
Response Time Analysis for RT-MQTT Protocol
Grounded on SDN
Ehsan Shahri1 #

Department of Electronics, Telecommunications and Informatics (DETI),
University of Aveiro, Portugal
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

Paulo Pedreiras #

Department of Electronics, Telecommunications and Informatics (DETI),
University of Aveiro, Portugal
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

Luis Almeida #

Research Center in Real-Time and Embedded Computing Systems (CISTER), Porto, Portugal
Faculty of Engineering, University of Porto (FEUP), Portugal

Abstract
The current industry trend is to replace the use of custom components with standards-based
Commercially available Off-The-Shelf (COTS) based hardware and protocols. Furthermore, the
emergence of new industrial paradigms, such as Industry 4.0 and the Industrial Internet of Things, sets
additional requirements regarding e.g. scale, transparency, agility, flexibility and efficiency. Therefore,
in these domains, application layer protocols such as Message Queuing Telemetry Transport protocol
(MQTT) are gaining popularity, in result of their simplicity, scalability, low resource-usage and
decoupling between end nodes. However, such protocols were not designed for real-time applications,
missing key features such as determinism and latency bounds. A recent work proposed extending
MQTT with real-time services, taking advantage of Software Defined Networking (SDN) to manage
the network resource. These extensions allow applications to specify real-time requirements that are
then captured by a resource manager and used to reserve the necessary resources at the network
layer. This paper shows that such MQTT extended architecture is analyzable from a worst-case
timing perspective. We derive a system model that captures the real-time features and we present a
response-time analysis to assess the schedulability of the real-time traffic. Finally, we validate the
analysis with a set of experimental results.

2012 ACM Subject Classification Networks

Keywords and phrases Real-time systems, OpenFlow, fixed-priority non-preemptive scheduling,
response time analysis, MQTT

Digital Object Identifier 10.4230/OASIcs.NG-RES.2023.5

Funding This work is funded by Portuguese national funds through FCT/MCTES and, when
applicable, co-funded by European Community funds, under projects IT-UIDB/50008/2020-
UIDP/50008/2020 and CISTER-UIDB/04234/2020, as well as the FCT scholarship
PD/BD/137388/2018.

1 Introduction

Real-time computing systems have been widely employed in industrial domains for many
years, from robotics [9] to industrial control [26, 24] and industrial automation [14]. Recent
trends, pushed by Industry 4.0 and the Industrial Internet-of-Things (IIoT), have brought
Information and Communication Technologies (ICT) into industrial operations towards

1 Corresponding author

© Ehsan Shahri, Paulo Pedreiras, and Luis Almeida;
licensed under Creative Commons License CC-BY 4.0

Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023).
Editors: Federico Terraneo and Daniele Cattaneo; Article No. 5; pp. 5:1–5:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ehsan.shahri@ua.pt
https://orcid.org/0000-0001-9911-8532
mailto:pbrp@ua.pt
https://orcid.org/0000-0003-0230-8714
mailto:lda@fe.up.pt
https://orcid.org/0000-0002-9544-3028
https://doi.org/10.4230/OASIcs.NG-RES.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

increased scalability, transparency, agility, flexibility and efficiency. However, while improving
these properties, ICT have typically disregarded their own timing behavior, conflicting with
the real-time requirements found in industrial operations, namely quick response times and
high predictability and stability. Another difficulty that came with ICT is their typical
high overhead that may conflict with deployments within embedded resource-constrained
hardware, commonly found in industrial settings. Moreover, Industry 4.0 and IIoT imply an
increase in the complexity and heterogeneity of the data exchanges, both in terms of nature
and requirements, putting together low and high data-rate flows, low and high bandwidth
flows, and critical and non-critical flows.

The Message Queuing Telemetry Transport protocol (MQTT) [20] is one of the most
popular application-layer protocols within the scope of the Internet-of-Things. It was
developed already with a perspective of applying ICT in operations and it is finding a
growing use within the IIoT, too. Main factors that contribute to its popularity include
its simplicity, low footprint, scalability and effective publisher-subscriber messaging model.
Standard MQTT relies on TCP/IP networks that provide ordered and lossless bi-directional
channels. However MQTT misses support for real-time requirements, having Quality-of-
Service (QoS) policies that only address message delivery. This limitation has been tackled by
the scientific community [21, 16, 7, 18]. Specifically the work in [19] proposes an architecture
called RT-MQTT that extends MQTT with real-time services, allowing applications to define
real-time requirements that are translated to network reservations which are enforced using
Software Defined Networking (SDN), particularly using the OpenFlow protocol.

Despite the referred efforts to reconcile real-time requirements with MQTT, formal traffic
schedulability analysis is still lacking. In this paper we build on RT-MQTT and detail
and formalize its system model and provide a response-time analysis for critical real-time
traffic that assumes fixed-priority non-preemptive packet transmissions. The analysis and
its implementation in a practical setup are validated with a set of experimental results that
also allow assessing the tightness of the response-time analysis. Our aim is to show the
analyzability of RT-MQTT. To the best of our knowledge, this is the first schedulability
analysis for MQTT-based networks.

The rest of the paper is structured as follows. Section 2 discusses traffic schedulability
analysis for multi-hop networks. Section 3 describes the OpenFlow switches as the networking
elements in RT-MQTT. Section 4 introduces the multi-hop network architecture and system
model. The response-time analysis is presented in Section 5 and validated with experiments
in Section 6. Section 7 concludes the paper and discusses future work.

2 Related Work

Using ICT in the industrial operations domain came with several challenges, such as timing
analysis. Particularly, analyzing the worst-case timing behavior of ICT protocols is frequently
unfeasible. For this reason, we did not find a concrete schedulability analysis for real-time
traffic on MQTT, which is not a surprise given the lack of protocol support. However, as we
show in this paper, the extensions of RT-MQTT leverage the real-time network capabilities
of SDN and make the framework analyzable.

Worst-case response-time analysis methods for real-time multi-hop networks fall in three
main categories [28, 17]: Network Calculus (NC) [10], Trajectory approach [13] and holistic
analysis [23]. NC [30, 29] considers that network elements and arrival flows are characterized
by a service curve and arrival curve, respectively. Provided with this information, NC allows
computing the maximum delay that each flow can suffer at each network element, as well



E. Shahri, P. Pedreiras, and L. Almeida 5:3

as the maximum size of the waiting queues and the corresponding departure curves. NC
provides deterministic results, but requires the determination of arrival and service curves,
usually in the form of bounds, which introduces some degree of pessimism.

The Trajectory approach [22, 25] computes the latest starting time of a packet on the last
node visited, then moving backwards through the sequence of nodes visited by the packet (i.e.
the packet trajectory), identifying the preceding packets and busy periods that affect the
latency of the packet in each node. This approach is the tightest among the three categories,
in general, but is is more complex to implement and validate, particularly when considering
unconstrained routing schemes in which message flows can cross multiple times.

The holistic analysis [8] is meant for distributed systems and it computes the minimum
and maximum response-time of the tasks and uses this jitter to compute the minimum and
maximum response-times of the messages they generate. This jitter is then used to reassess
the response time of the tasks triggered by the messages. The whole process is repeated
until the response times of tasks and messages converge. This method can be simplified
if we focus on the network, only, particularly for a multi-hop switched network. At each
hop, we use release jitters to compute both the response times of the messages and their
jitters, which will be used as release jitters of the next hop. Thus, the response times are
computed in just one pass, from source to destination. This approach is more pessimistic
than the trajectory approach, as it considers worst-case scenarios on every node that often
cannot occur in operation. However, it is simpler to implement and verify, reason why it was
adopted in this work as a first approach to show the real-time analyzability of RT-MQTT.

3 OpenFlow Switch Structure

The core network elements of RT-MQTT are OpenFlow switches that forward packets
(a.k.a frames) in an SDN environment and can be implemented in software or hardware.
SDN decouples the network data and control planes, the former being implemented in the
switch to process packets, while the latter is implemented in a separate SDN controller that
makes high-level packet handling decisions and configures switches accordingly. OpenFlow is
the de facto protocol used for switch-controller interactions (a.k.a. southbound interface).
Figure 1 shows the OpenFlow pipeline in the switches that receives frames at ingress ports
and sends them to a set of flow tables installed by a controller. Each flow table contains a
set of Flow Entries with: i) a priority to sort matching; ii) filters to identify incoming frames;
iii) associated instructions; and iv) fields for statistics.

...

Meter TableGroup TableOpenFlow
Channel

Execute

Action

Set

PRIORITY
0x00

MATCH FIELDS
 INSTRUCTIONS STATICS

eth_src = 00:00:00:00:00
ipv4_src = 10.0.0.1
ipv4_dst = 10.0.0.3


Flow Entry n...

Flow Table 0

Flow Entry 1
Flow Entry 0

Egress Port
Drop
Other

Shaper
Ingress Port

SET_QUEUE: 1

GOTO_TABLE: 1

etc...

OpenFlow Pipeline

Action Set = {}

OpenFlow
Channel

Network Control Logic OpenFlow
Switch

OpenFlow Controller

OpenFlow
Protocol

PRIORITY
0x00

MATCH FIELDS
 INSTRUCTIONS STATICS

eth_src = 00:00:00:00:00
ipv4_src = 10.0.0.1
ipv4_dst = 10.0.0.3


SET_QUEUE: 1

GOTO_TABLE: 1

etc...

Flow Entry n...

Flow Table 1

Flow Entry 1
Flow Entry 0

Flow Entry n...

Flow Table n

Flow Entry 1
Flow Entry 0

Figure 1 Overview of the OpenFlow pipeline.

NG-RES 2023



5:4 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

When a packet matches the filters of a given flow entry, the switch performs the associated
instructions. Once the packet reaches the last table or is not directed to a subsequent one by
the matched entry, the switch executes the current action set that may send the packet to
a group table or forward it to an OpenFlow egress port. Conversely, if a packet does not
match any flow entry, it is handled as a table-miss. The actions executed in this case are
also configurable including dropping the packet, forwarding to a subsequent table, or sending
to the controller on a packet-in message via the control channel. If the table-miss flow entry
does not exist, unmatched packets are dropped by default. Sending the controller a flow
request (packet-in message) for every unknown packet can overwhelm the controller since it
has to determine the forwarding path and forwarding rules for every new packet and then
install them in the flow tables in all the involved switches. Finally, each egress port features
several prioritized queues to enforce traffic segregation for time-sensitive flows.

4 RT-MQTT Network Architecture

The RT-MQTT network architecture (Figure 2) is based on the MQTT application layer
protocol supported by OpenFlow switches. MQTT permits the use of multiple brokers
for fault-tolerance and load balancing purposes, allowing the system to scale and tolerate
broker failures. Similarly, Openflow also features mechanism that allow networks to scale
and tolerate faults [2]. However, scalability and fault-tolerance mechanisms are out of the
scope of this paper and will not be further addressed.

The RT-MQTT topology comprises an OpenFlow controller (OF-Controller), OpenFlow
switches (OF-Switches), an MQTT broker, a real-time network manager (RT-NM) and
MQTT clients (IIoT nodes). The OF-Controller is connected to the OF-Switches, having a
global view of the network and storing all information in the OF-DataBase (OF-DB). RT-
MQTT allows applications to explicitly specify real-time requirements in the User Properties
of their MQTT packets. The RT-NM intercepts all MQTT messages to extract possible
real-time requirements data. It is logically placed between MQTT clients and the broker,
desirably executing in the same node. These requirements are subsequently conveyed to the
OF-Controller that processes them and manages the flow tables of the OF-Switches to create
corresponding real-time channels.

Apps OF-Controller
RT-NM

Destination

OF-Switch 2

Broker

OF-Switch 1

OF-Switch 3

OF-Switch 4

OF-Switch 5

OF-DB
Apps

Figure 2 High-level RT-MQTT system architecture.

4.1 Message Model
RT-MQTT classifies packet flows (a.k.a messages) in real-time, or time-sensitive, and
non-real-time, such as normal MQTT messages and general background traffic. Client
nodes are assumed to run an operating system with minimal real-time capabilities (we



E. Shahri, P. Pedreiras, and L. Almeida 5:5

use real-time enabled Linux with regular network stack) and can generate real-time and
non-real-time traffic concurrently. We model each real-time message mi as sporadic. The
message set Γ, composed of N messages, is defined as follows:

Γ = {mi(Ci, PSi, Di, Ti, Pi, Si, DSi, Li, ni), i = 1...N} (1)

The semantics of the parameters are the following:
i : message index used as identifier;
Ci : total transmission time of the message;
P Si : maximum packet size among the packets that compose mi;
Di : deadline, maximum allowed time between transmission and reception of a message;
Ti : minimum interval between consecutive message source publications, with Di ≤ Ti;
Pi : message priority;
Si : source node;
DSi : destination node;
Li : set of links that mi passes through, including local-links and inter-links;
ni : number of links that mi crosses, i.e., ni = |Li|.

As common in IIoT applications we consider single packet messages. Concerning the path,
each element in Li has a duplet l =< x, y > representing a link l between node/switch x and
node/switch y. A link between a node and a switch is called local-link, while the link between
two switches is an inter-link. The direction of message transmission in that link is indicated
by the sequence within the duplet. The set of links in the route of mi is Li = {lk|k = 1..ni}.
Each message has a defined priority assigned in ascending order (larger value of Pi means
higher priority). Since MQTT generally relies on unicasting [15], we restrict the analysis to
unicast streams, with only one destination port per message.

4.2 Scheduling Model
As common in current networks, packet transmission is non-preemptive. Thus, we use
non-preemptive fixed priorities scheduling with FIFO strategy within each priority level.
When a message arrives at an ingress port it is processed by the pipeline that defines the
interaction with the flow tables in that switch and (in the normal case) places the packet in
the output port queue determined by the message path and priority. Note that each output
port corresponds to a link in the message path. Generally, message mi can suffer two types
of delays in any output queue, namely blocking and interference delays as explained next:
Blocking delay is the longest time that mi may have to wait when it arrives at an output

port and message mj with lower priority (Pj < Pi) is already being transmitted in that
port. This delay can be computed considering the longest packet among all lower priority
messages that share the same output port in each switch. For simplicity of analysis we
assume that the blocking delay can be as long as the transmission time of the longest
configured packet length, i.e. the Maximum Transmission Unit (MTU). We also consider
the MTU to be the same in all nodes.

Interference delay is the longest time that message mi must wait due to the transmission
of all messages mj with higher or same priority (Pj ≥ Pi) that share the same output
port. The worst-case interference delay requires that all messages with similar priority
arrive just before mi arrives and that all higher priority messages arrive with a pattern
defined in the next section.

NG-RES 2023



5:6 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

Figure 3 shows the scheduling model of RT-MQTT with its logical channels and the
corresponding physical links between source and destination nodes, conveying real-time
and non-real-time traffic concurrently. Once the logical channel is established, the route is
determined by a sequence of physical links, each one with origin at a specific output port of
a particular switch.

Apps

Traffic


1
A

Source

...
D

Switch 1 Switch n
5

Logical channels

Logical real-time channel

Logical non-real-time channel

Real-time traffic

Non-real-time traffic

4

...

2

Pi
pe

lin
e 

Pr
oc

es
si

ng

D
is

pa
tc

he
r

...

D
is

pa
tc

he
r

...
B

...
...

..

Port 1

Port n

...

3

5+n

Pi
pe

lin
e 

Pr
oc

es
si

ng

D
is

pa
tc

he
r

...

D
is

pa
tc

he
r

...

C

...
...

..

Port 1

Port n

Dispatcher

...

D
is

pa
tc

he
r

...

5+(n+1)

Broker

Destination

Linux TC

Figure 3 Scheduling model of RT-MQTT.

5 Response Time Analysis

To analyze RT-MQTT we follow a response time analysis method for fixed priorities. We
consider the response time of a real-time message as being composed of three parts: (i)
the response time from the source to the broker; (ii) the response time inside the broker;
and (iii) the response time from the broker to the destination. While the response
times of parts (i) and (iii) are communication delays, (ii) is a computational delay. Both
communication and computation delays are interdependent. The holistic approach [23] solves
this interdependence iteratively to find the global worst-case response times but, in this case,
it requires knowing the computational structure of the broker, which is generally unknown.

Although there is some work in the literature addressing the real-time behavior of the
broker, e.g. applying offset-based response time analysis [12], we opted for leaving it outside
our current work and focusing on network delays, only. Moreover, the response time analysis
for parts (i) and (iii) is similar, just switching the source in (i) with the broker in (iii) and
the broker in (i) with the destination in (iii). Therefore, hereinafter we focus only on part
(i), i.e., developing a response time analysis for the traffic from source nodes to the broker.

5.1 Response Time Analysis From Source to Broker

We analyze the full path from source to broker as a series of links, each contributing with
additional delay. The total response time is then obtained by adding the response times of
all individual links in the message path plus the time taken by the switches to move messages
across, through their pipelines. We refer to this last component as the switching delay. For
the sake of simplicity of analysis, we consider worst-case conditions in all links and switches,
at the expense of additional pessimism.



E. Shahri, P. Pedreiras, and L. Almeida 5:7

5.1.1 Single link response time analysis
In each link, messages are serialized in the output port of its source, be it a source node
or an OF-Switch. As discussed in the previous section, each output port enforces fixed-
priorities non-preemptive packet scheduling, with FIFO handling within the same priority
level. To analyze this model we apply the conventional computation of response time without
preemption in uniprocessors based on cumulative delays [4, 5, 6].

A crucial aspect of this analysis is determining the critical instant, i.e., the message
release pattern that leads to the worst-case interference that a message can suffer. In our
case, we use as critical instant a synchronous pattern in which a message mi is released
immediately after the release of a lower priority message with maximum size (maximum
blocking) and immediately after all equal priority messages and together with all higher
priority messages considering their maximum release jitter (maximum interference).

Non-preemptive transmissions are subject to the push-through effect according to which
a message mi can delay higher priority messages through blocking that in turn will generate
higher interference in the following instances of mi itself. For this reason, the worst-case
response time of mi in a given output port may occur at instances beyond the one that is
released at a critical instant, within the so-called occupied period. The number of instances
following a critical instant that have to be checked to determine the worst-case response
time is given by Qi = ⌈(wi + Ji)/Ti⌉, where Ji is the release jitter and wi is the length of
the level-i busy period. This period is computed as in Equation 2 using fixed point iteration,
starting with w0

i = Bi + Ci and ending when wn+1
i = wn

i . The summation term labeled hep
represents the total interference due to invocations of higher and equal priority messages
released strictly before the end of the busy period.

wn+1
i = Bi +

∑
∀ j ∈ hep(i)

⌈wn
i + Jj

Tj
⌉Cj (2)

The so-called level-i occupied period starts at the critical instant and extends until the
following level-i idle period, i.e., when the queues of priorities Pi and higher of the output
port become empty. This period includes the q previous instances of mi and it represents
the maximum delay that the next instance of mi can suffer before starting transmission.
Equation 3 gives an upper bound to its length vi(q) and can also be solved through fixed-point
iteration with a possible initial value v0

i (q) = Bi+qCi and ending when either vn+1
i (q) = vn

i (q)
or when vn+1

i (q) + Ci − qTi > Di − Ji in which case the deadline cannot be guaranteed.

vn+1
i (q) = Bi + qCi +

∑
∀ j∈ hep(i)

(⌊vn
i (q) + Jj

Tj
⌋ + 1)Cj (3)

The worst-case response time of an instance preceded by q instances can then be obtained
with RTi(q) = vi(q) + Ci − qTi. Equation 4 gives us the worst-case response time for mi.

RTi = maxq=0,1...Qi−1(vi(q) + Ci − qTi) (4)

5.1.2 Switching delay calculation
As referred before, the switching delay affects all messages crossing a switch even without
blocking or interference by other messages. Figure 4 [27] helps understanding the switching
delay of OpenFlow switches, particularly implemented in software, as in our system.

NG-RES 2023



5:8 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

Input Queue

OF-Controller

OF-Switch

Network OS

Memory

CPU


TCAM

Rule Updating

Flow Table Execute Action Set

Figure 4 The switching delay in an OF-Switch.

We consider the switching delay as resulting from three components, the time to manage
the input queues (essentially memory operations), the time to process the flow tables and
the time to execute the action set. We refer to the switching delay affecting mi as SDi.
The switching delay must be bounded for a bounded response time, but this bound can be
different for each switch because it depends on the input load, on the number of flow tables
and on the complexity of the action set. These aspects have been studied in the literature.
For example, the switching delay increases with increasing flow arrival rate since it requires
more bandwidth from the local CPU in the SDN switch [27]. The switching delay may also
increase with decreasing packet size because it typically promotes higher arrival rate again
imposing higher processing burden on the switch CPU [3]. The forwarding table is another
source of overhead. The longer it is the higher the switching delay. In practice, the SD is
normally measured and then used in the analysis.

5.1.3 Response time calculation algorithm

Algorithm 1 shows the computation of the worst-case response time for mi for the total route
from source to broker, taking as input the network topology and the message set.

Algorithm 1 WCRT calculation for mi.

Input: G, Γ
Output: RT T otalRoute

i

/* A. Compute delays and jitter at source node: */
1 RT T otalRoute

i = ResponseT imeCalc(i, 1)
2 Jacc

i = Ji + JQP
i,1

3 k = 2
/* B. Compute delays and jitter for each switch: */

4 while k ≤ ni do
5 SDi,k = SwitchingDelayCalc(i, k)
6 Jacc

i = Jacc
i + JSD

i,k

7 RTi,k = ResponseT imeCalc(i, k)
8 Jacc

i = Jacc
i + JQP

i,k

9 RT T otalRoute
i = RT T otalRoute

i + RTi,k + SDi,k

10 k = k + 1
11 end while



E. Shahri, P. Pedreiras, and L. Almeida 5:9

The algorithm has two parts. The first part (A) processes the output link of the
source node (corresponding to k=1), including the computation of the response time
(ResponseT imeCalc(i, 1) according to Equation 4) and output jitter (Ji plus JQP

i,1 which is
the response time jitter). These values are used to initialize two accumulators that will allow
building the response time for the total route (RT T otalRoute

i ) and the release jitter (Jacc
i )

that will affect each subsequent link along the path. The second part in the algorithm (B)
is very similar to the first one with the only difference that it also computes the switching
delay introduced by the switch under analysis and the additional jitter it may cause. This is
repeated from the second to the last link in the path of mi.

6 Performance Assessment

We validate the analysis presented before with an empirical study using the Mininet emulation
framework applied in multiple scenarios of different complexity. For consistency, we also focus
on the publishers side, measuring the time intervals from the publication instant (writing
to the respective socket) to the respective reception at the broker and comparing with the
corresponding analytical response times.

6.1 Emulation Setup

We used the Mininet virtual network emulator, version 2.3.0d6 http://mininet.org/,
together with Eclipse Mosquitto [11] (v2.0.10) and Eclipse Paho MQTT library to create
MQTT clients and broker. Mininet is executed on a laptop computer featuring a 4.9 GHz
Intel Core i7 processor and 16 GB of RAM. The SDN controller is the RYU OF-Controller [1]
and it is executed on the same laptop computer.

In the emulation experiments, the QoS of all MQTT messages is set to 1 (deliver at
least once). This QoS level favors reliability over timeliness given its positive acknowledge
and retry mechanism, and it was used since fault-tolerance is important for many IIoT
applications. However, this is not expected to have a significant impact on cabled Ethernet
networks, given their low error rate.

The operational environment included heterogeneous data exchanges mimick-
ing the diversity of industrial scenarios created with the Distributed Inter-
net Traffic Generator (D-ITG) http://traffic.comics.unina.it/software/ITG/ for
TCP packets, VLC media player to generate audio/video streams and vsftpd to
transfer files using the File Transfer Protocol (FTP) https://linuxconfig.org/
how-to-setup-and-use-ftp-server-in-ubuntu-linux. These were all non-real-time
traffic sources with bandwidth limited to 10 Mbit/s, 32 kbit/s, and 800 kbit/s for D-
ITG, VLC, and vsftpd, respectively. All links are configured with 100 Mbit/s capacity as
still commonly found in industry.

The experiments consider two network topologies with different levels of complexity,
named Single-Switch and Dual-Switch, comprising 1 and 2 OF-Switches (Figure 5). For
each topology we generate three different load-levels, labeled A, B, and C, involving publications
in different real-time topics. The real-time messages were published with a nominal period
chosen to cover the interval [2 15]ms and using a single Ethernet packet with maximum
size (1500 bytes), leading to a transmission time of 123µs. The priority assignment was
Deadline-Monotonic. Since we were interested in assessing the accuracy of the analysis, we
considered schedulable message sets, only.

NG-RES 2023

http://mininet.org/
http://traffic.comics.unina.it/software/ITG/
https://linuxconfig.org/how-to-setup-and-use-ftp-server-in-ubuntu-linux
https://linuxconfig.org/how-to-setup-and-use-ftp-server-in-ubuntu-linux


5:10 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

(a) Single-Switch network topology. (b) Dual-Switch network topology.

Figure 5 Network topologies used in Mininet.

Both topologies include the OF-controller (node c0), as well as the RT-NM and the MQTT
broker (both in node h24), plus up to 20 MQTT publishers (nodes h1 to h20), each publishing
a single real-time message (m1 to m20, resp.) to the broker, favoring contention in the network
and not in the nodes network stacks. In Load-Level A just 5 publishers are active (nodes h1
to h5), Load-Level B uses 10 publishers (nodes h1 to h10) and Load-Level C uses all the
20 publisher nodes. All configurations considered the non-MQTT traffic including D-ITG
data from node h21, VLC streams from h22 and vsftpd data from h23, all directed to node
h25 which is also the subscriber of all MQTT topics. On our measurement host, we use
libpcap to timestamp the packets for each flow, measuring the associated jitters and the
switching delays. For reduced interference, we first log the timestamps in memory and when
the experiment is completed, the results are dumped to disk and processed, enabling us to
calculate the switching delay and response times.

6.2 Experimental Results
The measurement points in the experiments are shown in Figure 6. The experiments tested
all combinations of topology {Single-Switch & Dual-Switch} and load-levels {A, B, C}. Each
combination was executed 1000 times with each publisher generating 100 messages per run.

Source Node Switch1

RTi,k=1

RTi,k=2Jacc+=JQP+JSD
SDi,k=2

Messages

Arrival

MQTT Broker

Messages

Receive

RTiTotalRoute

Ji

(a) Response time in the Single-Switch topology.

Source Node Switch1 MQTT Broker

RTi,k=1

RTi,k=3

Switch2

Messages

Arrival

Messages

Receive

RTiTotalRoute

SDi,k=2

SDi,k=3

Ji

RTi,k=2Jacc+=JQP+JSD

Jacc+=JQP+JSD

(b) Response time in the Dual-Switch topology.

Figure 6 Response time measurements.

Figures 7 and 8 show the analytical worst-case response times (CalcRTi) against the
maximum observed response times in the experiments (ExpRTi) for the real-time messages.

From these figures we can observe three main aspects. Firstly, for all real-time messages
we see CalcRT > ExpRT , meaning the proposed analysis is safe. Secondly, the difference
CalcRT − ExpRT , which approximates the pessimism of the analysis, is relatively small
for higher priority messages, increasing as the priority decreases. This is expected since the
analysis of the lower priority messages includes more pessimistic assumption, e.g. in the
interference. Finally, both CalcRT and ExpRT increase similarly with the load level and



E. Shahri, P. Pedreiras, and L. Almeida 5:11

m1 m2 m3 m4 m5
0

0.5

1

1.5 1.4
6

1.2
6

1.0
5

1.0
5

0.5
2

0.8
6

0.7
1

0.6
4

0.6
5

0.5

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(a) Load-level A.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
0

1

2

3 2.9
3

2.6
6

2.4
1

2.1
2

1.8
7

1.5
8

1.3
3

1.3
3

0.8
0.5

2

2.0
1

1.8
6

1.7
1

1.5
2

1.4
1

1.1 1.0
3

1.0
1

0.6
4

0.4
7

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(b) Load-level B.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20
0

2

4

6
6.1

4
5.8

4
5.6

7
5.3

3
5.2

7
4.8

9
4.7

4
4.3

8
4.3

9
3.9

4
3.4

8
3.4

8
3.0

9
2.6

2.1
7

2.1
7

1.5
1

1.1
4

0.8
1

0.5
3

4.5
4

4.3
4

4.1
7

3.9
3

3.8
7

3.4
9

3.3
4

3.1
5

2.9
8

2.6
4

2.3
9

2.4
1

2.1
1

1.7
1

1.2
7

1.2
5

1.0
1

0.6
7

0.6
3

0.5
1

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(c) Load-level C.

Figure 7 Analytical (CalcRT) versus observed (ExpRT) WCRT for Single-Switch topology.

m1 m2 m3 m4 m5
0

1

2

2.3
3

1.9
3

1.1
1

1.1
3

0.8

1.5
6

1.3
1

0.8
3

0.8
5

0.7
1

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(a) Load-Level A.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
0

2

4
4.4

5

4.0
2

3.6
4

3.2
1

2.8
3

2.4
1

2.0
3

2.0
3

1.2
4

0.8
1

3.3
5

3.0
3

2.9
4

2.6
1

2.2
3

1.9 1.7
4

1.7
2

1.1
1

0.7
2

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(b) Load-Level B.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20
0

5

10 9.2
5

8.8
1

8.4
5

8.0
4

7.9
6

7.3
8

7.2
3

6.6
2

6.6
3

5.9
7

5.2
8

5.2
8

4.6
9

3.9
6

3.3
1

3.3
1

2.3
3

1.7
6

1.2
7

0.8
4

7.1
2

6.8
1

6.6
6

6.4
5

6.1
2

5.9
8

5.7
3

5.0
1

5.1
3

4.6
7

3.9 3.9
7

3.6
5

2.9
9

2.3
1

2.2
5

1.9
1

1.2
3

1.0
1

0.7
6

Message ID

W
C

RT
(m

s)

Calc.RTi Exp.RTi

(c) Load-Level C.

Figure 8 Analytical (CalcRT) versus observed (ExpRT) WCRT for the Dual-Switch topology.

with the number of switches. Indirectly we can also see a consistent behavior of the real-time
messages, despite the reasonable load of non-real-time traffic in the background. All details
concerning the message sets and the analytical and experimental results are shown in tabular
form in Annex A, in Tables 1–6.

7 Conclusions and Future Work

Despite the increasing popularity of MQTT in the scope of IoT and IIoT, its Quality-of-Service
policies do not support timeliness requirements. A recent work addressed this limitation
proposing a set of extensions to the MQTT protocol that allow applications to specify
real-time requirements (RT-MQTT). Such specifications are then used by a resource manager,
implemented in SDN/Openflow, to create real-time channels with suitable attributes, thus
instantiating adequate network reservations to enforce the desired temporal behavior.

NG-RES 2023



5:12 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

In this paper, we show that it is possible to apply existing response time analysis to
RT-MQTT on the multi-hop SDN/OpenFlow switched network to derive worst-case response
time upper bounds to the real-time traffic. In particular, we used the standard response time
analysis for non-preemptive fixed-priority scheduling of sporadic messages. The analysis is
validated empirically within the Mininet emulator framework, being safe and with relatively
low pessimism, particularly for the higher priority traffic. Future work includes the analysis
of the broker temporal behavior to support an end-to-end (publisher-to-subscriber) delay
model. We will also apply other analytical techniques, e.g., the trajectory approach, in an
attempt to reduce the analysis pessimism.

References
1 What’s ryu. URL: https://ryu-sdn.org/.
2 M. Bala Krishna and Pascal Lorenz. Proactive replication scheme for resilient content delivery in

software defined networks. In 2019 IEEE Global Communications Conference (GLOBECOM),
pages 1–6, 2019. doi:10.1109/GLOBECOM38437.2019.9013441.

3 Andrea Bianco, Robert Birke, Luca Giraudo, and Manuel Palacin. Openflow switching: Data
plane performance. In 2010 IEEE International Conference on Communications, pages 1–5.
IEEE, 2010.

4 Reinder J Bril, Johan J Lukkien, and Wim FJ Verhaegh. Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption revisited. In 19th
Euromicro Conference on Real-Time Systems (ECRTS’07), pages 269–279. IEEE, 2007.

5 Reinder J Bril, Johan J Lukkien, and Wim FJ Verhaegh. Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption. Real-Time Systems,
42(1):63–119, 2009.

6 Robert I Davis and Alan Burns. Response time upper bounds for fixed priority real-time
systems. In 2008 Real-Time Systems Symposium, pages 407–418. IEEE, 2008.

7 Yong-Seong Kim et al. MQTT Broker with Priority Support for Emerg. Events in IoT. Sensors
and Materials, 2018.

8 J Javier Gutiérrez, J Carlos Palencia, and Michael Gonzalez Harbour. Holistic schedulability
analysis for multipacket messages in afdx networks. Real-Time Systems, 50(2):230–269, 2014.

9 Hamidreza Kasaei and Mohammadreza Kasaei. Mvgrasp: Real-time multi-view 3d object
grasping in highly cluttered environments. arXiv preprint, 2021. arXiv:2103.10997.

10 Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer, 2001.

11 Roger A Light. Mosquitto: server and client implementation of the mqtt protocol. Journal of
Open Source Software, 2(13), 2017.

12 Jukka Mäki-Turja, Kaj Hänninen, and Mikael Sjödin. On sustainability for offset based
response-time analysis. In 7th Conference on the Engineering of Computer Based Systems,
pages 1–7, 2021.

13 Steven Martin and Pascale Minet. Schedulability analysis of flows scheduled with fifo: applica-
tion to the expedited forwarding class. In Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium, pages 8–pp. IEEE, 2006.

14 Alessandro Massaro, Giuseppe Mastandrea, Luigi D’Oriano, Giuseppe Rocco Rana, Nicola
Savino, and Angelo Galiano. Systems for an intelligent application of automated processes
in industry: a case study from “pmi iot industry 4.0” project. In 2020 IEEE International
Workshop on Metrology for Industry 4.0 IoT, pages 21–26, 2020. doi:10.1109/MetroInd4.
0IoT48571.2020.9138231.

15 Jun-Hong Park, Hyeong-Su Kim, and Won-Tae Kim. Dm-mqtt: An efficient mqtt based on
sdn multicast for massive iot communications. Sensors, 18(9):3071, 2018.

https://ryu-sdn.org/
https://doi.org/10.1109/GLOBECOM38437.2019.9013441
http://arxiv.org/abs/2103.10997
https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138231
https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138231


E. Shahri, P. Pedreiras, and L. Almeida 5:13

16 Changheon Oh Seongjin Kim. A Study on Method for Message Processing by Priority in
MQTT Broker. JKIICE-Journal of the Korea Institute of Information and Communication
Engineering, Jul. 2017.

17 Lui Sha, Tarek Abdelzaher, Anton Cervin, Theodore Baker, Alan Burns, Giorgio Buttazzo,
Marco Caccamo, John Lehoczky, Aloysius K Mok, et al. Real time scheduling theory: A
historical perspective. Real-time systems, 28(2):101–155, 2004.

18 Ehsan Shahri, Paulo Pedreiras, and Luis Almeida. Enhancing mqtt with real-time and reliable
communication services. In 2021 IEEE 19th International Conference on Industrial Informatics
(INDIN), pages 1–6. IEEE, 2021.

19 Ehsan Shahri, Paulo Pedreiras, and Luis Almeida. Extending mqtt with real-time commu-
nication services based on sdn. In 2022 Sensor Applications in Industrial Automation (ISSN
1424-8220), pages 1–6. Sensors SAIA SI, 2022.

20 OASIS Standard. Mqtt version 5.0. Retrieved June, 22:2020, 2019.
21 Hiroshi Mineno Takuma Tachibana, Tetsuo Furuichi. Implementing and Evaluating Priority

Control Mechanism for Heterogeneous Remote Monitoring IoT System. MOBIQUITOUS ’16
Adjunct Proceedings, Hiroshima, Japan, December,01,2016.

22 Xueqian Tang, Qiao Li, Guangshan Lu, and Huagang Xiong. A revised trajectory approach
for the worst-case delay analysis of an afdx network. IEEE Access, 7:142564–142573, 2019.
doi:10.1109/ACCESS.2019.2943543.

23 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and microprogramming, 40(2-3):117–134, 1994.

24 Jorge Otávio Trierweiler. Real-time optimization of industrial processes. In Encyclopedia of
Systems and Control, pages 1827–1836. Springer, 2021.

25 Long Yan, Zexiong Luo, Xueqian Tang, and Yunwen Kong. Timing analysis of rate-constrained
traffic in ttethernet using extended trajectory approach. In 2020 IEEE 6th International
Conference on Computer and Communications (ICCC), pages 1039–1042. IEEE, 2020.

26 Shen Yin, Juan J Rodriguez-Andina, and Yuchen Jiang. Real-time monitoring and control
of industrial cyberphysical systems: With integrated plant-wide monitoring and control
framework. IEEE Industrial Electronics Magazine, 13(4):38–47, 2019.

27 Ting Zhang and Bin Liu. Exposing end-to-end delay in software-defined networking. Interna-
tional Journal of Reconfigurable Computing, 2019, 2019.

28 Luxi Zhao, Paul Pop, and Silviu S. Craciunas. Worst-case latency analysis for ieee 802.1qbv
time sensitive networks using network calculus. IEEE Access, 6:41803–41815, 2018. doi:
10.1109/ACCESS.2018.2858767.

29 Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. Timing analysis of rate-
constrained traffic in TTEthernet using network calculus. Real-Time Systems, 53(2):254–287,
March 2017. doi:10.1007/s11241-016-9265-0.

30 Boyang Zhou, Isaac Howenstine, Siraphob Limprapaipong, and Liang Cheng. A survey
on network calculus tools for network infrastructure in real-time systems. IEEE Access,
8:223588–223605, 2020.

A Detailed Experimental Results

Tables 1–3 for {Single-Switch} network topology and Tables 4–6 for {Dual-Switch} network
topology show the message set details and associated worst-case response time analytical
and observed values in three load-levels {A, B, C}, corresponding to Figures 7 and 8.

NG-RES 2023

https://doi.org/10.1109/ACCESS.2019.2943543
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1007/s11241-016-9265-0


5:14 Response Time Analysis for RT-MQTT Protocol Grounded on SDN

Table 1 Single-Switch network topology/load-level A.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 12.3 123 14 15 h1/p1 123 1.03 37 0 1.27 6 31 1.46 0.86

Load-Level: A

m2 1500 12.3 123 14 15 h2/p2 123 0.77 36 0 1.01 6 32 1.26 0.71
m3 1500 12.3 123 5 6 h3/p3 123 0.52 36 0 0.77 6 31 1.05 0.64
m4 1500 12.3 123 5 6 h4/p3 123 0.52 37 0 0.77 6 32 1.05 0.65
m5 1500 12.3 123 1 2 h5/p5 123 0 37 0 0.24 6 32 0.52 0.50

Table 2 Single-Switch network topology/load-level B.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 13.53 123 14 15 h1/p1 123 2.33 48 0 2.67 6 34 2.93 2.01

Load-Level: B

m2 1500 13.53 123 14 15 h2/p2 123 2.13 48 0 2.38 6 34 2.66 1.86
m3 1500 13.53 123 11 12 h3/p3 123 1.88 47 0 2.13 6 35 2.41 1.71
m4 1500 13.53 123 11 12 h4/p4 123 1.59 46 0 1.84 6 34 2.12 1.52
m5 1500 13.53 123 8 9 h5/p5 123 1.34 47 0 1.59 6 33 1.87 1.41
m6 1500 13.53 123 8 9 h6/p6 123 1.06 47 0 1.30 6 34 1.58 1.10
m7 1500 13.53 123 5 6 h7/p7 123 0.81 46 0 1.05 6 34 1.33 1.03
m8 1500 13.53 123 5 6 h8/p7 123 0.81 46 0 1.05 6 35 1.33 1.01
m9 1500 13.53 123 1 2 h9/p9 123 0.28 47 0 0.53 6 35 0.80 0.64
m10 1500 13.53 123 1 2 h10/p10 123 0 46 0 0.24 6 35 0.52 0.47

Table 3 Single-Switch network topology/load-level C.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Single-Switch

m1 1500 111 123 14 15 h1/p1 123 5.60 61 0 5.85 6 42 6.14 4.54

Load-Level: C

m2 1500 111 123 14 15 h2/p2 123 5.31 61 0 5.55 6 42 5.84 4.34
m3 1500 111 123 11 12 h3/p3 123 5.14 60 0 5.38 6 42 5.67 4.17
m4 1500 111 123 11 12 h4/p4 123 4.80 61 0 5.04 6 41 5.33 3.93
m5 1500 111 123 8 9 h5/p5 123 4.74 60 0 4.98 6 42 5.27 3.87
m6 1500 111 123 8 9 h6/p6 123 4.35 60 0 4.60 6 43 4.89 3.49
m7 1500 111 123 6 7 h7/p7 123 4.25 59 0 4.49 6 43 4.74 3.34
m8 1500 111 123 6 7 h8/p8 123 3.85 60 0 4.09 6 41 4.38 3.15
m9 1500 111 123 4 5 h9/p9 123 2.98 59 0 4.10 6 42 4.39 2.98
m10 1500 111 123 4 5 h10/p10 123 3.40 59 0 3.65 6 42 3.94 2.64
m11 1500 111 123 4 5 h11/p11 123 2.95 61 0 3.20 6 42 3.48 2.39
m12 1500 111 123 4 5 h12/p11 123 2.95 60 0 3.20 6 43 3.48 2.41
m13 1500 111 123 2 3 h13/p13 123 2.55 60 1 2.80 6 42 3.09 2.11
m14 1500 111 123 2 3 h14/p14 123 2.07 60 1 2.31 6 41 2.60 1.71
m15 1500 111 123 2 3 h15/p15 123 1.64 59 1 1.88 6 42 2.17 1.27
m16 1500 111 123 2 3 h16/p15 123 1.64 59 1 1.88 6 43 2.17 1.25
m17 1500 111 123 1 2 h17/p17 123 0.98 61 1 1.23 6 43 1.51 1.01
m18 1500 111 123 1 2 h18/p18 123 0.61 61 1 0.85 6 42 1.14 0.67
m19 1500 111 123 1 2 h19/p19 123 0.28 60 1 0.53 6 42 0.81 0.63
m20 1500 111 123 1 2 h20/p20 123 0 60 1 0.24 6 42 0.53 0.51



E. Shahri, P. Pedreiras, and L. Almeida 5:15

Table 4 Dual-Switch network topology/load-level A.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 12.3 123 14 15 h1/p1 123 1.55 57 0 1.92 6 68 2.33 1.56

Load-Level: A

m2 1500 12.3 123 14 15 h2/p2 123 1.15 57 0 1.52 6 66 1.93 1.31
m3 1500 12.3 123 5 6 h3/p3 123 0.79 56 0 1.16 6 68 1.11 0.83
m4 1500 12.3 123 5 6 h4/p3 123 0.79 57 0 1.16 6 67 1.13 0.85
m5 1500 12.3 123 1 2 h5/p5 123 0 56 0 0.37 6 67 0.80 0.71

Table 5 Dual-Switch network topology/load-level B.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 13.53 123 14 15 h1/p1 123 3.54 72 0 4.01 6 78 4.45 3.35

Load-Level: B

m2 1500 13.53 123 14 15 h2/p2 123 3.20 72 0 3.57 6 78 4.02 3.03
m3 1500 13.53 123 11 12 h3/p3 123 2.83 72 0 3.20 6 79 3.64 2.94
m4 1500 13.53 123 11 12 h4/p4 123 2.39 71 0 2.76 6 77 3.21 2.61
m5 1500 13.53 123 8 9 h5/p5 123 2.02 71 0 2.39 6 77 2.83 2.23
m6 1500 13.53 123 8 9 h6/p6 123 1.59 73 0 1.96 6 77 2.41 1.90
m7 1500 13.53 123 5 6 h7/p7 123 1.21 71 0 1.58 6 78 2.03 1.74
m8 1500 13.53 123 5 6 h8/p7 123 1.21 72 0 1.58 6 78 2.03 1.72
m9 1500 13.53 123 1 2 h9/p9 123 0.43 72 0 0.79 6 79 1.24 1.11
m10 1500 13.53 123 1 2 h10/p10 123 0 71 0 0.36 6 77 0.81 0.72

Table 6 Dual-Switch network topology/load-level C.

Experiment
Message Set Parameters Response Time Analytical Values Results

mi PSi ILi Ci Di Ti hi/Pi Bi Ii Ji Qi vi TSi SDi Calc.RTi Exp.RTi

m# (Bytes) (Mbps) (µs) (ms) (ms) h#/p# (µs) (ms) (µs) q# (ms) # (µs) (ms) (ms)

Dual-Switch

m1 1500 111 123 14 15 h1/p1 123 8.41 86 0 8.78 6 105 9.25 7.12

Load-Level: C

m2 1500 111 123 14 15 h2/p2 123 7.97 86 0 8.33 6 104 8.81 6.81
m3 1500 111 123 11 12 h3/p3 123 7.73 86 0 8.10 6 105 8.45 6.66
m4 1500 111 123 11 12 h4/p4 123 7.20 85 0 7.75 6 105 8.04 6.45
m5 1500 111 123 8 9 h5/p5 123 7.12 84 0 7.36 6 106 7.96 6.12
m6 1500 111 123 8 9 h6/p6 123 6.54 85 0 6.91 6 105 7.38 5.98
m7 1500 111 123 6 7 h7/p7 123 6.39 85 0 6.76 6 105 7.23 5.73
m8 1500 111 123 6 7 h8/p8 123 5.78 86 0 6.15 6 104 6.62 5.01
m9 1500 111 123 4 5 h9/p9 123 5.79 84 0 6.15 6 104 6.63 5.13
m10 1500 111 123 4 5 h10/p10 123 5.12 84 0 5.49 6 105 5.97 4.67
m11 1500 111 123 4 5 h11/p11 123 4.43 85 0 4.80 6 105 5.28 3.90
m12 1500 111 123 4 5 h12/p11 123 4.43 85 0 4.80 6 105 5.28 3.97
m13 1500 111 123 2 3 h13/p13 123 3.84 85 1 4.21 6 104 4.69 3.65
m14 1500 111 123 2 3 h14/p14 123 3.12 86 1 3.49 6 106 3.96 2.99
m15 1500 111 123 2 3 h15/p15 123 2.47 84 1 2.84 6 105 3.31 2.31
m16 1500 111 123 2 3 h16/p15 123 2.47 84 1 2.84 6 105 3.31 2.25
m17 1500 111 123 1 2 h17/p17 123 1.48 85 1 1.85 6 104 2.33 1.91
m18 1500 111 123 1 2 h18/p18 123 0.92 86 1 1.28 6 106 1.76 1.23
m19 1500 111 123 1 2 h19/p19 123 0.4 86 1 0.79 6 106 1.27 1.01
m20 1500 111 123 1 2 h20/p20 123 0 84 1 0.36 6 105 0.84 0.76

NG-RES 2023


	1 Introduction
	2 Related Work
	3 OpenFlow Switch Structure
	4 RT-MQTT Network Architecture
	4.1 Message Model
	4.2 Scheduling Model

	5 Response Time Analysis
	5.1 Response Time Analysis From Source to Broker
	5.1.1 Single link response time analysis
	5.1.2 Switching delay calculation
	5.1.3 Response time calculation algorithm


	6 Performance Assessment
	6.1 Emulation Setup
	6.2 Experimental Results

	7 Conclusions and Future Work
	A Detailed Experimental Results

