14th Workshop on Parallel
Programming and Run-Time
Management Techniques for
Many-Core Architectures

12th Workshop on Design Tools
and Architectures for Multicore
Embedded Computing Platforms

PARMA-DITAM 2023, January 17, 2023, Toulouse, France

Edited by

Joao Bispo
Henri-Pierre Charles
Stefano Cherubin
Giuseppe Massari

\\v OASICS

OASlcs — Vol. 107 — PARMA-DITAM 2023 www.dagstuhl.de/oasics

Editors

Joao Bispo
University of Porto, Portugal
jbispo@fe.up.pt

Henri-Pierre Charles
CEA Grenoble, France
henri-pierre.charles@cea.fr

Stefano Cherubin
Edinburgh Napier University, UK
S.Cherubin@napier.ac.uk

Giuseppe Massari
Politecnico di Milano, Italy
giuseppe.massari@polimi.it

ACM Classification 2012
Computer systems organization — Multicore architectures; Computer systems organization — Reconfig-
urable computing; Software and its engineering — Runtime environments

ISBN 978-3-95977-269-3

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-269-3.

Publication date
March, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/0ASlcs.PARMA-DITAM.2023.0

ISBN 978-3-95977-269-3 ISSN 1868-8969 https: / /www.dagstuhl.de/oasics

https://orcid.org/0000-0002-3017-9449
mailto:jbispo@fe.up.pt
https://orcid.org/0000-0002-0119-0446
mailto:henri-pierre.charles@cea.fr
https://orcid.org/0000-0002-5579-5942
mailto:S.Cherubin@napier.ac.uk
https://orcid.org/0000-0002-2302-4297
mailto:giuseppe.massari@polimi.it
https://www.dagstuhl.de/dagpub/978-3-95977-269-3
https://www.dagstuhl.de/dagpub/978-3-95977-269-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-269-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

O:iii

OASlcs — OpenAccess Series in Informatics

OASlcs is a series of high-quality conference proceedings across all fields in informatics. OASlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitat Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera Italiana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

PARMA-DITAM 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

The editors would like to thank HIPEAC for their enabling contribution in the
organisation of this workshop and many other quality events.

Contents

Preface
Jodo Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari 0:ix

Invited Papers

ByteNite: A New Business Model for Grid Computing
Fabio Caironi and Niccolo Andrea Castelli i it 1:1-1:12

Challenges and Opportunities in C/C++ Source-To-Source Compilation
Jodo Bispo, Nuno Paulino, and Luis Miguel Sousa oo ... 2:1-2:15

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor
Francesco Barchi, Giacomo Pasini, Emanuele Parisi, Giuseppe Tagliavini,
Andrea Bartolini, and Andrea Acquaviva, 3:1-3:12

Regular Papers

An Evaluation of the State-Of-The-Art Software and Hardware Implementations
of BIKE
Andrea Galimberti, Gabriele Montanaro, William Fornaciari, and Davide Zoni ... 4:1-4:12

MonTM: Monitoring-Based Thermal Management for Mixed-Criticality Systems
Marcel Mettler, Martin Rapp, Heba Khdr, Daniel Mueller-Gritschneder,
Jorg Henkel, and Ulf Schlichtmann i 5:1-5:12

Dynamic Power Consumption of the Full Posit Processing Unit: Analysis and
Experiments
Michele Piccoli, Davide Zoni, William Fornaciari, Giuseppe Massari,
Marco Cococcioni, Federico Rossi, Sergio Saponara, and Emanuele Ruffaldi 6:1-6:11

Adjacent LSTM-Based Page Scheduling for Hybrid DRAM/NVM Memory
Systems
Manolis Katsaragakis, Konstantinos Stavrakakis, Dimosthenis Masouros,
Lazaros Papadopoulos, and Dimitrios Soudriscoiiiiiiiniiinienn.. 7:1-7:12

14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2023).

Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

This volume collects the proceedings of the PARMA-DITAM workshop 2023. PARMA-
DITAM brings together the decade-long experience of two workshops: the workshop on
Parallel Programming and Run-Time Management Techniquees for Many-core Architectures
(PARMA) and the workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms (DITAM). These events first joined in 2014 and since then they
represented a reference point in the European community of high-performance computer
architectures, embedded systems and compiler technologies. PARMA-DITAM is co-located
with and sponsored by the HIPEAC conference, which annually gathers the most excel-
lent researchers on High Performancee Embedded Architectures and Compilers within the
European borders and beyond.

The PARMA-DITAM 2023 workshop includes topics such as parallel programming models,
design space exploration tools and run-time management techniques aiming at exploring
the features and performance of different computing architectures, possibly heterogeneous,
(re-)programmable and/or (re-)configurable, spanning from embedded and cyber-physical
systems, to high performance computing platforms.

This edition features 4 regular papers, carefully selected among 6 submissions by our
expert Technical Program Committee after a double-blind review process. The editors are
proud to propose, in the early pages of this volume, 3 additional manuscripts from invited
research groups, who presented their research and results in invited talks during the workshop
event.

The PARMA-DITAM workshop focuses on seven main topics:

Parallel programming models and languages, compilers and virtualization techniques
Runtime modelling, monitoring, adaptivity, and management

Runtime trade-off execution, power management, and memory management
Heterogeneous and reconfigurable many-core: architectures and design space exploration
Methodologies, design tools, and high level synthesis for many-core architectures
Parallel applications for many-core platforms

Case studies, success stories and applications applying T1-T6

The editors invites researchers to submit their future works for consideration in the
subsequent editions of this workshop.

Jodo Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari

14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2023).

Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

ByteNite: A New Business Model for Grid
Computing

Fabio Caironi &4
ByteNite Inc., San Francisco, CA, USA

Niccolo Andrea Castelli &4
ByteNite Inc., San Francisco, CA, USA

—— Abstract

Years and years of technological advancement have paved the way to cloud computing towards

Industry 4.0, making it possible for a wide range of cloud solutions to become a reality, bringing
innovation and efficiency to business processes and changing our lifestyles. With the benefit of
hindsight in a fully digitalized era, have we ever wondered where does cloud computing come from?
Furthermore, as the on-premise commercial model shifted to cloud computing with the advent of
the internet, what will the increase in worldwide connectivity and the rise of 5G turn the cloud
model into? This article describes in a model for a new commercial grid computing implementation,
called “ByteNite”. We open the paper with the state of the art of the distributed computing models,
including an overview of cloud and grid computing, their commonalities and history, and how they
are topical in today’s world. We build the foundations of our work through a key insight that triggers
powerful implications in connection with the current technologies. We address the new proposed
model through a description of the system, its overall functioning, the underlying business concepts
and the innovative value proposition. We finally then dive into its architecture and workflow design,
delineating its structure and key features, and the chronological phases of its operation.

2012 ACM Subject Classification Computer systems organization — Grid computing; Computer
systems organization — Cloud computing; Computing methodologies — Distributed computing meth-
odologies; Software and its engineering — Software architectures; Computer systems organization
— Dependable and fault-tolerant systems and networks

Keywords and phrases Grid Computing, Cloud Computing, Distributed Applications, High-
Throughput Computing, dApps, Utility Computing

Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2023.1
Category Invited Paper

Related Version Full v2.0: https://bytenite.com/bytenite-white-paper-full-version

1 Introduction

In the IoT and Big Data era, cloud computing and distributed file systems are fundamentals
for data management and processing. Big tech firms and their server farms are the most
valuable resource we can rely on today for outsourced computations; edge computing
has become indispensable in many applications as the volume of data produced daily by
businesses is increasingly significant.
Cloud computing is more than renting someone else’s machines: it encompasses workload
management, service orchestration, distributed storage, and much more. However, it all boils
down to the target machine’s computing power provided by its processor when it comes
to throughput and performance. After all, as B. Sosinsky [25] goes, “cloud computing is
revolutionary, even if the technology it is built on is evolutionary.”
The invention described in this article mostly conforms to the techniques dictated by
the model known as “grid computing”. However, several other topics and frameworks
can be deemed relevant to this invention, including utility or on-demand computing,
? Fabio Caironi and .Niccolb Andrea' Castelli;

5v icensed under Creative Commons License CC-BY 4.0
14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM

2023).
Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari; Article No. 1; pp. 1:1-1:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:f.caironi@bytenite.com
http://www.bytenite.com
https://orcid.org/0000-0002-6949-9917
mailto:n.castelli@bytenite.com
http://www.bytenite.com
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.1
https://bytenite.com/bytenite-white-paper-full-version
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2

ByteNite: A New Commercial Model of Grid Computing

high-throughput computing, distributed computing, and, most of all, cloud computing.
Grid and cloud computing share several key traits, such as their reliance on distributed
resources. Still, they differ slightly in many domains, including business model, architecture,
resource management, and application model. Today, grid computing has evolved to
become the basis of the more advanced cloud, offering more robust performance in a
secure virtual environment. Yet, we claim that there is much value left behind in this
transition, and no project or initiative has been able to seize it and implement it at scale so far.

1.1 Grid vs. Cloud Computing

According to [17, 23], a grid can be defined as a large-scale geographically distributed
hardware and software infrastructure composed of heterogeneous networked resources owned
and shared by multiple administrative organizations, with the goal to create the illusion of a
simple yet large and powerful virtual computer supporting a wide range of applications. Grids
were developed in the mid-1990s to provide a solution for large-scale computational tasks
that required significant processing power, only affordable by supercomputers back then. The
emerging concept of virtualization turned out to be a big win in the utility computing model:
it allowed applications to be abstracted from the underlying fabric (compute power, storage,
network, etc.) and deployed on-demand to more exacting customers requiring stringent SLAs.
That’s how the grid computing model quietly shifted into what we call today cloud computing.
The rapid adoption of the cloud from the mid-2000s was fostered by the decrease in hardware
cost and increase in computing power and storage capacity, as well as the exponentially
growing size of data and processing power used by modern internet applications and services.
On the architecture level, grids and clouds share a fabric layer consisting of the raw hardware
resources and the protocols to access them. While clouds provide a unified resource layer
to virtualize such resources and expose them to end-user applications, grids feature a more
complex set of standard protocols, middleware and toolkits to connect and manage the
resources. Ensuring interoperability and security are fundamental both for grid and cloud
infrastructures. While in grids interoperability comes built-in, as they are based on the
assumption that resources are heterogeneous and dynamic, clouds have developed stronger
security policies complying with regulatory standards. The combination of such properties
in cloud-powered grid computing systems might prove a critical vision for the future of the
cloud in the 2020s.

1.2 Grid computing today

Nowadays, most grid computing initiatives around the world have given their way to more
modern and service-oriented cloud computing applications. Plenty of grid middleware
implementations and grid infrastructures built in the 2000s have either ceased operating,
turned into cloud projects, or been acquired by cloud computing companies.

United Devices Inc., a commercial volunteer computing company offering high-performance
computing services, was sold to a software company that developed cloud management
products called Univa in 2007, which was in turn acquired by cloud software company Altair
Technologies. DataSynapse was sold to TIBCO Software Inc. in 2009, a business intelligence
software company, and their grid computing middleware was turned into a BI product
powered by parallel computing. A different fate awaited companies like Entropia, Inc. and
Popular Power, developers of distributed computing software for CPU scavenging, which were
driven out of business. And so on: the list of companies born in the new millennium trying

F. Caironi and N. A. Castelli

to ride the wave of grid computing is long [18]. It is no mystery why they all succumbed in a
matter of few years: while they were able to develop large-scale computing infrastructure by
accessing the spare processing capacity of thousand of volunteered CPUs, these companies
didn’t offer a form of reward to their contributors. Consequently, the resource owners had
no incentive for their continued contribution, and the economic model proved not scalable
nor maintainable [19]. Given those years’ computing and network capabilities, the only
companies that managed to survive were those noticed and acquired by larger corporations,
which could afford substantial infrastructure investments to keep up with the incoming cloud
wave.

In the volunteer computing world, grids have made a name with some scientific projects
that gained much attention in the academic community throughout the 2000s. FEither
infrastructure-based as TeraGrid [20], middleware-based like the Globus Toolkit [22, 14], or
application-based like SETI@Home [7], all these kinds of projects were aimed at empowering
scientific research in disparate fields (Physics, Medicine, Astronomy, Mathematics, Biology),
making it possible to solve computationally intensive problems that would have been difficult
or infeasible to tackle using standard computers. Some historical volunteer computing
projects made their way through the 21st century and are still working in 2022. Their
participation was primarily motivated by non-monetary prizes, fun, fame, or collaborative
advantage.

The most representative one is BOINC [1, 15], a platform for distributed high-throughput
computing where worker nodes are desktop and laptop computers, tablets, and smartphones
volunteered by their owners. A fair number of applications or “projects” are linked to BOINC
and use or have used its distributed computing infrastructure to solve large-scale scientific
problems that could once be tackled only by supercomputers. SETIQHome was the first
and foremost and gave BOINC the popularity it later had. It was devoted to the Search for
Extra-Terrestrial Intelligence through distributed digital signal processing of radio telescope
data. A week after its launch, SETIQHome scored 200,000 participants; after four or five
months, it broke through a million, and later reached past two million users. In 2020 the
project officially ceased operations. Other remarkable BOINC-powered projects include:
Einstein@Home [4] for the search of weak astrophysical signals from spinning neutron stars;
World Community Grid [10] for scientific research on topics related to health, poverty, and
sustainability; Climateprediction.net [2] for climate models simulations. Distributed.net [3]
was another volunteer computing project attempting to solve large-scale problems, governed
by a non-profit US corporation. As of 2019, distributed.net’s throughput was estimated
at roughly 1.25 petaFLOPs. Lately, distributed.net has joined forces with BOINC with
the aim of finding mathematical solutions to cryptographic algorithms. Another operating
volunteer computing project is HT'Condor [5, 26], an open-source distributed computing
software enabling the increase of computing throughput, developed at the University of
Wisconsin-Madison. HTCondor provides a job queueing mechanism, a scheduling policy,
a priority scheme, and a resource monitoring and management tool, and can integrate
dedicated resources (rack-mounted clusters) and non-dedicated desktop machines into one
computing environment. Finally, a distributed computing project that has lately gained

a broad consensus due to new discoveries regarding SARS-CoV-2 is Folding@Home [16].

The main aim of this project is to understand protein dynamics by means of statistically
distributed simulations. In 2020 the computing speed of Folding@Home peaked at 2.43
exaFLOPS, which is a computing power in the order of one billion billion floating point
operations per second, enough to mine a Bitcoin in ten seconds.

1:3

PARMA-DITAM 2023

1:4

ByteNite: A New Commercial Model of Grid Computing

Although these projects are of great help for research, they won’t be able to unlock the full
potential of a worldwide grid. Their genesis and purpose keep them away from reaching a
wider audience and becoming marketable products. The replicability of any of these models
on the market is not only prevented by the lack of a well thought-out payment framework,
but especially by the lack of a performance-oriented resource management system built with
modern and widely adopted standards and protocols.

Starting in 2010, a new distributed technology started bringing collaborative computing
back into the spotlight. A new global paradigm was established and many companies followed
by building products on top of it or creating their own private sub-networks to capitalize on
what proved to be more than a brand-new concept. I am referring to the blockchain and
all the blockchain-powered dApps (decentralized applications) that have been implemented
thanks to the wild proliferation of this technology. A dApp is an open-source software
application that runs on a peer-to-peer blockchain network. dApps are built for disparate
use cases across various industries, including finance and payments, gaming, supply chain,
user-generated content networks, and distributed computing. The latter use case is relevant
to our framework, as it involves dApps that exploit member devices’ processing power
and network to improve and democratize access to CPU- or GPU-intensive digital services.
Some most notable implementations of decentralized computing involve video streaming
(Livepeer [24, 6], Theta Network [9]), mobile blockchain mining (Sweatcoin [8], MinePi [12]),
and general-purpose computing (Golem [11], Cudos [13], iExec [21]). These applications
usually use Ethereum or owned coins for collecting and distributing payments, and they
handle crypto transactions and task validation with smart contracts. Ethereum also provides
these dApps solutions for guaranteeing distributed consensus and identity management.

A question that might arise is how Ethereum and, generally, blockchain technology
actually empower distributed computing on the processing side. The answer is possibly
that it doesn’t. Uriarte, R.B. and DeNicola, R. (2018) [27], have analyzed the architectures
of three blockchain-based decentralized cloud solutions. Their finding is that in all three
projects, smart contracts, payments, and reputation are managed in a “transaction network”
built on the blockchain, while the actual computing services are executed in a “side-chain
network” charged with processing, negotiation, and verification of computing tasks. As the
paper highlights, the results obtained from a collaborative, distributed computing network
might be chaotic and heterogenous; hence, the side-chain network reveals a non-deterministic
behavior that must be mediated in order to reach a consensus in the transaction network, and
a specific component is needed to interface between the two networks. This adds complexity
to the already high computational cost of running and maintaining a blockchain.

There are other elements holding back Ethereum and other blockchain technologies from
implementing a large-scale, efficient grid like the one discussed in this White Paper. Two of
them are the high transaction costs and the capped transaction throughput (Ethereum can
process less than 30 transactions per second), both posing serious threats to performance and
scalability. Another shortcoming is the almost absent definition of Quality of Service in most
dApps’ smart contracts, or even in their general terms and conditions. Besides signaling an
inability to control and measure the average processing performance, the absence of QoS
makes big customers, that are seldom unconcerned about quality guarantees, shy away from
blockchain-powered computing solutions.

Finally, it is worth mentioning that, despite being the core philosophy of such dApps,
the restriction to support only crypto wallets and cryptocurrency transactions cuts off the
vast majority of both resource providers and cloud computing customers, who normally do
business with fiat currencies and are still — and possibly forever — crypto-averse.

F. Caironi and N. A. Castelli

1.3 Fact

In 2023, an immense underlying computational power is widespread throughout the globe
and sits idle for most of the time. Altogether, it overcomes the joint processor capacity of the
biggest cloud providers by tens of times. More than 12 billion computers, smartphones, tablets,
and other commercial electronic devices are hiding an immense potential, especially now
that they’re shipped with ever more performing hardware, and they’re usually unexploited
during the inactivity of their human owners, like during the night. Not only are electronic
consumer devices underused: many businesses owning disparate types of hardware, from
video production facilities to private data centers and office desktop computers, don’t know
how to use it when it’s not at work.

Past and existing grid computing projects have shown us the potential of building a
distributed computing farm by tapping into a category of machines not originally sold to
fulfill utility computing purposes — the mass consumer technology. However, such vast unused
computational power couldn’t be easily gathered and connected until a few years ago because
of major technological limitations, including the average network speed, network coverage,
and the hardware capacity of common devices on the market. Plus, all the attempts to build
a global grid have been held back by exclusively technology-geared strategies and major
market misunderstandings, largely attributable to shortsighted or too-technical visions, that
entailed failing executions or limited outcomes.

Today, the easy and fast access of any device to the internet and the virtualization
provided by the cloud make it possible to collect and utilize the vast worldwide computing
potential in a distributed computing system, reviving the already-known paradigm of grid
computing and enhancing it with the reliability, scalability, and automation provided by
the cloud. At the same time, the lessons learned from the past make us steer clear of
development strategies that have the grid technology as the only guiding star: for such a
massive commercial project to be successful, any development choice, from architecture to
applications, must be driven by evident market demands and clear economic visions, that
spur the adoption of grid computing as key to solving market-inherent cost-benefit problems.

2 A new model: ByteNite

ByteNite is a commercial, centralized, service-oriented grid computing system based on
subscriber devices’ processing capacity, realizing a high-throughput computing environment
for utility computing purposes. Rather than an online marketplace, where buyers and
sellers are directly put into contact, ByteNite creates two different and separate hubs that
are accessible by the purchasers of computing services (“users” or “customers”) and by
the suppliers of computing power (“workers” or “suppliers”), respectively, brokering the
management of computational resources to keep the two segments well coordinated and
functioning.
The three components that build up ByteNite’s grid computing system are the following:
Core System
The core middleware, or backend layer, responsible for managing, scheduling, retrieving,
transforming, transitioning, sending, organizing, and validating the users’ computational
jobs. It stores and makes accessible at any moment all the users’ and workers’ data,
including job history, activity, wallet balances, and device info. It also generates quotes,
collects users’ payments, and distributes rewards to workers.
ByteNite Computing Platform
A user-level middleware available as a software-as-a-service platform, accessible through
a web Ul or an API, exposing both ready-made and custom-made computing services
(“applications”) to customers. On the platform, users can configure, submit, and pay

1:5

PARMA-DITAM 2023

1:6

ByteNite: A New Commercial Model of Grid Computing

for computing jobs, as well as upload and download their data (inputs and outputs),
and watch their job history, jobs states, and summary usage. They can automate the
execution of their jobs via recurring tasks and automation pipelines.

ByteNite Worker App

A piece of software that runs on workers’ devices and enables them to receive, queue up,
process, send back, and clear up computing tasks, according to programs shipped with
each task and run inside the App. The Worker App also makes available and visible the
summary of completed tasks and their credits; hence, it allows workers to redeem their
credits by converting them into several forms of reward, including cash.

In other words, ByteNite provides software to connect the users to the system, schedule
the workload, and connect the computational grid to the system. The workers supply the
fabric layer consisting of distributed computing resources, and the users provide all the inputs
that feed the applications, including data.

ByteNite stands in the market as a provider of high-throughput computing services. It
targets small- and medium-sized companies seeking faster performance at more affordable
prices than the cloud, and enterprises that operate daily with big volumes of data and need
to speed up their workflows. In both cases, ByteNite helps fulfilling performance goals
for specific applications that generate loosely coupled or independent tasks. ByteNite will
develop three target applications that represent its core mission and an extraordinary market
opportunity: Video Encoding, Graphics Rendering, and Computer Vision. In addition to
being three of the most intensive commercial computing activities, these applications are
well-suited for distributed computing as each of them generates workloads that can be divided
into multiple, independent smaller tasks. On the other side, ByteNite’s customers will be
provided with the tools to develop their own distributed applications to run on the grid
resources using ByteNite Computing Platform. It is possible to find a variety of use cases for
such tailor-made solutions in the media & entertainment industry, as well as in the financial
and healthcare sectors.

On the other side, ByteNite offers a solution to make passive income out of ordinary
devices, like personal and office computers, smartphones, tablets, small servers, and eventually
even a wider range of IoT devices like video game consoles, TVs, home appliances, and
industrial electrical machinery. Whilst in 2022 we have online marketplaces to effortlessly sell
or rent out almost everything, from material belongings to volatile goods like electricity, it is
not yet possible to rent out our devices’ exceeding computing capacity in the matter of a few
minutes. ByteNite brings together the technology to enable such a monetization possibility
with a smooth onboarding of the workers, by streamlining the workflow and condensing all
the interactions into a single piece of software, ByteNite Worker App.

Innovation

ByteNite is the first distributed computing solution to combine the following accomplishments:
Uses heterogeneous, cross-platform, both mobile and desktop devices located anywhere
as worker nodes; Creates a computing-capacity sharing economy based on the trade of
distributed processing tasks with real moneys;

Is open to everyone;

Constantly monitors performance and automatically turns it into business requirements
and price adjustments;

Manages non-deterministic behaviors with a centralized scheduling system based on both
a-priori and a-posteriori fault-tolerant techniques.

F. Caironi and N. A. Castelli

ByteNite has the mission of becoming the first worldwide grid powering a general-purpose
high-throughput computing system, where everybody can build and run their distributed
applications or use ready-made flagship computing products. ByteNite’s values are enclosed
in following attributes:

Availability
The extension of ByteNite’s grid, together with its devices’ diversification, geographical
distribution, and heterogeneous connectivity, allows and guarantees flexible provisioning
of computing resources at any time.
Agility
The commodification and customization of computing services, plus the existence of an
optimal delivering pipeline, make the entire process from data ingestion to output upload
extraordinarily agile.
Speed
The more nodes are in the grid, the less time is needed to process partitioned jobs. This
fact makes ByteNite competitive and preferable to the classic cloud and on-premise
computing for various use cases.
Sustainability
Deploying distributed computations on existing and commonly active devices is an
environmentally-friendly alternative to using server farms, provisioning new hardware,
and building new infrastructure. ByteNite’s distributed computing model guarantees
an inherent heat dispersion from devices’ processors that are connected from different
locations, removing the need for artificial cooling of rack-mounted servers. In addition,
old or unused devices can be turned into ByteNite’s workers instead of winding up in the
trash, contributing to lowering the pollution caused by electronic waste.

Security

Data is at the core of ByteNite’s business, and so is cybersecurity. All data coming to and

from ByteNite’s system is encrypted and handled in isolated runtime environments, and

workers are constantly monitored and readily excluded if deemed potentially malicious.

In addition, ByteNite’s reliance on a robust and certified cloud grants it ready and

updated cybersecurity policies and implementations that are nowadays standards for all

cloud-based software companies.

3 ByteNite’'s Core System

In this section, we shall give a brief overview of how ByteNite works from a backend
perspective: how its Core System is structured, what the components responsible for running
the services are, and what stages the general workflow is composed of.

3.1 Architecture

ByteNite’s Core System has a micro-services architecture. Each service represents an
independent and scalable backend component running in the cloud and interfacing with the

Worker App, the Computing Platform, and the other components through dedicated APIs.

The architecture diagram is depicted in Figure 1.
The following internal services run the business logic and are not exposed publicly:
The Partitioner verifies the integrity of data uploaded by the users through the Computing
Platform, and splits it into smaller chunks suitable for worker devices. A task record is
created for every chunk, and the record ID is queued on a job-specific Redis queue.

1:7

PARMA-DITAM 2023

1:8

ByteNite: A New Commercial Model of Grid Computing

The Feeder manages and supervises the whole task scheduling system. It takes tasks
from job-specific queues and puts them in a global task queue ready to be consumed by
the Tasks API. Tasks are sorted according to a scheduling algorithm that considers the
availability of computing resources in the grid, the job’s requirements, and the user’s
preferences.

The Validator verifies the integrity and correctness of results sent by the worker apps.
Different jobs could use different validators.

The Assembler collects completed and validated tasks from the Validator and assembles
them into larger chunks until it has rebuilt the full processed data file, which is uploaded
to a cloud storage bucket accessible from the Computing Platform.

The Reward System is responsible for clearing ByteChip transactions between ByteNite
and the workers and ensuring that all balances are constantly updated.

The customer APIs handle communications with the Computing Platform:

The Jobs APIs allow the Computing Platform to create and configure new jobs, send
input data, send and receive state updates, and fetch download links.

The Billing API allows the Computing Platform to access billing and payment information.

Similarly, the worker APIs connect the Core System with the Worker Apps:

The Tasks APIs allow the Worker App to fetch new tasks, download the data and
programs, and send back results or abort the task.

The Wallet API allows the Worker App to get the ByteChip balance and history and to
request and record ByteChip expenditures in services or payouts.

The Devices API connects to Firebase to fetch information about task and device states,
user authentication, and device preferences. This is the only server-side component that
connects to Firebase.

Finally, ByteNite’s data is sorted and stored in the following components:

The Cloud SQL Database is a SQL database that supports atomic transactions. It stores
all data with persistence and consistency priorities over access performance.

The Firebase Database stores all device-related information like hardware specifications
and device state and handles authentication. This is the only database that directly
interfaces with the devices.

The Redis Databases are fast databases for internal usage that handle short-run storage
for frequent reads, writes, and inter-service messages.

The Cloud buckets are web-based folders with access restrictions that store files downloaded
or uploaded by the users.

3.2 Workflows

ByteNite fulfills its twofold mandate of collecting users’ jobs and distributing them to the grid
through several recurring workflows. Each workflow is a set of rules and actions happening
either in the Core System, on the Computing Platform, on the Worker App, or among
them, that is well-coordinated with the other processes and designed to make the whole
execution fault-tolerant and agile. From a 360-degree perspective, the processing of a job
can be summarized as follows.

When a new job is submitted on the Computing Platform, ByteNite sets up a pipeline
between the user and the grid. First of all, the Feeder builds the framework of the scheduling
logic for that specific job, and the Reward System estimates its cost. Hence, the job starts
and the Job Upload API streams the input data to the Partitioner, creating chunks on the

F. Caironi and N. A. Castelli

fly and passing each of them on to the Feeder. The Feeder wraps them with an executable,
forming tasks that are scheduled and sent to the grid. The distribution logic established by
the scheduling algorithm run by the Feeder guarantees the abstraction of the scheduling from
the actual delivery so that the process is completely automated and reliable. In particular,
the algorithm of the Feeder enforces a concept of “first come, first served”, thanks to which
no data chunk needs to wait for a specific device to show up, but every chunk is appended to
global queues from which the next available device can download it. Every device competes
in the grid to process as many tasks as it’s eligible for, and its only assignment is to tune
in with ByteNite’s server waiting for new tasks in the global queues, to process them and
upload back the results. The grid responds asynchronously, sending back processed tasks
from multiple devices. When node failures or delays are encountered, several measures are
adopted to guarantee a hassle-free continuation of the processing. In any case, the workflow
continues up to the moment when all tasks have been successfully processed, retrieved, and
validated. Finally, the Assembler quickly rebuilds the integral output using indexes contained
in tasks’ metadata and uploads it to a Cloud bucket immediately available to the user.

All data that goes through the Core System is temporarily stored and released as soon
as a job is completed, except for the final output that could be stored in a Cloud bucket
for 24h. This, together with the fact that neither the Partitioner nor any other services are
tasked with the heavy lifting of data processing, make the execution of ByteNite very light,
removing the need to maintain a high-capacity infrastructure. At the same time, ByteNite
can control the inflow and outflow efficiently and take care of the integrity and security of
data processing.

Figure 2 gives a representation of the general workflow described above.

—— References

Boinc. URL: https://boinc.berkeley.edu/.

climateprediction.net. URL: https://www.climateprediction.net/.
distributed.net. URL: https://www.distributed.net/.

Einstein@home. URL: https://einsteinathome.org/.

Htcondor. URL: https://htcondor.org/.

Livepeer. URL: https://livepeer.org/.

Seti@home. URL: https://setiathome.berkeley.edu/.

Sweatcoin. URL: https://sweatco.in/.

Theta network. URL: https://www.thetatoken.org/.

World community grid (wcg). URL: https://www.worldcommunitygrid.org/.

The golem project. Golem Factory GmbH, 2016. URL: https://whitepaper.io/document/
21/golem-whitepaper.

© 00 ~NO G b~ WN =

-
- O

-
N

Pi white paper. SocialChain, Inc., 2019. URL: https://minepi.com/white-paper.

Cudos white paper. Cudos Limited, 2021. URL: https://www.cudos.org/wp-content/

uploads/2021/11/cudos-white-paper.pdf.

14 The Globus Alliance. The globus toolkit. URL: http://toolkit.globus.org/.

15 D. P. Anderson. Boinc: a system for public-resource computing and storage. In Fifth
IEEE/ACM International Workshop on Grid Computing, pages 4-10, 2004. doi:10.1109/
GRID.2004.14.

16 A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande. Folding@home:

Lessons from eight years of volunteer distributed computing. In 2009 IEEE International

Symposium on Parallel & Distributed Processing, pages 1-8, 2009. doi:10.1109/IPDPS.2009.

5160922.

o
w

1:9

PARMA-DITAM 2023

https://boinc.berkeley.edu/
https://www.climateprediction.net/
https://www.distributed.net/
https://einsteinathome.org/
https://htcondor.org/
https://livepeer.org/
https://setiathome.berkeley.edu/
https://sweatco.in/
https://www.thetatoken.org/
https://www.worldcommunitygrid.org/
https://whitepaper.io/document/21/golem-whitepaper
https://whitepaper.io/document/21/golem-whitepaper
https://minepi.com/white-paper
https://www.cudos.org/wp-content/uploads/2021/11/cudos-white-paper.pdf
https://www.cudos.org/wp-content/uploads/2021/11/cudos-white-paper.pdf
http://toolkit.globus.org/
https://doi.org/10.1109/GRID.2004.14
https://doi.org/10.1109/GRID.2004.14
https://doi.org/10.1109/IPDPS.2009.5160922
https://doi.org/10.1109/IPDPS.2009.5160922

1:10

ByteNite: A New Commercial Model of Grid Computing

17

18

19

20

21

22

23

24

25

26

27

Miguel Bote-Lorenzo, Yannis Dimitriadis, and Eduardo Gémez-Sanchez. Grid Charac-
teristics and Uses: A Grid Definition, pages 291-298. Springer, 2004. doi:10.1007/
978-3-540-24689-3_36.

Rajkumar Buyya. Grid computing info centre (grid infoware), 2000-2008. URL: http:
//www.gridcomputing.com/.

Rajkumar Buyya and Kris Bubendorfer. Market-oriented grid and utility computing. Wiley
series on parallel and distributed computing. John Wiley & Sons, Hoboken, N.J, 2010. doi:
10.1002/9780470455432.

Dane Skow Charlie Catlett, Pete Beckman and Ian Foster. Creating and operating national-
scale cyberinfrastructure services. CTWatch Quarterly, 2, May 2006. URL: https://icl.utk.
edu/ctwatch/quarterly/print.php/3Fp=35.html.

G. Fedak, W. Bendella, and E. Alves. iExec — blockchain-based decentralized cloud computing
(whitepaper). Report, iExec, 2018. URL: https://iex.ec/wp-content/uploads/2022/09/
iexec_whitepaper.pdf.

Tan Foster and Carl Kesselman. The globus project: a status report. Future Generation
Computer Systems, 15(5):607-621, 1999. doi:10.1016/S0167-739X(99)00013-8.

Bart Jacob and International Business Machines Corporation. International Technical Support
Organization. Introduction to grid computing. IBM redbooks. IBM, International Technical
Support Organization, United States?, 1st edition, 2005. URL: https://lccn.loc.gov/
2006279225.

Doug Petkanics and Eric Tang. Livepeer whitepaper. Report, Technical report, Livepeer,
2018.

Barrie A. Sosinsky. Cloud Computing Bible. Bible v.757. Wiley, Indianapolis, Ind, 1st edition
edition, 2011. doi:10.1002/9781118255674.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice: the
condor experience: Research articles. Concurrency — Practice and Experience, 17:323-356,
2005. doi:10.1002/cpe.938.

Rafael Brundo Uriarte and Rocco DeNicola. Blockchain-based decentralized cloud/fog solutions:
Challenges, opportunities, and standards. IEEE communications standards magazine, 2(3):22—
28, 2018. doi:10.1109/MCOMSTD.2018.1800020.

https://doi.org/10.1007/978-3-540-24689-3_36
https://doi.org/10.1007/978-3-540-24689-3_36
http://www.gridcomputing.com/
http://www.gridcomputing.com/
https://doi.org/10.1002/9780470455432
https://doi.org/10.1002/9780470455432
https://icl.utk.edu/ctwatch/quarterly/print.php%3Fp=35.html
https://icl.utk.edu/ctwatch/quarterly/print.php%3Fp=35.html
https://iex.ec/wp-content/uploads/2022/09/iexec_whitepaper.pdf
https://iex.ec/wp-content/uploads/2022/09/iexec_whitepaper.pdf
https://doi.org/10.1016/S0167-739X(99)00013-8
https://lccn.loc.gov/2006279225
https://lccn.loc.gov/2006279225
https://doi.org/10.1002/9781118255674
https://doi.org/10.1002/cpe.938
https://doi.org/10.1109/MCOMSTD.2018.1800020

1:11

PARMA-DITAM 2023

Figures

A

F. Caironi and N. A. Castelli

Ll
qLL- v
19%j0nq abe.o}s pnojn @
i nisuelL
: > aseqejeq %
; oL sipay Q
sooinies Butoey Jewoisny eding [|
sao1nIes Buioe) aoineq
H — : (Tos pnoo) aa
v wi IBM AT
: =08 e €% : (o160]) se@o1nIBS [BUIBIU|
i A |
(sipoy)
ananb sqor :
Q — - 18peay ’
| | Jofepien oy
: S :
v :
(sipoy)) :
senanb ao1n8Qq)
(aBes0is prpio) 1ovong € m :
Jauoniyed I ssaineq
1dv Buig 1dV 19I/em 3 4
| ; x
€l : i
wiopeld Bupndwod ddy Jomom :
; ETEET — ; :
i N H
al uoyensiboy)
$9beSSaW BJRYG - - - <o - :
I
: A
uoneanuayINY L
h uoneopuayIny
i H
oooo

Figure 1 ByteNite’s Core System architecture diagram.

1:12

ByteNite: A New Commercial Model of Grid Computing

User

H | E 9
Parameters

+
Output
1 |
Input
data
8

@

Computing platform
Job APIs
/ \
Partitioner Assembler
=7 =
Data chunks — 3 6 Completed tasks
— 7
® Task scheduling
choices [)+ appexe =
e Device ranking Validator & ® Rewards assignment
® Fault tolerance Feeder Reward System o Task validation
® Price and rewards
quotes
Task queues
4 or bl AN
Download and .-': I“-. GRPC Streams
upload of tasks 7 g : :
i g § 22
Grid of devices m E E E E E
5 5 : “ | Pookz

\

w2, 2, £, b 8

Figure 2 An illustration of ByteNite’s general workflow.

Challenges and Opportunities in C/C++
Source-To-Source Compilation

Joao Bispo 24
University of Porto, Portugal

Nuno Paulino 24
Faculty of Engineering, University of Porto, Portugal

Luis Miguel Sousa =24
Faculty of Engineering, University of Porto, Portugal
INESC TEC, Porto, Portugal

—— Abstract

The C/C++ compilation stack (Intermediate Representations (IRs), compilation passes and backends)
is encumbered by a steep learning curve, which we believe can be lowered by complementing it with
approaches such as source-to-source compilation. Source-to-source compilation is a technology that
is widely used and quite mature in certain programming environments, such as JavaScript, but that
faces a low adoption rate in others. In the particular case of C and C++ some of the identified factors
include the high complexity of the languages, increased difficulty in building and maintaining C/C++
parsers, or limitations on using source code as an intermediate representation. Additionally, new
technologies such as Multi-Level Intermediate Representation (MLIR) have appeared as potential
competitors to source-to-source compilers at this level.

In this paper, we present what we have identified as current challenges of source-to-source
compilation of C and C++, as well as what we consider to be opportunities and possible directions
forward. We also present several examples, implemented on top of the Clava source-to-source compiler,
that use some of these ideas and techniques to raise the abstraction level of compiler research on
complex compiled languages such as C or C++. The examples include automatic parallelization of
for loops, high-level synthesis optimisation, hardware/software partitioning with run-time decisions,
and automatic insertion of inline assembly for fast prototyping of custom instructions.

2012 ACM Subject Classification Software and its engineering — Compilers; Software and its
engineering — Source code generation; Software and its engineering — Development frameworks
and environments; Software and its engineering — Software maintenance tools

Keywords and phrases Source-to-source, compilation, transpilers, C/C++, code transformation
Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2023.2
Category Invited Paper

Funding Luis Miguel Sousa: This research has been partially sponsored by the Portuguese Science
Foundation (FCT) under research grant SFRH/BD/10002/2022.

Acknowledgements We would like to thank José G. F. Coutinho for reviewing the paper and the
useful feedback.

1 Introduction

When writing compiled software in languages such as C and C++, we rely on modern
compilation toolchains, such as LLVM and GCC. Such toolchains are incredibly complex
pieces of software [15], which are capable of not only correctly translating the code into
other languages, usually machine-level, but also of transforming and optimising code, to
meet non-functional requirements such as better execution time or smaller code size.
© Jodo Bispo, Nuno Paulino, and Luis Miguel Sousa;

37 licensed under Creative Commons License CC-BY 4.0
14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM

2023).
Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari; Article No. 2; pp. 2:1-2:15

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jbispo@fe.up.pt
https://sigarra.up.pt/feup/pt/func_geral.formview?p_codigo=519965
mailto:nuno.m.paulino@inesctec.pt
https://paginas.fe.up.pt/~nmcp/
https://orcid.org/0000-0001-5547-0323
mailto:lm.sousa@fe.up.pt
https://github.com/lm-sousa
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2

Challenges and Opportunities in C/C++ Source-To-Source Compilation

Compiler research at this level is usually done by working directly with the source code of
these toolchains, typically by forking existing versions to implement the required modifications.
Developers have employed several techniques to improve usability of compilation toolchains,
such as well-defined low-level Intermediate Representations (IRs) [26, 40], pluggable compiler
passes [47] or Domain Specific Languages (DSLs) that generate code for the toolchain, such
as Tablegen [33].

However, there are a number of challenges inherent to this approach. Low-level IRs
are extremely important, as a common representation for distinct input languages, but
it is common for useful semantic details of the original high-level language to be lost in
translation [53]. Traditional compiler IRs are usually tied to a specific computing model (e.g.
the von Neumann machine), which can increase the difficulty of using the same IR to target
other computation models. Since each compiler has it’s own IR, custom compiler passes
become tied to a specific compiler, and the development flow of modifying a complex tool
such as a compiler toolchain makes sharing and reusing custom passes difficult, imposing a
significant entry barrier to researchers whom are not compiler experts but wish to explore
code analyses and transformations.

We consider that this area is ripe for more high-level approaches, and recent developments
such as Multi-Level Intermediate Representation (MLIR) [27], part of the Low Level Virtual
Machine (LLVM) framework, confirm this vision. In particular, C and C++ source-to-source
compilation, as a first step in the compilation toolchain, has been previously proposed as
a complementary approach [6, 44, 5, 22], and our experience indicates it can help address
these challenges. The ubiquity of C and C++ puts the languages in a special position that
justify using them as an IR, in the same sense that compilers traditionally use low-level IRs,
but at a higher abstraction level.

However, C and C++ are complex languages, making source-to-source very challenging in
this case. We identify several challenges related to C and C++ source-to-source compilation,
which include restrictions in the code that can be parsed, difficulties in integration and
interaction with traditional compilers, dealing with complex IRs, as well as other competing
technologies.

On the other hand, we consider that these problems are not insurmountable, and we also
identify possible solutions and opportunities, such as using unmodified established parsers,
propose work flows that do not require recompilation or starting from complex codebases,
distinguish between human-level and compiler-level use cases (and take advantage of both),
and provide high-level environments that promote testing and prototyping.

We have previous experience with source-to-source compilation for C and C++, and
we have had the opportunity to implement several of the ideas presented here in our own
compiler, Clava. Several works have already used Clava as a way to analyse and transform C
and C++ code, and we show several examples of what has been possible after applying these
ideas and techniques.

Source-to-source for C and C++ is not new, and many tools have already been developed.
Section 2 introduces several of these tools. Section 3 presents the identified challenges, and
Section 4 possible solutions and opportunities. Section 5 presents Clava, as well as several
works that have used and extended the compiler, and Section 6 concludes the paper.

J. Bispo, N. Paulino, and L. M. Sousa

Table 1 Summary of Source-to-source Compilers for C/C++.

Work ‘ Codebase ‘ Parser

Transformations ‘ Extension mechanism

Clang' [31]|C/C++ Clang | Text-based Framework
ROSE? [44]|C/C++ |EDG |IR-based Framework
Insieme® [18] | C/C++ Clang |IR-based Framework
Cetus* [5] | Java Custom | IR-based Framework
Artisan [51] | Python |Clang | Text-based Interpreter (Python)

CIL® [37] | C/OCaml | Custom | IR-based
Mercurium® [6] | C/C++ Custom | IR-based
Coccinelle” [28] | C/OCaml | Custom | Text-based

Clava® [9] |Java Clang |IR-based
Ihttps://github.com/11vm/1lvm-project/tree/main/clang 2https://github.com/rose-compiler

Shttps://github.com/insieme “https://github.com/hkhetawat/Cetus “https://github.com/cil-project/cil
Shttps://github.com/bsc-pm/mcxx "https://gitlab.inria.fr/coccinelle “https://github.com/specs-feup/clava

Interpreter (OCaml)

Framework (dynamically loaded plugins)
Interpreter (DSL)

Interpreter (JavaScript)

2 Source-to-Source Compilation

Source-to-source compilers (also commonly called transpilers) are tools whose output is
code still in a high-level language, and in many cases, the same as the input language.
This technology is widely used and quite mature in certain ecosystems, most notably in
JavaScript, where it is used, for instance, to provide backwards compatibility of newer
language revisions [39].

Source-to-source compilers, after parsing, usually represent the code using an Abstract
Syntax Tree (AST) as an intermediate representation. We can generally classify the way C
and C++ source-to-source compilers perform transformations in one of two forms, text-based
or IR-based. The former uses manipulation of the textual source input, using the AST as a
guide; the latter uses manipulation of the AST itself, as an IR, emitting the transformed
code directly from the AST. Due to the nature of C and C++, both approaches have uses.
In particular, since C and C++ both support a text-based preprocessor, the code the parser
receives can be significantly different than the original source-code. This means that to
apply transformations that preserve as much as possibly the original source code (e.g. IDE
refactoring), they should be applied before the preprocessor, directly to the text of the source
code. However, this approach prevents the use of the AST as a modifiable IR, and usually
requires frequent parsing steps. Using IR-based transformations provide a higher degree of
flexibility, as well as a more robust base for building compiler passes over the source code.
Such an approach can feed the output directly to the compiler, or feed back information to
the source-to-source compiler, which can use it in a text-based transformation.

We can also classify the compilers regarding how a user can implement new transforma-
tions. We have identified two categories, frameworks and interpreters. Frameworks allow
the implementation of new transformations by using the compiler as a library, and usually
writing the transformations in the same language as the language of the codebase. The new
transformations are in this way usually bundled inside a new version of the compiler. Inter-
preters are compilers that besides the source code, also accept as input the transformations
to be applied, defined in a language that can be different from the language of the codebase
of the compiler. In this approach, the compiler does not need to be modified to execute new
transformations.

2:3

PARMA-DITAM 2023

https://github.com/llvm/llvm-project/tree/main/clang
https://github.com/rose-compiler
https://github.com/insieme
https://github.com/hkhetawat/Cetus
https://github.com/cil-project/cil
https://github.com/bsc-pm/mcxx
https://gitlab.inria.fr/coccinelle
https://github.com/specs-feup/clava

2:4

Challenges and Opportunities in C/C++ Source-To-Source Compilation

2.1 Source-to-Source Compilers for C and C++

Table 1 summarizes the characteristics of several notable source-to-source compilers for
C/C++. Nearly all are openly accessible, and based on AST manipulation. But often they
are limited to a subset of C/C++, require modifying and recompiling internal codebases,
and/or are designed with a specific set of transformations in mind.

Clang [31] itself provides some text-based source-to-source capabilities. Specifically,
Clang’s libTooling library provides a Rewriter class that can be used to manipulate
the source files[43]. User specified transformations are written in C/C++, and invoke
libTooling as an APIT that uses the AST generated by the Clang parser to navigate
the code. By matching AST patterns, approaches such as auto-vectorization [25] or
insertion of OpenMP boilerplate from templates [7] can be achieved. Access to the
Clang AST provides precise manipulation capabilities, but requires expertise on compiler
concepts, and is therefore geared in particular towards developers already familiar with
the Clang/LLVM ecosystem. Finally, in contrast to most approaches in Table 1, the
source code is modified by re-writing the input file directly, rather than re-emitting code
from a modified AST. This preserves any pre-processor macros present in the input code;

The ROSE [44] compiler supports C/C++ and FORTRAN (and others), and supports
generic AST-based transformations over its own IR, generated by a parser based on Edison
Design Group (EDG)’s front-end[1]. It is itself implemented in C/C++, and supported by
an additional tool, ROSETTA, to (re-)generate the IR if needed. User transformations
are implemented by direct manipulation of the ROSE IR using the provided C++ APIs.
Examples of transformations already present in the compiler are auto-parallelization of
loops, as well as optimizations such as loop fissioning and fusion;

The Insieme infrastructure [18, 22] first parses the input C/C++ into its own IR, INSPIRE
[23], which is generated from the AST produced by the Clang parser. INSPIRE is designed
to expose parallelism explicitly. The backend generates transformed C/C++ (optionally
OpenCL) which interacts with the Insieme runtime, used to dispatch workloads onto
parallel resources. Thus Insieme is specifically geared to transform sequential code onto
parallel oriented paradigms, specifically, thread oriented workloads;

Cetus [5] is written in Java and also supports AST-based transformations. Its primary
purpose is automatic optimization of a supported subset of ANSI C, specifically for
automatic parallelization. Cetus internally implements a set of ten transformations for
this effect (five general optimization passes, and five parallelization passes), which have
shown to produce improvements when applied to the NAS Parallel Benchmarks [48],
versus manually parallelized versions. These transformations are part of the Cetus Java
codebase, and to implement new custom transformations one needs to fork and extend
the compiler;

Artisan [51] is a Python3 package focused on providing source-to-source compilation
for heterogeneous platforms. It uses Clang to parse the code, and accepts analysis and
transformations implemented as Python scripts. Its main use case is hardware/software
partitioning targeting CPU + Field-Programmable-Gate-Array (FPGA) systems. Namely,
Artisan aims to automate the application of known design patterns and optimizations that
are required for performance maximization when targeting parallel oriented computing
paradigms. Some integration issues are addressed, by abstracting High-Level-Synthesis
(HLS) tools, their invocations, and resulting artifacts as Python objects. Notably, Artisan
can generate OpenCL work-group oriented code from agnostic C/C++;

J. Bispo, N. Paulino, and L. M. Sousa

The C Intermediate Language (CIL) [37] approach recognizes that C/C++ contains many
complex constructs, hampering a straightforward analysis of source code. The aim of CIL
is to convert C code to a representation that, while not being a proper subset, is close to C,
and easier to work with. It uses a custom parser that supports ANSI C, including custom
Microsoft and GNU extensions, and generates a high-level representation that preserves
most semantic information of the code. The representation contains simplifications such
as removing redundant constructs and syntactic sugar, making implicit casts explicit,
and separating value evaluation, side-effect creation, and control-flow changes. It also
incorporates a Control Flow Graph into the representation to simplify the analysis. After
this conversion, it applies any transformations that the user has specified, using an
embedded DSL in OCaml [30], and outputs the transformed program;

Mercurium [6] is a source-to-source infrastructure developed by the Barcelona Super-
computing Center, based on a custom parser that supports C/C++ and Fortran, and
uses a common shared IR. It is one component of a framework for OpenMP based
parallelisation, capable of retargeting code to GPUs (i.e, CUDA) as well as FPGAs [11].
Mercurium is designed as a platform for fast testing and development of new OpenMP
extensions, but it is extensible and has been used to implement other computing models.
New transformations are given to Mercurium as plugins written in C/C++, and loaded at
runtime to act as compiler passes;

Coccinelle [29, 28] was created in 2006 in the specific context of maintaining the Linux
kernel, and has since been extensively used. It is based on a DSL whose syntax is inspired
by diff logs, and can express sematic patches to be applied throughout the entire codebase.
The transformations are text-based, as it uses pattern matching rules to replace, for
instance, certain API call changes that occur due to implementation changes in underlying
device drivers. Multiple pattern matching rules can be applied in sequence, on one input
C file at a time. Although designed for a very specific use-case, its strong adoption and
impact on the maintenance of the Linux kernel illustrates the potential of source-to-source
tooling;

The Clava compiler [9] is built on top of the LARA framework [41], which enables the
specification of complex code analyses and transformations via JavaScript scripts. Like
Cetus, it is implemented in Java. It relies on an unmodified version of Clang’s parser
to generate a C/C++ AST that is very similar to Clang’s [31], but extended to allow for
transformations to be applied directly to the AST. New transformation passes can be
specified as separate JavaScript files processed by Clava, without the need of modifying
Clava itself;

Despite these efforts, a number of challenges persist. We detail them in the following
section.

3 Challenges

Source-to-source compilation of C and C++ presents several challenges, which some authors
have previously identified. For instance, Milewicz et al. [35] focus on the limitations that
source-to-source tools present in an HPC environment. Although the work is not specifically
about C and C++, these languages are also widely used in HPC, so several of the presented
challenges apply. Next are the main shortcomings of C and C++ source-to-source compilation
that we have identified, based on several of the tools and works in the state of the art.

2:5

PARMA-DITAM 2023

2:6

Challenges and Opportunities in C/C++ Source-To-Source Compilation

3.1 Limited support for the input languages

It is common for many source-to-source tools to implement their own parsers, in order to
have greater control over the generated IR, which usually is an AST. However, C, and in
particular C++, are very complex languages, which are still in active development [20, 21].
Often, many C and C++ source compilers support only a limited subset of the language or a
specific standard (e.g. a commonly supported standard is ANSI C [5]),

Use of C-style macros and C++ templates also increases parsing difficulty, since they
can be complex and not fully supported by custom parsers, or not obvious how to handle
in a source-to-source context. In an evaluation of OpenMP performance measurement
mechanisms, Huck et al. remark on the difficulty a source-to-source based mechanism had
when dealing with C macros [19].

3.2 Integration with existing toolchains

Since code transformations must be applied before compilation, it is not clear how to
efficiently integrate a source-to-source step into standard toolchain. Additionally, since the
source-to-source compiler is a separate tool from the compilation framework, the C and C++
compiler will most likely not be aware of the source-to-source transformations.

When implementing a high-performance library for statistical phylogenetics, Ayres et al.
opted to implement a C API integrated into the language, rather depending on an external
tool that needs to translate the code [4]. Alternatively, McCormick et al. propose a DSL,
as an extension of C and C++, that allows to define and operate over mesh data types [34],
and that is integrated along the several stages of the LLVM framework, from the parser
(Clang) to the debugger (LLDB). They mention that their solution has several advantages
over source-to-source approaches, such as keeping domain-specific information along the
toolchain and better support for debugging, although they recognise their approach is more
complex than an equivalent source-to-source one.

3.3 Unintended interactions with the compiler

Since source-to-source analyses and transformations are applied before compilation to lower
abstraction levels, it might be unclear how source transformations will affect compiler-driven
optimization passes in a general case.

For instance, Denis et al. [12] measures numerical accuracy by replacing standard floating
point operations with equivalent ones that use Monte Carlo Arithmetic. They observe that
source-to-source approaches are not able to capture the influence of compiler optimizations
on the numerical accuracy, since replacing the standard operations with library calls prevents
such optimizations.

Although not exclusive to source-to-source approaches, Kruse et al. [24] point out that
polyhedral loop optimisations, while very promising, usually are not activated by default in
standard optimisation levels (e.g. -O3) because they are applied before other compiler passes
and interfere with them. In particular, they refer to the introduction of scalar dependencies
by the polyhedral optimisations that the Single Static Assignment (SSA) representation does
not handle well. Additionally, since in this case the polyhedral optimizations are done at the
beginning of the pipeline, no passes such as inlining have been applied yet, which limits the
applicability of the optimisations to small loops.

J. Bispo, N. Paulino, and L. M. Sousa

3.4 Limitations in source code as an IR

Low-level IRs strive for a level of parsimony that allows to reduce complexity when handling
and transforming them. In this regard, languages such as C and C++ are in comparison more
complex, with a larger number of constructs. This increases the difficulty of using them as
an IR, since there are more cases to consider when creating analyses and transformations,
which also reduces generality.

Besnard et al. [8] propose a library that adds support for a shared-memory paradigm
via threads in an MPI context, which is a distributed-memory paradigm, in order to use
an MPI-only solution for both local and distributed communication, instead of a mixed
solution (e.g. MPI + OpenMP). One of the necessary modifications is to privatise shared,
global variables, and although they say that a source-to-source approach would improve the
portability of the solution, they refer that it requires elaborate data-flow analyses done over
complex data-types and potential indirect references.

Similarly, Adamski et al. [2], which proposes an heuristic for polyhedral analysis with
run-time information, mentions they chose to implement their approach in LLVM-IR instead
of at the source-level due to features such as SSA representation and more explicit data
dependencies and control flow.

3.5 Competing technologies

A recent contribution to the compiler research space is MLIR [27], as part of the LLVM
project. This novel approach introduces an intermediate representation that aims at solving
certain shortcomings of LLVM-IR related to targeting non-conventional computing models
and heterogeneous architectures. MLIR, provides an SSA based, recursively-nested IR whose
semantics are encoded in user-defined dialects, which encapsulate operations, data type
schemata and transformations within the same and between other dialects. This technology
allows the reuse of many kinds of compiler passes, across several abstraction levels. There is
one preferential direction in the transformations (i.e., lowering transformations), but recent
works address the opposite flow, i.e., raising transformations [36, 10].

The entry point has mainly been high-level DSLs that can be lowered to several targets
(e.g., LLVM-IR, CUDA, HDL), but there is an increased interest in providing MLIR, parsers
and dialects for languages such as C/C++ [32]. Together with MLIR’s ability of moving
between abstraction levels, it can be considered as a potential competing technology to
source-to-source compilers.

4 Opportunities
We consider that several of the challenges presented in Section 3 are not insurmountable,

and that there are opportunities for better and more accessible source-to-source compilers
for C and C++, which will allow novel workflows and applications.

4.1 Reuse of existing parsers as-is

As mentioned in Section 3.1, limited support of the C and C++ languages is a common issue.

Most of this limitation stems from tools using custom parsers [5][14]. When developing a C
or C++ source-to-source compiler, we consider that in almost all cases, parsing the language

should be offloaded to third-party libraries, and the use of custom parsers should be avoided.

Parsing C and C++ is a very difficult problem that should be handled by projects dedicated
to this task.

2:7

PARMA-DITAM 2023

2:8

Challenges and Opportunities in C/C++ Source-To-Source Compilation

Several tools already to this. In particular ROSE [44], arguably one of the most successful
C and C++ source-to-source compilers, since the beginning has used the EDG’s proprietary
C++ front-end as a parser, while more recent approaches tend to use Clang as a front-
end [18, 51]. Additionally, we think it is highly recommended that the third-party parsers
are used as-is, with no modifications. Since C and C++ are still evolving languages, this
allows an easier update path, when new standards or language features appear.

4.2 Improved composability and compatibility

Since the external interface of source-to-source compilers is the target language itself, such
tools should take advantage of this and provide easy and seamless integration with compilation
environments and toolchains. Compiler toolchains for compiled languages such as C and C++
are already a collection of many different tools that are called back-to-back. Source-to-source
compilers can be easily integrated in such a flow, as another tool in the toolchain (e.g.
Insieme provides a driver that works as a drop-in replacement for calls to the GCC or Clang
driver [18]).

We also advocate for approaches that extend the compiler without the need to change
the compiler itself, e.g. through APIs that the compiler interprets, or plugins that can
be dynamically loaded. A user should be able to download a given custom library that is
immediately ready for use, similar to how we are able to seamlessly use third-party APIs
in most modern programming languages (e.g. Maven dependencies in Java, Pip in Python,
npm in JavaScript).

We consider such an approach can provide better support for composing different works
from different authors, when compared with an approach that requires modification of the
compiler toolchain itself and distribution of a custom executable. It allows users to simply
pick and choose from existing solutions, and ideally, use the same system to easily implement
and integrate their own analyses and transformations.

This composability can be extended to the use of different source-to-source compilers.
Tools that target the same language are most likely compatible with each other by default,
as long as they support the language constructs present in the source code, which allows
further possibilities in mix and match scenarios.

4.3 Widening the scope and taming complexity

Usually source-to-source compilers are used in what we can call human-level use cases, that
is, automating transformations a human programmer would do if they had the resources
or experience to do themselves directly over the source code (e.g., recursive functions to
iterative models, array flattening, loop interchange). Usually the output is code that is still
readable by humans. We consider that source-to-source compilers should also embrace what
we can call compiler-level use cases, where the source-code is treated as a low-level IR, where
several compiler passes are applied, changing the code as much as needed. The resulting code
is not necessarily seen by a human, and can go directly to the compiler. The two approaches
are not mutually exclusive. A user can apply compiler-level techniques that dramatically
change the code, in order to extract information, and then discard the changes and use the
extracted information in human-level techniques (see Section 5.1).

To use C or C++ as an IR where compilation passes can be applied, it is important to
deal with the complexity of the languages. One way to handle this is for source-to-source
compilers to provide normalisation or canonicalization passes, similar to what traditional
compilers do for lower-level IRs. Such passes can be very generic and easily reused, and can
significantly reduce the complexity of using C or C++ as an IR (see Section 5.4).

J. Bispo, N. Paulino, and L. M. Sousa

One of the advantages that is often pointed out about using mature compilation frame-
works such as GCC or LLVM is the possibility to reuse several analyses and transformations
that are already implemented. The same principle can be applied to source-to-source frame-
works, if they allow simple reuse of compilation passes, in particular if the observations in
Section 4.2 are followed. Several of the same transformations that are usually done by a
compiler in low-level IRs can be useful if available on a source-to-source level (see Section 5.1,
which extensively uses inlining during analysis to increase the number of loops that can be
parallelized).

Other ways to tame complexity in source-to-source approaches include minimizing the
quantity of automatically inserted of code by using instead libraries and inserting code to
call them, or providing high-level abstractions that hide the complexities of the language
(e.g., APIs for inserting instrumentation code [42]).

4.4 Testing and Prototyping Environments

We consider it is crucial to have a testing environment that allows to easily and quickly test
source-to-source transformations. Since source-to-source tools usually are the first step in a
compilation toolchain, they are in a privileged position in such flows, opening the possibility
for integrated environments where parsing, analysing, transforming, compiling and executing
an application can be accomplished from within the same script. Such environments naturally
allow design-space exploration (DSE) loops, and the possibility of exploring strategies that
use run-time information, at any level of the compiler toolchain [38].

This can also be the base for a prototyping environment for compiler transformations that
is lighter than going directly to a traditional framework. An initial implementation can start
as a source-to-source transformation, for testing and validation (see Section 5.4), and after
the work reaches a certain level of maturity, it is developed and integrated in a traditional
compiler toolchain. Also, the same environment can be used to implement very specialised
transformations that might not justify integration into a traditional compiler framework, and
that can be easily enabled or disabled according to the target compiler or machine.

4.5 Make compilers in general more accessible

Some of the opportunities presented here are not limited to source-to-source compilers, but
could potentially be applied to low-level compilers in general. Take for instance, the MLIR
technology, which is a C++ framework that should used as a library to build your own
compiler. This is expected since, similar to LLVM, it is a framework for building compilers.
However, taking into account how extensible MLIR is, it is a privileged position to provide
mechanisms such as the ones mentioned in Section 4.2.

Currently, there are three main methods to use or extend MLIR: C++, Operation Definition
Specification (ODS) and Python. Since MLIR is a C++ framework, we can directly write
heavily templated C++ code to implement our own dialects, which mainly contain operations
and transformations, but can also contain custom types. This can be quite cumbersome, so
MLIR supports defining operations and data types using a DSL, TableGen!, that generates
MLIR-compatible C++ code. Finally, there are Python bindings that allow inspecting and
transforming the IR with existing dialects, but not defining new dialects.

Although MLIR is a noticeable improvement in accessibility regarding LLVM (and LLVM
itself also improved upon its predecessors, such as GCC), we consider there is still considerable
room for improvement, for instance, by providing environments such as the ones proposed in

! https://11lvm.org/docs/TableGen/

2:9

PARMA-DITAM 2023

https://llvm.org/docs/TableGen/

2:10

Challenges and Opportunities in C/C++ Source-To-Source Compilation

Section 4.4. There are already works that tackle these issues, such as Vasilache et al.[52]
which, among other things, propose an embedded DSL for Python that allows the creation
of MLIR operations from within Python.

Finally, although the technology is not there yet, it can become a very interesting
framework for creating source-to-source compilers. This can also provide a means of going
beyond the LLVM ecosystem, for use cases where the target compiler is not under the
developer’s control (e.g. embedded systems).

5 lllustrating C/C++ Source-to-Source with Clava

The previously mentioned Clava compiler is our own work on source-to-source for C/C++ (as
well as other C-like languages, i.e., OpenCL, CUDA) [9]. As we have used it to address some
of the challenges and opportunities outlined previously, we now provide some additional
details as well as example use-cases.

Clava relies on an unmodified version of Clang’s parser to generate its own IR, the Clava
AST. This IR is very similar to Clang’s AST, albeit with some differences. Besides some
normalization steps (e.g. nodes such as if, for, etc always contain a scope block as a child),
the main difference is that the Clava AST is built to be modified and emit the equivalent
C/C++ code that its current structure represents. The decision to use Clang as-is proved
to be fruitful, Clava has gone through two Clang updates (from 3.8 to 7, and from 7 to 12)
with a reduced number of modifications.

To extend Clava, one does not need to change the compiler (i.e., modify Clava’s own
codebase). Instead, custom analyses and transformations are written as JavaScript scripts,
which Clava interprets and applies over a given source-code. The scripts represent a standard
JavaScript programming environment that has access to the Clava AST, as well as having
access to source-to-source specific APIs, such as instrumentation, or compiling and executing
the modified code from within the script. New APIs can be added by specifying, as a
configuration parameter, new include folders to other JavaScript files. Additionally, Clava
is a cross-platform Java application that does not require installation or dependencies, and
provides a CMake? package which applies the scripts to any C/C++ CMake project with very
little effort.

A brief example of these capabilities is shown in Listing 1. The JavaScript APIs provided
by Clava allow for selection, analysis and modification of C/C++ code constructs, such as
functions, loops, if-elses, etc. For this example, the transformation specifies that the input
code, shown in Listing 2, should be queried for a function named foo, and then return a list
of all loops within the function body. For each loop, a comment is inserted prior to the loop
in the output code, shown in Listing 3. The comment includes the line number of the loop
in the original code. The function insertBefore() also accepts strings, in case we want to
insert literal code, however, we consider that it is preferable to create and insert nodes.

laralmport ("weaver.Query")
laraImport ("clava.ClavaNodes");

for(const loop of Query.search("function", {name: "foo"}).search("loop")) {
const commentNode = ClavaNodes.comment (" Loop at line " + loop.line)
loop.insertBefore (commentNode)

i

Listing 1 Javascript file defining a Clava transformation to insert comments prior to loops.

2 Jodo Bispo, 2021, “Clava CMake Package” , Github Repository, https://github.com/specs-feup/
clava/tree/master/CMake

https://github.com/specs-feup/clava/tree/master/CMake
https://github.com/specs-feup/clava/tree/master/CMake

=

O OO0 Uk WN =

J. Bispo, N. Paulino, and L. M. Sousa

int foo() { int foo() {
int a = 0; int a = 0;
// Loop at line 4
for(int i = 0; i < 100; i++) for(int i = 0; i < 100; i++)
a += i x i; a += i *x i;
// Loop at line 7
for(int i = 0; i < 100; i++) for(int i = 0; i < 100; i++)
a += i + 1; a += i + 1;
return a; return a;
} }
Listing 2 Example prior to comment insertion. Listing 3 Example after comment insertion.

We chose to rely on externally specified transformations in a widely adopted language
such as JavaScript in order to lower the entry barrier and raising the abstraction level for
compiler research. Next we present several examples that have used Clava to automatically
analyse and transform code. Most of these works have extended Clava with new APIs
implemented in JavaScript and, excluding the first example, they have been developed in the
context of MSc theses.

5.1 AutoPar — Automatic Parallelisation of for Loops

AutoPar [3] is a Clava library that statically detects if a for loop can be parallelized or
not, and if it determines that it can, generates an OpenMP pragma for the loop. This is an
example that mixes human-level and compiler-level approaches. Initially, the code is heavily
transformed, by inlining as many calls as possible in all loop bodies. The transformed code
is then analysed and tested for parallelism. All changes are then discarded, and the collected
information is used to generate OpenMP pragmas, which are inserted in the original code.

5.2 Insertion of High-Level-Synthesis Directives

Recent High-Level-Synthesis (HLS) tools such as Xilinx’s Vitis HLS generate hardware
implementations of C/C++ functions, circumventing traditional hardware design via Verilog
or VHDL. However, some expert knowledge is still required, as the HLS compiler cannot
(currently) fully infer design intent or identify parallelism opportunities from what is, in-
trinsically, sequentially oriented code. Santos et al. [45, 46] use Clava to automatically
insert pragmas which Xilinx’s HLS compiler uses as optimisation hints to generate better
performing hardware implementations, avoiding the need for expert know-how, as well as
design effort.

5.3 Tribble — Targeting Heterogeneous Systems

Tribble [49] is a Clava library for retargeting C/C++ applications to FPGA based heterogen-
eous systems. Target functions are identified with a single pragma statement, which Tribble
first optimises and then passes to Xilinx’s High-Level-Synthesis. The original code is modified
with the required OpenCL API boilerplate to invoke the generated circuit, while retaining the
original software version. A user-defined scheduler [50] is also inserted to select, at runtime,
which version (CPU or FPGA) to call based on, e.g., estimated compute workload.

5.4 Inline Assembly Insertion — RISC-V Custom Extensions

Henriques [16], developed a Clava API capable of rewriting C for loops marked with a user-
specified pragma [17] as inline assembly that uses UVE [13] instructions, a custom RISC-V
instruction extension for streaming and vectorization. To do this, the Clava AST was used

2:11

PARMA-DITAM 2023

2:12

Challenges and Opportunities in C/C++ Source-To-Source Compilation

as a traditional compiler IR, where a series of normalization steps were applied. The code
was transformed to a functionally equivalent SSA-like format, facilitating the identification
of streaming and vectorization patterns which map to UVE instructions. A final step inserts
the inline assembly code, allowing for automatic generation of UVE assembly code from C
code without forking an existing compiler. We consider that such an approach can contribute
to faster prototyping of new extensions, and reduce manual assembly programming effort
during the early stages of development.

6 Conclusions

In this paper we have provided a distillation of the insights acquired during several years
working in C and C++ source-to-source compilation. We presented a short summary on
several notable source-to-source compilers for C and C++, highlighted challenges relative to
its further development and adoption, and opportunities that show potential for further work
in this area. We also present how several of these ideas have been implemented in our own
C/C++ source-to-source compiler, Clava.

We argue that conventional compilation approaches still have significant entry barriers
and that source-to-source compilation can have a complementary role in bringing new people
to the area. Furthermore, we consider that several of the techniques used to lower the entry
barrier of source-to-source could also be applied to traditional compiler development. We
also see potential for source-to-source compilation to be applied in scenarios that have been
mostly exclusive to low-level IRs.

—— References

1 J Stephen Adamczyk and John H Spicer. Template instantiation in the EDG C++ front end.
Edison Design Group Technical Report, 1995.

2 Dominik Adamski, Michat Szydlowski, G Jabtonski, and J Lasori. Dynamic tiling optimization
for polly compiler. International Journal of Microelectronics and Computer Science, 8(4),
2017.

3 Hamid Arabnejad, Jodo Bispo, Jodao M. P. Cardoso, and Jorge G. Barbosa. Source-to-
source compilation targeting openmp-based automatic parallelization of ¢ applications. J.
Supercomput., 76(9):6753-6785, September 2020. doi:10.1007/s11227-019-03109-9.

4 Daniel L Ayres and Michael P Cummings. Heterogeneous hardware support in beagle, a
high-performance computing library for statistical phylogenetics. In 2017 46th International
Conference on Parallel Processing Workshops (ICPPW), pages 23-32. IEEE, 2017.

5 Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Hao Lin, Chirag Dave, Rudolf Eigenmann,
Samuel P Midkiff, H Bae, D Mustafa, J w Lee, H Lin, R Eigenmann, S P Midkiff, and C Dave.
The cetus source-to-source compiler infrastructure: Overview and evaluation. Int J Parallel
Prog, 41:753-767, 2013. doi:10.1007/s10766-012-0211-z.

6 Jairo Balart, Alejandro Duran, Marc Gonzalez, Xavier Martorell, Eduard Ayguadé, and Jesus
Labarta. Nanos mercurium: a research compiler for OpenMP. In Proceedings of the Furopean
Workshop on OpenMP, volume 8, page 2004, 2004.

7 G.D. Balogh, G.R. Mudalige, I.Z. Reguly, S.F. Antao, and C. Bertolli. Op2-clang: A source-to-
source translator using clang/llvi libtooling. In 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC), pages 59-70, 2018. doi:10.1109/LLVM-HPC.
2018.8639205.

8 Jean-Baptiste Besnard, Julien Adam, Sameer Shende, Marc Pérache, Patrick Carribault, Julien
Jaeger, and Allen D Maloney. Introducing task-containers as an alternative to runtime-stacking.
In Proceedings of the 23rd Furopean MPI Users’ Group Meeting, pages 51-63, 2016.

https://doi.org/10.1007/s11227-019-03109-9
https://doi.org/10.1007/s10766-012-0211-z
https://doi.org/10.1109/LLVM-HPC.2018.8639205
https://doi.org/10.1109/LLVM-HPC.2018.8639205

J. Bispo, N. Paulino, and L. M. Sousa

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Jodo Bispo and Jodo M.P. Cardoso. Clava: C/C++ source-to-source compilation using LARA.
SoftwareX, 12:100565, July 2020. doi:10.1016/j.softx.2020.100565.

Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nicolas Vasilache, Tobias
Grosser, and Henk Corporaal. Progressive raising in multi-level ir. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages 15-26. IEEE,
2021.

Juan Miguel de Haro, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-Gonzélez,
Carlos Alvarez, Xavier Martorell, Eduard Ayguadé, and Jestis Labarta. Ompss@fpga framework
for high performance fpga computing. IEEE Transactions on Computers, 70(12):2029-2042,
2021. doi:10.1109/TC.2021.3086106.

Christophe Denis, Pablo De Oliveira Castro, and Eric Petit. Verificarlo: Checking floating
point accuracy through monte carlo arithmetic. arXiv preprint, 2015. arXiv:1509.01347.
Joao Mario Domingos, Nuno Neves, Nuno Roma, and Pedro Tomés. Unlimited vector extension
with data streaming support. In 2021 ACM/IEEFE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 209-222, 2021. doi:10.1109/ISCA52012.2021.00025.
Roger Ferrer, Sara Royuela, Diego Caballero, Alejandro Duran, Xavier Martorell, and Eduard
Ayguadé. Mercurium: Design decisions for a s2s compiler. In Cetus Users and Compiler
Infastructure Workshop in conjunction with PACT, volume 2011, 2011.

Dick Grune, Kees Van Reeuwijk, Henri E Bal, Ceriel JH Jacobs, and Koen Langendoen.
Modern compiler design. Springer Science & Business Media, 2012.

Luis Miguel Henriques. Automatic streaming for risc-v via source-to-source compilation.
Msc thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2022. URL:
https://hdl.handle.net/10216/142750.

Miguel Henriques. Clava based transforms for uve code insertion, 2022. URL: https://github.

com/MiguelPedrosa/Dissertacao.

Bernhard Hockner. The insieme compiler frontend: A clang-based C/C++ fron-
tend. Msc thesis, University of Innsbruck, 2014. URL: https://typeset.io/pdf/
the-insieme-compiler-frontend-a-clang-based-c-c-frontend-aldjb93945.pdf.

Kevin A Huck, Allen D Malony, Sameer Shende, and Doug W Jacobsen. Integrated measure-
ment for cross-platform openmp performance analysis. In International Workshop on OpenMP,
pages 146-160. Springer, 2014.

ISO. ISO/IEC 9899:2018 Information technology — Programming languages — C. International
Organization for Standardization, Geneva, Switzerland, June 2018.

ISO. ISO/IEC 14882:2020 Information technology — Programming languages — C++. Interna-
tional Organization for Standardization, Geneva, Switzerland, December 2020.

Herbert Jordan. Insieme: A Compiler Infrastructure for Parallel Programs. PhD thesis, Univer-
sity of Innsbruck, August 2014. URL: https://diglib.uibk.ac.at/ulbtirolhs/download/
pdf/179200.

Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and Thomas Fahringer. Inspire:
The insieme parallel intermediate representation. In Proceedings of the 22nd international
conference on Parallel architectures and compilation techniques, PACT ’13, pages 7-18. IEEE
Press, 2013.

Michael Kruse and Tobias Grosser. Delicm: scalar dependence removal at zero memory cost.
In Proceedings of the 2018 International Symposium on Code Generation and Optimization,
pages 241-253, 2018.

Olaf Krzikalla. Performing Source-to-Source Transformations with Clang, 2013. European
LLVM Conference, Paris. URL: https://1lvm.org/devmtg/2013-04/krzikalla-slides.pdf.
Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis

& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75-86. IEEE, 2004.

2:13

PARMA-DITAM 2023

https://doi.org/10.1016/j.softx.2020.100565
https://doi.org/10.1109/TC.2021.3086106
http://arxiv.org/abs/1509.01347
https://doi.org/10.1109/ISCA52012.2021.00025
https://hdl.handle.net/10216/142750
https://github.com/MiguelPedrosa/Dissertacao
https://github.com/MiguelPedrosa/Dissertacao
https://typeset.io/pdf/the-insieme-compiler-frontend-a-clang-based-c-c-frontend-a1djb93945.pdf
https://typeset.io/pdf/the-insieme-compiler-frontend-a-clang-based-c-c-frontend-a1djb93945.pdf
https://diglib.uibk.ac.at/ulbtirolhs/download/pdf/179200
https://diglib.uibk.ac.at/ulbtirolhs/download/pdf/179200
https://llvm.org/devmtg/2013-04/krzikalla-slides.pdf

2:14

Challenges and Opportunities in C/C++ Source-To-Source Compilation

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling
compiler infrastructure for domain specific computation. CGO 2021 - Proceedings of the 2021
IEEE/ACM International Symposium on Code Generation and Optimization, pages 2-14,
February 2021. doi:10.1109/CG051591.2021.9370308.

Julia Lawall. Coccinelle: Reducing the barriers to modularization in a large ¢ code base. In
Proceedings of the companion publication of the 13th international conference on Modularity,
MODULARITY ’14, pages 5-6, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2584469.2584661.

Julia Lawall and Gilles Muller. Coccinelle: 10 years of automated evolution in the linux kernel.
In Proceedings of the 2018 USENIX Conference on Useniz Annual Technical Conference,
USENIX ATC ’18, pages 601-613, USA, 2018. USENIX Association.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérome
Vouillon. The OCaml System Release 4.14, 2022. URL: https://v2.ocaml.org/manual/.
LLVM Project. Clang: a C language family frontend for LLVM, 2022. URL: https://clang.
1lvm.org/.

Bernardo Cardoso Lopes and Nathan Lanza. [RFC] An MLIR based Clang IR (CIR) — Clang
Frontend — LLVM Discussion Forums. 2022. Available at https://discourse.llvm.org/t/
rfc-an-mlir-based-clang-ir-cir/63319, 2022. Accessed 2022-07-05.

Bruno Cardoso Lopes. Understanding and writing an llvm compiler back-end. In ELC’09:
Embedded Linux Conference, 2009, 2009.

Patrick McCormick, Christine Sweeney, Nick Moss, Dean Prichard, Samuel K Gutierrez, Kei
Dayvis, and Jamaludin Mohd-Yusof. Exploring the construction of a domain-aware toolchain
for high-performance computing. In 2014 fourth international workshop on domain-specific
languages and high-level frameworks for high performance computing, pages 1-10. IEEE, 2014.
Reed Milewicz, Peter Pirkelbauer, Prema Soundararajan, Hadia Ahmed, and Tony Skjellum.
Negative perceptions about the applicability of source-to-source compilers in hpc: A literature
review. In International Conference on High Performance Computing, pages 233—246. Springer,
2021.

William S Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. Polygeist: Raising
C to Polyhedral MLIR. In 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 45-59. IEEE, 2021.

George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. Cil: Intermediate
language and tools for analysis and transformation of ¢ programs. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2304:213-228, 2002. URL: https://link.springer.com/chapter/10.1007/
3-540-45937-5_16.

Ricardo Nobre, Jodo Bispo, Tiago Carvalho, and Jodo MP Cardoso. Nonio—modular auto-
matic compiler phase selection and ordering specialization framework for modern compilers.
SoftwareX, 10:100238, 2019.

Chris Northwood. Javascript. In The Full Stack Developer, pages 159-208. Springer, 2018.
Diego Novillo. GCC an architectural overview, current status, and future directions. In
Proceedings of the Linuxr Symposium, volume 2, page 185, 2006.

Pedro Pinto, Tiago Carvalho, Jodo Bispo, and Jodo M. P. Cardoso. Lara as a language-
independent aspect-oriented programming approach. In Proceedings of the Symposium on
Applied Computing, pages 1623-1630, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3019612.3019749.

Pedro Pinto, Tiago Carvalho, Jodo Bispo, Miguel Anténio Ramalho, and Jodo MP Cardoso.
Aspect composition for multiple target languages using lara. Computer Languages, Systems &
Structures, 53:1-26, 2018.

LLVM Project. Using Clang as a Library — LibTooling, 2022. URL: https://clang.1llvm.
org/docs/LibTooling.html.

https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2584469.2584661
https://v2.ocaml.org/manual/
https://clang.llvm.org/
https://clang.llvm.org/
https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319
https://discourse.llvm.org/t/rfc-an-mlir-based-clang-ir-cir/63319
https://link.springer.com/chapter/10.1007/3-540-45937-5_16
https://link.springer.com/chapter/10.1007/3-540-45937-5_16
https://doi.org/10.1145/3019612.3019749
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html

J. Bispo, N. Paulino, and L. M. Sousa

44

45

46

47

48

49

50

51

52

53

Dan Quinlan and Chunhua Liao. The rose source-to-source compiler infrastructure. In Cetus
users and compiler infrastructure workshop, in conjunction with PACT, volume 2011, page 1.
Citeseer, 2011.

Tiago Santos. Acceleration of applications with fpga-based computing machines: Code
restructuring. Msc thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal,
2020. URL: https://hdl.handle.net/10216/128984.

Tiago Santos and Jodo M.P. Cardoso. Automatic selection and insertion of hls directives
via a source-to-source compiler. In 2020 International Conference on Field-Programmable
Technology (ICFPT), pages 227-232, 2020. doi:10.1109/ICFPT51103.2020.00039.

Suyog Sarda and Mayur Pandey. LLVM essentials. Packt Publishing Ltd, 2015.

S. Satoh. NAS Parallel Benchmarks 2.3 OpenMP C Version, 2000. URL: http://www.hpcs.

cs.tsukuba.ac. jp/omni-openmp.

Luis Sousa. Runtime management of heterogeneous compute resources in embedded systems.

Msc thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2021. URL:
https://hdl.handle.net/10216/137152.

Luis Miguel Sousa, Nuno Paulino, Jodo Canas Ferreira, and Jodo Bispo. A flexible hls
hoeffding tree implementation for runtime learning on fpga. In 2022 IEEE 21st Mediterranean

Electrotechnical Conference (MELECON), pages 972-977, 2022. doi:10.1109/MELECON53508.

2022.9843092.

Jessica Vandebon, Jose GF Coutinho, Wayne Luk, Eriko Nurvitadhi, and Tim Todman.
Artisan: A meta-programming approach for codifying optimisation strategies. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 177-185. IEEE, 2020.

Nicolas Vasilache, Oleksandr Zinenko, Aart JC Bik, Mahesh Ravishankar, Thomas Raoux,
Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Caballero, Stephan Herhut, et al.
Composable and modular code generation in mlir: A structured and retargetable approach to
tensor compiler construction. arXiv preprint, 2022. arXiv:2202.03293.

Peter Zangerl, Herbert Jordan, Peter Thoman, Philipp Gschwandtner, and Thomas Fahringer.

Exploring the semantic gap in compiling embedded dsls. ACM International Conference
Proceeding Series, pages 195-201, July 2018. doi:10.1145/3229631.3239371.

2:15

PARMA-DITAM 2023

https://hdl.handle.net/10216/128984
https://doi.org/10.1109/ICFPT51103.2020.00039
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp
https://hdl.handle.net/10216/137152
https://doi.org/10.1109/MELECON53508.2022.9843092
https://doi.org/10.1109/MELECON53508.2022.9843092
http://arxiv.org/abs/2202.03293
https://doi.org/10.1145/3229631.3239371

RUST-Encoded Stream Ciphers on a RISC-V
Parallel Ultra-Low-Power Processor

Francesco Barchi &
University of Bologna, Italy

Giacomo Pasini &
University of Bologna, Italy

Emanuele Parisi &
University of Bologna, Italy
Giuseppe Tagliavini &
University of Bologna, Italy

Andrea Bartolini =
University of Bologna, Italy

Andrea Acquaviva &
University of Bologna, Italy

—— Abstract

Nowadays, the development of security applications is a relevant topic in the Internet of Things (IoT)
and cyber-physical systems (CPS) fields. Different embedded architectures have been adopted in
these areas, but the RISC-V parallel ultra-low-power (PULP) architecture stands out as a particularly
efficient system. However, it has never been proposed to enable cryptography. In the context of
video stream security, stream ciphers enable an efficient solution to ensure data privacy, and the
exploitation of the PULP multi-core accelerator cluster paves the way to an efficient implementation
of these ciphers. In this paper, we exploit the capability of the PULP architecture coupled with
the code safety provided by the RUST programming language to design and implement an efficient
stream encryption algorithm. We present a wrapper system between the development libraries
of a PULP platform enabling the secure execution of a verified RUST-written implementation of
ChaCha20 and AES-CTR, targeting a microdrones based video surveillance system. Experimental
tests have resulted in an encryption efficiency of ChaCha20 of 2.3 cycles per Byte (cB), placing the
resulting implementation at the state-of-the-art, in direct competition with higher-class architectures
like Apple M1 (2.0 ¢B).

2012 ACM Subject Classification Hardware — Emerging languages and compilers; Computer
systems organization — Multicore architectures; Computer systems organization — Embedded
software; Software and its engineering — Embedded software

Keywords and phrases Parallel Low-Power Embedded Systems, Rust, RISC-V, Stream Cipher
Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2023.3
Category Invited Paper

Funding HORIZON-KDT-JU-2021-2-RIA-Focus-Topic-1, EdgeAl, 101097300

1 Introduction

New challenges require new technologies, and new technologies pose new challenges; this is
particularly evident, in these last years, for Cyber-Physical Systems (CPS), whose challenges
are becoming more and more evident. Will we be able to cope with the growing complexity
of these devices that are increasingly interconnected and able to act and manipulate the
surrounding reality? The CPS enabling factor is today, without doubt, the possibility to
create pervasive and interconnected systems through the contribution of increasingly efficient
© Francesco Barchi, Giacomo Pasini, Emanuele Parisi, Giuseppe Tagliavini, Andrea Bartolini, and
37 Andrea Acquaviva;
licensed under Creative Commons License CC-BY 4.0

14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM

2023).
Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari; Article No. 3; pp. 3:1-3:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:francesco.barchi@unibo.it
https://orcid.org/0000-0001-5155-6883
mailto:giacomo.pasini4@studio.unibo.it
https://orcid.org/0009-0004-0283-4268
mailto:emanuele.parisi@unibo.it
https://orcid.org/0000-0001-6607-7367
mailto:giuseppe.tagliavini@unibo.it
https://orcid.org/0000-0002-9221-4633
mailto:a.bartolini@unibo.it
https://orcid.org/0000-0002-1148-2450
mailto:andrea.acquaviva@unibo.it
https://orcid.org/0000-0002-7323-759X
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

System of Chip (SoCs) and wireless communication technologies (e.g., 5G, NB-IoT). The
CPS topic reached the peak of inflated expectation in a recent Gartner analysis [1], and CPS
risk management, an innovation trigger, started its ascent among the potentially relevant
topics for the next five years. In our vision, the risk management of CPS passes through
two orthogonal fields. Open instruction set architectures (ISA) for the next generations of
embedded computing systems and new programming languages capable of capturing in their
expressiveness the management of memory at such a level as to guarantee at compile time
the absence of the most common threats to integrity and security of working memory.

More specifically, we identified in RISC-V and Rust language two enabling factors for
the future of CPS. In this work, we face the interoperability challenge of compiling and
executing RUST encoded software in an existing RISC-V platform; PULP [15, 16]. PULP
is a parallel ultra-low-power system composed of a cluster in a chip. This architecture is
commercially available as the GAP8 SoC of GreenWaves Technology and adopted by BitCraze
to implement an expansion deck of Crazyflie, a state-of-art miniaturised Unmanned Aerial
Vehicle (UAV) [9, 14]. Although versions of PULP equipped with hardware accelerators
for cryptography operations have been previously presented [7], GAPS8 has no dedicated
hardware for security. We select this architecture to create a first attempt to integrate and
parallelise in the GAPS cluster the RUST implementation of the most used stream ciphers,
ChaCha20 and AES-CTR. We will then exploit the high parallelism provided by the PULP
architecture to be able to accelerate any algorithm that implements specific RUST traits
(StreamCipher, StreamCipherSeek, and KeyIvInit) defined in the cipher crate. Then, an
analysis of unsafe code regions, an analysis of parallelism scalability, and the framework’s
use in a real-world scenario will be provided. Moreover, we will consider a secure video
surveillance scenario using a microdrone (the previously mentioned Crazyflie) equipped with
a GAPS processor capable of sending an encrypted video stream via the WiFi network. The
main contributions of the work are: i) We designed a method to interact with the PULP
cluster from Rust code, describing the Foreign Function Interface (FFI) we used to interact
with the specific platform SDK; ii) We provide a security analysis of unsafe regions and an
optimised version of ChaCha20 for PULP without compiler support; iii) We demonstrated
that existing RUST code (already assessed from a security point of view) can efficiently be
integrated with a CPS, showing a real usage application and the performances obtained.

The rest of the paper is organised as follows. In Section 2 we provide some background
on Rust and PULP. In Section 3, we describe the procedure we follow to expose Rust code
for the PULP cluster. Finally, we discuss the results obtained on GVSOC and GAPS8 in
Section 4.

2 Background and Related Work

2.1 Rust and RISC-V architectures

The Rust programming language positions itself as a language that offers both high-level
safety and low-level control and speed. Thanks to its rich type system and ownership model,
many classes of bugs (e.g., dangling pointers, double frees, and data races) are eradicated at
compile time [11]. At the same time, having no runtime environment or garbage collection
facilitates integration on different classes of devices as well as with other languages. While a
GCC backend is in the works, the current compiler toolchain still relies on LLVM for code
generation and general optimizations. Formally, Rust can target different platforms and any
architecture for which LLVM has support.

The language comes with a rich standard library, but a significant effort has been put
into separating what a core part of the language is and what is not. From this perspective,
it is worth mentioning that the standard library (std) has no privileged support. This design

F. Barchi, G. Pasini, E. Parisi, G. Tagliavini, A. Bartolini, and A. Acquaviva

choice stems from the fact that these additional pieces, particularly the standard library (or
part of it), might not always be available on all targets, especially in bare metal systems or
without operating system support. For instance, it is necessary to provide platform-specific
allocators to employ dynamic allocation.

A formal comparison between similar C and Rust codebases in terms of safety (primarily
related to memory bugs) is not yet available, partially due to the novelty of Rust. However,
many high-profile adopters like Amazon, Google, and Microsoft have started migrating parts
of their systems from C to Rust due to the vast majority of security bugs related to memory
safety. In addition, formal efforts to support these claims have been started in recent years.
In particular, the RustBelt project [10] provided the first formal (and machine-checked) safety
proof for a realistic subset of the language.

2.2 PULP - Parallel Ultra-Low-Power Platform

The target architecture of this work is the Parallel Ultra-Low-Power Platform (PULP), an
open-source architecture SoC including a microcontroller-class RISC-V core (fabric controller)
coupled with a cluster of RISCY [8] cores (up to 16). RISCY is a RISC-V based processor with
dedicated extensions for Digital Signal Processing (DSP) and machine learning workloads.
The cluster cores share a multi-banked scratchpad memory called Tightly-Coupled Data
Memory (TCDM, or L1), enabling single-cycle data access and promoting data-parallel
programming models such as OpenMP. At the SoC level, the architecture features an 1.2
memory hierarchy level composed of multi-banked scratchpad memory; the L2 access latency
is one cycle for the fabric controller and 15 cycles for the cluster cores. A DMA engine enables
data transfers between the two memory levels. We consider a PULP instance including 8
cores, 512 KiB L2 memory, and 64 KiB TCDM.

2.3 Stream Ciphers

Stream ciphers are a particular type of symmetric ciphers that encrypt a sequence of plaintext
digits by combining it with an equal length pseudo-random digit stream, usually obtained
from the key. They bear a resemblance with one-time-pad (OTP), although the keystream
is not truly random in this case. Unlike raw block ciphers, they can work on messages
of arbitrary length without padding and are thus generally easier to employ in different
application contexts.

While stream ciphers are enough for confidentiality, they do not always guarantee
the authenticity of the ciphertext. For this reason, it is generally recommended to use
Authenticated Encryption with Associated Data (AEAD), which combines encryption with
some mechanism for tampering prevention. Examples of such authenticated ciphers are

ChaCha20Poly1305, combining ChaCha20 with Poly1305, or AES with GCM or CCM modes.

As support for the relevance of the aforementioned ciphers, they are the only ones allowed in
TLS 1.3. [5]

In this work, we will only focus on the encryption part, which is suitable for parallelization,
leaving authentication for future work. Note that the encryption component can be entirely
reused when implementing the full AEAD algorithm. We thus chose ChaCha20 and AES-CTR
for integration in our system, focusing primarily on ChaCha20 for its simplicity [13].

3:3

PARMA-DITAM 2023

3:4

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

Rust

gap_rust c
resss======="""%]
: _sdk i gap_sdk
""" : I R &
{ _wrapper i app

l ORust interface
)j O C interface
i}

Figure 1 This diagram summarises the components (highlighted by a dashed border) developed
to enable the execution of RUST code in a PULP application.

3 Methods

Figure 1 depicts the structure of modules we developed (dashed lines) to allow a GAP8
application (yellow box) to use a stream cipher implemented in RUST, exploiting the PULP
extensions and the cluster-on-chip parallelism. Coloured dots are the interfaces between
language domains. When RUST code needs to use functions implemented in C, we use the
Foreign Function Interface (FFI) capabilities of Rust. On the contrary, when C code needs
to use functions implemented in Rust, we use a eztern block to guarantee the same memory
layout C would use. The module structure is divided into three components:
gap_rust_sdk is a wrapper of gap_sdk, it is described in Section 3.1.

gap_rust_sdk_w is a C library developed to decouple certain gap_sdk functions
that are otherwise not accessible to Rust code.
gap_rust_wrapper is the wrapper between the stream cipher implementation and the

gap_rust_sdk . It is described in Section 3.2

gap_rust_cipher_s contains the entry point functions (C compatible) to execute a
cipher procedure. It also contains the optimised code of streaming algorithms.

3.1 RUST Wrapper for PULP-SDK

The PULP SDK contains all the software stack of the PULP platform, including a C library
that exposes all the features and capabilities to the programmer. Such a library is the perfect
starting point for porting PULP functionalities to the Rust world, as it acts as the basic
building block on top of which other libraries can provide their services. Thanks to Rust
native compatibility with C, making those functionalities available in Rust is as easy as
writing FFI bindings and linking against the PULP library binary. Automated tools to
write the bindings exist but require the source code to be processed with Clang/LLVM.
Unfortunately, this is not always possible due to compiler-dependent extensions in some
implementations, like in our scenario with the PULP SDK that depends on specific GCC
extensions available in the PULP toolchain.

pulp-sdk-rust, the Rust port of PULP SDK, comprises two different parts. One essentially
exposes as-is the functions of PULP SDK as Rust functions. For this purpose, apart from
copying the signatures of the selected functions, it is necessary to map C types to Rust. The
primitive C types have an equivalent Rust type either in the core language itself, like all

F. Barchi, G. Pasini, E. Parisi, G. Tagliavini, A. Bartolini, and A. Acquaviva

numeric types, or in the cty library, like void pointers. However, custom structs usually
require a corresponding field-per-field definition in Rust, where the use of the #[repr(C)]
attribute guarantees the same memory layout as C.

A special case is given by opaque structs or structs, for which only pointers are used, and
no allocation in the Rust world is necessary. In this case, while void pointers are a valid
representation, it is preferable to use opaque Rust structs to accurately map each type and
provide type safety for function arguments. To represent such opaque structs in Rust, we
can create a type with [2]: i) at least a private field so that it is not possible to instantiate it
outside of the module it is defined in; ii) attribute #[repr(C)] across FFI boundaries; iii)
special markers for the compiler not to derive any unwanted property. Rust has special traits,
called markers, to represent intrinsic properties of types. The ones that we are interested
in here are Send, Sync, and Unpin. Send and Sync are used to regulate how types can be
moved and shared in a multi-threaded environment. Unpin is used to signal that a type
can be moved in memory after being explicitly pinned. Since we do not know how the C
code accesses those structs and what they represent, a safe choice is not to let the Rust
compiler infer any of those traits, which are automatically derived in regular circumstances.
An example of an opaque struct in Rust is:

#[repr(C)]
pub struct Foo {
_data: [u8; 0],
_marker: PhantomData<(*mut u8, PhantomPinned)>

}

However, in some cases, critical features like DMA functionalities are declared as
static inline functions in the PULP SDK. Unfortunately, this means those functions
are not visible to the linker and cannot be directly exposed to Rust code. Since maintaining
compatibility with the PULP SDK is an important requirement, we chose to write a small C
wrapper and provide it in the linking step like so:

void pi_cl_ram_read_wait_wrap(pi_cl_ram_req_t* r)
{ pi_cl_ram_read_wait(r); }

Thanks to Cargo, the official Rust package manager, such a wrapper library is built and
linked at compile time without any user intervention.

This first component alone is enough to provide all PULP-related functionalities in Rust,
but it is not very ergonomic to use. For instance, it is likely to contain raw pointers as
function arguments, which are unsafe to use in Rust and require special care. Hence, a
good port should provide Rust abstractions over those functionalities when possible and
encapsulate the use of complex or unsafe components. For example, pulp-sdk-rust exposes
an abstraction over the cluster type, which takes care of the initialisation and offloading of
computation, all of which require to use possibly unsafe FFI functions. Designing a correct
API for offloading computation to the cluster requires great care since it is necessary to
handle multiple threads without native Rust support.

The Rust language provides two important marker traits, Send and Sync, specifically to
handle concurrency and avoid data races at compile time.

A type is Send if it is safe to send it to another thread.

A type is Sync if it is safe to share between threads. A generic type T is Sync if and only

if a reference to T is Send.

pi_cl_team_fork , the C function to fork execution on the cluster cores, accepts as
arguments a function to execute in each core and a pointer to a memory location which will
be provided to all of the function instances. Apart from using raw pointers, which is unsafe

3:5

PARMA-DITAM 2023

3:6

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

on its own, it is easy to see that providing access to some data type that does not implement
Send or Sync could break Rust guarantees. For example, sharing a reference to Rc, Rust
single-threaded reference-counting pointer, would result in data races if multiple cluster cores
try to update the reference counter simultaneously. Indeed, the safe API for computation
offloading provides access to a reference of a Sync type.

3.2 RUST Streaming Cipher Wrapper for PULP Cluster

To provide a reusable component for parallel computation on PULP systems, we designed
the PULP Stream Cipher wrapper. It is a bridge between the hardware specifics on one side
and a generic stream cipher implementation on the other. It builds on top of traits from a
popular crate [3] and is general enough so that it can be used with different algorithms. In
practice, it schedules encryption/decryption for execution on the cores of the PULP cluster.
Such stream ciphers, apart from implementing the traits StreamCipher and KeylvInit, which
are relatively standard and for which the requirements can be easily relaxed or adapted, need
to support seeking freely within the keystream to allow efficient parallelization. This way,
different cores can work on different portions of the stream of bytes without any overlap
or additional work required. Examples of stream ciphers that support this operation are
ChaCha20 and block ciphers operating in CTR mode.

To fully exploit the PULP cluster, it is necessary to accurately design memory accesses.
Working directly from L2 memory in the cluster could result in significant performance
penalties due to contention on the memory bus, while the use of L1 memory allows better
latency and throughput for both reads and writes. However, moving data from L2 to L1
does not come for free and has to be explicitly instructed. Fortunately, the PULP system
provides a DMA and a uDMA specifically for this task, offloading the transfer from external
memory (L2 or RAM) to the cluster L1. In our application, we need to copy the plaintext to
L1, encrypt or decrypt it, and then copy it back to external memory. Naturally, the size of
L1 is limited, and we cannot expect to fully fit every message there as we want to enable
the processing of messages bigger than L1 (in our case 64 KiB). Thus, we split the input
message into multiple chunks so that each one can fit entirely into L1, and we process them
incrementally one at a time.

To avoid waiting for the completion of DMA /uDMA transfers, we designed a solution that
makes use of triple buffering, essentially keeping three separate buffers in L1 memory, letting
them be A, B, and C. Each portion has an assigned role: working buffer, pre-fetch, and
commit. The working buffer is used for computation, pre-fetch to load the next chunk of the
input message, and commit to store the processed data back into external memory. At the
beginning of the program execution, we load the first portions of the plaintext into A. Then,
processing starts on portion A, which is the current work buffer, while the DMA /uDMA is
instructed to load the next chunk of the plaintext into portion B, the pre-fetch buffer. After
all of the cores have completed processing on A and the DMA /uDMA has loaded data into
B, roles change. Portion A, which contains the encrypted/decrypted message, now becomes
the commit buffer, and the DMA /uDMA is instructed to copy it back to external memory.
Portion B, which contains new input data, will serve as the work buffer, and the old commit
buffer (C) will become the pre-fetch buffer for the next chunk. The result is that each portion
is assigned a new “role” each round in a round-robin fashion until all of the input has been
processed.

We now focus on how processing on the work buffer is handled. To avoid data races
and allow concurrent access to multiple cores, the working buffer is partitioned into chunks,
one assigned to each core. The chunks are non-overlapping (i.e., in other words, core
pointers do not alias). This property enables each core to work independently, and the only
synchronisation needed is the one with the DMA/uDMA, controlled by core 0.

F. Barchi, G. Pasini, E. Parisi, G. Tagliavini, A. Bartolini, and A. Acquaviva

3.3 Architecture Specific Optimization

ChaCha20 is the cipher we primarily work on and optimized for this task. As described
in 2.3, it is a modern, high-speed, low-footprint algorithm, easy to implement in software
without having access to specific hardware instructions and features. On the other side, a
constant time AES software implementation requires special care, to the point where multiple
techniques have been developed, like bitslicing [12] and fixslicing [6]. To obtain a highly
efficient implementation of ChaCha20, we started from the software implementation in [3]
and optimized the parts that resulted in sub-optimal performance in our target system.
Unfortunately, while the Rust compiler is able to compile for generic RISC-V targets, it
cannot yet make use of specific PULP extensions like hardware loops, post-increment load
and stores, or bit manipulation operations. In addition, memory accesses are not always
optimal for a system without out-of-order execution like PULP and often result in stalls.

To avoid these limitations, we implemented the ChaCha20 core loop directly in assembly,
which is quite easy to do given the simplicity of the ChaCha20 algorithm. Note that this is
not in contradiction with Rust philosophy: it is true that by writing in assembly we lose some
of the guarantees of Rust, but it is only for a very limited (albeit extremely hot) portion of
the codebase, and we can treat it as a standard black-box function from outside, building
the rest of the framework in plain Rust. Even better, once the PULP integration for the
Rust compiler is completed and all hardware features supported, we can just use a full Rust
implementation.

The ChaCha20 quarter-round is only comprised of 12 add, xor, and shifts instructions
and can be very easily implemented using inline assembly. Starting from the quarter-round,
we can obtain a full round by essentially replicating it on different data. The Rust declarative
macro system allows us to do that without having to write it entirely by hand since inline
assembly has to be provided at compile time, and we wanted to avoid unnecessary loops.
However, there is a catch: mnemonics for PULP-specific extensions cannot be used as they
are not supported by the compiler backend. An interesting solution to this can be designed
on top of Rust procedural macros, which are more expressive than declarative macros: they
allow to write arbitrary Rust code that consumes and produces Rust syntax. In our case, we
implemented a macro that produces a raw hex-encoded assembly instruction for each of the
unsupported mnemonics while still being very descriptive at the call site. For example, the
implementation of a macro for right rotate bit-wise operation would look like this:

#[proc_macro]
fn ror(in: TokenStream) -> TokenStream {
let (rd,rsl,rs2) = get_operands(in);
let hex = encode_hex(&["0000100",
&bin_5(rs2), &bin_5(rsi1), "101",
&bin_5(rd), "0110011"].join(""));
let res = format!(".4byte {}", hex);
quote: :quote! { @res }.into)

It is noteworthy how the call site of such a macro is extremely similar to how a
programmer would write it by using native mnemonics ror t0, tO, tl with macro

ror! (t0, t0, t1) .

3:7

PARMA-DITAM 2023

3:8

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

3.4 Safety Evaluation of Rust Wrappers

Where the Rust safety features clash with optimizations, or when we need to interact with
other languages like C, it is possible and often necessary to temporarily “disable” safety
checks and rely on the total power without control given by raw pointers. Of course, with
great power comes great responsibility, and it is necessary to guarantee the correct usage of
those unsafe functions, not to undermine the foundations of the whole system. The good
news is that a detailed check for such errors has to be performed only on a relatively small
portion of the program. What is usually done when developing a library like pulp-sdk-rust is
to encapsulate the unsafe Rust features under a safe API and only expose the safe ones to
the outside world. In this sense, unsafe Rust is transparent to users.

We can now examine why and where we reverted to unsafe Rust in the implementation:
The Good, The Bad and The Ugly.

3.4.1 The Good: FFI bindings for the pulp_sdk

C libraries often expose APIs that make use of raw pointers, which fall outside of Rust’s
safe memory model. In addition, the Rust compiler cannot guarantee that those functions
are valid for all possible inputs or do not mess with memory in invalid ways. Thus, foreign
functions are assumed to be unsafe in Rust and require unsafe blocks as a promise to the
compiler that everything contained within truly is safe. To improve the usability on the Rust
side, we provided safe Rust wrappers, where possible, for some of the library functions, for
which we rely on PULP SDK correctness.

3.4.2 The Bad: Optimizations

The Rust compiler does not always provide the best optimised code for a system like PULP
and is currently lacking support for PULP extensions, which results in subpar performance
when writing idiomatic Rust code (e.g., iterators). For example, consider the following
function written using iterators. It takes two slices as input, computes the element-wise sum,
and stores the result in the first slice.

fn rotate_right_slow(a: &mut [u32], b: &[u32]) {
for (a,b) in a.iter_mut().zip(b.iter()) {
*a = *%a + b } }

As of rustc v1.63, with options =C opt-level=2 -target
riscv32imc-unknown-none-elf , it outputs the following assembly code for the
inner loop:

.LBBO_3:

1w al, 0(a0)

1w a4, 0(a2)

add al, al, a4

sw al, 0(a0)

addi a3, a3, -1
addi a0, a0, 4
addi a2, a2, 4
bnez a3, .LBBO_3

This code stalls while executing the third instruction as the second operand (a4) is not
available yet. Resolving this stall requires moving any of the following addi instructions
between the second and the third instruction. For this reason, the core of the ChaCha20

F. Barchi, G. Pasini, E. Parisi, G. Tagliavini, A. Bartolini, and A. Acquaviva

Speedup Payload dependency in Speedup
8

8 --- ideal
—— 256B
512 B
—— 1KiB
—— 2KiB
1 —— akiB
—— 32KiB
128 KiB

—s— 4 Cores
8 Cores

.

1] e A

v o ~

Speedup

IN

v T T T T T T T
20 o1 22 23 23 27 o1l 215
Cores Payload

Figure 2 Parallelisation speedup values for ChaCha20 using an 8 KiB buffer in L1. The memory-
bound effect for L2-L1 transfers can be seen when the payload is smaller than the size of the triple
buffer managed by the DMA.

algorithm has been written in assembly. However, it is noteworthy that our assembly
implementation delegates all memory write operations to the Rust language through inline
assembly macro outputs, thus operating in readonly mode and ruling out any memory
corruption.

While it would certainly be better to improve the compiler understanding of the target
system, in the meanwhile, it is possible to use unsafe code for optimization, which is generally
speaking an accepted practice for hot paths.

3.4.3 The Ugly: Synchronization primitives

No native support for PULP systems also means no support for synchronisation primitives
available. A complete and throughout approach, which would require providing the basic
primitives in Rust (Mutex, RwLock) and adapting them for use both within the cluster and
between the cluster and fabric controller, necessitates of a significant amount of work and is
left for future implementation.

4 Results

This section is divided into two parts. The first part describes a virtual environment through
which we validated the system presented in the previous section. The second part presents a
real-life scenario consisting of a video surveillance application implemented on a micro UAV
by operating application-level encryption.

4.1 Wrapper analysis

We used GVSOC to obtain the execution traces and infer the speedup gain obtainable in
ChaCha20 and AES-CTR (written in RUST) when executing the code on PULP. GVSOC is
the virtual platform included in the PULP-SDK. It is faster compared to an RTL simulation
and provides good cycle accuracy. Such properties are key requirements for integration into
development flows. GVSOC also provides execution traces describing cluster components’
status during the program execution. This tool was also helpful in validating code and
debugging code fragments during development. We performed an encryption procedure of
an increasing amount of data (from 1 Byte to 128 KiB) using three different implementations:

3:9

PARMA-DITAM 2023

3:10

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

single core without optimisation, single core, and multicore. Moreover, we varied the
parallelism from two to eight cores in the multicore implementation. The results were
obtained by analysing the GVSOC traces. We express the efficiency in terms of cycles needed
to encrypt one byte (¢B). This unit of measurement allows us to evaluate the goodness of
the implementation and the contribution of the optimisations made. Taking a payload of
128 KiB as a reference, we started evaluating the software implementation provided in the
RUST crate of ChaCha20. Without any optimisation, we obtain 92cB. By running the
optimised version of ChaCha20, which we developed exploiting the architectural extensions
of PULP, we obtain 16 ¢B, an improvement of about 6 times. The optimised and parallelised
versions (2X, 4x, 8x) obtain 8.4¢B, 4.3¢B and 2.2 ¢B respectively. The optimised version on
eight cores is about 42x faster than the starting version and 7.7x faster than the single-core
version. Figure 2 shows speedup curves obtained varying the parallelism and the payload.
These graphs clearly highlight the effect of memory latencies (L2-L1 movements) when the
triple buffer is not fully utilised. With 8 KiB buffers, ideal parallelism is only achieved if
the payload is greater than 24 KiB. Results in ¢B of some reference architectures for long
messages are: 35.3cb (riscv64) U54 — SiFive Freedom U540, 5.3¢B for (aarch64) A72 —
Broadcom BCM2711, 2.6 ¢B for (ppc64) POWER9 — IBM 02CY642, 2.0 cB for (aarch64)
Firestorm — Apple M1, 1.04 ¢B for (amd64) Zen3 — AMD Ryzen 9 5950X [4].

The single core execution of AES-CTR has an efficiency of 128 ¢cB.The parallelised
versions (2x, 4%, 8x) obtain 79 ¢B, 36 ¢B and 18 ¢B respectively. The version with maximum
parallelism is 7.1x faster than the single-core version.

4.2 Real World Scenario

In this test environment, we implemented a video surveillance application. Specifically, using
a Crazyflie equipped with an Al-deck, it was possible to create an encrypted video stream.
We integrated the ChaCha20 implementation into a video stream application written for
FreeRTOS. The application captures a 324 x244 greyscale frame from a camera, encrypts the
frame on the cluster and sends the encrypted frame to an ESP32 processor. The latter is
then in charge of sending data to a remote application using WiFi. This scenario can be a
seed for a zero-trust CPS, where the component responsible for transmitting the data cannot
steal sensitive information thanks to application-level encryption.

We used a Crazyflie 2.1, an Al-deck 1.1, a GAP8 rev.C, and an Olimex ARM-USB-OCD-H
needed to flash the GAPS firmware. We measured the clock cycles required to encrypt a
single byte (cB) and the time required to complete the three phases: frame acquisition, frame
encryption, and frame sending (in turn, divided into communication with ESP32 and WiFi
communication). In the GAPS8, we varied the working frequency of the fabric controller (FC)
and the cluster cores (CL) to characterise the execution times required by the application.

Acquiring a frame takes about 62 ms regardless of the fabric controller’ working frequency.
Forwarding a frame takes 106 ms when the fabric controller runs at 50 MHz, 67 ms at
150 MHz, and 62ms at 250 MHz. This time comprises two parts: the time required for
the communication between GAP8 and ESP32 (SPI) and WiFi transmission. The first
part (GAP8 and ESP32 communication) takes 60% of the frame sending time when the
fabric controller runs at 50 MHz, 40% at 150 MHz, and about 30% at 250 MHz. The PULP-
optimised and cluster-parallelised ChaCha20 implementation encrypts a frame in 3.7 ms when
the cluster cores run at 50 MHz, 2.0ms at 100 MHz and 1.2ms at 150 MHz. This results in
an efficiency of 2.3 ¢B, confirming the results obtained with the virtual platform. Eliminating
the use of DMA for L2-L1 transfers reduces the efficiency from 2.3 to 2.9 cycles/Byte.

F. Barchi, G. Pasini, E. Parisi, G. Tagliavini, A. Bartolini, and A. Acquaviva

In the fastest configuration tested (1.2V, FC 250 MHz, CL150 MHz), an encrypted
video stream is obtained at approximately 8 fps. The encryption time is a secondary factor
compared to the other two phases.

5 Conclusion

This work represents the first attempt to add software support for stream ciphers in the
software ecosystem of the PULP architecture, a state-of-art ultra-low-power embedded
microcontroller equipped with a multi-core accelerator cluster. PULP has become a reference
architecture for mission computer and video stream processing in micro UAVs, an application
field characterized by stringent security requirements. Exploiting the capabilities of the
RUST programming language in terms of code safety and modularity, we designed a wrapper
for the PULP runtime library to enable the secure execution of a verified RUST-written
implementation of ChaCha20 and AES-CTR algorithms. Our experimental assessment on a
commercial device demonstrated a high encryption efficiency (2.3 ¢B for ChaCha20), a result
aligned with higher-class architectures but achieved on a resource-constrained embedded
device. For comparison, SiFive U540 obtain 35.3 ¢cB and Apple M1 2.0 ¢B in ChaChaZ20.

In future work, we plan to extend the RUST cryptographic library by including an
implementation of AEAD optimized for the PULP target. We will also integrate a new
backend compiler into the RUST toolchain to support the experimental PULP LLVM
toolchain and guarantee seamless integration between the PULP SDK ecosystem and the
RUST language. Finally, we will also implement a set of native synchronization primitives in
Rust working for cluster cores and fabric controller, providing better safety guarantees for
implementing parallel algorithms.

—— References

https://cybelangel.com/hype-cycle-for-cyber-risk-management-2022/.
https://doc.rust-lang.org/nomicon/.
https://github.com/RustCrypto/stream-ciphers.
https://bench.cr.yp.to/results-stream.html.

AW =

The Transport Layer Security (TLS) Protocol Version 1.3. https://www.rfc-editor.org/
rfc/rfc8446.

6 Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers: New bitsliced aes speed
records on arm-cortex m and risc-v. Cryptology ePrint Archive, 2020.

7 Francesco Conti, Robert Schilling, Pasquale Davide Schiavone, Antonio Pullini, Davide Rossi,
Frank Kagan Giirkaynak, Michael Muehlberghuber, Michael Gautschi, Igor Loi, Germain
Haugou, et al. An IoT endpoint system-on-chip for secure and energy-efficient near-sensor
analytics. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9):2481-2494,
2017.

8 Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio Pullini,
Davide Rossi, Eric Flamand, Frank K Giirkaynak, and Luca Benini. Near-threshold RISC-V
core with DSP extensions for scalable IoT endpoint devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2017.

9 Wojciech Giernacki, Mateusz Skwierczynski, Wojciech Witwicki, Pawel Wronski, and Piotr
Kozierski. Crazyflie 2.0 quadrotor as a platform for research and education in robotics
and control engineering. In 2017 22nd International Conference on Methods and Models in
Automation and Robotics (MMAR), pages 37-42. IEEE, 2017.

10 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proceedings of the ACM on Programming
Languages, 2(POPL):1-34, 2017.

3:11

PARMA-DITAM 2023

https://cybelangel.com/hype-cycle-for-cyber-risk-management-2022/
https://doc.rust-lang.org/nomicon/
https://github.com/RustCrypto/stream-ciphers
https://bench.cr.yp.to/results-stream.html
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446

3:12

RUST-Encoded Stream Ciphers on a RISC-V Parallel Ultra-Low-Power Processor

11

12

13

14

15

16

Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada Letters,
34(3):103-104, 2014.

Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on intel core2
processor. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 121-134. Springer, 2007.

Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. Rfc 1654, RFC
Editor, June 2018. URL: https://www.rfc-editor.org/rfc/rfc8439.

Daniele Palossi, Francesco Conti, and Luca Benini. An open source and open hardware
deep learning-powered visual navigation engine for autonomous nano-UAVs. In 2019 15th
International Conference on Distributed Computing in Sensor Systems (DCOSS), pages 604—
611. IEEE, 2019.

D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini, A. Capotondi,
P. Flatresse, and L. Benini. PULP: A parallel ultra low power platform for next generation
ToT applications. In 2015 IEEE Hot Chips 27 Symposium (HCS), 2015.

Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou, Eric Flamand,
Frank K Gurkaynak, and Luca Benini. PULPino: A small single-core RISC-V SoC. In 3rd
RISCV Workshop, 2016.

https://www.rfc-editor.org/rfc/rfc8439

An Evaluation of the State-Of-The-Art Software
and Hardware Implementations of BIKE

Andrea Galimberti' =

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy

Gabriele Montanaro &
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy

William Fornaciari &4
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy

Davide Zoni &2 &
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy

—— Abstract

NIST is conducting a process for the standardization of post-quantum cryptosystems, i.e., cryptosys-
tems that are resistant to attacks by both traditional and quantum computers and that can thus
substitute the traditional public-key cryptography solutions which are expected to be broken by
quantum computers in the next decades. This manuscript provides an overview and a comparison of
the existing state-of-the-art implementations of the BIKE QC-MDPC code-based post-quantum
KEM, a candidate in NIST’s PQC standardization process. We consider both software, hardware,
and mixed hardware-software implementations and evaluate their performance and, for hardware
ones, their resource utilization.

2012 ACM Subject Classification Security and privacy — Public key encryption; Hardware —
Hardware accelerators; Hardware — Hardware-software codesign

Keywords and phrases Post-quantum cryptography, QC-MDPC code-based cryptography, BIKE,
software execution, hardware acceleration, hardware-software co-design, performance evaluation

Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2023.4

Funding This work was partially supported by SIAE MICROELETTRONICA, the EU Horizon
2020 “TEXTAROSSA” project (Grant No. 956831), and the ICSC National Research Center in
High-Performance Computing, Big Data and Quantum Computing.

1 Introduction

Traditional public-key cryptosystems (PKC), including RSA [27], ECDSA [6], and Diffie-
Hellman [11], underpin cryptographically secure key exchange mechanisms and digital
signature schemes. Such cryptoschemes are however expected to be broken by quantum
computers in the upcoming decades [23]. The threat posed by quantum computers requires
the definition and the design of alternative cryptosystems that perform the same functions as
PKC ones, maintaining security against traditional computer attacks while ensuring security
against quantum computer attacks. Post-quantum cryptography (PQC) aims to develop
cryptosystems that are resistant to both traditional attacks and new quantum attack models,
which can be implemented on traditional architecture computers and existing devices, and
that can be integrated into the networks and communication protocols currently in use [7].

! Corresponding author

© Andrea Galimberti, Gabriele Montanaro, William Fornaciari, and Davide Zoni;
37 licensed under Creative Commons License CC-BY 4.0

14th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and

12th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM

2023).

Editors: Joao Bispo, Henri-Pierre Charles, Stefano Cherubin, and Giuseppe Massari; Article No. 4; pp. 4:1-4:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:andrea.galimberti@polimi.it
https://orcid.org/0000-0003-0254-3933
mailto:gabriele.montanaro@polimi.it
https://orcid.org/0000-0003-1119-2629
mailto:william.fornaciari@polimi.it
https://fornaciari.faculty.polimi.it/
https://orcid.org/0000-0001-8294-730X
mailto:davide.zoni@polimi.it
https://zoni.faculty.polimi.it/
https://orcid.org/0000-0002-9951-062X
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 An Evaluation of the SW and HW Implementations of BIKE

Algorithm 1 Primitives of the BIKE key encapsulation mechanism [2].

1. function [H, o, h| KEYGEN (seed, o)
2: H = [hglh1] = PRNG(seed);

33 h=hiOhyh

4: return {H, h,0};

5: function [K,] ENcaPs (h, m)
6: e =H(m);

7 s=-¢e9® (e1 ©h);

8 m' =m & L(e);

9: K :K({m7 {S7ml}});

10: return {K, {s,m'}};

11: function [K] DEcaPs (H, o, ¢)
12: ¢/ = BGFDECODER (s, H);

13: m’" =m' @ L(¢);

14: a= (e ==H(m"))? m": o;
15: K =K({a,c});

16: return K;

The National Institute of Standards and Technology (NIST) is conducting a process for the
standardization of PQC cryptosystems, in particular key encapsulation mechanisms (KEM)
and digital signature schemes [21]. After the third round of the PQC standardization
process, NIST selected the CRYSTALS-Kyber lattice-based KEM for standardization while
appointing the fourth evaluation round to analyze further the code-based BIKE, Classic
McEliece, and HQC and the isogeny-based SIKE. The performance of both the software and
hardware implementations of such cryptosystems is crucial for evaluating the cryptosystems,
in addition to security against traditional and quantum attacks. In particular, NIST takes
Intel Haswell processors and Xilinx Artix-7 FPGAs as reference platforms for software and
hardware implementations, respectively.

A KEM allows the secure transmission, through a public key algorithm, of a shared
secret, which can then be expanded to generate keys to be used in a symmetric cryptosystem,
which is more efficient for the transmission of long messages than a PKC scheme [28]. After
generating a random element of the finite group that underlies the implemented public key
scheme, this element is exchanged between the two parties of the communication, which can
finally derive the shared secret by applying a hash function to the element of the finite group.

BIKE is a post-quantum KEM based on quasi-cyclic moderate-density parity-check (QC-
MDPC) codes [2]. These codes are used in a scheme similar to that first proposed by
Niederreiter [24]. BIKE distinguishes itself for its good trade-off between ciphertext and key
lengths and performance, making it a good candidate for standardization after the fourth
round [22]. Instances of BIKE are specified for NIST security levels 1, 3, and 5, providing
security against quantum attacks equivalent to AES-128, -192, and -256, respectively.

The BIKE cryptosystem can be split into three primitives. Key generation produces a
private-public key pair (KEYGEN in Algorithm 1), encapsulation generates a shared secret
and encrypts it with the public key (ENCAPS), and decapsulation retrieves the shared secret
with the private key from the ciphertext (DECAPS). Due to its QC-MDPC code-based nature,
BIKE uses binary polynomial arithmetic operations and the Black-Gray-Flip decoding
procedure [14], while random number generation and cryptographic hash functionalities (H,
K, and L in Algorithm 1) are implemented by employing SHA-3 and SHAKE.

A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni

Contributions

This manuscript provides an overview and a comparison of the existing state-of-art implement-
ations of BIKE, a QC-MDPC code-based post-quantum KEM candidate for standardization
in the fourth round of NIST’s PQC standardization process.

The goal is to gauge the ability to deploy BIKE on different computing platforms suitable
to various real-world use-case scenarios, ranging from low-power embedded systems to
desktop-class CPUs and mid-range FPGAs.

2 Related works

The literature contains a variety of proposals that provide complete software and hardware
implementations of QC-MDPC code-based post-quantum cryptosystems.

2.1 State-of-the-art software implementations

On the software side, implementations of QC-MDPC code-based cryptosystems participating
in the NIST PQC competition were made publicly available and distributed open-source.

Two separate software versions of LEDAcrypt, an early candidate to the NIST’s PQC
standardization process which was admitted to its third round of evaluation, are available
at [4]. They consist of a reference version written in plain C11 and an optimized one that
exploits the AVX2 extension for recent Intel Core CPUs.

[2] provides instead the two official software implementations of BIKE, a reference one
written in plain C11 and an optimized one that exploits the Intel AVX512 extension. Other
works from literature provide software implementations for ISAs other than the Intel x86
one, with [9] targeting Arm Cortex-M4 microcontrollers and [10] introducing support for
RISC-V computing platforms. Further additional implementations of BIKE, including a
fully portable one, versions optimized for AVX2 and AVX512 instruction set extensions, and
implementations optimized for CPUs that support PCLMULQDQ@ and VPCLMULQDQ
instructions, are also publicly available on Github [1].

The Intel AVX2 instruction set extension and similar ones can indeed significantly
boost the performance of binary polynomial arithmetic operations. Intel introduced the
PCLMULQDQ instruction and the corresponding hardware support in its Westmere archi-
tecture to accelerate the AES Galois/Counter Mode (AES-GCM) authenticated encryption
algorithm. The PCLMULQDQ instruction performs the carry-less multiplication of two
64-bit operands. Similarly, the ARMv8-A architecture provides the VMULL. P64 instruction,
which takes as inputs two 64-bit NEON registers and outputs their product, computing
according to binary polynomial multiplication, on a 128-bit NEON register.

The work in [12] leveraged the VPCLMUL@QDQ instruction, which is intended to further
accelerate AES-GCM and which is the vectorized extension of PCLMULQDQ, to compute
multiplications between large-degree binary polynomials, i.e.. polynomials with degree greater
than 511. [13] introduced a constant-time algorithm for polynomial inversion, targeting
the software implementation of BIKE and based on Fermat’s little theorem. The authors
optimized the exponentiation operation and further improved performance by means of
a source code targeting the latest Intel Ice Lake CPUs, that support the AVX512 and
VPCLMULQ@DQ instructions. The optimizations introduced in [12] and [13] are implemented
within the Intel AVX2-optimized constant-time implementations of BIKE [1].

4:3

PARMA-DITAM 2023

4:4

An Evaluation of the SW and HW Implementations of BIKE

2.2 State-of-the-art hardware and hardware-software implementations

On the hardware side, the literature provides a variety of FPGA-based implementations of
QC-MDPC code-based cryptosystems.

[17, 29] proposed the implementation of the McEliece cryptosystem with QC-MDPC
codes on FPGAs. In particular, [17] targeted a performance-oriented design while [29] focused
on a resource-optimized one. [18] discussed a fast implementation of QC-MDPC Niederreiter
encryption for FPGAs, outperforming the work in [17] thanks to using a hardware module
to estimate the Hamming weight of large vectors and proposing a hardware implementation
tailored to low-area devices for encryption and decryption used in QC-MDPC code-based
cryptosystems.

The authors of BIKE presented a VHDL FPGA-based implementation, targeting Xilinx
Artix-7 FPGAs and providing support for the key generation, encryption, and decryption
KEM primitives on a unique design [26]. However, the proposed architecture was custom-
tailored to smaller FPGA targets, up to Artix-7 100, and it employed the AES and SHA-2
cryptographic functions as random oracles, thus supporting a now obsolete specification of
BIKE. The work in [26] provided the first FPGA-based implementation of the BGF decoder,
employed a multiplication module that minimized the BRAM usage by parallelizing the
computation of a simpler schoolbook multiplication algorithm, rather than applying a more
complex one such as Karatsuba’s, and implemented binary polynomial inversion by employing
a Fermat-based inversion algorithm that is a variant of the algorithm introduced in [19].

The work in [15] presented another FPGA-based implementation of BIKE, split into two
components devoted to supporting the client-side (key generation and decapsulation) and
server-side (encapsulation) primitives. The client and server cores integrated highly configur-
able hardware accelerators for binary polynomial multiplication [5, 31] and inversion [16] and
BGF decoding [30]. Setting different parameters for the configurable accelerators allowed
the authors to implement the client and server cores on FPGAs ranging from Artix-7 35 to
Artix-7 200.

Finally, [25] proposed an updated FPGA-based implementation of [26] that employed a
Keccak core rather than AES and SHA-2 ones, as specified in the latest version of the BIKE
cryptoscheme [3]. In addition, the work in [25] only implements a dense-sparse multiplication
module, which exploits the sparse representation of one of the two operands in the binary
polynomial multiplication, rather than also a dense-dense one, and implements the extended
Euclidean algorithm for binary polynomial inversion rather than the Fermat-based one.
The proposed architecture targets Artix-7 FPGAs and the authors listed three instances
implementing the whole KEM providing a range of area-performance trade-offs. The smallest
one requires less resources than the lightweight one from [26] and provides a more than 3 x
speedup, while the largest one takes 3.7ms compared to the 4.8ms of the high-speed one
from [26] while also occupying a smaller area.

On the hardware-software (HW/SW) side, [20] proposed a mixed HW/SW approach
that made use of three HLS-generated accelerators, each implementing one of the BIKE
primitives. The HW/SW approach allowed mixing the usage of hardware acceleration for the
most computationally expensive primitives with the software execution of the least complex
ones. The proposed solution resulted in different combinations of hardware-implemented and
software-executed KEM primitives on three chips from the Xilinx Zyng-7000 heterogeneous
SoC family, which feature ARM CPUs coupled with programmable FPGA logic equivalent
to the Artix-7 one.

A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni

3 Methodology

The evaluation of state-of-the-art BIKE implementations spanned software, hardware, and
hardware-software ones. On the software side, it considered 32- and 64-bit architectures, ARM
and x86 ISAs, embedded- and desktop-class processors, and plain-C and AVX2-optimized
software. On the hardware and hardware-software sides, we compared solutions that were
human-designed and HLS-generated, targeting Xilinx FPGAs and heterogeneous SoCs.

3.1 Evaluated software implementations

The software performance analysis considered three implementations of BIKE.

The reference C99 (Ref C99 in Section 4) software [2] is the reference implementation
from the official BIKE NIST submission and provides a code without any architecture-specific
optimization, making it suitable to any target computing platform.

The additional portable C99 (CT C99) software [1], written in plain C99 without any
architecture-specific optimization, delivers a constant-time execution and is compatible with
both 64-bit Intel and ARM architectures.

The additional Intel AVX2-optimized (CT AVX2) software [1] provides a faster
constant-time implementation on Intel x86-64 CPUs that support the Intel AVX2 instruction
set extension, i.e., CPUs from the Intel Haswell generation and later ones.

3.2 Evaluated hardware and hardware-software implementations

The experimental evaluation of hardware and hardware-software solutions considered three
different implementations of the BIKE cryptoscheme.

The Official hardware implementation [25] delivers a unified design that implements the
whole BIKE KEM and executes it in constant time. The authors provide three instances
ranging from a lightweight one up to mid-range and high-performance ones. The proposed

design, targeting Xilinx FPGAs, is described in SystemVerilog and publicly available online [8].

The Client-server hardware implementation [15] consists of two separate architectures
devoted to client- (key generation and decapsulation) and server-side (encapsulation) opera-
tions of BIKE. The two client and server cores integrate configurable components, whose
selection of the different architectural parameters results in instances targeting smaller and
larger FPGAs.

The HLS-based hardware-software implementation [20] consists of three instances, target-
ing heterogeneous SoCs, that mix software execution and hardware acceleration, through
HLS-generated components, of the BIKE KEM primitives. The instances differ in which
primitives are executed in software and in hardware, allowing them to fit on different target
chips.

3.3 Target computing platforms

The software implementations were executed on target platforms ranging from low-end ARM-
based embedded systems to desktop-class Intel CPUs, while the hardware and hardware-
software ones targeted Xilinx Artix-7 FPGAs and Zyng-7000 SoCs, respectively.

Arm Cortex-A9 (ARMS32 in Section 4) is an embedded-class 32-bit processor implementing
the ARMvT7-A instruction set architecture (ISA). We execute BIKE on an Arm Cortex-A9
dual-core processor featured on a Xilinx Zyng-7000 heterogeneous SoC. The ARM CPU

4:5

PARMA-DITAM 2023

4:6

An Evaluation of the SW and HW Implementations of BIKE

Table 1 Available FPGA resources on FPGAs from the Xilinx Artix-7 family and SoCs from the
Xilinx Zyng-7000 family. Legend: LUT look-up tables, FF flip-flops, BRAM 36kb blocks of block
RAM, DSP digital signal processing slices.

FPGA/SoC LUT FF BRAM DSP
Artix-7 12 8000 16000 20 40
Artix-7 15 10400 20800 25 45
Artix-7 25 14600 29200 45 80
Artix-7 35 20800 41600 50 90
Artix-7 50 32600 65200 75 120
Artix-7 75 47200 94400 105 180
Artix-7 100 63400 126800 135 240
Artix-7 200 134600 269200 365 740
Zyng-7000 Z-7010 17600 35200 60 80
Zyng-7000 Z-7015 46200 92400 95 160
Zyng-7000 Z-7020 53200 106400 140 220

has a clock frequency up to 667MHz, and the external memory mounted on the employed
Digilent Zedboard development board, which houses the Zyng-7000 chip, is a 512MB DDRS3.
The BIKE software is executed on top of the Xilinx Petalinux operating system.

Arm Cortex-A53 (ARMG64) is an embedded-class 64-bit processor implementing the
ARMv8-A ISA. In particular, we consider the RP3A0 system-in-package mounted on a
Raspberry Pi Zero 2 W, that features a quad-core 64-bit Arm Cortex-Ab3 processor clocked
up to 1GHz and 512MB of SDRAM. We executed BIKE on the Raspberry Pi running the
64-bit Raspberry Pi OS Lite operating system, that is based on Debian 11, and setting a
fixed 1GHz clock frequency through Linux cpupower tools.

Intel Core i5-10310U (Intel x86-64) is a desktop-class 64-bit processor implementing the
x86-64 ISA and providing support for the Intel AVX2 extension, running at a clock frequency
up to 4.4GHz. The PC mounting the Intel CPU ran the Ubuntu 20.04.3 LTS operating
system. Such CPU supports the execution of the AVX2-optimized software version of BIKE.

Xilinx Artix-7 (A7-xxx) FPGAs are mid-range, cost-effective FPGA chips which are
the suggested target for hardware implementations within the NIST PQC standardization
process, which targets FPGAs in order to prevent the adoption of ASIC-specific technology
optimizations and thus ensure a fair comparison of the hardware implementations. The
look-up table (LUT), flip-flop (FF), block RAM (BRAM), and digital signal processing (DSP)
resources available on each FPGA chip from the Xilinx Artix-7 family are listed in Table 1.

Xilinx Zynqg-7000 (Z-70xx) chips are heterogeneous SoCs that couple an Arm Cortex-A9
dual-core processor with Artix-7 class programmable FPGA logic. The ARM CPU part
has a clock frequency up to 667MHz, and the external memory mounted on the employed
Digilent Zedboard development board, which houses the Zyng-7000 chip, is a 512MB DDR3.
The LUT, FF, BRAM, and DSP resources available on the considered Zyng-7000 SoCs are
listed in Table 1. The BIKE software [2] is executed on top of the Xilinx Petalinux operating
system and extended with calls to the HLS-generated hardware accelerators.

4 Experimental evaluation

The experimental evaluation of the state-of-the-art implementations of BIKE considers first
the software solutions and then the hardware and hardware-software ones. The discussion of
the collected software performance results is split into the absolute execution times, to gauge

A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni

Table 2 Breakdown of the execution times of BIKE, expressed in milliseconds, for different
security levels, architectures, and software implementations. Legend: KEYGEN key generation,
ENcAPS encapsulation, DECAPS decapsulation, SLi NIST security level .

Target CPU, software version, security level

ARM32 ARMG64 Intel x86-64

Ref C99 CT C99 CT C99 CT AVX2
KEM primitive SL1 SL3 SL1 SL3 SL1 SL3 SL1 SL3
KEYGEN 332.34 920.93 21.15 66.97 3.68 11.91 0.20 0.57
ENcAPS 14.83 40.94 1.99 5.60 0.27 0.77 0.05 0.09
DEcCAPS 464.82 1188.27 33.93 104.65 4.07 12.67 0.81 2.55

Overall KEM 811.98 2150.14 57.06 177.23 8.02 2535 1.06 3.21

the actual real-world performance of the BIKE cryptoscheme, and the relative execution
times, to highlight similarities and differences between the various computing platforms and
software implementations. The evaluation of the hardware state-of-the-art solutions is split
instead into their performance, expressed as their absolute execution time, and their FPGA
resource utilization, expressed in terms of LUT, FF, BRAM, and DSP resources.

4.1 Software performance

The range of computing platforms and software implementations considered in the experi-
mental evaluation resulted in significant differences in terms of absolute performance when
executing the BIKE software, as shown by data provided in Table 2. Such performance
results were collected by executing BIKE 100 times and averaging the ensuing execution
times for each considered CPU and software version.

On the lower end, the ARM32 32-bit Arm Cortex-A9 platform, running at 667MHz,
provided execution times of 812ms and 2150ms, i.e., in the order of seconds, when executing
the Ref C99 reference implementation with NIST security levels 1 and 3, respectively.

Moving to a more efficient code that made use of 64-bit instructions, i.e., the CT C99
additional portable implementation, as well as to a more modern ARMv8-A architecture,
provided a speedup of more than 10x. The performance on the ARM64 Arm Cortex-A53
64-bit CPU, also running at a higher 1GHz clock frequency, measured at 57ms and 177ms
for AES-128 and -192 security instances of BIKE, respectively.

Executing the same CT C99 software implementation of BIKE on the Intel x86-64
CPU resulted in a further speedup of around 7x. The different architecture and the higher
clock frequency, in the order of 4GHz, allowed executing BIKE instances with security levels
1 and 3 in 8ms and 25ms, respectively.

Finally, we evaluated the execution, on the same Intel x86-64 CPU, of the CT AVX2
software implementation making use of instructions from the Intel AVX2 extension. The
execution times of 1.1ms and 3.2ms are around 8x smaller than those obtained by the CT
C99 plain-C99 software, which highlights the effectiveness of those dedicated instructions in
a software making wide use of binary polynomial arithmetic.

4.2 Software performance profile

Table 3 details the performance profile of the software execution of BIKE, on the different
computing platforms, highlighting the ratio of execution time taken by the main operations
comprising the three primitives of the BIKE KEM.

4:7

PARMA-DITAM 2023

4:8

An Evaluation of the SW and HW Implementations of BIKE

Table 3 Breakdown of the percentage execution times of BIKE for different security levels, archi-
tectures, and software implementations. Legend: KEYGEN key generation, ENCAPS encapsulation,
DEcAPs decapsulation, SLz NIST security level i.

Target CPU, software version, security level
ARM32 ARM64 Intel x86-64

Ref C99 CT C99 CT C99 CT AVX2
KEM primitive Operation SL1 SL3 SL1 SL3 SL1 SL3 SL1 SL3
KEYGEN PRNG 0% 0% 1% 1% 0% 0% 1% 1%
Inversion 39% 41% 34% 35% 43% 44% 17% 1%
Multiplication 2% 2% 2% 2% 2% 2% 1% 1%
41% 43% 3% 38% 46% 4% 19% 18%

ENCAPS H function 0% 0% 1% 1% 1% 1% 2% 1%
Multiplication 2% 2% 2% 2% 2% 2% 1% 1%

L function 0% 0% 0% 0% 0% 0% 1% 1%

K function 0% 0% 0% 0% 0% 0% 1% 0%

2% 2% 3% 3% 3% 3% 5% 3%

DEcCAPS Decoding 5% 55% 56% 56% 49% 48% 1% 75%
L function 0% 0% 0% 0% 0% 0% 1% 1%

H function 0% 0% 1% 1% 1% 1% 1% 1%

K function 0% 0% 0% 0% 0% 0% 1% 0%

5% 55% 59% 59% 51% 50% T6% T9%

On the ARM32 ARMv7-A platform, the execution of the Ref C99 reference imple-
mentation resulted in a performance profile characterized by binary polynomial inversion
and BGF decoding occupying up to 41% and 57% of the KEM execution time, with binary
polynomial multiplication taking instead up to 4% overall.

The execution of the CT C99 additional portable implementation of BIKE on the
ARMG64 ARMv8-A CPU highlighted binary polynomial inversion and BGF decoding taking
up to 35% and 56% of the execution time.

Executing the same CT C99 software on the Intel x86-64 processor saw the KEM
execution time being almost equally distributed between inversion and decoding, taking up
to 44% and 49%, respectively. Overall, the results are quite similar to ARMv8-A software
execution, due to not using any Intel-specific optimization.

On the contrary, the execution of the CT AVX2 AVX2-optimized software on the same
Intel x86-64 CPU produced quite different results. The decoding procedure takes indeed
a larger portion of the KEM execution time, up to 75%, while inversion only takes up to
17%. Notably, AVX2 instructions provide the higher speedup to the operations in binary
polynomial arithmetic, namely multiplications and inversions, where the latter is computed
as iterated multiplications and exponentiations. Binary polynomial multiplications and
inversions end up therefore taking smaller shares of the KEM execution time.

Overall, the obtained results highlight QC-MDPC bit-flipping decoding and binary
polynomial inversion as the two operations taking the largest share of the execution time
across all considered platforms and software versions, with an aggregate share of the execution
time ranging from 89% to 96%. The third largest share of execution time is occupied by
binary polynomial multiplications, ranging from 2% to 4%. H, K, and L functions, which are
not accelerated by AVX instructions, require a notable share of execution time, 8% and 5%
for NIST security levels 1 and 3, respectively, only when executing AVX2-optimized software.

A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni

Table 4 Breakdown of the execution times of AES-128 security instances of BIKE, expressed in
milliseconds, for different state-of-the-art FPGA-based implementations. Legend: LW lightweight,
MR mid-range, HP high-performance instances, * aggregate for key generation and decapsulation.

Hardware implementation

Official Client-server HLS-based
KEM primitive LW MR HP LW HP LW MR HP
KEYGEN 3.79 1.87 1.67 *5.71 *0.58 137.84 332.14 137.84
ENcaprs 0.44 0.28 0.13 0.03 0.03 14.86 14.86 14.86
DEcaPs 6.90 4.21 1.89 *5.71 *0.58 464.61 135.48 135.48

Overall KEM 11.14 6.36 3.70 5.74 0.61 617.31 482.48 288.18

4.3 Hardware and hardware-software performance

Table 4 lists the execution times, expressed in milliseconds, of the considered hardware
state-of-the-art implementations of BIKE. It provides the execution times of the overall KEM
as well as a breakdown at the granularity of KEM primitives for the NIST security level 1
instance of BIKE.

The lightweight, mid-range, and high-performance Official constant-time implementa-
tions [25] range from 11.14ms to 3.70ms. The lightweight instance is faster than 64-bit ARM
software execution, while the high-performance one is more than twice faster than plain-C99
software execution on the Intel CPU but still slower than the AVX2 software executed on
the same Intel CPU, which takes instead 1.06ms.

The Client-server hardware implementation [15] improves over the performance of the
official one, with the smaller instance taking 5.74ms to execute the whole BIKE KEM and
the larger one taking instead 0.61ms. The lightweight instance is thus faster than the official
mid-range one, while the high-performance instance is more than six times faster than the
best-performing official one. Notably, the authors do not provide a breakdown between the
execution times of the key generation and decapsulation primitives, thus Table 4 provides
their aggregate execution time.

Finally, the HLS-based hardware/software solution [20], which mixes software execution
with the adoption of HLS-generated accelerators, provides an execution time for the overall
KEM comprised between 617.31ms and 288.18ms. While all three instances proposed by
the authors outperform the software execution on the ARM32 CPU, with a speedup up to
2.78x for the best-performing one, they are however significantly slower than the software
execution on the ARM64 CPU, which takes instead 57.06ms.

The orders of magnitude of difference in the performance between human-designed
hardware implementations and HLS-generated ones highlight the difficulty of HLS tools to
make an efficient use of FPGA resources, in particular for applications as complex as the
BIKE cryptosystem.

4.4 Hardware and hardware-software resource utilization

Table 5 lists the resource utilization, expressed in terms of LUT, FF, BRAM, and DSP
resources, of the hardware state-of-the-art implementations of BIKE, and it details the
smallest FPGA or SoC that fits the required amount of resources.

The Official constant-time implementations [25] require the smallest amount of resources,
with the lightweight, mid-range, and high-performance instances fitting respectively on
Artix-7 25, 35, and 50 FPGAs. With respect to the resources available on Artix-7 chips, the
most relatively used resources are LUTs, which thus concur to defining the smallest FPGA
which can fit the BIKE hardware implementation.

4:9

PARMA-DITAM 2023

4:10

An Evaluation of the SW and HW Implementations of BIKE

Table 5 Resource utilization of AES-128 security instances of BIKE, expressed in terms of LUT,
FF, BRAM, and DSP resources, for different state-of-the-art FPGA-based implementations. Legend:
LW lightweight, MR mid-range, HP high-performance instances.

Hardware implementation

Official Client-server HLS-based
Resource Lw MR HP Lw HP Lw MR HP
LuT 12319 19607 25549 51596 217932 13567 37160 50727
FF 3896 5008 5462 29206 97700 11621 38118 49739
BRAM 9 17 34 73.5 632.5 40 90 130
DSP 7 9 13 0 0 0 35 35

Target A7-25 A7-35 A7-50 A7-100 2xA7-200 Z-7010 Z-7015 Z-7020

The better performance of Client-server implementations [15] comes at the cost of a
larger amount of FPGA resources. In particular, they implement two separate components,
one dedicated to key generation and decapsulation and the other devoted to encapsulation.
The smallest instance proposed by the authors requires an Artix-7 50 chip for the client core
and an Artix-7 35 FPGA for the server one, while the largest one fits each core on a separate
Artix-7 200 chip. Notably, both the client and server cores do not make use of any DSPs.

Finally, the HLS-based hardware/software instances [20] target the Zyng-7000 Z-7010,
Z-7015, and Z-7020 SoCs. In particular, the lightweight one implements in hardware the lone
key generation primitive, while the mid-range one implements only decapsulation and the
high-performance one instantiates both the former and latter, resorting to software execution
for the lone encapsulation. Although not providing a performance that is comparable to
the human-designed accelerators, the HLS-generated accelerators show a significant usage of
FPGA resources, in particular of LUT and BRAM ones.

5 Conclusions

This work provided an overview and a comparison of the software, hardware, and hardware-
software state-of-art implementations of BIKE.

Performance results highlighted significant differences in terms of software execution times
across a variety of computing platforms and software implementations, with the execution of
the whole BIKE KEM taking a time in the order of seconds on lower-end embedded-class
ARM CPUs and a few milliseconds on desktop-class Intel ones with support for AVX2
dedicated instructions. On the hardware side, the human-designed FPGA-based solutions
were shown to outperform the reference plain-C99 software executed on Intel CPUs. The
best-performing hardware solution could even outperform the AVX2-optimized software,
completing the BIKE execution in 0.61ms compared to the software’s 1.06ms. On the
contrary, HLS-generated solutions highlighted the difficulty to generate effective hardware
accelerators through high-level synthesis for target applications as complex as QC-MDPC
code-based cryptosystems. The considered hardware-software solutions were still able to
outperform the reference software execution on ARM32 CPUs by almost three times.

A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni

—— References

1

10

11

12

13

14

15

16

17

Amazon Web Services — Labs. Additional implementation of bike (bit flipping key encapsula-
tion). https://github.com/awslabs/bike-kem, 2020.

Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Giineysu, Carlos Aguilar Melchor,
Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur,
and Gilles Zémor. BIKE website. https://www.bikesuite.org/, 2017.

Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Giineysu, Carlos Aguilar Melchor,
Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur,
and Gilles Zémor. BIKE: Bit flipping key encapsulation — round 3 submission. https:
//bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf, 2021.

Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini.
LEDAcrypt website. https://www.ledacrypt.org/, 2017.

Alessandro Barenghi, William Fornaciari, Andrea Galimberti, Gerardo Pelosi, and Davide
Zoni. Evaluating the trade-offs in the hardware design of the ledacrypt encryption functions.
In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 739-742, 2019. doi:10.1109/ICECS46596.2019.8964882.

Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography — PKC 2006, pages
207228, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature, 549(7671):188-194,
2017.

Chair for Security Engineering @ Ruhr-Universitat Bochum. Racingbike: Improved polyno-
mial multiplication and inversion in hardware. https://github.com/Chair-for-Security-
Engineering/RacingBIKE, 2021.

Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing bike for the intel haswell
and arm cortex-m4. TACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):97-124, July 2021. doi:10.46586/tches.v2021.13.97-124.

Ming-Shing Chen, Tim Giineysu, Markus Krausz, and Jan Philipp Thoma. Carry-less to bike
faster. In Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and Network
Security, pages 833-852, Cham, 2022. Springer International Publishing.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644-654, 1976. doi:10.1109/TIT.1976.1055638.

N. Drucker, S. Gueron, and V. Krasnov. Fast multiplication of binary polynomials with the
forthcoming vectorized vpclmulqdq instruction. In 2018 IEEE 25th Symposium on Computer
Arithmetic (ARITH), pages 115-119, June 2018. doi:10.1109/ARITH.2018.8464777.

Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polynomial inversion for post quantum
qgc-mdpc cryptography. In Shlomi Dolev, Vladimir Kolesnikov, Sachin Lodha, and Gera Weiss,
editors, Cyber Security Cryptography and Machine Learning, pages 110-127, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-49785-9_8.

Nir Drucker, Shay Gueron, and Dusan Kostic. Qc-mdpc decoders with several shades of gray.
In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 35-50,
Cham, 2020. Springer International Publishing.

Andrea Galimberti, Davide Galli, Gabriele Montanaro, William Fornaciari, and Davide Zoni.
Fpga implementation of bike for quantum-resistant tls. In 2022 25th Euromicro Conference
on Digital System Design (DSD), pages 539-547, 2022. doi:10.1109/DSD57027.2022.00078.
Andrea Galimberti, Gabriele Montanaro, and Davide Zoni. Efficient and scalable fpga design
of gf(2m) inversion for post-quantum cryptosystems. [EEE Transactions on Computers,
71(12):3295-3307, 2022. doi:10.1109/TC.2022.3149422.

Stefan Heyse, Ingo von Maurich, and Tim Giineysu. Smaller keys for code-based cryptography:
Qc-mdpc mceliece implementations on embedded devices. In Guido Bertoni and Jean-Sébastien
Coron, editors, Cryptographic Hardware and Embedded Systems — CHES 2013, pages 273-292,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

4:11

PARMA-DITAM 2023

https://github.com/awslabs/bike-kem
https://www.bikesuite.org/
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://www.ledacrypt.org/
https://doi.org/10.1109/ICECS46596.2019.8964882
https://github.com/Chair-for-Security-Engineering/RacingBIKE
https://github.com/Chair-for-Security-Engineering/RacingBIKE
https://doi.org/10.46586/tches.v2021.i3.97-124
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1007/978-3-030-49785-9_8
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/TC.2022.3149422

4:12

An Evaluation of the SW and HW Implementations of BIKE

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Jingwei Hu and Ray C.C. Cheung. Area-time efficient computation of niederreiter encryption
on gc-mdpc codes for embedded hardware. IEEE Transactions on Computers, 66(8):1313-1325,
2017. doi:10.1109/TC.2017.2672984.

Jingwei Hu, Wei Guo, Jizeng Wei, and Ray C. C. Cheung. Fast and generic inversion
architectures over GF(2™) using modified itoh-tsujii algorithms. IEEE Transactions on Circuits
and Systems II: Express Briefs, 62(4):367-371, 2015. doi:10.1109/TCSII.2014.2387612.
Gabriele Montanaro, Andrea Galimberti, Ernesto Colizzi, and Davide Zoni. Hardware-software
co-design of bike with hls-generated accelerators. In 2022 29th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 1-4, 2022. doi:10.1109/ICECS202256217.
2022.9970992.

National Institute of Standards and Technology (NIST) — U.S. Department of Commerce. Post-
quantum cryptography. https://csrc.nist.gov/projects/post-quantum-cryptography,
2021.

National Institute of Standards and Technology (NIST) — U.S. Department of Commerce. Nistir
8413, status report on the third round of the nist post-quantum cryptography standardization
process. https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf, 2022. doi:10.
6028/NIST.IR.8413.

National Security Agency. Commercial National Security Algorithm Suite 2.0 (CNSA 2.0)
Cybersecurity Advisory (CSA). https://media.defense.gov/2022/Sep/07/2003071834/-1/
-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF, 2022.

Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr.
Inform. Theory, 15(2):157-166, 1986.

Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Giineysu. Racing bike:
Improved polynomial multiplication and inversion in hardware. Cryptology ePrint Archive,
Paper 2021/1344, 2021. URL: https://eprint.iacr.org/2021/1344.

Jan Richter-Brockmann, Johannes Mono, and Tim Guneysu. Folding bike: Scalable hardware
implementation for reconfigurable devices. IEEE Transactions on Computers, 2021. doi:
10.1109/TC.2021.3078294.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120-126, February 1978. doi:10.1145/
359340.359342.

Victor Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint
Archive, Paper 2001/112, 2001. URL: https://eprint.iacr.org/2001/112.

Ingo von Maurich and Tim Giineysu. Lightweight code-based cryptography: Qc-mdpc mceliece
encryption on reconfigurable devices. In 2014 Design, Automation and Test in Europe
Conference € Ezhibition (DATE), pages 1-6, 2014. doi:10.7873/DATE.2014.051.

D. Zoni, A. Galimberti, and W. Fornaciari. Efficient and scalable fpga-oriented design of
qc-ldpce bit-flipping decoders for post-quantum cryptography. IEEE Access, 8:163419-163433,
2020. doi:10.1109/ACCESS.2020.3020262.

D. Zoni, A. Galimberti, and W. Fornaciari. Flexible and scalable fpga-oriented design of
multipliers for large binary polynomials. IEEE Access, 8:75809-75821, 2020. doi:10.1109/
ACCESS.2020.2989423.

https://doi.org/10.1109/TC.2017.2672984
https://doi.org/10.1109/TCSII.2014.2387612
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://doi.org/10.1109/ICECS202256217.2022.9970992
https://csrc.nist.gov/projects/post-quantum-cryptography
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://eprint.iacr.org/2021/1344
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://eprint.iacr.org/2001/112
https://doi.org/10.7873/DATE.2014.051
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423

MonTM: Monitoring-Based Thermal Management
for Mixed-Criticality Systems

Marcel Mettler @&

Chair of Electronic Design Automation, Technische Universitdt Miinchen, Germany

Martin Rapp @4
Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Heba Khdr 24
Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Daniel Mueller-Gritschneder & &
Chair of Electronic Design Automation, Technische Universitdt Miinchen, Germany

Jorg Henkel 24
Chair for Embedded Systems, Karlsruhe Institute of Technology, Germany

Ulf Schlichtmann 24

Chair of Electronic Design Automation, Technische Universitdt Miinchen, Germany

—— Abstract

With a rapidly growing functionality of embedded real-time applications, it becomes inevitable to
integrate tasks of different safety integrity levels on one many-core processor leading to a large-scale
mixed-criticality system. In this process, it is not sufficient to only isolate shared architectural
resources, as different tasks executing on different cores also possibly interfere via the many-core
processor’s thermal management. This can possibly lead to best-effort tasks causing deadline
violations for safety-critical tasks. In order to prevent such a scenario, we propose a monitoring-
based hardware extension that communicates imminent thermal violations between cores via a
lightweight interconnect. Building on this infrastructure, we propose a thermal strategy such that
best-effort tasks can be throttled in favor of safety-critical tasks. Furthermore, assigning static
voltage/frequency (V/f) levels to each safety-critical task based on their worst-case execution time
may result in unnecessary high V/f levels when the actual execution finishes faster. To free the
otherwise wasted thermal resources, our solution monitors the progress of safety-critical tasks to
detect slack and safely reduce their V/f levels. This increases the thermal headroom for best-effort
tasks, boosting their performance. In our evaluation, we demonstrate our approach on an 80-core
processor to show that it satisfies the thermal and deadline requirements, and simultaneously reduces
the run-time of best-effort tasks by up to 45% compared to the state of the art.

2012 ACM Subject Classification Hardware — On-chip resource management; Computer systems
organization — Embedded and cyber-physical systems

Keywords and phrases Dynamic thermal management, mixed-criticality, monitoring

Digital Object Identifier 10.4230/0OASIcs. PARMA-DITAM.2023.5

Funding This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — Projektnummer 146371743 — TRR 89 “Invasive Computing”.

1 Introduction

New applications such as autonomous driving increase the complexity for modern embedded
real-time systems. Hence, it becomes increasingly challenging to reconcile functional require-
ments with non-functional requirements such as cost, weight, power consumption and heat
generation. In order to still meet both, functional and non-functional requirements, there is
an increasing trend in industry and academia to integrate tasks of different safety integrity

© Marcel Mettler, Martin Rapp, Heba Khdr, Daniel Mueller-Gritschneder, Jérg Henkel, and
5v Ulf Schlichtmann;

licensed under Creative Commons License CC-BY 4.0
14th Workshop on Parallel Programming and Run-Time Management Te