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Abstract
This paper explores how reliable broadcast can be implemented without signatures when facing a
dual adversary that can both corrupt processes and remove messages. More precisely, we consider an
asynchronous n-process message-passing system in which up to t processes are Byzantine and where,
at the network level, for each message broadcast by a correct process, an adversary can prevent
up to d processes from receiving it (the integer d defines the power of the message adversary). So,
unlike previous works, this work considers that not only can computing entities be faulty (Byzantine
processes), but, in addition, that the network can also lose messages. To this end, the paper
adopts a modular strategy and first introduces a new basic communication abstraction denoted
k2ℓ-cast, which simplifies quorum engineering, and studies its properties in this new adversarial
context. Then, the paper deconstructs existing signature-free Byzantine-tolerant asynchronous
broadcast algorithms and, with the help of the k2ℓ-cast communication abstraction, reconstructs
versions of them that tolerate both Byzantine processes and message adversaries. Interestingly, these
reconstructed algorithms are also more efficient than the Byzantine-tolerant-only algorithms from
which they originate.
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1 Introduction

Context: reliable broadcast and message adversaries. Reliable broadcast (RB) is a
fundamental abstraction in distributed computing that lies at the core of many higher-level
constructions (including distributed memories, distributed agreement, and state machine
replication). Essentially, RB requires that non-faulty (i.e., correct) processes agree on the
set of messages they deliver so that this set includes at least all the messages that correct
processes have broadcast.
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In a failure-free system, implementing reliable broadcast on top of an asynchronous
network is relatively straightforward [27]. If processes may fail, and in particular if failed
processes may behave arbitrarily (a failure known as Byzantine [21, 26]), implementing
reliable broadcast becomes far from trivial as Byzantine processes may collude to fool correct
processes [29]. An algorithm that solves reliable broadcast in the presence of Byzantine
processes is known as implementing BRB (Byzantine reliable broadcast).

BRB in asynchronous networks (in which no bound is known over message delays) has
been extensively studied over the last forty years [1, 2, 7, 11, 12, 18, 20, 23, 22, 25, 29].
Existing BRB algorithms typically assume they execute over a reliable point-to-point network,
i.e., a network in which sent messages are eventually received. This is a reasonable assumption
as most unreliable networks can be made reliable using re-transmissions and acknowledgments
(e.g. a timeout-free version of the TCP protocol).

This work takes a drastic turn away from this usual assumption and explores how BRB
might be provided when processes execute on an unreliable network that might lose point-
to-point messages. Our motivation is threefold: First, in volatile networks (e.g., mobile
networks or networks under attack), processes might remain disconnected over long periods
(e.g., weeks or months), leading in practice to considerable delays (a.k.a. tail latencies) when
using re-transmissions. Because most asynchronous Byzantine-tolerant algorithms exploit
intersecting quorums, these tail latencies can potentially limit the performance of BRB
algorithms drastically, a well-known phenomenon in systems research [14, 15, 34]. Second,
re-transmissions require that correct processes be eventually able to receive messages and
cannot, therefore, model the permanent disconnection of correct processes. Finally, this
question is interesting in its own right, as it opens up novel trade-offs between algorithm
guarantees and network requirements, with potential application to the design of reactive
distributed algorithms tolerant to both processes and network failures.

The impact of network faults on distributed algorithms has been studied in several works,
in particular using the concept of message adversaries (MA). Message adversaries were initially
introduced by N. Santoro and P. Widmayer in [31, 32]1, and then used (sometimes implicitly)
in many works (e.g., [4, 3, 13, 17, 30, 28, 32, 33]). Initially proposed for synchronous networks,
an MA may suppress point-to-point network messages according to rules that define its
power. For instance, a tree MA in a synchronous network might suppress any message except
those transiting on an (unknown) spanning tree of the network, with this spanning tree
possibly changing in each round.

The message losses that an MA causes differ fundamentally from Byzantine faults. This
is because an MA can affect the messages sent by any correct process, and can change the
processes it targets during an execution, in contrast to Byzantine corruptions that are tied to
a set of fixed processes (which is why MA faults are sometimes dubbed transient or mobile).
For instance, it may be tempting to think that Byzantine-fault-tolerant (BFT) algorithms
inherently tolerate message losses from correct processes because they can only afford to wait
for at most n − t messages (where n is the total number of processes, and t the upper bound
on Byzantine processes). In an asynchronous network, a BFT algorithm could therefore
miss up to t messages from correct processes, if those are delayed by the scheduler. This
scenario only applies, however, in the particular circumstance where the t faulty processes

1 Where the terminology communication failure model and ubiquitous faults is used instead of MA. While
we consider only message losses, the work of Santoro and Widmayer also considers message additions
and corruptions.
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send messages that are received and accepted as valid by correct recipients. This caveat is
fundamental. If the faulty processes remain silent or send contradicting messages (if they are
Byzantine), then a BFT algorithm cannot afford to lose t messages from correct processes.

Content of the paper. This paper combines a Message Adversary with Byzantine processes,
and studies the signature-free implementation of Byzantine Reliable Broadcast (BRB) in
an asynchronous, fully connected network subject to this MA and to at most t Byzantine
faults. The MA models lossy connections by preventing up to d point-to-point messages from
reaching their recipient every time a correct process seeks to communicate with the rest of
the network.2

To limit as much as possible our working assumptions, we further assume that the
computability power of the adversary is unbounded (except for the cryptography-based
algorithm presented in Section 6), which precludes the use of signatures. (We do assume,
however, that each point-to-point communication channel is authenticated.)3

This represents a particularly challenging environment, as the MA may target different
correct processes every time the network is used or focus indefinitely on the same (correct)
victims. Further, the Byzantine processes may collude with the MA for maximal impact.

For clarity, in the remainder of the paper, we simply call messages the point-to-point
network messages used internally by a BRB algorithm. (The MA may suppress these
messages.) We distinguish these messages from the messages the BRB algorithm seeks
to disseminate, which we call “application messages” (app-messages for short). In such a
context, the paper presents the following results.

It first introduces a new modular abstraction, named k2ℓ-cast, which appears to be a
foundational building block to implement BRB abstractions (with or without the presence
of an MA). This communication abstraction systematically dissociates the predicate
used to forward (network) messages from the predicate that triggers the delivery of an
app-message, and lies at the heart of the work presented in the paper. When proving the
k2ℓ-cast communication abstraction, the paper presents an in-depth analysis of the power
of an adversary that controls at most t Byzantine processes and an MA of power d.
Then, the paper deconstructs two signature-free BRB algorithms (Bracha’s [11] and
Imbs and Raynal’s [20] algorithms) and reconstructs versions of them that tolerate both
Byzantine processes and MA. Interestingly, when considering Byzantine failures only,
these deconstructed versions use smaller quorum sizes and are, therefore, more efficient
than their initial counterparts.

So, this paper is not only the first to present signature-free BRB algorithms in the
context of asynchrony and MA but also the first to propose an intermediary communication
abstraction that allows us to obtain efficient BRB algorithms. For clarity, we give in Table 1
the list of acronyms and notations used in this paper.

Roadmap. The paper is composed of 7 sections and one appendix. Section 2 describes the
underlying computing model. Section 3 presents the k2ℓ-cast abstraction and its properties.
Section 4 defines the MA-tolerant BRB communication abstraction. Section 5 shows that

2 A close but different notion was introduced by Dolev in [16], which considers static κ-connected networks.
If the adversary selects statically, for each correct sender, d correct processes that do not receive any of
this sender’s messages, the proposed model includes Dolev’s model where κ = n− d.

3 Let us mention that the problem of designing an MA-tolerant BRB has been solved in [4] by leveraging
digital signatures within a monolithic algorithm. Finding a signature-free counterpart remained, however,
an open question, which we answer positively in this paper using a modular strategy.
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Table 1 Acronyms and notations.

Acronyms Meaning
BRB Byzantine-tolerant reliable broadcast
MA Message adversary

MBRB Message adversary- and Byzantine-tolerant reliable broadcast
Notations Meaning

n total nb of processes in the network
t upper bound on the nb of Byzantine processes
d power of the message adversary
c effective nb of correct processes in a run (n− t ≤ c ≤ n)
k minimal nb of correct processes that k2ℓ-cast a message
ℓ minimal nb of correct processes that k2ℓ-deliver a message
k′ minimal nb of correct k2ℓ-casts if there is a correct k2ℓ-delivery
δ true iff no-duplicity is guaranteed, false otherwise
qd size of the k2ℓ-delivery quorum
qf size of the forwarding quorum

single true iff only a single message can be endorsed, false otherwise

thanks to the k2ℓ-cast abstraction, existing BRB algorithms can give rise to MA-tolerant BRB
algorithms which, when d = 0, are more efficient than the BRB algorithms they originate
from. Section 6 presents a signature-based implementation of k2ℓ-cast that possesses optimal
guarantees. Finally, Section 7 concludes the paper. Due to page limitations, some proofs
and a numerical evaluation of the k2ℓ-cast abstraction are presented in appendices of this
paper and its extended version [5].

2 Computing Model

Process model. The system is composed of n asynchronous sequential processes denoted
p1, ..., pn. Each process pi has a distinct identity, known to other processes. For simplicity
and without loss of generality, we assume that i is the identity of pi.

In terms of faults, up to t ≥ 0 processes can be Byzantine, where a Byzantine process is a
process whose behavior does not follow the code specified by its algorithm [21, 26]. Byzantine
processes may collude to fool non-Byzantine processes (also called correct processes). In
this model, the premature stop (crash) of a process is a Byzantine failure. In the following,
given an execution, c denotes the effective number of processes that behave correctly in that
execution. We always have n − t ≤ c ≤ n. While this number remains unknown to correct
processes, it is used to analyze and characterize (more precisely than using its worse value
n − t) the guarantees provided by the proposed algorithms.

Finally, the processes have no access to random numbers, and their computability power is
unbounded. Hence, the algorithms presented in the paper are deterministic and signature-free
(except the signature-based algorithm presented in Section 6).

Communication model. Processes communicate by exchanging messages through a fully
connected asynchronous point-to-point network, assumed to be reliable in the sense it neither
corrupts, duplicates, nor creates messages. As far as messages losses are concerned, the
network is under the control of an adversary (see below) that can suppress messages.

Let msg be a message type and v the associated value. A process can invoke the best-effort
broadcast macro-operation denoted ur_broadcast(msg(v)), which is a shorthand for “for all
j ∈ {1, · · · , n} do send msg(v) to pj end for”. Correct processes are assumed to invoke
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ur_broadcast to send messages. When they do, we say that the messages are ur-broadcast and
received. The operation ur_broadcast(msg(v)) is not reliable. For example, if the invoking
process crashes during its invocation, an arbitrary subset of processes receive the message
msg(v). Moreover, due to its very nature, a Byzantine process can send fake messages
without using the macro-operation ur_broadcast.

Message adversary. Let d be an integer constant such that 0 ≤ d < n − t. The communica-
tion network is controlled by an MA (as defined in Section 1), which eliminates messages
ur-broadcast by correct processes, so these messages are lost. More precisely, when a correct
process invokes ur_broadcast(msg(v)), the MA is allowed to arbitrarily suppress up to d

copies of the message msg(v) intended to correct processes4. This means that, although the
sender is correct, up to d correct processes may miss the message msg(v). The extreme case
d = 0 corresponds to the case where no message is lost.

As an example, let us consider a set D of correct processes, where 1 ≤ |D| ≤ d, such that
during some period of time, the MA suppresses all the messages sent to them. It follows
that, during this period of time, this set of processes appears as being input-disconnected
from the other correct processes. Note that the size and the content of D can vary with time
and are never known by the correct processes.

3 k2ℓ-Cast Abstraction

Signature-free BRB algorithms [9, 11, 20] often rely on successive waves of internal messages
(e.g. the echo or ready messages of Bracha’s algorithm [11]) to provide safety and liveness.
Each wave is characterized by a threshold-based predicate that triggers the algorithm’s next
phase when fulfilled (e.g. enough echo messages for the same app-message m).

In this section, we introduce, implement, and prove a new modular abstraction, called
k2ℓ-cast, that encapsulates a wave/thresholding mechanism that is both Byzantine- and MA-
tolerant. As previously announced, we then use this abstraction to reconstruct MA-tolerant
BRB algorithms in Section 5 from two existing BRB algorithms [11, 20].

3.1 Definition

k2ℓ-cast (for k-to-ℓ-cast) is a many-to-many communication abstraction5. Intuitively, it
relates the number k of correct processes that send a message m (we say that these processes
k2ℓ-cast m) with the number ℓ of correct processes that deliver m (we say that they k2ℓ-
deliver m). Both k and ℓ are subject to thresholding constraints: enough correct processes
must k2ℓ-cast a message for it to be k2ℓ-delivered at least once; and as soon as one (correct)
k2ℓ-delivery occurs, some minimal number of correct processes are guaranteed to k2ℓ-deliver
as well.

4 Note that this message adversary is not limited to algorithms that use the ur_broadcast macro-operation.
The same adversary can be equivalently defined for an operation ur_multicast that sends a message to
a dynamically defined subset of processes (be it multiple recipients or only one in the case of unicast),
by stipulating that the MA can still suppress up to d copies of this message. In this case, the most
robust way for correct processes to disseminate a message is to send it to all processes, i.e. to fall back
on a ur_broadcast operation.

5 An example of this family is the binary reliable broadcast introduced in [24], which is defined by specific
delivery properties – not including MA-tolerance – allowing binary consensus to be solved efficiently
with the help of a common coin.

OPODIS 2022
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More formally, k2ℓ-cast is a multi-shot abstraction, i.e. each app-message m that is
k2ℓ-cast or k2ℓ-delivered is associated with an identity id. (Typically, such an identity is a
pair consisting of a process identity and a sequence number.) It provides two operations,
k2ℓ_cast and k2ℓ_deliver, whose behavior is defined by the values of four parameters: three
integers k′, k, ℓ, and a Boolean δ. This behavior is captured by the following six properties:

Safety:
k2ℓ-Validity. If a correct process pi k2ℓ-delivers an app-message m with identity id,
then at least k′ correct processes k2ℓ-cast m with identity id.
k2ℓ-No-duplication. A correct process k2ℓ-delivers at most one app-message m with
identity id.
k2ℓ-Conditional-no-duplicity. If the Boolean δ is true, then no two different
correct processes k2ℓ-deliver different app-messages with the same identity id.

Liveness6:
k2ℓ-Local-delivery. If at least k correct processes k2ℓ-cast an app-message m with
identity id and no correct process k2ℓ-casts an app-message m′ ̸= m with identity id,
then at least one correct process k2ℓ-delivers the app-message m with identity id.
k2ℓ-Weak-Global-delivery. If a correct process k2ℓ-delivers an app-message m

with identity id, then at least ℓ correct processes k2ℓ-deliver an app-message m′ with
identity id (each of them possibly different from m).
k2ℓ-Strong-Global-delivery. If a correct process k2ℓ-delivers an app-message m

with identity id, and no correct process k2ℓ-casts an app-message m′ ̸= m with identity
id, then at least ℓ correct processes k2ℓ-deliver the app-message m with identity id.

This specification is parameterized in the sense that each tuple (k′, k, ℓ, δ) defines a
specific communication abstraction with different guarantees. This versatility explains why
the k2ℓ-cast abstraction can be used to produce highly compact reconstructions of existing
BRB algorithms, rendering them MA-tolerant in the process (using four and three lines
of pseudo-code respectively, see Section 5). Despite this versatility, however, we will see
in Section 3.2 that k2ℓ-cast can be implemented using a single (parameterized) algorithm,
underscoring the fundamental commonalities of MA-tolerant BRB algorithms.

Intuitively, the parameters k′, k, and ℓ hobble the disruption power of the Byzantine/MA
adversary by setting limits on the number of correct processes that are either required or
guaranteed to be involved in one communication “wave” (corresponding to one identity id). k′

sets the minimal number of correct processes that must k2ℓ-cast for any k2ℓ-delivery to occur:
it thus limits the ability of the Byzantine/MA adversary to trigger spurious k2ℓ-deliveries.
The role of k is symmetrical. It guarantees that some k2ℓ-delivery will necessarily occur if
k correct processes k2ℓ-cast some message. It thus prevents the adversary from silencing
correct processes as soon as some critical mass of them participates. Finally, ℓ captures
a “quite-a-few-or-nothing” guarantee that mirrors the traditional “all-or-nothing” delivery
guarantee of traditional BRB. As soon as one correct k2ℓ-delivery occurs (for some identity
id), then ℓ correct processes must also k2ℓ-deliver (with the same identity).

The fourth parameter, δ, is a flag that when true enforces agreement between k2ℓ-
deliveries. When δ = true, the k2ℓ-Conditional-no-duplicity property implies that all
the app-messages m′ involved in the k2ℓ-Weak-Global-delivery property are equal to m.

6 The liveness properties comprise a local delivery property that provides a necessary condition for the
k2ℓ-delivery of an app-message by at least one correct process, and two global delivery properties that
consider the collective behavior of correct processes.
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Algorithm 1 Signature-free k2ℓ-cast (code for pi).

object SigFreeK2LCast(qd , qf , single) is
(1) operation k2ℓ_cast(m, id) is
(2) if

(
endorse(−, id) not already ur-broadcast

)
(3) then ur_broadcast(endorse(m, id))
(4) end if.
(5) when endorse(m, id) is received do

% forwarding step
(6) if

(
endorse(m, id) received from at least qf processes
∧

((
¬single ∧ endorse(m, id) not already ur-broadcast

)
∨ endorse(−, id) not already ur-broadcast

))
(7) then ur_broadcast(endorse(m, id))
(8) end if;

% delivery step
(9) if

(
endorse(m, id) received from at least qd processes
∧ (−, id) not already k2ℓ-delivered

)
(10) then k2ℓ_deliver(m, id)
(11) end if.
end object.

Underlying system
⟨n, t, d, c⟩

sf-k2ℓ-Assumptions 1-4

Implementation
⟨qd , qf , single⟩

Theorem 1

k2ℓ-cast object
⟨k′, k, ℓ, δ⟩

Figure 1 From the sys-
tem parameters to a k2ℓ-
cast implementation.

3.2 A Signature-Free Implementation of k2ℓ-Cast
Among the many possible ways of implementing k2ℓ-cast, this section presents a quorum-
based7 signature-free implementation8 of the abstraction. To overcome the disruption caused
by Byzantine processes and message losses from the MA, our algorithm uses the ur-broadcast
primitive (cf. our communication model in Sec. 2) to accumulate and forward endorse
messages before deciding whether to deliver. Forwarding and delivery are triggered by two
thresholds (a pattern also found, for instance, in Bracha’s BRB algorithm [11]):

A first threshold, qd , triggers the delivery of an app-message m when enough endorse
messages supporting m have been received.
A second threshold, qf , which is lower than qd, controls how endorse messages are
forwarded during the algorithm’s execution.

Forwarding, which is controlled by qf , amplifies how correct processes react to endorse
messages, and is instrumental to ensure the algorithm’s liveness. As soon as some critical
“mass” of agreeing endorse messages accumulates within the system, forwarding triggers
a chain reaction which guarantees that a minimum number of correct processes eventually
k2ℓ-deliver the corresponding app-message.

More concretely, our algorithm provides an object (SigFreeK2LCast, Alg. 1), instantiated
using the function SigFreeK2LCast(qd , qf , single), using three input parameters:

qd: the number of matching endorse messages that must be received from distinct
processes in order to k2ℓ-deliver an app-message.

7 In this paper, a quorum is a set of processes that (at the implementation level) ur-broadcast the same
message. This definition takes quorums in their ordinary sense. In a deliberative assembly, a quorum is
the minimum number of members that must vote the same way for an irrevocable decision to be taken.
Let us notice that this definition does not require quorum intersection. However, if quorums have a size
greater than n+t

2 , the intersection of any two quorums contains, despite Byzantine processes, at least
one correct process [11, 29].

8 Another k2ℓ-cast implementation, which uses digital signatures and allows to reach optimal values for k
and ℓ, is presented in Section 6.
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qf : the number of matching endorse messages that must be received from distinct
processes for the local pi to endorse the corresponding app-message (if it has not yet).
single: a Boolean that controls whether a given correct process can endorse different
app-messages for the same identity id (single = false), or not (single = true).

The algorithm provides the operations k2ℓ_cast and k2ℓ_deliver. Given an app-message
m with identity id, the operation k2ℓ_cast(m, id) ur-broadcasts endorse(m, id) provided
pi has not yet endorsed any different app-message for the same identity id (lines 2-4). When
pi receives a message endorse(m, id), its executes two steps. If the forwarding quorum qf
has been reached, pi first retransmits endorse(m, id) (Forwarding step, lines 6-8). Then, if
the k2ℓ-delivery quorum qd is attained, pi k2ℓ-delivers m (Delivery step, lines 9-11).

For brevity, we define α = n + qf − t − d − 1. Given an execution defined by the system
parameters n, t, d, and c, Alg. 1 requires the following assumptions to hold for the input
parameters qf and qd of a k2ℓ-cast instance (a global picture linking all parameters is
presented in Fig. 1). The prefix “sf” stands for signature-free.

sf-k2ℓ-Assumption 1: c − d ≥ qd ≥ qf + t ≥ 2t + 1,
sf-k2ℓ-Assumption 2: α2 − 4(qf − 1)(n − t) ≥ 0,
sf-k2ℓ-Assumption 3: α(qd − 1) − (qf − 1)(n − t) − (qd − 1)2 > 0,
sf-k2ℓ-Assumption 4: α(qd − 1 − t) − (qf − 1)(n − t) − (qd − 1 − t)2 ≥ 0.

In particular, the safety of Alg. 1 algorithm relies solely on sf-k2ℓ-Assumption 1, while
its liveness relies on all four of them. sf-k2ℓ-Assumption 2 through 4 constrain the solutions
of a second-degree inequality resulting from the combined action of the MA, the Byzantine
processes, and the message-forwarding behavior of Alg. 1. We show in the extended version
that, in practical cases, these assumptions can be satisfied by a bound of the form n >

λt + ξd + f(t, d), where λ, ξ ∈ N and f(t, 0) = f(0, d) = 0. Together, the assumptions allow
Alg. 1 to provide a k2ℓ-cast abstraction (with values of the parameters k′, k, ℓ, and δ defining
a specific k2ℓ-cast instance) as stated by the following theorem.

▶ Theorem 1 (k2ℓ-Correctness). If sf-k2ℓ-Assumptions 1–4 are verified, Alg. 1 implements
k2ℓ-cast with the following guarantees:

k2ℓ-Validity with k′ = qf − n + c,
k2ℓ-No-duplication,

k2ℓ-Conditional-no-duplicity with δ =
(

qf >
n + t

2

)
∨

(
single ∧ qd >

n + t

2

)
,

k2ℓ-Local-delivery with k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1,{

if single = false, k2ℓ-Weak-Global-delivery
if single = true, k2ℓ-Strong-Global-delivery

}
with ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
.

3.3 Proof of Algorithm 1
The proofs of the k2ℓ-cast safety properties stated in Theorem 1 (k2ℓ-Validity, k2ℓ-No-
duplication, and k2ℓ-Conditional-no-duplicity) are fairly straightforward. To save
space, these proofs are provided in the extended version.

The proofs of the k2ℓ-cast liveness properties (k2ℓ-Local-delivery, k2ℓ-Weak-Global-
delivery, k2ℓ-Strong-Global-delivery) are sketched informally below (Lemmas 2-10).
Their full development can be found in Appendix A.
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When seeking to violate the liveness properties of k2ℓ-cast, the attacker can use the MA
to control in part how many endorse messages are received by each correct process, thus
interfering with the quorum mechanisms defined by qd and qf . To analyze the joint effect
of this interference with Byzantine faults, our proofs consider seven well-chosen subsets of
correct processes (A, B, C, U , F , NF , and NB, depicted in Fig. 2a).

These subsets are defined for an execution of Alg. 1 in which kI correct processes k2ℓ-cast
(m, id) (the I in kI is for “Initial”), and ℓe correct processes receive at least qd message
endorse(m, id). The first three subsets, A, B, and C, partition correct processes based on
the number of endorse(m, id) messages they receive.

A contains the ℓe correct processes that receive at least qd endorse(m, id) messages (be
it from correct or from Byzantine processes), and thus k2ℓ-deliver some message.9
B contains the correct processes that receive at least qf but less than qd endorse(m, id)
messages and thus do not k2ℓ-deliver (m, id).
C contains the remaining correct processes that receive less than qf endorse(m, id)
messages. They neither forward nor deliver any message for identity id (since qf ≤ qd).

In our proofs, we count how many messages endorse(m, id) ur-broadcast by correct
processes are received by the processes of A (resp. B and C). We note these quantities wc

A,
wc

B , and wc
C , and use them to bootstrap our proofs using bounds on messages (see below).

The last four subsets intersect with A, B and C, and distinguish correct processes based
on the ur-broadcast operations they perform.

U consists of the correct processes that ur-broadcast endorse(m, id) at line 3.
F denotes the correct processes of A ∪ B that ur-broadcast endorse(m, id) at line 7 (i.e.,
they perform forwarding).
NF denotes the correct processes of A ∪ B that ur-broadcast endorse(m, id) at line 3.
NB denotes the correct processes of A∪B that never ur-broadcast endorse(m, id), be it at
line 3 or at line 7. These processes have received at least qf messages endorse(m, id), but
do not forward endorse(m, id), because they have already ur-broadcast endorse(m′, id)
at line 3 or at line 7 for an app-message m′ ̸= m.

Proof strategy. We note kU = |U |, kF = |F |, kNF = |NF |, kNB = |NB|. Observe that
kU ≤ kI and kNF ≤ kU , since all (correct) processes in U and NF invoke k2ℓ_cast. Also,
(kU + kF ) represents the total number of correct processes that ur-broadcast a message
endorse(m, id). Fig. 2b illustrates how these quantities constrain the distribution of
endorse messages across A, B and C. Our core proof strategy consists in bounding the
areas shown in Fig. 2b. (For instance, observe that wc

A ≤ |A| × (kU + kF ), since each of
the ℓe correct processes in A can receive at most one endorse message from each of the
(kU + kF ) correct processes that send them.) This reasoning on bounds yields a polynomial
involving ℓe = |A|, kI , and kU , whose roots can then be constrained to yield the liveness
guarantees required by the k2ℓ-cast specification.

Observation. In the same way we have bounded wc
A, we can also bound wc

B by observing
that there are (kNF + kNB + kF − ℓe) processes in B and that each can receive at most qd − 1
endorse messages. Similarly, we can bound wc

C by observing that the (c − kNF − kNB − kF )
processes of C can receive at most qf − 1 endorse messages. Thus:

9 Because of the condition at line 9, these processes do not necessarily k2ℓ-deliver (m, id), but all do
k2ℓ-deliver an app-message for identity id.
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A B C
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processes

(a) Subsets of correct processes based on
the number of received endorse messages
(A, B and C) and based on their ur-
broadcast actions (U , F , NF , and NB).
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(b) Distribution of endorse messages among correct
processes of A, B, and C, sorted by decreasing num-
bers of endorse messages received.

Figure 2 Subsets of correct processes and distribution of endorse messages among them.

wc
A ≤ (kU + kF )ℓe, (1)

wc
B ≤ (qd − 1)(kNF + kNB + kF − ℓe), (2)

wc
C ≤ (qf − 1)(c − kNF − kNB − kF ). (3)

Moreover, the MA cannot suppress more than d copies of each individual endorse
message ur-broadcast to the c correct processes. Thus, the total number of endorse
messages received by correct processes (wc

A + wc
B + wc

C) is such that:

wc
A + wc

B + wc
C ≥ (kU + kF )(c − d). (4)

▶ Lemma 2. ℓe × (kU + kF − qd + 1) ≥ (kU + kF )(c − d − qd + qf ) − c(qf − 1) − kNB(qd − qf ).

Proof sketch. We get this result by combining (1), (2), (3) and (4), and using sf-k2ℓ-
Assumption 1 with the fact that kNF ≤ kU . (Full derivations in Appendix A.) ◀

▶ Lemma 3. If no correct process k2ℓ-casts (m′, id) with m′ ̸= m, then no correct process
forwards endorse(m′, id) at line 7 (and then kNB = 0). (Proof in Appendix A.)

▶ Lemma 4 (k2ℓ-Local-delivery). If at least k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1 correct processes

k2ℓ-cast an app-message m with identity id and no correct process k2ℓ-casts any app-message
m′ with identity id such that m ̸= m′, then at least one correct process pi k2ℓ-delivers m

with identity id.

Proof sketch. From the hypotheses, Lemma 3 helps us determine that kNB = 0. Then,
the property is proved by contraposition, by assuming that no correct process k2ℓ-delivers
(m, id), which leads us to ℓe = 0. Using prior information and sf-k2ℓ-Assumption 1, we can
rewrite the inequality of Lemma 2 to get the threshold of k2ℓ-casts above which there is at
least one k2ℓ-delivery. (Full derivations in Appendix A.) ◀

▶ Lemma 5. (single = false) =⇒ (kNB = 0). (Proof in Appendix A.)

▶ Lemma 6. If at least one correct process k2ℓ-delivers (m, id) and x = kU +kF (the number
of correct processes that ur-broadcast endorse(m, id) at line 3 or 7), then x ≥ qd − t and
x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1).



T. Albouy, D. Frey, M. Raynal, and F. Taïani 26:11

Proof sketch. We prove this lemma by counting the total number of messages (sent by
Byzantine or correct processes) that are received by the processes of A, and by using (1), (3)
(4), and sf-k2ℓ-Assumption 1. (Full derivations in Appendix A.) ◀

▶ Lemma 7. If kNB = 0, and at least one correct process k2ℓ-delivers (m, id), then kU +kF ≥
qd.

Proof sketch. Given that kNB = 0, we can rewrite the inequality of Lemma 6, which gives
us a second-degree polynomial (where x = kU + kF is the unknown variable). We compute
its roots and show that the smaller one contradicts Lemma 6, and that the larger one is
greater than or equal to qd . The fact that x must be greater than or equal to the larger root
to satisfy Lemma 6 proves the lemma. (Full derivations in Appendix A.) ◀

▶ Lemma 8. If kNB = 0 and kU + kF ≥ qd, then at least
⌈
c

(
1 − d

c−qd+1

)⌉
correct processes

k2ℓ-deliver some app-message with identity id (not necessarily m).

Proof sketch. From the hypotheses, we can rewrite the inequality of Lemma 2 to get a
lower bound on ℓe. Using sf-k2ℓ-Assumption 3, we can determine that this lower bound is
decreasing with the number of ur-broadcasts by correct processes (x = kU + kF ). Hence,
this lower bound is minimum when x is maximum, that is, when x = c. This gives us the
minimum number of correct processes that k2ℓ-deliver under the given hypotheses. (Full
derivations in Appendix A.) ◀

▶ Lemma 9 (k2ℓ-Weak-Global-delivery). If single = false, and a correct process
k2ℓ-delivers an app-message m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes k2ℓ-deliver an app-message m′ with identity id (each possibly different from m).

Proof sketch. As single = false and one correct process k2ℓ-delivers (m, id), Lemmas 5
and 7 apply, and we have kNB = 0 and kU + kF ≥ qd. This provides the prerequisites for
Lemma 8, which concludes the proof. (Full derivations in Appendix A.) ◀

▶ Lemma 10 (k2ℓ-Strong-Global-delivery). If single = true, and a correct process k2ℓ-
delivers an app-message m with identity id, and no correct process k2ℓ-casts an app-message
m′ ̸= m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver m

with identity id.

Proof sketch. As single = true, Lemma 3 holds and implies that kNB = 0. As above,
Lemma 7 and Lemma 8 hold, yielding the lemma. (Full derivations in Appendix A.) ◀

4 BRB in the Presence of Message Adversary (MBRB): Definition

Before using the k2ℓ-cast abstraction to reconstruct MA-tolerant BRB algorithms, we first
specify what a Byzantine- and MA-tolerant broadcast should precisely achieve. We call such
a broadcast an MBR-broadcast (for Message-adversarial Byzantine Reliable Broadcast), or
MBRB for short. The MBRB abstraction provides two matching operations, mbrb_broadcast
and mbrb_deliver. It is a multishot abstraction, i.e, it associates an identity ⟨sn, i⟩ (sequence
number, sender identity) with each app-message, and assumes that correct processes never
reuse the same sequence number for different mbrb_broadcast invocations.
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When, at the application level, a process pi invokes mbrb_broadcast(m, sn), where m

is the app-message, we say it “mbrb-broadcasts (m, sn)”. Similarly, when the invocation
of mbrb_deliver by pi returns the tuple (m, sn, j) to the client application (where pj is the
sender process), we say it “mbrb-delivers (m, sn, j)”. So, the app-message are mbrb-broadcast
and mbrb-delivered. Because of the MA, we cannot always guarantee that an app-message
mbrb-delivered by a correct process is eventually received by all correct processes. Hence, in
the MBR-broadcast specification, we introduce a variable ℓMBRB (reminiscent of the ℓ of
k2ℓ-cast) which indicates the strength of the global delivery guarantee of the primitive: if
one correct process mbrb-delivers an app-message, then ℓMBRB correct processes eventually
mbrb-deliver this app-message10. MBRB is defined by the following properties:

Safety:
MBRB-Validity. If a correct process pi mbrb-delivers an app-message m from a
correct process pj with sequence number sn, then pj mbrb-broadcast m with sequence
number sn.
MBRB-No-duplication. A correct process pi mbrb-delivers at most one app-message
from a process pj with sequence number sn.
MBRB-No-duplicity. No two distinct correct processes mbrb-deliver different
app-messages from a process pi with the same sequence number sn.

Liveness:
MBRB-Local-delivery. If a correct process pi mbrb-broadcasts an app-message m

with sequence number sn, then at least one correct process pj eventually mbrb-delivers
m from pi with sequence number sn.
MBRB-Global-delivery. If a correct process pi mbrb-delivers an app-message m

from a process pj with sequence number sn, then at least ℓMBRB correct processes
mbrb-deliver m from pj with sequence number sn.

It is implicitly assumed that a correct process does not use the same sequence number
twice. Let us observe that, as at the implementation level, the MA can always suppress all
the messages sent to a fixed set D of d processes, these mbrb-delivery properties are the
strongest that can be implemented. More generally, the best-guaranteed value for ℓMBRB is
c − d. So, the previous specification boils down to Bracha’s specification [11] for ℓMBRB = c.

5 k2ℓ-Cast in Action: From Classical BRB to MA-Tolerant BRB
(MBRB) Algorithms

This section uses k2ℓ-cast to reconstruct two signature-free BRB algorithms [11, 20] initially
introduced in a pure Byzantine context (i.e., without any MA). This reconstruction produces
Byzantine-MA-tolerant versions of the initial algorithms that implement the MBRB specifica-
tion of Section 4. Moreover, when d = 0, our two reconstructed BRB algorithms are strictly
more efficient than the original algorithms that gave rise to them (they terminate earlier).

More precisely, the original and reconstructed versions of Bracha’s BRB are identical
in terms of communication cost, time complexity, and t-resilience (when d = 0). The
same comparison holds for the original and reconstructed versions of Imbs and Raynal’s
BRB. However, both reconstructed BRB algorithms use smaller quorums than their original
versions, and therefore require fewer messages to progress. In an actual network, this means
a lower latency in practice, as practical networks typically exhibit a long tail distribution of
latencies (a phenomenon well-studied by system and networking researchers [14, 15, 34]).

10 If there is no MA (i.e. d = 0), we should have ℓMBRB = c ≥ n− t.
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Algorithm 2 k2ℓ-cast-based reconstruction of Bracha’s BRB algorithm (code of pi).

init: obje ← SigFreeK2LCast(qd=⌊n+t
2 ⌋+1, qf =t+1, single=true);

objr ← SigFreeK2LCast(qd=2t+d+1, qf =t+1, single=true).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(init(m, sn)).

(2) when init(m, sn) is received from pj do obje.k2ℓ_cast(echo(m), (sn, j)).

(3) when (echo(m), (sn, j)) is obje.k2ℓ_delivered do objr.k2ℓ_cast(ready(m), (sn, i)).

(4) when (ready(m), (sn, j)) is objr.k2ℓ_delivered do mbrb_deliver(m, sn, j).

To help readers familiar with the initial algorithms, we use the same message types (init,
echo, ready, witness) as in the original publications. It has been shown in [4] that the
MBRB problem can be solved if and only if n > 3t + 2d.

5.1 Bracha’s BRB algorithm reconstructed
Reconstructed version. Bracha’s BRB algorithm comprises three phases. When a process
invokes brb_broadcast(m, sn), it disseminates the app-message m an init message (first
phase). The reception of this message by a correct process triggers its participation in a
second phase implemented by the exchange of messages tagged echo. Finally, when a process
has received echo messages from “enough” processes, it enters the third phase, in which
ready messages are exchanged, at the end of which it brb-delivers the app-message m.
Alg. 2 is a reconstructed version of the Bracha’s BRB, which assumes n > 3t + 2d + 2

√
td.

The algorithm requires two instances of k2ℓ-cast, denoted obje and objr, associated with
the echo messages and the ready messages, respectively. For both these objects, the
Boolean single is set to true. For the quorums, we have the following:

• obje: qf = t + 1 and qd = ⌊ n+t
2 ⌋ + 1, • objr: qf = t + 1 and qd = 2t + d + 1.

The integer sn is the sequence number of the app-message m mbrb-broadcast by pi. The
identity of m is consequently the pair ⟨sn, i⟩.
Alg. 2 provides ℓMBRB =

⌈
c

(
1 − d

c−2t−d

)⌉
under:

B87-Assumption (for Bracha 1987): n > 3t + 2d + 2
√

td;
its proof of correctness can be found in the extended version.

Comparison (Table 2). When d = 0, both Bracha’s algorithm and its reconstruction use
the same quorum size for the ready phase. The quorums of the echo phase are however
different (Table 2). As the algorithm requires n > 3t, we define ∆ = n − 3t as the slack
between the lower bound on n and the actual value of n. When considering the forwarding
threshold qf , we have

⌊
n+t

2
⌋

+ 1 = 2t +
⌊ ∆

2
⌋

+ 1 > t + 1. As a result, the reconstruction of
Bracha’s algorithm always uses a lower forwarding threshold for echo messages than the
original. It therefore forwards messages more rapidly and reaches the delivery quorum faster.

Table 2 Bracha’s original version vs. k2ℓ-cast-based reconstruction when d = 0.

Threshold Original version (echo phase) k2ℓ-cast-based version (obje)

Forwarding qf

⌊
n + t

2

⌋
+ 1 t + 1

Delivery qd

⌊
n + t

2

⌋
+ 1

⌊
n + t

2

⌋
+ 1
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Algorithm 3 k2ℓ-cast-based reconstruction of Imbs and Raynal’s BRB algorithm (code of pi).

init: objw ← SigFreeK2LCast(qd=
⌊

n+3t
2

⌋
+ 3d + 1, qf =

⌊
n+t

2

⌋
+ 1, single=false).

(1) operation mbrb_broadcast(m, sn) is ur_broadcast(init(m, sn)).

(2) when init(m, sn) is received from pj do objw.k2ℓ_cast(witness(m), (sn, j)).

(3) when (witness(m), (sn, j)) is objw.k2ℓ_delivered do mbrb_deliver(m, sn, j).

5.2 Imbs and Raynal’s BRB algorithm reconstructed
Reconstructed version. Imbs and Raynal’s BRB is another BRB implementation, which
achieves an optimal good-case latency (only two communication steps) at the cost of a
non-optimal t-resilience. Its reconstructed version requires n > 5t + 12d + 2td

t+2d .
The algorithm requires a single k2ℓ-cast object, denoted objw, associated with the witness

message, and which is instantiated with qf =
⌊

n+t
2

⌋
+ 1 and qd =

⌊
n+3t

2
⌋

+ 3d + 1, and the
Boolean single = false. Similarly to Bracha’s reconstructed BRB, an identity of app-message
in this algorithm is a pair ⟨sn, i⟩ containing a sequence number sn and a process identity i.

Alg. 3 provides ℓMBRB =
⌈

c

(
1 − d

c−⌊ n+3t
2 ⌋−3d

)⌉
under:

IR16-Assumption (for Imbs-Raynal 2016): n > 5t + 12d + 2td
t+2d ; (where t + d > 0)

its proof of correctness can be found in the extended version.

Comparison (Table 3). Table 3 compares Imbs and Raynal’s original algorithm against its
k2ℓ-cast reconstruction for d = 0. Recall that this algorithm saves one communication step
with respect to Bracha’s at the cost of a weaker t-tolerance, i.e., it requires n > 5t. As for
Bracha, let us define the slack between n and its minimum as ∆ = n − 5t, we have ∆ ≥ 1.

Let us first consider the size of the forwarding quorum (first line of the table). We have
n−2t = 3t+∆ and ⌊ n+t

2 ⌋+1 = 3t+ ⌊ ∆
2 ⌋+1. When ∆ > 2, we always have ∆ > ⌊ ∆

2 ⌋+1,
it follows that the forwarding predicate of the reconstructed version is equal or weaker
than the one of the original version.
The same occurs for the size of the delivery quorum (second line of the table). We have
n−t = 4t+∆ and ⌊ n+3t

2 ⌋+1 = 4t+⌊ ∆
2 ⌋+1. So both reconstructed quorums are lower than

those of the original version when ∆ > 2, making the reconstructed algorithm quicker as
soon as n ≥ 5t+3. The two versions behave identically for 5t+3 ≥ n ≥ 5t+2 (∆ ∈ {1, 2}).

Table 3 Imbs and Raynal’s original version vs. k2ℓ-cast-based reconstruction when d = 0.

Threshold Original version (witness phase) k2ℓ-cast-based version (objw)

Forwarding qf n− 2t
⌊

n + t

2

⌋
+ 1

Delivery qd n− t
⌊

n + 3t

2

⌋
+ 1

5.3 Numerical evaluation of the MBRB algorithms
Fig. 3 provides a numerical evaluation of the delivery guarantees of both k2ℓ-cast-based
MBRB algorithms (Algs. 2 and 3) in the presence of Byzantine processes and an MA. Results
were obtained for n = 100 and c = n − t, and show the values of ℓMBRB for different values of
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(b) Reconstructed Imbs-Raynal MBRB (Alg. 3).

Figure 3 Values of ℓMBRB for the reconstructed BRB algorithms when varying t and d (n = 100
and c = n− t) within the ranges that satisfy B87-Assumption and IR16-Assumption.

t and d. For instance, Fig. 3a shows that with 6 Byzantine processes and an MA suppressing
up to 9 ur-broadcast messages, Alg. 2 ensures the MBRB-Global-delivery property
with ℓMBRB = 83. The figures illustrate that the reconstructed Bracha algorithm performs
in a broader range of parameter values, mirroring the bounds on n, t, and d captured by
B87-Assumption and IR16-Assumption. Nonetheless, both algorithms exhibit values of
ℓMBRB that can support real-world applications in the presence of an MA.

6 A Signature-Based Implementation of k2ℓ-Cast

This section presents an implementation of k2ℓ-cast based on digital signatures. The
underlying model is the same as that of Section 2 (page 4), except that the computing power
of the attacker is now bounded, which allows us to leverage asymmetric cryptography.

6.1 Algorithm
The signature-based algorithm is described in Alg. 4. It uses an asymmetric cryptosystem
to sign messages and verify their authenticity. Every process has a public/private key
pair. Public keys are known to everyone, but private keys are only known to their owner.
(Byzantine processes may exchange their private keys.) Each process also knows the mapping
between process indexes and associated public keys, and each process can produce a unique,
valid signature for a given message, and check if a signature is valid.

It is a simple algorithm that ensures that an app-message must be k2ℓ-cast by at least k

correct processes to be k2ℓ-delivered by at least ℓ correct processes. For the sake of simplicity,
we say that a correct process pi “ur-broadcasts a set of signatures” if it ur-broadcasts a
bundle(m, id, sigsi) in which sigsi contains the signatures at hand. A correct process pi

ur-broadcasts an app-message m with identity id at line 5 or line 11.
If this occurs at line 5, pi includes in the message it ur-broadcasts all the signatures it
has already received for (m, id) plus its own signature.
If this occurs at line 11, pi has just received a message containing a set of signatures sigs
for the pair (m, id). The process pi then aggregates in sigsi the valid signatures it just
received with the ones it did know about beforehand (line 10).

This algorithm simply assumes: (the prefix “sb” stands for signature-based)
sb-k2ℓ-Assumption 1: c > 2d,
sb-k2ℓ-Assumption 2: c − d ≥ qd ≥ t + 1.
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Algorithm 4 k2ℓ-cast implementation with signatures (code for pi).

object SigBasedK2LCast(qd) is

(1) operation k2ℓ_cast(m, id) is
(2) if

(
(−, id) not already signed by pi

)
then

(3) sigi ← signature of (m, id) by pi;
(4) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi} ∪ {sigi};
(5) ur_broadcast(bundle(m, id, sigsi));
(6) check_delivery()
(7) end if.

(8) when bundle(m, id, sigs) is received do
(9) if

(
sigs contains valid signatures for (m, id) not already ur-broadcast by pi

)
then

(10) sigsi ← {all valid signatures for (m, id) ur-broadcast by pi}
∪ {all valid signatures for (m, id) in sigs};

(11) ur_broadcast(bundle(m, id, sigsi));
(12) check_delivery()
(13) end if.

(14) internal operation check_delivery() is
(15) if

(
pi ur-broadcast at least qd valid signatures for (m, id)
∧ (−, id) not already k2ℓ-delivered

)
(16) then k2ℓ_deliver(m, id)
(17) end if.

end object.

Thanks to digital signatures, processes can relay the messages of other processes in Alg. 4.
The algorithm, however, does not use forwarding in the same way Alg. 1 did: there is no
equivalent of qf here, that is, the only way to “endorse” an app-message (which, in this case,
is equivalent to signing this app-message) is to invoke the k2ℓ_cast operation. Furthermore,
only one app-message can be endorsed by a correct process for a given identity (which is the
equivalent of single = true in the signature-free version).

Although this implementation of k2ℓ-cast provides better guarantees than Alg. 1, using it
to reconstruct signature-free BRB algorithms would be counter-productive. This is because
signatures allow for MA-tolerant BRB algorithms that are more efficient in terms of round
and message complexity than those that can be constructed using k2ℓ-cast [4].

However, a signature-based k2ℓ-cast does make sense in contexts in which many-to-many
communication patterns are required [9], and, we believe, opens the path to novel ways to
handle local state resynchronization resilient to Byzantine failures and message adversaries.
For instance, we are using the following algorithm in our own work to design churn-tolerant
money transfer systems tolerating Byzantine failures and temporary disconnections.

6.2 Guarantees

The proof of the following theorem can be found in the extended version.

▶ Theorem 11 (k2ℓ-Correctness). If sb-k2ℓ-Assumption 1 and 2 are verified, Alg. 4
implements k2ℓ-cast with the following guarantees: (i) k′ = qd − n + c, (ii) k = qd, (iii)
ℓ = c − d, and (iv) δ = qd > n+t

2 .
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7 Conclusion

This paper discussed reliable broadcast in asynchronous systems where an adversary can
control some Byzantine processes and can suppress messages. Its starting point was the
design of generic reliable broadcast abstractions suited to applications that do not require
total order on the delivery of application messages (distributed money transfers are such
applications [8, 10, 19]). However, the ability to thwart an adversary controlling Byzantine
processes and a message adversary is new. This approach can be applied to the design of
a wide range of quorum-based distributed algorithms other than reliable broadcast. For
instance, we conjecture that k2ℓ-cast could benefit self-stabilizing and self-healing distributed
systems [6], where a critical mass of messages from other processes is needed in order to
re-synchronize the local state of a given process.
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A Liveness Proof of the Signature-Free k2ℓ-cast Implementation
(Algorithm 1)

▶ Lemma 2. ℓe × (kU + kF − qd + 1) ≥ (kU + kF )(c − d − qd + qf ) − c(qf − 1) − kNB(qd − qf ).

Proof. Combining (1), (2), (3) and (4) yields:

(kU + kF )ℓe + (qd − 1)(kNF + kNB + kF − ℓe) +
(qf − 1)(c − kNF − kNB − kF ) ≥ (kU + kF )(c − d),

ℓe × (kU + kF − qd + 1) ≥ (kU + kF )(c − d) − (qd − 1)(kNF + kNB + kF ) −
(qf − 1)(c − kNF − kNB − kF ),

≥ (kU + kF )(c − d) − (qd − qf )(kNF + kNB + kF ) − c(qf − 1).

Using sf-k2ℓ-Assumption 1, we have qd − qf ≥ 0. By definition, we also have kNF ≤ kU ,
which yields:

ℓe × (kU + kF − qd + 1) ≥ (kU + kF )(c − d) − (qd − qf )(kU + kF + kNB) − c(qf − 1),
≥ (kU + kF )(c − d − qd + qf ) − c(qf − 1) − kNB(qd − qf ). ◀

▶ Lemma 3. If no correct process k2ℓ-casts (m′, id) with m′ ≠ m, then no correct process
forwards endorse(m′, id) at line 7 (and then kNB = 0).

Proof. Assume there is a correct process that ur-broadcasts endorse(m′, id) at line 7 with
m′ ̸= m. Let us consider the first such process pi. To execute line 7, pi must first receive qf
messages endorse(m′, id) from distinct processes. Since qf > t (sf-k2ℓ-Assumption 1), at
least one of these processes, pj , is correct. Since pi is the first correct process to forward
endorse(m′, id) at line 7, the endorse(m′, id) message of pj must come from line 3, and
pj must have k2ℓ-cast (m′, id). We have assumed that no correct process k2ℓ-cast m′ ̸= m,
therefore m′ = m. Contradiction.

We conclude that, under these assumptions, no correct process ur-broadcasts
endorse(m′, id) with m′ ̸= m, be it at line 3 (by assumption) or at line 7 (shown by
this proof). As a result, kNB = 0. ◀

▶ Lemma 4 (k2ℓ-Local-delivery). If at least k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1 correct processes

k2ℓ-cast an app-message m with identity id and no correct process k2ℓ-casts any app-message
m′ with identity id such that m ̸= m′, then at least one correct process pi k2ℓ-delivers m

with identity id.

Proof. Let us assume that no correct process k2ℓ-casts (m′, id) with m′ ̸= m. No correct
process therefore ur-broadcasts endorse(m′, id) with m′ ≠ m at line 3. Lemma 3 also
applies and no correct process forwards endorse(m′, id) with m′ ̸= m at line 7 either, so
kNB = 0. Because no correct process ur-broadcasts endorse(m′, id) with m′ ≠ m whether
at line 3 or 7, a correct process receives at most t messages endorse(m′, id) (all coming from
Byzantine processes). As by sf-k2ℓ-Assumption 1, t < qd, no correct process k2ℓ-delivers
(m′, id) with m′ ̸= m at line 10.

We now prove the contraposition of the Lemma. Let us assume no correct process
k2ℓ-delivers (m, id). Since, by our earlier observations, no correct process k2ℓ-delivers
(m′, id) with m′ ̸= m either, the condition at line 9 implies that no correct process ever
receives at least qd endorse(m, id), and therefore ℓe = 0. By Lemma 2 we have c(qf − 1) ≥
(kU +kF )(c−d−qd+qf ). sf-k2ℓ-Assumption 1 implies that c−d−qd ≥ 0 ⇐⇒ c−d−qd+qf > 0
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(as qf ≥ t + 1 ≥ 1), leading to kU + kF ≤ c(qf −1)
c−d−qd+qf

. Because of the condition at line 2, a
correct process pj that has k2ℓ-cast (m, id) but has not ur-broadcast endorse(m, id) at
line 3 has necessarily ur-broadcast endorse(m, id) at line 7. We therefore have kI ≤ kU +kF ,
which gives kI ≤ c(qf −1)

c−d−qd+qf
. By contraposition, if kI >

c(qf −1)
c−d−qd+qf

, then at least one correct

process must k2ℓ-deliver (m, id). Hence, we have k =
⌊

c(qf −1)
c−d−qd+qf

⌋
+ 1. ◀

▶ Lemma 5. (single = false) =⇒ (kNB = 0).

Proof. Let us consider a correct process pi ∈ A ∪ B. If we assume pi ̸∈ F , pi never
executes line 7 by definition. Because pi ∈ A ∪ B, pi has received at least qf messages
endorse(m, id), and therefore did not fulfill the condition at line 6 when it received its qf

th

message endorse(m, id). As single = false by Lemma assumption, to falsify this condition,
pi must have had already ur-broadcast endorse(m, id) when this happened. Because pi

never executes line 7, this implies that pi ur-broadcasts endorse(m, id) at line 3, and
therefore pi ∈ NF . This reasoning proves that A ∪ B \ F ⊆ NF . As the sets F , NF and NB
partition A ∪ B, this shows that NB = ∅, and kNB = |∅| = 0. ◀

▶ Lemma 6. If at least one correct process k2ℓ-delivers (m, id) and x = kU +kF (the number
of correct processes that ur-broadcast endorse(m, id) at line 3 or 7), then x ≥ qd − t and
x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1).

Proof. Let us write wb
A the total number of endorse(m, id) messages from Byzantine pro-

cesses received by the processes of A, and wA = wc
A +wb

A the total of number endorse(m, id)
messages received by the processes of A, whether these endorse messages originated from
correct or Byzantine senders. By definition, wb

A ≤ tℓe and wA ≥ qdℓe. By combining these
two inequalities with (1) on wc

A we obtain:

qdℓe ≤ wA = wc
A + wb

A ≤ (kU + kF )ℓe + tℓe = (t + kU + kF )ℓe,

qd ≤ t + kU + kF , (as ℓe > 0)
qd − t ≤ kU + kF = x. (5)

This proves the first inequality of the lemma. The processes in A ∪ B each receive
at most kU + kF distinct endorse(m, id) messages from correct processes, so we have
wc

A + wc
B ≤ (kNF + kF + kNB)(kU + kF ). Combined with the inequalities (3) on wc

C and (4)
on wc

A + wc
B + wc

C that remain valid in this case, we now have:

(kNF + kF + kNB)(kU + kF ) + (qf − 1)(c − kNF − kNB − kF ) ≥ (kU + kF )(c − d),
(kNF + kF + kNB)(kU + kF − qf + 1) ≥ (kU + kF )(c − d) − c(qf − 1). (6)

Let us determine the sign of (kU + kF − qf + 1). We derive from (5):

kU + kF − qf + 1 ≥ qd − t − qf + 1
≥ 1 > 0. (as qd − qf ≥ t by sf-k2ℓ-Assumption 1)

As (kU + kF − qf + 1) is positive and we have kU ≥ kNF by definition, we can transform (6)
into:

(kU + kF + kNB)(kU + kF − qf + 1) ≥ (kU + kF )(c − d) − c(qf − 1),
(x + kNB)(x − qf + 1) ≥ x(c − d) − c(qf − 1), (as x = kU + kF )

x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1). ◀
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▶ Lemma 7. If kNB = 0, and at least one correct process k2ℓ-delivers (m, id), then kU +kF ≥
qd.

Proof. By Lemma 6 we have:

x2 − x(c − d + qf − 1 − kNB) ≥ −(c − kNB)(qf − 1), (7)

As (7) holds for all, values of c ∈ [n − t, n], we can in particular consider c = n − t. Moreover,
as by hypothesis, kNB = 0, we have.

x2 − x(n − t − d + qf − 1) + (qf − 1)(n − t) ≥ 0,

x2 − αx + (qf − 1)(n − t) ≥ 0. (by definition of α) (8)

Let us first observe that the discriminant of the second-degree polynomial in (8) is non
negative, i.e. α2 − 4(qf − 1)(n − t) ≥ 0 by sf-k2ℓ-Assumption 2. This allows us to compute
the two real-valued roots as follows:

r0 = α

2 −
√

α2 − 4(qf − 1)(n − t)
2 and r1 = α

2 +
√

α2 − 4(qf − 1)(n − t)
2 .

Thus (8) is satisfied if and only if x ≤ r0 ∨ x ≥ r1.

Let us prove r0 ≤ qd − 1 − t. We need to show that:

α

2 −
√

α2 − 4(qf − 1)(n − t)
2 ≤ qd − 1 − t

α

2 − (qd − 1) + t ≤
√

α2 − 4(qf − 1)(n − t)
2√

α2 − 4(qf − 1)(n − t)
2 ≥ α

2 − (qd − 1) + t√
α2 − 4(qf − 1)(n − t) ≥ α − 2(qd − 1) + 2t.

The inequality is trivially satisfied if α − 2(qd − 1) + 2t < 0. For all other cases, we need
to verify that:

α2 − 4(qf − 1)(n − t) ≥ (α − 2(qd − 1) + 2t)2,

α2 − 4(qf − 1)(n − t) ≥ α2 + 4(qd − 1)2 + 4t2 − 4α(qd − 1) + 4αt − 8t(qd − 1),
−4(qf − 1)(n − t) ≥ 4(qd − 1)2 + 4t2 − 4α(qd − 1) + 4αt − 8t(qd − 1),
−(qf − 1)(n − t) ≥ (qd − 1)2 + t2 − α(qd − 1) + αt − 2t(qd − 1),
−(qf − 1)(n − t) ≥ (qd − 1 − t)2 − α(qd − 1 − t),

and thus α(qd − 1 − t) − (qf − 1)(n − t) − (qd − 1 − t)2 ≥ 0, which is true by sf-k2ℓ-
Assumption 4.
Let us prove r1 > qd − 1. We want to show that:

α

2 +
√

α2 − 4(qf − 1)(n − t)
2 > qd − 1

Let us rewrite the inequality as follows:

α +
√

α2 − 4(qf − 1)(n − t) > 2(qd − 1)√
α2 − 4(qf − 1)(n − t) > 2(qd − 1) − α
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The inequality is trivially satisfied if 2(qd − 1) − α < 0. For all other cases, we can take
the squares as follows:

α2 − 4(qf − 1)(n − t) > (2(qd − 1) − α)2,

α2 − 4(qf − 1)(n − t) > 4(qd − 1)2 + α2 − 4α(qd − 1),
−4(qf − 1)(n − t) > 4(qd − 1)2 − 4α(qd − 1),

4α(qd − 1) − 4(qf − 1)(n − t) − 4(qd − 1)2 > 0,

α(qd − 1) − (qf − 1)(n − t) − (qd − 1)2 > 0,

which is true by sf-k2ℓ-Assumption 3.

We now know that r0 ≤ qd −1−t and that r1 > qd −1. In addition, as x ≤ r0 ∨x ≥ r1, we
have x ≤ qd − t − 1 ∨ x > qd − 1. But Lemma 6 states that x ≥ qd − t, which is incompatible
with x ≤ qd − t − 1. So we are left with x > qd − 1, which implies, as qd and x are integers
that x ≥ qd , thus proving the lemma for c = n − t.

Let us now consider the set E0 of all executions in which t processes are Byzantine, and
therefore c = n − t, and a set Ec of executions in which there are fewer Byzantine processes,
and thus c > n − t correct processes. We show that Ec ⊆ E0 in that a Byzantine process
can always simulate the behavior of a correct process. In particular, if the simulated correct
process is not subject to the message adversary, the simulating Byzantine process simply
operates like a correct process. If, on the other hand, the simulated correct process misses
some messages as a result of the message adversary, the Byzantine process can also simulate
missing such messages. As a result, the executions that can happen when c > n − t can also
happen when c = n − t. Thus our result proven for c = n − t can be extended to all possible
values of c. ◀

▶ Lemma 8. If kNB = 0 and kU + kF ≥ qd, then at least
⌈
c

(
1 − d

c−qd+1

)⌉
correct processes

k2ℓ-deliver some app-message with identity id (not necessarily m).

Proof. As kNB = 0 and kU + kF ≥ qd , we can rewrite the inequality of Lemma 2 into:

ℓe × (kU + kF − qd + 1) ≥ (kU + kF )(c − d − qd + qf ) − c(qf − 1).

From kU +kF ≥ qd we derive kU +kF −qd +1 > 0, and we transform the above inequality
into:

ℓe ≥ (kU + kF )(c − d − qd + qf ) − c(qf − 1)
kU + kF − qd + 1 .

Let us now focus on the case in which c = n − t, we obtain:

ℓe ≥ (kU + kF )(n − t − d − qd + qf ) − (n − t)(qf − 1)
kU + kF − qd + 1 .

The right side of the inequality is of the form:

ℓe ≥ ϕx − β

x − γ
= ϕ + ϕγ − β

x − γ
(9)

with:

x = kU + kF ,

γ = qd − 1,

α = n − t − d + qf − 1,

ϕ = n − t − d − qd + qf ,

β = c(qf − 1).
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Since, by hypothesis, x = kU + kF ≥ qd , we have:

x − γ = kU + kF − qd + 1 > 0. (10)

We also have:

ϕγ − β = (α − γ)γ − c(qf − 1) = αγ − γ2 − c(qf − 1),
= α(qd − 1) − (qd − 1)2 − (n − t)(qf − 1) > 0, (by sf-k2ℓ-Assumption 3)

ϕγ − β > 0. (11)

Injecting (10) and (11) into (9), we conclude that ϕ + ϕγ−β
x−γ is a decreasing hyperbole

defined over x ∈]γ, ∞] with asymptotic value ϕ when x → ∞. As x is a number of
correct processes, x ≤ c. The decreasing nature of the right-hand side of (9) leads us to:
ℓe ≥ ϕ + ϕγ−β

c−γ = ϕc−β
c−γ ≥ c(c−d−qd+qf )−c(qf −1)

c−qd+1 ≥ c × c−d−qd+1
c−qd+1 = c

(
1 − d

c−qd+1

)
.

Since ℓe is a positive integer, we conclude that at least ℓmin =
⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes receive at least qd message endorse(m, id) at line 9. As each of these processes
either k2ℓ-delivers (m, id) when this first happens, or has already k2ℓ-delivered another
app-message m′ ̸= m with identity id, we conclude that at least ℓmin correct processes
k2ℓ-deliver some app-message (whether it be m or m′ ̸= m) with identity id when c = n − t.
The reasoning for extending this result to any value of c ∈ [n − t, n] is identical to the one at
the end of the proof of Lemma 7 just above. ◀

▶ Lemma 9 (k2ℓ-Weak-Global-delivery). If single = false, and a correct process
k2ℓ-delivers an app-message m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct

processes k2ℓ-deliver an app-message m′ with identity id (each possibly different from m).

Proof. Let us assume single = false, and one correct process k2ℓ-delivers (m, id). By
Lemma 5, kNB = 0. The prerequisites for Lemma 7 are verified, and therefore kU + kF ≥ qd .
This provides the prerequisites for Lemma 8, from which we conclude that at least ℓ =⌈

c
(

1 − d
c−qd+1

)⌉
correct processes k2ℓ-deliver an app-message m′ with identity id, which

concludes the proof of the lemma. ◀

▶ Lemma 10 (k2ℓ-Strong-Global-delivery). If single = true, and a correct process k2ℓ-
delivers an app-message m with identity id, and no correct process k2ℓ-casts an app-message
m′ ̸= m with identity id, then at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver m

with identity id.

Proof. Let us assume that (i) single = true, (ii) no correct process k2ℓ-casts (m′, id) with
m′ ≠ m, and (iii) one correct process k2ℓ-delivers (m, id). Lemma 3 holds and implies that
kNB = 0. From there, as above, Lemmas 7 and 8 hold, and at least ℓ =

⌈
c

(
1 − d

c−qd+1

)⌉
correct processes k2ℓ-deliver an app-message for identity id.

By hypothesis, no correct process ur-broadcasts endorse(m′, id) at line 3 with m′ ̸= m.
Similarly, because of Lemma 3, no correct process ur-broadcasts endorse(m′, id) at line 7
with m′ ̸= m. As a result, a correct process can receive at most receive t messages
endorse(m′, id) at line 9 (all from Byzantine processes). As qd > t (by sf-k2ℓ-Assumption 1),
the condition of line 9 never becomes true for m′ ̸= m, and as result no correct process delivers
an app-message m′ ̸= m with identity id. All processes that k2ℓ-deliver an app-message with
identity id, therefore, k2ℓ-deliver m, which concludes the lemma. ◀
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