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Abstract
Recent decades have witnessed a surge in the development of concurrent data structures with an
increasing interest in data structures implementing concurrent sets (CSets). Microbenchmarking
tools are frequently utilized to evaluate and compare the performance differences across concurrent
data structures. The underlying structure and design of the microbenchmarks themselves can
play a hidden but influential role in performance results. However, the impact of microbenchmark
design has not been well investigated. In this work, we illustrate instances where concurrent data
structure performance results reported by a microbenchmark can vary 10-100x depending on the
microbenchmark implementation details. We investigate factors leading to performance variance
across three popular microbenchmarks and outline cases in which flawed microbenchmark design can
lead to an inversion of performance results between two concurrent data structure implementations.
We further derive a set of recommendations for best practices in the design and usage of concurrent
data structure microbenchmarks and explore advanced features in the Setbench microbenchmark.
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1 Introduction

The execution efficiency of highly parallelizable data structures for concurrent access has
received significant attention over the past decade. An extensive variety of data structures
have appeared, with a particular focus on data structures implementing concurrent sets
(CSets) [8, 11, 21, 37, 51]. CSets have applications in many areas including distributed
systems, database design, and multicore computing. A CSet is an abstract data type (ADT)
which stores keys and provides three primary operations on keys: search, insert, and delete.
Insert and delete operations modify the CSet and are called update operations. There are
numerous concurrent data structures that can be used to implement CSets, including trees,
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skip-lists, and linked-lists. A CSet data structure refers to the implementation of a CSet.
Microbenchmarks are commonly used to evaluate the performance of CSet data structures,
essentially performing a stress test on the CSet across varying search/update workloads
and thread counts. A typical microbenchmark runs an experimental loop bombarding the
CSet with randomized operations performed by threads until the duration of the experiment
expires. Throughput, number of operations performed by a CSet, is a key performance metric.
Multiple platforms for microbenchmarking exist to support CSet research. The accuracy and
reliability of performance results generated from microbenchmark experiments is fundamental
to concurrent data structure research. Researchers must be able to assess the performance
benefit vs loss of varying concurrent implementation strategies and their overall impact on
performance. Microbenchmarks are also an important tool for comparative performance
analysis between different implementations of CSets. While CSet implementations have
been well studied [3, 8, 11, 37], the popular microbenchmarks used to evaluate them have
not been scrutinized to the same degree. Microbenchmarking idiosyncrasies exist that can
significantly distort performance results. The goal of our work is to better understand the role
of microbenchmark design in performance results and attempt to minimize factors present
within the microbenchmark that misrepresent performance.

When testing a CSet implementation on three different microbenchmarks with identical
parameters, one would expect to observe similar performance results within a reasonable
margin of error. However, we found 10-100x performance differences on the same CSet data
structure tested across the Ascylib [11], Setbench [7], and Synchrobench [14] microbenchmarks.
These microbenchmarks are often employed for evaluation of high performance CSets. In
Figure 1(a) we observe a range of varying performance results on the popular lock-free BST
by Natarajan et al. [37] across the three microbenchmarks displayed using a logarithmic
y-axis in order to capture wide performance gaps on a single scale. We performed a systematic
review of the design intricacies within each microbenchmark. We found discrepancies in
microbenchmark implementation leading to CSet data structures underperforming in one
microbenchmark and over performing in another. We found one popular microbenchmark
duplicating the entire benchmark code for each CSet implementation. This renders the
code highly prone to errors related to updates or modifications to the benchmark, and
may inevitably result in reporting skewed experimental results. Our investigations led to
the discovery that seemingly minor differences in the architecture and experimental design
of a microbenchmark can cause a 10-100x performance boost, erroneously indicating high
performance of the data structure when the underlying cause is the microbenchmark itself.
We performed successive updates to two of the microbenchmarks, adjusting where errors or
discrepancies were discovered, until performance is approximately equalized (Figure 1(b)). In
this work, we discuss the primary factors leading to microbenchmark performance variance
and provide a set of recommended best practices for microbenchmark experiment design.

Microbenchmarks rely heavily on pseudo random number generators (PRNGs) to generate
randomized keys and/or select randomized operations on a CSet. In this work, in addition
to investigating microbenchmark design differences, we delve into a deeper investigation
of PRNG usage in microbenchmarks. Deleterious interactions between a PRNG and a
microbenchmark that uses it can go undetected for years. We present examples where
(mis)use of PRNGs can cause substantial performance anomalies and generate misleading
results. We illustrate how using a problematic PRNG can lead to an inversion of throughput
results on pairs of CSet data structures. We discuss the pitfalls of common PRNG usage in
microbenchmark experiments. Our experiments are limited to concurrent tree data structures
that were present in the three microbenchmarks in our study. We believe the lessons learned
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Figure 1 Throughput results across three microbenchmarks, Ascylib, Synchrobench and Setbench
executing on a 256-core system testing the lock-free BST [37]. Thread count is displayed on the
x-axis, y-axis is a logarithmic scale. Figure (a) results from unmodified microbenchmarks (as written
by their authors). Figure (b) results for modified versions of Synchrobench and Ascylib correcting
for pitfalls in microbenchmark design.

in our investigations related to microbenchmark design apply broadly to the experimental
process and are not limited to specific CSet implementations. We leave the investigation of
microbenchmark performance on varying CSet implementations for future work.

Contributions. In this work, we perform the first rigorous comparative analysis of three
widely used microbenchmarks for CSet performance evaluation. We present an overview of
related work in Section 3. The three microbenchmarks evaluated in our work are described
in detail in Section 4. We investigate the source of performance differences reported by each
microbenchmark when testing equivalent tree-based data structures in Sections 4 and 5. We
study the role of memory reclamation and its impact on CSet performance in Section 5. In
Section 6 we investigate commonly employed methods of fast random number generation
and the pitfalls of each. We describe a set of derived recommendations for best practice in
microbenchmark design at the ends of Sections 4, 5 and 6. Additional recommendations
for further improvements in microbenchmark design are discussed in Section 7. Advanced
features of the Setbench microbenchmark are described in Section 7.2 followed by concluding
remarks in Section 8. In the next section, we begin with a background on the principles of
microbenchmark design with concrete examples from the Setbench microbenchmark.

2 Background

In this work we test three concurrent synthetic microbenchmarks, Setbench [7], Ascylib [11],
and Synchrobench [14] for high speed CSet analysis. The key properties of each microbench-
mark are summarized in Table 1. The microbenchmarks report the total operations per
second performed on the CSet by n threads based on a specified workload. In particular, we
study data structures that implement sets of keys and provide operations to search, insert
or delete a key. The microbenchmarks allow users to specify parameters that include the
number of threads (t), the experiment duration (d), the update rate (u), and the key range
(r) contained within the set (i.e. [1, 200,000]).

Evaluating performance operations on an initially empty data structure will generate
results that are misleading and not representative of average performance on a non-empty
CSet. Therefore, microbenchmarks typically prefill the CSet before the experiment begins to
contain a subset of keys less than or equal to the total range. The prefill size may be specified
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Table 1 Summary of properties within each microbenchmark. 1: steady state depends on
experiment parameters. Setbench allows varying insert and delete ratios; this determines what the
data structure will fill to in steady state. (*2: performance tracking. *3: statistics tracking, performance
recording, automated graph generation, range query searches, varying distributions of keys/operations are
possible, independent insert and delete rates possible. *4: track effective updates, alternating updates
possible).

Benchmark Prefill Size Threads used Prefill PRNG for key PRNG for
Properties to Prefill Ops generation update choice

Ascylib half-full single/n inserts ✓ ✓

Setbench steady state1 n ins/dels ✓ ✓

Synchrobench half-full single inserts ✓

Benchmark Centralized Test file Range Queries Effective Upd Thread Unique
Properties Test loop per DS Available Option Pinning Features

Ascylib ✓ ✓ ✓ ✓ *2
Setbench ✓ ✓ ✓ *3

Synchrobench ✓ ✓ ✓ *4

by the user as the initial (i) prefill amount, or the microbenchmark may decide the prefill
size using its own algorithm. For a duration d, a microbenchmark runs in an experiment loop
where n threads are assigned keys from the specified key range based on a random uniform
distribution, though other distributions are also possible. Threads perform a combination of
search or update operations based on experimental parameters. For example, if the specified
update rate (u) is 10%, the search rate is 90%. The microbenchmark either randomly splits
the update rate across insert and delete operations, or employs its own algorithm to attempt
to divide insert and delete operations equally. Microbenchmarks may offer the ability to
specify independent insert and delete rates. This is discussed further in Section 4.3.

2.1 Microbenchmark Setup
We use the Setbench microbenchmark as a case study to explain some underlying design
principles in concurrent microbenchmarks. A typical Setbench experiment involves n threads
accessing a CSet for a fixed duration. During this time, each thread performs search or
update operations that are chosen according to a specified probability distribution on keys
randomly drawn from another probability distribution over a fixed key range. For example,
threads might choose an operation to perform uniformly (1/3rd insert, 1/3rd delete and
1/3rd search operations), and then choose a key to insert, delete or search for from a Zipfian
distribution. Each thread has a PRNG object, and the same object is used to select a random
operation and generate random keys.

To ensure that an experiment measures performance as it would in the steady state (after
the experiment has been running for a sufficiently long time), performance measurements are
not taken until the data structure is warmed up by performing insertions and deletions until
the CSet converges to approximately its steady state. This step is called prefilling. If the key
range is [1, 106], and threads do 50% insertions and 50% deletions, then the size of the CSet
in steady state will be approximately 500,000 (half full). Different microbenchmarks will
employ varying methods of prefilling the data structure prior to experimental evaluation.
This is discussed in the next section. In this work, we evaluate performance results across
three microbenchmarks and analyse the underlying subtleties in microbenchmark design
which lead to varying performance on equivalent CSet data structures. An example of this is
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illustrated in Figure 1(a) where microbenchmark experiments are performed on the lock-free
BST by Natarajan et al. [37]. The initial comparative throughput results are very different.
We apply successive modifications to the microbenchmarks where required in an attempt to
minimize large performance gaps. This process is outlined step-by-step in Section 4.

Experiments performed in this work execute on a dual socket, AMD EPYC 7662 processor
with 256 logical cores and 256 GB of RAM. DRAM is equally divided across two NUMA
nodes. We use a scalable memory allocator, jemalloc [13], to prevent memory allocation
bottlenecks. Each microbenchmark employs its own PRNG for generating random numbers
during the experiment loop. This is discussed further in Section 4. We test key ranges
between 2000 and 2 million keys using thread counts of up to 512, which gives an indication
of the effects of oversubscribing the cores. All figures in Sections 4 and 5 in this work are
displayed using a logarithmic y-axis in order to allow visual comparison between algorithms
with large differences.

3 Related Work

There are previous efforts in the literature to better understand the underlying structure
and design of benchmarks used to evaluate concurrent applications. In their work on the
comparative evaluation of transactional memory (TM) systems, Nguyen et al. discuss the
unexpected low performance results observed when using benchmarks to evaluate various
hardware transactional memory (HTM) and software transactional memory (STM) sys-
tems [38]. They argue that the observed limited performance results are a consequence of
the programming model and data structure design used within the benchmarks and are not
necessarily indicative of true performance results of the TM systems themselves. In related
work by Ruan et al. [41], the STAMP benchmark suite [33] used for evaluating transactional
memory was identified as being out-of-date. The authors present several suggested modifica-
tions to the benchmark suite to boost the reliability of performance results for more accurate
TM evaluation. McSherry et al. discuss the COST (Configuration that Outperforms a Single
Thread) [32] associated with scaling applications to support multi-threaded execution, and
the need to measure performance gains without rewarding the substantial overhead costs of
parallelization.

Recent microbenchmarks exist that were not tested in our work, such as the Synch
framework [21] for concurrent data structures evaluation. We leave this for future study.
There has been some prior investigation of microbenchmark design for concurrent data
structure performance evaluation. Microbenchmark experiments executing a search-only
workload on CSets have been tested in previous work by Arbel et al. [3]. They considered
differences in concurrent tree implementations of CSets and their impact on performance.
It was discovered that subtle differences in concurrent tree implementations can play a
pivotal role in microbenchmark performance results. Our work concentrates on the impact of
microbenchmark implementation differences on CSet data structure performance for workloads
that include updates. Mytkowicz et al. in their work, “Producing Wrong Data Without Doing
Anything Obviously Wrong!” [34], illustrate how subtle changes to an experiment’s setup
can lead to enormous performance differences and ultimately to incorrect conclusions. Tim
Harris’ presentation, “Benchmarking Concurrent Data Structures” [17], is closely related
to our work. Harris explains the need for sound experimental methodology in performance
evaluation tools and discusses some noted pitfalls in the Synchrobench microbenchmark
in [18]. Important considerations in the design of good concurrent data structure experiments
have been previously discussed in seminars presented by Trevor Brown [6]. Brown discusses
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Figure 2 Initial throughput comparisons across three unmodified microbenchmarks testing the
lock-free BST [37] on varying update rates.

subtle aspects of microbenchmark testing configurations and underlying memory and thread
distributions that can play a crucial role in performance results. This is discussed further in
Section 7.1. In our work, we provide an investigative approach to microbenchmark design by
comparing design strategies employed in three popular microbenchmarks.

4 Comparison Lock-Free Binary Search Tree

As mentioned above, a key performance indicator in the evaluation of CSet data structure
performance is the total number of operations per second (throughput). This is computed by
summing the total number of operations performed per thread and dividing by the duration
of the experiment. A key indicator of memory reclamation efficiency is the maximum resident
memory occupied in RAM by the microbenchmark program during the duration of the
experiment. We use this measure to evaluate the memory reclamation capabilities of each
microbenchmark in Section 5. We perform a comparative study on the lock-free BST data
structure by Natarajan et al. [37] which implements a CSet. The lock-free BST stores keys
in leaf nodes; internal nodes contain repeated leaf values to provide direction for searches.
Not all microbenchmarks implement the lock-free BST with memory reclamation. Therefore,
our initial comparisons turn memory reclamation off. Table 1 describes the properties of
each microbenchmark tested in this work.

4.1 Synchrobench
The Synchrobench synthetic microbenchmark allows the evaluation of popular C++ and
Java-based CSet implementations. Synchrobench is a popular microbenchmark used for
performance evaluation of CSet data structures [5, 11, 14, 16, 47, 48, 50]. Synchrobench
allows users to specify an alternate option (-A) or an effective option (-f) as input parameters
to the microbenchmark. The -A option can be used to force threads to alternate between
a key being inserted and the same key being deleted. The -f option sets total throughput
calculations to count failed update operations as search operations and not as update
operations. We do not use either of these options in our experiments. Synchrobench performs
single threaded prefilling with insert-only operations. Each data structure directory contains
a test file (test.c) that runs the basic test loop of the microbenchmark, performing a timed
search/update workload on the CSet. In our evaluation of Synchrobench, we found the
repetition of the test.c file in each data structure directory. This is discussed further in
Section 4.5.1. Synchrobench allows users to specify a single update rate that is divided
between insert and delete operations, though the division is not necessarily equal. This is
discussed further in Section 4.5.4.
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Table 2 Summary of Synchrobench and Ascylib modifications tested in this work. Ascylib
required fewer changes, Setbench did not require any modifications for the comparative experiments
performed in Section 4. The original installed implementations are labelled Synchro and Ascylib
without a version number. Ascylib’ and Synchro’ are versions of each microbenchmark where only
the lock-free BST implementation is modified (imported from Setbench).

Synchro Version Synchro Synchro1 Synchro2 Synchro3 Synchro4 Synchro5 Synchro’
insert & delete ✓ ✓ ✓ ✓ ✓

random seeds/thread ✓ ✓ ✓ ✓

MM3 RNG ✓ ✓ ✓

randomized updates ✓ ✓

common DS impl ✓ ✓

Ascylib Version Ascylib Ascylib1 Ascylib2 Ascylib3 Ascylib’
disable thread pin ✓ ✓ ✓

MM3 RNG ✓ ✓

common DS impl ✓ ✓

4.2 Ascylib
The Ascylib synthetic microbenchmark is another microbenchmark used to compare per-
formance of concurrent data structures [3, 11, 12, 14, 23, 40, 54]. Ascylib also performs an
initial prefilling step using single threaded insert-only operations. However, Ascylib has a
setting to allow multi-threaded prefilling using insert-only operations. The range and initial
values are updated to the closest power of two. This is a necessary condition for the Ascylib
test algorithm to generate randomly distributed keys. The experiment testing algorithm
(test_simple.c) is also repeated in each data structure directory. However, the main test
loop is implemented in one common macro and is shared across each CSet data structure
implemented in Ascylib. The update rate is randomly distributed among insert and delete
operations and updates are not required to be effective. Ascylib allows additional user inputs
to define profiling parameters which are not tested in this work. Additional properties of
Ascylib can be seen in Table 1.

4.3 Setbench
The Setbench synthetic microbenchmark is another benchmarking tool employed in concurrent
data structure literature [3, 7, 8, 9, 24, 42]. Setbench employs a directory structure per CSet
implementation. However, each CSet utilizes a single experiment test loop via an adapter
class which imports each specific CSet implementation into the main experimental algorithm.
This allows a single point of update for the testing algorithm and avoids software update
errors. Setbench allows specification of independent insert and delete rates. Setbench uses
per thread PRNGs initialized with unique seeds. Although Setbench has multiple choices of
PRNGs, we employed the murmurhash3 (MM3) [1] PRNG for comparative microbenchmark
experiments in this section of our work. Setbench employs multi-threaded prefilling using
randomized insert and delete operations. The benefits of this are discussed in Section 4.8.
We delve into further details regarding the Setbench microbenchmark in Section 7.2.

4.4 Throughput Comparisons
We test the initial installed implementations of the three aforementioned microbenchmarks
in order to compare performance results on the lock-free BST data structure. To standardize
experiments across the three microbenchmarks, we performed single threaded prefilling
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Figure 3 Throughput results for successive modifications to Synchrobench (a), (b) and successive
modifications to Ascylib (c). Synchro1 to Synchro4 involve updates to the Synchrobench microbench-
mark design. Synchro5 updates the data structure implementation to that of Setbench. Figure (a)
uses a key range of 2 million. Figure (b) uses a key range of 20,000 keys and displays the impact of
successive modifications to Synchrobench at a 100% update rate.

using insert-only operations to reach a start state where the data structure contains exactly
half of the keys from the specified input range. Memory reclamation was turned off in
all microbenchmarks. Attempted updates and effective updates are both counted towards
the total operation throughput. We examine throughput results for experiments running
for 20 seconds with update rates varying from 0% to 100% and a specified range of 2
million keys unless stated otherwise. Enforcing the range to a power of 2 is turned off
in Ascylib experiments to match the other microbenchmarks. Initial results across the
three microbenchmarks can be seen in Figure 2 where throughput values are displayed on
a logarithmic y-axis. We observe a range of varying performance results on the lock-free
BST across the three microbenchmarks. In particular, across all experiments, Synchrobench
throughput results are one to two orders of magnitude higher than Setbench or Ascylib.
Ascylib results are notably lower than those of Setbench and Synchrobench. We also observe
that Ascylib throughput results tend to plateau at about 128 threads and do not indicate
growth as is expected and seen with Setbench and Synchrobench. We investigate further to
understand the role of individual microbenchmark design on performance results.

4.5 Performance Factors: Synchrobench
Further investigation is required to understand the underlying causes of comparatively
spiked performance results from the Synchrobench microbenchmark seen in Figure 2. In
the following set of experiments we aim to equalize the performance results of Setbench
and Synchrobench through various adjustments made to Synchrobench where errors or bugs
were discovered. We modify the original installation of Synchrobench and title each updated
version as SynchroX, where X is the adjustment number. With each successive modification,
for both Ascylib and Synchrobench, all previous modifications are maintained unless stated
otherwise. A summary of modifications performed in our work are listed in Table 2.

4.5.1 Missing Insertions
Synchrobench utilizes a file (test.c) in each data structure implementation in order to run
the microbenchmark experiment loop. Each thread executes in the loop for the duration of
the experiment, and all threads are joined prior to termination. Insert operations occur only
following a successful delete operation which indicates success by setting a variable last to
−1. This value is checked on the next update operation; if last is negative an insert operation
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Figure 4 (a) Throughput results display the final comparison across three microbenchmarks with
all successive modifications (Synchro4 and Ascylib2). Figure (b) tests Synchro5 and Ascylib3 which
maintain all microbenchmark changes and also update the data structure (DS) implementation to
that of Setbench. Figure (c) tests Ascylib’ and Synchro’ which do not contain any modifications to
the microbenchmarks and only equalize the DS implementation.

will proceed. However, the test.c file in the lock-free BST directory contained a bug in
which last was an unsigned type and could never take on negative values. As a result, all
experiments on the lock-free BST were performing update operations comprised of deletions
and never insertions. The data structure is initially prefilled to half of the specified range,
but following prefilling, insert operations never take place due to this particular bug in the
experiment loop. Delete-only update operations generate notably higher throughput results
since the data structure becomes empty very quickly; essentially all operations reduce to
searches as the duration of the experiment increases. Upon correction of this bug, throughput
results lowered significantly. Performance results of progressive adjustments to Synchrobench
are illustrated in Figure 3. This adjustment was the first of a series of modifications made to
the original version of Synchrobench for the lock-free BST and is labelled Synchro1 in the
figure. There is a drop in throughput from the original installation of Synchro to Synchro1.
We note that missing insert operations in the experiment loop was not a common occurrence
in other data structure directories of Synchrobench.

4.5.2 Thread PRNG seeds

The test algorithm (test.c) for the lock-free BST data structure did not assign each thread
a unique initialization seed for use in the PRNG employed to generate random keys. Having
a PRNG initialized with the same seed per thread resulted in threads utilizing the same
set of keys for search/update operations, resulting in an overall high throughput. As the
duration of the experiment and the number of threads increase, updates are again essentially
reduced to search operations due to other threads having previously completed the requested
operation on the given key. Inserts fail because the key is already there, deletes fail because
the key was removed by another thread. With Synchro2 we correct this problem with the
addition of randomly generated seeds to initialize each thread’s PRNG. The impact of this
update can be seen more prominently in Figure 3(b) where there is a drop in throughput with
Synchro2 on 100% updates operating on a 20,000 key range. This is not so visible when the
key range is much larger. At a key range of 2 million, the dominant overhead in operations
is traversing a large tree; therefore, we see less variation in throughput from Synchro2 to
Synchro5 in Figure 3(a). The probability of contention on the same set of keys is lower at 2
million keys, therefore, the impact of Synchro2 is more prominent in smaller key ranges.

OPODIS 2022
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4.5.3 Standardized PRNG
As discussed earlier, Synchrobench utilizes a standard built in C++ PRNG, rand() to
supply randomly generated keys. Setbench and Ascylib use XOR-shift based PRNGs.
The Synchrobench microbenchmark is adapted to support the XOR-shift based PRNG
employed in Setbench (MM3). This adjustment is labeled Synchro3 in Figure 3. The
adjustment does reduce overall throughput as MM3 uses a more complicated random number
generation algorithm, using multiply and XOR-shifts, than what was previously employed in
Synchrobench.

4.5.4 Effective Insert and Delete Operations
In attempt to equally distribute insert and delete operations across threads, Synchrobench
uses an effective update strategy. Effective updates require threads to perform one type of
update successfully before the other type of update is attempted. For example, a thread
must perform and insert operation that successfully modifies the data structure before it can
attempt a delete operation. This is considered an effective update, an approach we found to
offer no tangible benefit and can be unforgiving of data structure specific bugs. Effective
updates should not be confused with the -f (effective) option. The -f option in Synchrobench
controls only how failed update operations will count towards total throughput, but an
effective update strategy for insertions and deletions is used regardless.

Enforcing effective updates is problematic because, for example, in an almost full data
structure, to perform an effective insert, one may need to repeatedly attempt to insert many
random keys until one succeeds. Essentially, a number of search operations are inserted
in between insert and delete operations, thereby inflating the total number of operations.
The implementation of the lock-free BST in Synchrobench has a known concurrency bug
contained in the original algorithm [3]; modified nodes are not always correctly updated in
the tree. The requirement for effective updates in the experiment can generate results which
erroneously indicate performance gains in the presence of errors in the implementation. The
approach followed in Setbench is to randomize insert and delete operations using per thread
PRNGs. This will generate more accurate performance results in spite of possible errors in
the implementation. This adjustment is added to Synchrobench and is labelled Synchro4.

It may also be noted that a checksum validation step would prove beneficial in Syn-
chrobench to catch data structure related concurrency bugs. A checksum validation verifies
that the sum of keys inserted minus the sum of keys deleted into the CSet during an exper-
iment should equal the final sum of keys contained in the CSet following the experiment.
Incidentally, the implementation of the lock-free BST in Synchrobench was failing checksum
validation. Synchro4 is the final correction to the Synchrobench microbenchmark design.
The data structure specific concurrency bug is updated in the next modification.

4.5.5 Equalizing the Lock-Free BST Implementation
The final update to Synchrobench is a modification of the data structure implementation
and equalizing the three microbenchmarks to use the lock-free BST implementation provided
in Setbench. The Setbench implementation corrects the concurrency bug and adds checksum
validation, which does not exist in the other microbenchmarks. This adjustment is labeled
Synchro5. We do not see a large difference in performance from Synchro4 to Synchro5
in Figure 3(b), which highlights the need for randomized insert and delete operations in
concurrent microbenchmark experiments. By employing a randomized update operation
assignment, we mitigate the impact of concurrency bugs on overall CSet data structure
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performance. We also assess an implementation of Synchrobench, Synchro’(Synchro prime),
with the imported lock-free BST implementation from Setbench which does not include any
modifications to the Synchrobench microbenchmark given in Synchro1 to Synchro4. This
comparison is given in Figure 4.

4.6 Performance Factors: Ascylib
The Ascylib microbenchmark test algorithm and underlying default settings lead to a few
factors that impact performance results on the lock-free BST. Each successive modification
to Ascylib is labeled AscylibX.

4.6.1 Thread Pinning
The Ascylib general installation enables thread pinning by default. With further investigation,
we found that built-in thread pinning settings were under utilizing the 256 available cores
during experimentation. Ascylib captures the underlying core and NUMA node count at
compile time; we updated build settings to ensure the correct number of cores were detected.
Although the Ascylib build displays that the correct number of cores have been detected, we
found the Ascylib throughput results in Figure 2 were based on under 50% core utilization.
The default settings were unable to utilize the full set of cores. To remove the underlying
thread pinning settings, and disable thread pinning entirely, we recompiled with SET_CPU=0.
This adjustment is labelled Ascylib1. Results for Ascylib1 indicate full core utilization
and improve performance in Figure 3(c). A user that is unaware of Ascylib’s default setting
may unknowingly generate misleading results. Rather than modifying the three benchmarks
to perform identical thread pinning, we disabled thread pinning in all three for consistency.
This is perhaps not ideal for microbenchmark experiments. Recommendations for thread
pinning in microbenchmark experiments are discussed further in Section 7.

4.6.2 Standardized PRNG
As was the case with the Synchrobench microbenchmark, we use the same PRNG across
all three microbenchmarks. Ascylib is updated to use the MM3 PRNG employed in Set-
bench. The update is labelled Ascylib2. We do not see a significant observable change in
performance on a logarithmic scale between Ascylib1 and Ascylib2. The MM3 algorithm is
a more complicated PRNG (multiply, XOR-shifts) than what was previously used in Ascylib
(Marsaglia XOR-shift [30]). Additional testing reveals a slight drop in performance when
switching the PRNG to MM3.

4.6.3 Equalizing the Lock-Free BST Implementation
Last, for a comparison that evaluates a standard data structure implementation on each
microbenchmark, we implement the lock-free BST implementation from Setbench into Ascylib.
This is labelled Ascylib3. Ascylib3 maintains all previous benchmark adjustments whereas
Ascylib’ only updates the common data structure implementation from Setbench into the
original installation of Ascylib (Table 2).

4.7 Final Comparisons
The final comparative results following successive modifications to Ascylib and Synchrobench
are given in Figure 4(a), which tests Ascylib2, Synchro4 and the original Setbench im-
plementation. These implementations use the built in data structures of each microbench-
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mark while adjusting for microbenchmark design differences in an attempt to equalize the
throughput results. We have achieved throughput results that are fairly consistent across
microbenchmarks. There are slight discrepancies in throughput results, but these are not
nearly as drastic as the performance differences across the original implementations of Ascylib
and Synchrobench in Figure 2. Additional final comparisons are provided in Figure 4(b) and
(c), which also equalize the lock-free BST implementation across all microbenchmarks on
a 100% update workload across 2 million keys. Figure 4(b) includes all microbenchmark
modifications for both Synchrobench and Ascylib, whereas Figure 4(c) does not include
any microbenchmark modifications from the original installed versions of Synchrobench and
Ascylib. The results in Figure 4(c) illustrate the variations in throughput that occur on
account of microbenchmark implementation differences. We see that once microbenchmark
idiosyncrasies have been ironed out in (a) and (b), the performance results are much more
consistent. This highlights again the crucial role of microbenchmark design in the performance
of CSet data structures.

4.8 Microbenchmark Design Considerations
In this section we investigated microbenchmark idiosyncrasies between three microbench-
marks. We performed successive modifications to two of the microbenchmarks to account for
design differences. During our experiments, we discovered the following factors in microbench-
mark design which lead to the greatest impact on performance: (1) Repeated benchmark code
is prone to error. In Synchrobench where the algorithm running performance experiments
is duplicated for each data structure, errors in the algorithm led Synchrobench results to
exceed other microbenchmarks by 100x. The microbenchmark testing algorithm should
exist in one centralized location and provide easy adaptation to new data structures. (2)
Microbenchmarks use a variety of techniques for splitting the update rate between insert
and delete operations. Recommended practice is to randomly distribute update operations
between inserts and deletes using per thread PRNGs. (3) Synchrobench introduced a setting
to enforce effective updates. We note in Section 4.5.4, effective updates unnecessarily inflate
throughput results and are not recommended. (4) Our recommended best practice for mi-
crobenchmark design includes strategies to detect and mitigate errors in the microbenchmark.
We certainly recommend a checksum validation in microbenchmark experiments. In our
work, adding checksum validation assisted in discovering microbenchmark and data structure
implementation errors.

Prefilling a CSet prior to running the microbenchmark experiment is also an important
design consideration. Although experiments in this section used insert-only prefilling, we
recommend against this for CSet microbenchmark experiments. (5) Data structure prefilling
should occur through (a) randomized insert and delete operations, and (b) using the same n
threads that will be employed during the measured portion of experiments. This will generate
a more realistic configuration of a concurrent data structure in steady state as opposed
to a data structure prefilled using single-threaded insert-only operations. Single-threaded
prefilling will result in memory allocation specific to one thread’s NUMA node. This will
results in memory access latency for threads on different NUMA nodes during the measured
portion of experiments. Using n threads to perform prefilling will disperse memory allocation
across additional NUMA nodes. N-threaded prefilling with randomized insert and delete
operations is used in Setbench as mentioned previously. We discuss additional considerations
in microbenchmark design and provide further recommendations in Section 7. In the next
section, we experiment with memory reclamation in microbenchmarks and evaluate its impact
on performance.



R. F. Kharal and T. Brown 7:13

(a) Max Resident (b) Throughput

(c) Max Resident (d) Throughput

Figure 5 Maximum Resident Memory and Throughput results for Ascylib and Setbench on the
lock-free BST ((a), (b)) and BST-TK ((c), (d)). Ascylib implementation contains microbenchmark
updates contained in Ascylib2 (Section 4.2).

5 Memory Reclamation

A key measure of memory usage for an executing program is the maximum resident memory
occupied in RAM by the program during the duration of its execution. The lock-free BST
as described by Natarajan et al. [37] does not provide a complete algorithm for memory
reclamation during execution. The partial algorithm suggests removing an unbounded
number of nodes that are nearby neighbours in the tree pending deletion. Any given thread
may proceed to delete and free (unlink) n nodes that are in close proximity within the
tree. However, the original implementation was leaking memory. Synchrobench does not
implement any memory reclamation in its implementation, whereas Ascylib has an added
option for garbage collection (GC). The authors of the lock-free BST suggest adding epoch
based memory reclamation, but it was not so simple. The memory reclamation algorithm
from the original work is updated in the Setbench implementation to correctly reclaim
memory [3]. We first compare the memory reclamation implementations in Setbench and
Ascylib by setting Ascylib’s GC setting to true, and Setbench epoch based reclamation is
turned on. We show comparative analysis of results across each microbenchmark in Figure
5(a) and (b). The Ascylib microbenchmark has been updated to Ascylib2 in order to
disable thread pinning and equalize the PRNG utilized in both microbenchmarks. We have
ensured all 256 cores are being utilized by Ascylib. Figure 5(a) illustrates differences in each
microbenchmark’s ability to reclaim memory as the thread count increases and cores are
oversubscribed. Ascylib’s memory usage surpasses that of Setbench by over one order of
magnitude, particularly as the thread count increases. Throughput results (Figure 5(b)) are
relatively equal, however, the high maximum resident memory values may render Ascylib
experiments unfeasible in some settings. We further consider microbenchmark comparisons
on the equalized lock-free BST implementation with memory reclamation turned on. We
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Figure 6 Array Based Pre-generated PRNG vs Non Array based PRNG on a key range of 20 000.
(a) Total Instructions per operation (b) Total Cycles per operation (c) Total Throughput per second

discover similar performance discrepancies to those discussed in Section 4, although the data
structure implementation and memory reclamation algorithms are identical across the three
microbenchmarks. Performance results continue to show variance until microbenchmark
idiosyncrasies are accounted for. Results for these additional experiments can be seen in
Appendix A of the full paper [22].

5.1 Setbench/Ascylib BST Ticket
In Section 4 of this work, we examined performance factors for the lock-free BST on three
concurrent synthetic microbenchmarks. We noted substantial impacts on performance
as a result of microbenchmark implementation intricacies. In this section we investigate
performance differences across the BST ticket (BST-TK) CSet data structure as implemented
in the Setbench and Ascylib microbenchmarks. The ticket based binary search tree by
Guerraoui et al. [11] appears in both Setbench and Ascylib microbenchmarks; however, it
is not implemented in Synchrobench. The BST-TK is an external binary tree where leaf
nodes contain the set of keys contained within the data structure. Internal nodes are used
for routing and contain locks and a version number. This allows optimistic searches on the
tree where concurrency can be verified by the correct version number. Both Ascylib and
Setbench implement the BST-TK with memory reclamation. Ascylib has garbage collection
(GC) turned on, Setbench performs epoch based reclamation. We observe in Figure 5(d) that
throughput results from both microbenchmarks are similar on the BST-TK data structure.
In Figure 5(c), we see again the Ascylib microbenchmark has higher memory usage, a greater
than one order of magnitude increase over Setbench. This may render Ascylib experiments
impractical in some settings and indicates memory is leaking at higher thread counts.

We have seen microbenchmarks can vary greatly in performance and memory usage across
two different concurrent data structure implementations. We recommend microbenchmark
users investigate overall memory usage in parallel with throughput results in order to get
a clear understanding of the role of memory reclamation on the performance of a CSets.
Memory may not be leaking necessarily; if the memory reclamation algorithm is simply slow
or inefficient, there maybe a tangible impediment on performance.

6 Randomness in Concurrent Microbenchmark Experiments

As we have seen in previous sections, concurrent microbenchmarks rely heavily on PRNGs to
generate randomized keys and randomized operations for high performance CSets that can
perform potentially billions of operations per second. A fast PRNG is key. In this section we
draw our attention to best practices of PRNG usage in concurrent microbenchmark experi-
ments. We limit our attention to non-cryptographic PRNGs due to the speed requirement.
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It is desirable to utilize a PRNG with low overhead costs to the running experiment. Some
microbenchmarks may choose a custom built PRNG, while others may opt for a standard
built-in PRNG such as rand() used in Synchrobench. Some will pregenerate an array of
random numbers (RNs); this allows fast, direct access to a list of RNs and avoids in-place
generation costs. If properties of high quality randomness are desired, one may use an archi-
tecture specific hardware RNG. We explore the practicality and benefit of these approaches
in subsequent sections. The PRNGs tested in this work include commonly used software
PRNGs: murmurhash2 (MM2) [45], murmurhash3 (MM3) [1], Mersenne Twister (MT) [31],
MRG [36], and an implementation of the Marsaglia XOR-shift PRNG (XOR-SH*) [10, 30].
We describe custom hash functions and hardware RNGs in subsequent sections. Experiments
in this section were run for durations of 3-5 seconds.

6.1 Pre-Generated Array of Random Numbers
One might be tempted to think that the best way to obtain fast, high quality randomness
would be to pre-generate a large array of RNs (or one array per thread) before running an
experiment. Then, one could employ hardware randomness, or a cryptographic hash function,
and push the high cost of generating random numbers into the unmeasured setup phase of
the experiment. We tested this method in Setbench with per thread arrays of pre-generated
RNs using the XOR-SH* and MT PRNGs versus in-place RN generation with each algorithm.
It is important to note that the pre-generated array approach eliminates the cost of in-place
random number generation; during an experiment it is simply a matter of requesting an
index into an array to generate the next random. A limitation of an array-based approach
is, of course, the array size. It is undesirable to have frequent repetition of RNs during
experimentation. We use array sizes of 10 million to generate a large set of RNs. Results
in Figure 6(c) indicate the XOR-SH*_Array employed during experiments was notably
slower than using the XOR-SH* algorithm in-place. This is due to the fact that accessing
a large array of 10 million will lead to additional clock cycles generated by cache misses.
An algorithm that is relatively fast, such as the XOR-SH* PRNG, will not benefit from
taking a pre-generated array-based approach. However, a slightly more complex algorithm
such as MT, which requires more instructions (Figure 6(a)), can benefit from an array-based
approach. The MT_Array generates slightly higher throughput results than using MT alone
as indicated in Figure 6(c). However, the benefit is not as striking as one may expect with
an array-based PRNG approach. There may be use cases for an array-based PRNG such as
requiring a more complicated (exotic) distribution of RNs. In this case, pre-generating RNs
in an array may be an effective approach to limiting the overhead of a complex algorithm.

6.2 PRNG Associated Experimental Anomalies
In the search for high-speed generation of RNs, researchers may choose to implement
their own PRNGs or use a custom hash function that may not have been well tested
for properties consistent with high-quality PRNGs. Prior to this work, the PRNG used
in Setbench was FNV1a [26], a fast, non-cryptographic 64-bit hash function. FNV1a is
recommended by Lessley et al. as a hash function with “consistently good performance
over all configurations” [26]. Setbench employed an FNV1a based PRNG that was used to
generate both random operations and random keys. However, upon testing single threaded
experiments, we noticed that the data structure prefilling step was failing to converge (i.e., it
was non-terminating). Upon further investigation, we found that the FNV1a based PRNG
was generating RNs that followed a strict odd-even pattern. That is, after generating an
even number, the next number would always be odd, and vice versa. (The initial seed
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Figure 7 (a) Throughput results comparing FNV1a to other PRNGs; FNV1a algorithm does not
indicate any detectable performance anomalies in throughput. Figure (b) on a smaller key range
(4096), illustrates the subtle effects of a PRNG. There exists a performance inversion when using
the FNV1a PRNG vs XOR-SH*.

determined whether the first number was even or odd.) During prefilling, a thread uses
the first RN to determine the key and the second RN to determine the operation. In this
case, the set of keys were always either all odd or all even, leading to an infinite loop when
attempting to prefill the data structure to half full. Recall that Setbench employs both
insertions and deletions to prefill the CSet to steady state (half-full in this case). This
odd-even pattern can easily be missed in overall data structure performance results. Figure
7(a) illustrates throughput results comparing various PRNGs tested in Setbench. There
is no notable indication of threads generating all even or all odd keys from the FNV1a
algorithm. Some threads are generating all even keys, while others are generating all odd
keys. Setbench prefilling occurs with n threads, so as soon as the thread count increases from
1, the probability of convergence increases. One could imagine this kind of error remaining
undetected and having a subtle effect on performance; limiting the set of keys per thread will
affect which other threads it could contend with. In addition, it is not sound experimental
methodology for a microbenchmark to generate keys based on this pattern. Second, this
undesirable behaviour found in FNV1a can lead to performance inversions when evaluating
CSets in a microbenchmark. The impact of the FNV1a based PRNG is more clearly displayed
in the results of Figure 7(b) where, given a high insert workload, FNV1a can lead to a
performance inversion of experimental results. The experiment illustrates that the lock-free
BST (Natarajan et al.) [37] throughput results are 1.12 times higher than that of the BST-TK
(Guerraoui et al.) [11] when Setbench is using FNV1a as its PRNG. However, using another
PRNG, such as XOR-SH*, we see the results indicate the lock-free BST underperforms by a
factor of 0.96. This is an approximately 16% performance error leading to an inversion of
results that could possibly remain undetected when one concurrent microbenchmark employs
a problematic PRNG algorithm such as FNV1a. Incidentally, FNV1a also illustrated periodic
behaviour in higher order bits. We implement a tool, the N th − bit summation result, to
assess bitwise randomness in RNs generated by a PRNG (Appendix B of full paper [22]).

6.3 Hardware RNG
A search for a high-quality 64-bit PRNG with its own source of entropy led us to an Intel
Secure Key instruction, RDRAND, available on Ivy Bridge processors [19]. The RDRAND
instruction returns an RN from Intel on-chip RNG hardware. We compare RDRAND with
the software based PRNGs to evaluate the suitability of a hardware based PRNG for use
in synthetic microbenchmarks. We have illustrated throughput results in experiments with
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Figure 8 Hardware vs Software PRNGs: Figure (a) RDRAND throughput compared to software
PRNGs. RDRAND has the lowest throughput values. In Figure (b) Reseeding XOR-SH* with
RDSEED (or RDRAND) every 1 million random numbers indicates no strong penalty for reseeding
a software PRNG with a hardware RNG.

various PRNGs in Figure 8(a). We can see that the experimental throughput of RDRAND
is significantly less compared to software PRNGs. A smaller key range of 2000 keys was
necessary to visually illustrate the low throughput results generated when RDRAND is
employed in Setbench. The overhead costs of hardware entropy greatly impede the overall
performance of an experiment which aims to maximize throughput results. Algorithms
such as XOR-SH* and MM3 that are computationally fast in nature have much higher
throughput results. For concurrent microbenchmark experiments, it is not recommended to
use a hardware PRNG alone. During our experimentation, we found that because RDRAND
is a significant bottleneck in the benchmark experimental loop, results can appear equal
for two CSet data structures that otherwise behave very differently. Although RDRAND
is slow, it can be useful as a source of entropy for faster software PRNGs. The idea of
periodically reseeding to introduce additional randomness into a PRNG is discussed by
Manssen et al. [28] and Dammertz [20]. RDSEED is an Intel Secure Key instruction that
complements RDRAND and is used to generate high quality random seeds for seeding
PRNGs [44]. RDSEED is slower than RDRAND but is recommended to use for reseeding
PRNGs. We tested a hybrid PRNG solution on the XOR-SH* algorithm where RDSEED is
used for reseeding at intervals of every 1 million RNs (XOR-SH*_RDSEED). The results in
Figure 8(b) indicate comparable throughput results to purely software based PRNGs without
reseeding. We compared XOR-SH* reseeding with RDSEED to XOR-SH* reseeding with
RDRAND (XOR-SH*_RDRAND), and there is a small drop in performance with RDSEED.

6.4 PRNG Recommendations

Massively parallel, high throughput experiments require billions of random numbers to be
generated per second, which pushes the limits on PRNGs of our time. Some important
points to consider for PRNG usage in microbenchmarks: (1) Hardware RNGs provide an
external source of entropy, however, they are impractical for use in high speed concurrent mi-
crobenchmark experiments as the performance results are greatly impeded by RN generation
time. (2) A pre-generated array of RNs is also counterproductive due to penalties associated
with cache access. A pre-generated array of RNs may be useful if the PRNG algorithm is
complex and in-place RN generation is too expensive. (3) For synthetic microbenchmark
experiments we recommend two PRNG instances per thread; one for generating random
values during the experiment and one for injecting new entropy into the first PRNG (periodic
reseeding). If periodic reseeding is used every 1 million keys, there is a low, intangible
impact on performance. If RDSEED or RDRAND are not available, we recommend using a
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high quality cryptographic PRNG for the 2nd PRNG. (4) Experiments that rely on bitwise
randomness in bits should first examine the set of generated random numbers for periodic
behaviour in bits. (5) Last, in an era where data structures are performing billions of
operations per second, we also think it’s important to use PRNGs with at least 64 bits of
state to avoid repeating the same sequence of generated keys on a time scale of seconds.

7 Towards Better Microbenchmarks

In Section 4.8, 5.1 and 6.4 we gave some recommendations for good benchmark design that
were informed by our study of Ascylib, Setbench and Synchrobench. Setbench was designed
with many of those recommendations in mind, and underwent relatively few changes as a
result of our study. In this section, we give some additional recommendations and highlight
features of Setbench that promote high quality experiments.

7.1 Additional Recommendations
More expressive ADTs

Today, many CSet data structures support range query operations and other interesting
operations such as clone and size, and benchmarks should consider including support for
them. It is not necessary for every operation to be implemented by every data structure,
but providing a framework for additional operations to be included in experiments may
encourage research in this direction.

Similarly, we encourage support for maps (also called dictionaries), which associate a
value with each key, and support for large and/or variable-sized keys and values. This
could encourage evaluations that span data structures published in distributed computing
venues and those published in database and data management venues (e.g., [4, 25, 27, 29]) –
evaluations that are desperately needed in our opinion.

Starvation-aware experiments

Note, however, that some care is needed in experimenting with range queries, and any other
types of long-running operations that are prone to starvation. Consider a workload where
threads perform, say, 49% insert, 49% delete and 2% range queries spanning the entire
range of keys contained in the data structure. One would expect such range queries to be
starved by updates, but in practice we find they are not! The trick is that each thread will
perform only so many updates before performing a range query. So, if all range queries are
perpetually starved, while updates succeed, eventually all threads will be executing range
queries, and they will all succeed in a batch. This behaviour makes starvation seem like less
of a problem than it might be in the real world, where there might never be a time when
there are no updates in progress. Experiments involving starvation prone operations should
expose the effects of starvation, possibly by allowing groups of threads to be dedicated to
starvation-prone and non-starvation-prone operations respectively (see, e.g., [2]).

Pinning threads

In Section 4.6.1, we disabled thread pinning in all microbenchmarks in order to have
consistency across all experiments. We recommend pinning threads to improve consistency
of experiments, so for example, when you run 48 threads on a system with four 48-thread
sockets, your threads run on a predictable set of cores, rather than, e.g., being clustered on
one socket in one execution, and spread across three sockets in another. Additionally, thread
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pinning should be used to clearly expose the performance impact of hyper threading and
the effects on non-uniform memory architectures in performance graphs. Thread pinning in
benchmarks has been discussed in more detail by Gramoli et al. [14, 15] and Brown [6].

Non-uniform key distributions

Benchmarks should also consider incorporating various distribution generators for keys and
values, rather than limiting experiments to uniform randomness. Researchers should consider
using Zipfian, binomial, exponential or other skewed distributions in their experiments [35].
Distribution generators should be implemented efficiently, and sanity checks should be
performed to ensure that the rate of key/value generation is not a bottleneck.

Uniform memory reclamation

Research in safe memory reclamation for CSets has consistently demonstrated that CSet
performance can depend heavily on the algorithm for reclaiming memory (see, e.g., [9, 39,
43, 46, 52]). For this reason, memory should be reclaimed similarly across all data structures
evaluated. In some cases, ad-hoc memory reclamation is tightly integrated in a CSet, but
benchmarks should offer a fast, easy-to-use memory reclamation algorithm to promote
uniformity wherever possible.

Performance tools

Benchmarks should make a best effort attempt to automatically gather lightweight systems-
level performance data, such as cache misses per operation, total cycles per operation, and
peak memory usage. We suggest incorporating a library for performance monitoring such
as the Performance Application Programming Interface (PAPI) [49]. We think it is crucial
that these measurements are not only automatically gathered, but automatically visualized.
Ideally, graphs for CSet throughput results and for systems level performance monitoring
would be produced by default, at the same time, and would be visible in the same place.
“Easy to check” is good. “Difficult to ignore” is better.

7.2 Benchmarking Advances in Setbench
Setbench was specifically designed to address all of the recommendations above, featuring a
256-bit PRNG, range query support (with support for independent range query threads and
update threads), the ability to specify thread pinning policies at the command line, fast Zipfian
and Uniform key distributions, uniform epoch based memory reclamation, and integration
with a rudimentary implementation [53] of TPC-C and YCSB application benchmarks. It
also includes a large collection of powerful tools for debugging, running experiments and
analyzing performance, as well as automatic containerization for artifact evaluation.

Collecting user defined statistics

Debugging and performance analysis are extremely time consuming, and often researchers
are limited in how much investigation they can do by the time it takes to modify their code
to record specific events in their data structure. These events can be quite varied.

For example, one might want to answer a simple question like: in a lock-free algorithm,
how often do threads help complete other threads’ operations? Or, in an algorithm that uses
epoch based memory reclamation, where objects are reclaimed in batches, one might want to
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answer a much more complex question – how to produce a logarithmic histogram showing the
distribution of the sizes of the first 10,000 batches reclaimed by each thread in an execution.
Setbench’s global stats library (gstats) makes it fast and easy to explore such questions.
To emphasize how easy gstats makes this, to implement the latter, one would first create a
gstats statistic that is accessible globally (throughout all files in the entire benchmark), by
adding the following code to a file in Setbench called define_global_statistics.h:

gstats_handle_stat(LONG_LONG, epoch_batch_size, 10000, \
{ gstats_output_item(PRINT_HISTOGRAM_LOG, NONE, FULL_DATA) }) \

In essence, this efficiently allocates global per-thread arrays of 10,000 elements, and specifies
that their contents should be used to build a logarithmic histogram. Whenever a thread T
reclaims a batch of size n, it can append the batch size n to its array by invoking:

GSTATS_APPEND(T, epoch_batch_size, n);

These simple modifications result in the following new output when the benchmark is run:

log_histogram_of_none_epoch_batch_size_full_data=[...]
[2^00, 2^01]: 71905
(2^01, 2^02]: 206257
(2^02, 2^03]: 307829
(2^03, 2^04]: 469972
[...] // output truncated to save space

Furthermore, scripts are included to plot bar graphs and line graphs from any data collected
with gstats. In this case, assuming the output above is in data.txt, one would simply run:
trial_to_plot.sh data.txt epoch_batch_size, which would create a PNG file.

Running Experiments and Plotting Results

Setbench also offers a powerful suite of Python scripts for running experiments and auto-
matically plotting their results. Example run scripts that are suitable for CSet research
are included. They produce MatPlotLib graphs of throughput and many systems level
performance metrics, such as L3 cache misses per CSet operation, cycles per operation, and
peak memory usage. Scripts are also available for several papers published by our group.
The development of these scripts focused on conciseness, expressiveness and flexibility, and
the scripts could be adapted to drive completely different benchmarks in different domains.

At a high level, to use these scripts, one defines a sequence of experimental parameters,
and for each parameter, one specifies a list of values the parameter should take on. One then
specifies a run command for the benchmark, and specifies how the parameters should be
supplied to the run command. The command is run for each combination of parameters,
and the output of each run is stored in an individual file. The scripts then process each
file, and extract lines of the form “NAME=DATA” to produce columns in a sqlite data-
base. As part of this process, data is validated according to user specified rules such as
(‘total_throughput’, is_positive) or (‘validate_result’, is_equal(‘success’)).
Failed validation causes (colourful!) warnings to be emitted, and warnings can also be queried
later from the sqlite database.

The scripts expose functions for easily producing plots (bars, lines, histograms and
heatmaps) from the sqlite database simply by specifying which columns of data should be
used for the x-axis and y-axis. Additional columns can be specified and graphs will be
produced for every combination of values in these columns. Filters can also be specified to
add to the SQL WHERE clauses in the queries that underpin plot generation.
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In short, a single command run_experiment.py [your_experiment.py], depending on
its arguments, can compile (-c), run (-r), create the sqlite database (-d), produce graphs
(-g) and create an HTML website (-w) organizing them into sections for convenient viewing.
Clicking a graph on the website drills down to the rows of data the graph was built from,
and clicking a row shows the raw text output for that run. A generated example website can
be viewed at: https://cs.uwaterloo.ca/~t35brown/setbench_example_www. Results in
the sqlite database can also be queried conveniently from the command line using SQL (e.g.,
run_experiment.py your_experiment.py -q “select * from data”). A wide range of
additional capabilities are documented in extensive Jupyter notebook tutorials.

8 Conclusions

We hope this work encourages further research into how best to design benchmarks for
concurrent data structures. Setbench was carefully designed to mitigate many of the problems
we are aware of, but there are surely more benchmarking pitfalls yet to be discovered in this
area. We also encourage researchers to try using Setbench for their own experiments, because
its features make it much easier to drill down to the root causes of performance anomalies.
After designing an algorithm, proving correctness, and implementing it, there is often little
time left to do systems level performance analysis. Our hope is that by improving tools and
automating the collection and graphing of key performance metrics, we can improve the
quality of experiments without unduly burdening researchers in this area.
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