having one of the orientations. Then from Chernoff
bound we get

P

(
|C − E[C]| ≥ E[C]

δ

)
≤ 2 exp

(
−E[C]δ2

3

)
P

(
|C − g

2 | ≥
g

4

)
≤ 2 exp

(
− g

24

)
(E[C] = g

2 and setting δ = 1
2)

Since g is Ω(log n), with high probability there are at least g
4 good agents with each orientation.

After randomizing the orientation in the above mentioned way, the agents execute Algorithm
2 with agents interacting only with other agents of same orientation. Lets compute the time
complexity for gathering the agents with the orientation having lesser number of good agents.
We need to compute the α′ value for this orientation

α′ ≤ f

g/4 + f

= f

(k − f)/4 + f

= α

(1− α)/4 + α

= 4α

(1 + 3α)

Therefore the agents of this orientation gather in O
(

n log n
log(4/(3+α′))

)
= O

(
n log n

log(4+12α/(3+13α))

)
rounds. In these many rounds, good agents of each orientation would have gathered. Therefore
we now have two groups of good agents. These groups are now gathered by running Algorithm
2 except each group chooses one of the two possible orientations with equal probability in each
phase. Then in each phase, the probability that the two groups have the same orientation
and same parity is 1/4 and the probability that one of them is a leader and the other is a
follower is 1/2. Given that these events happen, the probability that the two groups combine
is at least g/4

g/4+f = 1−α
1+3α . Therefore in each phase the two groups combine with probability

at least 1−α
8(1+3α) . Hence the two groups combine in O(n log n

log(8+24α/7+25α)) rounds with high
probability. Therefore the overall algorithm terminates in O(n log n

log(8+24α/7+25α)) rounds whp.

3 Conclusion

We studied how to exploit randomization to achieve gathering quickly in the presence of
strong Byzantine agents and when agents are anonymous. Our main focus was on rings
similar to intial research in other fundamental global symmetry breaking problems [19]. Our
algorithms and analysis show that these problems are non-trivial and showcase the need
to develop this theory further. Our work raises many follow-up questions. For example,
how fast can we gather when the number of good agents is asymptotically smaller than the
number of Byzantine agents? Consider the case when k = n and f = n−O(1), can we do
better than achieving gathering through coalescing random walks which takes Õ(n2) time?
Or is Ω̃(n2) a lower bound for such algorithms?

J. Augustine, A. Datar, and N. Shadagopan 13:15

Earlier works like [13] have focused on deterministic algorithms with labelled agents.
While the use of randomization is clear in the anonymous setting, a natural question is
whether randomization can improve the time efficiency in the case of labelled agents.

References
1 Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile

robots. SIAM J. Comput., 36(1):56–82, July 2006. doi:10.1137/050645221.
2 Steve Alpern, V. J. Baston, and Skander Essegaier. Rendezvous search on a graph. Journal

of Applied Probability, 36(1):223–231, 1999. URL: http://www.jstor.org/stable/3215416.
3 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55. Springer

Science & Business Media, 2006.
4 James Aspnes. Lower bounds for distributed coin-flipping and randomized consensus. Journal

of the ACM (JACM), 45(3):415–450, 1998.
5 Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima

of banzhaf values. In 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 408–416. IEEE, 1985.

6 Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gathering in net-
works. Distrib. Comput., 29(6):435–457, November 2016. doi:10.1007/s00446-016-0276-9.

7 Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine Gathering in Polynomial
Time. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 147:1–
147:15, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2018.147.

8 Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. Coalescing random walks
and voting on graphs. In Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, PODC ’12, pages 47–56, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2332432.2332440.

9 Gianlorenzo D’angelo, Gabriele Di Stefano, and Alfredo Navarra. Gathering on rings under
the look—compute—move model. Distrib. Comput., 27(4):255–285, August 2014. doi:
10.1007/s00446-014-0212-9.

10 Gianlorenzo D’angelo, Alfredo Navarra, and Nicolas Nisse. A unified approach for gathering
and exclusive searching on rings under weak assumptions. Distrib. Comput., 30(1):17–48,
February 2017. doi:10.1007/s00446-016-0274-y.

11 Shantanu Das et al. Mobile agents in distributed computing: Network exploration. Bulletin
of EATCS, 1(109), 2013.

12 Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. Self-stabilizing gathering
of mobile robots under crash or byzantine faults. Distributed Comput., 33(5):393–421, 2020.
doi:10.1007/s00446-019-00359-x.

13 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans.
Algorithms, 11(1), August 2014. doi:10.1145/2629656.

14 R. Eguchi, N. Kitamura, and T. Izumi. Fast neighborhood rendezvous. In 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), pages 168–178, Los
Alamitos, CA, USA, December 2020. IEEE Computer Society. doi:10.1109/ICDCS47774.
2020.00030.

15 Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on Foundations
of Computer Science (FOCS), pages 142–152. IEEE, 1999.

16 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in
Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

17 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413–457,
2017. doi:10.1007/s00446-016-0291-x.

OPODIS 2022

https://doi.org/10.1137/050645221
http://www.jstor.org/stable/3215416
https://doi.org/10.1007/s00446-016-0276-9
https://doi.org/10.4230/LIPIcs.ICALP.2018.147
https://doi.org/10.4230/LIPIcs.ICALP.2018.147
https://doi.org/10.1145/2332432.2332440
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/s00446-016-0274-y
https://doi.org/10.1007/s00446-019-00359-x
https://doi.org/10.1145/2629656
https://doi.org/10.1109/ICDCS47774.2020.00030
https://doi.org/10.1109/ICDCS47774.2020.00030
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/s00446-016-0291-x

13:16 Randomized Byzantine Gathering in Rings

18 Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Gathering with a strong
team in weakly byzantine environments. In International Conference on Distributed Computing
and Networking 2021, ICDCN ’21, pages 26–35, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3427796.3427799.

19 Daniel S. Hirschberg and James B Sinclair. Decentralized extrema-finding in circular configur-
ations of processors. Communications of the ACM, 23(11):627–628, 1980.

20 Zool Hilmi Ismail and Nohaidda Sariff. A survey and analysis of cooperative multi-agent robot
systems: Challenges and directions. In Efren Gorrostieta Hurtado, editor, Applications of
Mobile Robots, chapter 1. IntechOpen, Rijeka, 2019. doi:10.5772/intechopen.79337.

21 Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita. Feasibility of polynomial-
time randomized gathering for oblivious mobile robots. IEEE Transactions on Parallel and
Distributed Systems, 24(4):716–723, 2013. doi:10.1109/TPDS.2012.212.

22 Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. Mobile robots gathering
algorithm with local weak multiplicity in rings. In Proceedings of the 17th International
Conference on Structural Information and Communication Complexity, SIROCCO’10, pages
101–113, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-13284-1_9.

23 Gangshan Jing, Yuanshi Zheng, and Long Wang. Consensus of multiagent systems with
distance-dependent communication networks. IEEE Transactions on Neural Networks and
Learning Systems, PP, August 2016. doi:10.1109/TNNLS.2016.2598355.

24 Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of symmetries:
Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science,
411(34):3235–3246, 2010. doi:10.1016/j.tcs.2010.05.020.

25 Evangelos Kranakis and Danny Krizanc. Mobile Agents and Exploration, pages 1338–1341.
Springer New York, New York, NY, 2016. doi:10.1007/978-1-4939-2864-4_242.

26 Silvio Micali and Tal Rabin. Collective coin tossing without assumptions nor broadcasting. In
Conference on the Theory and Application of Cryptography, pages 253–266. Springer, 1990.

27 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

28 Fukuhito Ooshita, Shinji Kawai, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Randomized
gathering of mobile agents in anonymous unidirectional ring networks. IEEE Trans. Parallel
Distributed Syst., 25(5):1289–1296, 2014. doi:10.1109/TPDS.2013.259.

29 Michael Saks. A robust noncryptographic protocol for collective coin flipping. SIAM Journal
on Discrete Mathematics, 2(2):240–244, 1989.

30 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 415–424, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2933057.2933093.

31 Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa. An agent exploration in unknown undirected graphs with whiteboards.
In Proceedings of the Third International Workshop on Reliability, Availability, and Security,
WRAS ’10, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/
1953563.1953570.

32 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

33 Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine gathering in networks
with authenticated whiteboards. In Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun
Yen, editors, WALCOM: Algorithms and Computation, pages 106–118, Cham, 2017. Springer
International Publishing.

34 Xiaoping Yun, Gokhan Alptekin, and Okay Albayrak. Line and circle formation of distributed
physical mobile robots. J. Field Robotics, 14(2):63–76, 1997.

https://doi.org/10.1145/3427796.3427799
https://doi.org/10.5772/intechopen.79337
https://doi.org/10.1109/TPDS.2012.212
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1109/TNNLS.2016.2598355
https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1007/978-1-4939-2864-4_242
https://doi.org/10.1109/TPDS.2013.259
https://doi.org/10.1145/2933057.2933093
https://doi.org/10.1145/1953563.1953570
https://doi.org/10.1145/1953563.1953570
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

Gathering of Mobile Robots with Defected Views∗

Yonghwan Kim #

Nagoya Institute of Technology, Aichi, Japan

Masahiro Shibata #

Kyushu Institute of Technology, Fukuoka, Japan

Yuichi Sudo #

Hosei University, Tokyo, Japan

Junya Nakamura #

Toyohashi University of Technology, Aichi, Japan

Yoshiaki Katayama #

Nagoya Institute of Technology, Aichi, Japan

Toshimitsu Masuzawa #

Osaka University, Japan

Abstract
An autonomous mobile robot system consisting of many mobile computational entities (called robots)
attracts much attention of researchers, and it is an emerging issue for a recent couple of decades to
clarify the relation between the capabilities of robots and solvability of the problems.

Generally, each robot can observe all other robots as long as there are no restrictions on
visibility range or obstructions, regardless of the number of robots. In this paper, we provide a
new perspective on the observation by robots; a robot cannot necessarily observe all other robots
regardless of distances to them. We call this new computational model the defected view model.
Under this model, in this paper, we consider the gathering problem that requires all the robots to
gather at the same non-predetermined point and propose two algorithms to solve the gathering
problem in the adversarial (N ,N − 2)-defected model for N ≥ 5 (where each robot observes at
most N − 2 robots chosen adversarially) and the distance-based (4,2)-defected model (where each
robot observes at most two robots closest to itself), respectively, where N is the number of robots.
Moreover, we present an impossibility result showing that there is no (deterministic) gathering
algorithm in the adversarial or distance-based (3,1)-defected model, and we also show an impossibility
result for the gathering in a relaxed (N , N − 2)-defected model.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases mobile robot, gathering, defected view model

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.14

Related Version Previous Version: https://doi.org/10.4230/LIPIcs.DISC.2022.46

Funding This work was supported in part by JSPS KAKENHI Grant Numbers 18K18031, 19H04085,
19K11823, 20H04140, 20KK0232, 21K17706, 22K11971, and Foundation of Public Interest of
Tatematsu.

1 Introduction

An autonomous mobile robot system is a distributed system consisting of many mobile
computational entities (called robots) with limited capabilities, e.g., robots cannot distinguish
other robots, or cannot remember their any past actions. The robots operate autonomously

∗ A part of this paper was presented in the 36th International Symposium on DIStributed Computing
(DISC 2022) as a brief announcement.

© Yonghwan Kim, Masahiro Shibata, Yuichi Sudo, Junya Nakamura, Yoshiaki Katayama, and
Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kim@nitech.ac.jp
https://orcid.org/0000-0002-5437-7626
mailto:shibata@csn.kyutech.ac.jp
https://orcid.org/0000-0003-1414-8033
mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:junya@imc.tut.ac.jp
https://orcid.org/0000-0002-1363-4358
mailto:katayama@nitech.ac.jp
https://orcid.org/0000-0003-1683-2154
mailto:masuzawa@ist.osaka-u.ac.jp
https://orcid.org/0000-0003-4628-6393
https://doi.org/10.4230/LIPIcs.OPODIS.2022.14
https://doi.org/10.4230/LIPIcs.DISC.2022.46
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Gathering of Mobile Robots with Defected Views

and cooperatively; each robot observes the other robots (Look), computes the destination
(Compute), and moves to the destination (Move). Each robot autonomously and cyclically
performs the above operations to achieve the given common goal. Since an autonomous mobile
robot system has been firstly introduced in [21], the literature [17, 18, 19, 21] provides a formal
discussion on the capabilities of the robots for the distributed coordination (e.g., gathering,
scattering, or pattern formation), and many researchers are interested in clarifying the
relationship between the capabilities of the robots and solvability of the problems.

Generally, in Look operation, each robot can observe all other robots (within its visibility
range if the range is limited). In other words, each robot can take a snapshot consisting
of all other robots’ (relative) positions in its Look operation, i.e., each robot temporarily
remembers the positions of up to N − 1 robots, where N is the total number of robots. From
the practical viewpoint, we claim that a robot with low functionality may not have such
large working memory. That is, the main question we address in this paper is “what occurs
if a robot cannot observe some of the other robots?”. More precisely, “how many other robots
should be observed to achieve the goals of the problems?”.

Related works. The gathering problem [16], which requires all the robots to move to a
common (non-predetermined) position, is a fundamental problem for autonomous mobile
robot systems. There are many studies about the gathering of autonomous mobile robots;
Cieliebak et al. presented the first algorithm to achieve the gathering from any arbitrary
configuration [4], Klasing et al. studied the gathering of mobile robots in one node of an
anonymous unoriented ring [13], D’Angelo et al. introduced a gathering algorithm of robots
without multiplicity detection on grids and trees [5], and many works for the gathering of
robots with dynamic (or inaccurate) compasses are also introduced [9, 10, 11, 20]. The
capability of the robots deeply affects the solvability of the gathering problem, thus some
investigations about the required capability or impossibility are introduced [16, 17]. However,
all of these works assume that each robot can observe all other robots within its visibility
range if there is no obstruction (e.g., any opaque robot) between the robots.

The works most related to this paper are those with the limited visibility range [1, 3, 7,
12, 14]. The robots with the limited visibility cannot necessarily observe all robots, which is
similar to the defected view model we propose. But visibility is limited by distance in the
limited visibility model and thus all robots can be observed when they gather closely enough.
On the other hand, the defected view model cannot guarantee such a full view of the robots.
As another well-related work, Heriban et al. studied some problems of robots with uncertain
visibility sensors [8]: if the distance between two robots is longer than the visibility range,
the two robots adversarially observe each other. However, also in this study, every robot can
observe all other robots within the visibility range regardless of the number of robots. The
works for fault-tolerance [2, 6, 15] are also closely related to this paper. The defected view
can be considered as a new type of fault in autonomous mobile robot systems.

Contribution. To provide some answers for the above research questions, we propose a
new computational model with restriction on the number of robots that each robot can
observe, named the defected view model, where each robot observes only k other robots for
1 ≤ k < N − 1. This assumption naturally arises by considering some issues for robots with
low functionality such as (1) each robot does not have enough working memory to store the
entire observation result, (2) each robot may miss some of observation results due to memory
failure, or (3) each robot fails to observe some of other robots by sensing failure. It is obvious
that when k becomes the lower, the problem becomes the harder (possibly impossible) to

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:3

solve. We consider two different defected view models regarding which k robots are observed:
the adversarial (N ,k)-defected model and the distance-based (N ,k)-defected model. In the
former, each robot observes the other k robots determined adversarially, and in the latter,
each robot observes the other k robots closest to its current position.

More precisely, the k robots that each robot r can observe are chosen from the robots
located at points different from r’s current position. Concerning r’s current position, r can
detect only whether another robot exists at the point or not (so called the weak multiplicity
detection). Such an assumption that the robots at r’s current position are excluded from the
candidates of the observed k robots is motivated by the following observation: each robot
r observes the robots at remote points and those at r’s current position by different ways
usually. Each robot observes the remote robots by, for example, a radar sensor or a vision
sensor, but senses the other robots at the same point by, for example, a contact sensor.

As the first step of the gathering in the defected view model, we investigate only the case
of k = N − 2. The main contributions of this paper are as follows: (1) we propose a gathering
algorithm in the adversarial (N ,N − 2)-defected model for any N ≥ 5, (2) we present another
algorithm to solve the gathering problem in the distance-based (4,2)-defected model, and (3)
we provide the impossibility result showing that there is no (deterministic) algorithm to solve
the gathering problem in the adversarial or distance-based (3,1)-defected model. Moreover,
we present another impossibility result in a naturally relaxed (N ,N − 2)-defected model
where the observed k robots can contain the robots at the observer’s current position. This
impossibility result shows the necessity of the assumption that the observed N − 2 robots
should be chosen from robots other than those located at the observer’s current position.

The rest of this paper is organized as follows: Section 2 presents the system model
(including two defected view models) and problem definition; Section 3 introduces an
algorithm to solve the gathering problem in the adversarial (N , N − 2)-defected model for
any N ≥ 5; Section 4 gives a gathering algorithm in the distance-based (4,2)-defected model;
Section 5 shows two impossibility results showing that there is no algorithm in the adversarial
or distance-based (3,1)-defected model and the relaxed adversarial (N ,N − 2)-defected model;
and Section 6 concludes the paper and provides some open problems.

2 Model and Problem Definition

2.1 Robots
Let R = {r1, r2, ..., rN } be the set of N autonomous mobile robots deployed in a plane.
Robots are indistinguishable by their appearance (i.e., identical), execute the same algorithm
(i.e., uniform or homogeneous), and have no memory (i.e., oblivious). There is no geometrical
agreement; robots do not agree on any axis, the unit distance, or chirality. A point in the
plane is called an occupied point if there exists a robot at the point. We allow two or more
robots to occupy the same point at the same time. We call a robot a single robot if the point
occupied by the robot has no other robot. Otherwise, we call it an accompanied robot.

Each robot cyclically performs the three operations, Look, Compute, and Move: (Look)
a robot obtains the positions (based on its local coordinate system centered on itself) of
all other observed robots, (Compute) a robot determines the destination according to the
given algorithm based on the result of Look operation. Since each robot has no memory,
the result of Compute is determined only by the result of Look operation, and (Move) a
robot moves to the destination computed in Compute operation. We assume rigid movement
which ensures each robot can reach the destination during its Move operation, i.e., a robot
never stops before it reaches its destination.

OPODIS 2022

14:4 Gathering of Mobile Robots with Defected Views

2.2 Schedule and Configuration

We assume a fully-synchronous scheduler (FSYNC): all robots fully-synchronously perform
their operations (Look, Compute, and Move). This means that all robots perform the same
operation at the same time instant and duration. We call the time duration in which all
robots perform the three operations (Look, Compute, and Move) once a round.

Let configuration Ct be the set of the (global) coordinates of all robots at a given time
t: Ct = {(rt

1.x, rt
1.y), (rt

2.x, rt
2.y) . . . (rt

N.x, rt
N.y)}, where rt

i.x (resp. rt
i.y) is the X-coordinate

(resp. Y -coordinate) of robot ri at time t. Note that no robot knows its global coordinate.
Configuration Ct is changed into another configuration Ct+1 after one round (i.e., all robots
execute the three operations once).

2.3 Observation: Visibility Range and Multiplicity Detection

We basically assume that every robot has unlimited visibility range, i.e., any two robots can
observe each other regardless of their distance, while we introduce in Definition 1 the defect
in the information obtained by Look operation. Moreover, we assume a weak multiplicity
detection, i.e., each robot cannot get the exact number of robots occupying the same point
but can distinguish whether the point is occupied by one robot or by multiple robots. This
implies that when each robot observes any point, it can distinguish the three cases: there is
no robot, one robot, or two or more robots at the point.

We consider a defected view such that each robot may not observe all other robots. We
define the (N ,k)-defected model, where 1 ≤ k < N as follows:

▶ Definition 1 ((N ,k)-defected model). Each robot r can get from Look operation the set of
occupied points (in its coordinate system) where k robots not accompanied with r are located
(i.e., the k robots contains no robot located at r’s current point). When the number of robots
not accompanied with r is k or less, all such robots are observed. The weak multiplicity
detection concerning the k robots is assumed: a point occupied by only one of the k robots
can be distinguished from that occupied by two or more of the k robots.

Note that the (N ,N − 1)-defected model is equivalent to the commonly used model (with
the weak multiplicity detection) where each robot can observe all robots. The (N ,k)-defected
model has options depending on how the observed k robots are chosen. We consider the two
options in this paper, named adversarial (N ,k)-defected model and distance-based (N ,k)-
defected model. In the adversarial (N ,k)-defected model, k robots observed by each robot are
determined adversarially. In the distance-based (N ,k)-defected model, each robot r observes
the k closest robots to the r’s current point. Tie break among the robots the same distance
apart is determined in an arbitrary way.

𝒓𝟏

𝒓𝟑

𝒓𝟖

𝒓𝟕

𝒓𝟐
𝒓𝟓𝒓𝟒

𝒓𝟔

3 3

5 5
1

5

Figure 1 An example configuration by 8 robots.

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:5

To help to understand, we explain the model using examples. Figure 1 illustrates an
example configuration by 8 robots; R = {r1, r2, . . . , r8}. Robots r1 and r2 (resp. r4, r5 and
r6) are accompanied, and the other robots are single. The dotted arrow between robots
represents the distance between the points occupied by the robots. Let pi denote the point
occupied by robot ri. Now we explain the models as follows:

The adversarial (8,4)-defected model. In this model, each robot observes 4 other
robots chosen adversarially. Assume that robot r3 observes 4 robots, r1, r2, r6, and r8. In
this case, robot r3 gets a set of points P r3 = {p∗

1, p3, p6, p8} including point p3 occupied
by r3 itself, where p∗

i denotes that pi is recognized to be occupied by two or more robots.
Robot r3 knows that two or more robots exist at point p1 because both robots r1 and
r2 are chosen, however, r3 does not know that there is another robot at p6 because it
observes only r6 at p6. Robot r4 (or r5, r6) observes 4 robots among 5 robots, r1, r2,
r3, r7, and r8. If robots r1, r3, r7, and r8 are chosen, P r4 = {p1, p3, p∗

4, p7, p8} holds,
which means that r4 observes all points, however, it does not know that another robot
exists at p1 (and the other points except for p∗

4). Robot r4 can know that point p4 is
occupied by another robot other than itself. If robot r4 observes robots r1, r2, r7, and r8,
P r4 = {p∗

1, p∗
4, p7, p8} holds, which means that robot r4 knows there exist two or more

robots at p1, but it cannot observe point p3 occupied by robot r3. Notice that r5 and r6
located at p4 are allowed to observe the set of points different from those observed by r4.
The distance-based (8,3)-defected model. In this model, each robot observes 3
closest robots to itself. Robot r7 observes 3 robots, r8 (the closest one) and two robots
among three robots at point p4, thus P r7 = {p∗

4, p7, p8} always holds. Robot r4 observes
robot r3 (the closest one) and two robots among 4 robots, r1, r2, r7, and r8, which are the
same distance apart. Note that the observed robots are determined in an arbitrary way,
thus in this case, P r4 becomes one among {p∗

1, p3, p∗
4}, {p1, p3, p∗

4, p7}, {p1, p3, p∗
4, p8}, or

{p3, p∗
4, p7, p8}.

It is obvious that the adversarial (N ,k)-defected model is weaker1 than the distance-based
one, that is, any algorithm to achieve the gathering in the adversarial (N ,k)-defected model
works correctly also in the distance-based (N ,k)-defected model.

2.4 Problem Definition: Gathering

We define the gathering problem as follows.

▶ Definition 2 (The Gathering Problem). Given a set of N robots located at arbitrary points.
Algorithm A solves the gathering problem if A satisfies all the following conditions:
(1) algorithm A eventually reaches a configuration such that no robot can move, and
(2) when the algorithm A terminates, all the robots are located at the same point.

1 Strictly speaking, we do not know the adversarial (N ,k)-defected model is properly weaker than the
distance-based one yet; it is obvious that the adversarial (N ,k)-defected model is NOT stronger than
the distance-based one.

OPODIS 2022

14:6 Gathering of Mobile Robots with Defected Views

3 Algorithm in the Adversarial (N ,N − 2)-defected Model where
N ≥ 5

Algorithm 1 presents an algorithm for robot ri to achieve the gathering in the adversarial
(N , N − 2)-defected model where N ≥ 5. We use two functions defined as follows:

OPSET() : a function that returns a set of points {p | p is occupied by ri or by the robots
that ri observed}
isMulti(p) : a function that returns TRUE if point p is occupied by two or more robots
that ri observed (weak multiplicity), otherwise FALSE.

The algorithm adopts, as the destination of robot ri, the center of the smallest enclosing
circle (SEC) of the occupied points that ri observed in the Look operation. Before proving
the correctness of the algorithm, we show some fundamental properties of the SEC of points
in a plane.

Algorithm 1 Gathering algorithm in the adversarial (N, N − 2)-defected model where N ≥ 5.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: move to the center of the smallest enclosing circle of OPSET()
7: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

▶ Proposition 3. Let P be a set of n distinct points in a plane and C be the SEC of P . The
following properties hold.
1. The SEC of P is unique.
2. Let p ∈ P be any point (if exists) properly inside C, C is the SEC of P \ {p}.
3. When there exist three points p1, p2, p3 ∈ P on the boundary of C that form an acute or

right triangle, C is the SEC of {p1, p2, p3}.
4. When three or more points in P are on the boundary of C, there exist three points

p1, p2, p3 ∈ P on the boundary of C that form an acute or right triangle. ◀

A key property of the (N , N − 2)-defected model used in the following proofs is that any
accompanied robot can observe all the robots (but only with the weak multiplicity detection).

▶ Lemma 4. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in two rounds from any configuration where there exist three or more
accompanied robots.

Proof. When every robot is accompanied, each robot detects all the occupied points in the
Look operation and recognizes that each of them is occupied by multiple robots. Every robot
moves to the center of the SEC of all the occupied points (by lines 1 and 2 in Algorithm 1)
and thus the gathering is achieved in one round.

When there exists a single robot r, every accompanied robot observes r and does not
move (see line 7 in Algorithm 1). Every single robot misses at most one accompanied robot
in its Look operation and can detect at least one point occupied by multiple robots: a point
occupied by three or more robots (if exists) or one of the points each occupied by two robots.
Each single robot moves to one of such points (by lines 3 and 4 in Algorithm 1), which results
in the configuration where every robot is accompanied. Thus the gathering is achieved in the
next round as shown above. ◀

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:7

Notice that Lemma 4 holds for N ≥ 3.

▶ Lemma 5. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in two rounds from any configuration where there exist only two
accompanied robots.

Proof. Let r1 and r2 be the two accompanied robots. Robots r1 and r2 observe all robots
and recognize that single robots exist, which makes r1 and r2 stay at the current point.

Now consider actions of single robots. A single robot r misses one robot in its Look
operation, which implies that r observes (a) both r1 and r2 or (b) only one of r1 and r2. In
case (a), r moves to the point, say pa, occupied by r1 and r2. In case (b), r moves to the
center, say pb, of the SEC of all the occupied points. Thus after one round, all the robots
are located at pa or pb. Note that pa is occupied by multiple robots including r1 and r2.

When pb is not occupied by any robot, the gathering is already achieved. When pb is
occupied by multiple robots, the robots at pb observe all the robots. Thus, all the robots
move to the center of the SEC of pa and pb (or the midpoint of pa and pb) in the next round
(by lines 1 and 2 in Algorithm 1), which achieves the gathering. When pb is occupied by only
one robot r, r detects that pa is occupied by multiple robots and moves to pa in the next
round (by lines 3 and 4 in Algorithm 1) while the robots at pa recognize that pb is occupied
by only one robot and does not move (see line 7 in Algorithm 1). Thus, the gathering is
achieved. ◀

Notice that Lemma 5 holds for N ≥ 4.

▶ Lemma 6. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves the
gathering problem in three rounds from any configuration where all robots are single.

Proof. Each robot misses one robot in its Look operation. When there exist two robots r1
and r2 that miss the same robot, r1 and r2 get the same point set OPSET() and moves to
the center of the SEC of OPSET() (by lines 5 and 6 in Algorithm 1). From Lemmas 4 and 5,
two additional rounds are enough to achieve the gathering.

When no two robots miss the same robot, for any pair of two distinct robots r1 and r2,
the robot missing r1 is different from the robot missing r2. Let C be the SEC of all the
occupied N points. First, consider the case that two (or more) robots ra and rb are located
properly inside C. The SEC of R \ {ra} is equal to the SEC of R \ {rb} (that is C from the
second property of Proposition 3), which implies that the two robots observing R \ {ra} and
R \ {rb} move to the same point (or the center of the SEC). From Lemmas 4 and 5, two
additional rounds are enough to achieve the gathering.

Second, consider the case that N − 1 or N robots are on the boundary of C. From the
last property of Proposition 3, there exist three robots r1, r2, r3 on the boundary of C that
form an acute or right triangle. There exist two robots r4 and r5 other than r1, r2, r3 from
N ≥ 5. Both the robots observing R \ {r4} and R \ {r5} observe all of r1, r2, r3. The third
property of Proposition 3 implies that the two robots find the same SEC (or the SEC of
r1, r2, r3), which implies that they move to the same point (or the center of the SEC) (by
lines 5 and 6 in Algorithm 1). From Lemmas 4 and 5, two additional rounds are enough to
achieve the gathering. ◀

From Lemmas 4, 5 and 6, the following theorem holds.

▶ Theorem 7. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in three rounds. ◀

OPODIS 2022

14:8 Gathering of Mobile Robots with Defected Views

Algorithm 1 cannot solve the gathering problem for the case of N = 4. Assume that four
robots, R = {r0, r1, r2, r3}. Three robots r1, r2 and r3 are deployed to form an equilateral
triangle as Figure 11 and r0 is located at the center of the triangle (i.e., point pc in Figure 11).
Consider the case that ri observes r(i+1) mod 3 and r(i+2) mod 3 for each i (0 ≤ i ≤ 3).
According to Algorithm 1, r0 moves to the midpoint of r1 and r2, r1 moves to p0, r2 moves
to the midpoint of r2 and r3, and r3 moves to the midpoint of r3 and r1. In the resultant
configuration, r0, r2 and r3 form an equilateral triangle and r1 is located at the center p1 of
the triangle, which shows by repeating the argument that the gathering is never achieved.

Thus we need another gathering algorithm for the adversarial (4, 2)-defected model,
however, we do not know whether the gathering problem in the adversarial (4,2)-defected
model is solvable or not yet. In the next section, we present an algorithm to solve the
gathering problem in the distance-based (4,2)-defected model.

4 Algorithm in the Distance-based (4,2)-defected Model

In this model, the number of robots is 4 and each robot observes at most two occupied points
other than its current location (three points in total including the one occupied by itself). In
other words, the observation result of each robot forms a triangle (by three points/robots)
when every robot is single. The strategy of the proposed algorithm is to determine one unique
point from the formed triangle. Therefore, two robots observing the same three occupied
points (including its location) move to the same point according to the proposed algorithm.
If two or more robots are accompanied, the gathering can be achieved as the same manner
introduced in Algorithm 1. Obviously, in this strategy, we have to consider the case so that
all 4 robots observe different triangles. We resolve this problem by the geometrical property
(recall that each robot cannot observe the farthest robot from itself in the distance-based
defected model).

Algorithm 2 Gathering algorithm for robot ri in the distance-based (4,2)-defected model.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: if OPSET() forms an equilateral triangle then
7: move to the center of the triangle (i.e., incenter) ▷ Rule 1
8: else if OPSET() forms an isosceles triangle then
9: move to the midpoint of the base of the triangle ▷ Rule 2

10: else ▷ the other triangle or collinear three points
11: move to the midpoint of the longest line ▷ Rule 3
12: end if
13: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

Algorithm 2 presents an algorithm to achieve the gathering in the distance-based (4,2)-
defected model (two functions, OPSET() and isMulti(), are the same functions described
in Section 3). Each robot which does not observe any accompanied robots executes one
among three rules (lines from 6 to 11 in Algorithm 2). Figure 2 illustrates these three rules.
If a robot observes an equilateral triangle (i.e., the points observed by the robot form an
equilateral triangle), it moves to the center of the triangle (Figure 2(a)), and if it observes

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:9

an isosceles triangle, it moves to the midpoint of the base of the triangle (Figure 2(b)).
In the other case, it moves to the center point of the longest line of the triangle (Figure
2(c)). It is obvious that two robots observing the same set of points (i.e., the same view:
ri.OPSET() = rj .OPSET(), where i ≠ j), move to the same point according to Algorithm 2.
Hence the following lemma holds.

(a) Case of an equilateral triangle. (b) Case of an isosceles triangle. (c) The other case.

Figure 2 Three rules in Algorithm 2.

▶ Lemma 8. In any configuration where no robot is accompanied, if two or more robots have
the same view, the robots move to the same point in one round by Algorithm 2. ◀

In Algorithm 2, actions when a robot observes any accompanied robots (including itself)
are the exactly same as Algorithm 1 (lines from 1 to 4 in both algorithms). Lemmas 4 and
5 are proved for the adversarial defected model but obviously hold for the distance-based
defected model. Remind that Lemmas 4 and 5 hold for N ≥ 3 and N ≥ 4, respectively.
Moreover, we can see from the proof that the gathering is achieved in one round (not two
rounds) in Lemma 4 for N = 4. Thus,the following lemma holds.

▶ Lemma 9. In the distance-based (4,2)-defected model, Algorithm 2 solves the gathering in
one round (resp. two rounds) when there exist three or more (resp. only two) accompanied
robots. ◀

Even when all 4 robots are single, if two or more robots observe the same set of points, the
robots move to the same point (by Lemma 8), thus the gathering is achieved by Lemma 9.

Now we show that the gathering is eventually achieved in any configuration where all 4
(single) robots have the different views (i.e., observe the different set of points).

▶ Lemma 10. In the distance-based (4,2)-defected model, if all robots have the different
views, the shape formed by the robots is a convex quadrilateral.

Proof. We prove the contraposition of the lemma: if the robots do not form a convex
quadrilateral, there exist two robots having the same view.

Assume that the 4 robots, from r1 to r4, form a concave quadrilateral as Figure 3 (Note
that we can also assume that the robots form a triangle (i.e., three robots are collinear),
it can be also proved in the same manner). A concave quadrilateral has an interior angle
which is larger than 180◦, so we assume robot r1 is located at the point with such an angle
as Figure 3. Let e be the line r1r2, either angle ∠r2r1r4 or angle ∠r2r1r3 is an obtuse angle
(i.e., angle larger than 90◦) because interior angle ∠r4r1r3 is larger than 180◦. Without loss
of generality, we assume angle ∠r2r1r3 is an obtuse angle (denoted by θ). Due to θ > 90◦, d

is longer than c and e (see Figure 3). This implies that robot r3 observes r1 and robot r2 also

OPODIS 2022

14:10 Gathering of Mobile Robots with Defected Views

𝑟ଵ

𝑟ଶ
𝑟ଷ

𝑟ସ

𝑎 𝑏

𝑐
𝑑

𝑒
𝜃

𝜃′

Figure 3 An example of a concave quadrilateral.

observes r1 (because the farthest robot is missed in the distance-based defected model). If
angle ∠r2r1r4 (denoted by θ′) is also an obtuse angle, robot r4 also observes r1 by the same
reason. As a result, all robots observe r1 (including r1 itself) and the lemma holds because
there are two or more robots which have the same view by the pigeonhole principle. If angle
∠r2r1r4 is an acute angle (i.e., angle smaller than 90◦) or a right angle, θ + θ′ < 270◦ holds.
This means that an exterior angle ∠r4r1r3 (i.e., 360◦ − θ − θ′) is an obtuse angle, thus b is
shorter than r4r3. Also in this case, robot r4 observes r1 and the lemma holds. ◀

▶ Lemma 11. Assume that all robots have different views. If robot ri cannot observe robot rj

(i.e., robot ri’s view does not include the point occupied by rj), rj cannot observe ri neither.

Proof. To help to explain, we introduce a directed graph G⃗ = (V, A) such that V =
{r1, r2, r3, r4} and (ri, rj) ∈ A if robot ri cannot observe rj . If all robots have different views,
there exist only two cases, as shown in Figure 4. And we show that there is no case as Figure
4(a) to prove the lemma.

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

(a)

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

(b)

Figure 4 Directed graphs representing unobserved relation.

Assume the case as Figure 4(a): robot r1 cannot observe r2, robot r2 cannot observe r3, and
so on. r1r4 ≤ r1r2 holds because robot r1 cannot observe r2. For the same reason, r1r2 ≤ r2r3,
r2r3 ≤ r3r4, and r3r4 ≤ r1r2 also hold. Therefore, r1r4 ≤ r1r2 ≤ r2r3 ≤ r3r4 ≤ r1r4 holds,
thus r1r2 = r2r3 = r3r4 = r1r4 holds. For simplicity, we assume that the length of r1r2 is 1.

Now we consider the triangle △r1r2r3. Due to r1r2 = r2r3, triangle △r1r2r3 is an
isosceles triangle (the base is r1r3). Similarly, triangle △r1r3r4 is also an isosceles triangle
which has line r1r3 as the base. Line r1r3 is the common base of these two isosceles triangles,
thus the locations of 4 robots are as Figure 5.

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:11

𝑟ଷ

𝑟ଵ
1

1

𝑟ଶ
𝑟ସ

1

1

Figure 5 Two isosceles triangles.

In Figure 5, we consider the lengths of two diagonal lines, r1r3 and r2r4. By the
assumption, robot r1 cannot observe r2, therefore, r1r3 ≤ 1 holds because robot r1 observes
r3. As the same reason, r2r4 ≤ 1 also holds. However, both r1r3 ≤ 1 and r2r4 ≤ 1 cannot
hold in this rhombus, therefore, there is no case as Figure 4(a) and the lemma holds. ◀

By Lemma 11, if all robots have different views, we have two disjoint pairs of robots such
that robots in each pair cannot observe each other as in Figure 4(b). Now we discuss the
location relations among the robots in this case by the following lemma.

▶ Lemma 12. If all robots have different views in the distance-based (4,2)-defected model,
each of two robots which cannot be observed each other are diagonally located on the formed
convex quadrilateral.

Proof. We already proved that the robots form a convex quadrilateral if all robots have
different views by Lemma 10. Let r1 and r2 be two robots which do not observe each other,
and we assume for contradiction that r1 and r2 are not diagonally located (i.e., line r1r2 is
an edge of the convex quadrilateral). For simplicity, we assume the length of r1r2 is 1.

𝒓𝟏
𝒓𝟐

𝟏

𝒓𝟑
𝒂

𝑪𝟑

𝑪𝟏 𝑪𝟐

𝑺𝟏 ∩ 𝑺𝟐

𝑺𝟏 𝑺𝟐

𝒓𝟏
𝒓𝟐

𝟏
𝒓𝟑

𝑪𝟏 𝑪𝟐𝑺𝟏 ∩ 𝑺𝟐
𝑺𝟏 𝑺𝟐

𝟏𝟏

𝒑𝟏

𝒑𝟐

𝒂

𝒂

𝑪𝟑

(a)

𝟏
𝟐

𝟑

𝟑

𝟏 𝟐

𝟏 𝟐

𝟏 𝟐

𝟏
𝟐𝟑

𝟏 𝟐

𝟏 𝟐

𝟑

𝟏 𝟐

(b)

Figure 6 Possible positions of robots r3 and r4.

Figure 6(a) illustrates two circles, called S1 and S2, with radius 1 centered at r1 and r2
respectively. Consider the position of robot r3: robot r3 should be located in area S1 ∩ S2,
because both r1 and r2 observe r3 (remind that r1 and r2 do not observe each other). Locate
r3 in an arbitrary point in area S1 ∩ S2. Let a = max(|r1r3|, |r2r3|), here we assume a is
the length of r1r3 without loss of generality. Circles C1, C2, and C3 present the circles with
radius a centered at r1, r2, and r3 respectively. By Lemma 11, robots r3 and r4 cannot

OPODIS 2022

14:12 Gathering of Mobile Robots with Defected Views

observe each other, thus |r3r4| ≥ a holds; robot r4 should be located outside of C3. As a
result, robot r4 should be located in (C1 ∩ C2) − C3 which is presented as the shaded area in
Figure 6. In this case, robots r1 and r2 (resp. r3 and r4) are diagonally located on a convex
quadrilateral, which is a contradiction.

We can consider another case where the shaded area appears on the same side as r3 (with
respect to r1r2) if a is short enough as Figure 6(b). However, if robot r4 is located on the
same side as r3, then robot r3 is inside the triangle △r1r2r3. This implies that four robots
form a concave quadrilateral, which is a contradiction. ◀

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

Figure 7 6 lines by 4 robots.

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

Figure 8 Configuration with one longest line.

Now we show that even when all single robots have different views, two or more robots
move to the same point by Algorithm 2. We consider the 6 lines derived by the combination
of 4 robots (refer to Figure 7). We focus on the lengths of these 6 lines, and the following
corollary holds by Lemma 12.

▶ Corollary 13. Consider the 6 lines connecting distinct pairs of two robots. If all robots are
single and have different views, there is no (side) line which is longer than any diagonal line.

It is worthwhile to mention that there can be at most 4 longest lines among 6 lines. We
focus on the number of longest lines and show that the algorithm works correctly in all cases.
By Corollary 13, if there exist one or two longest lines, they are diagonal lines. The following
lemma holds.

▶ Lemma 14. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
exist one or two longest lines, two or more robots become accompanied in one round.

Proof. Figure 8 illustrates an example configuration including the only one longest line (as
a diagonal line), where the thick solid line represents the unique longest line. Without loss
of generality, we assume that line r2r4 is the longest one. From the assumption, r1 and r3
do not observe each other: r1 observes triangle △r1r2r4, and r3 observes triangle △r2r3r4.
These two triangles are not equilateral triangles because line r2r4 is the unique longest line.
Therefore, robots r1 and r3 move to the midpoint of line r2r4 (by line 9 or 11). If there
are two longest lines, the both lines are diagonal lines by Corollary 13 (r1r3 and r2r4 in
Figure 8). However, this does not affect to the actions of robots r1 and r4; they move to the
midpoint of line r2r4. Thus the lemma holds. ◀

Now we consider the case that there is a side line whose length is the same as two diagonal
lines; there are three or four longest lines.

▶ Lemma 15. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
are the three longest lines, two or more robots become accompanied in two rounds.

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:13

𝒓𝟒

𝒓𝟏

𝒓𝟑

𝒓𝟐

𝒓𝟒

𝒓𝟐

𝒓𝟑

𝒓𝟏

𝒑𝟐

𝒑𝟑

𝒑𝟏

𝒑𝟒

Figure 9 Case with three longest lines.

𝒓𝟒

𝒓𝟏

𝒓𝟑

𝒓𝟐

𝒓𝟒

𝒓𝟐

𝒓𝟑

𝒓𝟏

𝒑𝟐

𝒑𝟑

𝒑𝟏

𝒑𝟒𝒑𝟐

𝒑𝟏

𝒑𝟑

𝒑𝟒

Figure 10 Case with four longest lines.

Proof. Figure 9 illustrates the only configuration including three longest lines. Three thick
solid lines are the three longest lines. Remind that robots r1 and r3 (or r2 and r4) cannot
observe each other. By Algorithm 2, all robots move to the different points: robot r1 (resp.
r2) moves to the midpoint p1 (resp. p2) of line r1r4 (resp. r2r3) since r1 (resp. r2) observes
an isosceles triangle △r1r2r4 (resp. △r1r2r3). Robot r3 (resp. r4) moves to the midpoint p3
(resp. p4) of line r2r4 (resp. r1r3) that is the longest line of the observed triangle △r2r3r4
(resp. △r1r3r4). In this case, triangles △r2r3r4 and △r2p2p3 are similar, the length of line
p2p3 is half of the length of line r3r4, and line p2p3 and line r3r4 are parallel. Through the
same argument for lines p1p4 and r4r3, we can show that the lengths of lines p1p4 and p2p3
are the same and these two lines are parallel. This means that the quadrilateral formed in
the next round is a parallelogram: even if all robots have different views in this configuration,
two or more robots become accompanied in the next round because diagonal line p1p2 is the
unique longest line (by Lemma 14). ◀

▶ Lemma 16. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
are four longest lines, two or more robots become accompanied in two rounds.

Proof. Figure 10 illustrates the only possible configuration including four longest lines. Four
thick solid lines are the four longest lines. By Algorithm 2, all robots move to the different
points: robot r1 (resp. r3) moves to the midpoint p1 (resp. p3) of line r1r4 (resp. r3r4) since
r1 (resp. r3) observes an isosceles triangle △r1r2r4 (resp. △r2r3r4). Robot r2 moves to the
center p2 of the equilateral triangle △r1r2r3 it observes, and r4 moves to the midpoint p4 of
the unique longest line r1r3 it observes (note that if |r1r4| = |r3r4|, triangle △r1r3r4 is an
isosceles triangle, however robot r4 moves to the midpoint p4 of the base line also in this
case). As a result, the four points, from p1 to p4, form a concave quadrilateral. Hence, two
or more robots become accompanied in the next round by Lemma 10. ◀

From Lemmas 4, 9, 14, 15 and 16, the following theorem holds.

▶ Theorem 17. In the distance-based (4, 2)-defected model, Algorithm 2 solves the gathering
problem in at most four rounds. ◀

OPODIS 2022

14:14 Gathering of Mobile Robots with Defected Views

5 Impossibility Results

In this section, we present two impossibility results for the gathering problem in the defected
view model; (1) there is no (deterministic) algorithm in the distance-based (3,1)-defected
model, and (2) there is no (deterministic) algorithm in the relaxed adversarial (N ,N − 2)-
defected model defined in Section 5.2.

5.1 Impossibility in (3,1)-defected model
By the two gathering algorithms we introduced in the previous sections, the gathering can be
achieved in the adversarial (and thus also in the distance-based) (N ,N − 2)-defected model
for N ≥ 5, and in the distance-based (4,2)-defected model. These results bring us a problem
to find an algorithm to solve the gathering problem in the distance-based (or adversarial)
(3,1)-defected model. Here we show that there is no such algorithm.

▶ Theorem 18. There is no (deterministic) algorithm to solve the gathering problem in the
distance-based (3,1)-defected model.

𝒓𝟑 𝒓𝟐

𝒓𝟏

𝒑𝒄

𝒑𝒄′

Figure 11 Example for an unsolvable configuration in the distance-based (3,1)-defected model.

Proof. We prove this theorem by showing that there is no (deterministic) algorithm even
in the distance-based (3,1)-defected model. Note that the distance-based (3,1)-defected
model is stronger than the adversarial one, this result implies that the gathering is also
unsolvable in the adversarial one. Assume that three robots, R = {r1, r2, r3}, are arranged
in an equilateral triangle as Figure 11, and robot r1 (resp. r2 and r3) observes r2 (resp. r3
and r1). All robots do not agree on any geometrical agreement (e.g., direction, orientation,
chirality, or unit distance), thus we can assume that every robot ri considers the direction
from itself to the center of the triangle (pc) (i.e., −−→ripc) as the positive direction of X-axis in
its local coordinate system. Moreover, we also assume that all robots have the same chirality
(e.g., clockwise) and the same unit distance. This means that all robots obtain the exactly
same view from of Look operation.

Let A be an algorithm for gathering in the distance-based (3,1)-defected model. In the
above configuration, all robots have the same views, thus they execute the same behavior
according to A (i.e., all robots move to the same x and y coordinates in their local coordinate
systems). This causes another configuration forming a different equilateral triangle, which
shows by repeating the argument that the robots cannot gather at the same point forever.
The only way to prevent the robots from forming another equilateral triangle is to move
to point pc, i.e., each robot moves to the point located at |rirj |/

√
3 distance in the 30◦

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:15

clockwise direction of the observed robot rj . However, if all robots agree on the opposite
direction of chirality (counter-clockwise in this case), they move to the outside of triangle
△r1r2r3 (i.e., robot r1 moves to point p′

c instead of pc). As a result, the robots form another
equilateral triangle. ◀

5.2 Impossibility in the relaxed adversarial (N ,N − 2)-defected model
The (N , k)-defected model assumes that k robots observed by robot r are chosen from the
robots that are located at points other than r’s current position and that r can detect whether
it is single or accompanied. Natural relaxation of the model is to choose the k robots other
than r (i.e., robots at r’s current position can be chosen) and assume the weak multiplicity
detection for the k robots and r itself. We call the model with the relaxation the relaxed
adversarial (N ,k)-defected model. Notice that the key property of the (N , N − 2)-defected
model such that any accompanied robot can observe all the robots does not hold in the
relaxed model.

The following theorem shows that the gathering is impossible (from some configuration)
in the relaxed adversarial (N ,N − 2)-defected model.

▶ Theorem 19. There is no (deterministic) algorithm to solve the gathering problem in the
relaxed adversarial (N ,N − 2)-defected model.

Proof. Let A be a gathering algorithm in the relaxed adversarial (N ,N − 2)-defected model.
We consider only initial configurations where all robots are located at two points p1 and p2.

First, consider the initial configuration where N − 1 robots are located at p1 and one
robot, say r1, is located at p2. When the robots at p1 do not observe r1, they misunderstand
that the gathering is already achieved and terminate. To achieve the gathering, r1 has to
move to p1. This implies that A has the following action (Action 1): when a single robot r

observes only one occupied point other than r’s current point and recognizes that the point
is occupied by multiple robots, r has to move to the point.

Notice that Action 1 is sufficient to show that A cannot solve the gathering in the
relaxed adversarial (4,2)-defected model. Consider the initial configuration where two robots
exist at both of p1 and p2 (four robots in total). When the robots at p1 (resp. p2) observe
only the two robots at p2 (resp. p1), the robots at p1 (resp. p2) move to p2 (resp. p1) by
Action 1. At the resultant configuration, two robots exist at both of p1 and p2, which shows
by repeating the argument that algorithm A cannot solve the gathering problem.

Second, consider the initial configuration where N ≥ 5 and all robots recognize that
both p1 and p2 are occupied by multiple robots, which can occur when a point is occupied
by three or more robots and the other is occupied by two or more robots. When all the
robots at the same point observe the same set of robots (but still they recognize that both
the points are occupied by multiple robots), the robots at the same point execute the same
action (i.e., move to the same point). Since algorithm A solves the gathering problem, all
robots eventually have to move to the same point (precisely the midpoint of the two points
occupied by robots) to achieve the gathering. This implies that A has the following action
(Action 2): when an accompanied robot r observes only one occupied point other than r’s
current point and recognizes that the point is occupied by multiple robots, r has to move to
the midpoint of the two points.

Finally, consider the initial configuration of N (≥ 5) robots where two robots exist at p1
and N − 2 robots exist at p2. When each robot r1 at p1 observes only N − 2 robots at p2
(and recognizes itself as a single robot), r1 moves to p2 by Action 1. On the other hand,
when each robot r2 at p2 observes the two robots at p1 and N − 4 robots (other than r2)

OPODIS 2022

14:16 Gathering of Mobile Robots with Defected Views

at p2, r2 moves to the midpoint of p1 and p2 by Action 2. At the resultant configuration,
two robots exist at p2 and N − 2 robots exist at the midpoint of p1 and p2. By repeating
the argument, we can show that algorithm A cannot solve the gathering problem although
all robots converge at the same point (i.e., the distance between the two groups of robots
becomes smaller and smaller but does not become zero).

Consequently, there is no gathering algorithm in the relaxed adversarial (N ,N −2)-defected
model. ◀

6 Conclusion and Open Problems

In this paper, we introduced a new computational model, the (N , k)-defected model, where
each robot cannot necessarily observe all other robots: i.e., each robot observes at most
k other robots not located at its current position (where k < N − 1). We addressed the
gathering problem, which is one of the basic problem in autonomous mobile robot systems,
in the (N , N − 2)-defected model. We proposed two gathering algorithms: (1) an algorithm
in the adversarial (N ,N − 2)-defected model that achieves the gathering within three rounds,
and (2) an algorithm in the distance-based (4,2)-defected model that achieves the gathering
within four rounds. Moreover, we showed that there is no (deterministic) algorithm in either
the adversarial or distance-based (3,1)-defected model. In the proposed model, we assume
that each robot r observes k other robots among the robots located at the different points
than the point occupied by r itself. The relaxation of this assumption, where k robots are
chosen among all other robots other than r, can be considered, however, we proved that the
gathering is unsolvable in this relaxed model.

The remaining problem we are most interested in is to clarify the solvability of the
gathering problem in the adversarial (4,2)-defected model. Remind that the basic strategy
of the proposed algorithm in the distance-based (4,2)-defected model is to determine one
unique point from the triangle formed by the observed set of points. We call the algorithm
using this strategy the set-based algorithm, where each robot determines the destination
referring to only the set of observed points: for example, when a robot observes an isosceles
triangle, it always moves to the midpoint of the base, regardless of whether it is adjacent to
the base or not, i.e., we do not use the information of the (relative) position of the observing
robot. It can be easily proved that there is no (deterministic) set-based algorithm to solve
the gathering problem in adversarial (4,2)-defected model. This means that if a gathering
algorithm exists in the adversarial (4,2)-defected model, each robot has to use its relative
position in the set of observed points, e.g., when a robot observes an isosceles triangle, the
destination point changes depending on whether the robot is at a point incident to the base
of the triangle or not.

An important future work is to find the minimum k that allows a solution for the
gathering problem in the adversarial or distance-based (N , k)-defected model. In this paper,
we considered only the gathering problem, therefore, to challenge other problems under the
(N , k)-defected model is another future work.

References
1 Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Yamashita. Distributed memory-

less point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robotics
Autom., 15(5):818–828, 1999. doi:10.1109/70.795787.

2 Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of mobile robots tolerating
multiple crash faults. In IEEE 33rd International Conference on Distributed Computing
Systems, ICDCS, pages 337–346. IEEE Computer Society, 2013. doi:10.1109/ICDCS.2013.27.

https://doi.org/10.1109/70.795787
https://doi.org/10.1109/ICDCS.2013.27

Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:17

3 Avik Chatterjee, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Gathering asyn-
chronous swarm robots under nonuniform limited visibility. In Distributed Computing and
Internet Technology – 11th International Conference, ICDCIT, volume 8956 of Lecture Notes
in Computer Science, pages 174–180. Springer, 2015. doi:10.1007/978-3-319-14977-6_11.

4 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the
Robots Gathering Problem. In Proceedings of the 30th International Colloquium on
Automata, Languages and Programming, ICALP, pages 1181–1196. Springer, 2003. doi:
10.1007/3-540-45061-0_90.

5 Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of
robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.,
610:158–168, 2016. doi:10.1016/j.tcs.2014.06.045.

6 Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin Parvédy. Fault-
Tolerant and Self-stabilizing Mobile Robots Gathering. In Proceedings of the 20th International
Symposium on Distributed Computing, DISC, pages 46–60. Springer, 2006. doi:10.1007/
11864219_4.

7 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
Asynchronous Oblivious Robots with Limited Visibility. In Proceedings of the 18th Annual
Symposium on Theoretical Aspects of Computer Science, STACS, pages 247–258. Springer,
2001. doi:10.1007/3-540-44693-1_22.

8 Adam Heriban and Sébastien Tixeuil. Mobile robots with uncertain visibility sensors: Possibility
results and lower bounds. Parallel Process. Lett., 31(1):2150002:1–2150002:21, 2021. doi:
10.1142/S012962642150002X.

9 Nobuhiro Inuzuka, Yuichi Tomida, Taisuke Izumi, Yoshiaki Katayama, and Koichi Wada.
Gathering Problem of Two Asynchronous Mobile Robots with Semi-dynamic Compasses. In
Proceedings of the 15th International Colloquium on Structural Information and Communication
Complexity, SIROCCO, pages 5–19. Springer, 2008. doi:10.1007/978-3-540-69355-0_3.

10 Taisuke Izumi, Yoshiaki Katayama, Nobuhiro Inuzuka, and Koichi Wada. Gathering Autonom-
ous Mobile Robots with Dynamic Compasses: An Optimal Result. In Proceedings of the 21st
International Symposium on Distributed Computing, DISC, pages 298–312. Springer, 2007.
doi:10.1007/978-3-540-75142-7_24.

11 Yoshiaki Katayama, Yuichi Tomida, Hiroyuki Imazu, Nobuhiro Inuzuka, and Koichi Wada.
Dynamic Compass Models and Gathering Algorithms for Autonomous Mobile Robots. In
Proceedings of the 14th International Colloquium on Structural Information and Communication
Complexity, SIROCCO, pages 274–288. Springer, 2007. doi:10.1007/978-3-540-72951-8_22.

12 David G. Kirkpatrick, Irina Kostitsyna, Alfredo Navarra, Giuseppe Prencipe, and Nicola
Santoro. Separating bounded and unbounded asynchrony for autonomous robots: Point
convergence with limited visibility. In PODC ’21: ACM Symposium on Principles of Distributed
Computing, pages 9–19. ACM, 2021. doi:10.1145/3465084.3467910.

13 Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous oblivious mobile
robots in a ring. Theor. Comput. Sci., 390(1):27–39, 2008. doi:10.1016/j.tcs.2007.09.032.

14 Giuseppe Antonio Di Luna, Ryuhei Uehara, Giovanni Viglietta, and Yukiko Yamauchi. Gath-
ering on a circle with limited visibility by anonymous oblivious robots. In 34th International
Symposium on Distributed Computing, DISC, volume 179 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.12.

15 Debasish Pattanayak, Kaushik Mondal, H. Ramesh, and Partha Sarathi Mandal. Fault-
tolerant gathering of mobile robots with weak multiplicity detection. In Proceedings of the
18th International Conference on Distributed Computing and Networking, page 7. ACM, 2017.
URL: http://dl.acm.org/citation.cfm?id=3007786.

16 Giuseppe Prencipe. On the feasibility of gathering by autonomous mobile robots. In Proceedings
of the 12th International Colloquium on Structural Information and Communication Complexity,
SIROCCO, pages 246–261. Springer, 2005. doi:10.1007/11429647_20.

OPODIS 2022

https://doi.org/10.1007/978-3-319-14977-6_11
https://doi.org/10.1007/3-540-45061-0_90
https://doi.org/10.1007/3-540-45061-0_90
https://doi.org/10.1016/j.tcs.2014.06.045
https://doi.org/10.1007/11864219_4
https://doi.org/10.1007/11864219_4
https://doi.org/10.1007/3-540-44693-1_22
https://doi.org/10.1142/S012962642150002X
https://doi.org/10.1142/S012962642150002X
https://doi.org/10.1007/978-3-540-69355-0_3
https://doi.org/10.1007/978-3-540-75142-7_24
https://doi.org/10.1007/978-3-540-72951-8_22
https://doi.org/10.1145/3465084.3467910
https://doi.org/10.1016/j.tcs.2007.09.032
https://doi.org/10.4230/LIPIcs.DISC.2020.12
http://dl.acm.org/citation.cfm?id=3007786
https://doi.org/10.1007/11429647_20

14:18 Gathering of Mobile Robots with Defected Views

17 Giuseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theor.
Comput. Sci., 384(2-3):222–231, 2007. doi:10.1016/j.tcs.2007.04.023.

18 Giuseppe Prencipe. Autonomous Mobile Robots: A Distributed Computing Perspective. In
Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor
Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS, pages 6–21. Springer,
2013. doi:10.1007/978-3-642-45346-5_2.

19 Giuseppe Prencipe and Nicola Santoro. Distributed Algorithms for Autonomous Mobile
Robots. In Proceedings of Fourth IFIP International Conference on Theoretical Computer
Science, TCS, pages 47–62. Springer, 2006. doi:10.1007/978-0-387-34735-6_8.

20 Samia Souissi, Xavier Défago, and Masafumi Yamashita. Gathering Asynchronous Mobile
Robots with Inaccurate Compasses. In Proceedings of the 10th International Conference on
Principles of Distributed Systems, OPODIS, pages 333–349. Springer, 2006. doi:10.1007/
11945529_24.

21 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Form-
ation of Geometric Patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1007/978-3-642-45346-5_2
https://doi.org/10.1007/978-0-387-34735-6_8
https://doi.org/10.1007/11945529_24
https://doi.org/10.1007/11945529_24
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

A Unifying Approach to Efficient (Near)-Gathering
of Disoriented Robots with Limited Visibility
Jannik Castenow !

Heinz Nixdorf Institute & Computer Science Department, Paderborn University, Germany

Jonas Harbig !

Heinz Nixdorf Institute & Computer Science Department, Paderborn University, Germany

Daniel Jung !

Heinz Nixdorf Institute & Computer Science Department, Paderborn University, Germany

Peter Kling !

Department of Informatics, Universität Hamburg, Germany

Till Knollmann !

Heinz Nixdorf Institute & Computer Science Department, Paderborn University, Germany

Friedhelm Meyer auf der Heide !

Heinz Nixdorf Institute & Computer Science Department, Paderborn University, Germany

Abstract
We consider a swarm of n robots in a d-dimensional Euclidean space. The robots are oblivious
(no persistent memory), disoriented (no common coordinate system/compass), and have limited
visibility (observe other robots up to a constant distance). The basic formation task Gathering
requires that all robots reach the same, not predefined position. In the related Near-Gathering
task, they must reach distinct positions in close proximity such that every robot sees the entire
swarm. In the considered setting, Gathering can be solved in O(n + ∆2) synchronous rounds both
in two and three dimensions, where ∆ denotes the initial maximal distance of two robots [3, 13, 24].

In this work, we formalize a key property of efficient Gathering protocols and use it to define
λ-contracting protocols. Any such protocol gathers n robots in the d-dimensional space in O(∆2)
synchronous rounds, for d ≥ 2. For d = 1, any λ-contracting protocol gathers in optimal time O(∆).
Moreover, we prove a corresponding lower bound stating that any protocol in which robots move to
target points inside the local convex hulls of their neighborhoods – λ-contracting protocols have this
property – requires Ω(∆2) rounds to gather all robots (d > 1). Among others, we prove that the
d-dimensional generalization of the GtC-protocol [3] is λ-contracting. Remarkably, our improved
and generalized runtime bound is independent of n and d.

We also introduce an approach to make any λ-contracting protocol collision-free (robots never
occupy the same position) to solve Near-Gathering. The resulting protocols maintain the runtime
of Θ(∆2) and work even in the semi-synchronous model. This yields the first Near-Gathering
protocols for disoriented robots and the first proven runtime bound. In particular, combined with
results from [28] for robots with global visibility, we obtain the first protocol to solve Uniform
Circle Formation (arrange the robots on the vertices of a regular n-gon) for oblivious, disoriented
robots with limited visibility.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases mobile robots, gathering, limited visibility, runtime, collision avoidance,
near-gathering

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.15

Related Version Full Version: https://arxiv.org/abs/2206.07567 [14]

Funding This work was partially supported by the German Research Foundation (DFG) under the
project number ME 872/14-1.

© Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, and
Friedhelm Meyer auf der Heide;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 15; pp. 15:1–15:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jannik.castenow@upb.de
https://orcid.org/0000-0002-8585-4181
mailto:jonas.harbig@upb.de
https://orcid.org/0000-0003-3943-5979
mailto:jungd@hni.upb.de
https://orcid.org/0000-0001-8270-8130
mailto:peter.kling@uni-hamburg.de
https://orcid.org/0000-0003-0000-8689
mailto:tillk@mail.upb.de
https://orcid.org/0000-0003-2014-4696
mailto:fmadh@upb.de
https://doi.org/10.4230/LIPIcs.OPODIS.2022.15
https://arxiv.org/abs/2206.07567
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

1 Introduction

Envision a huge swarm of n robots spread in a d-dimensional Euclidean space that must
solve a formation task like Gathering (moving all robots to a single, not pre-determined
point) or Uniform-Circle (distributing the robots over the vertices of a regular n-gon).
Whether and how efficiently a given task is solvable varies largely with the robots’ capabilities
(local vs. global visibility, memory vs. memory-less, communication capabilities, common
orientation vs. disorientation). While classical results study what capabilities the robots need
at least to solve a given task, our focus lies on how fast a given formation task can be solved
assuming simple robots. Specifically, we consider the Gathering problem and the related
Near-Gathering problem for oblivious, disoriented robots with a limited viewing range.

Gathering is the most basic formation task and a standard benchmark to compare robot
models [27]. The robots must gather at the same, not predefined, position. Whether or not
Gathering is solvable depends on various robot capabilities. It is easy to see that robots
can solve Gathering in case they have unlimited visibility (can observe all other robots)
and operate fully synchronously [17]. However, as soon as the robots operate asynchronously,
have only limited visibility, or do not agree on common coordinate systems, the problem gets
much harder or even impossible to solve (see Section 1.1 for a comprehensive discussion). A
well-known protocol to solve Gathering of robots with limited visibility is the Go-To-The-
Center (GtC) protocol that moves each robot towards the center of the smallest enclosing
circle of all observable robots [3]. GtC gathers all robots in O

(
n + ∆2)

synchronous rounds,
where the diameter ∆ denotes the initial maximal distance of two robots [24]. The term n

upper bounds the number of rounds in which robots collide (move to the same position),
while ∆2 results from how quickly the global smallest enclosing circle shrinks. Hence, GtC
not only forces the robots to collide in the final configuration but also incurs several collisions
during Gathering. Such collisions are fine for point robots in theoretical models but a
serious problem for physical robots that cannot occupy the same position. This leads us to
Near-Gathering, which requires the robots to move collision-free to distinct locations such
that every robot can observe the entire swarm despite its limited visibility [42]. Requiring
additionally that, eventually, robots simultaneously (within one round/epoch) terminate,
turns Near-Gathering into a powerful subroutine for more complex formation tasks like
Uniform Circle. Once all robots see the entire swarm and are simultaneously aware of
that, they can switch to the protocol of [28] to build a uniform circle. Although that protocol
is designed for robots with a global view, we can use it here since solving Near-Gathering
grants the robots de facto a global view. Note the importance of simultaneous termination,
as otherwise, some robots might build the new formation while others are still gathering,
possibly disconnecting some robots from the swarm.

Robot Model. We assume the standard OBLOT model [27] for oblivious, point-shaped
robots in Rd. The robots are anonymous (no identifiers), homogeneous (all robots execute
the same protocol), identical (same appearance), autonomous (no central control) and
deterministic. Moreover, we consider disoriented robots with limited visibility. Disorientation
means that a robot observes itself at the origin of its local coordinate system, which can be
arbitrarily rotated and inverted compared to other robots. The disorientation is variable,
i.e., the local coordinate system might differ from round to round. Limited visibility implies
that each robot can observe other robots only up to a constant distance. The robots do not
have multiplicity detection, i.e., robots observe only a single robot in case multiple robots are
located at the same position. Furthermore, time is divided into discrete LCM-cycles (rounds)

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:3

consisting of the operations Look, Compute and Move. During its Look operation, a
robot takes a snapshot of all visible robots, which is used in the following Compute operation
to compute a target point, to which the robot moves in the Move operation. Moves are rigid
(a robot always reaches its target point) and depend solely on observations from the last
Look operation (robots are oblivious). The time model can be fully synchronous (Fsync; all
robots are active each round and operations are executed synchronously), semi-synchronous
(Ssync; a subset of robots is active each round and operations are executed synchronously),
or completely asynchronous (Async). The Ssync and Async schedules of the robots are
fair, i.e., each robot is activated infinitely often. Time is measured in rounds in Fsync and
epochs (the smallest number of rounds such that all robots finish one LCM-cycle) in Ssync
or Async.

Results in a Nutshell. For Gathering of oblivious, disoriented robots with limited visibility
in Rd, we introduce the class of λ-contracting protocols for a constant λ ∈ (0, 1]. For instance,
the well-known GtC [3] and several other Gathering protocols are λ-contracting. We prove
that for d > 1, every λ-contracting protocol gathers a swarm of diameter ∆ in O(∆2) rounds.
The case d = 1 leads to an optimal time bound of Θ(∆) rounds. We also prove a matching
lower bound for any protocol in which robots always move to points inside the convex hull of
their neighbors, including themselves. While our results for Gathering assume the Fsync
scheduler1, for Near-Gathering we also consider Ssync. We show how to transform any
λ-contracting protocol into a collision-free λ-contracting protocol to solve Near-Gathering
while maintaining a runtime of O(∆2).

1.1 Related Work
One important topic of the research area of distributed computing by mobile robots is
pattern formation problems, i.e., the question of which patterns can be formed by a swarm
of robots and which capabilities are required. For instance, the Arbitrary Pattern
Formation problem requires the robots to form an arbitrary pattern specified in the input
[21, 25, 30, 46, 47, 48]. The patterns point and uniform circle play an important role since
these are the only two patterns that can be formed starting from any input configuration due
to their high symmetry [46]. In the following, we focus on the pattern point, more precisely
on the Gathering, Convergence and Near-Gathering problems. While Gathering
requires that all robots move to a single (not predefined) point in finite time, Convergence
demands that for all ε > 0, there is a point in time such that the maximum distance of any
pair of robots is at most ε and this property is maintained (the robots converge to a single
point). Near-Gathering is closely related to the Convergence problem by robots with
limited visibility. Instead of converging to a single point, Near-Gathering is solved as soon
as all robots are located at distinct locations within a small area. For a more comprehensive
overview of other patterns and models, we refer to [26].

Possibilities & Impossibilities. In the context of robots with unlimited visibility, Gathering
can be solved under the Fsync scheduler by disoriented and oblivious robots without
multiplicity detection [17]. Under the same assumptions, Gathering is impossible under
the Ssync and Async schedulers [45]. Multiplicity detection plays a crucial role: at least
3 disoriented robots with multiplicity detection can be gathered in Async (and thus also

1 With the considered robot capabilities, Gathering is impossible in Ssync or Async [45].

OPODIS 2022

15:4 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Ssync) [16]. The case of 2 robots remains impossible [46]. Besides multiplicity detection,
an agreement on one axis of the local coordinate systems also allows the robots to solve
Gathering in Async [5]. Convergence requires less assumptions than Gathering. No
multiplicity detection is needed for the Async scheduler [17].

Under the assumption of limited visibility, disoriented robots without multiplicity detection
can be gathered in Fsync [3] with the GtC protocol that moves every robot towards the
center of the smallest circle enclosing its neighborhood. GtC has also been generalized to
three dimensions [13]. In Async, current solutions require more capabilities: Gathering
can be achieved by robots with limited visibility that agree additionally on the axes and
orientation of their local coordinate systems [29]. It is open whether fewer assumptions are
sufficient to solve Gathering of robots with limited visibility in Ssync or Async. In Ssync,
Convergence can be solved even by disoriented robots with limited visibility without
multiplicity detection [3]. However, similar to Gathering, it is still open whether disoriented
robots with limited visibility can solve Convergence under the Async scheduler. Recently,
it could be shown that multiplicity detection suffices to solve Convergence under the
more restricted k-Async scheduler. The constant k bounds how often other robots can be
activated within one LCM cycle of a single robot [36, 37].

The Near-Gathering problem has been introduced in [41, 42] together with a protocol
to solve Near-Gathering by robots with limited visibility and agreement on one axis of their
local coordinate systems under the Async scheduler. An important tool to prevent collisions is
a well-connected initial configuration, i.e., the initial configuration is connected concerning the
connectivity range which is by an additive constant smaller than the viewing range [41, 42].
In earlier work, Near-Gathering has been used as a subroutine to solve Arbitrary
Pattern Formation by robots with limited visibility [49]. The solution, however, uses
infinite persistent memory for each robot. Further research directions study Gathering
and Convergence under crash faults or Byzantine faults [2, 4, 6, 7, 8, 9, 10, 11, 22, 32, 43]
or inaccurate measurement and movement sensors of the robots [18, 31, 33, 37].

Runtime. Considering disoriented robots with unlimited visibility, it is known that Con-
vergence can be solved in O(n · log ∆/ε) epochs under the Async scheduler, where the
diameter ∆ denotes the initial maximum distance of two robots [19] (initially a bound of
O(n2 · log ∆/ε) has been proven in [17]). When considering disoriented robots with limited
visibility and the Fsync scheduler, the GtC protocol solves Gathering both in two and
three dimensions in Θ(n + ∆2) rounds [13, 24]. It is conjectured that the runtime is optimal
in worst-case instances, where ∆ ∈ Ω(n) [13, 15]. There is some work achieving a faster
runtime for slightly different models: robots on a grid in combination with the LUMI
model (constant sized local communication via lights) [1, 20], predefined neighborhoods in a
closed chain [1, 15] or agreement on one axis of the local coordinate systems [44]. Also, a
different time model – the continuous time model, where the movement of robots is defined
for each real point in time by a bounded velocity vector – leads to a faster runtime: There
are protocols with a runtime of O (n) [12, 23]. In [38], a more general class of continuous
protocols has been introduced, the contracting protocols. Contracting protocols demand that
each robot part of the global convex hull of all robots’ positions moves at full speed towards
the inside. Any contracting protocol gathers all robots in time O (n ·∆). One such protocol
also needs a runtime of Ω (n ·∆) in a specific configuration. For instance, the continuous
variant of GtC is contracting [38] but also the protocols of [12, 23]. The class of contracting
protocols also generalizes to three dimensions with an upper time bound of O

(
n3/2 ·∆

)
[13].

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:5

1.2 Our Contribution & Outline
In the following, we provide a detailed discussion of our results and put them into context
concerning the related results discussed in Section 1.1. Our results assume robots located in
Rd and the OBLOT model for deterministic, disoriented robots with limited visibility.

Gathering. Our first main contribution is introducing a large class of Gathering protocols
in Fsync that contains several natural protocols such as GtC. We prove that every protocol
from this class gathers in O(∆2) (d > 1) or O(∆) (d = 1) rounds, where the diameter ∆
denotes the initial maximal distance between two robots. Note that, the bound of O

(
∆2)

not only reflects how far a given initial swarm is from a gathering but also improves the
GtC bound from O

(
n + ∆2)

to O
(
∆2)

. We call this class λ-contracting protocols. Such
protocols restrict the allowed target points to a specific subset of a robot’s local convex hull
(formed by the positions of all visible robots, including itself) in the following way. Let diam

denote the diameter of a robot’s local convex hull. Then, a target point p is an allowed
target point if it is the center of a line segment of length λ · diam, completely contained in
the local convex hull. This guarantees that the target point lies far enough inside the local
convex hull (at least along one dimension) to decrease the swarm’s diameter sufficiently. See
Figure 1 for an illustration.

Figure 1 Two local convex hulls, each formed by 3 robots. The gray area marks valid target
points of λ-contracting protocols. The exemplary line segments all have length λ · diam, where diam

is the diameter of the respecting convex hull. On the left λ = 4/7, on the right λ = 4/11.

We believe these λ-contracting protocols encapsulate the core property of fast Gathering
protocols. Their analysis is comparatively clean, simple, and holds for any dimension d.
Thus, by proving that (the generalization of) GtC is λ-contracting for arbitrary dimensions,
we give the first protocol that provably gathers in O(∆2) rounds for any dimension. As
a strong indicator that our protocol class might be asymptotically optimal, we prove that
every Gathering protocol for deterministic, disoriented robots whose target points lie
always inside the robots’ local convex hulls requires Ω(∆2) rounds. Staying in the convex
hull of visible robots is a natural property for any known protocol designed for oblivious,
disoriented robots with limited visibility. Thus, reaching a sub-quadratic runtime – if at all
possible – would require the robots to compute target points outside of their local convex
hulls sufficiently often.

Near-Gathering. Our second main contribution proves that any λ-contracting protocol for
Gathering can be transformed into a collision-free protocol that solves Near-Gathering
in O(∆2) rounds (Fsync) or epochs (Ssync). As in previous work [41, 42], our transformed
protocols require that the initial swarm is well-connected, i.e., the swarm is connected
concerning the connectivity range of 1 and the robots have a viewing range of 1 + τ , for a
constant τ > 0. The adapted protocols ensure that the swarm stays connected concerning
the connectivity range.

OPODIS 2022

15:6 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

The well-connectedness serves two purposes. First, it allows a robot to compute its
target point under the given λ-contracting protocol and the target points of nearby robots
to prevent collisions. Its second purpose is to enable termination: Once there is a robot
whose local convex hull has a diameter at most τ , all robots must have distance at most τ ,
as otherwise, the swarm would not be connected concerning the connectivity range 1. Thus,
all robots can simultaneously decide (in the same round in Fsync and within one epoch in
Ssync) whether Near-Gathering is solved. If the swarm is not well-connected, it is easy
to see that such a simultaneous decision is impossible2. The simultaneous termination also
allows us to derive the first protocol to solve Uniform-Circle for disoriented robots with
limited visibility. Once the robots’ local diameter (and hence also the global diameter) is
less than τ , they essentially have a global view. As the Uniform Circle protocol from [28]
maintains a small diameter, it can be used after the termination of our Near-Gathering
protocol without any modification.

Outline. Section 2 introduces various notations. λ-contracting protocols are introduced
in Section 3.1. Upper and lower runtime bounds are provided in Section 3.2. The section
is concluded with three exemplary λ-contracting protocols, including GtC (Section 3.3).
Section 4 discusses the general approach to transform any λ-contracting protocol (in any
dimension) into a collision-free protocol to solve Near-Gathering. Finally, the paper is
concluded, and future research questions are addressed in Section 5. Due to space constraints,
some proofs and additional information are moved to the full version of this paper [14].

2 Notation

We consider a swarm of n robots R = {r1, . . . , rn} moving in a d-dimensional Euclidean
space Rd. Initially, the robots are located at pairwise distinct locations. We denote by
pi(t) the position of robot ri in a global coordinate system (not known to the robots) in
round t. Robots have a limited visibility, i.e., they can observe other robots only up to
a constant distance. We distinguish the terms viewing range and connectivity range and
normalize all distances such that the connectivity range is 1. The initial configuration is
connected concerning the connectivity range. More formally, UBG(t) = (R, E(t)) the Unit
Ball Graph, where {ri, rj} ∈ E(t) if and only if |pi(t)− pj(t)| ≤ 1, where | · | represents the
Euclidean norm. The initial Unit Ball Graph UBG(0) is always connected. The connectivity
and viewing ranges are equal when we study the Gathering problem. In the context of
Near-Gathering, the viewing range is larger than the connectivity range. More formally,
the viewing range is 1 + τ , for a constant 0 < τ ≤ 2/3. Thus, the robots can observe other
robots at a distance of at most 1 + τ . Two robots are neighbors at round t if their distance
is at most the viewing range (1 for Gathering and 1 + τ for Near-Gathering). Due
to their viewing range, all robots have a common understanding of 1 and 1 + τ (1 and τ

are known to the robots). The set Ni(t) contains all neighbors of ri in round t, including
ri. Additionally, hullti denotes the local convex hull of all neighbors of ri, i.e., the smallest
convex polytope that encloses the positions of all robots in Ni(t), including ri. We define
diam(t) as the maximum distance of any pair of robots at time t. Moreover, ∆ := diam (0),
i.e., the maximum distance of any pair of robots in the initial configuration. Lastly, diami(t)
denotes the maximum distance of any two neighbors of ri in round t.

2 Consider a protocol that solves Near-Gathering for a swarm of two robots and terminates in the
Fsync model. Fix the last round before termination and add a new robot visible to only one robot
(the resulting swarm is not connected concerning). One of the original two robots still sees the same
situation as before and will terminate, although Near-Gathering is not solved.

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:7

Discrete Protocols. A discrete robot formation protocol P specifies for every round t ∈ N0
how each robot determines its target point, i.e., it is an algorithm that computes the target
point targetP

i (t) of each robot in the Compute operation based upon its snapshot taken
during Look. To simplify the notation, targetP

i (t) might express the target point of ri either
in the local coordinate system of ri or in a global coordinate system (not known to ri) – the
concrete meaning is always clear based on the context. Finally, during Move, each robot
moves to the position computed by P, i.e., pi(t + 1) = targetP

i (t) for all robots ri.

Problem Statements. Gathering requires all robots to gather at a single, not predefined
point. While the Gathering problem clearly demands that more than one robot occupies
the same position, this is prohibited in the Near-Gathering problem. Two robots ri

and rj collide in round t if pi(t) = pj(t). A discrete robot formation protocol is collision-
free, if there is no round t′ ∈ N0 with a collision. Near-Gathering requires all robots
to maintain distinct locations, become mutually visible, and be aware of this fact in the
same round/epoch. More formally, Near-Gathering is solved if there is a time t′ ∈ N0
and a constant 0 ≤ cng ≤ 1 such that diam(t′) ≤ cng, pi(t′′) = pi(t′) for all robots ri and
all rounds t′′ ≥ t′ and pi(t) ̸= pj(t) for all robots ri and rj and rounds t. Moreover, all
robots terminate simultaneously, i.e., know in the same round or within one epoch that
diam(t) < cng. In our protocols, cng = τ . Our protocols keep UBG(t) always connected and
hence, robots can detect termination as soon as diam(t) < τ (due to their viewing range
of 1 + τ). Due to the disorientation and obliviousness of the robots, any protocol to solve
Near-Gathering must be collision-free. As soon as two robots would move to the same
location, their neighborhoods are identical and their local coordinate systems could have
the same orientation such that the two robots would always compute the same movement.
Hence, the robots cannot deterministically move to different locations. As a consequence,
collisions must be avoided.

3 A Class of Gathering Protocols

In this section, we describe the class of λ-contracting (gathering) protocols – a class of
protocols which solve Gathering in Θ

(
∆2)

rounds and serves as a basis for collision-free
protocols to solve Near-Gathering (see Section 4). Moreover, we derive a subclass of
λ-contracting protocols, called (α, β)-contracting protocols. The class of (α, β)-contracting
contracting protocols is a powerful tool to determine whether a given gathering protocol
(such as GtC) fulfills the property of being λ-contracting.

The first intuition to define a class of protocols to solve Gathering would be to transfer
the class of continuous contracting protocols (cf. Section 1.1) to the discrete LCM case. A
continuous robot formation protocol is called contracting if robots that are part of the global
convex hull move with constant speed towards the inside or along the boundary of the global
convex hull. A translation to the discrete (LCM) case might be to demand that each robot
moves a constant distance inwards (away from the boundary) of the global convex hull, cf.
Figure 2.

However, such a protocol cannot exist in the discrete LCM setting. Consider n robots
positioned on the vertices of a regular polygon with side length 1. Now take one robot and
mirror its position along the line segment connecting its two neighbors (cf. Figure 3). Next,
we assume that all robots would move a constant distance along the angle bisector between
their direct neighbors in the given gathering protocol. Other movements would lead to the
same effect since the robots are disoriented. In the given configuration, n− 1 robots would

OPODIS 2022

15:8 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Figure 2 Ideally, every robot that is close to
the boundary of the global convex hull would
move a constant distance inwards.

Figure 3 Visualization of the example to em-
phasize that continuous protocols cannot be di-
rectly translated to the LCM case.

move a constant distance inside the global convex hull while one robot even leaves the global
convex hull. Not only that the global convex hull does not decrease as desired, but also the
connectivity of UBG(t) is not maintained as the robot moving outside loses connectivity to
its direct neighbors. Consequently, discrete gathering protocols have to move the robots
more carefully to maintain the connectivity of UBG(t).

3.1 λ-contracting Protocols
Initially, we emphasize two core features of the protocols. A discrete protocol is connectivity
preserving if it always maintains the connectivity of UBG(t). Due to the limited visibility
and disorientation, every protocol to solve Gathering and Near-Gathering must be
connectivity preserving since it is deterministically impossible to reconnect lost robots to the
remaining swarm. Moreover, we study protocols that are invariant, i.e., the movement of
a robot does not change no matter how its local coordinate system is oriented3. This is a
natural assumption since the robots have variable disorientation and thus cannot rely on
their local coordinate system to synchronize their movement with nearby robots. Moreover,
many known protocols under the given robot capabilities are invariant, e.g., [3, 13, 39, 40].

▶ Definition 1. Let Q be a convex polytope with diameter diam and 0 < λ ≤ 1 a constant.
A point p ∈ Q is called to be λ-centered if it is the midpoint of a line segment that is
completely contained in Q and has a length of λ · diam.

▶ Definition 2. A connectivity preserving and invariant discrete robot formation protocol
P is called λ-contracting if targetP

i (t) is a λ-centered point of hullti for every robot ri and
every t ∈ N0.

Two examples of λ-centered points are depicted in Figure 1 (contained in Section 1.2).
Observe that Definition 2 does not necessarily enforce a final gathering of the protocols.
Consider, for instance, two robots. A protocol that demands the two robots to move halfway
towards the midpoint between themselves would be 1/4-contracting, but the robots would
only converge towards the same position. However, for Gathering, the robots must compute
the same target point eventually. We demand this by requiring that there is a constant c < 1,
such that Ni(t) = Nj(t) and diami(t) = diamj(t) <= c implies that the robots compute
the same target point. Protocols that have this property are called collapsing. Observe

3 Note that the protocols do not need to be invariant to ensure Gathering. Nevertheless, being invariant
becomes important when we study the Near-Gathering problem. For ease of description, we consider
invariant protocols in general.

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:9

that being collapsing is reasonable since λ-contracting demands that robots compute target
points inside their local convex hulls and hence, the robots’ local diameters are monotonically
decreasing in case no further robot enters their neighborhood. Hence, demanding a threshold
to enforce moving to the same point is necessary to ensure a final gathering. For ease of
description, we fix c = 1/2 in this work. However, c could be chosen as an arbitrary constant
by scaling the obtained runtime bounds with a factor of 1/c.

▶ Definition 3. A discrete robot formation protocol P is a λ-contracting gathering
protocol if P is λ-contracting and collapsing.

3.2 Analysis of λ-contracting Gathering Protocols
In the following, we state upper and lower bounds about λ-contracting gathering protocols.
When considering d = 1, λ-contracting gathering protocols are optimal.

▶ Theorem 4. Consider a swarm of robots in R. Every λ-contracting gathering protocol
gathers all robots in Θ(∆) rounds.

The proof of Theorem 4 can be found in the full version of this paper [14]. For larger
dimensions, we start with a lower bound that holds for a larger class of protocols but is
especially valid for λ-contracting gathering protocols. The lower bound holds for all discrete
gathering protocols that compute robot target points always inside local convex hulls. The
proof of the lower bound is in most parts identical to the lower bound of the GtC protocol
[24]. Essentially, we prove that, in the configuration where all robots are located on the
vertices of a regular polygon with side length 1, GtC is the best possible of all protocols
that compute target points inside of local convex hulls.

▶ Theorem 5. For a swarm of n robots in Rd with d ≥ 2 and diameter ∆ there exists an initial
configuration such that every discrete gathering protocol P that ensures targetP

i (t) ∈ hullti
for all robots ri and all rounds t ∈ N0, requires Ω

(
∆2)

rounds to gather all robots.

Proof. In the following, we assume n ≥ 5. Consider n robots that are located on the vertices
of a regular polygon with side length 1. Observe first that due to the disorientation and
because the protocols are deterministic, the local coordinate systems of the robots could be
chosen such that the configuration remains a regular polygon forever (see Figure 4 for an
example).

Figure 4 Initially, the robots are located on the surrounding regular polygon. The local coordinate
systems of the robots can be chosen such that all robots execute the same movement in a rotated
fashion such that the configuration remains a regular polygon (depicted by the inner regular polygon).

OPODIS 2022

15:10 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Henceforth, we assume in the following that the robots remain on the vertices of a regular
polygon. Let C be the surrounding circle and rC its radius. For large n, the circumference
pC of C is ≈ n and rC ≈ n

2π . Hence, ∆ ≈ n
π . We show that any λ-contracting protocol (not

only gathering protocols) requires Ω
(
∆2)

rounds until pC ≤ 2
3 n. As long as pC ≥ 2

3 n, each
robot can observe exactly two neighbors at distance 2

3 ≤ s ≤ 1.
The internal angles of a regular polygon have a size of γ = (n−2)·π

n . Fix any robot ri and
assume that pi(t) = (0, 0) and the two neighbors are at pi−1(t) =

(
−s · sin

(
γ
2
)

, s · cos
(

γ
2
))

and pi+1(t) = pi−1(t) =
(
s · sin

(
γ
2
)

, s · cos
(

γ
2
))

. Now, consider the target point targetP
i (t) =(

xtargetP
i

(t), ytargetP
i

(t)
)
. Observe that the radius rC decreases by exactly ytargetP

i
(t). Next,

we derive an upper bound on ytargetP
i

(t): ytargetP
i

(t) = s · cos
(

γ
2
)
≤ cos

(
γ
2
)

= cos
(

(n−2)·π
2n

)
.

Now, we use cos(x) ≤ −x + π
2 for 0 ≤ x ≤ π

2 . Hence, we obtain cos
(

(n−2)·π
2n

)
≤

− (n−2)·π
2n + π

2 = −π
2 + π

n + π
2 = π

n . Therefore, it takes at least n2

3 rounds until rC has
decreased by at least n

3 . The same holds for the perimeter. All in all, it takes at least
n2

3 ∈ Ω
(
∆2)

rounds until the rC decreases by at least n
3 . ◀

We state a matching upper bound for λ-contracting protocols in two dimensions (later
for any d ≥ 2). We first focus on robots in the Euclidean plane to make the core ideas
visualizable.

▶ Theorem 6. Consider a swarm of robots in R2 with diameter ∆. Every λ-contracting
gathering protocol gathers all robots in 171·π·∆2

λ3 + 1 ∈ O
(
∆2)

rounds.

High-Level Description. The proof is inspired by the proof of the GtC protocol [24]. The
proof aims to show that the radius of the global smallest enclosing circle (SEC), i.e., the
SEC that encloses all robots’ positions in a global coordinate system, decreases by Ω

(
1/∆

)
every two rounds. Since the initial radius is upper bounded by ∆, the runtime of O

(
∆2)

follows. See Figure 5 for a visualization.

round t round t+ 2

∈ Ω
(

1
∆

)

λ-contracting

gathering protocol P

Figure 5 We show that the radius of the global SEC decreases by Ω
(

1/∆
)

every two rounds.

We consider the fixed circular segment Sλ of the global SEC and analyze how the inside
robots behave. A circular segment is a region of a circle “cut off” by a chord. The circular
segment Sλ has a chord length of at most λ/4 (for a formal definition, see below) and we
can prove a height h of Sλ in the order of Ω

(
1/∆

)
(Lemma 8). Observe that in any circular

segment, the chord’s endpoints are the points that have a maximum distance within the
circular segment, and hence, the maximum distance between any pair of points in Sλ is

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:11

at most λ/4. Now, we split the robots inside of Sλ into two classes: the robots ri with
diami(t) > 1/4 and the others with diami(t) ≤ 1/4. Recall that every robot ri moves to the
λ-centered point targetP

i (t). Moreover, targetP
i (t) is the midpoint of a line segment ℓ of

length λ ·diami(t) that is completely contained in the local convex hull of ri. For robots with
diami(t) > 1/4 we have that ℓ is larger than λ/4 and thus, ℓ cannot be completely contained
in Sλ. Hence, ℓ either connects two points outside of Sλ or one point inside and another
outside. In the former case, targetP

i (t) is outside of Sλ, and in the latter case, targetP
i (t)

is outside of a circular segment with half the height h of Sλ. See Lemma 9 for a formal
statement of the first case.

It remains to argue about robots with diami(t) < 1/4. Here, we consider a circular segment
with an even smaller height, namely h · λ/4. We will see that all robots which compute a
target point inside this circular segment (which can only be robots with diami(t) < λ/4)
will move exactly to the same position. Hence, in round t + 1 there is only one position in
the circular segment with height h · λ/4 occupied by robots. All other robots are located
outside of the circular segment with height h/2. As a consequence, for all robots ri in the
circular segment with height h · λ/4, it must hold targetP

i (t) is outside of the circular segment
with height h · λ/4. See Lemma 10 for a formal statement. Finally, Lemma 11 combines the
previous statements and gives a lower bound on how much the radius of the global SEC
decreases.

Detailed Analysis. First, we introduce some definitions. Let GS := GS(t) be the (global)
smallest enclosing circle of all robots in round t and R := R(t) its radius. Now, fix any
point b on the boundary of GS. The two points in distance λ/8 of b on the boundary of GS

determine the circular segment Sλ with height h. In the following, we determine by Sλ(c)
for 0 < c ≤ 1 the circular segment with height c · h that is contained in Sλ. See Figure 6
for a depiction of the circular segments Sλ and Sλ

(
1/2

)
(that is used in the proofs). In the

following, all lemmata consider robots that move according to a λ-contracting gathering
protocol P.

λ
8 h Sλ

≤ λ
8

≤ λ
8

GS

γ

b

GS

b
Sλ

(
1
2

)h
2

Figure 6 The circular segments Sλ (to the left) and Sλ

(
1/2

)
of the global SEC GS are depicted.

In the following, we prove that all robots leave the circular segment Sλ

(
λ/4

)
every two

rounds. As a consequence, the radius of GS decreases by at least λ/4 · h. Initially, we give a
bound on h. We use Jung’s Theorem (Theorem 7) to obtain a bound on R and also on h.

▶ Theorem 7 (Jung’s Theorem [34, 35]). The smallest enclosing hypersphere of a point set
K ⊂ Rd with diameter diam has a radius of at most diam ·

√
d

2·(d+1) .

▶ Lemma 8. h ≥
√

3·λ2

64π∆ .

Proof. Initially, we give an upper bound on the angle γ, see Figure 6 for its definition. The
circumference of GS is 2πR. We can position at most 16

λ πR points on the boundary of GS

that are at distance λ
8 from the points closest to them and form a regular convex polygon.

The internal angle of this regular polygon is 2γ. Hence, the sum of all internal angles is

OPODIS 2022

15:12 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

(16
λ πR− 2

)
· π. Thus, each individual angle has a size of at most (16

λ πR−2)·π
16
λ πR

= π − 2π
16
λ πR

=
π − λ

8R . Hence, γ ≤ π
2 −

λ
16R . Now, we are able to bound h. First of all, we derive a relation

between h and γ: cos (γ) = h
λ
8

= 8h
λ ⇐⇒ h = λ·cos(γ)

8 . In the following upper bound, we
make use of the fact that cos (x) ≥ − 2

π x + 1 for x ∈ [0, π
2].

h = λ · cos (γ)
8 ≥

λ · cos
(

π
2 −

λ
16R

)
8 ≥

λ ·
(
− 2

π ·
(

π
2 −

λ
16R

)
+ 1

)
8 =

λ · λ
8πR

8 = λ2

64πR

Applying Theorem 7 with d = 2 yields h ≥
√

3·λ2

64π∆ . ◀

We continue to prove that all robots leave Sλ

(
λ/4

)
every two rounds. First of all, we

analyze robots for which diami(t) > 1/4. These robots even leave the larger circular segment
Sλ

(
1/2

)
.

▶ Lemma 9. For any robot ri with diami(t) > 1/4 : targetP
i (t) ∈ GS \ Sλ

(
1/2

)
.

Proof. Since diami(t) > 1/4 and P is λ-contracting, targetP
i (t) is the midpoint of a line

segment ℓP
i (t) of length at least λ · diami(t) > λ/4. As the maximum distance between any

pair of points inside of Sλ is λ
4 , it follows that ℓP

i (t) either connects two points outside of Sλ

or one point inside and another point outside. In the first case, targetP
i (t) lies outside of Sλ

(since the maximum distance between any pair of points inside of Sλ is λ
4 ≤ 1/4 < diami(t)).

In the second case, targetP
i (t) lies outside of Sλ

(
1/2

)
since, in the worst case, one endpoint

of ℓP
i (t) is the point b used in the definition of GS (see the beginning of Section 3.2) and the

second point lies very close above of Sλ

(
1/2

)
. Since targetP

i (t) is the midpoint of ℓP
i (t), it

lies closely above of Sλ

(
1/2

)
. Every other position of the two endpoints of ℓP

i (t) would result
in a point targetP

i (t) that lies even farther above of Sλ

(
1/2

)
. ◀

Now, we consider the case of a single robot in Sλ

(
λ/4

)
, and its neighbors are located

outside of Sλ

(
1/2

)
. We prove that this robot leaves Sλ

(
λ/4

)
. Additionally, we prove that

none of the robots outside of Sλ

(
1/2

)
that see the single robot in Sλ

(
λ/4

)
enters Sλ

(
λ/4

)
.

▶ Lemma 10. Consider a robot ri located in Sλ

(
λ/4

)
. If all its neighbors are located outside

of Sλ

(
1/2

)
, targetP

i (t) ∈ GS \ Sλ

(
λ/4

)
. Similarly, for a robot ri that is located outside of

Sλ

(
1/2

)
and that has only one neighbor located in Sλ

(
λ/4

)
, targetP

i (t) ∈ GS \ Sλ

(
λ/4

)
.

Proof. First, we consider a robot ri that is located in Sλ

(
λ/4

)
and all its neighbors are above

of Sλ

(
1/2

)
. Let p1 and p2 be the two points of hullti closest to the intersection points of

hullti and the boundary of Sλ

(
1/2

)
(p1 and p2 are infinitesimally above of Sλ

(
1/2

)
). In case

hullti consists of only two robots, define p1 to be the intersection point of hullti and Sλ

(
1/2

)
and p2 = pi(t). The maximum distance dmax between any pair of points in hullti ∩ Sλ

(
1/2

)
is less than max{|p1 − p2|, |p1 − pi(t)|, |p2 − pi(t)|}, since p1 and p2 are slightly above of
Sλ

(
1/2

)
. Clearly, diami(t) ≥ dmax. Thus, the maximum distance between any pair of points

in hullti ∩ Sλ

(
λ
2
)

is less than λ · dmax. We conclude that targetP
i (t) must be located above of

Sλ

(
λ/4

)
since targetP

i (t) is the midpoint of a line segment of length λ·diami(t) ≥ λ·dmax either
connecting two robots above of Sλ

(
λ/4

)
or one robot inside of Sλ

(
λ/4

)
and one robot outside

of Sλ

(
λ/4

)
. The arguments for the opposite case – ri is located in Sλ

(
1/2

)
, one neighbor of ri

is located in Sλ

(
λ/4

)
and all others are also outside of Sλ

(
1/2

)
– are analogous. ◀

Next, we derive with help of Lemmas 9 and 10 that the circular segment Sλ

(
λ/4

)
is empty

after two rounds. Additionally, we analyze how much R(t) decreases.

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:13

▶ Lemma 11. For any round t with diam(t) ≥ 1/2, R(t + 2) ≤ R(t)− λ3·
√

3
256·π·∆ .

Proof. Fix any circular Sλ and consider the set of robots RS that are located in Sλ

(
λ/4

)
or

compute a target point in Sλ

(
λ/4

)
. Initially, we argue that all robots in RS can see each

other. Via Lemma 9, we obtain that for every robot ri ∈ RS that computes a target point in
Sλ

(
λ/4

)
, diami(t) ≤ 1/4. Since the maximum distance between any pair of points in Sλ

(
λ/4

)
is less than 1/4 (as the maximum distance of any points in the larger circular segment Sλ is
λ/4), we conclude that, a robot which is not located in Sλ

(
λ/4

)
but computes its target point

inside, is at distance at most 1/4 from Sλ

(
λ/4

)
. Hence, via the triangle inequality, it is located

at distance at most 1/2 from any other robot in RS . Thus, all robots in RS can see each other.
Now consider the robot rmin ∈ RS which is one of the robots of RS with the minimal number
of visible neighbors. Furthermore, Amin is the set of robots that have exactly the same
neighborhood as rmin. For all robots rj ∈ RS \Amin, we have that rj can see rmin and at least
one robot that rmin cannot see. Thus, diamj(t) > 1. We can conclude with help of Lemma 9
that all robots in RS \ Amin compute a target point outside of Sλ

(
1/2

)
. Since all robots

ri ∈ Amin have the same neighborhood and diami(t) < 1/4, they also compute the same target
point (λ-contracting gathering protocols are collapsing). Thus, at the beginning of round
t + 1, at most one position in Sλ

(
λ/4

)
is occupied. In round t + 1 we have the picture that

one position in Sλ

(
λ/4

)
is occupied and all neighbors are located above of Sλ

(
1/2

)
. Lemma 10

yields that the robots in Sλ

(
λ/4

)
compute a target point outside. Moreover, Lemma 10 yields

as well that no robot outside of Sλ

(
λ/4

)
computes a target point inside and thus, Sλ

(
λ/4

)
is

empty in round t+2. Since the circular segment Sλ has been chosen arbitrarily, the arguments
hold for the entire circle GS and thus, R(t + 2) ≤ R(t)− λ/4 · h ≤ R(t)− λ3√

3
256·π·∆ . ◀

Finally, we can conclude with help of Lemma 11 the main Theorem 6.

Proof of Theorem 6. First, we bound the initial radius of GS: R(0) ≤ ∆/
√

3 (Theorem 7).
Lemma 11 yields that R(t) decreases every two rounds by at least λ3·

√
3

256·π·∆ . Thus, it requires
2 · 256·π·∆

λ3 rounds until R(t) decreases by at least
√

3. Next, we bound how often this can
happen until R(t) ≤ 1

4 and thus diam(t) ≤ 1
2 : ∆√

3 − x ·
√

3 ≤ 1
4 ⇐⇒

∆
3 −

1
4·

√
3 ≤ x.

All in all, it requires x· 512·π·∆
λ3 =

(
∆
3 −

1
4·

√
3

)
· 512·π·∆

λ3 ≤ 171·π·∆2

λ3 rounds until diam(t) ≤ 1
2 .

As soon as diam(t) ≤ 1
2 , all robots can see each other, compute the same target point and

will reach it in the next round. ◀

Upper Bound in d-dimensions. The upper bound we derived for two dimensions can also
be generalized to every dimension d. Only the constants in the runtime increase slightly.

▶ Theorem 12. Consider a team of n robots located in Rd. Every λ-contracting gathering
protocol gathers all robots in 256·π·∆2

λ3 + 1 ∈ O
(
∆2)

rounds.

3.3 Examples of λ-contracting Gathering Protocols
Next, we present examples of λ-contracting gathering protocols. Before introducing the
concrete protocols, we describe an important subclass of λ-contracting protocols, denoted
as (α, β)-contracting protocols, a powerful tool to decide whether a given protocol is λ-
contracting. Afterward, we introduce the known protocol GtC [3] and prove it to be λ-
contracting. Additionally, we introduce two further two-dimensional λ-contracting gathering
protocols: GtMD and GtCDMB.

OPODIS 2022

15:14 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

(α, β)-contracting Protocols. While the definition of λ-contracting gathering protocols
describes the core properties of efficient protocols to solve Gathering, it might be practically
challenging to determine whether a given protocol is λ-contracting. Concrete protocols often
are designed as follows: robots compute a desired target point and move as close as possible
towards it without losing connectivity [3, 13, 39]. The GtC protocol, for instance, uses
this rule. Since the robots do not necessarily reach the desired target point, it is hard to
determine whether the resulting point is λ-centered. Therefore, we introduce a two-stage
definition: (α, β)-contracting protocols. The parameter α represents an α-centered point
(Definition 1) and β describes how close the robots move towards the point.

▶ Definition 13. Let c1, . . . , ck with ci ∈ Rd be the vertices of a convex polytope Q, p ∈ Q

and 0 < β ≤ 1 a constant. Q (p, β) is the convex polytope with vertices p + (1− β) · (ci − p).

Now, we are ready to define the class of (α, β)-contracting protocols. It uses a combination
of Definitions 1 and 13: the target points of the robots must be inside of the β-scaled local
convex hull around an α-centered point. See also Figure 7 for a visualization of valid target
points in (α, β)-contracting protocols. Recall that hullti defines the convex hull of all neighbors
of ri including ri in round t and hullti(p, β) is the scaled convex hull around p (Definition 13).

▶ Definition 14. A connectivity preserving and invariant discrete robot formation protocol
P is called to be (α, β)-contracting, if there exists an α-centered point α-centerP

i (t) s.t.
targetP

i (t) ∈ hullti
(
α-centerP

i (t), β
)

for every robot ri and every t ∈ N0. Moreover, P is
called an (α, β)-contracting gathering protocol if P is (α, β)-contracting and collapsing.

Figure 7 Two examples of valid target points of (α, β)-contracting protocols. The small gray
triangle represents the 1

2 -scaled convex hull around an 1
4 -centered point marked with a square.

Next, we state the relation between (α, β)-contracting and λ-contracting protocols.

▶ Theorem 15. Every (α, β)-contracting protocol P is λ-contracting with λ = α · β.

Proof. From the definition of (α, β)-contracting protocols , we know that for a target point
targetP

i (t), there exists a point α-centerP
i (t) such that targetP

i (t) ∈ hullti(α-centerP
i (t), β). We

do the following geometric construction in Figure 8. Let p = α-centerP
i (t) and p′ = targetP

i (t).
We draw a line segment from α-centerP

i (t) through targetP
i (t) to the boundary of hullti. Let

c be the endpoint of this line segment. Because p is α-centered, there exists a line segment
with length diami(t) · α through p, let this be the line segment ab. The line segment a′b′ is a
parallel to ab inside the triangle △abc. We know that p′ ∈ hullti(p, β), therefore |cp′| ≥ β|cp|.
By the intercept theorem, it follows that |a′b′| ≥ β|ab| = β · α · diami(t). Because the
points a, b and c are all inside hullti, the entire triangle △abc and a′b′ are inside hullti as well.
Therefore, targetP

i (t) is a λ-centered point with λ = α · β. ◀

Go-To-The-Center. As a first example, we study the two-dimensional GtC protocol [3]. It
is already known that it gathers all robots in O

(
n + ∆2)

rounds [24]. We show that GtC is
(α, β)-contracting (hence also λ-contracting) and thus, obtain an improved upper runtime

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:15

hullti
hullti(p, β)

pa b

b′a′ p′

c

Figure 8 The construction used in the proof of Theorem 15.

bound of O
(
∆2)

. The formal description of the GtC protocol can be found in [14]. Robots
always move towards the center of the smallest enclosing circle of their neighborhood. To
maintain connectivity, limit circles are used. Each robot ri always stays within the circle of
radius 1/2 centered in the midpoint mj of every visible robot rj . Since each robot rj does
the same, it is ensured that two visible robots always stay within a circle of radius 1/2 and
thus, they remain connected. Consequently, robots move only that far towards the center of
the smallest enclosing circle such that no limit circle is left.

▶ Theorem 16. GtC is
(√

3/8, 1/2
)
-contracting.

GtC can be generalized to d-dimensions by moving robots toward the center of the
smallest enclosing hypersphere of their neighborhood. We denote the resulting protocol by
d-GtC, a complete description is deferred to [14].

▶ Theorem 17. d-GtC is
(√

2/8, 1/2
)
-contracting.

Go-To-The-Middle-Of-The-Diameter (GtMD). Next, we describe a second two-
dimensional protocol that is also (α, β)-contracting. The intuition is quite simple: a robot
ri moves towards the midpoint of the two robots defining diami(t). Similar to the GtC
protocol, connectivity is maintained with the help of limit circles. A robot only moves that
far towards the midpoint of the diameter such that no limit circle (a circle with radius
1/2 around the midpoint of ri and each visible robot rj) is left. Observe further that the
midpoint of the diameter is not necessarily unique. To make GtMD in cases where the
midpoint of the diameter is not unique deterministic, robots move according to GtC. The
formal description can be found in [14]. We prove the following property about GtMD.

▶ Theorem 18. In rounds, where the local diameter of all robots is unique, GtMD is(
1, 1/10

)
-contracting ((

√
3/8, 1/2)-contracting otherwise).

Go-To-The-Center-Of-The-Diameter-MinBox (GtCDMB). Lastly, we derive a third pro-
tocol for robots in R2 that is also (α, β)-contracting. It is based on the local diameter minbox
defined as follows. The local coordinate system is adjusted such that the two robots that
define the diameter are located on the y-axis, and the midpoint of the diameter coincides
with the origin. Afterwards, the maximal and minimal x-coordinates xmax and xmin of other

OPODIS 2022

15:16 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

visible robots are determined. Finally, the robot moves towards
(

1/2 · (xmin + xmax) , 0
)
. The

box boundaries with x-coordinates xmin, xmax and y-coordinates −diami(t)/2 and diami(t)/2 is
called the diameter minbox of ri. Note that, similar to GtMD, the diameter minbox of ri

might not be unique. In this case, a fallback to GtC is used. The complete description of
GtCDMB is contained in [14]. Also, GtCDMB is (α, β)-contracting.

▶ Theorem 19. In rounds, where the local diameter of all robots is unique, GtCDMB is(√
3/8, 1/10

)
-contracting ((

√
3/8, 1/2)-contracting otherwise).

4 Collision-free Near-Gathering Protocols

In this section, we study the Near-Gathering problem for robots located in Rd under
the Ssync scheduler. The main difference to Gathering is that robots may never collide
(move to the same position). We introduce a very general approach to Near-Gathering
that builds upon λ-contracting gathering protocols (Section 3). We show how to transform
any λ-contracting gathering protocol into a collision-free λ-contracting protocol that solves
Near-Gathering in O

(
∆2)

epochs under the Ssync scheduler. The only difference in
the robot model (compared to Gathering in Section 3) is that we need a slightly stronger
assumption on the connectivity: the connectivity range must be by an additive constant
smaller than the viewing range. More formally, the connectivity range is 1 while robots have
a viewing range of 1 + τ for a constant 0 < τ ≤ 2/3. Note that the upper bound on τ is only
required because τ/2 also represents the maximum movement distance of a robot (see below).
In general, the viewing range could also be chosen larger than 1 + τ without any drawbacks
while keeping the maximum movement distance at τ/2.

The main idea of our approach can be summarized as follows: first, robots compute a
potential target point based on a λ-contracting gathering protocol P that considers only
robots at a distance at most 1. Afterward, a robot ri uses the viewing range of 1 + τ to
determine whether its potential target point collides with any potential target point of a
nearby neighbor. If there might be a collision, ri does not move to its potential target point.
Instead, it only moves to a point between itself and the potential target point where no other
robot moves to. At the same time, it is also ensured that ri moves sufficiently far towards
the potential target point to maintain the time bound of O

(
∆2)

epochs. To realize the ideas
with a viewing range of 1 + τ , we restrict the maximum movement distance of any robot to
τ/2. More precisely, if the potential target point of any robot given by P is at a distance of
more than τ

2 , the robot moves at most τ
2 towards it. With this restriction, each robot could

only collide with other robots at a distance of at most τ . The viewing range of 1 + τ allows
computing the potential target point based on P of all neighbors at a distance at most τ . By
knowing all these potential target points, the own target point of the collision-free protocol
can be chosen. While this only summarizes the key ideas, we give a more technical intuition
and a summary of the proof in Section 4.2.

▶ Theorem 20. For every λ-contracting gathering protocol P, there exists a collision-free
λ-contracting protocol Pcl which solves Near-Gathering in O(∆2) epochs under the Ssync
scheduler. Let 1 be the viewing and connectivity range of P. Pcl has a connectivity range of
1 and viewing range of 1 + τ for a constant 0 < τ ≤ 2/3.

4.1 Collision-free Protocol
The construction of the collision-free protocol Pcl(P, τ, ε) depends on several parameters
that we briefly define. P is a λ-contracting gathering protocol (designed for robots with a
viewing range of 1). The constant τ has two purposes. The robots have a viewing range

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:17

of 1 + τ and τ/2 is the maximum movement distance of any robot, 0 < τ ≤ 2/3. Lastly, the
constant ε ∈ (0, 1/2) determines how close each robot moves towards its target point based
on P. To simplify the notation, we usually write Pcl instead of Pcl(P, τ, ε). Subsequently,
we formally define Pcl(P, τ, ε). The description is split into three parts that can be found in
Algorithms 1–3. The main routine is contained in Algorithm 1. The other two Algorithms 2
and 3 are used as subroutines.

The computation of targetPcl

i (t) is based on the movement ri would do in a slightly
modified version of P, denoted as Pτ . The protocol Pτ is defined in Algorithm 3 and a
detailed intuition of why it is needed can be found in Section 4.2. The position of targetPcl

i (t)
lies on the collision vector collvecPτ

i (t), the vector from pi(t) to targetPτ
i (t). On collvecPτ

i (t),
there may be several collision points. These are either current positions, potential target
points (targetPτ

k (t)) of other robots rk or single intersection points between collvecPτ
i (t)

and another collision vector collvecPτ

k (t). The computation of collision points is defined
in Algorithm 2. Moreover, di > 0 is the minimal distance between a collision point and
targetPτ

i (t). The final target point targetPcl

i (t) is exactly at distance di · ε · 2/τ ·
∣∣collvecPτ

i (t)
∣∣

from targetPτ
i (t). Figure 9 gives an example of collision points and target points of Pcl.

r1 targetPτ
1,2,6(t)

r2 r3 targetPτ
3 (t)

r4
r5

d1, d2

targetPτ
5 (t)targetPτ

4 (t)

d3

r1 targetPτ
1,2,6(t)

r2 r3 targetPτ
3 (t)

d3 · ε d1 · ε

τ/2

targetP
cl

2 (t)
targetP

cl

1 (t)

targetP
cl

3 (t)

(i) (ii)

I I ′

r6

d2 · ε

Figure 9 Example of targetPcl

i (t) with τ = 2/3 and ε = 0.49. (i) shows the collision points and
computation of d1, d2 and d3 (line 3 in Algorithm 1). (ii) shows the positions where r1, r2 and r3

will move to in protocol Pcl as returned by Algorithm 1.

Algorithm 1 targetPcl(P,τ,ε)
i (t).

1: Ri ← {rk : |pk(t)− pi(t)| ≤ τ} ▷ Robots in radius τ around ri (including ri)
2: Ci ← collisionPointsPτ

i (Ri, t) ▷ Collision points on collvecPτ
i (t), see Algorithm 2

3: di ← min
({∣∣c− targetPτ

i (t)
∣∣ : c ∈ Ci \ {targetPτ

i (t)}
})

▷ min. dist. to collision point

4: return point on collvecPτ
i (t) with distance di · ε · 2/τ ·

∣∣collvecPτ
i (t)

∣∣ to targetPτ
i (t)

4.2 Proof Summary and Intuition
In the following, we describe the technical intuitions behind the protocol Pcl. Since the
intuition is closely interconnected with the formal analysis, we also give a proof outline here.
The proofs of all stated lemmas and theorems can be found in [14]. The entire protocol Pcl

is described in Section 4.1. The idea for Pcl is straightforward: robots compute a potential
target point based on a λ-contracting gathering protocol P (that uses a viewing range of 1),
restrict the maximum movement distance to τ/2 and use the viewing range of 1 + τ to avoid
collisions with robots in the distance at most τ . However, there are several technical details
we want to emphasize in this section.

OPODIS 2022

15:18 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Algorithm 2 collisionPointsP
i (Ri, t).

1: Ci ← empty set
2: for all rk ∈ Ri do
3: compute targetP

k (t) and collvecP
k (t) in local coordinate system of ri

4: if pk(t) ∈ collvecP
k (t) then

5: add pk(t) to Ci ▷ position of rk

6: if targetP
k (t) ∈ collvecP

i (t) then
7: add targetP

k (t) to Ci

8: if collvecP
k (t) intersects collvecP

i (t) and is not collinear to collvecP
i (t) then

9: add intersection point between collvecP
k (t) and collvecP

i (t) to Ci

10: return Ci

Algorithm 3 targetPτ
i (t).

1: if robots in range 1 have pairwise distance ≤ τ/2 then
2: P1+τ/2 ← protocol P scaled to viewing range 1 + τ/2

3: Pi ← targetP1+τ/2

i (t)
4: else
5: Pi ← targetP

i (t)
6: if distance pi(t) to Pi > τ/2 then
7: return point with distance τ/2 to pi(t) between pi(t) and Pi

8: else
9: return Pi

For the correctness and the runtime analysis of the protocol Pcl, we would like to use the
insights into λ-contracting protocols derived in Section 3. However, since the robots compute
their potential target point based on a λ-contracting gathering protocol P with viewing range
1, this point must not necessarily be λ-centeredconcerning the viewing range of 1 + τ . We
discuss this problem in more detail in Section 4.3 and motivate the intermediate protocol Pτ

that is λ-contracting with respect to the viewing range of 1 + τ . Pτ is only an intermediate
protocol since robots still may collide. Afterward in Section 4.4, we explain how to implement
collision avoidance and transform the intermediate protocol Pτ into the collision-free protocol
Pcl. Lastly, in Section 4.5 we argue that our transformed and collision-free protocol is still
λ-contracting and derive the running time from this property.

4.3 The protocol Pτ

Recall that the main goal is to compute potential target points based on a λ-contracting
gathering protocol P with viewing range 1. Unfortunately, a direct translation of the protocol
loses the λ-contracting property in general. Consider the following example which is also
depicted in Figure 10. Assume there are the robots r1, r2, r3 and r4 in one line with respective
distances of 1/n, 1 + 1/n and 1 + τ to r1. It can easily be seen, that the target point targetP

1 (t)
(protocol P has only a viewing range of 1) is between r1 and r2. Such a target point can
never be λ-centered with λ > 2/n for Pcl (with viewing range 1 + τ).

Next, we argue how to transform the protocol P with viewing range 1 into a protocol
Pτ with viewing range 1 + τ such that Pτ is λ-contracting gathering protocol. The example
above already emphasizes the main problem: robots can have very small local diameters
diami(t). Instead of moving according to P, those robots compute a target point based

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:19

on P1+τ/2, which is a λ-contracting gathering protocol concerning the viewing range of
1 + τ/2. Protocol P1+τ/2 is obtained by scaling P to the larger viewing range of 1 + τ/2.
More precisely, robots ri with diami(t) ≤ τ/2 compute their target points based on P1+τ/2

and all others according to P. In addition, Pτ ensures that no robot moves more than a
distance of τ/2 towards the target points computed in P and P1+τ/2. The first reason is
to maintain the connectivity of UBG(t). While the protocol P maintains connectivity by
definition, the protocol P1+τ/2 could violate the connectivity of UBG(t). Restricting the
movement distance to τ/2 and upper bounding τ by 2/3 resolves this issue since for all robots
ri that move according to P1+τ/2, diami(t) ≤ τ/2. Hence, after moving according to P1+τ/2,
the distance to any neighbor is at most 3 · τ/2. Since τ is upper bounded by 2/3, the distance
is at most 1 afterward.

▶ Lemma 21. Let P be a λ-contracting gathering protocol with a viewing range of 1. UBG(t)
stays connected while executing Pτ .

The second reason is that moving at most τ/2 makes sure that collisions are only possible
within a range of τ . This is crucial for our collision avoidance which is addressed in the
following section. While Pτ has a viewing range of 1 + τ , it never uses its full viewing range
for computing a target point. Either, it simulates P with a viewing range of 1, or P1+τ/2

with one of 1 + τ/2. It is observable that the 1 + τ/2 surrounding must always have a diameter
≥ τ/2 (see Section 4.5 for more details). Hence, the diameter of robots used for the simulation
of P or P1+τ/2 cannot be less than Ω(τ). The constant λ can be chosen accordingly.

▶ Lemma 22. Let P be a λ-contracting gathering protocol. Pτ is a λ′-contracting gathering
protocol with λ′ = λ · τ

4·(1+τ) .

To conclude, the protocol Pτ has two main properties: it restricts the movement distance
of any robot to at most τ/2 and robots ri with diami(t) ≤ τ/2 compute their target points
based on protocol P1+τ/2 with viewing range 1 + τ/2.

4.4 Collision Avoidance
Next, we argue how to transform the protocol Pτ into the collision-free protocol Pcl. The
viewing range of 1 + τ in Pcl allows a robot ri to compute targetPτ

k (t) (the target point in
protocol Pτ) for all robots rk within distance at most τ . Since the maximum movement
distance of a robot in Pτ is τ/2, this enables ri to know the movement directions of all robots
rk which can collide with ri. We will ensure that each robot ri moves to some position
on collvecPτ

i (t) and avoids positions of all other collvecPτ

k (t). Henceforth, no collision can
happen. While this is the basic idea of our collision avoidance, there are some details to add.

First of all, Pτ has the same viewing range as Pcl of 1 + τ . However, it never uses the
full viewing range to compute the target position targetPτ

i (t). We consider two robots ri and
rk with distance ≤ τ . If rk simulates P to compute targetPτ

k (t), ri can compute targetPτ

k (t)
as well since ri is able to observe all robots in distance 1 around rk. If rk simulates P1+τ/2,
the condition in Pτ makes sure that ri and rk have a distance of ≤ τ/2. Similarly, ri is able
to observe all robot in distance 1 + τ/2 around rk and can compute targetPτ

k (t) as well.

▶ Lemma 23. Let P be a λ-contracting gathering protocol with a viewing range of 1. A
viewing range of 1 + τ is sufficient to compute targetPτ

k (t) for all robots rk within a radius
of τ .

OPODIS 2022

15:20 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Secondly, ri cannot avoid positions on all other collvecPτ

k (t) in some cases. For instance,
collvecPτ

i (t) may be completely contained in collvecPτ

k (t) (e.g., collvecPτ
2 (t) ∈ collvecPτ

1 (t) in
the example depicted in Figure 9). In case collvecPτ

i (t) and collvecPτ

k (t) are not collinear
and intersect in a single point, both robots simply avoid the intersection point (e.g. r1 and
r4 in the example).

▶ Lemma 24. No robot moves to a point that is the intersection of two collision vectors that
are not collinear.

If collvecPτ
i (t) and collvecPτ

k (t) are collinear, both robots move to a point closer to their
target point than to the other one (e.g., r1 and r3 in the example).

▶ Lemma 25. If the target points of robots are different in Pτ they are different in Pcl.

But there are cases, in which robots have the same target point in Pτ (e.g. r1, r2 and
r6 in the example). Because robots stay in the same direction towards the target point,
collisions can only happen if one robot is currently on the collision vector of another one
(e.g., r2 is on collvecPτ

1 (t)). Their movement is scaled by the distance to the target point,
which must be different. Therefore, their target points in Pcl must be different as well.

▶ Lemma 26. If the target points of robots are the same in Pτ they are different in Pcl.

In Ssync robots may be inactive in one round. Nevertheless, in the same way, single
intersection points between collision vectors and the positions of other robots are avoided as
well.

▶ Lemma 27. No robot moves to the position of an inactive robot.

The following lemma follows immediately from Lemma 25, 26 and 27.

▶ Lemma 28. The protocol Pcl is collision-free.

4.5 Time Bound
Previously, we have addressed the intermediate protocol Pτ that is λ-contracting gathering
protocolconcerning the viewing range of 1 + τ and also keeps UBG(t) always connected.
The same holds for Pcl. Keeping UBG(t) connected is important for the termination of a
Near-Gathering protocol. Suppose that UBG(t) is connected and the robots only have a
viewing range of 1. Then, the robots can never decide if they can see all the other robots.
However, with a viewing range of 1 + τ , it becomes possible if the swarm is brought close
together (diam(t) < τ). For any configuration where the viewing range is 1 + τ and UBG(t)
is connected, we state an important observation.

▶ Lemma 29. Let P be a λ-contracting protocol with viewing range 1 + τ for a constant
τ > 0 and let UBG(t) be connected. If diam(t) > τ , then diami(t) > τ , for every robot ri.

Due to the λ-contracting property, robots close to the boundary of the global smallest
enclosing hypersphere (SEH) move upon activation at least Ω

(
diami(t)

∆

)
inwards. With

diami(t) > τ , it follows that the radius of the SEH decreases by Ω(τ/∆) after each robot was
active at least once (see Lemma 30). Consequently, diam(t) ≤ τ after O(∆2) epochs.

▶ Lemma 30. Let P be a λ-contracting protocol with a viewing range of 1 + τ while UBG(t)
is always connected. After at most 32·π·∆2

λ2·τ ∈ O(∆2) epochs executing P, diam(t) ≤ τ .

Because Pcl has, regarding λ-contracting, connectivity and connectivity range, the same
properties as Pτ , this lemma can directly be applied to show the runtime of Theorem 20.

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:21

5 Conclusion & Future Work

In this work, we introduced the class of λ-contracting protocols and their collision-free
extensions that solve Gathering and Near-Gathering of n robots located in Rd in
Θ

(
∆2)

epochs. While these results already provide several improvements over previous
work, there are open questions that could be addressed by future research. First of all, we
did not aim to optimize the constants in the runtime. Thus, the upper runtime bound of
256·π·∆2

λ3 seems to be improvable. Moreover, one major open question remains unanswered:
is it possible to solve Gathering or Near-Gathering of oblivious and disoriented robots
with limited visibility in O (∆) rounds? We could get closer to the answer: If there is such
a protocol, it must compute target points regularly outside of the convex hulls of robots’
neighborhoods. All λ-contracting protocols are slow in the configuration where the positions
of the robots form a regular polygon with side length equal to the viewing range. In [15], it
has been shown that this configuration can be gathered in time O (∆) by a protocol where
each robot moves as far as possible along the angle bisector between its neighbors (leaving
the local convex hull). However, this protocol cannot perform well in general. See Figure 11
for the alternating star, a configuration where this protocol is always worse compared to any
protocol that computes target points inside of local convex hulls. Figure 11 gives a hint that
every protocol that performs well for the regular polygon cannot perform equally well in the
alternating star. Thus, we conjecture that Ω

(
∆2)

is a lower bound for every protocol that
considers oblivious and disoriented robots with limited visibility.

r1 r2 r3

1
n 1

r4

τ − 1
n

Figure 10 Example where targetP
i (t) is not

λ-centered with respect to the viewing range
1 + τ .

γ1

γ2

Figure 11 The robots at γ1 observe a regular
square, the robots at γ2 a regular octagon. Given
that each robot moves along the angle bisector
between its neighbors and leaves its local con-
vex hull, the radius of the global SEC decreases
slower than in any λ-contracting protocol.

References
1 Sebastian Abshoff, Andreas Cord-Landwehr, Matthias Fischer, Daniel Jung, and Friedhelm

Meyer auf der Heide. Gathering a closed chain of robots on a grid. In 2016 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27,
2016, pages 689–699. IEEE Computer Society, 2016. doi:10.1109/IPDPS.2016.51.

2 Noa Agmon and David Peleg. Fault-Tolerant Gathering Algorithms for Autonomous Mobile
Robots. SIAM Journal on Computing, 36(1):56–82, January 2006. doi:10.1137/050645221.

3 Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Yamashita. Distributed mem-
oryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans.
Robotics Autom., 15(5):818–828, 1999. doi:10.1109/70.795787.

4 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Cer-
tified Impossibility Results for Byzantine-Tolerant Mobile Robots. In Teruo Higashino,
Yoshiaki Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru, and Masafumi Ya-
mashita, editors, Stabilization, Safety, and Security of Distributed Systems, Lecture Notes
in Computer Science, pages 178–190, Cham, 2013. Springer International Publishing.
doi:10.1007/978-3-319-03089-0_13.

OPODIS 2022

https://doi.org/10.1109/IPDPS.2016.51
https://doi.org/10.1137/050645221
https://doi.org/10.1109/70.795787
https://doi.org/10.1007/978-3-319-03089-0_13

15:22 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

5 Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Fault-tolerant
gathering of asynchronous oblivious mobile robots under one-axis agreement. J. Discrete
Algorithms, 36:50–62, 2016. doi:10.1016/j.jda.2015.10.005.

6 Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Fault-Tolerant
Gathering of Asynchronous Oblivious Mobile Robots under One-Axis Agreement. In M. Sohel
Rahman and Etsuji Tomita, editors, WALCOM: Algorithms and Computation, Lecture Notes
in Computer Science, pages 149–160, Cham, 2015. Springer International Publishing. doi:
10.1007/978-3-319-15612-5_14.

7 Subhash Bhagat and Krishnendu Mukhopadyaya. Fault-tolerant Gathering of Semi-
synchronous Robots. In Proceedings of the 18th International Conference on Distributed
Computing and Networking, pages 1–10, Hyderabad India, January 2017. ACM. doi:
10.1145/3007748.3007781.

8 Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of Mobile Robots Tolerating
Multiple Crash Faults. In 2013 IEEE 33rd International Conference on Distributed Computing
Systems, pages 337–346, July 2013. doi:10.1109/ICDCS.2013.27.

9 Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Byzantine Conver-
gence in Robot Networks: The Price of Asynchrony. In Tarek Abdelzaher, Michel Raynal, and
Nicola Santoro, editors, Principles of Distributed Systems, Lecture Notes in Computer Science,
pages 54–70, Berlin, Heidelberg, 2009. Springer. doi:10.1007/978-3-642-10877-8_7.

10 Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal Byzantine-
resilient Convergence in Unidimensional Robot Networks. Theoretical Computer Science,
411(34-36):3154–3168, July 2010. doi:10.1016/j.tcs.2010.05.006.

11 Quentin Bramas and Sébastien Tixeuil. Wait-Free Gathering Without Chirality. In Christian
Scheideler, editor, Structural Information and Communication Complexity, Lecture Notes
in Computer Science, pages 313–327, Cham, 2015. Springer International Publishing. doi:
10.1007/978-3-319-25258-2_22.

12 Philipp Brandes, Bastian Degener, Barbara Kempkes, and Friedhelm Meyer auf der Heide.
Energy-efficient strategies for building short chains of mobile robots locally. Theor. Comput.
Sci., 509:97–112, 2013. doi:10.1016/j.tcs.2012.10.056.

13 Michael Braun, Jannik Castenow, and Friedhelm Meyer auf der Heide. Local gathering of mobile
robots in three dimensions. In Andrea Werneck Richa and Christian Scheideler, editors, Struc-
tural Information and Communication Complexity - 27th International Colloquium, SIROCCO
2020, Paderborn, Germany, June 29 - July 1, 2020, Proceedings, volume 12156 of Lecture Notes
in Computer Science, pages 63–79. Springer, 2020. doi:10.1007/978-3-030-54921-3_4.

14 Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, and Friedhelm
Meyer auf der Heide. A unifying approach to efficient (near)-gathering of disoriented robots
with limited visibility. CoRR, abs/2206.07567, 2022.

15 Jannik Castenow, Jonas Harbig, Daniel Jung, Till Knollmann, and Friedhelm Meyer auf der
Heide. Gathering a euclidean closed chain of robots in linear time. In Leszek Gasieniec, Ralf
Klasing, and Tomasz Radzik, editors, Algorithms for Sensor Systems - 17th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS
2021, Lisbon, Portugal, September 9-10, 2021, Proceedings, volume 12961 of Lecture Notes in
Computer Science, pages 29–44. Springer, 2021. doi:10.1007/978-3-030-89240-1_3.

16 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
Computing by Mobile Robots: Gathering. SIAM J. Comput., 41(4):829–879, 2012. doi:
10.1137/100796534.

17 Reuven Cohen and David Peleg. Convergence Properties of the Gravitational Algorithm
in Asynchronous Robot Systems. SIAM J. Comput., 34(6):1516–1528, 2005. doi:10.1137/
S0097539704446475.

18 Reuven Cohen and David Peleg. Convergence of Autonomous Mobile Robots with Inaccurate
Sensors and Movements. SIAM J. Comput., 38(1):276–302, 2008. doi:10.1137/060665257.

https://doi.org/10.1016/j.jda.2015.10.005
https://doi.org/10.1007/978-3-319-15612-5_14
https://doi.org/10.1007/978-3-319-15612-5_14
https://doi.org/10.1145/3007748.3007781
https://doi.org/10.1145/3007748.3007781
https://doi.org/10.1109/ICDCS.2013.27
https://doi.org/10.1007/978-3-642-10877-8_7
https://doi.org/10.1016/j.tcs.2010.05.006
https://doi.org/10.1007/978-3-319-25258-2_22
https://doi.org/10.1007/978-3-319-25258-2_22
https://doi.org/10.1016/j.tcs.2012.10.056
https://doi.org/10.1007/978-3-030-54921-3_4
https://doi.org/10.1007/978-3-030-89240-1_3
https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1137/060665257

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:23

19 Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer
auf der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann,
and Daniel Wonisch. A New Approach for Analyzing Convergence Algorithms for Mobile
Robots. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata, Languages and
Programming, Lecture Notes in Computer Science, pages 650–661, Berlin, Heidelberg, 2011.
Springer. doi:10.1007/978-3-642-22012-8_52.

20 Andreas Cord-Landwehr, Matthias Fischer, Daniel Jung, and Friedhelm Meyer auf der Heide.
Asymptotically optimal gathering on a grid. In Christian Scheideler and Seth Gilbert, editors,
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 301–312.
ACM, 2016. doi:10.1145/2935764.2935789.

21 Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. On the computa-
tional power of oblivious robots: forming a series of geometric patterns. In Andréa W. Richa
and Rachid Guerraoui, editors, Proceedings of the 29th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 267–276.
ACM, 2010. doi:10.1145/1835698.1835761.

22 Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin-Parvédy. Fault-
Tolerant and Self-stabilizing Mobile Robots Gathering. In Shlomi Dolev, editor, Distributed
Computing, Lecture Notes in Computer Science, pages 46–60, Berlin, Heidelberg, 2006. Springer.
doi:10.1007/11864219_4.

23 Bastian Degener, Barbara Kempkes, Peter Kling, and Friedhelm Meyer auf der Heide. Linear
and competitive strategies for continuous robot formation problems. ACM Trans. Parallel
Comput., 2(1):2:1–2:18, 2015. doi:10.1145/2742341.

24 Bastian Degener, Barbara Kempkes, Tobias Langner, Friedhelm Meyer auf der Heide, Peter
Pietrzyk, and Roger Wattenhofer. A tight runtime bound for synchronous gathering of
autonomous robots with limited visibility. In Rajmohan Rajaraman and Friedhelm Meyer
auf der Heide, editors, SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on
Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located
with FCRC 2011), pages 139–148. ACM, 2011. doi:10.1145/1989493.1989515.

25 Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern
formation problem. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed
Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September
13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 267–281.
Springer, 2010. doi:10.1007/978-3-642-15763-9_26.

26 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

27 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Moving and computing models:
Robots. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Com-
puting by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture
Notes in Computer Science, pages 3–14. Springer, 2019. doi:10.1007/978-3-030-11072-7_1.

28 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413–457,
2017. doi:10.1007/s00446-016-0291-x.

29 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous robots with limited visibility. Theor. Comput. Sci., 337(1-3):147–168, 2005.
doi:10.1016/j.tcs.2005.01.001.

30 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern
formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci., 407(1-3):412–
447, 2008. doi:10.1016/j.tcs.2008.07.026.

OPODIS 2022

https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1145/2935764.2935789
https://doi.org/10.1145/1835698.1835761
https://doi.org/10.1007/11864219_4
https://doi.org/10.1145/2742341
https://doi.org/10.1145/1989493.1989515
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7_1
https://doi.org/10.1007/s00446-016-0291-x
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2008.07.026

15:24 Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

31 Taisuke Izumi, Zohir Bouzid, Sébastien Tixeuil, and Koichi Wada. The BG-simulation for
Byzantine Mobile Robots, June 2011. doi:10.48550/arXiv.1106.0113.

32 Taisuke Izumi, Zohir Bouzid, Sébastien Tixeuil, and Koichi Wada. Brief Announcement: The
BG-Simulation for Byzantine Mobile Robots. In David Peleg, editor, Distributed Computing,
Lecture Notes in Computer Science, pages 330–331, Berlin, Heidelberg, 2011. Springer. doi:
10.1007/978-3-642-24100-0_32.

33 Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago, Koichi
Wada, and Masafumi Yamashita. The Gathering Problem for Two Oblivious Robots with
Unreliable Compasses. SIAM J. Comput., 41(1):26–46, 2012. doi:10.1137/100797916.

34 Heinrich Jung. Ueber die kleinste kugel, die eine räumliche figur einschliesst. Journal für die
reine und angewandte Mathematik, 123:241–257, 1901. URL: http://eudml.org/doc/149122.

35 Heinrich Jung. Über den kleinsten kreis, der eine ebene figur einschließt. Journal für die reine
und angewandte Mathematik, 137:310–313, 1910. URL: http://eudml.org/doc/149324.

36 Branislav Katreniak. Convergence with Limited Visibility by Asynchronous Mobile Robots. In
Adrian Kosowski and Masafumi Yamashita, editors, Structural Information and Communication
Complexity - 18th International Colloquium, SIROCCO 2011, Gdansk, Poland, June 26-29,
2011. Proceedings, volume 6796 of Lecture Notes in Computer Science, pages 125–137. Springer,
2011. doi:10.1007/978-3-642-22212-2_12.

37 David G. Kirkpatrick, Irina Kostitsyna, Alfredo Navarra, Giuseppe Prencipe, and Nicola
Santoro. Separating Bounded and Unbounded Asynchrony for Autonomous Robots: Point
Convergence with Limited Visibility. In Avery Miller, Keren Censor-Hillel, and Janne H. Ko-
rhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, July 26-30, 2021, pages 9–19. ACM, 2021. doi:10.1145/3465084.3467910.

38 Shouwei Li, Christine Markarian, Friedhelm Meyer auf der Heide, and Pavel Podlipyan.
A continuous strategy for collisionless gathering. Theor. Comput. Sci., 852:41–60, 2021.
doi:10.1016/j.tcs.2020.10.037.

39 Ji Lin, A. Stephen Morse, and Brian D. O. Anderson. The multi-agent rendezvous problem.
part 1: The synchronous case. SIAM J. Control. Optim., 46(6):2096–2119, 2007. doi:
10.1137/040620552.

40 Ji Lin, A. Stephen Morse, and Brian D. O. Anderson. The multi-agent rendezvous problem.
part 2: The asynchronous case. SIAM J. Control. Optim., 46(6):2120–2147, 2007. doi:
10.1137/040620564.

41 Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close without touching. In
Guy Even and Magnús M. Halldórsson, editors, Structural Information and Communication
Complexity - 19th International Colloquium, SIROCCO 2012, Reykjavik, Iceland, June 30-July
2, 2012, Revised Selected Papers, volume 7355 of Lecture Notes in Computer Science, pages
315–326. Springer, 2012. doi:10.1007/978-3-642-31104-8_27.

42 Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close without touching:
near-gathering for autonomous mobile robots. Distributed Comput., 28(5):333–349, 2015.
doi:10.1007/s00446-015-0248-5.

43 Debasish Pattanayak, Kaushik Mondal, H. Ramesh, and Partha Sarathi Mandal. Fault-Tolerant
Gathering of Mobile Robots with Weak Multiplicity Detection. In Proceedings of the 18th
International Conference on Distributed Computing and Networking, pages 1–4, Hyderabad
India, January 2017. ACM. doi:10.1145/3007748.3007786.

44 Pavan Poudel and Gokarna Sharma. Time-optimal gathering under limited visibility with
one-axis agreement. Inf., 12(11):448, 2021. doi:10.3390/info12110448.

45 Giuseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theor.
Comput. Sci., 384(2-3):222–231, 2007. doi:10.1016/j.tcs.2007.04.023.

46 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: For-
mation of Geometric Patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

https://doi.org/10.48550/arXiv.1106.0113
https://doi.org/10.1007/978-3-642-24100-0_32
https://doi.org/10.1007/978-3-642-24100-0_32
https://doi.org/10.1137/100797916
http://eudml.org/doc/149122
http://eudml.org/doc/149324
https://doi.org/10.1007/978-3-642-22212-2_12
https://doi.org/10.1145/3465084.3467910
https://doi.org/10.1016/j.tcs.2020.10.037
https://doi.org/10.1137/040620552
https://doi.org/10.1137/040620552
https://doi.org/10.1137/040620564
https://doi.org/10.1137/040620564
https://doi.org/10.1007/978-3-642-31104-8_27
https://doi.org/10.1007/s00446-015-0248-5
https://doi.org/10.1145/3007748.3007786
https://doi.org/10.3390/info12110448
https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

J. Castenow, J. Harbig, D. Jung, P. Kling, T. Knollmann, and F. Meyer auf der Heide 15:25

47 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433–2453, 2010. doi:
10.1016/j.tcs.2010.01.037.

48 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Brief announcement: Pattern
formation problem for synchronous mobile robots in the three dimensional euclidean space.
In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 447–449.
ACM, 2016. doi:10.1145/2933057.2933063.

49 Yukiko Yamauchi and Masafumi Yamashita. Pattern Formation by Mobile Robots with Limited
Visibility. In Thomas Moscibroda and Adele A. Rescigno, editors, Structural Information and
Communication Complexity, Lecture Notes in Computer Science, pages 201–212, Cham, 2013.
Springer International Publishing. doi:10.1007/978-3-319-03578-9_17.

OPODIS 2022

https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1145/2933057.2933063
https://doi.org/10.1007/978-3-319-03578-9_17

New Dolev-Reischuk Lower Bounds Meet
Blockchain Eclipse Attacks
Ittai Abraham #

VMWare Research, Herzliya, Israel

Gilad Stern #

The Hebrew University of Jerusalem, Israel

Abstract
In 1985, Dolev and Reischuk proved a fundamental communication lower bounds on protocols
achieving fault tolerant synchronous broadcast and consensus: any deterministic protocol solving
those tasks (even against omission faults) requires at least a quadratic number of messages to be sent
by nonfaulty parties. In contrast, many blockchain systems achieve consensus with seemingly linear
communication per instance against Byzantine faults. We explore this dissonance in three main
ways. First, we extend the Dolev-Reischuk family of lower bounds and prove a new lower bound
for Crusader Broadcast protocols. Our lower bound for crusader broadcast requires non-trivial
extensions and a much stronger Byzantine adversary with the ability to simulate honest parties.
Secondly, we extend our lower bounds to all-but-m Crusader Broadcast, in which up to m parties
are allowed to output a different value. Finally, we discuss the ways in which these lower bounds
relate to the security of blockchain systems. We show how Eclipse-style attacks in such systems can
be viewed as specific instances of the attacks used in our lower bound for Crusader Broadcast. This
connection suggests a more systematic way of analyzing and reasoning about Eclipse-style attacks
through the lens of the Dolev-Reischuk family of attacks.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases consensus, crusader broadcast, Byzantine fault tolerance, blockchain, syn-
chrony, lower bounds

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.16

Related Version Full Version: https://eprint.iacr.org/2022/730

Funding Gilad Stern: This work was supported by the HUJI Federmann Cyber Security Research
Center in conjunction with the Israel National Cyber Directorate (INCD) in the Prime Minister’s
Office.

1 Introduction

Two of the foundational and highly related tasks in the world of distributed systems are
consensus, and broadcast. In a consensus protocol, all parties have some input and they must
agree on an output. On the other hand, in a broadcast protocol, a designated sender attempts
to send a specific message to all parties, and all parties must output the same message sent by
the sender. These tasks have been widely researched both in theoretic settings and practical
settings. Ideally, we would like to be able to design efficient protocols for solving these tasks
in the presence of faults. A foundational limit on the efficiency of such protocols is the
work of Dolev and Reischuk in 1985 [9]. They prove that any deterministic protocol solving
fault tolerant broadcast must send at least Ω(n · f) messages, where n is the number of
parties overall and f is the number of omission-faulty parties, whose incoming and outgoing
messages can be dropped 1. Since broadcast and consensus reduce to each other [6], the lower

1 the lower bound in [9] mentioned malicious adversaries, the extension to omission failures appears in [3].

© Ittai Abraham and Gilad Stern;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iabraham@vmware.com
mailto:gilad.stern@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.OPODIS.2022.16
https://eprint.iacr.org/2022/730
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

bound also provides a lower bound on consensus. Hadzilacos and Halpern [14] show that a
similar lower bound also holds only when considering fault-free runs of broadcast protocols if
they are designed to be resilient to faults. Abraham, Chun, Dolev, Nayak, Pass, Ren, and
Shi [1] generalized this work to probabilistic protocols, showing that with f Byzantine faults,
a broadcast protocol with a 3

4 + ϵ probability of success requires Ω(ϵnf) messages to be sent
in expectation (assuming a strongly adaptive adversary).

1.1 Dolev-Reischuk does not hold for Crusader Broadcast
A slightly relaxed task related to that of broadcast is the task of Crusader Broadcast [8], in
which parties are allowed to remain undecided when the sender is faulty. This is formalized
by allowing parties to output a special non-value, ⊥. Two important restrictions, in this case,
are that no two nonfaulty parties may output different non-⊥ values and that all nonfaulty
parties must output the sender’s input if it is nonfaulty. The known Dolev-Reischuk style
attacks heavily rely on the fact that parties have to output some value from the protocol,
regardless of what they see. This is utilized by completely isolating a party, forcing it
to communicate only with omission faulty parties. The adversary then simply blocks all
communication with the isolated party, forcing it to output some value without hearing
anything throughout the protocol. All that is left to do is make sure that other parties output
the other value, successfully attacking any protocol with low communication complexity.
However, in Crusader Broadcast, a nonfaulty party is allowed to output ⊥ if it hears nothing
throughout the protocol. Since a nonfaulty sender may send messages to any party without
reaching quadratic communication complexity, it is entirely possible that in any run in which
the sender is nonfaulty, no party can be completely isolated from nonfaulty parties in the
protocol. This implies that the Dolev-Reischuk lower bound attack does not hold as is for
Crusader broadcast protocols.

1.2 A New Lower Bound for Crusader Broadcast
The main contribution of this paper is a new lower bound for crusader broadcast. It differs
substantially from the classic Dolev-Reischuk lower bound in that the adversary is required
to actively corrupt parties. Using Byzantine corruption also raises a new challenge that is
similar to that of the lower bound proven by Fischer, Lynch and Meritt [12]: the corrupted
parties need to be able to simulate honest parties.

Intuitively, while classic Dolev-Reischuk isolates one party and makes it hear no message
at all, while other parties hear a sender sending say v, in our lower bound we isolate one
party and make it think it is living in an alternative world where the sender is sending v′ ̸= v.
Again intuitively, building an alternative universe is harder since it requires active simulation
of other parties, and thus requires more malice than just causing the isolated party to hear
nothing.

This type of attack (isolating a node and making it think it’s living in an alternative
world) is not just theoretical, we discuss is Section 5 how Eclipse-type attacks can be viewed
as types of this attack. We find this connection between a theoretical lower bound and
Eclipse-style blockchain attacks to be a conceptual contribution of its own and expand on
this in section 1.4.

1.3 Extending to the all-but-m model
Yet another problem that the classic Dolev-Reischuk lower bound does not cover is almost
everywhere agreement [10, 17]. This notion is closely related to that of classic agreement
protocols but allows a small number of nonfaulty parties to output the wrong value, as long

I. Abraham and G. Stern 16:3

as the percentage of those dissenting parties tends towards 0 as n tends towards infinity. In
particular, classic Dolev-Reischuk just shows a safety violation of one party. What if we
allow some fraction of the parties to dissent and output differing values? Does some variant
of Dolev-Reischuk hold in this case?

In this work, we prove that if the number of messages sent is significantly smaller than
quadratic, then a large number of parties can be made to disagree. Concretely, if the number
of messages sent is O(nf1−c) for some c ∈ [0, 1], the number of parties that can be made
to output a differing value is O(f c). Crucially, as the number of messages in the protocol
approaches O(n), the adversary can make O(f) nonfaulty parties disagree, which is often
taken to be a constant fraction of the total number of parties.

1.4 Why does Crusader Broadcast matter for Blockchains? Connections
to Eclipse Style Attacks

Blockchain systems are designed to solve the task of consensus [21, 24], or more precisely,
state machine replication. Many of these systems claim to achieve consensus in a linear
number of messages per block. This seems to be in direct conflict with the lower bounds of
Dolev-Reischuk, suggesting that at least quadratic (Ω(nf)) messages are required. One
way of making sense of this contradiction is by looking at the details of the lower bounds.
As discussed above, Dolev-Reischuk prove such lower bounds for protocols in which parties
are required to output some value eventually, even without hearing any message. In Bitcoin
and Ethereum (Nakamoto consensus based systems) not hearing new blocks simply causes
parties to not decide anything. Formally, we can think of this as if such a party outputs a
special value ⊥, signifying not knowing. In this sense, it is natural to actually view such
blockchain protocols, when focusing on a single block, as solving Crusader Broadcast
rather than consensus.

In Section 5, we explore the connections between our new lower bounds for crusader
broadcast and the eclipse style attacks in proof-of-work blockchain systems. We observe the
following similarity:

In our lower bound for a single shot of crusader broadcast, in the deterministic case the
adversary can be static to isolate a party and needs to be able to simulate other parties
to trick the isolated party to believe an alternative world.

Similarly, in Eclipse-style attacks, the systems had insufficient randomness at the network
layer, meaning that the communication graph induced by the protocol was either deter-
ministic, or very easy to influence. This allowed a relatively static adversary to isolate a
party, or even worse. Similarly, by the nature of Nakamoto consensus, the adversary can
simulate other parties (often for a limited time) and trick the isolated party to believe an
alternative world.

Note that in both cases, the isolated party believes in an alternative world and a double
spend is executed. This is unlike the classic Dolev-Reischuk lower bound where the isolated
node just sees silence (so there is just one spend and one party that does not observe the
spend). Finally, we discuss in Section 6 the consequence of our lower bound for the study of
upper bounds for crusader broadcast. In particular, we show how a subquadratic protocol
for crusader broadcast takes advantage of randomization and cryptography in order to
circumvent the Ω(n2) lower bound.

OPODIS 2022

16:4 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

Our contributions
To summarize, our work makes three main contributions:
1. A new Lower Bound for crusader broadcast. While it is definitely part of the enhanced

Dolev-Reischuk family, it requires new non-trivial extensions. In particular, Byzantine
adversaries and the ability to simulate.
▶ Theorem 4. Let there be a deterministic protocol solving Binary Crusader Broadcast
in lockstep synchrony. If the protocol is resilient to f static Byzantine corruptions, then
there must be at least one run of the protocol in which at least 1

4 (n− 1)f messages are
sent for n ≥ f + 2.

2. We extend the Dolev-Reischuk style lower bounds to the all but m model showing that
near linear protocols may actually suffer a near linear number of isolated parties. Similar
to how Abraham et al. [1] extend the Dolev-Reischuk lower bound to the randomized
setting given a strongly adaptive adversary, we also extended our lower bound on Crusader
Broadcast to the randomized setting given a strongly adaptive adversary in Theorem 5.
▶ Theorem 6. Let there be a probabilistic (2

3 + ϵ)-correct protocol solving all-but (f c − 1)
Binary Crusader Broadcast in lockstep synchrony for some c ∈ [0, 1] and ϵ ∈

(
0, 1

3
]
. If

the protocol is resilient to f strongly adaptive Byzantine corruptions, then the expected
number of messages sent in the protocol is at least ϵ

8 (n− 1)f1−c for n ≥ 3f .
3. Make the conceptual connection between Eclipse style attacks and our new Crusader

broadcast lower bound. We believe that by highlighting this connection, protocol designers
may be able to more rigorously design blockchain protocols that are more secure against
Eclipse-style attacks.

2 Communication and Adversary Model

We consider a fully-connected network of n parties with synchronous communication: there
is a commonly known bound ∆ on message delay. The adversary can choose exactly how
long each message is delayed within the range [0, ∆]. The lower bounds hold in an even
stronger synchrony assumption: lockstep communication where communication proceeds in
lockstep rounds.

We assume a Byzantine adversary that can corrupt up to f parties. We consider both
static and strongly adaptive adversaries. A static Byzantine adversary must choose which
parties to corrupt at the beginning of the protocol. A strongly adaptive adversary can choose
which parties to corrupt at any given time. Furthermore, it can even choose to corrupt
parties after they send messages, but before they are delivered. If it chooses to do so, it can
delete those messages and send different messages instead. We assume a computationally
unbounded adversary that can simulate other parties if required. When the adversary is
computationally limited, we explicitly mention this.

3 Definitions

The Binary Crusader Broadcast task is very similar to the Binary Broadcast task, except
parties are also allowed to output ⊥ if the sender is faulty. Formally, such a protocol is
defined as follows:

▶ Definition 1. A Binary Crusader Broadcast protocol has a designated sender s with some
input x ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving Binary
Crusader Broadcast has the following properties:

I. Abraham and G. Stern 16:5

Validity. If the sender is nonfaulty, then every nonfaulty party outputs x.
Correctness. If two nonfaulty parties i, j output yi, yj ∈ {0, 1}, then yi = yj.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

A weaker version of the Binary Crusader Broadcast task is the almost-everywhere Binary
Crusader Broadcast protocol, similar to the almost-everywhere agreement problem [10, 23].
Whereas in a regular Binary Crusader Broadcast protocol all parties that don’t output ⊥
must output the same value even when the sender is faulty, in an almost-everywhere Binary
Crusader Broadcast protocol a small number of parties are allowed to output a different
value when the sender is faulty. A protocol solving Binary Crusader allowing m parties to
disagree is called an all-but m Binary Crusader protocol, and is defined as follows:

▶ Definition 2. An all-but m Binary Crusader Broadcast protocol has a designated sender s

with some input x ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving
all-but m Binary Crusader Broadcast has the following properties:

Validity. If the sender is nonfaulty, then every nonfaulty party outputs x.
Correctness. There exists some y ∈ {0, 1} such that at most m nonfaulty parties i

output yi /∈ {y,⊥}.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

Note that an all-but 0 Binary Crusader Broadcast protocol is simply a Binary Crusader
Broadcast protocol. A protocol is said to be deterministic if all nonfaulty parties’ actions
are chosen as a deterministic function of their input and the messages they receive, and
probabilistic otherwise. A protocol is said to be p-correct if for any adversary all of its
properties hold with probability p or greater.

3.1 Relationship to Crusader Consensus
The notion of Crusader Broadcast is highly related to that of Crusader Consensus. We define
the task of Crusader Consensus as follows:

▶ Definition 3. In a Binary Crusader Consensus protocol, every party i has an input
xi ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving Binary
Crusader Consensus has the following properties:

Validity. If all nonfaulty parties have the same input x, then they all output x.
Correctness. If two nonfaulty parties i, j output yi, yj ∈ {0, 1}, then yi = yj.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

These tasks reduce to each other in the same way regular consensus and broadcast reduce
to each other when n ≥ 2f + 1 with f Byzantine parties [6]. In short, assume we have a
Crusader Broadcast protocol. In order to achieve Crusader Consensus, every party broadcasts
its input xi and waits to complete all broadcasts. After completing all n broadcasts, if there
exists some value y which was received in at least n− f broadcasts, output y. Otherwise
output ⊥. If all nonfaulty parties have the same input x, then from the Validity property
they will receive that value in at least the n−f broadcasts with nonfaulty senders and output
it. On the other hand, if some nonfaulty party outputs a value y ̸= ⊥, then it received it in
at least n− f broadcasts. From the Correctness property, every other party either outputs y

or ⊥ in those broadcasts, and thus can output some y′ such that y′ /∈ {y,⊥} only in the f

remaining broadcasts. We know that n ≥ 2f + 1, and thus f ≤ n− (f + 1) < n− f , which
means that it won’t output y′ /∈ {y,⊥}, as required.

OPODIS 2022

16:6 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

In the other direction, assume that there exists a Crusader Consensus protocol. In order
to implement broadcast, the sender sends its input to all parties. Each party that doesn’t
receive a value within ∆ time chooses a default value, e.g. 0. They then all participate in
the Crusader Consensus protocol with their received value as input, and output their output
from the Crusader Consensus protocol. If the sender is nonfaulty with the input x, then all
nonfaulty parties will receive that value in ∆ time. They then all participate the Crusader
Consensus protocol with the input x, and therefore from the Validity property output x as
well. In addition, if two nonfaulty parties output y, y′ ∈ {0, 1}, then from the Correctness
property y = y′, as required.

4 Lower Bounds

This section provides several communication lower bounds on protocols solving Binary
Crusader Broadcast. The lower bounds use ideas from the Dolev-Reischuk lower bound [9],
and from the subsequent work of Abraham et al. [1]. The lower bounds presented in Theorem 4
and Theorem 5 isolate a party in a similar way to the ones described in [9] and [1] respectively.
However, unlike previous works, the lower bounds presented in this paper require the adversary
to act in a Byzantine manner and actively simulate other parties. Theorem 6 shows how
previously known techniques can be used to isolate a large number of parties, and cause
wide disagreement in the network. All of the following lower bounds are stated as lower
bounds on the number of messages sent, as done in previous works. However, the lower
bounds actually only use the number of messages as a bound on the number edges in the
communication graph. That is, if fewer than m messages are sent in the network, then there
are fewer than m pairs of parties that communicate with each other. These lower bounds
cannot be avoided by increasing the number of messages without increasing the number
of edges in the communication graph of the protocol. This means that the lower bounds
might be more accurately stated in terms of edges in the communication graph instead of
messages sent.

The first lower bound uses the fact that few messages are sent in order to isolate a single
party i and cause it to communicate only with faulty parties. The faulty parties then simulate
a run with the input 1 for party i when a nonfaulty sender has the input 0, causing it to
output 1. The faulty parties also make sure that the rest of the network doesn’t notice that
i was isolated by simulating its messages in a run with the sender’s input being 0 and having
the faulty parties respond accordingly when communicating with other parties. Note that in
order for the theorem to hold, the content of the messages actually can be probabilistic, as
long as parties always communicate with the same parties throughout the protocol. All of
the following bounds also include an upper bound on the number of faulty parties. This is
done in order to make sure that the required number of nonfaulty parties remain in order
to reach a contradiction. Clearly, if the adversary can actually corrupt a larger number of
parties, it can choose not to do so and achieve the same lower bounds, slightly adjusting the
exact number of messages. In all cases however, f is allowed to be a constant fraction of n.

▶ Theorem 4. Let there be a deterministic protocol solving Binary Crusader Broadcast in
lockstep synchrony. If the protocol is resilient to f static Byzantine corruptions, then there
must be at least one run of the protocol in which at least 1

4 (n− 1)f messages are sent for
n ≥ f + 2.

Proof. Assume by way of contradiction that fewer than 1
4 (n− 1)f messages are sent overall

throughout any run of the protocol. Let W0 be a run in which the adversary does not corrupt
any party and the sender has input 0. Similarly, let W1 be a run in which the adversary does

I. Abraham and G. Stern 16:7

not corrupt any party and the sender has input 1. From the Validity property of the protocol
all parties output 0 in W0 and 1 in W1. By assumption, the total number of messages sent
in either run is less than 1

4 (n− 1)f , and thus the total number of messages in both runs is
less than 1

2 (n− 1)f . Now assume by way of contradiction that at least n− 1 parties send or
receive at least f messages in total in both runs. When summing over the messages sent or
received by all parties, each message is counted twice: once when it is sent and once when
it is received. Therefore, the total number of messages sent in both W0 and W1 is at least
1
2 (n− 1)f , reaching a contradiction to the stated above. This means that at least 2 parties
send or receive no more than f messages in total in both runs. Let i be one of those parties
such that i is not the sender s. Let P0, P1 be the sets of parties with which i communicated
in W0 and W1 respectively. By the stated above, |P0 ∪ P1| ≤ f .

Now observe the run Whybrid in which s has the input 0 and the adversary acts according
to the following strategy: the adversary corrupts all parties in P0 ∪ P1, all of those parties
communicate with all parties that aren’t i as nonfaulty parties would in the protocol, and
communicate with i as nonfaulty parties would if s had the input 1. More precisely, parties
in P0 ∪ P1 simulate all of i’s messages internally when communicating with all parties other
than i and act as if they received those messages, but don’t send resulting messages to i. On
the other hand, when communicating with i they simulate all of the messages from all other
parties with a nonfaulty s having the input 1 and act accordingly, but only send resulting
messages to party i. Note that both in W0 and in W1, all parties not in P0 ∪ P1 ∪ {i} don’t
communicate directly with party i. All nonfaulty parties see communication that is identical
to the one in W0 and since they are not in P0, they don’t send any messages to i in Whybrid

as well. Similarly, i sees communication that is identical to the one in W1 and thus doesn’t
send any messages to parties other than those in P1 in Whybrid. Therefore the view of all
parties not in P0 ∪ P1 ∪ {i} is identical to their view in W0, and thus as stated above, they
all output 0. On the other hand, i’s view is identical to its view in W1, and thus it outputs
1. Note that n ≥ f + 2, so there are at least two nonfaulty parties. Party i and all parties
not in P0 ∪ P1 ∪ {i} are nonfaulty, so this is a violation of the Correctness property of the
protocol, reaching a contradiction and completing the proof. ◀

The second lower bound uses ideas from [1] and generalizes them to the task of probabilistic
Crusader Broadcast. The first part of the lower bound shows that if no more than ϵ

4 f2

messages are sent in expectation in the protocol, then there is at least one non-sender party
that communicates with a small number of parties with probability ϵ. Using this insight,
an adversary can isolate that party and perform a similar attack to the one described in
the previous theorem. The last part of the theorem shows that the probability that if the
original protocol is purported to be (2

3 + ϵ)-correct, then the isolated party and the rest of the
nonfaulty parties output different values with at least 1

3 probability, reaching a contradiction.
Recall that as defined in Section 3, a protocol is said to be p-correct if its properties hold
with probability p or greater.

▶ Theorem 5. Let there be a probabilistic (2
3 + ϵ)-correct protocol solving Binary Crusader

Broadcast in lockstep synchrony for some ϵ ∈
(
0, 1

3
]
. If the protocol is resilient to f strongly

adaptive Byzantine corruptions, then the expected number of messages sent in the protocol is
at least ϵ

4 (n− 1)f for n ≥ f + 2.

Proof. Assume that is not the case. This means that there exists a (2
3 + ϵ)-correct Binary

Crusader Broadcast protocol with expected message complexity smaller than ϵ
4 (n − 1)f .

Similarly to the previous theorem, we will define W0 and W1 as runs in which the adversary
does not corrupt any party and the sender has inputs 0 and 1 respectively. In both of these

OPODIS 2022

16:8 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

runs, the probability that all parties terminate and output the sender’s input must be at least
2
3 + ϵ. Define M0 and M1 to be random variables indicating the number of messages sent by
nonfaulty parties in W0 and W1 respectively. In addition, define M = M0 + M1 to be the
number of messages sent in both runs. By assumption, E[M] = E[M0] + E[M1] < ϵ

2 (n− 1)f .
For every i ∈ [n], let Xi be a random variable indicating the total number of messages sent
or received by party i in total both in W0 and in W1. Assume by way of contradiction that
for at least n− 1 parties i ∈ [n], E[Xi] > ϵf . First note that M = 1

2
∑n

i=1 Xi because when
summing over all the messages that each party sent and received, we count every message
twice. Therefore, E[M] = 1

2
∑n

i=1 E[Xi] > ϵ
2 (n− 1)f , in contradiction. Therefore, there exist

at least two parties i, j ∈ [n] for which E[Xi],E[Xj] ≤ ϵf . Let i be a non-sender party for
which E[Xi] ≤ ϵf . From the Markov inequality, Pr[Xi ≥ f] ≤ E[Xi]

f ≤ ϵf
f = ϵ.

We will now define an adversary’s attack in Whybrid. The sender s has the input 0, and
the adversary will attempt to cause i to output 1 while other parties output 0. Informally,
the adversary’s strategy is to corrupt all parties that communicate with i (either by sending
or receiving messages) throughout the run and delete all messages to i. The adversary then
simulates i’s responses to the messages it would have received, corrupts the parties that
would have received those messages and causes them to act as if they received those messages.
In addition, the adversary simulates a full run in W1, and whenever a party sends a message
to i in its simulation, it corrupts that party and causes it to send that message to i. This
causes i to think it is in W0 and all other parties to think they are in W1, causing them to
output different values.

More formally, whenever a party j sends a message to party i, the adversary corrupts
j and erases the message. In addition, whenever i sends a message to some party k, the
adversary corrupts k. In parallel, the adversary simulates party i’s responses in W0, given
all of the messages it was sent. If party i ever sends a message to party j in that simulation
in a given round, the adversary corrupts party j, erases its outgoing messages for that round,
and makes it act as a nonfaulty party would if it received all of the messages it already
received and the messages sent by i in the simulated run. Finally, the adversary simulates
all of the communication between all parties in W1 given the messages sent by i in Whybrid.
This is done by internally running all parties in each round of the protocol except i, and
using i’s messages in each round. Whenever a party k sends i a message in the simulated
run of W1, the adversary corrupts it in Whybrid and sends that message to i. If at any point
the adversary is required to corrupt more than f parties, it aborts. Before analyzing the
probability that the attack succeeds, we will define several random variables. Let A0 be the
event that all nonfaulty parties except i output 0 in Whybrid. Let A1 be the event that i

outputs 1 in Whybrid. Similarly, let B0 be the event that all nonfaulty parties except i output
0 in W0, and let B1 be the event that i outputs 1 in W1. Note that the definitions of A0, B0
allows i to output 0 as long as all other nonfaulty parties output 0. Define G to be the event
that no more than f parties communicate with i in total in W0 and W1 combined. Finally,
define Ghybrid to be the event that the adversary does not abort in Whybrid.

Our goal is to show that Pr[A0 ∩A1] > 1
3 − ϵ. This contradicts the fact that the protocol

is (2
3 + ϵ)-correct, because with more than 1

3 − ϵ probability, all honest parties except for
i output 0, and i outputs 1. By assumption n ≥ f + 2, so there actually are at least two
nonfaulty parties. Before doing so, note that as long as the adversary isn’t required to
corrupt more than f parties, the view of all nonfaulty parties except i in Whybrid is identical
to the view they would have in W0, given that no more than f parties communicate with i

in both W0 and W1. Similarly, as long as that event doesn’t happen, i’s view is identical

I. Abraham and G. Stern 16:9

to the view it would have in W1, given that no more than f parties communicate with i in
both W0 and W1. Therefore, we know that Pr[G] = Pr[Ghybrid], Pr[A0|Ghybrid] = Pr[B0|G]
and Pr[A1|Ghybrid] = Pr[B1|G]. We are now ready to analyze Pr[A0 ∩A1]:

Pr[A0 ∩A1] = Pr[A0] + Pr[A1]− Pr[A0 ∪A1]
≥ Pr[Ghybrid] (Pr[A0|Ghybrid] + Pr[A1|Ghybrid])− 1

= Pr[G]
(

Pr[B0|G] + Pr[B1|G]
)
− 1

= Pr[B0 ∧G] + Pr[B1 ∧G]− 1
= Pr[B0]− Pr[B0 ∧G] + Pr[B1]− Pr[B1 ∧G]− 1
≥ Pr[B0] + Pr[B1]− 2 Pr[G]− 1
= Pr[B0] + Pr[B1]− 2 Pr[Xi > f]− 1

≥ (2
3 + ϵ) + (2

3 + ϵ)− 2ϵ− 1 = 1
3 >

1
3 − ϵ ,

reaching a contradiction, and completing the proof. ◀

The main insight of the previous theorem was that if fewer than Ω(nf) messages are
sent in a protocol in expectation, then there is a good probability that at least one party
communicates with f parties or fewer, and can be isolated. The next lower bound generalizes
this insight and shows that if for some c ∈ [0, 1] fewer than Ω(nf1−c) messages are sent
in expectation, there exist f c parties that can be isolated. From this point, the proof is
extremely similar to the one of the previous theorem. Note that the exact same techniques
can be used in the deterministic case with a static adversary, but the theorem is omitted
due to its similarity. It is also important to note that similar theorems with different choices
instead of f c − 1 can easily be formulated for more general results. This specific choice was
made as it simplifies some calculations, and it is enough to show that as the number of
messages approaches a O(ϵn), the number of isolated parties approaches Ω(f).

▶ Theorem 6. Let there be a probabilistic (2
3 + ϵ)-correct protocol solving all-but (f c − 1)

Binary Crusader Broadcast in lockstep synchrony for some c ∈ [0, 1] and ϵ ∈
(
0, 1

3
]
. If the

protocol is resilient to f strongly adaptive Byzantine corruptions, then the expected number
of messages sent in the protocol is at least ϵ

8 (n− 1)f1−c for n ≥ 3f . 2

Proof. Assume that is not the case. This means that there exists a (2
3 + ϵ)-correct all-but

(f c − 1) Binary Crusader Broadcast protocol with expected message complexity smaller than
ϵ
8 (n− 1)f1−c. Similarly to the previous theorem, we will define W0 and W1 as runs in which
the adversary does not corrupt any party and the sender has inputs 0 and 1 respectively.
In both of these runs, the probability that all parties terminate and output the sender’s
input must be at least 2

3 + ϵ. Define M0 and M1 to be random variables indicating the
number of messages sent by nonfaulty parties in W0 and W1 respectively. In addition,
define M = M0 + M1 to be the number of messages sent in both runs. By assumption,
E[M] = E[M0] + E[M1] < ϵ

4 (n− 1)f1−c. Similarly to before, the adversary will seek a set of
⌊f c⌋ > f c−1 parties that don’t contain the sender and don’t send many messages. In order to
do that, assume without loss of generality that the sender is party n. Let m = ⌊f c⌋, ℓ = ⌈n−1

m ⌉,
and define ℓ sets of m parties as follows: ∀i ∈ {0, . . . , ℓ−2} Pi = {i ·m + 1, . . . , (i + 1)m} and

2 It is actually enough that n ≥ f + 2fc, since all we need is f faulty parties and 2 sets of at least fc

nonfaulty parties to disagree on the output.

OPODIS 2022

16:10 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

Pℓ−1 = {n−m, . . . , n−1}. We would like to guarantee that the sender is not in any of the sets
Pi, and that every other party appears in one of the sets, but in no more than two of the sets.
First note that the sender is not in Pℓ−1 by definition. The largest number in any of the other
Pi sets is (ℓ− 2 + 1)m. Using the definition of ℓ, (ℓ− 2 + 1)m = (⌈n−1

m ⌉− 1)m ≤ n−1
m ·m < n,

and thus the sender (party n) is not in any of those sets. Secondly, note that all of the sets
up to Pℓ−2 are disjoint. This means that every party appears at most once in one of the sets
P0, . . . , Pℓ−2 and at most once more in Pℓ−1. Finally, the sets P0, . . . , Pℓ−2 exactly contain the
parties 1, . . . , (ℓ−2+1)m. Note that (ℓ−2+1)m = (⌈n−1

m ⌉−1)m ≥ (n−1
m −1)m = n−1−m,

and thus Pℓ−1 contains all of the rest of the parties, except for the sender.
As defined in the previous lower bound, for every i ∈ [n], let Xi be a random variable

indicating the total number of messages sent or received by party i in total both in W0
and in W1. In addition, for every i ∈ {0, . . . , ℓ− 1} let Yi be the total number of messages
sent or received by all parties j ∈ Pi in total both in W0 and in W1. It is always the case
that

∑
j∈Pi

Xj ≥ Yi because
∑

j∈Pi
Xj counts all messages sent or received by parties in

Pi, and might even count some of those messages twice. Assume by way of contradiction
that for every i ∈ {0, . . . , ℓ − 1}, E[Yi] > ϵf . First note that M = 1

2
∑n

i=1 Xi because
when summing over all the messages that each party sent and received, we count every
message twice. In addition, seeing as each party j appears in at most two of the sets Pi,
2

∑n
i=1 Xi ≥

∑ℓ−1
i=0

∑
j∈Pi

Xj . Combining these observations:

E[M] = E[12

n∑
i=1

Xi]

= 1
4E[2

n∑
i=1

Xi]

≥ 1
4E[

ℓ−1∑
i=0

∑
j∈Pi

Xj]

≥ 1
4

ℓ−1∑
i=0

E[Yi]

≥ 1
4ℓϵf

= 1
4⌈

n− 1
m
⌉ϵf

≥ 1
4 ·

n− 1
⌊f c⌋

ϵf

≥ 1
4

n− 1
f c

ϵf = ϵ

4(n− 1)f1−c

in contradiction. This means that there exists at least one k ∈ {0, . . . , ℓ − 1} for which
E[Yk] ≤ ϵf . Let Pk be such a set. From the Markov inequality, Pr[Yk ≥ f] ≤ E[Yk]

f ≤ ϵf
f = ϵ.

In other words, the probability that in total all parties in Pk send and receive more than f

messages in W0 and in W1 combined is no greater than ϵ.
We will now define an adversary’s attack in Whybrid, similar to the attack in Theorem 5.

The sender s has the input 0. Whenever a party j /∈ Pk sends a message to a party i ∈ Pk,
the adversary corrupts j and erases the message. In addition, whenever a party i ∈ Pk sends
a message to a party j /∈ Pk, the adversary corrupts j. In parallel, the adversary simulates all
of the messages parties i ∈ Pk send in W0, given all of the messages they were sent by parties
not in Pk. If any party i ∈ Pk ever sends a message to party j /∈ Pk in that simulation in a
given round, the adversary corrupts party j, erases its outgoing messages for that round, and

I. Abraham and G. Stern 16:11

makes it act as a nonfaulty party would if it received all of the messages it already received
and the messages sent by all parties in Pk in the simulated run. Finally, the adversary
simulates all of the communication between all parties in W1 given the messages sent by all
parties i ∈ Pk in Whybrid. This is done by internally running all parties in each round of
the protocol except for parties in Pk, and using the messages sent by parties in Pk in each
round. Whenever a party j /∈ Pk sends some party i ∈ Pk a message in the simulated run of
W1, the adversary corrupts j in Whybrid and sends that message to i. If at any point the
adversary is required to corrupt more than f parties, it aborts. The adversary never corrupts
any party i ∈ Pk, so all parties in Pk remain nonfaulty. Before analyzing the probability
that the attack succeeds, we will define several random variables. Let A0 be the event that
all nonfaulty parties except parties in Pk output 0 in Whybrid. Let A1 be the event that all
parties in Pk output 1 in Whybrid. Similarly, let B0 be the event that all nonfaulty parties
except parties in Pk output 0 in W0, and let B1 be the event that all parties in Pk output 1
in W1. Note that the definitions of A0, B0 allow all parties in Pk to output 0, as long as all
other nonfaulty parties do so as well. Define G to be the event that no more than f parties
communicate with parties in Pk in total in W0 and W1 combined. Finally, define Ghybrid to
be the event that the adversary does not abort in Whybrid.

Our goal is to show that Pr[A0 ∩ A1] > 1
3 − ϵ. Note that in this case, all parties in

Pk output 1 in Whybrid and all other nonfaulty parties output 0. There are f c parties in
Pk and at least n − f − f c ≥ n − 2f ≥ f ≥ f c nonfaulty parties not in Pk. Therefore,
with probability greater than (1

3 − ϵ) at least f c nonfaulty parties output 0 and at least f c

nonfaulty parties output 1, contradicting the fact that the protocol is an (2
3 + ϵ)-correct

all-but (f c − 1) Binary Crusader Broadcast protocol. Before doing so, note that as long as
the adversary isn’t required to corrupt more than f parties, the view of all nonfaulty parties
except parties in Pk in Whybrid is identical to the view they would have in W0, given that no
more than f parties communicate with parties in Pk in both W0 and W1. Similarly, as long
as that event doesn’t happen, the view of all parties in Pk in Whybrid is identical to the view
they would have in W1, given that no more than f parties communicate with parties in Pk in
both W0 and W1. Therefore, we know that Pr[G] = Pr[Ghybrid], Pr[A0|Ghybrid] = Pr[B0|G]
and Pr[A1|Ghybrid] = Pr[B1|G]. We are now ready to analyze Pr[A0 ∩A1]:

Pr[A0 ∩A1] = Pr[A0] + Pr[A1]− Pr[A0 ∪A1]
≥ Pr[Ghybrid] (Pr[A0|Ghybrid] + Pr[A1|Ghybrid])− 1

= Pr[G]
(

Pr[B0|G] + Pr[B1|G]
)
− 1

= Pr[B0 ∧G] + Pr[B1 ∧G]− 1
= Pr[B0]− Pr[B0 ∧G] + Pr[B1]− Pr[B1 ∧G]− 1
≥ Pr[B0] + Pr[B1]− 2 Pr[G]− 1
= Pr[B0] + Pr[B1]− 2 Pr[Yk > f]− 1

≥ (2
3 + ϵ) + (2

3 + ϵ)− 2ϵ− 1 = 1
3 >

1
3 − ϵ ,

reaching a contradiction, and completing the proof. ◀

5 Eclipse Attacks in Blockchain Systems

Blockchain system provided new revolutionary consensus protocols [21, 13] and with them
came a new set of attacks [4, 18, 11]. One new style of attack focuses on the underlying
peer-to-peer communication network and the ways it might affect the security of the system

OPODIS 2022

16:12 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

as a whole. These works suggest Eclipse attacks [15, 19], in which an adversary isolates a
specific party (or group of parties), and causes it to fork off in ways that are economically
advantageous to the attacker.

A natural question arises: are Eclipse-style attacks unique to the blockchain space or are
they connected to more traditional attacks in the theory and literature on consensus? In
consensus research, generic attacks on protocols are captured as lower bounds.

In this section, we make the conceptual connection between Eclipse-style attacks and
theoretical lower bounds for Crusader broadcast. We show that many Eclipse-style attacks
work because the underlying blockchain protocols are subquadratic and the protocol was not
designed to take full power of forcing the adversary to be adaptive or to force the adversary to
simulate. Hence Eclipse-style attacks can be viewed as specific attacks following the general
lower bound for crusader broadcast, even with a mildly static adversary that cannot fully
simulate as many other parties as it wants.

In the Eclipse attack, [15, 19] the adversary, by controlling a sufficient number of IP
addresses, can monopolize all connections to and from a victim node. Once the node is
isolated, the adversary can cause nodes to briefly locally confirm transactions that conflict
with the majority of nodes. This is analogous to outputting different values in the attacks
or our lower bound for crusader broadcast. Eclipse-style attacks may also combine selfish
mining attacks [4, 11]. In this attack, the adversary filters communication to and from the
isolated nodes and abuses the nodes’ mining power to the adversary’s advantage. This attack
is also similar to the one described in Theorem 6, which suggests that these lower bounds
could be of interest also when not directly attacking the agreement of the protocol, but
rather notions like liveness or fairness of a consensus protocol.

We note that the difference between the attacks described in Theorems 4 and 5 stems
from the randomized nature of the communication graph, and not from the difference in the
content of messages. The proof of Theorem 4 would not change if a randomized Crusader
Broadcast protocol uses a static communication graph. In addition, Theorem 6 generalizes
the result even further and shows that as the number of messages decreases, or more precisely
the number of edges in the communication graph decreases, a larger number of nonfaulty
parties can be isolated and made to output a different value. As the number of edges
in the communication graph tends towards O(ϵ · n), the number of isolated parties tends
towards Ω(f). This means a weak protocol with near linear communication may allow a
large adversary to partition the nonfaulty parties into two large groups that disagree on the
output of the protocol.

Limitations of Real-World Adversaries
The attacks described in Section 4 assume extremely strong adversaries. First of all, in all
lower bounds, the adversary is assumed to be able to simulate other parties. This assumption
may not hold in some real-world systems. Since adversaries have limited compute power, they
generally cannot arbitrarily simulate other parties in proof-of-work systems. Furthermore, in
systems with a public key infrastructure, adversaries cannot forge other parties’ signatures or
break other cryptographic primitives during the simulation of the protocol. The adversary in
Theorems 5 and 6 also needs to be strongly adaptive. In the real world, adversaries generally
cannot corrupt parties at will, let alone retroactively delete their messages and replace them.
Given all of these limitations, one could reasonably ask: are the attacks described in these
lower bounds applicable to the real world?

Surprisingly, the answer seems to be that they are applicable, as evidenced by previous
works on eclipse attacks. We discuss how both limitations are overcome next.

I. Abraham and G. Stern 16:13

Overcoming the need for strong adaptivity, due to protocol level flaws

As shown in [15, 19], both Bitcoin’s and Ethereum’s peer-to-peer communication protocols
had flaws that allowed an adversary to easily monopolize a victim node’s connections. When
nodes restart, they initiate outgoing connections from tables storing addresses of known
peers. The adversary fills those tables in advance with addresses of nodes controlled by
the adversary and then causes the node to restart. After restarting, the node connects
to peers from those tables, hence connecting to the adversary’s nodes. Nodes may also
receive incoming connections from peers. After causing a node to restart, the adversary
also sends incoming connection requests and monopolizes all of the incoming connections.
These attacks are performed in advance, allowing the adversary to essentially structure the
communication graph in a malicious manner. Compare the Eclipse attack strategy above
to our lower bounds for crusader broadcast. In this attack, the protocol flaw is such that
the adversary does not need to be adaptive, let alone strongly adaptive. Even worse, the
lower bound in Theorem 4 only shows that there must exist some party that can be isolated.
In that attack, the adversary has to have some special knowledge of that specific party and
tailor its attack to it. However, in the Eclipse attacks described in [15, 19], the adversary
can choose whichever node it wants and isolate it in a static manner, without the need to
find out which node can be isolated.

Overcoming the need for simulation due to the nature of proof of work

The second challenging assumption for a real-world attack is the assumption that the
adversary has the power to simulate many honest parties. In our lower bounds for crusader
broadcast, this stems from the fact that we do not know what the parties may do in the
protocol. For example, parties may use cryptography in order to guarantee that a large
portion of the network saw some value (see [25, 2] for such examples). In order to fully
simulate the behavior of the nonfaulty parties, an adversary needs to be able to break
some of the cryptographic assumptions made in the design of the protocol. On the other
hand, in current proof-of-work based blockchain systems, simulating honest parties “only”
requires mining blocks with the correct information. The adversary is limited by its own
compute-power, so it can’t actually fully simulate the rest of the network for the isolated
parties. However, Eclipse-style attacks suggest ways to mitigate this issue. For example, the
adversary could conceivably utilize honest nodes to simulate the protocol for it. This can be
done by letting only parts of the network see a given block. The adversary could then use
the fact that nodes would continue to mine on top of it as a means of simulating the work
required, and then showing the mined blocks to the rest of the network when needed.

To conclude, the adversary described in the lower bounds of Section 4 seems too powerful
to be of interest when discussing real-world systems. However, some of the real-world systems
used today had flaws that didn’t require the adversary to be so powerful in order to levy
attacks.

Lessons from theory

Our lower bound suggests pricipled ways to design more secure protocols that will not allow
adversaries with limited adaptivity and simulation power to succeed in their attacks. As
suggested by [15, 19], measures could be taken in order to make it harder to fill the outgoing
link tables with the adversary-controlled nodes’ addresses. The proof of Theorem 4 suggests
that having a dynamically changing communication graph with outgoing edges being chosen
randomly without much adversary control is the best long-term solution.

OPODIS 2022

16:14 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

In addition, one could make it harder to simulate parts of the protocol. For example,
by requiring more nodes to sign blocks, or by making more use of cryptography in the
communication layer itself. This is indeed obtained using BFT-based finality gadgets [5].

6 Subquadratic Crusader Broadcast Protocol

After focusing on lower bounds for Crusader Broadcast, in this section, we explore upper
bounds. We start with a trivial information theoretic crusader broadcast protocol with O(n2)
communication. Our lower bound proves that this folklore construction is in fact tight for an
unconditional adversary.

We then explore how using randomization and assuming a PKI can circumvent the
Ω(n2) lower bound for crusader broadcast. In the second protocol, the O(n2) all-to-all
cost is replaced by a gossip procedure [22]. This lowers the overall communication cost to
O(n · polylogn) at the cost of increasing the round complexity. The gossip protocol heavily
relies on randomization to limit the adversary’s ability to guess the communication pattern.
We analyze this protocol against static adversaries. This protocol is a sort of “minimal
example” showing that it is easy to force the adversary to either be adaptive or to be able to
simulate other parties in order to break subquadratic crusader broadcast protocols.

We start with a simple construction of a Crusader Broadcast protocol resilient to f

strongly adaptive and computationally unbounded Byzantine corruptions, as long as n > 3f .

Algorithm 1 IT − CrusaderBroadcasti.

1: if i is the sender s with input x then
2: send the message ⟨“sender”, x⟩ to all parties
3: wait ∆ time
4: if a single ⟨“sender”, m⟩ message was received from s while waiting then
5: send ⟨“forward”, m⟩ to all parties
6: wait ∆ time
7: if there exists a value m for which ⟨“forward”, m⟩ was received from at least n−f parties

then
8: output m and terminate
9: else

10: output ⊥ and terminate

▶ Theorem 7. The IT− CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient
to f strongly adaptive, computationally unbounded Byzantine corruptions in a synchronous
system if n > 3f .

Proof. Each property is proven individually.
Validity. Assume the sender s is nonfaulty with input x. In the beginning of the protocol

it sends the message ⟨“sender”, x, ⟩ to all parties. Every nonfaulty party receives that
message up to ∆ time after that, and sends ⟨“forward”, x⟩ to all parties. After ∆ time,
every nonfaulty party will receive a ⟨“forward”, x⟩ message from every nonfaulty party.
Since there are n− f nonfaulty parties, every nonfaulty party then outputs x.

Correctness. Observe two nonfaulty parties i, j that output two non-⊥ values mi, mj respec-
tively. This means that i received the message ⟨“forward”, mi⟩ from at least n− f parties,
and j received the message ⟨“forward”, mj⟩ from at least n− f parties. By assumption,

I. Abraham and G. Stern 16:15

n > 3f , and thus 2(n − f) = 2n − 2f = n + (n − 2f) ≥ n + f + 1. Therefore, i and j

received the aforementioned messages from at least f + 1 common parties. At least one
of those parties must be nonfaulty, and nonfaulty parties only send a single “forward”
message to all parties. Therefore, it must be the case that mi = mj .

Termination. All parties wait for 2∆ overall and terminate. ◀

Note that in the above protocol, the sender sends O(n) messages, and each nonfaulty party
sends O(n) messages as well. This results in a protocol with O(n2) message complexity,
showing that the lower bound above is tight.

The folklore O(n2) protocol, presented in Algorithm 2, proceeds in two rounds. In the first
round, the sender s sends a signed message with its input to all parties. Parties then inform
each other of the message they’ve seen. Finally, any party that received a message m from
the sender without seeing any conflicting message outputs m. If either of these conditions
doesn’t hold, that party outputs ⊥ instead. This protocol is captured in Algorithm 2. In
general, for a protocol X, denote Xi to be the code for party i executing protocol X. We
assume the existence of a PKI such that every party i knows a signing key ski and all parties
know the associated public key pki. The PKI is used in a signature scheme consisting of the
signing algorithm Sign and verification algorithm Verify. We analyze the signature scheme as
perfectly secure, meaning that only i can produce signatures which verify with respect to
pki. A similar analysis can be done allowing for a negligible probability of error (meaning
that the resulting protocol is 1− negl(λ) correct, with λ being the security parameter).

Algorithm 2 CrusaderBroadcasti.

1: val← ⊥
2: if i is the sender s with input x then
3: σ ← Sign(ski, x)
4: send the message ⟨“sender”, x, σ⟩ to all parties
5: wait ∆ time
6: if a ⟨“sender”, m, σ⟩ message was received from s while waiting such that

Verify(pks, m, σ) = 1 then
7: val← m

8: send ⟨“forward”, m, σ⟩ to all parties
9: wait ∆ time

10: if a ⟨“forward”, m′, σ′⟩ message was received while waiting such that m′ ̸= val and
Verify(pks, m′, σ′) = 1 then

11: val← ⊥
12: output val and terminate

The protocol consists of a single multicast requiring O(n) messages, and a single all-to-all
round requiring O(n2) messages. A proof of the protocol follows:

▶ Theorem 8. The CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient to
any number of Byzantine corruptions f in a synchronous system.

Proof. Each property is proven individually. Denote vali to be the variable val stored by
party i.
Validity. Assume the sender s is nonfaulty with input x. In the beginning of the protocol

it produces a signature σ for x, and sends the message ⟨“sender”, x, σ⟩ to all parties.
Every nonfaulty party receives that message up to ∆ time after that, and updates val to

OPODIS 2022

16:16 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

x. The sender didn’t sign any other value m′ ̸= x, so no nonfaulty party will receive a
⟨“forward”, m′, σ′⟩ message with such that m′ ≠ val and Verify(pki, m′, σ′) = 1. Therefore
no nonfaulty party reverts val back to ⊥. Finally, after 2∆ time, all nonfaulty parties
output val = x and terminate.

Correctness. Assume by way of contradiction two nonfaulty parties i ≠ j output two non-⊥
values mi, mj respectively such that mi ̸= mj . Those parties output the variable val

at the end of the protocol, after 2∆ time. By assumption, they output non-⊥ values,
so vali ̸= ⊥ and valj ̸= ⊥. Party i only updates vali to mi ̸= ⊥ at time ∆ in line 7,
if it received a ⟨“sender”, mi, σi⟩ message from s such that Verify(pks, mi, σi) = 1. It
then sends the message ⟨“forward”, mi, σi⟩ to all parties at time ∆. Party j receives that
message by time 2∆, sees that mi ̸= mj and Verify(pks, mi, σi) = 1 and updates valj to
⊥. Finally, j outputs valj = ⊥, contradicting the fact that it output some value mj ̸= ⊥.

Termination. All parties wait for 2∆ overall and terminate. ◀

This simple protocol is based on the fact that for correctness to hold, it is enough to make
sure that any value heard by a nonfaulty party needs to be heard by all nonfaulty parties
(or at least the fact that two nonfaulty parties heard different values). In order to reduce
the communication costs of the protocol, it is possible to replace the expensive all-to-all
communication round with a more efficient gossip procedure. Using well-known results about
gossip [7, 22, 16], we know that parties can exchange information between them by proceeding
in rounds and in each round choosing a party to divulge all heard information to. Using this
technique, it is guaranteed that in O(log n) rounds all parties will hear all nonfaulty parties’
initial information. When dealing with a constant number of Byzantine faults, simply raising
the number of parties with which each party communicates in each round yields the same
analysis, showing that such a protocol requires O(n · polylog(n)) messages to be sent overall,
yielding a subquadratic Crusader Broadcast protocol. It is also possible to reduce the size of
the messages by parties sending up to 2 of the values they heard up until that point. This
is enough to detect equivocation, while guaranteeing that message size remains constant.
Note that an adaptive adversary can make sure that no nonfaulty party receives a message
m from an informed party i in the first rounds of the protocol by corrupting the parties
which received messages from i, requiring more rounds and more overall communication.
This shows that a subquadratic randomized protocol exists which is resilient to non-adaptive
adversaries, but stops working when the adversary can corrupt parties adaptively.

Another approach for breaking the quadratic message barrier is by relying on stronger
cryptographic primitives. This has been useful in reducing the communication costs of
protocols solving related tasks such as consensus [20, 25]. For example, if n > 3f it is possible
to use threshold cryptography. Given a well known threshold k, a threshold signature scheme
allows parties to sign a message individually, and then compressing k such signatures into a
single collective signature, proving that at least k parties signed the message individually.
Instead of having an all-to-all round as described in Algorithm 2, parties that hear a value m

from the sender can reply, sending a signature on m to the sender. Using a threshold signature
scheme with a threshold of 2f + 1, the sender can combine those signatures into a single
threshold signature proving that at least 2f + 1 parties replied with a signature on the value
m. Since 2f + 1 parties constitute a Byzantine quorum, it is guaranteed that there is only
one such threshold signature, meaning that if the sender then sends the threshold signature
to all parties, they can safely output it. This technique, used in the non-equivocation round
of the HotStuff protocol [25], yields a protocol with O(n) communication costs and O(1)
rounds, but more heavily relies on the assumption that the adversary cannot simulate other
parties.

I. Abraham and G. Stern 16:17

References
1 Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 317–326, 2019.

2 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Validated asynchronous byzantine
agreement with optimal resilience and asymptotically optimal time and word communication,
2018. doi:10.48550/arXiv.1811.01332.

3 Ittai Abraham and Kartik Nayak. The dolev and reischuk lower bound: Does
agreement need quadratic messages? https://decentralizedthoughts.github.io/
2019-08-16-byzantine-agreement-needs-quadratic-messages/, 2019.

4 Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power
(draft), 2013. doi:10.48550/arXiv.1312.7013.

5 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint, 2017.
arXiv:1710.09437.

6 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

7 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,
Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance.
In Proceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pages 1–12, 1987.

8 Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–30, 1982.
9 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.

Journal of the ACM (JACM), 32(1):191–204, 1985.
10 C Dwork, D Peleg, N Pippenger, and E Upfal. Fault tolerance in networks of bounded

degree. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC ’86, pages 370–379, New York, NY, USA, 1986. Association for Computing Machinery.
doi:10.1145/12130.12169.

11 Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable, 2013.
doi:10.48550/arXiv.1311.0243.

12 Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

13 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015.

14 Vassos Hadzilacos and Joseph Y Halpern. Message-optimal protocols for byzantine agreement.
In Proceedings of the tenth annual ACM symposium on Principles of distributed computing,
pages 309–323, 1991.

15 Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoin’s
peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages
129–144, 2015.

16 R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 565–574,
2000.

17 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA
’06, 2006.

18 Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin mining, or
bitcoin in the presence of adversaries. In Proceedings of WEIS. Washington, DC, 2013.

19 Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks on
ethereum’s peer-to-peer network. Cryptology ePrint Archive, 2018.

OPODIS 2022

https://doi.org/10.48550/arXiv.1811.01332
https://decentralizedthoughts.github.io/2019-08-16-byzantine-agreement-needs-quadratic-messages/
https://decentralizedthoughts.github.io/2019-08-16-byzantine-agreement-needs-quadratic-messages/
https://doi.org/10.48550/arXiv.1312.7013
http://arxiv.org/abs/1710.09437
https://doi.org/10.1145/12130.12169
https://doi.org/10.48550/arXiv.1311.0243

16:18 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

20 Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing,
DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of
LIPIcs, pages 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.DISC.2021.32.

21 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

22 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223,
1987.

23 Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking the ω̃(
√

n) barrier: Fast
consensus under a late adversary. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 173–182, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3210377.3210399.

24 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

25 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
Hotstuff: BFT consensus with linearity and responsiveness. In Peter Robinson and Faith Ellen,
editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 – August 2, 2019, pages 347–356. ACM, 2019.
doi:10.1145/3293611.3331591.

https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.1145/3210377.3210399
https://doi.org/10.1145/3293611.3331591

Quorum Systems in Permissionless Networks
Christian Cachin #

University of Bern, Switzerland

Giuliano Losa #

Stellar Development Foundation, San Francisco, CA, USA

Luca Zanolini #

University of Bern, Switzerland

Abstract
Fail-prone systems, and their quorum systems, are useful tools for the design of distributed algorithms.
However, fail-prone systems as studied so far require every process to know the full system membership
in order to guarantee safety through globally intersecting quorums. Thus, they are of little help
in an open, permissionless setting, where such knowledge may not be available. We propose to
generalize the theory of fail-prone systems to make it applicable to permissionless systems. We do
so by enabling processes not only to make assumptions about failures, but also to make assumptions
about the assumptions of other processes. Thus, by transitivity, processes that do not even know of
any common process may nevertheless have intersecting quorums and solve, for example, reliable
broadcast. Our model generalizes existing models such as the classic fail-prone system model [Malkhi
and Reiter, 1998] and the asymmetric fail-prone system model [Cachin and Tackmann, OPODIS
2019]. Moreover, it gives a characterization with standard formalism of the model used by the Stellar
blockchain.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Software and
its engineering → Distributed systems organizing principles

Keywords and phrases Permissionless systems, fail-prone system, quorum system

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.17

Related Version Full Version: https://doi.org/10.48550/arxiv.2211.05630

Funding This work has been funded by the Swiss National Science Foundation (SNSF) under grant
agreement Nr. 200021_188443 (Advanced Consensus Protocols).

Acknowledgements The authors thank anonymous reviewers for helpful feedback.

1 Introduction

A common problem in distributed computing is to implement synchronization abstractions
such as reliable broadcast, shared memory, or consensus, given some assumptions about the
possible Byzantine failures that may occur in an execution.

A fail-prone system F [14] is a set of sets of processes, called fail-prone sets, where no
fail-prone set is a subset of another. A fail-prone system F denotes the assumption that the
set of processes A that may suffer Byzantine failures is contained in one of the fail-prone
sets. For example, in a system of n processes, it is common to assume that less than a third
will fail, i.e., the fail-prone sets are the sets of cardinality exactly ⌊(n − 1)/3⌋.

Fail-prone systems are useful because of their relationship to quorum systems [14]. A
Byzantine quorum system Q for F is a collection of subsets of processes, called quorums,
such that for every two quorums Q1 and Q2 in Q and for every fail-prone set F ∈ F it holds
that Q1 and Q2 have a common member outside F (Consistency) and for every fail-prone
set F ∈ F , there exists a quorum disjoint from F (Availability).

© Christian Cachin, Giuliano Losa, and Luca Zanolini;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cachin@inf.unibe.ch
https://orcid.org/0000-0001-8967-9213
mailto:giuliano@stellar.org
https://orcid.org/0000-0003-2341-7928
mailto:luca.zanolini@inf.unibe.ch
https://orcid.org/0000-0003-4655-3172
https://doi.org/10.4230/LIPIcs.OPODIS.2022.17
https://doi.org/10.48550/arxiv.2211.05630
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Quorum Systems in Permissionless Networks

Many distributed algorithms (implementing, e.g., Byzantine reliable broadcast or con-
sensus) are parameterized by a quorum system Q and their guarantees hold under the
assumptions of a fail-prone system F if and only if Consistency and Availability of Q hold.
This allows the designers of a distributed system to make assumptions about failures, pick
a corresponding quorum system, and then choose among existing algorithms to solve the
desired synchronization problem.

Traditionally, such fail-prone systems have been used in closed systems with assumptions of
the form “less than on third of the processes are faulty”. This can work even in permissionless
systems using Proof-of-Stake, e.g., assuming that less than one third of the stake-holders
are faulty, or Proof-of-Work, e.g., assuming that the faulty set of processes holds less than
one third of the mining power [17]. Proof-of-Stake and Proof-of-Work however have their
disadvantages, e.g., long-range attacks in Proof-of-Stake, or excessive energy consumption in
Proof-of-Work. Both may also suffer from the “rich getting richer” problem, leading to very
few entities eventually controlling the system.

Instead of Proof-of-Stake and Proof-of-Work, one can envision letting every participant
make its own, subjective failure assumptions. Distributed computing models based on this
idea was first investigated by Damgård et al. [8], followed by Sheff et al. [18], and more
recently by Cachin and Tackmann [5] with the asymmetric-trust model, Malkhi et al. [13]
with flexible quorums, and Sheff et al. [19] with Heterogeneous Paxos. On the practical
side, Ripple (https://ripple.com) deployed a permissionless consensus protocol based on
subjective quorums in 2012, in every process declares a Unique Node List (UNL) of processes
that it trusts. Stellar (https://stellar.org, [16]) later followed suite with a different
permissioness model based on subjective trust.

One problem is that, in all the models cited above, even though participants are free to
make their own failure assumptions or choose their own quorums, maintaining consistency
requires compatible assumptions (in the sense that the resulting quorums will sufficiently
intersect) and thus prior common knowledge or prior synchronization, which is not desirable
in a permissionless system.

For example, Cachin and Tackmann [5] assume that for every two participants pi and
pj , for every two quorums Qi of pi and Qj of pj , if F is a set that can fail according to
the assumptions of both pi and pj , then (Qi ∩ Qj) \ F ≠ ∅; this is called the consistency
property. Together with an availability property, this defines an asymmetric quorum system.
Consistency ensures that if both pi and pj make correct assumptions, then they can avoid
disagreeing in, e.g., a reliable broadcast protocol. Achieving liveness additionally requires the
availability property, i.e., that a group of participants, called a guild, whose assumptions are
correct and which do not fail, satisfy the consistency property (pairwise) and additionally
that every member of the guild has a quorum in the guild.

Maintaining safety in such a model requires a strong form of a-priori coordination. Indeed,
two participants cannot be prevented from disagreeing unless every two of their quorums
have at least one non-faulty participant in common. Thus participants must coordinate
beforehand in order to pick sufficiently overlapping survivor sets, and corresponding quorums.
In the model of Ripple, for instance, every two processes must have UNLs that overlap by
some sufficient fraction [1].

Global assumptions implying the intersection of survivor sets and quorums, as in the two
preceding examples, are problematic in a permissionless setting because they postulate some
form of pre-agreement or common knowledge, which might be hard to achieve in practice.

Interestingly, the Stellar network (https://stellar.org, [16]), a deployed blockchain
system based on quorums, is able to maintain safety and liveness without requiring that
participants choose intersecting quorums. Instead, participants choose quorum slices that

https://ripple.com
https://stellar.org
https://stellar.org

C. Cachin, G. Losa, and L. Zanolini 17:3

need not intersect, and the quorums of a participant are defined in terms of the slices of other
participants. Consensus can then be solved within an intact set I, a set of correct processes
such that every two processes pi and pj in I have all their own quorums that intersect in at
least a member of I and such that I is itself a quorum for every of its members.

We observe that quorum slices can be interpreted as a new kind of failure assumptions: a
participant assumes that at least one of its quorum slices is made exclusively of participants
that do not fail and make correct assumptions. In other words, a participant’s assumption are
not only about failures, but also about whether other participants make correct assumptions.
In practice, the Stellar model makes it easier for participants to achieve quorum intersection
by relying on the failure assumptions of other participants that might have more knowledge
about the system than they have.

The main contribution of this paper is to show that this new kind of failure assumptions
yield a generalization of the theory of fail-prone systems (i.e., classic fail-prone systems are
a special case) which allows to obtain intersecting quorums even when participants do not
know any common third party.

Moreover, based on this, we introduce the notion of permissionless fail-prone system from
which it is possible to derive a permissionless quorum system.

This paper is structured as follows. In Section 2 we formally define the assumptions of a
process; each process assumes that one of its slices S will not fail and, additionally, that the
assumptions of every process in S will be satisfied too. Then, we introduce the notion of
permissionless fail-prone system. This extends and generalizes the asymmetric fail-prone
system [5, 8]. Crucially, we note that the new meaning of the assumptions of the processes
allows processes to transitively rely on the assumptions of other processes. However, this in
turn enables malicious processes to lie about their assumptions.

In Section 3, we propose a computation model, based on the notion of view, that takes this
phenomenon into account. Moreover, always in Section 3, we derive from the permissionless
fail-prone system the notion of permissionless Byzantine quorum system.

In Section 4 we introduce the notion of league, which is a set of processes L that enjoys
Consistency (quorums intersection) and Availability (existence of a quorum in L consisting
of correct processes) among the correct members of L even when faulty processes lie about
their configuration.

We compare our permissionless model with the classic model based on fail-prone sys-
tems [14], with the asymmetric model [5, 8], with the federated Byzantine agreement sys-
tem [16] and with the personal Byzantine quorum system model [12] in Section 5. Interestingly
we show that classic fail-prone systems can be understood as a special case of our model.

In Section 6 we show how a traditional synchronization protocol, i.e., Bracha broadcast [2],
can be adapted to work in our model, thereby offering a new toolbox for the design of
permissionless distributed systems.

In the full version of this paper [4] we present another application of permissionless
quorum systems through the emulation of shared memory, represented by a register. In
particular we show how to implement a single-writer multi-reader register with permissionless
quorum systems.

Related work and conclusions are presented in Section 7 and Section 8, respectively.
Finally, our model also leads to a characterization of the Stellar model with standard
formalism [5,8, 14].

OPODIS 2022

17:4 Quorum Systems in Permissionless Networks

2 Model

We consider an unbounded set of processes Π = {p1, p2, ...} that communicate asynchronously
with each other by sending messages. We assume that processes do not necessarily know
which other processes are in the system (i.e., each process only knows a subset of Π).

Processes are assigned a protocol to follow. Protocols are presented in a modular way
using the event-based notation of Cachin et al. [3]. A process that follows its algorithm
during an execution is called correct. Initially, all processes are correct, but a process may
later fail, in which case it is called faulty. We assume Byzantine failures, where a process
that fails thereafter behaves arbitrarily.

We assume that point-to-point communication between any two processes (that know each
other) is available, as well as a best-effort gossip primitive that will reach all processes. In a
protocol, this primitive is accessed through the events “sending a message through gossip” and
“receiving a gossiped message.” We assume that messages from correct processes to correct
process are eventually received and cannot be forged. The system itself is asynchronous, i.e.,
the delivery of messages among processes may be delayed arbitrarily and the processes have
no synchronized clocks.

Processes make failure assumptions about other processes. However, since a process does
not know exactly who is part of the system, it cannot make failure assumptions about the
whole system. Instead, each process pi makes assumptions about a set Pi ⊆ Π, called pi’s
trusted set, using a fail-prone system Fi over Pi (Section 1). Here, Fi is a collection of subsets
of Pi and pi believes that up to any set F ∈ Fi may jointly fail. We say that Pi and Fi

constitute pi’s assumptions and we assume that they remain fixed during an execution.
Note that assuming that the assumptions of the processes are fixed is a simplification. In

practice, the system may experience churn, i.e., processes frequently entering and departing
the system. Processes that remain in the system can adjust their assumptions in response to
churn: for example, if a process stops responding (maybe because it has left the system),
then other processes can remove it from their assumptions. Conversely, if a new process
joins the system, existing processes may adjust their assumptions to include that process.
However, analyzing the system under churn is out of the scope of this paper.

▶ Definition 1 (Fail-prone system). A fail-prone system F over P ⊆ Π is a set of subsets of
Π called fail-prone sets, none of which contain the other (i.e., if F ∈ F and F ′ ⊂ F , then
F ′ ̸∈ F).

A permissionless fail-prone system (abbreviated PFPS) describes the assumptions of all
the processes:

▶ Definition 2 (Permissionless fail-prone system). A permissionless fail-prone system is an
array F = [(P1, F1) , (P2, F2) , . . .] that associates each process pi to a trusted set Pi ⊆ Π and
a fail-prone system Fi over Pi. We refer to (Pi, Fi) as the configuration of process pi.

We now consider a fixed PFPS F.

▶ Definition 3 (Tolerated execution and tolerated set). We say that the assumptions of a
process pi are satisfied in an execution if the set A of processes that actually fail is such that
there exists a fail-prone set F ∈ Fi and:
1. A ∩ Pi ⊆ F ; and
2. the assumptions of every member of Pi \ F are satisfied.

If pi ∈ Π has its assumptions satisfied in an execution e, we say that pi tolerates the
execution e.

Finally, a set of processes L tolerates a set of processes A if and only if every process
pi ∈ L \ A tolerates an execution e with set of faulty processes A.

C. Cachin, G. Losa, and L. Zanolini 17:5

▶ Example 4. Consider a set of processes Π = {p1, p2, p3, p4} and a permissionless fail-
prone system F = [(Π, F1), (Π, F2), (Π, F3), (Π, F4)] with F1 = {{p3, p4}}, F2 = {{p1, p4}},
F3 = {{p1, p4}}, and F4 = {{p1, p2}}. Then, Π tolerates the sets ∅, {p1}, {p4} and {p1, p4}.
To see this, let us assume an execution e with set of faulty processes A = {p1, p4}. Then, for
every pi ∈ Π \ A, there exists a fail-prone set F ∈ Fi such that A ∩ Π ⊆ F . In particular,
Π \ A = {p2, p3} and {p1, p4} ∈ F2 and {p1, p4} ∈ F3. The same reasoning can be applied
for the other sets.

Note that here we depart significantly from the traditional notion of fail-prone systems [5,
14]: in a PFPS, a process not only makes assumptions about failures, but also makes
assumptions about the assumptions of other processes.

Next we define survivor sets analogously to Junqueira and Marzullo [11]. In the traditional
literature, a survivor set of pi is the complement, within Π, of some fail-prone set. However,
defining them as the complement of fail-prone sets within Pi does not work because of Item 2
in Definition 3. To obtain this definition, we first define a slice.

▶ Definition 5 (Slice). A set F ⊆ Π is a slice of pi if and only if pi has a fail-prone set
F ∈ Fi such that F = Pi \ F .

For any S ⊆ Π we often say pi has a slice in S when a slice of pi is contained in S or
when S contains a superset of a slice of pi.

▶ Definition 6 (Survivor-set system). A survivor-set system Si of pi is the minimal set of
subsets S of Π such that:
1. pi has a slice in S; and
2. every member of S has a slice in S.
Each S ∈ Si is called a survivor set of pi.

▶ Example 7. Continuing from Example 4, process p1 has only one slice consisting of {p1, p2},
processes p2 and p3 have the set {p2, p3} as slice, and process p4 has the set {p3, p4} as
slice. Moreover, the survivor-set systems are S1 = {{p1, p2, p3}, {p1, p2, p3, p4}} for process
p1, S2 = {{p2, p3}, {p1, p2, p3, p4}} for process p2, S3 = {{p2, p3}, {p1, p2, p3, p4}} for process
p3, and S4 = {{p2, p3, p4}, {p1, p2, p3, p4}} for process p4. This follows from Definition 6:
given a survivor set S ∈ Si for pi, process pi must have a slice in S and every member of S

must have a slice in S. So, for example, given the survivor set {p1, p2, p3} in the survivor
set system S1 for p1, process p1 has a slice in {p1, p2, p3}, i.e., {p1, p2}, and every process
pi ∈ {p1, p2, p3} has a slice in {p1, p2, p3}, i.e., {p2, p3}.

▶ Lemma 8. The assumptions of a process pi ∈ Π are satisfied in an execution e with set of
faulty processes A if and only if there exists a survivor set S ∈ Si of pi such that S does not
fail.

Proof. Let pi be a process such that, given an execution e with set of faulty processes A,
the assumptions of pi are satisfied in e. This implies that, by Definition 3, there exists a
set of processes such that each of these processes has its assumptions satisfied. Moreover,
by Definition 5, each of these processes has a slice F j such that F j ∩ A = ∅. This leads to
have a set S obtained as union of all of these slices such that S ∩ A = ∅ and such that S is
minimal with respect to this union, in the sense that is the minimal set of processes such
that every process in S has its assumptions satisfied. The set S is a survivor set of pi.

Conversely, we show that given a survivor set S of pi, given a process pi ∈ S and given
an execution e with set of faulty processes A, if S ∩ A = ∅, then the assumptions of pi are
satisfied in e. Observe that, from the assumptions, we have that every process in S has a
slice F in S such that F ∩ A = ∅. This means that for every process pi in S, there exists
a fail-prone set F ∈ Fi such that Pi ∩ A ⊆ F . This implies that every process in S has its
assumptions satisfied and, in particular, that pi ∈ S has its assumptions satisfied in e. ◀

OPODIS 2022

17:6 Quorum Systems in Permissionless Networks

3 Permissionless Quorum Systems

A classic (or symmetric) fail-prone system [14] determines a canonical quorum system known
to all processes through the Q3-condition. Specifically, given a fail-prone system F , the
Q3-condition requires that no three fail-prone sets of F cover the complete set of processes
and this condition holds if and only if there exists a quorum system for F [10,14]. Such a
quorum system could be, for example, the complement of every fail-prone set of F , which
we call the canonical quorum system. Traditional algorithms such as read-write register
emulations [14], Byzantine reliable broadcasts [2, 20] or the PBFT algorithm [7] make use of
quorums.

In the model of asymmetric trust [8] the assumptions of the processes may differ, and
asymmetric quorum systems [5, 6] allow to implement the above-mentioned algorithms in a
more flexible way. However, they still require a system that is known to every process.

In a permissionless system, processes do not know the membership and have different,
partial, and potentially changing views of its composition.

Given a PFPS, we would therefore like to obtain a quorum system to implement algorithms
for register emulation, broadcast, consensus and more, while allowing the processes to have
different assumptions in an open network.

We are therefore interested in defining a notion of quorums for open systems where:
1. each process has its own quorum system; and
2. the quorums of a process pi depend on the assumptions of other processes, which pi learns

by communicating with them.

In other words, we consider scenarios in which each process pi communicates with other
processes, continuously discovers new processes and learns their assumptions. During this
execution, pi determines its current set of quorums as a function of what it has learned so
far. Importantly, this means that the quorums of a process evolve as the process learns
new assumptions, and that faulty processes can influence pi’s quorums by lying about their
assumption.

We now formalize this model using the notions of a view and a quorum function.

▶ Definition 9 (View). A view V = [V1, V2, . . .] is an array with one entry V[j] = Vj for
each process pj such that:
1. either Vj is the special value ⊥; or
2. Vj = (Pj , Fj) consists of a set of processes Pj and a fail-prone system Fj over Pj.

Observe that every process pi has its local view V, whose non-⊥ entries represent the
assumptions that pi has learned at some point in an execution. Every other process pj such
that V[j] = ⊥ is a process that pi has not heard from. We denote with Υ the set of all the
possible views.

We assume that, for every process pj , a process pi’s view contains the assumption that
pi has most recently received from pj . Finally, note that F is a view in which no process
is mapped to ⊥. In particular, F represents the global view if the system could be entirely
observed. Since processes cannot observe the complete system, they normally only have
partial knowledge of F. Moreover, this knowledge evolves over time.

▶ Definition 10 (Domain of a view). For a view V, the set of processes pi such that V[i] ̸= ⊥
is the domain of V.

Next, we assume that every process determines its quorums according to its view using a
function Q called a quorum function. We assume that all correct processes use the same Q

and that they do not change it during an execution. We then have the following definition.

C. Cachin, G. Losa, and L. Zanolini 17:7

▶ Definition 11 (Quorum function). The quorum function Q : Π × Υ → 2Π maps a process
pi and a view V to a set of sets of processes such that Q ∈ Q(pi,V) if and only if:
1. a slice of pi is contained in Q; and
2. for every process pj ∈ Q with V[j] ̸= ⊥ and V[j] = (Pj , Fj), there exists F ∈ Fj such

that Pj \ F ⊆ Q.
Every element of Q(pi,V) is called a quorum for pi (in V).

Notice that in the first condition, the quorum Q may itself be a slice of pi. Moreover,
Q is a quorum for every one of its members and it is defined by slices of every pi ∈ Q. As
shown in the following lemma, a quorum for pi in view V for pi is a survivor set of pi.

▶ Lemma 12. For every view V for pi ∈ Π, every quorum Qi ∈ Q(pi,V) is a survivor
set of pi. Moreover, given S a survivor set of pi, there exists a view V for pi such that
S ∈ Q(pi,V).

Proof. Let Qi ∈ Q(pi,V) be a quorum for pi with V a view for pi. By Definition 11, all
processes in Q including pi have a slice in Q. From Definition 6, this implies that Q is a
survivor set of pi.

Moreover, given a survivor set S of pi, the set S consists of slices of every member of S.
This means that there exists a view V for pi in which S satisfies Definition 11 and it is a
quorum for pi. This is the view V defined as follows:
1. for every pj ∈ S, V′[j] = F[j], and
2. for every pj ̸∈ S, V′[j] = (∅, {∅}). ◀

▶ Example 13. Let us consider Example 4 with survivor-set systems as shown in Example 7.
Since all the processes already know all the configurations of every other process, we have
that Si = Q(pi,F), with F the permissionless fail-prone system.

Combining the quorum sets of all processes, we now obtain a permissionless quorum
system for F.

▶ Definition 14 (Permissionless quorum system). A permissionless quorum system for Π and
F is an array of collections of sets Qperm = [Q(p1,F),Q(p2,F), . . .], where Q(pi,F) is called
the quorum system for pi and is determined by the quorum function Q.

Observe that our notion of a quorum system differs from that in the existing literature [5,
14,15]. In particular, standard Byzantine quorum systems are defined through a pair-wise
intersection among quorums. This is possible in scenarios where the full system membership
is known to every process. However, in permissionless settings, this requirement cannot as
clearly be achieved globally.

▶ Definition 15 (Current quorum system). Let V be the view representing the assumptions
that a process pi has learned so far. Then the current quorum system of pi is the set Q(pi,V).
Moreover, a set of processes Q is a current quorum of pi if and only if Q ∈ Q(pi,V); we also
say that pi has a quorum Q.

Note that, in this model, each process has its own set of quorums and the set of quorums
of a process changes throughout an execution as the process learns the assumptions of more
processes. Importantly, note that faulty processes may lie about their configuration and
influence the quorums of correct processes. In an execution e with faulty set A, a correct
process pi might have a view in which the assumptions of processes in A are arbitrary because
processes in A lied about their assumptions. However, processes outside A do not lie about
their assumptions. We capture this with the following definition.

OPODIS 2022

17:8 Quorum Systems in Permissionless Networks

▶ Definition 16 (T-resilient view). Given a set of processes T , we say that a view V is
T -resilient if and only if for every process pi ̸∈ T , either V[i] = ⊥ or V[i] = F[i].

Intuitively, a correct process pi will either not have heard from pj ̸∈ A or it will have the
correct assumption for pj . Thus, pi’s view is A-resilient at all times in execution e.

As we said, processes in A may lie about their assumptions causing quorums to contain
unreliable slices. Moreover, processes in A may aim at preventing intersection among quorums
of correct processes. In the following definition we characterize the notion of worst-case view,
i.e., when faulty processes gossip only empty configurations. By doing so, quorums of correct
processes will contain fewer members, increasing the chances of an empty intersection among
them.

▶ Definition 17 (Worst-case view). Given a set of processes T , the worst-case view with
respect to T is the view V∗

T such that:
1. for every pi ∈ Π \ T , V∗

T [i] = F[i], and
2. for every pi ∈ T , V∗

T [i] = (∅, {∅}).

Finally, every quorum for a process pi ̸∈ A in a A-resilient view contains a quorum for pi

in a worst-case view with respect to A. This is shown in the following lemma.

▶ Lemma 18. Consider a set of processes T , a T -resilient view V, and a process pi ̸∈ T .
Moreover, let us assume that processes in T may lie about their assumptions. For every
quorum Qi ∈ Q(pi,V), there exists a quorum Q′

i ∈ Q(pi,V∗
T) such that Q′

i ⊆ Qi.

Proof. Let T be a set of processes, V be a T -resilient view, pi a process not in T . Since
V is a T -resilient view, for every pj ̸∈ T it holds either V[j] = ⊥ or V[j] = F[j]. However,
processes in T may lie about their assumptions and, because of that, the view of process
pi ̸∈ T may contain arbitrary configurations received from processes in T .

If Qi ∈ Q(pi,V) is a quorum for pi in V, then Qi might contain slices of processes in
T which are derived from false assumptions. One can easily show that by starting from
a T -compatible view and by removing the configurations received by processes in T , it is
possible to obtain the corresponding worst-case view. By removing configurations from V,
also Qi becomes smaller, i.e., with less members, obtaining a quorum Q′

i ⊆ Qi. In fact, by
removing from Qi a slice F j of a process pj ∈ T , also slices of other processes in F j might
get removed in order for Definition 11 to be satisfied on Q′

i. This proves the lemma. ◀

4 Leagues

We now define the notion of a league. In Section 6 we show how a league allows to implement
Bracha broadcast.

▶ Definition 19 (League). set of processes L is a league for the quorum function Q if and
only if the following property holds:
Consistency: For every set T ⊆ Π tolerated by L, for every two T -resilient views V and

V′, for every two processes pi, pj ∈ L \ T , and for every two quorums Qi ∈ Q(pi,V) and
Qj ∈ Q(pj ,V′) it holds (Qi ∩ Qj) \ T ̸= ∅.

Availability: For every set T ⊆ Π tolerated by L and for every pi ∈ L \ T , there exists a
quorum Qi ∈ Q(pi,F) for pi such that Qi ⊆ L \ T .

If we consider an execution e tolerated by a league L, where A is the set of faulty processes,
the consistency property of L implies that, at any time, any two quorums of correct processes
in L have some correct process in common. This is similar to the consistency property of
symmetric and asymmetric Byzantine quorum systems [5, 14].

C. Cachin, G. Losa, and L. Zanolini 17:9

Moreover, since the set of faulty processes A is tolerated by L, by the availability property
of L, every correct process in L has a quorum in F consisting of only correct processes.

▶ Example 20. Observe that the set Π as introduced in Example 4 is a league. In fact,
for every set T tolerated by Π, i.e., ∅, {p1}, {p4} and {p1, p4}, for every two processes
pi, pj ∈ Π \ T and for every two quorums Qi ∈ Si and Qj ∈ Sj as in Example 13, it holds
(Qi ∩ Qj) \ T ̸= ∅, and for every pi ∈ Π \ T , there exists a quorum Qi ∈ Si such that
Qi ⊆ Π \ T.

The following lemma shows that the union of two intersecting leagues L1 and L2 is again
a league, assuming that for every set T tolerated by both the leagues, L1 and L2 have a
common process not in T .

▶ Lemma 21. If L1 and L2 are two leagues such that L1 ∩ L2 ̸= ∅ and such that for every
set T tolerated by L1 ∪ L2, there exists a process pk ∈ (L1 ∩ L2) \ T , then L1 ∪ L2 is a league.

Proof. Let L1 and L2 be two leagues such that L1 ∩L2 ̸= ∅. For every T tolerated by L1 ∪L2
(and so, tolerated by L1 and L2, independently), for every pi ∈ L1 \ T and pj ∈ L2 \ T ,
for every two T -resilient views V and V′ for pi and pj , respectively, let Qi ∈ Q(pi,V) and
Qj ∈ Q(pj ,V′) be two quorums for pi and pj , respectively. Observe that, by assumption, for
every tolerated set T by L1 ∪ L2 there exists a process pk ∈ (L1 ∩ L2) \ T . Let pk ∈ L1 ∩ L2
and let Qk ∈ Q(pk,V) be a quorum for pk such that Qk ⊆ L1, according to availability
property of L1. From consistency property of L2, (Qk ∩ Qj) \ T ̸= ∅ and every process
in this intersection belongs to L1. Observe that, Qj is a quorum for every of its member.
This implies that Qj is a quorum for every process in (Qk ∩ Qj) \ T and every process in
(Qk ∩Qj)\T has quorum in L1. Moreover, (Qk ∩Qi)\T ̸= ∅. It follows that (Qi ∩Qj)\T ̸= ∅.

Finally, by availability property of L1 and L2, for every tolerated set T by L1 and L2 and
for every process pi ∈ L1 \ T and pj ∈ L2 \ T , eventually there exists a quorum Qi ∈ (pi,F)
for pi and a quorum Qj ∈ Q(pj ,F) for pj such that Qi ⊆ L1 \T and Qj ⊆ L2 \T , respectively.
If pi = pj ∈ L1 ∩ L2, then there exists a quorum Qi for pi such that Qi ⊆ (L1 ∪ L2) \ T . ◀

In the following lemma we show that we can characterize the consistency property of a
league just by considering worst-case views. Intuitively, this result relies on the observation
that every T -resilient view can be seen as extensions of worst-case views with respect to
T ⊆ Π, in the sense that a T -resilient view can be obtained by starting from a worst-case
view with respect to T and by considering the non-empty configurations received by processes
in T .

▶ Lemma 22. The consistency property a league L holds if and only if for every set T ⊆ Π
tolerated by L, for every two worst-case views V∗

T and V′∗
T with respect to T , for every two

processes pi, pj ∈ L \ T , and for every two quorums Qi ∈ Q(pi,V∗
T) and Qj ∈ Q(pj ,V′∗

T) it
holds (Qi ∩ Qj) \ T ̸= ∅.

Proof. Let us assume that the consistency property of a league L holds. Since the property
holds for every pair of views, it must hold also for worst-case views. The implication easily
follows.

Let us now assume that for every set T ⊆ Π tolerated by L, for every two worst-case
views V∗

T and V′∗
T with respect to T , for every two processes pi, pj ∈ L \ T , and for every

two quorums Qi ∈ Q(pi,V∗
T) and Qj ∈ Q(pj ,V′∗

T) it holds (Qi ∩ Qj) \ T ≠ ∅. Observe that,
given a quorum Qi ∈ Q(pi,V∗

T) for pi in a worst-case view V∗
T , all the quorums obtained by

also considering all the possible configurations received from processes in T that are not in

OPODIS 2022

17:10 Quorum Systems in Permissionless Networks

V∗
T do contain Qi. Moreover, there cannot exist a T -resilient view that does not consist of

configurations of a worst-case view with respect to T . If this was the case, then by removing
configurations received from processes in T one would obtain a worst-case view with respect
to T , reaching a contradiction. So, all the quorums obtained from T -resilient views will also
intersect in processes that are not contained in T . ◀

Now we show how a league can be abstracted and defined without considering views.
This will be useful in Section 5 when we compare our model with other permissionless models.
First, we introduce the following definitions.

▶ Definition 23 (Inclusive up to). A set I ⊆ Π is inclusive up to a set T ⊆ Π if and only if
for every pi ∈ I \ T , process pi has a slice in I.

If we consider an execution e with set of faulty processes A then a set of processes I is
inclusive up to A if and only if every correct process in I has a slice contained in I.

▶ Definition 24 (Rooted at). A set R ⊆ Pi is rooted at a process pi if and only if pi has a
slice in R. A set R ⊆ Π is rooted in a set T ′ ⊆ Π whenever R is rooted at a member of T ′.

▶ Lemma 25. If V is a T -resilient view and Qi ∈ Q(pi,V) for some process pi, then Qi is
inclusive up to T and rooted at pi.

Proof. If V is a T -resilient view then, by Definition 16, processes outside T do not lie about
their assumptions. By definition of a quorum Qi for a process pi in a view V, every process
in Qi, and so in Qi \ T , has a slice in Qi. This implies that Qi is inclusive up to T and
rooted at pi. ◀

In the following lemma we show that given a set of processes T tolerated by L ⊆ Π, for
every set of processes I inclusive up to T and rooted at pi ∈ L \ T it is possible to find a
T -resilient view in which I is a quorum for pi. This view is a worst-case view with respect
to T .

▶ Lemma 26. Let L be a set of processes. For every set T ⊆ Π tolerated by L, if I ⊆ Π is a
set inclusive up to T and rooted at pi ∈ L \ T , then there is a T -resilient view in which I is a
quorum for pi.

Proof. Let T ⊆ Π be a tolerated set by a set of processes L and let I ⊆ Π be a set inclusive
up to T and rooted at pi ∈ L \ T . This implies that pi and every other process pj ∈ I \ T

have a slice in I. Let us consider the worst-case view V∗
T with respect to T . Clearly, V∗

T is
T -resilient. This implies that, in V∗

T , the set I is a quorum for pi, i.e., I ∈ Q(pi,V∗
T). ◀

▶ Remark 27. Observe that given a set of processes L and a worst-case view V∗
T with respect

to a set T ⊆ Π tolerated by L, every quorum Qi ∈ Q(pi,V∗
T) for pi ∈ L \ T is inclusive up to

T and rooted at pi.
Moreover, given the set I of all the sets I ⊆ Π inclusive up to T and rooted at pi ∈ L \ T ,

the set I contains all the quorums Qi ∈ Q(pi,V) for every T -resilient view V. In fact, by
Definition 23, given a set of processes I inclusive up to a set of processes T , the requirement
of having a slice in I is only for processes in I \ T , leaving processes in T ∩ I with no
requirements on the choice of their slices.

However, given a T -resilient view V, by Definition 11, a quorum Qi for pi requires instead
every process in Qi to have a slice contained in Qi. This means that given a T -resilient view
V, quorum Qi for pi is contained in I, being a special case of inclusive set up to T .

C. Cachin, G. Losa, and L. Zanolini 17:11

▶ Lemma 28. The consistency property of a league L holds if and only if for every set
T ⊆ Π tolerated by L, and for every two sets I ⊆ Π and I ′ ⊆ Π that are rooted at L \ T and
inclusive up to T it holds (I ∩ I ′) \ T ̸= ∅.

Proof. Let us assume that the consistency property of a league L holds. Suppose by
contradiction that there is a set T ⊆ Π tolerated by L and two sets I ⊆ Π and I ′ ⊆ Π that
are inclusive up to T and rooted at L \ T in pi and pj , respectively, such that (I ∩ I ′) \ T = ∅.

By Lemma 26, there are a T -resilient view V in which I is a quorum for pi and a T -resilient
view V′ in which I ′ is a quorum for pj and we reached a contradiction.

Let us now assume that for every set T ⊆ Π tolerated by L, and for every two sets I ⊆ Π
and I ′ ⊆ Π that are inclusive up to T and rooted at L \ T it holds (I ∩ I ′) \ T ̸= ∅.

Let I and I ′ be the sets of all the sets I ⊆ Π and I ′ ⊆ Π inclusive up to T and rooted at
pi ∈ L \ T and pj ∈ L \ T , respectively. The proof follows from the reasoning in Remark 27:
for every two T -resilient views V and V′, every quorum Qi ∈ Q(pi,V) for pi is contained in
I and every quorum Qj ∈ Q(pj ,V) for pj is contained in I ′. ◀

▶ Lemma 29. The availability property of a league L holds if and only if for every set T ⊆ Π
tolerated by L, every member of L \ T has a survivor set in L \ T .

Proof. Let us assume that the availability property of a league L holds, i.e., for every set
of processes T tolerated by L and for every pi ∈ L \ T , there exists a quorum Qi ∈ Q(pi,F)
for pi such that Qi ⊆ L \ T . This means that, by Definition 6, every process in L \ S has a
survivor set in L \ S.

Let us now assume that for every set T ⊆ Π tolerated by L, every member of L \ T has a
survivor set S in L \ T . Let pi be a process in L, by Definition 11 we have that S ∈ Q(pi,F)
for pi. The proof follows. ◀

5 Comparison with Other Models

In this section we compare our model with the classic model based on fail-prone systems [14],
with the asymmetric model [5,8], with the federated Byzantine agreement system model [16],
and with the personal Byzantine quorum system model [12].

5.1 Comparison with Fail-Prone Systems
We show that classic fail-prone systems and quorums can be understood as a special case
of our model, when every process knows the entire system and assumes the same, global
fail-prone system.

Let Π = {p1, . . . , pn} be a set of processes. A Byzantine quorum system for a fail-prone
system F (Definition 1) satisfies (Consistency) ∀Q1, Q2 ∈ Q, ∀F ∈ F : Q1 ∩ Q2 ̸⊆ F ; and
(Availability) ∀F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅. Moreover, a Byzantine quorum system
Q for F exists if and only if the Q3-condition holds [10, 14], which means that for every
F1, F2, F3 ∈ F : Π ̸⊆ F1 ∪ F2 ∪ F3. In particular, if Q3(F) holds, then F , the bijective
complement of F , is a Byzantine quorum system; this is the Byzantine quorum system
consisting of survivor sets [11]. Notice that, in a classic system, the failures that are tolerated
by the processes are all possible subsets of fail-prone sets in F and we have Pi = Π for every
pi ∈ Π. Every process also knows the global quorum system.

We define a bijective function f between the set of fail-prone systems and a subset of
PFPS such that f(F) = [(Π, F), . . . , (Π, F)] with n repetitions and we notice that in classic
fail-prone systems there is only one view, namely V = f(F).

OPODIS 2022

17:12 Quorum Systems in Permissionless Networks

We define the quorum function Q : Π × Υ → 2Π such that for every process pi ∈ Π,
Q(pi, f(F)) = F . Observe that any set in F is a slice of every process pi ∈ Π according to
Definition 5. In the next theorem we consider this quorum function and show that, given
some assumptions on F , any set in F is also a quorum for every process pi ∈ Π according to
Definition 11.

▶ Theorem 30. Let Π be the set of all processes and F the fail-prone system for Π. Then
Q3(F) holds if and only if Π is a league for the quorum function Q in f(F).

Proof. Let us first assume that Q3(F) holds. This means that for every F1, F2, F3 ∈ F ,
Π ̸⊆ F1 ∪ F2 ∪ F3. It follows that F is a quorum system for F . Consistency property of
F implies that for every tolerated set F , for every two processes pi and pj in Π \ F and
for every two quorums Qi ∈ Q(pi, f(F)) and Qj ∈ Q(pj , f(F)) for pi and pj , respectively, it
holds that (Qi ∩ Qj) \ T ̸= ∅.

The availability property of F implies that for every set F ∈ F tolerated by Π, every
process pi ∈ Π \ F has a quorum in Π \ F : given F , there exists a quorum Q ∈ Q(pi, f(F))
such that Q ∩ F = ∅ and Q ⊆ Π \ F . It follows that Π is a league for the quorum function Q

in f(F).
Let us now assume that Π is a league for the quorum function Q in f(F). The consistency

property of Π implies that for every T tolerated by Π (which are all the sets in F), for every
two processes pi and pj in Π \ T , for every two quorums Qi ∈ F and Qj ∈ F for pi and pj ,
respectively, it holds (Qi ∩ Qj) \ T ≠ ∅. Moreover, by availability property of Π there exists
a quorum in Π \ T (which is the same for every process pi ̸∈ T). This implies that, for every
fail-prone set F ∈ F , there is a quorum Qi such that Qi ∩ F = ∅.

These two facts imply that F is a classic Byzantine quorum system for F and so Q3(F)
holds. ◀

5.2 Comparison with Asymmetric Fail-Prone Systems
In the asymmetric model [8], every process is free to express its own trust assumption about
the processes in one common globally known system through a subjective fail-prone system.

An asymmetric fail-prone system F′ = [F ′
1, . . . , F ′

n] consists of an array of fail-prone
systems, where F ′

i ⊆ 2Π denotes the trust assumption of pi.
An asymmetric Byzantine quorum system for F′ [5], is an array of collections of sets

Q′ = [Q′
1, . . . , Q′

n], where Q′
i ⊆ 2Π for i ∈ [1, n]. The set Q′

i ⊆ 2Π is called the quorum
system of pi and any set Qi ∈ Q′

i is called a quorum (set) for pi. Moreover, defining
F ′∗ = {F ′|F ′ ⊆ F, F ∈ F ′}, the following conditions hold: (Consistency) ∀i, j ∈ [1, n], ∀Qi ∈
Q′

i, ∀Qj ∈ Q′
j , ∀Fij ∈ F ′

i
∗ ∩ F ′

j
∗ : Qi ∩ Qj ̸⊆ Fij ; and (Availability) ∀i ∈ [1, n], ∀Fi ∈ F ′

i :
∃ Qi ∈ Q′

i : Fi ∩ Qi = ∅.

The Q3-condition in the classic model can be generalized as follows: we say that F′

satisfies the B3-condition [8], abbreviated as B3(F′), whenever it holds for all i, j ∈ [1, n]
that ∀Fi ∈ F ′

i , ∀Fj ∈ F ′
j , ∀Fij ∈ F ′

i
∗ ∩ F ′

j
∗ : Π ̸⊆ Fi ∪ Fj ∪ Fij .

An asymmetric fail-prone system F′ satisfying the B3-condition is sufficient and neces-
sary [5] for the existence of a corresponding asymmetric quorum system Q′ = [Q′

1, . . . , Q′
n],

with Q′
i = F ′

i. Processes in this model are classified in three different types, given an
execution e with faulty set A: a process pi ∈ A is faulty, a correct process pi for which
A ̸∈ F ′

i
∗ is called naive, while a correct process pi for which A ∈ F ′

i
∗ is called wise.

Finally, a guild G for A is a set of wise processes that contains at least one quorum for
each member.

Let Π be a set of processes in the asymmetric model and F′ = [F ′
1, . . . , F ′

n] be an
asymmetric fail-prone system. Define the function g from asymmetric fail-prone systems
to PFPS such that g(F′) = [(Π, F ′

1), . . . , (Π, F ′
n)]. Observe that, in an asymmetric system,

C. Cachin, G. Losa, and L. Zanolini 17:13

the failures that may be tolerated by the processes are possible subsets of fail-prone sets in
the fail-prone systems of F′ and Pi = Π for every pi ∈ Π. Moreover, as in the classic model,
there is only one view, which is V = g(F′).

We define the quorum function Q : Π × Υ → 2Π such that for every guild G ⊆ 2Π, if
pi ∈ G then Q(pi, g(F′)) = {G, Π}, otherwise Q(pi, g(F′)) = {Π}.

Observe that a quorum in the asymmetric model is a slice according to Definition 5 and,
for every process pi ∈ Π, every set in Q(pi, g(F′)) is a quorum according to Definition 11.

Through the following theorem we establish the relationship between the asymmetric
model and the permissionless model.

▶ Theorem 31. Let us consider an asymmetric model among a set Π of processes with
asymmetric fail-prone system F′. If B3(F′) holds and Π tolerates some sets T ⊆ Π, then
there exists a quorum function Q such that Π is a league in g(F′).

Proof. Let us assume that Π tolerates some sets T ⊆ Π and let us consider the quorum
function Q define in this section in the context of the asymmetric model. This means that,
for every set T tolerated by Π, every process pi ∈ Π \ T has a slice contained in Π \ T . This
implies that in every execution in which T is the set of faulty processes, every process in
Π \ T is wise and Π \ T is a guild.

Moreover, let us also assume that B3(F′) holds. This implies the existence of an asym-
metric Byzantine quorum system Q′ such that for every set T tolerated by Π, for every two
processes pi and pj in Π \ T and for every two quorums Qi ∈ Q′

i and Qj ∈ Q′
j for pi and pj ,

respectively, it holds that (Qi ∩ Qj) \ T ̸= ∅. Observe that the set Π \ T ∈ Q(pi, g(F′)) is a
quorum in the permissionless model for every pi ∈ Π \ T according to Definition 11. This
implies that Π satisfies availability property of a league.

Finally, for the consistency property observe that for every process pi ∈ Π, the set system
Q(pi, g(F′)) satisfies Definition 11; by construction we have at most only two quorums for
every pi which are Π and Π \ T both satisfying Definition 11. Consistency of Q′ implies
intersection among the quorums in Q(pi, g(F′)), for every process in Π \ T .

It follows that Π is a league for the quorum function Q in g(F′). ◀

Theorem 31 shows a relation between the asymmetric model and the permissionless
model. In particular, if B3(F′) holds and Π tolerates some sets T , then the quorum function
Q makes Π a league. However, we could have scenarios in which only a subset of Π tolerates
some sets T . In particular, we have the following result.

▶ Lemma 32. Let Π = {p1, . . . , pn} be a set of processes, F′ be an asymmetric fail-prone
system over Π and g(F′) the corresponding PFPS as described in the text. Moreover, let us
consider an execution e with set of faulty processes A with guild G. Then, G is the only set
that tolerates e.

Proof. By definition of guild, every process in G is wise and has a quorum contained in G.
Observe that, given a wise process pi, there exists a fail-prone set F ∈ F ′

i in F′ such that
A ⊆ F . Moreover, a quorum Qi for pi in the asymmetric model satisfies Definition 5 and
it is then a slice of pi. This implies that every process in G has its assumptions satisfied
according to Definition 3. Moreover, every process in G has a slice contained in G. ◀

In the following lemma we characterize a link between the notion of a guild, in a given
execution, and a league.

OPODIS 2022

17:14 Quorum Systems in Permissionless Networks

▶ Lemma 33. Let us consider an asymmetric Byzantine quorum system Q′ and a guild G in
any execution with set of faulty processes A. Then, G is a league for the quorum function Q

in g(F′).

Proof. The result follows from Theorem 31 by applying the same reasoning with G instead
of Π \ T as a guild. ◀

In the following lemma we show a scenario where no asymmetric Byzantine quorum
systems exist but it is possible to find a league for Q in g(F′).

▶ Lemma 34. There exists an asymmetric fail-prone system F′ such that:
there is no asymmetric Byzantine quorum system for F′, but
there exists a quorum function Q that make Π a league in g(F′).

Proof. We prove this lemma through an example with four processes. Consider an asymmetric
fail-prone system F′

4 over four processes p1, p2, p3, and p4 with F ′
1 = {{p3, p4}}, F ′

2 =
{{p1, p4}}, F ′

3 = {{p1, p4}}, and F ′
4 = {{p1, p2}}, as in Example 4.

Observe that, by the availability property of an asymmetric Byzantine quorum system,
p1 must have a quorum in {p1, p2} and p4 must have a quorum in {p3, p4}. Since {p1, p2}
and {p3, p4} are disjoint, it is impossible to satisfy the consistency property. Thus, there
does not exist any asymmetric Byzantine quorum system for F′

4. Another way to see this is
by observing that B3(F′

4) does not hold: {p3, p4} ∪ {p1, p2} = Π.

However, as shown in Example 20, Π is a league in g(F′
4). So, there is no asymmetric

Byzantine quorum system for F′
4 but Q makes Π a league in g(F′

4). ◀

5.3 Comparison with Federated Byzantine Agreement Systems
The federated Byantine agreement system (FBAS) model has been introduced by Mazières [16]
in the context of the Stellar white paper. Differently from the models presented before in
this section, the FBAS model is a permissionless model, where processes, each with an initial
set of known processes, continuously discover new processes. In a FBAS, every process pi

chooses a set of slices, which are sets of processes sufficient to convince pi of agreement and a
set of processes Qi is a quorum for pi whenever pi has at least one slice inside Qi and every
member of Qi has a slice that is a subset of Qi. In particular, a quorum Qi is a quorum
for every of its members. However, despite the permissionless nature of a FBAS, a global
intersection property among quorums is required for the analysis of the Stellar Consensus
Protocol (SCP), and the scenario with disjoint quorums is not considered by Mazières.

A central notion in FBAS is that of intact set; given a set of processes Π, an execution
with set of faulty processes A and a set of correct processes W = Π \ A, a set of processes
I ⊆ W is an intact set [9,12] when the following conditions hold: (Consistency) for every two
processes pi and pj in I and for every two quorums Qi and Qj for pi and pj , respectively,
Qi ∩ Qj ∩ I ̸= ∅; and (Availability) I is a quorum for every of its members.

Every process in I is called intact, while every process in Π \ I (correct or faulty) is called
befouled and some properties of the Stellar Consensus Protocol are guaranteed only for intact
processes. Moreover, the union of two intersecting intact sets is an intact set. Finally, by
requiring a system-wide intersection among quorums (as in the case of the SCP) one obtains
an unique intact set (Lemma 34, [9]).

We first show that our model generalizes the FBAS model by showing that a quorum in
FBAS satisfies Definition 11.

C. Cachin, G. Losa, and L. Zanolini 17:15

In FBAS a notion of fail-prone system is missing and definitions are given with respect
to an execution with a fixed set of faulty processes A. However, because processes define
slices, an implicit fail-prone system for every process can be derived.

In particular, given a set of processes Π = {p1, p2, . . .}, every process in Π defines its
slices based on a known subset Pi ⊆ Π by pi and Si is a slice for pi ∈ Π if and only if pi ∈ Si

and Si ⊆ Pi [9]. Let Si ⊆ 2Π be the set of slices of pi, we can derive the following definition.

▶ Definition 35 (Federated fail-prone system). A set F ⊆ Π is a fail-prone set of pi if
and only if there exists a slice Si ∈ Si of pi such that F = Pi \ Si. The set F ′′

i ⊆ 2Π

of all the fail-prone sets of pi is called fail-prone system of pi. Finally, we call the set
F′′ = [(P1, F ′′

1), (P2, F ′′
2), . . .] the federated fail-prone system.

In a FBAS, processes discover other processes’ slices during an execution and so pi

implicitly learns other processes’ federated fail-prone sets. Moreover, correct processes do
not lie about their slices [9, 16].

It easy to observe that given different sets of slices received from different processes,
Definition 35 implies Definition 9, obtaining a notion of view V in the FBAS model, and,
because correct processes do not lie about their slices, Definition 16. We define the set Υ′ to
be the set of all the possible views in the FBAS model.

Given the notion of view in the FBAS model, we define the quorum function Q : Π×Υ′ →
2Π such that Q(pi,V) contains all the sets Qi, called quorums, with pi ∈ Qi and such that
every process pj ∈ Qi has a slice in Qi. So, a quorum as defined by Mazières [16] satisfies
Definition 11. Finally, in the FBAS model we introduce the notion of survivor set as defined
in Definition 6.

In the following theorem we show that, by assuming a stronger consistency property for
a league L, i.e., that the intersection among any two quorums of any two correct processes
in the league contains some correct member of the league, then L is an intact set in every
execution tolerated by L.

▶ Theorem 36. Let L be a league for the quorum function Q and let us assume that for
every set T ⊆ Π tolerated by L, for every two T -resilient views V and V′, for every two
processes pi, pj ∈ L \ T , and for every two quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) it holds
(Qi ∩ Qj ∩ L) \ T ̸= ∅, then L is an intact set for every every set T ⊆ Π tolerated by L.

Proof. Let L be a league for the quorum function Q and let T be a set of processes tolerated
by L. If for every two T -resilient views V and V′, for every two processes pi, pj ∈ L \ T , and
for every two quorums Qi ∈ Q(pi,V) and Qj ∈ Q(pj ,V′) it holds (Qi ∩ Qj ∩ L) \ T ̸= ∅, then
the consistency property of intact sets follows. The availability property of an intact set
follows by observing that, in F, the set L \ T is a quorum for every of its members. ◀

Observe that without the stronger consistency property assumed in Theorem 36, since
quorums of correct processes in L may intersect in correct processes (not necessarily in L), it
may be the case that L is not an intact set.

5.4 Comparison with Personal Byzantine Quorum Systems
The personal Byzantine quorum system (PBQS) model has been introduced by Losa et
al. [12] in the context of Stellar consensus aiming at removing the system-wide intersection
property among quorums required by Mazières [16] for the SCP.

In the PBQS model a quorum for pi is a non-empty set of processes Qi such that if Qi is
a quorum for pi and pj ∈ Qi, then there exists a quorum Qj for pj such that Qj ⊆ Qi. In
other terms, a quorum Qi for some process pi must contain a quorum for every one of its

OPODIS 2022

17:16 Quorum Systems in Permissionless Networks

members. Losa et al. point out that a global consensus among processes may be impossible
since the full system membership is not known by the processes, and define the notion of
consensus cluster as a set of processes that can instead solve a local consensus, i.e., consensus
among the processes in a consensus cluster can be solved. In particular, given an execution
with set of faulty processes A, a set of correct processes C is a consensus cluster when the
following conditions hold: (Consistency) for every two processes pi and pj in C and for every
two quorums Qi and Qj for pi and pj , respectively, Qi ∩ Qj ̸⊆ A; and (Availability) for every
pi ∈ C there exists a quorum Qi for pi such that Qi ⊆ C. Losa et al. prove that the union
of two intersecting consensus clusters is a consensus cluster and that maximal consensus
clusters are disjoint. The latter implies that maximal consensus clusters might diverge from
each other.

In the following we show a relationship between the notions of league and consensus
cluster. To do so, we first show that a quorum Qi for pi as defined in Definition 11 is also a
quorum for pi in the PBQS model.

▶ Lemma 37. Let Qi ∈ Q(pi,V) be a quorum for a process pi in a view V according to
Definition 11. Then Qi is a quorum for pi in the PBQS model.

Proof. Definition 11 implies that Qi is a quorum for every of its members. This means that
for every process pj ∈ Qi, the set Qi is a quorum for pj such that Qi ⊆ Qi. The result
follows. ◀

In the following result we show that, given a league L, for every set T ⊆ Π tolerated by
L, the set L \ T is a consensus cluster.

▶ Theorem 38. Let L be a league for the quorum function Q. Then, for every set T ⊆ Π
tolerated by L, the set L \ T is a consensus cluster.

Proof. Let L be a league for the quorum function Q and let T be a set of processes tolerated
by L. Lemma 37 implies that for every process pi and for every view V, all the quorums
in Q(pi,V) for pi are quorums in the PBQS model. So, the consistency and availability
properties of a league imply that L \ T satisfies the consistency and availability properties of
a consensus cluster, making L \ T a consensus cluster. ◀

6 Permissionless Reliable Broadcast

In this section we show how the Bracha broadcast [2], protocol that implements Byzantine
reliable broadcast, can be adapted to work in our model. First, we introduce the following
definitions and results.

▶ Definition 39 (Blocking set). A set B ⊆ Π is said to block a process pi if B intersects
every slice of pi.

▶ Definition 40 (Inductively blocked). Given a set of processes B, the set of processes
inductively blocked by B, denoted by B+, is the smallest set closed under the following rules:
1. B ⊆ B+; and
2. if a process pi is blocked by B+, then pi ∈ B+.

As a consequence of Definition 40, given an execution, the set B+ can be obtained by
repeatedly adding to it all the processes that are blocked by B+ ∪ B. Eventually no more
processes will be added to B+.

C. Cachin, G. Losa, and L. Zanolini 17:17

Moreover, given an execution e with set of faulty processes A, if a league L tolerates A,
then processes in L \ A cannot be inductively blocked by A. This is shown in the following
lemma.

▶ Lemma 41. Let L be a league and T be a set tolerated by L. Then, no process in L \ T is
inductively blocked by T , i.e., T + ∩ (L \ T) = ∅.

Proof. Let us assume that T + ∩(L\T) ̸= ∅. This means that there exists a process pi ∈ L\T

that is blocked by T +, i.e., T + intersects every slice of pi, including the slice contained in the
quorum Qi ⊆ L \ T for pi. Clearly, (L \ T) ∩ T = ∅, and this means that there exists a set
T ′ with T ′ ⊆ T + \ T such that T ′ intersects every slice of pi, including the slice contained in
the quorum for pi consisting only of correct processes in L. This means that we can find a
process pj ∈ T ′ with pj ∈ L \ T and pj blocked by T . Since L is a league, process pj must
have a slice in L \ T . However, T cannot intersect every slice of pj because L \ T is disjoint
from T . We reached a contradiction. ◀

Intuitively, starting from A+ = ∅, we first consider the processes that are blocked by A.
Trivially, every process in A is blocked by A, and so A+ = A. Moreover, no process in L \ A

can be blocked by A. If this was the case, then there would exist a process pi ∈ L \ A such
that A intersected all of its slices, including the slice contained in the quorum Qi ⊆ L \ A,
which we know to exist due to the availability property of L. So, only processes pj not in
L \ A can be blocked by A. Let pj be such process. This means that A ∪ {pj} ⊆ A+. Now,
we can repeat the same reasoning, by considering all the processes blocked by A ∪ {pj}.
Again, no processes in L \ A can be blocked by A ∪ {pj}. In fact, if A ∪ {pj} blocked a
process pk ∈ L \ A, then every slice of pk would contain pj , including the slice contained in
L \ A. However, this would imply that pj ∈ L \ A which would contradict the fact that pj is
a process not in L \ A.

In the following theorem we show that if a correct process pi in a league L is blocked by
a set B, then B = B ∪ {pi} blocks another process pj ̸∈ B ∪ A. Then, B′ = B ∪ {pj} blocks
another process pk ̸∈ B′ ∪ A and so on, until, eventually, every correct process in the league
is blocked.

▶ Theorem 42 (Cascade theorem). Consider the quorum function Q, a league L, and a set
T ⊆ Π tolerated by L. Moreover, let us consider a process pi ∈ L \ T , a T -resilient view
V for pi, a quorum Qi ∈ Q(pi,V), and a set B ⊆ Π disjoint from T such that Qi \ T ⊆ B.
Then, either L \ T ⊆ B or there exists a process pj ̸∈ B ∪ T that is blocked by B.

Proof. It suffices to assume by contradiction that L \ (B ∪ T) ̸= ∅ and that, for every
pj ̸∈ B ∪ T , process pj has a slice disjoint from B. This implies that S = B ∪ T is a survivor
set of every process pj ∈ S; since L \ (B ∪ T) ̸= ∅ , this includes also at least one process
pj ∈ L \ (B ∪ T).

Let us consider such a process pj ∈ L \ (B ∪ T) and consider the view V′ for pj such
that: (1) for every pk ̸∈ T , V′[k] = F[k]; and (2) for every pk ∈ T , V′[k] = (∅, {∅}). Observe
that V′ is a T -resilient view for pj . By Lemma 12, we have that S ∈ Q(pj ,V′) . This implies
that S ∩ Qi ⊆ T . But combined with the fact that pj ∈ L \ (B ∪ T), this contradicts the
consistency property of L. ◀

We will see how this theorem has a direct effect on the liveness of permissionless Byzantine
reliable broadcast.

OPODIS 2022

17:18 Quorum Systems in Permissionless Networks

In a Byzantine reliable broadcast, the sender process may broadcast a value v by invoking
r-braodcast(v). The broadcast primitive outputs a value v through an r-deliver(v) event.
Moreover, the broadcast primitive presented in this section delivers only one value per
instance. Every instance has an implicit label and a fixed, well-known sender ps.

▶ Definition 43 (Permissionless Byzantine reliable broadcast). A protocol for permissionless
Byzantine reliable broadcast satisfies the following properties. For every league L and every
execution tolerated by L:
Validity: If a correct process ps r-broadcasts a value v, then all correct processes in L

eventually r-deliver v.
Integrity: For any value v, every correct process r-delivers v at most once. Moreover, if the

sender ps is correct and the receiver is correct and in L, then v was previously r-broadcast
by ps.

Consistency: If a correct process in L r-delivers some value v and another correct process in
L r-delivers some value v′, then v = v′.

Totality: If a correct process in L r-delivers some value v, then all correct processes in L

eventually r-deliver some value.

We implement this primitive in Algorithm 1, which is derived from Bracha broadcast [2]
but differs in some aspects.

In principle, the protocol follows the original one, but does not use one global quorum
system known to all processes. Instead, the correct processes implicitly use the same quorum
function Q (Definition 11), of which they initially only know their own entry in Q. They
discover the quorums of other processes during the execution.

Because of the permissionless nature of our model, we consider a best-effort gossip
primitive to disseminate messages among processes instead of point-to-point messages.

A crucial element of Bracha’s protocol is the “amplification” step, when a process receives
f + 1 ready messages with some value v, with f the number of faulty processes in an
execution, but has not sent a ready message yet. Then it also sends a ready message
with v. This generalizes to receiving the same ready message with value v from a blocking
set for pi and is crucial for the totality property.

Finally, we introduce the any message as a message sent by a process pi that is blocked
by two sets carrying two different values v and v′. The reason for this new message lies in the
consistency property of L: given an execution e with set of faulty processes A tolerated by
L, the consistency property of L implies that any two quorums of any two correct processes
in L have some correct process in common. Quorum intersection is then guaranteed only
for correct processes in L and nothing is assured for correct processes outside L, which
might gossip different values received by non-intersecting quorums. In particular, if a correct
process pi is blocked by a set containing a value v and later is blocked by a set containing a
value v′ ̸= v, then pi gossips an any message containing ∗. any messages are then ignored
by correct processes in L. As we show in the Theorem 44, correct process in L cannot be
blocked by sets containing different values.

▶ Theorem 44. Algorithm 1 implements permissionless Byzantine reliable broadcast.

Proof. Observe that all the properties assume the existence of a league L and an execution
e with set of faulty processes A tolerated by L.

Let us start with the validity property. Since the sender ps is correct and from the
availability property of L, every correct process pi in L eventually receives a quorum Qi for
itself of echo messages containing the value v sent from ps and updates its view V according
to the views received from every process in Qi.

C. Cachin, G. Losa, and L. Zanolini 17:19

Algorithm 1 Permissionless Byzantine reliable broadcast protocol for process pi, with sender ps.

State
sent-echo← false: indicates whether pi has gossiped echo
echos[j]← [⊥]: collects the received echo messages from other processes
sent-ready← false: indicates whether pi has gossiped ready
readys[j]← [⊥]: collects the received ready messages from other processes
sent-any← false: indicates weather pi has gossiped [any, ∗, F[i]]
delivered← false: indicates whether pi has delivered a value
V[j]← if i = j then F[i] else ⊥: the current view of pi

upon invocation r-broadcast(v) do
send message [send, v, F[s]] through gossip // only sender ps

upon receiving a gossiped message [send, v, (Ps,Fs)] from ps and ¬sent-echo do
sent-echo← true
V[s]← (Ps,Fs)
send message [echo, v, F[i]] through gossip

upon receiving a gossiped message [echo, v, (Pj ,Fj) from pj do
if echos[j] =⊥ then

V[j]← (Pj ,Fj)
echos[j]← v

upon exists v ̸=⊥ such that {pj ∈ Π| echos[j] = v} ∈ Q(pi,V) and ¬sent-ready do
sent-ready← true
send message [ready, v, F[i]] through gossip

upon receiving a gossiped message [ready, v, (Pj ,Fj)] from pj do
if readys[j] =⊥ then

V[j]← (Pj ,Fj)
readys[j]← v

upon exists v ̸=⊥ such that {pj ∈ Π| readys[j] = v} blocks pi and ¬sent-ready do
sent-ready← true
send message [ready, v, F[i]] through gossip

upon exists v′ ̸=⊥ such that {pj ∈ Π| readys[j] = v′} blocks pi and readys[i] = v and
v ̸= v′ and sent-ready and ¬sent-any do

sent-any← true
send message [any, ∗, F[i]] through gossip

upon receiving a gossiped message [any, ∗, (Pj ,Fj)] from pj do
V[j]← (Pj ,Fj)
readys[j]← ∗

upon exists v ̸=⊥ such that {pj ∈ Π| readys[j] = v} ∈ Q(pi,V) and ¬delivered do
delivered← true
output r-deliver(v)

Then, pi gossips [ready, v, F[i]] containing the value v and its current view F[i] unless
sent-ready = true. If sent-ready = true then pi already gossiped [ready, v, F[i]].

Observe that there exists a unique value v such that if a correct process in L sends a
ready message, this message contains v. In fact, if a process pi ∈ L \ A sends a ready
message, either it does so after receiving a quorum Qi for itself of echo messages containing
v or after being blocked by a set of processes that received ready messages containing v.

In the first case, if a correct process pi in L receives a quorum Qi for itself of echo
messages containing v and another correct process pj in L receives a quorum Qj for itself
of echo messages containing v′, by the consistency property of L, v = v′ and both send a
ready message containing the same v.

OPODIS 2022

17:20 Quorum Systems in Permissionless Networks

In the second case, first observe that by Lemma 41 we know that pi ∈ L \ A cannot be
inductively blocked by processes in A. Moreover, correct processes in L cannot be blocked
by sets containing different values. If this was the case, then there would exist two correct
processes pi and pj in L and two slices of pi and pj , respectively, in L\A containing two correct
processes in L that received two different values v after echo. Again, by the consistency
property of L, this is not possible. Hence, every correct process pj in L gossips [ready,
v, F[j]]. Eventually, every correct process pi in L receives a quorum for itself containing
[ready, v, (Pj , Fj)] messages and r-delivers v.

The first part of the integrity property is ensured by the delivered flag. For the second
part observe that, by assumption, the receiver pi is correct and in L. This implies that the
quorum for pi used to reach a decision contains some correct processes that have gossiped
echo containing a value v they received from ps.

For the totality property, let us assume that a correct process pi ∈ L r-delivered some
value v. If pi ∈ L\A r-delivered some value v, then it has received ready messages containing
v from a quorum Qi for itself. From Theorem 42 we know that exists a set B such that
Qi \ A ⊆ B and either L \ A ⊆ B or B blocks at least a process pj ∈ L \ (B ∪ A) in an
A-resilient view V′ for pj . In the latter case, pj gossips a ready message containing v and
B becomes B ∪ {pj}. Observe that, by assumption, if a correct process receives a gossiped
message, then eventually every other correct process receives it too. Eventually, L \ A is
covered by B and this means that every correct process in L is blocked with the same value v.

Moreover, observe that given two correct processes not in L, they may become ready for
different values received from non-intersecting quorums of echo messages. Because of this,
if a correct process pj ̸∈ L observes a blocking set B containing a value v′ different from a
value v that has previously gossiped in a ready message and such that sent-any = false,
process pj gossips an any message containing the value ∗. Eventually every correct process
pi in L receives a quorum Qi for itself of [ready, v, (Pj , Fj)] messages and it r-delivers v.

Finally, for the consistency property notice that by the consistency property of L, every
two quorums Qi and Qj of any two correct processes pi and pj in L intersect in some correct
process pk. Process pk could then be outside L. If pk ̸∈ L then, as seen for the totality
property, it can be blocked by sets containing different values. If this is the case then pk

gossips an any message. Correct processes in L then ignore the values received from pk

and wait until receiving a quorum unanimously containing the same value v. Observe that,
because L tolerates A, by availability property of L every correct process in L eventually
receives a quorum made by correct processes in L. The consistency property then follows. ◀

7 Related Work

A fail-prone system [14], also called adversary structure [10], is a well-adopted way to
describe the failure assumptions in a distributed system. This is a collection of subsets of
participants in the system that may fail together, and that are tolerated to fail, in a given
execution. Fail-prone systems implicitly define Byzantine quorum systems [14] which are used
to ensure consistency and availability to distributed fault-tolerant protocols in the presence of
arbitrary failures. Originally, fail-prone systems have been expressed globally, shared by every
participant in the system. Damgård et al. [8] introduce the notion of asymmetric fail-prone
system in which every participant in the system subjectively selects its own fail-prone system,
allowing for a more flexible model and where the guarantees of the system are derived from
personal assumptions. This is the asymmetric-trust model [5]. Processes in this model are
classified in three different types, faulty, naive, and wise and this characterization is done

C. Cachin, G. Losa, and L. Zanolini 17:21

with respect to an execution. In particular, given an execution e with faulty set F , a process
pi is faulty if it belongs to F , pi is naive if it does not have F in its subjective fail-prone
system and pi is wise if F is contained in its subjective fail-prone system. Properties of
protocols are then guaranteed for wise processes and, in some cases [5, 6], for a subset of the
wise processes called guild.

Cachin and Tackmann [5] introduce asymmetric Byzantine quorum systems, a generaliza-
tion of the original Byzantine quorum in the asymmetric-trust model. They show how to
implement register abstraction and broadcast primitives using asymmetric Byzantine quorum
systems. An asynchronous consensus protocol has subsequently been devised by Cachin and
Zanolini [6]. Moreover, they extended the knowledge about the guild and about the relation
between naive and wise processes in protocols with asymmetric trust.

As a basis for the Stellar consensus protocol, Mazières [16] introduces a new model
called federated Byzantine agreement (FBA) in which participants may also lie. Here, every
participant declares quorum slices – a collection of trusted sets of processes sufficient to
convince the particular participant of agreement. These slices make a quorum, a set of
participants that contains one slice for each member and sufficient to reach agreement. All
quorums constitute a federated Byzantine quorum system (FBQS). In this model, even if the
processes do not a priori choose intersecting quorums as in the classic model [14] or as in
the asymmetric one [5, 8], an intersection property among quorums is later required for the
analysis of the Stellar consensus protocol.

García-Pérez and Gotsman [9] study the theoretical foundations of a FBQS, build a link
between FBQS and the classical Byzantine quorum systems and show the correctness of
broadcast abstractions over federated quorum systems. Moreover, they investigate decentral-
ized quorum constructions by means of FBQS. Finally, they propose the notion of subjective
dissemination quorum system, where different participants may have different Byzantine
quorum systems and where there is a system-wide intersection property. FBQS are a way
towards an extension of quorum systems in a permissionless setting.

Losa et al. [12] introduce personal Byzantine quorum systems (PBQS) by removing from
FBQS the requirement of a system-wide intersection among quorums. This might lead to
disjoint consensus clusters in which safety and liveness are guaranteed in each of them,
separately, in a given execution. Moreover, they abstract the Stellar Network as an instance
of PBQS and use a PBQS to solve consensus.

8 Conclusions

This work introduces a new way of specifying trust assumptions among processes in a
permissionless setting: processes not only make assumptions about failures, but also make
assumptions about the assumptions of other processes. This leads to formally define the
notions of permissionless fail-prone system and permissionless quorum system and to design
protocols to solve known synchronization problems such as Byzantine reliable broadcast.

We introduce the notion of league, a set of processes for which consistency and availability
properties hold for a given quorum function. Properties of our protocols are guaranteed
assuming the existence of a league.

As a future work we plan to generalize known consensus protocols such as, for example,
PBFT [7], to work in our permissionless model. We believe that, by assuming the existence of
a league L, properties of consensus protocols can be guaranteed to every correct process in L.

OPODIS 2022

17:22 Quorum Systems in Permissionless Networks

References
1 Ignacio Amores-Sesar, Christian Cachin, and Jovana Micic. Security analysis of ripple consensus.

In OPODIS, volume 184 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020.

2 Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987.

3 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

4 Christian Cachin, Giuliano Losa, and Luca Zanolini. Quorum systems in permissionless
network, 2022. doi:10.48550/arXiv.2211.05630.

5 Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In OPODIS, volume
153 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

6 Christian Cachin and Luca Zanolini. Asymmetric asynchronous byzantine consensus. In
DPM/CBT@ESORICS, volume 13140 of Lecture Notes in Computer Science, pages 192–207.
Springer, 2021.

7 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002.

8 Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with
asymmetric trust. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages
357–375. Springer, 2007.

9 Álvaro García-Pérez and Alexey Gotsman. Federated byzantine quorum systems. In OPODIS,
volume 125 of LIPIcs, pages 17:1–17:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018.

10 Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. J. Cryptol., 13(1):31–60, 2000.

11 Flavio Paiva Junqueira and Keith Marzullo. Synchronous consensus for dependent process
failure. In ICDCS, pages 274–283. IEEE Computer Society, 2003.

12 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In DISC,
volume 146 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019.

13 Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In CCS,
pages 1041–1053. ACM, 2019.

14 Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Comput.,
11(4):203–213, 1998.

15 Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and availability of byzantine
quorum systems. SIAM J. Comput., 29(6):1889–1906, 2000.

16 David Mazières. The Stellar consensus protocol: A federated model for Internet-level consensus.
Stellar, available online, https://www.stellar.org/papers/stellar-consensus-protocol.
pdf, 2016.

17 Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In DISC, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017.

18 Isaac C. Sheff, Robbert van Renesse, and Andrew C. Myers. Distributed protocols and
heterogeneous trust: Technical report. CoRR, abs/1412.3136, 2014. arXiv:1412.3136.

19 Isaac C. Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Heterogeneous
paxos. In OPODIS, volume 184 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020.

20 T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Comput., 2(2):80–94, 1987.

https://doi.org/10.48550/arXiv.2211.05630
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://arxiv.org/abs/1412.3136

Make Every Word Count: Adaptive Byzantine
Agreement with Fewer Words
Shir Cohen !

Technion, Haifa, Israel

Idit Keidar !

Technion, Haifa, Israel

Alexander Spiegelman !

Aptos, San Francisco, CA, USA

Abstract
Byzantine Agreement (BA) is a key component in many distributed systems. While Dolev and
Reischuk have proven a long time ago that quadratic communication complexity is necessary for
worst-case runs, the question of what can be done in practically common runs with fewer failures
remained open. In this paper we present the first Byzantine Broadcast algorithm with O(n(f + 1))
communication complexity in a model with resilience of n = 2t + 1, where 0 ≤ f ≤ t is the actual
number of process failures in a run. And for BA with strong unanimity, we present the first
optimal-resilience algorithm that has linear communication complexity in the failure-free case and a
quadratic cost otherwise.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine Agreement, Byzantine Broadcast, Adaptive communication

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.18

Funding Shir Cohen: Supported by the Adams Fellowship Program of the Israel Academy of Sciences
and Humanities.

1 Introduction

Byzantine Agreement (BA) is a key component in many distributed systems. As these
systems are being used at larger scales, there is an increased need to find efficient solutions
for BA. Arguably, the most important aspect of an efficient BA solution is its communication
costs. That is, how much information needs to be transferred in the network to solve the
BA problem. Indeed, improving the communication complexity, often measured as word
complexity, was the focus of many recent works and deployed systems [1, 11, 16, 2, 13, 7].

In the BA problem, a set of n processes attempt to agree on a decision value despite the
presence of Byzantine processes. One of the properties of a BA algorithm is a threshold t on
how many Byzantine processes it can withstand. Namely, the algorithm is correct as long as
up to t processes are corrupted in the course of a run. In this paper we focus on n = 2t + 1
and we assume a trusted setup of a public-key infrastructure (PKI) that enables us to use a
threshold signature scheme [15, 4, 6].

A large and growing body of literature has investigated how to reduce the word com-
plexity of BA algorithms. Recently, Momose and Ren [13] have presented a synchronous
protocol with O(n2) words, which meets Dolev and Reischuk’s long-standing lower bound [9].
Spiegelman [16] considered the more common case, where the number of actual failures,
denoted by f , is smaller than t with resilience of n = 3t + 1. In this paper we consider better
resilience and ask:

Can we design a BA protocol with O(n(f + 1)) communication complexity in runs with
f ≤ t failures, where n = 2t + 1?

© Shir Cohen, Idit Keidar, and Alexander Spiegelman;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shirco@campus.technion.ac.il
mailto:idish@ee.technion.ac.il
mailto:sasha.spiegelman@gmail.com
https://doi.org/10.4230/LIPIcs.OPODIS.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Figure 1 Relation between various Byzantine Agreement solutions. Each box uses the primitives
within it.

Whereas Dolev and Reischuk’s better-known lower bound applies to worst-case runs, they
further proved a lower bound of Ω(nt) signatures in failure-free runs (f = 0) in a model with
a PKI. At the time, one could have thought that this bound extends to the communication
complexity, rendering it Ω(nt) even with small f values. However, the introduction of
threshold signature schemes [8, 15, 4, 6] exposed the possibility to compact many signatures
into one word, potentially saving many words.

In this paper, we first revisit the original problem as stated in Dolev and Reischuk’s work.
In this problem there is a single sender who proposes a value and we refer to this problem as
Byzantine Broadcast (BB). We prove that although O(nt) signatures are inevitable, O(nt)
messages are not necessary with f ∈ o(t) failures by presenting an adaptive BB solution with
O(n(f + 1)) words.

The idea behind our algorithm is to reduce this problem to another BA variant. There
is a simple reduction from BB to BA with the strong unanimity validity property (from
hereon: strong BA), which states that if all correct processes propose the same value, this is
the only allowed decision. In this reduction, the sender initially sends its value to all other
processes who then run a BA solution. Unfortunately, no adaptive strong BA is known to
date. I.e., a strong BA solution where communication complexity depends on f , rather than
on t. Instead, in Section 5 we reduce the problem to a new weak BA problem with a weaker
validity property, unique validity, which we define in this paper.

Intuitively, the validity condition of weak BA is somewhere between weak unanimity,
where if all processes are correct and propose the same value this is the only allowed decision,
and external validity [5], where a decision value must satisfy some external predicate. In weak
BA, one can define its desired predicate and the requirement is that if all correct processes
propose the same value and Byzantine processes cannot devise a value that satisfies the
chosen predicate, then the decision must be valid. Otherwise, ⊥ is allowed.

While the unique validity condition seems to be weak, it is surprisingly powerful when
provided the “right” external predicate. For example, we can determine that a value is valid
if it has at least t + 1 unique signatures, assuring that some correct process in the system
knows this value. Unique validity may be of independent interest as a tool for designing
algorithms. We present our adaptive weak BA in Section 6. The weak BA, in turn, exploits
the quadratic solution by Momose and Ren [13]. Figure 1 describes the relation between the
various solutions.

Finally, we consider strong BA. In Section 7, we present the first optimally resilient
strong binary BA protocol with O(n) communication complexity in the failure-free case.
This leaves open the question whether a fully adaptive (to any f) strong BA protocol exists.
We summarize the results in Table 1.

S. Cohen, I. Keidar, and A. Spiegelman 18:3

Table 1 Bounds on communication complexity of deterministic synchronous Byzantine Agreement
algorithms with resilience n = 2t + 1.

Upper Bound Lower Bound
Byzantine Broadcast O(n(f + 1)) Section 5 + Section 6 Ω(nf) (Ω(n2) signatures) [9]

Strong BA O(n2) multi-valued Momose-Ren [13] Ω(nf) binary
O(n) with f = 0, binary Section 7 (Ω(n2) signatures) [9]

Weak BA O(n(f + 1)) multi-valued Section 6 Ω(n)

2 Model and Preliminaries

We consider a distributed system consisting of a well-known static set Π of n processes and an
adaptive adversary. The adversary may adaptively corrupt up to t < n, n = 2t + 1 processes
in the course of a run. A corrupted process is Byzantine; it may deviate arbitrarily from the
protocol. In particular, it may crash, fail to send or receive messages, and send arbitrary
messages. As long as a process is not corrupted by the adversary, it is correct and follows
the protocol. We denote by 0 ≤ f ≤ t the actual number of corrupted processes in a run.

Cryptographic tools. We assume a trusted public-key infrastructure (PKI) and a com-
putationally bounded adversary. Hence, we can construct and use a threshold signature
scheme [15, 4, 6]. We denote by ⟨m⟩p the message m signed by process p. Using a (k, n)-
threshold signature scheme, k unique signatures on the same message m can be batched into
a threshold signature for m with the same length as an individual signature. For simplicity
we abstract away the details of cryptography and assume the threshold signature schemes
are ideal. In practice, our results hold except with arbitrarily small probability, depending
on the security parameters.

Communication. Every pair of processes is connected via a reliable link. If a correct process
pi receives a message m indicating that m was sent by a correct process pj , then m was
indeed generated by pj and sent to pi. The network is synchronous. Namely, there is a
known bound δ on message delays, allowing us to design protocols that proceed in rounds.
Specifically, if a correct process sends a message to any other correct process at the beginning
of some round, it is received by the end of the same round.

Complexity. We use the following standard complexity notions [2, 16, 13]. While measuring
complexity, we say that a word contains a constant number of signatures and values from a
finite domain, and each message contains at least 1 word. The communication complexity of
a protocol is the maximum number of words sent by all correct processes, across all runs.
The adaptive complexity is a complexity that depends on f .

3 Problem Definitions

We consider a family of agreement problems all satisfy agreement and termination defined as
follows:
Agreement No two correct processes decide differently.
Termination Every correct process eventually decides.

In addition, each variant of the problem satisfies some validity property. In the Byzantine
Broadcast (BB) problem, a designated sender has an input to broadcast to all n processes.
The goal is that all correct processes decide upon the sender’s value. If the sender is Byzantine,
however, it is enough that all correct processes decide upon some common value. Formally,

OPODIS 2022

18:4 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

▶ Definition 1 (Byzantine Broadcast). In Byzantine Broadcast, a designated sender sender
has an input value vsender to broadcast to all processes, and each correct process decides on an
output value decisioni. BB solution must satisfy agreement, termination and the following
validity property:
Validity If sender is correct, then all correct processes decide vsender.

Byzantine Agreement (BA) is a closely related problem to BB. In this problem, a set Π of
n processes each propose an initial value and they all attempt to reach a common decision. In
addition, the decided value must be “valid” in some sense that makes the problem non-trivial.
The classic notion of validity states that if all correct processes in Π share the same initial
value, then the decision must be on this value. This property is known as strong unanimity,
and it entails a limitation on the resilience of a protocol, requiring that n ≥ 2t + 1. For
hereon we refer to BA with strong unanimity validity condition as strong BA. Formally,

▶ Definition 2 (Strong Byzantine Agreement). In Byzantine Agreement, each correct process
pi ∈ Π proposes an input value vi and decides on an output value decisioni. Any strong BA
solution must satisfy agreement, termination and the following validity property:
Strong unanimity If all correct processes propose the same value v, then the output is v.

A different validity property requires that a decision satisfies some external boolean
predicate (we call such value a valid value). It is used under the assumption that all correct
processes propose valid values. This is known as external validity [5] and only requires
n > t. External validity by itself is trivial in case there is a well-known predefined value
that satisfies the predicate. However, it is commonly used in settings with signatures, where
valid values can be verified by all but generated only by specific users or sets thereof. For
instance, consider a predicate that verifies that v is signed by n− t processes – no process
can unilaterally generate a default valid value.

Our notion of unique validity adopts external validity to allow default values to be decided
in cases when there is no unanimous valid value. We say that a value v exists in a run of
a BA protocol if v is either the input value of a correct process or can be generated by a
Byzantine process. E.g., any value signed by a non-Byzantine process cannot be generated
locally by a Byzantine process. Unique validity stipulates that there is a default value if and
only if there exists more than one valid value in a BA run. Formally,

▶ Definition 3 (Weak Byzantine Agreement). In weak Byzantine Agreement, each correct
process pi ∈ Π proposes an input value vi and decides on an output value decisioni. Any
weak BA solution must satisfy agreement, termination and the following validity property:
Unique Validity Assume an arbitrary predicate validate(v) ∈ {true, false} that can be com-

puted locally. If a correct process decides v then either v = ⊥ or validate(v) = true, and
if v = ⊥ then more than one valid value exists in the run.

As the definition suggests, unique validity is satisfied in weak BA with respect to any
chosen external predicate. This allows for the application level to determine the desired
properties, and choose the relevant external predicate accordingly. As a simple example, one
can think of a predicate that specifies that a value is valid if it is signed by at least t + 1
processes stating that this value was their initial value. In this scenario, unique validity
yields exactly the common strong unanimity property on the underlying signed values.

In fact, unique validity is a useful tool when designing distributed algorithms as it allows
to use BA as a framework. Different applications may require different validity conditions,
yet still unique validity prevents the system from having a trivial solution in the presence
of Byzantine processes. Note, in addition, that every solution to BA with external validity
property immediately solves weak BA.

S. Cohen, I. Keidar, and A. Spiegelman 18:5

4 Related Work

The starting point of this work goes back to 1985 when Dolev and Reischuk proved two
significant lower bounds for the Byzantine Broadcast problem. Specifically, they have studied
the worst-case message complexity over all runs and proved it to be Ω(nt). Moreover, in the
authenticated model, which was somewhat undeveloped at the time, they proved a lower
bound of Ω(nt) signatures – even in a failure-free run.

Since the publication of their fundamental results, the paradigm of complexity measure-
ment has shifted. The number of messages is of little importance nowadays, compared to
the number of words it entails. The total number of words (the communication complexity)
better reflects the load on the system and is commonly used today when analyzing distributed
algorithms. For example, Dolev and Reischuk presented in their paper a BB algorithm that
matches their messages’ lower bound. It requires O(nt) messages, but as a single message
can be composed of many different signatures it requires a cubic number of words. It was
not until recently that a solution with quadratic communication complexity was presented
for synchronous BA with optimal resilience [13].

Dolev and Reischuk’s complementary lower bound on signatures does not translate to
a bound on the communication complexity of an algorithm. Only a few years after Dolev
and Reischuk’s work, the threshold signature scheme was introduced [8]. This scheme allows
multiple signatures to be compacted into a single combined signature of the same size. That
is, a single word can carry multiple signatures. In this work, we focus on the communication
complexity of the BB and BA problems while taking advantage of such schemes.

To make our algorithms efficient in real-world systems, we adjust the complexity to
match the actual number of faults. Moreover, we do so without compromising the worst-case
complexity. If all t possibly Byzantine processes crash, the complexity of our algorithms is
O(nt). However, in most runs, where systems do not exhibit the worst crash patterns, the
complexity is much lower. In fact, it is linear in the number of faults times n.

While consensus algorithms were designed to be adaptive in the number of failures
over 30 years ago [10], these works focus on the number of rounds that it takes to reach a
decision rather than on communication complexity. A special case of adaptivity is focusing
on failure-free runs. This problem was addressed both by Amdur et al. [3] (only for crash
failures) and by Hadzilacos and Halpern [12]. However, both works measure the number of
messages rather than words and have sub-optimal communication complexity.

A recent work by Spiegelman [16] tackled the problem of adaptive communication
complexity in the asynchronous model. It presents a protocol that achieves correctness in
asynchronous runs and requires O(ft + t) communication in synchronous runs. However,
due to the need to tolerate asynchrony, its resilience is only n ≥ 3t + 1. This solution relies
on threshold signatures schemes, as we do.

As noted also by Momose and Ren [13], designing optimally-resilient protocols for the
synchronous model limits the use of threshold signatures. While this primitive has been used
in various eventually synchronous and asynchronous works over the last few years [1, 16, 14, 6],
usually with a threshold of n−t. Using this threshold in settings with resilience n = 3t+1, we
get certificates signed by at least t+1 correct processes. However, for a resilience of n = 2t+1,
this is no longer the case. The threshold signatures “lose” their power as n− t = t + 1 for
which no intersection properties between correct processes signing two distinct certificates
can be derived. In this work, we exploit threshold signatures with this improved resilience by
carefully choosing a better threshold for our needs, as we discuss in Section 6. We mention
that although not using threshold schemes, Xiang et al. [17] also benefit from collecting more
than n− t signatures in some scenarios.

OPODIS 2022

18:6 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

5 From Weak BA to Adaptive Byzantine Broadcast

In this section we study the BB problem, and optimize its adaptive communication complexity
over all runs. We present a new BB protocol with resilience n = 2t + 1 and adaptive
communication complexity of O(n(f + 1)).

Recall that in the BB problem there is only one sender who aims to broadcast its initial
value and have all correct processes agree on it. If the sender is Byzantine, it may attempt to
cause disagreement across correct processes. There is a known simple and efficient reduction
from BB to strong BA. Given a strong BA solution, the designated sender starts by sending
its value to all processes, and then they all execute the BA solution and decide on its output.
It is easy to see that if the sender is correct, all correct processes begin the strong BA
algorithm with the same input, and by strong unanimity they then decide upon the sender’s
value.

However, trying to apply the same reduction from BB to weak BA no longer works. If
the sender is Byzantine, the correct processes do not have a valid initial value for the BA.
Nonetheless, in this section we present a reduction from BB to weak BA1, which incurs a cost
of O(n(f + 1)) words. Thus, together with an adaptive weak BA with the same complexity,
we obtain a synchronous adaptive BB algorithm with a total of O(n(f + 1)) words and
resilience n = 2t + 1. At this point we assume that such adaptive weak BA is given as a
black box. An implementation for this primitive is presented in Section 6.

Algorithm 1 BB algorithm: code for process pi, sender ’s input is vsenedr.
Initially vi, val, decision, ba_decision = ⊥

Round 1:
1: if sender = pi then
2: send ⟨vsender⟩sender to all
3: if received message ⟨v⟩sender from sender then
4: vi ← ⟨v⟩sender

5: for j = 1 to n do
6: val← invokePhase(j, vi)
7: if val ̸= ⊥ then
8: vi ← val

9: ba_decision← weak BA with BB_valid predicate and initial value vi

10: if ba_decision is of the form ⟨v⟩sender then
11: decision← v

12: else
13: decision← ⊥

Our algorithm, presented in Algorithms 1 and 2, is composed of three parts. The first
part (lines 1 – 4 in Algorithm 1) is the first round in which the leader disseminates its value.
Processes that receive that value adopt it as their BA initial value (line 4). The second part
(lines 5 – 8 in Algorithm 1 and Algorithm 2) is a “vetting” part. It consists of n phases, with
a rotating leader. Leaders initiate phases to learn about the first part’s initial value. Finally,
the third part (lines lines 9 – 13 in Algorithm 1) is a weak BA execution.

1 This reduction only works if n ≥ 2t + 1.

S. Cohen, I. Keidar, and A. Spiegelman 18:7

Deciding upon the weak BA output takes care of the agreement and termination properties.
It is left to (1) satisfy the BB validity property and (2) make sure that the preconditions for
the weak BA hold, that is, each correct process has a valid input to propose. To achieve these
properties, we define the BB_valid(v) predicate in the following way. BB_valid(v) = true if
and only if v is signed by either the sender or by t + 1 processes.

Note that if the sender happens to be Byzantine, it is acceptable to decide on any value.
However, it is important to make sure that if the sender is correct, then the only valid value
is its initial BB input. Simply setting a value to be valid only if it is signed by the sender
would not work, as it allows a faulty sender to cause a scenario in which there are no valid
values to agree upon by not sending its value to any process. Note that we cannot simply fix
this by introducing some default valid value: If we were to do so, it would be valid to agree
on that value also in the case of a correct sender, violating the BB validity condition.

Our algorithm makes sure that if the sender is correct, the second condition in the
BB_valid definition cannot be satisfied, and hence there is only one possible outcome to the
BA algorithm. However, if the sender is Byzantine, it is guaranteed that there is some value
to decide upon. That is, all correct processes start the weak BA with an initial value that
satisfies the predicate.

In the vetting part of the algorithm, we ensure that the above-mentioned conditions
hold. Moreover, we do so with a communication complexity that is adaptive to the number
of actual process failures. The core idea is to work in leader-based phases. Every phase
has a unique leader and is composed of a constant number of leader-to-all and all-to-leader
synchronous rounds. Every phase is initiated by a leader-to-all message. If the leader decides
not to send the initial message then no messages will be sent by correct processes in this
phase and we say that this phase is silent, and otherwise, it is non-silent. In our algorithm,
a phase is non-silent if the phase’s leader did not choose an initial value for the BA prior to
that phase.

In every phase, each process pi starts the phase with some initial value vi and if the phase
is non-silent it returns some value. The requirements from the phase are: (1) If the phase’s
leader is correct and the phase is non-silent, then all correct processes return a valid value.
(2) All correct processes return either ⊥ or a valid v. And (3) if the sender is correct, then
no correct process returns a value signed by t + 1 processes.

Upon a non-silent phase, the leader starts by asking all processes for help by sending a
help_req message (line 16). A correct process that receives a help request message answers
the leader. If it has set a BA initial value, it sends it to the leader at line 19, and otherwise,
it sends a signed idk (i don't know) message at line 21. If the leader receives a value signed
by the designated sender it broadcasts it (line 24). Otherwise, if it receives t + 1 idk messages,
it uses a threshold signature scheme to create an idk quorum certificate and broadcasts it
(line 27). A process that receives from the leader a value signed by either the sender or any
t + 1 processes returns it. Otherwise, it returns ⊥.

At the end of each non-silent phase, a correct process that returns a v ̸= ⊥ from the
phase, updates its local vi accordingly at line 8. This value at the end of the nth phase is
the input for the weak BA algorithm. Since we execute n phases, all correct processes set
valid values by the end of all phases. This is because once there is a correct process that did
not set a value it initiates its phase and then all correct processes return with a valid value.
At this point, all processes execute the weak BA and decide upon its output (line 9).

A formal correctness proof of Algorithms 1 and 2 appears in Appendix A, proving the
following theorem:

▶ Theorem 4. Algorithm 1 solves BB.

OPODIS 2022

18:8 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Algorithm 2 invokeP hase(j, vi): code for process pi.
14: leader← pj mod n

Round 1:
15: if leader = pi and vi = ⊥ then
16: broadcast the message ⟨help_req, j⟩leader

Round 2:
17: if received ⟨help_req, j⟩leader then
18: if vi ̸= ⊥ then
19: send ⟨vi, j⟩ to leader
20: else
21: send ⟨idk, j⟩pi

to leader
Round 3:

22: if leader = pi then
23: if received ⟨v′, j⟩ s.t. v′ = ⟨v⟩sender then
24: broadcast the message ⟨⟨v⟩sender, j⟩
25: else if received t + 1 unique signatures ⟨idk, j⟩p′ then
26: batch these messages into QCidk using a (t + 1, n)-threshold signature scheme
27: broadcast the message ⟨QCidk, j⟩
28: if received ⟨v, j⟩ from leader and BB_valid(v) =true then
29: return v

30: else
31: return ⊥

Complexity
We prove that the complexity of Algorithms 1 and 2 is O(n(f + 1)).

Each non-silent phase is composed of a constant number of all–to–leader and leader–to–all
rounds and thanks to the use of threshold signatures, all messages sent have a size of one
word. Thus, each phase incurs O(n) words. In total, there are potentially n phases. However,
we prove in Appendix A that after the first non-silent phase by a correct leader, all following
phases with correct leaders are silent. Thus, the number of non-silent phases is linear in f .
We conclude that all phases in lines 5 – 8 use O(n(f + 1)) words. The complexity of the
weak BA black box is also O(n(f + 1)) (as we will show in the next section), resulting in a
total of O(n(f + 1)) words.

6 Adaptive Weak BA

In this section, we present a synchronous adaptive weak BA algorithm with resilience
n = 2t + 1. This algorithm is the missing link for the adaptive BB presented in the previous
section. Once again, we use the concept of phases and exploit the pattern of possible silent
phases. In this algorithm, the phases are slightly different and the decision to start a phase
as a leader depends on whether or not the leader has reached a decision in previous phases.

Unlike the BB problem, in BA every process begins the algorithm with its own input
value. Communication-efficient solutions to this problem usually employ threshold signatures
schemes [1, 16]. This technique is widely used in asynchronous and eventually synchronous
protocols, with resilience n = 3t+1. In these contexts, one can use a scheme of (n−t)-out-of-n
signatures and benefit from the fact that any two such quorum certificates intersect by at
least t + 1 processes, and therefore at least one correct process.

S. Cohen, I. Keidar, and A. Spiegelman 18:9

Unfortunately, when trying to apply the same technique to a system with resilience
n = 2t + 1, it fails. A correct process might be unable to obtain 2t + 1 unique signatures on
any value as Byzantine processes might not sign it. On the other hand, a quorum certificate
with only t + 1 unique signatures is not very useful as it does not guarantee the desired
intersection property.

Our first key observation is that the intersection property can be achieved as long
as we have

⌈
n+t+1

2
⌉

unique signatures. If we obtain this number of signatures out of
n = 2t + 1, safety is preserved in the sense that conflicting certificates cannot be formed by a
malicious adversary. Of course, there are runs in which we cannot reach that threshold since⌈

n+t+1
2

⌉
> n− t (e.g., if t processes crash immediately as the run begins). But in this case,

f ≥ t
2 , and O(f) becomes asymptotically O(t). Hence, we can use a fallback algorithm with

O(nt) communication complexity.
As we assume that t ∈ Θ(n), we can use Momose and Ren’s synchronous algorithm

that has O(n2) communication complexity [13] for the fallback. We denote that algorithm
Afallback. Note that their algorithm is “stronger” than our proposed algorithm as it provides
strong unanimity for validity (i.e., it solves strong BA). We can use their solution by checking
the validity of Afallback’s output according to the predicate. If it is valid, this is the decision
value, and otherwise a default valid value is decided. Equipped with these insights, we next
present our algorithm.

During the phases part of the protocol, a correct process must commit a value before
reaching a decision. When it has certainty about a value it updates that value in a com-
mit variable, along a commit_proof of this commitment (a quorum certificate, signed by
sufficiently many processes). Once a correct process commits to a certain value it does
not commit to any other value during the run. It may, however, decide on another value
eventually. For example, if it reaches the fallback and no correct process has decided. Once
a correct process reaches a decision it updates it in its local decision variable as well as a
matching quorum certificate in decide_proof variable.

A single phase. The code for a single phase is given in Algorithm 4. Each process pi

starts a phase with its initial value vi and information about possible previous commits
(commit, commit_proof) and decisions (decision, decide_proof). Correct processes return
with updated information about commits and decisions that were made in that phase (or
prior to that). The guarantees of the phases are: (1) Every decision updated during a phase
is valid; (2) All decisions updated by correct processes are the same and there exists at most
one valid decide_proof in the system; and (3) If the phase’s leader is correct, the phase
is non-silent, and n − f >

⌈
n+t+1

2
⌉
, then all correct processes return with the same valid

decision.
Every non-silent phase starts with the leader broadcasting a propose message with its

value in line 32. Upon receiving this message, correct processes either vote for this value by
signing it (line 34) or answer with a value that was previously committed as well as its commit
quorum certificate (line 36). If the leader receives a committed value it simply broadcasts it.
Otherwise, if it manages to achieve the required

⌈
n+t+1

2
⌉

threshold of signatures, it can form
a quorum certificate committing its proposed value (line 40).

Note that at this point the committed value is not “safe enough” to be decided by correct
processes. Byzantine leaders may cause correct processes to participate in forming a commit
certificate for more than one value. As correct processes that have decided do not initiate
phases, they might never communicate without going through Byzantine leaders. Thus,

OPODIS 2022

18:10 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Algorithm 3 weak BA algorithm: code for process pi with initial value vi.
Initially decision = undecided, bu_decision = vi, fallback_start←∞
decide_proof, commit, commit_proof, bu_proof, fallback_val, phase_decision = ⊥

1: for j = 1 to t + 1 do
2: phase_decision, decide_proof, commit, commit_proof←

invokePhase(j, vi, decision, commit, commit_proof)
3: if decision = undecided and phase_decision ̸= undecided then
4: decision← phase_decision

Round 1:
5: if decision = undecided then
6: broadcast ⟨help_req⟩pi

Round 2:
7: if received ⟨help_req⟩p′ message and decision ̸= undecided then
8: send ⟨help, decision, decide_proof⟩pi to p′

9: if received t + 1 messages of ⟨help_req⟩p′ from different processes then
10: batch these messages into QCfallback(v) using a (t + 1, n)-threshold signature scheme
11: broadcast the message ⟨fallback, QCfallback, decision, proof⟩pi

12: fallback_start← now + 2δ

Round 3:
13: if received ⟨help, v, decide_proof⟩p′ with valid v and decide_proof for v and decision =

undecided then
14: decision← v

15: bu_decision← decision

16: while fallback_start > now do
17: if received valid ⟨fallback, QCfallback, v, proofp′⟩p′ then
18: if decision = undecided and proofp′ ̸= ⊥ is a valid proof for a valid v then
19: bu_decision← v

20: bu_proof ← proofp′

21: if fallback_start =∞ then
22: broadcast the message ⟨fallback, QCfallback, bu_decision, bu_proof⟩pi

23: fallback_start← now + 2δ

24: fallback_val← Afallback with δ′ = 2δ and initial value bu_decision
25: if decision = undecided then
26: if fallback_val is valid then
27: decision← fallback_val
28: else
29: decision← ⊥

we need another level of certainty, in the form of the finalize certificate (to be stored in
decide_proof). We maintain the invariant that if a correct process receives a valid finalize
certificate, then no finalize certificate on another value can be formed.

Thus, after a correct process learns about a committed certificate it sends a matching
decide message to the leader (line 44). In addition, if this is the first commit certificate it
receives, it commits to it. If the leader receives the necessary threshold of decide messages, it
forms a finalize quorum certificate. Every process that receives such a certificate can safely
return the certificate’s value as its decision.

S. Cohen, I. Keidar, and A. Spiegelman 18:11

Algorithm 4 invokeP hase(j, vi, decision, decide_proof, commit, commit_proof): code for pro-
cess pi.
30: leader← pj mod n

Round 1:
31: if leader = pi and decision = ⊥ then
32: broadcast the message ⟨propose, vi, j⟩leader

Round 2:
33: if received ⟨propose, v, j⟩leader with a valid v for the first time and commit = ⊥ then
34: send ⟨vote, v, j⟩pi to leader
35: else if received ⟨propose, v, j⟩leader and commit ̸= ⊥ then
36: send ⟨commit, commit,commit_proof, j⟩pi to leader

Round 3:
37: if leader = pi then
38: if received ⟨commit, w, QCcommit(w), j⟩′p then
39: broadcast the message ⟨commit, w, QCcommit(w), j⟩leader
40: else if received

⌈
n+t+1

2
⌉

messages of ⟨vote, v, j⟩p′ then
41: batch these messages into QCcommit(v) using a (

⌈
n+t+1

2
⌉
, n)-threshold signature

scheme
42: broadcast the message ⟨commit, v, QCcommit(v), j⟩leader

Round 4:
43: if received ⟨commit, v, QCcommit(v), j⟩leader then
44: send ⟨decide, v, j⟩pi

to leader
45: if commit= ⊥ then
46: commit← v

47: commit_proof← QCcommit(v)
Round 5:

48: if leader = pi then
49: if received

⌈
n+t+1

2
⌉

messages of ⟨decide, v, j⟩p′ then
50: batch these messages into QCfinalized(v) using a (

⌈
n+t+1

2
⌉
, n)-threshold signature

scheme
51: broadcast the message ⟨finalized, v, QCfinalized(v), j⟩leader

52: if received ⟨finalized, v, QCfinalized(v), j⟩leader then
53: decision← v

54: decide_proof← QCfinalized(v)
55: return (decision, decide_proof, commit, commit_proof)

Main algorithm. The BA algorithm is given in Algorithm 3, using the phase algorithm as
a building block. In our algorithm, all correct processes eventually decide by updating their
decision variable. However, they do not halt. In our BA algorithm, we start by executing
n phases with a rotating leader, ensuring that every correct process has a chance to reach
a decision before executing the fallback algorithm. After the phases end there are several
possibilities. First, if there are at most n−t−1

2 Byzantine processes, all correct processes must
have decided. If there are more Byzantine processes, it may be the case that some correct
processes decided and others did not. This could happen, for example, if a Byzantine leader
causes the single correct leader to decide and not initiate its phase. By the phase guarantees,
we know that all correct processes that decide by this point, decide the same valid value.

OPODIS 2022

18:12 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

To address the case where not all correct processes decided, we have processes that have
not decided ask for help from all other processes (line 6). If a correct process has decided
and receives a help_req message, it answers with a help message including the decision value
along with its proof at line 8. Note that in this round, the number of messages sent by
correct processes is linear in the number of help requests. Specifically, if only Byzantine
processes send help_req messages, the number of answers is O(nf) and independent of t.

We note that if t + 1 help requests are sent, then at least one of them is sent by a correct
process that did not manage to form quorum certificates when it served as leader. Thus, in
this case, f ∈ Θ(t), and we can execute the fallback algorithm. To make sure that all correct
processes participate in the fallback algorithm, a fallback certificate with t + 1 signature is
formed.

We now encounter a new challenge. We must have all correct processes start a synchronous
fallback algorithm at the same time. However, an adversary can form the fallback certificate
and deal it to only some correct processes. This scenario can happen, for example, if less
than t + 1 help_req messages are sent, and the adversary adds t help_req signatures of its
own. We thus require a correct process that receives a fallback certificate to broadcast it
(line 22). This ensures that whenever one correct process runs the fallback algorithm, all
of them do, but may still cause different correct processes to start the fallback at different
times. Nevertheless, we know that the starting time difference is at most the δ it takes the
message to arrive. We therefore run the fallback algorithm with δ′ = 2δ, ensuring that all
correct processes enter a fallback round before any of them exits from it.

Another subtle point is making sure that the fallback algorithm does not output a decision
value that contradicts previous decisions made by correct processes. For that reason we add
another 2δ safety window between getting notified about a fallback and initiating it. Correct
processes that broadcast the fallback certificate attach their decision value and a proof (if
exists). In the 2δ safety window, processes that learn about a decision value in the system
adopt it as the initial value for the fallback algorithm (line 17). Recall that Afallback is a
strong BA protocol. If a correct process decides v prior to the fallback algorithm, all other
correct processes learn about v during the safety window. Then, by strong unanimity, they
all decide v.

Note that if the decision returned from Afallback is not valid then it must be that strong
unanimity preconditions are not satisfied (since correct processes always have valid inputs)
and a default value is returned. Furthermore, whenever the strong unanimity precondition is
not satisfied, it follows that not all correct processes propose the same value. As a result,
there must exist more than one valid value in the run (the different correct proposals). And
the ⊥ default value is a valid weak BA output.

A formal correctness proof of Algorithms 3 and 4 appears in Appendix B, proving the
following theorem:

▶ Theorem 5. Algorithm 3 solves weak BA.

Complexity
We show that if f < n−t−1

2 , correct processes never perform the fallback algorithm.

▶ Lemma 6. If f < n−t−1
2 , correct processes never perform the fallback algorithm.

Proof. In Appendix B we prove that if a correct process is the leader of a non-silent phase
and f < n−t−1

2 , then all correct processes return the same valid decision. Since Algorithm 3
is composed of n phases, every correct process has a chance to invoke its phase and all
correct processes decide by line 4. Assume by way of contradiction that there exists a correct

S. Cohen, I. Keidar, and A. Spiegelman 18:13

process that invokes the fallback algorithm. By the code, it has received a fallback certificate.
However, such certificate can only be formed by t + 1 unique help_req signatures, meaning
that at least one correct process sent a help_req message. But this is impossible if all correct
processes decide by line 4. ◀

Each phase is composed of a constant number of all–to–leader and leader–to–all rounds.
Thus, it incurs O(n) words. Potentially, there are n phases. However, a lemma in Appendix B
proves that once a correct leader invokes invokePhase() and the number of actual failures
is f < n−t−1

2 , all correct processes decide by the end of that phase. Since correct leaders
that had already decided do not invoke their phases (their phases are silent), the number of
invoked phases depends on f itself. Thus, all phases combined send O(n(f + 1)) words.

After n invokePhase invocations end, help request messages are sent only by correct
processes that did not decide. By the above-mentioned lemma, it happens only if f > n−t−1

2 .
In this case, f = Θ(n) and since t = Θ(n) it holds that O(nf) = O(n2). Correct processes
that decide by this point answer directly to whoever sent them help requests, without affecting
the asymptotic complexity. If some correct process receives a fallback certificate, another
all-to-all round is added, keeping the complexity O(n2). All other communication costs are
incurred in the fallback algorithm, whose complexity is also O(n2).

7 strong BA: the failure free case

Recall that the optimal resilience for strong BA is n = 2t + 1. In this section we present a
binary strong BA protocol that has communication complexity of O(n) in the failure free
case. Otherwise, it has complexity O(n2). The question of whether an adaptive protocol
with O(n(f + 1)) complexity can be designed for strong BA with optimal resilience remains
open.

In the algorithm, presented in Algorithm 5, a single leader first collects all initial values.
Since we solve binary agreement, in the failure-free case there must be a value proposed by
t + 1 different processes. Thus, the leader can use a threshold signature scheme to aggregate
a quorum certificate on this proposed value.

As a second step, the leader sends this certificate to all processes and attempts to collect n

different signatures on the value. If it succeeds, it broadcasts it. Every process that receives a
signed-by-all certificate can safely decide upon its value. If a correct process does not decide,
it broadcasts a fallback message. Every process that hears such a message, echoes it at most
once, and execute Afallback after 2δ time with 2δ-long rounds, as in Section 6. In Appendix C
we prove the correctness of Algorithm 5. That is, we prove the following theorem:

▶ Theorem 7. Algorithm 5 solves binary strong BA.

Complexity
We show that if the run is failure-free, correct processes never perform the fallback algorithm.

▶ Lemma 8. If f = 0, correct processes never perform the fallback algorithm.

Proof. If all processes are correct then they all send their initial values to the leader at line 2.
Since values are binary, and there are n = 2t + 1 processes, there must be a value v such
that the leader receives t + 1 unique signatures on v. Then, the leader broadcasts a propose
certificate on v (line 6). Every correct process that receives this certificate replies with a
signed decide message at line 8. Since all processes are correct, the leader then receives n

signatures and then broadcasts a decide certificate on v (line 12). All processes then receive
this certificate and decide v at line 14. None of them sends a fallback message. ◀

OPODIS 2022

18:14 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Algorithm 5 strong BA algorithm: code for process pi with initial value vi.
Initially decision, proof, bu_decision, bu_proof, fallback_val = ⊥
fallback_start←∞

1: leader← p1
Round 1:

2: send ⟨vi⟩pi
to leader

Round 2:
3: if leader = pi then
4: if received t + 1 messages of ⟨v⟩p′ for some v then
5: batch these messages into QCpropose(v) using a (t+1, n)-threshold signature scheme
6: broadcast the message ⟨propose, v, QCpropose(v)⟩leader

Round 3:
7: if received valid ⟨propose, v, QCpropose(v)⟩leader then
8: send ⟨decide, v⟩pi

to leader
Round 4:

9: if leader = pi then
10: if received n messages of ⟨decide, v⟩p′ then
11: batch these messages into QCdecide(v) using a (n, n)-threshold signature scheme
12: broadcast the message ⟨decide, v, QCdecide(v)⟩leader

Round 5:
13: if received valid ⟨decide, v, QCdecide(v)⟩leader and decision = ⊥ then
14: decision← v

15: proof← QCdecide(v)
16: else
17: broadcast the message ⟨fallback,⊥,⊥⟩pi

18: fallback_start← now + 2δ

19: bu_decision← decision

20: while fallback_start > now do
21: if received ⟨fallback, v, proofp′⟩p′ then
22: if decision = ⊥ and proofp′ ̸= ⊥ is a valid proof for a valid v then
23: bu_decision← v

24: bu_proof ← proofp′

25: if fallback_start =∞ then
26: broadcast the message ⟨fallback, bu_decision, bu_proof⟩pi

27: fallback_start← now + 2δ

28: fallback_val← Afallback with δ′ = 2δ and initial value bu_decision
29: if decision = ⊥ then
30: decision← fallback_val

By Lemma 8, if all processes are correct then they never perform the fallback algorithm,
and there are 4 all-to-leader and leader-to-all rounds, with a total of O(n) words. Otherwise,
the complexity is the complexity of the fallback algorithm, which is O(n2).

S. Cohen, I. Keidar, and A. Spiegelman 18:15

8 Conclusions and Future Directions

We have presented solutions for both Byzantine Broadcast and weak Byzantine Agreement
with adaptive communication complexity of O(n(f + 1)) and resilience n = 2t + 1. To
construct the weak BA algorithm, we utilized a threshold on the number of signatures
such that on one hand, this number is sufficient to ensure a safe algorithm with adaptive
communication in case there are not “many” Byzantine processes. On the other hand, failing
to achieve this threshold indicates that there is a high number of failures, which allows the
use of a quadratic fallback algorithm.

This weak BA algorithm is taken as a black box to construct our adaptive BB algorithm.
Here, we carefully choose the predicate for the validity property, to allow us to reduce one
problem to the other. Finally, for strong BA we propose a binary solution with optimal
resilience. Our solution is linear in n in the practically common failure-free case, and quadratic
in any other case. The question of whether a fully adaptive strong BA with optimal resilience
exists or not remains open.

While n = 2t + 1 is optimal for strong BA, this is not the case for BB and weak BA,
where any t < n can be tolerated2. Thus, another possible future direction is improving
the resilience of an adaptive BB or adaptive weak BA to support any t < n. Our weak BA
algorithm relies on the current resilience to satisfy that if f > n−

⌈
n+t+1

2
⌉

then f is linear
in t. Note that this remains true for any resilience of n = αt + β, for α > 1, β > 0 without
compromising the intersection property required for safety. Should a quadratic solution
for weak BA be developed, it could be used to improve the total resilience of our adaptive
algorithm (instead of Momose and Ren’s algorithm [13]).

References
1 Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience,

one-message bft devil. CoRR, abs/1803.05069, 2018. arXiv:1803.05069.
2 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated

asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

3 Eugene S Amdur, Samuel M Weber, and Vassos Hadzilacos. On the message complexity of
binary byzantine agreement under crash failures. Distributed Computing, 5(4):175–186, 1992.

4 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
International conference on the theory and application of cryptology and information security,
pages 514–532. Springer, 2001.

5 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

6 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

7 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement whp. In 34th International Symposium on Distributed
Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

8 Yvo Desmedt. Society and group oriented cryptography: A new concept. In Conference on
the Theory and Application of Cryptographic Techniques, pages 120–127. Springer, 1987.

2 For weak BA, this stems from the resilience for external validity.

OPODIS 2022

http://arxiv.org/abs/1803.05069

18:16 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

9 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM), 32(1):191–204, 1985.

10 Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM (JACM), 37(4):720–741, 1990.

11 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, New York, NY, USA, 2017. ACM. doi:10.1145/
3132747.3132757.

12 Vassos Hadzilacos and Joseph Y Halpern. Message-optimal protocols for byzantine agreement.
Mathematical systems theory, 26(1):41–102, 1993.

13 Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In 35th International Symposium on Distributed Computing (DISC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

14 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr. In 34th International Symposium on Distributed Computing (DISC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

15 Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207–220. Springer, 2000.

16 Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th
International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

17 Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Strengthened fault tolerance in
byzantine fault tolerant replication. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 205–215. IEEE, 2021.

A Adaptive Byzantine Broadcast: Correctness

A.1 Correctness
We start by proving the phase’s requirements. First, immediately from lines 29 – 31 we get
that all correct processes return either ⊥ or a valid v. Next, the following lemma shows that
in non-silent phases with correct leaders all correct processes return a valid value.

▶ Lemma 9. If a phase is non-silent and its leader is correct, then all correct processes
return a valid value.

Proof. If the leader is correct it broadcasts a help_req message at line 16. All correct
processes then answer at round 2. If the leader receives a value signed by the sender at
line 23, it broadcasts it at line 24. Otherwise, no correct processes received a value signed by
the sender and sends an idk message at line 21. Since n = 2t + 1, the leader receives at least
t + 1 idk messages (from the correct processes) and forms an idk certificate. It broadcasts
this value at line 27. In both cases, all correct processes return a valid value at line 29. ◀

The next lemma proves that if all correct processes invoke a phase with a value other
than ⊥, then they can return only one type of a valid value – a value signed by the sender.

▶ Lemma 10. If all correct processes invoke a phase with value v ̸= ⊥, there does not exists
a value signed by t + 1 processes in the system.

Proof. If all correct processes invoke a phase with value v ≠ ⊥, they reply to the help_req
messages at line 19 and never send an idk message. Since there are at most t Byzantine
processes, the leader cannot receive t + 1 idk messages and form an idk certificate signed by
t + 1 different processes. ◀

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757

S. Cohen, I. Keidar, and A. Spiegelman 18:17

We now prove the correctness of the BB algorithm. First, to be able to use the weak BA,
all correct processes must execute it with valid initial values.

▶ Lemma 11. All correct processes execute line 9 with a valid initial value.

Proof. Let pi be a correct process. In n phases, there is one phase with pi as leader. If pi

has updated vi prior to that phase, it happened either line 4 or at line 8. Immediately from
the code we get that in both cases pi updates a valid value. If pi did not update a value, it
initiates a non-silent phase, and by Lemma 9 returns a valid value. ◀

Note that agreement and termination stem immediately from the code and the correctness
of the weak BA. The following lemma proves validity.

▶ Lemma 12. If sender is correct, then all correct processes decide vsender.

Proof. If sender is correct then all correct process learn vsender by the end of round 1 and
update their values at line 4. By Lemma 10, in no phase can any process create a value
signed by t + 1 processes. Thus, when executing the weak BA vsender signed by the sender is
the only valid value that exists in the run. By unique validity and since the sender does not
sign more than one initial value, vsender is the only possible BA output. It follows that all
correct processes execute line 11 and return the sender’s value. ◀

We conclude the following theorem:

▶ Theorem 13. Algorithm 1 solves BB.

B Weak BA: Correctness

We start by proving some lemmas about the phase’s guarantees. First, we prove that if the
decision is updated in a given phase, then its new value is valid.

▶ Lemma 14. If a correct process updates decision during invokePhase, then v is a valid
decision value.

Proof. If a correct process updates its decision value at line 53 of invokePhase then it must
have received a finalized certificate signed by

⌈
n+t+1

2
⌉

processes. Hence, at least one correct
process p′ signed the decide message for v at line 44. By the code, p′ signed the decide
message for v if it received a commit certificate signed by

⌈
n+t+1

2
⌉

processes. Hence, at least
one correct process p′′ signed the vote message for v at line 34. By the code, this is possible
only if v is a valid value (line 33). ◀

Next, we prove that all correct processes that update their decision variable do so the
same value. Moreover, at most one valid decide_proof can exist in the system. That is, a
Byzantine process cannot devise a decide_proof that conflicts with any other decide_proof
known by correct processes.

▶ Lemma 15. All correct processes that update decision during invokePhase return the
same decision. In addition, at most one finalize certificate can be formed in all phases.

Proof. Note that every correct process that updates decision sets its at line 53. Assume
that a correct process pi sets its decision value to v in phase l and a correct process pj sets
its decision value to w in phase k ≥ l.

OPODIS 2022

18:18 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

If k = l, then pi and pj set their decision value in the same round and they both receive a
finalize certificate signed by

⌈
n+t+1

2
⌉

different processes. At least one correct process signed
both certificates and since correct processes sign at most one finalize message per phase,
v = w.

For the case where k > l: in phase l, pi receives a finalize certificate signed by
⌈

n+t+1
2

⌉
different processes. Thus, at least

⌈
n+t+1

2
⌉
− t ≥ n−t+1

2 correct processes updated their
commit to v in that phase. These processes do not vote for any value in following rounds.
Thus at most n− t− n−t+1

2 = n−t−1
2 correct processes can sign a conflicting value. Since

n−t−1
2 + t <

⌈
n+t+1

2
⌉
, in any phase greater than l, no process can collect

⌈
n+t+1

2
⌉

signatures
on any value other than v. Hence, no process can send a commit message on w ̸= v with a
valid commit certificate. For the same reason, no process can form and send a valid finalize
certificate and decide upon any other value. Thus, v = w. ◀

We prove next that once a correct process is the leader of a non-silent phase, all correct
processes return the same valid decision value by the end of that phase.

▶ Lemma 16. If a correct leader invokes invokePhase in phase k and f < n−t−1
2 , then all

correct processes return the same valid decision by the end of the phase and this decision is a
proposal of a correct process.

Proof. The leader broadcasts its value v to all processes. If there is a correct process p

for which commit ̸= ⊥, it sends the message ⟨commit, w, proof, j⟩p to the leader. If the
leader receives ⟨commit, w, proof, j⟩p′ (from any process), it broadcasts in round 3 a commit
certificate for w. Otherwise, since f < n−t−1

2 , leader receives
⌈

n+t+1
2

⌉
messages voting for

v and broadcasts a commit certificate for v. Then, all correct processes send the leader a
finalize messages on v or w. Again, the leader receives

⌈
n+t+1

2
⌉

messages finalizing v and
broadcasts a finalize certificate for v. Correct processes receive this message and update their
decision and decide_proof accordingly. Then, by the code they all return v. ◀

We now prove the correctness of the main BA algorithm. The following two lemmas
prove that although some processes may start executing Afallback at different times, they all
successfully execute the fallback algorithm.

▶ Lemma 17. If some correct process executes the fallback algorithm in Algorithm 3, all
correct process do so and they all start at most δ time apart.

Proof. Let p be the first correct process that executes the fallback algorithm at line 24 of
Algorithm 3 at time t. This means that at time t− 2δ, p broadcasts the fallback certificate
to all other processes (line 22). By synchrony, this certificate is guaranteed to arrive at all
correct processes by t− δ, causing them to execute the fallback algorithm by t + δ if they
have not done so earlier. ◀

▶ Lemma 18. Consider a synchronous algorithm A. Let σ be a synchronized run of A
defined as follows. Let t be the time that the first correct process starts executing A in σ.
All correct processes start executing A by t + δ. The round duration is 2δ. In round r that
begins (locally) in tr, round r messages are processed if they are received in the time window
[tr − δ, tr + 2δ]. Then σ is a correct run of A.

Proof. Consider a process p that starts round r at time tp
r . Let p′ be another correct process

that starts round r at time tp′

r , and sends a message to p in round r. By assumption, tp′

r = tp
r+ϵ

where −δ ≤ ϵ ≤ δ, and a message sent by p′ at tp′

r arrives at time ta where tp′

r ≤ ta ≤ tp′

r + δ.
Note that round r ends at p at time tp

r+1 = tp
r + 2δ. Hence, tp

r − δ ≤ ta ≤ tp
r + 2δ, as

needed. ◀

S. Cohen, I. Keidar, and A. Spiegelman 18:19

Next, we the following lemma states that if a correct process manages to reach a decision
prior to the fallback algorithm, then this is the only possible decision. Moreover, this decision
value must be a valid one.

▶ Lemma 19. If some correct process decides v before executing the fallback algorithm, then
all correct processes decide v and v is valid.

Proof. If there exists a correct process p that decides at line 4, then by Lemma 15 and
the code all processes that decide at line 4 decide v as well. Moreover, all other correct
process that have not decided by line 5, send help_req messages. Process p answers them
and they all decide at line 14. Otherwise, no correct process decides at line 4 and they all
send help_req messages at line 6. Then, they all receive t + 1 help messages and by the code
perform the fallback algorithm. In addition, by the lemma assumption, it must be that p

decides v at line 14.
If correct processes execute the fallback algorithm, then by the code they all wait a time

period of 2δ before the execution, during which they receive all decisions made by other
correct processes and update bu_decision accordingly (line 24). Specifically, they receive v

from p. It follows from Lemma 15 that bu_decision is updated with the same value at all
correct processes. Thus, all correct processes execute Afallback with the same input, and by
strong unanimity they set fallback_val to v at line 24.

We now prove that v is valid. If p decides v at line 4, then it must have updated decision
in the scope of the relevant phase. By Lemma 14 this value is valid. Otherwise, if p decides
v at line 14, then the validity follows from the code. Hence, since v is valid, all correct
processes decide it by line 27. ◀

Finally, we are ready to prove the required BA properties.

▶ Lemma 20 (Agreement). In Algorithm 3 all correct process decide on the same value.

Proof. First, by Lemma 15, all correct processes that decide in line 4 decide the same value
v. In addition, it follows from the same lemma that every correct process that decides at
line 14 after receiving a valid finalize certificate decides v, as at most one finalize certificate
can be formed.

It is left to show that if not all correct processes decide before the fallback algorithm at
line 24, they still decide upon the same value. If at least one correct process p receives a
fallback certificate it follows from Lemma 17 that all correct processes receive the certificate
within at most δ time of p. Then, by the code, all correct process execute the fallback
algorithm at line 24 and by Lemma 18 and the fallback algorithm solves strong BA, providing
agreement. By Lemma 19, we get that processes that decide before running the fallback
decide on the same value. ◀

▶ Lemma 21 (Termination). In Algorithm 3 all correct process decide.

Proof. If not all correct processes decide before line 5 and no correct process receives a
fallback certificate, it follows that less than t + 1 correct processes broadcast help messages
at line 6. Hence, at least one correct process p has decided by line 5. Process p receives all
of the correct help messages at line 7 and answers them at line 8. All correct processes that
asked for help then decide at line 14.

It remains to examine the case that at least one correct process p receives a fallback
certificate. It follows from Lemma 17 that all correct processes receive the certificate within
at most δ time of p. Then, by the code, all correct process execute the fallback algorithm at
line 24 and by Lemma 18 and the fallback algorithm solves BA, providing termination. ◀

OPODIS 2022

18:20 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

▶ Lemma 22 (Unique Validity). In Algorithm 3 if a correct process decides v then either
v = ⊥ or validate(v) = true, and if v = ⊥ then more than one valid value exists in the run.

Proof. Let v be the decision value of a correct process in Algorithm 3. First, by lines 27 – 29
validate(v) = true or v = ⊥. We prove that if v = ⊥, then at least two valid values exist in
the run.

By the code, all processes execute the fallback algorithm with valid inputs (either their
initial valid values, or a valid value they adopt at line 19). By strong unanimity of Afallback, if
all correct processes start with the same valid value v′, then v′ must be the returned decision
value. This contradicts the fact that ⊥ is returned at line 29. Therefore, not all correct
processes execute Afallback with the same value. As they all execute the fallback algorithm
with valid inputs, it follows that at least two valid values exist in the run. ◀

In addition, we need to prove that every correct process updates its decision at most
once.

▶ Lemma 23. In Algorithm 3 all correct process decide at most once.

Proof. Any correct process updates decision at line 4, line 14 or lines 27 – 29. In all cases,
it only does so if decision = undecided. Since by the code it does not update decision to the
value undecided, it follows that decision is updated at most once. ◀

From Lemmas 20, 21, 22, and 23 we conclude:

▶ Theorem 24. Algorithm 3 solves weak BA.

C Strong BA: Correctness

▶ Lemma 25. If some correct process executes the fallback algorithm in Algorithm 5, all
correct process do so and they all start at at most δ time apart.

Proof is similar to Lemma 17 in Section 6.

▶ Lemma 26 (Agreement). In Algorithm 5 all correct process decide on the same value.

Proof. First, as correct processes only sign one decide message, every process that receives
QCdecide(v) receives the same quorum certificate. Thus, all correct processes that decide at
line 14 decide the same v. If at least one correct process receives a fallback message then by
Lemma 25, they all execute the fallback algorithm at most δ time apart. Thus, if at least
one correct process decides at line 14, then all correct processes that have not yet decided
learn about v in the 2δ safety window, and adopt it as their initial value for the fallback
(line 23). It follows that all correct processes decide with the same input value v and by
strong unanimity this is the only possible decision. ◀

▶ Lemma 27 (Termination). In Algorithm 5 all correct process decide.

Proof. If not all correct processes decide by line 14, then a correct process broadcasts a
fallback message at line 17. It follows from Lemma 25 that all correct processes receive the
certificate within at most δ time of p. Then, by the code, all correct process execute the
fallback algorithm at line 28 and by Lemma 18 and the fallback algorithm solves strong BA,
providing termination. ◀

▶ Lemma 28 (Validity). In Algorithm 5 if all correct processes propose the same value v,
then the output is v.

S. Cohen, I. Keidar, and A. Spiegelman 18:21

Proof. Correct processes only send decide messages on values with valid propose quorum
certificates. Note that such a quorum certificate can only be formed with t + 1 unique
signatures. Hence, if all correct processes propose the same value v, then the only possible
propose quorum certificate is with v. As a result, the only possible decide quorum certificate
is with v as well.

The fallback algorithm is executed with either the original initial values or with a value
that has a corresponding decide quorum certificate. Thus, if correct processes execute the
fallback algorithm, they all start with v and by strong unanimity of Afallback, the decision
is v. ◀

Finally, we prove that every correct process updates its decision at most once.

▶ Lemma 29. In Algorithm 5 all correct process decide at most once.

Proof. Any correct process updates decision either at line 14 or at line 30. In both cases, it
only does so if decision = ⊥. Since it does not update decision to the value ⊥ at any step of
the algorithm, it follows that decision is updated at most once. ◀

From Lemmas 26, 27, 28, and 29 we conclude:

▶ Theorem 30. Algorithm 5 solves binary strong BA.

OPODIS 2022

Modeling Resources in Permissionless
Longest-Chain Total-Order Broadcast
Sarah Azouvi !

Protocol Labs

Christian Cachin !

University of Bern, Switzerland

Duc V. Le !

University of Bern, Switzerland

Marko Vukolić !

Protocol Labs

Luca Zanolini !

University of Bern, Switzerland

Abstract
Blockchain protocols implement total-order broadcast in a permissionless setting, where processes
can freely join and leave. In such a setting, to safeguard against Sybil attacks, correct processes
rely on cryptographic proofs tied to a particular type of resource to make them eligible to order
transactions. For example, in the case of Proof-of-Work (PoW), this resource is computation, and
the proof is a solution to a computationally hard puzzle. Conversely, in Proof-of-Stake (PoS), the
resource corresponds to the number of coins that every process in the system owns, and a secure
lottery selects a process for participation proportionally to its coin holdings.

Although many resource-based blockchain protocols are formally proven secure in the literature,
the existing security proofs fail to demonstrate why particular types of resources cause the blockchain
protocols to be vulnerable to distinct classes of attacks. For instance, PoS systems are more
vulnerable to long-range attacks, where an adversary corrupts past processes to re-write the history,
than PoW and Proof-of-Storage systems. Proof-of-Storage-based and PoS-based protocols are both
more susceptible to private double-spending attacks than PoW-based protocols; in this case, an
adversary mines its chain in secret without sharing its blocks with the rest of the processes until the
end of the attack.

In this paper, we formally characterize the properties of resources through an abstraction called
resource allocator and give a framework for understanding longest-chain consensus protocols based
on different underlying resources. In addition, we use this resource allocator to demonstrate security
trade-offs between various resources focusing on well-known attacks (e.g., the long-range attack and
nothing-at-stake attacks).

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Software and
its engineering → Distributed systems organizing principles

Keywords and phrases blockchain, consensus, resource, broadcast

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.19

Related Version Full Version: https://arxiv.org/abs/2211.12050

Funding DVL has been supported by a grant from Protocol Labs to the University of Bern. LZ
has been supported by the Swiss National Science Foundation (SNSF) under grant agreement
Nr. 200021_188443 (Advanced Consensus Protocols).

Acknowledgements The authors thank anonymous reviewers for helpful feedback.

© Sarah Azouvi, Christian Cachin, Duc V. Le, Marko Vukolić, and Luca Zanolini;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarah.azouvi@protocol.ai
mailto:christian.cachin@unibe.ch
https://orcid.org/0000-0001-8967-9213
mailto:duc.leviet@unibe.ch
https://orcid.org/0000-0002-8123-2713
mailto:marko@protocol.ai
mailto:luca.zanolini@unibe.ch
https://orcid.org/0000-0003-4655-3172
https://doi.org/10.4230/LIPIcs.OPODIS.2022.19
https://arxiv.org/abs/2211.12050
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Modeling Resources

1 Introduction

Permissionless consensus protocols are open for everyone to participate and often rely on a
resource to protect against Sybil attacks. In the case of Proof-of-Work (PoW), this resource
is computation: A computational puzzle must be solved in order to gain writing rights in the
system. In contrast, in a Proof-of-Stake (PoS) system, writing access is granted using a form
of lottery where participants are elected proportionally to the number of coins they own.
Other resource-based systems, such as Proof-of-Storage, have also appeared. Participants
are elected proportionally to the number of resources they commit to the system, and hence
this commitment must be publicly verifiable. Different resources present different trade-offs.
For example, PoS is much more energy-efficient than PoW but presents many additional
vulnerabilities [5]. Comparing the security of protocols based on multiple resource types is a
non-trivial task, as they use different assumptions and frameworks.

In this paper, we provide a common framework to formally compare consensus protocols
based on different underlying resources. We only consider longest-chain protocols [11] that
rely on an underlying resource, as we want to highlight the properties affected by varying
the resource for the same consensus method. In future work, our framework could be used
to model further approaches to ensure consensus, such as well-known BFT protocols [7],
for instance. In longest-chain protocols, one participant is elected at each time step, on
expectation, proportionally to their amount of resource and that participant gets to write to
the append-only database by adding a block containing all the necessary data to the longest
chain of blocks.

We also explore known attacks in this work. The first one is the long-range attack. In a
long-range attack, an adversary corrupts processes that used to participate in the system
but that no longer hold any resources. Moreover, we investigate nothing-at-stake attacks,
where processes mine on multiple chains at the same time, and private attacks, where an
adversary mines on its own chain without contributing to the honest chain. We are interested
in quantifying gain or loss of security with different resources. It has already been shown
that, when considering longest-chain protocols, PoS is less secure than PoW. We furthermore
show that Proof-of-Storage stands in the middle, as storage is not virtual (like stake), but is
reusable (unlike the computation of PoW).

We start the paper by providing a formal framework in which protocols based on different
resources can meaningfully be compared. We differentiate between virtual and external
resources to highlight which properties make longest-chain PoS and Proof-of-Storage less
secure than PoW, although they both present trade-offs when it comes to their efficiency.

Contributions. Our contributions can be summarized as follows.
We formally characterize the properties of resources through an abstraction called resource
allocator and formally define properties for a secure resource allocator.
We concretely define different resource allocator abstractions, each one for every type of
resource used in popular blockchain protocols, namely, computation, stake, and storage.
We present an algorithm that, when instantiated with different resource allocators, leads to
a generalization of existing protocols such as Nakamoto consensus, Ouroboros Praos, and
Filecoin’s consensus protocol. We also show formally that this generalization implements
total-ordered broadcast under a fixed total resource in a permissionless setting.
We demonstrate how different resources lead to different security trade-offs by leveraging
our model to explain long-range attacks against virtual resources and attacks related to
the nothing-at-stake nature of reusable resources.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:3

Related Work. Since the emergence of Bitcoin in 2008, the academic community has
developed a number of frameworks [16, 22, 18, 11] for studying the safety and liveness
properties of its Nakamoto consensus protocol. These studies also established a strong
foundation for the development of blockchain protocols based on more eco-friendly types
of resources, such as stake and storage. However, despite the fact that all resource-based
blockchains have been formally proven to be secure, these results have failed to explain why
certain properties of resources make some blockchain protocols more susceptible to particular
types of attacks than others. To the best of our knowledge, no prior work has attempted to
formally study the properties of underlying resources, and our work aims to fill this gap.

Lewis-Pye and Roughgarden [21] present the concept of a resource pool that reflects
the resource balance of processes in the system at any time, and they use a permitter
together with the resource pool to abstract away the leader selection procedure. Using
this formalization, they demonstrate two crucial impossibility results for permissionless
systems. Two main results of their work are: (i) no permissionless, deterministic, and
decentralized protocol solves the Byzantine Agreement problem in a synchronous setting, and
(ii) no permissionless and probabilistic protocols solve the Byzantine Agreement problem
in the unsized setting (in which the total number of resources is unknown) with partially
synchronous communication. However, their work could not capture several aspects of
underlying resources used in blockchain protocols; therefore, their work did not demonstrate
long-range attacks against virtual resources such as stake, and the cost of several other
attacks on reusable resources. Our work takes a similar approach of abstracting away the
leader selection process with a resource allocator (c.f., Section 3), and we further formalize
the properties of resources through the interactions between the process and this allocator.
With this formalization, we prove how permissionless and probabilistic blockchain protocols
guarantee properties of a total-order broadcast in a synchronous setting and demonstrate
various attacks against virtual or reusable resources.

Terner [25] also investigates how to abstract resources used in permissionless blockchains.
While this work outlines several essential properties of resources and studies how the resource
generation rate affects the standard properties (i.e., consistency and liveness) of robust
transaction ledger, the study does not characterize the properties of the underlying resources
used in permissionless blockchain protocols. Consequently, this model fails to explain why
distinct types of resources render some protocols vulnerable to certain attacks (e.g., long-range
attacks and private attacks).

2 Model and Definitions

2.1 System Model
Time. We assume that the protocol proceeds in time steps and define a time step to be a
value in N. Moreover, we consider 0 as starting time step of protocol execution.

Processes. We consider a system consisting of a set of processes, P = {p1, p2, . . .}. Processes
interact with each other through exchanging messages. A protocol for P consists of a collection
of programs with instructions for all processes. Moreover, to capture the permissionless
nature of various blockchain protocols, processes can join the system at any time. we denote,
P≤t, the set of all processes that have participated in the protocol before the time step t.
Hence, Pt ⊆ Pt′ for all t ≤ t′. At the beginning of each time step, a process becomes
activated, and it starts to follow a deterministic protocol. This includes processing any
messages that may have arrived from other processes. Once done, it becomes deactivated.
We assume that the activation period of a process pi starts at the time step t and ends before
time step t + 1.

OPODIS 2022

19:4 Modeling Resources

Communication. We assume there is a low-level primitive for sending messages over point-
to-point links between each pair of processes that know of each other, as well as a probabilistic
broadcast primitive [7]. Point-to-point messages are authenticated and delivered reliably
among correct processes. In probabilistic broadcast, correct processes gossip-deliver and
gossip-broadcast messages with an overwhelming probability, no message is delivered more
than once, and no message is created or corrupted by the network.

Network Delay. We denote by ∆ ∈ N with ∆ ≥ 1 the maximum network delay [14]. Namely,
if a correct process gossip-broadcasts a message m at a time step t, then other processes will
have gossip-delivered or received over the message by the beginning of a time step t + ∆ with
an overwhelming probability.

Idealized Digital Signature. A digital signature scheme, Σ, consists of two operations,
Sign(·, ·) and Verify(·, ·, ·). The operation Sign(pi, ·) invoked by pi takes m ∈ {0, 1}∗ as
input and returns a signature σ ∈ {0, 1}∗. Only pi can invoke Sign(pi, ·). The operation
Verify(pi, ·, ·) takes as input a signature, σ, and a message m; Verify(pi, ·, ·) returns true for
any pi ∈ P and m ∈ {0, 1}∗ if and only if pi has invoked Sign(pi, m) and obtained σ before.
Any process can invoke Verify(·, ·, ·).

Random Oracle. All hash functions are modeled as a random oracle, H , that can be queried
by any process. H takes as input a bit string x ∈ {0, 1}∗ and returns a uniformly random
string from {0, 1}λ where λ is the security parameter. Also, upon repeated queries, H always
outputs the same answer.

2.2 Modeling Blockchain Data Structures
Blocks. We use tx to denote a transaction. We write tx = [tx1, . . . , txm] to denote a list of
transactions. A block is B = (h, tx, π, σi), where h is a hash value, tx is a list of transactions,
π is a resource commitment proof (cf. Section 3) and σi is a signature on (h, tx, π). In this
work, we assume that blocks are signed. In this way, we can abstract away the notion of
coinbase transactions, i.e., the first transaction in a block, created by a miner, and used to
collect the block reward. Finally, we denote with B0 = (⊥, tx,⊥,⊥) the genesis block.

Blockchain. A blockchain C = [B0, B1, . . .] with respect to the genesis block B0 is a chain
of blocks forming a hash chain such that hj = H(Bj−1) for hj ∈ Bj for j = 1, 2, . . . with
Bj = (hj , ¯txj , πj , σj). For a blockchain C, we use C[−k] to denote the last k-th block in C,
let C[k] to denote block Bk (i.e., block at height k), and write C[: −k] to denote the first
|C| − k blocks. |C| denotes the length of C. We write C ⪯ C′ when C is a prefix C′. We use Ct

to denote the blockchain at time step t. For two time steps, t1 and t2, Ct2/Ct1 is a set of
blocks that is in Ct2 but not in Ct1 .

State. The blockchain state st specifies different information of the underlying blockchain
protocol, e.g., the stake distribution of each process, the block information, such as timestamps,
as well as contract local states. The blockchain state st can be reconstructed by executing
transactions included in a blockchain C. Without loss of generality, we define the state to be
the blockchain, st = C. Also, we write st = (C, B) to indicate that a block B is potentially
appended to C.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:5

Validity. We introduce the notion of validity for transactions and blockchains to capture
the fact that only “valid” transactions are delivered. More importantly, for all blockchain
protocols, the decision on the validity is determined locally by all processes. Because of this,
we define the validity as follows. A transaction x is valid with respect to C if tx satisfies a
validation predicate P(C, ·) locally known to all processes (i.e., P(C, [tx]) = true). We also
use P(C, tx) = true to indicate that the sequence of transactions in tx is valid (i.e., does
not consume the same output in Bitcoin or the same nonce in Ethereum), and we define
P(C, []) to be true. Depending on the blockchain protocol, a valid block B issued by pi

should consist of a valid signature issued by pi, a valid “proof” π for a so-called resource
commitment that we introduce in Section 3 and valid transactions with respect to C such
that C[−1] = B, (i.e., P(C, tx) = true for tx ∈ B). Finally, valid blockchains are chains that
consist of only valid blocks and start from the genesis block B0.

2.3 Total-order Broadcast
We will show that the blockchain protocols considered here guarantee the following properties
of total-order broadcast in a permissionless setting. In particular, total-order broadcast
ensures that all processes deliver the same set of transactions in a common global order. In
total-order broadcast, every process broadcasts a transaction by invoking a-broadcasts(tx).
The broadcast primitive outputs a transaction tx through an a-deliver(tx) event. In this
model, we do not distinguish between a process and a client. A client can be considered as a
process that only broadcast transactions and does not participate in mining.

▶ Definition 2.1 (Total-order Broadcast). A protocol for total-order broadcast satisfies the
following properties.
Validity If a correct process, pi a-broadcasts a valid transaction tx according to P(·, ·) (i.e.,

the validation predicate defined in Section 2), then pi eventually a-delivers tx with an
overwhelming probability.

No duplication No correct process a-delivers the same transaction tx more than once.
Agreement If a transaction tx is a-delivered by some correct process, then with an over-

whelming probability tx is eventually a-delivered by every correct process.
Total order Let tx1 and tx2 be any two transactions, and suppose pi and pj are any two

correct processes that a-deliver tx1 and tx2. If pi a-delivers tx1 before tx2, then with an
overwhelming probability, pj a-delivers tx1 before tx2.

3 Modeling Resources in Blockchain

In this section, we model resources, formalize their properties through the abstraction of a
resource allocator, and state our threat assumptions. The definition of a resource allocator in
this section is only syntactic; security and liveness properties of the resource allocator are
defined in Section 4.

▶ Definition 3.1 (Resource Budget). A resource budget r is a value in N. At any given
time, each process pi has a resource budget ri. In particular, there exists a function
Alloc : P × N→ N that takes as input a process pi and a time step t, outputs the resource
budget of a process at time step t. We define R to be the fixed resource budget existing in
the system.

The definition of a fixed resource budget and the resource allocation function can be
viewed as the sized setting and the resource pool definition in Lewis-Pye and Roughgarden
framework [21].

OPODIS 2022

19:6 Modeling Resources

We note that the specification of the resource budget varies depending on protocols; e.g.,
for PoW, we define the budget to be a number of hash function evaluations per time step.
We now define resource allocator, an abstraction that will allow us to reason about different
resources.

▶ Definition 3.2 (Resource Allocator). A resource allocator, RA, interacts with the pro-
cesses through input events (RA-commit, RA-validate) and output events (RA-assign, RA-is-
committed):

RA-commit(pi, st, r): At time step t, every process pi may request a resource commitment
π from the resource allocator by invoking RA-commit on inputs a state st and a resource
budget 0 ≤ r ≤ Alloc(pi, t), i.e., pi does not RA-commit more resources than it possesses.
At the end of the activation period of pi, the resource allocator either assigns a resource
commitment π and a resource budget r to process pi through an RA-assign(pi, st, r, π) event
or assigns an empty value ⊥ and possibly a resource r to pi through RA-assign(pi, st, r,⊥).
RA-validate(pi, st, π): Every process pi may validate a resource commitment π by invoking
RA-validate on input a state, st, and a resource commitment π. The resource allocator
validates the resource commitment π, through an event RA-is-committed(pi, st, b) event,
with b = true if the commitment π is a valid resource commitment for the state st or
b = false otherwise.

A process triggers RA-commit to pledge its resources to a system, and it can be assigned a
resource commitment as a result to extend the blockchain. If the resource commitment π is
included on-chain, then it must be valid (i.e., RA-validate returns true) for the block to be
accepted. Moreover, we assume that all the events to and from the resource allocator happen
within the same time step. In particular, if a process pi RA-commits some resource budget
r at time step t, at the end of the activation period for pi process pi will receive either a
resource commitment π and r or an empty resource commitment value ⊥ and r.

Resources can be classified into various types. In our model, these types can be described
as the interactions between processes and the resource allocator. The following definition
classifies different types of resources used in existing blockchain protocols.

▶ Definition 3.3 (Types of resource). A resource can be classified as follows.
Virtual A resource is virtual when the resource allocator determines the resource budget of

all processes from the given blockchain state st. For a virtual resource, we assume that
there exists a function StateAlloc : P × C → N that takes as input a process pi and a
blockchain C and outputs the resource budget of pi, and pi can invoke RA-commit(·, ·, r)
on an empty resource, r = ⊥.

External A resource is external when a process must allocate the resource externally with a
budget r ≥ 0 to invoke RA-commit(). For an external resource, this commitment step is
equivalent to giving RA access to the external resource with the budget r. Moreover, we
assume that processes cannot lie about the resource budget r and commit more than r.

Burnable A resource is burnable when a process p can trigger multiple RA-commit(·, ·, r)
at a time step t, and it retrieves r through RA-assign(·, ·, r, ·) at the end of the activation
period for pi. For all committing events RA-commit(pi, ·, ri) from the same process pi

that occur within a time step t , we require
∑

ri>0 ri ≤ Alloc(pi, t).
Reusable A resource is reusable when a process pi can use the same resource budget r ≤

Alloc(pi, t) to trigger infinitely many RA-commit(·, ·, r) at each time step t, and pi does
not need to retrieve r from the output event RA-assign. Hence, for reusable resources, we
denote the value of r in the output event RA-assign(·, ·, r, ·) to be ⊥.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:7

▶ Remark 3.4. The assumption on external resources is natural because an external resource
is inherently unforgeable; for instance, in PoW, processes cannot fake this budget as it is the
physical limit of the mining hardware. For resources like storage, the resource is the physical
hard drive, and r can be thought of as the capacity of the hard drive.

Failures. A process that follows its protocol during an execution is called correct. On the
other hand, a faulty process may crash or deviate arbitrarily from its specification, such
processes are also called Byzantine. We consider only Byzantine faults in this work. All
Byzantine processes are controlled by a probabilistic polynomial-time adversary, A; we write
pi ∈ A to denote that a Byzantine process is controlled by A. In this model, we require
the adversary to go through the same process of committing resources and getting assigned
resource commitments from the allocator. Since the allocator assigns the commitment at the
end of the time step, we require a minimum delay between Byzantine processes to be one. We
also note that this requirement is only for definitional reasons and can be relaxed by assuming
the network delay to be zero for Byzantine processes. However, the concrete parameters on
the probability of getting assigned resource commitments for Byzantine processes will need
to be adjusted to reflect this assumption, and we leave this to future work.

▶ Definition 3.5 (Adversarial Resource Budget). RA is the maximum adversarial resource
budget. For any time step t, it holds that:

∑
pi∈A Alloc(pi, t) ≤ RA.

▶ Definition 3.6 (Corruption). At any time step t, an adversary A can allocate a resource
budget of Alloc(pi, t) from RA to corrupt a process pi ∈ P≤t.

4 Resource-based Total-order Broadcast

In this section, we define an algorithm for the resource-based longest-chain total-order
broadcast using a (probabilistic) resource allocator RAres. We define various properties needed
for a secure resource allocator so that the generic algorithm correctly guarantees properties
of total-order broadcast. Then, we concretely define three different resource allocators based
on three types of resource: computation, stake, and storage to inherently capture three
popular (probabilistic) blockchain protocols, namely, Nakamoto consensus, Ouroboros Praos,
and Filecoin’s consensus protocol. However, due to space constraints, the description of the
Proof-of-Storage allocator can be found in the full version of the paper.

unordered: set of transaction tx that has been received for execution and ordering
delivered : set of transaction tx that has been executed and ordered
k: common prefix parameter
B: set of received blocks, B = (h, tx, π, σ), initially containing B0 = (⊥, tx,⊥,⊥)
C: set of valid blockchains derived from B, initially contains one chain C = [B0]
Clocal: local selected blockchain
Bcom: a RA-committed block for pi

At time step t, ri = Alloc(pi, t) if ri is external, ri ← ⊥ if ri is virtual

Figure 1 Initial state of a correct process.

OPODIS 2022

19:8 Modeling Resources

4.1 Generic Resource-based Longest-chain Total-order Broadcast

A protocol for resource-based longest-chain total-order broadcast using RAres allows any
process pi to broadcast transactions by invoking a-broadcast(tx) and to deliver those that
are valid (according to a validation predicate P(·, ·) and the local chain, Clocal) through an
a-deliver(tx) event. Delivered transactions are totally ordered and stored in a list, delivered,
by every process.

In particular, when a process pi a-broadcasts a transaction, this is gossiped to every
process, and eventually every correct process gossip-delivers it and stores it in a set unordered.
Every stored transaction is then considered by pi.

At any given time, a process may receive new blocks from other processes. Any process
pi can validate the block by invoking RA-validate and RA-assigned resource commitment
to a process pj by RAres. Once the resource commitment is validated, the process verifies
other components of the block such as signature and transactions and store new blocks in B.
Also, if a block B received by other processes does not have a parent (L22), the process can
trigger a request message to pull the blockchain C with B as the tip from other processes.
Upon receiving this request message, other processes re-broadcast every blocks in C with B

as the tip (L13-L16). This step is an oversimplified and inefficient version of how blockchain
nodes synchronize the chain with others. The goal is to demonstrate that it is feasible to
obtain old blocks from other processes.

At any given time, a correct process adopts the longest chain to its knowledge as its
local chain Clocal, and extends with a block Bcom it wishes to order at the last block of its
local chain Clocal. Observe that the Extend function in Algorithm 1 captures the operation
of creating new blocks, usually called mining, in blockchain protocols and we refer to the
processes in charge of creating blocks as miners or validators, interchangeably.

In our model, we abstract this extending operation as the interaction between the processes
and the resource allocator RAres. Namely, to start extending, process pi needs to allocate a
resource r along with the proposed state (Clocal, Bcom) to the resource allocator RAres through
RA-commit(). Once RAres assigns a resource commitment π, pi attaches π to the block and
gossips the block to other processes. The details of this interaction differ depending on the
type of resource and are left for the next subsections. Figure 1 specifies all data structures
maintained by a process, and the code for a process is presented in Algorithm 1.

For Algorithm 1 to satisfy the properties of total-order broadcast, the generic resource
allocator needs to satisfy various properties, and we define those properties as follows.
▶ Definition 4.1 (Secure Resource Allocator). A resource allocator R is secure if it satisfies
the following properties:
Liveness At a time step t, if a process pi invokes RA-commit(pi, st, r) with a state st and

a resource budget r then R issues either RA-assign(pi, st, r, π) or RA-assign(pi, st, r,⊥)
during time step t.

Validity If resource commitment π is a valid resource commitment (i.e., π ̸= ⊥) con-
tained in an output event RA-assign(pi, st, r, π), then any process pj can invoke
RA-validate(pj , st, π). The resource allocator R outputs RA-is-committed(pj , st, b) with
b = true.

Use-Once At any time step t, for any states st, st1, st2, any resource budget r, r1, r2 ∈ N such
that r1 + r2 = r, the probability that RA responds with RA-assign(pi, st, r, π) with π ̸= ⊥
after RA-commit(pi, st, r) is greater or equal to the probability that RA responds at least
one RA-assign(pi, sti, ri, π) for i ∈ {1, 2} with π ̸= ⊥ after two RA-commit(pi, st1, r1)
and RA-commit(pi, st2, r2).

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:9

Algorithm 1 Resource-based longest-chain total-order broadcast (process pi).

1: uses
2: Resource allocator: RAres

3: Probabilistic reliable broadcast: gossip
4: Validation predicate: P(·, ·)
5: Random oracle: H : {0, 1}∗ → {0, 1}λ

6: Signature scheme: Σ = (Sign, Verify)
7: init
8: Extend(C = [B0])
9: upon a-broadcast(tx) do

10: invoke gossip-broadcast([op, tx])
11: upon gossip-deliver ([op, tx]) do
12: unordered← unordered ∪ {tx}
13: upon gossip-deliver ([request, B]) do ▷ Receive a request for parents of B

14: if ∃ C ∈ C s.t. C[−1] = B then
15: forall B′ ∈ C do ▷ Re-send all parents of B

16: invoke gossip-broadcast ([blk, B′])
17: upon gossip-deliver ([blk, B]) s.t. B = (h, tx, π, σi) do
18: if Verify(pj , h||tx||π||slj , σj) ∧ ∃ C ∈ C s.t. H(C[−1]) = h ∧ P(C, tx) then
19: st← (C, B)
20: invoke RA-validate(pi, st, π)
21: else
22: invoke gossip-broadcast([request, B]) ▷ Request for parents of B

23: upon RA-is-committed(pi, st, true) s.t. st = (C, B) do
24: B ← B ∪ {B}
25: if |C| > |Clocal| then
26: Clocal ← C ▷ Update the local blockchain
27: Extend(Clocal)
28: upon RA-assign(pi, st, r, π) s.t. st = (C, B = (h, tx, π,⊥)), π ̸= ⊥ do
29: σi ← Sign(pi, h||tx||π)
30: B ← (h, tx, π,σi)
31: if ri is burnable then
32: ri ← ri + r

33: invoke gossip-broadcast ([blk, B])
34: upon RA-assign(pi, st, r, π) s.t. π = ⊥ do
35: if r is burnable then
36: ri ← r

37: Extend(Clocal)
38: upon a-deliver ([op, tx]) do
39: delivered← delivered ∪ {tx}
40: function Extend(Clocal)
41: forall tx ∈ Clocal[: −k] ∧ tx /∈ delivered do
42: output a-deliver([op, tx]) ▷ Deliver all transactions in the common prefix
43: unordered← unordered \ {tx}
44: h← H(Clocal[−1])
45: select a list of transactions tx from unordered such that P(C, tx) = true
46: Bcom ← (h, tx,⊥,⊥)
47: invoke RA-commit(pi, (Clocal, Bcom), ri)
48: if r is burnable then
49: ri ← 0

OPODIS 2022

19:10 Modeling Resources

For a reusable resource, at any time step t, a resource budget r, a state st and upon
potentially multiple repeated RA-commit(pi, st, r) from the same process pi, if RA responds
with RA-assigns(pi, st, r, π), then π is the same for every RA-commit events output by
RA.

Unforgeability No adversary can produce a resource commitment π such that π has not
been previously RA-assigned by RA and, upon RA-validate(pi, st, π), RA triggers RA-is-
committed(pi, st, true), for some state st and some process pi.

Honest-Majority Assignment At each time step, we denote with ϱH and ϱA the probabilities
that at least one correct process and one Byzantine process, respectively, obtain a valid
resource commitment for each RA-commit. More formally, for every time step t, we
define:

ϱA = Pr[∃RA-assign(pi, st, r, π) such that π ̸= ⊥ ∧ pi ∈ A],
ϱH = Pr[∃RA-assign(pi, st, r, π) such that π ̸= ⊥ ∧ pi /∈ A].

Then we require that:

ϱA <
1

∆− 1 + 1/ϱH
. (1)

The liveness property aims to capture the mining process in permissionless PoW
blockchains and ensure that if processes keep committing resources, eventually one pro-
cess will get assigned the resource commitment to extend the blockchain.

The validity property guarantees that a resource commitment can always be verified
by any process pi by triggering at any point RA-validate. This property captures the fact
that any participant can efficiently verify, for example, the validity of the solution to the
computational puzzle in PoW protocols or the evaluation of the verifiable random function
in PoS protocols.

The use-once property prevents processes from increasing the probability of getting
assigned the resource commitment either by committing several times, splitting the resource
budget and then committing all the split amounts at different states or by committing a
smaller resource budget. Intuitively, the use-once property also implies that the property
holds for any integer partition of r (i.e., r =

∑
ri>0 ri). Moreover, the use-once property

also implies that our model mainly focuses on probabilistic protocols as we do not aim to
bypass the lower bound established in [21], namely, there is no deterministic protocol in
permissionless setting that solves consensus. On the other hand, we believe that applying
our model to permissioned blockchains with PoS, e.g., Tendermint [6], can be interesting
future work.

The unforgeability property ensures that no process pi can produce a valid resource
commitment π that has not been previously RA-assigned by the resource allocator.

Finally, the honest-majority assignment implies that despite the network delay, correct
processes will have a higher probability of getting assigned the resource commitment at each
time step. Equation (1) was established by Gaži et al. [18], and it takes into account that
honest blocks may get discarded due to the network delay ∆.

Security Analysis. With the defined properties of a secure allocator, our model is equivalent
to the idealized model introduced by Gaži et al. [18]. Therefore, their result also holds for
our protocol, and we present them in our model as follows.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:11

▶ Lemma 4.2 ([18]). Algorithm 1 implemented with a secure resource allocator RAres
satisfies the following properties:
Safety For any time steps t1 and t2 with t1 ≤ t2, a common prefix parameter k and any

local chain maintained by a correct process Clocal, it holds that Ct1
local[: −k] ⪯ Ct2

local with an
overwhelming probability.

Liveness For a parameter u and any time step t, let Clocal be the local chain maintained
by a correct process, then there is at least one new honest block in Ct+u/Ct with an
overwhelming probability.

Intuitively, safety implies that correct processes do not deliver different blocks at the same
height, while liveness implies that every transaction is eventually delivered by all correct
processes. Using Lemma 4.2 and properties of a secure resource allocator, we conclude the
following.

▶ Theorem 4.3. If RAres is a secure resource allocator, then Algorithm 1 implements
total-order broadcast.

Proof. Observe that, since RAres is a secure resource allocator, it satisfies use-once property.
Therefore, Byzantine processes cannot amplify the probability ϱA by repeatedly triggering
RA-commit() on reusable resources at the same time step.

For the validity property, if a correct process pi a-broadcasts a transaction tx (L9), tx is
gossip-broadcast (L10) and, after ∆, every correct process gossip-delivers tx (L11) and adds
it to unordered (L12). Eventually, transaction tx is selected by a correct process pj as part
of a block B (L45). Block B is then gossip-broadcast by pj (L33) and eventually, after ∆,
every correct process gossip-delivers B (L17), validates x (L18), and validates the resource
commitment (L20). Observe that, because of the unforgeability property of RAres, a valid
resource commitment cannot be produced except by the resource allocator. Observe that
this last step is possible through the validity property of RAres. The proof then follows from
Lemma 4.2.

No duplication property follows from the algorithm; if a correct process pi a-delivers a
transaction tx, pi adds tx to delivered and condition at line L41 cannot be satisfied again.

For the agreement property, let us assume that a correct process pi a-delivered a trans-
action tx buried at least k blocks deep in its adopted chain C. Process pi a-delivers a
transaction tx when it updates the local blockchain with the longest chain C (L26), tx has
not been a-delivered yet and tx is part of the common prefix C[: −k] (L41). The property
then follows from Lemma 4.2; eventually every correct process a-delivers transaction x, with
an overwhelming probability.

Finally, for the total order property, from the safety property of Lemma 4.2, we know
that correct processes do not deliver different blocks at the same height. This means that at
a given height, if two correct processes pi and pj a-delivered a block, then this block is the
same for pi and pj with an overwhelming probability. Moreover, since a block is identified by
its hash, due to the collision-resistance property of H(·), it also implies that the set and order
of transactions included in the block are the same for every correct process. So, if process pi

a-delivers transaction tx1 before tx2, then either tx1 and tx2 are in the same block B with
tx1 appearing before tx2 or they are in different blocks B1 and B2 such that B2 appears in
the chain after B1. The total-order property follows. ◀

4.2 Proof-of-Work Resource Allocator
In this part, we present the PoW allocator as a concrete instantiation of the resource allocator
for burnable and external resources.

OPODIS 2022

19:12 Modeling Resources

Proof-of-Work Resource Allocator. The PoW resource allocator RApow is parameterized
by ϱ which is the default probability of getting assigned resource commitment for r = 1.
RApow works as follows. Upon RA-commit(pi, st, r) by process pi with a valid chain C with
respect to B0, RApow starts r concurrent threads of Pow() function which acts as a biased coin
with probability ϱ of assigning the resource commitment. Observe that, because computation
is a burnable and external resource, processes cannot lie on about the committed resource
budget r. In particular, Pow uniformly sample a value nonce in {0, 1}λ and either returns
nonce ∈ {0, 1}λ or ⊥. If nonce is the returned value in {0, 1}λ, then RApow assigns it as the
resource commitment to pi, otherwise it RA-assigns ⊥ to pi. If the committed chain C is not
valid, then RApow RA-assigns ⊥ to pi. Validation of the resource commitment can be done
by any process pj through RA-validate; the resource allocator RApow returns either true or
false, depending on the validity of the resource commitment. We implement the resource
allocator RApow in Algorithm 2 and obtain the following lemma and theorem.

Algorithm 2 Implementing PoW resource allocator, RApow.

50: state
51: B0: Genesis block
52: ϱ: Default probability of getting assigned resource commitment on one resource
53: uses
54: Random oracle: H : {0, 1}∗ → {0, 1}λ

55: upon RA-commit(pi, st, r) s.t. st = (C, B), B = (h, tx,⊥,⊥) do
56: if C is valid ∧ H(C[−1]) = h then
57: start r concurrent threads with noncej = Pow(pi, st) for j ∈ {0, . . . , r − 1}
58: wait for all r threads with Pow(pi, st) for j ∈ {0, . . . , r − 1} to finish
59: if ∃ noncej ̸= ⊥ then
60: output RA-assign(pi, st, r, noncej)
61: else
62: output RA-assign(pi, st, r,⊥)
63: else
64: output RA-assign(pi, st, r,⊥)
65: upon RA-validate(pi, st, π) s.t. st = (C, B), B = (h, tx, π, σ), π = nonce do

66: b← H(h||x||nonce)
?
≤ ϱ · 2λ ∧ C is valid ∧ H(C[−1]) = h

67: output RA-is-committed(pi, st, b)
68: function Pow(pi, st) ▷ With st = (C, B) and B = (h, x,⊥)
69: nonce R←− {0, 1}λ

70: if H(h||x||nonce) ≤ ϱ · 2λ then
71: return nonce
72: return ⊥

▶ Lemma 4.4. Given the random oracle H(·), the default probability ϱ of getting assigned
resource commitment on r = 1, and the network delay ∆, there exists a value RA such that
the resource allocator RApow implemented in Algorithm 2 is a secure resource allocator.

Proof. Liveness property follows from Algorithm 2: upon RA-commit(pi, st, r) from pro-
cess pi, the resource allocator RApow either (i) has L56 satisfied and, eventually, outputs
RA-assign(pi, st, r, π) with a resource commitment π to pi or outputs RA-assign(pi, st, r,⊥)
to pi (L61) or (ii) if the chain is invalid (L63), and then the allocator outputs
RA-assign(pi, st, r,⊥) to pi.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:13

For the validity property, observe that π = nonce is valid if and only if there is a valid
chain C with respect to the genesis block B0 such that the last block B = C[−1] contains
π. Hence, π can be validated by any process pj through RA-validate(pj , (C, B∗), π); RApow
then checks if H(B∗) = h and H(h||x||nonce) ≤ ϱ · 2λ outputting the same result at any
process pj .

The use-once property immediately follows because of the burnable property of the
underlying resource (i.e., computation). Since RApow triggers RA-assigns at the end of the
the activation period for pi, we claim that for multiple RA-commit(pi, ·, ri) committed by
pi at t, it is equivalent to trigger RA-commit(pi, ·, r) once for r = Alloc(pi, t). In particular,
at the time step t, let Bad be the event of not getting any resource commitment on all
RA-commit(pi, ·, ri) for ri ∈ {r1, r2} such that r = r1 +r2, then the probability of getting the
resource commitment is 1−Pr[Bad] = 1− (1− 1 + (1− ϱ)r1)(1− 1 + (1− ϱ)r2) = 1− (1− ϱ)r.

Since the resource allocator RApow uses the random oracle H (i.e., idealized hash function
with no exploitable weaknesses), the unforgeability property follows from the observation that,
in order to produce a valid resource commitment, pi has no better way to find the solution
than trying many different queries to H. This implies that pi has the same probability of
obtaining a valid local resource commitment as it would have by RA-committing to the
resource allocator.

For the honest-majority assignment we recall that ϱH and ϱA are the probabilities that at
least one correct process and one Byzantine process get the resource commitment after one
RA-commit, respectively. In our model, it is not difficult to see that ϱH = 1− (1− ϱ)R−RA

and ϱA = 1− (1− ϱ)RA . Therefore, one can easily derive the amount of resource RA such
that ϱA < 1

∆−1+1/ϱH
. ◀

▶ Theorem 4.5. Algorithm 1 with the secure resource allocator RApow implements total-order
broadcast.

Proof. From Theorem 4.3 and Lemma 4.4, it follows that, since RApow is a secure resource
allocator, then Algorithm 1 with RApow implements total-order broadcast. ◀

4.3 Proof-of-Stake Resource Allocator
The resource in PoS protocols is the stake of each process, and stake is a virtual and reusable
resource. In those protocols, the probability of a process pi being assigned a resource
commitment is proportional to its stake in the system. In this part, we focus on Ouroboros
Praos [9] for our formalization. Before presenting the PoS resource allocator as a concrete
instance of a resource allocator for reusable and virtual resources, we need to introduce
additional considerations and definitions.

Reusable Resources. By definition, a reusable resource allows processes to repeatedly
trigger RA-commit in the same time step using the same resource. Hence, if RA does not
satisfy use-once property and assigns a resource commitment randomly, then every time
a process pi triggers RA-commit, process pi might end up with a different result. For this
reason, a naïve implementation of the resource allocator for reusable resources would allow an
adversary to amplify the probability of getting assigned a resource commitment (i.e., ϱA) by
repeatedly invoking RA-commit using the same resource, i.e., in a grinding attack [3] at the
same time step. Hence, for probabilistic blockchain protocols, to cope with this problem, one
needs to ensure that the allocator satisfies use-once property. In particular, from designs of
PoS protocols like Snow White [8] and Ouroboros Praos [9], three commonly used approaches
to enforce use-once property are:

OPODIS 2022

19:14 Modeling Resources

(R1) Explicit Time Slots The first mechanism to enforcing use-once property is to index
the resource by time slots. Protocols like Ouroboros Praos [9] and Snow White [8] require
processes to have synchronized clocks to explicitly track time slots and epochs to ensure
that each process derives a deterministic leader selection result from the same state.

(R2) Leader Selection from the Common Prefix This mechanism requires correct pro-
cesses to extract the set of potential leaders from the common prefix. In particular,
the common prefix is a shortened local longest chain that is with overwhelming probabil-
ity the same for all correct processes. This approach allows them to share the same view
of potential leaders.

(R3) Deterministic and Trustworthy Source of Randomness The source of randomness
has to be trustworthy to ensure a fair leader election and to defend against an adaptive
adversary that might corrupt processes predicted to be leaders for the upcoming time
slots. In addition, the source of randomness has to be deterministic for each time slot and
chain state in order to prevent the previously mentioned grinding attack. Hence, popular
Proof-of-Stake blockchain protocols often rely on sophisticated protocols to produce
randomness securely.

Slot and Epoch. An epoch e is a set of q adjacent time slot S = {sl0, . . . , slq−1}. In practice,
slot sl consists of a sufficient number of time steps so that discrepancies between processes’
clocks are insignificant, and processes advance the slot at the same speed. In our model, we
simplify this bookkeeping by requiring the allocator to maintain the slot and epoch.

Stake Distribution. The stake distribution at a time step t is St
stake = {(p1, r1), . . . } with

ri ≥ 0, specifies the amount of stake owned by each process pi ∈ P≤t. We denote Se
stake the

stake distribution at the beginning of epoch e. The stake distribution Se
stake can be obtained

from StateAlloc(C[0 : sl], pi) for sl ≤ e · q for each pi ∈ P≤t.

▶ Definition 4.6 (Leader Selection Process). A leader selection process (D, F) with respect
to a stake distribution Sstake = {(p1, r1), . . . } is a pair consisting of a distribution D and a
deterministic function F . When ρ

R←− D, for all sl ∈ N, F (Sstake, sl; ρ) outputs process pi

with probability 1− (1− ϱ)ri where ϱ is the probability of assigning resource commitment for
r = 1 for a given slot.

Proof-of-Stake Resource Allocator. The Proof-of-Stake resource allocator RApos with the
leader selection process (D, F) works as follows. First, we require that RApos keeps track of
the current epoch and time slot to correctly assign the resource commitment to process pi for
the current slot. RApos keeps track of the slot through Timeout triggered by the starttimer()
event. This approach is to enforce the first requirement of explicit time slots (R1). Secondly,
upon RA-commit(pi, st, r) by process pi with a valid state st in slot sl, RApos first checks if
a random value ρ ∈ D for (pi,st,sl) has been previously sampled; if so, then RApos picks it;
otherwise, a fresh random value is sampled. This requirement ensures a deterministic and
trustworthy source of randomness (R3). Then, RApos obtains the stake distribution of two
epochs before, Se−2

stake from st. This ensures a leader selection from the common prefix (R2).
The resource allocator RApos uses Se−2

stake together with the sampled randomness as input to
the leader selection function F to check if pi is selected for the slot sl. If this is the case,
then RApos assigns the resource commitment to pi, otherwise it assigns ⊥. If the committed
chain C is not valid, then RApos assigns ⊥ to pi. A validation of the resource commitment
can be done by any process pj through RA-validate; the resource allocator RApos returns

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:15

Algorithm 3 Implementing PoS Resource Allocator, RApos.

73: state
75: B0: Genesis block
76: D : Distribution
77: F : Leader selection function
78: sl : Current slot, initially sl = 0
79: e : Current epoch, initially e = 0
80: k : common prefix parameter
81: q : number of slots in an epoch, initially q = 16 · k
82: T : set of assigned resource commitments, initially empty
83: uses
84: Random oracle: H : {0, 1}∗ → {0, 1}λ

85: upon RA-commit(pi, st, ri) s.t. st = (C, B), B = (h, tx,⊥,⊥) do
86: if C is valid ∧ H(C[−1]) = h then
87: obtain Cprefix by pruning all blocks with slot > (e− 2) · q, from C
88: if Cprefix = ∅ do
89: Cprefix ← [B0]
90: if ∃(pi, Cprefix, ρ∗, sl) ∈ T then ▷ Queried before
91: ρ← ρ∗

92: else
93: ρ

R←− D ▷ Sample a fresh randomness
94: T ← T ∪ {(pi, Cprefix, ρ, sl)} ▷ Update T

95: obtain the stake distribution Se−2
stake from Cprefix ▷ Evaluate StateAlloc(·, ·)

96: pj ← F (Se−2
stake, sl; ρ)

97: if pi = pj then
98: π ← (pi, ρ, sl)
99: output RA-assign(pi, st,⊥, π)

100: else
101: output RA-assign(pi, st,⊥,⊥)
102: else
103: output RA-assign(pi, st,⊥,⊥)
104: upon RA-validate(pi, st, π) s.t. st = (C, B), B = (h, tx, π, σ), π = (pj , ρ, sl) do
105: obtain Cprefix by pruning all blocks with slot > (e− 2) · q, from C
106: if Cprefix = ∅ do
107: Cprefix ← [B0]
108: if ∃(pi, Cprefix, ρ, sl) ∈ T then ▷ Queried before
109: obtain the stake distribution Se−2

stake from Cprefix

110: p∗
j ← F (Se−2

stake, sl; ρ)
111: b← pi

?= p∗
j ∧ C is valid ∧ H(C[−1]) = h

112: output RA-is-committed(pi, st, b)
113: else
114: output RA-is-committed(pi, st, false)
115: upon Timeout do ▷ Increment slot
116: sl← sl + 1
117: if sl mod q = 0 then ▷ Increment epoch
118: e← e + 1
119: starttimer()

OPODIS 2022

19:16 Modeling Resources

either true or false, depending on the validity of the resource commitment. Finally, the
PoS resource allocator is presented in Algorithm 3, and we conclude the following lemma
and theorem.
▶ Remark 4.7. In practice, the randomness generation can be instantiated using verifiable
random function [12], multiparty coin-tossing [20] protocol, or a random beacon [13]. However,
Algorithm 3 aims to show the distinction between external and virtual resources.

▶ Lemma 4.8. Given the random oracle H(·), the leader selection process (D, F) parame-
terized by the default probability ϱ, and the network delay ∆, there exists a value RA such
that the resource allocator RApos implemented in Algorithm 3 is a secure resource allocator.

Proof. Liveness property follows from the algorithm: upon RA-commit(pi, st, r) from pro-
cess pi, the resource allocator RApos either (i) has L86 satisfied and, eventually, outputs
RA-assign(pi, st,⊥, π) with a resource commitment π to pi, or outputs RA-assign(pi, st,⊥,⊥)
to pi (L100) or (ii) if the chain is invalid (L102), the allocator outputs RA-assign(pi, st,⊥,⊥)
to pi.

For the validity property, observe that π = (pi, ρ, sl) is valid if and only if pi is a leader for
sl. If pi is a leader for sl, then in T there must be the random value ρ previously sampled for
pi (L94). This means that F evaluated on ρ will output again pi. Hence, π can be validated
by any process pj through RA-validate(pj , st, π); RApos checks if π ∈ T outputting the same
result to pj .

The Use-once property follows because, in our model, RApos keeps track of previous
RA-commit from pi along with the time slots and states. Moreover, the choice of probi is
stake-invariant, and it ensures that an adversary cannot increase its probability of being
elected leader by dividing its stake into multiple identities. The proof for this is identical to
the proof in Lemma 4.4. In practice, this property is enforced by the deterministic outputs
of VRF and Hash function along with slot number and the common chain prefix as input.

The unforgeability property follows from the fact that any resource commitment produced
by RApos is stored by the resource allocator in a set T of assigned resource commitments
(L94). Hence, it is not possible for any process pi to produce a valid resource commitment
that is not in T . In practice, this property is guaranteed by the uniqueness property of
verifiable random functions or the collision-resistant property of hash functions.

For the honest-majority assignment property, it is not difficult to see that we can derive
ϱH and ϱA from R and RA. In particular, ϱH = 1− (1− ϱ)R−RA and ϱA ≈ 1− (1− ϱ)RA .
Here we note that the adversary can slightly increase ϱA by committing to shorter chains.
However, it also means that the adversary will fall behind as it has to extend a much shorter
chain than the current local chain maintained by correct processes, and we assume the
adversary has no reason to do so. Hence, we consider ϱA = 1 − (1 − ϱ)RA . Thus, we can
derive RA so that ϱA < 1

∆−1+1/ϱH
. ◀

▶ Theorem 4.9. Algorithm 1 with the secure resource allocator RApos implements total-order
broadcast.

Proof. From Theorem 4.3 and Lemma 4.8, it follows that, since RApos is a secure resource
allocator, then Algorithm 1 with RApos implements total-order broadcast. ◀

5 Trade-offs Between Different Resources

In this section, we describe various attacks against the resource-based total-order broadcast.
In particular, we demonstrate long-range attacks against virtual resources, and we discuss
the incentive consideration that describes the cost of launching attacks against burnable and
reusable resources.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:17

5.1 Virtual Resource vs External Resource: Long-Range Attacks
Long-range Attacks on Virtual Resources. Long-range attacks [10] (LRAs), also sometimes
called posterior-corruption attacks, can be mounted on any blockchain based on a virtual
resource (such as PoS) if the majority of the set of active processes from an earlier slot
becomes inactive in a later slot, as they no longer have any stake left in the system. Formally,
they can be defined as follows:

▶ Definition 5.1 (Virtual-Resource-Shifting Event). A Virtual-Resource-Shifting Event
happens when there exist two values h0, h1, and a set of processes Pmaj such that:

Active at h0: At height h0, processes in Pmaj control the majority of the total virtual
resource (i.e., R), namely:

∑
pi∈Pmaj

(StateAlloc(pi, C[0 : h0])) > R−RA

Inactive at h1: At height h1 > h0, processes in Pmaj control less virtual re-
sources than the total number of resources controlled by the adversary (i.e., RA):∑

pi∈Pmaj
(StateAlloc(pi, C[0 : h1])) ≤ RA

If Definition 5.1 is satisfied, then most processes in Pmaj have released all or part of
their resources by height h1, and the adversary has enough budget to corrupt all the active
processes in Pmaj since they are all inactive in the present. The adversary could then use
these processes to re-write the chain from C[h0] since with a virtual resource as no external
resource is needed to call the resource allocator. Furthermore, the release of resource from
processes in Pmaj also happens on-chain, e.g., in the case of PoS for a process to move from
active to inactive, it will spend its coins on-chain. An adversary re-writing the history of the
chain could simply omit these transactions such that all processes satisfying definition 5.1
stay active in the alternative chain that the adversary is writing. The attack proceeds as
follows:
1. When a virtual-resource-shifting event happens at the current height h1, A corrupts all

processes in Pmaj. Since the total of resources controlled by these processes is less than
RA, A has enough budget to do so;

2. A starts a new chain C∗ at C[h0]. At this height, A controls the majority of the virtual
resource, and because the resource allocator takes no further input apart from the state
of C[0 : h0], it assigns the resource commitment to A with high probability;

3. A now controls all processes in Pmaj and can alter the state of the chain such that the
processes in Pmaj never release their resource;

4. The adversarial chain will grow at a faster rate and will eventually become longer than
the honest chain because there is no network delay between corrupted processes.

Long-range Attacks on External Resources. The strategy above does not work with
external resources. Even if Definition 5.1 holds, the adversary cannot call the resource
allocator by simply corrupting the processes pi as an external resources would be needed as
input to the resource allocator (step 2 in the strategy above).

We formalize the implication of the long-range attack in the following lemma and theorem.

▶ Lemma 5.2 (Long-range Attack). In a virtual-resource-based total-order broadcast (Algo-
rithm 1), let Clocal be the longest chain maintained by a correct process, if a virtual-resource-
shifting event occurs, then an adversary can eventually form a valid chain C∗ that is longer
than Clocal.

Proof. If a virtual-resource-shifting event (Definition 5.1) occurs, an adversary A can corrupt
all pi ∈ Pmaj at height h1. Notice that A can do this because according to the threat model
defined in definition 3.6, A has enough resource budget to corrupt all pi ∈ Pmaj.

OPODIS 2022

19:18 Modeling Resources

Adversary A can start a new chain C∗ at height h0 by requiring all the corrupted processes
pi ∈ Pmaj to commit old states to RApos. Since the Byzantine processes control the majority
of the resources, the probability of Byzantine processes getting assigned commitment is
strictly higher than the probability of correct processes getting assigned commitment; hence,
the growth rate of C∗ is strictly higher than the growth rate of the honest chain Clocal;
therefore, C∗ will eventually catch up and outgrow Clocal in terms of the length.

More concretely, to simplify our analysis, we also assume the network delay to be 1 (i.e.,
∆ = 1) between correct processes. We recall that ϱH is the probability that at least one
correct process gets selected on the honest chain Clocal at each time step. For any interval
[t0, t0 + t] and arbitrary t0, t ∈ N, we denote with X0, . . . , Xt−1 independent Poisson trails
such that Pr[Xi = 1] = ϱH , and we let XH =

∑t−1
i=0 Xi. Using the Chernoff bound, one

can show that for any ϵ ∈ (0, 1) it holds that Pr[XH < (1− ϵ) · ϱH · t] ≤ exp(−ϱH · t · ϵ2/2).
Intuitively, the Chernoff bound implies that the value of XH cannot deviate too much from
the mean; hence, for sufficiently large t and sufficiently small ϵ, the upper bound on the
honest chain growth is approximately ϱH · t, with an overwhelming probability.

Using the same argument for the growth of the malicious chain, one can show that for a
sufficiently large time interval (i.e., t) and a sufficiently small ϵ, the lower bound of chain
growth is approximately ϱA · t (i.e., (1 + ϵ) · ϱA · t) with an overwhelming probability (i.e.,
exp(−ϱA · t · ϵ2/3)), where ϱA is the probability that at least one Byzantine processes get
selected on the honest chain C∗ at each time step.

So, if ϱA > ϱH , we can claim that C∗ grows at a faster rate than Clocal. This is the case
for Algorithm 1 that uses RApos allocator. Due to Definition 5.1, the probability of getting
assigned the resource commitment with C∗, is ϱA > 1 − (1 − ϱ)R−RA = ϱH , where ϱH is
the probability that at least one correct processes get assigned a resource commitment with
Clocal. ◀

▶ Remark 5.3. Also, if we assume a ∆ > 1 network delay between correct processes, there will
a non-zero probability that a fork can happen, and honest blocks can get discarded due to
the network delay. On the other hand, we also assume a perfect synchrony (∆ = 1) between
Byzantine processes; therefore, there is no loss in the malicious growth rate. Therefore, even
when correct processes and Byzantine processes control the same amount of resources on
both chains, due to network delay, the chain growth rate of C∗ can still be higher than the
chain growth rate of the honest chain Clocal.

▶ Theorem 5.4. If a virtual-resource-shifting event occurs, a total-order broadcast based on
virtual resources (Algorithm 1) does not implement total-order broadcast.

Proof. Let C be the honest chain adopted by every correct process and let us assume that
all the transactions buried at least k blocks deep in C have been a-delivered (Algorithm 1,
L42) by every correct process. If a virtual-resource-shifting event occurs then, by Lemma 5.2,
an adversary can eventually form a valid chain C∗ that is longer than C.

For existing processes, the adversary can send this C∗ to a subset of correct processes.
This implies that some correct processes will adopt C∗ as a valid chain; they will a-deliver
all the transactions buried at least k blocks deep in C∗. This implies that, eventually, the
total-order property is violated. Also, due to the permissionless nature of our model, correct
processes might join the system at any time. Hence, new processes will adopt the malicious
chain as the local chain; therefore, delivered will be different among correct processes. Hence,
the total-order property is violated ◀

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:19

5.2 Incentives in Burnable and Reusable Resources
One of the vulnerabilities induced by reusable resources is that extending the blockchain is
costless with respect to the resource considered. This is different from burnable resources,
where creating a block consumes the resource; this consumption is captured in our model as
the interaction between processes and the resource allocator. The use of reusable resources
can result in two different types of adversarial behaviors. The first one consists in creating
multiple blocks at the same time slots on different chains. The second one consists in keeping
blocks created private from the rest of the processes. In both cases, we discuss how this
costless property associated with block creation for longest-chain consensus protocols based
on a reusable resource impacts their security compared to those based on burnable resource.
In this section, we assume, as is traditional with any blockchain system, that some financial
reward is associated with block creation, and we assume the cost of acquiring resources is the
same for both reusable and burnable resources. With these assumptions and the use-once
property of resource allocator, we define the chain extension cost as follows.

▶ Definition 5.5 (Chain Extension Cost). The cost of extending a valid chain for a process
pi between two time steps t1 and t2 such that t1 ≤ t2 is defined to be the resource budgets
committed and assigned back during this time interval. In particular, we have:

For burnable resources: Costburn(pi, t1, t2) =
∑t2

t=t1
Alloc(pi, t)

For reusable resources: Costreuse(pi, t1, t2) ≤ maxt∈[t1,...,t2]{Alloc(pi, t)}

▶ Proposition 5.6. For all time step t2 > t1 and a process pi, the cost of extending a valid
chain with a burnable resource is strictly more expensive than with a reusable resource, i.e.,
Costburn(pi, t1, t2) > Costreuse(pi, t1, t2).

Proposition 5.6 indicates that it is inherently more expensive to extend the blockchain for
burnable resources; hence, it is more difficult to launch different types of attacks on blockchain
based on burnable resources. In the following, we explain different types of attacks.

Private Attack. The private attack [11], sometimes called double-spending attack, is the
most simple attack in longest-chain blockchains. The adversary creates a private chain,
i.e., it mines on its own without broadcasting its blocks to the other processes and without
accepting the blocks from other processes. In particular, the adversary runs Algorithm 1,
except that it does not broadcast its blocks until the end of the attack. This means that
two chains grow in parallel: the adversarial one, that only the adversary is aware of, and
the honest one. The adversary is aware of the honest chain but chooses not to contribute to
it and it wins the attack if it creates a chain longer than the honest chain. In the case of
a burnable resource, this attack has a cost as every block created consumes a resource. If
the adversary wins the attack, then the cost is recovered as the adversary wins the reward
associated with block creation. Otherwise, it loses the cost associated with all the resources
consumed. In the case of a reusable resource, the only cost of the attack is the opportunity
cost, i.e., the adversary takes the risk of potentially not earning the rewards associated with
block creation if the attack fails but does not lose any resources. The attack in this case is
then much cheaper than in the case of a burnable resource. The cost of a private attack is
higher if the resource allocator is based on a burnable resource than if it is on a reusable
resource, thus creating a stronger disincentivisation for an adversary. The results follow
from the fact that for a reusable resource, the resource allocator can be invoked on the same
resource several times. From Proposition 5.6, it is not difficult to see that the expected
return on performing a private attack is higher for a reusable resources as the probability of
winning the attack (i.e. producing a longer chain) is the same in both cases, but the cost is
higher for a burnable resource.

OPODIS 2022

19:20 Modeling Resources

Resource-bleeding Attack. Stake-bleeding attacks [17] were proposed in the context of
PoS blockchains and work, informally, as follows. An adversary starts creating a private
chain (i.e., it does not broadcast its blocks to the rest of the network) but, differently from
the private attack described previously, the adversary may continue creating blocks on the
honest chain. In its private chain, the adversary includes all of the transactions it is aware
of, harvesting the associated transaction fees. Furthermore, the adversary also receives the
coinbase reward usually associated with block production. After a sufficient amount of time,
the adversary will have bloated its amount of resources and will eventually be able to create
a chain that becomes as long as the honest chain. This attack could be extended to the
general-resource case, which we call this attack resource-bleeding attack, and note that in the
case of an external resource, this attack is much easier to detect than in the Proof-of-Stake
case. In order to understand this attack, we must extend the model from Section 4 to
take into account total resource adjustments in the case of inactive processes. In Section 6,
we describe the general case of resource-bleeding attacks and discuss how they are more
detectable on an external resource and the most mitigated for burnable resources.

Nothing-at-Stake Attack. In a Nothing-at-Stake attack, instead of deciding to extend the
longest chain (Algorithm 1, L25), a process decides to mine simultaneously on all of the
chains it is aware of. In the case of a burnable resource, an adversary cannot reuse the same
resource to mine on multiple chains (due to L49), hence in order to mount this attack, the
adversary must decide how to commit its resources to multiple chains. In contrast, with a
reusable resource, each resource can be fully committed to each chain. If there exists multiple
forks of the same length, there is a risk that a process will mine on a chain that ends up
being abandoned and thus will miss out on the associated reward. It thus becomes rational
for a process to deviate from the protocol and mine on every chain since this reduces chance
of losing reward because network may select different chain. If every process adopts this
strategy, the protocol cannot achieve the common prefix property as every chain will keep on
growing at the same pace.

6 Discussion

Resource-bleeding Attack in the Flexible Resource Setting. The resource-bleeding attack
stems from this observation: in order to deal with inactive processes, if the protocol wants to
maintain its block production rate, it needs to adjust its leader selection processes such that
inactive processes are not selected anymore. In practice, this means increasing ϱ such that
every active process has a higher chance of being selected and removing the inactive processes
from the list of eligible block producers and hence maintaining a steady block rate. If an
adversary starts a private attack, since no resource commitment from the other processes is
included in the adversarial chain, after a sufficient time, ϱ will be updated to ensure that
the adversarial chain block rate is maintained. On the other hand, with a reusable resource,
the adversary could keep maintaining its resources on the honest chain to ensure that the
leader selection probability is not adjusted on the honest chain. After enough time, all the
honest processes will be removed from the power table in the adversarial chain. This means
that when electing a leader on the adversarial chain, the adversary now represents the full
power table and is guaranteed to be elected at each epoch. On the other hand, since the
adversary maintain its resource on the honest chain, without contributing as many blocks as
it could. This means that, after some time, the honest chain will grow at a slower rate than
the adversarial chain and the adversary will be able to create a chain as long as the honest
chain, breaking the safety of the protocol.

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:21

In practice in Bitcoin, the target value [26] is updated every two weeks (roughly) to
ensure that blocks are created, on average, at the same pace. An adversary could fork the
chain, wait for the difficulty adjustment to adjust and then be able to create a chain at the
same pace as the honest chain. This is, however, easily detectable. In the PoW case, one can
simply see that the difficulty has been adjusted and that one chain has much fewer resources
than the other. Moreover, since the resource is burnable, it is not possible for an adversary
to continue mining on the honest chain as the same burnable resource cannot be used twice,
hence the adversary cannot maintain its full resource on the honest chain and the honest
chain difficulty must be adapted accordingly.

For an external, but reusable, resource such as storage, the adversary could maintain its
power in both chain, however, it is easy to detect the adversarial chain as it will have fewer
resources committed to it and hence is distinguishable from the honest chain.

Mitigations against Different Attacks. In the following, we discuss various mitigations
against attacks described in Section 5.

Long-range Attacks. In practice, many PoS systems deal with long-range attacks by using
some form of checkpointing [1, 24, 23], requiring key-evolving cryptography [9, 19], or using
multiple types of resources [15]. Others use more refined chain selection rules [9, 2] (i.e.,
chain density analysis or selecting the longest chain that fork less than k blocks) instead of
the longest chain selection.

Resource-bleeding Attacks. In the case of PoS, mitigation has been proposed in Ouroboros
Genesis [2] and it works as follows. When a process is presented with two forks, it differentiates
between two cases. In the first case, the fork is smaller than the common prefix parameter
k, i.e., the two chains differ for a number of slots smaller than k, in which case the usual
longest-chain rule is applied. If on the other hand, the forks differ from more than k slots,
then the processes look at the first k slots after the fork (i.e., the first k slots where the two
chains diverge) and choose the chain with the most blocks in that period. Intuitively, this
is because during the beginning of the fork, an adversary has not had the time to bloat its
stake and hence the rate at which its chain grows will be smaller than that of the correct
processes. In the case of an external resource, it suffices to look at the total power (which
can be explicit in the case of a reusable resource, or implicit for a burnable resource, e.g.,
target value) at the tip (end) of the chains and pick the one with the most resource.

Nothing-at-stake Attacks. A process that performs a nothing-at-stake attack with a
reusable resource is easily detectable as anyone can see that the same resource was used on
different chains. One typical mitigation adopted by PoS systems is to slash, i.e., financially
punish, processes who use their resource on concurrent chains. This is usually done by having
processes deposit some money before gaining participation rights, and then burning some of
this deposit if a proof of misbehavior is sent to the blockchain. The details of this mechanism
are out of scope for this paper.

7 Conclusion

Resources are essential in ensuring the safety property of total-order broadcast protocols
in a permissionless setting as it protects the protocol from Sybil attacks. However, there
exist several attacks on protocols based on reusable and virtual resources that a formal
specification would help understand and address.

In this work, we formalize properties of resources through a resource allocator abstraction,
and identify crucial properties on how to make this resource allocator secure for blockchain
protocols. Using a secure resource allocator, we demonstrate how to construct a generic

OPODIS 2022

19:22 Modeling Resources

longest-chain total-order broadcast algorithm. Furthermore, we also illustrate how certain
types of resources tend to make blockchain protocols more vulnerable to different types of
attacks. We believe that this formalization will help blockchain protocol designers to select
suitable types of resources for their protocols and understand and analyze the potential
security trade-offs on those resources.

Outlook. For future work, we find the following research directions worth investigating:
Relaxed Assumptions. Our analysis works with a setting where the total amount of
active resources is known and fixed. Hence, it is natural to extend this model to a setting
where the total amount of resources is unknown and potentially fluctuates.
Different Network Setting and Participation Models. Our model focuses on
probabilistic longest-chain protocols in a ∆-synchrony setting. However, we believe that
our model can be applied to analyze properties of resource-based deterministic protocols in
a permissioned and partially synchrony setting such as Tendermint [6] and HotStuff [27].
Different Types of Resources. Finally, there are other resource-based protocols such
as the Proof-of-Elapsed-Time (PoET) protocol [4] or multi-resources-based protocol [15]
that have not been considered in this work. Hence, one can extend this model to analyze
those protocols.

References
1 Sarah Azouvi, George Danezis, and Valeria Nikolaenko. Winkle: Foiling long-range attacks in

proof-of-stake systems. In AFT, pages 189–201. ACM, 2020.
2 Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.

Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In CCS,
pages 913–930. ACM, 2018.

3 Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public randomness
source. IACR Cryptol. ePrint Arch., page 1015, 2015.

4 Mic Bowman, Debajyoti Das, Avradip Mandal, and Hart Montgomery. On elapsed time
consensus protocols. In INDOCRYPT, volume 13143 of Lecture Notes in Computer Science,
pages 559–583. Springer, 2021.

5 Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S. Matthew Weinberg.
Formal barriers to longest-chain proof-of-stake protocols. In EC, pages 459–473. ACM, 2019.

6 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938, 2018. arXiv:1807.04938.

7 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

8 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography, volume 11598 of
Lecture Notes in Computer Science, pages 23–41. Springer, 2019.

9 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66–98. Springer, 2018.

10 Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. A survey
on long-range attacks for proof of stake protocols. IEEE Access, 7:28712–28725, 2019.

11 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins. In CCS, pages
859–878. ACM, 2020.

12 Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science,
pages 416–431. Springer, 2005.

http://arxiv.org/abs/1807.04938

S. Azouvi, C. Cachin, D. V. Le, M. Vukolić, and L. Zanolini 19:23

13 drand: Distributed randomness beacon. URL: https://drand.love/.
14 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of

partial synchrony. J. ACM, 35(2):288–323, 1988.
15 Matthias Fitzi, Xuechao Wang, Sreeram Kannan, Aggelos Kiayias, Nikos Leonardos, Pramod

Viswanath, and Gerui Wang. Minotaur: Multi-resource blockchain consensus. In CCS, pages
1095–1108. ACM, 2022.

16 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT (2), volume 9057 of Lecture Notes in Computer Science,
pages 281–310. Springer, 2015.

17 Peter Gazi, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks on proof-of-stake
blockchains. In CVCBT, pages 85–92. IEEE, 2018.

18 Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency bounds for bitcoin. In
CCS, pages 819–838. ACM, 2020.

19 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–68. ACM, 2017.

20 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of Lecture
Notes in Computer Science, pages 357–388. Springer, 2017.

21 Andrew Lewis-Pye. Byzantine generals in the permissionless setting. CoRR, abs/2101.07095,
2021. arXiv:2101.07095.

22 Ling Ren. Analysis of nakamoto consensus. IACR Cryptol. ePrint Arch., page 943, 2019.
23 Selma Steinhoff, Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic. BMS: secure

decentralized reconfiguration for blockchain and BFT systems. CoRR, abs/2109.03913, 2021.
arXiv:2109.03913.

24 Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali Maddah-Ali, and
Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possibilities and impossibilities. IACR
Cryptol. ePrint Arch., page 932, 2022.

25 Benjamin Terner. Permissionless consensus in the resource model. In Financial Cryptography,
volume 13411 of Lecture Notes in Computer Science, pages 577–593. Springer, 2022.

26 Bitcoin Wiki. Target. URL: https://en.bitcoin.it/wiki/Target.
27 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:

BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.

OPODIS 2022

https://drand.love/
http://arxiv.org/abs/2101.07095
http://arxiv.org/abs/2109.03913
https://en.bitcoin.it/wiki/Target

Computing Power of Hybrid Models in
Synchronous Networks
Pierre Fraigniaud #

IRIF, Université Paris Cité and CNRS, France

Pedro Montealegre #

Faculty of Engineering and Science, Adolfo Ibáñez University, Santiago, Chile

Pablo Paredes #

Department of Mathematical Engineering, University of Chile, Santiago, Chile

Ivan Rapaport #

DIM-CMM (UMI 2807 CNRS), University of Chile, Santiago, Chile

Martín Ríos-Wilson #

Faculty of Engineering and Science, Adolfo Ibáñez University, Santiago, Chile

Ioan Todinca #

LIFO, Université d’Orléans and INSA Centre-Val de Loire, France

Abstract
During the last two decades, a small set of distributed computing models for networks have emerged,
among which LOCAL, CONGEST, and Broadcast Congested Clique (BCC) play a prominent role.
We consider hybrid models resulting from combining these three models. That is, we analyze the
computing power of models allowing to, say, perform a constant number of rounds of CONGEST,
then a constant number of rounds of LOCAL, then a constant number of rounds of BCC, possibly
repeating this figure a constant number of times. We specifically focus on 2-round models, and
we establish the complete picture of the relative powers of these models. That is, for every pair
of such models, we determine whether one is (strictly) stronger than the other, or whether the
two models are incomparable. The separation results are obtained by approaching communication
complexity through an original angle, which may be of an independent interest. The two players are
not bounded to compute the value of a binary function, but the combined outputs of the two players
are constrained by this value. In particular, we introduce the XOR-Index problem, in which Alice
is given a binary vector x ∈ {0, 1}n together with an index i ∈ [n], Bob is given a binary vector
y ∈ {0, 1}n together with an index j ∈ [n], and, after a single round of 2-way communication, Alice
must output a boolean outA, and Bob must output a boolean outB , such that outA ∧ outB = xj ⊕ yi.
We show that the communication complexity of XOR-Index is Ω(n) bits.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases hybrid model, synchronous networks, LOCAL, CONGEST, Broadcast
Congested Clique

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.20

Related Version Full Version: https://arxiv.org/abs/2208.02640

Funding Pierre Fraigniaud: Additional support for ANR projects QuData and DUCAT.
Pedro Montealegre: This work was supported by Centro de Modelamiento Matemático (CMM),
FB210005, BASAL funds for centers of excellence from ANID-Chile, and ANID-PAI77170068.
Ivan Rapaport: This work was supported by Centro de Modelamiento Matemático (CMM), FB210005,
BASAL funds for centers of excellence from ANID-Chile, and ANID-FONDECYT 1220142.
Martín Ríos-Wilson: Additional support from ANID-FONDECYT Postdoctorado 3220205.

© Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport, Martín Ríos-Wilson, and
Ioan Todinca;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
mailto:p.montealegre@uai.cl
mailto:pparedes@dim.uchile.cl
mailto:rapaport@dim.uchile.cl
mailto:martin.rios@uai.cl
mailto:ioan.todinca@univ-orleans.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.20
https://arxiv.org/abs/2208.02640
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Computing Power of Hybrid Models in Synchronous Networks

1 Introduction

This paper analyzes the relative power of distributed computing models for networks,
all resulting from the combination of standard synchronous models such as LOCAL and
CONGEST [47], as well as Broadcast Congested Clique (BCC) [21]. Each of these three
models has its strengths and limitations. In particular, CONGEST assumes the ability for
each node to send a specific message to each of its neighbors at every round (even in a clique).
However, the communication links have limited bandwidth. Specifically, at most O(log n)
bits can be sent through any link during a round, in n-node networks. LOCAL assumes a link
with unlimited bandwidth between any two neighboring nodes, but the information acquired
by any node u after t ≥ 0 rounds of communication is limited to the data available at nodes
at distance at most t from u in the network. Finally, BCC supports all-to-all communications
between the nodes, and thus does not suffer from the locality constraint of LOCAL and
CONGEST. However, at each round, each node is bounded to send a same O(log n)-bit
message to all the other nodes. In this paper, we investigate the power of models resulting
from combining these three models, in order to take advantage of their positive aspects
without suffering from their negative ones.

For the sake of comparing models, we focus on the standard framework of distributed
decision problems on labeled graphs (see [27]). Such problems are defined by a collection
L of pairs (G, ℓ), where G = (V, E) is a graph, and ℓ : V → {0, 1}∗ is a function assigning
a label ℓ(u) ∈ {0, 1}∗ to every u ∈ V . Such a set L is called a distributed language. For
instance, deciding whether a certain set U of nodes in a graph G forms a vertex cover can be
modeled by the language

vertex-cover =
{

(G, ℓ) : ∀{u, v} ∈ E(G), ℓ(u) = 1 ∨ ℓ(v) = 1
}

,

by labeling 1 all the vertices in U , and 0 all the other vertices. Similarly, deciding C4-freeness
can be modeled by the language C4-freeness = {(G, ℓ) : C4 ̸⪯ G}, where H ⪯ G denotes
that H is a subgraph of G, and deciding whether a graph is planar can be captured by the
language planarity = {(G, ℓ) : G is planar}. A distributed algorithm A decides L if every
node running A eventually accepts or rejects, and the following condition is satisfied: for
every labeled graph (G, ℓ),

(G, ℓ) ∈ L ⇐⇒ all nodes accept.

That is, every node should accept in a yes-instance (i.e., an instance (G, ℓ) ∈ L), and, in a
no-instance (i.e., an instance (G, ℓ) /∈ L), at least one node must reject.

For every t ≥ 0, let us denote by Lt the set of distributed languages L for which there
is a t-round algorithm in the LOCAL model deciding L, with L = L1. The sets Ct and Bt

are defined similarly, for the CONGEST and BCC models, respectively. Note that while it is
easy to show, using indistinguishability arguments, that, for every t ≥ 1, Lt ∖ Lt−1 ̸= ∅ and
Ct ∖ Ct−1 ̸= ∅, establishing that there is indeed a decision problem in Bt ∖ Bt−1 requires
significantly more work [46]. Also, we define L∗ = ∪t≥0Lt, C∗ = ∪t≥0Ct, and B∗ = ∪t≥0Bt.
So, in particular, L∗ is the class of distributed languages that can be decided in a constant
number of rounds in the LOCAL model.

The three models under consideration, i.e., LOCAL, CONGEST, and BCC exhibit very
different behaviors with respect to decision problems. For instance, it is known [22] that

C4-freeness ∈ L ∖ (B∗ ∪ C∗),

P. Fraigniaud et al. 20:3

whenever one assumes, as we do in this paper, that, for all models under consideration,
every node is initially aware of the identifiers1 of its neighbors. On the other hand, it is also
known [12] that

planarity ∈ B ∖ L∗.

This means that while no LOCAL algorithms can decide planarity in a constant number of
rounds, there is a 1-round BCC algorithm deciding planarity, and while no BCC algorithms
can decide C4-freeness in a constant number of rounds, there is a 1-round LOCAL algorithm
deciding C4-freeness. So, if one allows LOCAL algorithms to do just a single round of all-to-all
communication, as in BCC, then both C4-freeness and planarity can be solved in a constant
number of rounds, hence increasing the computational power of LOCAL dramatically.

This observation led us to investigate scenarios such as the case in which the CONGEST
model is enhanced by allowing nodes to perform few rounds in either LOCAL, or BCC. What
would be the computing power of such a hybrid model? For answering this question, for a
collection of non-negative integers α1, . . . , αk, β1, . . . , βk, and γ1, . . . , γk, we define the set

k∏
i=1

LαiBβiCγi

as the class of decision languages L which can be decided by an algorithm performing α1 ≥ 0
rounds of LOCAL, followed by β1 ≥ 0 rounds of BCC, followed by γ1 ≥ 0 rounds of CONGEST,
followed by α2 ≥ 0 rounds of LOCAL, etc., up to γk ≥ 0 rounds of CONGEST. For instance,
we have

{planarity, C4-freeness} ⊆ LB ∩ BL.

However, how do LB and BL compare? And what about CB vs. BC, and LC vs. CL?
These are the kinds of questions that we are studying in this paper. In the long-term
perspective, this line of research is motivated by the following question. Let L be a fixed
distributed language, and let us assume that a round of LOCAL costs a (say, for acquiring
high-throughput channels), that a round of BCC costs b (say, for benefiting of facilities
supporting all-to-all communications), and that a round of CONGEST costs c. The goal is to
minimize the total cost of an algorithm deciding L in a constant number of rounds, that is,
to solve the following minimization problem:

min∏k

i=1
LαiBβiCγi ∋ L

(
a

k∑
i=1

αi + b
k∑

i=1
βi + c

k∑
i=1

γi

)
. (1)

Note that, for a = b = c = 1, Eq. (1) corresponds to minimizing the number of rounds for
deciding L when using a combination of the communication facilities provided by LOCAL,
CONGEST, and BCC. For instance, deciding whether a graph is Ck-free can be achieved in
⌊ k

2 ⌋ rounds in LOCAL, that is, Ck-freeness ∈ L⌊k/2⌋. Eq. (1) is asking whether deciding
Ck-freeness could be achieved at a lower cost by combining LOCAL, CONGEST, and BCC.
For tackling Eq. (1), we need a better understanding of the fundamental effects resulting
from combining these models.

1 In each of the models, every node u of a n-node network G = (V, E) is supposed to be provided with
an identifier id(u), where id : V → [1, N] is one-to-one, and N(n) = poly(n), i.e., all identifiers can be
stored on O(log n) bits in n-node networks. We also assume that all nodes are initially aware of the
size n of the network, merely because this is the case in model BCC.

OPODIS 2022

20:4 Computing Power of Hybrid Models in Synchronous Networks

1.1 Our Results
On the negative side, we provide a series of separation results between 2-round hybrid models.
In particular, we show that BC and CB are incomparable. That is, there are languages
in BC ∖ CB, and languages in CB ∖ BC. In fact, we show stronger separation results,
by establishing that BC ∖ C∗B ̸= ∅, and CB ∖ BL∗ ̸= ∅. That is, in particular, there
are languages that can be decided by a 2-round algorithm performing a single BCC round
followed by one CONGEST round, which cannot be decided by any algorithm performing k

CONGEST rounds followed by a single BCC round, for any k ≥ 1.
On the positive side, we show that, for any non-negative integers α1, . . . , αk, β1, . . . , βk,

k∏
i=1

LαiBβi ⊆ L
∑k

i=1
αiB

∑k

i=1
βi . (2)

That is, if a language L can be decided by a t-round algorithm alternating LOCAL and BCC
rounds, then L can be decided by a t-round algorithm performing all its LOCAL rounds
first, and then all its BCC rounds – with the notations of Eq. (2), t =

∑k
i=1(αi + βi). So,

in particular BL ⊆ LB. This inclusion is strict, since, as said before, CB ∖ BL∗ ̸= ∅. In
fact, this separation holds even if the number of LOCAL rounds depends on the number of
nodes n in the network, as long as the algorithm performs o(n) LOCAL rounds after its BCC
round. Another consequence of Eq. (2) is that the largest class of languages among all the
ones considered in this paper is L∗B∗, that is, languages that can be decided by algorithms
performing k LOCAL rounds followed by k′ BCC rounds, for some k ≥ 0 and k′ ≥ 0. Thus,
Eq. (1) should be studied for languages L ∈ L∗B∗.

Interestingly, our separation results hold even for randomized protocols, which can err
with probability at most ϵ ≤ 1/5. That is, in particular, there is a language L ∈ CB (i.e.,
that can be decided by a deterministic 2-round algorithm) which cannot be decided with
error probability at most 1/5 by any randomized algorithm performing one BCC round first,
followed by k LOCAL rounds, for any k ≥ 1. All our results about 2-rounds hybrid models
are summarized on Figure 1.

L

C B

CC BC CB

LC CL BL

LL LB

BB

Figure 1 The poset of 2-round hybrid models. An edge between a set of languages S1 and a
set S2, where S1 is at a level lower than S2, indicates that S1 ⊆ S2. In fact, all inclusions are
strict. Transitive edges are not displayed. Two sets that are not connected by a monotone path are
incomparable. For instance, CB and BL are incomparable, while BC ⊆ LB.

Our Techniques. All our separation results are obtained by reductions from communication
complexity lower bounds. However, we had to revisit several known communication complexity
results for adapting them to the setting of distributed decision, in which no-instances may

P. Fraigniaud et al. 20:5

be rejected by a single node, and not necessarily by all the nodes. In particular, we revisit
the classical Index problem. Recall that, in this problem, Alice is given a binary vector
x ∈ {0, 1}n, Bob is given an index i ∈ [n], and Bob must output xi based on a single message
received from Alice (1-way communication). We define the XOR-Index problem, in which
Alice is given a binary vector x ∈ {0, 1}n together with an index i ∈ [n], Bob is given a
binary vector y ∈ {0, 1}n together with an index j ∈ [n], and, after a single round of 2-way
communication, Alice must output a boolean outA and Bob must output a boolean outB,
such that

outA ∧ outB = xj ⊕ yi.

That is, if xj ≠ yi then Alice and Bob must both accept (i.e., output true), and if xj = yi

then at least one of these two players must reject (i.e., output false). We show that the sum
of the sizes of the message sent by Alice to Bob and the message sent by Bob to Alice is
Ω(n) bits. This bound holds even if the communication protocol is randomized and may err
with probability at most 1/5, and even if the two players have access to shared random coins.

The fact that only one of the two players may reject a no-instance (i.e., an instance where
xj ⊕ yi = 0), and not necessarily both, while a yes-instance must be accepted by both players,
yields an asymmetry which complicates the analysis. We use information theoretic tools for
establishing our lower bound. Specifically, we identify a way to decorrelate the behaviors
of Alice and Bob, so that to analyze separately the distribution of decisions taken by each
player, and then to recombine them for lower bounding the probability of error in case the
messages exchanged between the players are small, contradicting the fact that this error
probability is supposed to be small. Roughly, given messages mA and mB exchanged by the
two players, and given two indices i and j, we compute the value yi maximizing the error
probability for Alice, and the value xj maximizing the error probability for Bob, conditioned
to mA, mB , i, j. We then show that the combined pair (xj , yi) provide a sufficiently good
lower bound on the probability of error for the whole protocol, which contradicts the fact
that the error must be at most ϵ.

1.2 Related Work
The LOCAL model was introduced in [42] at the beginning of the 1990s, when the celebrated
Ω(log∗ n) lower bound on the number of rounds for computing a 3-coloring or a maximal
independent set (MIS) in the n-node cycle was proved. A few years later, the class of locally
checkable labeling (LCL) problems was introduced and studied in [45]. This class essentially
corresponds to the class L∗, but restricted to graphs with constant maximum degrees. Given
L ∈ L∗, and the family G∆ of graphs with maximum degree at most ∆, solving the LCL
problem induced by L and G∆ consists of designing a distributed algorithm which, given
a graph G ∈ G∆, computes a labeling ℓ of the nodes such that (G, ℓ) ∈ L. It is known
that many LCL problems can be solved in constant number of rounds in LOCAL. This is
for instance the case of certain types of weak colorings problems [45]. Also, there is an
O(

√
k∆1/

√
k log ∆)-approximation algorithm for minimum dominating set running in O(k)

rounds [38] (where k ≥ 1 is a parameter), and there is an O(nε)-approximation algorithm for
the minimum coloring problem running in exp(O(1/ε)) rounds [11]. In fact, it is undecidable,
in general, whether a given LCL problem has a (construction) algorithm running in a constant
number of rounds [45]. A plethora of papers have addressed graph problems in the LOCAL
model, and we refer to the survey [52], but several significant results have been obtained
since then, among which it is worth mentioning two fields in close connection to the topic of
this paper, which emerged in the early 2010s. One is the systematic study of distributed

OPODIS 2022

20:6 Computing Power of Hybrid Models in Synchronous Networks

decision problems in various settings, including non-determinism [28, 31, 37] and interactive
protocols [36, 44]. The other is a systematic study of the round-complexity of LCL problems
(see, e.g., [9, 53], and the references therein).

The CONGEST model is a weaker variant of the LOCAL model in which the size of the
messages exchanged at each round between neighbors is bounded to O(log n) bits, or B

bits in the parametrized version of the model. This bound on the message size creates
bottlenecks limiting the power of algorithms under this model. A fruitful line of research has
established several non-trivial lower bounds on the round-complexity of CONGEST algorithms,
by reduction from communication complexity problems (see for instance [1, 5, 24, 48, 50]).
Nevertheless, several problems can still be solved in a constant number of rounds in CONGEST.
This is for instance the case of computing a (2 + ε)-approximation of minimum vertex cover
which can be done in O(log ∆/ log log ∆) rounds [10] in graphs with maximum degree ∆.
Also, testing (a weaker variant of decision, a la property-testing) the presence of specific
subgraphs like small cliques or short cycles can be done in a constant number of rounds
in CONGEST(see, e.g., [14, 25, 29, 30, 41]).

The congested clique model [21, 43] has first been introduced in its unicast version (UCC),
where every node is allowed to send potentially different O(log n)-bit messages to each of the
other n−1 nodes at every round. In the UCC model, many natural problems can be solved in
a constant number of rounds [17, 35, 40]. The UCC model is very powerful, and it has actually
been proved [21] that it can simulate powerful bounded-depth circuits classes, from which it
follows that exhibiting non-trivial lower bounds for the UCC model is quite difficult. The
broadcast variant of the congested clique, namely the BCC model, is significantly weaker than
the unicast variant, and lower bounds on the round-complexity of problems in the BCC model
have been established, again by reduction to communication complexity problems. This is
the case of problems such as detecting the presence of particular subgraphs [21], detecting
planted cliques [18], or approximating the diameter of the network [33]. Obviously, many fast,
non-trivial BCC-algorithms have also been devised. As examples, we can mention the sub-
logarithmic deterministic algorithm that finds a maximal spanning forest in O(log n/ log log n)
rounds [34], and algorithms for deciding and reconstructing several graph families (including
bounded degeneracy graphs) performing in a constant number of rounds [13]. It is worth
noticing that, for single round algorithms, the BCC model is also referred to using other
terminologies, such as simultaneous-messages [8], or sketches [2, 54]. In these latter models
though, the measure of complexity is the size of the messages, and therefore the restriction
to O(log n)-bits messages is not enforced.

Hybrid distributed computing models have been investigated in the literature only recently,
motivated by the various forms of modern communication technologies, from high-throughput
optical links to global wireless communication facilities, to peer-to-peer long-distance logical
connections. In particular, a hybrid model allowing nodes to perform in a local mode, and in
a global mode at each round has been recently considered [7]. The local mode corresponds
to perform a LOCAL round [47], while the global mode corresponds to perform a node-
capacitated clique (NCC) round [6], which allows each node to exchange O(log n)-bit messages
with O(log n) arbitrary nodes in the network. It is shown that, in the LOCAL+NCC hybrid
model, SSSP can be approximated in Õ(n1/3) rounds, and APSP can be approximated in
Õ(

√
n) rounds. Several lower bounds are also presented in [7], including an Ω̃(

√
n)-round

lower bound for computing APSP, and an Ω(n1/3)-round lower bound for computing the
diameter. In a subsequent work [39], it was shown that APSP can actually be solved
exactly in Õ(

√
n) rounds in the LOCAL+NCC model. Some of these results were further

improved in [15, 16] where it is shown how to solve multiple SSSP problems exactly in

P. Fraigniaud et al. 20:7

Õ(n1/3) rounds, and how to approximate SSSP in Õ(n5/17) rounds. Other graph problems,
such as spanning tree, maximal independent set (MIS) construction, and routing were also
considered in the LOCAL+NCC model (see [20, 32]). In fact, it was very recently shown [3]
that any problem on sparse graphs can be solved in Õ(

√
n) rounds in the LOCAL+NCC

model. Efficient distributed algorithms for general graphs in this model can then be obtained
using sparsification techniques. Finally, it is worth pointing out that the weaker hybrid
model CONGEST+NCC was considered in [26] for restricted families of graphs.

As a final remark, it is interesting to notice that the XOR-Index problem is related to
the EPR paradox [23], and especially the so-called CHSH game [19] whose objective is to
demonstrate the existence of quantum (non-classical) correlations in physics (see [4]).

2 Hybrid Models Based on LOCAL and BCC

In this section, we consider the combination of LOCAL and BCC, and, in particular, we
compare the two classed LB and BL. The section can be considered as a warmup section
before stating more complex separation results further in the text.

First, we establish a general result concerning the hybridation of LOCAL and BCC. Recall
that

∏k
i=1 LαiBβi is the class of distributed decision problems that can be decided by an

algorithm performing α1 rounds of LOCAL, then β1 rounds of BCC, then α2 rounds of
LOCAL, etc., ending with βk rounds of BCC. We show that every language in this class can
be computed in the same number of rounds by performing first all LOCAL rounds, and then
all BCC rounds.

▶ Theorem 1. Let k ≥ 1 be an integer, and let α1, . . . , αk and β1, . . . , βk be non-negative
integers. We have

∏k
i=1 LαiBβi ⊆ L

∑k

i=1
αiB

∑k

i=1
βi .

Proof. Let L ∈
∏k

i=1 LαiBβi , and let A be a distributed algorithm deciding L in the
corresponding hybrid model combining LOCAL and BCC. Let us consider the maximum
integer t <

∑k
i=1(αi + βi) such that A performs BCC at round t, and LOCAL at round t + 1.

(If no such t exist, then A is already in the desired form.) We transform A into A′ performing
the same as A, excepted that rounds t and t + 1 are switched. Specifically, let us consider a
run of A for an instance (G, ℓ). Let Bu be the message broadcasted by u at round t of A,
and, for every neighbor v of u, let Lu,v be the message sent by u to v at round t + 1 of A. To
define A′, let Su be the state of every node u at the beginning of round t of A, and let NG(u)
be the set of neighbors of u in G. In A′, every node u sends its state Su to all its neighbors
at round t, using LOCAL. At round t + 1 of A′, every node u broadcasts Bu to all nodes,
using BCC (this is doable, as u was able to produce Bu based on Su at round t). Finally,
before completing round t + 1, every node u uses the collection {Sv : v ∈ NG(u)} and the
collection {Bw : w ∈ V (G)} to compute the messages Lv,u for all v ∈ NG(u), by simulating
what every such neighbor would have done v at round t of A. Indeed, Lv,u depend solely on
Sv and {Bw : w ∈ V (G)}. (We make the standard assumption that all nodes are running
the same algorithm, but even if that was not the case, every node could also send the code
of its algorithm to all its neighbors together with its state at round t.) It follows that, at the
end of round t + 1 of A′, every node u can compute its state after t + 1 rounds of A. By
repeating the same switch operation until no LOCAL rounds occur after a BCC round, we
eventually obtain an algorithm deciding L and establishing that L ∈ L

∑k

i=1
αiB

∑k

i=1
βi . ◀

OPODIS 2022

20:8 Computing Power of Hybrid Models in Synchronous Networks

▶ Corollary 2. BL ⊊ LB.

Proof. The fact that BL ⊆ LB is a direct consequence of Theorem 1. On the other hand,
there is a distributed language in LB∖BL since, as shown by Theorem 5, CB∖BL∗ ̸= ∅. ◀

We now show a separation between the class BL and the class B∗ ∪ L∗ of languages that
can be decided in a constant number of rounds either in BCC or LOCAL. The proof does not
use communication complexity reduction, but a mere reduction to triangle-freeness.

▶ Theorem 3. BL ∖ (B∗ ∪ L∗) ̸= ∅

Proof. Let us consider the language triangle-on-max-degree-freeness (TOMDF) defined
by the set of graphs G such that, for every triangle T in G, all nodes in T have a degree
smaller than the maximum degree of G. Note that TOMDF ∈ BL. Indeed, during the BCC
round, every node can broadcast its degree. Thus, during the LOCAL round, each node can
learn all triangles it belongs to. Every node rejects if it is of maximum degree, and it is
contained in a triangle. Otherwise, it accepts. Moreover, TOMDF /∈ L∗ because, for every
k ≥ 0, in k LOCAL rounds a node cannot distinguish an instance G in which it has maximum
degree from an instance G′ in which there is a node with a larger degree. It remains to show
that TOMDF /∈ B∗.

Let us assume, for the purpose of contradiction, that there exists k ≥ 0, such that TOMDF
can be decided by an algorithm A performing k BCC rounds, i.e., TOMDF ∈ Bk. We can use
A to decide triangle-freeness in k + 1 BCC rounds. Let G be a graph. In the first BCC
round, every node v broadcasts its identifier id(v) and its degree d(v), and hence learns the
maximum degree ∆ of G. Then every node simulates A on the virtual graph G′ on n∆

2
nodes obtained from G by adding a set Sv of ∆ − d(v) pending vertices to each vertex v

of G. Every node v simulates A in G′ by simulating its execution on v and on all the nodes
in Sv. Specifically, after the first BCC round, v knows the set of IDs used in G, and thus
the rank of its ID in this set. Therefore, it can compute the set I composed of the smallest
n∆
2 − n positive integers that are not used as IDs in G. Furthermore, it can assign IDs to its

∆ − d(v) pending virtual neighbors in G′, using its rank and the degrees of all the nodes
with lower rank in G, so that (1) the ID of each virtual node is unique in G′, and (2) every
node of G knows the IDs assigned to the pending virtual neighbors of every other node in G.
It follows that each node v does not need to simulate the messages broadcasted in A by
the nodes in Sv. In fact, every node v can simulate the behavior of all the virtual nodes in
S = ∪u∈V (G)Su at each round of A. As a consequence, the simulation of A in G′ does not
yield any overhead on the number of bits to be broadcasted by each (real) node v running A.
After the k BCC rounds of A in G′ have been simulated, every node v accepts (on G) if
itself and all the nodes in Sv accept in A on G′. Now, by construction, G′ ∈ TOMDF if and
only if G is triangle-free. Since A decides TOMDF, we get that triangle-freeness ∈ Bk+1,
a contradiction. ◀

3 Hybrid Models Based on BCC and CONGEST

In this section, we consider the combination of CONGEST and BCC, and, in particular,
we compare the two classes CB and BC. The separation of these two classes uses the
communication complexity problem XOR-Index. In the next section, we will establish that
the 2-ways 1-round communication complexity of XOR-Index is Ω(n) bits. We use this lower
bounds in the proofs of this section.

We first show that not only CB ∖ BC ̸= ∅ but also CB ∖ BL∗ ̸= ∅.

P. Fraigniaud et al. 20:9

▶ Theorem 4. CB∖BL∗ ̸= ∅. This result holds even for randomized algorithms performing
one BCC round followed by a constant number of LOCAL rounds, which may err with
probability ϵ, for every ϵ < 1/5.

Proof. Let us consider the distributed language denoted one-marked-edge defined as

one-marked-edge =
{

(G, ℓ) :
(
ℓ : V (G) → {0, 1}

)
∧
(∣∣{{u, v} ∈ E(G) : ℓ(u) = ℓ(v) = 1

}∣∣ = 1
)}

.

In words, the language corresponds to the graphs G with a potential mark on each
node, satisfying that exactly one edge of G has its two endpoints marked. We have
one-marked-edge ∈ CB. Indeed, a simple algorithm consists, for each node, to learn
which of its neighbors are marked, in one CONGEST round, and to broadcast its number
of marked incident edges, in one BCC round. The nodes reject if the total sum of marked
edges is different from 2 (i.e., exactly two nodes are incident to a unique marked edge). They
accept otherwise.

We now prove that one-marked-edge /∈ BL∗. We show that this result holds even
for a randomized algorithm which may err with probability ϵ < 1/5. For the purpose of
contradiction, let us assume that, for some k ≥ 0, there exists an ϵ-error algorithm A
solving one-marked-edge using one BCC round followed by k consecutive LOCAL rounds.
We show how to use A for designing an ϵ-error 1-round protocol Π solving XOR-index by
communicating only O(

√
m) bits on m-bit instances, contradicting the fact that XOR-index

has communication complexity Ω(m).
Let (x, i) ∈ {0, 1}m × [m] and (y, j) ∈ {0, 1}m × [m] be an instance of XOR-index. Without

loss of generality, we assume that m =
(

n
2
)

for some n ∈ N. Let us consider a graph G on
2n + 4k nodes, composed of two disjoint copies of a clique of size n, plus a path P of 4k

nodes. Let us denote by GA and GB the two cliques. The IDs assigned to the nodes of GA

are picked in [1, n], while the IDs assigned to the nodes of GB are picked in [n + 1, 2n]. One
extremity of P is connected to all nodes in GA, and the other extremity of P is connected to
all nodes in GB . Let us denote by P A the 2k nodes of P closest to GA, and by P B the 2k

nodes of P closest to GB . These nodes are assigned IDs 2n + 1, . . . , 2n + 4k, consecutively,
starting from the extremity of P connected to GA.

We enumerate the m =
(

n
2
)

edges in GA and GB from 1 to m. Then, in Π, the players
interpret their input vectors x and y as indicators of the edges of GA and GB respectively.
We denote by Gxy the subgraph of G such that, for every r ∈ [m], the r-th edge e of GA

(resp., GB) is in Gxy if and only if xr = 1 (resp., yr = 1). Also, all edges incident to nodes
of P are in Gxy. Let {ui

A, vi
A} be the endpoints of the i-th edge of GA, and let {uj

B , vj
B}

represent the endpoints of the j-th edge of GB. (These edges may or may not be in Gxy

depending on the values of xj and yi.) We define ℓij : V (G) → {0, 1} as the marking function
such that ℓij(w) = 1 if and only if w ∈ {ui

A, vi
A, uj

B , vj
B}. By construction, we have that

(Gxy, ℓij) ∈ one-marked-edge if and only if ((x, i), (y, j)) is a yes-instance of XOR-index,
i.e., xj ̸= yi. We say that Alice owns all nodes in V (GA) ∪ V (P A), and Bob owns all nodes
in V (GB) ∪ V (P B). Observe that the edges of Gxy incident to nodes owned by Alice depend
only on x, while the edges of Gxy incident to nodes owned by Bob only depend on y.

We are now ready to describe Π. First, Alice and Bob simulate the BCC round of
algorithm A on all the nodes of Gxy owned by them, respectively, considering that no vertices
are marked. This simulation results in each player constructing a set of n + 2k messages,
one for each node of the clique owned by the player, plus one message for each of the 2k

nodes in the sub-path owned by the player. We denote by MA
0 and MB

0 the set of messages

OPODIS 2022

20:10 Computing Power of Hybrid Models in Synchronous Networks

produced by Alice and Bob, respectively. Next, the players repeat the same procedure, but
considering now that all vertices are marked, from which it results sets of messages denoted
by MA

1 and MB
1 , respectively. Finally, Alice sends the pair (MA

0 , MA
1) to Bob, as well as her

input index i. Similarly, Bob sends the pair (MB
0 , MB

1) to Alice, as well as his input index j.
Observe that the size of these messages is O((n + k) log n) bits.

After the communication, Alice and Bob decide their outputs as follows. First, each
player extracts from MA

1 the messages produced by uj
A and vj

A, and extract from MB
1 the

messages produced by ui
B and vi

B. Then, they extract from MA
0 and MB

0 the messages of
every other node. Let us call M the resulting set of messages. Observe that M corresponds
exactly to the set of messages communicated during the BCC round of A on input (Gxy, ℓij).
Then, Alice and Bob simulate the k LOCAL rounds of A on all the vertices they own. This
is possible as the nodes of P are not marked, for every instance of XOR-index. Each player
accepts if all the nodes owned by this player accept. Since (Gxy, ℓij) ∈ one-marked-edge if
and only if ((x, i), (y, j)) is a yes-instance of XOR-index, we get that Π is an ϵ-error protocol
solving XOR-index on inputs of size m by communicating only O((n + k) log n) = O(

√
m)

bits, which is a contradiction with Theorem 7. ◀

We now show that BC ∖ CB ̸= ∅.

▶ Theorem 5. BC∖CB ≠ ∅. This result holds even for randomized algorithms performing
one CONGEST round followed by one BCC round, which may err with probability ϵ, for
every ϵ < 1/5.

Proof. For every n ≥ 2, let us consider the path P2n+1, i.e., the path with 2n + 1 nodes,
denoted consecutively a1, . . . , an, c, bn, . . . , b1. Let x ∈ {0, 1}n, y ∈ {0, 1}n, i ∈ [n], and
j ∈ [n]. We define the labeling ℓx,y,i,j of the nodes of Pn as follows:

ℓx,y,i,j(a1) = i, ℓx,y,i,j(an) = x, ℓx,y,i,j(bn) = y, ℓx,y,i,j(b1) = j,

and, for every v /∈ {a1, an, b1, bn}, ℓx,y,i,j(v) = ⊥. We define the distributed language

XOR-index-path = {(P2n+1, ℓx,y,i,j) : (n ≥ 2) ∧ (x, y ∈ {0, 1}n) ∧ (i, j ∈ [n]) ∧ (xj ̸= yi)}.

First, we show that XOR-index-path ∈ BC. During the BCC round, every node broadcasts
its ID, and the IDs of its neighbors (a node with more than two neighbors simply rejects).
Also, degree-1 nodes broadcasts their labels. Note that the 2n + 1 nodes can then check
whether they are vertices of the path P2n+1, and, if this is not the case, they reject. Let i

and j be the labels broadcasted by the two extremities of the path. Based on the information
broadcasted by all the nodes, each of the two nodes an and bn adjacent to the middle node c

of the path knows which of the two labels i or j correspond to the index broadcasted by its
farthest extremity in the path, b1 and a1, respectively. Thus, during the CONGEST round,
an and bn can send the bits xj and yi to the center c of the path, which checks whether
xj ̸= yi, and accepts or rejects accordingly.

Now, we show that XOR-index-path /∈ CB. Let us assume for the purpose of contra-
diction that there exists a 2-round algorithm A deciding XOR-index-path by performing
one CONGEST round followed by one BCC round. To solve an instance ((x, i), (y, j)) of
XOR-Index, Alice and Bob simulate A on the path P2n+1 with consecutive IDs 1, . . . , 2n + 1.
Specifically, Alice simulates the n + 1 nodes a1, . . . , an, c, while Bob simulates the n + 1 nodes
b1, . . . , bn, c, with the nodes labeled with ℓx,y,i,j . For simulating the CONGEST round, Alice
sends to Bob the message man sent from an to c during that round, and Bob sends to Alice
the message mbn

sent from bn to c during that round. The BCC round is actually simulated

P. Fraigniaud et al. 20:11

simultaneously. More precisely, Alice and Bob can both construct the messages broadcasted
by all nodes a3, . . . , an−2 and b3, . . . , bn−2, merely because they know their IDs and their
labels (equal to ⊥), and they can therefore infer the messages these nodes receive during the
CONGEST round. So, these messages do not need to be communicated between the players.
Moreover, Alice knows a priori what messages m′

a1
, m′

a2
, and m′

an
are to be broadcasted by

a1, a2 and an during the BCC round, and can send them to Bob. Symmetrically, Bob knows
a priori what messages m′

b1
, m′

b2
, and m′

bn
are to be broadcasted by b1, b2 and bn during the

BCC round, and can send them to Alice. As for node c, thanks to the messages man and
mbn

sent by Alice to Bob, and by Bob to Alice, respectively, both players can construct
the message to be sent by c during the BCC round. So, in total, for simulating A, Alice
(resp., Bob) just needs to send the messages man , m′

a1
, m′

a2
, m′

an
to Bob (resp., the messages

mbn
, m′

b1
, m′

b2
, m′

bn
to Alice), which consumes O(log n) bits of communication in total. Each

player accepts if all the nodes he or she simulates accept, and rejects otherwise. Alice and
Bob are thus able to solve XOR-index by exchanging O(log n) bits only, which contradicts
Theorem 7. ◀

As a direct consequence of the previous two theorems, we get:

▶ Corollary 6. The sets CB and BC are incomparable.

4 The Communication Complexity of XOR-index

This section is dedicated to the analysis of the following communication problem.

XOR-index:
Input: Alice receives x ∈ {0, 1}n and i ∈ [n]; Bob receives y ∈ {0, 1}n and j ∈ [n].
Task: Alice outputs a boolean outA and Bob outputs a boolean outB such that

outA ∧ outB = xi ⊕ yi.

We focus on 2-way 1-round protocols, that is, each player sends only one message to
the other player, both players send their messages simultaneously, and each player must
decide his or her output upon reception of the message sent by the other player. For every
2-player communication problem P , and for every ϵ > 0, let us denote by CC1(P, ϵ) the
communication complexity of the best 2-way 1-round randomized protocol solving P with
error probability at most ϵ.

▶ Theorem 7. For every non-negative ϵ < 1/5, CC1(XOR-index, ϵ) = Ω(n) bits.

The rest of the section is entirely dedicated to the proof of Theorem 7. Let 0 ≤ ϵ < 1/5,
and let Π randomized protocol solving XOR-index with error probability at most ϵ, where
Alice communicates kA bits to Bob, and Bob communicates kB bits to Alice. Without loss of
generality, we can assume that, in Π, Alice (resp., Bob) sends explicitly the value of i (resp., j)
to Bob (resp., Alice). Indeed, this merely increases the communication complexity of Π by an
additive factor O(log n), which has no consequence, as we shall show that kA + kB = Ω(n).

Let us consider the probabilistic distribution over the inputs of Alice and Bob, where
x and y are drawn uniformly at random from {0, 1}n, and i and j are drawn uniformly at
random from [n]. Let us denote X and I the random variables equal to the inputs of Alice,
and Y and J the random variables equal to the inputs of Bob. Let MA (resp., MB) be
the random variable equal to the message sent by Alice (resp., Bob) in Π on input (X, I)
(resp., (Y, J)). Note that MA and MB have values in ΩA = {0, 1}kA and ΩB = {0, 1}kB ,
respectively, of respective size 2kA and 2kB .

OPODIS 2022

20:12 Computing Power of Hybrid Models in Synchronous Networks

Let us fix i, j ∈ [n], mA ∈ ΩA, and mB ∈ ΩB. Let EA
mA,j be the event corresponding to

Bob receiving J = j as input, and Alice sending MA = mA to Bob in the communication
round. Similarly, let EB

mB ,i be the event corresponding to Alice receiving I = i as input, and
Bob sending MB = mB to Alice in the communication round. For a, b ∈ {0, 1}, we set:

p(a, mA, j) = Pr[XJ = a | EA
mA,j], and q(b, mB , i) = Pr[YI = b | EB

mB ,i],

and

p(a, j) = Pr[XJ = a | J = j], and q(b, i) = Pr[YI = b | I = i].

Observe that p(a, j) = q(b, j) = 1/2. Let a∗ and b∗ be the most probable values of Xj given
(mA, j), and of Yi given (mB , i), respectively. Formally,

a∗ = argmaxa∈{0,1}p(a, mA, j), and b∗ = argmaxb∈{0,1}q(b, mB , i).

Observe that p(a∗, mA, j) ≥ 1/2 and q(b∗, mA, j) ≥ 1/2. We first establish the following
technical lemma.

▶ Lemma 8. Let F the the event that Π fails. We have

Pr[F | EA
mA,j , EB

mB ,i] ≥ Pr[a∗ ̸= XJ | EA
mA,j , EB

mB ,i] · Pr[b∗ ̸= YI | EA
mA,j , EB

mB ,i].

Proof. Without loss of generality, we assume that, in Π, after having communicated the
pair (mA, i), Alice computes b∗, and decides her output as follows. If b∗ ̸= xj , then Alice
accepts with some fixed probability pA, and if b∗ = xj then Alice accepts with some fixed
probability qA. The probabilities pA and qA determines the actions of Alice. Similarly, we
can assume that, after having communicated (mB , j), Bob computes a∗, and decides as
follows. If a∗ ≠ yi then he accepts with some fixed probability pB, and if a∗ = yi then he
accepts with some fixed probability qB . Note that, in the case where the players do not take
in account the value of a∗ and b∗, then one can simply choose pA = qA and pB = qB . Let us
denote

RA = Pr[a∗ = XJ | EA
mA,j , EB

mB ,i], and RB = Pr[b∗ = YI | EA
mA,j , EB

mB ,i].

Observe that

Pr[F | EA
mA,j , EB

mB ,i] = 1/2 Pr[F | EA
mA,j , EB

mB ,i, XJ ̸= YI]+1/2 Pr[F | EA
mA,j , EB

mB ,i, XJ = YI].

Now, conditioned on XJ ̸= YI , the event F corresponds to the event when Alice accepts
and Bob accepts. Observe that, conditioned on EA

mA,j , EB
mB ,i, these two latter events are

independent. Moreover, conditioned on XJ ≠ YI , the event a∗ ̸= YI is equal to the event
a∗ = XJ . Similarly, conditioned on XJ ̸= YI , the event b∗ ̸= XJ is equal to the event
b∗ = XI . It follows that{

Pr[Alice accepts | EA
mA,j , EB

mB ,i, XJ ̸= YI] = RB pA + (1 − RB) qA;
Pr[Bob accepts | EA

mA,j , EB
mB ,i, XJ ̸= YI] = RA pB + (1 − RA) qB .

This implies that

Pr[F | EA
mA,j , EB

mB ,i, XJ ̸= YI]
= Pr[Alice accepts and Bob accepts | EA

mA,j , EB
mB ,i, XJ ̸= YI]

= Pr[Alice accepts | EA
mA,j , EB

mB ,i, XJ ̸= YI] · Pr[Bob accepts | EA
mA,j , EB

mB ,i, XJ ̸= YI]
=
(
RB pA + (1 − RB) qA

)
·
(
RA pB + (1 − RA) qB

)
.

P. Fraigniaud et al. 20:13

let us now consider the case when conditioning on XJ = YI . In this case, the event F
corresponds to the complement of the event when Alice accepts and Bob accepts. Observe
that, conditioned on XJ = YI , the event a∗ ̸= YI is equal to the event a∗ ̸= XJ , and the
event b∗ ̸= XJ is equal to the event b∗ ̸= YI . It follows that{

Pr[Alice accepts | EA
mA,j , EB

mB ,i, XJ = YI] = (1 − RB) pA + RB qA;
Pr[Bob accepts | EA

mA,j , EB
mB ,i, XJ = YI] = (1 − RA) pB + RA qB/

This implies that

Pr[F | EA
mA,j , EB

mB ,i, XJ = YI)]
=1 − Pr[Alice accepts and Bob accepts | EA

mA,j , EB
mB ,i, XJ = YI]

=1 − Pr[Alice accepts | EA
mA,j , EB

mB ,i, XJ = YI]
· Pr[Bob accepts | EA

mA,j , EB
mB ,i, XJ = YI]

=1 −
(
(1 − RB) pA + RB qA

)
·
(
(1 − RA) pB + RA qB

)
.

Therefore, by combining the two cases, we get that

Pr[F | EA
mA,j , EB

mB ,i]

= 1
2
(
RA (pA + qA) (pB − qB) + RB (pA − qA) (pB + qB) + 1 − pA pB + qA qB

)
.

Conditioned to the events EA
mA,j , EB

mB ,i, the best protocol Π corresponds to the one that
picks the values of pA, qA, pB , qB that maximize the previous quantity, restricted to the fact
that pA, qA, pB , qB , RA and RB must be values in [0, 1], and that RA and RB must be at
least 1/2. The maximum can be found using the Karush-Kuhn-Tucker (KKT) conditions [51].
In fact, as the restrictions are affine linear functions, the optimal value is one solution of the
following system of equations:

(RA + RB − 1)pB − (RA − RB)qB − 2µ1 + 2µ5 = 0
(RA + RB − 1)pA + (RA − RB)qA − 2µ2 + 2µ6 = 0
(RA − RB)pB − (RA + RB − 1)qB − 2µ3 + 2µ7 = 0

−(RA − RB)pA − (RA + RB − 1)qA − 2µ4 + 2µ8 = 0
µ1(pA − 1) = 0
µ2(pB − 1) = 0
µ3(qA − 1) = 0
µ4(qB − 1) = 0

−µ5pA = 0
−µ6pB = 0
−µ7qA = 0
−µ8qB = 0

From the set of solutions to this system, we obtain that Pr[F | EA
mA,j , EB

mB ,i] is upper
bounded by RA + RB − RARB . Finally, observe that

(1 − RA)(1 − RB) = Pr[a∗ ̸= XJ | EA
mA,j , EB

mB ,i] · Pr[b∗ ̸= YI | EA
mA,j , EB

mB ,i],

from which we get that

Pr[F | EA
mA,j , EB

mB ,i] ≥ Pr[a∗ ̸= XJ |EA
mA,j] · Pr[b∗ ̸= YIEB

mB ,i],

as claimed. ◀

OPODIS 2022

20:14 Computing Power of Hybrid Models in Synchronous Networks

We now show that, whenever the messages sent by Alice and Bob are too small, the
distributions of a∗ and of b∗ is not far from the uniform. We make use of some basic
definitions and tools on information complexity, and we refer to [49] for more details. Let
(Ω, µ) be a discrete probability space. Given a random variable X we denote by pX : Ω 7→ R
the discrete density function of X, i.e., pX(ω) = Pr[X = ω]. We denote by H : Ω 7→ R+ the
entropy function, defined as H(X) =

∑
ω∈Ω pX(ω) 1

log pX (ω) . Recall that, given two random
variables X, Y on Ω, the entropy of X conditioned to Y is

H(X | Y) = EpY (y)(H(X | Y = y)).

Moreover, let µ and ν be two probability measures on Ω. The total variation distance
between µ and ν is defined as |u−v|TV = supE⊆Ω |µ(E)−ν(E)|. It is known that |u−v|TV =
1
2
∑

ω∈Ω |µ(ω) − ν(ω)|. In addition, the Kullback-Liebler divergence between µ and ν is
defined as D(µ||ν) =

∑
ω∈Ω µ(ω) log µ(ω)

ν(ω) . Given two random variables X and Y , their mutual
information is defined as I(X; Y) = D(pX,Y ||pXpY). It is known that

I(X; Y) = H(X) − H(X | Y) = H(Y) − H(Y | X) = I(Y ; X).

Finally, the mutual information of X, Y conditioned on a random variable Z is defined as
the function I(X; Y | Z) = EpZ (z)[I(X; Y | Z = z)]. Having all these notions at hand, we
shall use the following technical lemmas:

▶ Lemma 9 (Theorem 6.12 in [49]). Let A1, . . . , An be independent random variables, and
let B be jointly distributed. We have

∑n
i=1 I(Ai; B) ≤ I(A1, . . . , An; B).

▶ Lemma 10 (Pinsker’s Inequality, Lemma 6.13 in [49]). Let µ, ν be two probability measures
over Ω. We have |u − v|2TV ≤ 2

ln 2 D(µ||ν).

Back into our problem, we observe that:{
I(XJ ; MA | J) = 1

n

∑
j∈[n] I(Xj ; MA) ≤ I(X;MA)

n ≤ H(MA)
n ≤ kA

n

I(YI ; MB | I) = 1
n

∑
i∈[n] I(Yi; MB) ≤ I(Y ;MB)

n ≤ H(MB)
n ≤ kB

n .

By Pinsker’s inequality, it follows that: E(mA,j) (|p(·, mA, j) − p(·, j)|TV) ≤
√

kA

n

E(mB ,i) (|q(·, mB , i) − q(·, i)|TV) ≤
√

kB

n

These latter bounds imply that E(mA,j) (p(a∗, mA, j)) ≤ 1
2 +

√
kA

n

E(mB ,i) (q(b∗, mB , i)) ≤ 1
2 +

√
kB

n

Now, from Lemma 8, we have that

Pr[F | EA
mA,j , EB

mB ,i] ≥ p(1 − a∗, mA, j) · q(1 − b∗, mB , i)
≥
(
1 − p(a∗, mA, j)

)
·
(
1 − q(b∗, mB , i)

)
.

P. Fraigniaud et al. 20:15

As a consequence, we have

Pr[F] = EmA,mB ,i,j(Pr[F | EA
mA,j , EB

mB ,i])

=
∑

mA,mB ,i,j

Pr[F | EA
mA,j , EB

mB ,i] · Pr[EA
mA,j , EB

mB ,i]

≥
∑

mA,mB ,i,j

(
1 − p(a∗

(mA,j), mA, j)
)(

1 − q(b∗
(mB ,i), mB , i)

)
Pr[EA

mA,j , EB
mB ,i]

=
∑

mA,mB ,i,j

(
1 − p(a∗

(mA,j), mA, j)
)(

1 − q(b∗
(mB ,i), mB , i)

)
Pr[EA

mA,j] · Pr[EB
mB ,i]

=
∑

mA,j

(
1 − p(a∗

(mA,j), mA, j)
)

Pr[EA
mA,j] ·

∑
mB ,i

(
1 − q(b∗

(mB ,i), mB , i)
)

Pr[EB
mB ,i]

=
(

1 − E(mA,j)
(
p(a∗

(ma,j), mA, j)
))

·
(

1 − E(mB ,i)
(
q(b∗

(mB ,i), mB , i)
))

≥

(
1
2 −

√
kA

n

)
·

(
1
2 −

√
kB

n

)
.

Since Pr[F] ≤ ϵ, we must have (1
2 −

√
kA

n) · (1
2 −

√
kB

n) ≤ ε ≤ 1/5, implying that kA = Ω(n)
or kB = Ω(n).

5 Conclusion

In this paper, we have performed an extensive study of 2-round hybrid models resulting from
mixing LOCAL, CONGEST, and BCC, and we obtained a complete picture of the relative
power of these models (see Figure 1). This is a first step toward approaching the minimization
problem expressed in Eq. (1), which asks for identifying the best combination of these three
models for which there is an algorithm that solves a given distributed decision problem
L ∈ L∗B∗ with a minimum number of rounds, or at minimum cost. Solving this minimization
problem appears to be currently out of reach, but this paper provides some knowledge about
the computational power of hybrid models. Concretely, a step forward in the direction of
solving the problem of Eq. (1) would be to determine whether most hybrid models remain
incomparable when allowing t rounds for t > 2. In particular, in the case of hybrid models
mixing LOCAL and BCC, we have shown that one can systematically assume that all LOCAL
rounds are performed before all the BCC rounds. This does not holds for CONGEST and
BCC, for 2-round algorithms. However, we do not know whether the classes

∏k
i=1 BβiCγi and∏k

i=1 Bβ′
iCγ′

i are systematically incomparable for all distinct sequences ((βi, γi) : i = 1, . . . , k)
and ((β′

i, γ′
i) : i = 1, . . . , k) such that

∑k
i=1(βi + γi) =

∑k
i=1(β′

i + γ′
i).

The line of research investigated in this paper could obviously be carried out by considering
other models as well, in particular other congested clique models like UCC and NCC. It is
easy to see that U, the class of distributed languages that can be decided in one round in the
unicast congested clique, is incomparable with the largest class of models considered in this
paper. Namely, U∖L∗B∗ ̸= ∅ and L∗B∗∖U ̸= ∅. Also, previous work on the hybrid model
combining LOCAL and NCC reveals that computing the diameter of the network cannot be
done in a constant number of rounds in this model. Taking this under consideration, it
could be interesting to study the class (LN)∗ of distributed languages that can be decided
in a constant number of rounds in the hybrid model combining LOCAL and NCC, where
(LN)∗ = ∪t≥0(LN)t, and N denotes the class of languages decidable in one round in the
node-capacitated clique.

OPODIS 2022

20:16 Computing Power of Hybrid Models in Synchronous Networks

References

1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower
bounds. ACM Transactions on Algorithms (TALG), 17(4):1–40, 2021.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In 23rd ACM-SIAM symposium on Discrete Algorithms, pages 459–467, 2012.

3 Ioannis Anagnostides and Themis Gouleakis. Deterministic distributed algorithms and lower
bounds in the hybrid model. In 35th International Symposium on Distributed Computing
(DISC), volume 209 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021.

4 Heger Arfaoui and Pierre Fraigniaud. What can be computed without communications?
SIGACT News, 45(3):82–104, 2014.

5 Czumaj Artur and Christian Konrad. Detecting cliques in congest networks. Distributed
Computing, 33(6):533–543, 2020.

6 John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Scheideler,
Fabian Kuhn, and Jason Li. Distributed computation in node-capacitated networks. In 31st
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 69–79, 2019.

7 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. Shortest paths in a hybrid network model. In 31st ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1280–1299, 2020.

8 László Babai, Anna Gál, Peter G Kimmel, and Satyanarayana V Lokam. Communication
complexity of simultaneous messages. SIAM Journal on Computing, 33(1):137–166, 2003.

9 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr
Tereshchenko. Locally checkable problems in rooted trees. In 40th ACM Symposium on
Principles of Distributed Computing (PODC), pages 263–272, 2021.

10 Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2 + ε)-
approximation for vertex cover in O(log ∆/ε log log ∆) rounds. Journal of the ACM, 64(3):1–11,
2017.

11 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition algorithm
and its applications to constant-time distributed computation. Theoretical Computer Science,
751:2–23, 2018.

12 Florent Becker, Adrian Kosowski, Martín Matamala, Nicolas Nisse, Ivan Rapaport, Karol
Suchan, and Ioan Todinca. Allowing each node to communicate only once in a distributed
system: shared whiteboard models. Distributed Comput., 28(3):189–200, 2015.

13 Florent Becker, Martin Matamala, Nicolas Nisse, Ivan Rapaport, Karol Suchan, and Ioan
Todinca. Adding a referee to an interconnection network: What can (not) be computed in one
round. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
508–514, 2011.

14 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Comput., 32(1):41–57, 2019.

15 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance computations
in the hybrid network model via oracle simulations. In 38th International Symposium on
Theoretical Aspects of Computer Science (STACS), volume 187 of LIPIcs, pages 21:1–21:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

16 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. On sparsity awareness
in distributed computations. In 33rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 151–161, 2021.

17 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆ + 1) coloring in congested clique, massively parallel computation, and
centralized local computation. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 471–480, 2019.

P. Fraigniaud et al. 20:17

18 Lijie Chen and Ofer Grossman. Broadcast congested clique: Planted cliques and pseudorandom
generators. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
pages 248–255, 2019.

19 John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment
to test local hidden-variable theories. Phys. Rev. Lett., 23(15):880–884, 1969.

20 Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian
Scheideler, Philipp Schneider, and Martijn Struijs. Near-shortest path routing in hybrid
communication networks. In 25th International Conference on Principles of Distributed
Systems (OPODIS), volume 217 of LIPIcs, pages 11:1–11:23. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

21 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
pages 367–376, 2014.

22 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 367–376. ACM,
2014. doi:10.1145/2611462.2611493.

23 Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of
physical reality be considered complete? Physical Review, 47(10):777–780, 1935.

24 Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing, 36(2):433–456,
2006.

25 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes
on distributed property testing. In 31st International Symposium on Distributed Computing
(DISC), volume 91 of LIPIcs, pages 15:1–15:30. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017.

26 Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. In 24th International Conference on Principles
of Distributed Systems (OPODIS), volume 184 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

27 Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bull. EATCS, 119,
2016.

28 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1–35:26, 2013.

29 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Trans. Parallel
Comput., 6(3):12:1–12:20, 2019.

30 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of excluded
subgraphs. In 30th International Symposium on Distributed Computing (DISC), volume 9888
of LNCS, pages 342–356. Springer, 2016.

31 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016.

32 Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. In 40th ACM Symposium on Principles of Distributed
Computing (PODC), pages 457–468. ACM, 2021.

33 Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in the
broadcast congest clique. In 19th International Conference On Principles Of Distributed
Systems (OPODIS), 2016.

34 Tomasz Jurdziński and Krzysztof Nowicki. Connectivity and minimum cut approximation in
the broadcast congested clique. In International Colloquium on Structural Information and
Communication Complexity (SIROCCO), pages 331–344. Springer, 2018.

OPODIS 2022

https://doi.org/10.1145/2611462.2611493

20:18 Computing Power of Hybrid Models in Synchronous Networks

35 Tomasz Jurdziński and Krzysztof Nowicki. Mst in O(1) rounds of congested clique. In 29th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2620–2632, 2018.

36 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
37th ACM Symposium on Principles of Distributed Computing (PODC), pages 255–264, 2018.

37 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010.

38 Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. What cannot be computed
locally! In 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages
300–309, 2004.

39 Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In 39th ACM Symposium on Principles of Distributed Computing (PODC),
pages 109–118, 2020.

40 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
ACM Symposium on Principles of Distributed Computing (PODC), pages 42–50, 2013.

41 Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the CONGEST
model. Distributed Comput., 34(1):15–32, 2021.

42 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

43 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst construction in o (log log
n) communication rounds. In 15th ACM sSmposium on Parallel Algorithms and Architectures
(SPAA), pages 94–100, 2003.

44 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–115,
2020.

45 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

46 Noam Nisan and Avi Widgerson. Rounds in communication complexity revisited. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pages 419–429, 1991.

47 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
48 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity

of distributed minimum-weight spanning tree construction. SIAM Journal on Computing,
30(5):1427–1442, 2000.

49 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

50 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

51 Rangarajan K Sundaram et al. A first course in optimization theory. Cambridge university
press, 1996.

52 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
53 Jukka Suomela. Landscape of locality. In 17th Scandinavian Symposium and Workshops on

Algorithm Theory (SWAT), volume 162 of LIPIcs, pages 2:1–2:1, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

54 Huacheng Yu. Tight distributed sketching lower bound for connectivity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1856–1873, 2021.

Mending Partial Solutions with Few Changes
Darya Melnyk !

Aalto University, Finland

Jukka Suomela !

Aalto University, Finland

Neven Villani !

Aalto University, Finland
École Normale Supérieure Paris-Saclay, Université Paris-Saclay, France

Abstract
In this paper, we study the notion of mending: given a partial solution to a graph problem, how
much effort is needed to take one step towards a proper solution? For example, if we have a partial
coloring of a graph, how hard is it to properly color one more node?

In prior work (SIROCCO 2022), this question was formalized and studied from the perspective
of mending radius: if there is a hole that we need to patch, how far do we need to modify the
solution? In this work, we investigate a complementary notion of mending volume: how many nodes
need to be modified to patch a hole?

We focus on the case of locally checkable labeling problems (LCLs) in trees, and show that
already in this setting there are two infinite hierarchies of problems: for infinitely many values
0 < α ≤ 1, there is an LCL problem with mending volume Θ(nα), and for infinitely many values
k ≥ 1, there is an LCL problem with mending volume Θ(logk n). Hence the mendability of LCL
problems on trees is a much more fine-grained question than what one would expect based on the
mending radius alone.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Parallel computing models

Keywords and phrases mending, LCL problems, volume model

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.21

Related Version Full Version: https://arxiv.org/abs/2209.05363

Funding This work was supported in part by the Academy of Finland, Grant 333837.

1 Introduction

If we have a partial solution to a graph problem, how much effort is needed to take one step
towards a proper solution? For example, if we have a partial coloring of a graph, how hard
is it to properly color one more node? In this work we present a formalism that captures
the essence of this question, the mending volume: how many labels do we need to change to
“patch a hole” in the solution?

We will define this concept formally in Definition 5, but for now the following informal
description will suffice to understand what we mean by “patching a hole”. We are given a
graph G, a partial solution λ for some graph problem Π, and some node v that is unlabeled
in λ. We would like to find a new solution λ′ such that node v is labeled in λ′, and also all
nodes that were already labeled in λ remain labeled in λ′. We say that λ′ is a mend of λ at
node v; we have “patched a hole” at v. Now the key complexity measure is the Hamming
distance between λ and λ′, i.e., the number of nodes that we had to change. If for any G,
λ, and v there is a mend λ′ at node v that is within distance T (n) from λ, where n is the
number of nodes in G, we say that the mending volume of Π is at most T (n).

© Darya Melnyk, Jukka Suomela, and Neven Villani;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:darya.melnyk@aalto.fi
mailto:jukka.suomela@aalto.fi
mailto:neven.villani@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.21
https://arxiv.org/abs/2209.05363
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Mending Partial Solutions with Few Changes

1.1 Motivation
Mending volume is intimately connected with the analysis of local search. In particular, if the
mending volume of problem Π is bounded by T , then we can start with any partial solution –
including the trivially computable empty solution, which is a partial solution in which all
vertices are unlabeled – and walk towards a valid solution by patching holes one at a time so
that at each step we only need to consider modifications in which we change T labels.

Moreover, mending volume naturally captures the reconfiguration effort in computer
systems. The system is initially in a valid state, but the physical structure of the system
changes (e.g., a new component is installed), leading to an invalid state λ. Whenever we
detect a change close to component v, we can consider v to be a hole (unlabeled in λ); now
we need to find a new configuration λ′ in which all components again function correctly.
Further, in order to minimize service disruptions, we should also ensure that λ′ is as close to
λ as possible.

1.2 Contributions
It is easy to come up with graph problems where mending is trivial or very hard – these are
problems with mending volume O(1) or Θ(n). The work of Panconesi and Srinivasan [23]
shows that the mending volume of ∆-coloring in a graph of maximum degree ∆ ≥ 3 is
O(log n). But is the mending volume for problems of this flavor always O(1), Θ(log n), or
Θ(n)?

We formalize this question by considering locally checkable labeling problems (LCLs), as
defined by Naor and Stockmeyer [22]; these are problems in which we are given a graph with
some maximum degree ∆, and the task is to label the nodes with labels from some finite
set Σ, subject to some local constraints. Graph coloring with k = O(1) colors in a graph of
maximum degree ∆ = O(1) is a model example of an LCL problem.

We show that already in the case of trees, it is possible to construct two infinite hierarchies
of problems: for infinitely many values 0 < α ≤ 1, there is an LCL problem with mending
volume Θ(nα), and for infinitely many values k ≥ 1, there is an LCL problem with mending
volume Θ(logk n).

This shows that there is a striking difference between the mending volume that we study
here and the mending radius that was defined recently in prior work [9]. In trees, the mending
radius of any LCL problem is known to be O(1), Θ(log n), or Θ(n). Mending volume makes
it possible to classify LCL problems into infinitely many classes, while mending radius only
leads to three classes of problems. This is particularly relevant in balanced trees, as the
diameter of a balanced tree is Θ(log n) and hence knowing whether the mending radius
is Θ(log n) or Θ(n) does not tell us anything about the hardness of mending (both are
essentially global). Mending volume, on the other hand, makes it possible to characterize the
hardness in a much more fine-grained manner.

2 Related work

One of the first papers that make explicit use of the fact that some LCL problems have a
logarithmic mending volume is by Panconesi and Srinivasan [23]. They compute a ∆-coloring
of a graph by recoloring an augmenting path of length up to O(log n) whenever there is a
conflict. However, their main interest is solving the problem in a distributed message passing
model – in which the complexity of patching a hole is exactly the mending radius – and they
therefore mainly focus on the mending radius instead of the mending volume of this problem.

D. Melnyk, J. Suomela, and N. Villani 21:3

Table 1 An overview of the landscape of mending volume (MVol) for LCL problems on the classes
of paths, trees and general graphs. Here ✓ denotes that LCL problems with this mending volume
exist, × denotes that such LCL problems cannot exist, and ? denotes an open question.

Setting Possible mending volumes

O(1) . . . Θ(log n) Θ(logk n) . . . Θ(nα) Θ(n)
k > 1 0 < α < 1

Paths and cycles ✓ × × × × × ✓

Rooted trees ✓ × ✓ ✓ × ✓ ✓

Trees ✓ × ✓ ✓ ? ✓ ✓

General graphs ✓ × ✓ ✓ ? ✓ ✓

The idea of refining the radius measure into a volume measure in the study of the
landscape of LCL problems can be attributed to Rosenbaum and Suomela [25], who show
similarities and differences between the models. The volume complexity for LCL problems
has been further studied by Grunau at al. [11]. However, the focus of these papers is only
on solvability (constructing a solution from nothing) rather than mendability (editing a
partial solution to the closest complete solution) of a problem. They nevertheless highlight
the fact that merely looking at the radius complexity does not capture all details of what
information within that radius is actually necessary, and some problems that have the same
radius complexity exhibit very different volume complexities.

Mending radius. Balliu et al. [9] introduced the first formal graph-theoretic notion of
mending radius. The authors show how to use mending as a tool for algorithm design and
analyze the complexities of mending on paths, rooted trees and grids.

In contrast to the definition of mending radius, our definition of mending volume captures
more complexity classes of problems. A concrete example of the mending volume being more
accurate than the mending radius is the three problems R1, R2, R3 defined in Problem 1.
Assume that we start with a partial solution where the root is uncolored and all other
nodes are colored white. Naturally, any mending algorithm must color the root red, and
start updating the descendants of the root down to the leaves. Assuming for now that this
configuration is indeed the worst-case input (this is shown in Corollary 9 for a more general
class of problems which includes all three of R1, R2 and R3), the mending radius of each of
these problems is therefore Θ(log3 n). The mending volume, however, differs for all three
problems Ri, and the corresponding complexities are discussed in Figure 1.

Also other papers have made use of mending radius, mainly as an algorithm design
tool. Chechik and Mukhtar [14] design an algorithm for 6-coloring planar graphs using the
observation that some small structures can be properly colored for any proper coloring of their
surrounding vertices. Similar observations have been made for computing a ∆-coloring [23]
and solving an edge-orientation with maximum out-degree (1 + ε)a [18]. Recently, it has

Problem 1 Ri.

Input: A balanced rooted ternary tree
Labels: red and white
Task: Color the vertices so that the root is red, and every red vertex has at least i red

children.

OPODIS 2022

21:4 Mending Partial Solutions with Few Changes

Figure 1 From left to right, solutions of R1, R2, R3 (as defined in Problem 1) with the least
number of red labels are visualized. In the case of R2 (middle), each red vertex starting from the root
in the center has two of its three children colored red, and this continues down to the leaves. The
radius in all three of these examples is 4, and its growth rate as the graph gets larger is Θ(log3 n).
The volume of R2 is 24+1 − 1 which grows as Θ(nlog 2/ log 3). On each of these three solutions the set
of vertices recolored red has the same radius Θ(log3 n), yet the volume of the red zone is Θ(log3 n)
for R1, Θ(nlog 2/ log 3) for R2, and Θ(n) for R3.

been shown that mending algorithms with a constant radius can also be transformed into
self-stabilizing algorithms in anonymous networks [15]. On the other hand, there are
also papers that have introduced an explicit notion of mending, although using different
definitions of partial solutions and complexity measures – this includes for example König
and Wattenhofer [20] and Kutten and Peleg [21]. König and Wattenhofer [20] consider only
faults that are an addition or deletion of a single vertex or edge at a time, and hence their
definition of partial solutions features only at most a small number of unlabeled vertex.
They also classify the cost of fixing a fault only in terms of local (constant-radius) or global
(non-constant radius). Kutten and Peleg [21] are interested in the time needed to compute a
complete solution as a function of the initial number of failures.

Local search. The idea of mending volume is closely related to local search in optimization
problems (in the context of traditional centralized algorithms). Often one starts with a
suboptimal solution and tries to converge to a better solution from there. Usually a problem
is first solved by computing some possibly random initial variable assignment that satisfies
the constraints, see e.g. [12, 16, 24]. Then, a local search algorithm is applied to find a better
solution in the vicinity of the previous one.

A classic application of local search in combinatorial optimization is the traveling salesman
problem; local search is often applied to hard problems in order to achieve a good approxi-
mation of the optimal solution [1, 3]. On the negative side, Johnson et al. [19] showed that
an exponential number of iterations may be needed if the cost function can take exponential
values. Ausiello and Protasi [5] later defined the class of guaranteed local optima (GLO)
problems where the values of the cost function are bounded by a polynomial and showed that
such problems can be solved in a polynomial number of iterations. Halldórsson [17] showed
that local search can help to improve worst-case approximation guarantees by starting with
a greedy solution and improving it locally using local search. He provides approximation
results for various problems, such as the independent set, k-dimensional matching and k-set
packing in nearly-linear sequential time. Chandra and Halldórsson [13] later showed a
2(k + 1)/3-approximation algorithm for the weighted k-set packing problem, thus improving
a previous result from Bafna et al. [8] and Arkin and Hassin [4].

D. Melnyk, J. Suomela, and N. Villani 21:5

Self-stabilization. Mending can also be seen as an approach for the correction step of
self-stabilizing algorithms. Self-stabilization is typically implemented by the conjunction of a
failure detector [10] and a recovery procedure [6]. Similarly to prior work in [7] and [2], our
approach applies to problems where inconsistencies are locally detectable, but recovering
from failures usually requires global reconfiguration. Indeed the restriction of our study to the
class of LCL problems guarantees that the consistency of the state can be checked with only
a local view, but since the mending radius in [9] already covers the case of problems that can
be corrected with constant locality, most of our new results apply to problems that are not
locally correctable. Compared to [26], our setting is more restricted since for the problems
we study the history of a vertex is not relevant, but we are also interested in optimality of
the final solution in terms of its Hamming distance to the initial solution. We also have
the same point of view as [26] that if the complexity is chosen to be the execution time,
then it measures more properties related to the implementation or the model than inherent
properties of the problem and hence we aim for a model-independent notion. Unlike [26]
however, in cases where several failures occur simultaneously and are repaired sequentially
through successive mending procedures each resulting in an intermediate partial solution,
our measure of complexity considers only the distance from one partial solution to the next
and it does not guarantee minimizing the total distance from the initial solution to the final
complete solution. The other main difference is that we classify problems in terms of the
distance to the nearest solution whereas the measure of locality in [26] is the radius of the
view – i.e. the amount of information – that is required to compute said nearest solution.

3 Preliminaries

Our definition of the mending volume is built along the lines of the definition of the mending
radius in [9]: we define the mending volume as a measure entirely independent of any
distributed computing model and we place ourselves in the context of Locally Checkable
Labeling problems (LCLs) first introduced in [22]. We use the same definition of partial
solutions as [9] in order to make our results comparable. A reader who is familiar with the
notions of graph labeling problems – and LCLs in particular – as well as with the specific
definition of partial solutions from [9] may skip directly to Section 4 in which we introduce a
formal definition of the mending volume.

3.1 Locally checkable labelings
LCLs are labeling problems on bounded-degree graphs. In these problems, an input graph
with maximum degree ∆ = O(1) is given and the task is to produce an assignment of labels
to vertices in a way that satisfies some predetermined local constraints. The specification of
an LCL problem is done by means of a local verifier.

▶ Definition 1 (Local verifier). A verifier ϕ is a function that maps tuples (G, λ, v) to
{happy, unhappy}, where v is a vertex and λ a labeling of G. We say that the verifier ϕ

accepts λ if ϕ(G, λ, v) = happy for all v, otherwise it rejects λ.
In addition, ϕ is local if, for some constant radius r, whenever (G1, λ1) and (G2, λ2)

coincide over the radius-r neighborhood of v1 and v2 then they have the same image according
to ϕ.

We write Nr(v) for the radius-r neighborhood of v and (G, λ)|V for the restriction of G

and λ to the subgraph and labeling with only vertices from V , this constraint can be expressed
more formally as: (G1, λ1)|Nr(v1) ≃ (G2, λ2)|Nr(v2) implies ϕ(G1, λ1, v1) = ϕ(G2, λ2, v2).

OPODIS 2022

21:6 Mending Partial Solutions with Few Changes

An LCL problem is entirely characterized by a finite set of labels and a local verifier.

▶ Definition 2 (Locally Checkable Labeling). A Locally Checkable Labeling problem Π is
represented by a finite set of labels Σ, a class of input graphs G, and a local verifier ϕ. An
instance of Π is a graph G ∈ G. A solution is a labeling λ of G over Σ that is accepted by ϕ.

3.2 Partial solutions
Mending takes as input an incomplete labeling and extends it into one that is one step closer
to being complete. Since graph labelings were defined to be complete over all vertices, the
most natural way to define partial solutions is to extend the set of labels with one fresh label
⊥ that is interpreted as “unlabeled”, and adapt the local constraints to allow labelings that
involve this new label. We will often refer to vertices that are labeled ⊥ simply as “unlabeled
vertices” or “holes”.

A desirable definition of partial solutions should satisfy the following three properties:
1. A partial solution without any hole is a complete solution.
2. The empty labeling (the constant function λ⊥ : x 7→ ⊥) is a partial solution.
3. A sub-solution of a partial solution is also a partial solution. That is, if λ is a partial

solution then any labeling

λS : x 7→
{

λ(x) if x ∈ S

⊥ otherwise

is a partial solution.

As stated in [9], the following is a simple way to satisfy all of these constraints: extend the
verifier ϕ′ to be happy whenever an unlabeled vertex is visible in the radius-r neighborhood,
otherwise fall back to the same rules as ϕ.

▶ Definition 3 (Partial solution). For Π = (Σ, G, ϕ), where ϕ has radius r, let Σ∗ = Σ ⊔ {⊥},
and define a relaxation Π∗ = (Σ∗, G, ϕ∗) of Π to allow empty labels.

For a labeling λ′ over Σ∗, define ϕ∗(G, λ′, v) as follows: if there exists a node u⊥ within
distance r of v such that λ′(u⊥) = ⊥, then ϕ∗(G, λ′, v) := happy; otherwise, let λ be any
labeling over Σ that agrees with λ′ on G|Nv(r) and set ϕ∗(G, λ′, v) := ϕ(G, λ, v).

We define domΣ(λ′) to be the set of vertices that λ′ labels with labels from Σ. A labeling
(resp. solution) of Π∗ is called a partial labeling (resp. partial solution) of Π.

One can easily check that all the desirable properties stated above are satisfied by
Definition 3; this fact is also proven in [9]. Note that this definition of partial solutions has a
notion of locality that is consistent between labelings and partial labelings: the verifiers ϕ

and ϕ∗ have the same locality radius.
We can now define what it means to mend a partial solution: a mend of λ is a new partial

solution with one specific vertex no longer labeled ⊥, and no additional ⊥ labels.

▶ Definition 4 (Mend). For a partial solution λ of Π on an instance G, we say that λ′ is a
mend of λ at v ∈ G if the following hold:
Validity: λ′ is a partial solution.
Progress: domΣ(λ) ∪ {v} ⊆ domΣ(λ′), that is, no ⊥ was added and v is no longer labeled ⊥.

The mending problem Mend(Π) associated with an LCL Π is the following task: given
G ∈ G, λ solution of Π∗ and v hole of λ, produce λ′ a mend of λ at v. We call such a tuple
(G, λ, v) an instance of Mend(Π), and λ′ a solution.

D. Melnyk, J. Suomela, and N. Villani 21:7

4 Complexity landscape of mending volume

Having defined LCLs and partial solutions, we can now introduce mending volume. This
definition (see Section 4.1) is a purely graph-theoretic measure of the optimal solution for a
worst-case instance of a mending problem. Later, in Section 4.2, we develop a technique for
designing LCLs that have a specific mending volume on infinite rooted trees. In Section 4.3,
we show that these problems can be transferred to finite and non-oriented trees while keeping
the same mending volume complexity. Finally, in Sections 4.4 and 4.5, we apply these design
techniques to obtain problems that have mending volume Θ(nα), 0 < α < 1 or Θ(logk n),
k ∈ N∗, thereby providing examples of complexities that the mending volume exhibits that
were not observed previously in the study of the mending radius.

4.1 Mending volume: Definition
For two labelings λ and λ′, we define diff(λ, λ′) := {v : λ(v) ̸= λ′(v)} such that |diff(λ, λ′)|
is the Hamming distance between two partial solutions. We define the mending volume of
a problem Π as the distance between the partial solution and the optimal mend for the
worst-case instance (G, λ, v) of Mend(Π). Here, G is an input graph from the family on which
Π is defined, λ is a partial solution, and v is a hole s.t. λ(v) = ⊥ at which λ must be mended.

▶ Definition 5 (Mending volume). The mending volume of problem Π is

MVol(Π) := max
G,λ,v

min {|diff(λ, λ′)| : λ′ is a mend of λ at v} .

4.2 Mending in infinite rooted trees
In what follows, we will establish the landscape of possible mending volumes. For a summary,
please refer to Table 1 that was introduced earlier. To this end, we give examples of LCL
problems that have logarithmic, polylogarithmic and polynomial mending volumes. The
definitions of these problems are made easier by the fact that all of them are of a specific
type that we call propagation problems.

The complexity analysis of problems in this class is straightforward for two reasons: (1)
they admit a simple matrix description by an encoding shown in Section 4.2.2, and (2) we
only need to study their behavior in infinite regular trees thanks to results from Section 4.3
which allow us to transfer complexity results from infinite regular trees to finite graphs. The
advantage of infinite regular trees is that the complexity analysis is simplified by the absence
of high-degree nodes, leaves, and other irregularities of the input graph. This restriction of
only considering infinite regular rooted trees also has the complementary effect of illustrating
that even simple problems already exhibit a rich variety of mending volume complexities.
Since any propagation problem with mending volume T can be transformed into a problem
on general trees or graphs with the same mending volume T , as proven in Section 4.3, our
choice does not restrict the generality of our results when it comes to existence results. This
does however makes the impossibility results not directly applicable to the case of general
graphs. In fact, we do not yet know if these results still hold for general graphs.

4.2.1 Propagation problems
In this section, we define propagation problems on infinite rooted trees, with the goal to use
them as a design tool for LCLs that exhibit specific mending volume complexities.

OPODIS 2022

21:8 Mending Partial Solutions with Few Changes

▶ Definition 6 (Infinite ∆-regular rooted trees). An infinite ∆-regular rooted tree (or simply
infinite rooted trees when ∆ is clear from the context) is a tree with the following properties:

exactly one vertex is distinguished as the root;
each vertex admits a unique directed path to the root;
each vertex has exactly ∆ incoming edges.

Note that this class of graphs only consists of a single graph for a fixed ∆. On this class
of input graphs, we define propagation problems as any LCL problem that is constructed
according to the procedure explained in Definition 7.

▶ Definition 7 (Construction of a propagation problem). In the label set Σ, distinguish two
special labels – the initial label l0, and the wildcard label l−. Let Σ′ := Σ \ {l−}. Choose some
µ : Σ′ × Σ′ → N and some ∆ ≥ maxl∈Σ′

∑
l′∈Σ′ µ(l, l′). This defines an LCL on infinite

∆-regular rooted trees, with locality 1, where the radius-1 neighborhood of v labeled by λ is
accepted if all of the following constraints are satisfied:

λ(v) = l0 if v is the root;
if λ(v) = l ̸= l− then, for every l′ ∈ Σ′, there are at least µ(l, l′) children of v labeled l′.

In other words, we only allow labeling constraints of the form “any vertex labeled l must
have at least µ(l, l′) children labeled l′” and “the root must be labeled l0”. The requirement
∆ ≥ maxl∈Σ′

∑
l′∈Σ′ µ(l, l′) is chosen such that all constraints are compatible with each other.

Note that there are no constraints involving the wildcard label l− in this definition: it may
appear as a child of any other label, and it may have any labels as its own children. In
particular, the labeling where the root is unlabeled and all non-root vertices are labeled
l− is always a valid partial solution. We will show in Corollary 9 that this labeling is the
worst-case instance for most propagation problems.

Since the input graphs on which these problems are defined are infinite, and since these
problems often produce mends that have infinite volume, it will be useful to study the volume
in terms of the number of modified labels at distance at most dmax from the hole.

4.2.2 Matrix representation
Let M be a matrix of size |Σ′| × |Σ′| defined as M [l, l′] = µ(l, l′). This means that the
coefficient M [l, l′] indicates how many children labeled l′ each vertex labeled l must have.
Observe that the coefficient Md[l, l′] of the d-th power of M is the tightest lower bound
on how many children labeled l′ a vertex labeled l must have at distance d for a complete
solution to be accepted. By induction, a vertex labeled l must have at least M [l, l′] children
labeled l′ at distance 1; each of its children labeled l′′ at distance d (of which there are
Md[l, l′′] by inductive hypothesis) must then have at least M [l′′, l′] children labeled l′, which
makes for a total of∑

l′′∈Σ′

Md[l, l′′]M [l′′, l′] = Md+1[l, l′]

children labeled l′ at distance d + 1. We argue in Theorem 8 that this provides bounds for
MVol.

We write ∥LlM
d∥ :=

∑
l′∈Σ′ Md[l, l′], where Ll is the vector with a 1 only in position l.

This corresponds to counting the total number of children of l at distance d that have any
label among Σ′, which is also the total number of modified labels at distance d when starting
from the initial labeling that consists of an unlabeled root and all other vertices labeled l−.
We show in Theorem 8 that this quantity expresses both upper and lower bounds on the
mending volume up to a fixed distance dmax of the propagation problem described by M .

D. Melnyk, J. Suomela, and N. Villani 21:9

▶ Theorem 8 (Mending complexity of a propagation problem). The mending volume up to
distance dmax of a propagation problem represented by M is between

∑dmax
d=0 ∥Ll0Md∥ and

maxl∈Σ′
∑dmax

d=0 ∥LlM
d∥.

Proof. We start with the lower bound. Recall that all vertices in the input graph have degree
exactly ∆. Consider an initial partial labeling λ in which the root is initially unlabeled, and
all other vertices are labeled l−. A mend λ′ of λ at the root will have to be a complete
solution, and thus require the root to be labeled l0. By the previous observation, at distance
d from the root, there must be at least Mp[l0, l′] vertices in λ′ labeled l′ that must have been
modified during the mending. Therefore

∑dmax
d=0 ∥Ll0Md∥ is a lower bound for how many

labels were modified at distance at most dmax.
We can now show the upper bound. An important characteristic of the family of

propagation problems is that the output of the verifier depends only on a portion of the
labels of the children. Once sufficiently many children are labeled correctly, the remaining
ones have no impact. This means that no initial configuration can force more than Md[l, l′]
labels l′ to be added at distance d from a vertex v labeled l: in the worst case, it suffices to
arbitrarily choose M [l, l′] children at each level and color them accordingly while ignoring all
the other children. Thus the worst-case instance has mending cost at distance dmax no more
than maxl∈Σ′

∑dmax
d=0 ∥LlM

d∥. ◀

▶ Corollary 9 (Worst-case instance of a propagation problem). If l0 is such that ∥Ll0Md∥ =
Ω(maxl∈Σ′∥LlM

d∥) then the initial instance where the root is unlabeled and all other vertices
are labeled l− is the worst-case instance.

The condition for Corollary 9 is satisfied at least for problems where all labels are reachable
from l0 in the sense that any complete solution must contain every label at least once. Put
otherwise, for every l′ ∈ Σ′ there must exist some dl′ for which Mdl′ [l0, l′] ̸= 0. This is also
the case for every propagation problem we will define in the rest of this paper.

4.2.3 Landscape of the growth rate of matrix exponentiation
In this section, we turn to a study of possible growth rates of the quantity ∥LlM

d∥ introduced
in Section 4.2.2. This quantity is upper bounded by |Σ′| × maxl′∈Σ′ Md[l, l′] (approximate a
sum by the number of elements multiplied by the greatest element). In order to determine
the mending volume up to a multiplicative constant of a propagation problem in which all
labels are reachable from the root label, we have thus established that it is sufficient to look
at the growth rate as a function of d of maxl,l′∈Σ′ Md[l, l′] – the greatest coefficient of Md.
We will denote it as max Md.

In the following analysis, we make use of the interpretation of M as the adjacency matrix
of a graph GM . Here GM is a directed graph with one vertex for each element of Σ′. For
every pair (vl, vl′) there are exactly M [l, l′] directed edges from vl to vl′ . Further, there are
Md[l, l′] walks of length exactly d from vl to vl′ in GM . Let c(l) be the number of cycles in
G that contain vl. We say that a vertex vl is of type 0 if c(l) = 0, type 1 if c(l) = 1, and type
2 if c(l) ≥ 2. Figure 2 shows an example of a matrix M and the corresponding graph GM .

We will show that the types of the vertices fully determine the growth rate of |Mp|: if
some vertex is part of several cycles, then there are exponentially many paths of length d

from that vertex to itself. Otherwise, if all vertices are part of at most one cycle, then there
are only polynomially many paths of length d from one vertex to another.

▶ Lemma 10. Assume that vl is a vertex of type 2. It holds that Md[l, l] = Ω((1 + β)d) for
some β > 0.

OPODIS 2022

21:10 Mending Partial Solutions with Few Changes

M =


A B C D

A 2 4 0 0
B 0 0 1 2
C 0 1 0 0
D 0 0 0 0


c(A) = 2 c(B) = 1

c(C) = 1

c(D) = 0

Figure 2 An example of matrix M describing a propagation problem over the label set Σ′ =
{A, B, C, D}. The corresponding GM is shown on the right, where A is of type 2, B and C are of
type 1, and D is of type 0.

Proof. Let C1, C2, . . . be the c(l) distinct cycles that contain vl. Let L1, L2, . . . denote their
lengths respectively, and let L := lcm(L1, L2, . . .). There are at least c(l) walks of length
L from vl to itself, each following only one of the cycles Cj L/Lj number of times. Hence,
for all k, there are at least c(l)k walks of length d := kL from vl to itself and therefore
Md[l, l] ≥ c(l)d/L walks for infinitely many values of d. Thus Md[l, l] = Ω((c(l)1/L)d). ◀

▶ Corollary 11. Let vertex vl be of type 2 and reachable from vl0 . Then Md[l0, l] = Ω((1+β)d)
for some β > 0.

In terms of the corresponding propagation problem, the interpretation of this fact is that
any label l corresponding to a vertex of type 2 must have at least two descendants with the
same label l at a certain fixed distance, each of which must also satisfy the same property.
This produces an exponentially increasing amount of vertices labeled l as we move further
away from the root.

▶ Lemma 12. If there is no vertex of type 2 reachable from vl0 then for all labels l, Md[l0, l] =
O(dk) for some constant k.

Proof. For each vertex vl, we denote C(l) to be the cluster of vl, defined as follows: C(l) := {l}
if c(l) = 0; otherwise, C(l) := {l′ | vl →∗ vl′ →∗ vl} describes the vertices in the same cycle
as vl. Since c(l) ≤ 1, the clusters form a partition of Σ′. We use K to denote the number of
clusters. We now consider all possible walks from l0 to some label l by separating each step
of the walk between those that stay in the same cluster and those that change cluster. The
constraints on the cycles of the graph obtained from the assumption that every vertex is of
type at most 1 give us information on how many times a step of the walk can change cluster.

Construct G′
M whose vertices are the clusters of GM , by contracting each cluster into a

single vertex while keeping duplicate edges between different clusters, and removing edges
inside a cluster. The resulting graph G′

M is acyclic as, otherwise, some vertex would be part
of several cycles and would not be of type 0 or 1 as we have assumed. Any walk W of length
exactly d in GM from vl to vl′ is uniquely defined by

D. Melnyk, J. Suomela, and N. Villani 21:11

M2 =

(
0 1
2 0

)
M1 =

1 0 0
0 1 0
0 0 1

 M0 =
(
0
)

T
y
p
e
2

T
y
p
e
1

T
y
p
e
0

M1,1,0 =


0 1 1 0
1 0 0 2
0 0 1 0
0 0 0 0



T
y
p
e
1

T
y
p
e
1

T
y
p
e
0

Figure 3 Examples of subtrees obtained by considering the vertices with a label from the same
cluster, for clusters of type 2 (left, red), type 1 (center left, blue) and type 0 (center right, green).
Below each tree is an example matrix M that exhibits the behavior in question. As stated in
Lemma 10, a cluster of type 2 produces an exponentially growing tree where some vertices have
several children within the same cluster. This is different to a cluster of type 1, in which each vertex
has exactly one child within the same cluster, and cluster of type 0 where there are no cycles and
thus also no children from the same cluster. The last tree on the right illustrates Lemma 12, where,
no matter how we combine clusters of types 1 and 0 (in this specific case the clusters are {1, 2} of
type 1, {3} of type 1, and {4} of type 0), the clusters can never achieve an exponential growth the
same way a type 2 cluster can. They can therefore produce at most polynomial growth with a larger
polynomial degree as we combine more clusters.

a walk W ′ in G′
M from C(l) to C(l′), let C(l) = C1 → C2 → · · · → C|W | = C(l′) be this

walk;
the length di of the walk within Ci, for each 1 ≤ i ≤ |W | (because no vertex is of type 2,
there is only one such walk for a given length).

Note that d1 + · · · + d|W | + (|W | − 1) ≤ d since the total length of the walk is more than
the sum of each walk inside a cluster, and |W | ≤ K ≤ |Σ′| since each cluster is of size at least
1. There are finitely many walks W ′ in G′

M , since it is a finite acyclic graph, and for each of
them the number of possible tuples (d1, . . . , d|W |) is bounded by dK . Thus the number of
walks W of length d is polynomially bounded by O(dK). ◀

In contrast to Lemma 10, the interpretation of this situation in terms of the underlying
propagation problem is as follows: if there are only vertices of type 0 or 1 then, from each
vertex labeled l, there is at most one path that contains other vertices labeled l. Figure 3
shows what we can expect solutions to typical propagation problems satisfying the conditions
from Lemmas 10 and 12 to look like.

We observe further that if there is a walk in G′
M that goes through two or more cycles,

then there are at least Ω(d) paths of length d. Whereas if G′
M contains only isolated cycles,

then there are at most O(1) paths of length d. Thus Theorem 13 holds.

OPODIS 2022

21:12 Mending Partial Solutions with Few Changes

▶ Theorem 13 (Landscape of max Md). The growth rate of d 7→ max |Md| is either
1. eventually zero;
2. or Θ(1);
3. or O(d p) for some value p ≥ 1;
4. or Ω((1 + β)d) for some β > 0.

By comparing Theorem 13 to Figure 3, we can see that all these families of growth rates
are represented there: from left to right, 2d/2 = Ω((1 + β)d), constant 1 which is of course in
Θ(1), eventually zero, and d/2 + 3 = O(d p).

We can combine Theorem 13 with the previously established bounds from Theorem 8
stating how to relate the mending volume to the growth of max Md. We thus obtain the
following corollary:

▶ Corollary 14 (Landscape of the mending volume on infinite rooted trees). The mending
volume up to distance d := log∆ n of a propagation problem is either

O(1) if max Md is eventually zero;
or Θ(log n) if max Md = Θ(1);
or O(logk n) for some k > 1 if max Md = O(d p);
or Ω(nα) for some 0 < α < 1 if max Md = Ω((1 + β)d).

This concludes the survey of the landscape of propagation problems on infinite rooted
trees. We found that there are complexity classes O(1), poly(log n) and Ω(nα), with a gap
between ω(log n) and o(log2 n). In Sections 4.4 and 4.5 we will look more closely at the
classes of growths Ω(nα) and Θ(logk n) to show that infinitely many values of α and k can
appear.

4.3 From infinite regular rooted trees to general trees
Some of the results from Section 4.2.3 are applicable to trees even if they are no longer
infinite rooted and regular. Indeed there is a straightforward translation that transforms a
propagation problem on infinite ∆-regular rooted trees into one that has the same growth
properties, but can be defined on finite rooted trees where some vertices are of degree lower
than ∆. This construction is detailed in Problem 2, which shows how for any generic problem
Π we can remove the constraints of finiteness and ∆-regularity while preserving the mending
volume complexity.

Problem 2 Generalization of Π to finite and non-∆-regular trees.

Input: Any tree
Labels: Same as Π
Task: Any vertex of degree exactly ∆ must satisfy the labeling constraints from Π

We now argue that the fact that these trees are finite does not affect the conclusions
made earlier about the possible complexities. The worst-case instance can namely still be
constructed as a balanced finite ∆-regular tree. We prove that the mending process is just
as efficient in the case that the tree is unbalanced as it is in a balanced tree, by proving the
following intermediate result: a labeling picked at random among a set of possible labelings
of an unbalanced tree is on average asymptotically as efficient as the optimal labeling of a
balanced tree. This implies that the optimal labeling of an unbalanced tree is asymptotically
as efficient as the optimal labeling of a balanced tree. To show this, we use the fact that
the optimal labeling must be at least as efficient as the average performance of several valid
labelings.

D. Melnyk, J. Suomela, and N. Villani 21:13

▶ Theorem 15 (Generalization to finite unbalanced trees). If Π is a propagation problem, it
has the same mending volume complexity on unbalanced trees as it does on balanced ∆-regular
trees.

Proof. Assume that we wish to label a tree of size n + 1 rooted in v. Each of the ∆ subtrees
that are children of v have size n/∆ + di for 1 ≤ i ≤ ∆ where

∑∆
i=1 di = 0, and we wish

to assign a new labeling to each of them. The growth rate fbal
j (1 ≤ j ≤ δ) of the number

of labels that would need to be modified for a balanced tree is uniquely determined by its
assigned root label li.

A key observation is that as fbal
j is defined by some

∑dmax
d=0 ∥LlM

d∥, it is eventually
concave in n (which possibly includes eventually constant). This is because there are at
most ∆ as many modified labels at any distance d + 1 as at the previous distance thus
∥LlM

d+1∥ ≤ ∆∥LlM
d∥, yet from d to d + 1 the total number of vertices grows by a factor

exactly ∆.
The total number of modified labels in a tree of size n + 1 is thus

fbal(n + 1) = 1 +
∆∑

j=1
fbal

j (n/∆).

Assume inductively that the true number of modified labels in any non-balanced tree of
size n′ is less than K · fbal

j (n′), i.e. that a balanced tree is asymptotically the worst-case
input. Let ci,j denote this number for the subtree i if it were assigned root label j. The
average performance of an algorithm that distributes the required labels randomly among all
children with equal probability is then

c′ = avgσ∈S∆
1 +

∆∑
i=1

ci,σ(i)

≤ avgσ∈S∆
1 +

∆∑
i=1

K · fbal
σ(i)(n/∆ + di) induction hypothesis

≤ 1 + K ·
∆∑

j=1
avgσ∈S∆

fbal
j (n/∆ + dσ(j)) reassign indices

≤ 1 + K ·
∆∑

j=1
fbal

j (n/∆) by concavity of all fbal
j

≤ K · fbal(n + 1).

The induction hypothesis trivially holds for some big enough K once given n that satisfies
the main requirement of functions fbal

j reaching their eventual concavity, hence the result for
all big enough sizes of trees.

For now this result is implicitly restricted by the condition that n be divisible by ∆,
indeed fbal

j (n/∆) is not defined in general for fractional n/∆. The result extends to all sizes
of trees – still under the condition that they are big enough – from the following observation:
between n and the next larger integer divisible by ∆ there is at most a constant multiplicative
factor ∆ which translates to at most a multiplicative ∆ additional labels being modified.
This multiplicative factor has no impact on the asymptotic behavior. ◀

We further show that if the labeling assumes an orientation of the edges then a variant of
the problem with the same mending volume complexity can be defined on unoriented graphs
by encoding the orientation in the graph structure. One possible encoding of the orientation

OPODIS 2022

21:14 Mending Partial Solutions with Few Changes

u′ u′v′v′

v u v u

Figure 4 Oriented interpretation of an unoriented graph. Top: pairs of vertices in G; bottom:
their interpretation in G. Note that G is a tree if and only if G is a tree.

is the following: given an unoriented graph G, let leaves be the vertices with degree exactly
1. To interpret G as an oriented graph G with maximum degree ∆, extract the subset V of
vertices that have at least ∆ + 1 leaves as neighbors. This provides the vertex set of G. An
edge between u and v is added if between the corresponding vertices u and v in G, there is a
path of length exactly 2, connected to at most one leaf. If there is such a leaf on the vertex
of the path closest to u, consider the edge oriented from v to u. Otherwise, if there is no leaf
then the edge is not oriented. Figure 4 visualizes this transformation.

A labeling λ of G is interpreted as a labeling λ of G by defining λ(v) := λ(v).
Any local property that λ should satisfy can be verified locally on λ: a property of

(G, λ) that can be computed from the restriction (G, λ)|V to a neighborhood V can also be
computed from (G, λ)|N2(V), where V =

{
u | u ∈ V

}
.

4.4 Application: MVol = nΘ(1)

In this section and the next, we show examples of problems that exhibit polynomial and
polylogarithmic complexities, with a particular focus on showing which values of 0 < α < 1
and k ≥ 1 can appear for complexities Θ(nα) and Θ(logk n).

The prior analysis resulting in Corollary 14 suggests that, in order to construct a problem
with volume nΘ(1), we should consider a propagation problem whose matrix M has exponential
growth for d 7→ max Md. A good candidate is the problem described by M =

(
2
)

for ∆ = 3.
It describes the following problem:

Problem 3 Polynomial propagation.

Input: An infinite rooted ∆-regular tree
Labels: red and white
Task: Color the vertices according to the following rules, by order of precedence:

any labeling is valid for a vertex that does not have exactly 3 children;
any labels are valid for the children of a vertex labeled white;
if a vertex is red, it needs at least two of its children to be red;
the root has to be red.

One can notice that this problem happens to be the same as one previously introduced
in Definition 1 and for which an example solution is shown in Figure 1 (middle). Using the
terminology of Definition 7, red is the initial label, and white is the wildcard label. From the
initial labeling consisting of the root being unlabeled and all other vertices being white, a
mend needs to recolor 2d vertices at layer d from white to red. For a balanced ternary tree,
this will produce a total of 2log3 n+1 − 1 recolored vertices, i.e. Θ(nln 2/ ln 3).

D. Melnyk, J. Suomela, and N. Villani 21:15

1 1

1
1





k − 2

k − 1

0

0

Figure 5 Mk of size k × k exhibits growth Θ(pk) for the root label l0 corresponding to line 1.

By slightly adjusting the parameters, we can engineer any rational power of n: the
problem described by M =

(
2p

)
for ∆ = 2q, where q > p > 1, will exhibit complexity

Θ(nln 2p/ ln 2q) = Θ(np/q).

4.5 Application: MVol = (log n)Θ(1)

We now show how to construct a problem that has mending volume Θ(logk n) for any chosen
k ≥ 1. This time, Corollary 14 suggests to look for a matrix for which d 7→ max Md has
growth rate Θ(pk). This is satisfied by the matrix illustrated in Figure 5: its size is k, and it
has entries 1 along and immediately above the diagonal, and entries 0 everywhere else. A
solution to the problem described by this matrix has the following form: a path from a leaf
to the root is labeled l0 including both ends. From each vertex labeled l0 there is a path
labeled l1 from another leaf, and so on until each vertex labeled lk−2 being the endpoint of a
path labeled lk−1 from a leaf.

5 Conclusions and discussion

In this work, we have defined the mending volume and shown that it is able to distinguish
more complexity classes of problems than the mending radius from [9], which is the most
closely related previously studied notion.

Cost of reading vs. cost of writing. Observe that the mending volume as defined here does
not yet determine the size of the neighborhood that needs to be explored in order to decide
what to change. Indeed the definition of the mending volume as the optimum over all possible
mends implies that in order to compute a volume-optimal mend one would need to explore
all possible mends and thus would have to gather information on the entire neighborhood up
to the mending radius. This suggests that the mending volume is advantageous primarily in
situations in which the cost of gathering information is negligible compared to the cost of
actually performing the modifications.

In the full version of this work we also explore algorithmic versions of mending volume,
which capture the idea of how many nodes need to be explored in order to find a mend.

Patching one hole vs. patching all holes. While our measure guarantees optimality of a
single mend at a specific vertex, it does not guarantee optimality of the final solution when
executing several mends sequentially. It also does not prevent the fact that some labels

OPODIS 2022

21:16 Mending Partial Solutions with Few Changes

might be overwritten repeatedly each time a new mend is computed to patch a different hole.
Compare this to [26] for example, which provides strong guarantees of monotonicity (each
node changes label at most once) and goal optimality (the final solution is the nearest one in
terms of Hamming distance).

This shortcoming is not unexpected: a closer look at the problems we study here reveals
that they fall under Condition 1 of Theorem 1 of [26]: the optimal configuration can depend
on the initial configuration at an arbitrary distance of the vertex of interest. This means that
finding the optimal solution could require global information. Thus, the kind of problems
that the mending volume is best at classifying is precisely a class of problems to which the
results of [26] do not apply.

Open questions. Although our encoding from propagation problems to general graphs in
Section 4.3 makes our existential results applicable to the case of general trees and general
graphs, the impossibility results do not work analagously. One major unsolved question is
whether there are problems that have a mending volume strictly between polylogarithmic
and polynomial, either in general trees or in general graphs.

References
1 Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization.

Princeton University Press, 2003. doi:10.2307/j.ctv346t9c.
2 Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self stabilizing protocols for

general networks. In Jan van Leeuwen and Nicola Santoro, editors, Distributed Algorithms,
pages 15–28, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

3 Eric Angel. A Survey of Approximation Results for Local Search Algorithms, pages 30–73.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/11671541_2.

4 Esther M. Arkin and Refael Hassin. On Local Search for Weighted k-Set Packing. Mathematics
of Operations Research, 23(3):640–648, 1998. doi:10.1287/moor.23.3.640.

5 Giorgio Ausiello and Marco Protasi. Local search, reducibility and approximability of NP-
optimization problems. Information Processing Letters, 54(2):73–79, 1995. doi:10.1016/
0020-0190(95)00006-X.

6 Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by local check-
ing and correction (extended abstract). In Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, SFCS ’91, pages 268–277, USA, 1991. IEEE Computer
Society. doi:10.1109/SFCS.1991.185378.

7 Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi Dolev. Self-stabilization
by local checking and global reset. In Gerard Tel and Paul Vitányi, editors, Distributed
Algorithms, pages 326–339, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

8 Vineet Bafna, Babu Narayanan, and R. Ravi. Nonoverlapping local alignments (weighted
independent sets of axis-parallel rectangles). Discrete Applied Mathematics, 71(1):41–53, 1996.
doi:10.1016/S0166-218X(96)00063-7.

9 Alkida Balliu, Juho Hirvonen, Darya Melnyk, Dennis Olivetti, Joel Rybicki, and Jukka
Suomela. Local Mending. In Structural Information and Communication Complexity, 2022.
doi:10.1007/978-3-031-09993-9_1.

10 Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil. Transient fault detectors.
Distrib. Comput., 20(1):39–51, July 2007. doi:10.1007/s00446-007-0029-x.

11 Sebastian Brandt, Christoph Grunau, and Václav Rozhoň. The Randomized Local Computation
Complexity of the Lovász Local Lemma. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, 2021. doi:10.1145/3465084.3467931.

12 M. Chams, A. Hertz, and D. de Werra. Some experiments with simulated annealing for coloring
graphs. European Journal of Operational Research, 32(2):260–266, 1987. Third EURO Summer
Institute Special Issue Decision Making in an Uncertain World. doi:10.1016/S0377-2217(87)
80148-0.

https://doi.org/10.2307/j.ctv346t9c
https://doi.org/10.1007/11671541_2
https://doi.org/10.1287/moor.23.3.640
https://doi.org/10.1016/0020-0190(95)00006-X
https://doi.org/10.1016/0020-0190(95)00006-X
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1016/S0166-218X(96)00063-7
https://doi.org/10.1007/978-3-031-09993-9_1
https://doi.org/10.1007/s00446-007-0029-x
https://doi.org/10.1145/3465084.3467931
https://doi.org/10.1016/S0377-2217(87)80148-0
https://doi.org/10.1016/S0377-2217(87)80148-0

D. Melnyk, J. Suomela, and N. Villani 21:17

13 Barun Chandra and Magnús M Halldórsson. Greedy Local Improvement and Weighted Set
Packing Approximation. Journal of Algorithms, 39(2):223–240, 2001. doi:10.1006/jagm.
2000.1155.

14 Shiri Chechik and Doron Mukhtar. Optimal Distributed Coloring Algorithms for Planar
Graphs in the LOCAL Model. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2019.

15 Johanne Cohen, Laurence Pilard, Mikaël Rabie, and Jonas Sénizergues. Making Self-Stabilizing
any Locally Greedy Problem, 2022. doi:10.48550/arXiv.2208.14700.

16 Philippe Galinier and Alain Hertz. A survey of local search methods for graph coloring.
Computers & Operations Research, 33(9):2547–2562, 2006. Part Special Issue: Anniversary
Focused Issue of Computers & Operations Research on Tabu Search. doi:10.1016/j.cor.
2005.07.028.

17 Magnús M. Halldórsson. Approximating Discrete Collections via Local Improvements. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95,
pages 160–169, 1995. doi:10.5555/313651.313687.

18 David G. Harris, Hsin-Hao Su, and Hoa T. Vu. On the Locality of Nash-Williams Forest
Decomposition and Star-Forest Decomposition. In Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, PODC’21, 2021. doi:10.1145/3465084.3467908.

19 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

20 Michael König and Roger Wattenhofer. On Local Fixing. In Principles of Distributed Systems,
2013. doi:10.1007/978-3-319-03850-6_14.

21 S. Kutten and D. Peleg. Tight fault locality. In Proceedings of IEEE 36th Annual Foundations
of Computer Science, 1995. doi:10.1109/SFCS.1995.492672.

22 Moni Naor and Larry Stockmeyer. What Can be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

23 Alessandro Panconesi and Aravind Srinivasan. The local nature of ∆-coloring and its algorith-
mic applications. Combinatorica, 15(2):255–280, 1995. doi:10.1007/BF01200759.

24 Silvia Richter, Malte Helmert, and Charles Gretton. A Stochastic Local Search Approach
to Vertex Cover. In KI 2007: Advances in Artificial Intelligence, pages 412–426, 2007.
doi:10.1007/978-3-540-74565-5_31.

25 Will Rosenbaum and Jukka Suomela. Seeing Far vs. Seeing Wide: Volume Complexity of
Local Graph Problems. In Proceedings of the 39th Symposium on Principles of Distributed
Computing, PODC ’20, 2020. doi:10.1145/3382734.3405721.

26 Yukiko Yamauchi and Sébastien Tixeuil. Monotonic stabilization. In Chenyang Lu, Toshimitsu
Masuzawa, and Mohamed Mosbah, editors, Principles of Distributed Systems, pages 475–490,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

OPODIS 2022

https://doi.org/10.1006/jagm.2000.1155
https://doi.org/10.1006/jagm.2000.1155
https://doi.org/10.48550/arXiv.2208.14700
https://doi.org/10.1016/j.cor.2005.07.028
https://doi.org/10.1016/j.cor.2005.07.028
https://doi.org/10.5555/313651.313687
https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1007/978-3-319-03850-6_14
https://doi.org/10.1109/SFCS.1995.492672
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1007/BF01200759
https://doi.org/10.1007/978-3-540-74565-5_31
https://doi.org/10.1145/3382734.3405721

The Impossibility of Approximate Agreement on a
Larger Class of Graphs
Shihao Liu #

Department of Computer Science, University of Toronto, Canada

Abstract
Approximate agreement is a variant of consensus in which processes receive input values from a
domain and must output values in that domain that are sufficiently close to one another. We study
the problem when the input domain is the vertex set of a connected graph. In asynchronous systems
where processes communicate using shared registers, there are wait-free approximate agreement
algorithms when the graph is a path or a tree, but not when the graph is a cycle of length at least 4.
For many graphs, it is unknown whether a wait-free solution for approximate agreement exists.

We introduce a set of impossibility conditions and prove that approximate agreement on graphs
satisfying these conditions cannot be solved in a wait-free manner. In particular, the graphs of all
triangulated d-dimensional spheres that are not cliques, satisfy these conditions. The vertices and
edges of an octahedron is an example of such a graph. We also present a family of reductions from
approximate agreement on one graph to another graph. This allows us to extend known impossibility
results to even more graphs.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Computability

Keywords and phrases Approximate agreement on graph, wait-free solvability, triangulated sphere

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.22

Funding This work is supported by the Natural Science and Engineering Research Council of
Canada.

Acknowledgements I want to thank my advisor Faith Ellen for her advice and many helpful
discussions. I would also like to thank the anonymous reviewers for their helpful comments.

1 Introduction

Agreement problems have been extensively studied in the field of distributed computing. In
particular, the consensus problem [19] requires that processes agree on a single input value.
When the system is asynchronous and processes may crash, Fischer, Lynch, and Paterson [12]
showed that consensus is unsolvable. Since then, many variants of consensus with milder
agreement requirements have been studied in asynchronous systems.

One such variant is approximate agreement, where instead of agreeing on a single value,
processes must output values that are sufficiently close to one another. This problem was
introduced by Dolev, Lynch, Pinter, Stark and Weihl [11] and is related to synchronizing
clocks in a distributed system. Attiya, Lynch, and Shavit [8] considered the approximate
agreement problem where the domain is R and processes are required to output values that
are within distance ε of one another. They showed that this problem has step complexity
Θ(log n) using single-writer registers in the asynchronous shared-memory setting. Their
bound does not depend on ε nor the size of the input domain. Using multi-writer registers,
Schenk [21] showed that this problem has step complexity O(log(M/ε)), where M is the
largest magnitude of any input value. Here, the complexity does not depend on the number
of processes in the system. Mendes, Herlihy, Vaidya and Garg [17] considered approximate
agreement on Rd. They showed that this problem has a solution that tolerates up to
f Byzantine failures in an asynchronous completely-connected message-passing system if

© Shihao Liu;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasonshihao.liu@mail.utoronto.ca
https://doi.org/10.4230/LIPIcs.OPODIS.2022.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 The Impossibility of Approximate Agreement on a Larger Class of Graphs

and only if n > max{3f, (d + 1)f}. More recently, Attiya and Ellen [7] gave a wait-free
algorithm with O(log n(log n+ log(S/ε))) step complexity solving approximate agreement on
Rd using multi-writer registers, where S is the maximum distance between any two inputs.
They also proved two lower bounds for the this problem, Ω

(
min

{
log M

log log M ,

√
log n

log log n

})
and

1
2 log√

2+1(S/ε).
Approximate agreement on graphs is the natural discrete variant of approximate agreement.

Here the domain is the vertex set of some connected graph. Herlihy, Kozlov, and Rajsbaum [13]
viewed approximate agreement on graphs as robot convergence tasks.

Approximate agreement on a path is equivalent to approximate agreement on a closed
interval in R. For some other graphs, such as trees, there are wait-free algorithms to solve
approximate agreement using registers [1]. For other graphs, such as cycles of length at least
4, no wait-free algorithms using only registers exist [3, 10]. However, for many graphs it is
unknown whether a wait-free solution for approximate agreement exists using only registers.

Approximate agreement on graphs

On a connected undirected graph G = (V,E) (known to all processes), each process pi

begins the approximate agreement problem with an input value xi ∈ V . At the end of the
computation, each process outputs a value yi ∈ V such that the following two conditions are
satisfied:

agreement: different output values are adjacent in G, and
(clique) validity: if the inputs form a clique in G, then the set of outputs is a subset of
the set of inputs.

Different validity conditions for approximate agreement on graphs have been considered. The
shortest path validity condition [3] requires each output value to lie on some shortest path
between two input values. It ensures that each output is a vertex in the smallest convex
subgraph containing all input vertices. A subgraph H ⊆ G is convex if, for any two vertices u
and v in H , all shortest paths (in G) between u and v are contained in H . The minimal path
validity condition [18] requires output values to lie on some chordless path between two input
values. Since every shortest path is also a chordless path, minimal path validity generalizes
shortest path validity. The clique validity condition [1] is also known as 1-gathering validity,
it is a generalization of both minimal path validity and shortest path validity. Thus, a proof
that there is no wait-free algorithm for approximate agreement on a graph with clique validity
implies that there is no wait-free algorithm for approximate agreement on that graph with
the other two validity conditions. Likewise, an algorithm solving approximate agreement on
a graph with shortest path validity also guarantees minimal path validity and clique validity.

Positive results

Alistarh, Ellen, and Rybicki [3] showed that approximate agreement with shortest path
validity has a wait-free solution on any graph of radius one or any nicely bridged graph in a
shared memory system where processes communicate using registers. The family of nicely
bridged graphs includes all chordal graphs. They also presented an approximate agreement
algorithm on any connected graph that tolerates at most one process crash failure in the
same model. This shows that approximate agreement has a wait-free solution among two
processes on any connected graph.

Nowak and Rybicki [18] gave an approximate agreement algorithm on chordal graphs in
an asynchronous message-passing model with at most f Byzantine processes, provided the
number of processes is greater than (ω(G) + 1)f , where ω(G) is the size of the largest clique
in G. However, their algorithm only guarantees minimal path validity.

S. Liu 22:3

With clique validity, Alcántara, Castañeda, Flores-Peñaloza, and Rajsbaum [1] showed
that approximate agreement has a wait-free solution using only registers when the graph G

is a tree or, more generally, when the clique graph of G is a tree. The clique graph of G is
the graph (V ′, E′), where vertices in V ′ are cliques in the graph G, and (v′, u′) ∈ E′ if and
only if v′ ∩ u′ ̸= ∅ in the graph G.

Negative results

Approximate agreement has no wait-free solution using only registers on a cycle of length at
least 4. Castañeda, Rajsbaum, and Roy [10] showed this by giving a reduction from 2-set
agreement. Later, Alistarh, Ellen, and Rybicki [3] gave a direct combinatorial proof using
Sperner’s lemma. They also used a reduction to show that approximate agreement has no
wait-free solution on a graph G, if the vertices of G can be labelled using the set {0, 1, 2},
such that

G contains no triangle with three different labels, and
G contains a cycle C in which exactly one node has label 1 and its two neighbours in C

have labels 0 and 2.
We call such a labelling an AER impossibility labelling. In particular, any cycle of length
c ≥ 4 has an AER impossiblity labelling.

Ledent [16] conjectured that approximate agreement is not solvable in a wait-free manner
on any graph whose complex of cliques is not contractible. This includes graphs consisting
of the nodes and edges of an octahedron and an icosahedron and, more generally, any
triangulated d-dimensional sphere, for d ≥ 1, that is not a clique. Note that a triangulated
1-dimensional sphere is a cycle and a triangulated 2-dimensional sphere is a connected planar
graph in which every edge is shared by exactly two triangles.

Our contribution

In Section 4.1, we show that approximate agreement on the octahedron graph has no wait-free
solution using only registers, for n ≥ 4 processes. In Section 4.2, we extend this result to
any graph that satisfies a new set of impossibility conditions provided there are sufficiently
many processes. Any cycle of length at least 4 satisfies these impossibility conditions. More
generally, these impossibility conditions are satisfied by any graph (except a clique) consisting
of the nodes and edges of a triangulated d-dimensional sphere, for d ≥ 1. This includes the
octahedron graph, which we show does not have an AER impossibility labelling.

In Section 5, we describe a simple reduction from approximate agreement on one graph
to approximate agreement on another graph. As an application of this reduction, we show
that the impossibility of wait-free approximate agreement on the stellated octahedron graph
can be derived from the impossibility of wait-free approximate agreement on the octahedron
graph.

Alistarh, Ellen and Rybicki [4] showed that extension-based proofs cannot be used to
prove the impossibility of approximate agreement on a 4-cycle. In Section 6, we briefly
discuss our generalization showing that extension-based proofs cannot be used to prove the
impossibility of wait-free approximate agreement on any connected graph.

2 Iterated immediate snapshot model

We focus our attention on computation in the full-information (non-uniform) iterated imme-
diate snapshot model [15].

OPODIS 2022

22:4 The Impossibility of Approximate Agreement on a Larger Class of Graphs

In this model, a set P of n processes communicate by accessing an infinite sequence of
shared single-writer atomic snapshot objects. Each single-writer atomic snapshot object
has n components and supports two atomic operations, update and scan. Initially, each
component of each snapshot object contains the value −. An update(x) performed by
process pi on a snapshot object changes the value of its i-th component to x, while a scan
returns the current value of each component.

At any given time, the state of a process pi consists of its process identifier, its current
view of the system, and a bit indicating whether it has just performed an update or a scan.
Initially, the view of process pi is just its input value and pi is poised to access the first
snapshot object. Each process accesses each snapshot object in the sequence at most twice.
The first time process pi accesses a snapshot object, it performs an update. At its next
step, pi performs a scan on the same snapshot object and changes its state depending on
the result it received from the scan. In the full-information setting, whenever process pi

performs an update, it writes its entire computation history into the i-th component of the
snapshot object, and whenever it performs a scan, it changes its view to be the result of the
scan. After changing its state, process pi applies a decision map δ to its current state. If
the state of pi is mapped to ⊥, then pi is poised to access the next snapshot object in the
sequence. Otherwise, the state of pi is mapped to an output value y, which pi outputs, and
pi cannot take any more steps. A protocol is specified by the decision map δ used by every
process. A protocol is wait-free if each process takes a finite number of its own steps before
its state is mapped to an output value by δ.

A configuration consists of the state of each process. Note that, in the full-information
setting, we can determine the contents of the snapshot objects from the states of every
process. An initial configuration is a configuration where processes are in their initial states
(and the snapshot objects have their initial values). A process is active in a configuration if δ
maps the state of that process to ⊥. Likewise, a process is terminated in a configuration if δ
maps the state of that process to an output value. A terminal configuration is a configuration
where all processes are terminated.

An execution from a configuration C is defined by an alternating sequence C0, Q1, C1, Q2,

C2, ... of configurations and subsets of processes, beginning with the configuration C0 = C,
such that, for each k ≥ 0, Qk+1 is an non-empty subset of processes that are poised to
access the same snapshot object in configuration Ck. Configuration Ck+1 is the result of the
processes in Qk+1 each performing an update, and then each performing a scan, starting
from configuration Ck. Each execution from C induces a schedule from C, which is the
sequence Q1, Q2, ... of subsets of processes in the execution. Since each process only updates
its corresponding component of each snapshot object, an execution is completely specified
by its starting configuration and its schedule. If α is a finite schedule from configuration C,
we use Cα to denote the configuration at the end of the execution that induces α. In this
case, we say that Cα is reachable from C via the schedule α. Note that if C is a terminal
configuration, then the empty schedule is the only possible schedule from C.

An execution is Q-only if its schedule consists of subsets of processes in Q. The schedule
of a Q-only execution is called a Q-only schedule. If each active process in Q is poised to
perform update on the same snapshot object in C, then a 1-round Q-only schedule from C

is a Q-only schedule where each active process in Q appears exactly once. When Q = P , we
simply call this schedule a 1-round schedule. From a configuration where all active processes
are poised to perform update on the same snapshot object, every 1-round Q-only schedule
can be extended to a 1-round schedule by appending a 1-round (P \Q)-only schedule. The
resulting schedule is called a 1-round Q-first schedule (i.e. all occurrences of processes in Q

S. Liu 22:5

occur before any occurrence of a process in P \Q). For k ≥ 1, a k-round Q-first schedule β
starting from C is a sequence of 1-round Q-first schedules β1, ..., βk, where β1 starts from C

and βi starts from Cβ1...βi−1, for 2 ≤ i ≤ k. Note that each terminal configuration reachable
from an initial configuration C0 is also reachable from C0 via a k-round schedule, for some
k ≥ 0. (See Lemma 4.4 from [2].) Thus, it suffices to only consider such schedules.

Let C be a configuration reachable from some initial configuration via a k-round Q-first
schedule, where ∅ ̸= Q ⊆ P . Then the partial configuration C ′ of C induced by Q consists of
the of states of the processes in Q. We use π(C ′) to denote the set of processes Q whose
states appear in the partial configuration C ′. The partial configuration C ′ can be viewed as
a configuration in a system with a smaller set of processes: Suppose β is a k-round Q-first
schedule starting from configuration C. Let β′ be the restriction of β to the processes in
Q. Then β′ is a schedule starting from the partial configuration C ′ of C induced by Q and
each process in Q has the same state in C ′β′ and Cβ. Note that, for each process in Q,
components corresponding to processes in P \Q all have value − in both C ′β′ and Cβ.

Two (partial) configurations C and C ′ are indistinguishable to a set of processes Q if
Q ⊆ π(C) ∩ π(C ′) and the state of each process in Q is the same in both configurations.
Consider any 1-round Q-first schedule β from both C and C ′. If C and C ′ are indistinguishable
to Q, then Cβ and C ′β are indistinguishable to Q. Since we are restricting attention to
full-information protocols, the converse is also true. It follows that, if Cβ = Cβ′, then β = β′.

If K is a collection of (partial) configurations (not necessarily induced by the same set of
processes), C ∈ K is a (partial) configuration, and ∅ ⊆ Q ⊆ π(C), then we say Q identifies
C in K if, for every other (partial) configuration C ′ ∈ K such that Q ⊆ π(C ′), at least one
process in Q has a different state in C and C ′. When the collection K is clear from context,
we simply say Q identifies C.

For any r ≥ 0 and for any (partial) configuration C reachable from some (partial) initial
configuration via some r-round π(C)-only schedule, let χ(C, δ) denote the set of all possible
(partial) configurations reachable via 1-round π(C)-only schedules starting from C and
let χk(C, δ) denote the set of all possible (partial) configurations reachable via k-round
π(C)-only schedules starting from C. For a collection K of (partial) configurations, define
χ(K, δ) =

⋃
C∈K χ(C, δ) and χk(K, δ) =

⋃
C∈K χ

k(C, δ).

3 A Computational Version of Sperner’s Lemma

Our main results in Section 4 rely on a variant of a classical combinatorial tool known
as Sperner’s lemma. The original topological proofs for the impossibility of wait-free set
agreement [14, 20, 9] all used Sperner’s lemma or equivalent formulations. Later, Attiya and
Castañeda [5] proved the impossibility of set agreement using purely combinatorial techniques,
without using topology. Their argument implicitly applied elements of Sperner’s lemma
directly on executions. More recently, Alistarh, Ellen, and Rybicki [3] gave a combinatorial
proof for the impossibility of approximate agreement on cycles (of length at least 4) using a
generalization of Sperner’s lemma to convex polygons.

In this section, we generalize Sperner’s lemma and rephrase it as a self-contained statement
about executions in the iterated immediate snapshot model. It makes no explicit mention of
topology. However, we note that it is equivalent to a formulation of Sperner’s lemma for
manifolds, phrased in terms of simplicial complexes and subdivisions, that appears in [13] as
Lemma 9.3.4.

Consider a protocol among n ≥ 2 processes in the iterated immediate snapshot model. Let
2 ≤ m ≤ n and let H be a collection of (partial) initial configurations such that |π(C)| = m

for each C ∈ H. For each C ∈ H and each subset of processes Q ⊆ π(C), denote by I(C,Q)

OPODIS 2022

22:6 The Impossibility of Approximate Agreement on a Larger Class of Graphs

the set of input values of processes in Q in the (partial) configuration C. The boundary of
H, denoted B(H), is the collection of all pairs (C,Q), where Q ⊊ π(C) is a subset of m− 1
processes and C is identified by Q in H. In other words, for each pair (C,Q) ∈ B(H), there
is no other (partial) configuration C ′ ∈ H such that Q ⊊ π(C ′) and each process in Q has
the same state in C and C ′.

Throughout the remainder of this section, we let t be the maximum number of non-empty
rounds taken by the protocol in executions starting from (partial) initial configurations in
H. Let T = χt(H, δ) be the collection of all (partial) terminal configurations reachable from
(partial) initial configurations in H.

Definition 1 is a computational analogue of a Sperner labelling. Immediately afterwards,
we give an example with n = m = 3 to help explain the definition.

▶ Definition 1. A collection H of (partial) initial configurations, each of which consists
of the states of the same number of processes m ≥ 2, satisfies the computational Sperner
conditions (CSC) for the protocol if:

CSC1: For each (C,Q) ∈ B(H), the processes in Q have different input values in C. In
other words, |I(C,Q)| = m− 1.
CSC2: For each (C,Q) ∈ B(H), there are an odd number of pairs (C ′, Q′) ∈ B(H) such
that I(C ′, Q′) = I(C,Q).
CSC3: For each (C,Q) ∈ B(H), for each subset S ⊆ Q, and for each S-first π(C)-only
t-round schedule β starting from C, each process in S has output a value in I(C, S) in
the (partial) configuration Cβ.
CSC4: For any C ∈ H and any subset Q ⊊ π(C) of m − 1 processes, there is at most
one other configuration C ′ ∈ H such that Q ⊊ π(C ′) and the configurations C and C ′ are
indistinguishable to all processes in Q.

Let H be a collection consisting of two initial configurations C and C ′, where π(C) =
π(C ′) = {p0, p1, p2} and C and C ′ are indistinguishable only to processes p1 and p2. Since
p0 has a different initial state in C and C ′, any subset of {p0, p1, p2} containing p0 identifies
C and C ′ in H. Thus, B(H) = {(C, {p0, p1}), (C, {p0, p2}), (C ′, {p0, p1}), (C ′, {p0, p2})}. Let
x ̸= x′ be the input of process p0 in configurations C and C ′. Let v0 and v′

0 be its initial
states in these two configurations. Let y and z be the inputs of processes p1 and p2 in both
configurations and let v1 and v2 be their initial states. This is illustrated in Figure 1a, where
the colors white, blue, and red represent the processes p0, p1, and p2, respectively. The
configurations C = {v0, v1, v2} and C ′ = {v′

0, v1, v2} are the two triangles. Since C and
C ′ are indistinguishable to p1 and p2, these triangles share the edge {v1, v2}. The edges
{v0, v1} and {v0, v2} in C and the edges {v2, v

′
0} and {v1, v

′
0} in C ′ form the boundary of

this polygon.
CSC1 says that every edge on the boundary of the polygon has endpoints with different

inputs, so, in the example, x, x′, y, and z are all different. CSC2 says that each pair of inputs
that labels an edge on the boundary labels an odd number of such edges. In the example,
each such pair labels exactly one edge on the boundary. CSC4 is a technical requirement
(analogous to the pseudomanifold property of a simplicial complex) that says each edge
occurs in at most two triangles.

The set of partial terminal configurations T reachable from C and C ′ by a protocol
in the iterated immediate snapshot model can be represented by a subdivision of the two
triangles [15]. This is illustrated in Figure 1b, where each triangle in the subdivision
represents a reachable terminal configuration. The subdivision of a vertex vi, which is just a
vertex, corresponds to the {pi}-only execution from vi. The subdivision of an edge {vi, vj}

S. Liu 22:7

x y

z x′

v0 v1

v2 v′0

(a) Triangles representing configurations C and C′.

x y

z x′

x

z

y y

x

z x
z

y

(b) A subdivision of the two triangles representing
terminal configurations reachable from C and C′ by
a protocol.

corresponds to the {pi, pj}-only executions from the partial configuration {vi, vj}. Here, the
output of a process in a terminal configuration labels the vertex corresponding to its state in
this configuration. CSC3 requires this labelling to be a Sperner labelling: The subdivision
of each vertex is labelled by the input of the vertex and the vertices of the subdivision of a
boundary edge are each labelled by the input of an endpoint of the edge.

Informally, Theorem 2 says that if the collection H satisfies the computational Sperner
conditions, then in at least one (partial) terminal configuration in T, each process outputs a
different value.

▶ Theorem 2. Let H be a collection of (partial) initial configurations that satisfies the
computational Sperner conditions for some protocol and let m ≥ 2 be the number of processes
represented by each (partial) configuration in H. For each (C,Q) ∈ B(H), let T(C,Q) be
the set of all (partial) terminal configurations T reachable from configurations in H in the
iterated immediate snapshot model such that

m different values are output by the m processes in T and,

each value in I(C,Q) is output by some process in T .
Then |T(C,Q)| is odd and, hence, |T(C,Q)| ≥ 1.

The proof of Theorem 2 is deferred to the appendix. In the next section, we demonstrate
how it could be easily applied to obtain impossibility results for wait-free computation in the
iterated immediate snapshot model.

4 New Impossibility Results from Sperner’s Lemma

We first look at approximate agreement on the octahedron graph. We show that there is no
wait-free algorithm when the number of processes n is at least 4. We then extend our result
to a larger class of graphs.

To help with the presentation, we recall some standard notions in graph theory. A vertex
coloring is an assignment of colors (or labels) to each vertex of a graph such that no edge
has endpoints with the same color. A k-coloring is a vertex coloring that uses at most k
different colors. A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph is the smallest number k such that the graph is k-colorable. The clique number of a
graph G, denoted ω(G), is the size of its largest clique. Note that the chromatic number of
G is always at least as large as ω(G).

OPODIS 2022

22:8 The Impossibility of Approximate Agreement on a Larger Class of Graphs

Figure 2 A 3-coloring of the octahedron graph.

4.1 The impossibility of approximate agreement on the octahedron
graph

The octahedron graph (Figure 2) is obtained by taking the vertices and edges of an octahedron.
It consists of a set of six vertices, V = {a1, ..., a6}, and a set of 12 edges. It is 3-colorable
and its largest clique has size 3. To show that approximate agreement is unsolvable on the
octahedron graph, it is sufficient to show that any protocol has an execution in which four
processes output different values.

Consider a system with 4 processes p0, p1, p2, p3 and a 3-coloring of the octahedron graph,
where we use {p1, p2, p3} as colors. We use p(ai) to denote the color of vertex ai. For each
triangle {ai, aj , ak} in the octahedron graph, let C{i,j,k} be the initial configuration where
process p(ai) has input ai, p(aj) has input aj , p(ak) has input ak, and p0 has input a1. Let
H be the collection of all such configurations. (The choice of input vertex a1 for process p0
is arbitrary, but it has to be the same for all configurations in H.)

The following two observations allow us to determine what pairs are in B(H).

▶ Observation 3. Every edge in the octahedron graph is shared by exactly two triangles. If
{ai, aj , ak} and {ai, aj , ak′} are both triangles in the octahedron graph, then configurations
C{i,j,k} and C{i,j,k′} are indistinguishable to the processes in {p(ai), p(aj), p0}. Since the
edge {ai, aj} is only shared by the two triangles {ai, aj , ak} and {ai, aj , ak′}, there is no other
configuration in H that is indistinguishable from configuration C{i,j,k} to the set of processes
{p(ai), p(aj), p0}.

▶ Observation 4. Each configuration C{i,j,k} ∈ H is identified by the set {p1, p2, p3}. In other
words, in any other configuration C{i′,j′,k′} ∈ H, there is at least one process in {p1, p2, p3}
that has a different input in C{i′,j′,k′} and in C{i,j,k}.

Observation 4 implies that (C{i,j,k}, {p1, p2, p3}) ∈ B(H) for all C{i,j,k} ∈ H. Observa-
tion 3 implies that {p1, p2, p3} is the only set of 3 processes that identifies C{i,j,k} in H. Thus,
B(H) contains only these pairs.

▶ Lemma 5. For any wait-free protocol that solves approximate agreement on the octahedron
graph, H satisfies the computational Sperner conditions.

Proof. We prove that H satisfies the four conditions:
CSC1: For any (C{i,j,k}, {p1, p2, p3}) ∈ B(H), processes p1, p2, p3 received input values
ai, aj , ak in some order in configuration C{i,j,k}. Hence, the three processes received three
different input values.

S. Liu 22:9

CSC2: Consider any two distinct pairs (C{i,j,k}, {p1, p2, p3}), (C{i′,j′,k′}, {p1, p2, p3}) ∈
B(H). Then, by definition, processes p1, p2, p3 in the two configurations received vertices
from two different triangles {ai, aj , ak} and {ai′ , aj′ , ak′} as input values (in some order).
Hence, the set of input values I(C,Q) is different for each pair (C,Q) ∈ B(H).
CSC3: For any (C{i,j,k}, {p1, p2, p3}) ∈ B(H) and any subset S ⊆ {p1, p2, p3}, the input
values received by processes in S in configuration C{i,j,k} is a subset of the triangle
{ai, aj , ak}. Hence, in any protocol that solves approximate agreement on the octahedron
graph, the clique validity condition ensures that the outputs of processes in S in any
S-first execution starting from C{i,j,k} is a subset of the input values received by processes
in S in configuration C{i,j,k}.
CSC4: Consider any C{i,j,k} ∈ H and any 3 processes subset Q ⊊ {p0, p1, p2, p3}. If
Q = {p1, p2, p3}, then Q identifies Ci,j,k in H by Observation 4. In other words, no
configuration in H is indistinguishable from Ci,j,k to the set of processes {p1, p2, p3}.
Otherwise, without loss of generality, suppose Q = {p(ai), p(aj), p0}. By Observation 3,
the triangle {ai, aj , ak} shares the edge {ai, aj} with exactly one other triangle {ai, aj , ak′}
in octahedron graph, and C{i,j,k′} is the only configuration in H that is indistinguishable
from C{i,j,k} to the set of processes {p(ai), p(aj), p0}. ◀

▶ Theorem 6. There is no wait-free protocol among 4 processes in the iterated immediate
snapshot model that solves the approximate agreement problem on the octahedron graph.

Proof. Consider a protocol that claims to solve approximate agreement on the octahedron
graph. By Lemma 5, H satisfies the computational Sperner conditions. Since B(H) is
nonempty, Theorem 2 implies that there exists a terminal configuration in which 4 different
vertices are output by p0, p1, p2, p3. Since the largest clique in the octahedron has size 3, this
contradicts the agreement condition. ◀

4.2 The impossibility of approximate agreement on a larger class of
graphs

In this section, we define a class of graphs on which it is impossible to solve wait-free
approximate agreement for sufficiently large number of processes. Given a point c in Rd, a
sphere centered at c is the set of all points equidistant from c in Rd. It can be viewed as a
subspace of dimension d−1 and, hence, is called a (d−1)-dimensional sphere. A triangulation
of a (d−1)-dimensional sphere is a subdivision of the sphere into (d−1)-dimensional simplices,
such that the intersection of any two simplices is either a common face of both simplices or
empty. Our class of graphs includes the graph of any triangulated sphere that is not a clique.
In particular, a cycle is the graph of a triangulated circle and the octahedron graph is the
graph of a triangulated 2-dimensional sphere. We also compare our class of graphs to graphs
that admit AER impossibility labellings and show that neither class contains the other.

Our class of graphs is defined by a set of clique containment conditions. The fact that
every edge in the octahedron graph is shared by exactly two triangles was used in the
previous section to show that a certain collection of initial configurations, H, satisfies the
computational Sperner conditions. We generalize this property to require that every clique
of size k − 1 in the graph is contained in exactly two cliques of size k, for some k ≥ 2. In
the proof of Theorem 6, we used Theorem 2 to show the existence an execution in which 4
processes output 4 different values. Since the octahedron graph contains no clique of size 4,
this execution violates agreement. More generally, for any k-clique in the graph, we can use
Theorem 2 to show the existence of an execution where the k-clique is a strict subset of the
outputs. If this k-clique is a maximal clique in the graph, then agreement is violated.

OPODIS 2022

22:10 The Impossibility of Approximate Agreement on a Larger Class of Graphs

The clique containment conditions

We say a graph G satisfy the clique containment conditions if there is a subgraph A of G
and an integer k, where 2 ≤ k, such that the following hold:
1. every clique of size k − 1 in A is contained in exactly two cliques of size k in A and
2. there is a clique of size k in A that is not contained in any clique of size k + 1 in G.

The graph G of any triangulated d-dimensional sphere satisfies the first condition with
A = G and k = d+ 1 and, provided it is not a clique of size k+ 2, G also satisfies the second
condition. In particular, the octahedron graph is the graph of a triangulated 2-dimensional
sphere. Since it contains no clique of size 4, none of its cliques of size 3 is contained in a
clique of size 4.

When k = 2, every graph G that satisfies our clique containment conditions also has an
AER impossibility labelling. In this case, our first impossibility condition implies that A is a
collection of disjoint cycles and our second impossibility condition implies that there exists
an edge {u, v} in A that is not contained in any triangle in G. Label u with value 1, v with
value 2, and all other vertices in G with value 0. This gives an AER impossibility labelling
of the graph G.

When k ≥ 3, there are some graphs, in particular the octahedron graph, that satisfy
the clique containment conditions, but do not have an AER impossibility labelling. For
contradiction, suppose the octahedron graph has an AER impossibility labelling. Then it
contains a cycle C of length at least 4 with three consecutive vertices labelled 0, 1, and 2.
Since an AER impossibility labelling has no triangle with three different labels, these three
vertices do not form a triangle. To finish labelling the rest of the graph so that there is no
triangle with three different labels, observe that all other vertices can only receive the label
1. Hence, the cycle C contains at least two different vertices with the label 1, contradicting
the definition of AER impossibility labelling.

There are also examples of graphs that have AER impossibility labellings, but do not
satisfy the clique containment conditions. For example, consider the graph G′ with ten
vertices shown in Figure 3, where C is the cycle of length 5 in the middle of G′. Since
each edge of G′ is contained in some triangle, G′ does not satisfy our second impossibility
condition when k = 2. Since each edge of G′ is contained in exactly one triangle, G′ does
not satisfy our first impossibility condition when k = 3. Note that G′ has no clique of size
greater than 3, hence G′ does not satisfy our second impossibility condition when k > 3.

Clique containment conditions imply impossibility of approximate agreement

Consider a graph G that satisfies the clique containment conditions. We first construct a
collection H of (partial) initial configurations for any protocol that claims to solve approximate
agreement on G. Consider a subgraph A = (V,E) of G and an integer k such that the clique
containment conditions are satisfied. Let a1, ..., aℓ denote the vertices in V , where ℓ = |V |.
Consider a system with n processes p0, p1, ..., pn−1, where n is greater than the chromatic
number of A. Consider an n−1 coloring of the graph A, where we use {p1, ..., pn−1} as colors.
We use p(ai) to denote the color of vertex ai. For each k-clique {ai1 , ..., aik

} in the graph
A, let C{i1,...,ik} be the (partial) initial configuration consisting of the states of processes
p(ai1), ..., p(aik

) and p0, such that process p0 has input value a1 and, for 1 ≤ j ≤ k, process
p(aij

) has input value aij
. Let H be the collection of all such (partial) configurations. As in

Section 4.1, the input value assigned to p0 is not important, as long as it is the same in all
(partial) configurations in H.

The following two observations allow us to determine what pairs are in B(H).

S. Liu 22:11

10

0

0

0

0

02

2

0

Figure 3 An AER impossibility labelling of a graph G′ with ten vertices. The edges of the cycle
C are colored in red.

▶ Observation 7. If {ai1 , ..., aik−1 , aik
} and {ai1 , ..., aik−1 , ai′

k
} are both k-cliques of A,

then partial configurations C{i1,...,ik} and C{i1,...,i′
k

} are indistinguishable to the processes in
{p(ai1), ..., p(aik−1), p0}. Moreover, C{i1,...,i′

k
} is the only other partial configuration in H

that is indistinguishable from C{i1,...,ik} to the set of processes {p(ai1), ..., p(aik−1), p0}.

The second statement of Observation Observation 7 is true because, the first impossibility
condition says that the (k − 1)-clique {ai1 , ..., aik−1} is contained in no other k-cliques of A.

▶ Observation 8. Each partial configuration C{i1,...,ik} is identified by the set of processes
{p(ai1), ..., p(aik

)}. In other words, in any other configuration C{i′
1,...,i′

k
}, either {p(ai1), ...,

p(aik
)} ≠ {p(ai′

1
), ..., p(ai′

k
)}, or there is at least one process in {p(ai1), ..., p(aik

)} that has a
different input in C{i1,...,ik} and in C{i′

1,...,i′
k

}.

Observation 8 implies that (C{i1,...,ik}, {p(ai1), ..., p(aik
)}) ∈ B(H) for all C{i1,...,ik} ∈ H.

Observation 7 implies that {p(ai1), ..., p(aik
)} is the only set of size k that identifies C{i1,...,ik}

in H. Thus B(H) contains only these pairs.
The next lemma is a generalization of Lemma 5, and has a similar proof.

▶ Lemma 9. For any wait-free algorithm that solves approximate agreement on the graph G,
H satisfies the computational Sperner conditions.

Proof. We prove H satisfies the four conditions:
CSC1: For any (C{i1,...,ik}, {p(ai1), ..., p(aik

)}) ∈ B(H), processes p(ai1), ..., p(aik
) received

vertices of the k-clique {ai1 , ..., aik
} as input values in some order. Hence, the k processes

received k different input values in C{i1,...,ik}.
CSC2: Consider any two distinct pairs (C{i1,...,ik}, {p(ai1), ..., p(aik

)}), (C{i′
1,...,i′

k
}, {p(ai′

1
)

, ..., p(ai′
k
)}) ∈ B(H). Then, by definition, processes p(ai1), ..., p(aik

) in configuration
C{i1,...,ik} and processes p(ai′

1
), ..., p(ai′

k
) in configuration C{i′

1,...,i′
k

} received vertices from
two different k-cliques {ai1 , ..., aik

} and {ai′
1
, ..., ai′

k
} as input values. Hence, the set of

input values I(C,Q) is different for each pair (C,Q) ∈ B(H).
CSC3: For any (C{i1,...,ik}, {p(ai1), ..., p(aik

)}) ∈ B(H) and any subset S ⊆ {p(ai1), ...,
p(aik

)}, the set of inputs received by processes in S in C{i1,...,ik} is a subset of the k-clique
{ai1 , ..., aik

}. Hence, in any protocol that solves approximate agreement on graph G,
the clique validity condition ensures that the outputs of processes in S in any S-first
execution starting from C{i1,...,ik} is a subset of input values received by processes in S

in C{i1,...,ik}.

OPODIS 2022

22:12 The Impossibility of Approximate Agreement on a Larger Class of Graphs

CSC4: Consider any C{i1,...,ik} ∈ H and any (k − 1)-process subset Q ⊊ π(C{i1,...,ik}) =
{p(ai1), ..., p(aik

), p0}. If Q = {p(ai1), ..., p(aik
)}, then, by Observation 8, Q identifies

C{i1,...,ik} in H. In other words, for any other partial configuration C{i′
1,...,i′

k
} ∈ H such

that Q ⊊ π(C{i′
1,...,i′

k
}), at least one process in Q has a different state in C{i1,...,ik} and

in C{i′
1,...,i′

k
}. Otherwise, without loss of generality, suppose Q = {p(ai1), ..., p(aik−1), p0}.

By Observation 7, the k-clique {ai1 , ..., aik
} shares the (k − 1)-clique {ai1 , ..., aik−1}

with exactly one other k-clique {ai1 , ..., aik−1 , ai′
k
}. Furthermore, C{i1,...,i′

k
} is the only

configuration in H such that Q ⊊ π(C{i1,...,i′
k

}) and C{i1,...,i′
k

} is indistinguishable from
C{i1,...,ik} to the set of processes Q. ◀

We are now ready to prove the impossibility of a wait-free solution to the approximate
agreement problem on graphs that satisfy the clique containment conditions.

▶ Theorem 10. Let G be a graph that satisfies the clique containment conditions with
subgraph A and integer k. Then there is no wait-free protocol among n processes in the
iterated immediate snapshot model that solves approximate agreement on G when n is greater
than the chromatic number of A.

Proof. Consider a protocol that claims to solve approximate agreement on the graph G.
Pick a k-clique {ai1 , ..., aik

} in A that is not contained in any (k + 1)-clique in G. By
Observation 8, (Ci1,...,ik

, {p(ai1), ..., p(aik
)}) ∈ B(H). Then, by Theorem 2, there exists a

partial terminal configuration T in which k + 1 different values are output, including each
value in {ai1 , ..., aik

}. Since the clique {ai1 , ..., aik
} is maximal, the k + 1 values output by

processes in T is not a clique in the graph G. This contradicts the agreement condition. ◀

5 More Impossibility Results from Reductions

In this section, we describe a simple reduction from approximate agreement on one graph to
another graph. These reductions allow us to extend our impossibility result to even more
graphs.

Let G = (V,E) and G′ = (V ′, E′) be undirected graphs. We say that a vertex map
ψ : V → V ′ is a clique map if, for every clique κ in G, ϕ(κ) is a clique in G′.

▶ Theorem 11. Let G = (V,E) and G′ = (V ′, E′) be graphs for which there exists clique maps
ψ : V → V ′ and ψ′ : V ′ → V , such that ψ′(ψ(u)) = u for all u ∈ V . Then, if approximate
agreement on G′ has a wait-free solution among n processes, so does approximate agreement
on G.

Proof. Let A′ be a wait-free protocol solving approximate agreement on the graph G′. We
construct a wait-free protocol A solving approximate agreement on the graph G as follows:
each process with input x runs the approximate agreement algorithm A′ on G′ using ψ(x)
as its input. If y′ is the output it obtained from this execution of A′, then it outputs ψ′(y′).

By the agreement property of A′, the set of outputs in each execution of A′ is a clique κ′

in G′. Since ψ′ is a clique map, the set of outputs in each execution of A, ψ′(κ′), is a clique
in G. Hence, A satisfies agreement.

To see that A satisfies validity, suppose the set of inputs in some execution of A is a
clique κ in G. Since ψ is a clique map, it follows that ψ(κ) is a clique in G′. By validity of A,
the set of outputs in this execution of A is a subset κ′ ⊆ ψ(κ). Thus, ψ′(κ′) ⊆ ψ′(ψ(κ)) = κ.

Hence, A solves approximate agreement on G in a wait-free manner among n processes. ◀

We present two applications of Theorem 11. Let G = (V,E) be the 5-cycle, let G′ =
(V ′, E′) be the graph in Figure 3, and let C be the cycle of length 5 in the middle of G′. Let
ψ : V → V ′ be the clique map that maps G onto C. Let ψ′ : V ′ → V ′ be the clique map

S. Liu 22:13

such that ψ′(ψ(u)) = u for each vertex u ∈ V and ψ′(v) = w for each v ∈ V ′ \C, where w is
a vertex on the 5-cycle such that ψ(w) is adjacent to v in G′. Since approximate agreement
on the 5-cycle has no wait-free solution among n ≥ 3 processes, Theorem 11 implies that
approximate agreement on G′ has no wait-free solution among n ≥ 3 processes. Note that in
Section 4.2 we showed that G′ has an AER impossibility labelling, which gives another proof
of this result.

The stellated octahedron is obtained by attaching a tetrahedron to each face of the
octahedron. More formally, let H = (V,E) be the octahedron graph. We can obtain the
graph of the stellated octahedron graph H ′ = (V ′, E′) from H as follows: V ⊆ V ′, E ⊆ E′,
and, for each triangle {vi, vj , vk} in H , there is a new vertex v{i,j,k} ∈ V ′ and three new edges
{v{i,j,k}, vi}, {v{i,j,k}, vj}, {v{i,j,k}, vk} ∈ E′. Then ψ : V → V ′, which maps each vertex
v ∈ V to v ∈ V ′, is a clique map. Likewise, let ψ′ : V ′ → V map each vertex v ∈ V ⊊ V ′

to v and map each vertex v′ ∈ V ′ \ V to a vertex u ∈ V ⊊ V ′ that is adjacent to v′ in the
stellated octahedron graph. Then ψ′ is a clique map such that ψ′(ψ(v)) = v for all v ∈ V .
Combining Theorem 6 and Theorem 11 gives the following result.

▶ Corollary 12. There is no wait-free protocol among 4 processes in the iterated immediate
snapshot model that solves the approximate agreement problem on the stellated octahedron
graph.

6 Extension-Based Proofs

The notion of extension-based proofs was introduced by Alistarh, Aspnes, Ellen, Gelashvili,
and Zhu [2]. It describes a class of impossibility proofs that includes valency arguments.
Extension-based proofs are defined as an interaction between a prover and any protocol
that claims to solve a task in a wait-free manner. The prover repeatedly queries the
protocol while it attempts to construct a faulty or infinite execution of the protocol. It is
known that extension-based proofs cannot be used to prove the impossibility of (n− 1)-set
agreement [2] and approximate agreement on 4-cycle [4]. In contrast, combinatorial proofs of
these impossibility results exist [14, 20, 9, 3]. In the full version of our paper, we show that
extension-based proofs cannot be used to prove the impossibility of approximate agreement
on any connected graph.

▶ Theorem 13. For any connected graph G, there is no extension-based proof of the impos-
sibility of a wait-free solution for approximate agreement on G among n ≥ 3 processes.

7 Futher work

We conclude by discussing a few open problems about approximate agreement on graphs.
Is there a wait-free protocol using registers for approximate agreement on the octahedron
graph for n = 3 processes? When n ≥ 4, Theorem 6 implies that no wait-free algorithm
exists. The algorithm by Alistarh, Ellen, and Rybicki that tolerates one crash failure [3]
solves approximate agreement in a wait-free manner for n = 2 processes. We know that
extension-based proofs are not powerful enough to obtain any impossibility result for
wait-free approximate agreement on graphs. Thus, to prove that approximate agreement
on the octahedron graph for n = 3 processes is impossible, a reduction or a combinatorial
approach is required.
For any graph G that satisfies the clique containment conditions, what is the largest
number of processes for which there is a wait-free protocol using registers that solves
approximate agreement on G?

OPODIS 2022

22:14 The Impossibility of Approximate Agreement on a Larger Class of Graphs

Find a wait-free protocol using registers for approximate agreement on graphs whose
complex of cliques is contractible or show that no such algorithm exists. Does knowing
that a graph is contractible help to solve approximate agreement? More generally, find a
decidable characterization of the class of graphs on which approximate agreement has a
wait-free solution using registers. Note that there exists a topological characterization of
tasks that have wait-free solutions using registers [14], but this characterization is not
decidable.

References
1 Manuel Alcántara, Armando Castañeda, David Flores-Peñaloza, and Sergio Rajsbaum. The

topology of look-compute-move robot wait-free algorithms with hard termination. Distrib.
Comput., 32(3):235–255, 2019.

2 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based
proofs fail. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing,
(STOC), pages 986–996, 2019.

3 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs. In
Proceeding of the 28th International Colloquium on Structural Information and Communication
Complexity, (SIROCCO), pages 87–105, 2021.

4 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs,
2021. arXiv:2103.08949.

5 Hagit Attiya and Armando Castañeda. A non-topological proof for the impossibility of k-set
agreement. In Proceedings of the 13th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, (SSS), pages 108–119, 2011.

6 Hagit Attiya and Faith Ellen. Impossibility results for distributed computing. Morgan et
Claypool Publishers, 2014.

7 Hagit Attiya and Faith Ellen. The step complexity of multidimensional approximate agreement.
In Proceedings of the 26th International Conference on Principles of Distributed Systems,
(OPODIS), pages 25:1–25:12, 2022.

8 Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast? J. ACM, 41(4):725–
763, 1994.

9 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, (STOC), pages 91–100. Association for Computing Machinery, 1993.

10 Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering on
graphs for wait-free robots. Journal of the Brazilian Computer Society, 24(1):1–15, 2018.

11 Danny Dolev, Nancy Lynch, Shlomit Pinter, Eugene Stark, and William Weihl. Reaching
approximate agreement in the presence of faults. Journal of the ACM, 33(3):499–516, 1986.

12 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

13 Maurice Herlihy, D. N. Kozlov, and Sergio Rajsbaum. Distributed computing through combina-
torial topology. Morgan Kaufmann, 2014.

14 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999.

15 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM Journal on Computing, 36(2):457–497, 2006.

16 Jérémy Ledent. Brief announcement: variants of approximate agreement on graphs and
simplicial complexes. In Proceedings of the 40th Annual ACM Symposium on Principles of
Distributed Computing, (PODC), pages 427–430, 2021.

17 Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K Garg. Multidimensional
agreement in byzantine systems. Distributed Computing, 28(6):423–441, 2015.

http://arxiv.org/abs/2103.08949

S. Liu 22:15

18 Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs. In Proceedings
of the 33rd International Symposium on Distributed Computing, (DISC), pages 29:1–29:17,
2019.

19 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

20 Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM Journal on Computing, 29(5):1449–35, 2000.

21 E. Schenk. Faster approximate agreement with multi-writer registers. In Proceedings of the
36th IEEE Annual Symposium on Foundations of Computer Science, (FOCS), pages 714–723,
1995.

A Proof of Theorem 2

In this appendix, we give a complete proof of Theorem 2. We begin with a few lemmas
describing technical properties of the iterated immediate snapshot model.

▶ Lemma 14. Let C be a (partial) configuration and S ⊆ π(C) be a nonempty subset of
processes. Let β = B1, ..., Bℓ, ..., Br be a 1-round S-first schedule from C, where B1 ∪ · · · ∪Bℓ

is the set of active processes in S. Then for any 1-round schedule β′ = B′
1, ..., B

′
m such that

Cβ and Cβ′ are indistinguishable to all processes in S, B1, ..., Bℓ is a prefix of β′.

Proof. Consider the smallest k such that Bk ≠ B′
k. Note that Bk ∪ · · · ∪Br = B′

k ∪ · · · ∪B′
m.

Suppose B1, ..., Bℓ is not a prefix of β′. Then k ≤ ℓ and Bk ⊆ S.
If there exists some process q ∈ B′

k \Bk, then every process in B′
k ∪ · · · ∪B′

m will see the
update by process q during β′. However, processes in Bk ⊆ B′

k ∪ · · · ∪B′
m will not see the

update by process q during β. Hence, all processes in Bk ⊆ S distinguish between Cβ and
Cβ′.

So suppose that B′
k ⊊ Bk. Let q ∈ Bk \B′

k. Then every process in Bk will see the update
by process q during β. However, processes in B′

k will not see the update by process q during
β′. Hence, all processes in B′

k ⊆ S distinguish between Cβ and Cβ′. ◀

The next result is a restatement of Lemma 8.4 from [6]. Its proof is similar.

▶ Lemma 15. Let C be a (partial) configuration. For any (partial) configuration D ∈ χ(C, δ)
and any subset Q ⊊ π(C) of |π(C)| − 1 processes, there is at most one other (partial)
configuration D′ ∈ χ(C, δ) such that D and D′ are indistinguishable to processes in Q.
Moreover, Q identifies D in χ(C, δ) if and only if D is reached from C via a 1-round Q-first
schedule.

Proof. Consider the the 1-round schedule β = B1, B2, ..., Br such that D = Cβ. Let p be
the only process in π(C) \Q and let B1, ..., Bℓ be the longest Q-only prefix of β. Consider
an arbitrary 1-round schedule β′ = B′

1, ..., B
′
m, such that Cβ and Cβ′ are indistinguishable

to processes in Q. By Lemma 14, B′
1, ..., B

′
ℓ = B1, ..., Bℓ.

Case 1: β is Q-first.
If p is not active, then ℓ = r = m and, hence, β′ = β. Otherwise, ℓ = r− 1 and Br = {p}.
Hence B′

1, ..., B
′
r−1 = B1, ..., Br−1 and B′

r = Br = {p}, so β′ = β. In both cases, Q
identifies D = Cβ.

Case 2: β is not Q-first.
Then process p is active in C. By definition of ℓ, Bℓ+1 is the block containing process p.

OPODIS 2022

22:16 The Impossibility of Approximate Agreement on a Larger Class of Graphs

Case 2.1: Bℓ+1 = {p}.
Then ℓ+1 < r because β is not Q-first. If there exists a process q ∈ B′

ℓ+1 \(Bℓ+2 ∪{p}),
then every process in B′

ℓ+1 ∪ · · · ∪ B′
m will see the update by process q during β′.

However, processes in Bℓ+2 ⊊ B′
ℓ+1 ∪ · · · ∪ B′

m will not see the update by process
q during β. Hence, all processes in Bℓ+2 ⊆ S distinguish between Cβ and Cβ′,
contradicting the definition of β′. Therefore, B′

ℓ+1 ⊆ Bℓ+2 ∪ {p}.
Likewise, if there exists a process q ∈ (Bℓ+2 ∪ {p}) \ B′

ℓ+1, then every process in
Bℓ+2 ∪ · · · ∪Br will see the update by process q during β. However, processes in B′

ℓ+1
will not see the update by process q during β′ and, hence, are able to distinguish
between Cβ and Cβ′. Since no process in Q can distinguish between Cβ and Cβ′,
this implies that either B′

ℓ+1 = Bℓ+2 ∪ {p} or B′
ℓ+1 = {p}.

Case 2.2: Bℓ+1 ̸= {p}.
Then Bℓ+1∩S ̸= ∅. If there exists q ∈ B′

ℓ+1\Bℓ+1, then every process in B′
ℓ+1∪· · ·∪B′

m

will see the update by q during β′. However, processes in Bℓ+1 ∩Q ⊆ B′
ℓ+1 ∪ · · · ∪B′

m

will not see the update by q during β. Hence, all processes in Bℓ+1 ∩ Q distinguish
between Cβ and Cβ′, contradicting the definition of β′. Therefore, B′

ℓ+1 ⊆ Bℓ+1.
Likewise, if there exists q ∈ Bℓ+1 \ B′

ℓ+1, then every process in Bℓ+1 ∪ · · · ∪ Br will
see the update by q during β. However, processes in B′

ℓ+1 ∩Q will not see the update
by q during β′ and, hence, are able to distinguish Cβ from Cβ′. Since no process
in Q can distinguish between Cβ and Cβ′, this implies that either B′

ℓ+1 = Bℓ+1, or
B′

ℓ+1 ∩Q = ∅. Note that B′
ℓ+1 ∩Q = ∅ implies that B′

ℓ+1 = {p}.

Thus process p has exactly two possible states in Cβ′. For each of these states of p,
applying Lemma 14 with S = π(C) gives a unique schedule. ◀

We can apply Lemma 15 repeatedly to each round of an execution to show the following
result.

▶ Lemma 16. Let C be a (partial) initial configuration and let t be the maximum number of
non-trivial rounds taken by any π(C)-only execution starting from C. For any 0 ≤ r ≤ t and
any (partial) configuration T ∈ χr(C, δ), a set of |π(C)| − 1 processes Q ⊊ π(C) identifies T
in χr(C, δ) if and only if T is reachable via a Q-first schedule from C.

Proof. Let β1, ..., βr be the r-round schedule such that T = Cβ1...βr. Consider any subset
Q ⊆ π(C) of |π(C)| − 1 processes.

First suppose that β1, ..., βr is not Q-first. Let k ≤ r be the largest index such that βk is
not Q-first. The remaining 1-round schedules βk+1, ..., βr are all Q-first. Let C ′ = Cβ1...βk−1
and let D = C ′βk ∈ χ(C ′, δ). Then, Lemma 15 says that there exists exactly one other
D′ ∈ χ(C ′, δ) such that D and D′ are indistinguishable to processes in Q. Since βk+1, ..., βr

are Q-first, it follows that Dβk+1...βj and D′βk+1...βj are indistinguishable to processes in
Q, for each k + 1 ≤ j ≤ r. Hence, Q does not identify T = Cβ1...βr in χr(C, δ).

Now suppose that β1, ..., βr is Q-first. We inductively show that Q identifies Cβ1...βi in
χi(C, δ) for all 0 ≤ i ≤ r. For the base case, since C is the only configuration in χ0(C, δ), Q
identifies C. For the inductive case, let i < r and assume that Q identifies D = Cβ1...βi in
χi(C, δ). Let E = Dβi+1 and let E′ ∈ χi+1(C, δ) be such that E ̸= E′. Then E′ ∈ χ(D′, δ)
for some D′ ∈ χi(C, δ). If D ̸= D′, then by the inductive hypothesis, some process q ∈ π(C)
distinguishes between D and D′ and, hence, distinguishes between E and E′. If D = D′,
then, since βi+1 is Q-first, Lemma 15 implies that Q identifies E in χ(D, δ). Hence, Q
identifies Cβ1...βi+1 in χi+1(C, δ). ◀

S. Liu 22:17

▶ Lemma 17. Let m ≥ 2 and let K be a collection of (partial) configurations such that
|π(C)| = m for all C ∈ K. Suppose that, for any C ∈ K and any subset Q ⊊ π(C) of
m− 1 processes, there is at most one other C ′ ∈ K such that Q ⊊ π(C ′) and the (partial)
configurations C and C ′ are indistinguishable to all processes in Q. Then, for any D ∈ χ(K, δ)
and any subset R ⊊ π(D) of m−1 processes, there is at most one other D′ ∈ χ(K, δ) such that
R ⊊ π(D′) and the (partial) configurations D and D′ are indistinguishable to all processes
in R.

Proof. Consider a (partial) configuration D ∈ χ(K, δ) and a subset R ⊊ π(D) of m − 1
processes. By definition, D = Cβ for some (partial) configuration C ∈ K and some 1-round
π(C)-only schedule β.

First suppose that β is not R-first. Let p be the only process in π(D) \R. Then process p
and at least one process in R are active in C. Consider any D′ ∈ χ(K, δ) such that R ⊊ π(D′)
and D′ is indistinguishable from D to all processes in R. Then D′ ∈ χ(C ′, δ) for some C ′ ∈ K.
Note that π(C) = π(D) and π(C ′) = π(D′). Suppose that C ′ ̸= C. Since β is not R-first,
the scan of some active process q ∈ R sees the update by every active process in π(D) during
β. If π(D′) ̸= π(D), then p /∈ π(D′) since R ⊊ π(D′) ̸= π(D) = R ∪ {p}. In this case, then q
distinguishes between D and D′, because q sees the update by process p during β. Hence,
π(D′) = π(D). If there is a process that is active in C and has a different state in C ′ ≠ C,
then q distinguishes between D and D′. Hence, every process that is active in C has the
same state in C ′. Since C ′ ≠ C, there is a process q′ that is terminated in C and has a
different state in C ′. Since p is active in C and q′ is not, q′ ̸= p and, hence, q′ ∈ R. Thus, q′

is a process in R that distinguishes between D′ and D. This contradicts the definition of D′.
Therefore, C ′ = C. Then, by Lemma 15, either D′ = D or D′ ̸= D is the unique (partial)
configuration in χ(C, δ) that is indistinguishable from D to processes in R.

Now suppose that β is R-first. By assumption, there is at most one other configuration
C ′ ∈ K, such that R ⊊ π(C ′) and C ′ is indistinguishable from C to all processes in R.
It follows that Cβ and C ′β are indistinguishable to all processes in R. Since β is R-first,
R identifies Cβ in χ(C, δ) and R identifies C ′β in χ(C ′, δ). Hence for any other 1-round
schedule β′ ̸= β, at least one process in R distinguishes between Cβ and Cβ′, and at least
one process in R distinguishes between Cβ and C ′β′. For any configuration C ′′ ∈ K such
that C ′′ ̸= C,C ′, there is at least one process q ∈ R that distinguishes between C ′′ and C.
Since q also distinguishes between Cβ and C ′′β′′ for any 1-round schedule β′′, it follows
that C ′β is the only configuration in χ(K, δ) that is indistinguishable from Cβ to processes
in R. ◀

The rest of this section is devoted to proving Theorem 2.

▶ Theorem 2. Let H be a collection of (partial) initial configurations that satisfies the
computational Sperner conditions for some protocol and let m ≥ 2 be the number of processes
represented by each (partial) configuration in H. For each (C,Q) ∈ B(H), let T(C,Q) be
the set of all (partial) terminal configurations T reachable from configurations in H in the
iterated immediate snapshot model such that

m different values are output by the m processes in T and,
each value in I(C,Q) is output by some process in T .

Then |T(C,Q)| is odd and, hence, |T(C,Q)| ≥ 1.

The proof is by strong induction on m. Let m ≥ 2 and assume that the claim is true
for all m′ such that 2 ≤ m′ < m. Let t be the maximum number of non-trivial rounds
taken by the protocol in executions starting from (partial) initial configurations in H and let
T = χt(H, δ). If B(H) is empty, then there is nothing to prove. So assume B(H) is nonempty.
Fix an arbitrary (C,Q) ∈ B(H). Define a graph G = (T ∪ {w}, E) as follows:

OPODIS 2022

22:18 The Impossibility of Approximate Agreement on a Larger Class of Graphs

There is an edge in E between (partial) terminal configurations T and T ′ if and only if
T and T ′ are indistinguishable to a subset Q′ ⊆ π(T) ∩ π(T ′) of m − 1 processes and
I(C,Q) is the set of values output in T (and hence in T ′) by the processes in Q′.
There is an edge in E between a (partial) terminal configuration T and vertex w if and
only if there is a subset Q′ ⊊ π(T) of m− 1 processes that identifies T in T and I(C,Q)
is the set of values output in T by the processes in Q′.

▶ Lemma 18. For each (partial) terminal configuration T ∈ T adjacent to w in G, there
is some (C ′, Q′) ∈ B(H) such that I(C ′, Q′) = I(C,Q), T is reachable from C ′ via a unique
schedule β, and β is Q′-first.

Proof. Let T be adjacent to w in G. Then there exists a subset Q′ ⊊ π(T) of m−1 processes
that identifies T in T and I(C,Q) is the set of values output in T by the processes in Q′.
Since T = χt(H, δ), it follows that T = C ′β1...βt for some (partial) initial configuration
C ′ ∈ H and some t-round π(C ′)-only schedule β1, ..., βt starting from C ′. Since we are
considering the full-information iterated immediate snapshot model, this schedule β1, ..., βt is
unique. Since χt(C ′, δ) ⊆ T, Q′ also identifies T in χt(C ′, δ). Hence, by Lemma 16, β1, ..., βt

is Q′-first. If some other (partial) initial configuration C ′′ ∈ H is indistinguishable from C ′

to all processes in Q′, then C ′′β1...βt is indistinguishable from C ′β1...βt to all processes in
Q′. This contradicts the fact that Q′ identifies C ′β1...βt in T. Therefore, Q′ identifies C ′ in
H. Hence, (C ′, Q′) ∈ B(H).

Since β1...βt is Q′-first, by CSC3, the outputs of processes in Q′ in T is a subset of
I(C ′, Q′). Since T is adjacent to w, I(C,Q) is the set of values output by processes in Q′ in
T . Hence we know I(C,Q) ⊆ I(C ′, Q′). However, by CSC1, |I(C,Q)| = |I(C ′, Q′)| = m− 1.
Thus, I(C,Q) = I(C ′, Q′). ◀

▶ Lemma 19. For each (C ′, Q′) ∈ B(H) such that I(C ′, Q′) = I(C,Q), there are an odd
number of (partial) terminal configurations in T reachable from C ′ that are adjacent to
w in G.

Proof. If m = 2, then |Q′| = m− 1 = 1. Let q be the only process in Q′. Let β1, ..., βt be a
t-round {q}-first schedule starting from C ′. By Lemma 16, C ′β1...βt is identified by {q} in
T. By CSC3, process q outputs its own input in C ′β1...βt. Hence, C ′β1...βt is adjacent to w
in G. Furthermore, by Lemma 18, if a (partial) terminal configuration T adjacent to w is
reachable from C ′ via a schedule β′

1, ..., β
′
t, then β′

1, ..., β
′
t is {q}-first. Since m = 2, there is

only one t-round {q}-first schedule starting from C. Hence, C ′β1...βt is the only (partial)
terminal configuration in T reachable from C ′ that is adjacent to w.

Now suppose m > 2. Consider the partial initial configuration D′ of C ′ induced by the
set of processes Q′. Let H′ be the collection consisting of the single partial configuration D′,
let T′ = χt(D′, δ), and let m′ = m − 1 = |π(D′)|. Note that, H′ satisfies CSC4 and every
subset of π(D′) identifies D′ in H′. Hence, B(H′) consists of the pairs (D′, R′) for all subsets
R′ ⊊ Q′ of m′ − 1 processes.

Because (C ′, Q′) ∈ B(H) and H satisfies CSC1, each process in Q′ has a different input
value in C ′. Therefore, for each pair (D′, R′) ∈ B(H′), each process in R′ ⊊ Q′ has a different
value in the partial configuration D′ and, hence, H′ satisfies CSC1. Moreover, the set of
inputs I(D′, R′) is different for each pair (D′, R) ∈ H′, so H′ satisfies CSC2.

Let α′ = α′
1, ..., α

′
t be any t-round Q′-only schedule starting from D′ and let p be the only

process in π(C ′) that is not in π(D′) = Q′. We inductively define ϕ(α′) to be the t-round
π(C ′)-only Q′-first schedule α1, ..., αt starting from C ′, where αi = α′

i{p} if p is active in
C ′α1...αi−1, and αi = α′

i otherwise. Each process in the set Q′ has the same state in D′α′

and C ′ϕ(α′) and, thus, outputs the same value in both (partial) configurations.

S. Liu 22:19

Consider any (D′, R′) ∈ B(H′) and any subset S ⊆ R′. If α′ is a t-round S-first Q′-
only schedule starting from D′, then ϕ(α′) is a t-round S-first (and Q′-first) π(C ′)-only
schedule starting from C ′. Since H satisfies CSC3, each process in S outputs a value in
I(C ′, S) = I(D′, S) in C ′ϕ(α′). Each process in S outputs the same value in D′α′ and
C ′ϕ(α′), so H′ also satisfies CSC3. Therefore, H′ satisfies all four computational Sperner
conditions.

Fix an arbitrary pair (D′, R′) ∈ B(H′). Let T̂′ be the set of all partial terminal config-
uration in T′ such that m′ different values are output by the processes in Q′. Let T ′ ∈ T̂′

and let β be the t-round Q′-only schedule such that T ′ = D′β. Since (C ′, Q′) ∈ B(H), ϕ(β)
is Q′-first, and H satisfies CSC3, it follows that all values output by processes in Q′ in the
(partial) configuration C ′ϕ(β) are elements of I(C ′, Q′). Each process in Q′ outputs the same
value in T ′ and C ′ϕ(β), so all values output by processes in Q′ in partial configuration T ′

are elements of I(C ′, Q′) = I(C,Q). By CSC1, |I(C,Q)| = m − 1 = m′, so I(C,Q) is the
set of values output by the processes in Q′ in partial configuration T ′. Hence each value
in I(D′, R′) ⊆ I(C,Q) is output by some process in T ′. By the inductive hypothesis of
Theorem 2 applied to H′, it follows that |T̂′| is odd.

Since ϕ(β) is Q′-first, Lemma 16 says that Q′ identifies C ′ϕ(β) in χt(C ′, δ). Since
(C ′, Q′) ∈ B(H), we know that Q′ also identifies C ′ in H. Hence, for any other (partial)
configuration C ′′ ∈ H, some process q ∈ Q′ distinguishes between C ′′ and C ′. Since the
protocol is full-information, it follows that q also distinguishes between C ′′β and C ′β. This
implies that Q′ identifies C ′ϕ(β) in T. Hence, C ′ϕ(β) is adjacent to w.

Consider any (partial) terminal configuration T ∈ T reachable from C ′ that is adjacent
to w. By Lemma 18, there is a π(C ′)-only Q′-first schedule α starting from C ′ such that
T = C ′α. Since α is Q′-first and Q′ = π(C ′) \ {p}, it follows that α = ϕ(α′) for some Q′-only
schedule α′ starting from D′. Since D′α′ is indistinguishable from T to processes in Q′ and
I(C,Q) is the set of values output by processes in Q′ in T , it follows that I(C,Q) is also the
set of values output by processes in Q′ in D′α′ and, thus, D′α′ ∈ T′. Hence |T′| is at least
the number of (partial) terminal configurations in T reachable from C ′ that are adjacent to
w in G.

Now consider any two different partial terminal configurations T ′, T ′′ ∈ T′. Then there
exists two different schedules β′, β′′ starting from D′ such that T ′ = D′β′ and T ′′ = D′β′′.
Since the protocol is full-information, some process q ∈ π(D′) = Q′ distinguishes between
D′β′ and D′β′′. Hence, q distinguishes between C ′ϕ(β′) and C ′ϕ(β′′). Both C ′ϕ(β′) and
C ′ϕ(β′′) are (partial) terminal configurations adjacent to w. Thus |T′| is at most the number
of (partial) terminal configurations in T reachable from C ′ that are adjacent to w in G.
Therefore, |T′| is number of (partial) terminal configurations in T reachable from C ′ that are
adjacent to w in G. Since |T′| is odd, the statement of the lemma follows. ◀

The next lemma follows from Lemma 18, Lemma 19, and the fact that H satisfies CSC2.

▶ Lemma 20. Vertex w has odd degree in G.

Proof. By Lemma 18, each (partial) terminal configuration T adjacent to w in G is reachable
from C ′ for some (C ′, Q′) ∈ B(H) such that I(C ′, Q′) = I(C,Q). By CSC2, there are an odd
number of pairs (C ′, Q′) ∈ B(H) such that I(C ′, Q′) = I(C,Q). For each such pair (C ′, Q′),
Lemma 19 tells us that there are an odd number of (partial) terminal configurations in T
reachable from C that are adjacent to w in G. Thus, w has odd degree in G. ◀

The collection H of initial configurations satisfies CSC4. Thus, applying Lemma 17 t

times shows that, for each (partial) terminal configuration T ∈ T = χt(H, δ) and each subset
Q′ ⊊ π(T) of m − 1 processes, there is at most one other (partial) terminal configuration

OPODIS 2022

22:20 The Impossibility of Approximate Agreement on a Larger Class of Graphs

T ′ ∈ T such that Q′ ⊊ π(T ′) and T and T ′ are indistinguishable to all processes in Q′. If
there is such a (partial) terminal configuration T ′ and I(C,Q) is the set of values output in
T by the processes in Q′, then T is adjacent to T ′ in G. If Q′ identifies T in T and I(C,Q)
is the set of values output in T by the processes in Q′, then T is adjacent to w in G. Hence,
the degree of T in graph G is the number of (m− 1)-element subsets Q′ ⊊ π(T) such that
I(C,Q) is the set of values output in T by the processes in Q′.

Let T̂ be the set of all (partial) terminal configurations in T with odd degree in G. By
the handshaking lemma, every graph must have an even number of odd degree vertices and,
by Lemma 20, w has odd degree. Thus, |T̂| is odd.

Let T ∈ T. Recall that |π(T)| = m and, by CSC1, |I(C,Q)| = m− 1. If I(C,Q) is the
set of values output by π(T) in T , then T has degree 2. If I(C,Q) is a proper subset of the
set of values output by π(T) in T , then T has degree 1. Otherwise, T has degree 0.

Hence T̂ is the set of all (partial) terminal configurations T ∈ T such that m different values
are output and each value in I(C,Q) is output by some process. Therefore, T̂ = T(C,Q).
This concludes the proof of Theorem 2.

On the Hierarchy of Distributed Majority Protocols
Petra Berenbrink !

Universität Hamburg, Germany

Amin Coja-Oghlan !

TU Dortmund University, Germany

Oliver Gebhard !

TU Dortmund University, Germany

Max Hahn-Klimroth !

TU Dortmund University, Germany

Dominik Kaaser !

TU Hamburg, Germany

Malin Rau !

Universität Hamburg, Germany

Abstract
We study the consensus problem among n agents, defined as follows. Initially, each agent holds
one of two possible opinions. The goal is to reach a consensus configuration in which every agent
shares the same opinion. To this end, agents randomly sample other agents and update their opinion
according to a simple update function depending on the sampled opinions.

We consider two communication models: the gossip model and a variant of the population model.
In the gossip model, agents are activated in parallel, synchronous rounds. In the population model,
one agent is activated after the other in a sequence of discrete time steps. For both models we
analyze the following natural family of majority processes called j-Majority: when activated, every
agent samples j other agents uniformly at random (with replacement) and adopts the majority
opinion among the sample (breaking ties uniformly at random). As our main result we show a
hierarchy among majority protocols: (j + 1)-Majority (for j > 1) converges stochastically faster than
j-Majority for any initial opinion configuration. In our analysis we use Strassen’s Theorem to prove
the existence of a coupling. This gives an affirmative answer for the case of two opinions to an open
question asked by Berenbrink et al. [PODC 2017].

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Random walks and Markov chains; Mathematics of computing → Stochastic processes

Keywords and phrases Consensus, Majority, Hierarchy, Stochastic Dominance, Population Protocols,
Gossip Model, Strassen’s Theorem

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.23

Related Version Full Version: https://arxiv.org/abs/2205.08203

Funding Petra Berenbrink: DFG FOR 2975
Amin Coja-Oghlan: DFG FOR 2975
Oliver Gebhard: DFG CO 646/3
Max Hahn-Klimroth: DFG FOR 2975
Malin Rau: DFG FOR 2975

1 Introduction

We consider the problem of consensus in a distributed system of n identical, anonymous
agents. Initially each agent has one of two opinions and the goal is that all agents agree
on the same opinion. Reaching consensus is a fundamental task in distributed computing

© Petra Berenbrink, Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth, Dominik Kaaser, and
Malin Rau;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
https://orcid.org/0000-0002-6930-3259
mailto:amin.coja-oghlan@tu-dortmund.de
https://orcid.org/0000-0002-7350-1418
mailto:oliver.gebhard@tu-dortmund.de
https://orcid.org/0000-0001-6154-2362
mailto:maximilian.hahnklimroth@tu-dortmund.de
https://orcid.org/0000-0002-3995-419X
mailto:dominik.kaaser@tuhh.de
https://orcid.org/0000-0002-2083-7145
mailto:malin.rau@uni-hamburg.de
https://orcid.org/0000-0002-5710-560X
https://doi.org/10.4230/LIPIcs.OPODIS.2022.23
https://arxiv.org/abs/2205.08203
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 On the Hierarchy of Distributed Majority Protocols

with a multitude of applications, including fault tolerance in distributed sensor array, clock
synchronization, control of autonomous robots, or blockchains. In computational sciences,
consensus protocols model, e.g., dynamic particle systems or biological processes. In social
sciences, consensus protocols have been studied in the context of opinion formation processes
among social interaction systems. See [8] for a quite recent survey including references and
further applications.

We study the simple and well-known class of j-Majority protocols [10, 35, 12] in two
communication models, the classical gossip model [19, 9, 8] and a sequential model, a variant
of the prominent population model [4]. In the gossip model, all agents are activated in parallel,
synchronous rounds. In the sequential model, one agent is activated after the other uniformly
at random. Every activated agent u considers the opinions of j agents v1, . . . , vj sampled
uniformly at random (with replacement). It then adopts the majority opinion among the
sampled opinions, breaking ties uniformly at random. We are interested in the time it takes
until the protocol converges such that all agents share the same opinion. Setting j = 1 yields
the so-called Voter process [17]. A variant of 2-Majority with lazy tie-breaking is known as
two-sample voting [23] or the TwoChoices process [35], and the 3-Majority dynamics is
analyzed in [10].

The main idea of majority processes with j > 1 is to speed up the convergence time. For
the Voter process in the gossip model, the convergence time is linear in n (independently of
the number of initial opinions) [17], whereas the convergence time of 3-Majority is O(k log n)
for k = o(n) possible initial opinions [35]. In [12] the authors compare the TwoChoices
process to 3-Majority. They show a stochastic dominance of the convergence time of 3-
Majority over the convergence time of Voter and TwoChoices, assuming k initial opinions.
For j-Majority, they conjecture a hierarchy of protocols (see Conjecture 6.1 in [12]). In
particular, they ask whether one can couple j-Majority and (j + 1)-Majority for j ∈ N such
that (j + 1)-Majority is stochastically faster than j-Majority.

In this paper, we settle the matter for the case of k = 2 opinions and prove the existence
of such a hierarchy of majority protocols. Intuitively, this establishes that the processes
converge faster (or at least equally fast) for larger values of j. Let Tj be the random variable
for the convergence time of j-Majority. We formally prove that Tj+1 stochastically minorizes
Tj , written Tj+1 ⪯ Tj , assuming both processes start in the same configuration. Formally,
we show that Pr[Tj+1 ≥ t] ≤ Pr[Tj ≥ t] for any t ∈ N. Our main technical contribution is
the formal proof of this stochastic dominance.

Our proof has its foundations in quite natural observations regarding the transition
properties of the j-Majority processes. Similar results for individual steps of the process
have been shown, e.g., in [33]. However, formally proving and maintaining the stochastic
dominance over all possible configurations requires a lot of care, and to the best of our
knowledge, our result is the first proof of stochastic dominance that covers the entire execution
of j-Majority for all j ∈ N in the setting with two opinions. To motivate the obstacles we
have to overcome, observe that the process is influenced by opposing forces. Specifically, in
order to make progress, an agent from the minority opinion must be activated to interact
with at least j/2 agents from the majority opinion. Activating an agent with minority opinion
becomes less likely with increasing majority, while sampling at least j/2 agents with majority
opinion becomes more likely with increasing majority. In our analysis we carefully prove that
these forces balance out in a favorable manner.

Finally, we consider 3-Majority. We show an asymptotically optimal bound in the
sequential model on the convergence time of O(n log n) activations. This matches a similar
result shown by Ghaffari and Lengler [35] for 3-Majority in the gossip model. Our theoretical
findings are complemented by empirical results. We simulate j-Majority processes for various
values of j and large numbers of agents ranging from n = 102 to n = 108.

P. Berenbrink et al. 23:3

1.1 Related Work
Consensus in the Gossip Model. A simple and natural consensus process is the so-called
Voter process [37, 43, 22, 17, 38] where every agent adopts the opinion of a single, randomly
chosen agent in each round. The expected convergence time of Voter in the gossip model
is at least linear [17]. In order to speed up the process, two related protocols have been
proposed, namely the TwoChoices process [31, 23, 24, 25] and the 3-Majority dynamics
[10, 35, 12]. In both processes, each agent u takes three opinions and updates its opinion to
the majority among the sample. In the TwoChoices process, u takes its own opinion and
samples two opinions u.a.r. Ties are broken towards u’s own opinion. In the 3-Majority
dynamics, u samples three opinions u.a.r. breaking ties randomly. In [35] the authors consider
arbitrary initial configurations in the gossip model. They show that TwoChoices with
k = O(

√
n/ log n) and 3-Majority with k = O(n1/3/log n) reach consensus in O(k · log n)

rounds, improving a result by Becchetti et al. [10]. For arbitrary k they show that 3-Majority
reaches consensus in O(n2/3 log3/2 n) rounds w.h.p., improving a result by Berenbrink et
al. [12].

Schoenebeck and Yu [45] consider a generalization of multi-sample consensus protocols
on complete and Erdős-Rényi graphs for two opinions. Their probabilistic model covers
various consensus processes, including j-Majority, by using a so-called update rule, a function
f : [0, 1] → [0, 1]. In each round, every agent u adopts opinion a with probability f(α(u))
for some function f , where α(u) is the fraction of neighbors of agent u that have opinion
a. Depending on certain natural properties on f , they analyze the convergence time for
complete graphs and Erdős-Rényi graphs.

Another related process is the MedianRule [26], where in each round every agent adopts
the median of its own opinion and two sampled opinions, assuming a total order among
opinions. It reaches consensus in O(log k log log n + log n) rounds w.h.p. For two opinions
the MedianRule is equivalent to the TwoChoices process, and their analysis is tight. For
the case of k > 2 opinions we remark that assuming a total order among the opinions is a
strong assumption that is not required by any of the other protocols.

Finally, considerate amount of work has been spent on analyzing the so-called undecided
state dynamics introduced by Angluin et al. [5]. The basic idea is that whenever two agents
with different opinions interact, they lose their opinions and become undecided, and undecided
agents adopt the first opinion they encounter. Clementi et al. [20] study the undecided
state dynamics in the gossip model. They consider two opinions and show that the protocol
reaches consensus in O(log n) rounds w.h.p. If there is a so-called bias of order Ω(

√
n log n),

the initial plurality opinion prevails. The (additive) bias is the difference between the
numbers of agents holding either opinion. Becchetti et al. [9] analyze the undecided state
dynamics for k = O (n/ log n)1/3 opinions and show a convergence time of O(k · log n) rounds
w.h.p. Bankhamer et al. [36], Berenbrink et al. [16], and Ghaffari and Parter [6] consider a
synchronized variant that runs in phases of length Θ(log k). Agents can become undecided
only at the start of such a phase and use the rest of the phase to obtain a new opinion. These
synchronized protocols achieve consensus in O(log2 n) rounds w.h.p. and can be further
refined using more sophisticated synchronization mechanisms.

Majority and Consensus in the Population Model. In exact majority the goal is to
identify the majority among two possible opinions, even if the bias is as small as only
one [30, 41, 3, 42, 29, 1, 2, 18, 39, 14, 15, 11, 28]. The best known protocol by Doty et al. [28]
solves exact majority with O(log n) states and O(log n) parallel time, both in expectation

OPODIS 2022

23:4 On the Hierarchy of Distributed Majority Protocols

and w.h.p. This is optimal: it takes at least Ω(n log n) interactions until each agent interacts
at least once, and any majority protocol which stabilizes in expected n1−Ω(1) parallel time
requires at least Ω(log n) states (under some natural conditions, see [2]).

Approximate majority is easier: a simple 3-state protocol [5, 21] reaches consensus w.h.p.
in O(log n) parallel time and correctly identifies the initial majority w.h.p. if an initial bias
of order Ω(

√
n log n) is present. Condon et al. [21] also consider a variant of the 3-Majority

process in (a variant of) the gossip model where three randomly chosen agents interact. They
show a parallel convergence time of O(k log n) w.h.p., provided a sufficiently large initial bias
is present. Furthermore, Kosowski and Uznanski [39] mention a protocol which determines
the exact majority in O(log2 n) parallel time w.h.p. using only constantly many states.

Less is known about population protocols that solve consensus among more than two
opinions. One line of research considers only the required number of states to eventually
identify the opinion with the largest initial support correctly. For this problem, Natale and
Ramezani [44] show a lower bound of Ω(k2) states via an indistinguishability argument. The
currently best known protocol uses O(k6) states if there is an order among the opinions and
O(k11) states otherwise [34]. Sacrificing the strong guarantees of always-correct exact plurality
consensus, Bankhamer et al. [6] achieve approximate consensus in O(log2 n) parallel time
w.h.p. using only O(k log n) states. If there is an initial bias of order Ω(

√
n log n), the initial

plurality opinion wins w.h.p. In [7] another variant of the population model is considered
where agents are activated by random clocks. At each clock tick, every agent may open
communication channels to constantly many other agents chosen uniformly at random or from
a list of at most constantly many agents contacted in previous steps. In this model, opening
communication channels is subject to a random delay. The authors show that consensus is
reached by all but a 1/ poly log n fraction of agents in O(log logα k log k + log log n) parallel
time w.h.p., provided a sufficiently large bias is present.

1.2 Models and Results
Gossip Model. In the gossip model [19, 9, 8] all agents are activated simultaneously in
synchronous rounds. In each round every agent u opens a communication channel to j

agents v1, . . . , vj chosen independently and uniformly at random with replacement. (For
simplicity we also allow that vi = u and assume that the vi are sampled with replacement.)
The running time (or convergence time) of a majority protocol is measured in the numbers
of rounds until all agents agree on the same opinion.

Sequential Model. The population model was introduced by Angluin et al. [4] to model
systems of resource limited mobile agents that perform a computation via a sequence of
pairwise interactions. We consider a variant where in each time step one agent u is chosen
uniformly at random to interact with j randomly sampled agents v1, . . . , vj . (As before, we
do not rule out that u = vi for some i). When u is activated it updates its opinion according
to the random sample. The running time is measured in the number of interactions. To
allow for a comparison with the (inherently) parallel gossip model, the so-called parallel time
is defined as the number of interactions divided by the number of agents n. Note that our
processes do not halt: agents do not know that consensus has been reached (see also the
impossibility result in [27]).

j-Majority Processes. In the following we use Pj to denote the j-Majority process. When
executing process Pj , the system transitions through a sequence of configurations (Ct)t∈N0

.
At time t ∈ N0 the configuration Ct ∈ { a, b }n assigns each agent an opinion in { a, b }. In

P. Berenbrink et al. 23:5

our analysis we are interested in the number of agents with majority opinion. We will always
assume w.l.o.g. that a is the majority opinion and we denote a state Xt as the number of
agents with majority opinion in configuration Ct. The configuration C0 at time 0 is called
the initial configuration and the corresponding state X0 is called the initial state. The
convergence time Tj(C0) is defined as the first time where all agents have the same opinion
when starting process Pj in initial configuration C0. Note that the convergence time only
depends on the number of agents with majority opinion since two agents with the same
opinion are not distinguishable. Hence we write Tj(X0) in the following. Formally, Tj(X0) is
a stopping time defined as Tj(X0) = min { t ∈ N0 | Xt = n }. Each transition of the system
is done according to the following update rule.

▶ Definition (Process Pj). Agents are activated according to either the gossip model or the
sequential model. In process Pj each activated agent u samples j agents with replacement
and adopts the majority opinion among the sample, breaking ties uniformly at random.

Note that tie-breaking is not required in process P2j+1 (i.e., when every agent samples an
odd number of agents). Since we have k = 2 opinions we are guaranteed to have a clear
majority in this case.

Stochastic Dominance. Before we formally present our result, it remains to define stochastic
dominance.

▶ Definition (Stochastic Dominance). Let E be a Polish space1 with a partial ordering ≤E .
Let µ, ν ∈ P(E) be probability measures on E. If, for every x ∈ E, we have

µ({ y ∈ E : y ≥E x }) ≥ ν({ y ∈ E : y ≥E x }),

we say that µ stochastically dominates ν. In this case we also say that µ majorizes ν (written
as ν ⪰ ν) or ν minorizes µ (ν ⪯ ν).

We now formally state our main result which applies for both communication models, the
gossip model and the sequential model.

▶ Theorem 1 (Main Result). Let Tj(X0) be the convergence time of process Pj with initial
state X0 in either the gossip model or the sequential model. Then

Tj+1(X0) ⪯ Tj(X0) for any j > 1.

Furthermore, for all j > 1,

E[T2j+2(X0)] = E[T2j+1(X0)] < E[T2j(X0)].

In our second result we show that 3-Majority P3 converges in O(n log n) time w.h.p.2 To
the best of our knowledge, this is the first analysis of 3-Majority with sequential updates. Our
proof is similar to the proof by Condon et al. [21] for the convergence time of approximate
majority in tri-molecular chemical reaction networks. We emphasize that Theorem 1 implies
that all j-Majority processes with j > 3 converge in O(n log n) time w.h.p.

1 A Polish space is a complete metric space with a countable dense subset.
2 The expression with high probability (w.h.p.) refers to a probability of 1 − n−Ω(1).

OPODIS 2022

23:6 On the Hierarchy of Distributed Majority Protocols

▶ Theorem 2. Let T3(X0) be the convergence time of the 3-Majority process P3 in the
sequential model with initial configuration X0.
1. It holds that T3(X0) ≤ O(n log n) w.h.p.
2. If X0 ≥ n/2+ζ

√
n log n for some sufficiently large constant ζ > 0 then the initial majority

opinion wins w.h.p.

We remark that the convergence time of O(n log n) is asymptotically tight. Indeed, for
any number of time steps in o(n log n) there is a constant probability that two agents with
opposing opinions are not activated even once.

2 Analysis

In this section we formally prove our theorems. We prove Theorem 1 in Section 2.1 and
Section 2.2 for the sequential model and the gossip model, respectively. Theorem 2 is then
shown in Section 2.3. All technical details for the rigorous proofs can be found in the full
version [13].

2.1 Sequential Model
We start our analysis with a comparison of one step of the processes Pj and Pj+1 at
time t when starting in an identical state Xt. We are able to express the differences in the
probabilities of increasing the majority opinion, decreasing it or remaining in the same state
for the both processes. To this end, we visualize a possible coupling by a decision tree that
incorporates all the different possibilities. We will observe that, within this one step, we can
couple both processes such that the supposedly faster process increases the majority opinion
with probability one if the supposedly slower process increases this opinion. This coupling
will be guaranteed by an application of Strassen’s Theorem.

The proof of the main result will be conducted inductively. We start both processes in the
same initial state and assume that there is a majority opinion a. Now, the aforementioned
coupling ensures that, after the first step, the supposedly faster process will have at least
as many agents of opinion a than the supposedly slower process. Now, we show a kind of
monotony in the studied processes. Assume we have two instances of the same process, one
in state Xt = s and one in state X ′

t = s′ where Xt, X ′
t denote the number of agents with

opinion a after t steps. If s > s′, then the random variable Xt+1 will stochastically dominate
X ′

t+1, formally X ′
t+1 ⪯ Xt+1. This observation is crucial. It allows us to show that in the

second step, we can again construct a coupling such that, if the supposedly slower process
moves, the supposedly faster process does as well almost surely. Indeed, either both processes
are in the same state, then we find the stochastic dominance by the decision trees, or the
fast process has more agents of opinion a. But as stochastic dominance is transitive, we can
construct a coupling via the triangle inequality.

Finally, we will describe the overall coupling of the two processes as the path-coupling
along those couplings per step which will prove the first part of Theorem 1. The second part
will follow analogously as we can show via the decision trees that in the comparison of P2j−1
and P2j , the chance to obtain the same state in the next step is equal under both processes
while in the comparison of P2j and P2j+1 those decision trees show that the probability of
increasing the majority opinion is larger in P2j+1.

▶ Observation 3. The processes P1 and P3 have, almost surely, a finite stopping time.

P. Berenbrink et al. 23:7

b a

<
j j >

j

a b

b a b a b a

x a b a b x

number of a opinions seen
in the first 2j draws
uniformly at random
choose a with probability 0.5

last opinion seen in the
(2j + 1)th draw, x ∈ {a, b}

decision of P2j

decision of P2j+1

Figure 1 Decision tree comparing P2j and P2j+1.

For the sequential process, we show this for P3 in Section 2.3, while for P1 this follows by
the results of Schoenebeck and Yu [45]. For the gossip model, this is proven in [35]. In this
setting, Strassen’s Theorem guarantees the existence of a coupling γ ∈ P

(
E2)

of µ and ν

with the following property.

▶ Theorem 4 (Strassen’s Theorem [46]). Let µ, ν be probability measures on a Polish space
endowed with a partial ordering ⪯ such that µ stochastically dominates ν. Let X ∼ µ and
Y ∼ ν, then there is a coupling γ of µ and ν such that, if

(
X̂, Ŷ

)
∼ γ, we have

X
d=X̂, Y

d=Ŷ and Pr
[
Ŷ ⪯ X̂

]
= 1.

In words, this means that if µ stochastically dominates ν, X is sampled from µ, and Y is
sampled from ν, there is a coupling under which X ≤ Y almost surely (with probability 1).

▶ Lemma 5. We find for Pk the following. Let Xt denote the number of agents with majority
opinion at time t. If s > s′, then for all d ∈ { 0, 1, ..., n }

Pr[Xt+1 ≥ d | Xt = s] ≥ Pr[Xt+1 ≥ d | Xt = s′].

We provide the detailed calculation in the full version [13] and get the following corollary.

▶ Corollary 6. For any two processes P, P ′, we find the following stochastic dominance. Let
Xt denote the number of agents with opinion a with respect to process P at time t and let
X ′

t be the analogous quantity with respect to P ′. Assume that for any d ∈ [n]

Pr[Xt+1 ≥ d | Xt = s] ≥ Pr
[
X ′

t+1 ≥ d
∣∣ X ′

t = s
]
,

then we have also

Pr[Xt+1 ≥ d | Xt = s + t′] ≥ Pr
[
X ′

t+1 ≥ d
∣∣ X ′

t = s
]
,

for any d ∈ [n] and t′ > 0 such that s + t′ ≤ n.

Let X
(k)
t denote the number of agents with majority opinion after step t of process Pk for

any k ∈ N. Furthermore, for a given agent x we denote by x
(k)
t its opinion in process Pk at

time t. In the following we compare two processes with each other. The comparisons of P2j

(even) to P2j+1 (odd) and P2j−1 (odd) to P2j (even) require slightly different calculations.
Therefore, we have to show two similar lemmas for these two cases, Lemma 7 for the former
case and Lemma 9 for the latter case.

First we compare two successive processes P2j and P2j+1. The following lemma states
that in process P2j+1 it is more likely for an agent with opinion b to change to a while in
process P2j it is more likely that an agent with opinion a changes to opinion b than in the
other process respectively.

OPODIS 2022

23:8 On the Hierarchy of Distributed Majority Protocols

b b a a

< j − 1

j −
1 j

> j

b b a a

x b a b a x

b a b a

number of a opinions seen
in the first 2j − 1 draws

last opinion seen in the
(2j)th draw, x ∈ {a, b}

uniformly at random
choose a with probability 0.5

decision of P2j−1

decision of P2j

decision of P2j

Figure 2 Decision tree comparing P2j−1 and P2j .

▶ Lemma 7. Let x be an agent that is updated in the next step, x
(k)
t its opinion in process

Pk at time t, s ∈ [n] and α = s
n . It holds that

Pr
[
x

(2j+1)
t+1 = a

∣∣∣ x
(2j+1)
t = b, X

(2j+1)
t = s

]
= Pr

[
x

(2j)
t+1 = a

∣∣∣ x
(2j)
t = b, X

(2j)
t = s

]
+ (2α − 1)

2

(
2j

j

)
αj(1 − α)j

and

Pr
[
x

(2j+1)
t+1 = b

∣∣∣ x
(2j+1)
t = a, X

(2j+1)
t = s

]
= Pr

[
x

(2j)
t+1 = b

∣∣∣ x
(2j)
t = a, X

(2j)
t = s

]
− (2α − 1)

2

(
2j

j

)
αj(1 − α)j .

To prove these equations it is sufficient to study the cases where the two processes have a
different outcome. The probability for these cases directly reflects the difference in probability
for that specific outcome. These cases are highlighted in Figure 1. We provide the detailed
calculation in the full version.

This difference in probabilities allows us to prove that, given the same state, P2j+1
stochastically dominates the process P2j in the next step:

▶ Lemma 8. For each j ∈ N0 and each s ∈ N with s > n/2 and any d ∈ [n] it holds that

Pr
[
X

(2j+1)
t+1 ≥ d

∣∣∣ X
(2j+1)
t = s

]
≥ Pr

[
X

(2j)
t+1 ≥ d

∣∣∣ X
(2j)
t = s

]
.

Note that this inequality follows trivially for d ≤ s − 1 and d > s + 1. To prove the property
for the cases d = s and d = s + 1 we can directly use the properties from Lemma 7.

On the other hand, when comparing the processes P2j−1 and P2j with respect to the
difference in probability for an agent to change its opinion, we note that there is no difference
in the probabilities given that all agents are in the same state.

▶ Lemma 9. Let x be an agent that is updated in the next step, x
(k)
t its opinion in process

Pk at time t, and s ∈ [n]. It holds that

Pr
[
x

(2j−1)
t+1 = a

∣∣∣ x
(2j−1)
t = b, X

(2j−1)
t = s

]
= Pr

[
x

(2j)
t+1 = a

∣∣∣ x
(2j)
t = b, X

(2j)
t = s

]
and

Pr
[
x

(2j−1)
t+1 = b

∣∣∣ x
(2j−1)
t = a, X

(2j−1)
t = s

]
= Pr

[
x

(2j)
t+1 = b

∣∣∣ x
(2j)
t = a, X

(2j)
t = s

]
.

P. Berenbrink et al. 23:9

A similar statement has previously been shown by Fraigniaud and Natale [33] for a related
model. The proof of Lemma 9 is analogous to the proof of Lemma 7. For completeness, it
can be found in the full version
▶ Lemma 10. For each j ∈ N0 and each s ∈ N with s > n/2 and any d ∈ [n] it holds that

Pr
[
X

(2j)
t+1 ≥ d

∣∣∣ X
(2j)
t = s

]
= Pr

[
X

(2j−1)
t+1 ≥ d

∣∣∣ X
(2j−1)
t = s

]
.

The proof can be found in the full version. We are now ready to put everything together and
prove our main result for the sequential model.

Proof of Theorem 1. We prove Theorem 1 by induction given the initial state X0 and start
with the case T2j(X0) ⪯ T2j+1(X0). Given X0, Lemma 8 guarantees that for all s > 0

Pr
[
X

(2j+1)
1 ≥ s

∣∣∣ X0

]
≥ Pr

[
X

(2j)
1 ≥ s | X0

]
.

Therefore, by Theorem 4, we find a coupling γ1 such that, under γ1, X
(2j+1)
1 ≥ X

(2j)
1 almost

surely. Now, assume that we constructed a coupling γ(t) = γ1 ⊗ . . . ⊗ γt of
(

X2j
1 , . . . , X2j

t

)
and

(
X2j+1

1 , . . . , X2j+1
t

)
, where ⊗ denotes the product measure. Under γ(t) we have by

induction hypothesis that

Pr
γ(t)

[
X2j+1

t ≥ X2j
t

]
= 1.

Therefore, by Corollary 6 and Lemma 8, we find given X
(2j+1)
t ≥ X

(2j)
t that

Pr
[
X

(2j+1)
t+1 ≥ s

∣∣∣ X
(2j+1)
t

]
≥ Pr

[
X

(2j)
t+1 ≥ s

∣∣∣ X
(2j)
t

]
.

Thus, Theorem 4 implies, given X
(2j+1)
t ≥ X

(2j)
t the existence of a coupling γt+1 such that

Pr[γt+1]X2j+1
t+1 ≥ X2j

t+1 = 1.

We define γ(t+1) = γ(t) ⊗ γt+1 and T2j(X0) ⪯ T2j+1(X0) follows by induction.
Next, we need to prove that T2j−1(X0) ⪯ T2j(X0). This follows completely analogously

with Lemma 8 replaced by Lemma 10.
Finally, we need to construct the bounds on the expectation. Given the coupling

γT (2j+1)(X0) of P2j+1 and P2j , we find that, under this coupling, for every step t = 1 . . . T2j+1,
we have X

(2j+1)
t ≥ X

(2j)
t almost surely and therefore E[T2j+1(X0)] ≤ E[T2j(X0)]. In more

detail, due to the coupling γ, we know that

Pr
[
X

(2j+1)
t+1 ≥ s

∣∣∣ X0

]
≥ Pr

[
X

(2j)
t+1 ≥ s

∣∣∣ X0

]
and hence

Pr
[
X

(2j+1)
t+1 < s

∣∣∣ X0

]
≤ Pr

[
X

(2j)
t+1 < s

∣∣∣ X0

]
for each s ≥ n/2 and t ∈ N. Furthermore, for the first possible convergence time it holds that

Pr
[
X

(2j)
n−s < n

∣∣∣ X0 = s
]

= 1 − Pr
[
X

(2j)
n−s = n

∣∣∣ X0 = s
]

= 1 −
n−s∏
i=1

Pr
[
X

(2j)
i = s + i

∣∣∣ X
(2j)
i−1 = s + i − 1

]
Lemma 7

> 1 −
n−s∏
i=1

Pr
[
X

(2j+1)
i = s + i

∣∣∣ X
(2j+1)
i−1 = s + i − 1

]
= 1 − Pr

[
X

(2j+1)
n−s = n

∣∣∣ X0 = s
]

= Pr
[
X

(2j+1)
n−s < n

∣∣∣ X0 = s
]
.

OPODIS 2022

23:10 On the Hierarchy of Distributed Majority Protocols

Therefore,

E[T2j(X0)] =
∑
t≥0

Pr[T2j(X0) > t] =
∑
t≥0

Pr
[
X

(2j)
t < n

∣∣∣ X0

]
>

∑
t≥0

Pr
[
X

(2j+1)
t < n

∣∣∣ X0

]
=

∑
t≥0

Pr[T2j+1(X0) > t] = E[T2j+1(X0)].

Next we prove the equality in expectation for the convergence time of the processes P2j−1
and P2j . To this end, we get from Lemma 10 that

Pr
[
X

(2j−1)
t < n

∣∣∣ Xt−1 = s
]

= Pr
[
X

(2j)
t < n

∣∣∣ Xt−1 = s
]
.

Therefore, inductively,

Pr
[
X

(2j−1)
t < n

∣∣∣ X0 = s
]

= Pr
[
X

(2j)
t < n

∣∣∣ X0 = s
]
.

But then

E[T2j−1(X0)] =
∑
t≥0

Pr[T2j−1(X0) > t] =
∑
t≥0

Pr
[
X

(2j−1)
t < n

∣∣∣ X0

]
=

∑
t≥0

Pr
[
X

(2j)
t < n

∣∣∣ X0

]
=

∑
t≥0

Pr[T2j(X0) > t] = E[T2j(X0)]. ◀

2.2 Gossip Model
We now extend the previous analysis to the gossip model. Recall that in this model all
agents are activated in parallel rounds. In such a round, all agents sample j other agents
v1, . . . , vj u.a.r. Then they compute their new opinion as the majority opinion among the
sample, breaking ties u.a.r. Here, the agents use the opinions of the other agents from the
beginning of the round. At the end of the round (once all agents have computed the new
opinion) all agents synchronously update their opinion to the new value.

Proof of Theorem 1 for the Gossip Model. In our extended analysis we use a coupling of
the two parallel processes similarly to the coupling of one step of the sequential model.
Observe that in process P2j every agent samples 2j agents u.a.r., while in process P2j+1 every
agent samples 2j + 1 agents. Therefore, process P2j makes 2j · n random choices from [n]
in each round, while P2j+1 makes (2j + 1) · n random choices. We use the straight-forward
coupling and define that the 2j choices of every agent u in P2j are identical to the first 2j

choices of agent u in process P2j+1.
We now analyze the deviation of the two processes that stems from the 2j +1th additional

choice in process P2j+1. Here we observe the following. In each round of process P2j there
are three disjoint sets of agents, Ma, Mb, and Mu. The sets Ma and Mb are comprised of
agents that sample at least j + 1 agents of the majority opinion a and the minority opinion
b, respectively. All other agents are in Mu. The agents in Ma will adopt opinion a at the
end of the round in both processes: the j + 1 samples of opinion a is larger than the winning
margin in both processes, which is j in P2j and (2j + 1)/2 in P2j+1. Analogously, the agents
in Mb will adopt opinion b in both processes. Finally, the interesting group are the Mu

agents. These agents have sampled a tie in process P2j , meaning they have sampled j agents
with opinion a and another j agents with opinion b. This means, in process P2j all agents in
Mu adopt either opinion a or opinion b with probability 1/2 each. In process P2j+1, however,

P. Berenbrink et al. 23:11

the 2j + 1th sample makes the decision. (Recall that in a process P2j+1 with an odd number
of samples and k = 2 opinions no ties are possible.) Therefore, in process P2j+1 all agents in
Mu adopt opinion a with probability α and opinion b with probability (1 − α).

Summarizing, we have the following. Due to the coupling of P2j with P2j+1, all agents in
Ma or Mb behave exactly the same in both processes. We use Za = |Ma| and Zb = |Mb| to
denote their respective numbers.(Observe that Za and Zb are the same in P2j and P2j+1 due
to the coupling.) In the following, we condition on the event that |Mu| = mu. For the agents
in Mu, the outcome can be described by binomial random variables: let Z2j

u in process P2j

and Z2j+1
u in process P2j+1 be the numbers of agents in Mu that adopt opinion a. Then

Z2j
u ∼ Bin(mu, 1/2) and Z2j+1

u ∼ Bin(mu, α)

with α ≥ 1/2. Irrespective of the value of mu we observe from well-known properties of
binomial distributions that Z2j

u is stochastically dominated by Z2j+1
u , and hence

X
(2j)
t+1 = Za + Z2j

u ≺ Za + Z2j+1
u = X

(2j+1)
t+1 .

The proof for the dominance of P2j over P2j−1 uses similar definitions and follows
analogously, with exception that Mu represents the agents that are undecided after the first
2j − 2 draws and that Z2j−1

u and Z2j
u follow the same binomial distribution Bin(mu, α).

The only ingredient that is left to prove is the monotonicity within one specific process.
Indeed, if an analogous result as Lemma 5 in the sequential model can be proven, the path
coupling argument follows the same lines as in the previous section.

▶ Lemma 11. We find for P2j and P2j+1 in the gossip model the following. Let Xt denote
the number of agents with majority opinion at time t. If s > s′, then for all d ∈ { 0, 1, ..., n }

Pr[Xt+1 ≥ d | Xt = s] ≥ Pr[Xt+1 ≥ d | Xt = s′].

Proof. As before, let Ma and Mb denote the sets of agents that sample at least j + 1 agents
of the majority opinion a and the minority opinion b, respectively. If s > s′, the monotonicity
of the binomial distribution yields

|Ma||Xt=s ⪰ |Ma||Xt=s′ and |Mb||Xt=s ⪯ |Mb||Xt=s′ .

Therefore, the lemma follows from Strassen’s theorem. ◀

Now the path coupling follows analogously to the previous section. ◀

2.3 Analysis of 3-Majority
In this section we analyze 3-Majority in the sequential model. We start with an overview
of the proof of Theorem 2. The proof consists of three parts. The first part follows along
the lines of the proof by Condon et al. [21] for the related approximate majority process
in tri-molecular chemical reaction networks. It shows that we preserve the initial majority
(assuming a bias of

√
n log n) and reach a bias of ϵn within O(n log n) time w.h.p. (Recall

that the bias is defined as the difference of the numbers of agents supporting opinion a and
opinion b.) The proof is based on the following result for gambler’s ruin from [32].

▶ Lemma 12 (Asymmetric one-dimensional random walk, [32, XIV.2], version from [21]). If we
run an arbitrarily long sequence of independent trials, each with success probability at least p,
then the probability that the number of failures ever exceeds the number of successes by b is
at most

(
1−p

p

)b

.

OPODIS 2022

23:12 On the Hierarchy of Distributed Majority Protocols

In the second part we use a drift analysis based on [40] to show that we reach consensus
on the initial majority opinion quickly once we have a bias of order Ω(n). The proof is based
on a carefully conducted drift-analysis, where we use the following fairly recent result.

▶ Theorem 13 (Special case of Theorem 18 of [40]). Let { Yt }t≥0 be a sequence of non-negative
random variables with a finite state space S ⊂ R≥0 such that 0 ∈ S. Define

smin = min(S \ { 0 }) and T = inf { t ≥ 0 | Y0 = 0 } .

If Y0 = s0 and there is δ > 0 (independent from t) such that for all s ∈ S \ { 0 } and all t ≥ 0
we have

E[Yt − Yt+1 | Yt = s] ≥ δs,

then, for all r ≥ 0,

Pr
[
T >

⌈
r + log(s0/smin)

δ

⌉]
≤ e−r.

In the third part we again show that the analysis from [21] is applicable in our setting
if we do not have an initial bias. All three parts together prove the first statement of our
theorem. The second statement follows from part one together with part two.

Part 1. We start with the first part. We follow along the lines of [21] and use Lemma 12 to
show the following statement.

▶ Lemma 14. Let ∆t be the additive bias at time t. With probability 1 − e−Ω(∆2
t /n), the bias

∆t does not drop below ∆t/2 and increases to min { 2∆t, n } within 2n time steps.

Proof. Let Xt denote the number of agents with the majority opinion at time t and let
Yt = n − Xt denote the number of agents with the minority opinion at time t. We analyze
our process as a variant of gamblers’ ruin and apply Lemma 12. We only consider productive
steps in which the number of agents of a specific opinion changes. For Xt ∈

(
n
2 , n

2 + εn
)

it
holds that Pr[Xt+1 ̸= Xt] = Ω(1) and hence conditioning on productive steps only increases
the constants hidden in the asymptotic notation.

In each productive step, the success probability reads p = Pr[Xt+1 > Xt | Xt+1 ̸= Xt]
and the failure probability reads 1 − p = Pr[Xt+1 < Xt | Xt+1 ̸= Xt]. Let ∆t = Xt − n

2
denote the bias at time t. We have for any ∆ that

1 − p

p
=

2
(1

2 − ∆
n

)
− 3

(1
2 − ∆

n

)3 +
(1

2 − ∆
n

)
2
(1

2 − ∆
n

)4 − 5
(1

2 − ∆
n

)3 + 3
(1

2 − ∆
n

)2 < 1 − 16∆
n

. (1)

Unfortunately, the success probabilities vary over time as they depend on the bias. We
proceed to bound the probabilities from below.

Let ∆0 be the bias at time t = 0 and let R denote the following event: during 2n productive
steps we always have at least half of the initial bias, i.e., R = { ∀1 ≤ i ≤ 2n : ∆i ≥ ∆0/2 }.
From Lemma 12 we get with b = ∆0/2 that

Pr[R] ≥ 1 − e−Ω(∆2
0/n). (2)

Similarly to [21], we couple the productive steps of the 3-Majority process with a biased
random walk with (fixed) success probability p > 1

2 + ∆0
4n . As (1) is monotonously decreasing in

∆, the number of steps required by the biased random walk to increase the bias stochastically
dominates the number of steps that 3-Majority requires. It follows from Chernoff bounds
that the random walk reaches 2∆0 within 2n time steps with probability 1 − e−Ω(∆2

t /n).
Together with (2) the statement follows. ◀

P. Berenbrink et al. 23:13

We now use Lemma 14 and show that if there is a small bias of size
√

n log n then within
O(n log n) rounds there will be a bias of size Ω(n) w.h.p.

▶ Corollary 15. Assume X0 = n
2 +

√
n log n. Then there is a time t = O(n log n) such

that Xt > 1+ε
2 n for some constant ε > 0 w.h.p. Moreover, the initial majority opinion is

preserved.

Proof. The proof follows by applying Lemma 14 O(log n) times. We remark that the initial
majority opinion is preserved since the random walk modeling the bias never returns to
zero. ◀

Part 2. We now show the second part, where we prove that the process converges within
O(n log n) further steps once we have a bias of εn. Let Yt denote the number of agents of the
minority opinion at time t and assume that Y0 ≤ n

2 − εn. In a first step, we claim that the
process will not improve the minority opinion severely if only Cn log n steps are conducted
for some large constant C.

▶ Lemma 16. Assume Y0 ≤ n
2 − εn. Then there is a time t = O(n log n) such that Yt = 0

w.h.p. Moreover, Yt′ ≤ 1−ε
2 n for all t′ ≤ t.

Proof. We start the proof by showing the following claim:

▷ Claim. Yt′ ≤ 1−ε
2 n for all t′ = O(n log n) w.h.p.

This is an immediate consequence of the following coupling. Let Rt be the (unbiased) random
walk on Z. It is a well known fact that after T steps the random walk Rt has distance at
most O(log2 n ·

√
n) from the origin w.h.p. By construction, Rt ⪯ Yt and the claim follows.

We now calculate E[Yt − Yt+1 | Yt = s] for P3 in the sequential model. Given Yt = s, let
ps(a, b) be the probability to increase the minority opinion by one and let ps(b, a) be the
probability to decrease the minority opinion by one. Then,

E[Yt − Yt+1 | Yt = s] = ps(b, a) − ps(a, b).

We observe

ps(a, b) = n − s

n
Pr

[
Bin

(
3,

s

n

)
≥ 2

]
, ps(b, a) = s

n
Pr

[
Bin

(
3,

s

n

)
≤ 1

]
,

and therefore
ps(b, a) − ps(a, b)

b
= 2s2 − 3sn + n2

n3 .

We define δs = ps(b,a)−ps(a,b)
s and observe

δs − δs−1 = 4s − 3n − 2
n3 < 0 if s ≤ 0.75n.

Therefore, since s ≤ 1−ε
2 n by the previous claim, δs is monotonously decreasing in s.

Furthermore,

δ 1−ε
2 n = (1 + ε/2)ε

4n
and δ1 = n−1 + O

(
n−2)

.

Thus, we apply Theorem 13 with

δ = (1 + ε/2)ε
4n

, s0 =
(

1
2 − ε

)
n, r = log n, and smin = 1

and the statement follows. ◀

OPODIS 2022

23:14 On the Hierarchy of Distributed Majority Protocols

Part 3. It remains to show the third part of the proof. We observe the following. We use
the same checkpoint states gj as in [21] where g0 = 0 and gj = 2j+3 ·

√
n. A checkpoint state

can be intuitively described as follows. We let P3 run in packages of 2n productive update
steps and monitor the majority opinion. Suppose we are in checkpoint state g1 = 8

√
n. After

2n productive updates, Lemma 14 guarantees that with probability at least 1 − 1/(2j + O(1))
the majority opinion exceeds g2. Now we interpret this process as a (biased) random walk on
the checkpoint states { gj }j in which every conducted step consists of 2n productive update
steps of 3−Majority. Analogously to the analysis of [21], it holds that
1. the transition between checkpoint states g0 and g1 has probability Ω(1), and
2. for j ≥ 1 the transition between checkpoint states gj and gj + 1 has probability at least

1 − 1/(2j + O(1)).
As in [21], the first statement follows from a coupling with an unbiased random walk, and
the second statement follows from Lemma 14. It follows from the analysis in [21, Section 3.2]
that 3-Majority reaches a bias of

√
n log n within O(n log n) time. This proof is based on a

careful trade-off between the geometrically increasing success probability 1 − 1/(2j + O(1))
to get into the next checkpoint state and the number of trials that are necessary to indeed
reach the next state instead of falling back.

With all three parts, we are now ready to put everything together and prove Theorem 2.

Proof of Theorem 2. Assume there is no bias. From the analysis in [21] we obtain (see
above) that we reach a bias of size

√
n log n within O(n log n) time w.h.p. From Corollary 15

we obtain that within further O(n log n) time the bias is amplified to ϵn for some constant
ϵ > 0 w.h.p. Finally, from the drift analysis in Lemma 16 we get that we converge in further
O(n log n) time once we have a constant-factor bias w.h.p. Together, this shows the first part
of the theorem.

The second part of the theorem follows from Lemma 14 and Lemma 16, where we observe
that the initial majority opinion is preserved w.h.p. This concludes the proof. ◀

3 Empirical Analysis

In this section we present simulation results to support our theoretical findings. Our simulation
software is implemented in the C++ programming language. As a source of randomness
it uses the Mersenne Twister mt19937_64 provided by the C++11 <random> library. Our
simulations have been carried out on machines with two Intel(R) Xeon(R) E5-2630 v4 CPUs
and 128 GiB of memory each running the Linux 5.13 kernel. The simulation software and all
required tools to reproduce our plots are publicly available in our Github repository.

In Figure 3 we plot the required number of rounds until j-Majority converges when each
opinion is initially supported n/2 agents. The data show the average convergence time over
100 independent simulation runs for j = 3, . . . , 12. The number of agents n is shown on the
x-axis, and the normalized convergence time is shown on the y-axis. The left plot shows
the data for the gossip model, where the normalization means that the required number of
rounds is divided by log n. The right plot shows the data for the sequential model, where
the normalization means that the required number of interactions is divided by n log n.

Our empirical data confirm our theoretical findings. In particular, we observe that
the processes exhibit a running time of Θ(log n) rounds (gossip model) or Θ(n log n) in-
teractions (sequential model) for the values of j we consider. Furthermore, we clearly see
that E[T2j+2(X0)] = E[T2j+1(X0)] (i.e., 3-Majority converges as quickly as 4-Majority, 5-
Majority converges as quickly as 6-Majority, and so on) and E[T2j+1(X0)] ≤ E[T2j(X0)] (i.e.,

P. Berenbrink et al. 23:15

3-Maj. 4-Maj. 5-Maj. 6-Maj. 7-Maj. 8-Maj. 9-Maj. 10-Maj. 11-Maj. 12-Maj.

1.0

1.5

2.0

102 103 104 105 106 107 108

N
or

m
al

iz
ed

C
on

v e
rg

en
ce

T
im

e

Number of Agents n, Gossip Model

1.0

1.5

2.0

102 103 104 105 106 107 108

N
or

m
al

iz
ed

C
on

v e
rg

en
ce

T
im

e

Number of Agents n, Sequential Model

Figure 3 Average convergence time of j-Majority without initial bias and j = 3, . . . , 12 normalized
over log n (gossip model) or n log n (sequential model). Each data point shows the average of 100
independent runs. The left plot shows the gossip model and the right plot shows the sequential
model.

0.5

1.0

1.5

2.0

2.5

3.0

3 4 5 6 7 8 9 10 11 12

N
or

m
al

iz
ed

C
on

v e
rg

en
ce

T
im

e

j-Majority, Gossip Model

0.5

1.0

1.5

2.0

2.5

3.0

3 4 5 6 7 8 9 10 11 12

N
or

m
al

iz
ed

C
on

ve
rg

en
ce

T
im

e

j-Majority, Sequential Model

Figure 4 Boxplots for the normalized convergence time of j-Majority without initial bias. The
plots show details of the distribution of the same data as in Figure 3 for n = 106.

5-Majority is faster than 4-Majority, 7-Majority is faster than 6-Majority, and so on). This
empirically confirms our results from Theorem 1 for both models, and it shows that the
known results from the gossip model for 3-Majority [35] carry over to the sequential model
as predicted in Theorem 2.

In the left plot in Figure 3 for the gossip model we additionally observe that the required
number of rounds to reach consensus is slightly larger for smaller values of n. This appears
to be a consequence of the discrete rounds in the synchronous model: the observed deviation
scales as O(1/ log n), which is of the same size as the rounding error that arises when reporting
the running time in discrete rounds of n interactions each.

Finally, in Figure 4 we show additional detail for the distribution of the convergence
times of the j-Majority processes with n = 106 and j = 3, . . . , 12. Our boxplots show that
the running times are strongly concentrated around the mean, and the constants hidden in
the asymptotic analysis are small: the running time is less than 3 log n rounds in the gossip
model and less than 3n log n interactions in the sequential model. The small constants hint
at the practical applicability of the simple 3-Majority process.

OPODIS 2022

23:16 On the Hierarchy of Distributed Majority Protocols

4 Conclusions and Open Problems

We analyze the family of j-Majority processes in two communication models with parallel
and sequential activations. In both models our results affirmatively answer an open question
from [12] for the case of two opinions and prove the existence of a hierarchy: our results
show the stochastic dominance of the convergence time of the (j + 1)-Majority process over
the j-Majority process. For 3-Majority in the sequential model we show an asymptotically
optimal bound of O(n log n) sequential activations. This matches the well-known bounds for
the corresponding process in the gossip model.

An open question is whether a similar hierarchy exists for lazy processes where agents
keep their previous opinion if there is a tie among the sampled opinions. A coupling between
3-Majority and the (lazy) TwoChoices process was analyzed in [12]. However, their general
framework cannot be adapted to lazy processes for larger value of j: their analysis requires
so-called AC-Processes in which the next state of an agent depends only on the global opinion
distribution but not on the agent’s current state. This is obviously not the case for lazy
processes. Note that our analysis also cannot be applied to lazy processes directly: Lemmas 8
and 10 do not hold for lazy processes.

Another interesting open question considers the communication complexity of a protocol
instead which counts the number of interactions. Note that in j-Majority each activated
agent interacts with j agents. It would be interesting to rigorously analyze the trade-off
between the convergence time and the communication complexity.

Finally, the most interesting open question is whether similar results can be shown
for more than two opinions. Unfortunately, our majoritzation-based approach does not
generalize to k > 2. The main reason is that natural monotonicity properties do not hold:
the probability to increase the majority opinion does not only depend on the size of the
majority opinion itself but instead on the entire opinion distribution. This aligns well with a
conjecture from [12] that states that counterexamples exist for any majorization attempt
that uses a total order on opinion state vectors. We believe that in order to show a hierarchy
of majority protocols for more than two opinions different techniques will be needed.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

Space Trade-offs in Population Protocols. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 2560–2579. SIAM, 2017.
doi:10.1137/1.9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-Optimal Majority in Population
Protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 2221–2239. SIAM, 2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and Exact Majority in Population
Protocols. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, pages 47–56. ACM, 2015. doi:10.1145/2767386.2767429.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

5 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for
fast robust approximate majority. Distributed Comput., 21(2):87–102, 2008. doi:10.1007/
s00446-008-0059-z.

6 Gregor Bankhamer, Petra Berenbrink, Felix Biermeier, Robert Elsässer, Hamed Hosseinpour,
Dominik Kaaser, and Peter Kling. Fast Consensus via the Unconstrained Undecided State
Dynamics. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, pages 3417–3429. SIAM, 2022. doi:10.1137/1.9781611977073.135.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1137/1.9781611977073.135

P. Berenbrink et al. 23:17

7 Gregor Bankhamer, Robert Elsässer, Dominik Kaaser, and Matjaz Krnc. Positive Aging
Admits Fast Asynchronous Plurality Consensus. In PODC ’20: ACM Symposium on Principles
of Distributed Computing, pages 385–394. ACM, 2020. doi:10.1145/3382734.3406506.

8 Luca Becchetti, Andrea E. F. Clementi, and Emanuele Natale. Consensus Dynamics: An
Overview. SIGACT News, 51(1):58–104, 2020. doi:10.1145/3388392.3388403.

9 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Riccardo
Silvestri. Plurality Consensus in the Gossip Model. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 371–390. SIAM, 2015.
doi:10.1137/1.9781611973730.27.

10 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, Riccardo
Silvestri, and Luca Trevisan. Simple dynamics for plurality consensus. Distributed Comput.,
30(4):293–306, 2017. doi:10.1007/s00446-016-0289-4.

11 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) Parallel Time
Population Protocol for Majority with O(log n) States. In PODC ’20: ACM Symposium
on Principles of Distributed Computing, pages 191–199. ACM, 2020. doi:10.1145/3382734.
3405747.

12 Petra Berenbrink, Andrea E. F. Clementi, Robert Elsässer, Peter Kling, Frederik Mallmann-
Trenn, and Emanuele Natale. Ignore or Comply?: On Breaking Symmetry in Consensus. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
pages 335–344. ACM, 2017. doi:10.1145/3087801.3087817.

13 Petra Berenbrink, Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth, Dominik Kaaser,
and Malin Rau. On the Hierarchy of Distributed Majority Protocols. CoRR, abs/2205.08203,
2022. doi:10.48550/arXiv.2205.08203.

14 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and
Tomasz Radzik. A Population Protocol for Exact Majority with O(log5/3 n) Stabilization
Time and Θ(log n) States. In 32nd International Symposium on Distributed Computing,
DISC 2018, pages 10:1–10:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.DISC.2018.10.

15 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Comput., 34(2):91–111, 2021. doi:10.1007/s00446-020-00385-0.

16 Petra Berenbrink, Tom Friedetzky, George Giakkoupis, and Peter Kling. Efficient Plurality
Consensus, Or: the Benefits of Cleaning up from Time to Time. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 136:1–136:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.
136.

17 Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-Trenn.
Bounds on the Voter Model in Dynamic Networks. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, pages 146:1–146:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.146.

18 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief Announcement: Pop-
ulation Protocols for Leader Election and Exact Majority with O(log2 n) States and O(log2 n)
Convergence Time. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, pages 451–453. ACM, 2017. doi:10.1145/3087801.3087858.

19 Keren Censor-Hillel, Bernhard Haeupler, Jonathan A. Kelner, and Petar Maymounkov. Global
computation in a poorly connected world: fast rumor spreading with no dependence on
conductance. In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, pages 961–970. ACM, 2012. doi:10.1145/2213977.2214064.

20 Andrea E. F. Clementi, Mohsen Ghaffari, Luciano Gualà, Emanuele Natale, Francesco Pasquale,
and Giacomo Scornavacca. A Tight Analysis of the Parallel Undecided-State Dynamics with
Two Colors. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, pages 28:1–28:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.MFCS.2018.28.

OPODIS 2022

https://doi.org/10.1145/3382734.3406506
https://doi.org/10.1145/3388392.3388403
https://doi.org/10.1137/1.9781611973730.27
https://doi.org/10.1007/s00446-016-0289-4
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.1145/3087801.3087817
https://doi.org/10.48550/arXiv.2205.08203
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.1007/s00446-020-00385-0
https://doi.org/10.4230/LIPIcs.ICALP.2016.136
https://doi.org/10.4230/LIPIcs.ICALP.2016.136
https://doi.org/10.4230/LIPIcs.ICALP.2016.146
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/2213977.2214064
https://doi.org/10.4230/LIPIcs.MFCS.2018.28

23:18 On the Hierarchy of Distributed Majority Protocols

21 Anne Condon, Monir Hajiaghayi, David G. Kirkpatrick, and Ján Manuch. Approximate
majority analyses using tri-molecular chemical reaction networks. Nat. Comput., 19(1):249–
270, 2020. doi:10.1007/s11047-019-09756-4.

22 Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. Coalescing random walks
and voting on graphs. In ACM Symposium on Principles of Distributed Computing, PODC
’12, pages 47–56. ACM, 2012. doi:10.1145/2332432.2332440.

23 Colin Cooper, Robert Elsässer, and Tomasz Radzik. The Power of Two Choices in Distributed
Voting. In Automata, Languages, and Programming – 41st International Colloquium, ICALP
2014, pages 435–446. Springer, 2014. doi:10.1007/978-3-662-43951-7_37.

24 Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga.
Fast Consensus for Voting on General Expander Graphs. In Distributed Computing –
29th International Symposium, DISC 2015, pages 248–262. Springer, 2015. doi:10.1007/
978-3-662-48653-5_17.

25 Colin Cooper, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. Fast Plurality Consensus
in Regular Expanders. In 31st International Symposium on Distributed Computing, DISC
2017, pages 13:1–13:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.DISC.2017.13.

26 Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian
Scheideler. Stabilizing consensus with the power of two choices. In SPAA 2011: Proceedings
of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
149–158. ACM, 2011. doi:10.1145/1989493.1989516.

27 David Doty and Mahsa Eftekhari. Efficient Size Estimation and Impossibility of Termination
in Uniform Dense Population Protocols. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, pages 34–42. ACM, 2019. doi:10.1145/
3293611.3331627.

28 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski, and
Grzegorz Stachowiak. A time and space optimal stable population protocol solving exact
majority. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, pages 1044–1055. IEEE, 2021. doi:10.1109/FOCS52979.2021.00104.

29 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. Distributed Comput., 31(4):257–271, 2018. doi:10.1007/s00446-016-0281-z.

30 Moez Draief and Milan Vojnovic. Convergence Speed of Binary Interval Consensus. SIAM J.
Control. Optim., 50(3):1087–1109, 2012. doi:10.1137/110823018.

31 Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn, and Horst
Trinker. Brief Announcement: Rapid Asynchronous Plurality Consensus. In Proceedings of
the ACM Symposium on Principles of Distributed Computing, PODC 2017, pages 363–365.
ACM, 2017. doi:10.1145/3087801.3087860.

32 William Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
3rd edition, 2008.

33 Pierre Fraigniaud and Emanuele Natale. Noisy rumor spreading and plurality consensus.
Distributed Comput., 32(4):257–276, 2019. doi:10.1007/s00446-018-0335-5.

34 Leszek Gasieniec, David D. Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz Sta-
chowiak. Deterministic Population Protocols for Exact Majority and Plurality. In 20th
International Conference on Principles of Distributed Systems, OPODIS 2016, pages 14:1–
14:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.OPODIS.
2016.14.

35 Mohsen Ghaffari and Johannes Lengler. Nearly-Tight Analysis for 2-Choice and 3-Majority
Consensus Dynamics. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, pages 305–313. ACM, 2018. doi:10.1145/3212734.3212738.

36 Mohsen Ghaffari and Merav Parter. A Polylogarithmic Gossip Algorithm for Plurality
Consensus. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, pages 117–126. ACM, 2016. doi:10.1145/2933057.2933097.

https://doi.org/10.1007/s11047-019-09756-4
https://doi.org/10.1145/2332432.2332440
https://doi.org/10.1007/978-3-662-43951-7_37
https://doi.org/10.1007/978-3-662-48653-5_17
https://doi.org/10.1007/978-3-662-48653-5_17
https://doi.org/10.4230/LIPIcs.DISC.2017.13
https://doi.org/10.4230/LIPIcs.DISC.2017.13
https://doi.org/10.1145/1989493.1989516
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1007/s00446-016-0281-z
https://doi.org/10.1137/110823018
https://doi.org/10.1145/3087801.3087860
https://doi.org/10.1007/s00446-018-0335-5
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14
https://doi.org/10.1145/3212734.3212738
https://doi.org/10.1145/2933057.2933097

P. Berenbrink et al. 23:19

37 Yehuda Hassin and David Peleg. Distributed Probabilistic Polling and Applications to
Proportionate Agreement. Inf. Comput., 171(2):248–268, 2001. doi:10.1006/inco.2001.3088.

38 Varun Kanade, Frederik Mallmann-Trenn, and Thomas Sauerwald. On coalescence time in
graphs: When is coalescing as fast as meeting?: Extended Abstract. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 956–965.
SIAM, 2019. doi:10.1137/1.9781611975482.59.

39 Adrian Kosowski and Przemyslaw Uznanski. Brief Announcement: Population Protocols Are
Fast. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018, pages 475–477. ACM, 2018. doi:10.1145/3212734.3212788.

40 Johannes Lengler. Drift Analysis. In Benjamin Doerr and Frank Neumann, editors, Theory
of Evolutionary Computation: Recent Developments in Discrete Optimization, pages 89–131.
Springer, 2020. doi:10.1007/978-3-030-29414-4_2.

41 George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G. Spirakis.
Determining Majority in Networks with Local Interactions and Very Small Local Memory. In
Automata, Languages, and Programming – 41st International Colloquium, ICALP 2014, pages
871–882. Springer, 2014. doi:10.1007/978-3-662-43948-7_72.

42 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with Population Protocols. In 14th IEEE International Symposium on Network
Computing and Applications, NCA 2015, pages 35–42. IEEE Computer Society, 2015. doi:
10.1109/NCA.2015.35.

43 Toshio Nakata, Hiroshi Imahayashi, and Masafumi Yamashita. A probabilistic local majority
polling game on weighted directed graphs with an application to the distributed agree-
ment problem. Networks, 35(4):266–273, 2000. doi:10.1002/1097-0037(200007)35:4<266::
AID-NET5>3.0.CO;2-4.

44 Emanuele Natale and Iliad Ramezani. On the Necessary Memory to Compute the Plurality in
Multi-agent Systems. In Algorithms and Complexity – 11th International Conference, CIAC
2019, pages 323–338. Springer, 2019. doi:10.1007/978-3-030-17402-6_27.

45 Grant Schoenebeck and Fang-Yi Yu. Consensus of Interacting Particle Systems on Erdös-Rényi
Graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 1945–1964. SIAM, 2018. doi:10.1137/1.9781611975031.127.

46 Volker Strassen. The existence of probability measures with given marginals. The Annals of
Mathematical Statistics, 36(2):423–439, 1965.

OPODIS 2022

https://doi.org/10.1006/inco.2001.3088
https://doi.org/10.1137/1.9781611975482.59
https://doi.org/10.1145/3212734.3212788
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-662-43948-7_72
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1002/1097-0037(200007)35:4<266::AID-NET5>3.0.CO;2-4
https://doi.org/10.1002/1097-0037(200007)35:4<266::AID-NET5>3.0.CO;2-4
https://doi.org/10.1007/978-3-030-17402-6_27
https://doi.org/10.1137/1.9781611975031.127

Communication-Efficient BFT Using Small Trusted
Hardware to Tolerate Minority Corruption
Sravya Yandamuri #

Duke University, Durham, NC, USA

Ittai Abraham #

VMware Research, Herzliya, Israel

Kartik Nayak #

Duke University, Durham, NC, USA

Michael K. Reiter #

Duke University, Durham, NC, USA

Abstract
Agreement protocols for partially synchronous networks tolerate fewer than one-third Byzantine
faults. If parties are equipped with trusted hardware that prevents equivocation, then fault tolerance
can be improved to fewer than one-half Byzantine faults, but typically at the cost of increased
communication complexity. In this work, we present results that use small trusted hardware without
worsening communication complexity assuming the adversary controls a fraction of the network that
is less than one-half. In particular, we show a version of HotStuff that retains linear communication
complexity in each view, leveraging trusted hardware to tolerate a minority of corruptions. Our
result uses expander graph techniques to achieve efficient communication in a manner that may be
of independent interest.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases communication complexity, consensus, trusted hardware

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.24

Related Version Full Version: https://eprint.iacr.org/2021/184.pdf [57]

Funding This research was supported in part by NIFA Award 2021-67021-34252 and by VMware
and Novi research grants.

1 Introduction

Byzantine fault tolerant (BFT) consensus is an important problem in distributed computing.
It has received revived interest as the foundation of decentralized ledgers or blockchains. The
goal of BFT consensus is for a set of parties to agree on a value (or a sequence of values)
even if a fraction of the parties are Byzantine (malicious). To rule out trivial solutions, these
protocols additionally need to satisfy a validity constraint which, depending on the setting,
is a function of the input of a designated party or all parties or external clients.

The number of faults tolerated by a BFT protocol depends on the network assumptions
between parties, the use of cryptography, and other assumptions. In particular, it is known
that to maintain safety when the system is asynchronous, without additional assumptions,
one cannot tolerate one-third or more Byzantine faults [21]. However, tolerating fewer
than one-third Byzantine faults may not be enough for some applications. There are two
known approaches to increase this fault threshold. The first approach is to give up safety in
asynchrony. One can tolerate fewer than one-half Byzantine faults by assuming synchrony
(any message sent by an honest party reaches its destination within a bounded network delay)
and some method to limit the ability of the adversary to simulate honest parties (for example
assuming a PKI or proof-of-work) [22, 28, 4, 13, 20, 38, 31]. Protocols using synchrony

© Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 24; pp. 24:1–24:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sravya.yandamuri@duke.edu
mailto:iabraham@vmware.com
mailto:kartik.nayak@duke.edu
mailto:michael.reiter@duke.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2022.24
https://eprint.iacr.org/2021/184.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

increase the fault threshold by detecting equivocation (assuming signatures) and making
deductions based on the absence of messages from other parties (e.g., [42, 4]). The second
approach lets the adversary delay messages but limits its ability to corrupt by assuming the
existence of a trusted hardware. The adversary cannot tamper with this hardware even if it
fully controls the node. At a high-level, the hardware provides non-equivocation guarantees,
essentially transforming Byzantine failures to omission failures and hence improving the fault
tolerance threshold to one-half (e.g., [21, 17, 27, 53]) in partial synchrony and asynchrony.

In this work, we focus on the use of small trusted hardware primitives to tolerate a minority
Byzantine corruption and stay safe in asynchrony. Specifically, each node is equipped with
hardware that implements the abstraction of an “append-only log,” the contents to which it
can attest using a conventional digital signature with a key that it holds. This capability
is supported by numerous existing, trusted add-ons (TPMs [1], YubiKeys [49], smartcards,
etc.) and is far simpler to implement than secure enclaves for arbitrary computation, as Intel
SGX [19] attempts to do – but arguably fails [40, 52, 56, 55, 15].

The use of such small trusted hardware to boost fault tolerance was explored in A2M [17]
and TrInc [32], which specifically improved PBFT [11]. However, this came at the expense
of an O(n3) communication complexity per view for consensus among n parties, measured
as the (expected) number of words that all honest parties send. On the other hand, in the
standard setting, we have recently seen considerable progress in improving communication
complexity of consensus protocols. In particular, HotStuff [58] achieves linear communication
complexity per view under partial synchrony and VABA [5] achieves the optimal O(n2)
communication complexity under asynchrony. A natural question is whether fault tolerance
can be boosted (but communication costs retained) in these protocols using small trusted
hardware. In this work, we answer these questions affirmatively for a corruption threshold
t ≤ (1

2 − ϵ)n for an arbitrarily small ϵ, which we term a minority corruption adversary. In the
following, we describe our results and the key techniques used to achieve these results in the
partially synchronous and asynchronous settings. We include (n

2 + 1)-Provable-Broadcast, a
broadcast primitive with linear communication complexity that can be used to improve the
fault tolerance of such protocols, as well as a version of HotStuff that uses this primitive to
withstand minority corruption. In the full version of our work [57], we present an expected
linear communication complexity and constant round view synchronization protocol that is a
strict generalization of that in [39] and withstands minority Byzantine corruption.

1.1 HotStuff-M: HotStuff with Minority Corruption
Our result improves HotStuff to tolerate a t ≤ (1

2 − ϵ)n corruption while still retaining its
linear communication complexity per view. In particular, we show the following result:

▶ Theorem 1 (HotStuff-M). For any ϵ > 0, there exists a primary-backup based BFT
consensus protocol with O(n) communication complexity per view consisting of n parties,
each having a small trusted hardware, such that t ≤ (1

2 − ϵ)n of the parties are Byzantine.

HotStuff is a primary-backup protocol that progresses in a sequence of views, each having
a designated leader (primary) and consisting of a sequence of phases. HotStuff routes all
messages (votes) through the leader independent of whether the communication is within the
view or across views, while keeping the message size O(1) for a total of O(n) communication
per view. To achieve this, HotStuff crucially relies on threshold signatures to aggregate votes
of individual parties into an O(1)-sized message; these signatures act as a proof for parties in
subsequent phases/views to determine whether they should vote in that phase. Within a
view, HotStuff maintains safety due to the fact that if a leader has a threshold signature

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:3

for a given proposal, a majority of the honest parties voted for that proposal. By quorum
intersection, and the fact that an honest party votes only once in a given phase, a conflicting
proposal cannot have a valid threshold signature.

We improve the resilience of HotStuff from one-third to 1
2 − ϵ while keeping a total

of O(n) communication per view using small trusted hardware in a partially synchronous
network. In the minority corruption model, the presence of a threshold signature on a
proposal no longer implies that a majority of the honest parties voted for that proposal, and
is therefore insufficient for safety against a Byzantine adversary. The key property that we
need from the hardware is its ability to maintain an append-only log that can be used to
provide a non-equivocation property, i.e., if the hardware produces a signed attestation at
a given position in the log, then the party cannot produce a valid signed attestation for
a different value at the same position. Thus, intuitively, if n

2 + 1 parties attest to a value
at a position, then no other value can have n

2 + 1 attestations. However, while a party’s
attestation from its trusted hardware is sufficient for safety, receiving such proofs from O(n)
parties produces an O(n)-sized proof sent to the leader of the view. Since the leader uses
this proof in a subsequent round, and these proofs cannot be compressed as they are not
threshold signatures, this will grow the communication complexity to O(n2) per view.

Instead of sending the attestations directly to the leader, our solution relies on diffusing
the attestations to a constant number of parties, called its neighbors. A party votes if it
receives attestations from a threshold of its neighbors. This vote can be a threshold signature
share, which can eventually be combined by the leader to an O(1)-sized voting proof. Why
does this work? We connect parties to each other using a constant-degree expander graph.
Informally, to send a (non-attested) vote, a party just needs to verify that a constant fraction
of its neighbors have attested. The specific construction of our expander guarantees that
if a small ϵn-sized fraction of honest parties have voted for a proposal, then a majority of
the parties have attested to that proposal. Thus, if a leader receives votes from t + ϵn = n

2
parties, at least ϵn are honest, and they can vet attestations from a majority of parties; this
guarantees safety within a view. To ensure liveness, the expander graph is also parameterized
such that if all honest parties attest, more than n

2 parties vote. We note that expander
graphs have been used in consensus protocols before [30, 37, 16], although only in the context
of synchronous protocols and exploiting a different set of expander properties.

The above arguments do not suffice for safety across views. The key mechanism that
ensures safety across views in HotStuff is that if an honest party commits a value v in a given
view, they received a threshold signature on v from the previous phase of this view, indicating
that a majority of the honest parties “locked” on v in this view. These locked parties will not
vote for a different value in later views, and a v′ ̸= v will never gain a threshold signature in
a subsequent view (and will therefore not be committed by an honest party). In the minority
corruption model, while our trusted hardware disallows appending different values at the
same position (equivocation), we cannot enforce the conditions under which a Byzantine
party appends a value to their log. We also cannot enforce that a Byzantine party presents
the latest state of its log as necessary. This can potentially result in a safety or liveness
violation; e.g., even if a party “locked” on v in a given view by attesting to v, it can present
a state that does not involve this attestation. In the original HotStuff protocol, an honest
leader waits to hear the value from the highest view in which parties have stored a value
during the second phase of that view for liveness. Since, in the minority corruption model, a
leader cannot wait to hear from a majority of the honest parties, it must rely on Byzantine
parties to present the correct state of their logs. Of course, this could be fixed by requiring
a party to always present the entire contents of the log in its trusted hardware, but the

OPODIS 2022

24:4 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

communication complexity would grow (unbounded) with the number of views. Instead, we
use a combination of techniques including: multiple logs, one for each phase of the protocol
(O(1) total); tying log positions to view numbers; and using one attestation to present the
end state of all logs. We elaborate on these techniques in Section 4 when we describe the
protocol.

Future work and open questions. Our protocol tolerates t ≤ (1
2 −ϵ)n faults for an arbitrarily

small ϵ, but addressing the communication complexity with trusted hardware and optimal
resilience is still an open question. Also, our solution centers on a novel use of expander
graphs. While the solution obtains optimal asymptotic communication complexity, the
constants incurred due to the use of expanders may not be realistic for practical values of n.
Solving this problem for smaller values of n is an interesting open question.

2 Model and Preliminaries

We consider n parties (a.k.a. processors) p1, . . . , pn connected by a reliable, authenticated,
fully connected network, where up to t ≤ (1/2−ϵ)n parties may be corrupted by an adversary
for ϵ > 0. The corrupted parties are Byzantine and may behave arbitrarily. All the correct
(honest) parties follow the protocol specification. We consider a partially synchronous
network, where after an unknown period of time called Global Stabilization Time (GST),
every message will arrive within a known bounded delay. We solve the validated Byzantine
Agreement problem:

▶ Definition 2 (Validated Byzantine Agreement). A validated Byzantine agreement protocol
among n parties tolerating a maximum of t faults satisfies the following properties:
(Agreement/Safety) If any two honest parties output values v and v′, then v = v′.
(Validity) If an honest party outputs v, then v is an externally valid value, i.e., ext-valid(v) =

true.
(Termination/Liveness under partial synchrony) If all honest parties start with an extern-

ally valid value, then after GST, all honest parties will output a value within a bounded
time.

Following Cachin et al. [10], the definition has an external validity property. Such a
property can be useful in the context of state machine replication (SMR) where ext-valid(v)
captures validity of a command sent by a client. We assume that each party has access to a
small trusted hardware (described in Section 2.1). In addition, for communication efficiency,
some of the messages are sent by the parties through an expander graph. We describe the
properties needed from the expander graph in Section 2.2. We measure communication
complexity as the number of words that all honest parties send and receive; each word is
O(κ) bits long where κ is a security parameter. We also assume all the messages sent by
parties are signed using a threshold signature scheme (interface described in Section 2.3).
We assume the use of PKI to validate signatures.

2.1 Small Trusted Hardware
In this section, we introduce the abstraction of a small trusted hardware enforcing non-
equivocation with O(1) storage. Such hardware units have been considered in prior works
such as A2M [17], TrInc [32], etc. While the exact interface for the trusted hardware in
these works differ, their capabilities are similar and supported by existing hardware modules

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:5

such as Trusted Platform Modules (TPMs), YubiKey [49, 1], and hardware security modules
(HSMs) [46]. Without loss of generality, we assume the existence of a functionality similar to
that of A2M [17]; our solutions apply to all of these small trusted hardware units.

Hardware state and interfaces. The trusted hardware provides a party with a set of
append-only logs (denoted log) that can only be modified by the party’s trusted hardware
component. The functionality is shown in Table 1. Each log within a single party’s trusted
component has its own identifier (denoted id) and includes a counter (denoted cid) that
starts from 0 and is incremented for each entry that is appended to the log. The trusted
hardware guarantees that the party cannot modify the information stored in any position
of the log. We use the notation ⟨·⟩Kpriv

to denote that an attestation is signed using the
private key of the trusted hardware component. To differentiate between a signature from a
hardware device and a signature from the party holding it, we always refer to the former
signature as an attestation. We refer to the trusted hardware of party pi as HWi.

Table 1 Interfaces of the trusted hardware component. (Kpub, Kpriv) is public-private
key pair associated with the hardware device, C is a monotonic counter representing the number
of logs maintained by the hardware, and cid is a monotonic counter representing the length of log
indexed by id.

CreateLog()
Increment C

Initialize empty log with id := C, cid := 0
return id

if id ≤ C:
if cnew = ⊥:

Append Increment cid, log[id][cid] := x

(id, cnew, x) if cnew > cid:
cid := cnew, log[id][cid] := x

return Lookup(id, cid)

Lookup(id, s) if id ≤ C and s ≤ cid:
return ⟨lookup, id, s, log[id][s]⟩Kpriv

End(id, z) if id ≤ C:
return ⟨end, id, cid, log[id][cid], z⟩Kpriv

Counters(z) return ⟨head,
⋃

id<C
{(id, cid)}, z⟩Kpriv

The hardware provides four interfaces. Append(id, cnew, x) appends the value x to the
log identified by id. If cnew = ⊥, the function increments the counter of the log and inserts x

into the current position of the log. Otherwise, it appends to position cnew if cnew is strictly
higher than the current log position. Lookup(id, s) and End(id, z) return an attestation of
the log with identifier id for the value stored at position s and the last position, respectively.
Finally, Counters(z) returns the attested current counter values of all logs. The nonce z is
used to ensure freshness of an attestation; we omit mentioning the nonce when it is not used.
To simplify the description, we imagine that the hardware stores entire logs. In reality, the
hardware need only store the end state of a log; a party can always store the attestations for
different positions separately.

If party pi calls Append(q, ⊥, x), then it receives ⟨lookup, q, s, x⟩Kpriv in response, for
the log position s at which x was appended. pi can forward this response – or another copy,
obtained by invoking lookup(q, s) – to party pj to prove that pi added value x to its log q

OPODIS 2022

24:6 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

at position s. Since the hardware allows only appending to the log, pj can be assured that
pi can attest to no other value at position s of log q. The use of the End(q, z) function is
similar, with the addition that pj passes a random nonce z to pi that will be included in the
attestation to prove that it is fresh.

2.2 Expander Graphs
Expander graphs are sparse graphs with a high degree of connectivity between groups of
nodes. We refer to a node connected to a node pi as its neighbor and denote the set of
neighbors of pi by ρ(i). We describe the expander graph properties we need in this section
and prove them in Appendix A.

▶ Definition 3. An (n, α, β)-expander graph, denoted Gn,α,β, where 0 < β < 1 and α < β,
is a graph with n vertices such that every set of αn vertices has at least βn unique neighbors.

▶ Lemma 4. There exists a d-regular graph Gn,ϵ,(1− ϵ
c) for sufficiently large n and positive

constants 0 < ϵ < 1
2 and c > 2 such that:

1. For any set S of (1
2 + ϵ)n nodes, there exists a set Q of more than n

2 nodes, Q ⊆ S, and
every node in Q has at least (1

2 + ϵ
2)d neighbors in S.

2. For any partition of its nodes into blocks T and Q where |T | = (1
2 −2ϵ)n and |Q| = (1

2 +2ϵ)n,
there exists a set T ′ ⊆ T , |T ′| > (1

2 − 3ϵ)n, such that each node in T ′ has at least (1
2 + ϵ

2)d
neighbors in Q.

3. For any set S of (1
2 +2ϵ)n nodes, there exists a set Q of more than (1

2 + ϵ)n nodes, Q ⊆ S,
and every node in Q has at least (1

2 + ϵ
2)d neighbors in S.

4. For any set S of ϵn nodes, and any sets {Si}i∈S where Si ⊂ ρ(i) and |Si| = (1
2 + ϵ

2)d, the
set U =

⋃
i∈S Si satisfies |U | > n

2 .

2.3 Cryptographic Abstractions
Threshold signatures. In addition to (and separate from) the signatures generated by
hardware modules, we make use of a k out of l threshold signature scheme [47] for k = n

2 + 1
and l = n, i.e., n

2 + 1 parties must participate in order to create a valid threshold signature.
We use the following interface:

threshold-signi(m): produces signature share produced by pi on message m.
share-validate(m, sj , pkj): validate signature share sj produced by pj on m.
threshold-combine(m, S): combine a set S of signature shares from distinct parties for
message m to an O(1)-sized signature where |S| ≥ k and share-validate(m, sj , pkj) =
true, ∀sj ∈ S.
threshold-verify(m, σ): returns true if σ was a result of computing
threshold-combine(m, S) where |S| ≥ k and share-validate(m, sj , pkj) = true, ∀sj ∈ S.

3 (n
2 + 1)-Provable-Broadcast

In this section, we present a core broadcast primitive that will enable protocols to tolerate up
to (1

2 − ϵ)n Byzantine faults for any 0 < ϵ < 1
2 when every party is equipped with a trusted

hardware component as described in Section 2.1. In subsequent sections, we will show how
(n

2 + 1)-Provable-Broadcast along with trusted hardware can be used to increase the fault
tolerance of protocols to minority faults without worsening their communication complexity.

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:7

(n
2 +1)-Provable-Broadcast. This primitive is a generalization of (t+1)-provable broadcast

introduced by Abraham et al. [5]. Informally, in this broadcast, a designated sender sends a
message m = (v, σin) consisting of a value v and a proof σin to all parties. If the message
satisfies a certain predicate denoted by the validation function validate(), parties deliver the
message. Finally, the sender delivers a proof σout indicating that n

2 + 1 parties have delivered
the broadcasted message.

The primitive provides the following guarantees:
Integrity. An honest party (acting as a participant) delivers at most one message m for
a given broadcast instance id.
Validity. If an honest party delivers a message m for instance id, then
validate(id, (m, σm)) = true, where σm is the proof of validity for m.
Provability. If a sender can produce two valid proofs σout and σ′

out s.t. they are valid
proofs for the delivery of m and m′ respectively in instance id, then m = m′, and there
exist n/2 + 1 parties who cannot deliver a value m′ such that m′ ̸= m in instance id.
Termination. If sender is honest, no honest party invokes abandon(id) (meaning they
immediately terminate their execution of this instance of (n

2 + 1)-Provable-Broadcast),
messages among honest parties arrive, validate(id, (m, σin)) = true for all honest parties,
then (i) eventually all honest parties deliver m, and (ii) the sender delivers m with a valid
proof σout.

Algorithm 1 (n
2 + 1)-PB-Initiate instance id (sender s).

1: procedure (n
2 + 1)-PB-Initiate (id, (v, σin))

2: S := {}
3: send “id, send, (v, σin)” to all parties
4: while |S| ≤ n

2
5: upon receiving “id, vote, ξj” from pj for the first time do
6: if share-validate(v, ξj , pkj) = true
7: S := S ∪ {ξj}
8: qc := threshold-combine(S)
9: σout.id:=id, σout.val:=v, σout.qcσin :=σin.qc, σout.qc:=qc

10: deliver σout

The requirements described above have minor differences from those in Abraham et al. [5].
In particular, we modify the threshold from t+1 to n

2 +1 and require the provability property
to have n

2 + 1 parties to not be able to deliver a different message.
Our goal is to tolerate (1

2 − ϵ)n Byzantine parties with linear communication complexity
and ensure the size of σout to be O(1). The O(1)-sized proof allows us to use the primitive in a
cascading manner while still maintaining linear communication complexity. To achieve these
guarantees, we make use of two components: trusted hardware modules and expander graphs.
Each party has access to a trusted hardware module as described in Section 2.1. Parties
are connected in a d-regular expander graph Gn,ϵ,(1− ϵ

c)n for a constant d, 0 < ϵ < 1
2 , and

c > 2 that satisfies the properties in Lemma 4; the expander graph is used to communicate
messages with constant communication complexity per party with its neighbors. We denote
the neighbors of party pi in the expander graph by ρ(i).

Intuition. In the presence of a trusted hardware, any party receiving a valid message from
the sender can attest to this message using the Append() call to their trusted hardware in a
specified log and sequence number. Sending this attestation back to the sender guarantees

OPODIS 2022

24:8 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

both provability as well as termination against a corruption threshold of < 1/2. For provability,
if delivery for every honest party requires attesting at a specific position in a log as a proof,
then receiving n

2 + 1 attestations from a set of parties P is a sufficient proof to state that
parties in P cannot deliver a different message. For termination, if the sender is honest and
eventually the sender’s messages arrives at honest parties, then all honest parties will attest
to this message in the correct log and sequence number and deliver m; the attestations sent
back to the sender will allow it to deliver m with a proof σout consisting of all the attestations
it received. However, the proof σout is not O(1) words. Observe that the attestations from
the small trusted hardware from a linear number of parties provide us with O(n) signatures.
Thus, the challenge is to ensure that the proof σout remains O(1) without relying on the
hardware to generate threshold signatures.

Algorithm 2 (n
2 + 1)-PB-Respond instance id (party pi).

1: procedure (n
2 + 1)-PB-Respond (id, validate, validateNeighbor)

2: stop := false
3: upon receiving “id, send, (v, σin)” from s do
4: (σi, valid) := validate(id, (v, σin))
5: if valid:
6: (attlogId, attcounters) := createAttestations(id, (v, σin))
7: send “id, send, ((attlogId, attcounters), σi)” to parties in ρ(i)
8: wait for id, send, ((attlogId,j , attcounters,j), σj)

from (1
2 + ϵ

2)d parties pj in ρ(i)
s.t. validateNeighbor(id, pj , (v, σin),
(attlogId,j , attcounters,j), σj) = true

9: ξi := threshold-signi(id, (v, σin.qc))
10: send "id, vote, ξi" to s

11: stop := true
12: upon abandon(id) do
13: stop := true
14: procedure createAttestations(id, (v, σin))
15: logId := log(id), seqNo := seq(id) ▷ parse id

16: attlogId := Append(logId, seqNo, (v, σin))
17: deliver ((v, σin), (attlogId))
18: return (attlogId, Counters())

Our key idea is to verify the existence of n
2 + 1 attestations by spreading this work evenly

among the parties. We aim for two seemly opposing goals: On the one hand, each party needs
to check just a constant number of attestations to be locally satisfied. On the other hand, if a
majority of parties say they are locally satisfied then, even if t of them are lying then it is still
the case that there were n

2 + 1 attestations. We obtain this through the magic of expander
graphs. Every party communicates their attestation with their neighbors in the network.
The expansion properties of the graph ensure that receiving correct information from a small
fraction of honest parties, specifically ϵn, suffices to learn the state about a majority of the
parties in the network. In particular, on receiving some vote messages (containing a threshold
signature share) from n

2 + 1 parties (see lines 4–7 in Algorithm 1), out of which at least ϵn

parties are honest, the sender can learn that a majority of parties (not necessarily honest)
have attested to a message m in the log and sequence number corresponding to the instance,
and thus cannot deliver a different message with a valid attestation. To ensure that the proof
σout is O(1) words, the sender can simply combine the threshold signature shares sent in the
vote messages of each of the n

2 + 1 parties that vote.

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:9

Algorithms 1 and 2 present the pseudocode for (n
2 + 1)-Provable-Broadcast. We assume

a setup phase during which each party creates the necessary logs for the protocol using the
CreateLog interface. Further, we assume, for an instance of (n

2 + 1)-Provable-Broadcast,
that every party appends to, and expects attestations from, the log in the trusted hardware
module of each node with the same logId and in the same position, seqNo, within the log.

Protocol. Each instance of this protocol is identified by an id and a designated sender
s. The sender receives two inputs (v, σin); v is the value to be sent and σin is a proof to
be validated by other parties using the validate() function. The sender sends the message
“id, send, (v, σin)” to all parties (Algorithm 1 line 3).

On receiving the message from the sender, pi invokes validate(id, (v, σin)) (Algorithm 2
line 4). The validate() function is used to check that the sender’s proposal is valid and that
it satisfies any predicates on pi’s state as necessary for the higher level protocol . Thus, the
interface allows each party to optionally provide some additional data/state that can be used
for validation. If validate() is successful (valid = true), it returns a proof, σi, as proof that pi

can provide to other parties to prove that its call to validate(id, (v, σin)) returned true. Upon
successful validation, pi then delivers the sender’s proposal by appending it to the the log in
its trusted hardware component using the createAttestations() method (Algorithm 2 lines 6,
14-18). In this method, pi determines the log logId and the sequence seqNo in the log to
be used using the log(id) and seq(id) functions. pi then appends (v, σin) to log logId at
sequence number seqNo in its trusted hardware component. It sends the attestation (along
with a Counters attestation, for reasons explained in Section 4) to all its neighbors ρ(i)
in the expander graph, as proof that it has delivered (v, σin). On receiving messages from
a majority of its neighbors (specifically (1

2 + ϵ
2)d neighbors) that satisfy validateNeighbor()

(Algorithm 2 line 8), a party sends a vote message with threshold-signi((v, σin)) to the sender
(line 10). The validateNeighbor() function allows an invoking party to perform validation
on the messages sent by their neighbors as proof of delivery; in the above instance, we can
assume that it only validates that the attestation attlogId,j is correct, i.e. that it is from
the log logId, signed by the sender’s trusted hardware component, and that the value was
appended in the correct sequence number. In Section 4, we show how the proof output from
validate() as well as the attcounters attestation are used.

On collecting threshold-signi((v, σin)) from a majority of replicas, the sender combines
the signature shares to generate σout and delivers σout (Algorithm 1 lines 8-10).

Here are the key ideas that ensure provability and termination. We present detailed
proofs in Appendix B.
1. Any set of ϵn nodes, each of which receives an attestation from at least

(1
2 + ϵ

2)d of its neighbors, collectively receives attestations from at least n
2 + 1

unique parties. This property has been shown in Lemma 4 and it guarantees provability
since if a sender receives vote messages from a majority of parties, at least ϵn of them are
honest and they will ensure that at least n

2 + 1 parties have attested to (v, σin) in the
correct log and sequence number. Thus, they cannot deliver a message other than v with
a valid proof of attestation. Also, by the same argument, another value v′ ̸= v cannot
receive a sufficient number of attestations, causing another set of ϵn honest parties to
send a vote message for v′; this is because at least n

2 + 1 parties need to attest to (v′, ∗),
and two majority sets will intersect in at least one node.

2. For any set of (1/2 + ϵ)n nodes S, at least (n
2 + 1) nodes in S each have at

least (1
2 + ϵ

2)d neighbors in S. This property has been shown in Lemma 4 and it
guarantees termination since if an honest sender sends a valid (v, σin) to all (1/2 + ϵ)n
honest parties, then at least n

2 + 1 honest parties will send vote messages, sufficient to
generate σout.

OPODIS 2022

24:10 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

4 HotStuff-M: HotStuff with Minority Corruption

In this section, we present HotStuff-M, a version of the HotStuff [58] protocol that tolerates
minority Byzantine corruption under partial synchrony assuming a minimal trusted hardware
at each party. Similar to HotStuff, the protocol has linear communication complexity per
view. For simplicity, we show the construction of a single-shot version of HotStuff, though
the ideas directly extend to the state machine replication setting.

4.1 Overview of Basic HotStuff

We start with an overview of the Basic HotStuff protocol [58] tolerating n = 3t + 1. The
protocol proceeds in a sequence of consecutive views where each view has a unique leader. A
view consists of four phases: promote, key, lock and commit, as first formalized in [5].
We use σphase to denote the threshold signature collected by the leader of a given view during
the phase phase of that view. Each view of HotStuff progresses as follows:

Promote. The leader proposes a promote message containing a proposal v along with
the σkey (explained in the next bullet point) from the highest view known to it (referred
to as σhighKey) and sends it to all parties. On receiving a promote message containing
a value v in a view e and a σhighKey from the leader of view e, a party sends a vote for v

if it is safe to vote based on a locking mechanism (explained later). It sends this vote, in
the form of a threshold signature share, to the leader.
Key. The leader collects 2t + 1 votes to form a threshold signature σkey in view e. The
leader sends the σkey for view e to all parties. On receiving a σkey in view e containing
message v, a party updates its highest σkey to (v, e) and sends lock to the leader.
Lock. The leader collects 2t + 1 such votes to form a threshold signature σlock, and sends
it to all parties. On receiving σlock in view e containing message v from the leader, a
party locks on (v, e) and sends commit message to the leader.
Commit. The leader collects 2t + 1 such votes to form a threshold signature σcommit

and sends it to all parties. On receiving σcommit from the leader, parties commit v.

Once a party locks on a given value v, it only votes for the value v in subsequent views.
The only scenario in which it votes for a value v′ ≠ v is when it observes a σhighKey from a
higher view in a promote message. At the end of a view, every party sends its highest σkey

to the leader of the next view. The next view’s leader collects 2t + 1 such values, picking the
highest σkey as σhighKey. The safety and liveness of HotStuff follow from the following:

Uniqueness within a view. Since parties only vote once in each phase, a σcommit can be
formed for only one value.

Safety and liveness across views. Safety across views is ensured using locks and the voting
rule for a promote message. Whenever a party commits a value, at least 2t + 1 other
replicas are locked on the value in the view. A party only votes for the value it is locked on.
The only scenario in which it votes for a conflicting value v′ is if the leader includes a σkey

for v′ from a higher view in a promote message. This indicates that at least 2t + 1 replicas
are not locked on v in a higher view, and hence it should be safe to vote for it. The latter
constraint of voting for v′ is not necessary for safety, but only for liveness of the protocol.

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:11

Table 2 Validation functions passed to provable broadcast in different phases of view
e. We assume end attestations attlock (containing σlock) is invoked during validate() call as needed.
Also note that (attlogId,i, attcounters,i) are sent by every party to their neighbor as a part of provable
broadcast and generated in the invocation of createAttestations(id, (v, σin)).

Phase validate(id, (v, σin)) validateNeighbor(id, (v, σin), (attlogId,j , attcounters,j), σj)

promote

cond:
ext-valid(v) = true,
σin.val = σlock.val or
view(σin) > view(σlock)
proof: σi := attlock

(σin.val = σlock.val or view(σin) > view(σlock)), and lock log in
attcounters,j is at view(σlock), and progress log in attcounters,j is at
e − 1, and attlogId,j is a valid attestation from HWj for value v in the
promote log and sequence number e

key
cond: view(σin) = e and
phase(σin) = promote
proof: σi := ⊥

progress log in attcounters,j is at e − 1, and key log in attcounters,j

is at e, and attlogId,j is a valid attestation from HWj for value v in
the key log and sequence number e

lock
cond: view(σin) = e

and phase(σin) = key
proof: σi := ⊥

progress log in attcounters,j is at e − 1, and lock log in attcounters,j

is at e, and attlogId,j is a valid attestation from HWj for value v in
the lock log and sequence number e

4.2 HotStuff-M: Towards Minority Corruption
The arguments for safety and liveness of HotStuff crucially rely on having fewer than one-third
Byzantine faults. Otherwise, Byzantine parties could create multiple σkey, σlock, andσcommit

by partitioning the honest parties. Similarly, across views, Byzantine parties could send an
incorrect (stale) σkey to the leader, as well as vote for a message in the promote phase
without respecting the locking condition, leading to both safety and liveness concerns.

Our goal is to increase the corruption threshold from one-third to a minority while
still retaining the linear communication complexity. The trusted hardware provides a non-
equivocation guarantee, i.e., it ensures that once a value v has been appended to a position
in a specified log, no other value can be appended at that position in that log. Moreover,
the hardware provides an attestation, i.e., verifiable proof of the existence of value v at that
position of the specified log. However, a party can still send a stale attestation to another
party. For instance, during a view-change, a party can send an attestation to a key from
an old view, possibly leading to a liveness violation. It can also potentially participate in a
previous view even after quitting the current view. Similarly, a party can potentially append
conflicting information at two different positions of the log and provide attestations to these
different positions to different parties.

A potential way to fix the above concerns is to always send an attestation of all positions
in the log whenever sending a message. The receiving party can validate that the log has been
correctly constructed, e.g., absence of conflicting information and absence of a designated
message indicating that the party quit a given view on the log. However, this solution makes
the communication complexity proportional to the number of views for each message.

Our approach and protocol. Our approach uses multiple logs in the trusted hardware,
one for each phase that consists of an instance of (n

2 + 1)-Provable-Broadcast, as well as a
log to keep track of the view a party is in. For each log, the data appended to position j

corresponds to the message sent by the party in view j. Thus, if a party votes for a value v

in view e in the key phase of the protocol, it calls Append(key, e, (v, ∗)) to the key log
at position e (∗ denotes some additional information). However, a disadvantage of using
multiple logs is the absence of relative ordering between them. This allows a Byzantine
adversary to participate in a previous view by showing a stale state of a log or send a stale

OPODIS 2022

24:12 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

Algorithm 3 HotStuff-M: HotStuff with Minority Corruption (for party pi).

1: for e := 1, 2, 3, . . . do
2: as a leader ▷ new-view phase
3: wait for a set M of ≥ n

2 +1 new-view messages s.t. the attestations on progress
and key logs are valid, sequence numbers in attprogress and atthighQC match
those in the Counters attestation for the respective logs, and counter value of
progress log in the Counters attestation is e − 1

4: For each m ∈ M , let σm
highKey denote the highest key QC from party pm

5: σhighKey := (arg max
m∈M

{view(σm
highKey)}) ▷ view(σm

highKey) is the view in which

σm
highKey was formed

6: if σhighKey = ⊥ then proposal := client’s command else proposal := σhighKey.val

7: as a party ▷ new-view phase
8: go to this line if no progress happens during the “wait” step in any phase
9: attprogress := ⟨lookup, progress, e, e⟩ := Append(progress, e, e)

10: atthighQC := ⟨end, key, seqNoHighQC, highKeyQC⟩ := End(key)
11: send “((e, new-view), send, (attprogress, atthighQC , Counters()))” to view e + 1

leader
12: as a leader
13: σkey := (n

2 + 1)-PB-Initiate((e, promote), (proposal, σhighKey)) ▷ promote
14: σlock := (n

2 + 1)-PB-Initiate((e, key), (proposal, σkey)) ▷ key phase
15: σcommit := (n

2 + 1)-PB-Initiate((e, lock), (proposal, σlock)) ▷ lock phase
16: send “((e, commit), send, σcommit)” ▷ commit phase
17: as a party
18: (n

2 + 1)-PB-Respond((e, promote), validate(), validateNeighbor()) ▷ promote
19: (n

2 + 1)-PB-Respond((e, key), validate(), validateNeighbor()) ▷ key phase
20: (n

2 + 1)-PB-Respond((e, lock), validate(), validateNeighbor()) ▷ lock phase
21: wait for “((e, commit), send, σcommit)” from view e leader ▷ commit phase
22: if σcommit is a signature from view e from commit phase then commit σcommit.val

σlock while voting in the promote phase. We leverage the Counters() call on the hardware
to address this concern; it provides the end state of all of the logs at once, thus allowing the
receiving party to validate the freshness of the state. Although the functionality provided
by the Counters attestation can be achieved using a nonce with the same communication
complexity, we use Counters for the simplicity of the description. At the end of this section,
we discuss the intuition for how the Counters attestation can be replaced with the use of
nonces.

We present our protocol in Algorithm 3 and Table 2. The parties proceed in a sequence
of views. We assume that the parties know the leader in a given view. Let e denote
the current view of the protocol. At the end of the previous view, each party invokes an
Append(progress, e − 1, e − 1) (line 9) to obtain attestation attprogress. In addition, it
obtains an end attestation atthighQC for its keyQC (line 10). The party sends this information
together with the Counters() attestation to the leader in a new-view message (line 11).

The leader of view e waits for a valid new-view message from a majority of parties.
Here, the message is considered valid if (i) the attestations are valid (i.e., signed by the
trusted hardware component of the sending party), (ii) the sending party has quit view e − 1,
i.e., the counter value of the progress log is equal to e − 1, and (iii) the sequence number
on atthighQC and attprogress matches the ones in the Counters attestation (line 3). Thus,

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:13

even if the sending party is Byzantine, the atthighQC is fresh and the party can no longer act
in the previous view (due to the current counter value of its progress log and the conditions
in validateNeighbor()). The leader picks the keyQC from the highest view as σhighKey and
proposes the value in the certificate. Otherwise, it proposes any client command.

Our modular construction allows us to present the next three phases promote, key, and
lock as invocations of (n

2 + 1)-Provable-Broadcast (lines 13-15 and 18-20). As described in
the previous section, if the leader successfully receives a σkey (respectively σlock and σcommit),
it guarantees that ≥ n

2 + 1 parties have attested to the proposed value in their promote
log (respectively key log and lock log) in the position corresponding to view e. However,
in each provable broadcast phase, a party should vote for the leader’s proposal only if it is
safe to do so depending on the party’s state. We use the validate() and validateNeighbor()
interface to specify these constraints (described in Table 2). Recall that the former is used
to validate the leader’s proposal and provide a proof that the leader’s proposal satisfies
validate() for this party, while the latter is used by a neighbor in the expander graph to
verify correct behavior.

In the promote phase, a party votes for a leader’s message only if it is locked on the
same value as the proposal or if σhighKey in the leader’s proposal is from a higher view than
the party’s lock, σlock. The party sends an attestation to its lock as proof for the neighbor to
verify. The expander graph neighbor verifies the correctness of the computation in addition
to ensuring that the attestations received are valid and fresh (using the counter values in
attcounters,j and comparing them to the sequence numbers in the other attestations). In the
key, lock, and commit phases, the parties check if σkey, σlock, and σcommit, respectively,
are from the same view and the proofs were formed in the correct phases. The expander
graph neighbors verify validity of attestations and freshness (to ensure they have not quit the
view). Finally, the leader sends a commit message along with σcommit as proof of commit.
Each of the parties can then commit σcommit.val.

Due to space constraints, we present formal proofs in Appendix C and a view synchroniz-
ation protocol in the full version of our paper [57]; the protocol is a generalization of the
expected linear communication complexity protocol of [39] withstanding minority corruption.

Communication complexity. From Theorem 14, an instance of provable broadcast in each
of the three phases (promote, key, and lock) incurs linear communication complexity. To
change views, each party sends a constant number of attestations to the leader in a single
message. In both the new-view phase and the commit phase, the leader sends a single,
constant-sized message to all the parties. Therefore, the HotStuff with Minority Corruption
protocol incurs O(n) communication complexity per view.

Replacing the Counters attestation. We now present intuition for how nonces can be used
to replace the Counters attestation. We use the Counters attestation to:
1. Prevent parties from presenting the stale state of a log to other parties
2. Force parties to quit a view before sending messages in a subsequent view

We address concern 1 using the Counters attestation by requiring a party to append
a value to position e in their progress log before presenting the state of their log in view
e + 1. The Counters attestation shows that a party did in fact append the value to their
progress log in position e prior to presenting the state of their logs in view e + 1. The
following handshake between a proving party and a verifying party can replace the use of
the Counters attestation for this scenario:

OPODIS 2022

24:14 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

1. To send a message proving the state of their logs in view e + 1, a party sends an End
attestation from their progress log to the verifying party, proving that they have quit
view e

2. Upon receiving a valid attestation showing that the proving party quit view e, the
verifying party sends the proving party a random nonce

3. The proving party uses the nonce for the End attestations it gathers to send the current
state of its logs

We address concern 2 using the Counters attestation by requiring a party to send a
Counters attestation showing that they have appended a value to their progress log
in position e with any view e + 1 messages that they send. A similar handshake to that
described above can be used to replace the Counters attestation for this scenario.

5 Related Work

Trusted hardware and consensus. Trusted hardware can be classified into two categories
depending on the computations it can provide. The more powerful class is capable of
running arbitrary specified code in a trusted execution environment (TEE). The protected
execution state is encrypted by the trusted module and written to a specified memory range
that only the trusted module can access while the code is running (e.g. Intel SGX [19],
Flicker [36], Aegis [48], XOM [33], and Bastion [12]). They have been used to provide
confidentiality [19, 48, 33, 12, 45] as well as to improve resilience and performance in the
context of consensus protocols [7, 25, 45, 9, 2, 34]. However, the trusted computing bases of
such platforms tend to grow as they increase in their generality, up to an including extensive
libraries and OS components (e.g., [50]). Consequently, these platforms can present a large
attack surface, giving way to attacks from outside the TEE (e.g., [14]).

Our work focuses on using small trusted hardware with a fixed, limited functionality
(e.g., YubiKeys [49]). There have been several works using such a hardware to improve the
performance of BFT protocols [27, 53, 54, 17, 32, 41, 3]. Notable works include A2M [17]
and TrInc [32]. Chun et al. [17] show how, by introducing append-only (A2M) logs in the
trusted hardware component of all processors in a network, the fault tolerance of BFT
protocols can be increased to minority faults. They show an implementation of PBFT that
withstands minority faults using A2M logs. However, simply applying their approach to a
BFT protocol can increase the communication complexity by at least a factor of n due to
the communication pattern of the protocol. In TrInc [32], Levin et al. show how A2M logs
can be implemented with a small trusted monotonic counter, a key, and a small amount of
trusted storage.

Expander graphs and consensus. Expander graphs have been used in the context of
consensus protocols in works in the past [30, 29, 37]. Chlebus et al. [16] present an algorithm
that solves consensus in the crash fault setting such that the per-process communication
complexity is polylogarithmic in the number of processors. The protocol for leader election
by King et al. withstands a one-third Byzantine adversary in synchrony using expanders
to achieve polylogarithmic per-process communication complexity [30]. They extend this
work to obtain o(n2) total bits of communication against an adaptive adversary. Recently,
Momose and Ren [37] used expanders to solve Byzantine agreement against a minority
corruption. Their work uses expanders to detect equivocation under synchrony. One could
also consider the use of random sampling to be a randomized method to obtain the properties
of expanders [23, 43, 24]. The way we use expander graphs in our work differs from their use

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:15

in previous works, as we separate the messages that must go through the hardware and those
that do not. The separation enables better communication complexity for messages sent
from the hardware through the use of expander graphs and better communication complexity
for other messages through the use of cryptography.

Non-equivocation. The past two decades have seen various works on non-equivocation
[17, 18, 44, 6, 35]. Clement et al. [18] define equivocation and show that non-equivocation
alone is not sufficient to increase the threshold of Byzantine parties in a network when trying
to reach agreement; doing so requires transferable authentication. Ruffing et al. [44] present
non-equivocation contracts, which reveal the Bitcoin credentials of an equivocating party in
order to penalize equivocation. Backes et al. [6] show how to use non-equivocation to improve
the resilience of asynchronous MPC to match that of synchronous MPC, which tolerates
minority corruption. [8] and [18] both explore the gap between omission failures and the
non-equivocation property achieved by the use of trusted hardware. Our work expands on
these works by showing how non-equivocation implemented by the use of trusted hardware
can be combined with expander graph techniques to increase the fault tolerance of BFT
protocols without increasing the communication complexity.

References
1 Trusted computing group. URL: https://trustedcomputinggroup.org/.
2 Hyperledger sawtooth, 2019. URL: https://sawtooth.hyperledger.org/.
3 Ittai Abraham, Marcos K Aguilera, and Dahlia Malkhi. Fast asynchronous consensus with

optimal resilience. In International Symposium on Distributed Computing, pages 4–19. Springer,
2010.

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 106–118. IEEE, 2020.

5 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

6 Michael Backes, Fabian Bendun, Ashish Choudhury, and Aniket Kate. Asynchronous mpc with
a strict honest majority using non-equivocation. In Proceedings of the 2014 ACM symposium
on Principles of distributed computing, pages 10–19, 2014.

7 Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on steroids: Sgx-based high
performance bft. In Proceedings of the Twelfth European Conference on Computer Systems,
pages 222–237, 2017.

8 Naama Ben-David, Benjamin Y Chan, and Elaine Shi. Revisiting the power of non-equivocation
in distributed protocols. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, pages 450–459, 2022.

9 Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro Sorniotti. Block-
chain and trusted computing: Problems, pitfalls, and a solution for hyperledger fabric. arXiv
preprint, 2018. arXiv:1805.08541.

10 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

11 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

12 David Champagne and Ruby B Lee. Scalable architectural support for trusted software.
In HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer
Architecture, pages 1–12. IEEE, 2010.

OPODIS 2022

https://trustedcomputinggroup.org/
https://sawtooth.hyperledger.org/
http://arxiv.org/abs/1805.08541

24:16 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

13 Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies, pages 1–11, 2020.

14 Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call API is a bad
untrusted RPC interface. In 18th International Conference on Architectural Support for
Programming Languages and Operating Systems, March 2013.

15 Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai.
SgxPectre: Stealing Intel secrets from SGX enclaves via speculative execution. In IEEE
European Symposium on Security and Privacy, June 2019.

16 Bogdan S Chlebus, Dariusz R Kowalski, and Michal Strojnowski. Fast scalable deterministic
consensus for crash failures. In Proceedings of the 28th ACM symposium on Principles of
distributed computing, pages 111–120, 2009.

17 Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. ACM SIGOPS Operating Systems
Review, 41(6):189–204, 2007.

18 Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the (limited) power
of non-equivocation. In Proceedings of the 2012 ACM symposium on Principles of distributed
computing, pages 301–308, 2012.

19 Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol. ePrint Arch.,
2016(86):1–118, 2016.

20 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

21 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, April 1988. doi:10.1145/42282.42283.

22 Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

23 Seth Gilbert and Dariusz R Kowalski. Distributed agreement with optimal communication
complexity. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 965–977. SIAM, 2010.

24 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredinschi,
and Yann Vonlanthen. Scalable byzantine reliable broadcast (extended version). arXiv preprint,
2019. arXiv:1908.01738.

25 Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016, 2016.
26 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.

Bulletin of the American Mathematical Society, 43(4):439–561, 2006.
27 Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid

Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. Cheapbft: Resource-efficient
byzantine fault tolerance. In Proceedings of the 7th ACM european conference on Computer
Systems, pages 295–308, 2012.

28 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. Journal of Computer and System Sciences, 75(2):91–112, 2009.

29 Valerie King and Jared Saia. Breaking the o(n2) bit barrier: Scalable Byzantine agreement
with an adaptive adversary. Journal of the ACM, 58(4):1–24, 2011.

30 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In 17th

ACM-SIAM Symposium on Discrete Algorithms, pages 990–999, 2006.
31 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In

Concurrency: the Works of Leslie Lamport, pages 203–226. ACM, 2019.
32 Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. Trinc: Small trusted

hardware for large distributed systems. In NSDI, volume 9, pages 1–14, 2009.
33 David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John

Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant software.
Acm Sigplan Notices, 35(11):168–177, 2000.

https://doi.org/10.1145/42282.42283
http://arxiv.org/abs/1908.01738

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:17

34 Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. Scalable byzantine consensus via
hardware-assisted secret sharing. IEEE Transactions on Computers, 68(1):139–151, 2018.

35 Mads Frederik Madsen and Søren Debois. On the subject of non-equivocation: Defining
non-equivocation in synchronous agreement systems. In Proceedings of the 39th Symposium
on Principles of Distributed Computing, pages 159–168, 2020.

36 Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi Isozaki.
Flicker: An execution infrastructure for tcb minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, pages 315–328, 2008.

37 Atsuki Momose and Ling Ren. Optimal communication complexity of byzantine consensus
under honest majority. arXiv preprint, 2020. arXiv:2007.13175.

38 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,
2019.

39 Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr. arXiv preprint, 2020. arXiv:2002.07539.

40 Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published
attacks on intel sgx. arXiv preprint, 2020. arXiv:2006.13598.

41 Vincent Rahli, Francisco Rocha, Marcus Völp, and Paulo Esteves-Verissimo. Deconstructing
minbft for security and verifiability.

42 Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. Practical synchronous byzantine
consensus. arXiv preprint, 2017. arXiv:1704.02397.

43 Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for
cryptocurrencies. Available [online].[Accessed: 4-12-2018], 2018.

44 Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar, coins on fire! penalizing
equivocation by loss of bitcoins. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 219–230, 2015.

45 Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury Chamayou,
Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew Kerner, Sid Krishna, et al. Ccf: A
framework for building confidential verifiable replicated services. Technical Report MSR-TR-
201916, 2019.

46 Jinho Seol, Seongwook Jin, Daewoo Lee, Jaehyuk Huh, and Seungryoul Maeng. A trusted
iaas environment with hardware security module. IEEE Transactions on Services Computing,
9(3):343–356, 2015.

47 Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207–220. Springer, 2000.

48 G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas Devadas.
Aegis: Architecture for tamper-evident and tamper-resistant processing. In ACM International
Conference on Supercomputing 25th Anniversary Volume, pages 357–368, 2003.

49 Suresh Thiru, Shamalee Deshpande, and Stina Ehrensvard. Yubikey strong two factor
authentication, January 2021. URL: https://www.yubico.com/.

50 Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A practical library OS for
unmodified applications on SGX. In USENIX Annual Technical Conference, July 2017.

51 Salil P. Vadhan. Pseudorandomness, volume 7 of Foundations and Trends in Theoretical
Computer Science. Now Publishers, Inc., 2012.

52 Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient out-of-order execution. In Proceedings of
the 27th USENIX Security Symposium. USENIX Association, August 2018. See also technical
report Foreshadow-NG [56].

53 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung.
Ebawa: Efficient byzantine agreement for wide-area networks. In 2010 IEEE 12th International
Symposium on High Assurance Systems Engineering, pages 10–19. IEEE, 2010.

OPODIS 2022

http://arxiv.org/abs/2007.13175
http://arxiv.org/abs/2002.07539
http://arxiv.org/abs/2006.13598
http://arxiv.org/abs/1704.02397
https://www.yubico.com/

24:18 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

54 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo
Verissimo. Efficient byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30,
2011.

55 Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Binds-
chaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX. In ACM Conference on Computer and Communications
Security, October 2017.

56 Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom. Foreshadow-NG:
Breaking the virtual memory abstraction with transient out-of-order execution. Technical
report, 2018. See also USENIX Security paper Foreshadow [52].

57 Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K Reiter. Communication-
efficient bft protocols using small trusted hardware to tolerate minority corruption. Cryptology
ePrint Archive, 2021.

58 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus in the lens of blockchain. arXiv preprint, 2018. arXiv:1803.05069.

A Proofs for Expander Graph Lemmas

▶ Lemma 5. For every constant 0 < α < β < 1 and sufficiently large n, there exists a
d-regular graph that is an (n, α, β)-expander.

Proof. For this proof, we will show a randomized way to construct a d-regular graph Gn,α,β .
Then, we will show that with high probability, it satisfies the lemma.

Let Γ(V, G) refer to the set of neighbors of the vertices V in a graph G. Consider a
random degree-d graph G constructed by taking the union of d random perfect matchings
(assume that n is even; if n is odd, we can add a dummy node or assign a vertex to two
neighbors). In order to ensure that each vertex has degree exactly d, one can construct each
of the perfect matchings in the following way. Create the first perfect matching by taking
one vertex at a time and matching it to a random unmatched vertex in the graph, repeating
until all vertices have been matched. Repeat this process for d perfect matchings without
replacement, so that for the kth perfect matching, each vertex is matched to a random vertex
from the set of vertices that it hasn’t been matched to in a previous perfect matching.

Consider a perfect matching P , a set of αn nodes, S, and a set of βn nodes, T . Now,
consider the matching of the first set of αn nodes, S, in the first perfect matching (the
perfect matching that results in a graph with degree 1). The probability that the first vertex
that is matched is matched to a vertex in T is βn

n . Since α < β, and we match without
replacement, the probability of choosing a match in T for the ith node in S after all of the
previous matchings of nodes in S have been to nodes in T can only be less than this quantity.
Since it is possible that S ⊂ T , and nodes in S are matched to each other, we only multiply
this quantity αn

2 times. We are therefore able to obtain the following upper bound for the
probability that in each perfect matching P , for any set of αn nodes S, and any set of βn

nodes T , Γ(S, P) ⊆ T :

Pr[Γ(S, P) ⊆ T] ≤ (βn

n
) αn

2 = β
αn
2 (1)

Using this, the probability that any set of αn vertices does not expand to more than βn

other vertices, i.e. |Γ(S, G)|≤ βn for any set S, is bounded above by:(
n

αn

)(
n

βn

)
β

αnd
2 (2)

http://arxiv.org/abs/1803.05069

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:19

≤ (e

α
)αn(e

β
)βnβ

αnd
2 (3)

≤ [eα+β((1
α

)α(1
β

)β)β αd
2]n (4)

For a sufficiently large constant d, the above probability is exponentially small, which
means that with high probability, a graph randomly chosen with the above procedure is an
(n, α, β)-expander. Thus, Gn,α,β exists. ◀

▶ Lemma 6. There exists an expander graph Gn,ϵ,β with degree d, 0 < ϵ < 1
2 , ϵ < β < 1,

such that for any set S of (1
2 + ϵ)n nodes, there exists a set Q of more than n

2 nodes, Q ⊆ S,
and every node in Q has at least (1

2 + ϵ
2)d neighbors in S.

Proof. From Lemma 5, we know that a Gn,ϵ,β-expander exists. For the rest of the proof, we
show that with high probability an expander graph with sufficiently high degree constructed
using the randomized procedure outlined in the proof for Lemma 5 satisfies the lemma.

Consider a set T of (1
2 − ϵ)n nodes in our expander graph G. Let S be the set of nodes in

G that are not in T . If we show that with high probability, it is not the case that ϵn nodes
in S have more than (1

2 − ϵ
2)d neighbors in T , then there must be a set of nodes Q of size

greater than n
2 in S that satisfies the lemma. Therefore, using the same technique as that in

the proof for Lemma 5, we first bound the probability that for a given set of nodes R of size
ϵn in a perfect matching P , all nodes in R have neighbors in a set T of size (1

2 − ϵ)n, where
R and T are pairwise disjoint.

Pr[Γ(R, P) ⊆ T] ≤ (
(1

2 − ϵ)n
n

)ϵn = (1
2 − ϵ)ϵn (5)

Then the probability that there does not exist a set Q of more than n
2 nodes that satisfies

the statement in the lemma is bounded by:(
n

ϵn

)(
(1 − ϵ)n
(1

2 − ϵ)n

)
(1
2 − ϵ)ϵnd(1

2 − ϵ
2) (6)

≤ [(e

ϵ
)ϵ(e(1 − ϵ)

(1
2 − ϵ)

)(1
2 −ϵ)(1

2 − ϵ)ϵd(1
2 − ϵ

2)]n (7)

≤ [e(1
ϵ

)ϵ(1 − ϵ
1
2 − ϵ

)(1
2 −ϵ)(1

2 − ϵ)ϵd(1
2 − ϵ

2)]n (8)

Again, for sufficiently large d, the above probability is exponentially small. Thus, with high
probability the lemma holds. ◀

▶ Lemma 7. There exists an expander graph Gn,ϵ,β with degree d, 0 < ϵ < 1
2 , ϵ < β < 1

such that for any partition of its nodes into blocks T and Q where |T | = (1
2 − 2ϵ)n and

|Q| = (1
2 + 2ϵ)n, there exists a set T ′ ⊆ T , |T ′| > (1

2 − 3ϵ)n, such that each node in T ′ has
at least (1

2 + ϵ
2)d neighbors in Q.

OPODIS 2022

24:20 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

Proof. From Lemma 5, we know that a Gn,ϵ,β-expander exists. For the rest of the proof, we
show that with high probability an expander graph with sufficiently high degree constructed
using the randomized procedure outlined in the proof for Lemma 5 satisfies the lemma.

Consider a set T of (1
2 − 2ϵ)n nodes in our expander graph G. Let R be be a set of nodes

in T of size ϵn. Using the same technique as that in the proof for Lemma 5, we first bound
the probability that in a given perfect matching P , all nodes in R have neighbors in T .

Pr[Γ(R, P) ⊆ T] ≤ (
(1

2 − 2ϵ)n
n

) ϵn
2 = (1

2 − 2ϵ) ϵn
2 (9)

Then the probability that ϵn nodes in T have more than (1
2 − ϵ

2)d neighbors in T is
bounded by:(

n

(1
2 − 2ϵ)n

)(
(1

2 − 2ϵ)n
ϵn

)
(1
2 − 2ϵ) ϵnd

2 (1
2 − ϵ

2) (10)

≤ [(e
1
2 − 2ϵ

) 1
2 −2ϵ(

e(1
2 − 2ϵ)

ϵ
)ϵ(1

2 − 2ϵ) ϵd
2 (1

2 − ϵ
2)]n (11)

≤ [e(1
1
2 − 2ϵ

) 1
2 −2ϵ(

1
2 − 2ϵ

ϵ
)ϵ(1

2 − 2ϵ) ϵd
2 (1

2 − ϵ
2)]n (12)

Again, for sufficiently large d, the above probability is exponentially small. Thus, with high
probability the lemma holds. ◀

▶ Lemma 8. There exists an expander graph Gn,ϵ,β with degree d, 0 < ϵ < 1
2 , ϵ < β < 1,

such that for any set S of (1
2 + 2ϵ)n nodes, there exists a set Q of more than (1

2 + ϵ)n nodes,
Q ⊆ S, and every node in Q has at least (1

2 + ϵ
2)d neighbors in S.

Proof. This lemma follows directly from Lemma 6, as any graph that violates this property
also violates the property in Lemma 6. ◀

The following lemma and theorem can be found in any resources on expander graphs,
such as Hoory et al. [26].

▶ Lemma 9 (Expander Mixing Lemma). Let G = (V, E) be a d-regular graph and let S, T ⊆ V .
Then,

||E(S, T)| − d|S||T |
n

| ≤ λ(G) · d
√

|S|(1 − |S|/n)|T |(1 − |T |/n) (13)

where |E(S, T)| is the number of edges between the two sets (counting edges contained in the
intersection of S and T twice) and λ(G) is the second largest eigenvalue of the adjacency
matrix of G.

▶ Theorem 10 (Theorem 4.12 of Vadhan [51], restated). For any constant d ∈ N, a random
d-regular n-vertex graph satisfies λ(G) ≤ 2

√
d − 1/d + O(1) with probability 1 − O(1) where

λ(G) is the second largest eigenvalue of the adjacency matrix of G and both O(1) terms
vanish as n approaches ∞ (and d is held constant).

▶ Lemma 11. For all sufficiently large integers n and positive constants ϵ and β such that
0 < ϵ < β < 1 there exists an d-regular expander Gn,ϵ,β such that for any set S of ϵn nodes
and any set T of (1

2 + ϵ
c)n nodes, where c > 2, the number of edges with one vertex in S and

one vertex in T is less than (1
2 + ϵ

2)ϵdn.

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:21

Proof. By Lemma 5, we know that a random d-regular expander Gn,ϵ,β exists for a sufficiently
large constant d. By the Expander Mixing Lemma [26], we know that for any two sets of
vertices S and T where |S| = ϵn and |T | = (1

2 + ϵ
c)n, the number of edges between the

vertices in S and those in T , E(S, T), in a d-regular expander graph G is upper bounded by:

E(S, T) ≤ λd

√
ϵn(1 − ϵ)

(
1
2 + ϵ

c

)
n

(
1
2 − ϵ

c

)
+ ϵdn

2 + ϵ2dn

c
(14)

In order to satisfy the lemma, we need:

E(S, T) ≤ λ

√
(ϵn − ϵ2n)

(
1
2 + ϵ

c

) (n

2 − ϵn

c

)
<

ϵ2n

2 − ϵ2n

c
(15)

Since G is a random d-regular expander graph, we can upper bound λ(G) using [51, Theorem
4.12]:

λ ≤ 2
√

d − 1
d

+ O(1) <
ϵ2

2 − ϵ2

c√
ϵ
4 − ϵ2

4 − ϵ3

c2 + ϵ4

c2

(16)

With some simplification, and as the O(1) term goes to 0 as n goes to infinity, we get:

d >
ϵ

(ϵ2

2 − ϵ2

c)2
(17)

Which is satisfied by sufficiently large constant d. ◀

Proof of Lemma 4

Proof. By Lemma 11, we know that there exists an expander Gn,ϵ,(1− ϵ
c) with sufficiently

large constant degree d, such that every set T of (1
2 + ϵ

c)n nodes has fewer than (1
2 + ϵ

2)ϵdn

edges to S, where S is any set of ϵn nodes in the graph. Further, by Lemmas 6, 7, 8, we
know that there is a randomized construction for a d-regular expander for sufficiently high
degree d that satisfies properties 1-3 with high probability. We deterministically choose a
graph that satisfies these properties. To show that property 4 holds, we will assume that
it doesn’t hold and then arrive at a contradiction. Consider an arbitrary set S of ϵn nodes
in the graph. Assuming that property 4 does not hold, we create a set U ′ consisting of
(1

2 + ϵ
2)d neighbors of each node in the set S such that |U ′| ≤ n

2 . If we consider the multiset
of (1

2 + ϵ
2)d neighbors of each node in S, the size of the multiset is (1

2 + ϵ
2)ϵdn. By the

construction of our expander, every set of ϵn nodes expands to more than (1 − ϵ
c)n nodes.

Refer to the set of (1 − ϵ
c)n nodes that S expands to as Y . In order for the set U ′ to exist as

defined, within Y there must be a set T of (1
2 + ϵ

c)n nodes containing U ′ such that there
are more than (1

2 + ϵ
2)ϵdn edges with one vertex in S and one in T , where an edge exists

between two nodes if they are neighbors in G. We have arrived at a contradiction, as this
violates that the graph satisfies the property in Lemma 11. Therefore the lemma holds. ◀

B Proofs for Provable Broadcast

▶ Lemma 12 (Provability). In (n
2 + 1)-PB-Initiate, if the sender delivers two valid proofs

σout and σ′
out corresponding to values (v, σin) and (v′, σ′

in) respectively, then (i) v = v′, and
(ii) at least n

2 + 1 parties satisfy the criteria in the validate() function, and the parties have
created attestations in createAttestations() such that they satisfy validateNeighbor().

OPODIS 2022

24:22 Communication-Efficient BFT with Trusted Hardware & Minority Corruption

Proof. Since σout contains a threshold signature for (v, σin) signed by at least n
2 +1 parties, at

least n
2 +1−t > ϵn honest parties pi must have sent messages “id, vote, ξi” to the sender. Thus,

each such pi must have received at least (1
2 + ϵ

2)d messages “id, send, ((attlogId, atthead,j),
σj)” from parties pj such that the attestations (attlogId, atthead,j) along with σj satisfy
the criteria in the validateNeighbor() function. Thus, (attlogId, atthead,j) were created by
running createAttestations(id, (v, σin)) and σj proves that (v, σin) is valid for pj ’s state based
on the conditions in validate(id, (v, σin)). By Lemma 4, any ϵn set of parties each receiving
attestations from (1

2 + ϵ
2)d neighbors, should collectively receive attestations from at least

n
2 + 1 parties such that they satisfy validateNeighbor(). This completes part (ii) of the proof.
For part (i), observe that any two quorums of size n

2 + 1 will always intersect at one party,
and due to the use of trusted hardware, this party cannot attest to two different values v

and v′ such that v ̸= v′ for the same log and sequence number. ◀

▶ Lemma 13 (Termination). If the sender is honest, no honest party invokes abandon(id), all
messages among honest parties arrive, and validate(id, (v, σin)) = true for all honest parties,
then (i) eventually all honest parties deliver v, and (ii) the sender delivers v with a valid
proof σout.

Proof. Observe that the sender’s message will eventually arrive at all (1/2 + ϵ)n honest
parties if no party invokes abandon(). Since the message sent by the sender is valid for all
honest parties, all honest parties will invoke createAttestations() and deliver the sender’s
message along with a valid attestation as the proof. They then send their attestations to
all their neighbors. By Lemma 6, at least n

2 + 1 of the honest parties H will each receive
attestations from at least (1

2 + ϵ
2)d of their neighbors that satisfy validateNeighbor() without

any participation from any Byzantine parties. Each party in H will send a vote message
with a threshold signature share to the sender, who can combine them into (v, σout). ◀

▶ Theorem 14. The (n
2 + 1)-Provable Broadcast algorithm in Algorithms 1 and 2 satis-

fies Integrity, Validity, Provability, and Termination. Moreover, the protocol has linear
communication complexity with an O(1)-sized proof.

Proof. Integrity is satisfied deterministically by the algorithm. All the messages from the
sender to the parties and vice-versa involve messages with O(1) words. All the communication
between parties through the expander graph consists of O(1) sized messages to a constant d

number of neighbors. Thus the communication complexity is linear. Also, the proof delivered
by the sender is a threshold signature of O(1) size.

An honest party only sends a signature share to s for a value v if v is externally valid as
per the validate() function. Therefore, as long as the threshold for the threshold signature
is greater than the number of Byzantine parties in the network, only an externally valid
message can obtain a valid threshold signature, satisfying validity.

Provability and Termination property have been shown in Lemmas 12 and 13. ◀

C Proofs for HotStuff-M

▶ Lemma 15. At the end of a view e, (i) if a party receives a σcommit on value v, then
≥ n

2 + 1 parties appended value v at position e in their lock logs prior to appending a value
at position e in their progress logs, and (ii) if a party receives a σlock on value v, then
≥ n

2 + 1 parties appended value v at position e in their key logs prior to appending a value
at position e in their progress logs.

S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter 24:23

Proof. This lemma follows from Lemma 12 and the criteria for validateNeighbor() in Table 2.
◀

▶ Lemma 16. Suppose the earliest view in which a value v is committed by an honest party
is e. For all views > e, a valid σkey for a value v′ ̸= v does not exist.

Proof. Suppose for contradiction that v has been committed by an honest party in view e

and a σkey for v′ ≠ v exists in view e′ > e. Let e∗ be the earliest view in which a σkey for
a value v∗ is formed such that v∗ ̸= v and e∗ > e. It follows that e∗ ≤ e′. Since there is a
σkey for v∗ in e∗, by Lemma 12, a set Q of at least n

2 + 1 parties have sent messages with
attestations (attj , attcounters,j), σj that satisfy validateNeighbor(). Since v was committed
in view e, there exists a set P of at least n

2 + 1 parties who have inserted v into their lock
log. The two sets P and Q should intersect at least one party p.

We now show a contradiction w.r.t. p’s log and its attestation satisfying validateNeighbor().
Since view e∗ is the first view where a higher σkey was formed for a different value, the end
state of lock in view e∗ must be for value v. Thus, the predicate view(σin) > view(σlock) in
the promote phase is not satisfied. Moreover, in view e∗, the proposed value v∗ ̸= v for
our setup. Thus, the condition σin.val = σlock.val in promote phase is not satisfied either.
Additionally, since a party presents the state of their progress log through the attcounters,j

attestation, they always present the state of their logs after the end of view e∗ − 1 ≥ e. Thus,
for party p, validateNeighbor() cannot be satisfied. Consequently, σkey in view e∗ cannot be
formed for value v′, a contradiction. ◀

▶ Theorem 17 (Safety). Two honest parties pi and pj cannot commit to values v and v′

such that v′ ̸= v.

Proof. Let e be the view in which v is committed and e′ be that of v′ s.t. v ̸= v′. By
Lemma 12, e ̸= e′. Suppose, without loss of generality, e > e′. By Lemma 16, no σkey can
be formed in view > e for value ̸= v′. Honest parties only vote for σlock in the lock phase
in view e′ if it was generated in view e′; thus, a σcommit cannot be formed in view e′. ◀

▶ Theorem 18 (Liveness). After GST, there exists a bounded time such that when an honest
leader is elected in view e and all honest parties remain in view e for that time, then a value
will be committed by all honest parties.

Proof. View e is a view after GST where the leader is honest. Suppose σ∗
lock is the σlock

stored in a party’s lock log from the highest view e∗ for a value v. By Lemma 15, at least
n
2 + 1 parties must have the σ∗

key for value v stored in their lock logs at position e∗ prior
to creating the Counters() attestation to report their highest σlock in e. Since the leader
waits for n

2 + 1 valid σkey messages during a view change, it will obtain σkey from a view
≥ e∗. Let σ′

key be the highest valid σkey received by the leader. The leader will propose
(σ′

key.val, σ′
key) in the promote phase. Since e∗ is the highest view for which a party has

a lock, it must be the case that for each honest party, either view(σ′
key) > than the locked

view of the party or that v is the value that the party is locked on (Lemma 12). Since e is
after GST, all messages will arrive within the bounded delay ∆, and thus for each of the
three phases, the termination property for provable broadcast from Lemma 13 should be
satisfied. Thus, all honest parties will commit. ◀

OPODIS 2022

Chopin: Combining Distributed and Centralized
Schedulers for Self-Adjusting Datacenter Networks
Neta Rozen-Schiff !

School of computer science and engineering, The Hebrew University of Jerusalem, Israel

Klaus-Tycho Foerster !

Computer Science Department, TU Dortmund, Germany

Stefan Schmid !

TU Berlin, Germany
Faculty of Computer Science, Universität Wien, Austria

David Hay !

School of computer science and engineering, The Hebrew University of Jerusalem, Israel

Abstract
The performance of distributed and data-centric applications often critically depends on the in-
terconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly
innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which
can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal
and spatial locality in the communication pattern, and to provide topological shortcuts for frequently
communicating racks. The key challenge, however, concerns how to realize demand-awareness in
RDCNs in a scalable fashion.

This paper presents and evaluates Chopin, a hybrid scheduler for self-adjusting networks that
provides demand-awareness at low overhead, by combining centralized and distributed approaches.
Chopin allocates optical circuits to elephant flows, through its slower centralized scheduler, utilizing
global information. Chopin’s distributed scheduler is orders of magnitude faster and can swiftly react
to changes in the traffic and adjust the optical circuits accordingly, by using only local information
and running at each rack separately.

2012 ACM Subject Classification Networks → Programmable networks; Networks → Data center
networks

Keywords and phrases reconfigurable optical networks, centralized scheduler, distributed scheduler

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.25

Supplementary Material Software (Code): https://bitbucket.org/NetaRS/sched_analytics
archived at swh:1:dir:ba2af62f8b1e8f483cb493908b711f9de4dbf488

Funding Research supported by the European Research Council (ERC), grant agreement No. 864228
(AdjustNet), Horizon 2020, 2020-2025, a grant from Fraunhofer SIT, and the Israeli Innovation
Authority through the Peta-Cloud consortium.

1 Introduction

Data-centric and distributed applications, including batch processing, streaming, scale-out
databases, or distributed machine learning, generate a significant amount of network traffic
and their performance critically depends on the throughput of the underlying network [31,85].

To improve datacenter throughput, researchers and industry, e.g., Google [64], have
recently started exploring innovative new datacenter designs that rely on dynamic and
demand-aware topologies: topologies that self-adjust toward the workload they currently
serve. The motivation behind self-adjusting datacenter topologies is twofold.

© Neta Rozen-Schiff, Klaus-Tycho Foerster, Stefan Schmid, and David Hay;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 25; pp. 25:1–25:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neta.r.schiff@gmail.com
https://orcid.org/0000-0003-1628-6843
mailto:klaus-tycho.foerster@tu-dortmund.de
https://orcid.org/0000-0003-4635-4480
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
mailto:dhay@cs.huji.ac.il
https://orcid.org/0000-0001-9349-6049
https://doi.org/10.4230/LIPIcs.OPODIS.2022.25
https://bitbucket.org/NetaRS/sched_analytics
https://archive.softwareheritage.org/swh:1:dir:ba2af62f8b1e8f483cb493908b711f9de4dbf488;origin=https://bitbucket.org/NetaRS/sched_analytics;visit=swh:1:snp:36f6bbe0f26fc27286535954004e9fae1c8c82d7;anchor=swh:1:rev:ed1f2acca39de9eb5f34a6cb5b0c8db1492f74f2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Chopin: Combining Distributed and Centralized Schedulers

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(a) HULL [3].

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(b) pFabric [2].

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(c) VL2 [32].

Figure 1 Comparison between centralized and distributed schedulers under different traffic
patterns (each generated by scaling well-known realistic flow size distributions, assuming Poisson
flow arrival times under different rates), when the number of ToR switches is 80, and the optical
connectivity of each ToR switch is 4. The color represents the ratio between the optical throughput
of the distributed scheduler and the centralized scheduler. Blue cells mark settings where the
distributed scheduler outperforms the centralized one; red cells mark the opposite. We refer to §6.1
for topology details.

First, empirical studies reveal that datacenter traffic patterns feature much structure [6,
10,31,66], i.e., are sparse, skewed, and bursty, which introduces optimization opportunities.
For example, a small number of flows typically carry the majority of traffic (these are called
elephant flows), while the remainder consists of a large number of flows that carry very little
traffic (mice flows). Therefore, in a demand-aware network, the elephant flows should be
routed through the optical circuits for offloading the electrical bottleneck, which in turn,
reduces the latency of the mice flows, and improves the overall throughput.

Second, emerging optical technologies and optical circuit switches enable the required
very fast reconfigurations [8, 21, 22, 33]. Over the last years, several interesting hybrid
optical datacenter networks were suggested and evaluated [83], augmenting an oversubscribed
network with inter-rack optical links [7,14,22,24,25,31,53,69,70,77,79], see [27] for a survey.
The number of optical routes from/to each Top-of-Rack (ToR) switch, which we call the ToR
switch optical degree, is a single-digit number, typically at most 4 [21, 71,82].

Challenge: Scalability. While the vision of self-adjusting networks is intriguing and early
solutions show promising results, the main challenge faced by such demand-aware networks
concerns the scalability of the control plane. Unlike demand-oblivious networks (i.e., static
networks like Clos [15], Slim Fly [12], and Xpander [76] or dynamic networks like RotorNet [59],
Opera [58] and Sirius [8]), demand-aware networks require the collection and evaluation of
traffic patterns. In particular, performing all topology scheduling decisions centrally (i.e., a
centralized scheduler) may introduce a bottleneck and can result in slow reaction times. A
fully distributed decision making (i.e., a distributed scheduler) on the other hand, may be
suboptimal as it is based on incomplete information.

In order to show this tradeoff, we analyzed the optical throughput ratio. The optical
throughput ratio is defined as the ratio between the throughput routed through the optical
circuit and the total datacenter throughput. It is a cornerstone measure as it reflects the
utilization of the optical circuit, and therefore reduces the bottleneck over the electrical
network. Fig. 1 compares the optical throughput ratio of the distributed-only scheduler and
the centralized-only scheduler under different traffic patterns (each traffic pattern follows
a distribution measured in a real datacenter, where we have parametrized the mean flow
size and each host rate). It demonstrates the tension between the two approaches: there

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:3

is no “clear winner” and which one is better depends on the traffic pattern. The traffic
pattern however is often not known when the datacenter is built and changes over time. For
example, consider a datacenter serving a pFabric traffic pattern, with typical mean flow size
of approximately 1.7 MB [51], and where each host sending rate is approximately 100 Mbps.
In this case, the optical circuit throughput ratio in the distributed scheduler is by 13% higher
compared to the centralized scheduler, as can be seen in the blue cells in Figure 1b. However,
for the same datacenter, with the same traffic pattern (pFabric), and the same mean flow size
distribution, once the host’s sending rate grows beyond 300 Mbps, the centralized scheduler
achieves a higher throughput ratio compared to the distributed one (see the relevant red cell).

Motivated by this insight, and by the desire to provide an efficient control plane for
self-adjusting networks, we propose to combine both approaches to achieve the best of both
worlds: fast reaction times of distributed decision-making and network utilization benefits of
centralized optimization.

Introducing Chopin. We present Chopin1, a novel scheduler for reconfigurable datacenter
networks that fully exploits the benefits of self-adjusting networks by relying on an efficient
control plane. Specifically, Chopin provides demand-awareness at low overhead, by combining
centralized and distributed approaches. At the heart of Chopin’s approach lies the idea
that a relatively complex algorithm (e.g., Maximum Weight Matching, MWM) should be
computed centrally, based on complete information.

However, since such an algorithm cannot be computed fast [11,16,48] (e.g., MWM may
take around 20 ms for 80 ToR switches), we additionally allow distributed updates to the
centralized optical circuit allocation, based on a threshold. The threshold specifies the flow
weight changes from which a distributed scheduler can update the centralized scheduler
allocation. For example, if there is a large drop in demand in an allocated optical circuit
(e.g., when an elephant flow ends), the distributed scheduler may tear it down and try to
establish another circuit. Hence, due to the volatility of many flows, we want a distributed
constant-round algorithm (ideally just two rounds) and hence forgo more complex distributed
algorithms [9] or dynamic centralized algorithms [13]; the indirection via a centralized
controller comes with overheads and delays which render this approach problematic to handle
continuous update streams.

Our Contributions. In summary, we make the following contributions:
1. We identify and analyze the difference in throughput performance of centralized and

distributed schedulers for reconfigurable datacenter networks, for various scenarios and
different flow size distributions.

2. We design a hybrid scheduler, Chopin, which combines centralized and distributed decision-
making based on thresholds. To this end, we present and analyze both a centralized
and a local online scheduler, exploring the trade-off between accuracy and running time.
Chopin relies on commodity devices available today, and required Chopin nodes which
can simply be added to existing ToR switches by directing one of the switch ports to
them. Moreover, information collection and dissemination of the centralized algorithm
can be realized in the control plane using Software-Defined Networks (SDNs).

3. We report on Chopin’s effectiveness through extensive simulations for different settings,
showing that Chopin improves upon centralized and distributed approaches. We achieve
throughput improvements of up to 20% against centralized and up to 23% against
distributed schedulers, always outperforming both.

1 Stands for: Controller for Hybrid OPtIcal electrical Networks.

OPODIS 2022

25:4 Chopin: Combining Distributed and Centralized Schedulers

2 Optical Background and Related Work

Chopin is motivated by trade-offs between centralized and distributed scheduling, which arise
in matching algorithms. We first motivate why matching algorithms are central to Chopin’s
setting and then discuss centralized and distributed schedulers in this context.

Optical Model: Why Matchings? From a theoretical viewpoint, we consider the problem
of how to augment a static network with (optical) edges in order to improve the total network
performance. The reason why this augmentation comes in the form of matchings lies in
the underlying hardware, namely optical circuit switches, we refer to Hall et al. [36, §3] for
a technological overview. In the simplest case, a set of nodes is connected to the optical
circuit switch’s ports by an optical cable each, and the switch “matches” these ports by
e.g. adjusting mirrors to steer the light signals s.t. that pairs of ports (and hereby, pairs
of nodes) are hence connected by optical circuits. Nodes could also be connected multiple
times to the optical switch, or multiple optical switches could be used, giving rise to, e.g.,
b-matchings [26, 39].2 Conceptionally, other hardware could be used to the same effect (e.g.,
beamformed wireless connections [37] or free-space optics [7]), but on a graph-theoretic level,
they form circuits between pairs of nodes, and as thus, matchings. We refer here to the
survey by Foerster and Schmid [27] for a further introduction to the enablers, algorithms,
and complexity of reconfigurable datacenter networks. We moreover refer to the article by
Zerwas et al. [84] on how system delays can be accounted for for scheduling algorithms.

Centralized schedulers. Centralized schedulers operate under the assumption of near-
perfect utilization visibility and traffic demands, collected at a centralized location [18],
often leveraging SDN. We refer to a recent survey and the references therein [74]. Herein
the restriction to large and long-lived flows enables centralized schedulers [24, 79] to also
cope with control loop delays. However, these schedulers still suffer from traffic stability
assumptions [23].3 Traffic matrix schedulers [22, 54, 77, 78] on the other hand, adjust packet
transmissions to coincide with scheduled circuit reconfiguration, with full knowledge of when
bandwidth will be available to particular destinations. However, for the duration of the
matching schedule, new flows are not accounted for and might need to wait for the next
iteration. In contrast, Chopin’s design ensures rapid reactions to local traffic changes and
new flow insertions, due to its additional distributed scheduler part.

Distributed schedulers. In practice, the large number of scheduling decisions and status
reports can overwhelm centralized schedulers, and in turn lead to long latencies before
scheduling decisions are made [18]. ProjecToR [31] initiated a broader interest in distributed
scheduling, by proposing a stable-matching algorithm that optimizes for low latency, utilizing
high fan-out single hop free-space optics [30]. Via aging of requests, they obtain a constant-
factor latency approximation for their online scheduling algorithm [19]. RotorNet [59],
Opera [58], and Sirius [8] employ a different approach and use lower fan-out circuits, where
the topologies are created in a demand-oblivous manner. RotorNet rotates through matchings
independent of the current traffic, that provide eventual connectivity, where traffic is either

2 There is also some work that considers multicast by splitting the outgoing light signals [17,57,72].
3 Orthogonal to matching algorithms, Xia et al. [80] investigate how to migrate between Clos and random

graph topologies. However, they require specialized 4/6-port converter switches and also rely on a
centralized control loop, estimating an update delay “on the order of seconds” [80].

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:5

scheduled to be routed along single hops, or along two hops, via buffering and a proposal and
accept mechanism. Sirius follows similar ideas, either transmitting directly or via schemes
reminiscent of Valiant’s method. Opera extends RotorNet by also always maintaining an
expander graph, motivated by static topologies [46,76]. Although Opera’s reconfiguration
scheduling is deterministic, the precomputation of the topology layouts is in its current
form still randomized. Notwithstanding, ProjecToR, RotorNet, Sirius, and Opera can all
rapidly deploy traffic along reconfigurable connections, by omitting a centralized control
plane. However, it is not clear how to realize the above three distributed systems with
off-the-shelf hardware, such as a common optical circuit switch, and hence their application
scenario is not as general as with Chopin. Notwithstanding, Decentralized scheduling is also
used in several other systems, including SplayNet [68], Cerberus [35], or CacheNet [34].

Lastly, while there is profound research on matching algorithms in the distributed
computing community [73], distributed algorithms for maximal matchings in graphs with large
degree ∆ (as for optical circuit switches) are relatively slow [9]. While approximation [55] and
dynamic [56] algorithms are considerably faster, here the constraints of the optical datacenter
networking and the distributed computing community are quite different and hence the
communities (yet) don’t overlap much in their research applications: ideally, for optical
circuit switching, small-constant round algorithms of low computational complexity are
desired, whereas in the distributed computing community, the local algorithms can be more
complex, with a focus on asymptotic runtime optimization. As thus, Chopin utilizes a low
complexity threshold based distributed algorithm, using just two rounds of communication,
which falls in line with the requirements of hybrid datacenters.

3 Chopin’s Design

In a nutshell, Chopin’s topology scheduler aims to provide demand-awareness efficiently by
combining centrally optimized decision making with fast distributed reactions. The idea is
hence analogous to the nervous system of animals, which is typically divided into a slower
central nervous system and a faster peripheral nervous system [75].

Specifically, Chopin’s scheduler uses two different control mechanisms, each carried out
in a different location in the datacenter, providing different latency and response times. The
centralized scheduler is reminiscent of an SDN controller and allows Chopin to adapt to
global changes (such as traffic rates). This optimization uses traffic measurements across
the network and has a (relatively) long response time. Moreover, it may receive additional
information (e.g., from applications that have specific repetitive patterns) to make even
better decisions. Fig. 2 presents the connectivity between the SDN controller to each of the
ToR switches and Chopin’s nodes. The distributed scheduler is embedded within the ToR
switches and is based only on local measurements. It reacts quickly to local changes in traffic
and may tear down connections if they become unmatched and establish new connections
for new “hot” ToR switch pairs. The tear down and connection establishment are made by
updates sent from the ToR switch to its Chopin node, see Fig. 2.

The centralized scheduler and the distributed scheduler are discussed in details in Section 4
and Section 5 respectively.

Moreover, by combining these two schedulers, we can strike an optimized trade-off and
realize both fast reactions and global and long-term network optimizations, accounting for
demand uncertainty. In particular, unlike many existing solutions, which consider only one
scheduler, Chopin is flexible and performs better than both.

OPODIS 2022

25:6 Chopin: Combining Distributed and Centralized Schedulers

3.1 The Hybrid4 Topology

Chopin can be used together with any fast switching circuit technology (as in [22,23,62]), and
implemented within the existing datacenter hardware. We distinguish between two entities
in the ToR switches: the electric switch itself (for brevity, we will simply refer to this switch
as the ToR switch), and the Chopin node which resides in the switch, serving as the entry
point to the optical network. This modular Chopin structure enables us to support existing
ToR switches, by directing one of its upstream ports to the Chopin nodes. When clear from
the context, we use the terms, ToR switch and Chopin node, interchangeably.

The optical network can be any non-blocking topology, where the only constraint on
establishing a circuit between two ToR switches is the availability of a transceiver in the
corresponding Chopin node (namely, its optical degree).

Specifically, we assume each Chopin node has an optical degree of k and optical circuits
are symmetric. This implies, that at any given time, a Chopin node can send and receive
data from at most k Chopin nodes. For any given time t, we denote by desti(t) the set of
Chopin nodes connected to the Chopin node i. We observe that as circuits are symmetric, if
j ∈ desti(t) then it also holds that i ∈ destj(t).

3.2 Problem Formulation

At the heart of Chopin lies the desire to improve network performance and throughput by
avoiding scheduling bottlenecks. As Chopin is deployed between ToR switches, the scheduler
is oblivious to intra-rack traffic or delays.

We first need to introduce some preliminaries. Let n be the number of ToR switches
in the network and assume that time is slotted, where in each time-slot the distributed
scheduler can be invoked (e.g., the length of each time-slot is 1 ms). Let Xi,j(t) be the total
amount of traffic sent from rack i to rack j at time-slot t. Now let Yi,j(t) be an indicator
variable to describe whether a pair of ToR switches is connected through a Chopin circuit at
time interval t: Yi,j(t) = 1 if and only if j ∈ desti(t) (and 0 otherwise). If Yi,j(t) = 1 then
Yj,i(t) = 1 as connections through Chopin are symmetric.

4 We note that the term hybrid can have a different meaning in some networking contexts, e.g., indicating
a combination of the LOCAL model with the node-capacitated clique model [5].

Figure 2 Chopin’s design.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:7

Let Ct ⊆ S × S be a symmetric relation with all ToR switch pairs that are connected
through a Chopin circuit at time interval t (i.e., (i, j) ∈ C(t) if and only if j ∈ desti(t)).

We aim to maximize optical circuit throughput, a standard objective in such topologies [7,
14, 22, 24, 54, 59, 78, 79], namely

∑
t

∑
i

∑
j Xi,j(t) · Yi,j(t). This relieves the electrically

switched network part and reduces the overall latency. This is done by updating the set Ct,
based on local and centralized decisions.

Note that, as optical circuit capacities are typically very high, we assume that the capacity
of an optical circuit is always larger than the total amount of traffic sent between two racks
(namely Xi,j(t)). In case this does not hold, and the two racks are connected through an
optical link, one can send traffic through the optical circuit up to its capacity while the
remaining traffic is sent through the electrically switched network.

3.3 Schedulers and Definitions
First, a centralized scheduler has a global view of the network and, in some cases, even
auxiliary information given by the network administrator. This, on one hand, enables
the scheduler to perform more informed decisions. But on the other hand, when using a
centralized scheduler, it can take much longer to gather, compute, and spread the information
across the datacenter. In our model, we assume the centralized scheduler works every T

time-slots (which we call the centralized scheduler epoch) and uses slightly outdated traffic
information: at time t, only the measurements {Xi,j(t′)|t′ < t − ∆, for every i, j} can be
used, where ∆ is the centralized algorithm delay: the time it takes it to gather all information
and make decisions. For example, if the optical degree is 1 (i.e. k = 1), the centralized
scheduler may use algorithms such as maximum weight matching to optimize the throughput
that goes through the optical circuits.

As T becomes larger, centralized scheduler decisions can deteriorate, as the input on which
decisions are based is outdated toward the end of the epoch. Thus, we additionally consider
a distributed scheduler that is more fine-grained and runs every time-slot, benefiting from a
reduced computation time and avoiding the delays involved in the centralized scheduler; it
changes the pairs of connected switches based on local information only and by exchanging
messages between ToR switches in two rounds. Specifically, the distributed scheduler of node
i at time-slot t may use traffic measurements on its node until the computation starts:

{Xi,j(t′)|j ̸= i, t′ < t − δ} ∪ {Xj,i(t′)|j ̸= i, t′ < t − δ},

where δ < ∆ is the distributed scheduler delay. In addition, the distributed scheduler is
aware of the information sent to it by other nodes throughout the rounds of computation.
Importantly, for each pair (i, j) that was optically connected through Chopin at time interval
t − 1 (namely, Yi,j(t − 1) = 1), the distributed scheduler at node i knows what information
was used to establish this connection (e.g., what is the rate reported to the centralized
scheduler upon its last invocation) and decides whether the information is stale or not.
Table 1 summarizes Chopin schedulers’ notations.

4 Chopin’s Centralized Scheduler

The centralized scheduler is implemented on top of a centralized SDN controller, which is
(logically) connected to each of the ToR switches and the Chopin nodes. Upon a request
from the centralized scheduler, the controller collects traffic measurements across the network
(namely, counters at ToR switches, current status of Chopin nodes). Based on these
measurements, it computes the next optical circuit allocation.

OPODIS 2022

25:8 Chopin: Combining Distributed and Centralized Schedulers

Table 1 Chopin’s schedulers’ notations.

Notation Meaning
n The number of ToR switches.
desti(t) The set of racks optically connected to rack i at time-slot t
Xi,j(t) The total amount of traffic sent from rack i to rack j at time slot t
Yi,j(t) Indicator variable. Yi,j(t) = 1 iff j ∈ desti(t)
Ct The set of rack pairs optically connected at time slot t
K Optical degree, the number of available circuits per Chopin node.
∆ Centralized scheduler delay
δ Distributed scheduler delay
α Chopin threshold for keeping centralized decisions
A Centralized scheduler aggregation interval
a Distributed scheduler aggregation interval
T Centralized scheduler epoch

Recall that the delay ∆ is the time it takes to send all the information to the controller,
run the centralized algorithm, and send the decisions back to the nodes. The centralized
algorithm works in epochs of length T , where decisions arrive at the nodes at the beginning
of each epoch. Assume an epoch starts at time t. Then, these decisions will be used by
nodes until time t + T (or until altered locally by the distributed scheduler). Furthermore,
these decisions are based on information gathered in the interval [0, t − ∆]. However, if
traffic changes quickly (DC traffic is often bursty [6]), this information may be outdated
quickly. This motivates us to define an aggregation interval A for the centralized algorithm,
considering only the interval [t − (∆ + A), t − ∆], see Fig. 3.

Notice that the delay ∆ is an important factor for the performance of Chopin. The
delay describes the response time of the central scheduler and consists of several steps:
contacting tens to hundreds of nodes [20, 44], (2) receiving thousands of flow entry statistics,
estimating optical circuit utilization, contacting all nodes again, and updating all rules with
new parameters if needed.

Considering common SDN controllers’ capability to handle a few thousands of messages
per second [81], we estimate the delay to be in the order of hundreds of milliseconds in most
configurations [49] [40]. Furthermore, the computation time of our algorithms can be in the
order of tens of milliseconds for hundreds of ToR switches (e.g., when running maximum
weight matching–like algorithms, as reported in [24]). Due to these delays, fast changes in the
network (occurring within a few milliseconds [66]), may not be detected by the centralized
scheduler in a timely manner. Also, the reconfiguration time (approximately 11 µsec [31] [63])
is likely negligible compared to a centralized reconfiguration cycle. These observations
motivate usage of another scheduling layer, to adapt to traffic in an online manner.

Delay Δ

ComputeG D Usage

T

ComputeG D Usage

ComputeG D UsageInformation used for
computation

Aggregation
interval A

t t+Tt-Dt-(D+A)

Figure 3 Centralized scheduler timing parameters, where “G” stands for the gathering period
and “D” for the disseminate period. Similar parameters are used by the distributed scheduler, with
delay of δ.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:9

Our high-level goal is to maximize the overall throughput over the optical network. First
recall that allocations are constrained by the optical ToR switch degree k: each ToR switch
can be optically connected to at most k other ToR switches, Accordingly, our centralized
algorithm essentially needs to solve a weighted b-matching problem, with b = k. Specifically,
we consider an undirected graph whose nodes are the ToR switches and the weight of each
edge (i, j) is the total traffic between i and j in the relevant interval:

wij =
t−∆∑

t′=t−(∆+A)

Xi,j(t′) + Xj,i(t′).

While b-matching algorithms are strongly polynomial [4], their running time can still be
prohibitively high in practice [28,50,61]. This can lead to high delays ∆ and in turn, to a
significantly reduced overall performance of the system. Thus, we propose to approximate the
problem: we compute a maximum weight matching (using Edmond’s MWM algorithm [29]),
subtract the weights of the matching’s edges from the graph, and run maximum weight
matching again with the new, smaller weights. As in [70], this process is repeated k times,
resulting in k matchings. Hence each node is connected to at most k other nodes, as required.
We refer to Khan et al. [47] for a further discussion on efficiently approximating b-matchings.

We further reduce computation time by considering only the top-m live flows per ToR
switch (instead of all possible pairs between the nodes). Due to the sparse nature of datacenter
traffic matrices, even small values of m provide a highly accurate approximation: there is
almost no performance degradation compared to a full-fledged MWM (§5). Note that the
top-m flows per switch can be efficiently calculated in each switch since there are only n

possible flows and maintaining n counters at line rate is supported by switches.
Moreover, focusing only on a constant number of top flows per node enables Chopin to scale

with an increasing number of nodes. It also decreases both the MWM computation and the
network reconfiguration times, allowing more frequent centralized scheduler reconfigurations.
As the frequency of centralized scheduler invocations significantly affects the performance,
by considering only m flow, we can improve the scheduler’s performance. For example, when
m = 5 and the number of ToR switches is 80, the time it takes to compute MWM based
on top-5 live flows per ToR is 3 ms, while full-fledged MWM takes at least 20 ms. Fig. 4
compares the performance of both algorithms under the pFabric traffic pattern we have
described (similar results hold for other traffic patterns as well) and shows that having more
frequent reconfigurations is more significant than having slightly better matchings. Our
centralized scheduler, based on top-5 live flows with reconfiguration every 3 ms, achieves
almost the same results as an idealized online optimal algorithm, that computes full-fledged
MWM every 1 ms. Finally, we observe that the optical throughput ratio improves as the
mean flow size increases (and the gap between the algorithms shrinks), since longer flows
imply that flow information is still relevant even after a long time when computations are
infrequent.

In order to explain the throughput differences in Fig. 4, we analyzed the number of
reconfigurations in each scenario. We consider the average number of reconfigured pairs in
each run, out of the total number of pairs (n/2). Fig. 5 presents the reconfiguration average
ratio per 1 ms, as a function of the mean flow size. As expected, as the mean flow size
increases (and the flows are longer), the number of reconfigurations decreases. Moreover, it
shows that the number of reconfigurations is decreasing rapidly when the epoch time is 20
ms. This can be attributed to the fact that short lived connections have less impact on the
20ms long measurements and are less likely to be matched.

OPODIS 2022

25:10 Chopin: Combining Distributed and Centralized Schedulers

2 4 6 8 10 12 14 16 18
Mean Flow Size (MB)

0.20

0.25

0.30

0.35

0.40
Op

tic
al

 T
hr

ou
gh

pu
t R

at
io

Full-fledged MWM, 0 ms delay
Top-5 MWM, 3 ms delay
Full-fledged MWM, 20 ms delay

Figure 4 Comparison between a centralized
scheduler which operates every 3 ms and com-
putes the MWM of the top-5 live flows, to a
centralized scheduler which operates every 20
ms and computes full-fledged MWM. For brev-
ity only pFabric results are shown.

2 4 6 8 10 12 14 16 18
Mean Flow Size (MB)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
g.

 P
ai

rs
 R

ec
on

fig
ur

at
io

n
Ra

tio
 (p

er
 m

s)

Full-fledged MWM, 0 ms delay
Top-5 MWM, 3 ms delay
Full-fledged MWM, 20 ms delay

Figure 5 Average reconfiguration ratio per
1 ms of three scenarios: centralized scheduler
which computes MWM over top-5 live flows every
3 ms, a centralized scheduler which operates
every 20 ms and computes full-pledged MWM.
For brevity only results for the pFabric traffic
pattern are shown.

5 Chopin’s Distributed Scheduler

The distributed scheduler is a distributed control algorithm, embedded inside each Chopin
node. Each ToR switch is connected to a single Chopin node and sends flows to the latter
(e.g., by connecting one of its ports to the Chopin node). The traffic that is sent through
this port is configured either by our centralized algorithm (as described in Section 4) or by
the distributed scheduler that runs on the Chopin node.

The Chopin node is responsible of sending traffic destined for the ToR switch from one
of the optical circuits. Each ToR switch in turn is connected to a single Chopin node. We
refer to the illustration in Fig. 2 for an overview. Supplemental pseudo-code of Chopin’s
distributed algorithm appears in Algorithm 1 in the Appendix.

At the beginning of each centralized scheduler epoch, every Chopin node keeps track of
the traffic rate according to which its circuit was selected. Namely, for an epoch that starts
at time t, if a circuit was established between Node i and Node j, both Node i and Node j

compute and store:

Ri,j(t) = 1
A

t−∆∑
t′=t−(∆+A)

Xi,j(t′) + Xj,i(t′).

The nodes use these rates to determine if traffic demands stay steady during the epoch.
Specifically, we define a threshold α ≥ 0, and compute the rate in each time-slot t̂ ∈ [t, t + T]
based only on local information available at the nodes:

ri,j(t̂) = 1
a

t̂−δ∑
t′=t̂−(δ+a)

Xi,j(t′) + Xj,i(t′),

where δ is the distributed scheduler delay, and a is its aggregation interval. Only if ri,j(t̂) >

α · Ri,j(t), then the circuit is marked as matched and the algorithm keeps it connected
through this epoch. Otherwise, it strives to replace it with a better connection, as described

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:11

next. We observe that for α = 0, all existing connections are kept matched (namely, Chopin
just runs the centralized scheduler, and may improve only when its computed b-matching
changes). As the threshold increases, it enables the distributed scheduler to tear down
almost every centrally-computed connection and to create new ones, based on the current
ToR switch traffic. The distributed scheduler itself tries to establish as many circuits as
possible to increase the overall traffic through the optical circuit connections. In a nutshell,
each Chopin Node i sends requests to a predetermined number of other nodes needs (this
number is denoted by variable max_reqs), for which it observes the most bi-directional traffic.
These nodes, denoted by req_nodes, do not include those kept matched to Node i; moreover,
max_reqs > k to allow utilizing all the circuits connected to Node i. After a Chopin node i

sends its requests, it waits to receive requests from other nodes. We distinguish between:
1. Request from a node j that is in the req_nodes set: This means that both nodes i and

j consider the traffic between them in their top max_reqs links. This makes Node j a
candidate for a match with Node i.

2. Request from a node j that is not in the req_nodes set: This means that while Node j

considers Node i in its top max_reqs links, Node i has max_reqs other links with larger
traffic. This request should be denied.

We wait until all requests are received at Node i: This is indicated by a time-out event,
that can be set, for example to half the aggregation interval a (requests are timestamped,
so requests that arrive after the time-out will simply be ignored.). After all requests are
received, there will be at most max_reqs candidates for matching. However, the number
of free circuits (the optical degree minus the number of matched circuit) may be smaller.
Therefore, we choose only the top ones so as not to exceed the number of available links. We
thus send a grant message to all of them and deny messages to others.

In the last phase of our algorithm, each node waits until all its requests are either granted
or denied. It then connects with all nodes that (i) it has granted, and (ii) a grant message
was received from them. It disconnects all other links, except those made by the centralized
algorithm and above the threshold. Note that rate measurements used in an epoch are
performed in parallel with the decision making of the previous epoch.

6 Evaluation

Chopin aims to maximize the circuit throughput (online), without compromising the datacen-
ter latency, by combining centralized and distributed schedulers. Therefore, in our evaluation,
we focus on each of these schedulers’ parameters as well as on their contribution to the
overall DC performance. The performance is evaluated on several parameters, including the
centralized scheduler epoch T , aggregation intervals A (for the centralized scheduler) and a

(for the distributed scheduler), as well as the corresponding delays ∆ and δ.

6.1 Methodology
Topology. We have analyzed Chopin’s performance through synthetic simulations, for
which we generate traffic according to known datacenter traffic patterns [10,38,66]. We used
NetworkX for topology creation, as well as for matching computations. Our simulation code
is available at [67].

Specifically, we have considered real-world datacenter topologies (3-tier) with 8 and 16
aggregation switches, 80 racks and 160 racks, respectively, where each rack contains 10 hosts
(i.e., up to 1, 600 hosts in the network). In addition to the electrical network, we assume a
non-blocking optical circuit switch, which connects to each Chopin node k times at 10 Gbps,
we vary the value of k between 1,2, and 4.

OPODIS 2022

25:12 Chopin: Combining Distributed and Centralized Schedulers

Real datacenter’s data plane parameters were used. The link capacities are 1 Gbps
between servers and ToR switches, 10 Gbps between ToRs and aggregation-level switches
as in [10], and 40 Gbps between the aggregation-level switches and cores, as in [44]. The
reconfiguration time is approximately 11µsec [31,63], as discussed in Section 4. As the host’s
traffic contains hundreds of Mbps on average at all times [38], we analyzed average host
demand levels of 200 Mbps.

Chopin’s evaluation focuses on increasing the optical throughput. Optimizing Chopin’s
optical throughput adds some approximation to it, in three aspects: (i) partial maximal weight
matching computation, (ii) higher optical degree of Chopin nodes, and (iii) approximated
maximal weight matching for higher optical degrees, as discussed next.

Adding several optical routes per Chopin node improves its optical throughput by using
higher connectivity between Chopin nodes. This can be achieved, e.g., by a wavelength-
selective switch (WSS) module at each ToR switch, which is a customized 1 × 4-port Nistica
full-fledged 100 WSS module (as suggested in [21]). This implementation enables each Chopin
node to connect other Chopin nodes by up to 4 optical links.

This becomes less attractive for a larger number of channels (namely, greater than
4) because of the additional noise (e.g., the multiplexer enables additive noise funneling
from each of the sources into the reconfigurable optical add/drop multiplexer ROADM
network) [71]. Furthermore, recent studies show that using 1 × 8 ports increases the system
costs by a factor of 10 compared to 1 × 4 ports [82]. Thus, for cost-effective systems, where
several optical switches are recommended, we analyze Chopin’s performance where each
Chopin node has up to 4 connections to other Chopin nodes (i.e., “optical degree k = 4”).

Traffic patterns. We generate the traffic flow based on previous studies of traffic charac-
teristics of datacenter networks [10, 45, 65]. Flows are TCP [1] with Poisson flow arrival
times [38], whose size distribution follows one of three well-known flow size distributions: (i)
HULL [3]; (ii) pFabric [2, 51,60]; and (iii) VL2 [32].

The distribution of flow arrival time to the ToR switches is modeled as a Poisson process,
where the servers use the network heavily, constantly transmitting and receiving several
hundreds of Mbps data on average all the time [38]. Such a traffic pattern matches the
common inflow rate in today’s datacenters serving a variety of applications, such as video
and job-task managers [41,52].

The dispersion pattern in the simulation was based on the observation that traffic is
either rack-distributed or destined for one ≈ 1%−10% of the hosts, spread across most
of the source’s cluster (tens of racks) [45, 66]. The inter-rack demand per host was set to
approximately 150 Mbps, based on [38].

Chopin’s optical circuits throughput is analyzed w.r.t.:
Different flow traffic distributions (HULL, VL2 and pFabric).
Different scheduler policies: all-distributed/-centralized, and in-between (varying threshold
α levels).

We found that each flow size distribution has special properties, with respect to flow
length and flow size variance. These properties have a significant influence on the performance
of both the centralized and the distributed scheduler:

The HULL flow distribution is a Pareto distribution where almost all flows are mice5

(< 10KB). Moreover, flow variance is low. Therefore, the centralized scheduler throughput
is low, as there are not many elephant flows, and the differences between the flow carried
by the optical links is small compared to the others.

5 We define mice and elephant flows based on the distinction made by [10].

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:13

Table 2 Throughput ratio for optical degree 4.

Distribution HULL pFabric VL2
Mean Low (100 KB) Medium (1.7MB) High (12 MB)
Variance Low Medium High
Centralized perf. 0.42 0.7 0.77
Distributed perf. 0.49 0.75 0.77
Chopin 0.5 0.76 0.78

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(c) VL2.

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 6 Comparison between Chopin and the centralized scheduler under different traffic patterns
(generated by scaling realistic flow size distributions and Poisson flow arrival times under different
rates), when the optical ToR switch’s connectivity is 4. The color represents the ratio between the
optical throughput of Chopin and the centralized scheduler. As the blue cells become darker, Chopin
more strongly outperforms the centralized scheduler.

The VL2 distribution creates many elephant flows, with high variance. Therefore, the
centralized scheduler can optimize the traffic and the distributed scheduler can make
decisions which improves the throughput through the optical circuits.
The pFabric distribution includes some elephant flows (but medium mean). With medium
variance the distributed scheduler operates as for VL2, but centralized is slightly less
effective, due to shorter flows.

The properties of these traffic patterns and their impact on the scheduler performance are
described in Table 2, for an optical degree of 4. Notice that Hull, as a Pareto distribution
with α = 1.05, mean=100KB [3] has unbounded variance. pFabric has mean value of
approximately 1.7 MB [51] and variance of 3.9MB, and VL2 [32] has mean value of 12 MB
with variance of 85MB.

6.2 Scheduler Implementation
The Chopin scheduler consists of centralized scheduler and distributed scheduler. The
centralized, described in Section 4, aims to find a Maximum Weight Matching (MWM)
solution.

However, due to its complexity, especially as the optical degree (k) increases, the central-
ized scheduler suffers from large running times. In order to reduce delays, two approximations
were introduced. First, MWM with degree k is computed as an iterative Edmond’s MWM
algorithm. Second, the centralized scheduler considers only the top-m live flows per ToR
switch (instead of all possible pairs between the n nodes). We found top-5 MWM running
time to be within 1% of the MWM over all pairs, since MWM complexity (which is the core
of our b-matching solution) scales linearly with the number of to-be-matched edges.

OPODIS 2022

25:14 Chopin: Combining Distributed and Centralized Schedulers

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(c) VL2.

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 7 Comparison between Chopin and the distributed scheduler under the same settings as in
Fig. 6. The color represents the ratio between the optical throughput of Chopin and the distributed
scheduler. As the blue cells become darker, Chopin more strongly outperforms the distributed
scheduler.

Moreover, as each node reports only its top-5 nodes to the controller, the report can be
sent by a single 200 bit packet. Considering 100 switches reporting to a controller with 1Gbps
network card, and control plane latency of 0.05 ms, all reports can be sent within 0.07 ms.
The reconfiguration commands (for at most 4 links per ToR switch) will have similar latency.

Lastly, we consider the actual update time of the switch internal configuration after
the reconfiguration message arrives. However, it is considered as negligible, assuming an
optimized implementation with time complexity dominated by TCAM update time which is
approximately in the 0.025 ms range [43]. Therefore, the total reconfiguration latency based
on top-5 nodes can be bounded by 3 ms.

6.3 Scheduler Evaluation Benchmarks
We evaluate Chopin with respect to the following centralized and distributed schedulers.

Centralized schedulers are designed for long term datacenter flows. The realistic centralized
scheduler was analyzed through different values of the centralized scheduler epoch T , and
with delay ∆ equals to T . Namely, in the third epoch, the scheduler uses matching results
based on data collected in the first epoch, i.e., data from two epochs ago, recall Fig. 3
(characterized both centralized scheduler and Chopin centralized scheduler). Similarly to
Veisllari et al. [77], we consider an optimal scheduler, which runs MWM, with access to future
traffic knowledge. For each 1 ms interval it uses the optimal matching computed as MWM of
that interval. Therefore, it is an upper bound for datacenter performance.

We also consider an online optimal scheduler, which has no knowledge of the future but
it does not suffer from any delay. For each 1 ms interval it uses an allocation computed as
the MWM of the previous interval.

Distributed schedulers are designed for bursts and short datacenter flows. According to
Roy et al. [66], 90% of the time, 50% of the heavy flows change within 1 ms. Therefore,
the distributed scheduler should operate repeatedly in high frequency. Chopin’s distributed
scheduler is set to operate every 1 ms, which is the length of a time-slot in our model.
Furthermore, as in the centralized scheduler, both aggregation interval and delay (a and δ

respectively) are set to equal the time between two invocations (namely, 1 ms). In addition,
the performance of a distributed scheduler (unrelated to a centralized scheduler) with the
same properties was also analyzed. Moreover, as discussed in §5, a major factor of the Chopin
distributed scheduler is the threshold α, the level under which the centralized allocation can
be changed by the distributed scheduler.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:15

(a) HULL. (b) pFabric. (c) VL2.

Figure 8 Throughput through the optical circuits, for different optical degrees and flow size
distributions.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)
30

20

10

0

10

20

30

(c) VL2.

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 9 Comparison between Chopin and the online optimal scheduler under different traffic
patterns (each generated by scaling well-known realistic flow size distributions and assuming Poisson
flow arrival times under different rates), when the optical ToR switch’s connectivity is 4. As the red
cells become darker, the online optimal scheduler performs better than Chopin.

As the threshold decreases, Chopin’s performance is closer to a centralized scheduler.
Similarly, as the threshold increases, Chopin’s performance is closer to being distributed.
Therefore, we evaluate Chopin for different threshold levels, between 0.1 to 1.3, to capture
Chopin’s performance scheduling between distributed and centralized scheduling.

6.4 Centralized-Distributed Trade-off

How can we find an optimal tradeoff between the centralized scheduler, which provides
accurate solutions but relies on outdated information, and the distributed scheduler which
relies on more recent information but provides approximate solutions (due to locality)?

This trade-off was analyzed in two related ways: (i) optimal threshold, and (ii) optimal
reconfiguration number. The threshold α is the parameter which enables the distributed
scheduler to change the centralized matching, and therefore, to adapt the traffic changes in
small time intervals. For example, a circuit allocation between ToR pair with high throughput
on previous intervals, should be torn down if the flow rate reduces drastically. We found that
Chopin’s optimal threshold α is between ≈ 0.4 − 0.7, depending on the traffic pattern. For
the HULL traffic pattern, it achieves higher performance with α = 0.4, while for DCTCP
and VL2 traffic, the optimal threshold is approximately 0.7. Moreover, across this range, the
performance across all the traffic patterns were the highest, with low deviation.

OPODIS 2022

25:16 Chopin: Combining Distributed and Centralized Schedulers

6.5 On the Benefit of Hybrid Scheduling
To analyze Chopin’s (the hybrid scheduler) improvement over distributed and centralized
schedulers, we consider the optical throughput ratio. Fig. 6 and Fig. 7 describe Chopin’s
improvement ratio for each of the flow patterns, compared to centralized and distributed
schedulers (respectively), when considering a centralized compute epoch of 3 ms, see §6.2.

The results show that Chopin outperforms the centralized scheduler for every traffic
pattern. We found that Chopin’s optical throughput ratio is higher than the centralized
scheduler optical throughput ratio by up to 20% in the HULL distribution, 15% for pFabric
pattern, and 2% for datacenters with a VL2 flow size distribution (as shown in Fig. 6a).
Moreover, Chopin also achieves a higher throughput ratio compared to the distributed
scheduler across all traffic patterns. Specifically, Chopin increases the optical throughput
ratio of the distributed scheduler by up to 16% in the HULL distribution, 20% in the pFabric
and 23% in VL2 traffic (see Fig. 7b). Therefore, Chopin outperforms both centralized and
distributed schedulers.

6.6 Optical Degree Improvement
Next, we examine the improvement as a function of Chopin nodes’ optical degree. Therefore,
we have focused on the optimal threshold for each of the flow patterns, where the centralized
scheduler epoch is 3 ms, as discussed in Section 4.

Fig. 8 presents the ratio between the throughput through optical circuits to the overall
throughput (electrical and optical networks combined). This optical throughput ratio changes
with the optical degree and flow patterns, as shown in Fig. 8. In each flow pattern, all the
schedulers were considered. It is shown that as the degree increases, the throughput among
all the schedulers improved, and that Chopin’s throughput is higher than both the centralized
and the distributed schedulers. Moreover, as the number of elephant flows increases (as in
VL2), Chopin’s throughput is getting closer to the optimal. It is consistent with Chopin’s
aim to carry elephant flows over optical circuits. Therefore, flow patterns with high number
of elephant flows benefit more from using Chopin.

6.7 Chopin VS Online Optimal Scheduler
We compared between Chopin performance, and online optimal scheduler performance (where
centralized updates are being sent to Chopin nodes every 1 ms instead of 3 ms respectively).
Fig. 9 shows that even if Chopin’s centralized scheduler updates were sent every 1 ms (such
as in the online optimal scheduler), there is no significant improvement for the V L2 flow
pattern (see Fig. 9c). In other words, Chopin is closer to the optimal scheduler as the flows
become larger, because as the mean flow is longer, the changes over small time intervals (such
as 1 ms) become minor. Therefore, in these cases, the added value of high frequent scheduling
updates, even with the “future” information (as in the optimal scheduler), decreases. Chopin
can benefit from higher frequent centralized updates mostly in HULL distribution, (where
the flows are usually shorter), by approximately 20%.

6.8 Sensitivity Analysis
We further analyzed our results by considering different sizes of networks, e.g. with 100 ToR
switches and for 160 ToR switches, where there are 10 hosts per ToR switch, and for different
rates per host (100–600 Mbps). Across all the networks that were examined, for each of the
traffic patterns, we observe that on certain conditions the distributed scheduler outperforms

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:17

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

Figure 10 Comparison between centralized and distributed schedulers, as in Fig. 1, but with 160
ToR switches. For brevity we only present pFabric results.

the centralized scheduler and vice versa, with respect to higher optical throughput. For
instance, see the heatmap for a network with 160 ToR switches, each with an optical degree
of 4 connections, under the pFabric traffic pattern in Fig. 10. It shows that under the pFabric
distribution, when the mean flow is larger than 5 MB, the centralized scheduler achieves
higher performance compared to the distributed one. This phenomenon was also observed
for the 80 ToR network, as in Fig. 1b.

Moreover, Chopin’s performance can scale. We demonstrate its effectiveness over a
concrete network topology (specified in Section 6.1), but faster links with higher demand
will create the same bottleneck and resolve with Chopin in the same way.

7 Conclusion

Chopin aims to combine the benefits of centralized scheduling with distributed scheduling, to
provide high throughput and fast reaction. While centralized and distributed scheduling has
also been combined in all-static non-hybrid networks, e.g., Facebook’s Express Backbone [42],
hybrid networks with optical circuits pose structurally different challenges. In particular, we
find that distributed decisions benefit from being closer in time to the measurements they
are based on, which is more critical than the rate of decisions.

We believe that our work opens several interesting avenues for future research. In
particular, while we achieve significant performance gains, our approach is more complex
than the state-of-the-art and it would be useful to simplify it further. Furthermore, our
distributed schedulers use the same threshold for all nodes as a homogeneous strategy. While
this succinct representation is sufficient for the settings described in this paper, it can be
interesting to explore heterogeneity, e.g., to increase the threshold on very congested racks.
Finally, the trade-off between an elephant flow’s duration and the time before it starts to
route through optical circuits can be considered for future optimization.

References

1 Mohammad Alizadeh. Empirical traffic generator. Cisco DC Repositories, 2015.
2 Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,

Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In ACM
SIGCOMM, 2010.

3 Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and
Masato Yasuda. Less is more: Trading a little bandwidth for ultra-low latency in the data
center. In NSDI. USENIX Association, 2012.

4 Richard P. Anstee. A polynomial algorithm for b-matchings: An alternative approach. Inf.
Process. Lett., 24(3):153–157, 1987.

OPODIS 2022

25:18 Chopin: Combining Distributed and Centralized Schedulers

5 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. Shortest paths in a hybrid network model. In SODA, pages 1280–1299. SIAM,
2020.

6 Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the complexity of traffic
traces and implications. In Proc. ACM SIGMETRICS, 2020.

7 Navid Hamed Azimi, Zafar Ayyub Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: a reconfigurable wireless data center
fabric using free-space optics. In SIGCOMM. ACM, 2014.

8 Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István Haller, Krzysztof
Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh Williams. Sirius:
A flat datacenter network with nanosecond optical switching. In SIGCOMM, pages 782–797.
ACM, 2020.

9 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM,
68(5):39:1–39:30, 2021.

10 T. Benson, A. Akella, and D.A. Maltz. Network traffic characteristics of data centers in the
wild. In ACM IMC, pages 267–280, 2010.

11 André Berger, James Gross, Tobias Harks, and Simon Tenbusch. Constrained resource
assignments: Fast algorithms and applications in wireless networks. Management Science, 62,
November 2015.

12 Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter network topology.
In IEEE SC, pages 348–359, 2014.

13 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic dynamic
matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020.

14 Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao, and Shan
Zhong. Enabling wide-spread communications on optical fabric with megaswitch. In USENIX
NDSI, 2017.

15 Charles Clos. A study of non-blocking switching network. Bell System Technology Journal,
32(2):406–424, 1953.

16 Shibsankar Das. A modified decomposition algorithm for maximum weight bipartite matching
and its experimental evaluation. Sci. Ann. Comput. Sci., 30(1):39–67, 2020.

17 Sushovan Das, Afsaneh Rahbar, Xinyu Crystal Wu, Zhuang Wang, Weitao Wang, Ang Chen,
and T. S. Eugene Ng. Shufflecast: An optical, data-rate agnostic, and low-power multicast
architecture for next-generation compute clusters. IEEE/ACM Trans. Netw., 30(5):1970–1985,
2022.

18 Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel. Hawk: Hybrid
datacenter scheduling. In USENIX ATC, 2015.

19 Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade, Manya Ghobadi, Ratul Mahajan,
and Amar Phanishayee. Stable matching algorithm for an agile reconfigurable data center
interconnect. Technical Report 2016-1140, MSR, June 2016.

20 Fahad Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron. Decentralized
task-aware scheduling for data center networks. ACM SIGCOMM CCR, 44, August 2014.

21 N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and
A. Vahdat. A multiport microsecond optical circuit switch for data center networking. IEEE
Phot. Techn. L., 25(16):1589–92, August 2013.

22 Nathan Farrington, Alex Forencich, Pang-Chen Sun, Shaya Fainman, Joe Ford, Amin Vahdat,
George Porter, and George C. Papen. A 10 us hybrid optical-circuit/electrical-packet network
for datacenters. In OFC/NFOEC. OSA, 2013.

23 Nathan Farrington, George Porter, Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Hunting mice with microsecond circuit switches. In ACM HotNets, 2012.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:19

24 Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: a hybrid
electrical/optical switch architecture for modular data centers. In SIGCOMM. ACM, 2010.

25 Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu. Efficient non-
segregated routing for reconfigurable demand-aware networks. Comput. Commun., 164:138–147,
2020.

26 Klaus-Tycho Foerster, Maciej Pacut, and Stefan Schmid. On the complexity of non-segregated
routing in reconfigurable data center architectures. Comput. Commun. Rev., 49(2):2–8, 2019.

27 Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center networks:
Enablers, algorithms, complexity. SIGACT News, 50(2):62–79, 2019.

28 Harold N. Gabow. Data structures for weighted matching and extensions to b-matching and
f -factors. ACM Trans. Algorithms, 14(3):39:1–39:80, 2018.

29 Zvi Galil. Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv.,
18(1):23–38, March 1986.

30 Manya Ghobadi, Ratul Mahajan, Amar Phanishayee, Pierre-Alexandre Blanche, Houman
Rastegarfar, Madeleine Glick, and Daniel Kilper. Design of mirror assembly for an agile
reconfigurable data center interconnect. Technical Report 2016-1139, MSR, June 2016.

31 Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janardhan Kulkarni,
Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar, Madeleine Glick, and Daniel
Kilper. Projector: Agile reconfigurable data center interconnect. In ACM SIGCOMM, pages
216–229, 2016.

32 A. Greenberg, J. R. Hamilton, N. Jain, S.Kandula, C.Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data center network. ACM SIGCOMM, 39(4):51–62,
2009.

33 A. Grieco, G. Porter, and Y. Fainman. Integrated space-division multiplexer for application
to data center networks. IEEE J. Sel. Top. Quant. El., 22(6), 2016.

34 Chen Griner, Stefan Schmid, and Chen Avin. Cachenet: Leveraging the principle of locality in
reconfigurable network design. Computer Networks, 204:108648, 2022.

35 Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen
Avin. Cerberus: The power of choices in datacenter topology design - A throughput perspective.
Proc. ACM Meas. Anal. Comput. Syst., 5(3):38:1–38:33, 2021.

36 Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
A survey of reconfigurable optical networks. Opt. Switch. Netw., 41:100621, 2021.

37 Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall.
Augmenting data center networks with multi-gigabit wireless links. In SIGCOMM, pages
38–49. ACM, 2011.

38 Y. Han, J.H. Yoo, and J.W.K. Hong. Poisson shot-noise process based flow-level traffic matrix
generation for data center networks. In IFIP/IEEE IM, May 2015.

39 Kathrin Hanauer, Monika Henzinger, Stefan Schmid, and Jonathan Trummer. Fast and heavy
disjoint weighted matchings for demand-aware datacenter topologies. In INFOCOM, pages
1649–1658. IEEE, 2022.

40 Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan Prakash, Aditya
Akella, Li Erran Li, and Marina Thottan. Measuring control plane latency in sdn-enabled
switches. In ACM SIGCOMM, SOSR ’15, pages 25:1–25:6, 2015.

41 Netflix help center. Internet connection speed recommendations, 2018. URL: https://help.
netflix.com/en/node/306.

42 Mikel Jimenez and Henry Kwik. Building Express Backbone: Facebook’s new long-
haul network, May 2017. URL: https://engineering.fb.com/data-center-engineering/
building-express-backbone-facebook-s-new-long-haul-network/.

43 Mikel Jimenez and Henry Kwik. Ternary Content Addressable Memory (TCAM) Search IP for
SDNet - SmartCORE IP Product Guide. Technical report, Xilinx, November 2017. URL: https:
//www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf.

OPODIS 2022

https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf

25:20 Chopin: Combining Distributed and Centralized Schedulers

44 S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. In ACM
HotNets, 2009.

45 S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of data center
traffic: Measurements & analysis. In ACM IMC, pages 202–208, 2009.

46 Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla. Beyond
fat-trees without antennae, mirrors, and disco-balls. In SIGCOMM, pages 281–294. ACM,
2017.

47 Arif M. Khan, Alex Pothen, Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Naray-
anan Sundaram, Fredrik Manne, Mahantesh Halappanavar, and Pradeep Dubey. Efficient
approximation algorithms for weighted b-matching. SIAM J. Sci. Comput., 38(5), 2016.

48 Viatcheslav Korenwein. The practical power of data reduction for maximum-cardinality
matching. Masterthesis, TU Berlin, January 2018. Master thesis. URL: http://fpt.akt.
tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf.

49 M. Kuzniar, P. Peresini, and D. Kostic. What you need to know about sdn control and data
planes. Technical report, EPFL, 2014.

50 Adam N. Letchford, Gerhard Reinelt, and Dirk Oliver Theis. Odd minimum cut sets and
b-matchings revisited. SIAM J. Discret. Math., 22(4):1480–1487, 2008.

51 Z. Li, W. Bai, K. Chen, D. Han, Y. Zhang, D. Li, and H. Yu. Rate-aware flow scheduling
for commodity data center networks. In IEEE INFOCOM, pages 1–9, 2017. doi:10.1109/
INFOCOM.2017.8057082.

52 Xiao Ling, Yi Yuan, Dan Wang, Jiangchuan Liu, and Jiahai Yang. Joint scheduling of
mapreduce jobs with servers. J. Parallel Distrib. Comput., 90(C):52–66, April 2016.

53 He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George
Papen, Alex C. Snoeren, and George Porter. Circuit switching under the radar with reactor.
In USENIX NSDI, pages 1–15, April 2014.

54 He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George
Papen, Alex C. Snoeren, and George Porter. Circuit switching under the radar with reactor.
In USENIX NSDI, pages 1–15, 2014.

55 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
J. ACM, 62(5):38:1–38:17, 2015.

56 Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. Distributed approximate matching. SIAM J.
Comput., 39(2):445–460, 2009.

57 Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu. Optimizing multicast flows
in high-bandwidth reconfigurable datacenter networks. J. Netw. Comput. Appl., 203:103399,
2022.

58 William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren, and George
Porter. Expanding across time to deliver bandwidth efficiency and low latency . In NSDI.
USENIX Association, 2020.

59 William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen, Alex C.
Snoeren, and George Porter. Rotornet: A scalable, low-complexity, optical datacenter network.
In SIGCOMM. ACM, 2017.

60 Alizadeh Mohammad, Yang Shuang, Sharif Milad, Katti Sachin, McKeown Nick, Prabhakar
Balaji, and Shenker Scott. pfabric: Minimal near-optimal datacenter transport. ACM
SIGCOMM, 43(4):435–446, 2013.

61 Matthias Müller-Hannemann and Alexander Schwartz. Implementing weighted b-matching
algorithms: Insights from a computational study. ACM Journal of Experimental Algorithmics,
5:8, 2000.

62 George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-Sun, Tajana
Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond circuit
switching into the data center. ACM SIGCOMM, 43(4):447–458, 2013.

http://fpt.akt.tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf
http://fpt.akt.tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf
https://doi.org/10.1109/INFOCOM.2017.8057082
https://doi.org/10.1109/INFOCOM.2017.8057082

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:21

63 George Porter, Richard D. Strong, Nathan Farrington, Alex Forencich, Pang-Chen Sun, Tajana
Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond circuit
switching into the data center. In SIGCOMM, pages 447–458. ACM, 2013.

64 Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muhammad Mukarram Bin
Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve D. Gribble, Rishi
Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir
Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou,
and Amin Vahdat. Jupiter evolving: transforming google’s datacenter network via optical
circuit switches and software-defined networking. In SIGCOMM, pages 66–85. ACM, 2022.

65 Y. Qiao, Z. Hu, and J. Luo. Efficient traffic matrix estimation for data center networks. In
IFIP Networking, pages 1–9, May 2013.

66 Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside the
social network’s (datacenter) network. In SIGCOMM. ACM, 2015.

67 Neta Rozen-Schiff, David Hay, Stefan Schmid, and Klaus-Tycho Foerster. Chopin imple-
mentation code. https://bitbucket.org/NetaRS/sched_analytics/src/master/, October
2020.

68 Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler,
and Zvi Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw.,
24(3):1421–1433, 2016.

69 Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. Jellyfish: Networking
data centers, randomly. In USENIX NSDI, volume 12, 2012.

70 Ankit Singla, Atul Singh, and Yan Chen. OSA: An optical switching architecture for data
center networks with unprecedented flexibility. In USENIX NSDI, 2012.

71 T. A. Strasser and J. L. Wagener. Wavelength-selective switches for roadm applications. IEEE
J. Sel. Top. Quant. El., 16(5), 2010.

72 Xiaoye Steven Sun and T. S. Eugene Ng. When creek meets river: Exploiting high-bandwidth
circuit switch in scheduling multicast data. In ICNP, pages 1–6. IEEE Computer Society,
2017.

73 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
74 Akhilesh S. Thyagaturu, Anu Mercian, Michael P. McGarry, Martin Reisslein, and Wolfgang

Kellerer. Software defined optical networks (sdons): A comprehensive survey. IEEE Commun.
Surv. Tutorials, 18(4):2738–2786, 2016.

75 Gerard J Tortora and Bryan H Derrickson. Principles of anatomy and physiology. John Wiley
& Sons, 2018.

76 Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander: Towards
optimal-performance datacenters. In ACM CoNEXT, 2016.

77 R. Veisllari, S. Bjornstad, and N. Stol. Scheduling techniques in an integrated hybrid node
with electronic buffers. In ONDM, April 2012.

78 Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath. Costly
circuits, submodular schedules and approximate carathéodory theorems. In SIGMETRICS.
ACM, 2016.

79 Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T. S. Eugene
Ng, Michael Kozuch, and Michael P. Ryan. c-through: part-time optics in data centers. In
SIGCOMM, pages 327–338. ACM, 2010.

80 Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Dingming Wu, Xin Sunny Huang,
and T. S. Eugene Ng. A tale of two topologies: Exploring convertible data center network
architectures with flat-tree. In SIGCOMM, pages 295–308. ACM, 2017.

81 Bing Xiong, Kun Yang, Jinyuan Zhao, Wei Li, and Keqin Li. Performance evaluation
of openflow-based software-defined networks based on queueing model. Comput. Netw.,
102(C):172–185, 2016.

OPODIS 2022

https://bitbucket.org/NetaRS/sched_analytics/src/master/

25:22 Chopin: Combining Distributed and Centralized Schedulers

82 Haining Yang, Brian Robertson, Peter Wilkinson, and Daping Chu. Low-cost cdc roadm
architecture based on stacked wavelength selective switches. J. Opt. Commun. Netw., 9(5):375–
384, May 2017.

83 Johannes Zerwas, Chen Avin, Stefan Schmid, and Andreas Blenk. Exrec: Experimental
framework for reconfigurable networks based on off-the-shelf hardware. In ANCS, pages 66–72.
ACM, 2021.

84 Johannes Zerwas, Wolfgang Kellerer, and Andreas Blenk. What you need to know about
optical circuit reconfigurations in datacenter networks. In ITC, pages 1–9. IEEE, 2021.

85 Danyang Zhuo, Qiao Zhang, Vincent Liu, Arvind Krishnamurthy, and Thomas Anderson.
Rack-level congestion control. In ACM HotNets, 2016.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 25:23

A Chopin’s Distributed Scheduler Algorithm

In Algorithm 1, we provide the pseudo-code of Chopin’s distributed algorithm.

Algorithm 1 Chopin Distributed Algorithm Code for Node i.
max_reqs : The number of allowed requests per ToR switch
cur_nodes : The nodes currently connected with i

centralized_nodes : The nodes matched to i by the centralized scheduler in its last invocation
received_reqs ← ∅

Upon the beginning of a distributed scheduler epoch:
1: function start:
2: matched_nodes ← ∅
3: for p ∈ (cur_nodes ∩ centralized_nodes) do
4: if ri,p ≥ α ·Ri,p then
5: matched_nodes.add(p)
6: req_nodes ← ([n] \ {i}) \matched_nodes ▷ n denotes the

number of Chopin nodes in the network
7: req_nodes ← get_top_nodes(req_nodes,max_reqs)

▷ Top max_reqs nodes, out of req_nodes, with
the most bi-directional traffic with ToR switch i.

8: grants ← ∅; denies ← ∅
9: send_requests(req_nodes) ▷ Send request to all

nodes in req_nodes.
Upon receiving a request message from src_id:
10: function request_handler(src_id):
11: received_reqs.add(src_id)
Upon a timeout event (implying the request phase has ended):
12: function request_timeout_handler:
13: nodes ← req_nodes ∩ received_reqs
14: free_links ← k - |matched_nodes|
15: granted ← get_top_nodes(nodes, free_links)
16: rejected ← received_reqs \ granted
17: send_denies(rejected) ▷ Send deny message to all

nodes in rejected set.
18: send_grants(granted) ▷ Send grant message to

all nodes in granted set.
19: grant_sent ← true
20: try_execute_decisions()
Upon receiving a grant message from src_id:
21: function grant_handler(src_id):
22: grants.add(src_id)
23: try_execute_decisions()

Upon receiving a deny message from src_id:
24: function deny_handler(src_id):
25: denies.add(src_id)
26: try_execute_decisions()

27: function try_execute_decisions:
28: if denies∪grants̸= req_nodes or not grant_sent then
29: return ▷ Not all grant/deny were received
30: new_nodes←granted ∩ grants
31: for p∈(cur_nodes\ new_nodes)\matched_nodes do
32: disconnect(p)
33: for p ∈(new_nodes\cur_nodes\ matched_nodes) do
34: connect(p)
35: received_reqs ← ∅; grant_sent←false

OPODIS 2022

A Modular Approach to Construct Signature-Free
BRB Algorithms Under a Message Adversary
Timothé Albouy !

Univ Rennes, Inria, CNRS, IRISA, France

Davide Frey !

Univ Rennes, Inria, CNRS, IRISA, France

Michel Raynal !

Univ Rennes, Inria, CNRS, IRISA, France

François Taïani !

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
This paper explores how reliable broadcast can be implemented without signatures when facing a
dual adversary that can both corrupt processes and remove messages. More precisely, we consider an
asynchronous n-process message-passing system in which up to t processes are Byzantine and where,
at the network level, for each message broadcast by a correct process, an adversary can prevent
up to d processes from receiving it (the integer d defines the power of the message adversary). So,
unlike previous works, this work considers that not only can computing entities be faulty (Byzantine
processes), but, in addition, that the network can also lose messages. To this end, the paper
adopts a modular strategy and first introduces a new basic communication abstraction denoted
k2ℓ-cast, which simplifies quorum engineering, and studies its properties in this new adversarial
context. Then, the paper deconstructs existing signature-free Byzantine-tolerant asynchronous
broadcast algorithms and, with the help of the k2ℓ-cast communication abstraction, reconstructs
versions of them that tolerate both Byzantine processes and message adversaries. Interestingly, these
reconstructed algorithms are also more efficient than the Byzantine-tolerant-only algorithms from
which they originate.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asynchronous system, Byzantine processes, Communication abstraction, De-
livery predicate, Fault-Tolerance, Forwarding predicate, Message adversary, Message loss, Modularity,
Quorum, Reliable broadcast, Signature-free algorithm, Two-phase commit

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.26

Related Version Full Version: https://arxiv.org/abs/2204.13388

Funding This work has been partially supported by the French ANR projects ByBloS (ANR-20-
CE25-0002-01) and PriCLeSS (ANR-10-LABX-07-81) devoted to the design of modular distributed
computing building blocks.

1 Introduction

Context: reliable broadcast and message adversaries. Reliable broadcast (RB) is a
fundamental abstraction in distributed computing that lies at the core of many higher-level
constructions (including distributed memories, distributed agreement, and state machine
replication). Essentially, RB requires that non-faulty (i.e., correct) processes agree on the
set of messages they deliver so that this set includes at least all the messages that correct
processes have broadcast.

© Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 26; pp. 26:1–26:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothe.albouy@irisa.fr
mailto:davide.frey@inria.fr
mailto:michel.raynal@irisa.fr
mailto:francois.taiani@irisa.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.26
https://arxiv.org/abs/2204.13388
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Signature-Free BRB Algorithms Under a Message Adversary

In a failure-free system, implementing reliable broadcast on top of an asynchronous
network is relatively straightforward [27]. If processes may fail, and in particular if failed
processes may behave arbitrarily (a failure known as Byzantine [21, 26]), implementing
reliable broadcast becomes far from trivial as Byzantine processes may collude to fool correct
processes [29]. An algorithm that solves reliable broadcast in the presence of Byzantine
processes is known as implementing BRB (Byzantine reliable broadcast).

BRB in asynchronous networks (in which no bound is known over message delays) has
been extensively studied over the last forty years [1, 2, 7, 11, 12, 18, 20, 23, 22, 25, 29].
Existing BRB algorithms typically assume they execute over a reliable point-to-point network,
i.e., a network in which sent messages are eventually received. This is a reasonable assumption
as most unreliable networks can be made reliable using re-transmissions and acknowledgments
(e.g. a timeout-free version of the TCP protocol).

This work takes a drastic turn away from this usual assumption and explores how BRB
might be provided when processes execute on an unreliable network that might lose point-
to-point messages. Our motivation is threefold: First, in volatile networks (e.g., mobile
networks or networks under attack), processes might remain disconnected over long periods
(e.g., weeks or months), leading in practice to considerable delays (a.k.a. tail latencies) when
using re-transmissions. Because most asynchronous Byzantine-tolerant algorithms exploit
intersecting quorums, these tail latencies can potentially limit the performance of BRB
algorithms drastically, a well-known phenomenon in systems research [14, 15, 34]. Second,
re-transmissions require that correct processes be eventually able to receive messages and
cannot, therefore, model the permanent disconnection of correct processes. Finally, this
question is interesting in its own right, as it opens up novel trade-offs between algorithm
guarantees and network requirements, with potential application to the design of reactive
distributed algorithms tolerant to both processes and network failures.

The impact of network faults on distributed algorithms has been studied in several works,
in particular using the concept of message adversaries (MA). Message adversaries were initially
introduced by N. Santoro and P. Widmayer in [31, 32]1, and then used (sometimes implicitly)
in many works (e.g., [4, 3, 13, 17, 30, 28, 32, 33]). Initially proposed for synchronous networks,
an MA may suppress point-to-point network messages according to rules that define its
power. For instance, a tree MA in a synchronous network might suppress any message except
those transiting on an (unknown) spanning tree of the network, with this spanning tree
possibly changing in each round.

The message losses that an MA causes differ fundamentally from Byzantine faults. This
is because an MA can affect the messages sent by any correct process, and can change the
processes it targets during an execution, in contrast to Byzantine corruptions that are tied to
a set of fixed processes (which is why MA faults are sometimes dubbed transient or mobile).
For instance, it may be tempting to think that Byzantine-fault-tolerant (BFT) algorithms
inherently tolerate message losses from correct processes because they can only afford to wait
for at most n − t messages (where n is the total number of processes, and t the upper bound
on Byzantine processes). In an asynchronous network, a BFT algorithm could therefore
miss up to t messages from correct processes, if those are delayed by the scheduler. This
scenario only applies, however, in the particular circumstance where the t faulty processes

1 Where the terminology communication failure model and ubiquitous faults is used instead of MA. While
we consider only message losses, the work of Santoro and Widmayer also considers message additions
and corruptions.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:3

send messages that are received and accepted as valid by correct recipients. This caveat is
fundamental. If the faulty processes remain silent or send contradicting messages (if they are
Byzantine), then a BFT algorithm cannot afford to lose t messages from correct processes.

Content of the paper. This paper combines a Message Adversary with Byzantine processes,
and studies the signature-free implementation of Byzantine Reliable Broadcast (BRB) in
an asynchronous, fully connected network subject to this MA and to at most t Byzantine
faults. The MA models lossy connections by preventing up to d point-to-point messages from
reaching their recipient every time a correct process seeks to communicate with the rest of
the network.2

To limit as much as possible our working assumptions, we further assume that the
computability power of the adversary is unbounded (except for the cryptography-based
algorithm presented in Section 6), which precludes the use of signatures. (We do assume,
however, that each point-to-point communication channel is authenticated.)3

This represents a particularly challenging environment, as the MA may target different
correct processes every time the network is used or focus indefinitely on the same (correct)
victims. Further, the Byzantine processes may collude with the MA for maximal impact.

For clarity, in the remainder of the paper, we simply call messages the point-to-point
network messages used internally by a BRB algorithm. (The MA may suppress these
messages.) We distinguish these messages from the messages the BRB algorithm seeks
to disseminate, which we call “application messages” (app-messages for short). In such a
context, the paper presents the following results.

It first introduces a new modular abstraction, named k2ℓ-cast, which appears to be a
foundational building block to implement BRB abstractions (with or without the presence
of an MA). This communication abstraction systematically dissociates the predicate
used to forward (network) messages from the predicate that triggers the delivery of an
app-message, and lies at the heart of the work presented in the paper. When proving the
k2ℓ-cast communication abstraction, the paper presents an in-depth analysis of the power
of an adversary that controls at most t Byzantine processes and an MA of power d.
Then, the paper deconstructs two signature-free BRB algorithms (Bracha’s [11] and
Imbs and Raynal’s [20] algorithms) and reconstructs versions of them that tolerate both
Byzantine processes and MA. Interestingly, when considering Byzantine failures only,
these deconstructed versions use smaller quorum sizes and are, therefore, more efficient
than their initial counterparts.

So, this paper is not only the first to present signature-free BRB algorithms in the
context of asynchrony and MA but also the first to propose an intermediary communication
abstraction that allows us to obtain efficient BRB algorithms. For clarity, we give in Table 1
the list of acronyms and notations used in this paper.

Roadmap. The paper is composed of 7 sections and one appendix. Section 2 describes the
underlying computing model. Section 3 presents the k2ℓ-cast abstraction and its properties.
Section 4 defines the MA-tolerant BRB communication abstraction. Section 5 shows that

2 A close but different notion was introduced by Dolev in [16], which considers static κ-connected networks.
If the adversary selects statically, for each correct sender, d correct processes that do not receive any of
this sender’s messages, the proposed model includes Dolev’s model where κ = n− d.

3 Let us mention that the problem of designing an MA-tolerant BRB has been solved in [4] by leveraging
digital signatures within a monolithic algorithm. Finding a signature-free counterpart remained, however,
an open question, which we answer positively in this paper using a modular strategy.

OPODIS 2022

26:4 Signature-Free BRB Algorithms Under a Message Adversary

Table 1 Acronyms and notations.

Acronyms Meaning
BRB Byzantine-tolerant reliable broadcast
MA Message adversary

MBRB Message adversary- and Byzantine-tolerant reliable broadcast
Notations Meaning

n total nb of processes in the network
t upper bound on the nb of Byzantine processes
d power of the message adversary
c effective nb of correct processes in a run (n− t ≤ c ≤ n)
k minimal nb of correct processes that k2ℓ-cast a message
ℓ minimal nb of correct processes that k2ℓ-deliver a message
k′ minimal nb of correct k2ℓ-casts if there is a correct k2ℓ-delivery
δ true iff no-duplicity is guaranteed, false otherwise
qd size of the k2ℓ-delivery quorum
qf size of the forwarding quorum

single true iff only a single message can be endorsed, false otherwise

thanks to the k2ℓ-cast abstraction, existing BRB algorithms can give rise to MA-tolerant BRB
algorithms which, when d = 0, are more efficient than the BRB algorithms they originate
from. Section 6 presents a signature-based implementation of k2ℓ-cast that possesses optimal
guarantees. Finally, Section 7 concludes the paper. Due to page limitations, some proofs
and a numerical evaluation of the k2ℓ-cast abstraction are presented in appendices of this
paper and its extended version [5].

2 Computing Model

Process model. The system is composed of n asynchronous sequential processes denoted
p1, ..., pn. Each process pi has a distinct identity, known to other processes. For simplicity
and without loss of generality, we assume that i is the identity of pi.

In terms of faults, up to t ≥ 0 processes can be Byzantine, where a Byzantine process is a
process whose behavior does not follow the code specified by its algorithm [21, 26]. Byzantine
processes may collude to fool non-Byzantine processes (also called correct processes). In
this model, the premature stop (crash) of a process is a Byzantine failure. In the following,
given an execution, c denotes the effective number of processes that behave correctly in that
execution. We always have n − t ≤ c ≤ n. While this number remains unknown to correct
processes, it is used to analyze and characterize (more precisely than using its worse value
n − t) the guarantees provided by the proposed algorithms.

Finally, the processes have no access to random numbers, and their computability power is
unbounded. Hence, the algorithms presented in the paper are deterministic and signature-free
(except the signature-based algorithm presented in Section 6).

Communication model. Processes communicate by exchanging messages through a fully
connected asynchronous point-to-point network, assumed to be reliable in the sense it neither
corrupts, duplicates, nor creates messages. As far as messages losses are concerned, the
network is under the control of an adversary (see below) that can suppress messages.

Let msg be a message type and v the associated value. A process can invoke the best-effort
broadcast macro-operation denoted ur_broadcast(msg(v)), which is a shorthand for “for all
j ∈ {1, · · · , n} do send msg(v) to pj end for”. Correct processes are assumed to invoke

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:5

ur_broadcast to send messages. When they do, we say that the messages are ur-broadcast and
received. The operation ur_broadcast(msg(v)) is not reliable. For example, if the invoking
process crashes during its invocation, an arbitrary subset of processes receive the message
msg(v). Moreover, due to its very nature, a Byzantine process can send fake messages
without using the macro-operation ur_broadcast.

Message adversary. Let d be an integer constant such that 0 ≤ d < n − t. The communica-
tion network is controlled by an MA (as defined in Section 1), which eliminates messages
ur-broadcast by correct processes, so these messages are lost. More precisely, when a correct
process invokes ur_broadcast(msg(v)), the MA is allowed to arbitrarily suppress up to d

copies of the message msg(v) intended to correct processes4. This means that, although the
sender is correct, up to d correct processes may miss the message msg(v). The extreme case
d = 0 corresponds to the case where no message is lost.

As an example, let us consider a set D of correct processes, where 1 ≤ |D| ≤ d, such that
during some period of time, the MA suppresses all the messages sent to them. It follows
that, during this period of time, this set of processes appears as being input-disconnected
from the other correct processes. Note that the size and the content of D can vary with time
and are never known by the correct processes.

3 k2ℓ-Cast Abstraction

Signature-free BRB algorithms [9, 11, 20] often rely on successive waves of internal messages
(e.g. the echo or ready messages of Bracha’s algorithm [11]) to provide safety and liveness.
Each wave is characterized by a threshold-based predicate that triggers the algorithm’s next
phase when fulfilled (e.g. enough echo messages for the same app-message m).

In this section, we introduce, implement, and prove a new modular abstraction, called
k2ℓ-cast, that encapsulates a wave/thresholding mechanism that is both Byzantine- and MA-
tolerant. As previously announced, we then use this abstraction to reconstruct MA-tolerant
BRB algorithms in Section 5 from two existing BRB algorithms [11, 20].

3.1 Definition

k2ℓ-cast (for k-to-ℓ-cast) is a many-to-many communication abstraction5. Intuitively, it
relates the number k of correct processes that send a message m (we say that these processes
k2ℓ-cast m) with the number ℓ of correct processes that deliver m (we say that they k2ℓ-
deliver m). Both k and ℓ are subject to thresholding constraints: enough correct processes
must k2ℓ-cast a message for it to be k2ℓ-delivered at least once; and as soon as one (correct)
k2ℓ-delivery occurs, some minimal number of correct processes are guaranteed to k2ℓ-deliver
as well.

4 Note that this message adversary is not limited to algorithms that use the ur_broadcast macro-operation.
The same adversary can be equivalently defined for an operation ur_multicast that sends a message to
a dynamically defined subset of processes (be it multiple recipients or only one in the case of unicast),
by stipulating that the MA can still suppress up to d copies of this message. In this case, the most
robust way for correct processes to disseminate a message is to send it to all processes, i.e. to fall back
on a ur_broadcast operation.

5 An example of this family is the binary reliable broadcast introduced in [24], which is defined by specific
delivery properties – not including MA-tolerance – allowing binary consensus to be solved efficiently
with the help of a common coin.

OPODIS 2022

26:6 Signature-Free BRB Algorithms Under a Message Adversary

More formally, k2ℓ-cast is a multi-shot abstraction, i.e. each app-message m that is
k2ℓ-cast or k2ℓ-delivered is associated with an identity id. (Typically, such an identity is a
pair consisting of a process identity and a sequence number.) It provides two operations,
k2ℓ_cast and k2ℓ_deliver, whose behavior is defined by the values of four parameters: three
integers k′, k, ℓ, and a Boolean δ. This behavior is captured by the following six properties:

Safety:
k2ℓ-Validity. If a correct process pi k2ℓ-delivers an app-message m with identity id,
then at least k′ correct processes k2ℓ-cast m with identity id.
k2ℓ-No-duplication. A correct process k2ℓ-delivers at most one app-message m with
identity id.
k2ℓ-Conditional-no-duplicity. If the Boolean δ is true, then no two different
correct processes k2ℓ-deliver different app-messages with the same identity id.

Liveness6:
k2ℓ-Local-delivery. If at least k correct processes k2ℓ-cast an app-message m with
identity id and no correct process k2ℓ-casts an app-message m′ ̸= m with identity id,
then at least one correct process k2ℓ-delivers the app-message m with identity id.
k2ℓ-Weak-Global-delivery. If a correct process k2ℓ-delivers an app-message m

with identity id, then at least ℓ correct processes k2ℓ-deliver an app-message m′ with
identity id (each of them possibly different from m).
k2ℓ-Strong-Global-delivery. If a correct process k2ℓ-delivers an app-message m

with identity id, and no correct process k2ℓ-casts an app-message m′ ̸= m with identity
id, then at least ℓ correct processes k2ℓ-deliver the app-message m with identity id.

This specification is parameterized in the sense that each tuple (k′, k, ℓ, δ) defines a
specific communication abstraction with different guarantees. This versatility explains why
the k2ℓ-cast abstraction can be used to produce highly compact reconstructions of existing
BRB algorithms, rendering them MA-tolerant in the process (using four and three lines
of pseudo-code respectively, see Section 5). Despite this versatility, however, we will see
in Section 3.2 that k2ℓ-cast can be implemented using a single (parameterized) algorithm,
underscoring the fundamental commonalities of MA-tolerant BRB algorithms.

Intuitively, the parameters k′, k, and ℓ hobble the disruption power of the Byzantine/MA
adversary by setting limits on the number of correct processes that are either required or
guaranteed to be involved in one communication “wave” (corresponding to one identity id). k′

sets the minimal number of correct processes that must k2ℓ-cast for any k2ℓ-delivery to occur:
it thus limits the ability of the Byzantine/MA adversary to trigger spurious k2ℓ-deliveries.
The role of k is symmetrical. It guarantees that some k2ℓ-delivery will necessarily occur if
k correct processes k2ℓ-cast some message. It thus prevents the adversary from silencing
correct processes as soon as some critical mass of them participates. Finally, ℓ captures
a “quite-a-few-or-nothing” guarantee that mirrors the traditional “all-or-nothing” delivery
guarantee of traditional BRB. As soon as one correct k2ℓ-delivery occurs (for some identity
id), then ℓ correct processes must also k2ℓ-deliver (with the same identity).

The fourth parameter, δ, is a flag that when true enforces agreement between k2ℓ-
deliveries. When δ = true, the k2ℓ-Conditional-no-duplicity property implies that all
the app-messages m′ involved in the k2ℓ-Weak-Global-delivery property are equal to m.

6 The liveness properties comprise a local delivery property that provides a necessary condition for the
k2ℓ-delivery of an app-message by at least one correct process, and two global delivery properties that
consider the collective behavior of correct processes.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:7

Algorithm 1 Signature-free k2ℓ-cast (code for pi).

object SigFreeK2LCast(qd , qf , single) is
(1) operation k2ℓ_cast(m, id) is
(2) if

(
endorse(−, id) not already ur-broadcast

)
(3) then ur_broadcast(endorse(m, id))
(4) end if.
(5) when endorse(m, id) is received do

% forwarding step
(6) if

(
endorse(m, id) received from at least qf processes
∧

((
¬single ∧ endorse(m, id) not already ur-broadcast

)
∨ endorse(−, id) not already ur-broadcast

))
(7) then ur_broadcast(endorse(m, id))
(8) end if;

% delivery step
(9) if

(
endorse(m, id) received from at least qd processes
∧ (−, id) not already k2ℓ-delivered

)
(10) then k2ℓ_deliver(m, id)
(11) end if.
end object.

Underlying system
⟨n, t, d, c⟩

sf-k2ℓ-Assumptions 1-4

Implementation
⟨qd , qf , single⟩

Theorem 1

k2ℓ-cast object
⟨k′, k, ℓ, δ⟩

Figure 1 From the sys-
tem parameters to a k2ℓ-
cast implementation.

3.2 A Signature-Free Implementation of k2ℓ-Cast
Among the many possible ways of implementing k2ℓ-cast, this section presents a quorum-
based7 signature-free implementation8 of the abstraction. To overcome the disruption caused
by Byzantine processes and message losses from the MA, our algorithm uses the ur-broadcast
primitive (cf. our communication model in Sec. 2) to accumulate and forward endorse
messages before deciding whether to deliver. Forwarding and delivery are triggered by two
thresholds (a pattern also found, for instance, in Bracha’s BRB algorithm [11]):

A first threshold, qd , triggers the delivery of an app-message m when enough endorse
messages supporting m have been received.
A second threshold, qf , which is lower than qd, controls how endorse messages are
forwarded during the algorithm’s execution.

Forwarding, which is controlled by qf , amplifies how correct processes react to endorse
messages, and is instrumental to ensure the algorithm’s liveness. As soon as some critical
“mass” of agreeing endorse messages accumulates within the system, forwarding triggers
a chain reaction which guarantees that a minimum number of correct processes eventually
k2ℓ-deliver the corresponding app-message.

More concretely, our algorithm provides an object (SigFreeK2LCast, Alg. 1), instantiated
using the function SigFreeK2LCast(qd , qf , single), using three input parameters:

qd: the number of matching endorse messages that must be received from distinct
processes in order to k2ℓ-deliver an app-message.

7 In this paper, a quorum is a set of processes that (at the implementation level) ur-broadcast the same
message. This definition takes quorums in their ordinary sense. In a deliberative assembly, a quorum is
the minimum number of members that must vote the same way for an irrevocable decision to be taken.
Let us notice that this definition does not require quorum intersection. However, if quorums have a size
greater than n+t

2 , the intersection of any two quorums contains, despite Byzantine processes, at least
one correct process [11, 29].

8 Another k2ℓ-cast implementation, which uses digital signatures and allows to reach optimal values for k
and ℓ, is presented in Section 6.

OPODIS 2022

26:8 Signature-Free BRB Algorithms Under a Message Adversary

qf : the number of matching endorse messages that must be received from distinct
processes for the local pi to endorse the corresponding app-message (if it has not yet).
single: a Boolean that controls whether a given correct process can endorse different
app-messages for the same identity id (single = false), or not (single = true).

The algorithm provides the operations k2ℓ_cast and k2ℓ_deliver. Given an app-message
m with identity id, the operation k2ℓ_cast(m, id) ur-broadcasts endorse(m, id) provided
pi has not yet endorsed any different app-message for the same identity id (lines 2-4). When
pi receives a message endorse(m, id), its executes two steps. If the forwarding quorum qf
has been reached, pi first retransmits endorse(m, id) (Forwarding step, lines 6-8). Then, if
the k2ℓ-delivery quorum qd is attained, pi k2ℓ-delivers m (Delivery step, lines 9-11).

For brevity, we define α = n + qf − t − d − 1. Given an execution defined by the system
parameters n, t, d, and c, Alg. 1 requires the following assumptions to hold for the input
parameters qf and qd of a k2ℓ-cast instance (a global picture linking all parameters is
presented in Fig. 1). The prefix “sf” stands for signature-free.

sf-k2ℓ-Assumption 1: c − d ≥ qd ≥ qf + t ≥ 2t + 1,
sf-k2ℓ-Assumption 2: α2 − 4(qf − 1)(n − t) ≥ 0,
sf-k2ℓ-Assumption 3: α(qd − 1) − (qf − 1)(n − t) − (qd − 1)2 > 0,
sf-k2ℓ-Assumption 4: α(qd − 1 − t) − (qf − 1)(n − t) − (qd − 1 − t)2 ≥ 0.

In particular, the safety of Alg. 1 algorithm relies solely on sf-k2ℓ-Assumption 1, while
its liveness relies on all four of them. sf-k2ℓ-Assumption 2 through 4 constrain the solutions
of a second-degree inequality resulting from the combined action of the MA, the Byzantine
processes, and the message-forwarding behavior of Alg. 1. We show in the extended version
that, in practical cases, these assumptions can be satisfied by a bound of the form n >

λt + ξd + f(t, d), where λ, ξ ∈ N and f(t, 0) = f(0, d) = 0. Together, the assumptions allow
Alg. 1 to provide a k2ℓ-cast abstraction (with values of the parameters k′, k, ℓ, and δ defining
a specific k2ℓ-cast instance) as stated by the following theorem.

▶ Theorem 1 (k2ℓ-Correctness). If sf-k2ℓ-Assumptions 1–4 are verified, Alg. 1 implements
k2ℓ-cast with the following guarantees:

k2ℓ-Validity with k′ = qf − n + c,
k2ℓ-No-duplication,

k2ℓ-Conditional-no-duplicity with δ =
(

qf >
n + t

2

)
∨

(
single ∧ qd >

n + t

2

)
,

k2ℓ-Local-delivery with k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1,{

if single = false, k2ℓ-Weak-Global-delivery
if single = true, k2ℓ-Strong-Global-delivery

}
with ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
.

3.3 Proof of Algorithm 1
The proofs of the k2ℓ-cast safety properties stated in Theorem 1 (k2ℓ-Validity, k2ℓ-No-
duplication, and k2ℓ-Conditional-no-duplicity) are fairly straightforward. To save
space, these proofs are provided in the extended version.

The proofs of the k2ℓ-cast liveness properties (k2ℓ-Local-delivery, k2ℓ-Weak-Global-
delivery, k2ℓ-Strong-Global-delivery) are sketched informally below (Lemmas 2-10).
Their full development can be found in Appendix A.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:9

When seeking to violate the liveness properties of k2ℓ-cast, the attacker can use the MA
to control in part how many endorse messages are received by each correct process, thus
interfering with the quorum mechanisms defined by qd and qf . To analyze the joint effect
of this interference with Byzantine faults, our proofs consider seven well-chosen subsets of
correct processes (A, B, C, U , F , NF , and NB, depicted in Fig. 2a).

These subsets are defined for an execution of Alg. 1 in which kI correct processes k2ℓ-cast
(m, id) (the I in kI is for “Initial”), and ℓe correct processes receive at least qd message
endorse(m, id). The first three subsets, A, B, and C, partition correct processes based on
the number of endorse(m, id) messages they receive.

A contains the ℓe correct processes that receive at least qd endorse(m, id) messages (be
it from correct or from Byzantine processes), and thus k2ℓ-deliver some message.9
B contains the correct processes that receive at least qf but less than qd endorse(m, id)
messages and thus do not k2ℓ-deliver (m, id).
C contains the remaining correct processes that receive less than qf endorse(m, id)
messages. They neither forward nor deliver any message for identity id (since qf ≤ qd).

In our proofs, we count how many messages endorse(m, id) ur-broadcast by correct
processes are received by the processes of A (resp. B and C). We note these quantities wc

A,
wc

B , and wc
C , and use them to bootstrap our proofs using bounds on messages (see below).

The last four subsets intersect with A, B and C, and distinguish correct processes based
on the ur-broadcast operations they perform.

U consists of the correct processes that ur-broadcast endorse(m, id) at line 3.
F denotes the correct processes of A ∪ B that ur-broadcast endorse(m, id) at line 7 (i.e.,
they perform forwarding).
NF denotes the correct processes of A ∪ B that ur-broadcast endorse(m, id) at line 3.
NB denotes the correct processes of A∪B that never ur-broadcast endorse(m, id), be it at
line 3 or at line 7. These processes have received at least qf messages endorse(m, id), but
do not forward endorse(m, id), because they have already ur-broadcast endorse(m′, id)
at line 3 or at line 7 for an app-message m′ ̸= m.

Proof strategy. We note kU = |U |, kF = |F |, kNF = |NF |, kNB = |NB|. Observe that
kU ≤ kI and kNF ≤ kU , since all (correct) processes in U and NF invoke k2ℓ_cast. Also,
(kU + kF) represents the total number of correct processes that ur-broadcast a message
endorse(m, id). Fig. 2b illustrates how these quantities constrain the distribution of
endorse messages across A, B and C. Our core proof strategy consists in bounding the
areas shown in Fig. 2b. (For instance, observe that wc

A ≤ |A| × (kU + kF), since each of
the ℓe correct processes in A can receive at most one endorse message from each of the
(kU + kF) correct processes that send them.) This reasoning on bounds yields a polynomial
involving ℓe = |A|, kI , and kU , whose roots can then be constrained to yield the liveness
guarantees required by the k2ℓ-cast specification.

Observation. In the same way we have bounded wc
A, we can also bound wc

B by observing
that there are (kNF + kNB + kF − ℓe) processes in B and that each can receive at most qd − 1
endorse messages. Similarly, we can bound wc

C by observing that the (c − kNF − kNB − kF)
processes of C can receive at most qf − 1 endorse messages. Thus:

9 Because of the condition at line 9, these processes do not necessarily k2ℓ-deliver (m, id), but all do
k2ℓ-deliver an app-message for identity id.

OPODIS 2022

26:10 Signature-Free BRB Algorithms Under a Message Adversary

A B C

UNF

F

NB
remaining

correct
processes

(a) Subsets of correct processes based on
the number of received endorse messages
(A, B and C) and based on their ur-
broadcast actions (U , F , NF , and NB).

received
msgs.

correct
processes

kU +kF

ℓeA

wc
A

qd−1

kF +kNF+kNB
B

wc
B

qf −1

cC

wc
C

(b) Distribution of endorse messages among correct
processes of A, B, and C, sorted by decreasing num-
bers of endorse messages received.

Figure 2 Subsets of correct processes and distribution of endorse messages among them.

wc
A ≤ (kU + kF)ℓe, (1)

wc
B ≤ (qd − 1)(kNF + kNB + kF − ℓe), (2)

wc
C ≤ (qf − 1)(c − kNF − kNB − kF). (3)

Moreover, the MA cannot suppress more than d copies of each individual endorse
message ur-broadcast to the c correct processes. Thus, the total number of endorse
messages received by correct processes (wc

A + wc
B + wc

C) is such that:

wc
A + wc

B + wc
C ≥ (kU + kF)(c − d). (4)

▶ Lemma 2. ℓe × (kU + kF − qd + 1) ≥ (kU + kF)(c − d − qd + qf) − c(qf − 1) − kNB(qd − qf).

Proof sketch. We get this result by combining (1), (2), (3) and (4), and using sf-k2ℓ-
Assumption 1 with the fact that kNF ≤ kU . (Full derivations in Appendix A.) ◀

▶ Lemma 3. If no correct process k2ℓ-casts (m′, id) with m′ ̸= m, then no correct process
forwards endorse(m′, id) at line 7 (and then kNB = 0). (Proof in Appendix A.)

▶ Lemma 4 (k2ℓ-Local-delivery). If at least k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1 correct processes

k2ℓ-cast an app-message m with identity id and no correct process k2ℓ-casts any app-message
m′ with identity id such that m ̸= m′, then at least one correct process pi k2ℓ-delivers m

with identity id.

Proof sketch. From the hypotheses, Lemma 3 helps us determine that kNB = 0. Then,
the property is proved by contraposition, by assuming that no correct process k2ℓ-delivers
(m, id), which leads us to ℓe = 0. Using prior information and sf-k2ℓ-Assumption 1, we can
rewrite the inequality of Lemma 2 to get the threshold of k2ℓ-casts above which there is at
least one k2ℓ-delivery. (Full derivations in Appendix A.) ◀

▶ Lemma 5. (single = false) =⇒ (kNB = 0). (Proof in Appendix A.)

▶ Lemma 6. If at least one correct process k2ℓ-delivers (m, id) and x = kU +kF (the number
of correct processes that ur-broadcast endorse(m, id) at line 3 or 7), then x ≥ qd − t and
x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1).

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:11

Proof sketch. We prove this lemma by counting the total number of messages (sent by
Byzantine or correct processes) that are received by the processes of A, and by using (1), (3)
(4), and sf-k2ℓ-Assumption 1. (Full derivations in Appendix A.) ◀

▶ Lemma 7. If kNB = 0, and at least one correct process k2ℓ-delivers (m, id), then kU +kF ≥
qd.

Proof sketch. Given that kNB = 0, we can rewrite the inequality of Lemma 6, which gives
us a second-degree polynomial (where x = kU + kF is the unknown variable). We compute
its roots and show that the smaller one contradicts Lemma 6, and that the larger one is
greater than or equal to qd . The fact that x must be greater than or equal to the larger root
to satisfy Lemma 6 proves the lemma. (Full derivations in Appendix A.) ◀

▶ Lemma 8. If kNB = 0 and kU + kF ≥ qd, then at least
⌈
c

(
1 − d

c−qd+1

)⌉
correct processes

k2ℓ-deliver some app-message with identity id (not necessarily m).

Proof sketch. From the hypotheses, we can rewrite the inequality of Lemma 2 to get a
lower bound on ℓe. Using sf-k2ℓ-Assumption 3, we can determine that this lower bound is
decreasing with the number of ur-broadcasts by correct processes (x = kU + kF). Hence,
this lower bound is minimum when x is maximum, that is, when x = c. This gives us the
minimum number of correct processes that k2ℓ-deliver under the given hypotheses. (Full
derivations in Appendix A.) ◀

▶ Lemma 9 (k2ℓ-Weak-Global-delivery). If single = false, and a correct process
k2ℓ-delivers an app-message m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes k2ℓ-deliver an app-message m′ with identity id (each possibly different from m).

Proof sketch. As single = false and one correct process k2ℓ-delivers (m, id), Lemmas 5
and 7 apply, and we have kNB = 0 and kU + kF ≥ qd. This provides the prerequisites for
Lemma 8, which concludes the proof. (Full derivations in Appendix A.) ◀

▶ Lemma 10 (k2ℓ-Strong-Global-delivery). If single = true, and a correct process k2ℓ-
delivers an app-message m with identity id, and no correct process k2ℓ-casts an app-message
m′ ̸= m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver m

with identity id.

Proof sketch. As single = true, Lemma 3 holds and implies that kNB = 0. As above,
Lemma 7 and Lemma 8 hold, yielding the lemma. (Full derivations in Appendix A.) ◀

4 BRB in the Presence of Message Adversary (MBRB): Definition

Before using the k2ℓ-cast abstraction to reconstruct MA-tolerant BRB algorithms, we first
specify what a Byzantine- and MA-tolerant broadcast should precisely achieve. We call such
a broadcast an MBR-broadcast (for Message-adversarial Byzantine Reliable Broadcast), or
MBRB for short. The MBRB abstraction provides two matching operations, mbrb_broadcast
and mbrb_deliver. It is a multishot abstraction, i.e, it associates an identity ⟨sn, i⟩ (sequence
number, sender identity) with each app-message, and assumes that correct processes never
reuse the same sequence number for different mbrb_broadcast invocations.

OPODIS 2022

26:12 Signature-Free BRB Algorithms Under a Message Adversary

When, at the application level, a process pi invokes mbrb_broadcast(m, sn), where m

is the app-message, we say it “mbrb-broadcasts (m, sn)”. Similarly, when the invocation
of mbrb_deliver by pi returns the tuple (m, sn, j) to the client application (where pj is the
sender process), we say it “mbrb-delivers (m, sn, j)”. So, the app-message are mbrb-broadcast
and mbrb-delivered. Because of the MA, we cannot always guarantee that an app-message
mbrb-delivered by a correct process is eventually received by all correct processes. Hence, in
the MBR-broadcast specification, we introduce a variable ℓMBRB (reminiscent of the ℓ of
k2ℓ-cast) which indicates the strength of the global delivery guarantee of the primitive: if
one correct process mbrb-delivers an app-message, then ℓMBRB correct processes eventually
mbrb-deliver this app-message10. MBRB is defined by the following properties:

Safety:
MBRB-Validity. If a correct process pi mbrb-delivers an app-message m from a
correct process pj with sequence number sn, then pj mbrb-broadcast m with sequence
number sn.
MBRB-No-duplication. A correct process pi mbrb-delivers at most one app-message
from a process pj with sequence number sn.
MBRB-No-duplicity. No two distinct correct processes mbrb-deliver different
app-messages from a process pi with the same sequence number sn.

Liveness:
MBRB-Local-delivery. If a correct process pi mbrb-broadcasts an app-message m

with sequence number sn, then at least one correct process pj eventually mbrb-delivers
m from pi with sequence number sn.
MBRB-Global-delivery. If a correct process pi mbrb-delivers an app-message m

from a process pj with sequence number sn, then at least ℓMBRB correct processes
mbrb-deliver m from pj with sequence number sn.

It is implicitly assumed that a correct process does not use the same sequence number
twice. Let us observe that, as at the implementation level, the MA can always suppress all
the messages sent to a fixed set D of d processes, these mbrb-delivery properties are the
strongest that can be implemented. More generally, the best-guaranteed value for ℓMBRB is
c − d. So, the previous specification boils down to Bracha’s specification [11] for ℓMBRB = c.

5 k2ℓ-Cast in Action: From Classical BRB to MA-Tolerant BRB
(MBRB) Algorithms

This section uses k2ℓ-cast to reconstruct two signature-free BRB algorithms [11, 20] initially
introduced in a pure Byzantine context (i.e., without any MA). This reconstruction produces
Byzantine-MA-tolerant versions of the initial algorithms that implement the MBRB specifica-
tion of Section 4. Moreover, when d = 0, our two reconstructed BRB algorithms are strictly
more efficient than the original algorithms that gave rise to them (they terminate earlier).

More precisely, the original and reconstructed versions of Bracha’s BRB are identical
in terms of communication cost, time complexity, and t-resilience (when d = 0). The
same comparison holds for the original and reconstructed versions of Imbs and Raynal’s
BRB. However, both reconstructed BRB algorithms use smaller quorums than their original
versions, and therefore require fewer messages to progress. In an actual network, this means
a lower latency in practice, as practical networks typically exhibit a long tail distribution of
latencies (a phenomenon well-studied by system and networking researchers [14, 15, 34]).

10 If there is no MA (i.e. d = 0), we should have ℓMBRB = c ≥ n− t.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:13

Algorithm 2 k2ℓ-cast-based reconstruction of Bracha’s BRB algorithm (code of pi).

init: obje ← SigFreeK2LCast(qd=⌊n+t
2 ⌋+1, qf =t+1, single=true);

objr ← SigFreeK2LCast(qd=2t+d+1, qf =t+1, single=true).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(init(m, sn)).

(2) when init(m, sn) is received from pj do obje.k2ℓ_cast(echo(m), (sn, j)).

(3) when (echo(m), (sn, j)) is obje.k2ℓ_delivered do objr.k2ℓ_cast(ready(m), (sn, i)).

(4) when (ready(m), (sn, j)) is objr.k2ℓ_delivered do mbrb_deliver(m, sn, j).

To help readers familiar with the initial algorithms, we use the same message types (init,
echo, ready, witness) as in the original publications. It has been shown in [4] that the
MBRB problem can be solved if and only if n > 3t + 2d.

5.1 Bracha’s BRB algorithm reconstructed
Reconstructed version. Bracha’s BRB algorithm comprises three phases. When a process
invokes brb_broadcast(m, sn), it disseminates the app-message m an init message (first
phase). The reception of this message by a correct process triggers its participation in a
second phase implemented by the exchange of messages tagged echo. Finally, when a process
has received echo messages from “enough” processes, it enters the third phase, in which
ready messages are exchanged, at the end of which it brb-delivers the app-message m.
Alg. 2 is a reconstructed version of the Bracha’s BRB, which assumes n > 3t + 2d + 2

√
td.

The algorithm requires two instances of k2ℓ-cast, denoted obje and objr, associated with
the echo messages and the ready messages, respectively. For both these objects, the
Boolean single is set to true. For the quorums, we have the following:

• obje: qf = t + 1 and qd = ⌊ n+t
2 ⌋ + 1, • objr: qf = t + 1 and qd = 2t + d + 1.

The integer sn is the sequence number of the app-message m mbrb-broadcast by pi. The
identity of m is consequently the pair ⟨sn, i⟩.
Alg. 2 provides ℓMBRB =

⌈
c

(
1 − d

c−2t−d

)⌉
under:

B87-Assumption (for Bracha 1987): n > 3t + 2d + 2
√

td;
its proof of correctness can be found in the extended version.

Comparison (Table 2). When d = 0, both Bracha’s algorithm and its reconstruction use
the same quorum size for the ready phase. The quorums of the echo phase are however
different (Table 2). As the algorithm requires n > 3t, we define ∆ = n − 3t as the slack
between the lower bound on n and the actual value of n. When considering the forwarding
threshold qf , we have

⌊
n+t

2
⌋

+ 1 = 2t +
⌊ ∆

2
⌋

+ 1 > t + 1. As a result, the reconstruction of
Bracha’s algorithm always uses a lower forwarding threshold for echo messages than the
original. It therefore forwards messages more rapidly and reaches the delivery quorum faster.

Table 2 Bracha’s original version vs. k2ℓ-cast-based reconstruction when d = 0.

Threshold Original version (echo phase) k2ℓ-cast-based version (obje)

Forwarding qf

⌊
n + t

2

⌋
+ 1 t + 1

Delivery qd

⌊
n + t

2

⌋
+ 1

⌊
n + t

2

⌋
+ 1

OPODIS 2022

26:14 Signature-Free BRB Algorithms Under a Message Adversary

Algorithm 3 k2ℓ-cast-based reconstruction of Imbs and Raynal’s BRB algorithm (code of pi).

init: objw ← SigFreeK2LCast(qd=
⌊

n+3t
2

⌋
+ 3d + 1, qf =

⌊
n+t

2

⌋
+ 1, single=false).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(init(m, sn)).

(2) when init(m, sn) is received from pj do objw.k2ℓ_cast(witness(m), (sn, j)).

(3) when (witness(m), (sn, j)) is objw.k2ℓ_delivered do mbrb_deliver(m, sn, j).

5.2 Imbs and Raynal’s BRB algorithm reconstructed
Reconstructed version. Imbs and Raynal’s BRB is another BRB implementation, which
achieves an optimal good-case latency (only two communication steps) at the cost of a
non-optimal t-resilience. Its reconstructed version requires n > 5t + 12d + 2td

t+2d .
The algorithm requires a single k2ℓ-cast object, denoted objw, associated with the witness

message, and which is instantiated with qf =
⌊

n+t
2

⌋
+ 1 and qd =

⌊
n+3t

2
⌋

+ 3d + 1, and the
Boolean single = false. Similarly to Bracha’s reconstructed BRB, an identity of app-message
in this algorithm is a pair ⟨sn, i⟩ containing a sequence number sn and a process identity i.

Alg. 3 provides ℓMBRB =
⌈

c

(
1 − d

c−⌊ n+3t
2 ⌋−3d

)⌉
under:

IR16-Assumption (for Imbs-Raynal 2016): n > 5t + 12d + 2td
t+2d ; (where t + d > 0)

its proof of correctness can be found in the extended version.

Comparison (Table 3). Table 3 compares Imbs and Raynal’s original algorithm against its
k2ℓ-cast reconstruction for d = 0. Recall that this algorithm saves one communication step
with respect to Bracha’s at the cost of a weaker t-tolerance, i.e., it requires n > 5t. As for
Bracha, let us define the slack between n and its minimum as ∆ = n − 5t, we have ∆ ≥ 1.

Let us first consider the size of the forwarding quorum (first line of the table). We have
n−2t = 3t+ ∆ and ⌊ n+t

2 ⌋+ 1 = 3t+ ⌊ ∆
2 ⌋+ 1. When ∆ > 2, we always have ∆ > ⌊ ∆

2 ⌋+ 1,
it follows that the forwarding predicate of the reconstructed version is equal or weaker
than the one of the original version.
The same occurs for the size of the delivery quorum (second line of the table). We have
n−t = 4t+∆ and ⌊ n+3t

2 ⌋+1 = 4t+⌊ ∆
2 ⌋+1. So both reconstructed quorums are lower than

those of the original version when ∆ > 2, making the reconstructed algorithm quicker as
soon as n ≥ 5t+3. The two versions behave identically for 5t+3 ≥ n ≥ 5t+2 (∆ ∈ {1, 2}).

Table 3 Imbs and Raynal’s original version vs. k2ℓ-cast-based reconstruction when d = 0.

Threshold Original version (witness phase) k2ℓ-cast-based version (objw)

Forwarding qf n− 2t
⌊

n + t

2

⌋
+ 1

Delivery qd n− t
⌊

n + 3t

2

⌋
+ 1

5.3 Numerical evaluation of the MBRB algorithms
Fig. 3 provides a numerical evaluation of the delivery guarantees of both k2ℓ-cast-based
MBRB algorithms (Algs. 2 and 3) in the presence of Byzantine processes and an MA. Results
were obtained for n = 100 and c = n − t, and show the values of ℓMBRB for different values of

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:15

0 3 6 9 12 15 18 21 24 27 30 33 36
d

33
30

27
24

21
18

15
12

9
6

3
0

t

67

70

73

76 67

79 73 64

82 77 70 63

85 81 75 69 62

88 84 79 74 68 62

91 88 83 79 74 68 62 55

94 91 87 83 78 73 68 62 56 48

97 94 91 87 83 78 74 68 63 57 50 42

10097 94 91 87 83 79 74 69 64 58 51 44

50

60

70

80

90

100

(a) Reconstructed Bracha MBRB (Alg. 2).

0 3 6
d

18
15

12
9

6
3

0
t

82

85

88

91 77

94 84

97 89 74

100 93 82
75

80

85

90

95

100

(b) Reconstructed Imbs-Raynal MBRB (Alg. 3).

Figure 3 Values of ℓMBRB for the reconstructed BRB algorithms when varying t and d (n = 100
and c = n− t) within the ranges that satisfy B87-Assumption and IR16-Assumption.

t and d. For instance, Fig. 3a shows that with 6 Byzantine processes and an MA suppressing
up to 9 ur-broadcast messages, Alg. 2 ensures the MBRB-Global-delivery property
with ℓMBRB = 83. The figures illustrate that the reconstructed Bracha algorithm performs
in a broader range of parameter values, mirroring the bounds on n, t, and d captured by
B87-Assumption and IR16-Assumption. Nonetheless, both algorithms exhibit values of
ℓMBRB that can support real-world applications in the presence of an MA.

6 A Signature-Based Implementation of k2ℓ-Cast

This section presents an implementation of k2ℓ-cast based on digital signatures. The
underlying model is the same as that of Section 2 (page 4), except that the computing power
of the attacker is now bounded, which allows us to leverage asymmetric cryptography.

6.1 Algorithm
The signature-based algorithm is described in Alg. 4. It uses an asymmetric cryptosystem
to sign messages and verify their authenticity. Every process has a public/private key
pair. Public keys are known to everyone, but private keys are only known to their owner.
(Byzantine processes may exchange their private keys.) Each process also knows the mapping
between process indexes and associated public keys, and each process can produce a unique,
valid signature for a given message, and check if a signature is valid.

It is a simple algorithm that ensures that an app-message must be k2ℓ-cast by at least k

correct processes to be k2ℓ-delivered by at least ℓ correct processes. For the sake of simplicity,
we say that a correct process pi “ur-broadcasts a set of signatures” if it ur-broadcasts a
bundle(m, id, sigsi) in which sigsi contains the signatures at hand. A correct process pi

ur-broadcasts an app-message m with identity id at line 5 or line 11.
If this occurs at line 5, pi includes in the message it ur-broadcasts all the signatures it
has already received for (m, id) plus its own signature.
If this occurs at line 11, pi has just received a message containing a set of signatures sigs
for the pair (m, id). The process pi then aggregates in sigsi the valid signatures it just
received with the ones it did know about beforehand (line 10).

This algorithm simply assumes: (the prefix “sb” stands for signature-based)
sb-k2ℓ-Assumption 1: c > 2d,
sb-k2ℓ-Assumption 2: c − d ≥ qd ≥ t + 1.

OPODIS 2022

26:16 Signature-Free BRB Algorithms Under a Message Adversary

Algorithm 4 k2ℓ-cast implementation with signatures (code for pi).

object SigBasedK2LCast(qd) is

(1) operation k2ℓ_cast(m, id) is
(2) if

(
(−, id) not already signed by pi

)
then

(3) sigi ← signature of (m, id) by pi;
(4) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi} ∪ {sigi};
(5) ur_broadcast(bundle(m, id, sigsi));
(6) check_delivery()
(7) end if.

(8) when bundle(m, id, sigs) is received do
(9) if

(
sigs contains valid signatures for (m, id) not already ur-broadcast by pi

)
then

(10) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi}
∪ {all valid signatures for (m, id) in sigs};

(11) ur_broadcast(bundle(m, id, sigsi));
(12) check_delivery()
(13) end if.

(14) internal operation check_delivery() is
(15) if

(
pi ur-broadcast at least qd valid signatures for (m, id)
∧ (−, id) not already k2ℓ-delivered

)
(16) then k2ℓ_deliver(m, id)
(17) end if.

end object.

Thanks to digital signatures, processes can relay the messages of other processes in Alg. 4.
The algorithm, however, does not use forwarding in the same way Alg. 1 did: there is no
equivalent of qf here, that is, the only way to “endorse” an app-message (which, in this case,
is equivalent to signing this app-message) is to invoke the k2ℓ_cast operation. Furthermore,
only one app-message can be endorsed by a correct process for a given identity (which is the
equivalent of single = true in the signature-free version).

Although this implementation of k2ℓ-cast provides better guarantees than Alg. 1, using it
to reconstruct signature-free BRB algorithms would be counter-productive. This is because
signatures allow for MA-tolerant BRB algorithms that are more efficient in terms of round
and message complexity than those that can be constructed using k2ℓ-cast [4].

However, a signature-based k2ℓ-cast does make sense in contexts in which many-to-many
communication patterns are required [9], and, we believe, opens the path to novel ways to
handle local state resynchronization resilient to Byzantine failures and message adversaries.
For instance, we are using the following algorithm in our own work to design churn-tolerant
money transfer systems tolerating Byzantine failures and temporary disconnections.

6.2 Guarantees

The proof of the following theorem can be found in the extended version.

▶ Theorem 11 (k2ℓ-Correctness). If sb-k2ℓ-Assumption 1 and 2 are verified, Alg. 4
implements k2ℓ-cast with the following guarantees: (i) k′ = qd − n + c, (ii) k = qd, (iii)
ℓ = c − d, and (iv) δ = qd > n+t

2 .

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:17

7 Conclusion

This paper discussed reliable broadcast in asynchronous systems where an adversary can
control some Byzantine processes and can suppress messages. Its starting point was the
design of generic reliable broadcast abstractions suited to applications that do not require
total order on the delivery of application messages (distributed money transfers are such
applications [8, 10, 19]). However, the ability to thwart an adversary controlling Byzantine
processes and a message adversary is new. This approach can be applied to the design of
a wide range of quorum-based distributed algorithms other than reliable broadcast. For
instance, we conjecture that k2ℓ-cast could benefit self-stabilizing and self-healing distributed
systems [6], where a critical mass of messages from other processes is needed in order to
re-synchronize the local state of a given process.

References
1 I. Abraham, K. Nayak, L. Ren, and Z. Xiang. Good-case latency of Byzantine broadcast:

a complete categorization. In Proc. 40th ACM Symposium on Principles of Distributed
Computing (PODC’21), pages 331–341. ACM Press, 2021.

2 I. Abraham, L. Ren, and Z. Xiang. Good-case and bad-case latency of unauthenticated
Byzantine broadcast: A complete categorization. In Proc. 25th Int’l Conference on Principles
of Distributed Systems (OPODIS’21), pages 5:1–5:20. LIPIcs, 2021.

3 Y. Afek and E. Gafni. Asynchrony from synchrony. In Proc. 14th Int’l Conference on
Distributed Computing and Networking (ICDCN’13), pages 225–239. Springer, 2021.

4 T. Albouy, D. Frey, M. Raynal, and F. Taïani. Byzantine-tolerant reliable broadcast in
the presence of silent churn. In Proc. 23th Int’l Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’21), pages 21–33. Springer, 2021. Extended version:
arXiv:2205.09992.

5 T. Albouy, D. Frey, M. Raynal, and F. Taïani. A modular approach to construct signature-free
BRB algorithms under a message adversary, 2022. arXiv:2204.13388.

6 K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to distributed self-stabilizing
algorithms. Morgan & Claypool, 2019.

7 H. Attiya and J. Welch. Distributed computing: fundamentals, simulations and advanced
topics. Wiley-Interscience, 2004.

8 A. Auvolat, D. Frey, M. Raynal, and F. Taïani. Money transfer made simple: a specification,
a generic algorithm, and its proof. Bulletin of EATCS (European Association of Theoretical
Computer Science), 132:22–43, 2020.

9 A. Auvolat, M. Raynal, and F. Taïani. Byzantine-tolerant set-constrained delivery broadcast.
In Proc. 23rd Int’l Conference on Principles of Distributed Systems (OPODIS’19), pages
6:1–6:23. LIPIcs, 2019.

10 M. Baudet, G. Danezis, and A. Sonnino. Fastpay: high-performance Byzantine fault tolerant
settlement. In Proc. 2nd ACM Conference on Advances in Financial Technologies (AFT’20),
pages 163–177. ACM Press, 2020.

11 G. Bracha. Asynchronous Byzantine agreement protocols. Information & Computation,
75(2):130–143, 1987.

12 C. Cachin, R. Guerraoui, and L. Rodrigues. Reliable and secure distributed programming.
Springer, 2011.

13 B. Charron-Bost and A. Schiper. The heard-of model: computing in distributed systems with
benign faults. Distributed Computing, 22(1):49–71, 2009.

14 X. Chen, H. Song, J. Jiang, C. Ruan, C. Li, S. Wang, G. Zhang, R. Cheng, and H. Cui.
Achieving low tail-latency and high scalability for serializable transactions in edge computing.
In Proc. 16th European Conference on Computer Systems (EuroSys’21), pages 210–227. ACM
Press, 2021.

OPODIS 2022

https://arxiv.org/abs/2205.09992
http://arxiv.org/abs/2204.13388

26:18 Signature-Free BRB Algorithms Under a Message Adversary

15 D. Didona and W. Zwaenepoel. Size-aware sharding for improving tail latencies in in-memory
key-value stores. In Proc. 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’19), pages 79–94. USENIX Association, 2019.

16 D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3:14–20, 1982.
17 C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded

degree. SIAM Journal of Computing, 17(5):975–988, 1988.
18 R. Guerraoui, J. Komatovic, P. Kuznetsov, Y.A. Pignolet, D.A. Seredinschi, and A. Tonkikh.

Dynamic Byzantine reliable broadcast. In Proc. 24th Int’l Conference on Principles of
Distributed Systems (OPODIS’20), pages 23:1–23:18. LIPIcs, 2020.

19 R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D.A. Seredinschi. The consensus
number of a cryptocurrency. In Proc. 38th ACM Symposium on Principles of Distributed
Computing (PODC’19), pages 307–316. ACM Press, 2019.

20 D. Imbs and M. Raynal. Trading t-resilience for efficiency in asynchronous Byzantine reliable
broadcast. Parallel Processing Letters, 26(4):1650017:1–1650017:8, 2016.

21 L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982.

22 D. Malkhi and M.K. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213,
1998.

23 A. Maurer, X. Défago, and S. Tixeuil. Communicating reliably in multi-hop dynamic networks
despite Byzantine failures. In Proc. 34th Symposium on Reliable Distributed Systems (SRDS’15),
pages 238–245. IEEE Press, 2015.

24 A. Mostéfaoui, H. Moumen, and M. Raynal. Signature-free asynchronous byzantine consensus
with t < n/3 and O(n2) messages. In Proc. 33th ACM Symposium on Principles of Distributed
Computing (PODC’14), pages 2–9. ACM Press, 2014.

25 K. Nayak, L. Ren, E. Shi, N.H. Vaidya, and Z. Xiang. Improved extension protocols for
Byzantine broadcast and agreement. In Proc. 34rd Int’l Symposium on Distributed Computing
(DISC’20), pages 28:1–28:17. LIPIcs, 2020.

26 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27:228–234, 1980.

27 M. Raynal. Distributed algorithms for message-passing systems. Springer, 2013.
28 M. Raynal. Message adversaries. In Encyclopedia of Algorithms, pages 1272–1276. Springer,

2016.
29 M. Raynal. Fault-tolerant message-passing distributed systems: an algorithmic approach.

Springer, 2018.
30 M. Raynal and J. Stainer. Synchrony weakened by message adversaries vs asynchrony restricted

by failure detectors. In Proc. 32nd ACM Symposium on Principles of Distributed Computing
(PODC’13), pages 166–175. ACM Press, 2013.

31 N. Santoro and P. Widmayer. Time is not a healer. In Proc. 6th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’89), pages 304–316. Springer, 1989.

32 N. Santoro and P. Widmayer. Agreement in synchronous networks with ubiquitous faults.
Theoretical Computer Science, 384(2-3):232–249, 2007.

33 L. Tseng, Q. Zhang, S. Kumar, and Y. Zhang. Exact consensus under global asymmetric
Byzantine links. In Proc. 40th IEEE Int’l Conference on Distributed Computing Systems
(ICDCS 2020), pages 721–731. IEEE Press, 2020.

34 L. Yang, S.J. Park, M. Alizadeh, S. Kannan, and D. Tse. DispersedLedger: high-throughput
Byzantine consensus on variable bandwidth networks. In Prof. 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’22), pages 493–512. USENIX
Association, 2022.

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:19

A Liveness Proof of the Signature-Free k2ℓ-cast Implementation
(Algorithm 1)

▶ Lemma 2. ℓe × (kU + kF − qd + 1) ≥ (kU + kF)(c − d − qd + qf) − c(qf − 1) − kNB(qd − qf).

Proof. Combining (1), (2), (3) and (4) yields:

(kU + kF)ℓe + (qd − 1)(kNF + kNB + kF − ℓe) +
(qf − 1)(c − kNF − kNB − kF) ≥ (kU + kF)(c − d),

ℓe × (kU + kF − qd + 1) ≥ (kU + kF)(c − d) − (qd − 1)(kNF + kNB + kF) −
(qf − 1)(c − kNF − kNB − kF),

≥ (kU + kF)(c − d) − (qd − qf)(kNF + kNB + kF) − c(qf − 1).

Using sf-k2ℓ-Assumption 1, we have qd − qf ≥ 0. By definition, we also have kNF ≤ kU ,
which yields:

ℓe × (kU + kF − qd + 1) ≥ (kU + kF)(c − d) − (qd − qf)(kU + kF + kNB) − c(qf − 1),
≥ (kU + kF)(c − d − qd + qf) − c(qf − 1) − kNB(qd − qf). ◀

▶ Lemma 3. If no correct process k2ℓ-casts (m′, id) with m′ ≠ m, then no correct process
forwards endorse(m′, id) at line 7 (and then kNB = 0).

Proof. Assume there is a correct process that ur-broadcasts endorse(m′, id) at line 7 with
m′ ̸= m. Let us consider the first such process pi. To execute line 7, pi must first receive qf
messages endorse(m′, id) from distinct processes. Since qf > t (sf-k2ℓ-Assumption 1), at
least one of these processes, pj , is correct. Since pi is the first correct process to forward
endorse(m′, id) at line 7, the endorse(m′, id) message of pj must come from line 3, and
pj must have k2ℓ-cast (m′, id). We have assumed that no correct process k2ℓ-cast m′ ̸= m,
therefore m′ = m. Contradiction.

We conclude that, under these assumptions, no correct process ur-broadcasts
endorse(m′, id) with m′ ̸= m, be it at line 3 (by assumption) or at line 7 (shown by
this proof). As a result, kNB = 0. ◀

▶ Lemma 4 (k2ℓ-Local-delivery). If at least k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1 correct processes

k2ℓ-cast an app-message m with identity id and no correct process k2ℓ-casts any app-message
m′ with identity id such that m ̸= m′, then at least one correct process pi k2ℓ-delivers m

with identity id.

Proof. Let us assume that no correct process k2ℓ-casts (m′, id) with m′ ̸= m. No correct
process therefore ur-broadcasts endorse(m′, id) with m′ ≠ m at line 3. Lemma 3 also
applies and no correct process forwards endorse(m′, id) with m′ ̸= m at line 7 either, so
kNB = 0. Because no correct process ur-broadcasts endorse(m′, id) with m′ ≠ m whether
at line 3 or 7, a correct process receives at most t messages endorse(m′, id) (all coming from
Byzantine processes). As by sf-k2ℓ-Assumption 1, t < qd, no correct process k2ℓ-delivers
(m′, id) with m′ ̸= m at line 10.

We now prove the contraposition of the Lemma. Let us assume no correct process
k2ℓ-delivers (m, id). Since, by our earlier observations, no correct process k2ℓ-delivers
(m′, id) with m′ ̸= m either, the condition at line 9 implies that no correct process ever
receives at least qd endorse(m, id), and therefore ℓe = 0. By Lemma 2 we have c(qf − 1) ≥
(kU +kF)(c−d−qd+qf). sf-k2ℓ-Assumption 1 implies that c−d−qd ≥ 0 ⇐⇒ c−d−qd+qf > 0

OPODIS 2022

26:20 Signature-Free BRB Algorithms Under a Message Adversary

(as qf ≥ t + 1 ≥ 1), leading to kU + kF ≤ c(qf −1)
c−d−qd+qf

. Because of the condition at line 2, a
correct process pj that has k2ℓ-cast (m, id) but has not ur-broadcast endorse(m, id) at
line 3 has necessarily ur-broadcast endorse(m, id) at line 7. We therefore have kI ≤ kU +kF ,
which gives kI ≤ c(qf −1)

c−d−qd+qf
. By contraposition, if kI >

c(qf −1)
c−d−qd+qf

, then at least one correct

process must k2ℓ-deliver (m, id). Hence, we have k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1. ◀

▶ Lemma 5. (single = false) =⇒ (kNB = 0).

Proof. Let us consider a correct process pi ∈ A ∪ B. If we assume pi ̸∈ F , pi never
executes line 7 by definition. Because pi ∈ A ∪ B, pi has received at least qf messages
endorse(m, id), and therefore did not fulfill the condition at line 6 when it received its qf

th

message endorse(m, id). As single = false by Lemma assumption, to falsify this condition,
pi must have had already ur-broadcast endorse(m, id) when this happened. Because pi

never executes line 7, this implies that pi ur-broadcasts endorse(m, id) at line 3, and
therefore pi ∈ NF . This reasoning proves that A ∪ B \ F ⊆ NF . As the sets F , NF and NB
partition A ∪ B, this shows that NB = ∅, and kNB = |∅| = 0. ◀

▶ Lemma 6. If at least one correct process k2ℓ-delivers (m, id) and x = kU +kF (the number
of correct processes that ur-broadcast endorse(m, id) at line 3 or 7), then x ≥ qd − t and
x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1).

Proof. Let us write wb
A the total number of endorse(m, id) messages from Byzantine pro-

cesses received by the processes of A, and wA = wc
A +wb

A the total of number endorse(m, id)
messages received by the processes of A, whether these endorse messages originated from
correct or Byzantine senders. By definition, wb

A ≤ tℓe and wA ≥ qdℓe. By combining these
two inequalities with (1) on wc

A we obtain:

qdℓe ≤ wA = wc
A + wb

A ≤ (kU + kF)ℓe + tℓe = (t + kU + kF)ℓe,

qd ≤ t + kU + kF , (as ℓe > 0)
qd − t ≤ kU + kF = x. (5)

This proves the first inequality of the lemma. The processes in A ∪ B each receive
at most kU + kF distinct endorse(m, id) messages from correct processes, so we have
wc

A + wc
B ≤ (kNF + kF + kNB)(kU + kF). Combined with the inequalities (3) on wc

C and (4)
on wc

A + wc
B + wc

C that remain valid in this case, we now have:

(kNF + kF + kNB)(kU + kF) + (qf − 1)(c − kNF − kNB − kF) ≥ (kU + kF)(c − d),
(kNF + kF + kNB)(kU + kF − qf + 1) ≥ (kU + kF)(c − d) − c(qf − 1). (6)

Let us determine the sign of (kU + kF − qf + 1). We derive from (5):

kU + kF − qf + 1 ≥ qd − t − qf + 1
≥ 1 > 0. (as qd − qf ≥ t by sf-k2ℓ-Assumption 1)

As (kU + kF − qf + 1) is positive and we have kU ≥ kNF by definition, we can transform (6)
into:

(kU + kF + kNB)(kU + kF − qf + 1) ≥ (kU + kF)(c − d) − c(qf − 1),
(x + kNB)(x − qf + 1) ≥ x(c − d) − c(qf − 1), (as x = kU + kF)

x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1). ◀

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:21

▶ Lemma 7. If kNB = 0, and at least one correct process k2ℓ-delivers (m, id), then kU +kF ≥
qd.

Proof. By Lemma 6 we have:

x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1), (7)

As (7) holds for all, values of c ∈ [n − t, n], we can in particular consider c = n − t. Moreover,
as by hypothesis, kNB = 0, we have.

x2 − x(n − t − d + qf − 1) + (qf − 1)(n − t) ≥ 0,

x2 − αx + (qf − 1)(n − t) ≥ 0. (by definition of α) (8)

Let us first observe that the discriminant of the second-degree polynomial in (8) is non
negative, i.e. α2 − 4(qf − 1)(n − t) ≥ 0 by sf-k2ℓ-Assumption 2. This allows us to compute
the two real-valued roots as follows:

r0 = α

2 −
√

α2 − 4(qf − 1)(n − t)
2 and r1 = α

2 +
√

α2 − 4(qf − 1)(n − t)
2 .

Thus (8) is satisfied if and only if x ≤ r0 ∨ x ≥ r1.

Let us prove r0 ≤ qd − 1 − t. We need to show that:

α

2 −
√

α2 − 4(qf − 1)(n − t)
2 ≤ qd − 1 − t

α

2 − (qd − 1) + t ≤
√

α2 − 4(qf − 1)(n − t)
2√

α2 − 4(qf − 1)(n − t)
2 ≥ α

2 − (qd − 1) + t√
α2 − 4(qf − 1)(n − t) ≥ α − 2(qd − 1) + 2t.

The inequality is trivially satisfied if α − 2(qd − 1) + 2t < 0. For all other cases, we need
to verify that:

α2 − 4(qf − 1)(n − t) ≥ (α − 2(qd − 1) + 2t)2,

α2 − 4(qf − 1)(n − t) ≥ α2 + 4(qd − 1)2 + 4t2 − 4α(qd − 1) + 4αt − 8t(qd − 1),
−4(qf − 1)(n − t) ≥ 4(qd − 1)2 + 4t2 − 4α(qd − 1) + 4αt − 8t(qd − 1),
−(qf − 1)(n − t) ≥ (qd − 1)2 + t2 − α(qd − 1) + αt − 2t(qd − 1),
−(qf − 1)(n − t) ≥ (qd − 1 − t)2 − α(qd − 1 − t),

and thus α(qd − 1 − t) − (qf − 1)(n − t) − (qd − 1 − t)2 ≥ 0, which is true by sf-k2ℓ-
Assumption 4.
Let us prove r1 > qd − 1. We want to show that:

α

2 +
√

α2 − 4(qf − 1)(n − t)
2 > qd − 1

Let us rewrite the inequality as follows:

α +
√

α2 − 4(qf − 1)(n − t) > 2(qd − 1)√
α2 − 4(qf − 1)(n − t) > 2(qd − 1) − α

OPODIS 2022

26:22 Signature-Free BRB Algorithms Under a Message Adversary

The inequality is trivially satisfied if 2(qd − 1) − α < 0. For all other cases, we can take
the squares as follows:

α2 − 4(qf − 1)(n − t) > (2(qd − 1) − α)2,

α2 − 4(qf − 1)(n − t) > 4(qd − 1)2 + α2 − 4α(qd − 1),
−4(qf − 1)(n − t) > 4(qd − 1)2 − 4α(qd − 1),

4α(qd − 1) − 4(qf − 1)(n − t) − 4(qd − 1)2 > 0,

α(qd − 1) − (qf − 1)(n − t) − (qd − 1)2 > 0,

which is true by sf-k2ℓ-Assumption 3.

We now know that r0 ≤ qd −1−t and that r1 > qd −1. In addition, as x ≤ r0 ∨x ≥ r1, we
have x ≤ qd − t − 1 ∨ x > qd − 1. But Lemma 6 states that x ≥ qd − t, which is incompatible
with x ≤ qd − t − 1. So we are left with x > qd − 1, which implies, as qd and x are integers
that x ≥ qd , thus proving the lemma for c = n − t.

Let us now consider the set E0 of all executions in which t processes are Byzantine, and
therefore c = n − t, and a set Ec of executions in which there are fewer Byzantine processes,
and thus c > n − t correct processes. We show that Ec ⊆ E0 in that a Byzantine process
can always simulate the behavior of a correct process. In particular, if the simulated correct
process is not subject to the message adversary, the simulating Byzantine process simply
operates like a correct process. If, on the other hand, the simulated correct process misses
some messages as a result of the message adversary, the Byzantine process can also simulate
missing such messages. As a result, the executions that can happen when c > n − t can also
happen when c = n − t. Thus our result proven for c = n − t can be extended to all possible
values of c. ◀

▶ Lemma 8. If kNB = 0 and kU + kF ≥ qd, then at least
⌈
c

(
1 − d

c−qd+1

)⌉
correct processes

k2ℓ-deliver some app-message with identity id (not necessarily m).

Proof. As kNB = 0 and kU + kF ≥ qd , we can rewrite the inequality of Lemma 2 into:

ℓe × (kU + kF − qd + 1) ≥ (kU + kF)(c − d − qd + qf) − c(qf − 1).

From kU +kF ≥ qd we derive kU +kF −qd +1 > 0, and we transform the above inequality
into:

ℓe ≥ (kU + kF)(c − d − qd + qf) − c(qf − 1)
kU + kF − qd + 1 .

Let us now focus on the case in which c = n − t, we obtain:

ℓe ≥ (kU + kF)(n − t − d − qd + qf) − (n − t)(qf − 1)
kU + kF − qd + 1 .

The right side of the inequality is of the form:

ℓe ≥ ϕx − β

x − γ
= ϕ + ϕγ − β

x − γ
(9)

with:

x = kU + kF ,

γ = qd − 1,

α = n − t − d + qf − 1,

ϕ = n − t − d − qd + qf ,

β = c(qf − 1).

T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:23

Since, by hypothesis, x = kU + kF ≥ qd , we have:

x − γ = kU + kF − qd + 1 > 0. (10)

We also have:

ϕγ − β = (α − γ)γ − c(qf − 1) = αγ − γ2 − c(qf − 1),
= α(qd − 1) − (qd − 1)2 − (n − t)(qf − 1) > 0, (by sf-k2ℓ-Assumption 3)

ϕγ − β > 0. (11)

Injecting (10) and (11) into (9), we conclude that ϕ + ϕγ−β
x−γ is a decreasing hyperbole

defined over x ∈]γ, ∞] with asymptotic value ϕ when x → ∞. As x is a number of
correct processes, x ≤ c. The decreasing nature of the right-hand side of (9) leads us to:
ℓe ≥ ϕ + ϕγ−β

c−γ = ϕc−β
c−γ ≥ c(c−d−qd+qf)−c(qf −1)

c−qd+1 ≥ c × c−d−qd+1
c−qd+1 = c

(
1 − d

c−qd+1

)
.

Since ℓe is a positive integer, we conclude that at least ℓmin =
⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes receive at least qd message endorse(m, id) at line 9. As each of these processes
either k2ℓ-delivers (m, id) when this first happens, or has already k2ℓ-delivered another
app-message m′ ̸= m with identity id, we conclude that at least ℓmin correct processes
k2ℓ-deliver some app-message (whether it be m or m′ ̸= m) with identity id when c = n − t.
The reasoning for extending this result to any value of c ∈ [n − t, n] is identical to the one at
the end of the proof of Lemma 7 just above. ◀

▶ Lemma 9 (k2ℓ-Weak-Global-delivery). If single = false, and a correct process
k2ℓ-delivers an app-message m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes k2ℓ-deliver an app-message m′ with identity id (each possibly different from m).

Proof. Let us assume single = false, and one correct process k2ℓ-delivers (m, id). By
Lemma 5, kNB = 0. The prerequisites for Lemma 7 are verified, and therefore kU + kF ≥ qd .
This provides the prerequisites for Lemma 8, from which we conclude that at least ℓ =⌈

c
(

1 − d
c−qd+1

)⌉
correct processes k2ℓ-deliver an app-message m′ with identity id, which

concludes the proof of the lemma. ◀

▶ Lemma 10 (k2ℓ-Strong-Global-delivery). If single = true, and a correct process k2ℓ-
delivers an app-message m with identity id, and no correct process k2ℓ-casts an app-message
m′ ̸= m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver m

with identity id.

Proof. Let us assume that (i) single = true, (ii) no correct process k2ℓ-casts (m′, id) with
m′ ≠ m, and (iii) one correct process k2ℓ-delivers (m, id). Lemma 3 holds and implies that
kNB = 0. From there, as above, Lemmas 7 and 8 hold, and at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver an app-message for identity id.

By hypothesis, no correct process ur-broadcasts endorse(m′, id) at line 3 with m′ ̸= m.
Similarly, because of Lemma 3, no correct process ur-broadcasts endorse(m′, id) at line 7
with m′ ̸= m. As a result, a correct process can receive at most receive t messages
endorse(m′, id) at line 9 (all from Byzantine processes). As qd > t (by sf-k2ℓ-Assumption 1),
the condition of line 9 never becomes true for m′ ̸= m, and as result no correct process delivers
an app-message m′ ̸= m with identity id. All processes that k2ℓ-deliver an app-message with
identity id, therefore, k2ℓ-deliver m, which concludes the lemma. ◀

OPODIS 2022

Design of Self-Stabilizing Approximation
Algorithms via a Primal-Dual Approach
Yuval Emek #

Technion – Israel Institute of Technology, Haifa, Israel

Yuval Gil #

Technion – Israel Institute of Technology, Haifa, Israel

Noga Harlev #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
Self-stabilization is an important concept in the realm of fault-tolerant distributed computing. In
this paper, we propose a new approach that relies on the properties of linear programming duality to
obtain self-stabilizing approximation algorithms for distributed graph optimization problems. The
power of this new approach is demonstrated by the following results:

A self-stabilizing 2(1 + ε)-approximation algorithm for minimum weight vertex cover that
converges in O(log ∆/(ε log log ∆)) synchronous rounds.
A self-stabilizing ∆-approximation algorithm for maximum weight independent set that converges
in O(∆ + log∗ n) synchronous rounds.
A self-stabilizing ((2ρ + 1)(1 + ε))-approximation algorithm for minimum weight dominating set
in ρ-arboricity graphs that converges in O((log ∆)/ε) synchronous rounds.

In all of the above, ∆ denotes the maximum degree. Our technique improves upon previous results
in terms of time complexity while incurring only an additive O(log n) overhead to the message size.
In addition, to the best of our knowledge, we provide the first self-stabilizing algorithms for the
weighted versions of minimum vertex cover and maximum independent set.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Distributed algorithms

Keywords and phrases self-stabilization, approximation algorithms, primal-dual

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.27

Funding This research was supported by VATAT Fund to the Technion Artificial Intelligence Hub
(Tech.AI).

Acknowledgements We thank Laurent Feuilloley for a helpful and insightful discussion.

1 Introduction

Distributed networks have become ubiquitous in modern engineering reality. One of the
major challenges that arise when dealing with large-scale systems is handling fault recovery.
The notion of self-stabilization was introduced by Dijkstra [10] to accommodate this challenge.
Self-stabilization is characterized by the ability of a distributed system that starts from an
arbitrary state to converge into a correct state within a finite time. The initial arbitrary
state of the system can capture any finite number of faults, thus making self-stabilization an
adaptable fault-tolerance approach.

In the realm of distributed computing, classic optimization problems continue to draw
much research attention, and new distributed approximation algorithms are always in demand.
While an abundance of recent studies have been dedicated to distributed approximation
algorithms [3, 4, 11, 14, 23], most of them operate in a fault-free environment, i.e., they are
assumed to start from some designated initial state.

© Yuval Emek, Yuval Gil, and Noga Harlev;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yemek@technion.ac.il
mailto:yuval.gil@campus.technion.ac.il
mailto:snogazur@campus.technion.ac.il
https://doi.org/10.4230/LIPIcs.OPODIS.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

As a step toward bridging the gap between distributed optimization problems and self-
stabilization, in this paper we introduce a new general technique that facilitates the design of
self-stabilizing approximation algorithms. We consider distributed algorithms that work in the
synchronous message passing model. Our technique is based on the primal-dual methodology,
which is known to be highly useful in the context of approximation algorithms [32]. Given a
fault-free approximation algorithm, the technique converts it into a self-stabilizing algorithm
with the same approximation and runtime guarantees. Moreover, the conversion induces only
an additive O(log n) overhead to the message size, where n is the number of nodes in the
graph. Since the fault-free algorithms used in the context of this paper have a message size
of O(log n) (under common assumptions), we get that all of the self-stabilizing algorithms
developed in this paper also have a message size of O(log n).

In Section 4, we demonstrate the power of our new technique by applying it to three
recent fault-free algorithms. This leads to new self-stabilizing approximation algorithms
for minimum weight vertex cover, maximum weight independent set, and minimum weight
dominating set. To the best of our knowledge, these are the first self-stabilizing algorithms
for the weighted versions of minimum vertex cover and maximum independent set, and the
first sub-linear time algorithm for minimum weight dominated set.

1.1 Model

Consider an undirected graph G = (V, E) and denote n = |V | and m = |E|. For a node
v ∈ V , we stick to the convention that NG(v) denotes the set of v’s neighbors in G and
that degG(v) denotes v’s degree in G. When G is clear from context, we may omit it from
our notation and use N(v) and deg(v) instead of NG(v) and degG(v), respectively. Let
E(v) = {e ∈ E : v ∈ e} denote the set of edges in E incident on node v ∈ V .

Following a common convention in the realm of distributed graph algorithms, additional
input components such as node/edge weights and edge orientations, are passed to the nodes
of graph G by means of an input assignment ℓ : V → {0, 1}∗ which assigns to each node
v ∈ V an input label l(v). The input label ℓ(v) encodes graph attributes relating to v and its
incident edges. Moreover, we assume that ℓ(v) includes a port numbering, i.e., a bijection
between v’s incident edges and the set {1, . . . , deg(v)} of ports. Unless stated otherwise,
when we refer to an ordered list u1, . . . , udeg(v) of v’s neighbors, it is assumed that the list is
ordered by v’s port numbers. We refer to the pair Gℓ = ⟨G, ℓ⟩ as a labeled graph.

In this paper, we focus on algorithms that operate in a message passing framework in
which the nodes of a given labeled graph Gℓ are associated with identical state machines that
update their state concurrently in synchronous rounds. In each round, every node v ∈ V

carries out the following operations: (1) v performs local computation and updates its state
as a function of its current state, its input label ℓ(v), and possibly random coin tosses; (2) v

sends messages to its neighbors; and (3) v receives messages sent to it in the current round
by its neighbors. We define the global state of Gℓ to be the n-sized vector encoding the states
of all nodes in G.

The state of each node v ∈ V also includes a designated output register out(v) ∈
{0, 1}∗ ∪ {⊥} in which v maintains its output. If out(v) = ⊥ we say that v is undecided,
otherwise, we say that v is decided. For a labeled graph Gℓ, we define a configuration of Gℓ

as an n-sized vector c : V → {0, 1}∗ ∪ {⊥} assigning an output value c(v) to each node v ∈ V .
We refer to the 3-tuple Gℓ,c = ⟨G, ℓ, c⟩ consisting of a graph G = (V, E), an input assignment
ℓ : V → {0, 1}∗, and a configuration c : V → {0, 1}∗ ∪ {⊥} of Gℓ, as a configured graph.

Y. Emek, Y. Gil, and N. Harlev 27:3

A distributed problem Π is a collection of configured graphs Gℓ,c . In the context of a
distributed problem Π, a labeled graph Gℓ is said to be valid if there exists a configuration
c such that Gℓ,c ∈ Π, in which case we say that c is feasible for Gℓ. Given a distributed
problem Π, we may slightly abuse notation and write Gℓ ∈ Π to denote that Gℓ is valid.

Consider a distributed problem Π. Given a valid labeled graph Gℓ ∈ Π, the goal of
an algorithm Alg for Π is to converge to a feasible configuration within a finite number of
rounds, in which case we say that Alg is correct. When considering an algorithm Alg that
operates in a fault-free environment, the initial state of each node v ∈ V is assumed to be
determined locally by Alg. More formally, for each valid labeled graph Gℓ ∈ Π, the initial
state of each node v ∈ V is defined to be the value initAlg(ℓ(v)) obtained by a function
initAlg : {0, 1}∗ → {0, 1}∗. In contrast, self-stabilizing algorithms do not determine the
initial state of the nodes. That is, we say that an algorithm Alg for Π is self-stabilizing if
for any valid labeled graph Gℓ ∈ Π, algorithm Alg is guaranteed to converge to a feasible
configuration starting from any initial global state. The runtime of an algorithm is defined
to be the number of rounds required until convergence.

For many distributed problems, the quality of a feasible configuration can be measured
by means of an objective function that one wishes to minimize/maximize. Formally, we
define a distributed minimization problem (resp., distributed maximization problem) Ψ as a
pair ⟨Π, f⟩, where Π is a distributed problem, and f : Π → R is an objective function that
assigns an objective value f(Gℓ,c) to any configured graph Gℓ,c ∈ Π. For an approximation
parameter α ≥ 1, we say that a configuration c is an α-approximation for a valid labeled
graph Gℓ ∈ Π if the following conditions hold: (1) Gℓ,c ∈ Π, i.e., c is feasible (with respect
to Π) for Gℓ; and (2) f(Gℓ,c) ≤ α · f(Gℓ,c′) (resp., f(Gℓ,c) ≥ f(Gℓ,c′)/α) for any feasible
configuration c′. We often use the general term distributed optimization problem to refer to
distributed minimization problems as well as distributed maximization problems. We say
that an algorithm Alg α-approximates a distributed optimization problem Ψ if it solves the
distributed problem ΠΨ,α = {Gℓ,c | c is an α-approximation for Gℓ}.

1.2 Related Work
The notion of self-stabilization was introduced in the seminal paper of Dijkstra [10] and is
studied extensively since then. Special interest is given to self-stabilizing graph algorithms,
which have natural applications in distributed systems. Awerbuch and Varghese [2] provided a
compiler that transforms deterministic synchronous distributed algorithms into self-stabilizing
algorithms with the same running time. Note, however, that this held only under the LOCAL
model and the size of the node states may be unbounded. See [26] for more details on this
compiler.

For the unweighted vertex cover problem, a 2-approximation can be achieved by finding
a maximal matching. Hsu and Huang [21] presented a self-stabilizing maximal matching
algorithm in the shared memory model with running time O(n3), where n is the number
of nodes in the graph. Later, this algorithm was reanalyzed to show that its running time
is up-bounded by O(n2) [29], and then an O(m + n) was shown by [20], where m is the
number of edges in the graph. The algorithm of Hsu and Haung assumes sequential adversary,
which means that exactly one node is scheduled for execution at each round. Gradinariu
and Tixeuil [17] provided a general scheme to transform an algorithm under a sequential
adversary into an algorithm that works under a distributed adversary, which selects a subset
of the nodes to be executed at each round. Combined with the algorithm of Hsu and Huang,
this scheme yields a time complexity of O(∆m), where ∆ is the maximum degree of the
graph. Chattopadhyay et al. [7] and Manne et al. [27] gave self-stabilizing algorithms for

OPODIS 2022

27:4 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

maximal matching with quadratic runtime in more general models. Cohen et al. [9] proposed
a randomized self-stabilizing algorithm for computing a maximal matching with a time
complexity of O(n2) rounds with high probability.

Kiniwa [24] devised a self-stabilizing vertex cover algorithm that achieves a (2 − 1/∆)-
approximation. This algorithm, which works in the shared memory model, is the first with
an approximation ratio less than 2. Turau and Hauck [31] presented a self-stabilizing vertex
cover algorithm that computes a (3 − 2/(∆ + 1))-approximation and stabilizes in O(n + m)
rounds.

For the minimal dominating set (MDS) problem, Hedetniemi et al. [19] presented a
self-stabilizing algorithm under a sequential adversary with a time complexity of O(n2). Xu
et al. [34] proposed a synchronous MDS self-stabilizing algorithm that converges in O(n)
rounds. Self-stabilizing MDS algorithms with a linear time complexity under a distributed
adversary are presented in [30, 15, 8]. For the minimum weight dominating set (MWDS)
problem, Wang et al. [33] were the first to propose a self-stabilizing algorithm that works for
general graphs. Their algorithm converges in O(n2) rounds under a sequential adversary.

For the unweighted MaxIS problem, one can obtain a ∆-approximation by finding a
maximal independent set (MIS). The first self-stabilizing algorithm for the MIS problem
was introduced by Shukla et al. [28]. Their algorithm converges in O(n) rounds under a
sequential adversary. Under a distributed adversary, Ikeda et al. [22] provided an algorithm
that converges in O(n2) rounds, and Goddard et al. [16] proposed a synchronous algorithm
that converges in O(n) rounds. Later, Turau [30] designed the first linear time asynchronous
MIS algorithm assuming a distributed adversary. Recently, an improved self-stabilizing
linear-time asynchronous MIS algorithm was suggested by Arapoglu and Dagdeviren [1],
assuming a distributed adversary as well. Blair and Manne [6] suggested a generic mapping
from sequential tree algorithms to self-stabilizing tree algorithms. Among other algorithms,
this mapping yields a MaxIS algorithm that requires O(n2) rounds under the read-write
atomicity assumption.

We refer the interested reader to [18, 12] for extensive surveys on self-stabilizing algorithms
and the different models.

2 Preliminaries

Linear Programming and Duality. A linear program (LP) consists of a linear objective
function to be optimized (i.e., minimized or maximized) subject to linear inequality constraints.
Formally, a minimization (resp., maximization) LP is min{cTx | Ax ≥ b ∧ x ≥ 0} (resp.,
max{cTx | Ax ≤ b ∧ x ≥ 0}), where x = {xj} ∈ Rs is a vector of variables and
A = {ai,j} ∈ Rr×s, b = {bi} ∈ Rr, and c = {cj} ∈ Rs are a matrix and vectors of
coefficients, respectively. An integer linear program (ILP) is an LP with integer variables.
An LP relaxation of an ILP is the LP obtained from the ILP by relaxing its integrality
constraints.

Every LP has a corresponding dual program, and in this context, we refer to the original
LP as the primal program. Specifically, for a minimization (resp., maximization) LP, its
dual program is a maximization (resp., minimization) LP, formulated as max{bTy | ATy ≤
c ∧ y ≥ 0} (resp., min{bTy | ATy ≥ c ∧ y ≥ 0}). The following properties of LP duality
make it a powerful tool. The weak duality theorem states that cTx ≥ bTy (resp., cTx ≤ bTy)
for every two feasible solutions x and y to the primal and dual programs, respectively. The
strong duality theorem states that cTx = bTy if and only if x and y are optimal primal and
dual solutions, respectively. The relaxed complementary slackness conditions are stated as
follows, for given parameters β, γ ≥ 1.

Y. Emek, Y. Gil, and N. Harlev 27:5

Primal relaxed complementary slackness:
For every primal variable xj , if xj > 0, then cj/β ≤

r∑
i=1

aijyi ≤ cj (resp., cj ≤
r∑

i=1
aijyi ≤

β · cj).
Dual relaxed complementary slackness:
For every dual variable yi, if yi > 0, then bi ≤

s∑
j=1

aijxj ≤ γ · bi (resp., bi/γ ≤
s∑

j=1
aijxj ≤

bi).
If the (primal and dual) relaxed complementary slackness conditions hold, then it is guaranteed
that cTx ≤ β · γ · bTy (resp., cTx ≥ 1

β·γ · bTy). Combined with the weak duality theorem,
this means that x approximates an optimal primal solution by a multiplicative factor of β · γ.

3 Our Technique

In this section, we present a high-level description of our technique for designing self-stabilizing
approximation algorithms for a large family of distributed graph optimization problems
(henceforth, OptDGPs). We say that an OptDGP Ψ is a covering (resp., packing) problem if
it can be formulated as a minimization (resp., maximization) LP P with a dual LP D such
that the variables and constraints of P and D are associated with the nodes and/or edges of
the graph.1 We focus on covering/packing problems that are locally-constrained in the sense
that a primal/dual constraint associated with a node v ∈ V or an edge e ∈ E, only involves
variables associated with incident nodes and/or edges.

Consider a locally-constrained covering/packing problem Ψ. The technique augments a
fault-free distributed α-approximation algorithm Alg for Ψ with a local-checking procedure,
resulting in a self-stabilizing distributed α-approximation algorithm Algstab. We typically
consider a fault-free algorithm Alg that admits the following structure: (1) Alg maintains
a feasible dual solution y throughout its execution; (2) Alg constructs a primal solution x
such that no primal constraint is violated; and (3) throughout its execution, Alg maintains
the property that x and y are not ”too far” from each other (e.g., by maintaining relaxed
complementary slackness conditions).

We now describe the key ideas behind the transformation of Alg into a self-stabilizing
algorithm Algstab. At the heart of this transformation, we have the aforementioned local-
checking procedure that is invoked repeatedly at the beginning of each round. The local-
checking procedure starts from a detection step whose goal is to verify the primal and dual
feasibility as well as the approximation guarantees of Alg. To that end, during Algstab each
node v ∈ V keeps track of all the primal and dual variables that appear in the constraints
associated with v and its incident edges E(v). We emphasize that this allows each node to
perform the detection step locally without communication.

Following the detection step, Algstab branches into one of two possibilities: if the current
primal and dual assignments satisfy the detection conditions for a node v, then v proceeds
to perform local computation and send messages according to Alg; otherwise, v performs
a correction step. While the details of the correction step are often problem-specific, its
common idea is to change the primal and dual variables so that they meet the detection
conditions. To preserve consistency between two neighbors v and u regarding their mutual

1 For simplicity, we assume that each node v ∈ V knows all of the coefficients of P (and D) that are
associated with its neighbors and incident edges (this includes, e.g., node/edge weights, capacities,
etc.). We note that this assumption is w.l.o.g. since it can be implemented by means of sending this
information through messages at the cost of at most 1 round of communication.

OPODIS 2022

27:6 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

primal and dual variables (i.e., the variables maintained by both v and u), v and u inform
each other of the current values assigned to those variables at each round. Following that,
upon receiving each other’s messages, u and v consistently update their mutual variables
(the details of this update are also problem-specific).

Notice that once Algstab reaches primal and dual assignments that satisfy the detection
conditions for every node v ∈ V , it proceeds to construct the primal and dual solution strictly
according to Alg. By the correctness of Alg, reaching such assignments guarantees that
Algstab converges to an α-approximation for the OptDGP Ψ. Therefore, the main challenge
of Algstab is to recover from arbitrary primal and dual assignments to primal and dual
assignments that satisfy the detection conditions. As we show in Section 4, for some classical
covering/packing problems this recovery process can be obtained using only O(1) rounds.
Thus, for those problems, Algstab achieves the same (asymptotic) runtime guarantee as Alg.
Moreover, if we stick to the common assumption that all the primal and dual coefficients
of the problems mentioned in Section 4 can be represented using O(log n) bits, then we get
that sstab = sAlg + O(log n), where sstab and sAlg denote the message size of Algstab and Alg,
respectively.

4 Results

4.1 Minimum Weight Vertex Cover
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. A vertex
cover is a set U ⊆ V of nodes such that each edge e ∈ E has at least one endpoint in U . A
minimum weight vertex cover (MWVC) is a vertex cover U that minimizes w(U) =

∑
u∈U w(u).

In a natural LP formulation of MWVC, each node v ∈ V is associated with a variable xv

and each edge (u, v) ∈ E is associated with a covering constraint xu + xv ≥ 1. In the dual
LP, each edge e ∈ E is associated with a variable ye and each node v ∈ V is associated with
a packing constraint

∑
e∈E(v) ye ≤ w(v).

In this section, we devise a self-stabilizing 2(1 + ε)-approximation algorithm for MWVC.
More concretely, we constructively prove the following theorem.

▶ Theorem 4.1. There exists a self-stabilizing algorithm that converges to a 2(1 + ε)-
approximation for MWVC in O(log ∆/ε log log ∆) rounds.

Our algorithm involves adapting the (fault-free) algorithm by Bar-Yehuda et al. [4] to an
algorithm that works in a primal-dual framework, i.e., an algorithm that constructs primal
and dual solutions. We then exploit the properties of valid primal and dual solutions to
construct a self-stabilizing algorithm, i.e., an algorithm that is guaranteed to converge to
a 2(1 + ε)-approximation for MWVC from an arbitrary global state (and in particular, an
arbitrary assignment to the primal and dual variables). Refer to Pseudocode 1 for the full
description of the algorithm. We now give a high-level overview of the algorithm.

Overview of the algorithm. Throughout the execution of Algorithm 1, each node v ∈ V

maintains a primal variable v.xv ∈ {0, 1, ⊥} associated with v, where v.xv = ⊥ reflects that
v is undecided; v.xv = 0 reflects that v is not in the cover; and v.xv = 1 reflects that v

is in the cover. Additionally, for each neighbor u ∈ N(v), v maintains a primal variable
v.xu ∈ {0, 1, ⊥} associated with u and a dual variable v.yu,v ∈ R≥0 associated with the edge
(u, v). Each node v ∈ V also maintains the set Nund(v) consisting of v’s currently undecided
neighbors (according to the v.xu values) and the value d(v) = |Nund(v)|. For each neighbor
u ∈ N(v), v also maintains a value v.d(u).

Y. Emek, Y. Gil, and N. Harlev 27:7

Let us now describe how v operates during a round of Algorithm 1. First, v splits the
weight w(v) to threshold(v) = w(v)/(1 + ε) and slack(v) = w(v) − threshold(v). Then,
v performs detection, i.e., it checks whether the current assignment to its variables is faulty,
and performs correction if necessary. Specifically, v checks the following conditions in order:
(1) primal feasibility, i.e., if v.xv = 0, then v checks that v.xu = 1 for all u ∈ N(v); (2) dual
feasibility, i.e., v checks that

∑
e∈E(v) v.ye ≤ w(v); and (3) primal relaxed complementary

slackness, i.e., if v.xv = 1, then v checks that
∑

e∈E(v) v.ye ≥ threshold(v). If conditions (1)
or (3) fail, then v sets v.xv = ⊥; if condition (2) fails, then v sets v.ye = 0 for each e ∈ E(v).

After detection, v computes the message it sends each neighbor u ∈ N(v). Every message
from v to u ∈ N(v) first indicates whether v is decided or undecided. To preserve consistency
of shared values, each message from v to u ∈ N(v) contains the current values of v.xv,v.yu,v,
and d(v). Upon receiving values u.xu, u.yu,v, and d(u), node v updates its own values by
setting v.xu = u.xu, v.yu,v = min{v.yu,v, u.yu,v}, and v.d(u) = d(u).

If v is undecided, then for each undecided neighbor u ∈ Nund(v), in addition to the
values v.xv,v.yu,v, and d(v) node v sends v.d(u) and a real value budget(v, u). The value
budget(v, u) is determined based on an ordering u1, . . . ud(v) of Nund(v) as follows. For each
i ∈ [d(v)], v sets budget(v, ui) = min{slack(ui)/v.d(ui), bank(v) −

∑i−1
j=1 budget(v, uj)},

where bank(v) = threshold(v) −
∑

e∈E(v) v.ye. If v receives a message ⟨budget(u, v),
d(u), u.d(v), u.yu,v⟩ from a neighbor u ∈ Nund(v) that satisfies d(u) ≤ v.d(u) and d(v) ≤
u.d(v), then v increments the variable v.yu,v by budget(u, v) + budget(v, u).

Finally, if v is undecided, then it becomes decided at the beginning of the following
round in one of the following cases: if

∑
e∈E(v) v.ye ≥ threshold(v), then v sets v.xv = 1;

otherwise, if v.xu = 1 for every neighbor u ∈ N(v), then v sets v.xv = 0.

Analysis. We now analyze Algorithm 1. Recall that our goal is to establish that Algorithm
1 converges to a 2(1 + ε)-approximation for MWVC in O(log ∆/ε log log ∆) rounds starting
from any global state. To that end, let us first state the following straightforward observation
that holds trivially by the construction of Algorithm 1.

▶ Observation 4.2. At the end of each round of Algorithm 1, it holds that v.xv = u.xv and
v.yu,v = u.yu,v for every (u, v) ∈ E.

The goal of the following three claims is to show that Algorithm 1 recovers quickly from
any global state. As such, these claims play a major role in proving Theorem 4.1.

▷ Claim 4.3. At the end of each round of Algorithm 1, it holds that
∑

e∈E(v) v.ye ≤ w(v)
for each node v ∈ V .

Proof. Consider some node v ∈ V and fix some round i ≥ 1. Notice that the check
in line 8 of Pseudocode 1 guarantees that

∑
e∈E(v) v.ye ≤ w(v) right before v receives

messages. If v.xv ̸= ⊥ at the time v receives messages, then v will not increase its v.ye

variables, and thus the claim holds. Now, suppose that v.xv = ⊥. Let Y s and Y f denote
the sum of dual variables v.ye before and after v updates its dual variables in round i,
respectively. Let N ′(v) ⊆ Nund(v) be the set of neighbors u ∈ Nund(v) that send v a
message ⟨budget(u, v), d(u), u.d(v), u.yu,v⟩ in the current round such that d(u) ≤ v.d(u)
and d(v) ≤ u.d(v). Notice that Y f ≤ Y s +

∑
u∈N ′(v) budget(u, v) +

∑
u∈N ′(v) budget(v, u).

By definition, it holds that
∑

u∈N ′(v) budget(v, u) ≤ bank(v) = threshold(v) − Y s. In
addition, by the way budget(u, v) is assigned, and since u.d(v) ≥ d(v) for all u ∈ N ′(v), and
|N ′(v)| ≤ d(v), it follows that

OPODIS 2022

27:8 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

∑
u∈N ′(v)

budget(u, v) ≤
∑

u∈N ′(v)

slack(v)
u.d(v) ≤

∑
u∈N ′(v)

slack(v)
d(v) ≤ slack(v) .

Overall, we have Y f ≤ threshold(v) + slack(v) = w(v). ◁

▷ Claim 4.4. Let i ≥ 2. At the end of the i-th round of Algorithm 1 it holds that if v.xv = 1,
then

∑
e∈E(v) v.ye ≥ threshold(v) for each node v ∈ V .

Proof. Consider some node v ∈ V during the i-th round for some i ≥ 2. Notice that the
check in line 10 of Pseudocode 1 guarantees that v satisfies v.xv = 1 ⇒

∑
e∈E(v) v.ye ≥

threshold(v) right before v receives messages. If v.xv ̸= 1 at that time, then v.xv ̸= 1 at
the end of round i and the claim is trivial; so, suppose that v.xv = 1 right before receiving
messages. This means that by the end of round i, node v sets v.yu,v = min{v.yu,v, u.yu,v}
for each u ∈ N(v). Notice that by Claim 4.3, every neighbor u ∈ N(v) does not satisfy
the condition in line 8 of the i-th round. This means that the value u.yu,v sent to v from
neighbor u during round i does not change from the end of round i − 1. From Observation
4.2, it follows that v.yu,v does not change by the end of round i. Therefore, the inequality∑

e∈E(v) v.ye ≥ threshold(v) is still satisfied by the end round i. ◁

▷ Claim 4.5. Let i ≥ 3. At the end of the i-th round of Algorithm 1 it holds that for each
node v ∈ V , if v.xv = 0, then v.xu = 1 for every neighbor u ∈ N(v).

Proof. Consider some node v ∈ V during the i-th round for some i ≥ 3. Notice that the
check in line 6 of Pseudocode 1 guarantees that if v.xv = 0, then v.xu = 1 for every neighbor
u ∈ N(v) before v receives messages. By Observation 4.2, at the end of round i − 1 it holds
that u.xu = v.xu = 1 for all u ∈ N(v). By Claim 4.4, the value of u.xu remains 1 for every
node u ∈ N(v) during round i ≥ 3 (since the condition in line 10 is not satisfied). Therefore,
if v.xv = 0, then v receives the message ⟨“DECIDED”, d(u), u.xu = 1, u.yu,v⟩ from each
neighbor u ∈ N(v) in the i-th round, thus the claim holds at the end of round i. ◁

We are now prepared to prove Theorem 4.1.

Proof of Theorem 4.1. We start with the runtime analysis of Algorithm 1. We note that
the runtime analysis uses similar arguments as the analysis presented in [4]. Claims 4.4 and
4.5 imply that if node v is decided (i.e., v.xv ̸= ⊥) in round i > 3, then it will not change
its decision at any round i′ ≥ i. We now bound the number of rounds until a node v ∈ V

becomes decided.
Fix some i > 4 and node v ∈ V , and suppose that v.xv = ⊥ in the i-th round. Let di(v)

be the value of d(v) in round i (after the update in line 2) and let Yi(v) be the sum of dual
variables

∑
e∈E(v) v.ye at the end of round i. We denote by u.di(v) the value of u.d(v) at

the beginning of round i for each neighbor u ∈ N(v). Observe that u updates u.d(v) at the
end of round i − 1 according to a message from v, and thus u.di(v) = di−1(v). We also note
that nodes that are decided at the beginning of round i − 1 do not become undecided at any
time afterwards. Therefore, it follows that di(v) ≤ di−1(v) = u.di(v).

We now show that for every parameter z > 0, it holds that either (1) di+2(v) ≤ di−1(v)/z;
or (2) Yi(v) ≥ Yi−1(v) + slack(v)/z. First, observe that if during the i-th round it holds
that budget(u, u′) < slack(u′)/u.di(u′) for some undecided node u ∈ V and neighbor
u′ ∈ Nund(u), then u sets u.xu = 1 during round i + 1 and inform its neighbors. Hence,
if di+2(v) > di−1(v)/z, then v updates Yi(v) according to more than di−1(v)/z messages

Y. Emek, Y. Gil, and N. Harlev 27:9

with budget(u, v) = slack(v)/u.di(v) = slack(v)/di−1(v) for every undecided neighbor
u ∈ Nund(v). It follows that Yi(v) ≥ Yi−1(v) + (di−1(v)/z) · (slack(v)/di−1(v)) = Yi−1(v) +
slack(v)/z. Recall that v becomes decided in round i′ if either di′(v) = 0; or Yi′(v) ≥
threshold(v). By the above, case (2) can occur in at most z · w(v)/slack(v) rounds until∑

e∈E(v) ye ≥ threshold(v). As case (1) can occur in at most log(deg(v))/ log z rounds, it
follows that after

z · w(v)
slack(v) + O

(
log(deg(v))

log z

)
= z

1 − 1/(1 + ε) + O

(
log(deg(v))

log z

)
= z(1 + ε)

ε
+ O

(
log(deg(v))

log z

)
rounds v must be decided. Taking z = log(deg(v))/ log log(deg(v)), we get the desired bound
of O(log(deg(v))/ε log log(deg(v))) rounds.

As for the correctness, first notice that by Observation 4.2, it holds at convergence that
v.xv = u.xv and v.yu,v = u.yu,v for each (u, v) ∈ E. Additionally, by the design of Algorithm
1 and by Claims 4.3, 4.4, and 4.5, the variables’ values do not change afterwards. Let
x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n and y = ⟨ye | e ∈ E⟩ ∈ Rm

≥0 be the primal and dual solutions
derived from the variables v.xv and v.ye, respectively. By relaxed complementary slackness,
it is sufficient to show that the following conditions are satisfied: (1) x is a feasible primal
solution; (2) y is a feasible dual solution; (3) xv > 0 ⇒

∑
e∈E(v) ye ≥ w(v)/(1 + ε); and (4)

yu,v > 0 ⇒ xu + xv ≤ 2. Conditions (1), (2), and (3) follow directly from Claims 4.5,4.3, and
4.4, respectively. Condition (4) holds trivially, since xu +xv ≤ 1+1 = 2 for all (u, v) ∈ E. ◀

Message size. Note that the size of messages sent during Algorithm 1 depends on the values
of budget(v, u) computed during its execution. Observe that this dependency is manifested in
the budget(v, u) values themselves as well as the dual values v.yu,v. As remarked in [4], each
budget(v, u) value can be modified to be represented using O(log n) bits without affecting
the correctness or the (asymptotic) runtime of the algorithm. The idea is to round each
budget(v, u) value and reduce the slack(v) values accordingly. We note that applying a
similar modification to Algorithm 1 is straightforward. Using this modification, we get
messages of size O(log n).

4.2 Maximum Weight Independent Set
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. An
independent set is a set X ⊆ V of nodes such that each edge e ∈ E has at most one endpoint
in X. A maximum weight independent set (MWIS) is an independent set X ⊆ V that
maximizes w(X) =

∑
v∈X w(v). In a natural LP formulation of MWIS, each node v ∈ V is

associated with a variable xv and each edge (u, v) ∈ E is associated with a packing constraint
xu + xv ≤ 1. In the dual LP, each edge e ∈ E is associated with a variable ye and each node
v ∈ V is associated with a covering constraint

∑
e∈E(v) ye ≥ w(v).

In this section, we present a self-stabilizing algorithm that given a proper (∆+1)-coloring,
obtains a ∆-approximation for MWIS. More concretely, we constructively prove the following
lemma.

▶ Lemma 4.6. Given a proper (∆ + 1)-coloring c : V → {1, . . . , ∆ + 1}, there exists a
self-stabilizing algorithm that converges to a ∆-approximation for MWIS in O(∆) rounds.

OPODIS 2022

27:10 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

Algorithm 1 A self-stabilizing 2(1+ ε)-approximation algorithm for MWVC. Code for node v ∈ V

in a single round.

1: threshold(v) = w(v)/(1 + ε); slack(v) = w(v) − threshold(v)
2: Nund(v) = {u ∈ N(v) | v.xu = ⊥}; d(v) = |Nund(v)| ▷ v’s undecided neighbors
3: if v.xv == ⊥ then
4: if

∑
e∈E(v) v.ye ≥ threshold(v) then v.xv = 1

5: else if v.xu == 1 for every neighbor u ∈ N(v) then v.xv = 0
6: if (v.xv == 0) ∧ (∃u ∈ N(v) : v.xu ̸= 1) then ▷ checking primal feasibility
7: v.xv = ⊥
8: if

∑
e∈E(v) v.ye > w(v) then ▷ checking dual feasibility

9: v.ye = 0 for all e ∈ E(v)
10: if (v.xv == 1) ∧ (

∑
e∈E(v) v.ye < threshold(v)) then ▷ checking comp. slackness

11: v.xv = ⊥
12: if v.xv ∈ {0, 1} then
13: send ⟨“DECIDED”, d(v), v.xv, v.yu,v⟩ to each neighbor u ∈ N(v)
14: else
15: send ⟨“UNDECIDED”, d(v), v.yu,v⟩ to each neighbor u ∈ N(v) − Nund(v)
16: bank(v) = threshold(v) −

∑
e∈E(v) v.ye

17: let u1, . . . , ud(v) be an ordering of Nund(v) ▷ e.g., by port numbers
18: for i = 1, . . . , d(v) do
19: slack(ui) = (1 − 1/(1 + ε)) · w(ui)
20: budget(v, ui) = min{slack(ui)/v.d(ui), bank(v) −

∑i−1
j=1 budget(v, uj)}

21: send ⟨budget(v, ui), d(v), v.d(u), v.yui,v⟩ to ui

22: for each message µu received from neighbor u ∈ N(v) do
23: if µu == ⟨“DECIDED”, d(u), u.xu, u.yu,v⟩ then
24: v.d(u) = d(u); v.xu = u.xu; v.yu,v = min{v.yu,v, u.yu,v}
25: if µu == ⟨“UNDECIDED”, d(u), u.yu,v⟩ then
26: v.d(u) = d(u); v.xu = ⊥; v.yu,v = min{v.yu,v, u.yu,v}
27: if µu == ⟨budget(u, v), d(u), u.d(v), u.yu,v⟩ then
28: v.xu = ⊥; v.yu,v = min{v.yu,v, u.yu,v}
29: if (u ∈ Nund(v)) ∧ (v.xv == ⊥) ∧ (d(u) ≤ v.d(u)) ∧ (d(v) ≤ u.d(v)) then
30: v.yu,v = v.yu,v + budget(u, v) + budget(v, u)
31: v.d(u) = d(u)

Our algorithm involves adapting the (fault-free) algorithm by Bar-Yehuda et al. [3] to a
primal-dual algorithm, and then applying our technique to obtain a self-stabilizing algorithm.
Refer to Pseudocode 2 for a full description of the algorithm. For simplicity of presentation,
we assume that each node knows the colors of all its neighbors.

Combining Lemma 4.6 with the self-stabilizing (∆ + 1)-coloring algorithm by Barenboim
et al. [5] (henceforth referred to as the BEG algorithm), we establish the following theorem.2

2 We note that the BEG algorithm requires that the nodes’ labels include the values of ∆ and n, as well
as a unique ID.

Y. Emek, Y. Gil, and N. Harlev 27:11

▶ Theorem 4.7. There exists a self-stabilizing algorithm that converges to a ∆-approximation
for MWIS in O(∆ + log∗ n) rounds.

We remark that incorporating the BEG algorithm into Algorithm 2 can be done in a
straightforward manner. This requires the nodes to repeatedly check that the current
coloring is proper, and correct it according to the BEG algorithm if necessary. As established
in [5], the BEG algorithm converges to a proper (∆ + 1)-coloring in O(∆ + log∗ n) rounds.
The execution of the BEG algorithm is performed in parallel to Algorithm 2 so that after
O(∆ + log∗ n) rounds, the incorporated algorithm performs its updates strictly based on
Algorithm 2.

Overview of Algorithm 2. Throughout the execution of Algorithm 2, each neighbor v ∈ V

maintains a primal variable v.xv ∈ {0, 1} and a dual variable v.yu,v ∈ R≥0 for each node
u ∈ N(v).3 Additionally, v maintains a primal variable v.xu for each neighbor u ∈ N(v).

Consider a node v ∈ V and let S(v) = {u ∈ N(v) | c(u) < c(v)} and L(v) = N(v) − S(v).
At each round, v updates its primal and dual variables as follows. If

∑
u∈S(v) v.yu,v ≥ w(v),

then v sets v.xv = 0 and v.yu,v = 0 for each u ∈ L(v). Otherwise, v sets v.yu,v =
w(v) −

∑
u′∈S(v) v.yu′,v for each u ∈ L(v). In the case that

∑
u∈S(v) v.yu,v < w(v), node v

sets v.xv = 0 if there exists a neighbor u ∈ L(v) such that v.xu = 1. Otherwise, node v sets
v.xv = 1.

At the end of each round, v sends the dual variable v.yu,v to each neighbor u ∈ L(v),
and the primal variable v.xv to each neighbor u ∈ S(v). Upon receiving a message u.yu,v

(resp., u.xu) from a neighbor u ∈ S(v) (resp., u ∈ L(v)), node v sets v.yu,v = u.yu,v (resp.,
v.xu = u.xu).

Analysis. We now turn to analyze Algorithm 2. To that end, let us first state the following
straightforward observation that holds trivially by the construction of Algorithm 2.

▶ Observation 4.8. Consider a node v ∈ V . At the end of each round of Algorithm 2, it
holds that v.xu = u.xu for each neighbor u ∈ L(v); and v.yu,v = u.yu,v for each neighbor
u ∈ S(v).

The following two claims are used to establish the convergence time of the primal and dual
solutions.

▷ Claim 4.9. Fix some node v ∈ V . During the execution of Algorithm 2, the dual variable
v.yu,v does not change at any time from the end of round c(v) for every u ∈ N(v).

Proof. We prove the claim by induction on c(v) = 1, . . . , ∆ + 1. For the base of the
induction, consider the case where c(v) = 1. This means that S(v) = ∅ and thus v sets
v.yu,v = w(v) −

∑
u′∈S(v) v.yu′,v = w(v) at round 1 for each u ∈ N(v). By the construction

of Algorithm 2, these values do not change afterwards.
Now, suppose that i = c(v) > 1. Notice that by Observation 4.8, it holds that v.yu,v =

u.yu,v for each u ∈ S(v) at the beginning of round i. By the induction hypothesis, these
variables do not change throughout the execution from round i onward. Notice that for
each neighbor u ∈ L(v), node v sets v.yu,v = 0 in the case that

∑
u∈S(v) v.yu,v ≥ w(v); and

v.yu,v = w(v) −
∑

u′∈S(v) v.yu′,v otherwise. Since the value v.yu′,v does not change for each

3 We note that unlike the other algorithms presented in this paper, the dual solution obtained by the dual
variables in Algorithm 2 is not necessarily feasible. We elaborate on that in the proof of Lemma 4.6.

OPODIS 2022

27:12 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

node u′ ∈ S(v), it follows that the value v.yu,v does not change for every u ∈ L(v). Overall,
we conclude that the value v.yu,v does not change from the end of round c(v) onward for
every u ∈ S(v) ∪ L(v) = N(v). ◁

▷ Claim 4.10. Fix some node v ∈ V . During the execution of Algorithm 2, the primal
variable v.xv does not change at any time from the end of round 2∆ + 3 − c(v).

Proof. We prove the claim by induction on c(v) = ∆ + 1, . . . , 1. For the base of the induction,
suppose that c(v) = ∆ + 1 and consider round ∆ + 2 = 2∆ + 3 − c(v). Since c(v) = ∆ + 1, it
follows that L(v) = ∅ and v sets v.xv = 0 if

∑
u∈S(v) v.yu,v ≥ w(v); and v.xv = 1 otherwise.

By Claim 4.9, the value v.yu,v for each neighbor u ∈ S(v) does not change throughout the
execution from the end of round ∆ + 1. Therefore, it follows that the value v.xv does not
change from the end of round ∆ + 2 onward.

Let v ∈ V such that c(v) < ∆ + 1, and consider round i = 2∆ + 3 − c(v). If at the
beginning of round i it holds that

∑
u∈S(v) v.yu,v ≥ w(v), then v sets v.xv = 0. By Claim 4.9,

the value of
∑

u∈S(v) v.yu,v does not change after round i and thus it follows that v.xv = 0
at all times from round i onward. Now, suppose that

∑
u∈S(v) v.yu,v < w(v). Notice that v

sets v.xv = 0 if there exists a neighbor u ∈ L(v) such that v.xu = 1; and v.xv = 1 otherwise.
By Observation 4.8, it holds that v.xu = u.xu for each u ∈ L(v) at the beginning of round i.
By the induction hypothesis, these variables do not change throughout the execution from
round i onward. Hence, the value v.xv does not change either. ◁

We are now prepared to prove Lemma 4.6.

Proof of Lemma 4.6. From Claims 4.9 and 4.10, we can deduce that Algorithm 2 converges
to a primal solution x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n derived from the variables v.xv and a dual
solution y = ⟨y(u,v) | (u, v) ∈ E⟩ ∈ Rm

≥0 derived from the variables v.yu,v after at most 2∆+2
rounds. Let λ(v) = max{0, w(v) −

∑
u∈S(v) yu,v} for each node v ∈ V . Notice that y is

constructed such that yu,v = λ(v) for each u ∈ L(v).
Recall the dual constraint

∑
u∈N(v) yu,v ≤ w(v) associated with each node v. Notice

that y is constructed such that if
∑

u∈S(v) yu,v < w(v) for node v ∈ V , then yu,v = λ(v) =
w(v) −

∑
u′∈S(v) yu′,v for each u ∈ L(v). Thus, the dual constraint is violated only for nodes

v ∈ V such that L(v) = ∅ and
∑

u∈S(v) yu,v < w(v). For the sake of the analysis, we fix the
dual feasibility by defining the dual solution y′ as follows. If a node v satisfies L(v) = ∅
and

∑
u∈S(v) yu,v < w(v), then we set the dual value y′

z,v = yz,v + λ(v) for a single neighbor
z ∈ S(v), and set y′

u,v = yu,v for every other neighbor u ∈ S(v) − {z}. Otherwise (if L(v) ̸= ∅
or

∑
u∈S(v) yu,v ≥ w(v)), we set the dual value y′

u,v = yu,v for every neighbor u ∈ S(v). It is
not hard to see that y′ is a feasible dual solution. In addition, notice that x is a feasible
primal solution since for each node v ∈ V , if xv = 1, then xu = 0 for each neighbor u ∈ L(v).

Let X = {v | xv = 1} be the independent set obtained by Algorithm 2 and consider a
node v ∈ X. Let µ(v) = {(u, u′) ∈ E | u ∈ S(v) ∧ u′ ∈ L(u) ∧ xu′ = 0} and notice that
ye = y′

e for every edge e ∈ µv. We argue that ∆ · w(v) ≥
∑

u∈N(v) y′
u,v +

∑
e∈µ(v) y′

e for each
v ∈ X. To establish that, first suppose that L(v) ̸= ∅. It holds that∑

u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e =

∑
u∈N(v)

yu,v +
∑

e∈µ(v)

ye =
∑

u∈L(v)

yu,v +
∑

u∈S(v)

yu,v +
∑

e∈µ(v)

ye

≤
∑

u∈L(v)

yu,v +
∑

u∈S(v)

∑
u′∈L(u)

yu,u′

= |L(v)| · λ(v) +
∑

u∈S(v)

|L(u)| · λ(u)

Y. Emek, Y. Gil, and N. Harlev 27:13

≤ ∆

λ(v) +
∑

u∈S(v)

λ(u)


= ∆

w(v) −
∑

u∈S(v)

yu,v +
∑

u∈S(v)

λ(u)


= ∆

w(v) −
∑

u∈S(v)

λ(u) +
∑

u∈S(v)

λ(u)

 = ∆ · w(v) .

Now, suppose that L(v) = ∅. Notice that since v ∈ X, it must hold that
∑

u∈S(v) yu,v < w(v).
By the definition of y′, it holds that y′

z,v = yz,v + λ(v) for a single neighbor z ∈ S(v) = N(v),
and y′

u,v = yu,v for every other neighbor u ∈ S(v) − {z}. It follows that∑
u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e = λ(v) +

∑
u∈S(v)

yu,v +
∑

e∈µ(v)

ye = w(v) +
∑

e∈µ(v)

ye

≤ w(v) +
∑

u∈S(v)

∑
u′∈L(u)−{v}

yu,u′

≤ w(v) + (∆ − 1)
∑

u∈S(v)

λ(u)

< ∆ · w(v) ,

where the last transition holds because xv = 1 implies that
∑

u∈S(v) λ(u) < w(v).
Observe that for every node v /∈ X, if L(v) ∩ X = ∅, then it holds that

∑
u∈S(v) y′

u,v =∑
u∈S(v) yu,v ≥ w(v) and thus y′

u′,v = yu′,v = 0 for each u′ ∈ L(v). Therefore, it follows that

∑
e∈E

y′
e =

∑
v∈V

∑
u∈L(v)

y′
u,v =

∑
v∈X

 ∑
u∈N(v)

y′
u,v +

∑
e∈µ(v)

y′
e

 ≤
∑
v∈X

∆ · w(v) = ∆ · w(X)

From the weak duality theorem, we conclude that X is a ∆-approximation for MWIS. ◀

Algorithm 2 A self-stabilizing ∆-approximation algorithm for MWIS given a proper (∆ + 1)-
coloring c : V → [∆ + 1]. Code for node v ∈ V in a single round.

1: S(v) = {u ∈ N(v) | c(u) < c(v)} ▷ v’s neighbors with a smaller color
2: L(v) = N(v) − S(v) ▷ v’s neighbors with a larger color
3: if

∑
u∈S(v) v.yu,v ≥ w(v) then

4: v.xv = 0
5: v.yu,v = 0, ∀u ∈ L(v)
6: else
7: v.yu,v = w(v) −

∑
u′∈S(v) v.yu′,v, ∀u ∈ L(v) ▷ w(v) >

∑
u′∈S(v) v.yu′,v

8: if ∃u ∈ L(v) : v.xu == 1 then
9: v.xv = 0

10: else v.xv = 1
11: send v.yu,v to each neighbor u ∈ L(v)
12: send v.xv to each neighbor u ∈ S(v)
13: for each u.yu,v received from neighbor u ∈ S(v) do v.yu,v = u.yu,v

14: for each u.xu received from neighbor u ∈ L(v) do v.xu = u.xu

OPODIS 2022

27:14 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

4.3 Minimum Weight Dominating Set in Bounded Arboricity Graphs
Consider a graph G = (V, E) associated with a node-weight function w : V → R≥0. Let us
denote N+(v) = N(v) ∪ {v} for each node v. We naturally extend this notation to node
sets and denote N+(X) =

⋃
v∈X N+(v) for a node set X ⊆ V . A set X ⊆ V of nodes is

said to be a dominating set if N+(X) = V . A minimum weight dominating set (MWDS) is
a dominating set X that minimizes w(X). In a natural LP formulation for MWDS, each
node v ∈ V is associated with a variable xv and a covering constraint

∑
u∈N+(v) xu ≥ 1.

In the dual LP, each node v ∈ V is associated with a variable yv and a packing constraint∑
u∈N+(v) yu ≤ w(v).
In this section, we focus on graphs with bounded arboricity. The arboricity of graph G

is the minimal number ρ for which there exists a partition E = E1∪̇, . . . , ∪̇Eρ such that Ei

induces a forest for each i ∈ [ρ]. We obtain the following results for MWDS on graphs with
arboricity at most ρ.

▶ Theorem 4.11. There exists a self-stabilizing algorithm that converges to a ((2ρ+1)(1+ε))-
approximation for MWDS in graphs with arboricity at most ρ in O(log ∆/ε) rounds.

Our algorithm is based on the primal-dual algorithm by Dory et al. [11]. We assume w.l.o.g.
that every node v ∈ V knows the value wmin(u) = minu′∈N+(u){w(u′)} of each of its neighbors
u ∈ N(v). We further assume that for each u ∈ V , the neighbor arg minu′∈N+(u){w(u′)}
is unique (breaking ties, e.g., by port numbers) and that each node v knows if it is the
node that realizes arg minu′∈N+(u){w(u′)} for each neighbor u ∈ N(v). Finally, we assume
that the arboricity ρ and the maximum degree ∆ are encoded in the label of each node
v ∈ V . As remarked in [11], the latter assumption can be lifted by replacing ∆ with
maxu∈N+(v){deg(u)} without affecting the correctness and (asymptotic) runtime of the
algorithm. Refer to Pseudocode 3 for a full description of the algorithm.

Algorithm 3 A self-stabilizing ((2ρ + 1)(1 + ε))-approximation algorithm for MWDS in graphs
with arboricity at most ρ. Code for node v ∈ V in a single round.

1: λ = 1/((2ρ + 1)(1 + ε)); reset = FALSE

2: MWDS_update_variables ▷ may change the value of reset

3: MWDS_update_status
4: if reset == TRUE then
5: send ⟨“RESET ”, status(v), v.xv, v.yv⟩ to each neighbor u ∈ N(v)
6: else
7: if status(v) == active then
8: v.yv = (1 + ε)v.yv

9: else if status(v) == waiting then
10: if ∀u ∈ N(v) : v.status(u) ̸= active then
11: v.yv = (1 + ε)v.yv

12: status(v) = done_waiting

13: send ⟨status(v), v.xv, v.yv⟩ to each u ∈ N(v)
14: MWDS_receive_messages

Overview of the algorithm. Let us first briefly describe the high-level idea of the (fault-free)
algorithm presented in [11]. Throughout the execution, the algorithm maintains a feasible
dual solution y and uses it to construct a dominating set X such that at termination, w(X)
is within a multiplicative ((2ρ + 1)(1 + ε)) factor from the objective value of y. This is done
in two stages. In the first stage, the algorithm constructs a set X1 which consists of nodes

Y. Emek, Y. Gil, and N. Harlev 27:15

Algorithm 4 Procedure MWDS_update_variables. Node v updates its variables.

1: v.yv = max{v.yv, wmin(v)/(∆ + 1)} ▷ setting a lower bound for dual variables
2: if ∃u ∈ N+(v) : v.status(u) == done_waiting then
3: if v = arg minz∈N+(u){w(z)} then ▷ breaking ties by port numbers
4: v.xv = 1
5: else
6: if

∑
u∈N+(v) v.yu > w(v) then ▷ checking dual feasibility

7: v.yu = wmin(u)/(∆ + 1), v.xu = 0 for all u ∈ N+(v)
8: reset = TRUE

9: if v.yv ≤ λ · wmin(v) then
10: if

∑
u∈N+(v) v.yu < w(v)/(1 + ε) then ▷ maintaining primal comp. slackness

11: v.xv = 0
12: else
13: v.xv = 1
14: else if ∃u ∈ N(v) : v.status(u) == active then
15: v.yv = λ · wmin(v)

Algorithm 5 Procedure MWDS_update_status. Node v updates its status.

1: if v.yv ≤ wmin(v) · λ/(1 + ε) then
2: if

∑
u∈N+(v) v.xu == 0 then ▷ primal constraint is not satisfied

3: status(v) = active

4: else
5: status(v) = over

6: else if v.yv ≤ wmin(v) · λ then
7: if

∑
u∈N+(v) v.xu == 0 then

8: status(v) = waiting

9: else
10: status(v) = over

11: else status(v) = done_waiting

Algorithm 6 Procedure MWDS_receive_messages. Node v receives messages from its neighbors.

1: for each message µu received from neighbor u ∈ N(v) do
2: if µu == ⟨“RESET ”, status(u), u.xu, u.yu⟩ then
3: v.yv = wmin(v)/(∆ + 1); v.yu = u.yu; v.xu = u.xu; v.status(u) = status(u)
4: else ▷ µu = ⟨status(u), u.xu, u.yu, u.yv⟩
5: v.yu = u.yu; v.xu = u.xu; v.status(u) = status(u)

OPODIS 2022

27:16 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

v ∈ V that satisfy the following two conditions by the end of the stage: (1) yu ≤ λwmin(u)
for every u ∈ N+(v), where λ = 1/((2ρ + 1)(1 + ε)); and (2)

∑
u∈N+(v) yu ≥ w(v)/(1 + ε).

In the second stage, a set X2 is constructed greedily by having each node u ∈ V − N+(X1)
which is not dominated by X1, add to X2 a node v ∈ N+(u) that satisfies w(v) = wmin(u).
As shown in [11], the set X = X1 ∪ X2 is a ((2ρ + 1)(1 + ε))-approximation of MWDS.

In Algorithm 3, we modify the algorithm of [11] to produce a self-stabilizing algorithm.
The challenge of such algorithm is to recover from an arbitrary primal and dual assignment.
To that end, each node v ∈ V maintains a primal variable v.xv ∈ {0, 1}, a dual variable
v.yv ∈ R≥0, and the primal and dual variables v.xu and v.yu of each neighbor u ∈ N(v). In
addition, v maintains a variable status(v) ∈ {active, over, waiting, done_waiting} and the
status v.status(u) of each neighbor u ∈ N(v).

The role of status(v) is to reflect the current stage of node v with respect to the variables
of its neighbors. For each node v ∈ V , status(v) = active reflects that yv ≤ λwmin(v)/(1+ε)
and v is currently not dominated; status(v) = waiting reflects that λwmin(v)/(1+ε) < yv ≤
λwmin(v) and v is currently not dominated; status(v) = over reflects that yv ≤ λwmin(v)
and v is dominated; and status(v) = done_waiting reflects that yv > λwmin(v).

At the beginning of each round, each node updates its variables using Procedure 4. This
procedure makes sure that dual feasibility is maintained, and also updates the primal variables
to achieve similar guarantees to those of [11]. In addition, to enable quick convergence
of Algorithm 3, the procedure bounds the dual variables from below by setting v.yv =
max{v.yv, w_min(v)/(∆ + 1)}.

Following the update of the variables, each node updates its status according to Proced-
ure 5. Then, if the dual constraint of node v was violated in Procedure 4, then v resets the
dual variables of its neighbors and informs them by sending a “RESET” message. Nodes
that receive a “RESET” message set v.yv to wmin(v)/(∆ + 1).

If the dual constraint was not violated, v increases its dual variable by setting v.yv =
(1 + ε)v.yv if one of the following cases holds: (1) status(v) = active; or (2) status(v) =
waiting and v.status(u) ̸= active for each u ∈ N(v). In the latter case, v also sets
status(v) = done_waiting. Finally, v informs its neighbors about its status and current
values of variables, and uses the messages received to update the values of variables v.xu,
v.yu, and v.status(u) of each neighbor u ∈ N(v) according to Procedure 6.

Analysis. We now turn to analyze Algorithm 3. To that end, let us first state the following
straightforward observation that holds trivially by the construction of Algorithm 3.

▶ Observation 4.12. At the end of each round of Algorithm 3, it holds that v.yv = u.yv,
v.xv = u.xv, and status(v) = u.status(v) for every (u, v) ∈ E.

We now establish an important property regarding the dual solution maintained by
Algorithm 3.

▷ Claim 4.13. Let i ≥ 2. At the end of the i-th round of Algorithm 3, it holds that∑
u∈N+(v) v.yu ≤ w(v) for every node v ∈ V .

Proof. Fix some node v ∈ V . First, suppose that
∑

u∈N+(v) v.yu ≤ w(v) at the beginning
of round i. By Observation 4.12, at the beginning of round i it holds that v.yu = u.yu

for every u ∈ N(v). Notice that v updates the dual variable v.yu at the end of the round
according to the message from neighbor u. Each update increases the dual variable v.yu by
a multiplicative factor of at most (1 + ε). We argue that this update does not violate the
inequality in the statement. Notice that if v.xv = 0, then by the construction of Procedure 4

Y. Emek, Y. Gil, and N. Harlev 27:17

it follows that
∑

u∈N+(v) v.yu < w(v)/(1 + ε) at the beginning of the round. Therefore, an
increase of this sum by a multiplicative (1 + ε) does not exceed w(v). If v.xv = 1, then each
neighbor u ∈ N(v) sets its status to over and does not increase u.yu.

Now, suppose that
∑

u∈N+(v) v.yu > w(v) at the beginning of round i. This means that
v sets v.yu = wmin(u)/(∆ + 1) for each u ∈ N+(v). Therefore, at the end of round i it holds
that ∑

u∈N+(v)

v.yu =
∑

u∈N+(v)

wmin(u)
∆ + 1 ≤ (deg(v) + 1) · w(v)

deg(v) + 1 = w(v) ,

thus establishing the assertion. ◁

From Claim 4.13, we deduce the following corollary.

▶ Corollary 4.14. Consider a node v ∈ V . During the execution of Algorithm 3, the value
v.yu does not decrease from round 3 onward for each u ∈ N+(v).

We can now show the following claim.

▷ Claim 4.15. Let i ≥ 3 and consider a node v ∈ V . If v.xv = 1 at the end of round i, then
v.xv = 1 at each round i′ ≥ i.

Proof. Observe that v.xv = 1 at the end of round i in one of the following cases: (1) there
exists a node u ∈ N+(v) such that status(u) = done_waiting and wmin(u) = w(v); or (2)
node v satisfies the inequality

∑
u∈N+(v) v.yu ≥ w(v)/(1 + ε) at the beginning of the i-th

round. In case (1), we note that by Corollary 4.14 node u will not decrease its dual variable
throughout the execution of Algorithm 3. This means that status(u) = done_waiting

throughout the execution and thus it follows that v.xv = 1. For case (2), by Corollary 4.14
the value of v.yu does not decrease for all u ∈ N+(v) throughout the execution of Algorithm 3.
Therefore, the inequality

∑
u∈N+(v) v.yu ≥ w(v)/(1 + ε) remains satisfied. ◁

We conclude the analysis by proving Theorem 4.11.

Proof of Theorem 4.11. First, observe that by Claim 4.15 and the construction of Pro-
cedure 4, if v.xv = 1 for node v ∈ V at some round i ≥ 3, then v.xv = 1 from round i

onward. To see that Algorithm 3 converges to a dominating set, observe that for each node
v ∈ V , if status(v) ∈ {over, done_waiting} at some round i ≥ 1, then it follows that there
exists a node u ∈ N+(v) such that u.xu = v.xu = 1 by the end of round i. Notice that
v.yv ≥ wmin(u)/(∆ + 1) for each v ∈ V throughout the execution. It now follows from
Claim 4.14 and the design of Algorithm 3 that after O(log ∆/ε) rounds, each node v ∈ V

satisfies status(v) ∈ {over, done_waiting}.
We are now ready to establish the correctness of Algorithm 3. Observe that if status(v) ∈

{over, done_waiting} for each node v ∈ V , then all the primal and dual variables do not
change. Let x = ⟨xv | v ∈ V ⟩ ∈ {0, 1}n and y = ⟨yv | v ∈ V ⟩ ∈ Rn

≥0 be the primal and
dual solutions derived from the variables v.xv and v.yv after convergence, respectively. Let
X = {v | xv = 1} be the dominating set obtained by Algorithm 3. We divide the set X into
two subsets X1 = {v ∈ X | ∀u ∈ N+(v) : yu ≤ λwmin(u)}, and X2 = X − X1.

By the construction of Procedure 4, it follows that
∑

u∈N+(v) yu ≤ w(v)/(1 + ε) for
each node v ∈ X1. In addition, each node v ∈ X2 satisfies v = arg minz∈N+(u){w(z)}
for some node u ∈ V − N+(X1). As established in [11], these properties imply that
w(X1) ≤ (2ρ + 1)(1 + ε)

∑
v∈N+(X1) yv and that w(X2) ≤ (2ρ + 1)(1 + ε)

∑
v∈V −N+(X1) yv,

thus, w(X) ≤ (2ρ + 1)(1 + ε)
∑

v∈V yv.It follows from Claim 4.13 that y is feasible. The set
X is a (2ρ + 1)(1 + ε)-approximation for MWDS as a consequence of weak duality. ◀

OPODIS 2022

27:18 Design of Self-Stabilizing Approximation Algorithms via a Primal-Dual Approach

5 Discussion

In this paper, we presented a new approach for designing self-stabilizing approximation
algorithms that is based on the properties of primal and dual LPs. Our approach leaves
various open questions for future research. A particularly interesting subject in this context
is LP-based algorithms that rely on rounding a fractional solution. Due to their usefulness
in the fault-free setting (see, e.g., [13, 25]), we advocate for the study of rounding-based
approximation algorithms in the self-stabilizing setting.

References
1 Ozkan Arapoglu and Orhan Dagdeviren. An asynchronous self-stabilizing maximal independent

set algorithm in wireless sensor networks using two-hop information. In 2019 International
Symposium on Networks, Computers and Communications (ISNCC), pages 1–5. IEEE, 2019.

2 Baruch Awerbuch and George Varghese. Distributed program checking: a paradigm for
building self-stabilizing distributed protocols. In FOCS, volume 91, pages 258–267, 1991.

3 Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman. Dis-
tributed approximation of maximum independent set and maximum matching. In Elad Michael
Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017,
pages 165–174. ACM, 2017.

4 Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2 +
ϵ)-approximation for vertex cover in o(log ∆ / ϵ log log ∆) rounds. J. ACM, 64(3):23:1–23:11,
2017.

5 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ +
1)-coloring and applications. J. ACM, 69(1):5:1–5:26, 2022.

6 Jean RS Blair and Fredrik Manne. Efficient self-stabilizing algorithms for tree networks. In
23rd International Conference on Distributed Computing Systems, 2003. Proceedings., pages
20–26. IEEE, 2003.

7 Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and self-stabilizing
distributed matching. In Proceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 290–297, 2002.

8 Well Y Chiu, Chiuyuan Chen, and Shih-Yu Tsai. A 4n-move self-stabilizing algorithm for the
minimal dominating set problem using an unfair distributed daemon. Information Processing
Letters, 114(10):515–518, 2014.

9 Johanne Cohen, Jonas Lefevre, Khaled Maâmra, Laurence Pilard, and Devan Sohier. A
self-stabilizing algorithm for maximal matching in anonymous networks. Parallel Processing
Letters, 26(04):1650016, 2016.

10 Edsger W Dijkstra. Self-stabilization in spite of distributed control. In Selected writings on
computing: a personal perspective, pages 41–46. Springer, 1982.

11 Michal Dory, Mohsen Ghaffari, and Saeed Ilchi. Near-optimal distributed dominating set in
bounded arboricity graphs. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25–29, 2022, pages
292–300. ACM, 2022.

12 Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization. arXiv
preprint, 2011. arXiv:1110.0334.

13 Manuela Fischer. Improved deterministic distributed matching via rounding. Distributed
Computing, 33, June 2020.

14 Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In Alessia
Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed
Computing, Salerno, Italy, July 25–29, 2022, pages 281–291. ACM, 2022.

15 Wayne Goddard, Stephen T Hedetniemi, David P Jacobs, Pradip K Srimani, and Zhenyu Xu.
Self-stabilizing graph protocols. Parallel Processing Letters, 18(01):189–199, 2008.

http://arxiv.org/abs/1110.0334

Y. Emek, Y. Gil, and N. Harlev 27:19

16 Wayne Goddard, Stephen T Hedetniemi, David Pokrass Jacobs, and Pradip K Srimani. Self-
stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks.
In Proceedings International Parallel and Distributed Processing Symposium, pages 14–pp.
IEEE, 2003.

17 Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without
fairness assumption. In 27th International Conference on Distributed Computing Systems
(ICDCS’07), pages 46–46. IEEE, 2007.

18 Nabil Guellati and Hamamache Kheddouci. A survey on self-stabilizing algorithms for inde-
pendence, domination, coloring, and matching in graphs. Journal of Parallel and Distributed
Computing, 70(4):406–415, 2010.

19 Sandra M Hedetniemi, Stephen T Hedetniemi, David P Jacobs, and Pradip K Srimani. Self-
stabilizing algorithms for minimal dominating sets and maximal independent sets. Computers
& Mathematics with Applications, 46(5-6):805–811, 2003.

20 Stephen T Hedetniemi, David P Jacobs, and Pradip K Srimani. Maximal matching stabilizes
in time o (m). Information Processing Letters, 80(5):221–223, 2001.

21 Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maximal matching.
Information processing letters, 43(2):77–81, 1992.

22 Michiyo Ikeda, Sayaka Kamei, and Hirotsugu Kakugawa. A space-optimal self-stabilizing
algorithm for the maximal independent set problem. In the Third International Conference on
Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages 70–74,
2002.

23 Ken-ichi Kawarabayashi, Seri Khoury, Aaron Schild, and Gregory Schwartzman. Improved
distributed approximations for maximum independent set. In Hagit Attiya, editor, 34th
International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference, volume 179 of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020.

24 Jun Kiniwa. Approximation of self-stabilizing vertex cover less than 2. In Symposium on
Self-Stabilizing Systems, pages 171–182. Springer, 2005.

25 Fabian Kuhn and Rogert Wattenhofer. Constant-time distributed dominating set approx-
imation. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, PODC ’03, pages 25–32. Association for Computing Machinery, 2003.

26 Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local algorithms: Self-stabilization
on speed. In Symposium on Self-Stabilizing Systems, pages 17–34. Springer, 2009.

27 Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A new self-stabilizing
maximal matching algorithm. Theoretical Computer Science, 410(14):1336–1345, 2009.

28 Sandeep K Shukla, Daniel J Rosenkrantz, S Sekharipuram Ravi, et al. Observations on self-
stabilizing graph algorithms for anonymous networks. In Proceedings of the second workshop
on self-stabilizing systems, volume 7, page 15. University of Nevada LasVegas, 1995.

29 Gerard Tel. Maximal matching stabilizes in quadratic time. Information Processing Letters,
49(6):271–272, 1994.

30 Volker Turau. Linear self-stabilizing algorithms for the independent and dominating set
problems using an unfair distributed scheduler. Information Processing Letters, 103(3):88–93,
2007.

31 Volker Turau and Bernd Hauck. A fault-containing self-stabilizing (3- 2δ+ 1)-approximation
algorithm for vertex cover in anonymous networks. Theoretical computer science, 412(33):4361–
4371, 2011.

32 Vijay V. Vazirani. Approximation algorithms. Springer, 2001.
33 Guangyuan Wang, Hua Wang, Xiaohui Tao, and Ji Zhang. A self-stabilizing protocol for

minimal weighted dominating sets in arbitrary networks. In Proceedings of the 2013 IEEE
17th International Conference on Computer Supported Cooperative Work in Design (CSCWD),
pages 496–501. IEEE, 2013.

34 Zhenyu Xu, Stephen T Hedetniemi, Wayne Goddard, and Pradip K Srimani. A synchronous
self-stabilizing minimal domination protocol in an arbitrary network graph. In International
Workshop on Distributed Computing, pages 26–32. Springer, 2003.

OPODIS 2022

Self-Stabilizing Clock Synchronization in Dynamic
Networks
Bernadette Charron-Bost !

DI ENS, École Normale Supérieure, 75005 Paris, France

Louis Penet de Monterno !

École polytechnique, IP Paris, 91128 Palaiseau, France

Abstract
We consider the fundamental problem of periodic clock synchronization in a synchronous multi-agent
system. Each agent holds a clock with an arbitrary initial value, and clocks must eventually be
congruent, modulo some positive integer P . Previous algorithms worked in static networks with
drastic connectivity properties and assumed that global informations are available at each node. In
this paper, we propose a finite-state algorithm for time-varying topologies that does not require any
global knowledge on the network. The only assumption is the existence of some integer D such that
any two nodes can communicate in each sequence of D consecutive rounds, which extends the notion
of strong connectivity in static network to dynamic communication patterns. The smallest such D

is called the dynamic diameter of the network. If an upper bound on the diameter is provided,
then our algorithm achieves synchronization within 3D rounds, whatever the value of the upper
bound. Otherwise, using an adaptive mechanism, synchronization is achieved with little performance
overhead. Our algorithm is parameterized by a function g, which can be tuned to favor either time
or space complexity. Then, we explore a further relaxation of the connectivity requirement: our
algorithm still works if there exists a positive integer R such that the network is rooted over each
sequence of R consecutive rounds, and if eventually the set of roots is stable. In particular, it works
in any rooted static network.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Self-stabilization, Clock synchronization, Dynamic networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.28

Supplementary Material Software (Source Code): https://gitlab.com/bossuet/sap_execution

Acknowledgements We would like to thank Patrick Lambein-Monette, Stephan Merz, and Guillaume
Prémel for very useful discussions. We are also indebted to Paolo Boldi and Sebastiano Vigna for
their deep and inspiring work on self-stabilization.

1 Introduction

There is a considerable interest in distributed systems consisting of multiple, potentially
mobile, agents. This is mainly motivated by the emergence of large scale networks, character-
ized by the lack of centralized control, the access to limited information and a time-varying
connectivity. Control and optimization algorithms deployed in such networks should be
completely distributed, relying only on local observations and informations, and robust
against unexpected changes in topology.

A canonical problem in distributed control is the mod P -synchronization problem: In a
system where each agent is equipped with a local discrete clock, the objective is that all
clocks are eventually congruent modulo some integer P , despite arbitrary initializations. This
synchronization problem arises in a number of applications, both in engineering and natural
systems. It is a basic block in many engineering systems, e.g., in the universal self-stabilizing
algorithm developed by Boldi and Vigna [8], or for deploying distributed algorithms structured

© Bernadette Charron-Bost and Louis Penet de Monterno;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bernadette.charron-bost@ens.fr
mailto:penetdemonterno@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.OPODIS.2022.28
https://gitlab.com/bossuet/sap_execution
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Self-Stabilizing Clock Synchronization in Dynamic Networks

into synchronized phases (e.g., the Two-Phase and Three-Phase Commit algorithms [6], or
many consensus algorithms [5, 15, 22, 11]). Periodic clock synchronization also corresponds
to an ubiquitous phenomenon in the natural world and finds numerous applications in physics
and biology, e.g., the Kuramoto model for the synchronization of coupled oscillators [23],
synchronous flashing fireflies, collective synchronization of pancreatic beta cells [20].

Our goal is the design of distributed algorithms achieving mod P -synchronization in
a networked system of n agents that operate in synchronous rounds and communicate by
broadcast. The network is supposed to be uniform and anonymous, i.e., agents are identical
and have no identifiers. We consider the self-stabilization model where the initial state of
each agent is arbitrary. In particular, agents do not have a consistent numbering of the
rounds. Moreover, agents may use only local informations.

The communication pattern at each round is modeled by a directed graph that may
change continually from one round to the next. In other words, we allow for time-varying
communication graphs, which is important if we want to take into account link failure
and link creation, reconfigurable networks, or for dealing with probabilistic communication
models like the rumor spreading models. We impose weak assumptions on the communication
topology; in particular, we allow for non-bidirectional links and do not assume full connectivity.
Even the assumption of strong connectivity may be too restrictive in various settings: for
instance, asynchrony and benign failures in a fully connected network may be handled in the
model of this paper (i.e., synchronous and non-faulty networks) by dynamic graphs that are
permanently rooted, but not strongly connected [11].

Contribution. Our contribution in this paper is a finite state algorithm, called SAP (for
self-adaptive period), that synchronizes periodic clocks in a large class of dynamic networks.
As opposed to most of previous solutions, our algorithm does not assume any global knowledge
on the network, and tolerates time-varying topologies.

First, we show that the SAP algorithm solves the mod P -synchronization problem in
any dynamic network with a finite dynamic diameter, i.e., from any time onward and for
every pair of agents i and j, there is a temporal path of bounded length connecting i to j.1
If a bound on the diameter is given, its stabilization time is bounded above by three times
the diameter, whatever the value of the bound. However, the SAP algorithm fundamentally
works when no bound is available, with a limited increase of stabilization time.

Interestingly, the SAP algorithm unifies several seemingly different algorithms for the
synchronization of periodic clocks in static networks, including the algorithms in [3, 19, 9]
and the one deployed in the finite-state universal self-stabilizing protocol in [8], with useful
insights for improving their solvability powers. In particular, we show that the pioneer
algorithm proposed by Arora et al. [3] works for a period P ⩾ 6n while the authors proved
its correctness only when P ⩾ n2.

Then we study how to relax the assumption of a finite diameter and introduce the class
of strongly centered networks: Roughly speaking, a strongly centered network corresponds
to a dynamic graph containing at least one central node, that is, a node that can reach any
nodes through a temporal path of bounded length. Moreover, in such a network, non-central
nodes are not allowed to infinitely often communicate with central nodes. This class strictly
contains all the dynamic networks with a finite dynamic diameter and all the static rooted
networks. Thus the property of a strongly centered network allows for non-strong connectivity
while authorizing dynamic links. We prove that the SAP algorithm still works in this class

1 Observe that the diameter of a static strongly connected network is less than the number of agents,
while it may be arbitrarily large for a dynamic network. This is why the assumption of a bound on the
diameter available at each agent may be quite problematic in the dynamic setting.

B. Charron-Bost and L. Penet de Monterno 28:3

of dynamic networks. Once again, no global knowledge is assumed. In particular, neither the
bound on the length of the paths (for the central nodes to communicate with all nodes) nor
the set of central nodes are supposed to be known. Finally, we provide upper bounds on the
stabiliization time and the space complexity of each execution of the SAP algorithm.

Related work. Self-stabilizing clocks have been extensively studied in different commu-
nication models, under different assumptions, and with various problem specifications. In
particular, clocks may be unbounded, in which case they are required to be eventually equal,
instead of only congruent. The synchronization problem of unbounded clocks admits simple
solutions in strongly connected networks, namely the Min and Max algorithms [16, 18].

The point of periodic clocks is the use finite memory, as opposed to unbounded clocks which
inherently require infinite memory. This is why the use of a synchronization algorithm for
unbounded clocks with a modulo operation at each round is not appropriate for synchronizing
periodic clocks. In addition to strong connectivity and static networks, the pioneer papers
on periodic clock synchronization [3, 19, 9, 1] all assume that a bound on the diameter is
available. To the best of our knowledge, only the synchronization algorithm in [8] for a static
communication graph dispenses with the latter assumption.

More recently, periodic clock synchronization has been studied in the Beeping model [12] in
which agents have severely limited communication capabilities: given a connected bidirectional
communication graph, in each round, each agent can either send a “beep” to all its neighbors
or stay silent. A self-stabilizing algorithm has been proposed by Feldmann et al. [17], which
is optimal both in time and space, but which, unfortunately, requires that a bound on the
network size is available for each agent.2

There are also numerous results for mod P -synchronization with faulty agents. The fault-
tolerant solutions that have been proposed in various failure models, including the Byzantine
failure model, using algorithmic schemes initially developed for consensus (e.g., see [13, 14]).
They typically require a bidirectional connected (most of the time fully connected) network.

Clock synchronization has also been studied in the model of population protocols [2],
consisting of a set of agents, interacting in randomly chosen pairs. In this model, the
underlying network is assumed to be fully connected, and the pairwise interactions are
modeled by bidirectional links. Moreover, only stabilization with probability one or with
high probability is required. The same weakening of problem specification is considered
for another popular probabilistic communication model, namely the PULL model [21], in
which, at each round each agent interacts with one random incoming neighbor in a fixed
directed graph G. Unfortunately, in addition to a probabilistic weakening of the problem,
the self-stabilizing clock synchronization algorithms developed in this model [7, 4] highly rely
on the assumption that G is the fully connected graph.

2 Preliminaries

2.1 The computing model
We consider a networked system with a fixed and finite set V of agents. We assume a
round-based computational model in the spirit of the Heard-Of model [11]. Point-to-point
communications are organized into synchronized rounds: each node sends messages to all

2 In [17], Feldmann et al. also proposed an algorithm that does not use any bound on the network size,
but that only tolerates asynchronous starts.

OPODIS 2022

28:4 Self-Stabilizing Clock Synchronization in Dynamic Networks

nodes and receives messages sent by some of the nodes. Rounds are communication closed in
the sense that no node receives messages in round t that are sent in a round different from t.
Communication at each round t is thus modeled by a directed graph (digraph) G(t) = (V, Et):
(i, j) ∈ Et iff communication from i to j is enabled at round t. There is a self-loop at each
node i in all the digraphs G(t) as i communicates with itself instantaneously. The sequence
of digraphs G = (G(t))t⩾1 is called a dynamic graph.

An algorithm A is given by a set Q of states, a set of messages M, a sending function
σ : Q → M, and a transition function δ : Q ×M⊕ → Q, where M⊕ is the set of finite
multisets over M.

We consider the self-stabilization model where all the nodes start to run the algorithm
at round one but their initial states are arbitrary in the set Q. An execution of A with
the dynamic graph G proceeds as follows: In round t (t = 1, 2 . . .), every node applies the
sending function σ to its current state to generate the message to be broadcasted, then it
receives the messages sent by its incoming neighbors in G(t), and finally applies the transition
function δ to its current state and the list of messages it has just received to go to a next
state. Given an execution of A, the value of any variable xi at the end of round t is denoted
by xi(t), and xi(0) is the initial value of xi.

2.2 Dynamic graphs
The product of two digraphs G1 = (V, E1) and G2 = (V, E2), denoted G1 ◦ G2, is the
digraph with the set of nodes V and with an edge (i, j) if there exists k ∈ V such that
(i, k) ∈ E1 and (k, j) ∈ E2. For any dynamic graph G and any integers t′ ⩾ t ⩾ 1, we let
G(t : t′) def= G(t) ◦ · · · ◦G(t′). By convention, G(t : t) = G(t), and when 0 < t′ < t, G(t : t′)
is the digraph with only a self-loop at each node. The set of i’s in-neighbors in G(t : t′) is
denoted by Ini(t : t′), and simply by Ini(t) when t′ = t.

Every edge (i, j) in G(t : t′) corresponds to a path in the round interval [t, t′]: there exist
t′− t + 2 nodes i = k0, k1, . . . , kt′−t+1 = j such that (kr, kr+1) is an edge of G(t + r) for each
r = 0, . . . , t′ − t.

The eccentricity of a node i in a dynamic graph G, denoted eG(i), is defined as

eG(i) def= inf{d ∈ N+ | ∀t ∈ N+, ∀j ∈ V : (i, j) is an edge in G(t : t + d− 1)}.

The dynamic diameter of G is then defined as:

diam(G) def= sup
i∈V

eG(i).

The notion of dynamic diameter generalizes the classical one of diameter of a digraph in the
sense that diam(G) = diam(G) if for each positive integer t, G(t) = G. As no confusion can
arise, diam(G) will simply be called the diameter of G.

3 The SAPg algorithm

3.1 Informal description and pseudo-code
Let A be an algorithm where each node i maintains an integer variable Ci, called the clock
of i. Given a positive integer P , an execution of A is said to achieve mod P -synchronization if

∃t0, c, ∀t ⩾ t0, ∀i ∈ V, Ci(t) ≡P t + c,

B. Charron-Bost and L. Penet de Monterno 28:5

where Ci(t) denotes the value of Ci at the end of round t in the execution. Even in the case
of a static strongly connected network, the naive algorithm in which, at each round, each
node sends its own Ci and applies the following update rule:

Ci ←
[

min
j∈S

Cj + 1
]

P
,

(where S is the set of i’s incoming neighbors, and [c]
P

denotes the remainder of the Euclidean
division of c by P) does not work when the network diameter is too large compared to the
period P . Theorem 10 provides an execution in which such a system never achieves mod
P -synchronization. To overcome this problem, we present an algorithm, called SAP (for
self-adaptive period), inspired by the ideas developed by Boldi and Vigna for their finite-state
universal self-stabilizing algorithm [8]. The key point of the SAP algorithm lies in the fact
that for any positive integer M , we have

[[c]
P M

]
P

= [c]
P

.

More precisely, each node i uses two integer variables Mi and Ci, and computes the clock
value Ci not modulo P , but rather modulo the time-varying period PMi. The variable Mi

is used as a guess to find a large enough multiple of P so to make the clocks eventually
stabilized. Until synchronization, the variables Mi increase so that there is “enough space”
between the largest clock value and the shortest period PMi in the network. The update
rule for Mi is parametrized by a non-decreasing function g : N → N. The corresponding
algorithm is denoted SAPg, and its code is given below. Line 5 in the pseudo-code implies
that Ci(t) < PMi(t), and for the sake of simplicity, we assume that this inequality also holds
initially, that is, Ci(0) < PMi(0).

Let g : N→ N be a non-decreasing function. If q is a positive integer, gq denotes the q-th
iterate of g, and g0 is the identity function. For every non-negative integer m, we let

g∗(m) def= inf{q ∈ N | gq(0) ⩾ m}.

Algorithm 1 The SAPg algorithm, pseudo-code of node i.
Variables:
1: Ci ∈ N;
2: Mi ∈ N+;

In each round do:
3: send ⟨Ci, Mi⟩ to all
4: receive ⟨Cj1 , Mj1⟩, ⟨Cj2 , Mj2⟩, . . . from the set S of incoming neighbours
5: Ci ←

[
min
j∈S

Cj + 1
]

P Mi

6: Mi ← max
j∈S

Mj

7: if Cj ̸≡P Cj′ for some j, j′ ∈ S then
8: Mi ← g(Mi)
9: end if

3.2 Notation and basic invariants
We fix an execution of SAPg with the dynamic graph G, and for any t ∈ N, we let

M̃(t) def= min
i∈V

Mi(t).

OPODIS 2022

28:6 Self-Stabilizing Clock Synchronization in Dynamic Networks

For each round t in this execution, let i
+

t
denote any one of i’s incoming neighbours in G(t)

that satisfies

Ci+
t

(t− 1) = min
j∈ Ini(t)

Cj(t− 1).

Given an integer P > 0, the system is said to be synchronized (for mod P -synchronized)
in round t if

∀i, j ∈ V, Ci(t) ≡P Cj(t).

We start with two preliminary lemmas.

▶ Lemma 1.
1. If the system is synchronized in round s, then it is synchronized in any round t ⩾ s.
2. If (i, j) is an edge in G(s : t), then Cj(t) ⩽ Ci(s− 1) + t− s + 1.
3. Each variable Mi is non-decreasing.

The second claim of Lemma 1 simply follows from the fact that Ci(t + 1) ⩽ Cj(t) + 1
for every round t and every pair of nodes i ∈ V and j ∈ Ini(t). The first and third claims
directly follow from the transition function.

▶ Lemma 2. For each round t ⩾ 1 and each i ∈ V , one of the following statements is true:
1. Ci(t) is positive and Ci(t) = 1 + Ci+

t

(t− 1)

2. Ci(t) = 0, Ci(t− 1) = PMi(t− 1)− 1, and i
+

t
= i.

Proof. The lemma just relies on the following series of inequalities:

Ci+
t

(t− 1) ⩽ Ci(t− 1) ⩽ PMi(t− 1)− 1.

The last inequality is clear for t = 1, and for t ⩾ 2, it is a consequence of Ci(t − 1) ⩽
PMi(t− 2)− 1 and of the fact that Mi is non-decreasing. If one of those inequalities is strict,
then assertion 1 in the lemma holds. Otherwise, assertion 2 holds. ◀

Given any node i and two rounds t and t′, we introduce the set

St
i (t′) def= {j ∈ V | Cj(t′) ≡P Ci(t) + t′ − t},

and the integer

M̃ t
i (t′) def= inf

j /∈St
i
(t′)

Mj(t′).

Intuitively, St
i (t′) is the set of nodes whose clocks in round t′ are “in accordance” with i’s

clock at round t. In each round t′, V may be partitioned into subsets of nodes whose clocks
are all congruent mod P , and each St

i (t′) is either empty, or is equal to one part of this
partition. Once the system is synchronized, this partition contains only one part. Clearly, i

belongs to St
i (t), but i may not belong to St

i (t′) when t′ ̸= t.

▶ Lemma 3.
1. If j ∈ St

i (t′ + 1), then j+
t′+1 ∈ St

i (t′).
2. If t ⩾ t′, then St

i (t′) ̸= ∅.
3. M̃ t

i (t′ + 1) ⩾ M̃ t
i (t′).

Proof. The first claim (1) is a direct consequence of the definition of j+
t′+1. Then, using (1),

we demonstrate the second claim by induction on t − t′ ⩾ 0. Finally, the pseudo-code of
SAPg implies Mi(t′ + 1) ⩾ Mi+

t′+1
(t′), and hence, M̃ t

i (t′ + 1) ⩾ M̃ t
i (t′). ◀

B. Charron-Bost and L. Penet de Monterno 28:7

3.3 Correctness proof with a finite diameter
We fix a dynamic graph G whose diameter is finite and an execution of SAPg with G, and
we let diam(G) = D.

▶ Lemma 4. Let ℓ be any round. Let i0 be a node whose clock value is minimum in some
round t, and let δ be any integer that is greater or equal to eG(i0). One of the following
statements is true:
1. there exist a round d ∈ {1, . . . , δ − 1} and a node i /∈ Sℓ

i0
(t + d) such that Ci(t + d) = 0;

2. the system is synchronized in round t + δ.

Proof. Let us assume that the first proposition does not hold. First, we prove by induction
on d ∈ {1, . . . , δ − 1}, that

∀i /∈ Sℓ
i0

(t + d), Ci(t + d) = d + min
j∈ Ini(t+1:t+d)

Cj(t). (1)

The base case d = 1 is an immediate consequence of Lemma 2. For the inductive step, assume
that Eq. (1) holds for some d ∈ {1, . . . , δ − 1}. For every node i /∈ Sℓ

i0
(t + d + 1), we have

Ci(t + d + 1) = 1 + min
j∈ Ini(t+d+1)

Cj(t + d)

= 1 + d + min
j∈ Ini(t+d+1)

(
min

k∈ Inj(t+1:t+d)
Ck(t)

)
= 1 + d + min

k∈ Ini(t+1:t+d+1)
Ck(t).

The first equality is a direct consequence of Lemma 2. The second one is by the inductive
hypothesis applied to i+

t+d+1. Notice that i+
t+d+1 /∈ Sℓ

i0
(t + d) since i /∈ Sℓ

i0
(t + d + 1). The

third one is because G(t + 1 : t + d + 1) = G(t + 1 : t + d) ◦G(t + d + 1). This completes the
proof of Eq. (1) for every integer d ∈ {1, . . . , δ − 1}.

Then for each node i /∈ Sℓ
i0

(t + δ), we get

Ci(t + δ) =
[
1 + min

j∈ Ini(t+δ)
Cj(t + δ − 1)

]
P Mi(t+δ−1)

=
[
δ + min

j∈ Ini(t+δ)

(
min

k∈ Inj(t+1:t+δ−1)
Ck(t)

)]
P Mi(t+δ−1)

=
[
δ + min

k∈ Ini(t+1:t+δ)
Ck(t)

]
P Mi(t+δ−1)

= [δ + Ci0(t)]P Mi(t+δ−1)

The first equality is by line 5. The second equality is due to Eq. (1) at round t + δ − 1
and the fact that if i /∈ Sℓ

i0
(t + δ) implies that i+

t+δ /∈ Sℓ
i0

(t + δ − 1). The fourth one is a
consequence of the definition of i0 and ei0(G) ⩽ δ. It follows that all the clocks Ci(t + δ) are
equal modulo P , i.e., the system is synchronized in round t + δ. ◀

Using the assumption of a finite diameter D, we then derive the following lemma.

▶ Lemma 5. Let t be a round in which Ci(t) + D ⩽ PMi(t) holds for each node i. Then the
system is synchronized in round t + D.

OPODIS 2022

28:8 Self-Stabilizing Clock Synchronization in Dynamic Networks

Proof. Let i be any node, and let d ∈ {1, . . . , D − 1}. We have

Ci(t + d− 1) ⩽ d− 1 + Ci(t)
< D − 1 + Ci(t)
⩽ PMi(t)− 1
⩽ PMi(t + d− 1)− 1.

The first and fourth inequalities are direct consequences of Lemma 1, and the third inequality
is the assumption of the lemma. By Lemma 2, it follows that Ci(t + d) ̸= 0. Since D is
greater of equal to each eG(i), Lemma 4 shows that the system is synchronized in round
t + D. ◀

The next lemma focuses on the self-adaptive period mechanism in the SAPg algorithm.
It intuitively states that, as long as all nodes hear of at least one node whose clock is “in
accordance” with i’s clock at round t, every node j not in accordance with Ci(t) increases its
Mj variable.

▶ Lemma 6. Let t, q and δ be three positive integers, and let i ∈ V . If it holds that

∀j ∈ V, ∀ℓ ⩽ (q − 1)δ, Inj(ℓ + 1 : ℓ + δ) ∩ St
i (ℓ) ̸= ∅,

then M̃ t
i (qδ) ⩾ gq(0).

Proof. We proceed by induction on q. The base case is obvious since each Mj(0) is non-
negative. For the inductive step, assume that the lemma holds in round qδ and that some
node j does not belong to St

i ((q + 1)δ). By assumption, the node j has an in-neighbor
k ∈ St

i (qδ) in the digraph G(qδ + 1 : (q + 1)δ), i.e., there exist a node k ∈ St
i (qδ) and a path

k = j0, j1, · · · , jδ = j in the round interval [qδ + 1, (q + 1)δ]. We have

k ∈ St
i (qδ) and j /∈ St

i ((q + 1)δ).

Let d ∈ {1, . . . , δ} be the first index such that

jd−1 ∈ St
i (qδ + d− 1) and jd /∈ St

i (qδ + d).

By Lemma 3, (jd)
+

qδ+d
/∈ St

i (qδ + d− 1) since jd /∈ St
i (qδ + d). Then jd−1 and (jd)

+

qδ+d
are

two in-neighbors of jd whose clocks are not congruent modulo P in round qδ + d − 1. It
follows that:

Mj((q + 1)δ) ⩾ Mjd
(qδ + d) ⩾ g(M(jd)+

qδ+d

(qδ + d− 1)) ⩾ g(M̃ t
i (qδ + d− 1)) ⩾ gq+1(0).

The first two inequalities are due to the update rules for Mj and Mjd
. The third one is by

definition of M̃ t
i and the fact that g is non-decreasing. The last one is a consequence of the

inductive assumption and the third claim of Lemma 3. ◀

Using the assumption of a finite diameter D, we then derive the following lemma.

▶ Lemma 7. For all non-negative integer q ∈ N, one of the following statements is true:
1. the system is synchronized in round qD;
2. M̃(qD) ⩾ gq(0).

B. Charron-Bost and L. Penet de Monterno 28:9

Proof. Assume that two nodes i0 and i1 hold non-congruent clocks in round qD. For each
positive integer ℓ ⩽ qD, the second claim of Lemma 3 gives that SqD

i0
(ℓ) and SqD

i1
(ℓ) are both

non-empty. Since D is the diameter of G, for each node j ∈ V , we have

Inj(ℓ + 1 : ℓ + D) ∩ SqD
i0

(ℓ) ̸= ∅ and Inj(ℓ + 1 : ℓ + D) ∩ SqD
i1

(ℓ) ̸= ∅.

By Lemma 6, this implies

M̃qD
i0

(qD) ⩾ gq(0) and M̃qD
i1

(qD) ⩾ gq(0),

and hence, M̃(qD) ⩾ gq(0). ◀

▶ Theorem 8. In any execution with a dynamic graph whose diameter D is finite, the SAPg

algorithm achieves mod P -synchronization for any non-decreasing function g : N→ N such
that g∗ (⌈ 2D

P

⌉)
is finite. Moreover, the stabilization time is bounded by

(
g∗ (⌈ 2D

P

⌉)
+ 2

)
D.

Proof. We let q0 = g∗ (⌈ 2D
P

⌉)
; hence q0 ⩾ 1. Applying Lemma 4 with δ = D and t =

(q0 − 1)D, we obtain that either the system is synchronized in round q0 D, or there exist
a node j and an integer d ∈ {1, . . . , D − 1} such that Cj(q0 D + d−D) = 0. The digraph
G(q0 D + d −D + 1 : q0 D + d) is complete since D is the diameter of G, and the second
claim in Lemma 1 implies that Ci(q0 D + d) ⩽ D for any node i ∈ V . Hence,

PMi(q0D + d) ⩾ PMi(q0 D)
⩾ PM̃(q0 D)
⩾ Pgq0(0)
⩾ 2D

⩾ Ci(q0 D + d) + D

The third inequality is by Lemma 7 and the fourth one is due to the definition of q0. Finally,
Lemma 5 shows that the system is synchronized in round (q0 + 1)D + d. ◀

3.4 Specializations of the SAPg Algorithm
We consider the following two strategies:
1. The function g is constant and equal to M , in which case g∗(m) = 1 if m ⩽ M , and

g∗(m) =∞ otherwise.
2. The function g∗ takes only finite values. This is equivalent to the fact that g has no fixed

point, or g is strictly inflationary, i.e., m < g(m) for every non-negative integer m.

Theorem 8 leads to two corollaries corresponding to each of the strategies on g. Firstly,
when some bound B on the diameter of the dynamic graph is given, we may choose g to
be the constant function g = λx.M with M =

⌈ 2B
P

⌉
. Then we get g∗ (2D

P

)
= 1 and the

pseudo-code SAPg reduces to Algorithm 2.

▶ Corollary 9. The SAPλx.M algorithm solves the mod P -synchronization problem in any
dynamic graph with a diameter less than or equal to PM/2.

Let us observe that Theorem 8 provides an upper bound of three times the diameter D on
SAPλx.M ’s stabilization time, which is independent on the bound B. The limit of PM/2 in
Corollary 9 is tight, as proved by the following result.

OPODIS 2022

28:10 Self-Stabilizing Clock Synchronization in Dynamic Networks

Algorithm 2 The SAPλx.M algorithm.
Variables:
1: Ci ∈ N;

In each round do:
2: send ⟨Ci⟩ to all
3: receive ⟨Cj1⟩, ⟨Cj2⟩, . . . from the set S of in-neighbors
4: Ci ←

[
min
j∈S

Cj + 1
]

P M

▶ Theorem 10 (Theorem 4.13 in [1]). For any even integers P and D satisfying P < 2D,
there exists an execution of SAP λx.1 with a dynamic graph G whose diameter is D in which
mod P -synchronization is never achieved.

Interestingly, the self-stabilizing algorithm in [9], called SS-MinSU and developed for
clock synchronization in a static and strongly connected network when a bound B on the
diameter3 is available, is actually an optimization of the SAPλx.M algorithm.

As for the algorithm proposed in [3] for a static strongly connected digraph G, it
corresponds to the SAP λx.1 algorithm, combined with a round-robin strategy which consists,
for each node, to send one message per round according to this fixed cyclic order amongst the
outgoing neighbors in G. This strategy thus translates the fixed digraph G into a dynamic
graph G. Using Proposition 24 in [10], G’s diameter can be upper bounded by 3|V |. Via
Corollary 9, the interpretation of the algorithm in [3] for a fixed digraph G in terms of a run
of SAP λx.1 over the corresponding dynamic graph G shows that this algorithm works when
P ⩾ 6|V |, and its stabilization time is less than 9|V | (instead of the correctness condition
P ⩾ n2 and the stabilization bound of 3

2 n2, given both in [3]).

When the diameter of the dynamic graph is finite but no bound is available, we may use
the following corollary of Theorem 8:

▶ Corollary 11. For any non-decreasing and inflationary function g, SAPg solves the mod P -
synchronization in any dynamic graph whose diameter is finite.

The idea of a self-adaptive period is borrowed from the seminal paper by Boldi and
Vigna [8], and the SAPg algorithm is a variant of the algorithm they presented for static
strongly connected communication graphs. From the viewpoint of design, the main discrep-
ancy lies in the period lengths equal to PMi in SAPg, instead of PM2

i in Boldi and Vigna’s
algorithm. As a result, the two algorithms differ in space complexity: while the variables Ci

in SAPg are of the order of PM(q0 D), the algorithm in [8] uses variables of the order of
PM(q0 D)2, where q0 = g∗ (⌈ 2D

P

⌉)
; see Section 5.

4 The SAPg algorithm with infinite diameter

The aim of this section is to study how the assumption of a finite diameter can be relaxed so
that the SAPg algorithm still achieves mod P -synchronization.

3 The bound B is denoted α in the SS-MinSU algorithm.

B. Charron-Bost and L. Penet de Monterno 28:11

4.1 Extending the class of static rooted networks
A node i is said to be central in a dynamic graph G if its eccentricity is finite, and the center
of G, denoted by Z(G), is defined as the set of G’s central nodes.

Z(G) def= {i ∈ V | eG(i) <∞}.

If Z(G) is non-empty, then the following integer is well-defined and finite.

R
def= max

i∈Z(G)
eG(i). (2)

The kernel of G, denoted K(G), is defined as

K(G) def= {i ∈ V | ∀t ⩾ 1, ∀j ∈ V, ∃ t′ ⩾ t : (i, j) is an edge in G(t : t′)} .

Intuitively, a node belongs to K(G) if it can infinitely often reach all nodes in finite time.
Clearly, it holds that Z(G) ⊆ K(G). The inclusion is strict in general, as illustrated in
Section 4.2. Indeed, the construction guarantees that Z(G) = {i} and K(G) = V . A dynamic
graph G is said to be strongly centered if Z(G) ̸= ∅ and K(G) = Z(G).

▶ Lemma 12. The center of any strongly centered dynamic graph G has no incoming edge
from some index t0.

Proof. We denote G(∞) a digraph whose set of nodes is V that contains every edge that
appears infinitely often in G. By definition of K(G), each node i ∈ K(G) can infinitely
often reach each node j ∈ V in the dynamic graph G, whereas there are finitely many paths
between any two nodes. By the pigeonhole principle, each node in K(G) is the root of a
spanning tree in G(∞). Using the definitions of K(G) and G(∞), the converse can also be
proved. Then K(G), and hence Z(G) have no incoming edge in G(∞), since if i is the root
of some spanning tree in G(∞), then all i’s incoming neighbours are also roots of a spanning
tree. Then, from a certain round, Z(G) has no incoming edge in G. ◀

In the self-stabilizing paradigm, any predicate that holds from a certain round can be
assumed to hold from the beginning. We may then assume t0 = 0 in the rest of the paper.

4.2 The SAPg algorithm with a central node
We now study whether SAPg can achieve mod P -synchronization in networks with an infinite
diameter. For that, we first demonstrate that the sole assumption of a non-empty center
is not sufficient for SAPg to achieve mod P -synchronization. We construct an execution
of SAPg with a central node i. The underlying idea of our scenario is that sporadic incoming
neighbors disrupt the value of i’s clock and hence preclude any alignment of the other clocks
on Ci.4

Let G, Hj , Hk, I be the four digraphs defined in Figure 1 with three nodes i, j, k, and
let Φk be the following predicate on the rounds of a SAPg execution:(

Mi = Mj

)
∧

(
Mi ⩾ Mk

)
∧

(
Ci = Cj

)
∧

(
Ci ̸≡P 0

)
∧

(
Ci ⩽ PMi − 2

)
∧

(
Ck = 0

)
.

The predicate Φj is obtained by exchanging the roles of j and k. The proof of the following
lemma, which is omitted, follows from a step by step execution of the SAPg algorithm
between rounds t and t + PM − c.

4 We provide a Python script that may be helpful to verify the correctness of our construction: https:
//gitlab.com/bossuet/sap_execution.git.

OPODIS 2022

https://gitlab.com/bossuet/sap_execution.git
https://gitlab.com/bossuet/sap_execution.git

28:12 Self-Stabilizing Clock Synchronization in Dynamic Networks

i j

k

(a) digraph G.

i j

k

(b) digraph Hj .

i j

k

(c) digraph Hk.

i j

k

(d) digraph I.

Figure 1 Four digraphs with three nodes.

▶ Lemma 13. Let t be a round of a SAPg execution with a dynamic graph G, and let M and
c denote Mi(t) and C(t), respectively. Let G′ be any dynamic graph that coincides with G up
to t and such that:

G′(t+1) = · · · = G′(t+PM − c−2) = G, G′(t+PM − c−1) = Hk, G′(t+PM − c) = I.

If Φk holds at round t of the SAPg execution with G′, then Φj holds at round t + PM − c of
this execution.

We now fix two positive integers M0 and c0 such that c0 ∈ {1, · · · , PM0−2} and c0 ̸≡P 0,
and we consider the two sequences (Mr)r⩾0 and (cr)r⩾0 defined by:{

Mr+1 = gP Mr−cr−1(Mr)
cr+1 = PMr − cr.

We let M−1 = 0. The dynamic graph G defined as:

G(PMr−1 + 1) = · · · = G(PMr − cr − 2) = G,

G(PMr − cr − 1) = Hk or Hj ,

G(PMr − cr − 1) = I,

is rooted with delay two and i is its unique center. Lemma 13 shows that Φk holds infinitely
often in the SAPg execution with the dynamic graph G and starting with:

Mi(0) = Mj(0) = Mk(0) = M0, Ci(0) = Cj(0) = c0, and Ck(0) = 0.

Hence, the nodes are never synchronized.

4.3 The SAPg algorithm in strongly centered network
That leads us to consider the stronger assumption that the network is strongly centered,
without requiring any global knowledge on Z(G). However, the simple but typical scenario
below shows that the simplified version of SAPg with a fixed period, namely the SAPλx.M

algorithm, does not achieve mod P -synchronization in the execution with the initial values
Ci(0) = Cj(0) = 1 and Ck(0) = 0 and the static graph H defined in Figure 2, even for large
value of M . Indeed, at each round t, it holds that Ci(t) = [t + 1]

P M
, Ck(t) = [t]

P M
, and

Cj(t) =
{

1 if [t]
P M

= 0
[t]

P M
otherwise.

B. Charron-Bost and L. Penet de Monterno 28:13

i j k

Figure 2 The digraph H with three nodes.

The striking point of increasing periods is precisely to overcome the above-mentioned
limitation: we are going to prove that the SAPg algorithm achieves mod P -synchronization
in the case of a strongly centered network under the sole condition of a non-decreasing and
strictly inflationary function g. In other words, while Corollary 9 has no counterpart for
strongly centered dynamic graphs, we will show that Corollary 11 extends to this latter class
of dynamic graphs.

We fix a strongly centered dynamic graph G, and an execution σ of SAPg with G.
Lemma 12 shows that, from a certain round t0, the nodes in Z(G) (denoted Z, for short)
receive no message from the nodes in V \ Z. From round t0, from the viewpoint of every
node in Z, the execution σ is thus indistinguishable from an execution with the set of
nodes equal to Z and a dynamic graph whose diameter is finite. Theorem 8 shows that
mod P -synchronization is eventually achieved in Z. A closer look at the SAPg algorithm
yields the following more precise result: there exist two non-negative integers s and M such
that

∀t ⩾ s, ∀k, ℓ ∈ Z, Ck(t) ≡P Cℓ(t) and Mk(t) = M. (3)

The minimum integer s satisfying Eq. (3) is denoted by t1. This integer corresponds to the
round in which the subsystem composed of central nodes achieves mod P -synchronization.
Recalling that R is the integer defined in Eq.(2), we also define the following two constants.

q1
def= g∗

(⌈
M + R + 1

P

⌉)
and t2

def= max(t1, q1R). (4)

▶ Lemma 14. Let i0 be any central node. For any t > t2, and any nodes j /∈ St2
i0

(t), it holds
that Cj(t) ̸= 0.

Proof. Let j be any node that does not belong to St2
i0

(t). By definition of R, there exists
an edge (i0, j+

t) in each digraph G(t − R : t − 1). The third claim of Lemma 1 and
Eq. (3) imply that Ci0(t−R− 1) < PM . Then the second claim in Lemma 1 implies that
Cj+

t
(t− 1) < PM + R. Moreover, using the second claim of Lemma 3, each integer t′ ⩽ t2

satisfies

Inj(t′ + 1 : t′ + R) ∩ St2
i0

(t′) ⊇ Z ∩ St2
i0

(t′) ̸= ∅.

Applying the third claim of Lemma 3, Lemma 6 and the definition of q1,

PM̃ t2
i0

(t2) ⩾ PM̃ t2
i0

(q1R) ⩾ Pgq1(0) ⩾ PM + R + 1. (5)

From j /∈ St2
i0

(t), we have j+
t /∈ St2

i0
(t− 1) by Lemma 3, and then

Cj+
t

(t− 1) < PM + R ⩽ PM̃ t2
i0

(t2)− 1 ⩽ PM̃ t2
i0

(t− 1)− 1 ⩽ PMj+
t

(t− 1)− 1.

The second inequality comes from Eq. (5), the third from Lemma 3, and the fourth is a
consequence of j+

t /∈ St2
i0

(t− 1). We obtain Cj(t) ̸= 0 by Lemma 2. ◀

OPODIS 2022

28:14 Self-Stabilizing Clock Synchronization in Dynamic Networks

▶ Theorem 15. In any execution with a strongly centered dynamic graph, the SAPg algorithm
achieves mod P -synchronization for any non-decreasing and inflationary function g. Moreover,
the stabilization time is bounded by t2 +PM +R, where R, M and t2 are defined by Eq.(2), (3)
and (4).

Proof. Each node i ∈ Z satisfies Ci(t) < PM in each round. Then we obtain that some node
i0 ∈ Z reaches Ci0(t3) = 0 in some round t3 ∈ {t2, . . . , t2 + PM − 1} (otherwise, an inductive
reasoning using Lemma 2 would contradict the above-mentioned fact). By Lemma 14, each
node j /∈ St2

i0
(t3 + d) satisfies Cj(t3 + d) ̸= 0 for each d > 0. By Lemma 4, the system is

synchronized in round t3 + R. ◀

5 Complexity analysis

In this section, we provide a complexity analysis of SAPg in the case of a network with finite
diameter, and then in the case of a strongly centered network. We discuss the choice of the g

function and its impact on both stabilization time and space complexity. We first state a
theorem that will be used to bound the memory usage, measured in bits, of each node in any
execution of SAPg that achieves mod P -synchronization.

▶ Theorem 16. In any execution of SAPg that achieves mod P -synchronization, if q is the
round in which the system synchronizes, then the memory usage of each node is less than

log2 P + 2 log2

(
gq

(
max
i∈V

Mi(0)
))

bits.

Proof. We define, for each round t,

M(t) def= max
i∈V

Mi(t).

From the pseudo-code of SAPg, we directly obtain, for each positive integer t,

M(t) ⩽ g
(
M(t− 1)

)
,

and thus,

M(t) ⩽ gt
(
M(0)

)
. (6)

As M(t) is non-decreasing as long as t ⩽ q and is stable afterwards, each Mi belongs to the
interval {1, . . . , M(q)}, and each Ci belongs to {0, . . . , P M(q)−1}. The number of reachable
states by any single node is at most equal to the cardinality of the product of these two sets,
that is, Pgq

(
M(0)

)2. Then at most log2 P + 2 log2
(
gq

(
M(0)

))
bits are needed to store the

state of one node. ◀

5.1 Networks with finite diameter
Theorem 16 implies the following corollary in the case of a network with finite diameter.

▶ Corollary 17. In any execution of SAPg, if the diameter D of the network is finite, then the

memory usage of each node is bounded by log2 P + 2 log2

(
g(g∗(2D/P +1)+2)D

(
max
i∈V

Mi(0)
))

.

Theorem 8 and Corollary 17 demonstrate some trade-off between stabilization time and
space complexity. The faster g grows, the lower the synchronization time is, and the higher
its space complexity is. To further illustrate this trade-off, Table 1 provides the time and

B. Charron-Bost and L. Penet de Monterno 28:15

space complexity in three cases. First, when a bound B on the diameter is given, choosing
g = λx.

⌈ 2B
P

⌉
provides the best stabilization time, namely 3D, which interestingly does not

depend on the bound B. When no bound on the diameter is available, the overhead of
SAPλx.2x over SAPλx.⌈2B/P ⌉ is only logarithmic while SAPλx.x+1 results in an additional
delay of O(D2) rounds for stabilization.

Regarding space complexity, SAPλx.⌈2B/P ⌉ and SAPλx.x+1 uses O(log B) and O(log D)
bits, respectively. This illustrates how SAPg may be more memory-efficient using its adaptive
mechanism and a judicious choice of g. By contrast, the space complexity of SAPλx.2x is
only linear in D, which might be problematic for memory-constrained devices.

Table 1 Complexity bounds of SAPg in networks with finite diameter D and B ⩾ D.

g synchronization time space complexity

g = λx.
⌈ 2B

P

⌉
3D log2 P + 2 log2

⌈ 2B
P

⌉
g = λx.x + 1

(2D
P + 3

)
D log2 P + 2 log2

(
max
i∈V

Mi(0) + 2D2

P + 3D

)
g = λx.2x

(
log2

(
1 + 2D

P

)
+ 2

)
D log2 P + 2 log2

(
max
i∈V

Mi(0)
)

+ 2D log2
(
1 + 2D

P

)
+ 4D

5.2 Strongly centered networks
In the case of a strongly centered network, Theorem 15 bounds the stabilization time by
t2 + PM + R. Eq. (6) then provides the following upper bound for M , where t1 is the
minimum integer satisfying Eq.(3).

M ⩽ gt1(max
i∈V

Mi(0)),

and thus, we obtain:

t2 ⩽ max
(

t1, Rg∗
(⌈

gt1(max
i∈V

Mi(0)) + R + 1
P

⌉))
⩽ Rg∗

(
gt1(max

i∈V
Mi(0)) + R + 1

P
+ 1

)
.

Theorem 8 also provides the following upper bound for t1:

t1 ⩽

(
g∗

(⌈
2D

P

⌉)
+ 2

)
D,

where D is the diameter of the (dynamic) subgraph of G induced by Z. Theorem 16 then
implies the following corollary in the case of a strongly centered network.

▶ Corollary 18. In any execution of SAPg in which the network is strongly centered, the
memory usage of each node is bounded by

log2 P + 2 log2

(
gRg∗(M ′+ R+1

P +1)+P M ′+R

(
max
i∈V

Mi(0)
))

,

where M ′ = g(g∗(2D/P +1)+2)D(max
i∈V

Mi(0)).

OPODIS 2022

28:16 Self-Stabilizing Clock Synchronization in Dynamic Networks

Table 2 Complexity bounds of SAPg in strongly centered networks. Here, R is the quantity
defined by Eq.(2), and D is the diameter of the dynamic subgraph induced by Z(G).

g synchronization time space complexity

g = λx.x+1
(

t1 + max
i∈V

Mi(0)
)

(P + R)

+R
(

2 + R+1
P

)
where t1 satisfies t1 ⩽

(
2D
P + 3

)
D

log2 P + 2 log2

((
t1 + max

i∈V
Mi(0)

)
(P + R)

+R
(

2 + R+1
P

)
+ max

i∈V
Mi(0)

)
g = λx.2x P

(
max
i∈V

Mi(0)
)

2t1 + R(1 + t1)

+R log2

((
max
i∈V

Mi(0)
)(

1 + R+1
P

))
where t1 ⩽ log2

(
1 + 2D

P

)
D + 2D

log2 P + 2 log2

(
max
i∈V

Mi(0)
)

+ 2P

(
max
i∈V

Mi(0)
)

2t1

+ 2R

(
1 + t1 + log2

((
max
i∈V

Mi(0)
)(

1 + R+1
P

)))

Table 2 provides a bound on synchronization time and space complexity in the cases
g = λx.x + 1 and g = λx.2x. It shows that the trade-off presented in the previous section no
longer applies. In the case g = λx.2x, both time and space complexity contain exponential
terms. A real-world device would quickly run out of memory. The SAPg algorithm remains
practical only if g is a slowly growing function. Comparing with Table 1, we observe that
SAPg achieves better performance in networks with finite diameter than in strongly centered

networks. Choosing g = λx.x + 1, the time complexity is in O

(
R

(
D2 + R + max

i∈V
Mi(0)

))
in the later case, compared to O(D2) in the earlier case. A similar overhead is added to
space complexity. Overall, choosing g = λx.x + 1 seems to provide the best performances, as
it is the “least inflationary” function.

6 Concluding remarks

We presented the SAPg algorithm that solves the mod P -synchronization problem in any
dynamic network that either has a finite diameter or is strongly centered. Both assumptions
correspond to connectivity properties that have to hold in bounded periods of time. These
results highlight the critical importance of timing bounds for the network to be connected
enough and demonstrate how time may act as a healer.

The correctness proofs also provide bounds on stabilization time and space complexity
of the SAPg algorithm. The time bound and the space bound depend respectively on the
functions g∗ and g, leading thus to a time-space trade-off for choosing g: the more inflationary
g is, the lower the time complexity is, and the higher its space complexity is. Moreover, these
results show how the initial knowledge on a bound on the diameter allows for more efficient
solutions in terms of both time and space.

The scenario in Section 4.2 shows that the SAPg algorithm does not work anymore when
relaxing the assumption of a strongly centered network into the one of a non-empty center.
A natural question then arises about the possibility of designing a finite-state self-stabilizing
algorithm that provides nodes with clocks modulo P which eventually synchronize in a
dynamic network with at least one central node.

B. Charron-Bost and L. Penet de Monterno 28:17

References
1 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to distributed

self-stabilizing algorithms. Synthesis Lectures on Distributed Computing Theory, 8(1):1–165,
2019.

2 D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population
protocols. Distributed Computing, 20(4):279–304, 2007.

3 A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocks in step. Parallel Processing
Letters, 1:11–18, 1991.

4 P. Bastide, G. Giakkoupis, and H. Saribekyan. Self-stabilizing clock synchronization with 1-bit
messages. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA,
2021, pages 2154–2173. SIAM, 2021.

5 M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols.
In Proceedings of the Second Symposium on Principles of Distributed Computing, pages 27–30,
1983.

6 P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

7 L. Boczkowski, A. Korman, and E. Natale. Minimizing message size in stochastic communica-
tion patterns: fast self-stabilizing protocols with 3 bits. Distributed Comput., 32(3):173–191,
2019.

8 P. Boldi and S. Vigna. Universal dynamic synchronous self-stabilization. Distributed Computing,
15(3):137–153, 2002.

9 C. Boulinier, F. Petit, and V. Villain. Synchronous vs. asynchronous unison. Algorithmica,
51(1):61–80, 2008.

10 B. Charron-Bost. Geometric bounds for convergence rates of averaging algorithms. Information
and Computation, 2022. To appear, available at arXiv:2007.04837.

11 B. Charron-Bost and A. Schiper. The Heard-Of model: computing in distributed systems
with benign faults. Distributed Computing, 22(1):49–71, 2009.

12 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Distributed Computing,
24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010.
Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 148–162. Springer,
2010.

13 S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in general
graphs. Real Time Syst., 12(1):95–107, 1997.

14 S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of byzantine
faults. J. ACM, 51(5):780–799, 2004.

15 C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, 1988.

16 S. Even and S. Rajsbaum. Unison, canon, and sluggish clocks in networks controlled by a
synchronizer. Math. Syst. Theory, 28(5):421–435, 1995.

17 M. Feldmann, A. Khazraei, and C. Scheideler. Time- and space-optimal discrete clock
synchronization in the beeping model. In SPAA ’20: 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, USA, 2020, pages 223–233. ACM, 2020.

18 M. Gouda and T. Herman. Stabilizing unison. Inf. Process. Lett., 35(4):171–175, 1990.
19 T. Herman and S. Ghosh. Stabilizing phase-clocks. Inf. Process. Lett., 54(5):259–265, 1995.
20 A. Jadbabaie. Natural algorithms in a networked world: technical perspective. Commun.

ACM, 55(12):100, 2012.
21 Ronald Kempe, Joseph Y. Dobra, and Moshe Y. Gehrke. Gossip-based computation of

aggregate information. In Proceeding of the 44th IEEE Symposium on Foundations of Computer
Science, FOCS, pages 482–491, Cambridge, MA, USA, 2003.

22 L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, 1998.

23 S. H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D, 143(1-4):1–20, 2000.

OPODIS 2022

https://arxiv.org/abs/2007.04837

	p000-Frontmatter
	Preface
	Program Committee
	Steering Committee
	External Reviewers

	p001-Luchangco
	p002-Fatourou
	p003-Tixeuil
	p004-Johnen
	1 Introduction
	1.1 Context
	1.2 Other Related Work

	2 Preliminaries
	3 Wait-Free Linearizable Queue
	3.1 Algorithm overview
	3.2 Algorithm Pseudocode
	3.3 Proof
	3.3.1 Algorithm properties
	3.3.2 Linearizability
	3.3.3 Step Complexity

	4 Set Linearizable Wait-free Queue Algorithm with multiplicity
	5 Discussion

	p005-Sheffi
	1 Introduction
	2 Related Work
	3 The Algorithm
	3.1 The Linked-List Implementation
	3.2 Adding Range Queries
	3.3 Adding A Safe Memory Reclamation Mechanism
	3.4 Adding A Fast Index

	4 Evaluation
	5 Conclusion
	A Auxiliary Methods and Initialization

	p006-Attiya
	1 Introduction
	2 Model
	3 A Multidimensional Approximate Agreement Algorithm
	3.1 Schenk's Algorithm
	3.2 Approximate Agreement with Domain Uncertainty
	3.3 Two Group Approximate Agreement
	3.4 Putting the Pieces Together

	4 Lower bound on the Step Complexity as a Function of the Magnitude and the Number of Processes
	5 Lower Bound on the Step Complexity as a Function of the Spread
	6 Conclusion

	p007-Kharal
	1 Introduction
	2 Background
	2.1 Microbenchmark Setup

	3 Related Work
	4 Comparison Lock-Free Binary Search Tree
	4.1 Synchrobench
	4.2 Ascylib
	4.3 Setbench
	4.4 Throughput Comparisons
	4.5 Performance Factors: Synchrobench
	4.5.1 Missing Insertions
	4.5.2 Thread PRNG seeds
	4.5.3 Standardized PRNG
	4.5.4 Effective Insert and Delete Operations
	4.5.5 Equalizing the Lock-Free BST Implementation

	4.6 Performance Factors: Ascylib
	4.6.1 Thread Pinning
	4.6.2 Standardized PRNG
	4.6.3 Equalizing the Lock-Free BST Implementation

	4.7 Final Comparisons
	4.8 Microbenchmark Design Considerations

	5 Memory Reclamation
	5.1 Setbench/Ascylib BST Ticket

	6 Randomness in Concurrent Microbenchmark Experiments
	6.1 Pre-Generated Array of Random Numbers
	6.2 PRNG Associated Experimental Anomalies
	6.3 Hardware RNG
	6.4 PRNG Recommendations

	7 Towards Better Microbenchmarks
	7.1 Additional Recommendations
	7.2 Benchmarking Advances in Setbench

	8 Conclusions

	p008-Fynn
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Merkle trees
	2.3 State synchronization problem

	3 The AVL* chunked tree
	3.1 AVL+ trees
	3.2 Chunks
	3.3 Data structures
	3.4 Search
	3.5 Insertion
	3.6 Deletion
	3.7 Re-balancing
	3.8 Multi-versioning
	3.9 Correctness of tree operations

	4 Robust state synchronization
	4.1 Correctness state synchronization

	5 Evaluation
	5.1 Implementation and environment
	5.2 State synchronization
	5.3 Steady-state operation
	5.3.1 Steady-state performance
	5.3.2 Time for a snapshot
	5.3.3 Space efficiency

	5.4 State synchronization under attack

	6 Related work
	7 Conclusion
	A Appendix: Algorithms

	p009-Saramago
	1 Introduction
	2 Background
	2.1 Blockchain Data Registries
	2.2 zkSNARKs
	2.3 Incremental Merkle Tree
	2.4 Cryptographic Commitments
	2.5 Related Works

	3 System Model
	3.1 System Properties
	3.2 System Assumptions
	3.3 Threat Model

	4 Privacy-Preserving Credentials
	4.1 Credential Document File Format
	4.1.1 Merkle Tree of Claims

	4.2 Certification Tree
	4.2.1 On-chain Credential Registry
	4.2.2 Registration Phase
	4.2.3 Approval Phase

	4.3 Verifying Credentials
	4.4 Design Properties Analysis

	5 Evaluation
	6 Conclusion
	A Verifiable Presentations
	A.1 Authentication Proof
	A.2 Conditional Proof
	A.3 Score Proof
	A.4 Time-frame Proof

	p010-Amores-Sesar
	1 Introduction
	2 Related work
	3 Model
	3.1 Avalanche platform
	3.2 Communication and adversary
	3.3 Abstractions

	4 A description of the Avalanche protocol
	4.1 Overview
	4.2 Data structures
	4.3 Detailed description
	4.4 Life of a transaction

	5 Security analysis
	5.1 From Snowball to Avalanche
	5.2 Delaying transaction acceptance
	5.3 A more general attack

	6 Fixing liveness with Glacier
	7 Conclusion

	p011-Inoue
	1 Introduction
	1.1 Background and Our Result
	1.2 Technical Idea
	1.3 Related Work

	2 Preliminaries
	2.1 Graph
	2.2 Mobile Agent
	2.3 Simulation

	3 Our Algorithm
	3.1 Mappings and Variables on Storage
	3.2 Overviews of Our Algorithm
	3.3 Details of Our Algorithm
	3.4 Correctness

	4 Conclusion

	p012-Coleman
	1 Introduction
	1.1 Notation and terminology
	1.2 Related Work
	1.3 Results of the paper

	2 The FullKnowledge Model
	2.1 The FullKnowledge/Away Model
	2.2 The FullKnowledge/Toward Model

	3 The NoDistance Model
	3.1 The NoDistance/Away Model
	3.2 The NoDistance/Toward Model

	4 The NoSpeed Model
	4.1 The NoSpeed/Away
	4.2 The NoSpeed/Toward Model

	5 The NoKnowledge Model
	5.1 The NoKnowledge/Away Model
	5.2 The NoKnowledge/Toward Model

	6 Conclusion

	p013-Augustine
	1 Introduction
	1.1 Related works
	1.2 Our Model
	1.3 Our Techniques and Contributions

	2 Algorithms
	2.1 Warmup: No Byzantine Agents
	2.2 Standard Gathering
	2.3 With visual tracking

	3 Conclusion

	p014-Kim
	1 Introduction
	2 Model and Problem Definition
	2.1 Robots
	2.2 Schedule and Configuration
	2.3 Observation: Visibility Range and Multiplicity Detection
	2.4 Problem Definition: Gathering

	3 Algorithm in the Adversarial (N,N-2)-defected Model where N > = 5
	4 Algorithm in the Distance-based (4,2)-defected Model
	5 Impossibility Results
	5.1 Impossibility in (3,1)-defected model
	5.2 Impossibility in the relaxed adversarial (N,N-2)-defected model

	6 Conclusion and Open Problems

	p015-Castenow
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution & Outline

	2 Notation
	3 A Class of Gathering Protocols
	3.1 lambda-contracting Protocols
	3.2 Analysis of lambda-contracting Gathering Protocols
	3.3 Examples of lambda-contracting Gathering Protocols

	4 Collision-free Near-Gathering Protocols
	4.1 Collision-free Protocol
	4.2 Proof Summary and Intuition
	4.3 The protocol {P_tau}
	4.4 Collision Avoidance
	4.5 Time Bound

	5 Conclusion & Future Work

	p016-Abraham
	1 Introduction
	1.1 Dolev-Reischuk does not hold for Crusader Broadcast
	1.2 A New Lower Bound for Crusader Broadcast
	1.3 Extending to the all-but-m model
	1.4 Why does Crusader Broadcast matter for Blockchains? Connections to Eclipse Style Attacks

	2 Communication and Adversary Model
	3 Definitions
	3.1 Relationship to Crusader Consensus

	4 Lower Bounds
	5 Eclipse Attacks in Blockchain Systems
	6 Subquadratic Crusader Broadcast Protocol

	p017-Cachin
	1 Introduction
	2 Model
	3 Permissionless Quorum Systems
	4 Leagues
	5 Comparison with Other Models
	5.1 Comparison with Fail-Prone Systems
	5.2 Comparison with Asymmetric Fail-Prone Systems
	5.3 Comparison with Federated Byzantine Agreement Systems
	5.4 Comparison with Personal Byzantine Quorum Systems

	6 Permissionless Reliable Broadcast
	7 Related Work
	8 Conclusions

	p018-Cohen
	1 Introduction
	2 Model and Preliminaries
	3 Problem Definitions
	4 Related Work
	5 From Weak BA to Adaptive Byzantine Broadcast
	6 Adaptive Weak BA
	7 strong BA: the failure free case
	7.1 Complexity

	8 Conclusions and Future Directions
	A Adaptive Byzantine Broadcast: Correctness
	A.1 Correctness

	B Weak BA: Correctness
	C Strong BA: Correctness

	p019-Azouvi
	1 Introduction
	2 Model and Definitions
	2.1 System Model
	2.2 Modeling Blockchain Data Structures
	2.3 Total-order Broadcast

	3 Modeling Resources in Blockchain
	4 Resource-based Total-order Broadcast
	4.1 Generic Resource-based Longest-chain Total-order Broadcast
	4.2 Proof-of-Work Resource Allocator
	4.3 Proof-of-Stake Resource Allocator

	5 Trade-offs Between Different Resources
	5.1 Virtual Resource vs External Resource: Long-Range Attacks
	5.2 Incentives in Burnable and Reusable Resources

	6 Discussion
	7 Conclusion

	p020-Fraigniaud
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Hybrid Models Based on LOCAL and BCC
	3 Hybrid Models Based on BCC and CONGEST
	4 The Communication Complexity of XOR-index
	5 Conclusion

	p021-Melnyk
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related work
	3 Preliminaries
	3.1 Locally checkable labelings
	3.2 Partial solutions

	4 Complexity landscape of mending volume
	4.1 Mending volume: Definition
	4.2 Mending in infinite rooted trees
	4.2.1 Propagation problems
	4.2.2 Matrix representation
	4.2.3 Landscape of the growth rate of matrix exponentiation

	4.3 From infinite regular rooted trees to general trees
	4.4 Application: MVol is polynomial
	4.5 Application: MVol is polylogarithmic

	5 Conclusions and discussion

	p022-Liu
	1 Introduction
	2 Iterated immediate snapshot model
	3 A Computational Version of Sperner's Lemma
	4 New Impossibility Results from Sperner's Lemma
	4.1 The impossibility of approximate agreement on the octahedron graph
	4.2 The impossibility of approximate agreement on a larger class of graphs

	5 More Impossibility Results from Reductions
	6 Extension-Based Proofs
	7 Futher work
	A Proof of Theorem 2

	p023-Berenbrink
	1 Introduction
	1.1 Related Work
	1.2 Models and Results

	2 Analysis
	2.1 Sequential Model
	2.2 Gossip Model
	2.3 Analysis of 3-Majority

	3 Empirical Analysis
	4 Conclusions and Open Problems

	p024-Yandamuri
	1 Introduction
	1.1 HotStuff-M: HotStuff with Minority Corruption

	2 Model and Preliminaries
	2.1 Small Trusted Hardware
	2.2 Expander Graphs
	2.3 Cryptographic Abstractions

	3 (n/2+1)-Provable-Broadcast
	4 HotStuff-M: HotStuff with Minority Corruption
	4.1 Overview of Basic HotStuff
	4.2 HotStuff-M: Towards Minority Corruption

	5 Related Work
	A Proofs for Expander Graph Lemmas
	B Proofs for Provable Broadcast
	C Proofs for HotStuff-M

	p025-Rozen-Schiff
	1 Introduction
	2 Optical Background and Related Work
	3 Chopin's Design
	3.1 The Hybrid Topology
	3.2 Problem Formulation
	3.3 Schedulers and Definitions

	4 Chopin's Centralized Scheduler
	5 Chopin's Distributed Scheduler
	6 Evaluation
	6.1 Methodology
	6.2 Scheduler Implementation
	6.3 Scheduler Evaluation Benchmarks
	6.4 Centralized-Distributed Trade-off
	6.5 On the Benefit of Hybrid Scheduling
	6.6 Optical Degree Improvement
	6.7 Chopin VS Online Optimal Scheduler
	6.8 Sensitivity Analysis

	7 Conclusion
	A Chopin's Distributed Scheduler Algorithm

	p026-Albouy
	1 Introduction
	2 Computing Model
	3 k2l-Cast Abstraction
	3.1 Definition
	3.2 A Signature-Free Implementation of k2l-Cast
	3.3 Proof of Algorithm 1

	4 BRB in the Presence of Message Adversary (MBRB): Definition
	5 k2l-Cast in Action: From Classical BRB to MA-Tolerant BRB (MBRB) Algorithms
	5.1 Bracha's BRB algorithm reconstructed
	5.2 Imbs and Raynal's BRB algorithm reconstructed
	5.3 Numerical evaluation of the MBRB algorithms

	6 A Signature-Based Implementation of k2l-Cast
	6.1 Algorithm
	6.2 Guarantees

	7 Conclusion
	A Liveness Proof of the Signature-Free k2l-cast Implementation (Algorithm 1)

	p027-Emek
	1 Introduction
	1.1 Model
	1.2 Related Work

	2 Preliminaries
	3 Our Technique
	4 Results
	4.1 Minimum Weight Vertex Cover
	4.2 Maximum Weight Independent Set
	4.3 Minimum Weight Dominating Set in Bounded Arboricity Graphs

	5 Discussion

	p028-Charron-Bost
	1 Introduction
	2 Preliminaries
	2.1 The computing model
	2.2 Dynamic graphs

	3 The SAP_{g} algorithm
	3.1 Informal description and pseudo-code
	3.2 Notation and basic invariants
	3.3 Correctness proof with a finite diameter
	3.4 Specializations of the SAP_{g} Algorithm

	4 The SAP_{g} algorithm with infinite diameter
	4.1 Extending the class of static rooted networks
	4.2 The SAP_{g} algorithm with a central node
	4.3 The SAP_{g} algorithm in strongly centered network

	5 Complexity analysis
	5.1 Networks with finite diameter
	5.2 Strongly centered networks

	6 Concluding remarks

