
New Dolev-Reischuk Lower Bounds Meet
Blockchain Eclipse Attacks
Ittai Abraham #

VMWare Research, Herzliya, Israel

Gilad Stern #

The Hebrew University of Jerusalem, Israel

Abstract
In 1985, Dolev and Reischuk proved a fundamental communication lower bounds on protocols
achieving fault tolerant synchronous broadcast and consensus: any deterministic protocol solving
those tasks (even against omission faults) requires at least a quadratic number of messages to be sent
by nonfaulty parties. In contrast, many blockchain systems achieve consensus with seemingly linear
communication per instance against Byzantine faults. We explore this dissonance in three main
ways. First, we extend the Dolev-Reischuk family of lower bounds and prove a new lower bound
for Crusader Broadcast protocols. Our lower bound for crusader broadcast requires non-trivial
extensions and a much stronger Byzantine adversary with the ability to simulate honest parties.
Secondly, we extend our lower bounds to all-but-m Crusader Broadcast, in which up to m parties
are allowed to output a different value. Finally, we discuss the ways in which these lower bounds
relate to the security of blockchain systems. We show how Eclipse-style attacks in such systems can
be viewed as specific instances of the attacks used in our lower bound for Crusader Broadcast. This
connection suggests a more systematic way of analyzing and reasoning about Eclipse-style attacks
through the lens of the Dolev-Reischuk family of attacks.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases consensus, crusader broadcast, Byzantine fault tolerance, blockchain, syn-
chrony, lower bounds

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.16

Related Version Full Version: https://eprint.iacr.org/2022/730

Funding Gilad Stern: This work was supported by the HUJI Federmann Cyber Security Research
Center in conjunction with the Israel National Cyber Directorate (INCD) in the Prime Minister’s
Office.

1 Introduction

Two of the foundational and highly related tasks in the world of distributed systems are
consensus, and broadcast. In a consensus protocol, all parties have some input and they must
agree on an output. On the other hand, in a broadcast protocol, a designated sender attempts
to send a specific message to all parties, and all parties must output the same message sent by
the sender. These tasks have been widely researched both in theoretic settings and practical
settings. Ideally, we would like to be able to design efficient protocols for solving these tasks
in the presence of faults. A foundational limit on the efficiency of such protocols is the
work of Dolev and Reischuk in 1985 [9]. They prove that any deterministic protocol solving
fault tolerant broadcast must send at least Ω(n · f) messages, where n is the number of
parties overall and f is the number of omission-faulty parties, whose incoming and outgoing
messages can be dropped 1. Since broadcast and consensus reduce to each other [6], the lower

1 the lower bound in [9] mentioned malicious adversaries, the extension to omission failures appears in [3].

© Ittai Abraham and Gilad Stern;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iabraham@vmware.com
mailto:gilad.stern@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.OPODIS.2022.16
https://eprint.iacr.org/2022/730
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

bound also provides a lower bound on consensus. Hadzilacos and Halpern [14] show that a
similar lower bound also holds only when considering fault-free runs of broadcast protocols if
they are designed to be resilient to faults. Abraham, Chun, Dolev, Nayak, Pass, Ren, and
Shi [1] generalized this work to probabilistic protocols, showing that with f Byzantine faults,
a broadcast protocol with a 3

4 + ϵ probability of success requires Ω(ϵnf) messages to be sent
in expectation (assuming a strongly adaptive adversary).

1.1 Dolev-Reischuk does not hold for Crusader Broadcast
A slightly relaxed task related to that of broadcast is the task of Crusader Broadcast [8], in
which parties are allowed to remain undecided when the sender is faulty. This is formalized
by allowing parties to output a special non-value, ⊥. Two important restrictions, in this case,
are that no two nonfaulty parties may output different non-⊥ values and that all nonfaulty
parties must output the sender’s input if it is nonfaulty. The known Dolev-Reischuk style
attacks heavily rely on the fact that parties have to output some value from the protocol,
regardless of what they see. This is utilized by completely isolating a party, forcing it
to communicate only with omission faulty parties. The adversary then simply blocks all
communication with the isolated party, forcing it to output some value without hearing
anything throughout the protocol. All that is left to do is make sure that other parties output
the other value, successfully attacking any protocol with low communication complexity.
However, in Crusader Broadcast, a nonfaulty party is allowed to output ⊥ if it hears nothing
throughout the protocol. Since a nonfaulty sender may send messages to any party without
reaching quadratic communication complexity, it is entirely possible that in any run in which
the sender is nonfaulty, no party can be completely isolated from nonfaulty parties in the
protocol. This implies that the Dolev-Reischuk lower bound attack does not hold as is for
Crusader broadcast protocols.

1.2 A New Lower Bound for Crusader Broadcast
The main contribution of this paper is a new lower bound for crusader broadcast. It differs
substantially from the classic Dolev-Reischuk lower bound in that the adversary is required
to actively corrupt parties. Using Byzantine corruption also raises a new challenge that is
similar to that of the lower bound proven by Fischer, Lynch and Meritt [12]: the corrupted
parties need to be able to simulate honest parties.

Intuitively, while classic Dolev-Reischuk isolates one party and makes it hear no message
at all, while other parties hear a sender sending say v, in our lower bound we isolate one
party and make it think it is living in an alternative world where the sender is sending v′ ̸= v.
Again intuitively, building an alternative universe is harder since it requires active simulation
of other parties, and thus requires more malice than just causing the isolated party to hear
nothing.

This type of attack (isolating a node and making it think it’s living in an alternative
world) is not just theoretical, we discuss is Section 5 how Eclipse-type attacks can be viewed
as types of this attack. We find this connection between a theoretical lower bound and
Eclipse-style blockchain attacks to be a conceptual contribution of its own and expand on
this in section 1.4.

1.3 Extending to the all-but-m model
Yet another problem that the classic Dolev-Reischuk lower bound does not cover is almost
everywhere agreement [10, 17]. This notion is closely related to that of classic agreement
protocols but allows a small number of nonfaulty parties to output the wrong value, as long

I. Abraham and G. Stern 16:3

as the percentage of those dissenting parties tends towards 0 as n tends towards infinity. In
particular, classic Dolev-Reischuk just shows a safety violation of one party. What if we
allow some fraction of the parties to dissent and output differing values? Does some variant
of Dolev-Reischuk hold in this case?

In this work, we prove that if the number of messages sent is significantly smaller than
quadratic, then a large number of parties can be made to disagree. Concretely, if the number
of messages sent is O(nf1−c) for some c ∈ [0, 1], the number of parties that can be made
to output a differing value is O(f c). Crucially, as the number of messages in the protocol
approaches O(n), the adversary can make O(f) nonfaulty parties disagree, which is often
taken to be a constant fraction of the total number of parties.

1.4 Why does Crusader Broadcast matter for Blockchains? Connections
to Eclipse Style Attacks

Blockchain systems are designed to solve the task of consensus [21, 24], or more precisely,
state machine replication. Many of these systems claim to achieve consensus in a linear
number of messages per block. This seems to be in direct conflict with the lower bounds of
Dolev-Reischuk, suggesting that at least quadratic (Ω(nf)) messages are required. One
way of making sense of this contradiction is by looking at the details of the lower bounds.
As discussed above, Dolev-Reischuk prove such lower bounds for protocols in which parties
are required to output some value eventually, even without hearing any message. In Bitcoin
and Ethereum (Nakamoto consensus based systems) not hearing new blocks simply causes
parties to not decide anything. Formally, we can think of this as if such a party outputs a
special value ⊥, signifying not knowing. In this sense, it is natural to actually view such
blockchain protocols, when focusing on a single block, as solving Crusader Broadcast
rather than consensus.

In Section 5, we explore the connections between our new lower bounds for crusader
broadcast and the eclipse style attacks in proof-of-work blockchain systems. We observe the
following similarity:

In our lower bound for a single shot of crusader broadcast, in the deterministic case the
adversary can be static to isolate a party and needs to be able to simulate other parties
to trick the isolated party to believe an alternative world.

Similarly, in Eclipse-style attacks, the systems had insufficient randomness at the network
layer, meaning that the communication graph induced by the protocol was either deter-
ministic, or very easy to influence. This allowed a relatively static adversary to isolate a
party, or even worse. Similarly, by the nature of Nakamoto consensus, the adversary can
simulate other parties (often for a limited time) and trick the isolated party to believe an
alternative world.

Note that in both cases, the isolated party believes in an alternative world and a double
spend is executed. This is unlike the classic Dolev-Reischuk lower bound where the isolated
node just sees silence (so there is just one spend and one party that does not observe the
spend). Finally, we discuss in Section 6 the consequence of our lower bound for the study of
upper bounds for crusader broadcast. In particular, we show how a subquadratic protocol
for crusader broadcast takes advantage of randomization and cryptography in order to
circumvent the Ω(n2) lower bound.

OPODIS 2022

16:4 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

Our contributions
To summarize, our work makes three main contributions:
1. A new Lower Bound for crusader broadcast. While it is definitely part of the enhanced

Dolev-Reischuk family, it requires new non-trivial extensions. In particular, Byzantine
adversaries and the ability to simulate.
▶ Theorem 4. Let there be a deterministic protocol solving Binary Crusader Broadcast
in lockstep synchrony. If the protocol is resilient to f static Byzantine corruptions, then
there must be at least one run of the protocol in which at least 1

4 (n− 1)f messages are
sent for n ≥ f + 2.

2. We extend the Dolev-Reischuk style lower bounds to the all but m model showing that
near linear protocols may actually suffer a near linear number of isolated parties. Similar
to how Abraham et al. [1] extend the Dolev-Reischuk lower bound to the randomized
setting given a strongly adaptive adversary, we also extended our lower bound on Crusader
Broadcast to the randomized setting given a strongly adaptive adversary in Theorem 5.
▶ Theorem 6. Let there be a probabilistic (2

3 + ϵ)-correct protocol solving all-but (f c − 1)
Binary Crusader Broadcast in lockstep synchrony for some c ∈ [0, 1] and ϵ ∈

(
0, 1

3
]
. If

the protocol is resilient to f strongly adaptive Byzantine corruptions, then the expected
number of messages sent in the protocol is at least ϵ

8 (n− 1)f1−c for n ≥ 3f .
3. Make the conceptual connection between Eclipse style attacks and our new Crusader

broadcast lower bound. We believe that by highlighting this connection, protocol designers
may be able to more rigorously design blockchain protocols that are more secure against
Eclipse-style attacks.

2 Communication and Adversary Model

We consider a fully-connected network of n parties with synchronous communication: there
is a commonly known bound ∆ on message delay. The adversary can choose exactly how
long each message is delayed within the range [0, ∆]. The lower bounds hold in an even
stronger synchrony assumption: lockstep communication where communication proceeds in
lockstep rounds.

We assume a Byzantine adversary that can corrupt up to f parties. We consider both
static and strongly adaptive adversaries. A static Byzantine adversary must choose which
parties to corrupt at the beginning of the protocol. A strongly adaptive adversary can choose
which parties to corrupt at any given time. Furthermore, it can even choose to corrupt
parties after they send messages, but before they are delivered. If it chooses to do so, it can
delete those messages and send different messages instead. We assume a computationally
unbounded adversary that can simulate other parties if required. When the adversary is
computationally limited, we explicitly mention this.

3 Definitions

The Binary Crusader Broadcast task is very similar to the Binary Broadcast task, except
parties are also allowed to output ⊥ if the sender is faulty. Formally, such a protocol is
defined as follows:

▶ Definition 1. A Binary Crusader Broadcast protocol has a designated sender s with some
input x ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving Binary
Crusader Broadcast has the following properties:

I. Abraham and G. Stern 16:5

Validity. If the sender is nonfaulty, then every nonfaulty party outputs x.
Correctness. If two nonfaulty parties i, j output yi, yj ∈ {0, 1}, then yi = yj.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

A weaker version of the Binary Crusader Broadcast task is the almost-everywhere Binary
Crusader Broadcast protocol, similar to the almost-everywhere agreement problem [10, 23].
Whereas in a regular Binary Crusader Broadcast protocol all parties that don’t output ⊥
must output the same value even when the sender is faulty, in an almost-everywhere Binary
Crusader Broadcast protocol a small number of parties are allowed to output a different
value when the sender is faulty. A protocol solving Binary Crusader allowing m parties to
disagree is called an all-but m Binary Crusader protocol, and is defined as follows:

▶ Definition 2. An all-but m Binary Crusader Broadcast protocol has a designated sender s

with some input x ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving
all-but m Binary Crusader Broadcast has the following properties:

Validity. If the sender is nonfaulty, then every nonfaulty party outputs x.
Correctness. There exists some y ∈ {0, 1} such that at most m nonfaulty parties i

output yi /∈ {y,⊥}.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

Note that an all-but 0 Binary Crusader Broadcast protocol is simply a Binary Crusader
Broadcast protocol. A protocol is said to be deterministic if all nonfaulty parties’ actions
are chosen as a deterministic function of their input and the messages they receive, and
probabilistic otherwise. A protocol is said to be p-correct if for any adversary all of its
properties hold with probability p or greater.

3.1 Relationship to Crusader Consensus
The notion of Crusader Broadcast is highly related to that of Crusader Consensus. We define
the task of Crusader Consensus as follows:

▶ Definition 3. In a Binary Crusader Consensus protocol, every party i has an input
xi ∈ {0, 1}. Every party outputs some value yi ∈ {0, 1,⊥}. A protocol solving Binary
Crusader Consensus has the following properties:

Validity. If all nonfaulty parties have the same input x, then they all output x.
Correctness. If two nonfaulty parties i, j output yi, yj ∈ {0, 1}, then yi = yj.
Termination. If all nonfaulty parties participate in the protocol, they all complete it.

These tasks reduce to each other in the same way regular consensus and broadcast reduce
to each other when n ≥ 2f + 1 with f Byzantine parties [6]. In short, assume we have a
Crusader Broadcast protocol. In order to achieve Crusader Consensus, every party broadcasts
its input xi and waits to complete all broadcasts. After completing all n broadcasts, if there
exists some value y which was received in at least n− f broadcasts, output y. Otherwise
output ⊥. If all nonfaulty parties have the same input x, then from the Validity property
they will receive that value in at least the n−f broadcasts with nonfaulty senders and output
it. On the other hand, if some nonfaulty party outputs a value y ̸= ⊥, then it received it in
at least n− f broadcasts. From the Correctness property, every other party either outputs y

or ⊥ in those broadcasts, and thus can output some y′ such that y′ /∈ {y,⊥} only in the f

remaining broadcasts. We know that n ≥ 2f + 1, and thus f ≤ n− (f + 1) < n− f , which
means that it won’t output y′ /∈ {y,⊥}, as required.

OPODIS 2022

16:6 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

In the other direction, assume that there exists a Crusader Consensus protocol. In order
to implement broadcast, the sender sends its input to all parties. Each party that doesn’t
receive a value within ∆ time chooses a default value, e.g. 0. They then all participate in
the Crusader Consensus protocol with their received value as input, and output their output
from the Crusader Consensus protocol. If the sender is nonfaulty with the input x, then all
nonfaulty parties will receive that value in ∆ time. They then all participate the Crusader
Consensus protocol with the input x, and therefore from the Validity property output x as
well. In addition, if two nonfaulty parties output y, y′ ∈ {0, 1}, then from the Correctness
property y = y′, as required.

4 Lower Bounds

This section provides several communication lower bounds on protocols solving Binary
Crusader Broadcast. The lower bounds use ideas from the Dolev-Reischuk lower bound [9],
and from the subsequent work of Abraham et al. [1]. The lower bounds presented in Theorem 4
and Theorem 5 isolate a party in a similar way to the ones described in [9] and [1] respectively.
However, unlike previous works, the lower bounds presented in this paper require the adversary
to act in a Byzantine manner and actively simulate other parties. Theorem 6 shows how
previously known techniques can be used to isolate a large number of parties, and cause
wide disagreement in the network. All of the following lower bounds are stated as lower
bounds on the number of messages sent, as done in previous works. However, the lower
bounds actually only use the number of messages as a bound on the number edges in the
communication graph. That is, if fewer than m messages are sent in the network, then there
are fewer than m pairs of parties that communicate with each other. These lower bounds
cannot be avoided by increasing the number of messages without increasing the number
of edges in the communication graph of the protocol. This means that the lower bounds
might be more accurately stated in terms of edges in the communication graph instead of
messages sent.

The first lower bound uses the fact that few messages are sent in order to isolate a single
party i and cause it to communicate only with faulty parties. The faulty parties then simulate
a run with the input 1 for party i when a nonfaulty sender has the input 0, causing it to
output 1. The faulty parties also make sure that the rest of the network doesn’t notice that
i was isolated by simulating its messages in a run with the sender’s input being 0 and having
the faulty parties respond accordingly when communicating with other parties. Note that in
order for the theorem to hold, the content of the messages actually can be probabilistic, as
long as parties always communicate with the same parties throughout the protocol. All of
the following bounds also include an upper bound on the number of faulty parties. This is
done in order to make sure that the required number of nonfaulty parties remain in order
to reach a contradiction. Clearly, if the adversary can actually corrupt a larger number of
parties, it can choose not to do so and achieve the same lower bounds, slightly adjusting the
exact number of messages. In all cases however, f is allowed to be a constant fraction of n.

▶ Theorem 4. Let there be a deterministic protocol solving Binary Crusader Broadcast in
lockstep synchrony. If the protocol is resilient to f static Byzantine corruptions, then there
must be at least one run of the protocol in which at least 1

4 (n− 1)f messages are sent for
n ≥ f + 2.

Proof. Assume by way of contradiction that fewer than 1
4 (n− 1)f messages are sent overall

throughout any run of the protocol. Let W0 be a run in which the adversary does not corrupt
any party and the sender has input 0. Similarly, let W1 be a run in which the adversary does

I. Abraham and G. Stern 16:7

not corrupt any party and the sender has input 1. From the Validity property of the protocol
all parties output 0 in W0 and 1 in W1. By assumption, the total number of messages sent
in either run is less than 1

4 (n− 1)f , and thus the total number of messages in both runs is
less than 1

2 (n− 1)f . Now assume by way of contradiction that at least n− 1 parties send or
receive at least f messages in total in both runs. When summing over the messages sent or
received by all parties, each message is counted twice: once when it is sent and once when
it is received. Therefore, the total number of messages sent in both W0 and W1 is at least
1
2 (n− 1)f , reaching a contradiction to the stated above. This means that at least 2 parties
send or receive no more than f messages in total in both runs. Let i be one of those parties
such that i is not the sender s. Let P0, P1 be the sets of parties with which i communicated
in W0 and W1 respectively. By the stated above, |P0 ∪ P1| ≤ f .

Now observe the run Whybrid in which s has the input 0 and the adversary acts according
to the following strategy: the adversary corrupts all parties in P0 ∪ P1, all of those parties
communicate with all parties that aren’t i as nonfaulty parties would in the protocol, and
communicate with i as nonfaulty parties would if s had the input 1. More precisely, parties
in P0 ∪ P1 simulate all of i’s messages internally when communicating with all parties other
than i and act as if they received those messages, but don’t send resulting messages to i. On
the other hand, when communicating with i they simulate all of the messages from all other
parties with a nonfaulty s having the input 1 and act accordingly, but only send resulting
messages to party i. Note that both in W0 and in W1, all parties not in P0 ∪ P1 ∪ {i} don’t
communicate directly with party i. All nonfaulty parties see communication that is identical
to the one in W0 and since they are not in P0, they don’t send any messages to i in Whybrid

as well. Similarly, i sees communication that is identical to the one in W1 and thus doesn’t
send any messages to parties other than those in P1 in Whybrid. Therefore the view of all
parties not in P0 ∪ P1 ∪ {i} is identical to their view in W0, and thus as stated above, they
all output 0. On the other hand, i’s view is identical to its view in W1, and thus it outputs
1. Note that n ≥ f + 2, so there are at least two nonfaulty parties. Party i and all parties
not in P0 ∪ P1 ∪ {i} are nonfaulty, so this is a violation of the Correctness property of the
protocol, reaching a contradiction and completing the proof. ◀

The second lower bound uses ideas from [1] and generalizes them to the task of probabilistic
Crusader Broadcast. The first part of the lower bound shows that if no more than ϵ

4 f2

messages are sent in expectation in the protocol, then there is at least one non-sender party
that communicates with a small number of parties with probability ϵ. Using this insight,
an adversary can isolate that party and perform a similar attack to the one described in
the previous theorem. The last part of the theorem shows that the probability that if the
original protocol is purported to be (2

3 + ϵ)-correct, then the isolated party and the rest of the
nonfaulty parties output different values with at least 1

3 probability, reaching a contradiction.
Recall that as defined in Section 3, a protocol is said to be p-correct if its properties hold
with probability p or greater.

▶ Theorem 5. Let there be a probabilistic (2
3 + ϵ)-correct protocol solving Binary Crusader

Broadcast in lockstep synchrony for some ϵ ∈
(
0, 1

3
]
. If the protocol is resilient to f strongly

adaptive Byzantine corruptions, then the expected number of messages sent in the protocol is
at least ϵ

4 (n− 1)f for n ≥ f + 2.

Proof. Assume that is not the case. This means that there exists a (2
3 + ϵ)-correct Binary

Crusader Broadcast protocol with expected message complexity smaller than ϵ
4 (n − 1)f .

Similarly to the previous theorem, we will define W0 and W1 as runs in which the adversary
does not corrupt any party and the sender has inputs 0 and 1 respectively. In both of these

OPODIS 2022

16:8 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

runs, the probability that all parties terminate and output the sender’s input must be at least
2
3 + ϵ. Define M0 and M1 to be random variables indicating the number of messages sent by
nonfaulty parties in W0 and W1 respectively. In addition, define M = M0 + M1 to be the
number of messages sent in both runs. By assumption, E[M] = E[M0] + E[M1] < ϵ

2 (n− 1)f .
For every i ∈ [n], let Xi be a random variable indicating the total number of messages sent
or received by party i in total both in W0 and in W1. Assume by way of contradiction that
for at least n− 1 parties i ∈ [n], E[Xi] > ϵf . First note that M = 1

2
∑n

i=1 Xi because when
summing over all the messages that each party sent and received, we count every message
twice. Therefore, E[M] = 1

2
∑n

i=1 E[Xi] > ϵ
2 (n− 1)f , in contradiction. Therefore, there exist

at least two parties i, j ∈ [n] for which E[Xi],E[Xj] ≤ ϵf . Let i be a non-sender party for
which E[Xi] ≤ ϵf . From the Markov inequality, Pr[Xi ≥ f] ≤ E[Xi]

f ≤ ϵf
f = ϵ.

We will now define an adversary’s attack in Whybrid. The sender s has the input 0, and
the adversary will attempt to cause i to output 1 while other parties output 0. Informally,
the adversary’s strategy is to corrupt all parties that communicate with i (either by sending
or receiving messages) throughout the run and delete all messages to i. The adversary then
simulates i’s responses to the messages it would have received, corrupts the parties that
would have received those messages and causes them to act as if they received those messages.
In addition, the adversary simulates a full run in W1, and whenever a party sends a message
to i in its simulation, it corrupts that party and causes it to send that message to i. This
causes i to think it is in W0 and all other parties to think they are in W1, causing them to
output different values.

More formally, whenever a party j sends a message to party i, the adversary corrupts
j and erases the message. In addition, whenever i sends a message to some party k, the
adversary corrupts k. In parallel, the adversary simulates party i’s responses in W0, given
all of the messages it was sent. If party i ever sends a message to party j in that simulation
in a given round, the adversary corrupts party j, erases its outgoing messages for that round,
and makes it act as a nonfaulty party would if it received all of the messages it already
received and the messages sent by i in the simulated run. Finally, the adversary simulates
all of the communication between all parties in W1 given the messages sent by i in Whybrid.
This is done by internally running all parties in each round of the protocol except i, and
using i’s messages in each round. Whenever a party k sends i a message in the simulated
run of W1, the adversary corrupts it in Whybrid and sends that message to i. If at any point
the adversary is required to corrupt more than f parties, it aborts. Before analyzing the
probability that the attack succeeds, we will define several random variables. Let A0 be the
event that all nonfaulty parties except i output 0 in Whybrid. Let A1 be the event that i

outputs 1 in Whybrid. Similarly, let B0 be the event that all nonfaulty parties except i output
0 in W0, and let B1 be the event that i outputs 1 in W1. Note that the definitions of A0, B0
allows i to output 0 as long as all other nonfaulty parties output 0. Define G to be the event
that no more than f parties communicate with i in total in W0 and W1 combined. Finally,
define Ghybrid to be the event that the adversary does not abort in Whybrid.

Our goal is to show that Pr[A0 ∩A1] > 1
3 − ϵ. This contradicts the fact that the protocol

is (2
3 + ϵ)-correct, because with more than 1

3 − ϵ probability, all honest parties except for
i output 0, and i outputs 1. By assumption n ≥ f + 2, so there actually are at least two
nonfaulty parties. Before doing so, note that as long as the adversary isn’t required to
corrupt more than f parties, the view of all nonfaulty parties except i in Whybrid is identical
to the view they would have in W0, given that no more than f parties communicate with i

in both W0 and W1. Similarly, as long as that event doesn’t happen, i’s view is identical

I. Abraham and G. Stern 16:9

to the view it would have in W1, given that no more than f parties communicate with i in
both W0 and W1. Therefore, we know that Pr[G] = Pr[Ghybrid], Pr[A0|Ghybrid] = Pr[B0|G]
and Pr[A1|Ghybrid] = Pr[B1|G]. We are now ready to analyze Pr[A0 ∩A1]:

Pr[A0 ∩A1] = Pr[A0] + Pr[A1]− Pr[A0 ∪A1]
≥ Pr[Ghybrid] (Pr[A0|Ghybrid] + Pr[A1|Ghybrid])− 1

= Pr[G]
(

Pr[B0|G] + Pr[B1|G]
)
− 1

= Pr[B0 ∧G] + Pr[B1 ∧G]− 1
= Pr[B0]− Pr[B0 ∧G] + Pr[B1]− Pr[B1 ∧G]− 1
≥ Pr[B0] + Pr[B1]− 2 Pr[G]− 1
= Pr[B0] + Pr[B1]− 2 Pr[Xi > f]− 1

≥ (2
3 + ϵ) + (2

3 + ϵ)− 2ϵ− 1 = 1
3 >

1
3 − ϵ ,

reaching a contradiction, and completing the proof. ◀

The main insight of the previous theorem was that if fewer than Ω(nf) messages are
sent in a protocol in expectation, then there is a good probability that at least one party
communicates with f parties or fewer, and can be isolated. The next lower bound generalizes
this insight and shows that if for some c ∈ [0, 1] fewer than Ω(nf1−c) messages are sent
in expectation, there exist f c parties that can be isolated. From this point, the proof is
extremely similar to the one of the previous theorem. Note that the exact same techniques
can be used in the deterministic case with a static adversary, but the theorem is omitted
due to its similarity. It is also important to note that similar theorems with different choices
instead of f c − 1 can easily be formulated for more general results. This specific choice was
made as it simplifies some calculations, and it is enough to show that as the number of
messages approaches a O(ϵn), the number of isolated parties approaches Ω(f).

▶ Theorem 6. Let there be a probabilistic (2
3 + ϵ)-correct protocol solving all-but (f c − 1)

Binary Crusader Broadcast in lockstep synchrony for some c ∈ [0, 1] and ϵ ∈
(
0, 1

3
]
. If the

protocol is resilient to f strongly adaptive Byzantine corruptions, then the expected number
of messages sent in the protocol is at least ϵ

8 (n− 1)f1−c for n ≥ 3f . 2

Proof. Assume that is not the case. This means that there exists a (2
3 + ϵ)-correct all-but

(f c − 1) Binary Crusader Broadcast protocol with expected message complexity smaller than
ϵ
8 (n− 1)f1−c. Similarly to the previous theorem, we will define W0 and W1 as runs in which
the adversary does not corrupt any party and the sender has inputs 0 and 1 respectively.
In both of these runs, the probability that all parties terminate and output the sender’s
input must be at least 2

3 + ϵ. Define M0 and M1 to be random variables indicating the
number of messages sent by nonfaulty parties in W0 and W1 respectively. In addition,
define M = M0 + M1 to be the number of messages sent in both runs. By assumption,
E[M] = E[M0] + E[M1] < ϵ

4 (n− 1)f1−c. Similarly to before, the adversary will seek a set of
⌊f c⌋ > f c−1 parties that don’t contain the sender and don’t send many messages. In order to
do that, assume without loss of generality that the sender is party n. Let m = ⌊f c⌋, ℓ = ⌈n−1

m ⌉,
and define ℓ sets of m parties as follows: ∀i ∈ {0, . . . , ℓ−2} Pi = {i ·m + 1, . . . , (i + 1)m} and

2 It is actually enough that n ≥ f + 2fc, since all we need is f faulty parties and 2 sets of at least fc

nonfaulty parties to disagree on the output.

OPODIS 2022

16:10 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

Pℓ−1 = {n−m, . . . , n−1}. We would like to guarantee that the sender is not in any of the sets
Pi, and that every other party appears in one of the sets, but in no more than two of the sets.
First note that the sender is not in Pℓ−1 by definition. The largest number in any of the other
Pi sets is (ℓ− 2 + 1)m. Using the definition of ℓ, (ℓ− 2 + 1)m = (⌈n−1

m ⌉− 1)m ≤ n−1
m ·m < n,

and thus the sender (party n) is not in any of those sets. Secondly, note that all of the sets
up to Pℓ−2 are disjoint. This means that every party appears at most once in one of the sets
P0, . . . , Pℓ−2 and at most once more in Pℓ−1. Finally, the sets P0, . . . , Pℓ−2 exactly contain the
parties 1, . . . , (ℓ−2+1)m. Note that (ℓ−2+1)m = (⌈n−1

m ⌉−1)m ≥ (n−1
m −1)m = n−1−m,

and thus Pℓ−1 contains all of the rest of the parties, except for the sender.
As defined in the previous lower bound, for every i ∈ [n], let Xi be a random variable

indicating the total number of messages sent or received by party i in total both in W0
and in W1. In addition, for every i ∈ {0, . . . , ℓ− 1} let Yi be the total number of messages
sent or received by all parties j ∈ Pi in total both in W0 and in W1. It is always the case
that

∑
j∈Pi

Xj ≥ Yi because
∑

j∈Pi
Xj counts all messages sent or received by parties in

Pi, and might even count some of those messages twice. Assume by way of contradiction
that for every i ∈ {0, . . . , ℓ − 1}, E[Yi] > ϵf . First note that M = 1

2
∑n

i=1 Xi because
when summing over all the messages that each party sent and received, we count every
message twice. In addition, seeing as each party j appears in at most two of the sets Pi,
2

∑n
i=1 Xi ≥

∑ℓ−1
i=0

∑
j∈Pi

Xj . Combining these observations:

E[M] = E[12

n∑
i=1

Xi]

= 1
4E[2

n∑
i=1

Xi]

≥ 1
4E[

ℓ−1∑
i=0

∑
j∈Pi

Xj]

≥ 1
4

ℓ−1∑
i=0

E[Yi]

≥ 1
4ℓϵf

= 1
4⌈

n− 1
m
⌉ϵf

≥ 1
4 ·

n− 1
⌊f c⌋

ϵf

≥ 1
4

n− 1
f c

ϵf = ϵ

4(n− 1)f1−c

in contradiction. This means that there exists at least one k ∈ {0, . . . , ℓ − 1} for which
E[Yk] ≤ ϵf . Let Pk be such a set. From the Markov inequality, Pr[Yk ≥ f] ≤ E[Yk]

f ≤ ϵf
f = ϵ.

In other words, the probability that in total all parties in Pk send and receive more than f

messages in W0 and in W1 combined is no greater than ϵ.
We will now define an adversary’s attack in Whybrid, similar to the attack in Theorem 5.

The sender s has the input 0. Whenever a party j /∈ Pk sends a message to a party i ∈ Pk,
the adversary corrupts j and erases the message. In addition, whenever a party i ∈ Pk sends
a message to a party j /∈ Pk, the adversary corrupts j. In parallel, the adversary simulates all
of the messages parties i ∈ Pk send in W0, given all of the messages they were sent by parties
not in Pk. If any party i ∈ Pk ever sends a message to party j /∈ Pk in that simulation in a
given round, the adversary corrupts party j, erases its outgoing messages for that round, and

I. Abraham and G. Stern 16:11

makes it act as a nonfaulty party would if it received all of the messages it already received
and the messages sent by all parties in Pk in the simulated run. Finally, the adversary
simulates all of the communication between all parties in W1 given the messages sent by all
parties i ∈ Pk in Whybrid. This is done by internally running all parties in each round of
the protocol except for parties in Pk, and using the messages sent by parties in Pk in each
round. Whenever a party j /∈ Pk sends some party i ∈ Pk a message in the simulated run of
W1, the adversary corrupts j in Whybrid and sends that message to i. If at any point the
adversary is required to corrupt more than f parties, it aborts. The adversary never corrupts
any party i ∈ Pk, so all parties in Pk remain nonfaulty. Before analyzing the probability
that the attack succeeds, we will define several random variables. Let A0 be the event that
all nonfaulty parties except parties in Pk output 0 in Whybrid. Let A1 be the event that all
parties in Pk output 1 in Whybrid. Similarly, let B0 be the event that all nonfaulty parties
except parties in Pk output 0 in W0, and let B1 be the event that all parties in Pk output 1
in W1. Note that the definitions of A0, B0 allow all parties in Pk to output 0, as long as all
other nonfaulty parties do so as well. Define G to be the event that no more than f parties
communicate with parties in Pk in total in W0 and W1 combined. Finally, define Ghybrid to
be the event that the adversary does not abort in Whybrid.

Our goal is to show that Pr[A0 ∩ A1] > 1
3 − ϵ. Note that in this case, all parties in

Pk output 1 in Whybrid and all other nonfaulty parties output 0. There are f c parties in
Pk and at least n − f − f c ≥ n − 2f ≥ f ≥ f c nonfaulty parties not in Pk. Therefore,
with probability greater than (1

3 − ϵ) at least f c nonfaulty parties output 0 and at least f c

nonfaulty parties output 1, contradicting the fact that the protocol is an (2
3 + ϵ)-correct

all-but (f c − 1) Binary Crusader Broadcast protocol. Before doing so, note that as long as
the adversary isn’t required to corrupt more than f parties, the view of all nonfaulty parties
except parties in Pk in Whybrid is identical to the view they would have in W0, given that no
more than f parties communicate with parties in Pk in both W0 and W1. Similarly, as long
as that event doesn’t happen, the view of all parties in Pk in Whybrid is identical to the view
they would have in W1, given that no more than f parties communicate with parties in Pk in
both W0 and W1. Therefore, we know that Pr[G] = Pr[Ghybrid], Pr[A0|Ghybrid] = Pr[B0|G]
and Pr[A1|Ghybrid] = Pr[B1|G]. We are now ready to analyze Pr[A0 ∩A1]:

Pr[A0 ∩A1] = Pr[A0] + Pr[A1]− Pr[A0 ∪A1]
≥ Pr[Ghybrid] (Pr[A0|Ghybrid] + Pr[A1|Ghybrid])− 1

= Pr[G]
(

Pr[B0|G] + Pr[B1|G]
)
− 1

= Pr[B0 ∧G] + Pr[B1 ∧G]− 1
= Pr[B0]− Pr[B0 ∧G] + Pr[B1]− Pr[B1 ∧G]− 1
≥ Pr[B0] + Pr[B1]− 2 Pr[G]− 1
= Pr[B0] + Pr[B1]− 2 Pr[Yk > f]− 1

≥ (2
3 + ϵ) + (2

3 + ϵ)− 2ϵ− 1 = 1
3 >

1
3 − ϵ ,

reaching a contradiction, and completing the proof. ◀

5 Eclipse Attacks in Blockchain Systems

Blockchain system provided new revolutionary consensus protocols [21, 13] and with them
came a new set of attacks [4, 18, 11]. One new style of attack focuses on the underlying
peer-to-peer communication network and the ways it might affect the security of the system

OPODIS 2022

16:12 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

as a whole. These works suggest Eclipse attacks [15, 19], in which an adversary isolates a
specific party (or group of parties), and causes it to fork off in ways that are economically
advantageous to the attacker.

A natural question arises: are Eclipse-style attacks unique to the blockchain space or are
they connected to more traditional attacks in the theory and literature on consensus? In
consensus research, generic attacks on protocols are captured as lower bounds.

In this section, we make the conceptual connection between Eclipse-style attacks and
theoretical lower bounds for Crusader broadcast. We show that many Eclipse-style attacks
work because the underlying blockchain protocols are subquadratic and the protocol was not
designed to take full power of forcing the adversary to be adaptive or to force the adversary to
simulate. Hence Eclipse-style attacks can be viewed as specific attacks following the general
lower bound for crusader broadcast, even with a mildly static adversary that cannot fully
simulate as many other parties as it wants.

In the Eclipse attack, [15, 19] the adversary, by controlling a sufficient number of IP
addresses, can monopolize all connections to and from a victim node. Once the node is
isolated, the adversary can cause nodes to briefly locally confirm transactions that conflict
with the majority of nodes. This is analogous to outputting different values in the attacks
or our lower bound for crusader broadcast. Eclipse-style attacks may also combine selfish
mining attacks [4, 11]. In this attack, the adversary filters communication to and from the
isolated nodes and abuses the nodes’ mining power to the adversary’s advantage. This attack
is also similar to the one described in Theorem 6, which suggests that these lower bounds
could be of interest also when not directly attacking the agreement of the protocol, but
rather notions like liveness or fairness of a consensus protocol.

We note that the difference between the attacks described in Theorems 4 and 5 stems
from the randomized nature of the communication graph, and not from the difference in the
content of messages. The proof of Theorem 4 would not change if a randomized Crusader
Broadcast protocol uses a static communication graph. In addition, Theorem 6 generalizes
the result even further and shows that as the number of messages decreases, or more precisely
the number of edges in the communication graph decreases, a larger number of nonfaulty
parties can be isolated and made to output a different value. As the number of edges
in the communication graph tends towards O(ϵ · n), the number of isolated parties tends
towards Ω(f). This means a weak protocol with near linear communication may allow a
large adversary to partition the nonfaulty parties into two large groups that disagree on the
output of the protocol.

Limitations of Real-World Adversaries
The attacks described in Section 4 assume extremely strong adversaries. First of all, in all
lower bounds, the adversary is assumed to be able to simulate other parties. This assumption
may not hold in some real-world systems. Since adversaries have limited compute power, they
generally cannot arbitrarily simulate other parties in proof-of-work systems. Furthermore, in
systems with a public key infrastructure, adversaries cannot forge other parties’ signatures or
break other cryptographic primitives during the simulation of the protocol. The adversary in
Theorems 5 and 6 also needs to be strongly adaptive. In the real world, adversaries generally
cannot corrupt parties at will, let alone retroactively delete their messages and replace them.
Given all of these limitations, one could reasonably ask: are the attacks described in these
lower bounds applicable to the real world?

Surprisingly, the answer seems to be that they are applicable, as evidenced by previous
works on eclipse attacks. We discuss how both limitations are overcome next.

I. Abraham and G. Stern 16:13

Overcoming the need for strong adaptivity, due to protocol level flaws

As shown in [15, 19], both Bitcoin’s and Ethereum’s peer-to-peer communication protocols
had flaws that allowed an adversary to easily monopolize a victim node’s connections. When
nodes restart, they initiate outgoing connections from tables storing addresses of known
peers. The adversary fills those tables in advance with addresses of nodes controlled by
the adversary and then causes the node to restart. After restarting, the node connects
to peers from those tables, hence connecting to the adversary’s nodes. Nodes may also
receive incoming connections from peers. After causing a node to restart, the adversary
also sends incoming connection requests and monopolizes all of the incoming connections.
These attacks are performed in advance, allowing the adversary to essentially structure the
communication graph in a malicious manner. Compare the Eclipse attack strategy above
to our lower bounds for crusader broadcast. In this attack, the protocol flaw is such that
the adversary does not need to be adaptive, let alone strongly adaptive. Even worse, the
lower bound in Theorem 4 only shows that there must exist some party that can be isolated.
In that attack, the adversary has to have some special knowledge of that specific party and
tailor its attack to it. However, in the Eclipse attacks described in [15, 19], the adversary
can choose whichever node it wants and isolate it in a static manner, without the need to
find out which node can be isolated.

Overcoming the need for simulation due to the nature of proof of work

The second challenging assumption for a real-world attack is the assumption that the
adversary has the power to simulate many honest parties. In our lower bounds for crusader
broadcast, this stems from the fact that we do not know what the parties may do in the
protocol. For example, parties may use cryptography in order to guarantee that a large
portion of the network saw some value (see [25, 2] for such examples). In order to fully
simulate the behavior of the nonfaulty parties, an adversary needs to be able to break
some of the cryptographic assumptions made in the design of the protocol. On the other
hand, in current proof-of-work based blockchain systems, simulating honest parties “only”
requires mining blocks with the correct information. The adversary is limited by its own
compute-power, so it can’t actually fully simulate the rest of the network for the isolated
parties. However, Eclipse-style attacks suggest ways to mitigate this issue. For example, the
adversary could conceivably utilize honest nodes to simulate the protocol for it. This can be
done by letting only parts of the network see a given block. The adversary could then use
the fact that nodes would continue to mine on top of it as a means of simulating the work
required, and then showing the mined blocks to the rest of the network when needed.

To conclude, the adversary described in the lower bounds of Section 4 seems too powerful
to be of interest when discussing real-world systems. However, some of the real-world systems
used today had flaws that didn’t require the adversary to be so powerful in order to levy
attacks.

Lessons from theory

Our lower bound suggests pricipled ways to design more secure protocols that will not allow
adversaries with limited adaptivity and simulation power to succeed in their attacks. As
suggested by [15, 19], measures could be taken in order to make it harder to fill the outgoing
link tables with the adversary-controlled nodes’ addresses. The proof of Theorem 4 suggests
that having a dynamically changing communication graph with outgoing edges being chosen
randomly without much adversary control is the best long-term solution.

OPODIS 2022

16:14 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

In addition, one could make it harder to simulate parts of the protocol. For example,
by requiring more nodes to sign blocks, or by making more use of cryptography in the
communication layer itself. This is indeed obtained using BFT-based finality gadgets [5].

6 Subquadratic Crusader Broadcast Protocol

After focusing on lower bounds for Crusader Broadcast, in this section, we explore upper
bounds. We start with a trivial information theoretic crusader broadcast protocol with O(n2)
communication. Our lower bound proves that this folklore construction is in fact tight for an
unconditional adversary.

We then explore how using randomization and assuming a PKI can circumvent the
Ω(n2) lower bound for crusader broadcast. In the second protocol, the O(n2) all-to-all
cost is replaced by a gossip procedure [22]. This lowers the overall communication cost to
O(n · polylogn) at the cost of increasing the round complexity. The gossip protocol heavily
relies on randomization to limit the adversary’s ability to guess the communication pattern.
We analyze this protocol against static adversaries. This protocol is a sort of “minimal
example” showing that it is easy to force the adversary to either be adaptive or to be able to
simulate other parties in order to break subquadratic crusader broadcast protocols.

We start with a simple construction of a Crusader Broadcast protocol resilient to f

strongly adaptive and computationally unbounded Byzantine corruptions, as long as n > 3f .

Algorithm 1 IT − CrusaderBroadcasti.

1: if i is the sender s with input x then
2: send the message ⟨“sender”, x⟩ to all parties
3: wait ∆ time
4: if a single ⟨“sender”, m⟩ message was received from s while waiting then
5: send ⟨“forward”, m⟩ to all parties
6: wait ∆ time
7: if there exists a value m for which ⟨“forward”, m⟩ was received from at least n−f parties

then
8: output m and terminate
9: else

10: output ⊥ and terminate

▶ Theorem 7. The IT− CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient
to f strongly adaptive, computationally unbounded Byzantine corruptions in a synchronous
system if n > 3f .

Proof. Each property is proven individually.
Validity. Assume the sender s is nonfaulty with input x. In the beginning of the protocol

it sends the message ⟨“sender”, x, ⟩ to all parties. Every nonfaulty party receives that
message up to ∆ time after that, and sends ⟨“forward”, x⟩ to all parties. After ∆ time,
every nonfaulty party will receive a ⟨“forward”, x⟩ message from every nonfaulty party.
Since there are n− f nonfaulty parties, every nonfaulty party then outputs x.

Correctness. Observe two nonfaulty parties i, j that output two non-⊥ values mi, mj respec-
tively. This means that i received the message ⟨“forward”, mi⟩ from at least n−f parties,
and j received the message ⟨“forward”, mj⟩ from at least n− f parties. By assumption,

I. Abraham and G. Stern 16:15

n > 3f , and thus 2(n − f) = 2n − 2f = n + (n − 2f) ≥ n + f + 1. Therefore, i and j

received the aforementioned messages from at least f + 1 common parties. At least one
of those parties must be nonfaulty, and nonfaulty parties only send a single “forward”
message to all parties. Therefore, it must be the case that mi = mj .

Termination. All parties wait for 2∆ overall and terminate. ◀

Note that in the above protocol, the sender sends O(n) messages, and each nonfaulty party
sends O(n) messages as well. This results in a protocol with O(n2) message complexity,
showing that the lower bound above is tight.

The folklore O(n2) protocol, presented in Algorithm 2, proceeds in two rounds. In the first
round, the sender s sends a signed message with its input to all parties. Parties then inform
each other of the message they’ve seen. Finally, any party that received a message m from
the sender without seeing any conflicting message outputs m. If either of these conditions
doesn’t hold, that party outputs ⊥ instead. This protocol is captured in Algorithm 2. In
general, for a protocol X, denote Xi to be the code for party i executing protocol X. We
assume the existence of a PKI such that every party i knows a signing key ski and all parties
know the associated public key pki. The PKI is used in a signature scheme consisting of the
signing algorithm Sign and verification algorithm Verify. We analyze the signature scheme as
perfectly secure, meaning that only i can produce signatures which verify with respect to
pki. A similar analysis can be done allowing for a negligible probability of error (meaning
that the resulting protocol is 1− negl(λ) correct, with λ being the security parameter).

Algorithm 2 CrusaderBroadcasti.

1: val← ⊥
2: if i is the sender s with input x then
3: σ ← Sign(ski, x)
4: send the message ⟨“sender”, x, σ⟩ to all parties
5: wait ∆ time
6: if a ⟨“sender”, m, σ⟩ message was received from s while waiting such that

Verify(pks, m, σ) = 1 then
7: val← m

8: send ⟨“forward”, m, σ⟩ to all parties
9: wait ∆ time

10: if a ⟨“forward”, m′, σ′⟩ message was received while waiting such that m′ ̸= val and
Verify(pks, m′, σ′) = 1 then

11: val← ⊥
12: output val and terminate

The protocol consists of a single multicast requiring O(n) messages, and a single all-to-all
round requiring O(n2) messages. A proof of the protocol follows:

▶ Theorem 8. The CrusaderBroadcast protocol is a Crusader Broadcast protocol resilient to
any number of Byzantine corruptions f in a synchronous system.

Proof. Each property is proven individually. Denote vali to be the variable val stored by
party i.
Validity. Assume the sender s is nonfaulty with input x. In the beginning of the protocol

it produces a signature σ for x, and sends the message ⟨“sender”, x, σ⟩ to all parties.
Every nonfaulty party receives that message up to ∆ time after that, and updates val to

OPODIS 2022

16:16 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

x. The sender didn’t sign any other value m′ ̸= x, so no nonfaulty party will receive a
⟨“forward”, m′, σ′⟩ message with such that m′ ≠ val and Verify(pki, m′, σ′) = 1. Therefore
no nonfaulty party reverts val back to ⊥. Finally, after 2∆ time, all nonfaulty parties
output val = x and terminate.

Correctness. Assume by way of contradiction two nonfaulty parties i ≠ j output two non-⊥
values mi, mj respectively such that mi ̸= mj . Those parties output the variable val

at the end of the protocol, after 2∆ time. By assumption, they output non-⊥ values,
so vali ̸= ⊥ and valj ̸= ⊥. Party i only updates vali to mi ̸= ⊥ at time ∆ in line 7,
if it received a ⟨“sender”, mi, σi⟩ message from s such that Verify(pks, mi, σi) = 1. It
then sends the message ⟨“forward”, mi, σi⟩ to all parties at time ∆. Party j receives that
message by time 2∆, sees that mi ̸= mj and Verify(pks, mi, σi) = 1 and updates valj to
⊥. Finally, j outputs valj = ⊥, contradicting the fact that it output some value mj ̸= ⊥.

Termination. All parties wait for 2∆ overall and terminate. ◀

This simple protocol is based on the fact that for correctness to hold, it is enough to make
sure that any value heard by a nonfaulty party needs to be heard by all nonfaulty parties
(or at least the fact that two nonfaulty parties heard different values). In order to reduce
the communication costs of the protocol, it is possible to replace the expensive all-to-all
communication round with a more efficient gossip procedure. Using well-known results about
gossip [7, 22, 16], we know that parties can exchange information between them by proceeding
in rounds and in each round choosing a party to divulge all heard information to. Using this
technique, it is guaranteed that in O(log n) rounds all parties will hear all nonfaulty parties’
initial information. When dealing with a constant number of Byzantine faults, simply raising
the number of parties with which each party communicates in each round yields the same
analysis, showing that such a protocol requires O(n · polylog(n)) messages to be sent overall,
yielding a subquadratic Crusader Broadcast protocol. It is also possible to reduce the size of
the messages by parties sending up to 2 of the values they heard up until that point. This
is enough to detect equivocation, while guaranteeing that message size remains constant.
Note that an adaptive adversary can make sure that no nonfaulty party receives a message
m from an informed party i in the first rounds of the protocol by corrupting the parties
which received messages from i, requiring more rounds and more overall communication.
This shows that a subquadratic randomized protocol exists which is resilient to non-adaptive
adversaries, but stops working when the adversary can corrupt parties adaptively.

Another approach for breaking the quadratic message barrier is by relying on stronger
cryptographic primitives. This has been useful in reducing the communication costs of
protocols solving related tasks such as consensus [20, 25]. For example, if n > 3f it is possible
to use threshold cryptography. Given a well known threshold k, a threshold signature scheme
allows parties to sign a message individually, and then compressing k such signatures into a
single collective signature, proving that at least k parties signed the message individually.
Instead of having an all-to-all round as described in Algorithm 2, parties that hear a value m

from the sender can reply, sending a signature on m to the sender. Using a threshold signature
scheme with a threshold of 2f + 1, the sender can combine those signatures into a single
threshold signature proving that at least 2f + 1 parties replied with a signature on the value
m. Since 2f + 1 parties constitute a Byzantine quorum, it is guaranteed that there is only
one such threshold signature, meaning that if the sender then sends the threshold signature
to all parties, they can safely output it. This technique, used in the non-equivocation round
of the HotStuff protocol [25], yields a protocol with O(n) communication costs and O(1)
rounds, but more heavily relies on the assumption that the adversary cannot simulate other
parties.

I. Abraham and G. Stern 16:17

References
1 Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 317–326, 2019.

2 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Validated asynchronous byzantine
agreement with optimal resilience and asymptotically optimal time and word communication,
2018. doi:10.48550/arXiv.1811.01332.

3 Ittai Abraham and Kartik Nayak. The dolev and reischuk lower bound: Does
agreement need quadratic messages? https://decentralizedthoughts.github.io/
2019-08-16-byzantine-agreement-needs-quadratic-messages/, 2019.

4 Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power
(draft), 2013. doi:10.48550/arXiv.1312.7013.

5 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint, 2017.
arXiv:1710.09437.

6 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

7 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,
Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance.
In Proceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pages 1–12, 1987.

8 Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–30, 1982.
9 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.

Journal of the ACM (JACM), 32(1):191–204, 1985.
10 C Dwork, D Peleg, N Pippenger, and E Upfal. Fault tolerance in networks of bounded

degree. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC ’86, pages 370–379, New York, NY, USA, 1986. Association for Computing Machinery.
doi:10.1145/12130.12169.

11 Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable, 2013.
doi:10.48550/arXiv.1311.0243.

12 Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

13 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015.

14 Vassos Hadzilacos and Joseph Y Halpern. Message-optimal protocols for byzantine agreement.
In Proceedings of the tenth annual ACM symposium on Principles of distributed computing,
pages 309–323, 1991.

15 Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoin’s
peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages
129–144, 2015.

16 R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 565–574,
2000.

17 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA
’06, 2006.

18 Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin mining, or
bitcoin in the presence of adversaries. In Proceedings of WEIS. Washington, DC, 2013.

19 Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks on
ethereum’s peer-to-peer network. Cryptology ePrint Archive, 2018.

OPODIS 2022

https://doi.org/10.48550/arXiv.1811.01332
https://decentralizedthoughts.github.io/2019-08-16-byzantine-agreement-needs-quadratic-messages/
https://decentralizedthoughts.github.io/2019-08-16-byzantine-agreement-needs-quadratic-messages/
https://doi.org/10.48550/arXiv.1312.7013
http://arxiv.org/abs/1710.09437
https://doi.org/10.1145/12130.12169
https://doi.org/10.48550/arXiv.1311.0243

16:18 New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks

20 Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing,
DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of
LIPIcs, pages 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.DISC.2021.32.

21 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

22 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223,
1987.

23 Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking the ω̃(
√

n) barrier: Fast
consensus under a late adversary. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 173–182, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3210377.3210399.

24 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

25 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham.
Hotstuff: BFT consensus with linearity and responsiveness. In Peter Robinson and Faith Ellen,
editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 – August 2, 2019, pages 347–356. ACM, 2019.
doi:10.1145/3293611.3331591.

https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.4230/LIPIcs.DISC.2021.32
https://doi.org/10.1145/3210377.3210399
https://doi.org/10.1145/3293611.3331591

	1 Introduction
	1.1 Dolev-Reischuk does not hold for Crusader Broadcast
	1.2 A New Lower Bound for Crusader Broadcast
	1.3 Extending to the all-but-m model
	1.4 Why does Crusader Broadcast matter for Blockchains? Connections to Eclipse Style Attacks

	2 Communication and Adversary Model
	3 Definitions
	3.1 Relationship to Crusader Consensus

	4 Lower Bounds
	5 Eclipse Attacks in Blockchain Systems
	6 Subquadratic Crusader Broadcast Protocol

