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—— Abstract

Mixed-criticality systems, which consolidate workloads with different criticalities, must comply with

stringent spatial and temporal isolation requirements imposed by safety-critical standards (e.g.,
1SO26262). This, per se, has proven to be a challenge with the advent of multicore platforms
due to the inner interference created by multiple subsystems while disputing access to shared
resources. With this work, we pioneer the concept of Interrupt (IRQ) coloring as a novel mechanism
to minimize the interference created by co-existing interrupt-driven workloads. The main idea
consists of selectively deactivating specific (“colored”) interrupts if the Quality of Service (QoS) of
critical workloads (e.g., Virtual Machines) drops below a well-defined threshold. The IRQ Coloring
approach encompasses two artifacts, i.e., the IRQ Coloring Design-Time Tool (IRQ DTT) and
the IRQ Coloring Run-Time Mechanism (IRQ RTM). In this paper, we focus on presenting the
conceptual IRQ coloring design, describing the first prototype of the IRQ RTM on Bao hypervisor,
and providing initial evidence about the effectiveness of the proposed approach on a synthetic use
case.
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1 Introduction

Currently, two major trends pose significant challenges for the certification of Mixed-criticality
Systems (MCS) [13]. Firstly, with the increasing digitalization trend, there is a need to
integrate an ever-growing number of rich functionalities for connectivity, visualization, and
monitoring. Rich features have to co-exist with safety-critical workloads, and virtualization
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technology — due to the proven advantages for the size, weight, power, and cost (SWaP-C)
— has been leveraged to provide the required spatial isolation [23, 24, 5, 11, 20]. Secondly,
there is a well-established trend toward multicore. Modern high-end embedded computing
platforms (typically powered by Arm Cortex-A) have evolved to highly heterogeneous designs
that host multiple cores, featuring complex memory hierarchies and a myriad of accelerator
such as general-purpose graphic processing units (GPUs), neural-processing units (NPUs)
and even Field-Programmable Gate Array (FPGA). Although existing hypervisors have
naturally evolved to support multicore designs, the problem is that the temporal isolation
guarantees are generally weak due to the absence of mechanisms in the overall design to
minimize the interference generated by shared microarchitectural resources [9].

The problem and difficulties deriving from the reciprocal interference generated by the
contention of shared microarchitectural computational resources, such as (i) caches, (ii)
bus, and (iii) main memory is a well-understood problem among the real-time systems
community [11, 20, 16, 28, 27, 29, 2, 26, 7, 18, 17]. It is widely-recognized that without
proper resource management strategies, interference can introduce variable delays that may
hamper the timing predictability and real-time guarantees [1, 4, 3], compromising the desired
Freedom From Interference (FFI) for MCSs. This issue is not linked to a particular piece of
software, i.e., operating system (OS) and/or hypervisor, but rather a fundamental problem
on the overall design of the lowest layer of software of the system stack. This problem is
further exacerbated by interrupts and interrupt-driven workloads. Interrupts are typically
asynchronous, and even synchronous events can divert the overall execution flow. Interrupt
handlers normally have a different code locality, inherently leading to stress the shared
components due to the expected last-level cache (LLC) misses and concurrent accesses to
main memory. Even worst, a storm of interrupts (i.e., extremely high interrupt frequency) can
be triggered for different reasons, leading to very effective Denial-of-Service (DoS) attacks.

Most of the proposed techniques to minimize interference created by shared resources
in multicore real-time systems focus on (i) cache partitioning (via locking or coloring)
[11, 20, 16, 15, 21], and (ii) memory throttling [28, 27, 2, 21, 6, 8]. Cache partitioning is a
well-established technique that splits and assigns subsets of the shared cache to a specific
OS process or Virtual Machine (VM). Cache locking avoids the eviction of cache lines by
marking them as locked; cache coloring segments the available cache by reserving specific
cache sets or ways to given cores. Memory throttling is a technique that limits the number of
memory accesses of a specific workload in a given time window. In the case of virtualization,
static partitioning hypervisors are the zeitgeist to implement such techniques e.g., Bao [20],
Jailhouse [24], Xen Dom0-less [14], all implement cache coloring.

Despite the recognized efforts of the academic community, existing mechanisms are not
perfect in terms of effectiveness and present several limitations. Firstly, cache locking support
was deprecated and is not available in today’s platforms powered by Armv8-A processors
(and is not expected to be supported in next-generation platforms powered by Armv9-A and
Armv8-R). Secondly, cache coloring has several drawbacks: (i) requires a virtual memory
infrastructure (i.e., the existence of an MMU); (ii) precludes the use of (2 MiB) huge pages
(which helps minimizing the overhead of the second stage translation); (iii) can impact the
performance; and (iv) leads to significant memory waste and fragmentation. Finally, memory
throttling completely suspends the CPU when a specific memory access threshold is reached
in a given time window, thus not providing intermediate states or well-defined degradation
modes. Furthermore, none of the existing mechanisms take interrupts into consideration.
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In this paper, we pioneer and introduce the concept of Interrupt coloring (a.k.a. IRQ
coloring), a novel mechanism to minimize the interference created by co-existing interrupt-
driven workloads! and mitigate the effect of cascading failures when FFI cannot be completely
guaranteed. The overall IRQ) Coloring concept encompasses two artifacts: (i) the IRQ Coloring
Design-Time Tool (IRQ DTT) and (ii) IRQ Coloring Run-Time Mechanism (IRQ RTM).
The basic idea consists of selectively deactivating (or deferring) specific (“colored”) interrupts
if the QoS of critical workloads drops below a specific threshold. By selectively masking
interrupts per the online assessment of the QoS of critical workloads, we provide fine-grained
control to mitigate interference on critical workloads without fully suspending non-critical
workloads. In this paper, we focus on describing the overall IRQ coloring concept, prototyping
the IRQ RTM on the Bao hypervisor, and providing evidence about the effectiveness of the
proposed approach on a synthetic use case mimicking an automotive application scenario.
To the best of our knowledge, we are the first to propose this concept. Huawei has already
filled and submitted a patent application.

2 Related Work

Several mechanisms to minimize interference have been proposed by academia and the
research community. Table 1 summarizes and puts into perspective several works published
in real-time venues. All works are compared across six dimensions: (i) target computer
architecture (Arch); (ii) implementation leveraging COTS hardware (COTS); (iii) target
system software component (System); (iv) target shared resource (Resource); (v) resource
partitioning/budgeting at design-time (Static); and (vi) resource partitioning/budgeting
and optimization at run-time (Dynamic). Next, we overview the related work, grouping
them based on the target resource, i.e., last-level cache (LLC), memory bus (e.g., Dynamic
Random Access Memory (DRAM) or SRAM), or both (cache and memory).

«

Table 1 Gap Analysis Table. @: “yes”. O: “no”.

Arch COTS | System Resource Static | Dynamic
MemGuard (2013) [29] x86 [ oS DRAM ¢} [
Mancuso et al. (2013) [19] Armv7-A ° oS LLC [ [
Hassan et al. (2014) [12] x86 o 0s LLC ° e}
PALLOC (2014)[27] x86 o 0s DRAM . o
Kim et al. (2017) [15] x86 & Armv7-A ° Hyp. LLC ° o
Modica et al. (2018) [21] Armv7-A ° Hyp. LLC & DRAM ° [
Crespo et al. (2018) [6] PowerPC ° Hyp. DRAM ° °
Pinto et al. (2019) [22] Armv8-M ° Hyp. SRAM ° o
Kloda et al. (2019) [16] Armv8-A ° Hyp. LLC & DRAM ° 0
Bao (2020) [20] Armv8-A ° Hyp. LLC ° o)
BRU (2020) [8] RISC-V o 0s DRAM o .
DNA (2021) [10] x86 o Hyp. | LLC+DRAM . °
IRQ Coloring Armv8-A (Armv8-R) ° Hyp. IRQs ° °

Cache Partitioning. Multicore platforms typically include a shared LLC and one or more
levels of private caches. The cache partitioning technique splits and assigns subsets of the
shared cache to a specific workload. Cache locking avoids the eviction of cache lines by

1 processes in the case of OS and VMs in the case of hypervisor
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marking them as locked, while cache coloring segments the available cache by reserving
specific cache sets or ways to specific cores. R. Mancuso et al. [19] proposed a mechanism
that introduces a novel mechanism known as “Colored Lockdown” by combining coloring and
locking techniques. Kim et al. [15] proposed a multicore virtualization cache management
system that uses the hypervisor page coloring mechanism to assign portions of the cache to
VMs. M. Hassan et al. [12] address the problem of maintaining cache coherence in multicore
real-time systems by modifying the Modified-Shared-Invalidate [25] coherence protocol. J.
Martins et al. [20] implemented built-in support for cache coloring on Bao.

Memory Bandwidth Partitioning. Aiming to achieve temporal isolation through memory
bandwidth regulation, H. Yun et al. [29] proposed MemGuard. To improve isolation and
real-time performance, H. Yun et al. [27] proposed a mechanism that allocates private
DRAM banks. A. Crespo et al. [6] proposed a controller technique, at the hypervisor
level, to manage the execution of critical partitions for PowerPC multicore platforms. F.
Farshchi et al. [8] presented a Bandwidth Regulation Unit (BRU), a customized RISC-V
plug-and-play hardware module for per-core memory bandwidth control at fine-grained time
intervals. From a different perspective, Pinto et al. [22] developed a lightweight hypervisor
and implemented a static predictable shared resource management infrastructure for low-end
Armv8-M microcontrollers.

Cache & Memory Bandwidth Partitioning. The previous works focus on mechanisms that
individually target the Last-Level Cache (LLC) or the main memory. However, minimizing
the interference impact in a single microarchitectural component is not enough. Hence,
several authors attempted to provide methods that target the complete memory hierarchy,
i.e., LLC and main memory. Modica et al. [21] proposed a cache coloring-based technique to
achieve spatial isolation. Regarding the DRAM memory controller, the authors implemented
a memory bandwidth reservation technique combined with the hypervisor’s scheduling logic
to enhance temporal isolation. Kloda et al. [16] introduced a framework of software-based
techniques to enhance memory access determinism in high-performance embedded systems.
The authors proposed a Direct memory access (DMA)-friendly cache coloring combined
with an invalidation-driven allocation technique. Recently, R. Gifford et al. [10] proposed a
solution to mitigate two undesirable outcomes in current MCS: latency induced by shared
resource interference and Worst-Case Execution Time (WCET) of critical tasks. Furthermore,
the authors presented two techniques to mitigate the identified challenges: dynamic allocation
(DNA) and deadline-aware allocation (DADNA).

3 Motivation: Interrupt-generated Interference in MCSs

In the context of MCS, interference generated by co-located interrupt-driven workloads is
a particularly overlooked topic. Interrupts are typically used to notify the CPU about the
occurrence of sporadic events, without requiring the CPU to stall while polling for that
event. In the meantime, the CPU is free to perform any additional required computational
operation. Generically, upon the occurrence of an interrupt (and omitting the low-level
details of the overall interrupt entry process), the CPU execution is redirected to the so-called
interrupt handler, which acknowledges the reception of the interrupt and then invokes an
event-dependent piece of code. Typically, in safety-critical systems, interrupts are linked to
application workloads, which are dispatched upon the occurrence of a particular event. For
example, in Industrial Control Systems (ICS), the implementation of a PID controller, or in
automotive systems, an antilock braking system.
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The problem. Interrupts are typically asynchronous, and even synchronous events lead to
unpredictable diversions in the overall computational execution flow. Upon the occurrence
of an interrupt, the execution flow is redirected to the respective interrupt handler, which
typically has a completely different code locality than the main execution path. Furthermore,
interrupts are typically linked to application workloads, which are dispatched upon the
occurrence of a particular event. This inherently stresses the microarchitectural shared
components due to the expected LLC misses and subsequent accesses to the main memory.
Even worst, a storm of interrupts can be triggered for different reasons (e.g., device driver
bug, malfunction in a particular hardware device), which can create a DoS attack.

The evidence. We performed a few experiments to collect evidence supporting the identified
problem. We mounted a synthetic use case of a system consisting of Bao hypervisor and two
VMs running atop: a critical ASIL-D VM, and a QM VM. For the ASIL-D VM, we use a
custom baremetal application that continuously writes into a buffer with the size of the LLC
(1 MiB). A periodic CPU timer interrupt triggers this application. For the other QM VM,
we use the very same baremetal application, triggered continuously by a software-generated
interrupt. For the ASIL-D VM, we assigned 1 CPU, while for the QM VM we assigned 1, 2,
or 3 CPUs, depending on the amount of interference we want to create (1 Interf VM, 2 Interf
VM, and 3 Interf VM, respectively). Figure 1 depicts the assessed results. We collected the
workload execution time and IRQ handling time, which corresponds to the interrupt latency,
for the critical ASIL-D VM. The interference with 3 CPUs (3 Interf VM) can impact the
workload execution time of the ASIL-D VM up to 2.48x.

Workload execution time IRQ handling time

800 1600
__700 568 680 __ 1400 1319 “
5 600 551 2 1200
£ 500 g 1000 o75
‘g 400 s I ‘g 800 769 I
é 300 § 600

100 200

0 0
Solo 1Interf VM 2 Interf VM 3 Interf VM Solo 1 Interf VM 2 Interf VM 3 Interf VM

Figure 1 Interrupt-generated Interference - workload execution time and IRQ handling time with
multiple VMs.

4 IRQ Coloring

TRQ coloring is a new concept that dictates that interrupts assigned to workloads (e.g., VMs)
are classified according to a specific criticality level. The basic idea consists of selectively
deactivating/deferring interrupts of non-critical workloads if the QoS of critical workloads
drops below a specific threshold. By selectively masking interrupts per the online assessment
of the QoS of critical workloads, it is expected that the overall interference from non-critical
VMs to critical VMs is mitigated without fully suspending non-critical workloads.

Conceptual Design. Figure 2 illustrates the conceptual design of the IRQ Coloring technique,
which follows a budget-based approach. A set of budgets of interrupts (B;) are assigned
to each workload for a well-defined period of time (P). During the period (P), each VM
can trigger a certain number of interrupts; however, if the VM exceeds the specified budget
(B;), the degradation mode is updated, and some interrupts are disabled @ Since the
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Figure 3 IRQ coloring system overview.

impact of each interrupt (assigned to a particular VM) in the overall QoS of the system is
not equal and linear, the weight of each interrupt in the overall budget B; will be measured
by assessing specific QoS metrics. The conceptual design takes this into consideration and
is reflected in Figure 2). Lastly, if applying different degradation modes is not enough to
guarantee the QoS of the higher-criticality VM, the system will enter fail-safe mode. At this
stage, only interrupts from the higher-criticality VM are kept enabled @

System Overview. Defining which and when interrupts must be disabled is the main
research question of the IRQ Coloring technique. The design goals encompass: (i) achieving
the required QoS on higher criticality VMs, (ii) maintaining intermediate execution of lower
criticality VMs (intermediate states under specific degradation modes), and (iii) minimizing
the performance impact incured by the overall mechanism. To achieve these three goals,
we conceived a system with two major components, with the bulk of logic performed at
design time. Figure 3 presents the high-level system view, encompassing the IRQ Coloring
Design-Time Tool (IRQ DTT) and the IRQ Coloring Run-Time Mechanism (IRQ RTM).

1. IRQ Coloring Design-Time Tool (IRQ DTT). The IRQ DTT goal is twofold. Firstly,
based on the target VM workload, set the profile of each interrupt-driven workload, which
helps estimate the worst-case execution time (WCET) by providing information about
the execution time and the microarchitectural state (i.e., caches, shared bus). Secondly,
based on the established profile of the workload and assigned interrupts altogether with the
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specification of VMs criticality, produce an optimized configuration table (representing the
masking map to be enforced in each degradation mode) which will feed the IRQ RTM. The
output of the DTT will then be used to feed the RTM implemented at the hypervisor level,
and it consists of two artifacts: (i) the budgets assigned to each degradation mode of the
diverse VMs, and (ii) the masking maps to be used in the multiple degradation modes (i.e.,
the content of the optimized configuration table).

2. IRQ Coloring Run-Time Mechanism (IRQ RTM). The IRQ RTM, implemented as a
mechanism at the hypervisor level, will mainly collect specific metrics from the hardware
performance counters (e.g. Performance Monitor Unit (PMU)), and based on the optimized
table produced from the IRQ DTT, will selectively disable interrupts upon the occurrence of
specific events. Next, we describe the IRQ RTM implemented in Bao in more detail.

4.1 IRQ Coloring Run-Time Mechanism (IRQ RTM)

The implementation of the IRQ RTM has two main assumptions, which we highlight below.

Assumption 1. Workloads Profiling

The interference generated by co-located VMs running onto the same hardware
platform is dependent on the VMs’ workloads. We assume that workloads are
available, known a priori, profiled offline, and this data is directly or indirectly passed
to the IRQ DTT.

Assumption 2. Masking Maps

We assume that the IRQ DTT, based on the profile of the VMs workloads, produces
an optimized configuration table (a.k.a. masking map) with “colored” interrupts and
associated budgets.

The TRQ RTM relies on a budget-based implementation, which means that each VM
can trigger a given number of interrupts in a given period of time (P). Typically, these

approaches assume that a VM can process workloads until the defined budget is exhausted.

After that, typically the CPU enters idle mode. However, IRQ coloring points to intermediate
guarantees, i.e., VM interrupts will be gradually disabled in order to minimize the generated
interference created on the critical VM. In this way, instead of assigning a budget to each VM,
we assign a buffer of budgets (i.e., a buffer with D values, each representing an activation
point of a different degradation mode). Thus, the system configuration must contemplate
the setup of the table By, p, where N corresponds to the number of co-existing VMs into
the system, and D corresponds to the total number of degradation modes. The high-level
implementation of the IRQ RTM is shown in Algorithm 1.

Figure 4 depicts the IRQ RTM architecture, implemented as a plug-in mechanism in
Bao. The IRQ RTM actuates between the GIC distributor (GICD) and the CPU Interfaces
(GICC). To simplify the run-time operation, each CPU uses the PMU to track the number
of triggered interrupts, triggering an interrupt, at the hypervisor level, when the counter
overflows, i.e., when the assigned budget (B) is exceeded. When the PMU interrupt is
triggered, the IRQ RTM is in charge of masking a set of interrupts based on the masking
map generated by the IRQ DTT. At this point, the run-time mechanism is triggered, leading
to the update of the degradation mode and the masking of the interrupts corresponding to
the degradation mode map (IRQ M APp). The process repeats until processing all the
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Algorithm 1 TRQ Coloring RTM - Implementation.

funtion periodic_ timer_handler;
begin
for VM =1,2,...do
VMDegradationimode =0
Set PMU to generate overflow interrupt at V Mp,
for TRQ =1,2,...do
Unmask TRQ
end for
end for
Re-schedule timer period

,_.
e

11: funtion pmu_ overflow_interrupt_ handler;

12: begin

13: for IRQ =1,2,... € IRQ M APpcgradation mode dO

14: Mask IRQ

15: end for

16: V- Mpegradation_mode < V Mpegradation_mode + 1

17: if V. Mpegradation mode < Max__Degradation_modes then

18: Set PMU to generate overflow interrupt at By s, pegradation mode
19: end if

Generic Interrupt Controller (GICv2)

::I Distributor (GICD) l:

LPI SPI
IRQ Coloring

T 7 - U T 7

| CPU Interface (GICC) | | CPU Interface (GICC) | | CPU Interface (GICC) | | CPU Interface (GICC) |

IRQs IRQs IRQs IRQs

\ 2 \ 2 \ 4 \ 4 \ 2 \ 2 \ 4 \ 4
PMC PMC PMC PMC
Core Core Core Core

Multicore Processor

Figure 4 IRQ Coloring RTM: system architecture.

D degradation modes. If a non-critical VM reaches this point, the IRQ RTM triggers the
fail-safe strategy, i.e., all interrupts from all system VMs, except the most critical one, are
disabled. In this case, the interrupts are re-enabled when the periodic timer expires.

5 Evaluation

In this section we describe the evaluation setup (Section 5.1) and present and discuss the
evaluation results (Section 5.2).
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ISR ASIL-D VM
cPU IRQ 1Mb
Timer Handler [>_| Enable Task 1 100% LLC
Task 1
ISR ASIL-C VM
1> | Enable Task 1
IRQ [ Enable Task 2 512Kb 256Kb 128Kb 128Kb
Handler | 5[ | Enable Task 3 50% LLC 25% LLC 12.5% LLC|12.5% LLC]|
| 5] Enable Task 4 Task 1 Task 2 Task 3 Task 4
Glc
ISR ASIL-B VM
1> | Enable Task 1
IRQ [ Enable Task 2 512Kb 256Kb 128Kb 128Kb
Hardware Handler | 5[~ | Enable Task 3 50% LLC 25% LLC 12.5% LLC|12.5% LLC]|
Module | 5] Enable Task 4 Task 1 Task 2 Task 3 Task 4
ISR QM vm
> Enable Task 1
IRQ [ Enable Task 2 512Kb 256Kb 128Kb 128Kb
Handler | 3/ | Enable Task 3 50% LLC 25% LLC 12.5% LLC|12.5% LLC]|
| 5] Enable Task 4 Task 1 Task 2 Task 3 Task 4

Figure 5 IRQ Coloring evaluation (synthetic) use case.

5.1 Evaluation Setup

Hardware Platform. Experiments were carried out on a Xilinx ZCU104 evaluation board,
featuring a Zynq Ultrascale+ ZUTEV SoC. This platform features a quad-core Arm Cortex-
Ab53 running at 1.2GHz. Each CPU has a private 32KiB L1 instruction and data caches and
an unified L2 1MiB cache. The cluster features the GIC-400 (GICv2).

Use Case. To evaluate the raw effectiveness of the IRQ coloring mechanism, we mounted
a synthetic use case, aiming at mimicking a real-world automotive ECU consisting of four
different sub-systems: (i) a critical ASIL-D workload, emulating an electric power steering
system; (ii) an ASIL-C workload, emulating an active suspension system or an engine
management system; (iii) an ASIL-B workload, emulating for example a radar cruise control;
and (iv) a QM workload, emulating a non-critical third-party software. We implemented
the four VMs on top of the Bao [20]. Furthermore, to mimic the I/O interrupt generation,
we have implemented a custom hardware device on the programmable logic of the Zynq
UltraScale+ SoC, which can trigger up to 16 simultaneous interrupts.

VM Workload. The workload of each VM is summarized in Figure 5. For the ASIL-D
VM, we use a custom baremetal application that continuously writes into a buffer with the
size of the LLC (1 MiB). This application is triggered by a periodic CPU timer interrupt
at each 500 us. For the other VMs, i.e., ASIL-C, ASIL-B, and QM, we use an identical
baremetal application with a small difference. Each VM has assigned four different interrupts,
all triggered by the custom hardware module deployed on the programmable logic of the
Zynq UltraScale4+ SoC. In this case, rather than writing into the entire buffer, each interrupt
triggers the workload that writes in a subset of the buffer. To evaluate the effect of different
workloads, the buffer is partitioned into four parts: (i) one with 512KiB (50% of the LLC);
(ii) one with 256KiB (25% of the LLC); and (iii) two with 128KiB each (12.5% of the LLC).
Since the Cortex-A cluster of the ZCU104 has 4 CPUs, we assign one CPU to each VM.

Measurement Tools. We use the Arm PMU to collect microarchitectural events on bench-
mark execution. The selected events include execution cycle count, data L1 and L2 cache
misses and cycles of bus accesses. The PMU cycle counter is used to calculate the execution
time.
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Figure 6 IRQ RTM - Execution time of ASIL-D workload for multiple degradation modes.

5.2 Evaluation Results

Intermediate degradation modes. To validate the intermediate degradation modes imple-
mented with the IRQ RTM, we used a simplified version of the use case described above.
For this particular experiment, we have used only the ASIL-D and QM VMs, with respective
identified workloads. We have also defined four degradation modes: (i) degradation mode 1
(3 interrupts on QM VM active), which is activated after spending a total budget of 1000
interrupts; (ii) degradation mode 2 (2 interrupts on QM VM active), which is activated once
the total budget of 4000 is reached; (iii) degradation mode 3 (1 interrupt on the QM VM
active), which is activated after triggering 5000 interrupts; and, finally, (iv) fail-safe strategy
(all interrupts are disabled on the QM VM) which is activated after triggering another 5000
interrupts. The budgets are re-established after a well-defined period of 150ms. Figure
6 presents the execution time of the ASIL-D VM workload. We started by assessing the
ASIL-D VM running without interference, which corresponds to the baseline. For this case,
the workload execution time was, on average, 547 us. By enabling the QM VM interrupts,
the average ASIL-D workload execution time increases by 6.99x (3823 us) - DMO. Then,
after expiring the first budget (BO0), the first degradation mode is activated, reducing the
performance degradation by 26.8% (2796us) - DM1. Then, after activating additional degrad-
ation modes, the ASIL-D workload performance is boosted due to reduction of the QM VM
interference. For instance, when the budget of the degradation mode 1 expires, the second
degradation mode - DM2 - is activated, allowing a reduction of the relative performance
overhead of 57.32% (1632us); when the third degradation mode - DM3 - is activated, it
reaches a reduction of 70.87% (114us). Ultimately, triggering the fail-safe strategy brings the
ASIL-D workload performance to native execution, i.e., 550 us.

Relative performance overhead. After validating the effectiveness of intermediate degrad-
ation modes, we resort to the original use case with four VMs to understand the average
performance impact of the IRQ coloring (+IRQ__col) compared to the vanilla system (baseline)
and the cache coloring technique (+cc). For the cache coloring, we assigned two colors to
each partition (25% of the L2 cache to each VM). Figure 7 depicts the ASIL-D workload
execution cycles, as well as a few microarchitectural events, i.e., L1 misses, L2 misses, and
bus cycles. We can draw two main conclusions. Firstly, in contrast to the cache coloring, the
TIRQ coloring technique does not incur any noticeable impact on the overall performance of
the ASIL-D VM. Secondly, when the ASIL-D VM is under the interference of the QM VM,
the average performance overhead is considerably smaller in the case of the IRQ coloring,
which indicates that this technique is more effective than the cache coloring. As expected,
per the results collected for the microarchitectural events, this is explained by the reduced
number of L1 and L2 cache misses (the contention on the L1 and L2 caches is smaller), as
well as the reduced number of accesses to the main memory.
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Figure 7 Average Relative performance overhead and microarchitectural events for the vanilla
system, for the cache coloring, and IRQ coloring.

6 Conclusion

With this paper, we propose the concept of Interrupt (IRQ) coloring as a novel mechanism
to minimize the interference created by co-existing interrupt-driven workloads. We focused
on presenting the conceptual IRQ coloring design, describing the prototype of the IRQ RTM
on Bao, and evaluating the implemented mechanisms on a synthetic use case. Preliminary
results have demonstrated advantages compared to other state-of-the-art techniques (e.g.,
cache coloring), and findings are encouraging additional research to advance the maturity of
the technique, as well as a comprehensive evaluation under more realistic setups. Additionally,
we are currently designing the DTT infrastructure. The full combination and integration of
RTM and DTT have the potential to further unlock novel designs and optimize and explore
trade-offs for reducing interference in multicore platforms. As part of our roadmap, we also
plan to iterate and complete the formal model for the IRQ coloring mechanism.
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