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Abstract
In this paper, we introduce the concept of Multi-Reader Buffers (MRBs) for high throughput and
memory-efficient implementation of dataflow applications. Our work is motivated by the huge
amount of data that needs to be processed and typically accessed in a FIFO manner, particularly in
image and video processing applications. Here, multi-cast, fork, and merge operator implementations
known today produce huge memory overheads by storing and communicating copies of the same
data. As a remedy, we first introduce MRBs as buffers preserving FIFO semantics for a finite
number of readers of the same data while storing each data item only once. Second, we present an
approach for memory minimization of data flow networks by replacing all multi-cast actors and
connected FIFOs with MRBs. Third, we present a Design Space Exploration approach to selectively
replace multi-cast actors with MRBs in order to explore memory, throughput, and processor resource
allocation tradeoffs. Our results show that the explored Pareto fronts of our approach improve the
solution quality over a reference by 78 % in average for six benchmark applications in terms of a
hypervolume indicator.
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1 Introduction

Generally, an image processing application consists of a graph of image processing filters,
where each filter operates on its input and produces transformed image data at its outputs.
Two important aspects must be considered in the design of efficient implementations of
image processing applications on multicore architectures 1) the application’s concurrency and
exploitable parallelism and 2) its memory footprint. As imperative programming languages
are a poor fit for developing concurrent applications, dataflow processing [4, 7, 17], which
is naturally suited to expressing concurrency, is widely adopted to program modern Multi-
Processor Systems-on-a-Chip (MPSoCs). Each filter of an image processing application can
be modeled by an actor consuming and producing data. Each communication between two
filters can be realized via a First In First Out (FIFO) buffer that needs to be mapped to
a region in memory. Now, one constraint in dataflow modeling is that each FIFO buffer is
exclusively written by one producer actor and read by one consumer actor. When multiple
consumers require to read the same data, some dataflow modeling frameworks [12, 10, 5]
propose to solve this issue by introducing so-called multi-cast actors that just read information
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and replicate it for a finite number of consumers. Accordingly, the introduction of multi-cast
actors might negatively impact the memory footprint of image processing applications due
to the data redundancy induced to respect dataflow semantics.

To avoid any memory overhead and as a first contribution, we introduce the concept of
a Multi-Reader Buffer (MRB) preserving FIFO semantics for a finite number of readers of
the same data while storing each data item only once. As a second contribution, we present
an approach for memory minimization of dataflow networks by replacing each multi-cast
actor and the FIFOs connected to it by a MRB. But whereas using MRBs instead of
multi-cast actors reduces the memory footprint by removing data redundancy thus, delivering
optimal memory footprint implementations, this transformation might negatively impact
the throughput of a given application, as a bounded-length MRB will free space in its FIFO
memory only once the last reader will have consumed the respective data. Accordingly, our
third contribution is to explore the tradeoff between memory footprint minimization and
throughput maximization by selectively replacing multi-cast actors by MRBs.

Here, we propose a multi-objective Design Space Exploration (DSE) for the mapping and
scheduling of a data flow specification onto symmetric multi-processor target platforms with
a global shared memory and each processor having an additional local scratchpad memory. In
addition to memory footprint to be minimized and throughput to be maximized, we consider
the number of allocated cores for each explored mapping and schedule as an additional
cost metric. We subsequently compare our proposed DSE results named MRBExplore to a
Reference approach that only optimizes the mappings without introducing any MRBs. We
also compare the DSE results MRBExplore against an approach named MRBAlways in which
all multi-cast actors and their adjacent FIFOs are replaced by MRBs. Our experiments show
that MRBAlways is able to improve the quality of found solutions in terms of a hypervolume
indicator by 67 % on average compared to a state-of-the-art reference approach. Moreover,
our proposed approach MRBExplore is shown to be able to find even better fronts of solutions
by improving the hypervolume to 78 % on average against the approach Reference.

This paper is structured as follows: Section 2 presents the state-of-the-art. Section 3
presents the a formalization of the optimization problem. Then, Section 4 presents the
semantics of our proposed MRB. Section 5 presents the DSE approach to selectively
implement MRBs and the experimental results for six applications in terms of the quality of
the found solution sets. Finally, Section 6 concludes this paper.

2 Related Work

Approaches for optimizing parallel implementation of applications specified as dataflow
networks [17] perform multi-objective optimization of conflicting design objectives, e.g.,
throughput, number of allocated cores, and memory footprint. On the one hand, approaches
such as [11, 7] optimize dataflow applications’ throughput and the number of allocated
cores in a given architecture. E.g., [7] proposed a clustering approach of static actors into a
so-called cluster. Through the proposed clustering approach, the scheduling of connected
static data flow sub-graphs can be coordinated to exploit the predictability and efficiency of
the static data flow model. Moreover, clustering reduces scheduling overhead by reducing the
number of checking guards of the actors composing a cluster, thus improving the throughput
of applications. However, the previously presented approaches do not consider any memory
footprint evaluation of implementations during DSE.

On the other hand, approaches for memory footprint minimization can be classified into
two main categories: 1) approaches minimizing the size of FIFOs and 2) approaches imple-
menting memory-reuse strategies that allow different FIFOs to be mapped into overlapping
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Figure 1 On the left, an application graph gA consisting of actors connected by communication
channels. On the right, a multi-core architecture that is modeled by an architecture graph gR.
Dashed lines represent mappings from actors to processors and channels to memories.

memory spaces or track individual token lifetimes to exploit memory footprint reductions
over the execution of an application. In the first category, techniques such as FIFO sizing
have been widely studied to reduce the memory footprint of Synchronous Dataflow (SDF)
applications [15, 1]. Such approaches determine the minimal buffer size of an SDF application
under throughput constraints. However, those approaches do not consider any memory-reuse
strategy because each buffer is studied as a separate unit allocated in memory, and no
shared memory address space is considered. In the second category, the approach presented
in [6] derives overlapping memory allocations for individual tokens communicated during the
execution of an SDF graph. As a requirement, the SDF graph has to be transformed into a
single-rate SDF graph inducing a significant analysis overhead that leads to an approach
ill-suited for usage within a DSE [6].

Apart from performing an agnostic memory footprint minimization, some approaches
exploit the knowledge about the application and actor characteristics. For instance, dataflow
frameworks [5, 18, 13] targeting image processing apply memory minimization strategies
based on the behavior of a set of specialized actors performing operations like multi-cast,
fork, and join of data. For instance, the employed memory minimization strategy described
in [13] merges all outgoing buffers of a multi-cast actor by replacing them with a broadcast
FIFO that supports a single writer but multiple readers [13]. However, this implementation
is only able to handle single rate dataflow applications. Moreover, no other design objectives
apart from memory footprint are explored. In this paper, we propose a holistic approach
that considers not only the minimization of memory footprint but also the mapping and
scheduling of communication channels and actors onto an MPSoC as well as the number of
allocated CPUs as exploration objectives.

3 Fundamentals

Mapping problems of applications to embedded systems, i.e., multi-core target architectures,
are often described by a specification graph [2, 16] composed of (i) an application graph, (ii)
an architecture graph, and (iii) mappings connecting the application and the architecture
graphs.

NG-RES 2023
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3.1 Application Graph
An application is modeled as a bipartite graph of actors and channels. First, we formalize
actors.
▶ Definition 1 (Actor [8]). An actor is a tuple a = (I,O, ψ, κ, τ) containing a set of actor
input ports I and actor output ports O. The function ψ : O → N assigns the production
rate to all output ports and the function κ : I → N assigns the consumption rate on each
input port per firing. Finally, τ ∈ R represents the actor’s execution time.
Next, we model a given data flow specification of communicating actors by a bipartite
application graph:
▶ Definition 2 (Application Graph). The application graph gA = (A,C,E, δ, γ, φ) is a bipartite
graph with its vertices partitioned into a set of actors A and a set of communication channels
C. Each channel represents a FIFO buffer. The set of directed edges E ⊆ (A.O×C)∪(C×A.I)
connects actors and channels. The delay function δ : C → N0, capacity function γ : C → N,
and size function φ : C → N, respectively, assign each channel a number of initial tokens, a
maximal number of tokens that can be stored, and the token size in bytes.
In Figure 1, an example of an application graph gA consisting of five actors A = {a1, . . . , a5}
communicating via five communication channels C = {c1, . . . , c5} is given.

From an application itself, it is possible to determine the memory footprint MF =∑
∀c∈C γ(c) · φ(c) by summing up each channel’s memory requirement derived from the

channel capacity in tokens γ(c) and the token size in bytes φ(c).
Generally, an application contains multi-cast actors, e.g., actor a2 in Figure 1. Multi-cast

actors just replicate the data tokens at their input, producing identical copies of data as
tokens on the communication channels connected to their output ports. To exemplify, a2
copies its input tokens to a3 and a4 via the communication channels c2 and c3, respectively.
In the following, let the set of multi-cast actors of an application be denoted by AM ⊂ A.
Now, each multi-cast actor represents an opportunity for memory footprint reduction, as
shown in Figure 2. As precisely one channel is connected to each actor port, the domain of
the functions δ, γ, and φ can be extended to all the ports of a multi-cast actor. If one of
these functions is applied to an actor port, it will be equivalent to applying the function to
the channel that is connected to this port. With these definitions, a multi-cast actor satisfies
the following sets of constraints:

∀a ∈ AM : |a.I| = 1 ∧ ∀i ∈ a.I : κ(i) = 1 (1)
∧ |a.O| > 1 ∧ ∀o ∈ a.O : ψ(o) = 1 (2)
∧ ∀i ∈ a.I, o ∈ a.O : φ(i) = φ(o) (3)
∧ ∀o′, o′′ ∈ a.O : δ(o′) = 0 ∧ γ(o′) = γ(o′′) (4)

First, a multi-cast actor must have exactly one input port consuming one token per actor
firing (see Equation (1)) and at least two output ports, each port producing one token per
firing (see Equation (2)). Moreover, the token size of all consumed and produced tokens
must be identical (see Equation (3)). Finally, output channels are assumed to be free of
any token, and the channel capacities of the output channels are assumed to be identical
(see Equation (4)).

3.2 Architecture Graph
A symmetric multi-core target architecture as shown in Figure 1, right, is modeled formally
by an architecture graph:
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(b) Concept of a MRB: A given multi-cast actor a2
and its adjacent channels c1, c2, and c3 are replaced
by a single MRB c{1,2,3} for memory minimization.

Figure 2 In (a), each channel connected to multi-cast actor a2 is realized as a FIFO allocated in
memory storing the same information. In (b), memory minimization is performed by merging those
redundant communication channels into MRB c{1,2,3}.

▶ Definition 3 (Architecture Graph). An architecture graph gR is a tuple (R,L, bϖ) composed
of a set of vertices R modeling hardware resources (such as processors, memories, and a
bus used to transport data from memories to processors and vice-versa) and a set of edges
L ⊆ R×R denoting communication links. Finally, bϖ denotes the bus bandwidth.

To exemplify, consider again the target architecture shown in Figure 1. The set of
resources R is partitioned into a set of CPUs RP = {rCPU1, . . . , rCPU4}, a set of memories
RM = {rSPM1, . . . , rSPM4, rDRAM}, and the bus rBUS. Here, each processor rCPUi ∈ RP ⊂
R : 1 ≤ i ≤ |RP| is assumed to have a local scratchpad memory rSPMi ∈ RM ⊂ R reachable
via the link (rCPUi, rSPMi) ∈ L. Furthermore, the processors can access the global memory
rDRAM via the bus rBUS.

3.3 Specification graph
To perform explorations of allocations and mappings of actors to cores, and of channels
to memories including the scheduling of actors and of data transfers between resources, a
specification contains a set of mappings M = MA ∪MC that is partitioned into a set of
potential mappings MA ⊆ A×RP of actors to processors and mappings MC ⊆ C ×RM of
channels to memories. Then, a specification graph can be formally defined as follows:

▶ Definition 4 (Specification Graph). A specification graph gS = (A∪C∪R,E∪L∪M) contains
the architecture graph gR, the application graph gA and the set of potential mappings M .

3.4 Actor and Communication Channel Binding
A specification, in general, allows for multiple implementations. To derive a specific imple-
mentation, a DSE must determine bindings for all actors (βA ⊆MA) and all communication
channels (βC ⊆ MC). This step is often also called mapping. Here, each actor must be
bound to exactly one processing resource (see Equation (5)). Conversely, each channel must
be bound to exactly one memory resource (see Equation (6)).

∀a ∈ A : |βA ∩ ({a} ×RP)| = 1 (5)
∀c ∈ C : |βC ∩ ({c} ×RM)| = 1 (6)

NG-RES 2023
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Moreover, the binding of each channel c is constrained to either be bound to global
memory rDRAM or a scratchpad memory rSPMi local to the processor rCPUi onto which an
actor is bound that either writes to or reads from channel c. This condition can be formalized
as follows:

∀(c, r) ∈ βC : r = rDRAM

∨ ∃(a, rCPUi) ∈ βA, o ∈ a.O : (o, c) ∈ E ∧ r = rSPMi

∨ ∃(a, rCPUi) ∈ βA, i ∈ a.I : (c, i) ∈ E ∧ r = rSPMi (7)

Formally, each feasible implementation gI must satisfy Equations (5)–(7). Note that
different implementations may have identical actor bindings βA, but differing in schedules due
to differing channel bindings βC , a limited bus bandwidth bϖ delaying those communications
using the bus to transport data, or simply using a different scheduling algorithm. Note also
that any processor rCPUi writing to its local scratchpad memory rSPMi creates no impact on
scheduling because the bus is not used to transfer data. In contrast, the bus is utilized when
writing to any other scratchpad or global memory which could create interference. Formally,
for any bound channel (c, rm) ∈ βC , the transfer delay τ(c, η) of transporting η data tokens

over the bus assuming no bus contention is calculated as τ(c, η) = φ(c)× η [bytes]
bϖ [Gb/s]

1.

4 Multi-Reader Buffers (MRBs) for Memory Footprint Minimization

Using multi-cast actors in a Dataflow Graph (DFG) may result in sub-optimal implementa-
tions in terms of memory footprint. E.g., Figure 2a presents FIFO realizations for channels
c1, c2, and c3 of the application graph shown in Figure 1. There, the multi-cast actor
a2 propagates identical data tokens to c2 and c3. Figure 2b now introduces our concept
of an MRB. By replacing a multi-cast actor and its adjacent channels by a single MRB
node in which all outgoing channel buffers are replaced internally by just a single (shared)
buffer. Semantically, the MRB acts as a channel in the transformed application graph that
technically stores only one copy of live data shared between actors a3 and a4.

Formally, the transformation of replacing a given multi-cast actor am with an MRB
for a given application graph gA is detailed in Algorithm 1. This algorithm returns a
transformed application graph where the given multi-cast actor and the channels connected
to it have been replaced by a corresponding MRB. For finding minimal memory footprint
implementations, Algorithm 1 is simply applied to all multi-cast actors of an application.

Now, we present a possible MRB realization and its principle of operation. By definition,
a MRB cm has one writer aw and multiple readers ari

∈ Ar ⊆ A : 1 ≤ i ≤ |Ar|. Each MRB
cm has a write index ω(cm) ∈ {0, 1, . . . , γ(cm)− 1} that indicates the next position in cm’s
buffer to be filled with the next token produced by the writer aw. Similarly, each cm manages
read indices ρi(cm) ∈ {−1, 0, 1, . . . , γ(cm)− 1} : 1 ≤ i ≤ |Ar|, each index ρi(cm) indicating
a position in cm’s buffer from which the next token consumed by reader ari

is read. The
special value −1 of a read index ρi(cm) denotes that cm is empty from ari

’s perspective.
Then, the number of available tokens T(cm, ari

) from the perspective of each reader ari

and the number of free places F(cm) in cm from the perspective of the writer aw can be
determined as follows:

1 Times for reading and writing local scratchpad data are assumed to be part of each actor’s execution
time.
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Algorithm 1 Multi-Reader Buffer (MRB) replacement.

1 Function insertMRB(gA, am)
2 Cdel ← {c ∈ gA.C | gA.E ∩ ({c} × am.I ∪ am.O × {c}) ̸= ∅}// All channels connected to

am
3 cm ← createMRB(am, Cdel) // Create MRB
4 gA.A← gA.A \ {am} // Remove multicast actor
5 c′ ← c : ∃i ∈ am.I, (c, i) ∈ gA.E // input channel of am

6 gA.E ← gA.E ∪ {(o, cm) | ∃a ∈ gA.A, o ∈ a.O : (o, c′) ∈ gA.E} // Connect cm writer
7 for c′′ ∈ Cdel \ {c′} do // All output channels of am
8 gA.E ← gA.E ∪ {(cm, i) | ∃a ∈ gA.A, i ∈ a.I : (c′′, i) ∈ gA.E} // Connect cm reader
9 γ(cm)← γ(c′) + γ(c′′) // Set capacity of MRB

10 δ(cm)← δ(c′) // Set initial tokens for MRB
11 φ(cm)← φ(c′) // Set token size of MRB
12 gA.C ← {cm}+ gA.C \ Cdel // Replace Cdel by cm
13 gA.E ← {(n, m) ∈ gA.E | n /∈ Cdel ∨m /∈ Cdel} // Remove edges connecting

removed channels
14 return gA

T(cm, ari
) =

{
0 if ρi(cm) < 0
((ω(cm)− ρi(cm)− 1) mod γ(cm)) + 1 otherwise

(8)

F(cm) = γ(cm)− max
ari

∈Ar
T(cm, ari

) (9)

Assuming the reader ari consumes κ(ari) tokens, then it is blocked from firing as long as
T(cm, ari

) < κ(ari
) holds. Accordingly, upon each read by an actor ari

, the corresponding
read index ρi(cm) is updated as follows:

ρi(cm)←
{
−1 if T(cm, ari

) = κ(ari
)

(ρi(cm) + κ(ari
)) mod γ(cm) otherwise

(10)

Equivalently, assuming the writer aw produces ψ(aw) tokens, then it is blocked from firing
as long as F(cm) < ψ(aw) holds. Accordingly, upon each write of actor aw, Equation (11)
is applied, which sets each read index ρi(cm) with the value ω(cm) if ρi(cm) = −1. Next,
Equation (12) is applied, which advances the writer index ω(cm) by the number of produced
tokens.

∀
1≤i≤|Ar|

ρi(cm)←
{
ω(cm) if ρi(cm) = −1
ρi(cm) otherwise

(11)

ω(cm)← (ω(cm) + ψ(aw)) mod γ(cm) (12)

To exemplify, consider the application in Figure 2. For the MRB c{1,2,3}, the writer aw is
a1, and the set of readers Ar is {a3, a4}. Of course, our presented MRB realization supports
multi-rate dataflow. However, to ease the understanding of the presented example, a1’s
production rate is assumed here to be one, i.e., ψ(a1) = 1, and the same holds for the
consumption rates of the readers, i.e., κ(a3) = κ(a4) = 1. The MRB’s read and write indices
after various firings of the connected actors a1, a3, and a4 are depicted in Figure 3. Assuming
the MRB is initially empty, these read and write indices have values as shown in Figure 3a.
Thus, T(c{1,2,3}, a3) = T(c{1,2,3}, a4) = 0 and F(c{1,2,3}) = γ(c{1,2,3})−max{0, 0} = 4.

NG-RES 2023



6:8 Throughput & Mem. Optim. for Parallel Impls. of Dataflow Networks Using MRBs

a1

a3

a4writer

readers

ω(c{1,2,3}) = 0 ρ1(c{1,2,3}) =−1

ρ2(c{1,2,3}) =−1

(a) Initial state of the MRB.

a1

a3

a4writer

readers

ω(c{1,2,3}) = 3 ρ1(c{1,2,3}) = 0

ρ2(c{1,2,3}) = 0

(b) After firing ⟨a1, a1, a1⟩.

a1

a3

a4writer

readers

ω(c{1,2,3}) = 0 ρ1(c{1,2,3}) = 3

ρ2(c{1,2,3}) = 0

(c) MRB after ⟨a3, a3, a3, a1⟩.

a1

a3

a4writer

readers

ω(c{1,2,3}) = 0 ρ1(c{1,2,3}) =−1

ρ2(c{1,2,3}) = 1

(d) MRB after ⟨a4, a3⟩.

Figure 3 MRB with one write index (pointer) indicating the location of the next token to be
written. Moreover, each reading actor requires an index pointing to the position of the next token
to read.

At this point (see Figure 3a), it is only possible to perform write operations. Before
firing a1, we must check if sufficient free places are available for the produced tokens, i.e.,
F(c{1,2,3}) = 4 ≥ ψ(a1) = 1. Next, assume actor a1 fires three times resulting in the state
shown in Figure 3b. There, the write index ω(c{1,2,3}) has advanced to 3 pointing to the
next free place in the MRB’s buffer. The read indices ρ1(c{1,2,3}) and ρ2(c{1,2,3}) have been
updated during the first firing of actor a1 from −1 to 0 pointing to the first token contained
in the MRB.

At this point (see Figure 3b), we can also perform read operations. Before firing
a reader ari

, we need to verify if there exist sufficient tokens to be consumed by the
reader, i.e., T(c{1,2,3}, ari

) ≥ κ(ari
). For instance, we are able to fire actor a3 because

T(c{1,2,3}, a3) = ((3− 0− 1) mod 4) + 1 = 3 ≥ 1. After firing the sequence ⟨a3, a3, a3, a1⟩, the
resulting state is shown in Figure 3c. There, the readers track different information about
the state of the MRB. The reader a3 points to ρ1(c{1,2,3}) = 3 and observes T(c{1,2,3}, a3) =
((0− 3− 1) mod 4) + 1 = 1 token on the MRB whereas, reader a4 points to ρ2(c{1,2,3}) = 0
and observes T(c{1,2,3}, a4) = ((0− 0− 1) mod 4) + 1 = 4 tokens. From the perspective of
the writer a1, the MRB is full.

At this point (see Figure 3c), let the firing sequence ⟨a4, a3⟩ be observed. The resulting
state of the MRB is shown in Figure 3d. From the perspective of a3, the MRB is empty, i.e.,
ρ1(c{1,2,3}) is −1. The token placed at position 0 has been consumed because a4 has read it
now seeing T(c{1,2,3}, a4) = ((0− 1− 1) mod 4) + 1 = 3 more tokens. From the perspective
of a1, there is one free place as F(c{1,2,3}) = γ(c{1,2,3})−max{0, 3} = 4− 3 = 1.

To evaluate the benefits of MRBs, the following section presents a DSE that decides
whether to replace a multi-cast actor and its connected channels with an MRB.
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Table 1 DFGs employed to compare the presented DSE.

Application # of
instances |A| |C| |AM| γ(C) MF (Reference)

[MiB]

Sobel-4 1 27 33 4 1 82.6
Sobel-8 1 51 65 8 3 707.5

Multicamera 2 123 226 46 3 252.4
Optical flow 4 89 112 15 3 996.8

Object counting 5 96 120 15 2 105.6
Foreground detection 7 139 170 24 2 5.01 · 103

5 Experimental Results

For design space exploration, we consider the set of objectives Fobj = {fmax
1 , fmin

2 , fmin
3 } to

be optimized. Here, fmax
1 , fmin

2 , and fmin
3 correspond to throughput, the number of allocated

cores, and memory footprint, respectively. Our proposed DSE optimizes the mappings where
each feasible implementation must satisfy the constraints presented in Equations (5)–(7).
For each explored mapping, a schedule of actors and communications is determined using
a First Come First Serve (FCFS) scheduler. The throughput is evaluated as the average
Frames per Second (FPS) of running ten iterations of the obtained schedule. Moreover, the
memory footprint is determined as presented in Section 3.

We employed the OpenDSE [14] framework for DSE using the NGSA-II elitist genetic
algorithm [3] with a population size of 100 individuals, each generation generating 25 new
individuals, and the crossover rate being set to 0.95. As a target architecture, we used a
symmetric eight-core MPSoC, which connects each processor to a communication bus that,
in its turn, is connected to a global memory. As target applications, Table 1 presents a
benchmark composed of six real-world image processing applications obtained from self-
developed Matlab/Simulink test cases [12]. As can be seen, for some applications, not
only one, but even up to seven instances of application graphs were considered to run
simultaneously. Shown in the table are also the number of actors, the number and capacity
of channels, and the number of multi-cast actors contained in each application.

To quantify the effects of MRBs, we implemented three approaches Reference, MRBAlways,
and MRBExplore. Here, Reference only performs the optimization of mappings. The last
column in Table 1 presents the memory footprint of each application obtained by the Reference
approach, which serves as a baseline to compare the memory footprint reductions obtained
by introducing MRBs in the applications. The approach MRBAlways applies Algorithm 1
to all the multi-cast actors in the application as a pre-processing step and then performs
the optimization of mappings, thus resulting in memory-efficient implementations. Finally,
approach MRBExplore, besides optimizing the mappings, also explores selectively for each
multi-cast actor the choice of its replacement by a MRB.

To explore the placement of the actors and channels, we define an integer genotype for
each actor and channel. For an actor a, we assume that it can be mapped to all cores RP
and, hence, the genotype for an actor is {1, 2, . . . |RP|}. A given channel c can be mapped
to (1) the global memory rDRAM, (2) the producer core’s scratchpad memory, or (3) the
consumer core’s scratchpad memory (as presented in Equation (7)), i.e., the genotype for a
channel is {1, 2, 3}. Accordingly, the genotype of the Reference and MRBAlways approaches
are given by GAlways = GReference = {1, 2, . . . |RP|}|A| × {1, 2, 3}|C|.
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Figure 4 Pareto fronts of the last generation obtained for the six presented applications after
3,500 generations. Points circled brown are non-dominated points of the union of the three Pareto
fronts.

The MRBExplore approach uses a binary genotype {0, 1} for each multi-cast actor to explore
if the multi-cast actor and its connected channels are replaced by a MRB, where a 1 indicates
a replacement. After replacing a given multi-cast actor am and its channels, the mapping of
the newly introduced MRB is the same as the mapping of the channel being read by the
replaced multi-cast actor am. Thus, the genotype of the MRBExplore approach is given by
GExplore = GReference × {0, 1}|AM|.

In the following, we will show that our MRBExplore approach can find better quality
solutions than the Reference and MRBAlways approaches. For the three approaches under
investigation, we performed ten independent DSE runs for each considered application. Each
exploration ran 3,500 generations, recording those implementation candidates with optimal
throughput at each point during exploration.

5.1 Comparison of Exploration Results
Due to multiple objectives to optimize, there not exists a single optimal solution due to
the conflicting set of objectives. Figure 4 presents the Pareto fronts2 of the last explored
generation obtained for the six test applications for each of the investigated approaches. The

2 Shown are the efficient (non-dominated) sets of solutions of the last generation as found during each
explorative search. Note that these sets are approximations of a true Pareto front.
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Figure 5 Hypervolume scores obtained for the six applications.

color on each mark represents the number of allocated cores in each solution, ranging from
single-core in blue to eight-core implementations in red. From the Pareto fronts, we observe
that Reference delivers least efficient implementations in terms of memory footprint (see
squares on top), only trading throughput for allocated cores. In contrast, the MRBAlways
front consists only of the least memory consuming implementations (see triangles at the
bottom). When only looking at the Pareto fronts of Reference and MRBAlways, we cannot
observe any clear tendency indicating that replacing all the multi-cast actors with MRBs
leads to higher throughput implementations. For instance, we can observe that Reference
found better throughput solutions for the optical flow and multicamera, whereas MRBAlways
found better throughput solutions for the other applications.
Now, by selectively exploring the replacement of multi-cast actors according to our proposed
approach MRBExplore, we observe that even higher throughput solutions could be found by
trading the memory footprint in contrast to Reference and MRBAlways. For applications where
Reference obtains higher throughputs than MRBAlways, e.g., optical flow and multicamera,
our approach trades higher memory footprint to find even higher throughput solutions by
performing fewer replacements of multi-cast actors. Conversely, for those applications where
MRBAlways finds higher throughput solutions than Reference, our approach also finds solutions
applying more replacements of multi-cast actors reflected in solutions with less memory
footprint. Notably, the highest throughput solutions found by our approach MRBExplore
are up to 22 % and 14 % higher in average over the considered applications compared to
the highest throughput solutions of Reference. In order to be able to compare the quality
of the obtained Pareto fronts, we use the hypervolume indicator [9] which delivers a single
indicator measuring the performance quality of each approach. For this purpose, we utilize
the multi-objective metric Hypervolume [9], which delivers a single indicator measuring
the performance quality of a given approach. Figure 5 presents the hypervolume indicator
for each explored application. Each plot shows the average hypervolume of ten runs of
each of the three approaches under observation over 3,500 generations. A value closer to
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0 indicates a better quality of solutions. As can be seen, a significantly better (on average
67 %) hypervolume indicator value can be observed at the exploration end of the MRBAlways
approach compared to Reference. MRBExplore improves the hypervolume indicator even 78 %
on average over all the investigated applications.

6 Conclusions

This paper introduced the concept of Multi-Reader Buffers (MRBs) as a memory-efficient
implementation of multi-cast actors and their replacement as a graph transformation. Rather
then replicating produced tokens for all readers, an MRB stores only one copy of data for all
readers. Data is alive as long as the last reader has consumed it. MRBs provide minimal
buffer implementations that are obtained by replacing all multi-cast actors in an application
with MRBs. But as the replacement of a multi-cast actor by a MRB may affect the overall
throughput of the application, i.e., in case of small buffer sizes, we proposed a DSE approach
to explore the space of selective MRB replacements. It was shown that solutions can be
found with up to 22 % higher throughput compared to a reference approach. On average, the
highest throughput implementations on the Pareto front were 14 % higher over the considered
applications and 78 % in solution quality measured by a hypervolume indicator are reported.
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