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Preface

This volume collects the papers presented at the fourth edition of the Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2023). The workshop is co-located with
the 2023 edition of the HiPEAC conference and was held on January 18, 2023 in Toulouse,
France.

The traditional concept of embedded systems is constantly evolving to address the
requirements of the modern world. Cyber-physical systems, networked control systems and
Industry 4.0 are introducing an increasing need for interconnectivity. A steadily increasing
algorithmic complexity of embedded software is fueling the adoption of multicore and
heterogeneous architectures. As a consequence, meeting real-time requirements is now more
challenging than ever.

The NG-RES workshop focuses on real-time embedded systems, with particular emphasis
on the distributed and parallel aspects. The workshop is a venue for both the networking
and multicore real-time communities aiming at cross-fertilization and multi-disciplinary
approaches to the design of embedded systems.

Topics of interest include but are not limited to:
Application of formal methods to distributed and/or parallel real-time systems
Programming models, paradigms and frameworks for real-time computation on parallel
and heterogeneous architectures
Applications of approximate computing in real-time systems
Compiler-assisted solutions for distributed and/or parallel real-time systems
Middlewares for distributed and/or parallel real-time systems
Networking protocols and services (e.g., clock synchronization) for distributed real-time
embedded systems
Scheduling and schedulability analysis for distributed and/or parallel real-time systems
System-level software and technologies (e.g. RTOSs, hypervisors, separation kernels,
virtualization) for parallel and heterogenous architectures

In this fourth edition of the workshop six regular papers were accepted, each of which
receiving two peer reviews. In addition, we are glad to have an invited talk by Martina
Maggio titled “Control Systems in the presence of Computational Problems”. We would like
to thank the authors of the NG-RES 2023 papers, the members of our program committee,
our publisher Schloss Dagstuhl as well as the HiPEAC organizers for contributing to the
success of this workshop.

Federico Terraneo and Daniele Cattaneo
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Control Systems in the Presence of Computational
Problems
Martina Maggio #

Univerisität des Saarlandes, Saarbrücken, Germany
Lund University, Sweden

Abstract
Feedback control is a central enabling technology in a wide range of applications. Control systems
are at the core of energy distribution infrastructure, regulate the behaviour of engines in vehicles, and
are embedded in household appliances like washing machines. Control is centred around the feedback
mechanism. Sensors provide information about the current state of the physical environment.
This is used to compute suitable control actions to fulfil performance requirements, that are then
implemented by actuators. For example, adaptive cruise control systems use measurements from
a range of sensors to determine how to adjust the throttle to automatically regulate the vehicle’s
speed, while maintaining a safe distance from vehicles ahead.

Control actions are often calculated using hardware and software. Hence, the computation of the
new control signals is subject to accidental faults, systematic issues, and software bugs. In practice,
these computational problems are often ignored. But when can this be done safely? This talk will
introduce a framework for analyzing the behaviour of control software subject to computational
problems. The focus will be on the development of tools that can certify when control software is
able to fulfil the system requirements, despite the presence of computational problems.
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IRQ Coloring: Mitigating Interrupt-Generated
Interference on ARM Multicore Platforms
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Abstract
Mixed-criticality systems, which consolidate workloads with different criticalities, must comply with
stringent spatial and temporal isolation requirements imposed by safety-critical standards (e.g.,
ISO26262). This, per se, has proven to be a challenge with the advent of multicore platforms
due to the inner interference created by multiple subsystems while disputing access to shared
resources. With this work, we pioneer the concept of Interrupt (IRQ) coloring as a novel mechanism
to minimize the interference created by co-existing interrupt-driven workloads. The main idea
consists of selectively deactivating specific (“colored”) interrupts if the Quality of Service (QoS) of
critical workloads (e.g., Virtual Machines) drops below a well-defined threshold. The IRQ Coloring
approach encompasses two artifacts, i.e., the IRQ Coloring Design-Time Tool (IRQ DTT) and
the IRQ Coloring Run-Time Mechanism (IRQ RTM). In this paper, we focus on presenting the
conceptual IRQ coloring design, describing the first prototype of the IRQ RTM on Bao hypervisor,
and providing initial evidence about the effectiveness of the proposed approach on a synthetic use
case.

2012 ACM Subject Classification Computer systems organization → Real-time system specification;
Computer systems organization → Embedded software

Keywords and phrases IRQ coloring, Interrupt Interference, Mixed-Criticality Systems, Hypervisors,
Bao, Arm
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1 Introduction

Currently, two major trends pose significant challenges for the certification of Mixed-criticality
Systems (MCS) [13]. Firstly, with the increasing digitalization trend, there is a need to
integrate an ever-growing number of rich functionalities for connectivity, visualization, and
monitoring. Rich features have to co-exist with safety-critical workloads, and virtualization
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technology – due to the proven advantages for the size, weight, power, and cost (SWaP-C)
– has been leveraged to provide the required spatial isolation [23, 24, 5, 11, 20]. Secondly,
there is a well-established trend toward multicore. Modern high-end embedded computing
platforms (typically powered by Arm Cortex-A) have evolved to highly heterogeneous designs
that host multiple cores, featuring complex memory hierarchies and a myriad of accelerator
such as general-purpose graphic processing units (GPUs), neural-processing units (NPUs)
and even Field-Programmable Gate Array (FPGA). Although existing hypervisors have
naturally evolved to support multicore designs, the problem is that the temporal isolation
guarantees are generally weak due to the absence of mechanisms in the overall design to
minimize the interference generated by shared microarchitectural resources [9].

The problem and difficulties deriving from the reciprocal interference generated by the
contention of shared microarchitectural computational resources, such as (i) caches, (ii)
bus, and (iii) main memory is a well-understood problem among the real-time systems
community [11, 20, 16, 28, 27, 29, 2, 26, 7, 18, 17]. It is widely-recognized that without
proper resource management strategies, interference can introduce variable delays that may
hamper the timing predictability and real-time guarantees [1, 4, 3], compromising the desired
Freedom From Interference (FFI) for MCSs. This issue is not linked to a particular piece of
software, i.e., operating system (OS) and/or hypervisor, but rather a fundamental problem
on the overall design of the lowest layer of software of the system stack. This problem is
further exacerbated by interrupts and interrupt-driven workloads. Interrupts are typically
asynchronous, and even synchronous events can divert the overall execution flow. Interrupt
handlers normally have a different code locality, inherently leading to stress the shared
components due to the expected last-level cache (LLC) misses and concurrent accesses to
main memory. Even worst, a storm of interrupts (i.e., extremely high interrupt frequency) can
be triggered for different reasons, leading to very effective Denial-of-Service (DoS) attacks.

Most of the proposed techniques to minimize interference created by shared resources
in multicore real-time systems focus on (i) cache partitioning (via locking or coloring)
[11, 20, 16, 15, 21], and (ii) memory throttling [28, 27, 2, 21, 6, 8]. Cache partitioning is a
well-established technique that splits and assigns subsets of the shared cache to a specific
OS process or Virtual Machine (VM). Cache locking avoids the eviction of cache lines by
marking them as locked; cache coloring segments the available cache by reserving specific
cache sets or ways to given cores. Memory throttling is a technique that limits the number of
memory accesses of a specific workload in a given time window. In the case of virtualization,
static partitioning hypervisors are the zeitgeist to implement such techniques e.g., Bao [20],
Jailhouse [24], Xen Dom0-less [14], all implement cache coloring.

Despite the recognized efforts of the academic community, existing mechanisms are not
perfect in terms of effectiveness and present several limitations. Firstly, cache locking support
was deprecated and is not available in today’s platforms powered by Armv8-A processors
(and is not expected to be supported in next-generation platforms powered by Armv9-A and
Armv8-R). Secondly, cache coloring has several drawbacks: (i) requires a virtual memory
infrastructure (i.e., the existence of an MMU); (ii) precludes the use of (2 MiB) huge pages
(which helps minimizing the overhead of the second stage translation); (iii) can impact the
performance; and (iv) leads to significant memory waste and fragmentation. Finally, memory
throttling completely suspends the CPU when a specific memory access threshold is reached
in a given time window, thus not providing intermediate states or well-defined degradation
modes. Furthermore, none of the existing mechanisms take interrupts into consideration.
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In this paper, we pioneer and introduce the concept of Interrupt coloring (a.k.a. IRQ
coloring), a novel mechanism to minimize the interference created by co-existing interrupt-
driven workloads1 and mitigate the effect of cascading failures when FFI cannot be completely
guaranteed. The overall IRQ Coloring concept encompasses two artifacts: (i) the IRQ Coloring
Design-Time Tool (IRQ DTT) and (ii) IRQ Coloring Run-Time Mechanism (IRQ RTM).
The basic idea consists of selectively deactivating (or deferring) specific (“colored”) interrupts
if the QoS of critical workloads drops below a specific threshold. By selectively masking
interrupts per the online assessment of the QoS of critical workloads, we provide fine-grained
control to mitigate interference on critical workloads without fully suspending non-critical
workloads. In this paper, we focus on describing the overall IRQ coloring concept, prototyping
the IRQ RTM on the Bao hypervisor, and providing evidence about the effectiveness of the
proposed approach on a synthetic use case mimicking an automotive application scenario.
To the best of our knowledge, we are the first to propose this concept. Huawei has already
filled and submitted a patent application.

2 Related Work

Several mechanisms to minimize interference have been proposed by academia and the
research community. Table 1 summarizes and puts into perspective several works published
in real-time venues. All works are compared across six dimensions: (i) target computer
architecture (Arch); (ii) implementation leveraging COTS hardware (COTS); (iii) target
system software component (System); (iv) target shared resource (Resource); (v) resource
partitioning/budgeting at design-time (Static); and (vi) resource partitioning/budgeting
and optimization at run-time (Dynamic). Next, we overview the related work, grouping
them based on the target resource, i.e., last-level cache (LLC), memory bus (e.g., Dynamic
Random Access Memory (DRAM) or SRAM), or both (cache and memory).

Table 1 Gap Analysis Table. t: “yes”. ❞: “no”.

Arch COTS System Resource Static Dynamic
MemGuard (2013) [29] x86 t OS DRAM ❞ t
Mancuso et al. (2013) [19] Armv7-A t OS LLC t t
Hassan et al. (2014) [12] x86 ❞ OS LLC t ❞
PALLOC (2014)[27] x86 t OS DRAM t ❞
Kim et al. (2017) [15] x86 & Armv7-A t Hyp. LLC t ❞
Modica et al. (2018) [21] Armv7-A t Hyp. LLC & DRAM t t
Crespo et al. (2018) [6] PowerPC t Hyp. DRAM t t
Pinto et al. (2019) [22] Armv8-M t Hyp. SRAM t ❞
Kloda et al. (2019) [16] Armv8-A t Hyp. LLC & DRAM t ❞
Bao (2020) [20] Armv8-A t Hyp. LLC t ❞
BRU (2020) [8] RISC-V ❞ OS DRAM ❞ t
DNA (2021) [10] x86 t Hyp. LLC+DRAM t t
IRQ Coloring Armv8-A (Armv8-R) t Hyp. IRQs t t

Cache Partitioning. Multicore platforms typically include a shared LLC and one or more
levels of private caches. The cache partitioning technique splits and assigns subsets of the
shared cache to a specific workload. Cache locking avoids the eviction of cache lines by

1 processes in the case of OS and VMs in the case of hypervisor

NG-RES 2023
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marking them as locked, while cache coloring segments the available cache by reserving
specific cache sets or ways to specific cores. R. Mancuso et al. [19] proposed a mechanism
that introduces a novel mechanism known as “Colored Lockdown” by combining coloring and
locking techniques. Kim et al. [15] proposed a multicore virtualization cache management
system that uses the hypervisor page coloring mechanism to assign portions of the cache to
VMs. M. Hassan et al. [12] address the problem of maintaining cache coherence in multicore
real-time systems by modifying the Modified-Shared-Invalidate [25] coherence protocol. J.
Martins et al. [20] implemented built-in support for cache coloring on Bao.

Memory Bandwidth Partitioning. Aiming to achieve temporal isolation through memory
bandwidth regulation, H. Yun et al. [29] proposed MemGuard. To improve isolation and
real-time performance, H. Yun et al. [27] proposed a mechanism that allocates private
DRAM banks. A. Crespo et al. [6] proposed a controller technique, at the hypervisor
level, to manage the execution of critical partitions for PowerPC multicore platforms. F.
Farshchi et al. [8] presented a Bandwidth Regulation Unit (BRU), a customized RISC-V
plug-and-play hardware module for per-core memory bandwidth control at fine-grained time
intervals. From a different perspective, Pinto et al. [22] developed a lightweight hypervisor
and implemented a static predictable shared resource management infrastructure for low-end
Armv8-M microcontrollers.

Cache & Memory Bandwidth Partitioning. The previous works focus on mechanisms that
individually target the Last-Level Cache (LLC) or the main memory. However, minimizing
the interference impact in a single microarchitectural component is not enough. Hence,
several authors attempted to provide methods that target the complete memory hierarchy,
i.e., LLC and main memory. Modica et al. [21] proposed a cache coloring-based technique to
achieve spatial isolation. Regarding the DRAM memory controller, the authors implemented
a memory bandwidth reservation technique combined with the hypervisor’s scheduling logic
to enhance temporal isolation. Kloda et al. [16] introduced a framework of software-based
techniques to enhance memory access determinism in high-performance embedded systems.
The authors proposed a Direct memory access (DMA)-friendly cache coloring combined
with an invalidation-driven allocation technique. Recently, R. Gifford et al. [10] proposed a
solution to mitigate two undesirable outcomes in current MCS: latency induced by shared
resource interference and Worst-Case Execution Time (WCET) of critical tasks. Furthermore,
the authors presented two techniques to mitigate the identified challenges: dynamic allocation
(DNA) and deadline-aware allocation (DADNA).

3 Motivation: Interrupt-generated Interference in MCSs

In the context of MCS, interference generated by co-located interrupt-driven workloads is
a particularly overlooked topic. Interrupts are typically used to notify the CPU about the
occurrence of sporadic events, without requiring the CPU to stall while polling for that
event. In the meantime, the CPU is free to perform any additional required computational
operation. Generically, upon the occurrence of an interrupt (and omitting the low-level
details of the overall interrupt entry process), the CPU execution is redirected to the so-called
interrupt handler, which acknowledges the reception of the interrupt and then invokes an
event-dependent piece of code. Typically, in safety-critical systems, interrupts are linked to
application workloads, which are dispatched upon the occurrence of a particular event. For
example, in Industrial Control Systems (ICS), the implementation of a PID controller, or in
automotive systems, an antilock braking system.
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The problem. Interrupts are typically asynchronous, and even synchronous events lead to
unpredictable diversions in the overall computational execution flow. Upon the occurrence
of an interrupt, the execution flow is redirected to the respective interrupt handler, which
typically has a completely different code locality than the main execution path. Furthermore,
interrupts are typically linked to application workloads, which are dispatched upon the
occurrence of a particular event. This inherently stresses the microarchitectural shared
components due to the expected LLC misses and subsequent accesses to the main memory.
Even worst, a storm of interrupts can be triggered for different reasons (e.g., device driver
bug, malfunction in a particular hardware device), which can create a DoS attack.

The evidence. We performed a few experiments to collect evidence supporting the identified
problem. We mounted a synthetic use case of a system consisting of Bao hypervisor and two
VMs running atop: a critical ASIL-D VM, and a QM VM. For the ASIL-D VM, we use a
custom baremetal application that continuously writes into a buffer with the size of the LLC
(1 MiB). A periodic CPU timer interrupt triggers this application. For the other QM VM,
we use the very same baremetal application, triggered continuously by a software-generated
interrupt. For the ASIL-D VM, we assigned 1 CPU, while for the QM VM we assigned 1, 2,
or 3 CPUs, depending on the amount of interference we want to create (1 Interf VM, 2 Interf
VM, and 3 Interf VM, respectively). Figure 1 depicts the assessed results. We collected the
workload execution time and IRQ handling time, which corresponds to the interrupt latency,
for the critical ASIL-D VM. The interference with 3 CPUs (3 Interf VM) can impact the
workload execution time of the ASIL-D VM up to 2.48x.
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Figure 1 Interrupt-generated Interference - workload execution time and IRQ handling time with
multiple VMs.

4 IRQ Coloring

IRQ coloring is a new concept that dictates that interrupts assigned to workloads (e.g., VMs)
are classified according to a specific criticality level. The basic idea consists of selectively
deactivating/deferring interrupts of non-critical workloads if the QoS of critical workloads
drops below a specific threshold. By selectively masking interrupts per the online assessment
of the QoS of critical workloads, it is expected that the overall interference from non-critical
VMs to critical VMs is mitigated without fully suspending non-critical workloads.

Conceptual Design. Figure 2 illustrates the conceptual design of the IRQ Coloring technique,
which follows a budget-based approach. A set of budgets of interrupts (Bi) are assigned
to each workload for a well-defined period of time (P ). During the period (P ), each VM
can trigger a certain number of interrupts; however, if the VM exceeds the specified budget
(Bi), the degradation mode is updated, and some interrupts are disabled 1 . Since the

NG-RES 2023



2:6 IRQ Coloring: Mitigating Interrupt-Generated Interference

Degradation Mode 0 Degradation Mode 1 Degradation Mode 2

VM
 C

riticality

IRQ Priority

VM0

VMN

VM1

IRQ0 IRQ1 ... IRQN

...

1

Fail-Safe Strategy

2

Figure 2 IRQ coloring conceptual design.
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Figure 3 IRQ coloring system overview.

impact of each interrupt (assigned to a particular VM) in the overall QoS of the system is
not equal and linear, the weight of each interrupt in the overall budget Bi will be measured
by assessing specific QoS metrics. The conceptual design takes this into consideration and
is reflected in Figure 2). Lastly, if applying different degradation modes is not enough to
guarantee the QoS of the higher-criticality VM, the system will enter fail-safe mode. At this
stage, only interrupts from the higher-criticality VM are kept enabled 2 .

System Overview. Defining which and when interrupts must be disabled is the main
research question of the IRQ Coloring technique. The design goals encompass: (i) achieving
the required QoS on higher criticality VMs, (ii) maintaining intermediate execution of lower
criticality VMs (intermediate states under specific degradation modes), and (iii) minimizing
the performance impact incured by the overall mechanism. To achieve these three goals,
we conceived a system with two major components, with the bulk of logic performed at
design time. Figure 3 presents the high-level system view, encompassing the IRQ Coloring
Design-Time Tool (IRQ DTT) and the IRQ Coloring Run-Time Mechanism (IRQ RTM).

1. IRQ Coloring Design-Time Tool (IRQ DTT). The IRQ DTT goal is twofold. Firstly,
based on the target VM workload, set the profile of each interrupt-driven workload, which
helps estimate the worst-case execution time (WCET) by providing information about
the execution time and the microarchitectural state (i.e., caches, shared bus). Secondly,
based on the established profile of the workload and assigned interrupts altogether with the
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specification of VMs criticality, produce an optimized configuration table (representing the
masking map to be enforced in each degradation mode) which will feed the IRQ RTM. The
output of the DTT will then be used to feed the RTM implemented at the hypervisor level,
and it consists of two artifacts: (i) the budgets assigned to each degradation mode of the
diverse VMs, and (ii) the masking maps to be used in the multiple degradation modes (i.e.,
the content of the optimized configuration table).

2. IRQ Coloring Run-Time Mechanism (IRQ RTM). The IRQ RTM, implemented as a
mechanism at the hypervisor level, will mainly collect specific metrics from the hardware
performance counters (e.g. Performance Monitor Unit (PMU)), and based on the optimized
table produced from the IRQ DTT, will selectively disable interrupts upon the occurrence of
specific events. Next, we describe the IRQ RTM implemented in Bao in more detail.

4.1 IRQ Coloring Run-Time Mechanism (IRQ RTM)
The implementation of the IRQ RTM has two main assumptions, which we highlight below.

Assumption 1. Workloads Profiling

The interference generated by co-located VMs running onto the same hardware
platform is dependent on the VMs’ workloads. We assume that workloads are
available, known a priori, profiled offline, and this data is directly or indirectly passed
to the IRQ DTT.

Assumption 2. Masking Maps

We assume that the IRQ DTT, based on the profile of the VMs workloads, produces
an optimized configuration table (a.k.a. masking map) with “colored” interrupts and
associated budgets.

The IRQ RTM relies on a budget-based implementation, which means that each VM
can trigger a given number of interrupts in a given period of time (P ). Typically, these
approaches assume that a VM can process workloads until the defined budget is exhausted.
After that, typically the CPU enters idle mode. However, IRQ coloring points to intermediate
guarantees, i.e., VM interrupts will be gradually disabled in order to minimize the generated
interference created on the critical VM. In this way, instead of assigning a budget to each VM,
we assign a buffer of budgets (i.e., a buffer with D values, each representing an activation
point of a different degradation mode). Thus, the system configuration must contemplate
the setup of the table BN,D, where N corresponds to the number of co-existing VMs into
the system, and D corresponds to the total number of degradation modes. The high-level
implementation of the IRQ RTM is shown in Algorithm 1.

Figure 4 depicts the IRQ RTM architecture, implemented as a plug-in mechanism in
Bao. The IRQ RTM actuates between the GIC distributor (GICD) and the CPU Interfaces
(GICC). To simplify the run-time operation, each CPU uses the PMU to track the number
of triggered interrupts, triggering an interrupt, at the hypervisor level, when the counter
overflows, i.e., when the assigned budget (B) is exceeded. When the PMU interrupt is
triggered, the IRQ RTM is in charge of masking a set of interrupts based on the masking
map generated by the IRQ DTT. At this point, the run-time mechanism is triggered, leading
to the update of the degradation mode and the masking of the interrupts corresponding to
the degradation mode map (IRQ_MAPD). The process repeats until processing all the
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Algorithm 1 IRQ Coloring RTM - Implementation.

1: funtion periodic_timer_handler;
2: begin
3: for V M = 1, 2, . . . do
4: V MDegradation_mode = 0
5: Set PMU to generate overflow interrupt at V MB0

6: for IRQ = 1, 2, . . . do
7: Unmask IRQ

8: end for
9: end for

10: Re-schedule timer period

11: funtion pmu_overflow_interrupt_handler;
12: begin
13: for IRQ = 1, 2, . . . ∈ IRQ_MAPDegradation_mode do
14: Mask IRQ
15: end for
16: V MDegradation_mode ← V MDegradation_mode + 1
17: if V MDegradation_mode < Max_Degradation_modes then
18: Set PMU to generate overflow interrupt at BV M,Degradation_mode

19: end if

Generic Interrupt Controller (GICv2)

Multicore Processor

CPU Interface (GICC)

Distributor (GICD)

IRQs IRQs IRQs IRQs

PMC

Core

PMC

Core

PMC

Core

PMC

Core

CPU Interface (GICC) CPU Interface (GICC) CPU Interface (GICC)

IRQ Mask IRQ Mask IRQ Mask IRQ Mask

IRQ Coloring
SPI

PPI

LPI

SGI

Figure 4 IRQ Coloring RTM: system architecture.

D degradation modes. If a non-critical VM reaches this point, the IRQ RTM triggers the
fail-safe strategy, i.e., all interrupts from all system VMs, except the most critical one, are
disabled. In this case, the interrupts are re-enabled when the periodic timer expires.

5 Evaluation

In this section we describe the evaluation setup (Section 5.1) and present and discuss the
evaluation results (Section 5.2).
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Figure 5 IRQ Coloring evaluation (synthetic) use case.

5.1 Evaluation Setup
Hardware Platform. Experiments were carried out on a Xilinx ZCU104 evaluation board,
featuring a Zynq Ultrascale+ ZU7EV SoC. This platform features a quad-core Arm Cortex-
A53 running at 1.2GHz. Each CPU has a private 32KiB L1 instruction and data caches and
an unified L2 1MiB cache. The cluster features the GIC-400 (GICv2).

Use Case. To evaluate the raw effectiveness of the IRQ coloring mechanism, we mounted
a synthetic use case, aiming at mimicking a real-world automotive ECU consisting of four
different sub-systems: (i) a critical ASIL-D workload, emulating an electric power steering
system; (ii) an ASIL-C workload, emulating an active suspension system or an engine
management system; (iii) an ASIL-B workload, emulating for example a radar cruise control;
and (iv) a QM workload, emulating a non-critical third-party software. We implemented
the four VMs on top of the Bao [20]. Furthermore, to mimic the I/O interrupt generation,
we have implemented a custom hardware device on the programmable logic of the Zynq
UltraScale+ SoC, which can trigger up to 16 simultaneous interrupts.

VM Workload. The workload of each VM is summarized in Figure 5. For the ASIL-D
VM, we use a custom baremetal application that continuously writes into a buffer with the
size of the LLC (1 MiB). This application is triggered by a periodic CPU timer interrupt
at each 500 us. For the other VMs, i.e., ASIL-C, ASIL-B, and QM, we use an identical
baremetal application with a small difference. Each VM has assigned four different interrupts,
all triggered by the custom hardware module deployed on the programmable logic of the
Zynq UltraScale+ SoC. In this case, rather than writing into the entire buffer, each interrupt
triggers the workload that writes in a subset of the buffer. To evaluate the effect of different
workloads, the buffer is partitioned into four parts: (i) one with 512KiB (50% of the LLC);
(ii) one with 256KiB (25% of the LLC); and (iii) two with 128KiB each (12.5% of the LLC).
Since the Cortex-A cluster of the ZCU104 has 4 CPUs, we assign one CPU to each VM.

Measurement Tools. We use the Arm PMU to collect microarchitectural events on bench-
mark execution. The selected events include execution cycle count, data L1 and L2 cache
misses and cycles of bus accesses. The PMU cycle counter is used to calculate the execution
time.
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Figure 6 IRQ RTM - Execution time of ASIL-D workload for multiple degradation modes.

5.2 Evaluation Results
Intermediate degradation modes. To validate the intermediate degradation modes imple-
mented with the IRQ RTM, we used a simplified version of the use case described above.
For this particular experiment, we have used only the ASIL-D and QM VMs, with respective
identified workloads. We have also defined four degradation modes: (i) degradation mode 1
(3 interrupts on QM VM active), which is activated after spending a total budget of 1000
interrupts; (ii) degradation mode 2 (2 interrupts on QM VM active), which is activated once
the total budget of 4000 is reached; (iii) degradation mode 3 (1 interrupt on the QM VM
active), which is activated after triggering 5000 interrupts; and, finally, (iv) fail-safe strategy
(all interrupts are disabled on the QM VM) which is activated after triggering another 5000
interrupts. The budgets are re-established after a well-defined period of 150ms. Figure
6 presents the execution time of the ASIL-D VM workload. We started by assessing the
ASIL-D VM running without interference, which corresponds to the baseline. For this case,
the workload execution time was, on average, 547 us. By enabling the QM VM interrupts,
the average ASIL-D workload execution time increases by 6.99x (3823 us) - DM0. Then,
after expiring the first budget (B0), the first degradation mode is activated, reducing the
performance degradation by 26.8% (2796us) - DM1. Then, after activating additional degrad-
ation modes, the ASIL-D workload performance is boosted due to reduction of the QM VM
interference. For instance, when the budget of the degradation mode 1 expires, the second
degradation mode - DM2 - is activated, allowing a reduction of the relative performance
overhead of 57.32% (1632us); when the third degradation mode - DM3 - is activated, it
reaches a reduction of 70.87% (114us). Ultimately, triggering the fail-safe strategy brings the
ASIL-D workload performance to native execution, i.e., 550 us.

Relative performance overhead. After validating the effectiveness of intermediate degrad-
ation modes, we resort to the original use case with four VMs to understand the average
performance impact of the IRQ coloring (+IRQ_col) compared to the vanilla system (baseline)
and the cache coloring technique (+cc). For the cache coloring, we assigned two colors to
each partition (25% of the L2 cache to each VM). Figure 7 depicts the ASIL-D workload
execution cycles, as well as a few microarchitectural events, i.e., L1 misses, L2 misses, and
bus cycles. We can draw two main conclusions. Firstly, in contrast to the cache coloring, the
IRQ coloring technique does not incur any noticeable impact on the overall performance of
the ASIL-D VM. Secondly, when the ASIL-D VM is under the interference of the QM VM,
the average performance overhead is considerably smaller in the case of the IRQ coloring,
which indicates that this technique is more effective than the cache coloring. As expected,
per the results collected for the microarchitectural events, this is explained by the reduced
number of L1 and L2 cache misses (the contention on the L1 and L2 caches is smaller), as
well as the reduced number of accesses to the main memory.
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Figure 7 Average Relative performance overhead and microarchitectural events for the vanilla
system, for the cache coloring, and IRQ coloring.

6 Conclusion

With this paper, we propose the concept of Interrupt (IRQ) coloring as a novel mechanism
to minimize the interference created by co-existing interrupt-driven workloads. We focused
on presenting the conceptual IRQ coloring design, describing the prototype of the IRQ RTM
on Bao, and evaluating the implemented mechanisms on a synthetic use case. Preliminary
results have demonstrated advantages compared to other state-of-the-art techniques (e.g.,
cache coloring), and findings are encouraging additional research to advance the maturity of
the technique, as well as a comprehensive evaluation under more realistic setups. Additionally,
we are currently designing the DTT infrastructure. The full combination and integration of
RTM and DTT have the potential to further unlock novel designs and optimize and explore
trade-offs for reducing interference in multicore platforms. As part of our roadmap, we also
plan to iterate and complete the formal model for the IRQ coloring mechanism.
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Abstract
The use of a real-time operating system (RTOS) raises the abstraction level for embedded systems
design when compared to traditional bare-metal programming, resulting in simpler and more reusable
application code. Modern RTOSes for resource-constrained platforms, like Zephyr and FreeRTOS,
also offer threading support, but this kind of shared memory concurrency is a poor fit for expressing
the reactive and interactive behaviors that are common in embedded systems. To address this,
alternative concurrency models like the actor model or communicating sequential processes have been
proposed. While those alternatives enable reactive design patterns, they fail to deliver determinism
and do not address timing. This makes it difficult to verify that implemented behavior is as intended
and impossible to specify timing constraints in a portable way. This makes it hard to create reusable
library components out of common embedded design patterns, forcing developers to keep reinventing
the wheel for each application and each platform. In this paper, we introduce the embedded target
of Lingua Franca (LF) as a means to move beyond the threaded programming model provided by
RTOSes and improve the state of the art in embedded programming. LF is based on the reactor
model of computation, which is reactive, deterministic, and timed, providing a means to express
concurrency and timing in a platform-independent way. We compare the performance of LF versus
threaded C code – both running on Zephyr – in terms of response time, timing precision, throughput,
and memory footprint.
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1 Introduction

Microcontrollers are ubiquitous in embedded applications, such as consumer electronics,
industrial automation, robotics, and automotive systems. Such applications are concurrent,
event-driven, and in many cases, time-sensitive. Traditionally, these systems have been
programmed in C, based on a limited shared-memory concurrency model offered by interrupts.
However, such programs have long been known to be notoriously difficult to get right [24,
5]. This has contributed to serious bugs and vulnerabilities, sometimes with catastrophic
results [11, 10, 14].

Real-time operating systems (RTOSes) offer a richer version of the shared-memory
concurrency model through threads. Threads enable the user to decompose their application
into multiple concurrent activities. The RTOS offers low-level primitives for controlling the
scheduling, synchronization, timing, and communication between threads. Just like interrupts,
the threaded programming model admits nondeterminism [12] and leaves the error-prone
job of synchronizing the threads’ accesses to shared variables to the programmer [25]. A
concurrency primitive that popular operating systems like Zephyr [4] provide as an alternative
to threads is callbacks, which are invoked from interrupt service routines [20]. Callbacks
do not address the problem of nondeterminism either, but they do create the problem of
control flow inversion [5], which makes programs much harder to understand [18]. The RTOS
introduces a notion of time, which is useful when designing time-aware applications. However,
the timing is too imprecise for many applications. The RTOS will use regular interrupts,
called systicks, to measure time and provide timing abstractions. The interval between the
systicks is user-configurable but typically in the order of milliseconds. For many applications,
this level of accuracy is not sufficient [9]. Developers can resort to implementing the timed
behavior through callbacks, but this will expose them to the aforementioned problems.

In this paper, we propose Lingua Franca (LF) [16] as a means to enable intuitive concurrent,
reactive, and time-aware programming of microcontrollers. LF offers lightweight concurrent
objects called reactors, which can be composed in a network. Reactors do not share state
but communicate through message passing via named ports. Deterministic concurrency is
ensured on the basis of the topology of the reactor network. LF has a semantic notion of time
that enables specification of arbitrary timing behavior of a program. Being a coordination
language, not a general-purpose programming language, LF lets the programmer express
computation in a target language of their choice. The Zephyr support implemented and
evaluated in this paper is based on the C target. We compare the implementation of typical
patterns in embedded system software using the timed reactor-based concurrency model
against achieving the same kinds of behavior with threads.

The remainder of the paper is organized as follows. Section 2 briefly introduces the
reactor-oriented paradigm followed by LF and its suitability for embedded system design.
Section 3 takes a look at related work. Section 4 introduces the Zephyr support layer we
developed for LF. In Section 5 we compare the performance of LF on Zephyr versus threaded
C code running directly on Zephyr. Conclusions are provided in Section 6.

2 Embedded Programming in Lingua Franca

In the reactor-oriented programming paradigm followed by LF, concurrency is exposed
by the programmer through the composition of stateful components called reactors that
encapsulate event-triggered reactions, leaving the task of concurrency management to the LF
compiler and runtime. Programmers need not deal with locks, semaphores, or other low-level
synchronization mechanisms. Any two simultaneously triggered reactions that do not have
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any data dependencies between them may execute in arbitrary order (or in parallel, on a
multicore system) without execution order affecting the effects of those reactions. It is the
runtime system, not the programmer, that is in charge of ensuring that data dependencies
are observed. This is what makes LF programs deterministic by default.

When events are not logically simultaneous, the LF runtime guarantees that they will
appear to be processed in order according to their positions, called tags, on a totally ordered
logical timeline. Through its correspondence to physical time, as measured by the system
clock, this logical timeline also determines the program’s real-time behavior. Events with
well-defined logical times are produced by hooking up reactors to timers that produce events
periodically, or by scheduling events in reaction code via actions. LF’s timing constructs
can be parameterized to let the runtime control the offsets, periods, and spacing between
events. Logical delays and deadlines can be used to specify timing constraints and to handle
possible timing violations.

LF separates a declarative specification of a program’s coordination fabric from the
program’s imperative code, which is contained in reaction bodies and written in a target
language of choice. The LF toolchain capitalizes on this by providing automatically synthe-
sized interactive diagrams in the IDE. In the diagrams, reactors are shown as rounded boxes.
Small black triangles denote ports, and reactions are represented by chevrons. Reactions
can be triggered by events originating from upstream ports or actions, connected via dashed
lines. There are also distinguished startup and shutdown triggers that, respectively, have
events at the very first and very last time instant of program execution. Dashed lines also
connect a reaction to its effects, which are downstream ports or actions that it can produce
events on. Events produced on ports are always instantaneous; those produced on actions
are always scheduled to occur at a future time.

To express modal behaviors, where the software has to switch between different modes of
operation, LF also has syntax for grouping a reactor’s elements in mutually exclusive regions
called modes. A modal reactor has a single initial mode and can have several other modes.
A transition from one mode to another is initiated in reaction code and requires the reaction
to specify the target mode among its effects. A mode can be entered via a reset transition
(the default) or a history transition. The former initializes all timers and resets any state
marked to be reset; the latter resumes operation where it left off when the mode was last
exited. Modes and transitions are rendered visually in the diagrams as highlighted areas
with arcs between them. The initial mode is marked by a thicker border.

The LF runtime can be compared to an RTOS kernel. Like a kernel, it supports
message-passing and context-switching between concurrently executing components. The
message-passing is done by setting up direct pointers from input ports to the output ports
they are connected to on. Ports carry immutable data by default which enables zero-copy
communication. There are two types of context-switches performed by the LF runtime. The
first, referred to as reaction-switching, involves scheduling a new reaction at the same tag
a the previously executed reaction. The second type of context-switch requires advancing
the logical time of the program. This is referred to as logical time advancement. It might
include putting the system into low-power sleep to wait for the physical time to reach that
particular value.

2.1 Embedded design patterns

In the following sections we will show how three common design patterns in embedded
systems can be expressed easily using Lingua Franca.
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1 target C;
2
3 reactor ButtonDebounce {
4 preamble {=
5 void * button_press_action ; // Pointer to physical action
6 void gpio_pin_isr () {
7 lf_schedule ( button_press_action , 0);
8 }
9 =}

10
11 physical action button_press (0, 10 msec )
12
13 reaction ( startup ) -> button_press {=
14 // Setup GPIO pin and register ISR
15 ...
16 // Make physical action available externally
17 button_press_action = button_press ;
18 =}
19
20 reaction ( button_press ) {=
21 // Handle
22 =}
23 }

Figure 1 Button debouncing in Lingua Franca.

2.1.1 Button debouncing

When a button is pressed, it may generate multiple spurious open and close transitions.
Debouncing is the process of filtering out transitions that are so close in time that they likely
are not due to an actual button press or release. LF’s timed semantics makes such patterns
simple to express. To capture asynchronous events, like button presses, and pin them to
LF’s logical timeline, a physical action is used, which can be scheduled from an external
thread or ISR. The tag of such an event is derived not from the runtime’s current logical
time (as an event scheduled on a logical action would), but from the systems’s physical time.
An action can be assigned a minimum spacing, which will make the scheduler reject events
scheduled too close to one another. Fig. 1 shows how this is expressed in the C target of
Lingua Franca. The physical action button_press has a minimum spacing of 10 ms, and the
runtime system handles the debouncing.

2.1.2 Sensor parsing

Consider the common application of parsing an incoming packet from an external sensor
connected through a digital communication interface. Figs. 2b and 2a show the imple-
mentation and diagram of a generic packet parser reactor in LF. Parsing a stream of bytes
is conveniently expressed as a state machine. LF has native support for encoding state
machines through modal reactors. The SensorParsing reactor has an input port for incoming
bytes and an output port for the parsed packet. How the reactor responds to data on its
input port depends on its current mode. In the initial mode, ReadSync, the incoming bytes
are compared against the known sync ID of the packet. Upon finding the sync bytes, the
reactor performs a mode change to ReadLength, where it reads the length field of the packet.
When the length has been decoded, the reactor moves to the ReadPacket mode, reads the
packet, and outputs the result on the pkt output port.
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(a) Diagram.

1 reactor SensorParser {
2 input byte:char
3 output pkt: sensor_pkt_t ;
4
5 initial mode ReadSync {
6 reaction (byte) -> ReadLength {=
7 // Search for sync -byte ...
8 lf_set_mode ( ReadLength );
9 =}

10 }
11
12 mode ReadLength {
13 reaction (byte) -> ReadPacket {=
14 // Read length field ...
15 lf_set_mode ( ReadPacket );
16 =}
17 }
18
19 mode ReadPacket {
20 reaction (byte) -> pkt {=
21 // Read packet into p ...
22 lf_set (pkt , p);
23 =}
24 }
25 }

(b) Source code.

Figure 2 A sensor packet parser in Lingua Franca.
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Figure 3 Tight control loop application in Lingua Franca.

2.1.3 Control loops

Another common design pattern is that of tight control loops in, for example, robotics and
control. Consider the LF program depicted Fig. 3. It consists of a Sensor reactor that
reads from a sensor every 1 ms. The sensor values are passed downstream to the Processing
reactor, which implements a control algorithm. Finally, the control set points calculated by
Processing are applied to the actuators in the Actuator reactor.

Notice that there are two deadlines. First, the Sensor reaction is associated with a 20 us
deadline. This is a way of expressing a bound on how much jitter we accept in our sensor
readings. Likewise, the Actuator reactor has a deadline of 1 ms. This corresponds with the
period of the control loop and expresses that the overhead starting from obtaining a reading
from Sensor up to right before invoking Actuator should be less than 1 ms. The timed
semantics of LF provides an intuitive way to express such control loops and their timing
requirements.

NG-RES 2023



3:6 Beyond the Threaded Programming Model on Real-Time Operating Systems

3 Related Work

There is a rich body of work exploring ways of raising the abstraction level for embedded
software design. SynchronVM [20] is a virtual machine running on top of Zephyr OS or
ChibiOS targeting microcontrollers. The underlying concurrency model is based on message
passing and resembles communicating sequential processes (CSP) [6]. In SynchronVM one
can specify a time window in which a synchronous message passing should occur. The time
window informs the scheduling of the processes but does not have a well defined semantics.
The underlying model of computation, CSP, is fundamentally nondeterministic as it allows
processes to wait for events on multiple channels and synchronize with the first available.

MicroPython [19] is a project bringing the interpreted and garbage-collected high-level
language Python to microcontrollers. The MicroPython interpreter supports REPL (Read-
Evaluate-Print-Loop) interaction, which greatly simplifies prototyping. However, MicroPy-
thon requires FLASH memory on the order of 256KB, and its garbage collection and dynamic
typing make it unsuited for real-time and safety-critical applications.

Medusa [2] is a concurrent programming language based on the Actor model [1]. Medusa
is an extension of Python and runs an Owl Python runtime for microcontrollers. The Owl
runtime has a code size of 38KB, and each Actor requires 100B of RAM. In Medusa, the
hardware is also modeled as actors, and the peripherals communicate with the rest of the
system through message passing performed by the interrupt service routines. Medusa does
not have a semantic notion of time, and the underlying actor model is nondeterministic.

xC [22] is a C-based programming language designed for the Xcore [17] CPU architecture
from XMOS. xC also has CSP as its underlying model, but it targets a CPU architecture
with hardware support for processes and rendezvous. As such, there is no runtime providing
a message-passing API. xC has language primitives representing hardware timers, which
provide sleeping and waiting. The Xcore architecture is timing-predictable, and the tools
support worst-case execution time analysis.

4 Design and Implementation

Zephyr OS

Zephyr kernel APIZephyr Counter API

LF Zephyr support

LF C-runtime

Reactor 1 Reactor 2 Reactor 3 Reactor 4
Zephyr 
task 2

Zephyr 
task 1

Figure 4 Lingua France runtime stack.

Fig. 4 shows the software stack supporting LF on embedded systems. The Zephyr OS [4]
forms the foundation of this stack. This was chosen over a bare-metal target for multiple
reasons. First of all, the APIs of the Zephyr kernel and drivers are platform independent,
and, at the time of writing, Zephyr supports more than 400 boards. Zephyr also comes with
many useful drivers for communication protocols like Bluetooth Low Energy (BLE), Ethernet,
USB, and CAN buses. This makes Zephyr an attractive framework even for single-threaded
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Table 1 LF code and data size (B is bytes).

Runtime Reactor Reaction Timer Action Mode Port (In/Out) Event

Code size 9.8KB(1KB) 96B 62B 88B 174B 36B 32B/16B –
Data size 266B(170B) 72B 80B 60B 72B 28B 104B/40B 32B

applications. Using Zephyr also enables simple integration of LF programs with existing
libraries like TCP/IP stacks or clock synchronization implementations. These can simply
execute in separate threads and be scheduled by the Zephyr kernel. Lastly, for running LF
on multicore platforms, a threading library is needed in order to make use of all the cores.
Zephyr implements a POSIX-compliant threading library.

In this paper we focus on the single-threaded LF C runtime. Like any LF target port,
this one must implement a few key functions to (1) enter and leave critical sections; (2) sleep
for a duration or until interrupted asynchronously; and (3) read a monotonically increasing
physical clock. A critical section is created by disabling all interrupts; this functionality is
exposed by the kernel API. Sleeping can be achieved in various ways, but the Zephyr kernel
provides the function k_sleep which puts the calling thread to sleep for a number of clock
ticks. A physical clock can be read using k_cycle_get_32. However, on many platforms,
this clock, which underlies the kernel services, is a low-frequency 32KHz clock. This might
not be sufficient for high-precision control or highly dynamic robots [9]. Most platforms will
also have high-frequency clocks which can drive hardware timers. Such hardware timers can
be used through the platform-independent Counter API. The Counter API is not part of the
kernel API and might not be implemented for all platforms.

For multi-threaded support, a full POSIX-like implementation must be provided. Zephyr
does implement the POSIX API, but again the granularity of the timing services is too
coarse. Here, we use the Counter API again to provide high-precision sleeps.

For platforms that do not have hardware timers or do not implement the Counter API,
the Zephyr kernel’s timing primitives are used. This drastically reduces precision, but it
enables testing and running LF programs on QEMU emulations [3].

5 Evaluation

The evaluation was done on a NRF52832 development kit from Nordic Semiconductor [21].
It has an Arm Cortex M4 microcontroller with 64KB RAM and 512KB flash clocked at
64MHz. Benchmarks were compiled with the west build tool version 0.14.0 using Zephyr
version 3.2.0.

5.1 Memory footprint
Memory footprint is a critical property for most microcontroller applications. In the following
we provide a detailed evaluation of both the flash and RAM footprints of LF.

5.1.1 Code size
The top row of Table 1 shows the code size of different LF components. The runtime
itself consumes less than 10KB and can be further reduced by 3KB if the program has no
modal reactors. The 1KB in the parenthesis is the implementation of the Zephyr Counter
driver. The Zephyr kernel adds around 19KB which makes a total of less than 30KB. For
comparison, Medusa [2] requires a total of 38KB, Espruino [23] and MicroPython [19] requires
100KB-200KB and SynchronVM [20] requires 32KB.
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1 target C;
2
3 reactor Unbounded {
4 logical action a;
5 logical action b
6 state i:int (0)
7
8 reaction (a,b) -> a,b {=
9 lf_schedule (a ,0);

10 lf_schedule (b ,++ self ->i);
11 =}
12 }

(a) LF program with unbounded event queue.

1 target C;
2
3 reactor Bounded {
4 timer t1(0, 10 msec )
5 timer t2(0, 50 msec )
6 reaction (t1) {= =}
7 reaction (t2) {= =}
8 reaction (t1 ,t2) {= =}
9 }

(b) LF program with bounded event queue.

Figure 5 Memory requirements for LF programs.

A minimal reactor with just a single reaction triggered at startup only requires 96B.
Adding reactions, timers and modes all add less than 100B of overhead. The user code in
the reaction bodies, as well as the SDK components they depend on, will add to this.

As we will see next, the limiting factor for platforms like the NRF52 is not the size of the
program memory but rather the size of RAM.

5.1.2 Data size

The bottom row of Table 1 shows the RAM footprint of LF. It consists of three parts. First,
there is the constant size of the runtime, which only amounts to 265B plus 170B for the
Counter implementation. Then there is the memory footprint for each LF component like
reactions, actions and ports. This is known at compile-time but is currently being allocated
dynamically in the initialization routine. Last, we have the events being communicated
between the reactors over the ports through the event queue. These events are allocated
as needed at run-time. When an event has been consumed, it is recycled to avoid memory
fragmentation. Due to the expressiveness of the Reactor model of computation, there is,
in general, no upper bound to the size of the event queue. There exist syntactically valid
pathological LF programs for which the event queue can grow without bound. For instance,
consider the reactor Unbounded in Fig. 5a. Each time the action a triggers, two events will
be added to the event queue. The first triggers a at the same tag, while the second triggers b

at a future tag. Only events triggering a will ever be handled and the events triggering b will
accumulate. Such a program is said to exhibit a stuttering Zeno condition [13].

However, there also exist classes of “safe” LF programs for which upper bounds on the
event queue can be computed. Consider for instance the reactor Bounded in Fig. 5b. It is a
simple reactor with two periodic timers and three reactions triggered by them. The size of
the event queue for this reactor will never exceed two. At any time during execution, there
is one event per timer on the event queue. In fact, any LF program that uses only timers to
drive logical time forward will have a statically computable bound on the size of its event
queue.

5.2 Timing precision

One of the advantages of using LF for embedded applications is its timed semantics. An
implementation of LF has good timing precision if the physical time at which a reaction is
executed is close to the logical time at which it was scheduled to execute.
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Figure 6 Logical analyzer dump.
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Figure 7 Actuator driving precision.
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Figure 8 Tight control loop with after-delay.

5.2.1 Square-wave generator
To test the timing precision, the NRF52 was configured to generate a 1 KHz square wave on
an output pin using hardware timers. We created a simple LF program to generate the same
signal using a timer and a reaction that toggles a GPIO pin.

Fig. 6 shows the two resulting square waves as measured by a Salaea Logic Pro logic
analyzer. Fig. 7 shows a histogram of the offset between the LF square wave and the hardware
generated square wave. Clearly, the LF runtime can deliver precise and repeatable timing.
All observed offsets were less than 1 µs. The multi-modality of the distribution is due to
inaccuracies associated with waking up from sleep. This could be improved by targeting
a lower-level timer API; however, such an approach would not be platform-agnostic. An
important observation is that this timing precision can be affected by independent long-
running reactions due to barrier synchronization at each time tag. We are working on new
scheduling strategies and language primitives to improve timing precision.

5.2.2 Tight control loops with load
Consider again the SenseToAct example from Fig. 3 in Section 2.1.3. An interesting perfor-
mance metric is the load a system can sustain while still meeting its deadlines. By introducing
busy-waits in the reaction bodies, different workloads can be emulated. Our experiments
show that the runtime overhead for SenseToAct is only 70 µs. This leaves 93% of the 1 ms
period for actual computation.

An important observation is that the semantics of an LF deadline only puts an upper
bound on the lag of a reaction invokation. In fact, for Fig. 3 there is a full 1 ms interval
in which the Actuator reaction can legally be invoked. To introduce a lower bound on
the invokation time we can use logical delays. In Fig. 8 we have introduced a 1 ms logical
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Figure 9 Physical action precision.
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Figure 10 Physical action latency.

delay on the connection between Processing and Actuator. This means that any output
produced by Processing will be visible at Actuator one logical ms later. This, together with
the deadline, specifies an interval of 35 µs in which it is acceptable to invoke the Actuator
reaction. This is a portable way of explicitly specifying bounds on jitter. Notice also that
this will coincide with the next evaluation of Sensor, so we have, in effect, made a pipeline.

With this configuration, we can execute Processing for 885 µs, without missing any
deadlines. This yields a utilization of 88.5%. Notice that both the utilization is lower and
the deadlines are higher. The reason for this is that the logical delay on the connection is
syntactic sugar for a reactor consisting of two reactions and a logical action, which introduces
some additional overhead [15].

The execution of this program without any deadline misses means that the runtime
claims that timing is not being violated. To verify this, we instrumented hardware timers to
generate events on GPIO pins and compared with events generated from within the reaction
bodies of Sensor and Actuator.

The results show offsets of around 28 µs and 35 µs for sensing and actuating, respectively.
This is well below their deadlines. Sensor is lagging more than Actuator, this is expected as
their reactions are logically simultaneous. On single-core platforms, simultaneous reactions
are ordered based on earliest deadline first scheduling.

5.2.3 Asynchronous events

The ability to react to asynchronous events in a timely manner is crucial for many embedded
systems. For instance, a sensor might signal that it has made a new sample by creating
a transition on a pin. There are two important timing properties of a reaction to such an
event. (1) The precision with which the system timestamps the occurrence of the event and
(2) latency from occurrence to being handled by the system.

Fig. 9 shows the latency between the invokation of an interrupt handler that schedules a
physical action and LF’s timestamping of the resulting event. The low jitter indicates that a
constant offset of around 6.22 µs could be subtracted from the timestamp associated with
the physical action.

Fig. 10 shows the latency from asynchronously scheduling a physical action until a reaction
triggered by the physical action is invoked. The latency is normally distributed with a mean
of 50 µs.

The reported overheads are in addition to the interrupt latency of the underlying platform.
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Figure 11 Results of Thread-Metric and Savina benchmark suites for Lingua Franca and a
threaded implementation targeting Zephyr kernel API.

5.3 Performance
To assess the general performance of LF on microcontrollers, we run a relevant subset of the
Thread-Metric and Savina benchmarks against a baseline implementation using Zephyr’s
thread APIs. At a fundamental level, LF’s scheduling and context-switching overhead is
compared to Zephyr’s overhead of message-passing and context-switching. This is evaluated
for multiple different program topologies and workloads. In the following, we will use the
term actor to refer to a concurrent component. In the threaded baseline, it corresponds to a
thread, and in the LF implementation, it corresponds to a reactor.

5.3.1 Thread-Metric
Thread-Metric [8] is a benchmark for measuring performance of RTOSes. It consists of seven
benchmarks that measure overheads associated with different RTOS services like message
passing, synchronization, scheduling, interrupt latency and memory allocation. LF does not
expose low-level APIs for interrupts, memory allocation and message buffers to the user.
In this evaluation, we have thus excluded Message Processing, Synchronization Processing,
Interrupt Processing, and Memory Allocation.

The left part of Fig. 11 shows the results of the remaining Thread-Metric benchmarks
normalized to the threaded baseline. Performance is measured as the number of iterations
through the program during a fixed period. In Cooperative Scheduling, LF achieves 74% of
the performance of Zephyr threads.

We measured the cost of a Zephyr thread yield to be 8 µs while LF’s reaction-switching
and logical time advancement take 4 µs and 29 µs respectively. This means that the LF
implementation would need eight low-overhead reaction switches to make up for the relatively
expensive time advancement. Cooperative Scheduling only consists of five actors and thus
renders LF’s performance worse than the baseline.

In the Preemptive Scheduling benchmark, LF outperforms threads by 26%. The reason
is the long chain of preemptions occurring when the lowest priority thread executes first. In
LF this is not a problem as there is no priority-based scheduling, rather, the topology of the
reactor network imposes well-defined restrictions on scheduling. In LF, the preemption is
translated into reaction-switching followed by a logical time advancement in each iteration.
The threaded baseline must perform twice as many context-switches as reaction-switches in
the LF version, due to the priority-based preemption.

Basic Processing only involves a single actor, in a while loop, performing a long-running
computation before incrementing a counter. LF is outperformed as it performs logical time
advancement after each iteration.
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5.3.2 Savina
The Savina benchmark suite is an actor-oriented benchmark suite [7]. The Savina benchmarks
focus on compute-intensive rather than IO-intensive applications and put emphasis on message-
passing overhead. We evaluate LF on a subset of the Savina benchmarks called the micro
benchmarks. The right portion of Fig. 11 shows the result normalized to the Zephyr baseline.

PingPong only consists of two actors sending a message back and forth. The Zephyr
implementation uses a message queue [26], which incurs around 8 µs overhead for each
communication. In LF the same communication only takes around 6 µs. However, LF
advances logical time after each round of back and forth. This takes almost 30µs. In other
words, LF performs better when there are long chains of reactions between each logical time
advancement. Counting suffers from the same problem. While PingPong has three reactions
per logical tag, Counting only has two. Moreover, the threaded implementation of Counting
allows for two iterations per context-switch where PingPong requires a context-switch between
each ping and pong. This is because we are using a message queue of size 1 which can buffer
one element and thus enable two elements communicated per context-switch.

Throughput and ThreadRing are examples at the other extreme. In Throughput, a single
producer sends a message to 60 consumers, each performing some floating-point arithmetic on
the received data. In LF, this constitutes a chain of 60 reactions per logical time advancement.
The Zephyr baseline performs a normal context-switch for each communication. ThreadRing
is similar only there is a a chain of consumers rather than the one-to-many topology of
Throughput. Again the low reaction-switching overhead of LF enables a 87% and 81%
improvement over Zephyr, respectively.

Big is a many-to-many benchmark where each actor sends a ping to a random actor and
waits for a response. Due to limitations in RAM we only use 10 actors. This constitutes a
chain of reactions just long enough to make up for the expensive logical time advancement.

Chameneos measures how contention on a shared resource affects the performance. In
this benchmark, a large number of creatures called chameneos send messages to a single mall,
which pairs up two chameneos for a meeting. The Zephyr threading API and the LF runtime
both allow the mall to process messages in batches without context-switching between each
message. This lets both implementations attain good performance because the mall processes
a large volume of messages in comparison to the other actors in the program.

6 Conclusion

We have introduced the embedded target of Lingua Franca, which brings deterministic
concurrency and portable specification of timing behaviors to resource-constrained platforms
like microcontrollers. The embedded target is built on top of the popular Zephyr RTOS. The
runtime is evaluated in terms of memory footprint, timing precision and general performance
against baselines using Zephyr’s shared memory concurrency primitives directly. We show
that the LF runtime adds little overhead and in several cases outperforms the baseline.
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Abstract
Distributed embedded systems are emerging and gaining importance in various domains, including
industrial control applications where time determinism – hence network clock synchronization – is
fundamental. In modern applications, moreover, this core functionality is required by many different
software components, from OS kernel and radio stack up to applications. An abstraction layer
devoted to handling time needs therefore introducing, and to encapsulate time corrections at the
lowest possible level, the said layer should take the form of a timer device driver offering a Virtual
Clock to the entire system. In this paper we show that doing so introduces a nonlinearity in the
dynamics of the clock, and we design a controller based on feedback linearization to handle the issue.
To put the idea to work, we extend the Miosix RTOS with a generic interface allowing to implement
virtual clocks, including the newly designed controller that we call FLOPSYNC-3 after its ancestor.
Also, we introduce the resulting virtual clock in the TDMH [20] real-time wireless mesh protocol.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems;
Networks → Time synchronization protocols; Computer systems organization → Embedded software

Keywords and phrases Clock synchronization, Real-time operating systems, Embedded software,
Real-time control
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1 Introduction

The world of embedded systems is evolving from isolated to distributed systems. This move
can be observed in several research and market trends such as the Industrial Internet of
Things (IIoT) [16]. As a result, clock synchronization is becoming a key technology to enable
both real-time industrial applications as well as low energy wireless protocols [23]. At the
application level, synchronization in distributed embedded systems allows the execution of
coordinated tasks among multiple devices [13], allows to perform sensing and reconstruction
of spatially distributed phenomena [10, 2], while the availability of synchronization at the
network level enables the use of TDMA protocols [1, 20, 7], being thus fundamental for
real-time communication among devices. Since in modern embedded operating systems
both applications and OS components – such as the radio stack – can benefit from clock
synchronization, an abstraction layer that handles time correction directly at the OS level is
therefore needed. Moreover, from a software engineering perspective, the presence in the
OS codebase of both corrected and uncorrected time values is a potential source of errors.
Therefore, it becomes desirable to encapsulate time correction at the lowest possible level,
such as the timer device driver.

However, using corrected times in the entire OS codebase introduces an issue: the
uncorrected time is usually required by the clock synchronization algorithm itself. Efficient
clock synchronization schemes such as FLOPSYNC-2[22] require uncorrected timestamps
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of received synchronization packets, and performing clock synchronization using corrected
timestamps is challenging as it makes the model of the clock synchronization problem
nonlinear.

This work introduces a new clock synchronization scheme, FLOPSYNC-3, that is capable
of operating with timestamps corrected by the previous iteration of the algorithm itself. As
a result of this improved capability, the Miosix RTOS was extended with a generic interface
allowing to implement clock correction at the hardware timer level.

The FLOPSYNC-3 controller is here tested both in simulation and on a network of nodes
running the Miosix operating system and the TDMH [20] real-time wireless mesh protocol.

This paper is organized as follows: Section 2 presents a brief overview on the state of the
art in clock synchronization for distributed embedded systems. Section 3 discusses how the
Miosix OS has been extended with a virtual clock abstraction that enables transparent clock
corrections. Section 4 briefly mentions the design of the Miosix subsystem for performing
timestamp measurements, a key feature used to precisely timestamp clock synchronization
packets. Section 5 presents the FLOPSYNC-3 clock synchronization scheme that can perform
clock corrections using the virtual clock as actuator while operating on corrected timestamps
only. Finally, Section 6 presents simulation and experimental results, and Section 7 outlines
future research directions.

2 Related Works

Clock synchronization is a classical problem in distributed systems [11, 15], but also one where
research is still ongoing to produce clock synchronization schemes fine-tuned to changing
application requirements and hardware capabilities. Many works related to clock synchron-
ization in distributed embedded systems come from the Wireless Sensor Network research
community, focusing on several aspects including low power synchronization [18, 22], propaga-
tion delay compensation [12, 19], efficient synchronization information dissemination [14, 8].

When considering accuracy, a major differentiating factor is whether a clock synchroniza-
tion scheme only performs offset corrections or it also performs skew corrections. Simple
schemes such as TPSN [9] and DMTS [17] only correct for offset. When implemented at the
OS level, this correction can be efficiently performed by overwriting the hardware counter
with the required correction at every synchronization [9]. The disadvantage is however that
after each correction the hardware clock keeps counting at the incorrect frequency, and thus
a time error accumulates over the synchronization period, which reaches its maximum value
immediately before the next correction. Another issue is that the value returned by the clock
exhibits a discontinuity at every synchronization [22], a matter that can introduce errors in
interval measurements, especially for short intervals.

More advanced clock synchronization schemes perform skew (also known as frequency
or rate) corrections. The synchronization scheme produces both an offset and a frequency
correction value at every synchronization. As altering the frequency of a crystal oscillator
requires additional hardware [5] which is usually unavailable in off-the-shelf boards, the
frequency correction is preferably performed by applying an algorithm every time the OS or
applications request the time. In this paper we refer to such algorithm as a virtual clock. For
a given synchronization period, frequency correction allows for lower synchronization errors
compared to offset correction. Additionally, clock synchronization schemes that perform
frequency correction can make the corrected clock continuous and monotonic [22], thus
avoiding clock jumps.
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Real-time embedded systems also face increasing power and energy constraints [3],
especially if battery operated. Clock synchronization may thus be required to operate also
when the processor enters a deep sleep state which includes turning off the main oscillator.
In such cases, time is kept using a low power Real-Time Clock (RTC), and this introduces
the need to synchronize both the RTC and high-frequency timebase [21], a matter that we
account for by designing our virtual clock to support multiple corrections.

In this paper we address the clock synchronization problem from the perspective of
implementing it at the real-time OS level. Software engineering considerations suggest us to
completely encapsulate time correction, and since this makes uncorrected time unavailable to
the clock synchronization scheme, we design a new scheme that can operate with corrected
timestamps.

3 Virtual Clock

A real-time OS typically requires two main time-related primitives: one to get the current
time, whose use is obvious, and one to set an interrupt in a given future time instant, to be
used to handle context switches as well as sleeping tasks wakeup. This chapter describes the
design and implementation of a virtual clock to make these primitives synchronization-aware.

3.1 Design
An uncorected clock tnc fed by an oscillator with nominal frequency f0, affected by (possibly
time-varying) frequency error δs will progressively diverge from an ideal one as

tnc(t) =
∫ t

0

fs(τ)
f0

dτ = t +
∫ t

0

δs(τ)
f0

dτ (1)

where fs is the instantaneous oscillator frequency, and the integral accounts for the accu-
mulated frequency error. Accordingly, the accumulated frequency error ∆(k) over one clock
synchronization period k of duration T is

∆(k) =
∫ kT

(k−1)T

δsτ

f0
dτ (2)

A virtual clock VC is a piece wise linear function (Figure 1) that applied to the uncorrected
clock tnc produces a corrected one. Virtual clocks allow to perform not only offset corrections,
but also frequency corrections. Said otherwise, it is possible to control a virtual clock to
count time faster or slower than the underlying hardware clock to better approximate a
reference clock. A virtual clock is however just an actuator, it provides the means to correct
a hardware clock, but requires at every synchronization period updated parameters. A clock
synchronization scheme uses a controller and time information from an external reference to
adjust the virtual clock rate trying to align it to the reference clock. By defining the virtual
clock rate separately on each synchronization interval, it can be demonstrated by induction
that the value of the virtual clock (that is the corrected time tc) on a generic time tnc inside
a synchronization interval [ kT, (k + 1) T ] can be expressed as

tc = VC (tnc) = VC (k) +
•

V C(k)
(
tnc − tnc(k)

)
(3)

where
•

V C(k) is the rate of the virtual clock. More specifically, if tnc = tnc(k + 1), its
definition simplifies as

VC (k + 1) = VC (k) +
•

V C(k) (T + ∆ (k)) (4)
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Figure 1 Virtual clock correcting clock rate to align itself to a reference clock.

We can further generalize the virtual clock expressing (3) as f = akx + bk by algebraic
manipulation{

ak =
•

V C(k)
bk = VC (k) −

•
V C(k)tnc(k)

(5)

where ak is the rate correction of the clock in the synchronization period k and bk is the
offset. This rate is adjusted by the controller to align the current clock to the reference, and
is related to the mean skew over the synchronization period.

3.2 Implementation
The virtual clock was implemented in C++ as part of the Miosix RTOS, as shown in Figure 2.
To support clock synchronization as well as deep sleep operation which entails transitions
from a board RTC to an high resolution clock (a technique called VHT [21]), a virtual
clock may need to perform multiple clock corrections fi combined. The software design of
the virtual clock thus supports multiple corrections as a Variable Length Correction Stack
(VLCS). This design allows for an arbitrary number of Correction Tiles, each with their own
correction parameters ak,i and bk,i. For performance reasons, the number of correction tiles
is configured at compile time as a template parameter. Having n distinct corrections chained
together as f0 ◦ · · · ◦ fn, the combined correction parameters can be calculated as

ak,vc =
n−1∏
i=0

ak,i (6)

bk,vc =
n−2∑
i=0

{
bk,i ·

n−1∏
j=i+1

ak,j

}
+ bk,n−1 (7)

where index 0 is the correction closer to the hardware timer, and n the furthest.
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Figure 2 Virtual clock interface.

As reading the current time is a more frequent operation than changing the correction
coefficients, the combined parameters are precomputed when a new clock correction is
produced (Figure 3). Conversely, to set a time interrupt the corrected time coming from the
OS will need to be back-converted as the hardware timer still works using uncorrected time.

tc = ak,vc · tnc + bk,vc (8)
tnc = (tc − bk,vc) / ak,vc (9)

3.3 Optimization
As the typical skew of quartz clocks is in the order of tens of parts per million (ppm), the
ak,vc coefficient should be very close to 1. Since many microcontrollers lack a Floating Point
Unit (FPU), we need an efficient way (exploiting the range of ak,vc as just identified) to

Figure 3 Virtual clock recomputing aggregated parameters avc and bvc.
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perform the multiplication ak,vc · x, as the time retrieval is one of the most critical path
of the operating system. For this purpose, a template class Fixed was designed. This is
capable of representing a fixed point number with an arbitrary number of bits for the decimal
part. Given a few compile-time optimized functions able to handle multiplication between a
64-bit integer and a fixed point 32.32, a specialization of the said class – called fp32_32 and
representing a fixed point number as a 64-bit integer with 32-bit for both decimal and integer
part – was used. With fp32_32, the multiplication ak,vc · x can be performed in just 60 clock
cycles bringing the total time to get the current time to 170 clock cycles, a 37% improvement
compared to the previous implementation. Regarding the uncorrection, we can note from (9)
that a division by ak,vc is needed. There is no nice properties to perform fast division using
fixed point, so it was implemented as a multiplication for the inverse. The inverse value is
precomputed using 64-bit floating point numbers at every update of the ak,vc parameter and
converted to fp32_32. The pre-computation is optimized using a modified version of the
fast inverse square root algorithm [6], adapted to perform 1/x instead of 1/

√
x as follows.

The optimization relies on the fact that an IEEE754 double precision number is very similar
to an Logarithmic Number System (LNS) number, as they never differ for more than a
small factor. An interesting property of LNS numbers is that it makes implementations for
multiplications and divisions very efficient. In particular, the inverse of an LNS number v

is −v. The bit representation of a floating point number u can approximated as the LNS
number x = 2u/252−1023, and using this representation the inverse q can be computed as
follows

2q/252−1023 = 2−(u/252−1023) (10)

which solving the implicit equation results in

q = 0x7FE0000000000000 − u (11)

Performing a sweep with sufficient precision, it was possible to elaborate a quadratic regression
model to approximate faster and with more precision the hexadecimal value. Having a closer
approximation, less Newton steps are necessary making the inversion faster. This whole
inversion process is called optimizedFastInverse.

4 Hardware Events

Although what presented above is sufficent to support the time-related requirements of
an OS, performing clock synchronization requires accurate timestamping of received radio
packets. Moreover, advanced radio transmission techniques such as constructive interference
require accurate packet transmission times [22]. To abstract hardware-accelerated event
timestamping and generation, Miosix was extended with an Eventstamping interface. This
abstraction introduces the concept of event channels that abstract the event sources or sinks
of a given platform. Every event channel can be configured as input, for external event
timestamping, or as output to trigger events. When configured in input mode, a thread
can block and wait for an event to happen on the chosen channel, with an optional timeout
(Figure 4). When configured as output, a thread can generate a hardware event in the future,
blocking until that time point. This design simplifies the realization of TDMA networking
protocols. Since events are measured/generated in hardware, the achievable time granularty
is that of the hardware timer (in our implementation 21ns), and is unaffected by software
interrupt latencies.
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5 FLOPSYNC-3

The redesign of the Miosix OS timing subsystem in order to only operate in terms of corrected
time in the entire OS –except for the timer driver– required the design of a new clock
synchronization scheme. Previously, the clock synchronization packets were timestamped
using the uncorrected clock, as this was needed by the FLOPSYNC-2 algorithm [22]. The
previous approach required to deal with both corrected and uncorrected times and was causing
code maintainability issues from a software engineering standpoint. However, performing clock
synchronization using timestamps corrected by the previous round of clock synchronization
makes the problem nonlinear. The FLOPSYNC-3 controller was designed to address the
aforementioned nonlinearity, and implemented at the OS level.

5.1 Design
Given (4), we can define the clock synchronization error at the end of each synchronization
period as

e(k) = VC (k) − kT (12)

To observe the evolution of the error across synchroniation periods, we can compute the next
error as a function of the previous, resulting in

e(k + 1) = e(k) + T
(
1 −

•
V C(k)

)
− ∆(k)

•
V C(k) (13)

where the ∆(k)
•

V C(k) term makes the model nonlinear. To perform the control synthesis we
used Feedback Linearization [4] to linearize this process using the output u(k) of a linear
controller and express the new error as

e(k + 1) = β e(k) + (1 − β) u(k) (14)

and as a consequence have the new output u(k) of the controller provide
•

V C(k) from

•
V C(k) = e(k)(1 − β) + u(k)(β − 1) + T

T + ∆(k) . (15)

The mean skew value at the synchronization period k is of course not available and needs
to be approximated with the previous one (k − 1), i.e.,

∆̂(k) = ∆(k − 1) = V C(k) − V C(k − 1)
α(k − 1) − T (16)

Figure 4 Eventstamping, wait event.
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We can then obtain the transfer function H (z) of the imposed dynamic (14) as

H (z) = E(z)
U(z) ⇒ 1 − β

z − β
(17)

Figure 5 FLOPSYNC-3 Control scheme.

The controller C(z) used to work in conjuction with the feedback linearization is a proportional
one having a gain of 0.15. The full FLOPSYNC-3 control scheme is shown in Figure 5.

6 Simulation and Experimental Results

The operation of the FLOPSYNC-3 controller and virtual clock were first assessed through
simulations performed using the Modelica language.

Figure 6 shows one such simulation, where the clock synchronization period T was set to
10 seconds and β was chosen to be 0.025. The left part of the figure shows the simulated
clock skew profile, that starts from 10 ppm and increases to 50 ppm from T = 150 seconds,
approximating in the simulation the effect of an ambient temperature change. The right part
of the figure shows the clock synchronization error. The blue line is the instantaneous error
of the virtual clock, thus the time error exposed to the operating system and application. As
a node in the network can measure its error only at discrete intervals, corresponding to when
synchronization packets are received, the red line shows the measured error that feeds the
FLOPSYNC-3 controller.

As can be seen, the initial 10 ppm skew causes a 100 µs error that is quickly corrected by
the FLOPSYNC-3 controller. The frequency change caused by the simulated temperature
change, although higher in amplitude than the initial skew causes a lower peak error, less
than 75 µs, due to its slower nature.

The FLOPSYNC-3 controller as specified by equation (15) and (16) has been implemented
in Miosix acting on the the variable length correction stack of the virtual clock. Since deep
sleep support was not implemented, the correction stack was configured to perform the
FLOPSYNC-3 correction only. Synchronization parameters T and β were configured as in
the simulations. The clock synchronization error measurement was taken from the TDMH
networking stack using the eventstamping interface to provide the timestamps of received
synchronization packets. FLOPSYNC-3 was implemented using the fp32_32 type to perform
intermediate calculations efficiently. Because of the limited range of this type, pre-scaling
was necessary to avoid overflows.

Clock synchronization experiments were performed with a network of nodes running the
TDMH networking stack on top of Miosix. Figure 7 shows the clock synchronization error of
one such node. The top part of the figure shows the measured clock synchronization error in
the first three minutes after synchronization. The initial clock synchronization error of 40 µs
occurs when the node is booted and joins the network. This value is the accumulation of the
oscillator frequency error over the entire first synchronization period, as the FLOPSYNC-3
algorithm, being a feedback one, requires a first error measure to compute a correction. The
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Figure 6 Simulated clock skew profile (left) and clock synchronization error (right). The blue
line shows the instantaneous synchronization error, while the red line shows the measured error.

bottom part of the figure shows the error after the initial synchronization, over a period of
approximately 24 hours, to better appreciate the error dynamics after the initial skew is
corrected. The observed stochastic nature of the clock synchronization error, not present
in the simulations, is caused by the measurement noise of packet timestamps. The error
standard deviation, excluding the first transient, is 137 ns.

7 Conclusions

This work addressed abstracting clock synchronization at the operating system level. To
achieve this goal a virtual clock was introduced as an efficient abstraction allowing a hardware
timer driver to provide a time reference whose rate can be changed compared to the one
of the underlying oscillator. Support for multiple corrections sources was accounted for,
allowing the implementation of deep sleep solution such as VHT [21]. Encapsulating time
correction allows reducing bugs and problems during development since all components are
just using the same time source (corrected), but makes the uncorrected synchronization
packet timestamps unavailable to the clock synchronization algorithm. The FLOSPYNC-3
controller was thus designed specifically to overcome this issue.

The Miosix real-time OS was extended with a flexible, efficient and modular timing
subsystem based on the virtual clock design, capable of internalizing the clock correction and
only exposing corrected time to all kernel and application tasks. This new timing subsystem
was designed from the start to be general allowing to easily port the Miosix to different
microcontrollers.

Future research directions will focus on further improving clock synchronization resilience
to temperature variations, while future improvements of the Miosix timing subsystem will
address completing the support for maintaining clock synchronization during deep sleep
periods using the variable length correction stack.
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Figure 7 Clock synchronization error during experimental evaluation. Top plot includes the initial
clock skew compensation, bottom plot shows the synchronization error after the initial transient.
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Abstract
The current industry trend is to replace the use of custom components with standards-based
Commercially available Off-The-Shelf (COTS) based hardware and protocols. Furthermore, the
emergence of new industrial paradigms, such as Industry 4.0 and the Industrial Internet of Things, sets
additional requirements regarding e.g. scale, transparency, agility, flexibility and efficiency. Therefore,
in these domains, application layer protocols such as Message Queuing Telemetry Transport protocol
(MQTT) are gaining popularity, in result of their simplicity, scalability, low resource-usage and
decoupling between end nodes. However, such protocols were not designed for real-time applications,
missing key features such as determinism and latency bounds. A recent work proposed extending
MQTT with real-time services, taking advantage of Software Defined Networking (SDN) to manage
the network resource. These extensions allow applications to specify real-time requirements that are
then captured by a resource manager and used to reserve the necessary resources at the network
layer. This paper shows that such MQTT extended architecture is analyzable from a worst-case
timing perspective. We derive a system model that captures the real-time features and we present a
response-time analysis to assess the schedulability of the real-time traffic. Finally, we validate the
analysis with a set of experimental results.
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1 Introduction

Real-time computing systems have been widely employed in industrial domains for many
years, from robotics [9] to industrial control [26, 24] and industrial automation [14]. Recent
trends, pushed by Industry 4.0 and the Industrial Internet-of-Things (IIoT), have brought
Information and Communication Technologies (ICT) into industrial operations towards
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increased scalability, transparency, agility, flexibility and efficiency. However, while improving
these properties, ICT have typically disregarded their own timing behavior, conflicting with
the real-time requirements found in industrial operations, namely quick response times and
high predictability and stability. Another difficulty that came with ICT is their typical
high overhead that may conflict with deployments within embedded resource-constrained
hardware, commonly found in industrial settings. Moreover, Industry 4.0 and IIoT imply an
increase in the complexity and heterogeneity of the data exchanges, both in terms of nature
and requirements, putting together low and high data-rate flows, low and high bandwidth
flows, and critical and non-critical flows.

The Message Queuing Telemetry Transport protocol (MQTT) [20] is one of the most
popular application-layer protocols within the scope of the Internet-of-Things. It was
developed already with a perspective of applying ICT in operations and it is finding a
growing use within the IIoT, too. Main factors that contribute to its popularity include
its simplicity, low footprint, scalability and effective publisher-subscriber messaging model.
Standard MQTT relies on TCP/IP networks that provide ordered and lossless bi-directional
channels. However MQTT misses support for real-time requirements, having Quality-of-
Service (QoS) policies that only address message delivery. This limitation has been tackled by
the scientific community [21, 16, 7, 18]. Specifically the work in [19] proposes an architecture
called RT-MQTT that extends MQTT with real-time services, allowing applications to define
real-time requirements that are translated to network reservations which are enforced using
Software Defined Networking (SDN), particularly using the OpenFlow protocol.

Despite the referred efforts to reconcile real-time requirements with MQTT, formal traffic
schedulability analysis is still lacking. In this paper we build on RT-MQTT and detail
and formalize its system model and provide a response-time analysis for critical real-time
traffic that assumes fixed-priority non-preemptive packet transmissions. The analysis and
its implementation in a practical setup are validated with a set of experimental results that
also allow assessing the tightness of the response-time analysis. Our aim is to show the
analyzability of RT-MQTT. To the best of our knowledge, this is the first schedulability
analysis for MQTT-based networks.

The rest of the paper is structured as follows. Section 2 discusses traffic schedulability
analysis for multi-hop networks. Section 3 describes the OpenFlow switches as the networking
elements in RT-MQTT. Section 4 introduces the multi-hop network architecture and system
model. The response-time analysis is presented in Section 5 and validated with experiments
in Section 6. Section 7 concludes the paper and discusses future work.

2 Related Work

Using ICT in the industrial operations domain came with several challenges, such as timing
analysis. Particularly, analyzing the worst-case timing behavior of ICT protocols is frequently
unfeasible. For this reason, we did not find a concrete schedulability analysis for real-time
traffic on MQTT, which is not a surprise given the lack of protocol support. However, as we
show in this paper, the extensions of RT-MQTT leverage the real-time network capabilities
of SDN and make the framework analyzable.

Worst-case response-time analysis methods for real-time multi-hop networks fall in three
main categories [28, 17]: Network Calculus (NC) [10], Trajectory approach [13] and holistic
analysis [23]. NC [30, 29] considers that network elements and arrival flows are characterized
by a service curve and arrival curve, respectively. Provided with this information, NC allows
computing the maximum delay that each flow can suffer at each network element, as well
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as the maximum size of the waiting queues and the corresponding departure curves. NC
provides deterministic results, but requires the determination of arrival and service curves,
usually in the form of bounds, which introduces some degree of pessimism.

The Trajectory approach [22, 25] computes the latest starting time of a packet on the last
node visited, then moving backwards through the sequence of nodes visited by the packet (i.e.
the packet trajectory), identifying the preceding packets and busy periods that affect the
latency of the packet in each node. This approach is the tightest among the three categories,
in general, but is is more complex to implement and validate, particularly when considering
unconstrained routing schemes in which message flows can cross multiple times.

The holistic analysis [8] is meant for distributed systems and it computes the minimum
and maximum response-time of the tasks and uses this jitter to compute the minimum and
maximum response-times of the messages they generate. This jitter is then used to reassess
the response time of the tasks triggered by the messages. The whole process is repeated
until the response times of tasks and messages converge. This method can be simplified
if we focus on the network, only, particularly for a multi-hop switched network. At each
hop, we use release jitters to compute both the response times of the messages and their
jitters, which will be used as release jitters of the next hop. Thus, the response times are
computed in just one pass, from source to destination. This approach is more pessimistic
than the trajectory approach, as it considers worst-case scenarios on every node that often
cannot occur in operation. However, it is simpler to implement and verify, reason why it was
adopted in this work as a first approach to show the real-time analyzability of RT-MQTT.

3 OpenFlow Switch Structure

The core network elements of RT-MQTT are OpenFlow switches that forward packets
(a.k.a frames) in an SDN environment and can be implemented in software or hardware.
SDN decouples the network data and control planes, the former being implemented in the
switch to process packets, while the latter is implemented in a separate SDN controller that
makes high-level packet handling decisions and configures switches accordingly. OpenFlow is
the de facto protocol used for switch-controller interactions (a.k.a. southbound interface).
Figure 1 shows the OpenFlow pipeline in the switches that receives frames at ingress ports
and sends them to a set of flow tables installed by a controller. Each flow table contains a
set of Flow Entries with: i) a priority to sort matching; ii) filters to identify incoming frames;
iii) associated instructions; and iv) fields for statistics.

...
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Figure 1 Overview of the OpenFlow pipeline.
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When a packet matches the filters of a given flow entry, the switch performs the associated
instructions. Once the packet reaches the last table or is not directed to a subsequent one by
the matched entry, the switch executes the current action set that may send the packet to
a group table or forward it to an OpenFlow egress port. Conversely, if a packet does not
match any flow entry, it is handled as a table-miss. The actions executed in this case are
also configurable including dropping the packet, forwarding to a subsequent table, or sending
to the controller on a packet-in message via the control channel. If the table-miss flow entry
does not exist, unmatched packets are dropped by default. Sending the controller a flow
request (packet-in message) for every unknown packet can overwhelm the controller since it
has to determine the forwarding path and forwarding rules for every new packet and then
install them in the flow tables in all the involved switches. Finally, each egress port features
several prioritized queues to enforce traffic segregation for time-sensitive flows.

4 RT-MQTT Network Architecture

The RT-MQTT network architecture (Figure 2) is based on the MQTT application layer
protocol supported by OpenFlow switches. MQTT permits the use of multiple brokers
for fault-tolerance and load balancing purposes, allowing the system to scale and tolerate
broker failures. Similarly, Openflow also features mechanism that allow networks to scale
and tolerate faults [2]. However, scalability and fault-tolerance mechanisms are out of the
scope of this paper and will not be further addressed.

The RT-MQTT topology comprises an OpenFlow controller (OF-Controller), OpenFlow
switches (OF-Switches), an MQTT broker, a real-time network manager (RT-NM) and
MQTT clients (IIoT nodes). The OF-Controller is connected to the OF-Switches, having a
global view of the network and storing all information in the OF-DataBase (OF-DB). RT-
MQTT allows applications to explicitly specify real-time requirements in the User Properties
of their MQTT packets. The RT-NM intercepts all MQTT messages to extract possible
real-time requirements data. It is logically placed between MQTT clients and the broker,
desirably executing in the same node. These requirements are subsequently conveyed to the
OF-Controller that processes them and manages the flow tables of the OF-Switches to create
corresponding real-time channels.

Apps OF-Controller
RT-NM

Destination

OF-Switch 2

Broker

OF-Switch 1

OF-Switch 3

OF-Switch 4

OF-Switch 5

OF-DB
Apps

Figure 2 High-level RT-MQTT system architecture.

4.1 Message Model
RT-MQTT classifies packet flows (a.k.a messages) in real-time, or time-sensitive, and
non-real-time, such as normal MQTT messages and general background traffic. Client
nodes are assumed to run an operating system with minimal real-time capabilities (we
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use real-time enabled Linux with regular network stack) and can generate real-time and
non-real-time traffic concurrently. We model each real-time message mi as sporadic. The
message set Γ, composed of N messages, is defined as follows:

Γ = {mi(Ci, PSi, Di, Ti, Pi, Si, DSi, Li, ni), i = 1...N} (1)

The semantics of the parameters are the following:
i : message index used as identifier;
Ci : total transmission time of the message;
P Si : maximum packet size among the packets that compose mi;
Di : deadline, maximum allowed time between transmission and reception of a message;
Ti : minimum interval between consecutive message source publications, with Di ≤ Ti;
Pi : message priority;
Si : source node;
DSi : destination node;
Li : set of links that mi passes through, including local-links and inter-links;
ni : number of links that mi crosses, i.e., ni = |Li|.

As common in IIoT applications we consider single packet messages. Concerning the path,
each element in Li has a duplet l =< x, y > representing a link l between node/switch x and
node/switch y. A link between a node and a switch is called local-link, while the link between
two switches is an inter-link. The direction of message transmission in that link is indicated
by the sequence within the duplet. The set of links in the route of mi is Li = {lk|k = 1..ni}.
Each message has a defined priority assigned in ascending order (larger value of Pi means
higher priority). Since MQTT generally relies on unicasting [15], we restrict the analysis to
unicast streams, with only one destination port per message.

4.2 Scheduling Model
As common in current networks, packet transmission is non-preemptive. Thus, we use
non-preemptive fixed priorities scheduling with FIFO strategy within each priority level.
When a message arrives at an ingress port it is processed by the pipeline that defines the
interaction with the flow tables in that switch and (in the normal case) places the packet in
the output port queue determined by the message path and priority. Note that each output
port corresponds to a link in the message path. Generally, message mi can suffer two types
of delays in any output queue, namely blocking and interference delays as explained next:
Blocking delay is the longest time that mi may have to wait when it arrives at an output

port and message mj with lower priority (Pj < Pi) is already being transmitted in that
port. This delay can be computed considering the longest packet among all lower priority
messages that share the same output port in each switch. For simplicity of analysis we
assume that the blocking delay can be as long as the transmission time of the longest
configured packet length, i.e. the Maximum Transmission Unit (MTU). We also consider
the MTU to be the same in all nodes.

Interference delay is the longest time that message mi must wait due to the transmission
of all messages mj with higher or same priority (Pj ≥ Pi) that share the same output
port. The worst-case interference delay requires that all messages with similar priority
arrive just before mi arrives and that all higher priority messages arrive with a pattern
defined in the next section.
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Figure 3 shows the scheduling model of RT-MQTT with its logical channels and the
corresponding physical links between source and destination nodes, conveying real-time
and non-real-time traffic concurrently. Once the logical channel is established, the route is
determined by a sequence of physical links, each one with origin at a specific output port of
a particular switch.
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Figure 3 Scheduling model of RT-MQTT.

5 Response Time Analysis

To analyze RT-MQTT we follow a response time analysis method for fixed priorities. We
consider the response time of a real-time message as being composed of three parts: (i)
the response time from the source to the broker; (ii) the response time inside the broker;
and (iii) the response time from the broker to the destination. While the response
times of parts (i) and (iii) are communication delays, (ii) is a computational delay. Both
communication and computation delays are interdependent. The holistic approach [23] solves
this interdependence iteratively to find the global worst-case response times but, in this case,
it requires knowing the computational structure of the broker, which is generally unknown.

Although there is some work in the literature addressing the real-time behavior of the
broker, e.g. applying offset-based response time analysis [12], we opted for leaving it outside
our current work and focusing on network delays, only. Moreover, the response time analysis
for parts (i) and (iii) is similar, just switching the source in (i) with the broker in (iii) and
the broker in (i) with the destination in (iii). Therefore, hereinafter we focus only on part
(i), i.e., developing a response time analysis for the traffic from source nodes to the broker.

5.1 Response Time Analysis From Source to Broker

We analyze the full path from source to broker as a series of links, each contributing with
additional delay. The total response time is then obtained by adding the response times of
all individual links in the message path plus the time taken by the switches to move messages
across, through their pipelines. We refer to this last component as the switching delay. For
the sake of simplicity of analysis, we consider worst-case conditions in all links and switches,
at the expense of additional pessimism.
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5.1.1 Single link response time analysis
In each link, messages are serialized in the output port of its source, be it a source node
or an OF-Switch. As discussed in the previous section, each output port enforces fixed-
priorities non-preemptive packet scheduling, with FIFO handling within the same priority
level. To analyze this model we apply the conventional computation of response time without
preemption in uniprocessors based on cumulative delays [4, 5, 6].

A crucial aspect of this analysis is determining the critical instant, i.e., the message
release pattern that leads to the worst-case interference that a message can suffer. In our
case, we use as critical instant a synchronous pattern in which a message mi is released
immediately after the release of a lower priority message with maximum size (maximum
blocking) and immediately after all equal priority messages and together with all higher
priority messages considering their maximum release jitter (maximum interference).

Non-preemptive transmissions are subject to the push-through effect according to which
a message mi can delay higher priority messages through blocking that in turn will generate
higher interference in the following instances of mi itself. For this reason, the worst-case
response time of mi in a given output port may occur at instances beyond the one that is
released at a critical instant, within the so-called occupied period. The number of instances
following a critical instant that have to be checked to determine the worst-case response
time is given by Qi = ⌈(wi + Ji)/Ti⌉, where Ji is the release jitter and wi is the length of
the level-i busy period. This period is computed as in Equation 2 using fixed point iteration,
starting with w0

i = Bi + Ci and ending when wn+1
i = wn

i . The summation term labeled hep
represents the total interference due to invocations of higher and equal priority messages
released strictly before the end of the busy period.

wn+1
i = Bi +

∑
∀ j ∈ hep(i)

⌈wn
i + Jj

Tj
⌉Cj (2)

The so-called level-i occupied period starts at the critical instant and extends until the
following level-i idle period, i.e., when the queues of priorities Pi and higher of the output
port become empty. This period includes the q previous instances of mi and it represents
the maximum delay that the next instance of mi can suffer before starting transmission.
Equation 3 gives an upper bound to its length vi(q) and can also be solved through fixed-point
iteration with a possible initial value v0

i (q) = Bi+qCi and ending when either vn+1
i (q) = vn

i (q)
or when vn+1

i (q) + Ci − qTi > Di − Ji in which case the deadline cannot be guaranteed.

vn+1
i (q) = Bi + qCi +

∑
∀ j∈ hep(i)

(⌊vn
i (q) + Jj

Tj
⌋ + 1)Cj (3)

The worst-case response time of an instance preceded by q instances can then be obtained
with RTi(q) = vi(q) + Ci − qTi. Equation 4 gives us the worst-case response time for mi.

RTi = maxq=0,1...Qi−1(vi(q) + Ci − qTi) (4)

5.1.2 Switching delay calculation
As referred before, the switching delay affects all messages crossing a switch even without
blocking or interference by other messages. Figure 4 [27] helps understanding the switching
delay of OpenFlow switches, particularly implemented in software, as in our system.
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Figure 4 The switching delay in an OF-Switch.

We consider the switching delay as resulting from three components, the time to manage
the input queues (essentially memory operations), the time to process the flow tables and
the time to execute the action set. We refer to the switching delay affecting mi as SDi.
The switching delay must be bounded for a bounded response time, but this bound can be
different for each switch because it depends on the input load, on the number of flow tables
and on the complexity of the action set. These aspects have been studied in the literature.
For example, the switching delay increases with increasing flow arrival rate since it requires
more bandwidth from the local CPU in the SDN switch [27]. The switching delay may also
increase with decreasing packet size because it typically promotes higher arrival rate again
imposing higher processing burden on the switch CPU [3]. The forwarding table is another
source of overhead. The longer it is the higher the switching delay. In practice, the SD is
normally measured and then used in the analysis.

5.1.3 Response time calculation algorithm

Algorithm 1 shows the computation of the worst-case response time for mi for the total route
from source to broker, taking as input the network topology and the message set.

Algorithm 1 WCRT calculation for mi.

Input: G, Γ
Output: RT T otalRoute

i

/* A. Compute delays and jitter at source node: */
1 RT T otalRoute

i = ResponseT imeCalc(i, 1)
2 Jacc

i = Ji + JQP
i,1

3 k = 2
/* B. Compute delays and jitter for each switch: */

4 while k ≤ ni do
5 SDi,k = SwitchingDelayCalc(i, k)
6 Jacc

i = Jacc
i + JSD

i,k

7 RTi,k = ResponseT imeCalc(i, k)
8 Jacc

i = Jacc
i + JQP

i,k

9 RT T otalRoute
i = RT T otalRoute

i + RTi,k + SDi,k

10 k = k + 1
11 end while
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The algorithm has two parts. The first part (A) processes the output link of the
source node (corresponding to k=1), including the computation of the response time
(ResponseT imeCalc(i, 1) according to Equation 4) and output jitter (Ji plus JQP

i,1 which is
the response time jitter). These values are used to initialize two accumulators that will allow
building the response time for the total route (RT T otalRoute

i ) and the release jitter (Jacc
i )

that will affect each subsequent link along the path. The second part in the algorithm (B)
is very similar to the first one with the only difference that it also computes the switching
delay introduced by the switch under analysis and the additional jitter it may cause. This is
repeated from the second to the last link in the path of mi.

6 Performance Assessment

We validate the analysis presented before with an empirical study using the Mininet emulation
framework applied in multiple scenarios of different complexity. For consistency, we also focus
on the publishers side, measuring the time intervals from the publication instant (writing
to the respective socket) to the respective reception at the broker and comparing with the
corresponding analytical response times.

6.1 Emulation Setup

We used the Mininet virtual network emulator, version 2.3.0d6 http://mininet.org/,
together with Eclipse Mosquitto [11] (v2.0.10) and Eclipse Paho MQTT library to create
MQTT clients and broker. Mininet is executed on a laptop computer featuring a 4.9 GHz
Intel Core i7 processor and 16 GB of RAM. The SDN controller is the RYU OF-Controller [1]
and it is executed on the same laptop computer.

In the emulation experiments, the QoS of all MQTT messages is set to 1 (deliver at
least once). This QoS level favors reliability over timeliness given its positive acknowledge
and retry mechanism, and it was used since fault-tolerance is important for many IIoT
applications. However, this is not expected to have a significant impact on cabled Ethernet
networks, given their low error rate.

The operational environment included heterogeneous data exchanges mimick-
ing the diversity of industrial scenarios created with the Distributed Inter-
net Traffic Generator (D-ITG) http://traffic.comics.unina.it/software/ITG/ for
TCP packets, VLC media player to generate audio/video streams and vsftpd to
transfer files using the File Transfer Protocol (FTP) https://linuxconfig.org/
how-to-setup-and-use-ftp-server-in-ubuntu-linux. These were all non-real-time
traffic sources with bandwidth limited to 10 Mbit/s, 32 kbit/s, and 800 kbit/s for D-
ITG, VLC, and vsftpd, respectively. All links are configured with 100 Mbit/s capacity as
still commonly found in industry.

The experiments consider two network topologies with different levels of complexity,
named Single-Switch and Dual-Switch, comprising 1 and 2 OF-Switches (Figure 5). For
each topology we generate three different load-levels, labeled A, B, and C, involving publications
in different real-time topics. The real-time messages were published with a nominal period
chosen to cover the interval [2 15]ms and using a single Ethernet packet with maximum
size (1500 bytes), leading to a transmission time of 123µs. The priority assignment was
Deadline-Monotonic. Since we were interested in assessing the accuracy of the analysis, we
considered schedulable message sets, only.
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(a) Single-Switch network topology. (b) Dual-Switch network topology.

Figure 5 Network topologies used in Mininet.

Both topologies include the OF-controller (node c0), as well as the RT-NM and the MQTT
broker (both in node h24), plus up to 20 MQTT publishers (nodes h1 to h20), each publishing
a single real-time message (m1 to m20, resp.) to the broker, favoring contention in the network
and not in the nodes network stacks. In Load-Level A just 5 publishers are active (nodes h1
to h5), Load-Level B uses 10 publishers (nodes h1 to h10) and Load-Level C uses all the
20 publisher nodes. All configurations considered the non-MQTT traffic including D-ITG
data from node h21, VLC streams from h22 and vsftpd data from h23, all directed to node
h25 which is also the subscriber of all MQTT topics. On our measurement host, we use
libpcap to timestamp the packets for each flow, measuring the associated jitters and the
switching delays. For reduced interference, we first log the timestamps in memory and when
the experiment is completed, the results are dumped to disk and processed, enabling us to
calculate the switching delay and response times.

6.2 Experimental Results
The measurement points in the experiments are shown in Figure 6. The experiments tested
all combinations of topology {Single-Switch & Dual-Switch} and load-levels {A, B, C}. Each
combination was executed 1000 times with each publisher generating 100 messages per run.

Source Node Switch1
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RTi,k=2Jacc+=JQP+JSD
SDi,k=2

Messages

Arrival

MQTT Broker

Messages

Receive

RTiTotalRoute

Ji

(a) Response time in the Single-Switch topology.

Source Node Switch1 MQTT Broker
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Messages

Arrival
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Receive

RTiTotalRoute

SDi,k=2

SDi,k=3

Ji

RTi,k=2Jacc+=JQP+JSD
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(b) Response time in the Dual-Switch topology.

Figure 6 Response time measurements.

Figures 7 and 8 show the analytical worst-case response times (CalcRTi) against the
maximum observed response times in the experiments (ExpRTi) for the real-time messages.

From these figures we can observe three main aspects. Firstly, for all real-time messages
we see CalcRT > ExpRT , meaning the proposed analysis is safe. Secondly, the difference
CalcRT − ExpRT , which approximates the pessimism of the analysis, is relatively small
for higher priority messages, increasing as the priority decreases. This is expected since the
analysis of the lower priority messages includes more pessimistic assumption, e.g. in the
interference. Finally, both CalcRT and ExpRT increase similarly with the load level and
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(c) Load-level C.

Figure 7 Analytical (CalcRT) versus observed (ExpRT) WCRT for Single-Switch topology.
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(b) Load-Level B.
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Figure 8 Analytical (CalcRT) versus observed (ExpRT) WCRT for the Dual-Switch topology.

with the number of switches. Indirectly we can also see a consistent behavior of the real-time
messages, despite the reasonable load of non-real-time traffic in the background. All details
concerning the message sets and the analytical and experimental results are shown in tabular
form in Annex A, in Tables 1–6.

7 Conclusions and Future Work

Despite the increasing popularity of MQTT in the scope of IoT and IIoT, its Quality-of-Service
policies do not support timeliness requirements. A recent work addressed this limitation
proposing a set of extensions to the MQTT protocol that allow applications to specify
real-time requirements (RT-MQTT). Such specifications are then used by a resource manager,
implemented in SDN/Openflow, to create real-time channels with suitable attributes, thus
instantiating adequate network reservations to enforce the desired temporal behavior.
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In this paper, we show that it is possible to apply existing response time analysis to
RT-MQTT on the multi-hop SDN/OpenFlow switched network to derive worst-case response
time upper bounds to the real-time traffic. In particular, we used the standard response time
analysis for non-preemptive fixed-priority scheduling of sporadic messages. The analysis is
validated empirically within the Mininet emulator framework, being safe and with relatively
low pessimism, particularly for the higher priority traffic. Future work includes the analysis
of the broker temporal behavior to support an end-to-end (publisher-to-subscriber) delay
model. We will also apply other analytical techniques, e.g., the trajectory approach, in an
attempt to reduce the analysis pessimism.
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A Detailed Experimental Results

Tables 1–3 for {Single-Switch} network topology and Tables 4–6 for {Dual-Switch} network
topology show the message set details and associated worst-case response time analytical
and observed values in three load-levels {A, B, C}, corresponding to Figures 7 and 8.

NG-RES 2023

https://doi.org/10.1109/ACCESS.2019.2943543
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1007/s11241-016-9265-0


5:14 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

Table 1 Single-Switch network topology/load-level A.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi P Si ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi T Si SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 12.3 123 14 15 h1/p1 123 1.03 37 0 1.27 6 31 1.46 0.86

Load-Level: A

m2 1500 12.3 123 14 15 h2/p2 123 0.77 36 0 1.01 6 32 1.26 0.71
m3 1500 12.3 123 5 6 h3/p3 123 0.52 36 0 0.77 6 31 1.05 0.64
m4 1500 12.3 123 5 6 h4/p3 123 0.52 37 0 0.77 6 32 1.05 0.65
m5 1500 12.3 123 1 2 h5/p5 123 0 37 0 0.24 6 32 0.52 0.50

Table 2 Single-Switch network topology/load-level B.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi P Si ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi T Si SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 13.53 123 14 15 h1/p1 123 2.33 48 0 2.67 6 34 2.93 2.01

Load-Level: B

m2 1500 13.53 123 14 15 h2/p2 123 2.13 48 0 2.38 6 34 2.66 1.86
m3 1500 13.53 123 11 12 h3/p3 123 1.88 47 0 2.13 6 35 2.41 1.71
m4 1500 13.53 123 11 12 h4/p4 123 1.59 46 0 1.84 6 34 2.12 1.52
m5 1500 13.53 123 8 9 h5/p5 123 1.34 47 0 1.59 6 33 1.87 1.41
m6 1500 13.53 123 8 9 h6/p6 123 1.06 47 0 1.30 6 34 1.58 1.10
m7 1500 13.53 123 5 6 h7/p7 123 0.81 46 0 1.05 6 34 1.33 1.03
m8 1500 13.53 123 5 6 h8/p7 123 0.81 46 0 1.05 6 35 1.33 1.01
m9 1500 13.53 123 1 2 h9/p9 123 0.28 47 0 0.53 6 35 0.80 0.64
m10 1500 13.53 123 1 2 h10/p10 123 0 46 0 0.24 6 35 0.52 0.47

Table 3 Single-Switch network topology/load-level C.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 111 123 14 15 h1/p1 123 5.60 61 0 5.85 6 42 6.14 4.54

Load-Level: C

m2 1500 111 123 14 15 h2/p2 123 5.31 61 0 5.55 6 42 5.84 4.34
m3 1500 111 123 11 12 h3/p3 123 5.14 60 0 5.38 6 42 5.67 4.17
m4 1500 111 123 11 12 h4/p4 123 4.80 61 0 5.04 6 41 5.33 3.93
m5 1500 111 123 8 9 h5/p5 123 4.74 60 0 4.98 6 42 5.27 3.87
m6 1500 111 123 8 9 h6/p6 123 4.35 60 0 4.60 6 43 4.89 3.49
m7 1500 111 123 6 7 h7/p7 123 4.25 59 0 4.49 6 43 4.74 3.34
m8 1500 111 123 6 7 h8/p8 123 3.85 60 0 4.09 6 41 4.38 3.15
m9 1500 111 123 4 5 h9/p9 123 2.98 59 0 4.10 6 42 4.39 2.98
m10 1500 111 123 4 5 h10/p10 123 3.40 59 0 3.65 6 42 3.94 2.64
m11 1500 111 123 4 5 h11/p11 123 2.95 61 0 3.20 6 42 3.48 2.39
m12 1500 111 123 4 5 h12/p11 123 2.95 60 0 3.20 6 43 3.48 2.41
m13 1500 111 123 2 3 h13/p13 123 2.55 60 1 2.80 6 42 3.09 2.11
m14 1500 111 123 2 3 h14/p14 123 2.07 60 1 2.31 6 41 2.60 1.71
m15 1500 111 123 2 3 h15/p15 123 1.64 59 1 1.88 6 42 2.17 1.27
m16 1500 111 123 2 3 h16/p15 123 1.64 59 1 1.88 6 43 2.17 1.25
m17 1500 111 123 1 2 h17/p17 123 0.98 61 1 1.23 6 43 1.51 1.01
m18 1500 111 123 1 2 h18/p18 123 0.61 61 1 0.85 6 42 1.14 0.67
m19 1500 111 123 1 2 h19/p19 123 0.28 60 1 0.53 6 42 0.81 0.63
m20 1500 111 123 1 2 h20/p20 123 0 60 1 0.24 6 42 0.53 0.51
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Table 4 Dual-Switch network topology/load-level A.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 12.3 123 14 15 h1/p1 123 1.55 57 0 1.92 6 68 2.33 1.56

Load-Level: A

m2 1500 12.3 123 14 15 h2/p2 123 1.15 57 0 1.52 6 66 1.93 1.31
m3 1500 12.3 123 5 6 h3/p3 123 0.79 56 0 1.16 6 68 1.11 0.83
m4 1500 12.3 123 5 6 h4/p3 123 0.79 57 0 1.16 6 67 1.13 0.85
m5 1500 12.3 123 1 2 h5/p5 123 0 56 0 0.37 6 67 0.80 0.71

Table 5 Dual-Switch network topology/load-level B.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 13.53 123 14 15 h1/p1 123 3.54 72 0 4.01 6 78 4.45 3.35

Load-Level: B

m2 1500 13.53 123 14 15 h2/p2 123 3.20 72 0 3.57 6 78 4.02 3.03
m3 1500 13.53 123 11 12 h3/p3 123 2.83 72 0 3.20 6 79 3.64 2.94
m4 1500 13.53 123 11 12 h4/p4 123 2.39 71 0 2.76 6 77 3.21 2.61
m5 1500 13.53 123 8 9 h5/p5 123 2.02 71 0 2.39 6 77 2.83 2.23
m6 1500 13.53 123 8 9 h6/p6 123 1.59 73 0 1.96 6 77 2.41 1.90
m7 1500 13.53 123 5 6 h7/p7 123 1.21 71 0 1.58 6 78 2.03 1.74
m8 1500 13.53 123 5 6 h8/p7 123 1.21 72 0 1.58 6 78 2.03 1.72
m9 1500 13.53 123 1 2 h9/p9 123 0.43 72 0 0.79 6 79 1.24 1.11
m10 1500 13.53 123 1 2 h10/p10 123 0 71 0 0.36 6 77 0.81 0.72

Table 6 Dual-Switch network topology/load-level C.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 111 123 14 15 h1/p1 123 8.41 86 0 8.78 6 105 9.25 7.12

Load-Level: C

m2 1500 111 123 14 15 h2/p2 123 7.97 86 0 8.33 6 104 8.81 6.81
m3 1500 111 123 11 12 h3/p3 123 7.73 86 0 8.10 6 105 8.45 6.66
m4 1500 111 123 11 12 h4/p4 123 7.20 85 0 7.75 6 105 8.04 6.45
m5 1500 111 123 8 9 h5/p5 123 7.12 84 0 7.36 6 106 7.96 6.12
m6 1500 111 123 8 9 h6/p6 123 6.54 85 0 6.91 6 105 7.38 5.98
m7 1500 111 123 6 7 h7/p7 123 6.39 85 0 6.76 6 105 7.23 5.73
m8 1500 111 123 6 7 h8/p8 123 5.78 86 0 6.15 6 104 6.62 5.01
m9 1500 111 123 4 5 h9/p9 123 5.79 84 0 6.15 6 104 6.63 5.13
m10 1500 111 123 4 5 h10/p10 123 5.12 84 0 5.49 6 105 5.97 4.67
m11 1500 111 123 4 5 h11/p11 123 4.43 85 0 4.80 6 105 5.28 3.90
m12 1500 111 123 4 5 h12/p11 123 4.43 85 0 4.80 6 105 5.28 3.97
m13 1500 111 123 2 3 h13/p13 123 3.84 85 1 4.21 6 104 4.69 3.65
m14 1500 111 123 2 3 h14/p14 123 3.12 86 1 3.49 6 106 3.96 2.99
m15 1500 111 123 2 3 h15/p15 123 2.47 84 1 2.84 6 105 3.31 2.31
m16 1500 111 123 2 3 h16/p15 123 2.47 84 1 2.84 6 105 3.31 2.25
m17 1500 111 123 1 2 h17/p17 123 1.48 85 1 1.85 6 104 2.33 1.91
m18 1500 111 123 1 2 h18/p18 123 0.92 86 1 1.28 6 106 1.76 1.23
m19 1500 111 123 1 2 h19/p19 123 0.4 86 1 0.79 6 106 1.27 1.01
m20 1500 111 123 1 2 h20/p20 123 0 84 1 0.36 6 105 0.84 0.76
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Abstract
In this paper, we introduce the concept of Multi-Reader Buffers (MRBs) for high throughput and
memory-efficient implementation of dataflow applications. Our work is motivated by the huge
amount of data that needs to be processed and typically accessed in a FIFO manner, particularly in
image and video processing applications. Here, multi-cast, fork, and merge operator implementations
known today produce huge memory overheads by storing and communicating copies of the same
data. As a remedy, we first introduce MRBs as buffers preserving FIFO semantics for a finite
number of readers of the same data while storing each data item only once. Second, we present an
approach for memory minimization of data flow networks by replacing all multi-cast actors and
connected FIFOs with MRBs. Third, we present a Design Space Exploration approach to selectively
replace multi-cast actors with MRBs in order to explore memory, throughput, and processor resource
allocation tradeoffs. Our results show that the explored Pareto fronts of our approach improve the
solution quality over a reference by 78 % in average for six benchmark applications in terms of a
hypervolume indicator.
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1 Introduction

Generally, an image processing application consists of a graph of image processing filters,
where each filter operates on its input and produces transformed image data at its outputs.
Two important aspects must be considered in the design of efficient implementations of
image processing applications on multicore architectures 1) the application’s concurrency and
exploitable parallelism and 2) its memory footprint. As imperative programming languages
are a poor fit for developing concurrent applications, dataflow processing [4, 7, 17], which
is naturally suited to expressing concurrency, is widely adopted to program modern Multi-
Processor Systems-on-a-Chip (MPSoCs). Each filter of an image processing application can
be modeled by an actor consuming and producing data. Each communication between two
filters can be realized via a First In First Out (FIFO) buffer that needs to be mapped to
a region in memory. Now, one constraint in dataflow modeling is that each FIFO buffer is
exclusively written by one producer actor and read by one consumer actor. When multiple
consumers require to read the same data, some dataflow modeling frameworks [12, 10, 5]
propose to solve this issue by introducing so-called multi-cast actors that just read information
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and replicate it for a finite number of consumers. Accordingly, the introduction of multi-cast
actors might negatively impact the memory footprint of image processing applications due
to the data redundancy induced to respect dataflow semantics.

To avoid any memory overhead and as a first contribution, we introduce the concept of
a Multi-Reader Buffer (MRB) preserving FIFO semantics for a finite number of readers of
the same data while storing each data item only once. As a second contribution, we present
an approach for memory minimization of dataflow networks by replacing each multi-cast
actor and the FIFOs connected to it by a MRB. But whereas using MRBs instead of
multi-cast actors reduces the memory footprint by removing data redundancy thus, delivering
optimal memory footprint implementations, this transformation might negatively impact
the throughput of a given application, as a bounded-length MRB will free space in its FIFO
memory only once the last reader will have consumed the respective data. Accordingly, our
third contribution is to explore the tradeoff between memory footprint minimization and
throughput maximization by selectively replacing multi-cast actors by MRBs.

Here, we propose a multi-objective Design Space Exploration (DSE) for the mapping and
scheduling of a data flow specification onto symmetric multi-processor target platforms with
a global shared memory and each processor having an additional local scratchpad memory. In
addition to memory footprint to be minimized and throughput to be maximized, we consider
the number of allocated cores for each explored mapping and schedule as an additional
cost metric. We subsequently compare our proposed DSE results named MRBExplore to a
Reference approach that only optimizes the mappings without introducing any MRBs. We
also compare the DSE results MRBExplore against an approach named MRBAlways in which
all multi-cast actors and their adjacent FIFOs are replaced by MRBs. Our experiments show
that MRBAlways is able to improve the quality of found solutions in terms of a hypervolume
indicator by 67 % on average compared to a state-of-the-art reference approach. Moreover,
our proposed approach MRBExplore is shown to be able to find even better fronts of solutions
by improving the hypervolume to 78 % on average against the approach Reference.

This paper is structured as follows: Section 2 presents the state-of-the-art. Section 3
presents the a formalization of the optimization problem. Then, Section 4 presents the
semantics of our proposed MRB. Section 5 presents the DSE approach to selectively
implement MRBs and the experimental results for six applications in terms of the quality of
the found solution sets. Finally, Section 6 concludes this paper.

2 Related Work

Approaches for optimizing parallel implementation of applications specified as dataflow
networks [17] perform multi-objective optimization of conflicting design objectives, e.g.,
throughput, number of allocated cores, and memory footprint. On the one hand, approaches
such as [11, 7] optimize dataflow applications’ throughput and the number of allocated
cores in a given architecture. E.g., [7] proposed a clustering approach of static actors into a
so-called cluster. Through the proposed clustering approach, the scheduling of connected
static data flow sub-graphs can be coordinated to exploit the predictability and efficiency of
the static data flow model. Moreover, clustering reduces scheduling overhead by reducing the
number of checking guards of the actors composing a cluster, thus improving the throughput
of applications. However, the previously presented approaches do not consider any memory
footprint evaluation of implementations during DSE.

On the other hand, approaches for memory footprint minimization can be classified into
two main categories: 1) approaches minimizing the size of FIFOs and 2) approaches imple-
menting memory-reuse strategies that allow different FIFOs to be mapped into overlapping
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Figure 1 On the left, an application graph gA consisting of actors connected by communication
channels. On the right, a multi-core architecture that is modeled by an architecture graph gR.
Dashed lines represent mappings from actors to processors and channels to memories.

memory spaces or track individual token lifetimes to exploit memory footprint reductions
over the execution of an application. In the first category, techniques such as FIFO sizing
have been widely studied to reduce the memory footprint of Synchronous Dataflow (SDF)
applications [15, 1]. Such approaches determine the minimal buffer size of an SDF application
under throughput constraints. However, those approaches do not consider any memory-reuse
strategy because each buffer is studied as a separate unit allocated in memory, and no
shared memory address space is considered. In the second category, the approach presented
in [6] derives overlapping memory allocations for individual tokens communicated during the
execution of an SDF graph. As a requirement, the SDF graph has to be transformed into a
single-rate SDF graph inducing a significant analysis overhead that leads to an approach
ill-suited for usage within a DSE [6].

Apart from performing an agnostic memory footprint minimization, some approaches
exploit the knowledge about the application and actor characteristics. For instance, dataflow
frameworks [5, 18, 13] targeting image processing apply memory minimization strategies
based on the behavior of a set of specialized actors performing operations like multi-cast,
fork, and join of data. For instance, the employed memory minimization strategy described
in [13] merges all outgoing buffers of a multi-cast actor by replacing them with a broadcast
FIFO that supports a single writer but multiple readers [13]. However, this implementation
is only able to handle single rate dataflow applications. Moreover, no other design objectives
apart from memory footprint are explored. In this paper, we propose a holistic approach
that considers not only the minimization of memory footprint but also the mapping and
scheduling of communication channels and actors onto an MPSoC as well as the number of
allocated CPUs as exploration objectives.

3 Fundamentals

Mapping problems of applications to embedded systems, i.e., multi-core target architectures,
are often described by a specification graph [2, 16] composed of (i) an application graph, (ii)
an architecture graph, and (iii) mappings connecting the application and the architecture
graphs.

NG-RES 2023
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3.1 Application Graph
An application is modeled as a bipartite graph of actors and channels. First, we formalize
actors.
▶ Definition 1 (Actor [8]). An actor is a tuple a = (I,O, ψ, κ, τ ) containing a set of actor
input ports I and actor output ports O. The function ψ : O → N assigns the production
rate to all output ports and the function κ : I → N assigns the consumption rate on each
input port per firing. Finally, τ ∈ R represents the actor’s execution time.
Next, we model a given data flow specification of communicating actors by a bipartite
application graph:
▶ Definition 2 (Application Graph). The application graph gA = (A,C,E, δ, γ, φ) is a bipartite
graph with its vertices partitioned into a set of actors A and a set of communication channels
C. Each channel represents a FIFO buffer. The set of directed edges E ⊆ (A.O×C)∪(C×A.I)
connects actors and channels. The delay function δ : C → N0, capacity function γ : C → N,
and size function φ : C → N, respectively, assign each channel a number of initial tokens, a
maximal number of tokens that can be stored, and the token size in bytes.
In Figure 1, an example of an application graph gA consisting of five actors A = {a1, . . . , a5}
communicating via five communication channels C = {c1, . . . , c5} is given.

From an application itself, it is possible to determine the memory footprint MF =∑
∀c∈C γ(c) · φ(c) by summing up each channel’s memory requirement derived from the

channel capacity in tokens γ(c) and the token size in bytes φ(c).
Generally, an application contains multi-cast actors, e.g., actor a2 in Figure 1. Multi-cast

actors just replicate the data tokens at their input, producing identical copies of data as
tokens on the communication channels connected to their output ports. To exemplify, a2
copies its input tokens to a3 and a4 via the communication channels c2 and c3, respectively.
In the following, let the set of multi-cast actors of an application be denoted by AM ⊂ A.
Now, each multi-cast actor represents an opportunity for memory footprint reduction, as
shown in Figure 2. As precisely one channel is connected to each actor port, the domain of
the functions δ, γ, and φ can be extended to all the ports of a multi-cast actor. If one of
these functions is applied to an actor port, it will be equivalent to applying the function to
the channel that is connected to this port. With these definitions, a multi-cast actor satisfies
the following sets of constraints:

∀a ∈ AM : |a.I| = 1 ∧ ∀i ∈ a.I : κ(i) = 1 (1)
∧ |a.O| > 1 ∧ ∀o ∈ a.O : ψ(o) = 1 (2)
∧ ∀i ∈ a.I, o ∈ a.O : φ(i) = φ(o) (3)
∧ ∀o′, o′′ ∈ a.O : δ(o′) = 0 ∧ γ(o′) = γ(o′′) (4)

First, a multi-cast actor must have exactly one input port consuming one token per actor
firing (see Equation (1)) and at least two output ports, each port producing one token per
firing (see Equation (2)). Moreover, the token size of all consumed and produced tokens
must be identical (see Equation (3)). Finally, output channels are assumed to be free of
any token, and the channel capacities of the output channels are assumed to be identical
(see Equation (4)).

3.2 Architecture Graph
A symmetric multi-core target architecture as shown in Figure 1, right, is modeled formally
by an architecture graph:
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(a) Realization of channels as FIFOs allocated in
memory.
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(b) Concept of a MRB: A given multi-cast actor a2
and its adjacent channels c1, c2, and c3 are replaced
by a single MRB c{1,2,3} for memory minimization.

Figure 2 In (a), each channel connected to multi-cast actor a2 is realized as a FIFO allocated in
memory storing the same information. In (b), memory minimization is performed by merging those
redundant communication channels into MRB c{1,2,3}.

▶ Definition 3 (Architecture Graph). An architecture graph gR is a tuple (R,L, bϖ) composed
of a set of vertices R modeling hardware resources (such as processors, memories, and a
bus used to transport data from memories to processors and vice-versa) and a set of edges
L ⊆ R×R denoting communication links. Finally, bϖ denotes the bus bandwidth.

To exemplify, consider again the target architecture shown in Figure 1. The set of
resources R is partitioned into a set of CPUs RP = {rCPU1, . . . , rCPU4}, a set of memories
RM = {rSPM1, . . . , rSPM4, rDRAM}, and the bus rBUS. Here, each processor rCPUi ∈ RP ⊂
R : 1 ≤ i ≤ |RP| is assumed to have a local scratchpad memory rSPMi ∈ RM ⊂ R reachable
via the link (rCPUi, rSPMi) ∈ L. Furthermore, the processors can access the global memory
rDRAM via the bus rBUS.

3.3 Specification graph
To perform explorations of allocations and mappings of actors to cores, and of channels
to memories including the scheduling of actors and of data transfers between resources, a
specification contains a set of mappings M = MA ∪MC that is partitioned into a set of
potential mappings MA ⊆ A×RP of actors to processors and mappings MC ⊆ C ×RM of
channels to memories. Then, a specification graph can be formally defined as follows:

▶ Definition 4 (Specification Graph). A specification graph gS = (A∪C∪R,E∪L∪M) contains
the architecture graph gR, the application graph gA and the set of potential mappings M .

3.4 Actor and Communication Channel Binding
A specification, in general, allows for multiple implementations. To derive a specific imple-
mentation, a DSE must determine bindings for all actors (βA ⊆MA) and all communication
channels (βC ⊆ MC). This step is often also called mapping. Here, each actor must be
bound to exactly one processing resource (see Equation (5)). Conversely, each channel must
be bound to exactly one memory resource (see Equation (6)).

∀a ∈ A : |βA ∩ ({a} ×RP)| = 1 (5)
∀c ∈ C : |βC ∩ ({c} ×RM)| = 1 (6)
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Moreover, the binding of each channel c is constrained to either be bound to global
memory rDRAM or a scratchpad memory rSPMi local to the processor rCPUi onto which an
actor is bound that either writes to or reads from channel c. This condition can be formalized
as follows:

∀(c, r) ∈ βC : r = rDRAM

∨ ∃(a, rCPUi) ∈ βA, o ∈ a.O : (o, c) ∈ E ∧ r = rSPMi

∨ ∃(a, rCPUi) ∈ βA, i ∈ a.I : (c, i) ∈ E ∧ r = rSPMi (7)

Formally, each feasible implementation gI must satisfy Equations (5)–(7). Note that
different implementations may have identical actor bindings βA, but differing in schedules due
to differing channel bindings βC , a limited bus bandwidth bϖ delaying those communications
using the bus to transport data, or simply using a different scheduling algorithm. Note also
that any processor rCPUi writing to its local scratchpad memory rSPMi creates no impact on
scheduling because the bus is not used to transfer data. In contrast, the bus is utilized when
writing to any other scratchpad or global memory which could create interference. Formally,
for any bound channel (c, rm) ∈ βC , the transfer delay τ(c, η) of transporting η data tokens

over the bus assuming no bus contention is calculated as τ(c, η) = φ(c)× η [bytes]
bϖ [Gb/s]

1.

4 Multi-Reader Buffers (MRBs) for Memory Footprint Minimization

Using multi-cast actors in a Dataflow Graph (DFG) may result in sub-optimal implementa-
tions in terms of memory footprint. E.g., Figure 2a presents FIFO realizations for channels
c1, c2, and c3 of the application graph shown in Figure 1. There, the multi-cast actor
a2 propagates identical data tokens to c2 and c3. Figure 2b now introduces our concept
of an MRB. By replacing a multi-cast actor and its adjacent channels by a single MRB
node in which all outgoing channel buffers are replaced internally by just a single (shared)
buffer. Semantically, the MRB acts as a channel in the transformed application graph that
technically stores only one copy of live data shared between actors a3 and a4.

Formally, the transformation of replacing a given multi-cast actor am with an MRB
for a given application graph gA is detailed in Algorithm 1. This algorithm returns a
transformed application graph where the given multi-cast actor and the channels connected
to it have been replaced by a corresponding MRB. For finding minimal memory footprint
implementations, Algorithm 1 is simply applied to all multi-cast actors of an application.

Now, we present a possible MRB realization and its principle of operation. By definition,
a MRB cm has one writer aw and multiple readers ari

∈ Ar ⊆ A : 1 ≤ i ≤ |Ar|. Each MRB
cm has a write index ω(cm) ∈ {0, 1, . . . , γ(cm)− 1} that indicates the next position in cm’s
buffer to be filled with the next token produced by the writer aw. Similarly, each cm manages
read indices ρi(cm) ∈ {−1, 0, 1, . . . , γ(cm)− 1} : 1 ≤ i ≤ |Ar|, each index ρi(cm) indicating
a position in cm’s buffer from which the next token consumed by reader ari

is read. The
special value −1 of a read index ρi(cm) denotes that cm is empty from ari

’s perspective.
Then, the number of available tokens T(cm, ari

) from the perspective of each reader ari

and the number of free places F(cm) in cm from the perspective of the writer aw can be
determined as follows:

1 Times for reading and writing local scratchpad data are assumed to be part of each actor’s execution
time.
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Algorithm 1 Multi-Reader Buffer (MRB) replacement.

1 Function insertMRB(gA, am)
2 Cdel ← {c ∈ gA.C | gA.E ∩ ({c} × am.I ∪ am.O × {c}) ̸= ∅}// All channels connected to

am
3 cm ← createMRB(am, Cdel) // Create MRB
4 gA.A← gA.A \ {am} // Remove multicast actor
5 c′ ← c : ∃i ∈ am.I, (c, i) ∈ gA.E // input channel of am

6 gA.E ← gA.E ∪ {(o, cm) | ∃a ∈ gA.A, o ∈ a.O : (o, c′) ∈ gA.E} // Connect cm writer
7 for c′′ ∈ Cdel \ {c′} do // All output channels of am
8 gA.E ← gA.E ∪ {(cm, i) | ∃a ∈ gA.A, i ∈ a.I : (c′′, i) ∈ gA.E} // Connect cm reader
9 γ(cm)← γ(c′) + γ(c′′) // Set capacity of MRB

10 δ(cm)← δ(c′) // Set initial tokens for MRB
11 φ(cm)← φ(c′) // Set token size of MRB
12 gA.C ← {cm}+ gA.C \ Cdel // Replace Cdel by cm
13 gA.E ← {(n, m) ∈ gA.E | n /∈ Cdel ∨m /∈ Cdel} // Remove edges connecting

removed channels
14 return gA

T(cm, ari
) =

{
0 if ρi(cm) < 0
((ω(cm)− ρi(cm)− 1) mod γ(cm)) + 1 otherwise

(8)

F(cm) = γ(cm)− max
ari

∈Ar
T(cm, ari

) (9)

Assuming the reader ari consumes κ(ari) tokens, then it is blocked from firing as long as
T(cm, ari

) < κ(ari
) holds. Accordingly, upon each read by an actor ari

, the corresponding
read index ρi(cm) is updated as follows:

ρi(cm)←
{
−1 if T(cm, ari

) = κ(ari
)

(ρi(cm) + κ(ari
)) mod γ(cm) otherwise

(10)

Equivalently, assuming the writer aw produces ψ(aw) tokens, then it is blocked from firing
as long as F(cm) < ψ(aw) holds. Accordingly, upon each write of actor aw, Equation (11)
is applied, which sets each read index ρi(cm) with the value ω(cm) if ρi(cm) = −1. Next,
Equation (12) is applied, which advances the writer index ω(cm) by the number of produced
tokens.

∀
1≤i≤|Ar|

ρi(cm)←
{
ω(cm) if ρi(cm) = −1
ρi(cm) otherwise

(11)

ω(cm)← (ω(cm) + ψ(aw)) mod γ(cm) (12)

To exemplify, consider the application in Figure 2. For the MRB c{1,2,3}, the writer aw is
a1, and the set of readers Ar is {a3, a4}. Of course, our presented MRB realization supports
multi-rate dataflow. However, to ease the understanding of the presented example, a1’s
production rate is assumed here to be one, i.e., ψ(a1) = 1, and the same holds for the
consumption rates of the readers, i.e., κ(a3) = κ(a4) = 1. The MRB’s read and write indices
after various firings of the connected actors a1, a3, and a4 are depicted in Figure 3. Assuming
the MRB is initially empty, these read and write indices have values as shown in Figure 3a.
Thus, T(c{1,2,3}, a3) = T(c{1,2,3}, a4) = 0 and F(c{1,2,3}) = γ(c{1,2,3})−max{0, 0} = 4.
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(a) Initial state of the MRB.

a1

a3

a4writer

readers

ω(c{1,2,3}) = 3 ρ1(c{1,2,3}) = 0

ρ2(c{1,2,3}) = 0

(b) After firing ⟨a1, a1, a1⟩.
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(c) MRB after ⟨a3, a3, a3, a1⟩.
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(d) MRB after ⟨a4, a3⟩.

Figure 3 MRB with one write index (pointer) indicating the location of the next token to be
written. Moreover, each reading actor requires an index pointing to the position of the next token
to read.

At this point (see Figure 3a), it is only possible to perform write operations. Before
firing a1, we must check if sufficient free places are available for the produced tokens, i.e.,
F(c{1,2,3}) = 4 ≥ ψ(a1) = 1. Next, assume actor a1 fires three times resulting in the state
shown in Figure 3b. There, the write index ω(c{1,2,3}) has advanced to 3 pointing to the
next free place in the MRB’s buffer. The read indices ρ1(c{1,2,3}) and ρ2(c{1,2,3}) have been
updated during the first firing of actor a1 from −1 to 0 pointing to the first token contained
in the MRB.

At this point (see Figure 3b), we can also perform read operations. Before firing
a reader ari

, we need to verify if there exist sufficient tokens to be consumed by the
reader, i.e., T(c{1,2,3}, ari

) ≥ κ(ari
). For instance, we are able to fire actor a3 because

T(c{1,2,3}, a3) = ((3− 0− 1) mod 4) + 1 = 3 ≥ 1. After firing the sequence ⟨a3, a3, a3, a1⟩, the
resulting state is shown in Figure 3c. There, the readers track different information about
the state of the MRB. The reader a3 points to ρ1(c{1,2,3}) = 3 and observes T(c{1,2,3}, a3) =
((0− 3− 1) mod 4) + 1 = 1 token on the MRB whereas, reader a4 points to ρ2(c{1,2,3}) = 0
and observes T(c{1,2,3}, a4) = ((0− 0− 1) mod 4) + 1 = 4 tokens. From the perspective of
the writer a1, the MRB is full.

At this point (see Figure 3c), let the firing sequence ⟨a4, a3⟩ be observed. The resulting
state of the MRB is shown in Figure 3d. From the perspective of a3, the MRB is empty, i.e.,
ρ1(c{1,2,3}) is −1. The token placed at position 0 has been consumed because a4 has read it
now seeing T(c{1,2,3}, a4) = ((0− 1− 1) mod 4) + 1 = 3 more tokens. From the perspective
of a1, there is one free place as F(c{1,2,3}) = γ(c{1,2,3})−max{0, 3} = 4− 3 = 1.

To evaluate the benefits of MRBs, the following section presents a DSE that decides
whether to replace a multi-cast actor and its connected channels with an MRB.
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Table 1 DFGs employed to compare the presented DSE.

Application # of
instances |A| |C| |AM| γ(C) MF (Reference)

[MiB]

Sobel-4 1 27 33 4 1 82.6
Sobel-8 1 51 65 8 3 707.5

Multicamera 2 123 226 46 3 252.4
Optical flow 4 89 112 15 3 996.8

Object counting 5 96 120 15 2 105.6
Foreground detection 7 139 170 24 2 5.01 · 103

5 Experimental Results

For design space exploration, we consider the set of objectives Fobj = {fmax
1 , fmin

2 , fmin
3 } to

be optimized. Here, fmax
1 , fmin

2 , and fmin
3 correspond to throughput, the number of allocated

cores, and memory footprint, respectively. Our proposed DSE optimizes the mappings where
each feasible implementation must satisfy the constraints presented in Equations (5)–(7).
For each explored mapping, a schedule of actors and communications is determined using
a First Come First Serve (FCFS) scheduler. The throughput is evaluated as the average
Frames per Second (FPS) of running ten iterations of the obtained schedule. Moreover, the
memory footprint is determined as presented in Section 3.

We employed the OpenDSE [14] framework for DSE using the NGSA-II elitist genetic
algorithm [3] with a population size of 100 individuals, each generation generating 25 new
individuals, and the crossover rate being set to 0.95. As a target architecture, we used a
symmetric eight-core MPSoC, which connects each processor to a communication bus that,
in its turn, is connected to a global memory. As target applications, Table 1 presents a
benchmark composed of six real-world image processing applications obtained from self-
developed Matlab/Simulink test cases [12]. As can be seen, for some applications, not
only one, but even up to seven instances of application graphs were considered to run
simultaneously. Shown in the table are also the number of actors, the number and capacity
of channels, and the number of multi-cast actors contained in each application.

To quantify the effects of MRBs, we implemented three approaches Reference, MRBAlways,
and MRBExplore. Here, Reference only performs the optimization of mappings. The last
column in Table 1 presents the memory footprint of each application obtained by the Reference
approach, which serves as a baseline to compare the memory footprint reductions obtained
by introducing MRBs in the applications. The approach MRBAlways applies Algorithm 1
to all the multi-cast actors in the application as a pre-processing step and then performs
the optimization of mappings, thus resulting in memory-efficient implementations. Finally,
approach MRBExplore, besides optimizing the mappings, also explores selectively for each
multi-cast actor the choice of its replacement by a MRB.

To explore the placement of the actors and channels, we define an integer genotype for
each actor and channel. For an actor a, we assume that it can be mapped to all cores RP
and, hence, the genotype for an actor is {1, 2, . . . |RP|}. A given channel c can be mapped
to (1) the global memory rDRAM, (2) the producer core’s scratchpad memory, or (3) the
consumer core’s scratchpad memory (as presented in Equation (7)), i.e., the genotype for a
channel is {1, 2, 3}. Accordingly, the genotype of the Reference and MRBAlways approaches
are given by GAlways = GReference = {1, 2, . . . |RP|}|A| × {1, 2, 3}|C|.
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Figure 4 Pareto fronts of the last generation obtained for the six presented applications after
3,500 generations. Points circled brown are non-dominated points of the union of the three Pareto
fronts.

The MRBExplore approach uses a binary genotype {0, 1} for each multi-cast actor to explore
if the multi-cast actor and its connected channels are replaced by a MRB, where a 1 indicates
a replacement. After replacing a given multi-cast actor am and its channels, the mapping of
the newly introduced MRB is the same as the mapping of the channel being read by the
replaced multi-cast actor am. Thus, the genotype of the MRBExplore approach is given by
GExplore = GReference × {0, 1}|AM|.

In the following, we will show that our MRBExplore approach can find better quality
solutions than the Reference and MRBAlways approaches. For the three approaches under
investigation, we performed ten independent DSE runs for each considered application. Each
exploration ran 3,500 generations, recording those implementation candidates with optimal
throughput at each point during exploration.

5.1 Comparison of Exploration Results
Due to multiple objectives to optimize, there not exists a single optimal solution due to
the conflicting set of objectives. Figure 4 presents the Pareto fronts2 of the last explored
generation obtained for the six test applications for each of the investigated approaches. The

2 Shown are the efficient (non-dominated) sets of solutions of the last generation as found during each
explorative search. Note that these sets are approximations of a true Pareto front.
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Figure 5 Hypervolume scores obtained for the six applications.

color on each mark represents the number of allocated cores in each solution, ranging from
single-core in blue to eight-core implementations in red. From the Pareto fronts, we observe
that Reference delivers least efficient implementations in terms of memory footprint (see
squares on top), only trading throughput for allocated cores. In contrast, the MRBAlways
front consists only of the least memory consuming implementations (see triangles at the
bottom). When only looking at the Pareto fronts of Reference and MRBAlways, we cannot
observe any clear tendency indicating that replacing all the multi-cast actors with MRBs
leads to higher throughput implementations. For instance, we can observe that Reference
found better throughput solutions for the optical flow and multicamera, whereas MRBAlways
found better throughput solutions for the other applications.
Now, by selectively exploring the replacement of multi-cast actors according to our proposed
approach MRBExplore, we observe that even higher throughput solutions could be found by
trading the memory footprint in contrast to Reference and MRBAlways. For applications where
Reference obtains higher throughputs than MRBAlways, e.g., optical flow and multicamera,
our approach trades higher memory footprint to find even higher throughput solutions by
performing fewer replacements of multi-cast actors. Conversely, for those applications where
MRBAlways finds higher throughput solutions than Reference, our approach also finds solutions
applying more replacements of multi-cast actors reflected in solutions with less memory
footprint. Notably, the highest throughput solutions found by our approach MRBExplore
are up to 22 % and 14 % higher in average over the considered applications compared to
the highest throughput solutions of Reference. In order to be able to compare the quality
of the obtained Pareto fronts, we use the hypervolume indicator [9] which delivers a single
indicator measuring the performance quality of each approach. For this purpose, we utilize
the multi-objective metric Hypervolume [9], which delivers a single indicator measuring
the performance quality of a given approach. Figure 5 presents the hypervolume indicator
for each explored application. Each plot shows the average hypervolume of ten runs of
each of the three approaches under observation over 3,500 generations. A value closer to

NG-RES 2023



6:12 Throughput & Mem. Optim. for Parallel Impls. of Dataflow Networks Using MRBs

0 indicates a better quality of solutions. As can be seen, a significantly better (on average
67 %) hypervolume indicator value can be observed at the exploration end of the MRBAlways
approach compared to Reference. MRBExplore improves the hypervolume indicator even 78 %
on average over all the investigated applications.

6 Conclusions

This paper introduced the concept of Multi-Reader Buffers (MRBs) as a memory-efficient
implementation of multi-cast actors and their replacement as a graph transformation. Rather
then replicating produced tokens for all readers, an MRB stores only one copy of data for all
readers. Data is alive as long as the last reader has consumed it. MRBs provide minimal
buffer implementations that are obtained by replacing all multi-cast actors in an application
with MRBs. But as the replacement of a multi-cast actor by a MRB may affect the overall
throughput of the application, i.e., in case of small buffer sizes, we proposed a DSE approach
to explore the space of selective MRB replacements. It was shown that solutions can be
found with up to 22 % higher throughput compared to a reference approach. On average, the
highest throughput implementations on the Pareto front were 14 % higher over the considered
applications and 78 % in solution quality measured by a hypervolume indicator are reported.
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In embedded systems, applications frequently have to meet non-functional requirements regarding,
e.g., real-time or energy consumption constraints, when executing on a given MPSoC target platform.

Feedback-based controllers have been proposed that react to transient environmental factors
by adapting the DVFS settings or degree of parallelism following some predefined control strategy.
However, it is, in general, not possible to give formal guarantees for the obtained controllers to
satisfy a given set of non-functional requirements. Run-time requirement enforcement has emerged
as a field of research for the enforcement of non-functional requirements at run-time, allowing to
define and formally verify properties on respective control strategies specified by automata. However,
techniques for the automatic generation of such controllers have not yet been established.

In this paper, we propose a technique using reinforcement learning to automatically generate
verifiable feedback-based enforcers. For that, we train a control policy based on a representative
input sequence at design time. The learned control strategy is then transformed into a verifiable
enforcement automaton which constitutes our run-time control model that can handle unseen input
data. As a case study, we apply the approach to generate controllers that are able to increase
the probability of satisfying a given set of requirement verification goals compared to multiple
state-of-the-art approaches, as can be verified by model checkers.
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1 Introduction

Current multi-processor on-chip (MPSoC) platforms offer abundant computational and
storage resources that necessitate new programming paradigms such as invasive computing [39,
1] for isolating applications to handle architectural interferences between applications. Hybrid
mapping approaches [35, 33, 29] have emerged for mapping of applications onto multi-core
systems in the presence of uncertainty [34, 36].

Despite inter-application resource isolation schemes, applications are still exposed to
variances in the system state (e.g., due to scheduler or caching effects) [6]. According
to [38], another source of uncertainty is the varying workload induced by the input data (e.g.,
different workloads for different image inputs). As an example, throughput jitter in virtual
and augmented reality applications may not only be an annoying user experience, but even
cause dizziness or a headache to a user.

Run-time Requirement Enforcement (RRE) [40] is a field of research with the aim to
control the non-functional properties of execution of a program within desired bounds. Such
techniques dynamically steer control knobs, e.g., voltage/frequency settings, in reaction to
observed changes in the system state to keep the non-functional properties of execution
within the desired range. RRE allows a user to specify bounds on execution properties of
an application on a multi-core platform using so-called requirements [38], i.e., expressions
on non-functional properties such as desired corridors on latency or energy consumption.
Recently, techniques have been proposed in [9, 10, 11] to formally verify the satisfaction or
violation of non-functional requirements of RRE techniques at design time. In order to apply
formal methods such as model checking, finite state machines (FSMs) are used to formally
specify control strategies. However, techniques for automatically generating FSMs for RRE
that either always guarantee the satisfaction of a set of given non-functional requirements in
case of strict enforcement or at least guarantee a certain probability of satisfying executions
in case of loose enforcement [40] have not yet been established.

In this realm, different machine-learning-based techniques have been proposed for the
dynamic control of program executions [25, 26]. In an offline phase, a controller behaviour is
learned to optimize a set of given non-functional objectives that can be used at run-time to
control the application. However, the above approach cannot provide any formal guarantees
regarding the ability or strictness to fulfill a set of given requirements, i.e., constraints on non-
functional execution properties. In this paper, we propose a technique using reinforcement
learning to generate FSMs for RRE with formally verifiable guarantees by training and
optimizing an FSM controller to be generated based on input sequences at design time. Based
on a formal characterization of input variation at run time, the generated FSM controllers
for RRE can then also be formally verified at design time.
Contributions: The main contributions of this paper can be summarized as follows:

1. Using reinforcement learning for FSM-based RRE generation: Based on training sequences,
reinforcement learning is used to adapt an initial FSM model towards satisfaction (or
improvement of the satisfaction probability) of a given set of non-functional program
execution properties formulated as verification goals.

2. During learning, the RRE strategy is regularly transformed into an FSM and formally
verified according to the set of verification goals. The offline learning phase stops once all
goals are satisfied. Alternatively, based on a user-defined exit condition.

3. In a case study, the approach to generate formally verified FSM-based RRE controllers is
compared to state-of-the-art enforcer designs.
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2 Fundamentals

In the following, important notions and definitions are introduced.

2.1 FSM-based RRE
Non-functional requirements should be satisfied during each program execution on a given
MPSoC platform even when the environmental input is varied. According to [10], let the size
of the input of a given program for each discrete execution k be given by an environment
feature vector i(k) ∈ I, where I is called the environment space. Moreover, assume that for
preventing or as a countermeasure against violations of a set of non-functional requirements,
an enforcer can vary the number n of cores allocated to execute an application program
as well as the voltage/frequency setting m of these cores. We call such a setting (n, m) a
configuration c and the set of available configurations available on a given MPSoC platform
the configuration space C. Figure 1 shows the concept of feedback-based RRE according to
[10] which serves as the base model also in this paper. Illustrated is a multi-core system
stimulated by input from an environment and reacting to violation of a number of requirement
using an enforcement FSM that determines the configuration c(k + 1) for the (k + 1)th
execution accordingly.

Figure 1 Illustration of feedback-based RRE. A system response vector r is mapped to a binary
requirement response vector ϕ such that the enforcement FSM F controls the next configuration
c(k + 1) ∈ C. Adapted from [10].

2.1.1 Formal Definitions
Assume that the k-th execution of a program on an MPSoC yields H execution properties of
interest (e.g., latency and energy consumption). These properties depend on the input data
i(k) ∈ I and the system configuration c(k) ∈ C. For the purpose of RRE, the system-under-
control can be abstracted by a single function called system response function r : I×C → RH

(see [10]). Thus, the system response r(i(k), c(k)) = (o1(k), . . . , oH(k)) at execution k is a
vector of the H relevant execution properties (see Figure 1). According to [41], requirements
can be specified for each property oh, h ∈ {1, . . . , H}, typically in terms of a lower bound
LBoh

and an upper bound UBoh
that should not be violated. Such intervals can be described

by two propositions φLB
h and φUB

h as follows:

φLB
h (oh(k)) = (LBoh

≤ oh(k)) (1)
φUB

h (oh(k)) = (oh(k) ≤ UBoh
) (2)
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In Equation (1) and Equation (2), LBoh
and UBoh

denote a user-given lower, respectively,
upper bound on the execution property oh. The information about which proposition is
fulfilled and which is violated at the k-th execution can then be described by a binary vector
denoted by requirement response ϕ (see Figure 1). It is obtained from the system response
r(i(k), c(k)) = (o1(k), . . . , oH(k)) using the requirement response function [10]:

β := ϕ (o1(k), . . . , oH(k)) =
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oH(k)), φUB(oH(k))
)
∈ {0, 1}2H . (3)

This binary requirement response vector β specifies for each proposition to be satisfied for
each execution k the input to the enforcement finite state machine (FSM) F , as illustrated in
Figure 1. F reacts by computing the next configuration c(k + 1) ∈ C to enforce the desired
non-functional properties for the next execution k + 1. Formally, an enforcement FSM is
defined as follows.

▶ Definition 1 ([10]). An enforcement FSM (F ) is a deterministic finite state machine
(Moore machine) that can be described by a 6-tuple (Z, z0, B, δ, C, γ) :

Z is a finite set of states.
z0 ∈ Z is the initial state.
B is the input alphabet.
δ is the transition relation: δ ⊆ B × Z × Z with (β, z, z′) ∈ δ representing a transition
from z to z′ under input β.
C is the output alphabet, also called configuration space.
γ is the output function, which maps each state to the output alphabet: γ : Z → C.

Instead of verifying an enforcement strategy described by an enforcement automaton
F for RRE just for individual input traces, the authors in [10] proposed rather to analyze
families of traces. The input variation of the environment is modeled by a discrete-time
Markov Chain called environment FSM, after partitioning the environment space of inputs
I into a set P of disjoint partitions p ∈ P with p ⊆ I. The partitions are constructed
such that all inputs i ∈ p assigned to the same partition always deliver the same binary
requirement response ϕ(r(i(k), c(k))) in each configuration c ∈ C. These partitions p then
define a discrete state space of a discrete-time Markov chain E. Transitions between states
reflect the probabilities of observable variations in environmental input from state to state.
The environment FSM E can equally be seen as a generator of potential input traces that
an RRE FSM F shall be evaluated for. But rather than evaluating a single or comparing
multiple enforcer FSMs based on just individual sample traces, we want to argue first about
quality of enforcers rather for all input traces that a system can potentially undergo. Second,
rather than simulating such input traces to generate statistics, we propose to apply symbolic
techniques, i.e., probabilistic model checking for our analysis.

2.1.2 Verification Goals
Verification goals (V Gs) can then be specified to compare different enforcement strategies
regarding their quality to satisfy the given set of requirements. V Gs are formulated over the
two propositions φLB

h and φUB
h , see Equation (1) and Equation (2), using temporal logic [5]

or PCTL [2, 17]. Examples of such verification goals of interest (one is applied in case of
strict enforcement, the subsequent ones for loose enforcement) are [10]:

AG(φ): φ should always hold.
AF (φ): φ should eventually hold.
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P=?[¬φ → F ≤λ(φ)] denoting the probability of returning to a requirement-satisfying
configuration state (φ) from a violating one (¬φ) in no more than λ steps, i.e., next
executions.
P=?[G≤λ (¬φL)] denoting the probability of λ consecutive violations of φ.
S=?[¬φ] denotes the steady-state probability of violating φ.

2.2 Reinforcement Learning
Reinforcement Learning (RL) [37] is a Machine Learning paradigm dealing with how an
agent shall act in an environment in order to maximize a cumulative reward. An agent is
supposed to improve its ability to solve a problem (defined via a reward function) through
trials-and-errors, similar to how humans and animals learn. At its core, RL models a problem
as a Markov Decision Process (MDP), representing the environment, which the agent interacts
with and observes. At each time step, the environment resides in a state υ ∈ Υ, based on
which the agent then selects an action a ∈ A according to its internal policy π that will put
the state in a successor state υ′ ∈ Υ. The resulting sequence of states and actions performed
in the environment τ = (υ0, a0, υ1, a1, ...) is called a trajectory τ . Some key components
when performing RL training are:
1. A policy π : Υ×A→ [0, 1] that defines the behavior of an agent, i.e., the probability to

take each available action a ∈ A for each state υ ∈ Υ. A policy π can have parameters
θ (then denoted as πθ), be stochastic (e.g., the ϵ-greedy policy in Equation (4)) or
deterministic.

2. A reward signal ξ : Υ × A → R is the feedback sent by the environment to the agent
when it takes an action a in a state υ, ergo it represents the immediate goal of the agent.

3. An action-value function Qπ : Υ × A → R, which predicts the cumulated reward that
could be obtained on the long run if the agent takes decision a in current state υ when
following policy π.

4. In some cases, a model of the environment that allows for predicting rewards ξ(υ, a).

The most investigated way of solving a RL problem is to accurately estimate the action-
value function. While doing so, an agent has to explore the state space Υ to receive the rewards.
To that regards, there is a trade-off to be made between exploration, i.e., taking a random
action at a given state υ, and exploitation, i.e., performing the action a that will maximize the
expected cumulative reward Qπ(υ, a) = Eτ∼π[

∑
(υt,at)∈τ ξ(υt, at) | υ0 = υ, a0 = a] following

the trajectory τ sampled from the policy π starting from state υ0 = υ and action a0 = a. Too
much exploration will increase the training time (as it is not different from a random selection
of actions), whereas too much exploitation might lead to convergence to a local optimum.
As an example, a common policy used (notably in Q-Learning) to balance exploration and
exploitation is called ϵ-greedy policy and is presented in Equation (4). Here, a ∈R A describes
the sampling of a random action from A based on the probability distribution R.

a =
{

arg maxa∈A Q(υ, a) with probability (1− ϵ)
a ∈R A with probability ϵ

(4)

In this paper, we will consider as an example a widely used algorithm, Q-Learning.
Q-Learning [43] is a model-free algorithm which learns the action-value function, i.e., the
Q-function. A common implementation is to have a Q-table storing all the values of Q. The
algorithm steps are described in Algorithm 1 (in the appendix). An episode ep comprises
multiple iterations, in which actions are picked and taken until υ is a terminal state or a given
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7:6 RL for Generating Verifiable Run-Time Requirement Enforcers

number of maximum iterations is performed. Observing the reaction of the environment
yields the successor state υ′ and reward ξ(υ, a). The Q-table is then updated according to
Equation (5).

Q(υ, a)← Q(υ, a) + α ·
(

ξ(υ, a) + κ ·max
a

Q(υ′, a)− Q(υ, a)
)

(5)

The learning rate α ∈ [0, 1] determines how much of the newly acquired information
should replace the current knowledge. The discount factor κ ∈ [0, 1] represents how much
influence future rewards have on the current optimization step compared to the instant one.
For example, a value of 0 will make the agent “short-sighted”, while a value of 1 will make it
aim for an endgame goal.

One limitation of Q-learning is its discrete nature, which, when used to solve continuous
problems, either leads to a state explosion or suboptimal performance due to a down-sampling
of both actions and states. One way to solve continuous problems using this algorithm is to
use deep artificial neural networks as approximators for the Q-function. This is referred to
as Deep Q-Learning [14].

3 Reinforcement Learning for the Generation of Run-Time
Requirement Enforcers

The structure of our verifiable RRE generation approach and optimization is depicted in
Fig. 2. During a training phase (see upper part of the figure), an enforcement agent learns an
enforcement strategy aiming to satisfy a set of verification goals defined over a set of given
requirements like latency, energy, or power. The training is based on an input data sequence
I = {i(1), i(2), ...} generated by a Markov chain. To assess the satisfaction of the verification
goals, the policy of the enforcement agent is periodically transformed (i.e., after a specified
number of training iterations nupdate) into an enforcement FSM and the verification goals
VG are subsequently formally verified using a model checker (see lower part of Fig. 2). Since
verifying the enforcement goals can be a time-intensive task, we employ surrogate functions in
executions k between such verification checks to estimate the verification goals VG between
the actual model checks to speed up the training process. The training phase stops either
when a run-time requirement enforcer with verified VGs has been found, which then can be
deployed in the field (run-time phase). Else, a user can determine the termination of the
learning phase.

3.1 Learning phase
Our enforcement agent is defined by a set of states Υ, a set of actions A, and finally a
reward function ξ that assesses the quality of choosing an action in the current state (see
Section 2.2). An action a(k) of our agent is determined by the selection of the configuration
c(k + 1) = (n, m) of number of cores n and power mode m to be applied for processing the
next input data i(k + 1). The set of actions A is thereby defined equal to the configuration
space C, i.e., A = C. A state υ ∈ Υ = B × C is given by a pair of configuration c ∈ C

and corresponding requirement response β ∈ B that indicates which requirements were
fulfilled after having processed a given input data i in configuration c and which not. As a
consequence, the number of states is given by: |Υ| = |B| · |C|.

Since we do not require any functional execution properties of the related programs for
training the enforcement agent, our approach can also handle black-box applications. The
feedback about the satisfaction of a set of verification goals is encapsulated into a reward
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Figure 2 Enforcer generation based on Reinforcement Learning.

function ξη that associates a chosen action a ∈ A with a quality assessment in the form
of a numeric reward. In the following Equation 6, the reward is defined as a weighted
sum of a verified reward ξver – measured by transforming the enforcement agent into an
enforcement FSM and employing a model checker – and a surrogate reward ξsur that provides
a probabilistic estimation of the probabilities of fulfilling the verification goals based on the
history of an already processed input data sequence. Consequently:

ξη(a(k)) = η · ξsur(k) + (1− η) · ξver(k). (6)

With an increasing number of training iterations, the influence of the model checked reward
ξver should increase, as the surrogate reward merely serves as an estimate. This can be
implemented by decaying η with increasing episode numbers ep, e.g., exponentially by
η = η0 · e−ep·dec, with η0 ∈ [0, 1] being the initial value and dec ∈ R a decay hyperparameter.

Moreover, we define the verified reward ξver as the weighted sum of given requirement
verification goals V G of our model at iteration k and obtained by applying probabilistic model
checking to an enforcer FSM obtained by a model transformation described in Section 3.2:

ξver(k) =
|V G|∑
ω=1

ςω · V Gω(k). (7)

In the case of a verification goal for strict enforcement, V Gω represents a binary value
indicating whether the verification goal was met V Gω = 1 or missed V Gω = 0, while in case
of loose enforcement, V Gω ∈ [0, 1] denotes a probability of meeting the verification goal.
Furthermore, the weight ςω should be chosen negative when the associated verification goal
V Gω shall be minimized and positive when V Gω shall be maximized.

In contrast to the verified reward ξver that is updated periodically every nupdate iterations,
the surrogate reward ξsur is computed in each iteration k due to being an derivative of the
function fest at point k estimating the verification goals based on the history H = (1, ..., k)
of the input data i and agent trajectory τ up to the current action a(k):

fest(k) = ϑ(k) ·
|V G|∑
ω=1

ςω · E[V Gω | (i(y))y∈H, (υy, ay)y∈H ∈ τ ]. (8)

With that, the surrogate reward ξsur(k) is defined as:

ξsur(k) = ∆fest(k) = fest(k)− fest(k − 1). (9)
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7:8 RL for Generating Verifiable Run-Time Requirement Enforcers

Loose verification goals V Gω can be estimated by using the empirical probability, i.e.,
associating the number of occurrences of verification goal violations over the history H. Since
the accuracy of our probabilistic estimation increases with larger sizes of the regarded history
k = |H|, we weight the surrogate function by a factor ϑ(k) ∈ [0, 1] that scales the reward
with k:

ϑ(k) = 1− e−u·k, u ∈ R+. (10)

Above function covers the range of ϑ(0) = 0 up to limk→∞ϑ(k) = 1 with u ∈ R+ steering the
gradient of the scaling function. Strict verification goals are set to zero in case any violation
happens in the history, and to one otherwise.

Example. Let the verification goal V GL := S=?[φL] be given, the goal being to minimize
the probability of violating a latency requirement ϕL. This goal can be estimated as

E[V GL] =
∑

y∈H ξφL
(k)

|H|
(11)

We can then define the reward for the requirement φL as:

ξφL
(k) =

{
1 if φUB(oL(i(k), a(k))) ∧ φLB(oL(i(k), a(k)))
0 else

(12)

With this formalization of our reinforcement agent, we can choose a suitable reinforcement
learning implementation from the literature for performing the training procedure. In case
of a low cardinality of configurations |C|, simple approaches as Q-learning are viable. Else,
more sophisticated model-free deep learning procedures as proximal policy optimization
(PPO) [31] or soft actor-critic (SAC) [16] are recommended.

3.2 Transformation
This section describes how to transform a trained reinforcement learning agent into an enforcer
FSM that can be formally verified. First, we need to transform our reinforcement learning
agent states Υ into a set of enforcement FSM states Z. Second, we need to transform our
agent policy into an FSM transition relation δ. Note that we can only transform reinforcement
agents into a verifiable enforcer FSM for discrete action and state spaces.

We generate one unique enforcer FSM state zc ∈ Z of a Moore FSM per configuration
c ∈ C, described by the bijective function ζ : C ↔ Z. The FSM transition relation
δ : B × Z → Z determines a next state from a current state based on the requirement
response β. Since each state represents uniquely exactly one configuration, we can reformulate
this relation as δ : B × C → C, i.e., we have to determine for each configuration the best-
suited subsequent configuration in dependence of the requirement response β. With the
reinforcement states defined as Υ = B × C and associated actions given by A = C, we
propose to derive the state transitions by determining the best action per state (β, c) of
our reinforcement learning agent. In particular, for each enforcer FSM state z = θ(c)
corresponding to a configuration, we create one outgoing transition per reinforcement state
(β, c) ∈ Γ as follows:

δ = {(β, ζ(c), ζ(a)) | (β, c) ∈ Υ ∧ a = ϱ(β, c))} . (13)

The best action per state ϱ : Υ→ A can be extracted from the trained agent policy.
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Figure 3 Example of transforming a Q-table that is based on the configuration set C = {c0, c1}
and the verification goal V GL := S=?[φL] for the latency requirement φL into an enforcer FSM.

Example. Let us give a simple example with two configurations C = {c0, c1} and one
verification goal V GL := S=?[φL] based on the latency requirement φL. As in the following
Section 4 Evaluation, Q-learning is used as the reinforcement learning implementation. The
Q-table of the enforcement agent contains one Q-value Q(υ, a) per tuple of enforcer agent
state υ and action a ∈ A = C. The transformation from a Q-table into an enforcer FSM is
illustrated in Fig. 3. In the first step, the transformation procedure associates each state υ

with its best action a by applying ϱ. For Q-learning, the best action per state is directly
given by the highest Q-value in the corresponding row, which therefore defines ϱ as:

ϱ(υ) = arg max
a∈A

Q(υ, a). (14)

With that, the transition relation δ can be determined, representing the two-step enforcer
FSM depicted on the right side of the figure. Remember that each tuple (β, z, z′) ∈ δ describes
a transition of the enforcer FSM from state z into state z′ triggered by the requirement
response β. Finally, the resulting enforcer FSM can be formally verified for the given
verification goals according to [10] using probabilistic model checking, e.g., PRISM [23].

4 Evaluation

In this section, we present an elaborate case study for the presented approach. The application
considered is an object detection application whose actor graph is shown in Fig. 4 (in the
appendix). The object detection application processes a stream of periodic input images
in a pipelined fashion so that a given object in each image frame is detected based on
scale-invariant feature transform (SIFT) matching [24]. As properties of execution to be
enforced, we consider the latency oL and the power consumption oP . An empirical analysis of
the execution times revealed that most of the execution time is spent in the SIFT description
actor. Each SIFT description worker actor iterates over the list of features received from the
control mechanism and generates corresponding feature descriptions, which is a compute-
intensive task. For that reason, we apply RRE to just this actor using the method described in
this paper. For the experiments, we used a sequence of Itrain = 1000 images from the KITTI
database [13] in each training episode. To counteract any violation of the corresponding
requirements, a set of m = 20 power modes driven by dynamic voltage and frequency scaling
(DVFS) can be applied, and a maximum of n = 4 cores can be allocated per run.

Each of the reinforcement learning-based enforcer instances was trained for a given set of
verification goals until convergence (3,000 episodes, where each episode consists of iterating
over the training input set Itrain) using the reward function described in Eq. (6), the ϵ-greedy
policy described in Eq. (4), parametrized with a learning rate of α = 0.1 and a discount factor
κ = 0.99. Due to the limited state space with |C| = 80, Q-learning is still viable. Note that
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7:10 RL for Generating Verifiable Run-Time Requirement Enforcers

deep learning-based agent implementations such as Soft-Actor-Critic provide similar results
but introduce additional overhead during training. The result of the transformation process,
explained in Section 3.2, is an FSM that can be verified using the verification method in [10].

For formal verification, an environment FSM is generated from Itrain, using the environ-
ment FSM generation method in [10], based on a latency requirement φL = φLB

L ∧ φUB
L =

(LBoL
≤ oL) ∧ (oL ≤ UBoL

) for a latency lower bound LBoL
= 0 ms and an upper bound

(deadline) UBoL
= 40 ms, similarly for a power requirement φP = φLB

P ∧ φUB
P = (LBoP

≤
oP ) ∧ (oP ≤ UBoP

) for a power lower bound LBoP
=0 W and an upper bound UBoP

=
1.2 W. Intuitively, φLB

L = (0 ms ≤ oL) and φLB
P = ( 0 W ≤ oP ) are always satisfied and

can therefore be ignored during enforcement in this case study. The generated enforcer
FSMs are verified using the PRISM model checker [22]. In the following, we present the
verification results for loose and strict enforcement for the proposed and the following set
of other previously proposed RRE techniques: Race-to-idle (RTI) [21] that executes the
application in each iteration k constantly with n = 4 cores and the highest power mode m,
1-step enforcement FSM F1 proposed in [9], and 8-step enforcement FSM F2 in [10].

4.1 Loose enforcement
As a first example, we specify and verify the following two verification goals: P=?[G≤3¬φL] for
the latency requirement φL and P=?[G≤3¬φP ] for the power requirement φP , see Section 2.1.2
for explanation.

Table 1 Verification results for loose enforcement for RTI, F1, F2, and Frl0 for the verification
goals P=?[G≤3¬φL] and P=?[G≤3¬φP ], based on a latency upper bound (deadline) UBoL = 40 ms,
and a power upper bound UBoP = 1.2 W.

P=?[G≤3¬φL] P=?[G≤3¬φP ]
RTI F1 F2 Frl0 RTI F1 F2 Frl0

0 0.427 0.041 0 1 0.256 0.389 0

As shown in Table 1, P=?[G≤3¬φL] = 0, P=?[G≤3¬φP ] = 0 for the RL-generated FSM
Frl0 . This means that our approach can determine an enforcer FSM that does not violate the
latency nor the power requirement for λ = 3 consecutive executions. P=?[G≤3¬φL] = 0 also
for RTI, as it always satisfies the latency requirement φL, and P=?[G≤3¬φL] = 1 because
it always violates the power requirement φP as it always runs in the highest power mode
mmax = 20 and number of cores nmax = 4. Also note that P=?[G≤3¬φL] is higher for F1 than
for F2 as F2 increases its configuration state z by 8 steps when having a latency violation,
whereas F1 only increases it by 1. For the same reason, P=?[G≤3¬φP ] for F1 is lower than
for F2.

Finally, we also performed a verification for loose enforcement using the two alternative
verification goals S=?[¬φL] for the latency requirement φL and S=?[¬φP ] for the power
requirement φP , see Section 2.1.2. Such steady-state probabilities give insight into the
long-term behavior of running applications.

As shown in Table 2, the steady-state probabilities S=?[¬φL] and S=?[¬φP ] for our
RL-based FSM Frl1 are lower than for F1. Thus, our approach can generate an enforcer FSM
that has lower steady-state probability than F1 to violate the given requirements φL and
φP . Although the steady-state probability of having a latency violation S=?[¬φL] is lower
for F2 than Frl1 , the steady-state probability of having a power violation S=?[¬φP ] for F2 is
higher than for Frl1 . For RTI, as it always satisfies the latency requirement φL, it has also a
stationary probability S=?[¬φL] = 0. But regarding the power requirement φP , S=?[¬φL] = 1
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Table 2 Verification results for loose enforcement for RTI, F1, F2, and Frl1 for the verification
goals S=?[¬φL] and S=?[¬φP ], based on a latency upper bound (deadline) UBoL = 40 ms, and a
power upper bound UBoP = 1.2 W.

S=?[¬φL] S=?[¬φP ]
RTI F1 F2 Frl1 RTI F1 F2 Frl1

0 0.5 0.121 0.173 1 0.445 0.591 0.435

for RTI as it always runs in the power requirement violating mode (nmax, mmax). S=?[¬φL]
for F2 is lower than for F1 as F2 increases its configuration state z by 8 when having a
latency violation, whereas F1 only increases it by 1, so it has a higher chance to meet the
latency requirement φL. For the same reason, S=?[¬φP ] for F1 is lower than for F2.

4.2 Strict enforcement
Finally, the following example is chosen to illustrate the approach also for strict enforcement.
Table 3 shows the verification results for strict enforcement of the latency requirement φL

using the verification goal AG(φL), see Section 2.1.2. AG(φL) = true for RTI, which means
that φL always holds, as RTI always runs in the highest power mode mmax = 20 and number
of cores nmax = 4. For F1 and F2, AG(φL) = false because both FSMs decrease their
configuration state z by one once satisfying φL. Finally, our RL-based approach can generate
an enforcer FSM Frl2 that also always satisfy the latency requirement φL (AG(φL) = true).

Table 3 Verification results for strict enforcement for RTI, F1, F2, and Frl2 for the verification
goal AG(φL), based on a latency upper bound (deadline) UBoL = 40 ms, and a power upper bound
UBoP = 1.2 W.

RTI F1 F2 Frl2

true false false true

5 Related Work

Several approaches do exist to control non-functional properties of program executions, such
as latency, or power and energy consumption. Examples of such approaches are techniques
based on online machine learning like [25, 26], heuristics like [42], and predictive models [8, 32].
However, most of them cannot provide any formal guarantees about the controller’s capability
of satisfying the given requirements. Such guarantees include that the control technique
will never lead to a violation of the given requirements or that the system will stay no
more than a certain number of executions in a violating state, or long-term percentages of
non-violating executions. Although techniques based on control theory, such as [19, 27, 28],
can formally analyze controller properties such as stability, they are not able to provide any
formal guarantees regarding the satisfaction or violation of given non-functional requirements
in uncertain environments.

In general, FSMs are not only used to formally specify the functional behavior of a
system [30, 4, 12], but also when formal verification of non-functional properties is required,
especially in safety-critical systems. In [40], the concept of Run-time Requirement Enforcement
(RRE) is introduced to describe techniques to either centrally or decentrally control the
satisfaction of non-functional execution properties of programs executed on MPSoCs given
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by set of requirements. of programs for MPSoCs. Based on this concept, [10] proposes
feedback-based RRE techniques. Presented is an approach for the formal specification and
verification of non-functional properties for systems executing programs periodically, where
an FSM-based enforcer is used to control the number of cores and DVFS level of a system
once per execution at run-time. Using this approach, one can evaluate whether a combination
of a system (MPSoC), an enforcer, and an environment either always satisfies the defined
requirements or with which satisfaction probability. In [9], simple FSM control schemes are
introduced that simply increase, resp. decrease the power mode or number of cores in case
of a violation ¬φL, resp. satisfaction φL of the latency requirement. In [10, 11], FSMs for
multi-requirement control have been introduced. However, the RRE controllers presented in
these works are all manually designed. In summary, techniques for automatic generation of
verifiable enforcers are still missing.

Reinforcement Learning techniques offer the capability for a controller to learn how to
act for meeting run-time requirements via trials-and-errors on simulated or real data. There
already exist several approaches to learn control techniques which leverage RL. Most of them
use Q-Learning [44, 15], sometimes on a dedicated hardware module [7]. The majority of
works that consider the verification of a trained RL policy are based on (DQL). Verification
on DQL is intrinsically complex, partly due to the continuous input leading to an infinite
number of states. [3] verifies DQL by extracting decision tree policies from a trained neural
network. Though, they only verify robustness, stability and functional correctness of a
controller. The authors of [20] and [18] both propose a verification-in-the-loop method, i.e.,
they perform the verification during training. However, their works only consider verification
goals formulated using ACTL (a subset of CTL) and LTL specifications. Our approach, on
the other hand, can verify goals formulated in not only CTL and LTL, but PCTL, too.

6 Conclusion

In this paper, we have presented a novel technique using reinforcement learning for automat-
ically generating feedback-based run-time requirement enforcers that can be formally verified
concerning a given set of verification goals by a model checker. For that, we elucidated a
formalism for transforming reinforcement learning agents during training into enforcement
state machines and applying model checking techniques in regular intervals to verify these
to satisfy a set of verification goals. We were able to demonstrate in a case study using an
object recognition application that our proposed approach significantly outperforms related
work in being able to generate verified enforcers.
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A Appendix

Algorithm 1 Q-Learning.

Initialize Q arbitrarily
for all ep ∈ {1, 2, ..., nepisodes} do

Initialize υ arbitrarily
while υ is not terminal do

Pick an action a following an ϵ-greedy policy
Take action a

(υ′, ξ)← ObserveEnvironment(υ, a)
Q(υ, a)← UpdateQTable(υ, υ′, a, ξ)
υ ← υ′

end while
end for
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Figure 4 Actor graph of the evaluated object detection application.
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