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Abstract
An autonomous mobile robot system consisting of many mobile computational entities (called robots)
attracts much attention of researchers, and it is an emerging issue for a recent couple of decades to
clarify the relation between the capabilities of robots and solvability of the problems.

Generally, each robot can observe all other robots as long as there are no restrictions on
visibility range or obstructions, regardless of the number of robots. In this paper, we provide a
new perspective on the observation by robots; a robot cannot necessarily observe all other robots
regardless of distances to them. We call this new computational model the defected view model.
Under this model, in this paper, we consider the gathering problem that requires all the robots to
gather at the same non-predetermined point and propose two algorithms to solve the gathering
problem in the adversarial (N ,N − 2)-defected model for N ≥ 5 (where each robot observes at
most N − 2 robots chosen adversarially) and the distance-based (4,2)-defected model (where each
robot observes at most two robots closest to itself), respectively, where N is the number of robots.
Moreover, we present an impossibility result showing that there is no (deterministic) gathering
algorithm in the adversarial or distance-based (3,1)-defected model, and we also show an impossibility
result for the gathering in a relaxed (N , N − 2)-defected model.
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1 Introduction

An autonomous mobile robot system is a distributed system consisting of many mobile
computational entities (called robots) with limited capabilities, e.g., robots cannot distinguish
other robots, or cannot remember their any past actions. The robots operate autonomously
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14:2 Gathering of Mobile Robots with Defected Views

and cooperatively; each robot observes the other robots (Look), computes the destination
(Compute), and moves to the destination (Move). Each robot autonomously and cyclically
performs the above operations to achieve the given common goal. Since an autonomous mobile
robot system has been firstly introduced in [21], the literature [17, 18, 19, 21] provides a formal
discussion on the capabilities of the robots for the distributed coordination (e.g., gathering,
scattering, or pattern formation), and many researchers are interested in clarifying the
relationship between the capabilities of the robots and solvability of the problems.

Generally, in Look operation, each robot can observe all other robots (within its visibility
range if the range is limited). In other words, each robot can take a snapshot consisting
of all other robots’ (relative) positions in its Look operation, i.e., each robot temporarily
remembers the positions of up to N − 1 robots, where N is the total number of robots. From
the practical viewpoint, we claim that a robot with low functionality may not have such
large working memory. That is, the main question we address in this paper is “what occurs
if a robot cannot observe some of the other robots?”. More precisely, “how many other robots
should be observed to achieve the goals of the problems?”.

Related works. The gathering problem [16], which requires all the robots to move to a
common (non-predetermined) position, is a fundamental problem for autonomous mobile
robot systems. There are many studies about the gathering of autonomous mobile robots;
Cieliebak et al. presented the first algorithm to achieve the gathering from any arbitrary
configuration [4], Klasing et al. studied the gathering of mobile robots in one node of an
anonymous unoriented ring [13], D’Angelo et al. introduced a gathering algorithm of robots
without multiplicity detection on grids and trees [5], and many works for the gathering of
robots with dynamic (or inaccurate) compasses are also introduced [9, 10, 11, 20]. The
capability of the robots deeply affects the solvability of the gathering problem, thus some
investigations about the required capability or impossibility are introduced [16, 17]. However,
all of these works assume that each robot can observe all other robots within its visibility
range if there is no obstruction (e.g., any opaque robot) between the robots.

The works most related to this paper are those with the limited visibility range [1, 3, 7,
12, 14]. The robots with the limited visibility cannot necessarily observe all robots, which is
similar to the defected view model we propose. But visibility is limited by distance in the
limited visibility model and thus all robots can be observed when they gather closely enough.
On the other hand, the defected view model cannot guarantee such a full view of the robots.
As another well-related work, Heriban et al. studied some problems of robots with uncertain
visibility sensors [8]: if the distance between two robots is longer than the visibility range,
the two robots adversarially observe each other. However, also in this study, every robot can
observe all other robots within the visibility range regardless of the number of robots. The
works for fault-tolerance [2, 6, 15] are also closely related to this paper. The defected view
can be considered as a new type of fault in autonomous mobile robot systems.

Contribution. To provide some answers for the above research questions, we propose a
new computational model with restriction on the number of robots that each robot can
observe, named the defected view model, where each robot observes only k other robots for
1 ≤ k < N − 1. This assumption naturally arises by considering some issues for robots with
low functionality such as (1) each robot does not have enough working memory to store the
entire observation result, (2) each robot may miss some of observation results due to memory
failure, or (3) each robot fails to observe some of other robots by sensing failure. It is obvious
that when k becomes the lower, the problem becomes the harder (possibly impossible) to
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solve. We consider two different defected view models regarding which k robots are observed:
the adversarial (N ,k)-defected model and the distance-based (N ,k)-defected model. In the
former, each robot observes the other k robots determined adversarially, and in the latter,
each robot observes the other k robots closest to its current position.

More precisely, the k robots that each robot r can observe are chosen from the robots
located at points different from r’s current position. Concerning r’s current position, r can
detect only whether another robot exists at the point or not (so called the weak multiplicity
detection). Such an assumption that the robots at r’s current position are excluded from the
candidates of the observed k robots is motivated by the following observation: each robot
r observes the robots at remote points and those at r’s current position by different ways
usually. Each robot observes the remote robots by, for example, a radar sensor or a vision
sensor, but senses the other robots at the same point by, for example, a contact sensor.

As the first step of the gathering in the defected view model, we investigate only the case
of k = N − 2. The main contributions of this paper are as follows: (1) we propose a gathering
algorithm in the adversarial (N ,N − 2)-defected model for any N ≥ 5, (2) we present another
algorithm to solve the gathering problem in the distance-based (4,2)-defected model, and (3)
we provide the impossibility result showing that there is no (deterministic) algorithm to solve
the gathering problem in the adversarial or distance-based (3,1)-defected model. Moreover,
we present another impossibility result in a naturally relaxed (N ,N − 2)-defected model
where the observed k robots can contain the robots at the observer’s current position. This
impossibility result shows the necessity of the assumption that the observed N − 2 robots
should be chosen from robots other than those located at the observer’s current position.

The rest of this paper is organized as follows: Section 2 presents the system model
(including two defected view models) and problem definition; Section 3 introduces an
algorithm to solve the gathering problem in the adversarial (N , N − 2)-defected model for
any N ≥ 5; Section 4 gives a gathering algorithm in the distance-based (4,2)-defected model;
Section 5 shows two impossibility results showing that there is no algorithm in the adversarial
or distance-based (3,1)-defected model and the relaxed adversarial (N ,N − 2)-defected model;
and Section 6 concludes the paper and provides some open problems.

2 Model and Problem Definition

2.1 Robots
Let R = {r1, r2, ..., rN } be the set of N autonomous mobile robots deployed in a plane.
Robots are indistinguishable by their appearance (i.e., identical), execute the same algorithm
(i.e., uniform or homogeneous), and have no memory (i.e., oblivious). There is no geometrical
agreement; robots do not agree on any axis, the unit distance, or chirality. A point in the
plane is called an occupied point if there exists a robot at the point. We allow two or more
robots to occupy the same point at the same time. We call a robot a single robot if the point
occupied by the robot has no other robot. Otherwise, we call it an accompanied robot.

Each robot cyclically performs the three operations, Look, Compute, and Move: (Look)
a robot obtains the positions (based on its local coordinate system centered on itself) of
all other observed robots, (Compute) a robot determines the destination according to the
given algorithm based on the result of Look operation. Since each robot has no memory,
the result of Compute is determined only by the result of Look operation, and (Move) a
robot moves to the destination computed in Compute operation. We assume rigid movement
which ensures each robot can reach the destination during its Move operation, i.e., a robot
never stops before it reaches its destination.

OPODIS 2022



14:4 Gathering of Mobile Robots with Defected Views

2.2 Schedule and Configuration

We assume a fully-synchronous scheduler (FSYNC): all robots fully-synchronously perform
their operations (Look, Compute, and Move). This means that all robots perform the same
operation at the same time instant and duration. We call the time duration in which all
robots perform the three operations (Look, Compute, and Move) once a round.

Let configuration Ct be the set of the (global) coordinates of all robots at a given time
t: Ct = {(rt

1.x, rt
1.y), (rt

2.x, rt
2.y) . . . (rt

N.x, rt
N.y)}, where rt

i.x (resp. rt
i.y) is the X-coordinate

(resp. Y -coordinate) of robot ri at time t. Note that no robot knows its global coordinate.
Configuration Ct is changed into another configuration Ct+1 after one round (i.e., all robots
execute the three operations once).

2.3 Observation: Visibility Range and Multiplicity Detection

We basically assume that every robot has unlimited visibility range, i.e., any two robots can
observe each other regardless of their distance, while we introduce in Definition 1 the defect
in the information obtained by Look operation. Moreover, we assume a weak multiplicity
detection, i.e., each robot cannot get the exact number of robots occupying the same point
but can distinguish whether the point is occupied by one robot or by multiple robots. This
implies that when each robot observes any point, it can distinguish the three cases: there is
no robot, one robot, or two or more robots at the point.

We consider a defected view such that each robot may not observe all other robots. We
define the (N ,k)-defected model, where 1 ≤ k < N as follows:

▶ Definition 1 ((N ,k)-defected model). Each robot r can get from Look operation the set of
occupied points (in its coordinate system) where k robots not accompanied with r are located
(i.e., the k robots contains no robot located at r’s current point). When the number of robots
not accompanied with r is k or less, all such robots are observed. The weak multiplicity
detection concerning the k robots is assumed: a point occupied by only one of the k robots
can be distinguished from that occupied by two or more of the k robots.

Note that the (N ,N − 1)-defected model is equivalent to the commonly used model (with
the weak multiplicity detection) where each robot can observe all robots. The (N ,k)-defected
model has options depending on how the observed k robots are chosen. We consider the two
options in this paper, named adversarial (N ,k)-defected model and distance-based (N ,k)-
defected model. In the adversarial (N ,k)-defected model, k robots observed by each robot are
determined adversarially. In the distance-based (N ,k)-defected model, each robot r observes
the k closest robots to the r’s current point. Tie break among the robots the same distance
apart is determined in an arbitrary way.

𝒓𝟏

𝒓𝟑

𝒓𝟖

𝒓𝟕

𝒓𝟐
𝒓𝟓𝒓𝟒

𝒓𝟔

3 3

5 5
1

5

Figure 1 An example configuration by 8 robots.
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To help to understand, we explain the model using examples. Figure 1 illustrates an
example configuration by 8 robots; R = {r1, r2, . . . , r8}. Robots r1 and r2 (resp. r4, r5 and
r6) are accompanied, and the other robots are single. The dotted arrow between robots
represents the distance between the points occupied by the robots. Let pi denote the point
occupied by robot ri. Now we explain the models as follows:

The adversarial (8,4)-defected model. In this model, each robot observes 4 other
robots chosen adversarially. Assume that robot r3 observes 4 robots, r1, r2, r6, and r8. In
this case, robot r3 gets a set of points P r3 = {p∗

1, p3, p6, p8} including point p3 occupied
by r3 itself, where p∗

i denotes that pi is recognized to be occupied by two or more robots.
Robot r3 knows that two or more robots exist at point p1 because both robots r1 and
r2 are chosen, however, r3 does not know that there is another robot at p6 because it
observes only r6 at p6. Robot r4 (or r5, r6) observes 4 robots among 5 robots, r1, r2,
r3, r7, and r8. If robots r1, r3, r7, and r8 are chosen, P r4 = {p1, p3, p∗

4, p7, p8} holds,
which means that r4 observes all points, however, it does not know that another robot
exists at p1 (and the other points except for p∗

4). Robot r4 can know that point p4 is
occupied by another robot other than itself. If robot r4 observes robots r1, r2, r7, and r8,
P r4 = {p∗

1, p∗
4, p7, p8} holds, which means that robot r4 knows there exist two or more

robots at p1, but it cannot observe point p3 occupied by robot r3. Notice that r5 and r6
located at p4 are allowed to observe the set of points different from those observed by r4.
The distance-based (8,3)-defected model. In this model, each robot observes 3
closest robots to itself. Robot r7 observes 3 robots, r8 (the closest one) and two robots
among three robots at point p4, thus P r7 = {p∗

4, p7, p8} always holds. Robot r4 observes
robot r3 (the closest one) and two robots among 4 robots, r1, r2, r7, and r8, which are the
same distance apart. Note that the observed robots are determined in an arbitrary way,
thus in this case, P r4 becomes one among {p∗

1, p3, p∗
4}, {p1, p3, p∗

4, p7}, {p1, p3, p∗
4, p8}, or

{p3, p∗
4, p7, p8}.

It is obvious that the adversarial (N ,k)-defected model is weaker1 than the distance-based
one, that is, any algorithm to achieve the gathering in the adversarial (N ,k)-defected model
works correctly also in the distance-based (N ,k)-defected model.

2.4 Problem Definition: Gathering

We define the gathering problem as follows.

▶ Definition 2 (The Gathering Problem). Given a set of N robots located at arbitrary points.
Algorithm A solves the gathering problem if A satisfies all the following conditions:
(1) algorithm A eventually reaches a configuration such that no robot can move, and
(2) when the algorithm A terminates, all the robots are located at the same point.

1 Strictly speaking, we do not know the adversarial (N ,k)-defected model is properly weaker than the
distance-based one yet; it is obvious that the adversarial (N ,k)-defected model is NOT stronger than
the distance-based one.

OPODIS 2022



14:6 Gathering of Mobile Robots with Defected Views

3 Algorithm in the Adversarial (N ,N − 2)-defected Model where
N ≥ 5

Algorithm 1 presents an algorithm for robot ri to achieve the gathering in the adversarial
(N , N − 2)-defected model where N ≥ 5. We use two functions defined as follows:

OPSET() : a function that returns a set of points {p | p is occupied by ri or by the robots
that ri observed}
isMulti(p) : a function that returns TRUE if point p is occupied by two or more robots
that ri observed (weak multiplicity), otherwise FALSE.

The algorithm adopts, as the destination of robot ri, the center of the smallest enclosing
circle (SEC) of the occupied points that ri observed in the Look operation. Before proving
the correctness of the algorithm, we show some fundamental properties of the SEC of points
in a plane.

Algorithm 1 Gathering algorithm in the adversarial (N, N − 2)-defected model where N ≥ 5.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: move to the center of the smallest enclosing circle of OPSET()
7: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

▶ Proposition 3. Let P be a set of n distinct points in a plane and C be the SEC of P . The
following properties hold.
1. The SEC of P is unique.
2. Let p ∈ P be any point (if exists) properly inside C, C is the SEC of P \ {p}.
3. When there exist three points p1, p2, p3 ∈ P on the boundary of C that form an acute or

right triangle, C is the SEC of {p1, p2, p3}.
4. When three or more points in P are on the boundary of C, there exist three points

p1, p2, p3 ∈ P on the boundary of C that form an acute or right triangle. ◀

A key property of the (N , N − 2)-defected model used in the following proofs is that any
accompanied robot can observe all the robots (but only with the weak multiplicity detection).

▶ Lemma 4. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in two rounds from any configuration where there exist three or more
accompanied robots.

Proof. When every robot is accompanied, each robot detects all the occupied points in the
Look operation and recognizes that each of them is occupied by multiple robots. Every robot
moves to the center of the SEC of all the occupied points (by lines 1 and 2 in Algorithm 1)
and thus the gathering is achieved in one round.

When there exists a single robot r, every accompanied robot observes r and does not
move (see line 7 in Algorithm 1). Every single robot misses at most one accompanied robot
in its Look operation and can detect at least one point occupied by multiple robots: a point
occupied by three or more robots (if exists) or one of the points each occupied by two robots.
Each single robot moves to one of such points (by lines 3 and 4 in Algorithm 1), which results
in the configuration where every robot is accompanied. Thus the gathering is achieved in the
next round as shown above. ◀
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Notice that Lemma 4 holds for N ≥ 3.

▶ Lemma 5. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in two rounds from any configuration where there exist only two
accompanied robots.

Proof. Let r1 and r2 be the two accompanied robots. Robots r1 and r2 observe all robots
and recognize that single robots exist, which makes r1 and r2 stay at the current point.

Now consider actions of single robots. A single robot r misses one robot in its Look
operation, which implies that r observes (a) both r1 and r2 or (b) only one of r1 and r2. In
case (a), r moves to the point, say pa, occupied by r1 and r2. In case (b), r moves to the
center, say pb, of the SEC of all the occupied points. Thus after one round, all the robots
are located at pa or pb. Note that pa is occupied by multiple robots including r1 and r2.

When pb is not occupied by any robot, the gathering is already achieved. When pb is
occupied by multiple robots, the robots at pb observe all the robots. Thus, all the robots
move to the center of the SEC of pa and pb (or the midpoint of pa and pb) in the next round
(by lines 1 and 2 in Algorithm 1), which achieves the gathering. When pb is occupied by only
one robot r, r detects that pa is occupied by multiple robots and moves to pa in the next
round (by lines 3 and 4 in Algorithm 1) while the robots at pa recognize that pb is occupied
by only one robot and does not move (see line 7 in Algorithm 1). Thus, the gathering is
achieved. ◀

Notice that Lemma 5 holds for N ≥ 4.

▶ Lemma 6. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves the
gathering problem in three rounds from any configuration where all robots are single.

Proof. Each robot misses one robot in its Look operation. When there exist two robots r1
and r2 that miss the same robot, r1 and r2 get the same point set OPSET() and moves to
the center of the SEC of OPSET() (by lines 5 and 6 in Algorithm 1). From Lemmas 4 and 5,
two additional rounds are enough to achieve the gathering.

When no two robots miss the same robot, for any pair of two distinct robots r1 and r2,
the robot missing r1 is different from the robot missing r2. Let C be the SEC of all the
occupied N points. First, consider the case that two (or more) robots ra and rb are located
properly inside C. The SEC of R \ {ra} is equal to the SEC of R \ {rb} (that is C from the
second property of Proposition 3), which implies that the two robots observing R \ {ra} and
R \ {rb} move to the same point (or the center of the SEC). From Lemmas 4 and 5, two
additional rounds are enough to achieve the gathering.

Second, consider the case that N − 1 or N robots are on the boundary of C. From the
last property of Proposition 3, there exist three robots r1, r2, r3 on the boundary of C that
form an acute or right triangle. There exist two robots r4 and r5 other than r1, r2, r3 from
N ≥ 5. Both the robots observing R \ {r4} and R \ {r5} observe all of r1, r2, r3. The third
property of Proposition 3 implies that the two robots find the same SEC (or the SEC of
r1, r2, r3), which implies that they move to the same point (or the center of the SEC) (by
lines 5 and 6 in Algorithm 1). From Lemmas 4 and 5, two additional rounds are enough to
achieve the gathering. ◀

From Lemmas 4, 5 and 6, the following theorem holds.

▶ Theorem 7. In the adversarial (N , N − 2)-defected model (N ≥ 5), Algorithm 1 solves
the gathering problem in three rounds. ◀

OPODIS 2022
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Algorithm 1 cannot solve the gathering problem for the case of N = 4. Assume that four
robots, R = {r0, r1, r2, r3}. Three robots r1, r2 and r3 are deployed to form an equilateral
triangle as Figure 11 and r0 is located at the center of the triangle (i.e., point pc in Figure 11).
Consider the case that ri observes r(i+1) mod 3 and r(i+2) mod 3 for each i (0 ≤ i ≤ 3).
According to Algorithm 1, r0 moves to the midpoint of r1 and r2, r1 moves to p0, r2 moves
to the midpoint of r2 and r3, and r3 moves to the midpoint of r3 and r1. In the resultant
configuration, r0, r2 and r3 form an equilateral triangle and r1 is located at the center p1 of
the triangle, which shows by repeating the argument that the gathering is never achieved.

Thus we need another gathering algorithm for the adversarial (4, 2)-defected model,
however, we do not know whether the gathering problem in the adversarial (4,2)-defected
model is solvable or not yet. In the next section, we present an algorithm to solve the
gathering problem in the distance-based (4,2)-defected model.

4 Algorithm in the Distance-based (4,2)-defected Model

In this model, the number of robots is 4 and each robot observes at most two occupied points
other than its current location (three points in total including the one occupied by itself). In
other words, the observation result of each robot forms a triangle (by three points/robots)
when every robot is single. The strategy of the proposed algorithm is to determine one unique
point from the formed triangle. Therefore, two robots observing the same three occupied
points (including its location) move to the same point according to the proposed algorithm.
If two or more robots are accompanied, the gathering can be achieved as the same manner
introduced in Algorithm 1. Obviously, in this strategy, we have to consider the case so that
all 4 robots observe different triangles. We resolve this problem by the geometrical property
(recall that each robot cannot observe the farthest robot from itself in the distance-based
defected model).

Algorithm 2 Gathering algorithm for robot ri in the distance-based (4,2)-defected model.

1: if ∀p ∈ OPSET() : isMulti(p) = TRUE then
2: move to the center of the smallest enclosing circle of OPSET()
3: else if (ri is single) ∧ (∃p ∈ OPSET() : isMulti(p) = TRUE) then
4: move to an arbitrary point p ∈ OPSET() such that isMulti(p) = TRUE
5: else if ∀p ∈ OPSET() : isMulti(p) = FALSE then
6: if OPSET() forms an equilateral triangle then
7: move to the center of the triangle (i.e., incenter) ▷ Rule 1
8: else if OPSET() forms an isosceles triangle then
9: move to the midpoint of the base of the triangle ▷ Rule 2

10: else ▷ the other triangle or collinear three points
11: move to the midpoint of the longest line ▷ Rule 3
12: end if
13: end if ▷ No action if (ri is accompanied) ∧ (∃p ∈ OPSET() : isMulti(p) = FALSE)

Algorithm 2 presents an algorithm to achieve the gathering in the distance-based (4,2)-
defected model (two functions, OPSET() and isMulti(), are the same functions described
in Section 3). Each robot which does not observe any accompanied robots executes one
among three rules (lines from 6 to 11 in Algorithm 2). Figure 2 illustrates these three rules.
If a robot observes an equilateral triangle (i.e., the points observed by the robot form an
equilateral triangle), it moves to the center of the triangle (Figure 2(a)), and if it observes



Y. Kim, M. Shibata, Y. Sudo, J. Nakamura, Y. Katayama, and T. Masuzawa 14:9

an isosceles triangle, it moves to the midpoint of the base of the triangle (Figure 2(b)).
In the other case, it moves to the center point of the longest line of the triangle (Figure
2(c)). It is obvious that two robots observing the same set of points (i.e., the same view:
ri.OPSET() = rj .OPSET(), where i ≠ j), move to the same point according to Algorithm 2.
Hence the following lemma holds.

(a) Case of an equilateral triangle. (b) Case of an isosceles triangle. (c) The other case.

Figure 2 Three rules in Algorithm 2.

▶ Lemma 8. In any configuration where no robot is accompanied, if two or more robots have
the same view, the robots move to the same point in one round by Algorithm 2. ◀

In Algorithm 2, actions when a robot observes any accompanied robots (including itself)
are the exactly same as Algorithm 1 (lines from 1 to 4 in both algorithms). Lemmas 4 and
5 are proved for the adversarial defected model but obviously hold for the distance-based
defected model. Remind that Lemmas 4 and 5 hold for N ≥ 3 and N ≥ 4, respectively.
Moreover, we can see from the proof that the gathering is achieved in one round (not two
rounds) in Lemma 4 for N = 4. Thus,the following lemma holds.

▶ Lemma 9. In the distance-based (4,2)-defected model, Algorithm 2 solves the gathering in
one round (resp. two rounds) when there exist three or more (resp. only two) accompanied
robots. ◀

Even when all 4 robots are single, if two or more robots observe the same set of points, the
robots move to the same point (by Lemma 8), thus the gathering is achieved by Lemma 9.

Now we show that the gathering is eventually achieved in any configuration where all 4
(single) robots have the different views (i.e., observe the different set of points).

▶ Lemma 10. In the distance-based (4,2)-defected model, if all robots have the different
views, the shape formed by the robots is a convex quadrilateral.

Proof. We prove the contraposition of the lemma: if the robots do not form a convex
quadrilateral, there exist two robots having the same view.

Assume that the 4 robots, from r1 to r4, form a concave quadrilateral as Figure 3 (Note
that we can also assume that the robots form a triangle (i.e., three robots are collinear),
it can be also proved in the same manner). A concave quadrilateral has an interior angle
which is larger than 180◦, so we assume robot r1 is located at the point with such an angle
as Figure 3. Let e be the line r1r2, either angle ∠r2r1r4 or angle ∠r2r1r3 is an obtuse angle
(i.e., angle larger than 90◦) because interior angle ∠r4r1r3 is larger than 180◦. Without loss
of generality, we assume angle ∠r2r1r3 is an obtuse angle (denoted by θ). Due to θ > 90◦, d

is longer than c and e (see Figure 3). This implies that robot r3 observes r1 and robot r2 also
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𝑟ଵ

𝑟ଶ
𝑟ଷ

𝑟ସ

𝑎 𝑏

𝑐
𝑑

𝑒
𝜃

𝜃′

Figure 3 An example of a concave quadrilateral.

observes r1 (because the farthest robot is missed in the distance-based defected model). If
angle ∠r2r1r4 (denoted by θ′) is also an obtuse angle, robot r4 also observes r1 by the same
reason. As a result, all robots observe r1 (including r1 itself) and the lemma holds because
there are two or more robots which have the same view by the pigeonhole principle. If angle
∠r2r1r4 is an acute angle (i.e., angle smaller than 90◦) or a right angle, θ + θ′ < 270◦ holds.
This means that an exterior angle ∠r4r1r3 (i.e., 360◦ − θ − θ′) is an obtuse angle, thus b is
shorter than r4r3. Also in this case, robot r4 observes r1 and the lemma holds. ◀

▶ Lemma 11. Assume that all robots have different views. If robot ri cannot observe robot rj

(i.e., robot ri’s view does not include the point occupied by rj), rj cannot observe ri neither.

Proof. To help to explain, we introduce a directed graph G⃗ = (V, A) such that V =
{r1, r2, r3, r4} and (ri, rj) ∈ A if robot ri cannot observe rj . If all robots have different views,
there exist only two cases, as shown in Figure 4. And we show that there is no case as Figure
4(a) to prove the lemma.

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

(a)

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

𝑟ସ 𝑟ଷ

𝑟ଵ 𝑟ଶ

(b)

Figure 4 Directed graphs representing unobserved relation.

Assume the case as Figure 4(a): robot r1 cannot observe r2, robot r2 cannot observe r3, and
so on. r1r4 ≤ r1r2 holds because robot r1 cannot observe r2. For the same reason, r1r2 ≤ r2r3,
r2r3 ≤ r3r4, and r3r4 ≤ r1r2 also hold. Therefore, r1r4 ≤ r1r2 ≤ r2r3 ≤ r3r4 ≤ r1r4 holds,
thus r1r2 = r2r3 = r3r4 = r1r4 holds. For simplicity, we assume that the length of r1r2 is 1.

Now we consider the triangle △r1r2r3. Due to r1r2 = r2r3, triangle △r1r2r3 is an
isosceles triangle (the base is r1r3). Similarly, triangle △r1r3r4 is also an isosceles triangle
which has line r1r3 as the base. Line r1r3 is the common base of these two isosceles triangles,
thus the locations of 4 robots are as Figure 5.
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𝑟ଷ

𝑟ଵ
1

1

𝑟ଶ
𝑟ସ

1

1

Figure 5 Two isosceles triangles.

In Figure 5, we consider the lengths of two diagonal lines, r1r3 and r2r4. By the
assumption, robot r1 cannot observe r2, therefore, r1r3 ≤ 1 holds because robot r1 observes
r3. As the same reason, r2r4 ≤ 1 also holds. However, both r1r3 ≤ 1 and r2r4 ≤ 1 cannot
hold in this rhombus, therefore, there is no case as Figure 4(a) and the lemma holds. ◀

By Lemma 11, if all robots have different views, we have two disjoint pairs of robots such
that robots in each pair cannot observe each other as in Figure 4(b). Now we discuss the
location relations among the robots in this case by the following lemma.

▶ Lemma 12. If all robots have different views in the distance-based (4,2)-defected model,
each of two robots which cannot be observed each other are diagonally located on the formed
convex quadrilateral.

Proof. We already proved that the robots form a convex quadrilateral if all robots have
different views by Lemma 10. Let r1 and r2 be two robots which do not observe each other,
and we assume for contradiction that r1 and r2 are not diagonally located (i.e., line r1r2 is
an edge of the convex quadrilateral). For simplicity, we assume the length of r1r2 is 1.

𝒓𝟏
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𝑪𝟏 𝑪𝟐

𝑺𝟏 ∩ 𝑺𝟐

𝑺𝟏 𝑺𝟐

𝒓𝟏
𝒓𝟐

𝟏
𝒓𝟑

𝑪𝟏 𝑪𝟐𝑺𝟏 ∩ 𝑺𝟐
𝑺𝟏 𝑺𝟐

𝟏𝟏

𝒑𝟏

𝒑𝟐

𝒂

𝒂

𝑪𝟑

(a)

𝟏
𝟐

𝟑

𝟑

𝟏 𝟐

𝟏 𝟐

𝟏 𝟐

𝟏
𝟐𝟑

𝟏 𝟐

𝟏 𝟐

𝟑

𝟏 𝟐

(b)

Figure 6 Possible positions of robots r3 and r4.

Figure 6(a) illustrates two circles, called S1 and S2, with radius 1 centered at r1 and r2
respectively. Consider the position of robot r3: robot r3 should be located in area S1 ∩ S2,
because both r1 and r2 observe r3 (remind that r1 and r2 do not observe each other). Locate
r3 in an arbitrary point in area S1 ∩ S2. Let a = max(|r1r3|, |r2r3|), here we assume a is
the length of r1r3 without loss of generality. Circles C1, C2, and C3 present the circles with
radius a centered at r1, r2, and r3 respectively. By Lemma 11, robots r3 and r4 cannot
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observe each other, thus |r3r4| ≥ a holds; robot r4 should be located outside of C3. As a
result, robot r4 should be located in (C1 ∩ C2) − C3 which is presented as the shaded area in
Figure 6. In this case, robots r1 and r2 (resp. r3 and r4) are diagonally located on a convex
quadrilateral, which is a contradiction.

We can consider another case where the shaded area appears on the same side as r3 (with
respect to r1r2) if a is short enough as Figure 6(b). However, if robot r4 is located on the
same side as r3, then robot r3 is inside the triangle △r1r2r3. This implies that four robots
form a concave quadrilateral, which is a contradiction. ◀

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

Figure 7 6 lines by 4 robots.

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

𝒓𝟑

𝒓𝟐

𝒓𝟏

𝒓𝟒

Figure 8 Configuration with one longest line.

Now we show that even when all single robots have different views, two or more robots
move to the same point by Algorithm 2. We consider the 6 lines derived by the combination
of 4 robots (refer to Figure 7). We focus on the lengths of these 6 lines, and the following
corollary holds by Lemma 12.

▶ Corollary 13. Consider the 6 lines connecting distinct pairs of two robots. If all robots are
single and have different views, there is no (side) line which is longer than any diagonal line.

It is worthwhile to mention that there can be at most 4 longest lines among 6 lines. We
focus on the number of longest lines and show that the algorithm works correctly in all cases.
By Corollary 13, if there exist one or two longest lines, they are diagonal lines. The following
lemma holds.

▶ Lemma 14. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
exist one or two longest lines, two or more robots become accompanied in one round.

Proof. Figure 8 illustrates an example configuration including the only one longest line (as
a diagonal line), where the thick solid line represents the unique longest line. Without loss
of generality, we assume that line r2r4 is the longest one. From the assumption, r1 and r3
do not observe each other: r1 observes triangle △r1r2r4, and r3 observes triangle △r2r3r4.
These two triangles are not equilateral triangles because line r2r4 is the unique longest line.
Therefore, robots r1 and r3 move to the midpoint of line r2r4 (by line 9 or 11). If there
are two longest lines, the both lines are diagonal lines by Corollary 13 (r1r3 and r2r4 in
Figure 8). However, this does not affect to the actions of robots r1 and r4; they move to the
midpoint of line r2r4. Thus the lemma holds. ◀

Now we consider the case that there is a side line whose length is the same as two diagonal
lines; there are three or four longest lines.

▶ Lemma 15. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
are the three longest lines, two or more robots become accompanied in two rounds.
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Figure 9 Case with three longest lines.
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Figure 10 Case with four longest lines.

Proof. Figure 9 illustrates the only configuration including three longest lines. Three thick
solid lines are the three longest lines. Remind that robots r1 and r3 (or r2 and r4) cannot
observe each other. By Algorithm 2, all robots move to the different points: robot r1 (resp.
r2) moves to the midpoint p1 (resp. p2) of line r1r4 (resp. r2r3) since r1 (resp. r2) observes
an isosceles triangle △r1r2r4 (resp. △r1r2r3). Robot r3 (resp. r4) moves to the midpoint p3
(resp. p4) of line r2r4 (resp. r1r3) that is the longest line of the observed triangle △r2r3r4
(resp. △r1r3r4). In this case, triangles △r2r3r4 and △r2p2p3 are similar, the length of line
p2p3 is half of the length of line r3r4, and line p2p3 and line r3r4 are parallel. Through the
same argument for lines p1p4 and r4r3, we can show that the lengths of lines p1p4 and p2p3
are the same and these two lines are parallel. This means that the quadrilateral formed in
the next round is a parallelogram: even if all robots have different views in this configuration,
two or more robots become accompanied in the next round because diagonal line p1p2 is the
unique longest line (by Lemma 14). ◀

▶ Lemma 16. Assume that all robots are single and have different views in the distance-based
(4,2)-defected model, and consider the 6 lines connecting distinct pairs of two robots. If there
are four longest lines, two or more robots become accompanied in two rounds.

Proof. Figure 10 illustrates the only possible configuration including four longest lines. Four
thick solid lines are the four longest lines. By Algorithm 2, all robots move to the different
points: robot r1 (resp. r3) moves to the midpoint p1 (resp. p3) of line r1r4 (resp. r3r4) since
r1 (resp. r3) observes an isosceles triangle △r1r2r4 (resp. △r2r3r4). Robot r2 moves to the
center p2 of the equilateral triangle △r1r2r3 it observes, and r4 moves to the midpoint p4 of
the unique longest line r1r3 it observes (note that if |r1r4| = |r3r4|, triangle △r1r3r4 is an
isosceles triangle, however robot r4 moves to the midpoint p4 of the base line also in this
case). As a result, the four points, from p1 to p4, form a concave quadrilateral. Hence, two
or more robots become accompanied in the next round by Lemma 10. ◀

From Lemmas 4, 9, 14, 15 and 16, the following theorem holds.

▶ Theorem 17. In the distance-based (4, 2)-defected model, Algorithm 2 solves the gathering
problem in at most four rounds. ◀
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5 Impossibility Results

In this section, we present two impossibility results for the gathering problem in the defected
view model; (1) there is no (deterministic) algorithm in the distance-based (3,1)-defected
model, and (2) there is no (deterministic) algorithm in the relaxed adversarial (N ,N − 2)-
defected model defined in Section 5.2.

5.1 Impossibility in (3,1)-defected model
By the two gathering algorithms we introduced in the previous sections, the gathering can be
achieved in the adversarial (and thus also in the distance-based) (N ,N − 2)-defected model
for N ≥ 5, and in the distance-based (4,2)-defected model. These results bring us a problem
to find an algorithm to solve the gathering problem in the distance-based (or adversarial)
(3,1)-defected model. Here we show that there is no such algorithm.

▶ Theorem 18. There is no (deterministic) algorithm to solve the gathering problem in the
distance-based (3,1)-defected model.

𝒓𝟑 𝒓𝟐

𝒓𝟏

𝒑𝒄

𝒑𝒄′

Figure 11 Example for an unsolvable configuration in the distance-based (3,1)-defected model.

Proof. We prove this theorem by showing that there is no (deterministic) algorithm even
in the distance-based (3,1)-defected model. Note that the distance-based (3,1)-defected
model is stronger than the adversarial one, this result implies that the gathering is also
unsolvable in the adversarial one. Assume that three robots, R = {r1, r2, r3}, are arranged
in an equilateral triangle as Figure 11, and robot r1 (resp. r2 and r3) observes r2 (resp. r3
and r1). All robots do not agree on any geometrical agreement (e.g., direction, orientation,
chirality, or unit distance), thus we can assume that every robot ri considers the direction
from itself to the center of the triangle (pc) (i.e., −−→ripc) as the positive direction of X-axis in
its local coordinate system. Moreover, we also assume that all robots have the same chirality
(e.g., clockwise) and the same unit distance. This means that all robots obtain the exactly
same view from of Look operation.

Let A be an algorithm for gathering in the distance-based (3,1)-defected model. In the
above configuration, all robots have the same views, thus they execute the same behavior
according to A (i.e., all robots move to the same x and y coordinates in their local coordinate
systems). This causes another configuration forming a different equilateral triangle, which
shows by repeating the argument that the robots cannot gather at the same point forever.
The only way to prevent the robots from forming another equilateral triangle is to move
to point pc, i.e., each robot moves to the point located at |rirj |/

√
3 distance in the 30◦
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clockwise direction of the observed robot rj . However, if all robots agree on the opposite
direction of chirality (counter-clockwise in this case), they move to the outside of triangle
△r1r2r3 (i.e., robot r1 moves to point p′

c instead of pc). As a result, the robots form another
equilateral triangle. ◀

5.2 Impossibility in the relaxed adversarial (N ,N − 2)-defected model
The (N , k)-defected model assumes that k robots observed by robot r are chosen from the
robots that are located at points other than r’s current position and that r can detect whether
it is single or accompanied. Natural relaxation of the model is to choose the k robots other
than r (i.e., robots at r’s current position can be chosen) and assume the weak multiplicity
detection for the k robots and r itself. We call the model with the relaxation the relaxed
adversarial (N ,k)-defected model. Notice that the key property of the (N , N − 2)-defected
model such that any accompanied robot can observe all the robots does not hold in the
relaxed model.

The following theorem shows that the gathering is impossible (from some configuration)
in the relaxed adversarial (N ,N − 2)-defected model.

▶ Theorem 19. There is no (deterministic) algorithm to solve the gathering problem in the
relaxed adversarial (N ,N − 2)-defected model.

Proof. Let A be a gathering algorithm in the relaxed adversarial (N ,N − 2)-defected model.
We consider only initial configurations where all robots are located at two points p1 and p2.

First, consider the initial configuration where N − 1 robots are located at p1 and one
robot, say r1, is located at p2. When the robots at p1 do not observe r1, they misunderstand
that the gathering is already achieved and terminate. To achieve the gathering, r1 has to
move to p1. This implies that A has the following action (Action 1): when a single robot r

observes only one occupied point other than r’s current point and recognizes that the point
is occupied by multiple robots, r has to move to the point.

Notice that Action 1 is sufficient to show that A cannot solve the gathering in the
relaxed adversarial (4,2)-defected model. Consider the initial configuration where two robots
exist at both of p1 and p2 (four robots in total). When the robots at p1 (resp. p2) observe
only the two robots at p2 (resp. p1), the robots at p1 (resp. p2) move to p2 (resp. p1) by
Action 1. At the resultant configuration, two robots exist at both of p1 and p2, which shows
by repeating the argument that algorithm A cannot solve the gathering problem.

Second, consider the initial configuration where N ≥ 5 and all robots recognize that
both p1 and p2 are occupied by multiple robots, which can occur when a point is occupied
by three or more robots and the other is occupied by two or more robots. When all the
robots at the same point observe the same set of robots (but still they recognize that both
the points are occupied by multiple robots), the robots at the same point execute the same
action (i.e., move to the same point). Since algorithm A solves the gathering problem, all
robots eventually have to move to the same point (precisely the midpoint of the two points
occupied by robots) to achieve the gathering. This implies that A has the following action
(Action 2): when an accompanied robot r observes only one occupied point other than r’s
current point and recognizes that the point is occupied by multiple robots, r has to move to
the midpoint of the two points.

Finally, consider the initial configuration of N (≥ 5) robots where two robots exist at p1
and N − 2 robots exist at p2. When each robot r1 at p1 observes only N − 2 robots at p2
(and recognizes itself as a single robot), r1 moves to p2 by Action 1. On the other hand,
when each robot r2 at p2 observes the two robots at p1 and N − 4 robots (other than r2)
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at p2, r2 moves to the midpoint of p1 and p2 by Action 2. At the resultant configuration,
two robots exist at p2 and N − 2 robots exist at the midpoint of p1 and p2. By repeating
the argument, we can show that algorithm A cannot solve the gathering problem although
all robots converge at the same point (i.e., the distance between the two groups of robots
becomes smaller and smaller but does not become zero).

Consequently, there is no gathering algorithm in the relaxed adversarial (N ,N −2)-defected
model. ◀

6 Conclusion and Open Problems

In this paper, we introduced a new computational model, the (N , k)-defected model, where
each robot cannot necessarily observe all other robots: i.e., each robot observes at most
k other robots not located at its current position (where k < N − 1). We addressed the
gathering problem, which is one of the basic problem in autonomous mobile robot systems,
in the (N , N − 2)-defected model. We proposed two gathering algorithms: (1) an algorithm
in the adversarial (N ,N − 2)-defected model that achieves the gathering within three rounds,
and (2) an algorithm in the distance-based (4,2)-defected model that achieves the gathering
within four rounds. Moreover, we showed that there is no (deterministic) algorithm in either
the adversarial or distance-based (3,1)-defected model. In the proposed model, we assume
that each robot r observes k other robots among the robots located at the different points
than the point occupied by r itself. The relaxation of this assumption, where k robots are
chosen among all other robots other than r, can be considered, however, we proved that the
gathering is unsolvable in this relaxed model.

The remaining problem we are most interested in is to clarify the solvability of the
gathering problem in the adversarial (4,2)-defected model. Remind that the basic strategy
of the proposed algorithm in the distance-based (4,2)-defected model is to determine one
unique point from the triangle formed by the observed set of points. We call the algorithm
using this strategy the set-based algorithm, where each robot determines the destination
referring to only the set of observed points: for example, when a robot observes an isosceles
triangle, it always moves to the midpoint of the base, regardless of whether it is adjacent to
the base or not, i.e., we do not use the information of the (relative) position of the observing
robot. It can be easily proved that there is no (deterministic) set-based algorithm to solve
the gathering problem in adversarial (4,2)-defected model. This means that if a gathering
algorithm exists in the adversarial (4,2)-defected model, each robot has to use its relative
position in the set of observed points, e.g., when a robot observes an isosceles triangle, the
destination point changes depending on whether the robot is at a point incident to the base
of the triangle or not.

An important future work is to find the minimum k that allows a solution for the
gathering problem in the adversarial or distance-based (N , k)-defected model. In this paper,
we considered only the gathering problem, therefore, to challenge other problems under the
(N , k)-defected model is another future work.
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